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Preface

This book is aimed at students and researchers in the fields of natural, ecological,
and environmental resources who need to know how to sample vegetative and
other resources in a scientifically credible manner. The presumed purpose it to
estimate with known precision aggregate characteristics of such resources that cannot
be measured completely. We present and discuss methods to estimate aggregate
characteristics on per unit area basis, say per hectare, as well as on an elemental
basis. For example, we provide guidance on sampling an individual tree in order
to estimate the surface area of its foliage, and extend this to estimate the aggregate
foliar area per hectare of a stand of trees. While some of the sampling methods (e.g.,
simple random sampling) we present may be found in virtually any text on sampling,
others (e.g., randomized branch sampling) are rather specialized and have evolved
when dealing specifically with issues that arise when sampling vegetation.

Deciding on the proper amount of detail to provide is always a problem when
presenting technical material. Our aim is to emphasize application over theory.
While we cannot avoid the use of mathematical formulae and expressions, we strive
first to provide a conceptual understanding of each sampling method or estimation
procedure to which the mathematics apply. For those that are more technically
adventurous, we have provided a modicum of derivations and proofs as Chapter
appendices on the companion CD disc. Skipping the technical section will not
disadvantage those who lack interest in these seemingly arcane details, but we trust
that their mastery will benefit the adventurous by providing a deeper understanding
of the underpinnings of sampling theory, estimation, and inference.

As in any scientific field, so too with statistical sampling there is a language of
specialized terms that either can be distracting or enlightening, depending on one’s
disposition. Realizing that the use of this sampling vernacular is an unavoidable
necessity in order to establish a common and succinct dialogue, we have attempted
to provide a gentle familiarity with essential terms. For example, in Chapter 1 is a
short discussion of what we mean by a “population” and who gets to decide what the
population comprises in a particular setting. Words and phrases we feel to be essential
to discourse are indicated by slant type, like this. They also appear collected together
in a box at the end of Chapters 1-3.

Short worked examples appear throughout the book, in the hope that they will
provide clarity in cases where the symbolic formulas appear mysterious. In virtually
all cases, a simple spreadsheet computer program is sufficient to work through each
example on one’s own. In this computer age it is easy to rely on commercial software
to perform routine calculations. We assert, however, that there may be pedagogical
value in working with numbers using a hand-held calculator, too! Graphical displays

xi
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of data appear throughout the text and we encourage their use as a fundamental step
in any analysis of data.

Rarely is there a sampling strategy that is singularly better than any other
for a given situation, especially when implementing surveys designed to gather
information that will be used to estimate multiple characteristics of the population
of interest. (Indeed Godambe (1955) established that there is no estimator of the
population mean that is best, in a well defined sense. The proof of this result is quite
beyond the scope of this book.) As we progress through our discussion of sampling
and estimation we strive to make comparisons to previously presented methods. Each
chapter will also contain a section which addresses practical problems which may
arise in application.

The student of this text should have some prior exposure to statistics, perhaps
by having attended a course in elementary statistics. We expect familiarity with
the normal (Gaussian) and the ¢ distributions, the central limit theorem, elementary
notions of probability, the mean and variance of a random variable, and confidence
interval.

Material Covered in this Book

Chapter 1 introduces fundamental concepts, and by so doing also establishes some
of the vernacular and tenets of probability sampling and design-based inference.

Chapter 2 develops the notion of a sampling distribution, estimation, and proper-
ties of estimators based on the randomization distribution of possible estimated.

Chapter 3 proceeds to introduce four equal probability sampling designs applica-
ble to discretely distributed populations, coupled with various estimators of the pop-
ulation mean value or total value of some attribute of the population. This is then
extended to unequal probability sampling designs. Examples from empirical popula-
tions are presented to illustrate the applications of these strategies

Chapter 4 parallels Chapter 3 in its presentation of sampling designs and appro-
priate estimators for continuously distributed populations.

Stratified sampling is presented in detail in Chapter 5. Related topics which deal
with allocation of sampling effort, double sampling to estimate the strata weights,
and poststratification are included in this chapter.

Generalized ratio and regression estimation is the topic of Chapter 6, which deals
more generally with the use of auxiliary information to improve the precision of
estimation.

From Chapter 7 onwards we present methods that have developed and applied
widely in the fields of natural resource management. Sampling with fixed size plots
and quadrats is the subject of Chapter 7. Special attention is given to edge effects
and the possible bias that may ensue. Variants of probability-proportional-to-size
sampling developed within the forestry field for the sampling of trees are explored
in Chapter 8. Well known in forestry, there has been considerably less exposure
and understanding of the mechanics and utility of these techniques in ecology
generally. Line intersect sampling is treated in Chapter 9. This is another probability-
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proportional-to-size sampling technique, but one that has enjoyed wide application
within forestry.

Chapter refch:SPR introduces sampling with partial replacement, which is a very
economical technique when sampling resources on two or more occasions.

Chapter ?7?? draws on the authors’ work of the past decade in the field of
Monte Carlo sampling techniques to estimate the value of integrals. Importance
sampling can be regarded as a continuous analog of the probability-proportional-
to-size method of Chapter 2, whereas control variate sampling is closely related to
the difference method of estimation presented in the same chapter.

The technique of randomized branch sampling, discussed in Chapter ??, is
applicable to any branching structure, hence its relevance to plants and trees. Chapter
77?7 follows with a presentation of ranked set sampling. This method of sampling has
a rich literature but rather limited field application, perhaps owing to a general lack
of awareness of its merits.

Two-stage and two-phase methods are considered in Chapters ?? and ??, respec-
tively. Our treatment of these topics is selective rather than comprehensive. We con-
sider some fruitful combinations of importance sampling and randomized branch
sampling methods, as well as a uniquely effective application of double sampling
which draws on the point sampling ideas of Chapter 3.

Material not Covered in this Book

Nearest neighbor, point-to-object, cue counting, and related methods are known
collectively as distance methods of sampling. As explained by Buckland et al.
(1993), distance sampling theory typically presumes that the population under study
obeys some specified random or stochastic process. When the presumption is valid,
a rich suite of mathematical statistics can be employed to estimate the parameters
of the stochastic process and then the population parameters themselves. Distance
methods, despite their utility and power, are beyond the scope of this book.

We do not discuss mark-recapture methods, which are used extensively in wildlife
surveys. Likewise, methods of inverse, adaptive, multiplicity, composite, and quota
sampling are excluded from consideration.

Some surveys are intended to provide information that can be used to analyze
relationships among two or more population characteristics. In this text we do not
venture onto the playing field of analytical uses of sample data, but focus exclusively
on their descriptive and enumerative uses. For example, we might be concerned
with the estimation of the number of trees per hectare afflicted with the root disease
Armellaria spp., but we stop short of attempting to relate, by means of a model, the
probability of infection, say, to measures of tree size or vigor. This is not to say that
we do not appeal to models on occasion, but rather that our interest is focused on the
fixed population under study, not the parameters of the model which arguably may
explain how the population arose.

Mensurative techniques are not discussed or compared. We presume sufficient
knowledge of the subject matter at hand to inform the field worker of the appropriate
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protocol and procedure to actually measure the requisite attributes of objects included
in the sample.

Measurement errors may have an insidious and degrading effect on the interpre-
tation of sampling results. While realizing that few measurements can be made per-
fectly —perhaps counts are exceptions— we assume throughout this book that the
magnitude of measurement error is negligibly small in relation to the measurement
itself. For cases where this is not the case, we defer to Fuller (1995); or to Sidrndal
etal. (1992, Chap. 16); or to Sukhatme et al. (1984, Chap. 11).

The bootstrap method of resampling survey data is a flexible tool by which an
empirical distribution of an estimator can be generated. By so doing, the first two
moments (mean and variance) of the distribution can be computed directly, as an
alternative to relying on analytical results. We defer to Efron & Tibshirani (1986) or
Dixon (2002) for the basic precepts of this method and to Sitter (1992) or Davison &
Hinkley (1997) for its application to sampling of finite populations.
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CHAPTER 1

Introduction

1.1 The need for sampling strategies

A sampling strategy combines procedures for selecting a sample from some larger
population with procedures for estimating one or more attributes of that entire
population from measurements taken on the sample. As its title implies, the focus
of this book is on sampling strategies applicable to environmental and natural
populations, including continuums. It is this pointedly biological, ecological, and
environmental orientation that distinguishes this book from other sampling texts.
Without exception, however, the principles of sampling and estimation described
here apply equally well to any disciplinary application.

In almost all cases, sampling is conducted because it is impractical, perhaps even
impossible, to completely census the entire population of interest without exhausting
available resources. Consider, for example, the impossibility of an attempted census
of the below-ground biomass of vegetation in the Amazon basin of South America.
In this case not only would the enormity of the task deplete national treasuries, but
some of the vegetation itself likely would be destroyed in the process.

Moreover, a population census may be fraught with difficulties such as measure-
ment error, under-counting, and erroneous tabulation. Indeed the time it takes to con-
duct a 100% inventory of a population may be so long that the population itself may
change during the process. In this regard, imagine the implausibility of a complete
inventory of the number of rhododendron blossoms during spring in the southeastern
United States.

A well designed and executed sampling strategy provides a more efficient alter-
native to a census, where efficiency relates the amount of information obtained to
the resources expended. In view of the potential inaccuracies of a population cen-
sus, a more accurate accounting of the population may in fact be achievable through
sampling.

National political campaigns for public office are always attended by pre-election
polls of the electorate, with the results of these polls reported publicly. These polls
and their results provide commonplace examples of sampling strategies and their
outcomes with which everyone is familiar. Less visible than political polls are the
numerous demographic, biological, and official surveys conducted on an ongoing
basis by governmental, scientific, and economic bureaus, to name a few sources.
Like an electoral poll, a sample, for whatever purpose, is a survey of some portion
of a larger group from which one tries to infer meaningful quantitative information
descriptive of the larger group, which we designate as the population of interest.

We have already insinuated that a population is the entire collection of subjects or
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objects about which we wish to know something. The sampler must decide which
collection of objects or subjects constitutes the population of interest. In one case
or study it might be a particular species of plant or all plant species in a geographic
region; in another case, it might be plants of a particular species and age combination;
and in yet another case, attention might be limited to just the vigorous plants,
where vigor is defined in some unambiguous and identifiable way. For notational
convenience we shall use the symbol 2 throughout this book to refer to the population
of interest.

Need the population be discrete, or can it be continuous? The seed cones on a
Norway spruce (Picea abies L.) tree is an example of a discrete population, whereas
the forest floor, upon which the cones eventually fall, is an example of a continuous
population or continuum. The members of discrete populations are customarily
called elements or units. A continuous population, by contrast, comprises infinitely
many points, for example, the location points on a forest floor or the surface
of a lake. More sampling theory and practice has been directed towards discrete
populations than continuous populations. Sampling theory for the latter nevertheless
has advanced in the disciplines of Monte Carlo integration (Rubinstein 1981), plane
sampling (Quenouille 1949; Dalenius et al. 1961), remote sensing (Koop 1990),
and geology (de Gruijter & ter Braak 1990). With recent emphasis on environmental
monitoring, sampling strategies for continuous populations has garnered increased
attention (Cordy 1993; Overton & Stehman 1993; Stevens 1997). Within forestry,
Gregoire et al. (1986) defined a continuous population that comprised the continuum
of cross sections along the central axis of the bole of a tree.

The population of interest nearly always is determined by the research or infor-
mational objectives of the survey, and ideally this is the population that is targeted
for sampling. The important point is that the estimate derived from a sample of the
targeted population pertains only to that population. To the extent that the intended
population differs from that targeted by the sampling design, extrapolation of the
sample results to the intended population is inherently risky and may be subject to
legitimate criticism. An example may help to clarify the distinction between the in-
tended and targeted population. In the course of sampling to estimate foliar area per
hectare of all Amazonian vegetation, suppose we sample plants in such a way that
only vegetation with woody stems can be selected and measured. In this scenario,
only the woody vegetation is targeted for sampling, and the herbaceous component
of the population of interest is given zero chance of being included in the sample. We
cannot extend this estimate to include foliar area of herbaceous vegetation without a
leap of faith or without a demonstration that the resulting bias is acceptably small.
In this text we leave faith to theologians and concern ourselves only with sampling
strategies that are statistically defensible, objective, and if not design-unbiased, then
estimation with bias that is negligible as the size of the sample increases.

1.2 A medley of sampling scenarios

In the previous section we mentioned the sampling of vegetation in the Amazon for
the purpose of estimating foliar area. This section presents a suite of scenarios to
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illustrate the broad spectrum of uses of probability sampling applied to ecological
and natural resources.

1.2.1 Sampling for biomass estimation

Biomass of living vegetation in a region is important for a host of reasons relevant to
ecological inquiry or resource management. It might, for example, serve to indicate
the region’s nutritive capacity and its capability to support vegetation, or it may
reflect a site’s response following management action such as fertilization, burning,
irrigation, or harvesting. Measurement of aboveground biomass of a plant is usually a
chore, often involving drying of the plant material to reduce its moisture content to an
acceptably small level. For very large plants, say mature trees, the collection, drying,
and measurement of biomass of a single individual is an arduous task owing to the
sheer amount of living tissue aboveground. While the amount of living tissue below
ground may be less, the task of collecting this material for purpose of measurement
is challenging because of its difficult access. Moreover, the actual measurement of
biomass kills the plant. A well planned sampling of aboveground biomass decreases
the amount of effort required, without extirpating the population of interest.

If the population of interest comprises lesser vegetation—shrubs and herbaceous
plants—then the size of each individual presents far less of a challenge to measure-
ment of biomass, but this is supplanted by a likely increase in the number of individ-
uals, perhaps a manyfold increase. Here again it makes sense to consider measuring
but a portion of the population, and using that sample to estimate the biomass of
the entire population. There are innumerable ways in which such a sample can be
selected. Regrettably, there is no singular way to collect a sample that is optimal for
all populations, circumstances, and information needs. This book presents a few al-
ternative strategies—with comparative advantages and disadvantages which can vary
greatly from one setting to another.

1.2.2 Sampling to estimate composition

Providing that you can recognize and distinguish among different plant species in
your backyard, it likely would be a straightforward task to tabulate the number of
plants of each species and then compute the proportional representation of each
species on your property. Doing similarly for the White Mountain National Forest
in northern New Hampshire would require either a huge crew of trained labor, or
else a reliance on some method of sampling coupled with some way to transform
the observations acquired in the sample into estimates applicable to the population.
Indeed, even in your backyard, if grasses and forbs were included in your definition
of the population, a sampling strategy likely would be required there, also.

In this book, discussions of sampling design involves issues such as the manner
in which elements or subgroups are selected into the sample, as well as how large
the sample should be. Discussions of estimation involve alternative uses of the
quantitative and qualitative information in a sample to arrive at an estimate of an
attribute of the population of interest, e.g., the proportion of the population which
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is coniferous. Discussions of inference embrace issues relating to the reliability of
estimation.

1.2.3 Sampling for cover information

How much of the desert floor is covered by pieces of petrified wood in the
Petrified Wood National Park in Arizona? Officials of the National Park Service
were interested in this question because the amount of petrified wood in its natural
state seemed to be diminishing in high traffic areas of the park: some visitors, in
defiance of posted prohibitions of the practice, pilfer pieces of petrified wood to take
home as souvenirs. In this situation, it seemed to make sense to adopt one sampling
strategy for the subpopulation of petrified wood wherein pieces were the size of one’s
fingernail or smaller, a different sampling method for that subpopulation consisting
of log-size pieces, and yet another sampling method for intermediate-size pieces.
This technique of stratifying the population into different subpopulations, and then
tailoring the sampling design within each subpopulation is commonly employed and
can produce tremendous efficiencies of effort. We treat stratified sampling at some
length in this book.

Estimation of plant canopy cover has long been of interest to ecologists (cf.,
Canfield 1941). Curiously, the line intercept technique of sampling canopy cover
can be applied, as well, to the estimation of area of forest gaps. We provide details in
Chapter 9.

1.2.4 How many trees in Sweden?

Dalenius (1957) mentions an early effort to obtain a probability sampling of the
timber resource in Sweden in 1910-1912: it involved counting all trees within
strips of land located systematically along parallel lines extending from Sweden’s
western border to its eastern border. The Varmland survey, as it was called, has
historical significance for a number of reasons: from a statistical viewpoint, ... [t]his
appears to be the first Swedish survey where the problem of measuring the degree
of representativity was approached in terms of probability calculus....The pioneer
character of the Varmland survey was apparent to the forestry statisticians of the
time [and it] played a decisive role for the development of sample survey practice in
forestry statistics and related fields” (Dalenius 1957, p. 45, 49). Indeed it served as a
pilot survey for subsequent national forest inventories in Sweden initiated in 1923*.

By the start of the 21st century, technology has reduced the requisite field labor
and time of large regional and national forest inventories, although the scope of such
inventories has expanded enormously. Typically, remotely sensed data from satellite
images or aerial photography will be used to stratify the region into noncontiguous
areas of homogeneous cover, such as water, forest land, non-forest land. The intensity
of sampling within each stratum will vary according to stipulated, or perhaps
implicitly stated, needs of accuracy, and a subsample of ground locations will be

* In 2000, the Swedish National Forest Inventory estimated that Sweden contains 65,735,000,000 trees
with heights greater than 1.3 m
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selected for visitation by a field crew. At each ground location, a few measurements
may be taken, such as a count of the number of trees in the vicinity of the ground
location, the depth of the A and B soil horizons, or the degree of slope. Or, in
consideration of the expense of placing a crew in the field, there may be a few
dozen, possibly hundreds, of measurements of vegetative, wildlife, topographic,
hydrologic, and geologic condition. Moreover, each ground location may serve as
a point anchor for a lattice of additional locations around that point. Within the
lattice, the measurement protocol may vary for some features, and may be constant
for others. We mention this scenario to highlight the fact that many sample surveys
of a population embrace multiple attributes, have multiple layers and phases which
serve to refine the sample selection process, the estimation process, or both (Nusser
& Goebel 1997; Nusser et al. 1998; Rennolls 1989; Rudis 1991; Smith & Aird 1975;
FAO 1990; FHM 1998). This is true, also, of many large demographic surveys.

1.3 Probability sample

Our initial focus, in this book, is on sampling designs that select probability samples
from discrete populations. A probability sample is underpinned by two probabilities:
the selection probability of the sample and the inclusion probabilities of the units in
the sample. We discuss the former first.

1.3.1 Selection probability of a sample

Each and every probability sample has a selection probability that is deducible from
the strictures of the sampling design or protocol. We adopt the shorthand notation
p(s) to denote this selection probability of a sample, s. Although both simple random
sampling and systematic sampling designs (discussed in Chapter 3) ensure that p(s)
is identical for each of the possible samples, there is no restriction that the design of
a probability sample must ensure that all possible samples be equally likely.

ASIDE: When sampling for the purpose of estimating one or more quantitative
attributes of a population, one fundamentally aims to select a sample that is
representative of the population. What makes a sample representative? The
answer to this deceptively simple question depends, of course, on what one
means by ‘representative.’” As Kruskal & Mosteller (1979a,b,c) explore in a very
readable and informative series of articles, the term ‘representative sampling’
admits to a wide range of use not only across the scientific and non-scientific
literature, but also within the considerably narrower statistical literature. Indeed
in the latter, Kruskal & Mosteller (1979c¢) elaborate on nine distinctive meanings
that have appeared for the term representative sampling. We do not intend to
add yet another usage, but will instead follow the sage advice of W.E. Deming,
as quoted by (Jones 1958), by phrasing our discourse in terms of probability
sampling.
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Table 1.1 Distinct samples of size n = 2 from a population with N = 6 elements.

Sample Elements Sample FElements Sample Elements

S1 U, S6 T, Uz S11 Uz, Us
52 U, Uz 87 T, Uy S12 U, Us
53 Uy, U S8 T, Us S13 Uys, Us
S4 U, Us 59 W, Us S14 Us, Us
S5 U, Us S10 Uz, Uy S15 Us, Us

Under most sampling designs, the number of possible samples will far outnumber
the elements in the population, because many sampling designs permit a partial over-
lap in composition, i.e., two distinct samples may have some population elements in
common. In practice, it never is necessary to enumerate all possible samples and the
composition of each, but we do so here to illustrate this last point. In a well-known
primer, Basic Ideas of Scientific Sampling, Stuart (1962) examined a six element
population with members U;, U, Uz, Us, Us, Us. Consider now the various sam-
ples each with two distinct elements that may be drawn from this population; these
are shown in Table 1.1. Using the symbol Q to denote the number of possible sam-
ples, it is evident from the tabulated display that for this example Q = 15. While
we have shown the first two samples, s1 and s7, as comprising the elements {U;, 1}
and {1, 13}, respectively, the ordering of the samples in this enumeration is arbi-
trary. Indeed, the sample labels, 51, 52, 53, and so on, are introduced merely as a
notational convenience to help us distinguish one possible sample from another in
our discussion. Another person may choose to enumerate the list of possible samples
in a different order, one that would lead, for example, to the designation of sample s3
as containing elements { U3, Uas}.

In this example from Stuart, we have not stipulated the probability of obtaining,
say, sample s7, i.e., we have not asserted anything about the value of p(s7) except
that it is deducible for any particular probability sampling design. Nonetheless, it is
possible to reason that p(s7) > 0, because otherwise p(s7) must be identically zero,
a result that is impossible if, indeed, s7 is one of the possible samples. Likewise,
p(s7) < 1, because otherwise p(s7) = 1, a result which implies that no other
samples are possible. We elaborate on this point in order to establish that, under
a probability sampling design, 0 < p(s) < 1 not only for s7 but for each possible
sample. Furthermore, remembering that  represents the number of possible samples
obtainable under a given design, then 1 = Z,?zl p(sk).

For discrete populations the magnitude of Q will depend both on the number of
population elements selected into the sample, n, and the number of elements in the
population, N. An exception to this generality happens when the sampling design is
one that permits the size of the sample, 7, to be random; i.e., n cannot be determined
in advance of sampling, in which case Q will depend on N but not n. For this
reason, among others, we will be careful to distinguish whether the sample size,
n, for each sampling design presented in this book is random or not; the latter will
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be mentioned as a fixed-n design, whereas the former will be called a random-n
design. For infinitely large populations (N = o0) and for continuously distributed
populations, Q likewise will be infinite.

If a probability sample of size n is to be chosen from a population of size N, then
the protocol of the design, or more simply stated, the design itself, will determine the
probability of obtaining each of the Q possible samples. There are a few, common
sampling designs that ensure that p(s) is identical for each of the Q possible samples,
in which case it is evident that p(s) = 1/Q for all s permissible under the design.
There are many more sampling designs which cause p(s) to vary among samples
composed of different elements. Moreover, p(s) for any particular sample, say s4
from Table 1.1, will depend on the design: the value of p(s4) under one sampling
design will differ from its value under another sampling design, in general.

1.3.2 Inclusion probability

Each element of the population must have a nonzero probability of being included in
a sample, which implies that each element must appear in at least one of the possible
samples permissible under the design. Otherwise, the sampling is not probability
sampling.

We distinguish between the sample probability, p(s), of selecting a particular
sample—when sampling according to a specific sampling design—from the proba-
bility of including a particular population element into a sample, s, under that design.
This distinction perhaps can be made clearer by means of a short example. For the
N = 6 population whose Q = 15 possible samples, each of n = 2 distinct ele-
ments, that are enumerated in Table 1.1, element s appears in samples s4, 53, S11,
513, and s15. Without being specific for the moment as to the sampling design, sup-
pose that the corresponding sample probabilities are denoted as p(s4), p(s3), p(s11),
p(s13), and p(si5). Let @5 represent the overall probability of including s in a
randomly chosen sample under this design. Upon reflection it can be deduced that
w5 = p(s4) + p(sg) + p(s11) + p(s13) + p(s15)- In the current parlance, this over-
all probability of including an element of the population into a randomly selected
sample is its inclusion probability. Because the sample probabilities, p(s), under one
design will differ from those determined for another design, so too will the inclusion
probability of 75s. Using a more general notation, if the inclusion probability of the
kth population element, Uy, is denoted as &y, then it must be true that

me= > pls), (1.1)

§2 Uk

where the notation s > Uy indicates that the summation extends over all samples of
which 7 is a member. We emphasize, again, that because zj is determined by the
sampling design, its value under one design will not be identical, in general, to its
value under another design.

Another defining characteristic of a probability sample is that the inclusion
probability of any unit of the population be deducible. When sampling from a
continuously distributed population, the corresponding notion is that the probability
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ASIDE: Some sampling designs permit the same population element to be
selected two or more times into the sample. In essence, once the first sample
element is selected from the population, that element is replaced into the
population, so that it has the same probability of being selected on the second,
and succeeding, selections. Evidently such ‘with-replacement’ sampling designs
imply a sequential selection process, and it is possible to discern yet a different
probability than either of the two mentioned above. The selection probability of
a population element, say U, is the probability that this unit will be selected in
each of the sequenced selections under a with-replacement sampling design. We
will discuss these selection probabilities of population elements in greater detail
when we first present a with-replacement sampling design in Chapter 3. We also
will show the relationship between a unit’s selection probability and its overall
inclusion probability at that point in the text.

density be deducible (we discuss probability densities at length in Chapter 4). Some
probability sampling designs ensure that the inclusion probability is constant for all
elements of the population, but most do not. For many designs presented in this book,
the inclusion probability of a population element may be computed without having
to enumerate all possible samples and compute the p(s) of each.

A particular probability sample may not be a miniaturized version of the popula-
tion, nor will it necessarily comprise elements that are, in some vague sense ‘typical’
elements of the population. While there are devices, such as stratification and order-
ing, that can be employed to more nearly match the sample composition to that of
the population, the merit of probability sampling lies chiefly with its guarantee of
desirable behavior on average, not with desirable behavior of each and every sample
that can be selected.

1.3.3 Sampling frame

A sample is selected with the aid of a sampling frame, which we regard as any
mechanism that allows one to identify and select elements of the population. It might
be as simple as a list, somehow numbered or labelled, of all population elements or
groups of elements. The frame might be based on area, such that all elements within
a selected area are observed; it might constitute a labelled list of elements along
with one or more values of auxiliary characteristics corresponding to each. The units
constituting the sampling frame may be identical to the population units, or it might
contain groupings of units. The collection of population elements included within the
sampling frame effectively constitutes the target population, and thus it is a matter
of some consequence that the target population coincides with the population about
which one wishes to draw inference.
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1.4 Inference

Objective selection is a hallmark of probability sampling. Estimates that derive from
probability samples are free from the distorting influences that can be insinuated by
subjective selection. Nonetheless, it is natural to question how reliable an estimate
from a probability sample can be. How different might another estimate provided
from a second sample be from the estimate provided by the first sample? Would one’s
estimate coincide with the population value in the hypothetical situation where the
size of the sample matches the size of the population? Providing answers to questions
like these leads one into the area of statistical inference.

In common with other established texts on sampling methods, such as the superb
works by Cochran (1977) and Sarndal et al. (1992), we stay entirely within the
realm of design-based inference. Succinctly stated, properties of an estimator are
deduced from the distribution of all estimates possible under the stipulated sampling
design. In the design-based framework the population of interest is regarded as a
fixed, not a random, quantity. If, for example, the attribute of interest is aboveground
biomass of the N trees in a forest, then the fixed-population concept implies that the
biomass of each tree in the population of N trees is likewise a fixed quantity, perhaps
unknown until that tree is selected into the sample and measured. For purposes of
statistical inference in the design-based framework, nothing is assumed about the
manner in which the population elements, the trees, are distributed nor how the
characteristics are distributed. In other words, there is nothing random about the
population being sampled. Randomness enters only through the sample selection
procedure, i.e., sample design.

To illustrate the notion of a fixed population, consider the population consisting of
all the Douglas-fir trees in British Columbia taller than 1 m. Our aim is to estimate
the foliage biomass of this population. Douglas-fir trees can be found along the
coast and in the mountains; they grow and compete for nutrients and water among
other Douglas-fir trees and among trees of other species. One can imagine grouping
together all Douglas-fir trees that are 10 years old, 11 years old, and so on, and
then examining how the numbers of trees are distributed across the spectrum of age
classes. All of these factors, and numerous others that are deducible from the biology
of Douglas-fir growth and that may be related to the amount of foliage supported
on each tree, are essentially irrelevant in the system of design-based inference we
expound in this text. That is not to say that auxiliary information of this sort cannot
be used to great advantage in the design of the sampling procedure, or weaved into
the estimator of total foliage, or both. The point of emphasis here is that the process
by which we assess the accuracy and reliability of an estimator in no way depends
on the aptness of any of these presumed relationships.

By contrast, model-based inference rests on an assumed structure for the popula-
tion, i.e., a population model. Cassel ef al. (1977) and Chaudhuri & Stenger (1992)
provide extensive, and quite mathematically rigorous, coverage of model-based in-
ference. A useful way to distinguish these two modes of inference is to remember
that in the design-based approach the sample is a realization of a random process,
whereas in the model-based approach the population is regarded as a realization of
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a random process. Contrasts of the two modes of inference have been penned by
Sarndal (1978), de Gruijter & ter Braak (1990), and Gregoire (1998).

Adherents of the model-based mode of inference cite its congruence with much
else that is practiced in statistical analysis: a model is postulated and, conditionally on
the veracity of that model, one draws conclusions about a population, a relationship,
or a stochastic process. Adherents of the design-based mode of inference cite
its freedom from a priori assumptions, i.e., inference is valid irrespective of the
concordance of the presumed model with reality. Both inferential approaches have
merit, and it is important that the basis or mode of inference at all times be
unequivocally stated. Therefore, when one characterizes properties of an estimator
of a population attribute it is important to be quite clear whether these properties are
assessed with regard to the reference distribution of all possible estimates permitted
by the sampling design, or by the stochastic relationship presumed for the population.
An estimator that is unbiased under one mode of inference may well be biased under
the other.

1.5 Population descriptive parameters
1.5.1 Discrete populations

Let yr denote the value of an attribute of interest, which is associated with the kth
unit, U, of a discrete population. The population total obtains by summing the
attribute across all N units, i.e.,

N

The population total, 7y, is a population descriptive parameter and often a parameter
of interest in resource management or scientific inquiry. For example, in the context
of the previous section, y; might be the foliar biomass of the kth tree in the sampling
frame, in which case, 7, is the total biomass contained in the population of N trees.
The population total often is the target parameter, i.e., the population descriptive
parameter to be estimated. An alternative target parameter is the population mean,

Uy, iLe.,

T 1 N
_n_ 1
B=nN Nkz_lyk

Generally, u, is the average amount of attribute per unit. In the biomass context, u,
obviously is the average biomass per tree.

There may be occasions where a sample is selected for the purpose of estimating
not only 7y, or u,, but also for estimating population parameters of other attributes.
For example, one might be interested in estimating the average biomass per tree, the
average tree height, and the average tree diameter. As needed, we will use x, z, and
other letter symbols to denote additional attributes of interest. In similar fashion to
Yk, Xx Will denote the value of the x attribute on the kth unit, and so on.

Another population descriptive parameter of interest sometimes is the ratio of two



POPULATION DESCRIPTIVE PARAMETERS 11

ASIDE: Many will find the notation we use esoteric at first, yet it is a notation
that is necessary for precise discourse. The quantitative formula of a population
attribute, such as 7, = Z/](v=1 Yk, unambiguously defines the attribute and
makes possible a symbolic expression with which the value of this population
descriptive parameter may be ascertained, in principle. In practice, we rely on
sampling to estimate its value. A population descriptive parameter is one that
can be expressed quantitatively in some fashion: for example, the proportion of
foliage in a well-defined color class is estimable, whereas the overall color of
foliage is not estimable by the sampling methods we expound.

population parameters, e.g.,
Ty ly
Rypp = —=—.
Tx Mx

The difference between the minimum and maximum value of y in a population is
the range, and it is an obvious measure of the spread of values in the population. The
range is yet another population descriptive parameter, however it is one that rarely is
of interest. An alternative quantitative measure of how dispersed are the values of y
in the population is the variance of y, symbolized by ayz, and expressed by

N
1 2
U}%ZN_lk;(yk_lu}’)'

If one regards y; — p, as the ‘distance’ of y; from the population mean, then
a useful interpretation of ay2 is as the average ‘squared distance, approximately,
between individual observed values and their average value. The variance of y also
can be interpreted literally: it is a measure of how much the yis vary around their
mean. The Chapter 1 Appendix provides two alternative, but algebraically equivalent,
expressions for oy

Because 0)2, is a function of squared values of y, its unit of measure is also the
square of the unit of measure of y. For example, if y is a measure of weight in kg,

ASIDE: Various authors define the population variance differently as
N
1 2
;= (
0y =+ Yk — #y)
y
N k=1
which differs by a factor of NT*I from the definition given above, e.g., Cochran
(1977). Moreover, some authors will use a symbol other than the Greek letter

o when defining the population variance in the same fashion as we have done
above, e.g., Siarndal et al. (1992, p. 39) symbolize it as S§U.
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then 03 is expressed in kg?. In contrast, the standard deviation of y, namely oy, has
the same units of measure as y.

At times it is convenient to express variability relative to some benchmark value.
The most commonly used benchmark value is the mean, u, and it is used in the
population descriptive parameter known as the coefficient of variation, y, which is

expressed as
oy
Yy = —
Hy
or in percentage terms as
o
Py = —100%.
Ry

The coefficient of variation is a meaningful descriptive parameter only when y > 0.

Example 1.1

Consider the following three-unit population:

y X

Unit (kg) (cm?)
a2 13
U 9 25
s 17 18

The following results are easily verified:

7, =28 kg 7y = 56 cm?
uy =93kg Uy = 18.6 cm?
oy =563 kg’ o7 =363 cm’
oy =7.5kg oy = 6.0 cm?
yy = 80.4% 7 =323%

Verify that the same value for Ry, is obtained regardless of whether it is
computed as 7y /7y Or as uy/iy.

1.5.2 Continuous populations

Continuous populations do not naturally divide into discrete units, nor do they lend
themselves to simplistic description. For our purposes, a continuous population is
a domain of integration, D, comprising infinitely many points. In chapter 4, we
discuss sampling in a one-dimensional domain comprising an interval on line; a two-
dimensional domain comprising a bounded area on a plane; and a three-dimensional
domain comprising the volume of a container. Each point in a domain can serve as a
‘sample point.” An attribute of interest, which may extend continuously along, across,
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or throughout the domain, depending on the number of dimensions, has density p (x)
at point x. In one dimension, the attribute density typically is an amount of attribute
per unit length or per unit time. In two and three dimensions, an attribute density
typically is an amount attribute per unit area and per unit volume, respectively.
Consider, for example, the volume of litter on a forest floor. The attribute density
is litter volume per unit land area (m?® m~2), which reduces to litter depth (m) at a
location point, X.

The total amount of attribute extant over the domain of integration is a population
descriptive parameter. By definition, this total is equivalent to integral of the attribute

density
T, = / p(x)dx.
D

The subscript p indicates that the total, z,, obtains from the integration of an attribute
density over a continuous domain. It also serves to distinguish the continuous total
from a discrete total, 7y, which obtains from a summation of N attribute values.

Let D be the size—the length, area, or volume—of domain D, i.e.,

Dz/dx.
D

The mean attribute density across the domain is

»
D
The variance of the attribute density across the domain is

1
03 = B/@[p(x) - ,up]2 dx.

Ratios and coefficients of variation are defined as in discrete populations.

Hp =

1.6 Historical note

In the opening decades of the twentieth century there was considerable debate as to
just how sampling should be conducted. Much of this debate compared the merits of
a purposive selection procedure to a probabilistic one, and indeed served to highlight
the ambiguity surrounding the term representativeness. While there has been recent
renewed interest in purposive selection, unquestionably the latter half of the century
has witnessed the near dominance of probability-based sampling in scientific and
public forums. In large part this is due to an exceedingly influential paper delivered
to the Royal Statistical Society by Neyman (1934). In the words of Bellhouse (1988)
the major reason why the paper

“...provides a paradigm in the history of sampling is that a theory of point and
interval estimation is provided under randomization that breaks out of an old train of
thought and opens up new areas of research.”

In addition to the Bellhouse (1988), Hansen et al. (1985) have written a very
readable overview of the development of sampling ideas in the twentieth century.
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Finally, a dated but still relevant monograph, The Principles of Sampling, by
Cochran et al. (1954) is worthwhile reading for any who seek to master the
techniques presented in this book.

1.7 Terms to remember

Coefficient of variation  Probability sampling
Design-based inference ~ Sampling design
Elements, units Sampling frame
Inclusion probability Sampling strategy
Model-based inference = Standand deviation
Population Variance

1.8 Appendix

1.8.1 Alternative expressions for 6)%

By expanding the squared term, (yk — ,uy)z, within the summation of the expression

2

for oy,

and then collecting terms, one gets

N
1
2 2 2
oy = N_o1 |:(k_21 yk)—N,uy:|.

Taking this last expression and substituting 7, /N for x, yields

1 N 72
2 _ 2 ) _ >y
=i |(2)-5)



CHAPTER 2

Sampling Distribution of an Estimator

2.1 Distribution of values

The concept of a distribution is central to statistical reasoning, so it is worthwhile
to understand not only what is meant by the term, but also how to describe and
characterize a distribution in quantitative terms through the use of summary statistics,
and tabular and graphical displays.

Consider any set of two or more quantitative measurements or, as is common in
statistical parlance, observations. If all the observations in this set were identical in
value, then the distribution of observations would be concentrated entirely on that
one value. In practice, multiple observations resulting from the measurement of a
particular feature of biological, ecological, or environmental interest will differ in
magnitude. The minimum and maximum observed values can be identified, and the
remaining values will be distributed between these two extremes.

To exemplify the notion of a distribution of values, consider the data in Table 2.1.
These data are measurements of the diameter of the bole and the aboveground
biomass of 29 sugar maple trees (Acer saccharum Marsh.). Upon scanning the
column of diameter measurements, it becomes evident that the diameters of these
29 trees vary. Indeed, it is this variation, i.e., the fact that diameters vary in
magnitude, that enables one to examine how these values distribute themselves along
the real number line. The examination of Table 2.1 makes evident that the above-

Table 2.1 Measurements of 29 sugar maples (Cunia & Briggs (1984), used with permission
of the NRC Research Press of Canada).

Diameter Biomass Diameter Biomass Diameter Biomass
(cm) (kg) (cm) (kg) (cm) (kg)
9.1 33.42 26.2 423.80 38.6 1132.69
9.1 27.68 26.4 467.30 38.9 1015.60
99 35.60 32.5 799.77 394 1222.72
10.2 41.65 32.5 758.63 41.2 1083.17
16.7 144.68 32.5 757.95 41.9 1090.91
17.2 131.94 33.0 759.60 422 1189.18
17.6 195.16 33.0 812.37 42.7 1781.14
25.1 37191 373 924.23 43.4 1242.57
254 352.38 38.1 1041.42 439 1403.90
25.9 420.29 38.6 986.36
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Figure 2.1 Dotplot display of the distribution of sugar maple diameters. Each open circle
represents the diameter of a single tree.

ground biomass also varies among these 29 trees. Moreover, the range of biomass—
the difference in magnitude between the maximum and minimum values—is very
different from the range in diameter values. Diameters are expressed here in cm,
whereas biomass is expressed in kg, and this difference in units of measure is one
reason why the range of values differ between these two attributes. Inasmuch as the
range in values is one aspect of the observed distribution of values, the differing
ranges of values between the two attributes implies necessarily that the distribution
of diameter values is not identical to the distribution of biomass values. With these
data, in particular, it is seen that the tree with the largest diameter is not even the
same tree as that with the greatest biomass.

For the purpose of exploring other aspects of distributions of values, we concen-
trate for the moment on the 29 diameter values listed in Table 2.1, and displayed
graphically in the dotplot of Figure 2.1.

Another way to display the distribution of sugar maple diameters graphically is
as a histogram, Figure 2.2. Here, the distribution of diameters has been condensed
into bins, each of which is 5 cm wide; the height of each bar in Figure 2.2 indicates
either the proportional number of trees in each successive 5-cm diameter class, or,
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Figure 2.2 Histogram of the distribution of sugar maple diameters.
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Table 2.2 Distribution of sugar maple diameters by 5 cm size classes.

Diameter Class Frequency Proportion

(cm)
7.6-12.5 4 0.1379
12.6 - 17.5 2 0.0690
17.6 -22.5 1 0.0345
22.6-27.5 5 0.1724
27.6-32.5 3 0.1034
32.6-37.5 3 0.1034
37.6-42.5 8 0.2759
42.6 -47.5 3 0.1034

depending on the scaling of the vertical axis, the actual number of trees in each class.
The two histograms are evidently identical but for the scaling of the two vertical axes.

A tabular summary of the frequency of trees in discrete classes provides a different
way to summarize this distribution of diameter values. In Table 2.2 we have shown
the distribution of sugar maple trees binned into 5 cm diameter classes; the columns
of frequencies and proportional frequencies are the tabular equivalent of Figure 2.2.
A tabular display is useful when one needs to assess exact frequencies or proportions,
but the visual impression of a graphical display often suffices, and a figure more
easily conveys the ‘shape’ of the distribution.

In Figure 2.3 the distribution of sugar maple diameters is arranged cumulatively
from smallest to largest. In this distributional display, from the horizontal axis at
some chosen value one reads up to the line connecting consecutive diameters and
across to the vertical axis. The reading on the vertical axis is the proportion of the

1.0

0.8

0.6

Proportion

0.4 —

0.2

0T —T1 71T 17 17 T T T T 1

Diameter (cm)

Figure 2.3 Cumulative distribution of sugar maple diameters.
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ASIDE: Does the variation in diameter among the 29 sugar maple trees in
Figures 2.1 and 2.2 reflect, or mimic, or approximate the variation in diameters
of all sugar maples in the world? Or in the northeastern region of the U.S.A.
where these trees grew? Or in your backyard? Such questions are impossible
to answer without knowing how these trees were selected into the sample, i.e.,
without knowledge of the sampling design.

distribution of values smaller or the same size as the one chosen. The cumulative
distribution plays an important role in the concept of confidence intervals, which is
introduced later in section 2.3.

As a second example to illustrate distributional concepts, we present a histogram
of the volume, expressed in m3, of woody fiber in the bole of 14,443 loblolly pine
(Pinus taeda L.) trees. The mean bole volume in this population is u, = 0.622 m?,
the variance is 0y2 = 0.561m°, and the coefficient of variation, in percentage
terms, is 120%. Equivalently, one could assert that this distribution of bole volume
has mean 0.622 m3, variance 0.561 m®, and coefficient of variation of 120%. The
preponderance of small values and the paucity of large values is typical of many
biological populations, and it leads to the right (positive) skewness evident in the
distribution. Fewer than 100 trees have a volume greater than 4m3; the maximum
value in this distribution is 7.8 m>.

2.2 Estimation

Much of this book is devoted to the presentation and explication of a variety of
sampling designs. With the data obtained by measuring the population elements

0.6 —
g 0.4 —
G
c
i=l B
g
o 02%
X
0.0-
L DL R L L R L B
0 2 4 6 8
Volume (m?3)

Figure 2.4 Histogram of the distribution of bole volumes of 14,443 loblolly pines.
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ASIDE: Strictly speaking, an estimator is an algebraic expression, or rule, that
instructs what to do with sample data, whereas an estimate is a number.

that are selected into the sample, one wishes to estimate one or more population
descriptive parameters. As presented in Chapter 1, a population descriptive parameter
can be viewed as a quantitative or algebraic combination of population values, such
as the mean sugar maple diameter or the total bole volume in a population of loblolly
pines. In an analogous fashion, an estimator is an algebraic expression that one
evaluates with the data from the sample in order to provide a quantitative estimate
of the target parameter. For the moment, let § represent the population parameter
of interest, and let § represent an estimator of it. We presume that the value of 6 is
unknown and that it is infeasible to measure all N elements of the population in order
to evaluate it. Hence the need to select and measure n < N units in order to estimate
0.

If one were to draw a single sample of n units from the N units in some well-
defined population, 0 will differ in magnitude from that of 8. Ignorant of the value of
6, it is a futile effort to speculate how close to it that a specific estimate, 9 might
be. It would be reasonable to expect, however, that if a larger size sample were
drawn, i.e., one in which n were closer in size to N, then 0 would likely be closer
to the targeted value of 6. The property of consistency of an estimator relates to
the difference between an estimator, 0, and the target parameter in the limiting case
wheren = N.

2.2.1 Consistency

There is some variation in the statistical literature as to the meaning of consistency.
In this text we adopt the definition that is common in the literature on probability
sampling, namely that an estimator is said to be consistent if it is identically equal in
value to the target parameter whenever the sample includes the entire population. If
] # 0 in this situation, then f is said to be an inconsistent estimator of . Initially it
may seem surprising that 6 could possibly differ from 6 when the sample comprises
the entire population, but indeed this is the case for some sampling strategies, as
noted in the following example.

Example 2.1

Simple random sampling (SRS) will be presented in detail in Chapter 3, but for
now it suffices to know that SRS is one design in which each element of the
sample is selected with equal probability. Suppose that two characteristics, y
and x, are measured on each sample element, and that y and x are the sample
average values of y and x, respectively. With such a design, the estimator y/x
is a consistent estimator of Ry|y = uy/ 1y, which was introduced in Chapter 1.



20 SAMPLING DISTRIBUTION OF AN ESTIMATOR

On the other hand, y/ X is an inconsistent estimator of Ry, when sampling
according to the Poisson design of §3.3.2.

At first glance, it seems perverse that an estimator can consistently estimate a
population parameter in one setting, but not in another, simply due to the way
the sample was selected. A purpose of this book is to instill an appreciation and
understanding of how the design of the sampling protocol, i.e., how elements are
selected into the sample, can affect the statistical properties of an estimator.

Inasmuch as the sample will rarely, if ever, be the same size as the population, it
is legitimate to question whether the property of consistency is an important one by
which to gauge the goodness of an estimator. We assert that it is, principally because
of the disquiet implied by inconsistency: having observed and measured the entire
population, if an estimator fails to provide the same value as that of the population
parameter, exclusive of measurement error, then its value is especially questionable
in a situation where only part of the population is observed, measured, and used
to calculate the estimate. Despite the intuitive appeal of consistency of estimation,
it would be very much more comforting to know the limiting behavior of 0 as n
approaches N. For this we appeal to other properties of estimators such as variance
and mean square error, both of which are introduced later in this section.

Whenever n < N the estimator & will be based on a subset of the population.
Because the population descriptive parameter, €, is evaluated with units in the
population that are omitted from any particular sample when n < N, any estimator 0
will, in general, differ from 6 because of this omission. Also, the estimate based on
the data collected from one sample will differ from that based on data from another
sample of the same size from the same population. This variation in estimates among
different samples is aptly termed sampling variation. This phenomenon, i.e., the fact
that different samples generate variation among estimates, gives rise to a distribution
of estimates, which is called a sampling distribution. To illustrate, we refer to
Figure 2.5 in which is shown the sampling distribution of 25,000 estimates of mean
bole volume of the loblolly pine population of Figure 2.4. The sampling design was
SRS of n = 20 trees per sample. From this population of 14,443 elements, there are
more than 6 x 109 possible samples, each with n = 20 distinct elements. Obviously
the sampling distribution shown in Figure 2.5 is very incomplete. Nonetheless,
it is adequate for the purpose of demonstrating that this distribution of estimates
bears little resemblance to the distribution of bole volumes in the population that
was sampled. It is the sampling distribution of an estimator, sometimes called the

ASIDE: In this discussion of properties of estimators, we introduce consistency
first because it is a property of an estimator when n = N, which implies that
there is only one possible sample, i.e., that Q = 1. In fact, the implication
is wrong: when the sample design allows the same population element to be
sampled more than once, i.e., a with-replacement design, many different possible
samples are possible even whenn = N.
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Figure 2.5 Distribution of estimates of mean bole volume loblolly pine based on 25,000 simple
random samples of 20 trees each.

randomization distribution, that is the focus of attention when one is concerned with
properties of estimators, and not the distribution of values in the sampled population
itself. Nonetheless, the tools used to describe and portray distributions can be used
also when examining properties of sampling distributions.

For a stipulated design and target parameter, 8§, one often can deduce other
properties of an estimator, 0, that pertain to how close in value it is to £, on average.
Indeed, estimation of @ by itself is rather easy: one can, for example, routinely (and
facetiously) use 6 = 22 as an estimate of any population parameter in any context!
It is quite unlikely that this particular choice of estimator is good in any worthwhile
sense, because it is impervious to the sample, i.e., it does not depend on what is
observed in the sample.

We generally seek to use estimators of population parameters that have desirable
properties, i.e., estimators that behave well in a sense that is made explicit below. Our
aim, in the remainder of this section, is to introduce some properties of estimators
and associated sampling distributions that generally are considered to be important.
As different designs and estimators are introduced throughout this book, we will also
comment on these properties of each estimator when used with a particular design.

2.2.2 Expected value

The expected value of an estimator is a weighted average of all possible estimates,
where the weight which multiplies the estimate, 9(5), from a particular sample, s,
is the probability of selecting that sample, p(s). The expected value of 6 can be
expressed symbolically as

E[0]1=3 " p)Gs). @1

seQ
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In this expression, s € € should be interpreted to mean that the summation takes
place over all samples possible under the design.

Thus, the expected value of an estimator is a probability-weighted mean of all
possible estimates. When the sampling design is one in which all possible samples
are equally likely, then p(s) = 1/, a constant, which simplifies the expression of
E[6]to that of a simple arithmetic average:

A 1 A
El0]=5 > 06s).
s€Q

The expected value of an estimator is a parameter, not a statistic. The expression
for E [é] given in (2.1) makes it evident that the expected value of an estimator is
a function of the sampling design through its dependence on the p(s). It is also a
function of the population being sampled through the sample estimates A(s). It is
not a function of any population descriptive parameter. Semantically, one may speak
of the expected value of an estimator as its mean. For equal probability sampling
designs, the mean of an estimator is the mean of the sampling or randomization
distribution (see Figure 2.5). The mean of the randomization distribution is a
parameter, as is the mean of the population itself. However, they are distinctly
different distributions, and the mean of one may not be related to, or close in
magnitude to, the mean of the other.

The following rudimentary examples further demonstrate the influence of the
sampling design on the expected value of an estimator.

Example 2.2

Consider the three unit population of Example 1.1. Only Q = 3 samples, each
with two distinct elements, can possibly be selected from this population. We
denote these samples by s1, 52, and s3, where s; = {U1, W}, s2 = {U;, U3z}, and
s3 = {U, Uz}. Imagine selecting one of these samples with an equal-probability
sampling design, so that p(s;) = p(s2) = p(s3) = 1/3. Finally suppose that
one elects to compute the sample average, y, as an estimate of the population
mean, /iy = 9.3. Then

p51=p60 (252) +060 (257) + 00 (P5)

1 11+19+26
T3\2 2 2

=9.3kg

= Iuy,

Example 2.3

Suppose that the sampling design in the preceding example is one with unequal
sample probabilities. In particular, suppose that p(s;) = 1/2, p(sz) = 1/3, and
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p(s3) = 1/6. Under this design, the expected value of y is

EL51= p(s1) (ﬂ) + p(s2) (ﬂ) +p(s3) (9 i 17)

2 2 2
L)) )
2\ 2 3\ 2 6\ 2
1119 26
7752
= 8.083 kg
7 My

Evidently, the differences in p(s) values from those of the preceding example
alter the expected value of the estimator, 0 = y. This will always be the case:
whether or not an estimator, 0 is ‘good’ in the sense of providing an estimate
that is close in value to that of the target parameter, 8, depends, inter alia, on the
sampling design.

The expected value of an estimator that does not depend on the sample data is trivial
to compute, as shown in the next example.

Example 2.4

Suppose that the estimator 0 = 22 is used irrespective of which sample is drawn.
Then

E[0]= p(s1) x 22+ p(s2) x 22 + p(s3) x 22

=22 x [ p(s1) + p(s2) + p(s3) ]
=22,

where the last result derives from the fact that the sample probabilities must
sum to unity. In this example, 0 can only take one value, the constant value 22.
One’s intuition would argue that its ‘expected value’ can be none other than the
only value it is permitted to take, a result which is corroborated by its direct
computation, above.

In practice, one can never evaluate £ [9 ], because to do so implies that one knows
the value of all N elements in the population. If that were so, then & could be
evaluated directly, and one would have no need to sample the population in order
to estimate its value. Likewise, with non-probability sampling designs for which the
sample probabilities, p(s), cannot be deduced, it also is impossible to ascertain the
expected value of any sample-based estimator.

The reason we introduce the notion of the expected value of an estimator is that it
relates to the bias and variance of an estimator, two properties of estimators that
are of fundamental importance. Furthermore, for the designs encountered in this
book, E[] can be expressed analytically in terms of the population parameter of
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interest, at least for the estimators of population parameters we consider and present.
The reason for this analytical tractability is that we confine ourselves to considering
probability sampling, which implies that each possible p(s) is deducible.

2.2.3 Bias

The bias of an estimator is the difference in magnitude between its expected value
and the population parameter for which an estimate is desired. Using B[8: 0] to
symbolize the bias of # as an estimator of 8, bias is computed as

B[O:0]1=E[0]-6.

When E[é] = 0, bias is zero, and 0 is said to be an unbiased estimator of 6.

In contrast to the expected value of an estimator, the bias of an estimator is a
function of a particular population parameter. There is a nuance here that is important
to remember: one cannot speak of an estimator as being biased or unbiased without
identifying not only the sampling design but also the population parameter being
estimated. The following examples demonstrate these points.

Example 2.5

For the equal probability design contemplated in Example 2.2, y unbiasedly
estimates u,, whereas for the unequal probability design used in Example 2.3,
y is a biased estimator of u . Different designs give rise to different properties.
Here, unbiasedness of y when estimating x, under one design does not carry
over to another design. For any design, the estimator 6 = 22 is a biased
estimator of not only xy but also any other population parameter whose value
isn’t felicitously 22.

Example 2.6

For the design considered in Example 2.2, y is a biased estimator of 7, = 28 kg.

Bias is not a property of an individual estimate, say A(s). Specifically, the fact that
é(s) # 6 does not indicate that 0 is a biased estimator of 6. The quantity é(s) -0
is known as sampling error. The term ‘error’ is not meant to imply that a mistake
has been made or that the sampling protocol has been erroneously implemented. It is
used instead to indicate that the estimate of 6 from any particular sample is different,
in all likelihood, from the value being estimated, and the source of the error is that
0 is being estimated based on measurements of just a fraction of the elements of
the population, namely only those elements selected, observed, and measured in the
sample. Hence the term sampling error.

With an appreciation of sampling error, one may reasonably wonder how much
an estimate, 9(5), from one sample will differ from that calculated from a different
sample. In practice one would like to keep this variation in estimated values among
different sample small, because in that case there is an assurance that regardless of
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which single sample you actually choose, the estimated value will be roughly the
same. We do not try to prescribe or recommend how small this variation among
estimates must be in order to be so assured. Instead we try to provide a quantitative
measure of the average deviation of the Q estimates, é(s), and their mean value,
E[6].

2.2.4 Variance

In Chapter 1 we introduced 03 as the variance of the y values in the population
and described it as being the average squared distance between individual observed
values and their mean. In concert with this meaning, the variance of an estimator
is the average squared distance between individual estimates, 9(s), and their mean,
E[]. The variance of an estimator alternately is called the sampling variance; it is
a parameter of the sampling distribution of the estimator. Using V[ 01to symbolize
the variance of é, it is computed as

Vio1= Y p)(0s) - E101) @2)

seQ

In contrast to bias, variance of an estimator does not depend on the parameter, 4,
being estimated.

Example 2.7

The variance of y in Example 2.2 is

1 2\ 2 19 -\’ 26 -\°
VIy]= p(s) (1? — 9.3) + p(s2) (7 - 9.3) + p(s3) (? — 9.3)

1 -
=3 (28.16)

= 9.38kg>.
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Example 2.8

The variance of y in Example 2.3 is

) 11 \?2 19 \2
VIy1l=p(s1) (7 - 8.083) + p(s2) (? - 8.083)

26 -\2
+ p(s3) 5 8.083

1 /11 A\Z 1/19 N2 126 \2
=—(——-38083) +-(=-28.083) +- (= —8.083
2\ 2 3\ 2 6\ 2
= 3.3368 + 0.6690 + 4.0289
= 8.035kg’.

Example 2.9

The variance of § = 22 kg in Example 2.4 is identically zero. Being a constant,
this estimator simply does not vary from one sample to the next.

The precision of an estimator is a qualitative measure of its variability. When
comparing the performance of two estimators of 8, the one with the smaller variance
is said to be the more precise. Contrast this with bias, which is an absolute property
whose magnitude can be determined, at least in principle. A biased estimator is not
necessarily an imprecise one, nor is an unbiased estimator necessarily precise. This
is borne out in the previous examples: 7 has a variance of 9.38 kg? yet is unbiased
in Examples 2.2 and 2.7; its bias is nonzero but its variance, 8.035 kgz, is smaller
in Examples 2.3 and 2.8. Indeed, the estimator § = 22 of Example 2.4 has zero
variance, and thus it is infinitely more precise than the unbiased estimator, y, of
Example 2.2.

Recall from Chapter 1 that a sampling strategy is the combination of a sampling
design and estimator. A feature of many sampling strategies is that estimation
becomes more precise with increasing sample size. This can be seen by comparing
the distribution of 25,000 estimates of mean bole volume in Figure 2.6 to that
displayed earlier in Figure 2.5. Estimates in the latter were based on samples
containing n = 20 trees, whereas the former were based on samples twice that size.
As a result, the spread, or dispersion, of the sampling distribution in Figure 2.6 is
noticeably less than that of Figure 2.5; estimates are much more concentrated in the
middle of the distribution.

2.2.5 Standard error

The standard error of an estimator is defined to be the square root of its variance,

v/ V[é ]. The standard error of an estimator has the same units of measure as the
estimator itself.
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Figure 2.6 Distribution of estimates of mean bole volume loblolly pine based on 25,000 simple
random samples of 40 trees each.

2.2.6 Mean square error

Whereas the variance of an estimator is the probability-weighted average squared
distance between each estimate, 9(s), and E [é], the mean square error is the
similarly weighted average squared distance separating each é(s) from 6, the
parameter being estimated. Symbolically it is expressed as MSE [6: 0], and it is
evaluated as

MSE[0:01="" p(s) (é(s) —9)2.

SeQ

Using the definition of B[é: 6] and V[é], a little algebra (see Chapter 2

Appendix) reveals that MSE [6: € ] can be rewritten as
A A R 2
MSE[0: 01=V[0]+ (Bd:01)".

Thus, mean square error is a measure both of how much 0 varies around its
mean, and how distant its mean is from the target parameter, 6. Evidently when
6 is unbiased, i.e., when E[0] = 6, MSE[#: 0] and V[0 ] are identical. The
utility of mean square error is that it enables a more apt assessment of estimator

performance because it accounts for both sources of statistical error rather than
focusing exclusively on one or the other.

Example 2.10

In Example 2.2, MSE[y: u,] = VI[y] = 9.38 kg?, because y unbiasedly
estimates u .



28 SAMPLING DISTRIBUTION OF AN ESTIMATOR
Example 2.11

The bias of y, when used as an estimator of x, in Example 2.3,is B[ y: u, ] =

8.083 — 9.3 = —1.25 and its variance is V[j] = 8.035kg?. Thus the mean
square error of y as an estimator of u, is MSE[y: uy]=9.597.

When comparing the performance of two estimators of &, the one with the smaller
mean square error is said to be the more accurate. Thus y more accurately estimates
wy with the sampling strategy described in Example 2.10 than it does with the
sampling strategy of Example 2.11.

We conclude this section by drawing an important distinction between 6 as an
estimator of some population parameter, #, and quantities such as V[ 1], which
can be used to characterize and describe the sampling distribution of §. Namely,
that 6 is a random variable, whereas V[é] is not. Different random samples will
produce different estimates, é(s), whose values cannot be predicted in advance of
sampling but instead vary randomly. Hence @ is a random variable. In contrast, V[ ]
is a parameter of the sampling distribution of 6, which is defined over all possible
samples obtainable under the stipulated sampling design. Its value does not change
or in any way depend upon the chance selection of any particular sample.

2.3 Interval estimation

The magnitude of the standard error of an estimator provides an indication of how
different an estimate is likely to be if one were to select another sample of the same
size and according to the same sampling design. For example, if the distribution of
an estimator is Gaussian, i.e., the normal distribution introduced in all introductory
statistics courses and textbooks, then roughly two-thirds of all possible estimates
are within £ 1 standard error of the mean of the distribution. More exactly, if the
distribution of & is normal with mean @ and variance VI ] ], then

Prob(&—\/V[é]§9§9+\/V[9]):0.68. (2.3)

That is, 68% of the distribution of all estimates, é, possible under the stipulated
design is within one standard error of the target value §. Equipped with this
assurance, one can reason that an estimate produced from a single sample has a 68%
chance of being closer to 6 than 4/ V[é ].

If one reaches out two standard errors from 6, again assuming that 0 is normally
distributed, then

Prob(e—z VId1<0<6+2 V[é])=0.95. 2.4)
One can rearrange these probability relationships to craft an ‘interval estimate’ of the

population descriptive parameter based on an estimate of it, 6, and an estimate of its
standard error. Namely, providing that € is normally distributed, then one can reason
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that the interval

O —+Jo[01<0<0++0[0] (2.5)

includes or ‘covers’ the value 8 with probability 0.68, approximately. Similarly, the
interval

0 —20[01<60<0+2/0[0] (2.6)

ought to include the unknown value 6 with approximate probability 0.95. One reason
for asserting that these probability levels are approximate is that V[6] in (2.3)
and (2.4) have been replaced by estimates in (2.5) and (2.6), thereby making the
probability results of (2.3) and (2.4) somewhat inexact.

The smaller / V[ 9] is, the narrower is the distribution of 0 , i.e., the less variable

will be estimates from different samples. Presuming that 0[0]is a ‘good’ estimate
of V[é ], then these intervals, (2.5) and (2.6), will be narrower, also, which is the
desired result. One would prefer to be in a position of proclaiming 6 to be within the
interval 50 & 10, rather than 50 &+ 30.

The intervals described above are widely known as confidence intervals, or,
more specifically, ‘normal-based confidence intervals.” The general form for their

construction is
O+ t_1\/0[0] 2.7

where ¢ is the 1 — (a/2) percentile of the Student ¢ distribution with n — 1 degrees
of freedom, which depend on both the sample size and the sample design. Tabulated
of values of # are widely available. One generated by the authors can be downloaded
from the books website at the URL identified on page xiv. The interpretation of (2.7)
is as follows: if 4 is normally distributed with mean § and variance V[ 0 ], then @ is
contained within this interval with probability 1 — a, i.e.,

Prob(é—t,,_l 5[é]§9§é+z,,_“/ﬁ[é])=1—a. (2.8)

When a = 0.10, one speaks of a (1 — a)100% = 90% confidence interval for 4,
or, to use another example, when a = 0.05, one speaks of a (1 — a)100% = 95%
confidence interval for 8. Once a sample has been selected and both ) and b [ 0 ] have
been computed from the sample data, then the population descriptive parameter, 6,
is either within the computed interval, or not. The probabilistic assertion in (2.8)
pertains to the distribution of the random variable 8, not to any single estimate: if
one were to repeatedly sample a population and estimate 6 from each sample, then
(1 — «)100% of the intervals of the form shown in (2.7) would include the value of
6 (see Example 2.12).

In practice, a confidence interval, or interval estimate, of the form (2.7) is more
informative than simply reporting the value of 0 based on the data from a particular
sample. One may be ‘confident’ that the range of values in the confidence interval
includes or covers the unknown value of the target parameter, 6. For a given level of
confidence, the narrower the interval, the better.
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Example 2.12

The 14,443 loblolly pine volumes displayed in Figure 2.4 have a distribution that
is quite skewed to the right. In contrast, however, the distribution of y displayed
in Figure 2.5 is so slightly skewed as to be barely noticeable. With each of the
25,000 samples of size n = 20, a 90% confidence interval for u, of the type
(2.7) was computed. Of these intervals, 90.2% included u, = 0.015 m?; the
average width of these 25,000 intervals was 0.013 m>.

Example 2.13

The increased precision when sampling with larger samples was noted earlier
when comparing the distribution of y shown in Figure 2.6 to that of Figure 2.5.
Correspondingly, the intervals based on the larger samples will be narrower, on
average, than those based on smaller ones. The average width of the 25,000
intervals based on samples of size n = 40 was 0.009 m>. In contrast, the average
width of 25,000 intervals based on samples of size n = 5 was 0.031 m°.

Despite the appeal of providing an interval estimate of the population parameter,
there are two reasons to view confidence intervals cautiously. First, the distribution
of 8 is never truly distributed as a normal random variable when sampling from
finite populations, even when sampling is conducted with the SRSwR design. The
deviation from the normal distribution may be especially severe when the sample
size, n, is small, and when the population being sampled is very asymmetric.
Thompson (2002, §3.2) provides details of a finite population version of the central
limit theorem that asserts that the distribution of the sample mean will approach
that of a normal distribution when certain limiting conditions are met. It is unlikely,
however, that applied samplers will find these conditions and the results which flow
from them to be of much comfort, or even intuitively sensible.

With a particular sample in hand and with the interval of (2.7) evaluated on
the basis of the data from the sample, one will never know whether 6 is included
in that particular interval, or not. The o of a (1 — a)100% confidence interval
is the proportional number of intervals that ‘miss’ the target. One of ten 90%
confidence intervals will fail to cover the intended parameter value. One of twenty
95% confidence intervals miss.

Could you have been so unlucky as to have selected a probability sample that
provided an interval estimate that missed the intended target? Yes. The second reason
for interpreting confidence intervals cautiously is that rare events do occur: the
interval you have constructed may not in fact cover 4, despite your best efforts to
design and execute an efficient probabilistic sampling plan.

These caveats notwithstanding, the distribution of estimators of population de-
scriptive parameters of typical interest are approximately normal for reasonably large
samples. How large is ‘reasonably large’ depends, inter alia, on how asymmetric the
population distribution of y values is—the more skew, the larger n must be to en-
sure that 8 is approximately normal and that (2.7) achieves its nominal (1 — a)100%
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coverage. Cochran (1977, §2.15) provided a crude rule which linked the size of the
sample needed when sampling an asymmetric population to a quantitative measure
of its asymmetry. Raj (1968, §2.11) discusses the effect of bias in 6 on confidence
interval coverage of €, and concludes that it is negligible whenever the sampling dis-
tribution is approximately normal and the ratio of estimator bias to standard error is
less than 0.1.

Although 95% confidence intervals (o = 0.05) are commonly reported, there is
no cogent reason to prefer this level of confidence over the 99% level, or the 90%
level, or any other. For a given sample size, the value of ¢ increases with increasing
confidence level. Thus, the price one pays for increased confidence is a wider range of
plausible values for 8. Conversely, in exchange for less confidence, one can proclaim
a narrower range of likely values for 6.

Example 2.14
Refer back to Example 2.12. The average width of the 25,000 95% confidence
intervals based on samples of size n = 20 was 0.016m>, compared to the

average width of 0.013 m? for 90% intervals and 0.010 m? for 80% intervals.

Finally, if one is concerned that the nominal confidence level overstates the actual
coverage, one can rely on Tchebysheff’s Theorem (vide: Mendenhall & Schaeffer
1973, §3.11) to put a lower bound on the actual coverage level. This theorem holds
for any distribution, and, in particular, its use does not require faith in the restrictive
assumption that the distribution of an estimator is normal. This theorem proclaims
that

A A~ A A 1
Prob(@—k VIO <0 <0+k V[Q])zl—k—z. 2.9
Thus, when k£ = 2, an approximate 75% confidence interval is
0+ 2/6[01, (2.10)

where the approximation is introduced by the use of 5[0 instead of the unknown
V[ 1. For an example of the use of Tchebysheff’s Theorem for interval estimation,
see Fowler & Hauke (1979).

2.4 The role of simulated sampling

The ubiquity of affordable, high-speed computing has made it possible to select
samples repeatedly from an electronic data file. If one regards the data in the file
as measurements from a complete population of interest, then this repeated sampling
enables one to construct empirically the sampling distribution of estimates and to
examine the distributional properties of the estimator. This is what we have done in
generating the distributions displayed in Figures 2.5 and 2.6. This tactic of repeatedly
drawing samples from some artificial or contrived population of interest has great
pedagogic value, because it enables us to display the shape of the randomization
distribution, and its location relative to the value of the target parameter being
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estimated. We shall use results of simulated sampling throughout this text as we
introduce various sampling strategies. We call this ‘simulated sampling’ because it
simulates via the computer what would result if one were to repeatedly sample a
population of actual interest: in practice one would draw but a single sample. This
pedagogic and research tool is a simulation in another sense, too, because in practice
one would not, of course, have the set of population y values in an electronic file,
even after having sampled the population.

The value of simulated sampling is to explore the performance of competing and
alternative sampling strategies with data that one has conveniently available. Its
limitation is that aside from unrealistically small populations such as that used in
the examples of this chapter, the simulated sampling distributions are never exactly
identical to the complete sampling distribution of all possible estimates. Nonetheless,
the simulations we report in this book are sufficiently extensive to unsure that the
simulated sampling distribution is very similar in shape and location to the complete
sampling distribution.

Schabenberger & Gregoire (1994) and Gregoire & Schabenberger (1999) illustrate
the utility of simulated sampling to explore comparative properties of alternative
estimators. Kraft et al. (1995) provide a similar type of comparative analysis using
a known population of pronghorn (Antilocapra americana).

2.5 Terms to remember

Accuracy Expected value Sampling variation
Bias Interval estimate Sampling distribution
Confidence interval ~Mean square error ~ Simulated sampling
Consistency Observation Skewness
Distribution Precision Standard error
Estimator Sampling error Variance

Estimate

2.6 Exercises

1. Let Iéy| » = y/X. Refer to the three-element population of Example 1.1 and the
sampling design described in Example 2.2. Compute MSE [ Iém 1.

2. Repeat the previous exercise but for the sampling design described in Exam-
ple 2.3. Under which design is Ry, more accurate for this population?

3. Explain how the property of consistency differs from that of bias.

4. Explain how the variance of an estimator differs from that of mean square error.



EXERCISES 33

Can the mean square error ever be less than the variance? Can the mean square
error ever be more than the variance?

5. Explain why the variance of an estimator can never be less than zero.
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2.7 Appendix

2.7.1 Derivation of the relationship between mean square error, variance, and
squared bias

MSE[0:01="" p(s) ((s) - e)

seQ

seQ

=> " pbs) (H(s) E[e]) (E[e] 9)]

seQ

(0
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CHAPTER 3

Sampling Designs for Discrete Populations

3.1 Introduction

Designs for selecting a sample from populations comprising discrete elements are
presented in this chapter. For each design, one or more estimators of the population
total, 7y, or mean value per element, u , are also presented. Integral to this discussion
is the consideration of the probability with which samples are selected and the
probability with which individual elements of the population are included into the
sample.

3.2 Equal probability designs

Equal-probability designs impose the same inclusion probability on each element of
a population. In this section we present three such designs: simple random sampling,
systematic sampling, and Bernoulli sampling. Simple random sampling may be
applied with or without the replacement of population elements. Both systematic
sampling and Bernoulli sampling are applied without the replacement of population
elements.

3.2.1 Simple random sampling

The simple random sampling design is one in which all possible samples of fixed
size, n, are equally likely. Conversely, any design which ensures that all possible
samples of n elements are equally likely is a simple random sampling design.

The selection probability of a sample, p(s), is constant under the simple random
sampling and the inclusion probability, 7y, of each and every population element
is identical. However, that the inclusion probabilities are constant and equal is not
defining feature of simple random sampling because some other sampling designs
also possess this feature.

Simple random sampling with replacement (SRSwR) permits a population ele-
ment, say U, to be included into a sample more than once. Simple random sampling
without replacement (SSRSwoR) permits each ¥y to be included in a sample no
more than once. We discuss the latter first.

Both SRSwoR and SRSwR are fixed-n designs, which means that the size of the
sample, n, is decided upon in advance of the selection of the sample. Thus, 7 is
an integral part of the sampling design. We consider only the case were n < N.
Typically n will be but a tiny fraction of N. With SRSwoR one is assured that the n
elements of the selected sample will all be distinct. This is not assured with SRSwR.

35
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ASIDE: The simple relationship between p(s) and Q is true of a few designs
other than SRSwoR, but it does not hold in general.

Simple random sampling without replacement

The number of possible without-replacement samples, each of size n, that can be
selected from a population of N discrete elements is Q = yC,, where

C M 3.1
N n—n!(N_n)! (3.1

_ NWN-D--N-n+1
T an—Dm—2)---3x2x1’ (3.2)

The factorial terms, N!, and so on, are elucidated in the Chapter 3 Appendix. Since
these Q samples are equally likely under SRSwoR, the probability of each one is

1
p(s) = a

Example 3.1
Suppose SRSwoR of a sample of size n = 1 from a population of size N = 6.
The number of possible samples is
6!
~ s
a result which accords with one’s intuition. Moreover, if the six possible samples
are equally likely, then each has a probability of p(s) = 1/6 of being selected.

=6,

Example 3.2
Suppose SRSwoR of a sample of size n = 4 from a population of size N = 6.
There are
6!
=—=15
412!

equally likely samples, each with a probability of p(s) = 1/15 of being drawn.

In these simple examples it would be possible to enumerate all possible samples
and the composition of each one. In practice this is infeasible as Q becomes very
large even with moderately sized populations and modest sized samples.

Example 3.3
With N = 100 and the SRSwoR sampling design, there are
Q = 17,310, 309, 456, 440
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samples of size n = 10, each of which differs by at least one element from any
other.

With SRSwoR, the inclusion probability of each unit, Uy, is

. 33
Tk = 2 (3.3)
where n/N is the fraction of the population that is selected into the sample and
measured (see Chapter 3 Appendix). Under SRSwoR, this sampling fraction is
identical to the probability of including each and every unit of the population into
the sample.

An unbiased estimator of a population total, 7, = Z,Icvzl Yk, 18

. Yk
tyr = Z o (3.4)

Uk es

where the notation 7, € s indicates that the summation extends over all elements
U that have been selected into the sample. A proof of the unbiasedness of 7,
when estimating 7, from a SRSwoR sample is given in the Chapter 3 Appendix,
page 79. This estimator is known as the Horvitz—Thompson estimator in honor of
the path-breaking contribution of Horvitz & Thompson (1952). This estimator is
very general and will be encountered repeatedly, and with a variety of sampling
designs, throughout this book. Because 0 < zx < 1, 7, expands or prorates each
yr measured in the sample and sums these expanded values together to serve as an
estimator of 7,. We will refer variously to this estimator as the HT estimator or as
the simple expansion estimator, henceforth.

For the SRSwoR design, the HT estimator can be expressed more transparently by
substituting (3.3) into (3.4) to obtain

fynzgzyk

Uk es

= N3.

Because the population total can be expressed as 7, = N u,, many find Ny to be an
intuitively appealing estimator of z, with the SRSwoR design.

From (2.2), the variance of the sampling distribution of 7,, under the SRSwoR
design is

V[fyn]z V[N)_’]

=NV [j]

1
=N S (56 — )

seQ
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Equivalently,
V[#z]=VINy]

(3.5)
= N2 (% - %) ayz.

The derivation of (3.5) appears in the Chapter 3 Appendix. For the SRSwoR sampling
design, the variance of the estimator of 7, is an explicit function of 03, the variance
of the y-values in the population itself, as defined in §1.5. For other designs and
estimators, this rarely will be the case.

The parenthesized term in (3.5) can never be less than zero because n < N.
However, the variance of Ny is inversely related to n, a design parameter under the
control of the sampler: the larger the sample one chooses to use, the more precisely
one can estimate 7y, with this sampling strategy. Two alternative ways to express the
variance of Ny, which are algebraically equivalent to (3.5), are

a2 N —n 0'_)2,
VINy]=N (—N ) - (3.6)
and
o2
V[N&]=N2(1—f>7’, (3.7)

where f = n/N is the fraction of the population included in the sample. Because
Ny unbiasedly estimates 7, under SRSwoR, the mean square error of this estimator
of 7y is identical to its variance.

In practice, ayz cannot be evaluated from a sample of n < N observations. As a
consequence, none of the equivalent expressions for V[ Ny ] can be evaluated after
having selected a single sample by SRSwoR. However, with this design the estimator

1
5= 2 =) (3.8)

Uk es

unbiasedly estimates 0)2, ('see Chapter 3 Appendix for proof). Consequently,

11
SJ[Ny1=N*{-——=])s2
LNyl (n N)Sy

_ (N —n) 53
N n (3.9)

unbiasedly estimates V[ Ny ].
A commonly used estimator of the standard error of 7,, under this design is
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/0 [ Ny]. While this is a biased estimator of ,/ V[ Ny ], the bias is usually ignored
when using the estimated standard error to provide interval estimates (vide: §2.3).

Example 3.4

To monitor patterns of weekly water use, a town conducted a SRSwoR of
n = 100 homes. The sample was chosen with a sampling frame compiled from
records at offices of the municipal government. Town records showed that there
were N = 5392 residential dwellings with water meters in town.

Water consumption was recorded in 100-gallon units. The sample average
consumption was y = 12.5 100-gallon units per week. The sample variance was
52 = 1352 (100-gallon units)?,

Using the HT estimator, 7, the estimated weekly residential water use in

town totals 5392 x 12.5 = 67,400 100-gallon units. The estimated standard
error is 5392 x \/1352 x [1 —(100/5392)]/100 = 19,641 100-gallon units.

Expressed as a percentage of 7,, the estimated standard error of estimate is
(19,641/67,400) x 100% = 29%.

Because yy = 7y7/N, and because 7,, unbiasedly estimates 7, with variance
given by (3.5), it follows that

_ fyﬂ
=27 3.10
Y="N (3.10)

unbiasedly estimates 4y, and that its variance is given by

VINY]

Viyl= N (3.11)
The variance of y is estimated unbiasedly by
. BINF]
v [Y] - N2
1 1y ,
=-——)s
P R (3.12)
2

s
== k=3
n
The usual estimator of standard error of ¥ is /o[ ¥ ].

Example 3.5

Following Example 3.4, the estimated mean water usage per residential dwelling
is y = 12.5 and estimated standard error of 3.6, both in units of 100 gallons.
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ASIDE: None of the properties of the estimators given to this point necessarily
transfer to other sampling designs. In particular, 7,, and N'y will not necessarily
coincide: while Zy; = > 4, < Yk/7k provides an unbiased estimator of 7, under
any sampling design, Ny does not. By extension, neither does y necessarily
estimate u, unbiasedly for most other sampling designs. However, u, can
always be estimated unbiasedly by 7, /N for any design. It is for that reason
that when we present the Horvitz-Thomspon estimator, we customarily present
the estimator for the population total, 7y, first, and from that derive the unbiased
estimator of the population mean, u .

Example 3.6

Radon gas in houses can adversely affect the health of its occupants. The com-
munity of Blueridge conducted a simple random sample without replacement of
n = 140 houses from the N = 13,895 houses in the community. The cost to test
for radon was approximately $200 per house, so the town spent nearly $29,000
on the survey. The sampling fraction for this survey was f = n/N = 0.010076,
in other words about 1% of the houses in Blueridge were sampled. Of the 140
houses in the sample, 79 had basements with concrete walls.

The average level of radon was y = 9.04 pCiL~!, and the estimated standard
error was /o[y ] = 0.971 pCiL~!. A 90% confidence interval (r = 1.66 with

n — 1 = 139 degrees of freedom) for u, is 9.04 £ 1.61 pCi L~!. Expressing
the half-width of the interval as a percentage of y leads to an expression of the
90% interval estimate as 9.04 pCiL~! £ 18%. The corresponding 95% interval
(t =1.98)is 9.04 pCiL™! 4+ 22%.

In reporting the results of a sample, one normally would not present alternative
interval estimates, as doing so likely would be more confusing than informative. We
do so here, however, to illustrate that greater confidence comes with a price, namely
a greater range of uncertainty as indicated by the increased width of the interval.

Example 3.7

With the SRSwoR of the preceding example, the proportion of houses with
basements in the sample unbiasedly estimates the proportion of houses in the
population with basements. To understand the basis for this assertion, partition
N into the No houses () without basements and N; houses () with
basements. Hence,

N = Ny + Nj.
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ASIDE: In Example 3.7, suppose one is interested in estimating the average
radon concentration in houses in Blueridge with basements, which we denote by
the symbol 1. An obvious estimator is

i=— > (3.14)
m Uk €Sy

where U € s indicates the subset of the sample s consisting of the n; houses
with basements. However, y; does not unbiasedly estimate 1, because np is a
random variable—unlike »n, which is a fixed constant under SRSwoR. Estimators
such as y1, which are the ratio of two random variables, constitute an important
class of estimators, which we consider in Chapter 6.

Dividing both sides by N yields
No N
l=—+ —
N + N
=Py+ P, (3.13)

where P is the proportion of Blueridge houses without basements and P; the
proportion with basements. Let x; take on one of two values, as follows:

1, if the kth house has a basement;
Xk = .
0, otherwise.

Then
N
=S =M,
k=1
because Nj of the 7 have x; = 1 and the remaining x; = 0. As always,
Uy = Tx /N, which evaluates here to
N
qu = W = Pl
Therefore, following SRSwoR,
N
X = — = — xk —_ —
N n
Uk es
= p1, say,

where n = ng + ny, ng is the number of houses in the sample (i.e., Uy € s)
without basements, and 7 is the number of U € s with basements.

The preceding example illustrates that yu, is unbiasedly estimated by x following
a SRSwoR of size n, even when x is a binary-valued variate, in which case x, = P
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Figure 3.1 Total aboveground biomass (kg) of 1058 balsam fir, black spruce, white birch, and
white spruce trees.

and X = p;. The variance of X, namely V[x ], is identical to that of V[ ] given
in (3.11), with an obvious change in notation from y to x. Likewise the customary
estimator of V[ X ] is analogous to o [ y ] given in (3.12). However, when y or x are
binary variates, the expressions for their variances and variance estimators can be
written in terms of Py and pj, as detailed in the Chapter 3 Appendix. The Appendix
also provides details on a nearly exact confidence interval estimate for a population
proportion.

Example 3.8

The total aboveground biomass was measured on a total of N = 1,058 balsam
fir, black spruce, white birch, and white spruce trees, providing the distribution
displayed in Figure 3.1. The average biomass per tree was u, = 72.2 kg.
Treating this as a ‘population’ for sake of example, a SRSwoR of n = 52 trees
were selected. Among the 52 sample trees were 17 balsam fir, 14 black spruce,
10 white birch, and 11 white spruce. On the basis of this sample, the estimated
average biomass was /i, = y = 81.0 kg, and the estimated standard error of /i,
was 12.9 kg. The 90% confidence interval extended from 59.4 kg to 102.6 kg,
which evidently includes the value of z.

Selecting a SRSwoR sample

Many statistical software programs and electronic spreadsheets provide a capability
of drawing a simple random sample either with or without replacement. Because the
details for usage differ from one software product to another, we do not attempt to
explain how to use any of them. Instead we outline methods that may be implemented
in any programming language or software product or, with some effort, a handheld
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ASIDE: Under the SRSwoR design, population elements are not selected
independently. The probability that both 7 and Uy are included in the same
sample is

n(n—1)

NN -1)

calculator or printed table of random numbers. Instructions for use of the latter are
provided inter alia in §2.2 of Cochran (1977).

SRSwoR Method I:

1.

3.

Generate a discrete random integer value between 1 and N, inclusive. One way to
do this is to generate a uniformly distributed random number between 0 and 1. Let
such a uniform random number be denoted as u, and henceforth let the notation
u ~ U[0, 1] indicate that u is generated as a uniform random number between 0
and 1 (many handheld calculators, electronic spreadsheets, and statistical software
programs have a function that can produce such random, or pseudo-random
numbers). Then multiply u# by the desired sample size, n, and add 1. In other
words, calculate u* = 1 + nu. Truncate u*, keeping only its integer portion.
Denote this truncated value as [u* |giy, where the label ‘giv’ is a mnemonic
reminder that the value saved is the ‘greatest integer value’ of u*.

Select that unit 7J for which k = [u* ]gjy, disregarding any repeated selections of
Uy

Repeat steps 1 and 2 until n distinct units, Uy, are selected.

SRSwoR Method 1I:

1.

Corresponding to each of the N population elements in the sampling frame,
generate a uniform random number. For sake of notation, we let u; denote the
U[0,1] number generated and associated with unit Ug.

. Sort the N uys from smallest to largest, making sure that all the other information

about 7 is carried along in the sort.

Select those population units, U, into the sample that correspond to the n
smallest, or largest, u; numbers. The n units so selected constitute a simple
random sample from the population of N units.

Example 3.9

An unsorted list frame consisting of N = 6 population units is shown in the
first column of the following table followed by the U[0,1] number generated for
each unit. The third and fourth columns display the frame sorted by increasing
ui. Thus, U and Ug constitute a valid SRSwoR sample of size n = 2, as does
U3 and Uy. Indeed, any sequence of n consecutive units from the sorted list
constitutes a SRSwoR of size n.
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Unsorted frame Sorted frame
Unit Uniform random Unit Uniform random
Uy number, uy Uy number, uy
u 0.38200018 W 0.10068056
U 0.10068056 Ug 0.25846431
U3 0.59648426 U 0.38200018
Uy 0.89910580 Us 0.42910584
Us 0.42910584 U3 0.59648426
Us 0.25846431 Uy 0.89910580

A third selection method, devised by Bebbington (1975), is a sequential method of
selection where one considers each element in the sampling frame sequentially until
n elements have been selected. The proof that this procedure results in the selection
of a SRSwoR sample was given by Chaudhuri & Vos (1988, p. 202).

SRSwoR Method III:

1. Beginning with U, generate a U[0,1] random number, u.

2. Setn* =nand N* = N.

3. Ifu < n*/N*, select the unit into the sample, and reduce the value of n* by one.
4

. Reduce the value of N* by one and consider the next population element in the
sampling frame.

5. Repeat steps 3 and 4 until n units have been selected.

In the three methods just described for generating a SRSwoR, the size of the
population, N, must be known prior to sampling. Bissell (1986) proposed an
improvement to the Bebbington technique that is more efficient yet slightly more
complicated. McLeod & Bellhouse (1983) and Pinkham (1987) devised a method of
sequential selection similar to Bebbington’s that does not require prior knowledge of
the value of N.

Simple random sampling with replacement

With SRSwR, one permits each population element, Uy, to be selected more than
once into the sample, as first mentioned in §1.3. Evidently this implies that the
n sample elements will not necessarily be distinctly different population elements.
With large populations, the probability that a population unit will be selected more
than once into the sample is so small that SRSwR is practically equivalent to
SRSwoR. In the sampling of natural and environmental resources, SRSwR is rarely
used as a sampling design. Our reason for presenting this design is that it provides a
foundation for other sampling designs, which we present later.

With SRSwR and other with-replacement designs considered in this book, we
assume, unless stipulated otherwise, that if an element, 7, is selected more than
once, then its value, yg, is used the same number of times in whatever estimators
of population parameters are considered. One might correctly intuit that estimation
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following SRSwR must be less efficient than that following a similarly sized
SRSwoR sample. For reasonably large samples and populations, however, the loss
of efficiency is small.

With the SRSwoR, the sequence in which population elements are selected into
the sample is irrelevant: for example, in Table 1.1, s consists of the set {U;, U}
regardless of whether 7 was selected first or second. With SRSwR, all of the
possible sequences of n elements are equally likely, and there are Q = N” such
sequences. Therefore, {7, U1}, {U, W}, and {h, U1}, {U, W} are considered
to be four, not three, distinct SRSwWR samples, even though {U;, 7} and {h, U}
obviously comprise the same set of population elements. With SRSwR, the order
of selection matters: not all sets of values are equally likely, but all sequences of n
elements have the same probability of occurrence, which is p(s) = 1/Q = 1/N".
The number of sample sequences of size n > 1 possible under a SRSwR design
exceeds the number of SRSwoR samples of the same size.

Example 3.10

For the six-element Stuart population introduced in §1.3, the Q = 15 possible
samples, each with n = 2 distinct population elements, are listed in Table 1.1.
In contrast, there are Q = 6> = 36 possible with-replacement samples of size
n=2.

Example 3.11
For a population of size N = 100 considered in Example 3.3, there are
Q = 100,000,000,000,000,000,000 (3.15)

possible SRSwR samples of size n = 10.

When sampling without replacement, it is evident that the selection of a particular
unit on one draw gives that unit zero probability of being selected on a subsequent
draw. This is not true for SRSwR, however, because with this and other with-
replacement designs, the n sample selections are independent. Not only can Uy be
selected again after having been selected once, its probability of being selected on
a second, third, or greater selection is in no way affected by its earlier selection or
lack of selection. As mentioned in §1.3, with-replacement designs give rise to the
notion of the selection probability of a population element . It is the probability
that 7 will be selected on each of the sequenced selections. We denote the selection
probability of T as pi. With the SRSwR design, each element of the population has
a selection probability of p; = 1/N. Moreover, the selection probability, pi, remains
constant for each and every one of the n selections. Evidently, Z,iv:l pr = 1.

The inclusion probability, 7k, of Uy is, as before, the probability that 7 will be
included in a sample. With the SRSwR design, 7J; can be included by being selected
once, or twice, or three times, and onward. It is possible that ¥ could be selected
on all of the n selections from the population. This is admittedly an unlikely event,
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though it is no less likely than any of the remaining Q& = N" sequences of sample
selections that are possible with SRSwR. The inclusion probability of each unit, 7,
under SRSwR, is

me=1—(1—pp)"

N (3.16)
e (1 _ _)
N

as derived in the Chapter 3 Appendix, page 82.
Although an unbiased estimator of 7 is fyﬂ of (3.4), an alternative, and more
customarily used estimator is

R 1 Yk
Typ = — —
w=-2 o

Uk es

N
Vs, (3.17)
n

Ures

=Ny,

which is identical in appearance to the 7y, estimator under SRSwoR. We emphasize
that under SRSwR, 7y, # 7y,, because 7y = 1 — (1 — p)" and py = 1/N under
this design. The variance of 7, is

(2] 1 N (y;: )2 (3.18)
Vit = - E |l — —7 N 3.18
yp p y

k=1

which reduces to

N

under the SRSwWR design (see Chapter 3 Appendix). The variance of 7,, can be
estimated unbiasedly by

1 2
i) = oy > (& - fyp) : (3.20)

Uy es Pk

2
O[N] =N2(S—y)
n

N? 0
T > k=)

Uk es

2
VINF] = N2 (N—_l) %y (3.19)

which reduces to
(3.21)

when py = 1/N.
Comparing (3.6) to (3.19) reveals that, under SRSwoR, the variance of Ny has the
term N — n in place of the term N — 1 in the variance of Ny under SRSwR. Hence
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ASIDE: While under SRSWR, 7y, # 7,,, both unbiasedly estimate z,. That
is, the mean of both distributions of all possible estimates computed as 7,
and as 7,, coincides identically with z,. Although the estimates produced by
Ty differ from those produced by 7,,, their differences are small, because
mxr = 1 — (1 — pr)* = npy + ¢, where ¢ involves terms in p,% and higher
powers. Thus 7y ~ npy.

for the same sample and population size, the latter variance will always exceed the
former, as illustrated by the following example.

Example 3.12

Refer back to Example 3.1 wherein 100 homes had been selected as part of a
SRSwoR design. Had the design actually been that of SRSwR, the estimated
total residential water use would have been 7,, = Ny = 67,400 100-gallon
units, i.e., the same as in Example 3.1. However the estimated standard error of
this estimate under a SRSwR design would have been 19,826 100-gallon units,
which is slightly greater than in Example 3.1.

From fyp one can derive an unbiased estimator of u, i.e.,

s yp
Ryp = =+
YN (3.22)
=y
The variance of y following SRSwR is
_ Vityl
Viyl= N2
1 < Yk 2
= k\— — T .
”Nzkg}p (Pk y) (3.23)
_ (M=%
N n’
which is estimated unbiasedly by
2
s
oyl= =
n
(3.24)

_ 1 o\
_n(n——l) Z()’k—)’)-

Ui es

Implicit in this last result is the fact that, under SRSwR, the sample variance, s%,
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unbiasedly estimates

N
N-1Y\ , 1 2
()= 2 v
k=1
As with SRSwoR, the usual estimator of standard error of y following SRSwR is
BT 1.
When N is infinitely large, or unknown, then estimation of 7, is impossible with
simple random sampling, either with or without replacement. However, it still is
possible to estimate the mean value per unit. Moreover, any terms involving 1/N

in expressions of variance are effectively zero, so that the estimation of sampling
variance is identical to that appropriate for SRSwR, namely (3.24).

Example 3.13

Eight random samples of water were taken from a popular swimming area.
In each sample the number of colonies of Coliform bacteria per 100 ml were
counted with these results: 513, 82, 414, 887, 241, 97, 200, 382. The estimated
mean number of colonies per 100 ml is 352, and an estimated standard error of
94. This example was excerpted from Barrett & Nutt (1979, p. 77).

Selecting a SRSWR sample

SRSwR Method I:
1. Use Method I as outlined for SRSwoR, but in Step 2, do not disregard any repeated
selections of Uy.

SRSwR Method II:

1. In a list frame of the population, for each unit also list its selection probability,
pr=1/N.

2. Working from the top to the bottom of the list, record the cumulative probability
which is evaluated as

k
k=2 pj-
j=1

Thus ¢y = p1, ¢2 = p1 + p2,¢3 = p1 + p2 + p3, and so on, until cy = 1.
3. Generate n U[0,1] random deviates, ui, usa, ..., u,.

4. For each random deviate, say u;, select the first 7 into the sample for which
Ck—1 = Uj < Ck-

This procedure will provide n sample units, U, Uy, ..., U,, each selected with
probability 1/N. Some of the Uy may be duplicates. This method also can be used
with the unequal probability method known as list sampling in section §3.3.1.
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Example 3.14

Consider the following four-unit population:

Selection  Cumulative
probability  probability

Unit Pk Ck
U 0.25 0.25
w 0.25 0.50
U 0.25 0.75
Uy 0.25 1.00

We generate two random UJ[0,1] numbers for a sample of size n = 2. The
first is u = 0.6489, which serves to select U3 into the sample; and second is
u = 0.2330, which serves to select U;. Had the second u been in the range
0.50 < u < 0.75, Uz would have been selected again into the sample.

3.2.2 Systematic sampling

The existence of a sampling frame from which to select a SRS implies that the
population units, namely {U;, Wb, ..., Uy}, are arrayed in some orderly fashion.
Sirndal et al. (1992, p. 9) aptly defines a sampling frame to be “any material
or device used to obtain observational access to the finite population of interest.”
Often this device might be a list, such as a list of names, possibly alphabetized,
or the list might be a column of personal identification numbers in an electronic
spreadsheet or data base. Or the frame might comprise a physical arrangement of unit
identifiers such as folders in the drawers of file cabinets. Also easy to envision and
employ in some contexts is an areal frame wherein a geographic region is subdivided
into sampling units, and the location of each subdivisional unit serves as the unit
identification. A chronological frame may arise in certain contexts, e.g., hours during
which to measure water flow over a river dam. In an areal frame the number of
population units depends on the mesh of the grid used to subdivide the landscape.
Similarly the discretization of a chronological frame directly determines the number
of temporal units in the frame. By contrast, a list frame almost always is composed
of inherently discrete population units.

In nearly every situation where a sampling frame is available from which to select
a simple random sample, that same frame can be used alternatively to systematically
select every ath unit from the frame. The sampling interval, a, represents the number
of units between successive selections into the sample beginning with the first unit
chosen at random from among the first a units, as these units are arrayed in the
sampling frame. Sample selection ceases when the frame is exhausted. Commonly
this is described as a 1-in-a systematic sample. As the following examples make
clear, sometimes the sample planner determines the desired size, n, of the sample,
in which case this choice determines the sampling interval, a. Other times a will
be determined in advance, which then implicitly determines the size of the sample.
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A sampling interval of a = 1 corresponds to a population census, and so we will
dispense with any consideration of this special case.

Example 3.15

A 1-in-100 systematic sample from an electronic list of N = 29,587 Wildlife
Fund contributors is sought. The list is arranged in order of decreasing monetary
donation to the Fund over the past 10 years. A sample of n = 295 or 296
elements is selected and contacted by the administrators of the fund. A different
1-in-100 systematic sample would be chosen from an alphabetized list of
contributors, or from a list arranged in order of increasing size of donation.

Example 3.16

Remotely sensed satellite data of British Columbia, Canada are interpreted by
trained experts. The interpretation consists of delineation of the landscape into
distinct polygons of homogeneous land cover. The resulting N = 5643 polygons
are classified according to many additional vegetative and land use attributes,
and then assigned a unique alphameric code, such as A0134c or F2199g. This
identifying information is stored in an electronic database such as a geographic
information system, which sequences the storage of information according to the
identifying labels of the polygon. A systematic sample of size n = 50 polygons
is chosen from the sequenced file. Since N/n = 5643/50 = 113, the resulting
sample is a 1-in-113 systematic sample.

Example 3.17

In a study of the water quality and mineral content of an aquifer in Finnish
Lapland, the level of the aquifer was measured at 3-hour intervals over a period
of 90 days. The objectives were to study the diurnal fluctuation in aquifer level,
as well as to estimate its average level. The design just described is a 1-in-3
systematic sample from a frame of N = 90 x 24 = 2160 hourly units arranged
in natural (chronological) sequence.

When working sequentially through a frame, the size of the population, N, need
not be known in advance, but presumably it would become known at the conclusion
of sampling if the systematic selection process is carried out over the entire frame.
We assume that this is the case.

When planning a 1-in-a systematic sample, the size of the sample is determined
implicitly to be the largest integer number less than N /a (symbolically we represent
this as [N /a]giv), or one larger than this ([N /a]giV + 1). Alternatively, when the
planner predetermines the sample size, n, the sampling interval is implicitly set as
a = [N/nlgy ora =[N /nlg, + 1. When N = na exactly, then n is constant for all
possible 1-in-a systematic samples. In most realistic situations, the product na will
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differ from N by some integer quantity, ¢ < a. Symbolically, this is expressed as
N =na+c.

Whenever N is not an integer multiple of a, and hence ¢ # 0, then there will be
some slight variation in size among the set of possible 1-in-a systematic samples.
The number of units in some samples will be n = [N/a]y, while the remaining
samples will have n = [N/aly, + 1 elements. No sample can ever exceed the size
of another by more than one unit. The expected sample size in this circumstance is
the non-integer value N /a (see the subsection entitled ‘Expected sample size’ in the
Chapter 3 Appendix).

Example 3.18

Suppose a 1-in-3 systematic sample is to be selected from a population with
N = 10 units. Suppose further that the population units are arranged in natural
order in the sampling frame, namely in sequence U;, U, ..., Ujp. One possible
systematic sample includes Uy, Uy, U7, Ujo; another is U, Us, Us; the last is
U3, Ug, Ug. No other 1-in-3 systematic sample is possible with this population
and frame. Obviously, the first sample enumerated above has 4 elements, one
more element than the other two samples.

This variable sample size of 1-in-a systematic sampling, whenever na # N, serves
to highlight one difference between this design and SRS because n in SRS is constant
for all samples permitted by the design.

Whenever a > 1, U; cannot be selected in the same sample as the adjacent unit
in the sampling frame. Once U is chosen, the remainder of the sample comprise
U +a> Ui424, etc. The sample just enumerated is the only one in which these units
can appear. Similarly, 7> appears in one and only one systematic sample. Indeed
with 1-in-a systematic sampling the number of possible samples is Q = a, and
each population element appears in but one sample. This highlights another salient
difference between a systematic design and SRS: in SRSwoR, there are y C,, possible
samples and each population units appears in each of y_C,_ distinct samples.

Often the rationale for favoring a systematic sampling design over a simple random
sampling design is the more even distribution of the sample over the sampling frame
than is likely to occur with SRS. This perhaps is easiest to visualize with an areal
frame.

Example 3.19

Genetically improved Douglas-fir seedlings were planted in nursery beds 10 m
wide. The collective length of the beds was 625 m. The beds have a narrow,
rectangular metal grate at 5 m intervals to drain excess water. These grates are
perpendicular to the sides of the beds, and serve naturally to partition the beds
into 125 cells, each of dimension 10 x 5 m. The managers of the nursery wished
to estimate the mortality rate of these seedlings. A systematic sample of every
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20th cell was selected, and the proportion of dead seedlings was measured in 31
cells starting with number 7 from one end of the nursery, and proceeding with
cells 27,47, ..., 607 near the other end.

In the above example, cell 7 was chosen randomly from among the first a = 20
cells in the bed. This probabilistic selection of the first sample unit in a systematic
sample is crucial. Because every other element in a l-in-a systematic sample is
determined once the first element is picked, it is only through the selection of this
first element that probability enters into the design. This design is called systematic
sampling with a random start. While it is not necessary that the starting unit be chosen
from among the first ¢ units in the frame, this is the usual practice, outside of circular
systematic sampling which is described later. The actual selection is quite easy: from
a table, a handheld calculator, electronic spreadsheet or other computer program,
generate a U[0,1] random number, u#; multiply # by a, add 1 to the product, and
select Uy, the kth unit in the sampling frame, where k = [ua + 1]gv.

Since all of the first @ units in the frame have the same probability of being selected
as the start, the probability of each of the possible samples is p(s) = 1/a, regardless
of whether the sample includes n = [N /alg, or n = [N/alg, + 1 elements. In
contrast to SRSwoR, the inclusion probability of each population unit is also 1/a,
that is 7 = p(s) for all U in a systematic sampling design.

As usual, the population total is unbiasedly estimated by the Horvitz-Thompson
estimator, which takes the following form after 1-in-a systematic sampling:

fyr =a D Wi (3.25)

Uk es

Dividing by N provides an unbiased estimator of uy, i.e.,

. a
fiysys = 20 Ve (3.26)

Uk Ees

which will differ from the sample mean, y, whenever N # na. Indeed, following
1-in-a systematic sampling, y is unbiased for x, only when N = na, whereas /iy qys
always estimates u, unbiasedly. The bias arises because both 1/ and Zuk cs Yk are
random variables, whereas in SRS, » is fixed, not random. In many circumstances
the bias of y, as an estimator of u, or the bias of Ny, as an estimator of 7, will be
negligibly small following systematic sampling.

For convenience, let the sample total be denoted by ¢, i.e.,

=D % (3.27)
Uk es
Hence, fy,, can be written as
Tyr = ats. (3.28)

The variance of 7,, is a measure of the spread of the distribution of all a estimates
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of 7, generated by the 1-in-a systematic design, and it is expressed as

V[fyn']: Viats]

1 < 2
= ; Z (ats — Ty)
s=1

a (3.29)
S M
s=1
. 2
=a Z (ts — t_)
s=1
where ¢ = 7, /a. The corresponding variance of /i sy is
. 4573
v [ﬂy,SyS] = N2
(3.30)

a
a _\2
:WE (,,—1)".
s=1

If the arrangement of the s in the frame is such that the y; values exhibit a
random pattern, then the variance of 7,, will be similar in magnitude to its variance
under SRSwoR. In this case any potential advantage of systematic sample selection
over a simple random sampling procedure would lie with the ease of execution
and the more even distribution of the sample over the sampling frame. However,
the precision of 7, following systematic sampling can be much greater than when
following SRSwoR if the ys can be arrayed in a linearly increasing or decreasing
order. When the yjs can be linearly trended in the sampling frame, the sample totals,
ty for s = 1, ..., a will be fairly uniform in value, and not too far removed from 7.
Since the yis are unknown while the frame is being constructed, the ordering may
be based on auxiliary information that is strongly correlated with the characteristic
of interest.

Example 3.20

Consider the population of N = 236 red oak trees from a published report
by Beers & Gingrich (1958). The volumes of the tree boles in m® versus
the corresponding diameters at breast height in cm are plotted in Figure 3.2.
The population total volume is 7, = 230 m?3. It is plausible to expect that
the diameter of each tree has been measured, as this characteristic is much
more economical to measure than volume. Moreover, diameter and volume are
strongly and positively correlated. For sake of example we suppose that the
bole volumes have not been measured, and that the 236 tree population is to
be sampled in order to estimate r,. The estimator 7,, = N has variance
VINy] = 4332 m® following SRSwoR of n = 12 trees, although this
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Figure 3.2 Pennsylvania red oak data of Beers & Gingrich (1958).

value would not be known in a practical setting. Here it provides us with a
means to compare the advantages of systematic sampling to SRSwoR. A 1-
in-20 systematic sample is contemplated as an alternative to SRSwoR, and the
estimator 7, is to be used to estimate 7. Since [N /aly, = 11, we know in
advance that ¢ = 16 of the possible 1-in-20 samples will have 12 trees, and the
remaining a — ¢ = 4 samples will contain n = 11 trees. The sampling frame
as originally constructed was in no discernible order with respect to the tree
diameters or bole volumes.

The Q = 20 systematic samples from the originally ordered frame had sample

ts values:
12.0 11.7 122 94 11.8

94 15.6 120 84 110
7.8 104 90 109 133
95 148 128 121 15.6

The average of the 20 resulting estimates calculated by 7,, = at, coincides
exactly with 7, = 230 m?, and the variance, computed according to V[ Tyr 1=

% > (ats - ry)z is 1980 m®. Expressed as a percentage of Tyz, the standard
error of 7, is (44.5/230) 100% = 19%, which is quite an appreciable gain over
the 29% realized with 7, and SRSwoR.
The frame was then ordered by increasing diameter values. The Q = 20 ¢,
values from the ordered frame were:
96 104 100 10.7 10.6
112 127 11.1 128 127
128 131 139 133 137
12.7 9.0 94 105 10.0

The variance of 7,, following 1-in-20 systematic sampling from the ordered
frame is 939.9 m®, and the relative standard error is (30.7/230)100%=13%. Thus,
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the simple task of ordering the sampling frame in this situation allows one to
decrease the relative standard error of fy,, from 19% to 13%.

For this systematic design, the expected sample size was E[n] = 236/20 =
11.8 trees, and the bias of the estimator Ny as an estimator of 7, is 0.5%.

The above example serves to illustrate both the potential increase in precision
offered by systematic sampling compared to SRSwoR, as well as the further increase
to be realized by ordering the sampling frame, when possible. Only when the average
within-sample variance exceeds 03, will one realize the former gain. Another way to
view the beneficial effects of ordering the frame is that it increases the heterogeneity
within each systematic sample, thereby minimizing the variance among the a
samples.

Nonetheless, there is no guarantee that the strategy of systematic sampling and the
estimator 7,, will always be better than SRSwoR with 7,,. One situation where it
does worse occurs when the yis in the order implied by the sampling frame exhibit
a periodicity that coincides with the sampling interval, a. Cochran (1977) provides
further details on this phenomenon and other aspects of systematic sampling.

Inasmuch as the 1-in-a systematic selection device partitions the population into
a non-overlapping samples, one can think of it as a data reduction device wherein
the population is concentrated into a meta-observations, f,f,...,1,;, and but a
single one of these meta-observations is selected as the sample. Therein lies one
major drawback to systematic sampling, namely that it is impossible to estimate the
variance of 7,, unbiasedly on the basis of a single observation. One often resorts
to using the variance estimator 0[7y; ] = N 2(1/n — 1/N) s)z, which unbiasedly
estimates V[ 7, ] following a SRSwoR. The rationale for using it when sampling
systematically is that it is likely to overestimate V[ 7y, . In other words, although
O[Tyr 1= N2(1/n —1/N) s>2, is a biased estimator of V[ 7,, ] following systematic
sampling, it is unlikely to give an unwarranted impression of greater precision than
was actually obtained. In that sense it is said to be a conservative estimator of the
variance of 7y .

As an alternative to o[ 7y, ], Meyer (1958) suggested the successive differences
estimator given by

e a1 1T\ (Aw)?
bsa[fyn | =N (E_N)ZZM——I)

where Ayr = yk — Yi—1-

In an extensive comparison of the performance of O[ 7y 1, Osal 7yz ], and six
other estimators of V[ 7,, ] following systematic sampling, Wolter (1985, p. 283)
concluded that the successive differences estimator was best overall, but noted that
it tends to underestimate the variance when a linear trend exists. For the red oak
population in Example 3.20, the relative bias of both 0[ 7, ] and dsq[ 7» ] was 139%
when sampling from the unordered frame. These biases were 396% and —37%,
respectively, when sampling from the frame ordered by tree diameter.

When auxiliary information is available to order the sampling frame, as in
Example 3.20, a sensible tactic might be to see which of these two variance
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estimators, or perhaps some other, works best when estimating the known population
total of the auxiliary variate, and then to use that estimator for V[ fyﬂ ]

Yet another alternative course of action is to take multiple independent, but
smaller, systematic samples which collectively entail the same overall level of effort
as one large sample. The variance among these independent estimates then serves as
an unbiased estimate of V[ Tyx ] The chief drawback to this approach, however, is
the reduced precision of the estimator 7,, owing to the smaller sample size.

Circular systematic sampling

Recall that sample selection ceases when the frame is exhausted in the 1-in-a
systematic sampling with a random start described earlier. A variant of this method,
known as circular systematic sampling, is to permit the selection mechanism to
cycle around to the beginning of the sampling frame, if needed, and to continue
selecting units from the population until the desired sample size, say n, is reached.
Moreover, to ensure that all elements in the population have positive probability of
being included in the sample, the starting unit is chosen randomly from all N units
of the population, not just the first a units as listed in the frame. As a consequence,
the number of possible samples is & = N. The advantage of this method is that the
variation in size among the possible systematic samples is removed, and thus y is an
unbiased estimator of .

Example 3.21

Consider again the N = 10 element population of Example 3.1, with the added
stipulation that we wish to obtain a sample with n = 3 units systematically
selected on a 1-in-3 interval. Under the circular design, the following Q = 10
are possible:

m, U, U Us, Ug, U
W, Us, Ug W, U, W3
Uz, Us, Uy Ug, U, Uy
W, U7, Uo Uy, T, Us
Us, Ug, U o, Uz, U

Sarndal et al. (1992) indicate that circular systematic sampling performs similarly
to the conventional method of systematic sampling whenever the sampling fraction,
n/N, is small. In our experience, it almost always entails some loss of efficiency:
the estimator of the population total is less precise following circular systematic
sampling than it is under 1-in-a systematic sampling with a random start.

For certain values of N and a, the circular systematic selection rule will choose the
same population unit more than once into a single sample. Sudakar (1978) suggests
a way to set a to avoid this possibility.
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3.2.3 Bernoulli sampling

Introduced as binomial sampling by Goodman (1949), Bernoulli sampling is an
equal-probability, without-replacement, sampling design in which population ele-
ments are selected independently and with constant inclusion probability, say . That
is, mx = m for all Uy. A straightforward way to select a Bernoulli sample with inclu-
sion probability 7 is to generate a uniform random variate u; = U [0, 1] for each Ty
in the population. Include ¥ if u; < 7, otherwise exclude 7l from the sample.

Evidently, the actual size of the sample that is selected in this fashion will vary
from one application to another, i.e., under Bernoulli sampling, the size of the sample,
n, is a (binomial) random variable. As shown in (3.73) of the Chapter 3 Appendix,
the expected sample size in Bernoulli sampling is

E[n]= Nm=.
The number of possible samples under Bernoulli sampling is

Q=nNCo+NC1 +NCo+---+NCN

N

For a specific value of n in the range of possible values 0 < n < N, the probability
of selecting each distinct sample of that size is

p(s) =x"(1 — )V ",

Example 3.22

Suppose a Bernoulli sample with # = 0.1 is contemplated for a population of
size N = 10. There are yC9 = 10 distinct samples of sizen = 9, yC; = 10
distinct samples of size n = 1, whereas there are yCs = yCg = 210 distinct
samples of size n = 4 and of size n = 6, respectively. In all, there are Q = 1024
possible samples.

Example 3.23

Suppose a Bernoulli sample design as in Example 3.22. The probability of a null
(empty) sample is 0.1° x 0.9'0 = 0.349, whereas the probability of selecting a
sample with n = 9 elements is a minuscule 0.1° x 0.9! = 9 x 1070, The
probability of selecting a sample with n = 4 elements is 0.1* x 0.9% = 0.0005,
whereas that of a sample with n = 6 elements is 0.1° x 0.9* = 6.561 x 1077,
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The HT estimator, (3.4), under Bernoulli sampling, simplifies to

fyn = % Z Yk

Uk Es

N
= Eln] Zyk

Uk es

(3.31)

provided that n > 1. Presumably, if an empty sample results, the sampling effort
would be repeated, and 7, would be estimated by 7, /(1 — Prob(n = 0)).

An unusual feature about 7y, with Bernoulli sampling is that when n = N,
Tyr 7 Ty, so that it is an inconsistent estimator despite being design-unbiased. This
is due to the randomness of the size of the sample selected with this design.

The variance of 7y, under this design is

L l-7 o
VIge = —= > 2 (3.32)

T
k=1

Another unusual feature about 7., under the Bernoulli sampling design, is that its
variance, i.e., the spread of the sampling distribution of all possible estimates, is no
greater for small sample size than for large sample sizes. In contrast to the three
fixed-n designs considered to this point, for which the variance of the HT estimator
decreases with increasing n, the variance of 7, under the Bernoulli sampling design
is impervious to the actual size of sample that is selected.

An unbiased estimator of V[ fy,r ] is

AT A l—=m
o[t ] =— > (3.33)
Uk es
Dividing 7, by the population size yields
R T
- v 2
TN = (3.34)
Uk s
1
= — )’k
E[ ] Uk Es

as an unbiased but inconsistent and imprecise estimator of . The variance of iy,
under Bernoulli sampling is

V[ e ] = % (3.35)
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which is estimated unbiasedly by
1 5%z |
b itge ] = 0
! (3.36)
- )
N2z2 2.
Ures

As an alternative to 7, following Bernoulli sampling, consider incorporating the
HT estimator of the population size, N, to adjust 7,,. The general expression of the
(3.37)

former is |
Re=3 L
P= 2

which is simply Ny =n /m under Bernoulli sampling. The adjustment involves the
multiplication of 7y, by the ratio of the known population size, N, to the estimated

size, Ny . This provides
. N\ .
Tyx,rat = ( = )Tyﬂ (3.38a)
Nz
N
LI N1 (3.38b)
n/m —r
Eln],
= ——1y; (3.38¢)
n
N
= — Vk (3.38d)
n Uk es
which for this design simplifies to
=Ny (3.38e)
Moreover,
A _ %\yn',rat
Mym,rat = N
(3.39)
_E[n],
=, Hyr,
which also can be expressed as
i _ D (3.402)
Jat = A .
V7, ra N,
= flyz,rat (3.40b)
(3.40c)

=y

where fiyr rac 18 used here, and henceforth, to represent the estimator 7, /]\7”,
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because i yz,ra¢ Will not always be identical to 7 1o/ N following sampling designs
which yield a random sample size.

The ratio estimator, 7y ra, iS almost always more precise than 7,, following
Bernoulli sampling. The greater precision of 7y o Over 7, is due solely to its use
of the sample size, n, actually realized in the sample, rather than the expected sample
size, E[ n ]: smaller than expected, or average, size samples will usually have smaller
sample sums, Zuk s Yk, than average. When n < E[n ], therefore, the ratio E[n ]/n
in (3.38¢) will be greater than unity, with the result that 7,; o Will be increased
towards 7. In the opposite case, E[n ]/n < 1, thereby adjusting 7,, down to account
for the larger than average size sample and its consequent inflation of the value of
Tyx-

This ratio estimator is biased when used in conjunction with Bernoulli sampling.
This and other properties of ratio-type estimators under various designs is explained
more fully in Chapter 6.

Sdrndal et al. (1992, p. 65) present an approximate variance of 7y o following
Bernoulli sampling, i.e.,

N
N 1—=x
Va [ ] = — > ok — uy)? (3.41a)
k=1
1 1
~ N? - — )2 3.41b
(E[n] N) % ( )

The approximate variance of 7y, ra in (3.41a) is itself approximated in (3.41b). There
is an obvious resemblance of (3.41b) following Bernoulli sampling to the variance
of 7, following SRSwoR, (3.5). In like fashion,

. 1 1
Va [,uyn,rat] ~ (m - N) Uf (3.42)

following Bernoulli sampling.

Example 3.24

Figure 3.3 displays the distribution of PCB (polychlorinated biphenyl, an
industrial pollutant) in parts per million measured in 92 eggs of brown pelicans
(Risebrough 1972). If we treat these N = 92 eggs as the population for sampling
under a Bernoulli design with E[n ] = 10, then the standard error of & yr is 71.4
ppm. By contrast, with SRSwoR for a fixed sample size n = 10, y = 7, /N
with standard error of 29.6 ppm, which is approximately the same as the standard
error of [iyz rar under Bernoulli sampling.

An unbiased estimator of V, [ fy,,,rat ] following Bernoulli sampling is

A

A 1—=m
6 [ Eyma] = —5 (= Ds; (3.43)
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Figure 3.3 Distribution of PCB concentration (ppm) in 92 brown pelican eggs (Risebrough
1972).

for (3.41a), and for (3.41b),

A 1 1
02 [ Fymrat | = N? ( — —) 55. (3.44)

E[n] N

3.3 Unequal probability designs

In contrast to the theme of §3.2, we now focus on designs for which the inclusion
probabilities of population elements are not all equal. While there are multiple rea-
sons for choosing an unequal probability design, a frequently encountered motivation
for this choice is the potential increase in precision of estimation under certain con-
ditions that may be under the control of the sampler or sample designer. Brewer &
Hanif (1982) and Chaudhuri & Vos (1988) are useful compendia of unequal prob-
ability sampling designs. We present four unequal probability sampling strategies
of practical utility. A with-replacement design is presented first, followed by three
without-replacement designs: Poisson sampling, systematic sampling, and a design
based on random groupings.

3.3.1 List sampling

List sampling is the unequal probability analog to SRSwR, simple random sampling
with replacement. With SRSwR, pr = 1/N for all Ui, whereas in list sampling the
Pk can be unequal in value between 0 and 1, but must satisfy the constraint that

N
Zpk =1L
k=1

List sampling, like SRSwR, is a with-replacement, fixed-n design.
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One reason for favoring an unequal probability design is to purposely give
population elements with large attribute values greater chance of being selected
into the sample and hence measured. In other words, if 7 contributes more to the
population total, ty, than does some other unit, Uy, i.e., yx > y,’c, then 7 ought to
be given a greater chance of being included in the sample. The matter of determining
desirable selection probabilities, pis, then becomes an issue in the sampling design,
which we discuss below.

For the moment, assume that selection probabilities have been determined in
some fashion. To use probabilities to select an unequal-probability sample with
replacement, we may follow the same procedure as Method II for SRSwR (see
page 48), except that the py will not equal 1/N.

Example 3.25

Consider the following four-unit population:

Selection probability Cumulative probability

Unit Pk Ck
U 0.36 0.36
W 0.25 0.61
U3 0.14 0.75
Uy 0.25 1.00

Suppose that for a sample of size n = 2 we generate first u = 0.8801 and then
u = 0.2064. The first selects Uy into the sample; the second selects U .

There are other similarities of list sampling to the SRSwR design. Namely, the
inclusion probability of Ty is 7y = 1 — (1 — px)" =~ npi and the number of possible
sample sequences is Q = N". However it is no longer true that p(s) = 1/Q, because
with list sampling p(s) will vary from one possible sample to another, depending on
the composition of the sample. In general, p(s) = Huk es Pk-

Example 3.26

For the sample selected in Example 3.25, its probability of selection is p(s) =
p1 X pa = 0.36 x 0.25 = 0.09.

As with SRSwR, the customary estimator of 7y, is 7y, of (3.17), repeated here for
convenience along with the variance of 7,,, previously given in (3.18):

tp=— > = (3.45)

vz 1 Y Yk 2
[ew]==> = —o) - (3.46)
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ASIDE: Because units in list sampling, indeed in SRSwR also, are selected
independently, each ratio yi/px is an independent estimator of z,. What does
one do with n independent estimates? Average them together, as in (3.45).

This estimator is attributed to Hansen & Hurwitz (1943). To estimate u, unbiasedly
one can use

; Typ
, = ==, 3.47
Hy="N (3.47)
The variance of (i is
- VIl
V[ﬂy]ZT (3.48)

Manipulating selection probabilities to increase precision

Suppose that the selection probabilities have been determined so that for each 7,
Pk = kY, where x is some fixed constant. Thus, pj is proportional to yi, where
x is the constant of proportionality. To satisfy lec\]:] pr = 1, x must equal 1/7y.
Substituting xyy for py in (3.46) yields

. I < Yk ?
Vity]= n K Yk (_ - Ty)

k=1 Kk
) li o (3.49)
- n P Ty Yy Yy

=0.

In other words, if population units, U, can be selected into the sample with
probability, pi, proportional to y, then 7, has zero sampling variance. In this
situation, 7y, will always evaluate to the same number irrespective of which elements
are selected. Since 7,, unbiasedly estimates 7, then the implication of this is that
fyp = 7y, and hence 7, would be estimated perfectly, if the py can be so determined.
In practice, this result is unattainable because we do not know the values,
Yk, in advance of sampling, and hence are unable to determine the value of the
proportionality constant, x, needed to determine the values of py = xy;. However,
if auxiliary information about each 7 is available in the form of some other
characteristic of Uy, say x, such that x; and yj are strongly and positively correlated,
then we could set py = xi/7, and hope to achieve approximate proportionality
between the pys and the corresponding yis. By extension, we would expect that the
variance of 7,,, while not being identically zero, would be reduced over what it
would be if the selection probabilities were all equal or completely arbitrary.
Consider, for example, sampling the leaves on a sapling or bush for the purpose
of estimating the total surface area of leaves. For irregularly shaped leaves, measure-
ment of leaf area is an arduous chore, at least without optical scanning equipment.
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On the other hand, weighing a leaf is easy and quick. As shown in Figure 3.4, leaf
area and weight are positively correlated, meaning that as leaf weight increases, leaf
area tends to increase, too.

If the N = 64 leaves in Figure 3.4 were all the leaves on the sapling, one could
weigh each and use weight as the auxiliary variate, x¢, to conduct a list sample with

Dk = Xi/Tx.

Example 3.27

The HT estimator of total leaf area for the N = 64 leaf population (see
Figure 3.4) has variance 12,792 cm* following SRSwoR with a sample of size
n = 8 units. Following a list sample of the same size and with py = xi /7y, Tp
has a variance of 8884 cm*. For comparison, under a SRSWR design, 7,p has
variance 14,619 cm®.

The variance of 7, is given by (3.46) regardless of how the selection probabilities,
the pys, are determined. When the pys are proportional to the xis, and the xs are, in
turn, positively correlated with yis, then 7, under list sampling is more precise than
it would be for a similarly sized SRSwR sample. If the x;s and yxs are negatively
correlated, then 7,, under SRSWR will be more precise. Negative correlation is
revealed graphically as a negatively sloping trend in a scatter plot of y; on xi. If
xis and ygs are uncorrelated, or weakly correlated, then the precision of fyp will
be similar under both designs. Lack of correlation is revealed in a scatter plot by a
horizontal scatter of points, or else by an increasing trend for some range of x; values
and a decreasing trend outside that range.

Following list sampling, V[ 7y, ] is estimated unbiasedly by

L 1 Y
o[y ] = YRS > (y—k ryp) : (3.50)

Ures Pk

given earlier as (3.20).

In the presentation of systematic sampling we introduced the notion of using
auxiliary information in the form of a variate, x, to induce a linear trend into the
sampling frame. When this can be done, the precision of 7y, is improved. In list
sampling, xj is used in a different manner to assist in the sample selection. In both

ASIDE: List sampling is one form of unequal probability sampling with re-
placement. When the selection probability is exactly proportional to an auxiliary
variate, xi, this sampling design is also called ‘probability proportional to size’
sampling, abbreviated as just pps sampling. List sampling is not synonymous
with pps sampling, not only because the list sampling p; may not be related
to any particular measure of size, but also because there are other forms of pps
sampling that do not require a list frame.
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Figure 3.4 The relation between the surface area and weight of 64 leaves.
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Figure 3.5 The relation between the surface area and | weight of 64 leaves.

cases, x; must be known for each and every ¥ in the population, which implies that
the auxiliary information must be convenient and inexpensive to acquire. Otherwise,
the time and effort needed to obtain the N values of x;s might be better spent in
selecting a larger sample of just the yis. Either strategy will usually bring about a
decrease in variance, i.e., an increase the precision of estimation. Thus, there are
two issues that bear on the question of whether, or not, to incorporate auxiliary
information into the sampling design. One is the practical issue of the cost of
obtaining such information. The other is the statistical issue requiring that x;s and
yks be sufficiently well correlated to effect an increase in precision of estimation.
With systematic sampling, the trend between the x;s and yxs may be either positive
or negative; either trend improves the precision of 7,,. With pps sampling, the trend
must be positive to improve the precision of both 7y, and 7,,. If it is negative, units
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Figure 3.6 The relation between the surface area and the natural logarithm of leaf weight (+
4) of 64 leaves.

with small y; will be favored for selection more than units with large yi, thereby
reducing the precision of estimation.

In Figure 3.4 there is a noticeable curve in the trend of leaf area and weight values.
Oftentimes the precision of 7y, can be improved by transforming the auxiliary variate
so that the plotted relationship between y; and the transformed auxiliary variate is
straighter. With the leaf data, using the square root of leaf weight as the auxiliary
variate makes the relationship with leaf area less curvilinear, as seen in Figure 3.5.
Further improvement is obtained by using the transformation x; = In (leaf weight)
(see Figure 3.6).

Example 3.28

Using x; = ,/leaf weight as the auxiliary variate, the variance of 7y, is reduced

to 2849 cm®. Using the transformation x; = In (leaf weight) (see Figure 3.6),
lowers the variance of 7, to 1921 cm®.

From a statistical standpoint, any transformation that increases the linear correla-
tion between the variate of interest and the auxiliary variate will improve the per-
formance of fyp. With these data, the linear correlation coefficient between leaf area

and weight is p = 0.892, that between area and ,/leaf weight is p = 0.920, and that

between area and In (leaf weight) is p = 0.939.

With the logarithmic transformation, care is needed to avoid logarithmically
transformed values that are less than zero, or else the computed 7, will be deceptively
small.

When the py = xi/7, so that the sample units are selected with probability
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proportional to the size of xy, %yp of (3.45) can be written in terms of x;, namely

. 1 Yk
Bp=—= D — (3.51a)
n Uk es Pk
_ N Mk
== > o (3.51b)
Uk es
=, 7, (3.51¢)

where 7 is the sample average of the ratio of yx to x;. The simplification of 7y,
in (3.51a) to a ratio adjustment of 7, in (3.51b) holds only for pps sampling by
xx, and does not generalize to other strategies of unequal probability sampling with
replacement. If x; = 1 for all 7, then 7, = N and py = 1/N, so that list sampling
is identical to SRSwWR and, upon substituting for 7, and x; in (3.51b), 7,, of (3.51¢)
becomes the familiar N'j. However, if pr = xi/7x but x; # 1, then 7y, # Ny and
E[Ny] # 7y, which means that Ny estimates 7, with bias

N
1
B[Ny: ry]=T—Zyk(ka—rx). (3.52)
* k=1

The variance of Ny following list sampling with py = x /7y and x; # 1is

N2 N 2 N 2
v[Ni]ZY[Zy’;ﬂ—[Z (y';x") ” (3.53)
X =1 X

k=1

Note that while V[ Ny ] decreases with increasing n, B[ Ny: t,] does not. In an
analogous fashion,

N
BI5:uy]=— 2w —u). (3.54)
¥ k=1

The variance of y following list sampling with py = x; /7, and x; # 1 is

1< Yixk & ()
VIsl=—12 "=~ Z(T ) : (3.55)
k=1 *

= =

3.3.2 Poisson sampling

Poisson sampling is a generalization of Bernoulli sampling. Like Bernoulli sampling,
population units are selected into the sample independently and without replacement.
With Poisson sampling, however, the inclusion probability varies from one unit to
another. For distinct population elements ¥y and 7, generally 7y # . Sample
selection is identical to that described for Bernoulli sampling: for each Uy generate
up ~ UJ[0, 1], and include Uy into the sample if u; < wi.

The size of the sample, n, is a random variable, i.e., it cannot be determined
beforehand how many units will be selected into the sample. The expected value
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ASIDE: In practice, 7rk2 will be much smaller than 7y, so that V[n] ~

Z,](VZ 1wk = E[n]. A Poisson random variable has the feature that its mean
and variance are equal. We speculate that the name Poisson sampling derives
from this approximate relationship between the mean and variance of n under
this sampling protocol.

and variance of nis E[n] = ZII{VZI 7k, and

N
Vinl=2 m(l-m), (3.56)

k=1

respectively. With a Poisson design, Q = 2,11\]:0 ~Cr, as with Bernoulli sampling,
however the expression for the probability of any particular sample, p(s), is a bit

more complicated, namely
p® = [T =[] e
Ures Ui &s

The HT estimator, fy,[, under Poisson sampling is the same as shown in (3.4),
namely

~ Yk
B = D =, (3.57)
Tk
Uk es
which is an unbiased but inefficient estimator of z,. The variance of 7, under
Poisson sampling is

N
v[fyz]=Zy,%(1_”"), (3.58)

irrespective of the size sample actually selected.

One advantage of Poisson sampling, shared by Bernoulli sampling, is that a list
frame of the target population is not needed in advance of sampling, provided that
each element of the population can be accessed sequentially.

One would expect that Tyz o = (N/]\}ﬂ)fyﬂ, where N, = Zﬂkes 1/zx, would
be less variable than 7,, following Poisson sampling. The rationale is the same as
explained in the presentation of Bernoulli sampling. However, a further improvement
may be possible if there is an auxiliary variate, xj, that is well and positively
correlated with y; and known for all Uy in the population. Thus 7, is known without
error. Nonetheless, if y; is measured and xj is recorded for each Uy selected into a
Poisson sample, then 7, can be unbiasedly estimated by 7., = Zﬂk s Xk/ 7k, which
can be used to adjust 7y, :

A T N
Ty rat = (X‘ )ry,r (3.59)

Txm
Similar to the use of auxiliary information with list sampling, here too the x;s are
used both to guide the sample selection process and in the estimation of 7. Similar
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Figure 3.7 On the left is the empirical sampling distribution of Ty; based upon the selection
of 100,000 Poisson samples from the N = 14,443 population of loblolly pine trees. On
the right is the empirical sampling distribution of Ty rat based on these same samples. All
Poisson samples had an expected sample size of E[n] = 24 trees. The target parameter, ty, is
aggregate bole volume of the population.

to the rationale for adjusting 7, by the factor N/ N, if the Poisson sample provides
a HT estimate that overestimates 7y, then the corresponding HT estimate of 7, is
likely too big, also. In that case the ratio of fyn to Ty in (3.59) will tend to be rather
less variable than either one alone. The gain in precision of 7yz ra = (rx / fm) Tyx
over 7y, depends on how strongly yx and x are correlated. If they are perfectly
correlated, i.e., yy = xxj for some constant of proportionality «, then the variance of
Tyzrat = (Tx/Txx) Tyx is identically zero. Brewer & Hanif (1982, p. 7) term this the
ratio estimator property.

This estimator, (3.59), is known as the generalized ratio estimator, which we dis-
cuss in more detail in Chapter 6. Figure 3.7 shows empirical sampling distributions
of 7y and 7yz ra. Both are based on the selection of 100,000 Poisson samples of ex-
pected size E[n] = 24 trees from the population of loblolly pine trees of Figure 2.4.
The very much smaller variation of 7, o among these samples is strikingly evident.

The approximate variance of 7y ra following Poisson sampling is

N
. 1 -
Va [Tyn',rat] = Z (yk - Ry|x)ck)2 ( ”k) > (3.60)

T
k=1 k

where Ry|x = 7, /7x. Moreover, letting fl yz rat = Zyx,rat/ N as before,

N
1 1—
Vo[ tymra] = 13 > (w— Ry|xXk)2( ﬂk”"), (3.61)
k=1
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Example 3.29

Consider the leaf population displayed in Figure 3.4 and used in Example
3.27. Following Poisson sampling with expected sample size of 8 leaves, the
HT estimator of total leaf area has a variance of 280,821 cm?, yielding a
relative standard error of 33.5%. Using leaf weight as the auxiliary variate,
the approximate variance of 7yz rat = (7x/%xz) Ty is 7796 cm*, which has a
relative standard error of 5.6%, slightly lower than the standard error of 7,
following list sampling (n = 8) with replacement in Example 3.27.

Example 3.30

Again consider Poisson sampling with expected sample size of 8 leaves. Using
xr = In(leaf weight) + 4 as the auxiliary variate, the approximate variance of
Tyr,rat is 1709 cm?®, which has a relative standard error of 2.6%.

3.3.3 Unegqual probability systematic sampling

With equal probability systematic sampling, ordering the sampling frame by increas-
ing or decreasing value of x can produce large gains in the precision of 7,, of (3.25)
when the auxiliary variate, x, and the variate of interest, y, are well correlated. An
alternative way to incorporate available auxiliary information, which is positively
correlated with y, is to sample systematically with probability proportional to x.
Hartley & Rao (1962) generally are credited with providing the rigorous mathemat-
ical justification for this sampling strategy, which, they asserted, was already widely
used.

For this strategy of unequal probability systematic sampling, the frame is ordered
randomly. Indeed, Brewer & Gregoire (2000) call this method ‘randomly ordered
systematic sampling.” One straightforward way to randomly arrange population
elements in a list sampling frame involves generating a U[0,1] random number, uy,
for each 7 in the population. Then order the frame by increasing value of uy. This
is identical to steps 1 and 2 of the Method II for drawing a SRSwoR sample, as
presented on page 43. For each ¥y in the randomly ordered frame, compute xi /7.
Let ¢ denote the cumulative value n 21;21 xj/tx in the randomly ordered frame, i.e.,

co=0
n

]l = —X]
Tx

n
= —(x1 +x2)
Tx

n
cp=—@@ +x2+ - +x,)=n

Tx

where n is the size of the unequal-probability systematic sample that is desired.
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ASIDE: In populations where there are a few 7 with large x; values, care must
be taken to check that x; /7, < 1/n for all Uy. This is the same as requiring that
X < 7y /n. For those units that are so large that x; > 7, /n, the customary tactic
is to separate these large units from the other ¥, and to measure these units’
yk. Suppose that there are N such large units and that the aggregate x; and yy
of these N units are TXL and ryl,‘, respectively. Therefore the target parameter

can be partitioned as 7, = r)‘? + r;‘, where rys is the population total y; for the

NS = N — N ‘small units’ whose x; < 7,/n. Sampling then proceeds to select
the remaining n5 = n — N sample units from the randomly ordered frame of
NS listed units, with each of the remaining N5 €I being assigned a value x;/ rxs
where 73 = 7, — z L. If there are some 7 among the N remaining units with
Xr > T4/n, then these, also, will have to be grouped with the ‘large units’ that

are completely measured.

Sample selection proceeds by generating a single random number, u ~ U[0,1]. The
first unit is selected into the sample is that unit U in the randomly ordered list frame
whose c; value satisfies

Ck—1 = U < Ck.
The second sample element is that Ux whose ¢y satisfies
Ci1 <u+1 <cy.
The third sample element is that which satisfies
Chk—1 S u+2 <,
and so on until the nth unit selected into the sample is the Uy whose ci satisfies
i1 <u+n—1<cy.

This procedure ensures that n different 7, will be selected providing that x4 /7, <
1/n for all 7. With this design there are

!
Q= L
n!(N —n)!

possible distinct samples. Moreover, the randomization of the frame prior to sample
selection gives each pair of population elements, say Uy and Uy, positive probability
of being included in the same sample, in contrast to the equal probability systematic
sampling design presented earlier.

The inclusion probability of each U is 7y = nxy /7y, provided that no x; > 7, /n
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(see previous ASIDE). Consequently, the unbiased HT estimator of 7y, is

fyn=z7>;—];

Ures

_noyn
= 2

Uk es

(3.62)

Hartley & Rao (1962, p. 369) derived an approximation to the variance of 7, under
this design, viz.

N 2
Vi~ vlin )= m (1= ) (2 -2) . ey

Results from simulated sampling confirm that this approximation, V, [fy,f ], to
V [ 2,z ] is very close. They also proposed the following estimator of V[ 7, :

n

2
5[ Fn] = — Z[l—nk—nkwtﬂ(&—&), (3.64)

n—1
k<k’

where ¢p = SN | TP,

Example 3.31

Consider again the data on red oak bole volumes used in Example 3.20. The
population consists of N = 236 red oak trees whose aggregate bole volume,
Ty = 230 m3, was the target parameter. In that example, the variance of
Tyz with a 1-in-20 equal probability systematic sample was 1980 mS (relative
standard error of 19.3%). When the original list sampling frame was arranged
in order of increasing bole diameter, the variance of 7y, following 1-in-20
systematic sampling from the ordered frame is 939.9 m® (13.3%). Of the 20
possible samples, there were 16 of size n = 12 trees and four of size n = 11
trees. When using diameter as the auxiliary variate, x, the variance of 7,
following an unequal probability systematic sample of the n = 11 trees is
V[iyr 1 = 1267.6 m® (15.5%); for such samples with n = 12 tree each, it is
VI[tyr 1= 1163.1 m® (14.8%). In this instance, a sampling strategy consisting
of ordered, equal probability systematic sampling with the HT estimator is more
efficacious than 1-in-20 systematic sampling from the ordered frame. In both
cases, bole diameter is the source of auxiliary information, which is used to
guide sample selection: in Example 3.20 it is used to order the frame, whereas
in this example it is used to sample with probability proportional to diameter.

If one were to use the circular cross-sectional, or basal, area of the bole at
breast height as the auxiliary variate to order the frame, V[ 7,, ] following 1-in-
20 systematic sampling from the ordered frame remains unchanged from what
it is when diameter is the auxiliary variate, because the ordering of the frame
remains unchanged and because the auxiliary variate is not used in the estimator
of zy. In contrast, the variance of 7, following unequal probability systematic
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ASIDE: In the presentation of equal-probability systematic sampling on page 49
we stipulated that the first unit be chosen from among the first @ units in the
list frame. Had we instead stipulated a procedure analogous to the one above,
a fixed-n, equal-probability design results. Specifically, one can choose d such
that 0 < d < N/a; then one chooses as the first unit to enter the sample that Ty
whose cj value satisfies

cr—1 <d < cy.

This would ensure that n units would always be selected in the equal-probability
systematic sampling case, thereby dispensing with the slight problematic feature
of having a random sample size in the ordinary application of equal probability
systematic sampling of discrete populations. However, the variance of 7y, is no
longer as given in (3.29).

sample from a randomly ordered frame shrinks remarkably to 146.0 m® (5.3%)
when using basal area as the auxiliary size variate. As has been noted before,
whenever an auxiliary variate can be algebraically transformed to create a more
nearly straight line relationship between it and the variate of interest, y, the
precision of the HT estimator of zy is very likely to be improved. This holds
for other estimators of 7y, too, as discussed in Chapter 6.

Example 3.32

With the help of a computer program to simulate repeated unequal probability
systematic sampling, we conducted a simulated sampling experiment to assess
how well V[ 7, ] as given by (3.63) approximates the actual sampling variance
of 7, for this design. We instructed the procedure to select 100,000 samples of
size n = 12 trees from the N = 236 red oak population of Example 3.31. When
tree basal area was used as the auxiliary variate, the observed variance of the
100,000 fy,r estimates was 145.4 m®, which is nearly identical to the variance,
146.0 m®, computed in Example 3.31.

For each of the 100,000 samples we estimated the variance of 7, by
computing [ 7y, | according to (3.64). The average estimate of variance was
145.9 m.

Repeated simulations confirmed that the average, or expected, value provided
by the variance estimator (3.64) was always within a fraction of a percentage
point of its target value given by (3.63), and that the variance observed among the
100,000 estimates was identical to (3.63), barring the variance of the simulation
process itself.
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3.3.4 Rao, Hartley, Cochran sampling strategy

For designs other than systematic, a fixed n > 2, without-replacement design
with unequal probabilities is problematic because the probability with which ¥y is
included into the sample depends in a complex fashion upon whether it is selected
as the first unit to enter the sample, the second, the third, and so on. By contrast,
with Poisson sampling the inclusion probabilities do not depend on the order of
selection of units into the sample, but the size of the sample selected cannot be
determined in advance of sampling. Randomly ordered systematic sampling yields
a fixed size sample, but no design unbiased estimator of the variance of 7, has yet
been developed. Citing these and other limitations of without-replacement, unequal-
probability sampling designs, Rao et al. (1962) proposed a method that circumvents
these difficulties and has smaller variance than 7, with list sampling.

The design proposed by Rao et al. (RHC) consists of two stages. The first stage
entails a random partitioning of the sampling frame into n groups, where n, as usual,
is the desired sample size. These n groups need not each have the same number of
population elements, indeed it will be unusual to have N be an integer multiple of n,
which is a necessary condition to be able to form equal-size groups. Let N; denote
the size of the ith group, so that N = >_7_; N;. Let G; symbolize the ith group itself.
The total of y and of x in each group are found by summing over only the elements
selected into that group. Specifically,

Tyi = Z Yk
U eGi

is the total of y in the ith randomly formed group. Similarly

Txi = Z Xk

U eGi

is the total of x in G;.

Example 3.33

Consider the following five-unit population divided as indicated into two groups:

Unit yx xx  Group
;25 0.15 2

w 14 030 1
w57 028 2
w32 082 2
s 44 023 1

Thus, 7y; = 58 and 7,7, = 114; and 7,1 = 0.53 and 7, = 1.25. In application
of the RHC procedure, the 7y; totals would be unknown, whereas the z,; could
be calculated after the groups had been formed.

The second stage of the RHC sampling design consists of selecting one element
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from each group, and since there are n groups, this will yield a final sample of exactly
n elements. For any U belonging to G;, symbolically denoted by Uy € G;, U has
probability of being selected into the sample at the second stage of py = xi/7yi. A
design-unbiased estimator of 7; is

T— (ch—i) . (3.65)

Therefore, a design-unbiased estimator of the population total, 7y, is
n
By = D, Byi. (3.66)
i=1

The variance of Ty gy iS

noON2_N N o2
Ve ] = [zzv_(lzv——l)] (Z 2 _ ryz), (3.67)

=1 Pk

which depends implicitly on the size of the sample through the summation in the first
term.

Both list sampling and the RHC method are fixed n sampling designs, the former
a with-replacement and the latter a without-replacement design. Rao ef al. (1962)
derived the relation between V[ 7y w1 and V[ 7,, ]in (3.18):

V[A ]:[”(ZLW?—N)

F e NN = 1)

} VIl (3.68)

Thus, for the same size sample, V[ 7y w1 < V[7,, ]. Moreover, the variance of
fijHC is minimized when the sizes of the groups are equal, i.e., N; = N/n, or nearly
SO.

An unbiased estimator of V[ 7y w1, derived by Rao ef al. (1962), is

AT ~ Z?—l sz -N Txi Yk A 2
jie | = = — — Ty .RH . 3.69
O [ Frac] (N2 —>" | N? Z Ty \Xk/Tx e .69

Uk es

In a case study, Pontius (1996) showed empirically that O[ 7y zuc ] Was a more reliable
estimator of V[ 7y zuc ] than 0[ 7y, ] was of V[ 7, 1.

Schabenberger & Gregoire (1994) compared the RHC strategy to two other
unequal-probability, without-replacement designs proposed by Sunter (1986, 1989).
They concluded that the RHC method performed quite favorably, especially because
it does not depend on a possibly complicated ordering of the sampling frame.
Moreover, RHC can never be less precise than list sampling with the same size of
sample.

Example 3.34

Using the red oak data again with tree basal area as the auxiliary variate, the
variance of 7y g for a sample of size n = 12 trees is V[ 7y ruc ] = 149.3 m®.
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Thus, the RHC strategy is nearly as precise as unequal probability systematic
sampling when using basal area as the auxiliary variate in Example 3.31.

Example 3.35

In Example 3.27, a list sample of n = 8 leaves provided a variance V[17,,] =
8884 cm* when estimating total leaf area, 7, with 7, and when using leaf
weight as the auxiliary variate, x, to enable the list sampling. For the same
size sample and choice of auxiliary variate, the RHC design with groups of
size N; = 8, coupled with 7, puc yields V[ 7y el = 7897 cm?*. Since
ty = 1582 cm? for this N = 64 leaf population, the relative standard

error of 7y, was 100,/8884 cm*/(1582 cm?) = 6.0% and for Ty ruc it is

100,/7897 cm* /(1582 cm?) = 5.6%.

3.4 Terms to remember

Bernoulli sampling Random sample size
Circular systematic sampling  Ratio estimator property
Equal probability sampling Simple random sampling

Expansion estimator Systematic sampling
Horvitz—Thompson estimator ~ Sampling frame

List sampling Sampling interval

Poisson sampling Systematic sampling with a random start
Pps sampling Unequal probability sampling

3.5 Exercises

1.

Verify the number of possible SRSwoR samples, €, of size n = 10 that can be
drawn from a population of size N = 100.

. For a population of size N = 10,000 units with 0}2, = 2, compute V[ Ny]

following SRSwoR with samples of size n = 10. Repeat for samples of size
n = 20. How many times more precise is the latter sampling strategy?

Enumerate the 36 possible with-replacement samples of size n = 2 that can be
selected from the N = 6 element Stuart population.

Use the radon data of Example 3.7 to construct a 90% confidence interval for p;
using the method described in the Chapter 3 Appendix subsection dealing with
“Nearly exact confidence intervals for proportions (page 89).”

Use the red oak data of Example 3.20 to draw each of the possible 1-in-20
systematic samples. For each one estimate the variance of 7,, using 0[ 7, ],
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and then compute the 90% confidence interval for z,. How many of the twenty
intervals cover the value of 7,?

. Repeat the previous exercise using dg4[ fyn ] as the estimator of variance. How
many of these intervals cover the value of 7,,?

. In Example 3.26 the p(s) for one of the Q = N" = 4> = 16 possible list samples
of size n = 2 was computed. Compute p(s) for the other 15 possible samples,
and verify that > p(s) = 1.

. Use the biomass population of Example 3.8 in order to draw another SRSwoR of
size n = 52 trees. Compare the distribution of trees you obtain in this sample to
that obtained in the Example. Construct a 90% confidence interval for the average
total aboveground biomass per tree. Also, construct a 95% confidence interval
based on these same sample data. Which interval is wider? Explain the reason
why one interval is wider than the other.

. Use the biomass population of Example 3.8 in order to draw an equal probability

systematic sample of size n = 52 trees, and compute a 90% confidence interval
for the average total aboveground biomass per tree.

3.6 Appendix
3.6.1 Factorial and combinatorial notation
For any positive integer A, the factorial A! is defined as
Al=Ax(A-1)x(A-2)...3x2x1.
Thus,
N'=NX(N—-—1)x(N-=2)...(N—n+1)
X(N—n)x(N—n—-—1)...3x2x1.
nl=nxm—-1)xmn—-2)...3x2x1.

N—nm'=(WN—-nxN-n—1)x(N—-—n-2)...3x2x1.

The expression for Q on page 36 thus resolves to,

N N(N—1\(N-2 N—n+2\(N-n+1
n!(N—n)!_?(n—l)(n—z)“'( 2 )( 1 )

which might be easier to calculate than (3.2).
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3.6.2 Derivation of the inclusion probability of Uy for SRSwoR.

Since all samples are equally likely, 7y can be computed as the following proportion:

number of samples which include Uy

total number of samples possible

The denominator is just Q = yC,,.

For those samples which include U as a member, there are n — 1 other elements
in the sample chosen from the remaining N — 1 elements of the population. There
are

Co = (N - D!
N1l = 2 DIIN — n)!
such samples possible. Hence,
N-1Cn—1 n
S il 3.70
Tk ~C. N (3.70)
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3.6.3 Proof of unbiasedness of Ty, as an estimator of T,

From 2.1 we have

E[#yr | =D p(s)iya(s)

seQ
Yk
=2 P& 2 —
seQ | Uges Tk

_ M3
=> 1> PO

seQ | s2U

> pls)

Il
Mz
3=

k=1 U
N
> %n wyLy
Tk
k=1
N

~
Il
—-

where the notation s > Uy indicates that the summation extends over all samples of
which € is a member.

An alternative proof relies on a device that we will use repeatedly henceforth. We
define the random variable ; to indicate whether, or not, 7 is included in a sample.
Let

1, ify ;
I = e s (3.71)
0, otherwise.

Then the HT estimator as written in (3.4) can be written alternately as

N
R Yicdk
Tyg = —

el
In this expression, i is the only term that is random, as it indicates by its value
whether, or not, Uy is selected into the random sample. Hence, its value will vary
from one sample to another. As mentioned in §1.4, the y; value associated with Uy is
aregarded as a fixed value, irrespective of whether 7 is selected into any particular
sample. Likewise, 7y is determined by the sampling design, and is independent of
the particular sample chosen, too.
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The expected value of I is
E[It ]1=0xProb[ [ =0]+ 1 x Prob[ I; = 1]
=0+ np = my.

Thus, the expected value of ?y” is

Eﬁw]=E[§:iﬁ}

1
The bias of 7, as an estimator of 7y is B[ Ty : 7y ] = E[Tyz ] — 7y = 0, i.e., Ty
unbiasedly estimates 7.

3.6.4 Derivation of V [ Ny ] in (3.6) following SRSwoR

We start with the well known identity for the variance of a random variable., :
VIiw] = E[y?*] — E[y 1> This identity holds for any random variable, and in
particular for 7y .

Furthermore, define the random variable, I;;/ to indicate whether both ¥y and Uy
are included in the same sample. Let

1, if Uy and Uy € s;

Ly = I Iy, =
kk Kk {0, otherwise.

There are
(N —2)!

(n—=2)! (N —n)!
possible samples of size n that include both 7 and Uy as elements. Thus,

N—2Cphp =

N—2Cn—2
NCn

nn—1)

NN 1)

ElLw]=

= Tk, Say.

To derive V[ 7y, ] = E[ fyz,r 1= El[%y 1% it is necessary to derive both terms on the
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right side of the identity. The square of 7, is

k=1
N N N
_Z )’I%Ikz +Z Z YeYi I Iy
o 71'2 kT
k=1 Tk k=1 k'#£k
K'=1
N 2 N N
_ Vi lk YieYie Te
Sy Ak s vl
k=1 "k k=1 k'£k
K=
Thus,
N
Els2 | = Z 1% Z Yk Yk T ke’
Tyn - 7[2 iy
k=1 "k k=1 k'#£k
K=
nn—1) .
N >, NNV -1
DI FRLELS 3 2
k=1 - k=1 k'#k
N2 K=l
A DS S o
n TN - 1) kK
k=1 k=1 K'#k
K'=1

. A N N N
Since E[ 7y | = 7y, and r)% =i y,% + > Zk#/:l Y Vi’ then

Y N Nn—1
:Zy;f(; ) ZZykyk( U 1;
k=1 K'£k
k'=1

NenlZ A
= Z)’/E—HZZ)%W
k=1 k'#k

k=1

)
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. N—n (N yi—1?
Vit ] = ( £

Continuing,

n N-—-1

3.6.5 Proof of unbiasedness of s}z, as estimator of 0)2, following SRSwoR

Define
1 _
s = > k=37
n—1
Uk s
Then,
N
(n—1)E [sg] = > VE[L] - nE [yz]
k=1
n _
- [(N—1)03+N,u§]ﬁ—n[V[y]—i-,uﬂ
n(N —1) N —n
:|: N —n( N )j|ay2+n/1§,—n,u§
o2
=[N —-n—N Y
[n n +n] N
=(n—- 1)53.
Thus,
E[sg] :ayz.

3.6.6 Derivation of the inclusion probability of Uy for SRSWR

Because all possible sequences are equally likely, zx could be computed as the ratio
of the number of samples in which U appears at least once to the number of possible
samples, Q. Such a computation would be an arduous chore, however. Instead we
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take the following approach. If mj is the probability that 7 € s, then 1 — 7y is
the probability that 7 ¢ s. The latter probability is []7_, (probability that T is
not chosen on the ith draw), since the n draws are independent. Now if py is the
probability that 7 is selected on each and every draw, then its complement, 1 — py
is the probability of not being selected on each draw. Thus, the probability of Uy ¢ s
is [T'_; (1 — px) = (1 — px)", which leads to

me=1-0-pp)".

3.6.7 Derivation of E[ n | and V[ n | following Bernoulli sampling

Consider first the general case where elements from a discrete population are
sampled by a design with inclusion probability for 7 of ;. Regardless whether
the size of the sample is fixed or random, the number, n, of elements included in the
sample can be expressed as

N
n= Z I, (3.72)
k=1

where [y is defined in (3.71). The result E[ Iy | = my leads directly to

N
E[n]= an_ (3.73)
k=1

The identity in (3.73) holds for any probability sampling design applicable to discrete
populations.

When 7z;y = = for each element of the population, the expected number of
elements selected into a Bernoulli sample is Nz, a result deducible directly from
(3.73). Furthermore, E[ Iy [}y ] = E[ It 1E[ I ] = z2, owing to the independence of
sample inclusions under Bernoulli sampling. Using

N N N
="+ > Iy, (3.74)
k=1

k=1 k' #£k
K'=1
we obtain
Vinl=E[n*]— (E[n])’ (3.752)
= (Nz + N(N — )z?) — (Nx)? (3.75b)
=Nz(l - 7). (3.75¢)

3.6.8 Derivation of the expected value and variance of Ty,

Define the indicator of the selection of unit 7J; on the jth draw as

Lo — 1, if Uy selected on jth draw;
k= 0, otherwise.
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Then

E[fyp]ZE_Zy_k:|

Thus,

Furthermore,
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Continuing,

2

n

Therefore,

n’E [fyzp] = i (%)2 (npk +n(n — l)p,%)
N

N
DID3 (y"y" )(0+n<n— 1) pipi)

Pk Pk’

-+ Ik’n)

N N
Y (kak/) Z Ijlv; +ZZ Ljly

j=lj'#j
]—l
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Putting these results together leads to (3.46), i.e.,

V[ty]=E :fyzp]_(E[fyp])z

1 al y \ n
k 2 )
n Z ( 1) y n y

L k=1 Pk

S| =

- N 2
= Z—k—i—(n—l—n)r)z,
L i=1 Pk

N
= —_— — ‘L'y
=1 Pk

S|

For the case when x; = 1 for all U, then py = 1/N. Substituting this result into
the above expression, and recognizing that (N — l)ay2 = Z,ivzl y,f - N u%, one gets
(3.19).

An alternative derivation of V[ fyp ] relies on the fact that the variance of a sum of
independent random variables is the sum of their variances. For the jth selection of
either a SRSwR or list sampling,

2

o Yicdkj & Vi Ik
1% ZY = E =4 — 72

k=1

Yoy & vl
DR W

2
k=t Pk k=ipgr  PRPK
k=1

2 2
B0 S L) I 91
k=1 pk k=1 k/#k pkpk/
K'=1
N 2
=Z yk—lzjk—ryz (since E [ Ixj I j] = 0)
k=1 pk
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Therefore,

which leads to

1 N Wk
14 [fyp] =V|- Z :
i = Pr
1 WL
=SV y’;k"’
j=1 k=1

2
nn—DE{6[?,]}=E Z (&_fyp)
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Continuing,

n(n—l)E{ﬁ[fyp]}=i > M—”E[ffp]

2
j=1 Ues Px

=n{nV [t ]} =nV ]
=nn—1)V|[i,].

Hence,
E{ﬁ[fyﬂ]} = V[fyp]'

3.6.10 Variance of estimated proportions

When all yg, or x¢, can have a value of 1 or 0, depending on the presence or absence,
respectively, of some attribute, then x, = % Z,ivzl vk = P, the proportional
number of elements in the population possessing the attribute. Also, Z,jcvzl Yk =

Z,?’: 1 y,% = 1y, = NPj. Recalling the definition of the population variance from
Chapter 1,

2
2 _ Z/Icvzl (yk - #y)

% N_1

N
_ S e = Nus
B N-1 '

Algebraic substitution of N P; for the 21](\121 y,? term and P; for uy yields
N
2
= P(1—"Py).
oy =y 1)

Following a SRSwoR of n elements, the sample variance of the yis in the sample

reduces from
1 _
53 = > k=97

n—1
Uk es

to
n

sy = p1(1—p1).

n—1
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Thus,
VIyl=V[p]
_WN=nmPd-P)
(N—-1 n ’

which is estimated unbiasedly by

—yhi (1= 5
5[ﬁ1] = (NN n)pl(,(,l_]ﬁl)

Following a SRSwR of n elements, the corresponding variance and unbiased
estimator are

Viyl=V|[p]

_ N Pi(1—-Py)
T (N-1) n ’

and . )
b []5 ] _ pl(l — p1)
! n—1
3.6.11 Nearly exact confidence intervals for proportions
When N is large, nearly exact (1 — «)100% confidence intervals can be estimated

with the following with endpoints, as described by:

1
Lower endpoint of interval: +—¢, where

L
by = n—npy+1
LT wp FINV[1 — /2, 2np1, 2(n — npy + )]’
Upper endpoint of interval: , where
U
n—npi

v = (np1+1) FINV[a/2, 2 (np1 + 1), 2 (n —np1)]’

FINV is the inverse of the distribution function of an F random variable. Three
arguments shown for FINV are:

1. The probability level: for lower limit, use 1 — a/2; for upper limit, use «/2;

2. Numerator degrees of freedom: for lower limit, use 2np;; for upper limit, use
2(npy +1);

3. Denominator degrees of freedom: for lower limit, use 2(n — np; + 1); for upper
limit, use 2(n — npy).

Refer to Leemis & Trivedi (1996) for further details.
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3.6.12 Expected sample size

As introduced earlier, let the random variable [; indicate whether, or not, Uy is
included in a sample:

1, if Uy, es;
Iy = .
0, otherwise.

Evidently, the actual size of the sample that is selected must be

N
n= Z]k.
k=1

When 7 is not fixed a priori by the sampling design, as in systematic sampling,
Bernoulli sampling, and Poisson sampling, its expected value is

N
E[n]=E |:Zlk:|
k=1

N
= > E[L]
k=1
N
=> . (3.76)
k=1
This identity relating the expected sample size to the sum of the inclusion probabili-
ties holds for any probability sampling design applicable to discrete populations. For
those designs in which 7 is fixed, it is trivially true thatn = E[n ] for all s € Q, and
the identity of (3.76) holds in this case, also.



CHAPTER 4

Sampling Designs for Continuous
Populations

4.1 Introduction

We now consider the problem of estimating attributes of continuums, objects,
or entities that do not naturally divide into smaller discrete units. These entities
include, for example, organs of plants and animals, plants and animals themselves,
landscapes, lakes, the atmosphere, and spans of time. Our approach is to treat each
entity as a continuous population of points and to define the total amount of attribute
possessed by the entity as an integral of a continuous attribute density function.

To whet our appetites for this subject matter, we consider a cucumber with length
L with the aim of estimating the cucumber’s volume, z,. We recognize a cucumber
as a solid object, yet we may define its volume in terms of a continuous population
of points along the cucumber’s axis of length, the ordinate of each point serving to
locate a cross section with measurable area. Let p (x) denote the cross-sectional area
of the cucumber at any point x, where 0 < x < L. Hence p(x) is a continuous
function whose integral is equivalent to the volume of the cucumber, i.e.,

L
T, :/0 p(x)dx.

The continuous function, p(x), describes how the cucumber’s volume is distributed
along its length. We have defined p(x) as the cross-sectional area at x, but we may
also interpret this quantity as the attribute density at x. In this example, the attribute
density is a ‘volume density,” which is measured in units of volume per unit length
(since p(x) = dt,(x)/dx). These units, of course, reduce to units of area because the
volume density is equivalent to cross-sectional area. The average volume density of
the cucumber is 4, = 7,/L, which is equivalent to the average cross-sectional area
of the cucumber.

As a second example, we consider a frozen lake, 4, with horizontal surface area A,
which is covered, for the most part, by snow. We allow for some windswept patches
on the frozen surface where the snow depth may be zero. Of interest is the total
volume of snow, 7,,, which we treat as an attribute of the frozen surface. We identify
a location point on the frozen surface by its cartesian coordinates, (x, z). If we let
p(x, z) denote the depth of snow at any point (x, z) € 4, then the volume of snow
on the frozen lake can be expressed as an integral, i.e.,

7, = //qp(x,z)dzdx.

91
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The function p (x, z) is continuous because it is defined for all points on the surface of
the frozen lake (otherwise known as the domain of integration). However, p (x, z) =
0 at location points in any windswept patches that are clear of snow. The attribute of
interest, snow volume, is distributed over the entire surface of the frozen lake with
average volume density u, = t7,/A. This average attribute density is measured in
units of snow volume per unit lake surface area and is equivalent to the average snow
depth. Similarly, the volume density at any location point (x, z) is equivalent to the
snow depth at that point.

Several strategies, which have proven useful for sampling continuous populations,
originally were advanced in the 1950’s as techniques of Monte Carlo integration (see
e.g., Hammersley & Handscomb 1979; Rubinstein 1981). Sampling strategies for
continuous populations have also appeared in the statistics literature (e.g., Bartlett
1986; Cordy 1993; Stevens 1997), though readers without training in mathematical
statistics may find these papers somewhat beyond their ken. In this chapter, we
introduce three strategies from the Monte Carlo literature: (i) crude Monte Carlo,
which is also called the sample mean method, (i) importance sampling, and (iii)
sampling with a control variate. In the taxonomy of sampling, crude Monte Carlo
is a continuous analog of simple random sampling with replacement (§3.2.1) and
importance sampling is a continuous analog of sampling with unequal selection
probabilities or, more specifically, sampling with probability proportional to size
(§3.3.1). Sampling with a control variate leads naturally to difference estimation.

Because continuous populations comprise infinitely many points, selection proba-
bilities cannot be defined and assigned by the sampling design. In their place is the
notion of a probability density, which is inherent to the mechanisms that we use to
select ‘sample points.” Moreover, since the target parameter is an integral, we utilize
estimators that incorporate measurements of attribute densities, rather than measure-
ments of attributes. These differences notwithstanding, strategies for sampling con-
tinuous populations are no more complicated than their discrete counterparts, and
often are quite intuitive. For example, crude Monte Carlo yields the result that the
volume of an internode of a plant is unbiasedly estimated by the product of internodal
length and cross-sectional area measured at a point selected at random.

4.2 Crude Monte Carlo

Let 7, denote the definite integral of a continuous function p (x), i.e.,

b
7, = 7,(b) — 1,(a) =/ p(x)dx. 4.1

In a graph of p(x) versus x (Figure 4.1), 7, is the area under the curve p (x) between
x = a and x = b. Indeed, 7, is measured in units of area (e.g., m2) if both x and
p(x) are measured in units of length (m). However, if p(x) is measured in units of
area, then 7, is measured in units of volume.

Areas and volumes of many entities can be specified as definite integrals. The
strategies developed in this chapter will allow us to estimate such areas from
measurements of lengths, and such volumes from measurements of areas or lengths at
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a

p(X)
%o

b) ¢ P

I

0 a b

Figure 4.1 a) The attribute or target parameter, t,, is represented by the shaded area under the
attribute density function, p(x); b) a uniform attribute density is described by a ‘flat function.’

sample locations selected at random. We also touch on other problems, for example,
the estimation of mass and the estimation of time integrals.

Crude Monte Carlo is one of the simplest strategies for estimating a target
parameter that can be represented by an integral. We could easily present a recipe for
crude Monte Carlo in a single paragraph, the essential ingredients being equations
(4.4), (4.8), and (4.10). However, we develop the strategy gradually, introducing
concepts that underlie not only crude Monte Carlo, but also all of the other strategies
discussed in the chapter.

4.2.1 Definitions

For our purposes, x, in equation (4.1), is a point on an axis of length. When measured
in the units of x, the entity extends from x = a to x = b or, to put it another way,
the entity is wholly contained in the interval [a, b]. For example, if x is length in
m, then the entity has length (b — @) m; if x is time in seconds, then the entity is a
span of time of length (b — a) seconds. In either case, the interval [a, b] comprises a
continuous population of points.

The symbol 7, denotes an attribute of the entity and p(x) = dz,(x)/dx is the
attribute density function that describes how the attribute is distributed in the interval
[a,b]. In a sampling context, 7, is the target parameter, so p(x) is necessarily
measurable everywhere in [a, ], i.e., at any point x where a < x < b; otherwise,
we can not unbiasedly estimate 7,. The dimensions of the attribute density are the
same as the dimensions of z,/x. For example, if 7, is a volume and x a length,
then p(x) has dimensions of volume per unit length, which, of course, reduces to
area. Attribute densities usually are positive or zero (i.e., p(x) > 0) in [a, b], though
negative densities do sometimes occur as we shall see in Example 4.9.
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Figure 4.1a depicts an attribute density function that is always positive, but
decidedly variable in [a, b]. By the mean-value theorem of integrals, the mean
attribute density in [a, b] is u, = 17,/(b — a). If the attribute density is constant,
then p(x) is described by

Tp
b—a

p(x) =y, = as<x=<b,

and the attribute, 7, is said to be ‘uniformly distributed’ in the interval [a, b] (Figure
4.1b).

Example 4.1

To interpret the terminology and symbology in a specific context, let us consider
the volume of asphalt on a straight section of road between given points a and b.
The section of road of length (b — a) m is the entity of interest, and its centerline
comprises a continuous population of points, a < x < b. The volume of asphalt,
) (m?), is an attribute of the road and the target parameter. The attribute density,
p(x) = dr,(x)/dx, is the volume of asphalt per unit length of road (m3 m~1).
These dimensions reduce to a dimension of area (m?) because, at a specific point
on the road, e.g., x = xy where a < x; < b, the attribute density is equivalent
to the area of the vertical cross-section of asphalt measured perpendicular to
the centerline. If the road is paved in its entirety, we should expect the cross-
sectional area of asphalt to be fairly uniform along the length of the road section,
so a graph of p(x) versus x would resemble the graph in Figure 4.15. However,
only a portion of the section of road may be paved with asphalt. If asphalt occurs
at point xg, then p(x;) > 0; otherwise, p(x5) = 0.

Example 4.2

Consider the number of growing degree-days over some given span of time.
The span of time (days) is the entity of interest, extending from time a to
time b, and the attribute, 7,, is the number of growing degree days. Hence,
p(x) is the density of growing degree-days per day at time x (@ < x < b).
The attribute density reduces to air temperature above some threshold, i.e.,
p(x) = max[0, T(x)—Tp ], where T (x) is air temperature at time x and Tp is the
threshold temperature. Thus, this attribute density equals zero when 7' (x) < Tp.

If the attribute density function is known, then we can use analytical or numerical
procedures to integrate p(x) and calculate 7,, so we have no need of sampling
designs. However, if the mathematical form of p(x) is not known, we can use Monte
Carlo integration, specifically crude Monte Carlo, to estimate 7, from measurements
of the attribute density p(x) at sample points selected at random between a and
b. This assumes, of course, that p(x) can be measured to an acceptable degree of
accuracy.



CRUDE MONTE CARLO 95

1
T®=p_a

L

F(by—F@ =1

a b

Figure 4.2 In crude Monte Carlo, the probability density function, f(x), is constant, or
uniform, in the interval of interest, [a, b], and zero elsewhere.

4.2.2 Selection

In order to select a particular point, x, at which to measure p(x), we define a
probability density function, f(x), over the interval of integration. Analogous to the
attribute density function, the probability density function describes how ‘a unit of
probability’ is distributed over the interval [a, b]. For unbiased estimation, f (x) must
adhere to certain constraints, i.e.,

f(x) >0, a<x <b;
f(x)=0, otherwise.

The target parameter is the integral of p(x) from a to b, so the integral of f(x) from
a to b must equal 1, i.e.,

b
F(b)—F(a):/ f(x)dx =1.

The probability density is the amount of probability per unit length, so the
integral of the probability density function provides the probability that a point,
x, is contained in a particular finite interval. For example, F(b) — F(a) = 1 is
the probability that a point x, selected at random, occurs in the interval [a, b]. Let
a < xg < b, then uy = F(x;) — F(a) is the probability that x occurs in the interval
[a, xs], i.e.,

F(xy) — F(a) = / F)dx = us. 42)

Equation (4.2) is key to the inverse-transform method (e.g., Rubinstein 1981), a
mechanism for selecting sample points. In effect, we select u; ~ U[0, 1] and then
solve F(xs;) — F(a) = us for xs. The result is the selection of a sample point
X = x, in the interval [a, b] with probability density f(xs). In a sampling context,
the attribute density at x;, namely p (xy), then would be measured. For a sample of
size n, this process is repeated until n distinct sample points, x5, s = 1, ..., n have
been selected. That is, for ugy ~ U[0, 1], s = 1, ..., n, solve F(xs) — F(a) = uy for
Xs.

By design, crude Monte Carlo sampling uses a uniform density function over the
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f(Xs)

F(xs) — F(a) = us

a Xs b

Figure 4.3 The area under the probability density function, f(x), between a and xg is the
probability, ug, that a value of x, selected at random, falls in the interval la, xg). The
probability density f(x) is uniform from a to b, so us = (xs — a)/(b — a) and, therefore,
xg =a+ (b —a)us.

interval of integration (Figure 4.2), i.e.,

flx) = F(bz:f(a) = bla a<x<b. 43)

Substituting f(x) = 1/(b — a) into equation (4.2),

F(x,) — Fla) = u, =/xx L oax.

b—a
Integrating,
Xg—a
Ug = .
T b—a
Solving for x; yields the crude Monte Carlo selection formula (see Figure 4.3):
xs =a+ (b —a)ug. “4.4)

This selection formula is a continuous analog of selection method II for simple
random sampling with replacement (see page 48).

Example 4.3

Suppose that a uniform variate, u; = 0.63602, is generated in order to select a
sample point between a = 1 and b = 5. Solving (4.4) provides x; = 3.54408.

4.2.3 Estimation

An unbiased estimator of 7, based on the jth selection, is the quotient of the attribute
density and the probability density at x = x;, i.e.,

;o= p(xs)
. fxs) .

See the Appendix for a proof of unbiasedness. For the uniform density used in crude
Monte Carlo, 7, simplifies to

(4.5)

fpx = (b —a)p(xs), (4.6)
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p(Xs)

Tps

I T T
0 a Xs b

Figure 4.4 An estimate of 1, provided by the estimator T, equation (4.6), is represented by
the rectangular shaded area.

which is the area of a rectangle of length (b — @) and height p (x;) (see Figure 4.4).
A combined estimator, 7,, uses measurements from # > 1 independent selections,
ie.,

N
t=—2 @7
s=1

Substituting (4.6) into (4.7) provides a combined estimator specifically for crude
Monte Carlo, viz.,

b o n
=" play). 4.8)
s=1

n

The sampling variance of 7, is (see Chapter 4 Appendix for derivation)

1 b 2
V[fp]zz(a /;(—(;))dx—rz). 49)

The variance of 7, is estimated unbiasedly by

oot (Bp, — 7p)
n(n—1)

2
n> 1. (4.10)

0[7,] =

The mean attribute density in the interval [a, b] is p,, which is unbiasedly
estimated by

A

Tps

[0, = ) 4.11

Hps bh—a ( )
For crude Monte Carlo, this estimator is simply the measured attribute density at x;,

fp = pxs). .12)

A combined estimator of the mean density uses n > 1 independent selections, i.e.,

=>

1 n
= - i, . 4.13
P= ; Hps ( )
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The sampling variance of /i, is

. Viz,]
v[#p]zﬁ, (4.14)

which is estimated unbiasedly by
(4.15)

The estimators, 7, and ji,, have zero sampling variance whenever the attribute
density, like the probability density, is uniform in the interval [a, b], i.e., if p(x) =
t,/(b —a) = p,. Inthis case, 7,, = t,, irrespective of which sample point, x = x;,
is selected, because

. ) _g/-a)
"I T Yb-a)

Inasmuch as 7, is a constant, 7, = 7, necessarily implies that 7, is also constant,
i.e., it will not vary from one sample to another. Of course, a uniform or constant
attribute density is apt to be very rare in nature. Suffice it to say, the closer the
attribute density to uniformity, the more precise the estimates from crude Monte
Carlo.

=p,b—a)=r1,.

Example 4.4
The curve in Figures 4.1a and 4.4 is p(x) = e~ *. The integral from a = 0.25
to b = 2.75 is easily calculated, i.e., 7, = fab e Fdy = —e 2P — (=0 =
0.7149.

To implement a crude Monte Carlo sample for the purpose of estimating 7,
six random numbers u; ~ U[0, 1], s = 1,2, ..., 6 were generated. With these,

sample points were calculated with (4.4) as x; = 0.25 4+ (2.75 — 0.25) uy. The
attribute density at the sample point x; is p(x;) = e~ and the estimate of
7,, based on this selection is 7,, = (2.75 — 0.25) p(xy). The results of these
calculations are provided in the following table:

5%

Ug Xs p(xs) T,

0.06573 0.41433 0.66079 1.6520
0.83402 2.33505 0.09681 0.2420
0.39638 1.24095 0.28911 0.7228
0.09605 0.49012 0.61255 1.5314
0.16908 0.67270 0.51033 1.2758
0.62471 1.81178 0.16336 0.4084

(@)W, BRSNS R

By equation (4.8), the combined estimate of the target integral is

R 1.6520 4- 0.2420 + - - - 4 0.4084
T, =
6

=0.9721,
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and, using (4.9), the variance of 7, with n = 6 is calculated to be V[7,] =
0.04033.

The estimated variance of fp, by (4.10), is 0.05934, and, therefore, the
estimated standard error of 7, is 0.2436. The 95% confidence interval for 7,
is

0.3459 < 7, < 1.5983

which evidently includes 7, = 0.7149 in this instance.

Example 4.5

In this example we contrast the estimation of the volume of the bole of a tree by
(a) simple random sampling with replacement (SRSwR) and (b) crude Monte
Carlo. Elements of our notation are specific to this example.

Assume that the length of the tree bole, from butt to tip, equals the height
of the tree (H). Assume, also, that the bole consists of a stack of N connected
segments, each of length Ah = H/N. The kth segment, U, k = 1,2,..., N,
has volume y; (Figure 4.5). In other words, the tree bole constitutes the
population of interest, which has been divided into N discrete non-overlapping
units, each of which is one segment of the tree bole. The target parameter is the
total volume of the bole, 7, = >} y.

From this discrete population consider selecting a sam-
ple segment by generating u; ~ U[0, 1], so that x; = uyH
is a random height between 0 and H. The segment that
occurs at x; is selected into the sample. By generating n
distinct heights, x;, s = 1, ..., n, a sample of n segments
is selected into the sample, although these may not all be
distinctly different segments.

This method of selection is equivalent to simple random
sampling with replacement, in which the selection proba-
bility of each segment, U, is px = 1/N = Ah/H. The
Hansen-Hurwitz estimator of the volume of the bole is

R 1 Yk
Typ = — —
¥ nzpk

Uk es

(4.16)

_ N
I Z Yk Figure 4.5

UrEs
k Bole segments.

Estimation of the volume of the bole evidently requires
the measurement of the volumes of the discrete segments
of the bole that are selected into the sample, a task which
is difficult on standing trees. However, the length of each
segment, Ah, obviously depends on the choice of N. If
we assume that N approaches oo, then Al approaches 0 and, at the limit, the
population is continuous because the segments are vanishingly thin wafers of
wood. Thus, as an alternative to dividing the bole into a sequence of N discrete
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segments, we view the target parameter as

H
r/,:/ p(h)dh,
0

where the attribute density, p(h) = dr,(h)/dh, is volume per unit length
at height h, which is equivalent to cross-sectional area at height h. As a
consequence, crude Monte Carlo sampling can be used to estimate 7,.

Each of n sample points, hy (s = 1,2,...,n), is drawn with uniform
probability density, f(h) = 1/H, so that hy; = ugH, as in (4.4). By (4.5) and
(4.8),

N _1 - p(hs)
v E}; £ ()
(4.17)

S WD
j=1

It is obvious that the continuous strategy is more practical for estimating
bole volume than its discrete analog because the former eliminates the need
to measure volumes of discrete bole segments. Instead, cross-sectional areas are
measured at heights selected at random. In practice, it is likely that bole diameter
would be measured and then used to calculate cross-sectional area for insertion
into the estimator.

Note: In this example, both 7y and 7, denote the same target parameter, the
total volume of the bole, i.e., 7, = 7,. In keeping with established notation, the
subscript y indicates that the total obtains from a summation across N discrete
elements and the subscript p indicates that the total obtains from an integration
over a continuous domain.

4.2.4 Crude Monte Carlo with antithetic variates

The method of antithetic variates (Hammersley & Morton 1956) can be used to
increase the efficiency of an estimation whenever the attribute density, p(x), tends
to increase or decrease in a monotone fashion in the interval [a, b]. In the Monte
Carlo literature, the method of antithetic variates falls under the rubric of ‘variance-
reduction methods.” Heuristically, the method works by averaging large attribute
densities with small ones. More technically, the method reduces the sampling
variance by inducing negative covariance among pairs of measured attribute densities
(see, e.g., Rubinstein 1981).

‘Antithetic selection’ involves the selection of two sample points from [a, b] with
a single random number, u; ~ U[0, 1], i.e.,

xs=a+ (b—a)uy (4.18)

and
xi=a+ (b—a)(l —uy). (4.19)
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The estimator of 7,, based on the sth antithetic selection of the sample points x; and

P
Xg, 18

/
i = 0| HTLE ], (4.20)
For n pairs of antithetic selections,
1 n
= n Z T,
j=1
4.21)

b

2_na > e +p@)].
j=1

The sampling variance of 7, is estimated by equation (4.10).

A single antithetic selection with (4.18) and (4.19) would estimate z, without error
if p(x) were linearly related to x. In this case, a graph of p(x) versus x would be a
trapezoid. The target integral (by the trapezoidal rule) is

7) = (b—a) [M] = (b—a) p(@),

where ¥ = (a + b)/2. Because x; + x; = a + b, the trapezoidal rule also ensures
that 7, = (b — a)p(xy), where X; = (x; + x})/2. Hence, any antithetic selection
would yield the same result with (4.20), i.e., 7,, = 7,. Of course, straight lines are
rare in nature, and attribute densities tend to change in an irregular or bumpy fashion.
However, antithetic selection should be a reasonable approach if the major tendency
in p(x) is to increase or decrease in value in the interval [a, b].

Example 4.6

In Example 4.4, we used crude Monte Carlo to estimate the integral 7, =
fabp(x) dx, where p(x) = e™*, a = 0.25, and b = 2.75. The attribute density
was measured at six sample points, which were selected independently. In this
example we select three pairs of sample points antithetically. The results from
reuse of the first three random numbers of Example 4.4 are provided in the
following table:

Us 1 — ug Xs xg p(xs) p(xg) Tp,

J

1 0.06573 0.93427 0.41433 2.58567 0.66079 0.07361 0.9202
2 0.83402 0.16598 2.33505 0.66495 0.09681 0.51430 0.7639
3 039638 0.60362 1.24095 1.75905 0.28911 0.17221 0.5766

Three independent estimates of z,, which derive from the three independent
antithetic selections, are listed in the last column of the table. The combined

estimate,
. 09202 4 0.7639 + 0.5766

T, = 3

= 0.7536,
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is quite close to the target parameter value, 7, = 0.7149. The estimated standard
error of fp, based on the three antithetic selections, is 0.09930 and the 95%
confidence interval is 0.32632 < t, < 1.18081. This result is more precise
than what was obtained in Example 4.4 with crude Monte Carlo, but without
antithetic selection.

4.2.5 Systematic selection

Systematic selection, in conjunction with crude Monte Carlo, involves taking mea-
surements of p(x) at a fixed interval from a random start in the interval [a, b].
For example, divide the interval into N equal sub-intervals of length Ax. Select
Xy = a + ug x Ax and take measurements p (xy), p (xs + Ax), p(xs +2Ax), and so
forth. Based on these measurements,

N-—1

n X +iAx

Ty, = (b—a) E % 4.22)
i=0

Although fps is calculated from two or more measurements, these measurements do
not derive from independent selections. Consequently, the sampling variance of 7,
cannot be estimated unbiasedly.

Two independent selections would involve two random starts, in which case we
could use (4.7) to calculate a combined estimate, 7,, and (4.10) to calculate 0[7,].

Example 4.7

Let us return to the integration problem of Examples 4.4 and 4.6, viz., 7, =
fabp(x) dx, where p(x) = e, a = 0.25, and b = 2.75. This time we
estimate the integral with systematic selection with two random starts. We
divide the interval of integration, [0.25,2.75], into N = 3 segments, each of
length Ax = 2.5/3 = 0.83333. Each of the two systematic samples requires
three measurements of p(x). This is six measurements in total, the same as in
Examples 4.4 and 4.6. The results from reuse of the first two random numbers
of Example 4.4 are provided in the following table:

s i Ug xs +iAx p(xs +iAx)
1 0 0.06573 0.30477 0.73729
1 1 0.06573 1.13811 0.32043
1 2 0.06573 1.97144 0.13926
2 0 0.83402 0.94502 0.38867
2 1 0.83402 1.77835 0.16892
2 2 0.83402 2.61168 0.07341




CRUDE MONTE CARLO 103

The entries in the last column of the table yield two independent estimates of 7,

0.73729 + 0.32043 + 0.13926

£y = 2.5 . = 0.9975
) 0.38867 + 0.16892 4 0.07341
£y = 2.5 X ki . + = 0.5258

The combined estimate is 7, = (0.9975+0.5258)/2 = 0.7617 and the estimated
standard error of 7, is 0.2359. If we treat the 6 sample points as independent, the
resultant estimate of 7, is, of course, unchanged, but the (biased) estimate of the
standard error increases slightly to 0.2474. Comparing the results in Examples
4.4 and 4.6 with this result, it appears that antithetic selection is more efficient
than simple random selection or systematic selection for estimating the target
parameter 7, = [ e *dx.

Example 4.8

The following table contains systematic (half-hourly) measurements of the flux
of carbon, p(¢) (umol C m~2 s~ 1), from vegetation to the atmosphere over a 12-
hour period on 20 September 2001 at an Ameriflux site near Howland, Maine,
USA.

Time Flux Time Flux Time Flux Time Flux

1200 —10.5 1500 -9.1 1800 1.9 2100 5.0
1230 —14.5 1530 —4.6 1830 34 2130 6.0
1300 —11.6 1600 —4.1 1900 3.6 2200 24
1330 7.4 1630 —-2.3 1930 3.4 2230 4.2
1400 —-94 1700 —-0.5 2000 5.6 2300 4.7
1430 7.8 1730 2.5 2030 4.6 2330 5.1

By meteorological convention, negative numbers denote influx of carbon to the
vegetation and positive numbers denote efflux. Of interest is the amount of
carbon sequestered by the vegetation over this period of 12 hours or 43200
seconds. Carbon sequestration (z,, umol C m~2), by definition, is the time

integral of the flux, i.e.,
10443200
T, = / p(t)dr. (4.23)
I

0

This quantity is estimated by application of equation (4.22), i.e.,

) —10.5) 4 (—14.5) +--- + 4.7 +5.1
fp=43200x( )+ ( 2)4+ TR 529200

Thus, over the 12-hour period, we estimate that the vegetation sequestered
52920.0 umol C (or 0.635 g C) per m? of land area.

For the sake of example, let us assume that measurements taken on the hour
are systematic measurements from one random start and measurements taken on
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the half hour are systematic measurements from a second independent random
start. The two ‘independent estimates’ of z,, are
(=10.5) + (=11.6) +---+24+4.7

T, = 43200 x = —79198.6
12

and
(145 + 74 +---+42+5.1

£, = 43200 x 3

= —26641.4

The combined estimate is
—79198.6 —26641.4
T, = ( ) —; ( ) = —52920.0

Because we have just two ‘independent estimates’ of 7,, we can calculate the
standard error of 7, thus:

Py — 1 —79198.6) — (—26641.4
NGIEAES %0 5 fl I ) 5 ( | _ 262786

Example 4.9

Investigators often operate under the assumption that systematic selections are
independent. Applying this assumption to the 24 measurements of the previous
example, the 24 estimates of 7, are

T, = 43200 x (=10.5) = —453600.0
7,, = 43200 x (—14.5) = —626400.0

Tppy = 43200 x 5.1 = 220320.0

Calculation of 6[7,] by equation (4.10) and then taking the square root yields
\/0[%,] = 57569.0, which is more than twice as large as our previous result.

4.3 Importance sampling

The method of importance sampling seems to date from the 1950’s. Rubinstein
(1981) cited a symposium paper by Marshall (1956) as a source of the method. Ham-
mersley & Handscomb (1979) described the method without attribution. The domain
of application of importance sampling was extended to the estimation of attributes of
physical objects—i.e., the branches and boles of botanical trees—by Valentine et al.
(1984) and Gregoire et al. (1986). The method has many potential applications in
connection with the estimation of natural and environmental resources. As was noted,
importance sampling is a continuous analog of list sampling with probability propor-
tional to size (§3.3.1). A comparison of the formulae that pertain to list sampling of
discrete populations and importance sampling of continuums is provided in Table 4.1
in the Appendix (§4.9).
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In our discussion of importance sampling, we shall use the same notation for the
target integral as in crude Monte Carlo (Figure 4.6a), viz.,

b
7 Erp(b)—z'p(a)z/ p(x)dx.

Importance sampling can be used to estimate 7, if p(x) exists everywhere in the
interval [a, b]. First, we must formulate a probability density function, f(x), as in
§4.2.2. As was noted, importance sampling is a continuous analog of sampling with
probability proportional to size. Ideally, the probability density function, f(x), is
proportional to the attribute density function, p(x). If f(x) is constant, then the
importance sampling reduces to crude Monte Carlo.

4.3.1 Proxy function

In many applications, f(x) can be developed from a model of p(x). We call such
models proxy functions. The shape of a proxy function, g(x), should resemble the
shape of p(x) in the interval [a, b]. Or, to put it another way, the proxy function
should provide a good approximation of p(x) in the interval [a, b] or it should be
proportional to a model that provides a good approximation of p(x). Division of the
proxy function by its integral yields the needed probability density function:

8
fx)y=1 G

0 otherwise,

ifa <x <b,

where ,
G=Gb)-G(a) =/ g(x)dx.

Because G is a constant, the resultant probability density function has the same shape
as the proxy function in the interval [a, b].

Example 4.10

Suppose that we choose to approximate p (x) in Figure 4.6a with a linear model,
given measurements (or prior knowledge) of p(a) and p (b) (Figure 4.6b). Then,

g0) =o' +f'x,

where o’ and B’ are constants:

/ P (b) B P(a)
b= b—a
o' =gla)—pla
=p(a) - fla.
We can calculate G by the trapezoidal rule, i.e.,
G=(0-a) [M} )
2
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p@)

a)
7, = 7,(b) — 7,(a)
0 a b
b
) g(x)
G =G(b) - G(a) p(b)
0 a b
)
Fbb)—F@=1
—00 | | 00

Figure 4.6 a) The target integral, t5; b) A proxy function, g(x), constructed from measure-
ments (or prior knowledge) of p(a) and p(b); c) The probability density function, f(x) =
8(x)/G.

The probability density function is

F()=a+px
where , P
a

This function (see Figure 4.6¢) has a shape identical to the proxy function, g(x),
and similar to the attribute density function, p (x).

4.3.2 Selection by the inverse-transform method

Sample units at x = x; (s = 1,2,...,n) ordinarily are selected by the inverse-
transform method or the acceptance-rejection method. We have already used the
inverse-transform method in connection with crude Monte Carlo, i.e., the solution
of equation (4.2) selects x = x; by the inverse transform method. This method can
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be employed with either a probability density function or a proxy function. In the
latter case, equation (4.2) converts to

Xs
G(xs) — G(a) = / g(x)dx = u; G. (4.24)
a
Thus, x; is a ‘root’ of G(x5) — G(a) — us G = 0 or, identically, a root of
F(xg) — F(a) — ug = 0, where uj is drawn from U[O, 1].
Example 4.11

From Example 4.10, the probability density function is f(x) = a + fx,
therefore,

/xs (o + px)dx = ug.

The integration yields a quadratic equation in x;:

o(xy —a) + g ()cv2 — az) = u,.

Hence,

—ax./a?+B[pa?+2aa+2uy]
7 )

Xy =

4.3.3 Selection by the acceptance-rejection method

Von Neumann’s acceptance-rejection method (cf Rubinstein 1981) is a simple
general method for selecting sample units at x; (s = 1,2,...,n) when the
probability density function varies in [a, b]. The method can be employed with a
proxy function or a probability density function.

Let gmax denote the greatest value of g(x) in the interval ¢ < x < b, then

1. Draw independent random numbers u; and u» from U[0, 1].
2. Calculate x; =a + (b — a) u;.

3. Ifus X gmax < g(x5), then accept x;; otherwise, reject x5 and repeat from step 1.

Alternatively, we can use the probability densities fimax and f(xg) instead of gmax
and g(x;) in the procedure. The result is exactly the same.

One way to visualize the acceptance-rejection method is to graph g(x) versus x for
a < x < b and draw the bounding box of this graph (Figure 4.7). The acceptance-
rejection method provides coordinates (xg, 42 X gmax), Which fall somewhere within
the bounding box. If they fall within the area under the proxy function, then xg
is accepted; otherwise, x; is rejected. If x; is accepted, then it is done so with
probability density f(x;) = g(x5)/G.
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Omax

rejection region: Uz X Gmax > g(Xs)

g(x)

acceptance region: Uz x gmax < g(Xs)

0

a b

Figure 4.7 Graphical depiction of the acceptance-rejection method, where x; = a+(b—a) uy;
uy, upy ~ U[0, 1].

4.3.4 Estimation
The estimator of z,,, based on the sth selection is

P p(xs)
P )

-G |:p(xs)i|.
g(xs)

A combined estimate can be calculated from n > 2 independent selections, i.e.,

1 n
Tp = ;Z‘[/’s
s=1

(4.25)

(4.26)

_E - p(xs)
on ;g(xs).

The sampling variance of 7, is provided by (4.9). Expressed in terms of g(x),

N b p?(x)
V[rp]zz(c/a o dx -7, ).

This variance is estimated with equation (4.10).

As hinted above, a good proxy (or probability density function) is key to precise
estimation following importance sampling. Ideally, g(x) should be proportional to
p(x), in which case p (x)/g(x) would be constant in the interval [a, b] and, therefore,
the estimate 7, would equal the target integral 7, for all values of x = x,. To see
this, assume that g(x) = ¢ p(x) and, therefore, G = ¢ t,. Substituting into (4.25),

A p(xs) _
Tps =CTp Cp(-xs) =Tp.

The sampling variance under proportionality is zero. Generally, however, proportion-
ality between g(x) and p(x) is an unrealizable goal. Otherwise, there would be no
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need for importance sampling. Nevertheless, some thought should be given to mak-
ing g(x) as nearly proportional to p(x) as possible to reduce the variance of 7,.

Example 4.12

Let us reconsider the estimation of the volume of a tree bole (see Example 4.5).
Recall that bole volume can be estimated from measurements of cross-sectional
area at heights selected at random. Because tree boles generally decrease in
cross-sectional area from butt to tip, the selection of heights of cross sections
with probability density proportional to a proxy of cross-sectional area should be
more efficient than a selection with a uniform density. Moreover, from a practical
standpoint, this selection should yield sample heights that are more concentrated
in the lower half of the bole.

Recall that p(h) denotes the cross-sectional area of a bole at height &, and
H denotes the total height of the bole. Let 7, denote the volume of the bole
between heights a and b, where 0 < a < b < H. For example, a might be the
usual height of a stump and b the upper height of merchantability. Let us call the
bole of interest the ‘real bole.” Thus, the volume of the real bole to be estimated
is

b
rpzrp(b)—rp(a)z/ p(h)dh.

Our strategy shall be to mathematically define a ‘proxy bole’ with a height equal
to, and a shape similar to, the real bole. The proxy bole is defined by a proxy
function that furnishes cross-sectional area at any height between 0 and H. This
function should be integrable between 0 and H for the calculation of volume of
the proxy bole to any height. Let g(h) denote the cross-sectional area of a proxy
bole at height 2 and let G denote the volume of the proxy bole between heights
aand b, i.e.,

b
G = G(b) - G(a) =/ g(h)dh.

Consider the following proxy function (cf Gregoire et al. 1986):

H —1.37

where p(1.37) is the cross-sectional area of the real bole at 1.37 m, a height
commonly referred to as ‘breast height.” H is the height of the real bole and the
defined height of the proxy bole. Note that if & = 1.37, then g1(h) = p(h); if
h = H, then g;(h) = p(h) = 0. Let us also consider a simpler proxy function:

g2(h)=H —h. (4.28)

g1(h) = [M] (H — h), 4.27)

With this second proxy function, the cross-sectional area of proxy bole is not
scaled to that of the real bole. Yet, we assert that the two proxy functions are
equivalent to each other for the purpose of an importance sampling of a tree bole
because (a) the sampling is proportional to size and (b) the two proxy functions
are proportional to each other, since p(1.37)/(H — 1.37) is constant.
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The estimator of 7,, equation (4.25), uses a measurement of p(h) at height
hg. This height is the root of

G(hg) — G(a) —usG = 0. 4.29)
Assuming that g(h) = g2(h) = H — h, then,

hs
G@Q—Gwﬁi/(H—th

(h; —a*)

= H(hs —a) — )

_ (H—a)*— (H —hy)?
- . :

and, similarly,

(H—a)* — (H —b)’
5 .
Substituting into equation (4.29) and solving for &, we obtain

G=G®b) —G) =

hy =H — (1 —ug) (H — a)> + us (H — b)2. (4.30)
We can rewrite the estimator, equation (4.25), as

. W —a - =5 )
. 2(H — hy) '
A practitioner, who may have no knowledge of attribute or probability densities,
should be able to use (4.30) and (4.31) to estimate the volume of most any tree
bole. A combined estimate can be calculated from n independent estimates with
(4.26).

The dry weight of bole wood is highly correlated with volume and can be
estimated with a little additional effort (e.g., Van Deusen & Baldwin 1993). An
increment core is extracted at each sample height /i and the bulk density—dry
weight per unit wet volume—of the core, less bark, is measured. Multiplication
of the bulk density by cross-sectional area (inside bark) yields the desired
attribute density, i.e., dry weight per unit length of wood. If we let p (h;) denote
this density at height Ay, then equation (4.17) estimates the dry weight of the
bole. The resultant estimate will be biased if the bulk density of the wood is not
uniform over the length of a core.

431

Example 4.13

As an alternative to equation (4.30) in Example 4.12, consider the acceptance-
rejection method to determine a measurement height, /. Suppose that a = 0.3
m,b=21m,and H =30 m. Becausea < h < b,

gmax = g@) = H —a =29.7m.
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ASIDE: Alternatives to the simple generic proxy function used in Example
4.12 are readily available in the form of bole-taper models. A bole-taper model
provides a three dimensional description of a ‘model bole,” or as we have termed
it, a proxy bole. This description may be inside or outside bark. Bole-taper
models date from the late 18th century (cf., Gray 1943), the earliest models
based on frusta of simple geometric solids (e.g., Assmann 1970). In the last half
century, forest mensurationists have fitted and published alternative bole-taper
models for hundreds of species (see, e.g., Clark ef al. 1991).

We draw two random numbers from U[O, 1], say, u; = 0.21717 and u, =
0.18446. We calculate

hy =a+u; x (b —a)
=0.3+0.21727 x (21 — 0.3)
= 6.618 m.

Finally, we test if uy X gpmax < g(hy), where g(hy) = H — hy. Indeed,
0.18446 x 29.7 <30 — 6.618

so0 hy = 6.618 m is accepted.

Example 4.14

Consider the estimation of the total volume of coarse woody fuels (m?) lying on
the ground in a mapped tract of land in a region where forest fires are common.
In this case, the tract of land is the entity that is sampled, and the aggregate
volume of the discrete pieces of fuel, which are scattered over the land, is the
attribute of interest (7, ).

Let us define locations on a tract in terms of an x-axis that runs west to east
and a z-axis that runs south to north. Let the most western point of the tract define
x = 0 and the most eastern point define x = xmax; and let the most southern
point define z = 0 and the most northern point define z = zZmax. Thus, we assume
that the tract of interest fits within a rectangle with dimensions Xmax X Zmax
(Figure 4.8). Let L(x;) (m) denote the horizontal length of a line from the
southern boundary to the northern boundary at x = x; where 0 < x; < xpax.
If the tract contains coves or concavities, then L(x;) is the sum of lengths of
the line segments contained within the tract at x = x;. Thus, we assume that
the tract is spanned by infinitely many parallel lines that run south to north. By
definition, the area of the tract, A (mz), is

A= AQtma) — A(0) = /Om L(x)dx

Let p(x,) denote the cross-sectional area (m?) of coarse woody fuel intercepted
by the line at x = x;. In other words, p (x;) is the vertical cross-sectional area of
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Zmax

L(x)

0 Xs Xmax 0 Xmax

Figure 4.8 A map (or GIS polygon) of a tract of land (left) can serve to define the shape (right)
of a probability density function, f(x) = L(x)/A, for the selection of a line that spans the
tract.

wood that would be exposed if we were to cut along the line, from the southern
border to the northern border, with a chainsaw. Hence, the target parameter, t,
(m?), can be expressed as the integral

Tp =1Tp (*max) — Tp 0) = /0 " p(x)dx.

It seems reasonable to assume that the longer the line at x = x;, the greater
amount of intercepted coarse woody fuel, in which case L(x;) should be a
reasonable proxy for p (x;).

A sample line is selected by the acceptance-rejection method: generate

coordinates (xg, z5), where x; = u| X xmax and zg = up X zZmax. If (xy, 25)
fall within the tract, then the line at x; is selected with probability density
f(xs) = L(xg)/A. Otherwise, generate a new set of coordinates with new

random numbers.
An estimator of coarse woody fuel on the tract is

P p(xs) — A I:p(xs)]
- Sf(xs) B L(xs) ’

Note that p(x;)/L(xs) is an unbiased estimate of the volume of coarse woody
fuel per unit land area (m? m~2).

(4.32)

4.4 Sampling with a control variate

Like importance sampling, the method of sampling with a control variate uses
auxiliary information in the form of a good proxy function. However, instead of
estimating 7, directly, we estimate the difference between 7, and its known proxy,
G. Recall that

b
7, = 7,(b) — 7,(a) =/ p(x)dx
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and

b
G=Gb)-G(a) =/ g(x)dx.

Subtracting the second equation from the first,

rp—Gz/abp(x)dx—/abg(x)dx

or
b
T, = G+/ [p(x) — g(x)]dx.

In this approach, the proxy function, g(x), is called a control variate for p(x). The
estimator of 7, based on the sth selection, is

£, =G L) — 84 (xs) — 8(x5) (4.33)

f(xs)

Crude Monte Carlo ordinarily is used to estimate the integral, so

1
fx) = m
and x; = a + (b — a) uy. Hence,

Ty, =G+ (b—a)[p(xs) — g(xy)]. (4.34)

A combined estimate, fp, is calculated with (4.7) with n > 2 independent selections,
and 0[7,] is calculated with (4.10).

Sampling with a control variate reduces to direct crude Monte Carlo if g(x) is
constant. The method is equivalent to importance sampling if f(x) = g(x)/G, as
equation (4.33) reduces to equation (4.25). As was noted, importance sampling is
most efficient when g(x) is proportional to p (x). By contrast, the method of sampling
with a control variate, with f(x) = (b — a)~!, is most efficient when the difference
between g(x) and p(x) is constant everywhere in the interval [a, b]. To see this, let
g(x) = p(x) + k. Then G = 7, + (b — a)k. Letting x = x, and substituting into
(4.34),

Ty =1+ G —a)k+ (b —a)lplx) — (plxs) + k)] =1p. (4.35)

With g(x) as a control variate, the sampling error of p(x) — g(x) will be less than
the sampling error of p(x) if p(x) and g(x) are sufficiently correlated. Antithetic
selection may improve efficiency.

In repeated sampling, we expect that G — (b—a) g (x;) will average zero. Therefore,
if we let 8 be an arbitrary constant, then S[G — (b — a)g(xs)] will also average zero.
Thus, substituting into (4.34),

fpy =BG+ (b —a)[p(xy) — Bg(xs)]

unbiasedly estimates 7,. See §11.6.5 for some instances where this form of the
estimator is useful.
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ASIDE: In two simulation studies (Van Deusen 1990; Valentine ef al. 1992),
sampling with a control variate proved to be more a precise strategy for
estimating the volume of a tree bole than importance sampling. Despite this
result, importance sampling may be the method of choice for standing trees
because of the concentration of the sample heights low on the bole, where
locating sample heights and measuring cross-sectional areas are relatively easy.

In a test of 11 different methods, Wolf et al. (1995) found that sampling with
a control variate and antithetic selection was the superior method of estimating
daily whole-tree photosynthesis with a relative sampling error of 6% for a sample
size of two measurements during the day.

Example 4.15

In Example 4.12, we used equation (4.28) for the proxy function in connection
with the estimation of the volume of a tree bole by importance sampling. In
sampling with a control variate, we ordinarily strive for a control variate that is
parallel to the attribute density function. Accordingly, equation (4.27) would be
a better choice than (4.28) if sampling with a control variate is used to estimate
bole volume.

4.5 Sampling in two or three dimensions

In Example 4.14, we considered the selection of a line with length L (x;) that spanned
a tract of land with area A. The line was selected at x = x; with probability density
f(xs) = L(xs)/A. Now we consider the selection of the coordinates, (xy, z5), of a
location point within a tract. “Tract’ is used in the generic sense to signify something
with a closed boundary, for example, a tract of land, a lake, or the top surface of a
leaf.

Our purpose for selecting a location point is to estimate an attribute of the tract
from a measurement of the attribute density at the point. Let A denote the area of
the horizontal projection of the surface of tract 4, and let 7, denote an attribute of
interest. Moreover, let p(x, z) denote the attribute density—the amount of attribute
per unit area—at a location point with rectangular coordinates (x, z). Thus, the total
amount of attribute within 4 is

7, =//ﬂp(x,z)dzdx.

Example 4.16

Suppose that the attribute of interest is the volume of topsoil (m?) on a tract of
land. The attribute density at a location point, i.e., the volume of topsoil per unit
land area (m® m~2), equals the depth of the topsoil (m) at that point.
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Zmax
A
L (Xs)
Z(Xs)[
0 0 Xs Xmax

Figure 4.9 A tract with area A

Example 4.17

The number of leaves intersected by a vertical line over a location point is
the horizontally projected leaf surface area per unit land area (m?> m~2) at the
location point. This attribute density, which may be measured by counting the
number of leaves that touch a taut vertical string, is sometimes called ‘projected
leaf area index.’

4.5.1 Selection of a sample point

It is instructive to consider the selection of the coordinates of a sample point in two
stages: (i) the x-ordinate (x = x,) of a line that spans the tract is selected with
probability density f(x;), and (ii) the z-ordinate (z = z;) of a point is selected
somewhere on that line with probability density f(zs|xs). The joint probability
density of the coordinates (x;, z5) of the resultant sample point is

fxs, z5) = fxg) fzslxs).

The tract depicted in Figure 4.9 has area A and the bounding box of the tract
is a rectangle with area xmax X Zmax; 2(xs) denotes the z-ordinate of the southern
boundary of the tract at x = x; and L(xs) is the distance from the southern to the
northern boundary at x;.

Consider uniform selection of a sample point in the tract in two stages. First,
select xg with uniform density f(x;) = 1/xmax and then select zg with uniform
density f(zs|xs) = 1/L(xy), i.e., xg = u1xmax and zgz = z(x5) 4+ u2 L (xg). The joint
probability density of (x;, z5) is

1 1 _ 1
Xmax L(xs) B xmaxL(xs).

With this ‘two-stage uniform’ approach, the resultant joint probability is uniform
only if L(x) is constant. If L(x) varies in [0, xymax], as in Figure 4.9, then the joint
density varies inversely with L(x).

J(xs,2) =
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Alternatively, were we to select x; with probability density f(xs) = L(xs)/A, as
in Example 4.14, and then select z; with uniform density f(zs|xs) = 1/L(xs), the
resultant joint probability density at (x;, zs) would be

L(xs) 1 1

flxs, zg) = A L ==

With this second approach, all points within the tract have uniform probability
density 1/A.

In practice, selection of coordinates (x;, zs) with uniform probability density 1/A
is most easily accomplished with the acceptance-rejection method: assuming that the
tract fits within a rectangle with area xmax X Zmax, generate x; = uj X Xmax and
Zs = U2 X Zmax- If the coordinates (xg, z;) fall within 4, accept them; otherwise,
reject them and try again with new random numbers.

More generally, we may specify a ‘non-uniform’ joint probability density function,
f(x,2) = f(x)f(z|x), where f(x,z) > O forall (x,z) € 4, and

/ f(x,z)dzdx = 1.
(x,z)€4

A sample point, (xg, z;), obtains from the inverse transform method, which involves
solving F'(xy) = u for xg and F(zs|xs) = us for z;.

4.5.2 Estimation

If we independently select the coordinates, (x5, z5), of the sth sample point within
the tract with probability density f(xy, zs), then 7, is unbiasedly estimated by

L p(xs,zs)

Ty, .
P Sfxs, zs)
If we specify f(x,z) = 1/A forall (x, z) € 4, then the estimator simplifies to

Ty, = A p(Xs, Z5). (4.36)

Equation (4.7) provides a combined estimate, 7,, given > 2 independent sample
points, and (4.10) provides 9[7,].

Example 4.18

An unbiased estimator of the volume of topsoil on a tract of land is provided by
the product of the depth of the topsoil at a location point selected uniformly at
random and the land area of the tract. Note that the depth of the topsoil (m) at
the sample point is an unbiased estimator of the volume of topsoil per unit land
area (m3 m~2).

Example 4.19

Suppose that we are interested in the area of land, 7,, within a given region
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Zmax

Zs

Xmax

Figure 4.10 A systematic grid of sample points, which is anchored to one point (xs, Zs)
selected at random.

with area A that is occupied by a particular type of forest community, e.g.,
northern hardwood. Numerous (n) points in the region are selected at random,
each with uniform probability density 1/A. The attribute density at a selected
location point is p(xs, zs) = 1 (ha northern hardwood forest (ha land)™Y), if
the point falls within a northern hardwood forest; or p(xs, zs) = 0, otherwise.
An unbiased estimate of the area occupied by northern hardwood forest is, of
course, 7, = (A/n) >, p(xs, z5). Moreover, 7,/A = (1/n) > p(xs, z) is an
unbiased estimate of the fraction of regional land area that is northern hardwood
forest.

4.5.3 Systematic selection

In systematic selection, one ‘anchor point’ is selected at random (or decided upon
prior to sampling), and additional points are found by the application of a formula
or recipe. For example, a rectangular grid of sample points may be formed with
coordinates (x; = iAx, zg £ kAz), wherei =1,2,...and k =1, 2, ... (see Figure
4.10). Suppose that the sth grid contains N points, including the anchor point (xg, z5),
which is selected by the acceptance-rejection method. The unbiased estimator of the
target integral, 7, is

A
By = 3 2P0 EiAX, 3 £ kA). 437)

where the summation is over all the grid points. Two grids afford the calculation
of an unbiased combined estimate, fp, with (4.7) and an unbiased estimate of the
sampling variance with (4.10). The common practice, however, is to go with one
grid and assume that the grid points are independent.
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Example 4.20

Radtke & Bolstad (2001) used a laser rangefinder, which was mounted on a
monopod, to measure the vertical distance from the ground to a leaf or branch
in a broad-leaved forest. The instrument emitted an audible warning if the laser
beam travelled more than 500 m without intercepting a leaf or branch. Field
workers traversed an area in a rectangular grid pattern, stopping every step to
take a measurement. The objective of the study was an estimation of the vertical
profile of leaf area index. However, the ratio of the number of audible warnings
to the total number of grid points is an estimate of the ‘gap fraction’ of the forest
canopy, i.e., the fraction of the land area not covered by the forest canopy.

4.5.4 Three dimensions

In theory, we apply the two-dimensional strategy to any number of dimensions.
Practical applications arise in the sampling of three-dimensional containers, for
example, vernal ponds, lakes, segments of an ocean, or segments of the atmosphere.

Let % identify a container of interest and let |V| denote its volume. Let 7, denote
an attribute of interest and let p (x, z, h) denote the attribute density at location point
(x, z, h) within the container. Thus, the total amount of attribute within the container

is
T, = /// p(x,z,h)dhdzdx.
vV

Example 4.21

Suppose that the attribute of interest is the quantity of some chemical species
(mol) in a body of water. The location points within the body of water comprise
the continuous population. The attribute density at a location point is the
concentration of the chemical species (mol 17!) at that point.

The acceptance-rejection method furnishes a sample point (x;, z5, s) with uni-
form probability density f(xs, zs, hs) = 1/|V| Assuming that the container of in-
terest fits within a box with volume Xpax X Zmax X Amax, generate x; = uq X Xmax,
Zs = U2 X Zmax, and z; = u3 X hmyax. If the coordinates (xy, zs, ) fall within the
container of interest, accept them; otherwise, reject them and try again with new ran-
dom numbers. If sample point s is selected by the acceptance-rejection method, then
7, is estimated by

fps = |V| p(xs, 25, hs). (4.38)
As usual, equation (4.7) provides a combined estimate, fp, given > 2 independent
sample points, and (4.10) provides d[7,].

4.6 General notation

In the present chapter, we have used the familiar notation of elemetary calculus
texts to discuss the sampling of continuums that comprise populations of infinitely
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many points in one, two, or three dimensions. By contrast, in Chapter 1, we
introduced a general notation pertaining the sampling of continuums in any number
of dimensions. We shall use the general notation in the appendix (§4.9.3) and in other
chapters. The purpose of this section is to reconcile the two notations.

In the general notation, we let © denote the domain of a target integral, 7,, i.e.,

Tp :/@P(X)dxa

where x is any location point in the domain D. In the context of the present chapter,
the domain, D, is equivalent to the interval [a, b] in one dimension; 9D is equivalent
to the bounded planar region 4 in two dimensions and equivalent to the container V
in three dimensions. Letting D denote the size—the length, area, or volume—of D,
the mean attribute density in Dis u, = 7,/D.

Let X1, X2, ..., X, be a set of n sample points selected from 2 according to a
design with a probability density function f(x), where

f(x) > 0, forallx € D;
f(x) =0, otherwise;
and

/@f(x)dx: 1.

In the context of the present chapter, X; = x; in the one-dimensional problem;
X; = (x5, z5) in the two-dimensional problem; and x; = (x;, 25, /i5) in the three-
dimensional problem. Hence, the combined estimator of 7,, in the general notation

is
_ p(Xs)
Z f(Xv)

The other estimators can be rewritten in general notation in an analogous fashion.

4.7 Terms to remember

Acceptance-rejection method  Importance sampling

Antithetic variates Inverse-transform method
Attribute density Monte Carlo Integration
Continuous population Probability density
Control variate Proxy function

Crude Monte Carlo

4.8 Exercises and projects

1. Use crude Monte Carlo to estimate the volume of some object for which you can
define an axis of length. Choose an object that tapers from thick to thin over its
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length (for example, your right leg). Estimate volume first with four independent
selections of measurement points, and then with two antithetic selections. If need
be, calculate areas of cross sections from circumference. Estimate the standard
error for the combined estimate of volume for each selection method. Do the
results accord with theory?

2. Estimate the volume of the object used in Exercise 1 with importance sampling.
Use a linear proxy function, as in Example 4.10, and select two sample points
by the inverse transform method. Choose two more sample points with the
acceptance-rejection method. Calculate an estimate of the standard error for the
combined estimate of volume (from the four measurements). Why is it valid to
calculate a combined estimate if two different methods are used to obtain the
measurement heights?

3. Use the four independent measurement points from Exercise 1 and use the proxy
from Exercise 2 as a control variate to estimate the volume of the object. Calculate
the standard error for the combined estimate.

4. Review Example 4.14. What is the continuous population that is sampled?
Suppose that a line is selected from a tract and it turns out to have a different length
than the map indicates. Why wouldn’t this map error affect the unbiasedness of
the estimates? Suppose that the tract turned out to be wider along the x-axis than
expected. Why would this map error bias the estimates?

5. Explain why the count of leaves touching a taut vertical string is an estimate of
projected leaf area per unit land area, as noted in Example 4.17.
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4.9 Appendix

Table 4.1 A comparison of formulae for list sampling of a discrete population and importance
sampling of a continuum.

List Sampling Importance Sampling
Populati o b
opulation _ _
total ty Z Yk T /a p(x) dx
k=1
k—1 k X
Select W, if D pi<ux <D pi Xy, where / fx)dx = uy
i=0 i=0 @
Estimator A 1 Yk PXs) (x5)
=ty 2 -3
of total n = Pk S (xs)
N 2
Ye _ 2 b Pz(x) 2
Sampling Z Dr Ty —f(x) dx — 7,
. A k=1 a a
variance V[tyl]=——— Vit ] =
n n

2
Yk A
Variance Z [ Dk Oop ]

ety L7
E [f(xs) B "’}

estimator 0[] uke‘n(n -1 ol%]= n(n —1)
Confaence &ty \Jo [ ] k1 5[]
E;[;lllllation sy = Tﬁy uy = bT_pa
S
ARSI O
e R I b =

Confidence A A R —
interval fyp E a1 /O [ Ry ] Hp E£itn-i \/m
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4.9.1 Proof of the unbiasedness of 7, as an estimator of 7,
When n = 1 the expected value of

A p(x5)
Tﬂs = m, a < b,

~ o p(xs)
E[’”‘]‘E[f(xa]
p(x)
/f()f() g

:/a p(x)dx

= Tp.

With antithetic selection,
s e PGs) | p ()
Elin]=2 [5 (f(xs) MTeS )}
’ E [ p(xs)] L E [p(xé) “
f(xs) f(xs)

=§(Tp+fp) = Tp-

—_ N =

If a control variate is used, then

n _ P(Xs) . g(xs)j|
Elen]=E [G T e )

where G = fab g(x) dx. Hence,

n _ p(xs) g(xs)
Elfn]=G+E [f(xs)} -k [f(xs)}
glx )
Gk

— G4, /f()

=G+1,—-G=1
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Therefore, whenn > 1,

_ 1S p(xa) 1S [p(xap(xsf)}_ 2

n IE[(M) } 2Z]§E FG) Fan ]~
s'=1

1 b p()\’

R / f(x)(f(x)) &

p(xs) p(xy) 2
n? Z,g [f(xs)} [f(xs/)} —
s'=1

1 n hpz(x) 1 n n 5
D T TR I
s=1 a s= 15;&3

'=1

N

1 b p2(x) n—1 , 2
= — dx - ,
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. W AE))
V[rp]:;(a ,Uf(;) dx—rz).

4.9.3 The Horvitz-Thompson estimator of t, and its sampling variance

which reduces to

Cordy (1993) presented both the Horvitz-Thompson estimator of 7, and its sampling
variance. Both formulas were stated in terms of an inclusion density, 7 (X;), and
a joint inclusion density, 7 (X, Xy/), where X, and Xy are any two distinct sample
points in D, the domain of integration. A replicated sample comprising n points is
assumed.

For importance sampling, which includes crude Monte Carlo as a special case,

T (Xs) = nf(xs) (4.39)
and
7 (Xs, Xy) = n(n — 1) f(X;) f (Xy) (4.40)
where f(X) is the probability density function. The Horvitz-Thompson estimator of
T, is
p(Xy)
e = Z 7 (%)
Substituting nf (x;) for 7 (xy),
z p(Xs)
fxs)’

which is equivalent to 7,. Let x and x be any two location points in 9. The sampling
variance of 7,7 is

2 / /
. [P 7(x,X) = 7 (®)7 (x) N
V[Tpn]—/@—”(x) dx—l—//@[ ey :|p(x)p(x)dxdx.
Substituting (4.39) and (4.40) and reducing,

2
Ve ] = ( f((x)) dx — rj)

which is equivalent to V[ 7, ].




CHAPTER 5

Stratified Sampling Designs

5.1 Introduction

A stratified sampling design purposely partitions the target population, P, into two
or more non-overlapping subpopulations, called strata, which are sampled separately.
In this chapter we present the rationale for stratified sampling and estimators for the
population total, 7y, and related population parameters, as well as corresponding
estimators for the individual strata. A design issue which arises with stratified
sampling is the allocation of the overall sampling effort to the various strata, a topic
which is addressed following the section on estimation. The sections at the end of
the chapter discuss matters related to stratified sampling: incorrect strata assignment,
double sampling for stratification, and poststratification.

5.2 Rationale for stratified sampling

Stratification is often motivated by a desire or requirement to estimate the total
or average value of some attribute, y, for each stratum of interest. In the U.S.A.,
for example, natural resource and agricultural surveys are mandated and conducted
by the federal government. Survey results are reported separately by state, so each
state serves as a stratum and sampling within each state is conducted independently
of sampling in any other. Separate reporting is not necessarily contingent upon
stratification because results may be calculated separately for each subpopulation
of interest, whether or not the sampling is conducted separately. But stratification
prior to execution of the sample is often advantageous since it enables the planner
to customize the sampling design to the needs and features of each stratum. For
example, among several states, one state may require greater precision in the
estimation of its natural resources, so the intensity of sampling may need to be
greater within that state. Moreover, because sampling occurs independently within
each stratum, the sampling design may vary among strata to accommodate varying
expectations of the survey results.

Another motivating reason for conducting stratified sampling is administrative
convenience: survey personnel might be trained and supervised by different agencies
in the various strata, and it might be cost effective to administer the overall survey by
ceding the management of sampling within each stratum to the responsible agency.

From a statistical standpoint, stratification can be a very effective tool to increase
the precision with which population parameters are estimated. Increased precision
results when the homogeneity of y within a stratum is greater than that in the
unstratified population. In other words, when it is possible to assign units into strata,
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such that the variation of y within strata is less than 0}2,, then it is possible to
estimate 7, more precisely with a stratified sampling design than with an unstratified
design. The degree to which one benefits from stratification depends, inter alia, on
other aspects of the sampling design within the strata. Examples presented later will
provide some empirical evidence of the statistical advantages that can be realized by
stratification.

A stratified design is more efficient than an unstratified design if the stratified
design provides greater precision in estimation for a given overall cost. Or, to put
it another way, a stratified design is more efficient if it achieves a desired level of
precision for a lower cost. However, stratification may involve an overhead cost—
time or money to gather sufficient information to effect the stratification. This is time
or money that otherwise could be spent to improve precision by procuring a larger
sample under an unstratified design. Thus, deciding whether to stratify a population
usually reduces to deciding whether an investment to set up the stratification will pay
sufficient dividends in the form of increased precision.

Example 5.1

In Example 3.6, a simple random sample of n = 140 houses was selected
and the concentration of radon gas was measured in each house. Although
the overall sample average concentration was 9.04 pCiL ™!, there was quite
a distinct difference in concentrations among houses with basements versus
those lacking basements. Of the 79 houses with basements in the sample,
the average concentration of radon was 4.79 pCiL~! and the sample standard
deviation was 5.18 pCiL~!. Of the 61 sampled houses without basements, the
average concentration was 14.55 pCiL~! and the sample standard deviation was
14.81pCiL~". Should a follow-up survey be conducted, these results suggest
that the average concentration of radon per house may be estimated more
precisely if the population of houses in Blueridge were divided into two strata:
1) houses with basements; and 2) houses without basements. This stratification
could involve an overhead cost, viz., the cost of determining which houses in the
sampling frame have basements.

Example 5.2

Barrett & Nutt (1979) discussed a design in which a pond was stratified by depth.
The rationale was that the comparatively warm waters (epilimnion) near the
surface during the summer season are prevented from mixing with the colder,
deeper waters (hyperlimnion) by a thermocline layer. Typically, these three
layers have distinctively different biological and chemical features, and hence
it is reasonable to treat each pond as having three strata and to sample each
stratum separately.

When multiresource surveys are undertaken for the purpose of precisely estimating
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multiple attributes, it is doubtful that any single stratification of the population will
improve the precision with which all attributes can be estimated.

5.3 Estimation with stratified sampling
5.3.1 Notation

Abiding by notation found in Cochran (1977) and other standard texts on sampling
methods, we use L to denote the number of strata. As implied in the chapter’s

introduction, each element, U,k = 1, ..., N, of the population, 2, must be placed
into one and only one stratum. For sake of reference, 2, will be used to symbolize
the subpopulation in stratum &, where & = 1, ..., L. For a continuously distributed

population, each point within the continuum of ? must belong to one and only one
stratum. We defer discussion of stratified sampling of a continuous population until
§5.8.

The criterion that is used to stratify the population will depend on context, but
invariably stratification implies that auxiliary information is available. In the radon
example, i.e., Example 5.1, the auxiliary information would be a record of whether
or not each house in Blueridge had a basement. In Example 5.2, water temperature
by depth was the auxiliary information used for stratification. In regionally stratified
surveys, the stratification criterion might be defined by political boundary, so that
the auxiliary information would be knowledge of the political unit (state, province,
county, township, etc.) in which U occurs. Aerial photography or remotely sensed
data from satellite imagery commonly is used in resource surveys to stratify the
landscape by land cover or vegetative cover class. In such cases, cover class serves
as the stratification criterion and knowledge of the boundaries between the classes
serves as the auxiliary information. In these examples and in practice, both the
specification of the stratification criterion and the determination of L, the number
of strata, is a subjective decision of the sample designer or planner.

Having stratified the population into L non-overlapping strata that collectively
include all of P, the definition of a probability sample requires that a sample be
selected from each stratum. Failing that, design-unbiased estimation of 7, or any
other population parameter is, with one exception, impossible. The exceptional case
occurs when the omitted stratum is censused rather than sampled, and the value of
the stratum parameter is appropriately included in the estimator of the corresponding
parameter of 2P, as discussed by Brewer (2002, p. 32).

Just as N represents the number of units in 2, let N}, represent the number of units
in P, Stratification of 2 implies that
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The total amount of attribute, y, in stratum 4 is

Tyh = Z Vs

U ePy

where U, € P, indicates that the summation extends over all Ny units in #,. This
implies that
L

Ty =D Ty (5.1
h=1
If auxiliary information is available for all elements in 2, then we denote the total
amount of the attribute, x, in stratum % by

rn= 3w

Uk ePy

and the stratified population total by

L
=D T (5.2)

h=1

5.3.2 HT estimation

Initially we consider a sampling strategy within each stratum that involves estimation
of each 7, ; by a HT estimator, denoted by 7, . We purposely do not specify
the sampling design within each stratum in order to emphasize the point that the
sampling design need not be identical in the L strata. We will consider examples of
specific designs later.

Suppose ny, is the size of the sample stipulated by the sampling design for 7.
Evidently n;, < Nj, and the overall size of the stratified sample is

L
n= Z ny (5.3)
h=1

In accordance with notation established in Chapters 2 and 3, let Q) denote the
possible number of distinct samples under the sampling design for #,. The possible
number of distinct samples under the stratified design is

L
Q= H Q.
h=1

Example 5.3

A population of size N = 20 yields Q = 15,504 distinct SRSwoR samples of
size n = 5. Suppose the same population is stratified into L = 2 strata with
Ni = 12 and N, = 8 units in P, and P», respectively. Suppose further that
SRSwoR is employed in each stratum to select a sample of size n; = 3 in
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stratum 1 and of size no, = 2 in stratum 2. Then

12!
1= —— =220
319!
and
8!
) = el =28

Thus, there are Q = Q; x Qp = 6160 distinctly different stratified random
samples of overall size n = 5 units.

The reduced number of stratified random samples of size n = 5 results from
the requirement that n be subdivided among the L strata. As a consequence,
we can not select any samples that combine n units from a single stratum,
though these same combinations of n units are possible samples in the absence
of stratification.

In contrast to the above example, stratified systematic sampling may result in an
increase in the number of possible samples.

Example 5.4

Consider a 1-in-a systematic sampling design. When @ = 4 and N = 20, there
are Q = 4 possible systematic samples, each of size n = 5 from an unstratified
population. Using the same stratification as in the preceding example and 1-
in-4 systematic sampling in each stratum, there are a = 4 possible systematic
samples of size n; = 3 in stratum 1, and another 4 possible systematic samples,
each of size np = 2, from stratum 2. Therefore, there are a total of Q = 16
stratified systematic samples of size n = 5.

In this case, stratification gives rise to many more samples of five elements
each than can be systematically selected from the unstratified population.

Because the HT estimator, fy,[,h, unbiasedly estimates the stratum total, 7y ;, the
overall population total, 7y, is unbiasedly estimated by

L

fyn,st = z fyn,h- (54)

h=1

Because sampling is conducted independently among the L strata, the variance of
fyn,st is the sum of the variances across the L strata, i.e.,

L
Tyzr st Z V Tyn' h (5.5
h=1

Likewise,

Mh

O [fyﬂ,st 7)7[ h (5.6)

h=1
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ASIDE: V| fy,r’st ] is a measure of spread of the sampling distribution of fy,,,st,
i.e., the distribution of all possible estimates that may result after the population
has been partitioned into the L strata. It is not the variance of the distribution
of all possible estimates over all possible stratifications of the population, only
over the stratification for which this particular sampling is carried out. It is
important to understand this distinction because the two sampling distributions
are quite different. The variance V[ 7y « ], which is conventionally considered
in probability sampling, is the variance of the distribution of estimates that
obtains from all possible samples from the stipulated stratification of 2. An issue
related to this arises in §5.7 when we discuss poststratification.

is a natural estimator of V[ 7,7 s ]. If [ 7,7 » ] unbiasedly estimates V[ 7,z 5 |, then
O[ Tyz st ] unbiasedly estimates V[ 7yz o 1.
Providing that n, is not too small, an approximate 100(1—a)% confidence interval

for 7y j, is given by
zA’yn,h + tn;,fl Y, 0 [fyn:,h ] (5~7)

where t,,, 1 is the 1 — (a/2) percentile of the Student 7 distribution with nj, — 1 de-
grees of freedom. When all the n, are reasonably large, an approximate 100(1 — )%
confidence interval for 7, based on ¢ with n — L degrees of freedom, is

fyzr,st + In—L VvV 13 [ '?yzr,st ] (5~8)

In (5.7) and (5.8), the margin of error, i.e., the & part of the interval, has the same
units of measure as the attribute of interest, y. Both of these 100(1 — «)% intervals
may be expressed equivalently by substituting the percentage margin of error:

100 /6 [ 2yen ]

S T% (5.9)
ym,
and
100/ [ Zyr,st |
Zyrst £ oL —% (5.10)
ym,st

ASIDE: When 7 is large and none of the n; are very small, the exact number
of degrees of freedom to use to determine the critical value of ¢ to use in
constructing a confidence interval for 7y is rather inconsequential: ¢, ; will
be inconsequentially different from the corresponding quantile of the standard
normal distribution, z. In this situation, one may use z instead of 7,_, in (5.8).
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The mean value per unit in ® is

==, 5.11
Py =3 (5.11)
which can be estimated unbiasedly by
~ 'Evn' h
== 5.12
Hym.,h N, ( )

Because V| ﬁyn,h 1=VI] fy,r’h ]/N,%, areasonable 100(1 — a)% interval estimate for

Hy,h 18
/}yn,hitnhfl\/ﬁ[ﬁyn,h]a (5.13)

where O fiyz n 1= 0[Zyznl/N, i Expressing the margin of error in percentage terms

yields
100,/ [ﬁyﬂ,h ]
Hyz,h £ tny—1 T% (5.14)
ym,

When there is a need to estimate the mean value per element in the population,
iy = ty/N, anatural estimator is

. Tyz,
Ayes = =25 (5.15)
with variance
. V| Tyzst
V[iyes] = % (5.16)
An expression equivalent to (5.15) for /iy « is derived with the identity
7y = Nifiy1 + Nopyo+ -+ Nppy L. (5.17)
Substituting into @y = t,/N yields
Nipy 1+ Nopyo+---+ Npuy
Hy = N
Ny Ny Np
= Wﬂy,l + Wﬂyl + -+ Wﬂy,L
=Wipy1+Wouyo+---+Wrpy L, (5.18)
where W, = N;/N customarily is called the ‘stratum weight’ for stratum #.

Each stratum weight, W}, is the proportion of units in 2 that are in stratum #h.
Consequently, 0 < W, < 1, and Zille W, = 1. Comparing (5.17) and (5.18),
we see that 7, is simply the sum of the L strata totals; by contrast, u, is a weighted
average of the strata averages.
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ASIDE: In areal surveys of natural resources, the stratification criterion often-
times is a land classification by type of predominant vegetative cover. In such
surveys, the strata weights, Wy, h = 1, ..., L, are regarded as the proportional
land area in each stratum, rather than the proportional number of discrete pop-
ulation units, which may remain unknown even at the conclusion of sampling.
That is, if Ay is the amount of land area in stratum 4, a particular land cover
class,and A = Zille Ap, then W), = Ay, /A.

In view of (5.18), an alternative expression of /t yr,st 18

/}yn,st = Wl/)yn,l + WZ,&)’E,Z +---+ WL/)yn,L

L
= Whitym- (5.19)
h=1

In similar fashion, an alternative expression for (5.16) is

[Ays] Z WiV [ iyan], (5.20)
which can be estimated by
L
[Ayesi] =D Wid [ Ayan]- (5.21)
h=1

The multiplicity of formulas in the preceding paragraphs is summarized in
Table 5.1.

5.3.3 More general estimation

Strata totals, 7y 4, h = 1, ..., L, need not be estimated by the HT estimator, nor is it
necessary to estimate each stratum total with the same estimator. Indeed, because
different sampling designs may be employed in different strata, it may be quite
counterproductive to precise estimation to use the HT or any other estimator in all
strata.

Adopting a more general notation than in the previous subsection, let 7, ; denote
an estimator of 7, ;. Depending on context, 7, ; might be any of the estimators
explicated thus far, or it might be the generalized ratio, regression, or difference
estimators, or others, to be introduced in later chapters. Irrespective of which specific
estimators are used to estimate 7y p, h = 1,2, ..., L, an estimator of 7, = Z,le Ty.h
is

L
st = D Ty (5.22)
h=1
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Table 5.1 Horvitz—Thompson estimation following stratified sampling

Stratum total

Population total

L
Ty = § , Tyh
h=1

Parameter Ty h = Z Vi
U ePy
i L
. k ~ N
Estimator Tynh = Z Tymst = Z Zynh
Ukesh h=1
Vari f L
ariance o A A N
. Vit Vit = Vit
estimator [ ”’h] [ yﬂ,st] hZ:‘ [ y”,h]
Esti d L
stimate AT A oA _ e
variance 6 [ &yma ] o[ tyms] = Z O[Ty |
h=1
Confidence A ﬁ
. T +t, - Ty T +t,-r/0| 7Ty
interval ymh = np—1 [ yz, h] ya,st =ln—L [ )ﬂ,st]
Percentage . tn—1 /0 [ Ty | oo L\/m
margin Tyaht—F——— Tt ———————
of error Tyz.n/ 100% Tyr,st/ 100%
Stratum mean Population mean
L
Parameter Pyh = — Z Vi ty = Z Wity
ukETh h=1
. ~ fyn:,h ~ ~
Estimator Hym.h = N» Hym, st = Z Whityz,n
h —
Vari f L
ariance o N
; Vv ,
estimator [2yz] [Aynst] Z [ Aty ]
Estimated L
stimate AT A
. 1) D
variance [Ayan] [Ayrs] Z [ fyzn ]
Confidence N AT A A AT ~
. ) :l': Iy — D :t t,_ )
interval Hym,h = Eny—1 [Ayen]  Ayast Etn-r)0 [ Ayrsi]
Perceqtage . Tny—14/0 [,&y,,,h] R tnop /D [ﬁyn,st]
margin yz,n £ fyrst

of error

Aiyzn/ 100%

fiyzt/ 100%
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Table 5.2 General estimation following stratified sampling

Stratum total

Population total

L
Parameter Tyh = Z Vi Ty = Z Ty
U Py h=1
L
Estimator Ty.h Ty ot = Ty
h=1
Variance of A A o
. Vi, Vit = \%4
estimator [ ”‘] [ y’St] }; [ y,h]
Esti d L
stimate AT A AT A AT A
. 0|7 v|7 = 0|7
variance [ y’h] [ %St] hZ; [ >,h]
Confidence A ﬁ ﬁ
interval By 130 [y ] Tyt tnr /0 [ fys]
Percentage . trp—1 m R fnel +]O [fy,st]
margin Tyt ———— Tyttt ————
of error 7y,n/100% 7y.5t/100%
Stratum mean Population mean
1 L
Parameter Hyh =+~ Vi fy = Z Wity
h U ePy h=1
A L
. ~ v,h ~ N
Estimator Hyh ="~ Hy,st = Z Whity,n
h h=1
Vari ¢ L
ariance o N 21T A
. \% \% = WiV
estimator [y ] [y.s] ; WV i)
Esti J L
stimate AT A AT ~ 2 AT A
: [ y % = Wi o ,
variance [’u}’h] [,uy,s[] hZ;, h [/‘),h]
Confidence N ﬁ N [ A
. b tn,—14/0 : +t,_14/0 ,
interval Hy.h = Enp—1 [:“y,h] Ly st Tln—L [,u)’st]
Perceqtage X tn,—1 m X thor \JD [,&y,st]
margin byt ———— Ayt ————

of error

fyn/100%

iy ./ 100%
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If any of the fy, » in (5.22) biasedly estimate the corresponding 7y j, then fy,st will be
a biased estimator of 7. The variance of 7y st parallels that of fy,r,st in that

L
V[tys]=D V[twn]- (5.23)

Moreover, an estimator of u is derived similarly to that of iz «:

Ty,st

Hy,st =

M- =

Wh,&y,h (524)
h

1
where ﬁy,h = fy,h/Nh.

Just as Table 5.1 displays the formulas based on HT estimation following stratified
sampling, Tables 5.2 display the more general formulas. In these tables the recurring
theme is that estimates of strata totals add together simply to constitute an estimate
of 7y, and that estimates of their variances likewise are summed to provide an
estimate of V[ 7, s . By contrast, strata means must be appropriately weighted when
estimating the population mean.

5.3.4 Stratified random sampling

Stratified random sampling is the design wherein simple random sampling is used
within each stratum. Thus, it is a special case of stratified sampling in general, which
allows for any design within a stratum, not just SRS. It is worthwhile to emphasize,
again, that in the general case there is no necessary implication that the same design
be used in all strata.

Table 5.3 provides the formulas for HT estimation following stratified random
sampling. Note that the variances of the estimators of the stratum totals and means
are expressed in terms of ayz’ 4> Which is the variance of the yy’s within &, i.e.,

1 2
oyn = N, 1 D (k= myn)”- (5.25)
UrePy

Letting S, denote the sample of nj elements selected from 2, a design-unbiased
estimator of af ;, following SRSwoR is:

1 _
S =g 2 e (5.26)
U eSy
where y, is the sample mean in 2,
_ 1
= D e (5.27)
i U €Sh

The inclusion probability of Uy € B, is mx = np/Nj under stratified random
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Table 5.3 Horvitz—Thompson estimation: stratified random sampling without replacement

Stratum total

Population total

L
Parameter Ty h = Z Yk Ty = Z Ty,h
U Py h=1
L
Estimator Tyz,h = Niyn Tyrst = Z Nuyn
h=1
Vari f Np—n :
ariance o N h | 2 R N
. Vit = o Vit = Vit
i VIEeal= [t o Vel =2V [fna]
Estimated Np—n S
stimate AT 2 h —Nh 2 AT A AT A
. |7 =|——|s 0| Tyrst | = v|7
variance [ y”’h] |: nn/Ni i| y.h [ yﬂ,bt] hz_; [ yﬂ,h]
Confidence A AT A A AT A
interval Ty h &ty =1 VP [T,th ] Tymst £ ln—L /0 [Tyn’,st]
Percentage R =10 [ Ty, | . tner /0 [ Tymst ]
margin Tyah T —F—— 7 —— Typstt ——————
of error Tyx,n/100% Tyx,st/100%
Stratum mean Population mean
1 L
Parameter = k ) = Whity n
o= 2 y =2 Wy,
U Py h=1
L
Estimator Ayz,h = ¥n Ayr st = Z Whyn
h=1
Variance of N Np—np| 5 N 2T A
. \%4 ) =|—|0 \% ! = WiV
estimator [Ayan] |: ny N, ¥,h [ayms] }; iV [ dymn ]
Estimated Ny —n s
stimate AT A h—Nh| 2 AT A IAT A
. 0 =|—]5 0 , = Wio )
variance [’uy”’h] |: ny Ny ] y.h [:“)mst] ]; h [/‘M,h]
Confidence N /AT A A [AT A
interval Hym,h £ Tpy—14/0 [ﬂyn,h ] HyrstE£tn_p /0 [ﬂyn,h ]
Percentage R tnp—1 10 [ Ayz.n | R tner /O [ ymn |
margin yz,h Lygstt —F————

of error

iye.n/ 100%

ﬂyn,st/lOO%
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sampling. In general, stratified random sampling is not an equal probability sampling
design: although the inclusion probability is identical for each and every unit within a
given stratum, units in other strata may have different inclusion probabilities, except
for the case when the sample is allocated proportionally across the L strata.

Example 5.5

Wilk et al. (1977) provide a wealth of data collected during a 13-month stratified
random sampling of the New York Bight, the portion of the Atlantic Ocean
between Long Island, New York and Cape May, New Jersey. Ocean depth was
divided into L = 7 horizontal strata: 0—10, 11-19, 20-28, 29-55, 56110,
111-183, and 184 —366 m. Trawl surveys were conducted in each stratum, and
the weight of fish caught in each trawl was recorded. The mean catch weight
in the seven strata are displayed in the following table. The strata weights are
the proportional volume of water in each stratum. Since water is a continuous
medium, Ny, is infinite (unless water volume is considered to be a sum of discrete
volumetric units as in Example 5.6). These data provide a 90% confidence
interval extending from 55.4 kg to 98.1 kg for the average weight of fish per
trawl.

Stratum Depth Stratum Sample Mean catch Estimated

(m) weight size weight (kg)  variance

Wi ny y.h O[fyn]
1 0— 10 0.098 163 16.3 13.0
2 11— 19 0.080 132 117.8 159.8
3 20— 28 0.075 112 63.6 109.0
4 29— 55 0.186 114 101.9 169.7
5 56 —110 0.216 86 143.8 422.3
6 111 — 183  0.255 29 25.4 43.3
7 184 — 366  0.090 26 50.1 132.2

Example 5.6

The pond sample mentioned in Example 5.2 was a stratified random sample from
L = 3 strata of lake water. Based on proportional volume, the stratum weight for
the epilimnion layer was W; = 1/7; for the thermocline layer, W, = 2/7; and
for the hyperlimnion layer, W3 = 4/7. The sample units were liter containers
of lake water, of which there were n; = 20 selected from the epilimnion layer
at depths and locations selected by simple random sampling. In addition, there
were ny = 10 samples taken from the thermocline layer, and n3 = 20 from the
hyperlimnion layer.

The following results were obtained, expressed in number of daphnia per liter:

fyr1 = 19.5, flyra = 11.3, fiyz3 = 1.73
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Therefore from (5.24),

1 2 4 -
Ly st = (; X 19.5) + (5 X 11.3) + (? X 1.73) = 7.0 daphnia 17",

This estimate, when multiplied by the total liters of pond water, would estimate
the total number of daphnia in the pond.

5.4 Sample allocation among strata

When planning a stratified sample with an overall sample size of n units or sampling
locations, it is necessary to determine the size of the sample, n,, h = 1,..., L, to
select in each stratum, such that (5.3) is satisfied. There are many ways in which the
overall sampling effort among L strata can be allocated. A few of the more commonly
considered sample allocation rules are described in this section.

5.4.1 Equal allocation

Perhaps the simplest procedure is to sample the same number of units from each
stratum, i.e., to make n, = n/L in each ®,. This equal allocation of the sample
among the L strata may be particularly worthwhile when the strata sizes, as measured
by Nj, are all approximately identical: N, &~ N /L.

When the strata sizes, Nj,, vary substantially, the larger strata will be sampled
less intensely than smaller strata following equal allocation of the samples. As a
consequence, strata totals and other parameters of possible interest may be estimated
considerably less precisely for large strata than for small strata.

Example 5.7

The N = 1,058 tree population sampled in Example 3.8 was stratified by
species into L = 4 strata. The distribution of total aboveground biomass in
each species is depicted in Figure 5.1. A SRSwoR of size n = 13 trees was
selected from each stratum. The sampling fraction of balsam fir was 4.4%; the
fraction sampled from the black spruce, white birch, and white spruce strata
were 4.1%, 4.7%, and 7.7%, respectively. The sample provided an estimate
of average total aboveground biomass of 68.6 kg with an estimated standard
error of 10.4 kg, both of which are smaller than the estimates provided by the
n = 52 SRSwoR from the unstratified population in Example 3.8. The estimated
standard errors of average total aboveground biomass were 12.6, 18.5, 28.8, and
17.6 kg, respectively.

If n is large, equal allocation may create the situation in which ny, is larger than N
in a small stratum. When this unusual situation arises, one can include all N}, units
into the sample, and then distribute the remaining sample draws, originally allocated
to P, evenly among the remaining strata. Alternatively, one could opt to combine
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Figure 5.1 Total aboveground biomass (kg) of 296 balsam fir, 318 black spruce, 275 white
birch, and 169 white spruce trees.

the smaller strata into larger but fewer strata in an effort to ensure that n;, < Nj, for
all newly combined strata.

Equal allocation may not yield much gain in precision when stratum variances,
ay2’ ,» vary considerably in magnitude.

5.4.2 Proportional allocation

An alternative to the equal allocation rule is one which strives to select a constant
fraction of each stratum. Specifically, if f; = nj/Np is the sampling fraction in
P, then the proportional allocation rule aims to select samples comprising the same
proportion of each stratum, such that f; = f> = --- = fr. This can be achieved by

making
e ()

Note that the sampling fraction in each stratum, f, = nj/Nj, is the same as overall
sampling fraction, f =n/N.

Example 5.8
Suppose L = 2, N1 = 1500, and N> = 2700. An overall sampling intensity of
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1% implies f = n/N = 0.01, and thus n; = 15 elements are sampled from 2
and ny = 27 elements are sampled from 2.

The proportional allocation rule, n;, = (n/N)Nj, can be written equivalently as
ny = n(Np/N) = nWp,, which indicates that whatever fixed proportion, Wy, of the
population occurs in B, then that same proportion of the sample will be selected from
P,. Thus, the composition of the sample will mimic that of the population based on
strata membership. Many find this to be an appealing feature of this allocation plan.
Another practical and appealing feature of proportional allocation is that nj, can never
exceed Ny, in contrast to the equal allocation rule and others.

Under proportional allocation of the sample to the L strata followed by stratified
random sampling within each stratum, the inclusion probabilities of units in different
strata are equal: for any U, 7y = ny /Ny = n (Np/N) /N, = n/N. These inclusion
probabilities are identical to those under SWSwoR in an unstratified population.
Therefore the formula for estimating the population total given in Table 5.3, namely
Tym,st = lele N yn, simplifies to the familiar 7y, = Ny, where y is the simple
sample average of all n observations. This notational equivalence notwithstanding,
we emphasize that the sampling design consisting of stratified random sampling
with proportional allocation is not identical to that of SRSwoR from an unstratified
population. A crucial difference is that the joint inclusion probability of any two units
differs in the two designs, leading to different sampling distributions of N'y.

In practice, it is unlikely that nj; as computed by either formula will be integer
valued, making it necessary to round up, or down, to the closest natural number.
In this circumstance the equality of the strata sampling fractions will be only
approximate.

Example 5.9

By rounding up to the next higher integer value, a nominal 5% proportionally
allocated sample from the population used in Example 5.7 resulted in a sample
of size ny = 15 in the balsam fir stratum, n; = 16 in the black spruce
stratum, n3 = 14 in the white birch stratum, and n4 = 9 in the white spruce
stratum. A stratified random sample with n = 54 trees allocated in this fashion
provided an estimate of average total aboveground biomass of 74.7 kg with an
estimated standard error of 9.8 kg. The estimated standard errors of average total
aboveground biomass were 25.6, 10.3, 14.1, and 29.2 kg, respectively.

Oderwald (1993) presents a very understandable analysis of the gain resulting
from proportional allocation in a stratified forest inventory when compared to the
accuracy achievable in an unstratified design entailing equivalent sampling effort.

5.4.3 x-Proportional allocation

When auxiliary information, xi, of the sort introduced in §3.3 is available for every
unit of the population, the sample sizes in the #, can be calculated proportionally to
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ASIDE: In Example 5.7 the estimated standard error of average total above-
ground biomass in the white spruce stratum is less than the estimated standard
error for the same stratum in Example 5.9. This owes in part to the smaller pro-
portionally allocated sample in this stratum than the 13 tree sample resulting
from the equal allocation of the n = 52 sample elements in the earlier exam-
ple. However, the balsam fir sample in Example 5.9 had two more trees than
that with equal allocation, yet its estimated standard error is more than twice the
magnitude observed in Example 5.7. This is a specific example of sampling vari-
ation: different samples yield different estimates because they contain different
population elements. In Example 5.7, the minimum and maximum biomass val-
ues were 4.5 and 153 kg, respectively, whereas in Example 5.9 they were 1 and
327 kg. The greater within-sample variation is reflected in the greater estimate
of standard error of the estimated average total aboveground biomass.

Tx,i, the strata total of the auxiliary variate in %, i.e.,

Tx,h
n,=n )
Tx

The efficacy of x-proportional allocation depends on auxiliary information that
is well and positively correlated with the y-variate of interest. It is particularly
propitious when sampling skew populations in which the attributes of a small number
of the population elements constitute a large proportion of 7, (Raj 1968).

5.4.4 Optimal allocation, equal sampling costs

The variance of the y; values within 2, is expressed as ayQ, 5> and it is a measure
of the within-stratum heterogeneity of the yx. Consider two strata, ®, and 2, of
roughly equivalent sizes, N, & Np; the stratum with the greater variance will need
to be sampled more intensely in order to estimate 7, and 7; equally well. When
the two strata also differ in size, then both sources of between-strata disparities
interact to affect the precision with which the population total, 7, can be estimated.
The allocation rule presented in this section, due to Tschuprow (1922) and Neyman
(1934), and often termed Neyman allocation, aims to determine the sample sizes
in the L strata that minimize V[7,r ] It pertains only for the specific design
of stratified random sampling. Equal-cost optimal allocation rules have not been
discerned for the plethora of other sampling designs that could be used, owing to
the difficulty of the optimization problem to be solved.
The sample size in B, for stratified random sampling and equal sampling costs is

Nyo,
mp=n( =t ). (5.28)
2.y Nioy,i

Details on the derivation of (5.28) can be found in Cochran (1977) and Sérndal et al.
(1992).
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In (5.28) the fraction of n that is allocated to 2, depends both on the size of the
stratum, Ny, and the within-stratum standard deviation, oy . In effect, equal-cost
optimal allocation is allocation proportional to Njoy ;. The stratum sample size
nj, increases as stratum size increases and as oy j, increases, whereas n; decreases
for smaller and less variable strata. But if N, > Ny, yet oy, < o, y, then the
relationship of nj; to nj, depends in a more complicated fashion on the product of
strata size and variance. The equal-cost optimal allocation rule balances the need
for smaller samples in smaller strata with the need for larger samples in more
heterogeneous strata.

Example 5.10

Suppose the within-stratum stand deviations of ?; and P of Example 5.8 were
oy,1 = 100 and o, = 300, respectively. Then, Nioy; = 150,000 and
Nyoy 2 = 810,000. By the equal-cost optimal allocation rule, n; = 7 and
ny = 35.

Example 5.11

Suppose the within-stratum stand deviations of ?; and P of Example 5.8 were
oy,1 = 300 and 0, = 100, respectively. By the equal-cost optimal allocation
rule, ny = 26 and n, = 16.

As with the equal allocation rule, it is possible that n;, calculated by (5.28) may
exceed Nj. Remedies for this have already been discussed.

In principle, stratified random sampling with equal-cost optimal allocation will
provide more precise estimation of 7, than stratified random sampling with equal
or proportional allocation. A difficulty with this equal-cost optimal allocation rule,
however, is the need to know each and every oy ), in order to calculate n;. These
values are unlikely to be known without error even at the conclusion of sampling.
One must resort to substituting an estimate of each oy ;. Such estimates may be
available from prior surveys of the population of current interest or from populations
of similar character and composition. Another alternative is to conduct a small pilot
survey of the population of current interest in order to obtain an approximate value
for each oy p.

Naturally, the use of estimates of the oy 5 in (5.28) vitiates the optimality of the
calculated nys. The rationale for using the equal-cost optimal allocation rule with
estimates of the oy j,, rather than the less demanding proportional allocation rule, is
that V[ 7y, ] will be less with the former, even though it may not be the minimum
(optimal) variance achievable when the n), are based on known values of the oy j,.

5.4.5 Optimal allocation, unequal sampling costs

When the cost of sampling a unit depends consequentially on the stratum in which
it resides, a rational approach to allocate sampling effort among the L strata is one
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ASIDE: Sukhatme et al. (1984, p. 126) mention an alternative tactic for near
optimal allocation when auxiliary information, xi, is available for every unit of
the population. Presuming the the auxiliary information is well and positively
correlated with the y-variate of interest, their suggestion for modified Neyman
allocation is to use the known oy j in place of the unknown o, ; in (5.28).
Sérndal ez al. (1992, p. 107) adopt the name ‘x-optimal allocation.’

that seeks to estimate 7, with greatest precision (minimum variance) for a stipulated
cost, C. The optimal allocation with unequal sampling costs is based on a linear cost
function:

L
C=co+ ) nuc, (5.29)
h=1

where cj, represents the cost of sampling a population unit in the 2, and ¢ represents
the combined overhead and administrative costs associated with the sampling effort.
With this cost function the strata sample sizes that minimize V[ fy,r,st ] for a
stipulated cost, C are computed as

iy = (C = ¢o) (M) (5.30)
2.z Nioyi/ei

Note that in (5.30), the ,/cy, is divided into oy, in the numerator term, but not in the
denominator term; this is not a typographical error, but rather a consequence of the
optimization. For details, consult Cochran (1977, p. 97-98), who derives the optimal
allocation when one wishes to minimize the cost of sampling for a stipulated value
of V[ fy,r,st ]. With this optimal allocation scheme, the need for larger samples from
more heterogeneous strata is counterbalanced by the practical need to obtain the most
precise information for the money expended.

Jessen (1978, p. 190) advised that when cost differences are small and poorly
estimated, the benefits accruing from this allocation rule may be more illusory than
real.

5.4.6 Power allocation

In Chapter 1 the coefficient of variation, yy, was introduced as the standard deviation
of the attribute y divided by u,. In similar fashion, an estimator’s coefficient of
variation, CV (fy) or CV (,& y), is its standard error divided by the parameter being
estimated, 7y or xy. Bankier (1988) noted that while Neyman allocation minimizes
the CV of the estimated population total or mean, CV for individual strata may
be very much greater than that for the entire population. The power allocation
method he proposed offers a compromise between Neyman allocation and one which
achieves nearly equal CV for the individual strata. As with the optimal allocation
rules presented above, a stratified random sampling design is presumed.

Let 7, be some measure of size of stratum /. The power allocation scheme sets the
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size of the SRSwoR in stratum % to be

q
ny = n( T U;””/”y’h ) (5.31)
it Thi Oyi/fy,i
for some constant exponent g, 0 < g < 1. Bankier (1988) shows that choosing
g = 1l and t; = 1y, (5.31) is identical to Neyman allocation, whereas when g = 0,
Ccv (fy, h) are approximately equal for the L strata. As g is decreased from 1, CV (fy)
necessarily increases, whereas the CV (fy,h) will become more homogeneous, as
illustrated convincingly in Bankier’s example involving the estimation of migration

into Canada at both national and provincial levels based in a single stratified random
sample.

The subjective choice of the power, ¢, used in (5.31) for this example, involved
weighing the importance of (a) having roughly the same level of precision for
estimates at both the provincial and national levels against (b) the increased sampling
burden needed to achieve the desired level of precision in the smaller, more variable
provinces. Although the context will differ from one application to the next, this
sort of weighing of competing benefits will always be confronted when selecting the
value of ¢ to use with the power allocation of sample sizes among the L strata.

5.4.7 Allocation for multiresource surveys

Many surveys of natural and environmental resources are multivariate in nature, i.e.,
there are two or more characteristics of interest, and the objective of sampling is to
estimate the population totals or means of multiple resources from a single sample.
Even when the population is not stratified prior to sampling, the determination of an
adequate sample size for precise estimation of multiple resources is more problematic
than for single resource surveys. One simplistic approach involves identifying the
most important resource, and allocating the sample to maximize the precision of
its estimation, without explicit consideration of the precision and costs associated
with sampling and estimating the remaining resource parameters. For surveys with
multiple stakeholders, this solution merely shifts the crux of the problem to one of
identification of the most important resource, which may be a contentious task.

When the population is stratified prior to sampling, any attempt to optimally allo-
cate the sampling effort among the L strata becomes considerably more demanding.
Generally speaking, the approaches to determining the sample size needed in each
stratum in a multivariate setting have been aimed at finding some compromise al-
location of the optimal univariate results. The mathematical complexity of optimal
allocation in multivariate surveys precludes even a brief description here. Those in-
terested in pursuing this topic are referred to Bankier’s (1988, p. 176) discussion of
alternate techniques and the sources cited therein. Bethel (1989) not only presents a
computing algorithm for a particular solution to the multivariate allocation problem,
he also traces a rich literature in this general area.
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5.4.8 Comparison of allocation rules

The equal allocation rule is easy to understand and communicate, and when the strata
are all roughly identical in size, it approximates the proportional allocation rule. The
chief complaint against this rule is that strata rarely are even approximately the same
size, and it often makes little sense to expend equal effort and resources in all strata.

Proportional allocation, equal-cost optimal allocation, and optimal allocation
with unequal costs successively account for meaningful differences among strata
due to size, heterogeneity, and sampling costs. But lacking knowledge of strata
standard deviations and consequently resorting to estimates of these parameters
to calculate the allocation formulas may seriously jeopardize the intended feature
the two optimality rules. Using known standard deviations of an auxiliary variate
circumvents this problem, but then one is left wondering whether stratified random
sampling, upon which the optimal allocation is based, constitutes the best use of
this auxiliary information: there may be a more efficient way to incorporate auxiliary
information into the sample design. Moreover, in multiresource surveys from which a
number of population attributes will be estimated based on a single stratified sample,
it is quite unlikely that any allocation which purports to be optimal for one attribute
will also be optimal for all others. Indeed, Stevens & Olsen (1991), at the conclusion
of a study to examine the potential advantages and liabilities of optimal allocation
in an environmental monitoring program, asserted that “[W]e see no justification
for stratifying the sample to optimize the estimate of a proportion of the population
in some particular class.” Stehman & Overton (2002, p. 1919) opined similarly: “...
most environmental surveys have multiple goals, and optimizing for a single attribute
is seldom justified.”

Proportional allocation thus emerges as the allocation rule that many find concep-
tually and intuitively appealing, especially when insufficient information exists to
permit an optimal allocation (see, e.g., Deming 1950; Hansen et al. 1953; Cochran
1977, p. 103). Swindel & Yandle (1972) used a game-theoretic approach to show
that proportional allocation is uniquely good when the strata variances are unknown.
In multiresource surveys, proportional allocation constitutes a ‘middle of the road
approach,” wherein one knows that no single resource will be optimally estimated,
yet it is hoped that none will be estimated with unacceptably poor precision either.
Moreover, when the strata coefficients of variation, yy ; are fairly homogeneous,
proportional allocation approximates Neyman allocation (see, e.g., Smith & Gavaris
1993; Hansen ef al. 1953, p. 215). Lastly, with proportional allocation of the sample,
ny will never exceed Ny, as can happen under the optimal allocation rules.

Related to the issue of allocating the sample among the strata is the matter of
the number of strata, L, to establish. Raj (1968, §4.7) asserted that stratification
can be carried to the point where only one unit is selected from each stratum. A
point of diminishing returns generally exists, beyond which any increased precision
from augmenting the number of strata will be trivially small. Determining an optimal
number of strata is a complicated matter and, as shown by Cochran (1977, §5A.8)
and Murthy (1967, §7.11), usually requires the specification of a population structure
and a cost function, which may be quite uncertain.
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ASIDE: Equal probability systematic sampling may be regarded as stratified
sampling with n; = 1 element sampled from each stratum. For those familiar
with analysis of variance—in which variation is partitioned among units within
a group separately from the variation among groups—this view of systematic
sampling is very natural. The strata consist of each consecutive set of a units in
the sampling frame. There will eitherbe L = [N /a] 5, or L = [N /a] 4, +1 such
strata, each with a units except possibly for the last stratum which may contain
fewer. A sample of size n;, = 1 is selected from each, giving a total sample of
size L.

5.5 Incorrect assignment of population elements into strata

Even with a clearly defined criterion for stratification, it is almost inevitable that
some elements of the population are assigned to strata incorrectly. Oftentimes these
incorrectly stratified units will only be detected if they are included in the sample.
Although it is tempting to try to correct the error by re-assigning the mis-stratified
units to their correct strata, doing so introduces bias into the estimation of the strata
and population parameters. By contrast, leaving all units in the strata to which they
were assigned, even if incorrectly for some, may make estimation less precise than it
otherwise could have been, but no bias is introduced.

To understand how re-assignment causes bias, recall that the population total is
Ty = Zﬁzl Ty i, irrespective of how the population is stratified into the L strata.
This identity holds, always, without any presumption that the units assigned into
each stratum meet the criteria that had been planned. After stratification and prior to
sampling there are N}, units assigned to @,, h = 1, ..., L, regardless how accurately
or truly the stratification of the N population units among the L strata is conducted.
The inclusion probability of each unit in a particular stratum will differ from what
it would have been, had it been placed into a different stratum (with the possible
exception of when proportional allocation is carried out exactly). Moving a sample
unit to its correct stratum, after it is drawn from its incorrect stratum, causes the
sample unit’s actual probability of inclusion in the sample to differ from what is
used in estimation of strata totals. In addition, under a post-sampling reassignment
protocol, the strata sizes become random variables rather than known constants, a
fact which further precludes unbiased estimation.

Example 5.12

Imagine a population with two strata; P has N; = 100 units assigned to it and
P has N = 200 units assigned. Imagine further that a stratified random sample
is selected, and that n; = 10 units are drawn from P, and n, = 20 units are
drawn from P». After selecting the sample it is discovered that 5 of the elements
selected from P actually ought to have been assigned to 2. Yielding to the
temptation to correct the mistake, these five units are thus considered to be part
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of the first stratum, thereby inflating the size of ?; to 105 units and decreasing
N> to 195 units. Proceeding with apparent HT estimation of 7, following a
simple random sample from ?; one would compute N;y;, which does not
coincide with the actual HT estimator 7, ; = 2,15: | i/ Tk = 102,165= 1 Vi,
(note, 7 = 10/100 = 20/200 = 0.1). Moreover, it is doubtful whether
either estimator is unbiasedly estimating anything of interest. This adaptive
reassignment of stratum membership after having observed the sample leads also
to the disquieting realization that had a different sample of 20 been selected from
P, that did not contain any of these 5 mistakenly stratified units, others might
have been found and reassigned. Not only are the strata sizes, Np, random, but
the sample sizes, nj, are random, also, with this sampling strategy.

A preferable strategy is to accept the mistaken stratification of some units
with grace, but not to re-assign stratum membership once the sample has
been selected. By keeping strata sizes and sample sizes fixed, not random,
the HT estimator of strata and population parameters retain their unbiasedness.
Inasmuch as the mistakenly assigned units make the strata more heterogeneous
than they would otherwise have been, these estimators may also be more variable
than they would have been had the stratification been conducted without error.
Most people find the loss in precision due to the acceptance of misstratified units
to be more acceptable than the introduction of bias due to reassigning strata
membership after sampling has concluded.

5.6 Double sampling for stratification

Stratified sampling is possible even in situations where the strata weights are
unknown a priori by conducting a two-phase or double sample. With this method,
introduced by Neyman (1938), the first phase of sampling is intended to gather data
inexpensively in order to permit estimation of the L strata weights, Wj,. The rationale
behind this sampling design is that one may hope to gain the advantage in precision
of estimation normally expected from stratified sampling when the strata weights
can be estimated accurately. In land cover, natural resource, and agricultural surveys,
aerial photography often has been used to provide an areal frame for the first phase
of sampling. A large number of points are sampled from the photographs and the
stratum to which each point belongs is identified according the land cover or resource
that occurs at the point. Each stratum weight is estimated as the proportion of first-
phase sample points in the stratum: Wy = my, /m, where m is the size of the first
phase of sampling and m, is the number of these sampling units in ®.

The second phase of sampling consists of the selection of a subsample of the first
phase sample and measuring the variate of interest, y, at each point in the subsample.
Almost always, the first phase of sampling is much larger than the second. The
population mean, u is then estimated by

L
Ayasi =D Waltyn, (5.32)
h=1
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in which the estimated strata weights are used in place of the unknown strata weights.
This leads directly to
Tydst = Ny, dst- (5.33)

The distribution of /i, 4 is affected by sampling variation in both phases of
the double sample. Not only does it reflect variation in the estimated value of u,
among the possible second-phase samples for a given first phase-sample, but also
among the variation in Wi, among the possible first-phase samples. Not surprisingly,
the variance of fiy gs following double sampling for stratification is greater than
V[ iy, 1 following stratified sampling with known strata weights.

An expression for V[ i, 4« ] depends, inter alia, on the sampling designs used
in both phases of the double sample. If SRSwoR is used in both phases, and HT
estimation furnishes the strata means, then z y,dst 18 a design-unbiased estimator
of uy. Cochran (1977, p. 330) and Sukhatme et al. (1984, p. 139) provide an
approximation to the variance (see, also, Schreuder et al. (1993, p. 168—170), who
discuss the derivation of this approximation and others.):

VIiyzast 1= V[ ys ]+ (]1\\7] _';1) ZWh Kyh — #}) , (5.34)
where m denotes the size of the first phase sample. The second term of (5.34) is the
inflation in variance incurred by double sampling for stratification. It diminishes as
the size of the first phase of sampling, m, is increased, hence it is usually important
that phase one data be inexpensive to acquire so that a large sample can be selected.
An estimator of V[ ,&yﬂ,dst] is given by

L 0 o2
AT N -1 mp—1 np—1 thy,h
o ayan] == ];(m—l N—l) .

L

~ 2
N(m - Z n (fyn = fyast)” s (5.35)
=1

where ny, is the size of the second phase sample in P, If N is very much greater than
the first phase sample, and if the first-phase sample itself is large, then o[ /iy 45 ] in
(5.35) simplifies to

L 242
AT A Wh h
v [,uy,dst] ~ Z —

h=1

+—2Wh iy — ityas)” (5.36)

np

From (5.34) and (5.35) are obtained analogous results for estimating the popula-
tion total with double sampling for stratification:

V[ #.as] = NV [ Ayas ] (5.37)

and
0 [ 2yas ] = N?0 [faya0]- (5.38)
Sdrndal ef al. (1992, p. 351) discuss double sampling for stratification with
arbitrary probability sampling designs in phase one and phase two, as well as the
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HT-like estimator of t,, its variance, and an unbiased estimator of variance. Using
m(1y to denote the inclusion probability of 7 in phase 1, and my () to denote
the conditional inclusion probability in phase 2 (this will vary from one first phase
sample to another), the estimator of 7, ; they propose is

e Yk
Tynh = Z

Tk()TkQ|1)

U €Sh
Thus to estimate 7y:
L
ax .
oy = Z Tym,h
h=1
and
2k
¥ = D
y N :

Sarndal er al. (1992, p. 352) also present the relevant estimation formulae when the
probability sampling design at phase one is arbitrary and the second phase design is
simple random sampling of the phase one units. Their mathematical notation appears
more complicated initially than that used in this book, but their treatment is quite
thorough.

Example 5.13

Forest surveys, or ‘forest inventories’ in the vernacular of forestry, often consist
of a simple random sample of fixed area plots within the forest, the measurement
of tree characteristics found thereon, and HT estimation of the abundance or
density of one or more characteristics. MacLean (1972a,b) reports on a double
sampling forest inventory in which aerial photography was used to stratify land
in northwest portion of the USA into nine strata in a first phase of sampling.
The photography was generally less than 4 years old, but one region relied on
15-year old images. A systematic grid of 18, 548 ‘photo plots’ was overlaid on
the images, and the proportion of these photo plots that fell into each stratum
was computed. This served as the estimated stratum weight, W, because the
proportional number of photo plots in each stratum provides an estimate of the
fractional amount of land area in the stratum, i.e., W), = Ap/A, where A;, was
the land area in the stratum, and A was the total land area of the survey. A total
of L = 9 strata were established: nonforest, noncommercial forest, and seven
commercial forest strata. The second phase sample was allocated proportionally
to the area of each stratum by selecting one-sixteenth of the photo points as the
location of a ground plot. A measurement or field crew visited each field plot to
take the actual measurements required by the survey. As a result of this double
sampling with proportional allocation in the second phase, MacLean reported
that the estimator of total timber volume was twice as precise as the estimator
from an unstratified inventory using the same number of field plots.
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ASIDE: When using photography or other remotely sensed images, the assign-
ment of photo plots or points in strata will not be utterly accurate. As hinted in
Example 5.13, the available imagery may be so old that the present land-cover or
vegetation class differs from what is revealed in the image. Also, classification
may be erroneous because the apparent class, when looking down on a point
from above, may differ from what is revealed on the ground. Moreover, some
points will be difficult to classify into a discrete stratum, as described in a re-
port by Frayer (1978) which, because of its insightfulness, deserves to be more
widely known: “Most of the photo plots were probably easy to classify. The ones
which took the most time on the part of the photo interpreters (and consequently
were the most expensive to handle) were the ones which were doubtful. You’ve
seen it before: an interpreter looks at a photo plot, is unsure how to classify it and
after looking at it some more he asks advice of other interpreters. Finally, after
spending much more time on this than the ‘easy’ ones, it’s put into one class or
another.”

His clever solution is to create an additional stratum that consists of all the
‘I do not know’ photo plots. The first phase of sampling is made more efficient
by separating these troublesome photo plots from the majority of others that
are comparatively easy to classify. By way of example involving m = 80, 000
photo plots in the first phase of double sampling for stratification, he shows
how this simple tactic enabled a reduction in standard error of estimate of
almost 50%. He concluded, “We were able to do this by absorbing most of the
photo interpretation error into one class which represents a small segment of the
population. At the same time we have reduced photo interpretation costs.”

Frayer’s example is included in section 5.11.2 in the Appendix.

5.7 Poststratification
5.7.1 Preliminary details about poststratification

It may be possible to take advantage of opportunities to increase the precision
of estimation, which accrue from stratifying the population prior to sampling,
even when the sample design is not a stratified design. The strategy of stratifying
the sample after it has been selected and then estimating strata and population
parameters in the usual stratified fashion is known as poststratification. The term
‘poststratification’ is used by many authors indiscriminately to mean the act of
partitioning the selected sample into L discrete strata as well as the estimation of
parameters of interest. Zhang (2000), however, did distinguish between these two
meanings in order to emphasize that any sample may be post-stratified, however
post-stratified estimation is possible only when the strata sizes, Ny, or weights, Wy,
are known.

One situation in which poststratification may be considered arises when informa-
tion to identify homogeneous subgroups becomes available only after the sample has
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been selected. For example, satellite imagery, which heretofore had been unafford-
able, is acquired following field sampling for natural resources, thereby permitting
poststratification by land cover class. In another situation, poststratification may be
useful when the sampling frame does not contain the information needed to assign
the U into desired strata before the selection of the sample. As an example of this,
imagine that civil authorities have a list frame of all single-family houses on the tax
roster of a municipality. This roster serves as a frame from which a SRSwoR of
dwellings is to be drawn in order to sample for the presence of arsenic-treated wood
in exterior decks. A different municipal office keeps records of construction permits
issued each year, thereby enabling the stratification of all exterior decks by year of
construction. However, the recordkeeping of construction permits is separate from
that of maintaining the tax roster, and merging of the two is administratively ineffi-
cient, thereby precluding an a priori stratification of dwellings in town. Yet another
scenario for poststratification, mentioned by Holt & Smith (1979, p. 33) and Sérndal
et al. (1992, p. 268), occurs following multiresource surveys, in which a priori
stratification works well for precise estimation of the principal resources of inter-
est, but poorly for a large number of secondary resources. Therefore, post-strata can
be formed after sample selection, which group these secondary resources into more
uniform subgroups than do the original strata. Similarly, when pre-sample strata are
based on geographic regions or political subdivisions to enable separate reporting by
region, the precision of estimation at the population level may be improved by using
post-strata criteria more closely correlated with resource variates of interest.

Following poststratification of the sample of fixed overall size n, the strata sample
sizes, np, h = 1,2, ..., L, are random variables, because one cannot determine the
number of units in each poststrata in advance of sampling. That is, the size of the
sample in each stratum will depend on the particular sample that is selected, and the
sample, itself, is a realization of a random, probabilistic process.

5.7.2 Poststratification of a SRSwoR sample

Although postratification may follow sample selection under any probability sam-
pling design, we initially consider the situation where the unstratified population is
sampled under the SRSwoR design with a sample size of n units. The expected value
of ny, i.e., the expected sample size in poststratum %y, is

N,
E[ny] =n—h

N (5.39)
=nW,

Thus, poststratification of a SRSwoR sample of fixed size n yields strata samples that
will vary in size from one sample to another, but that are, on average, identical in size
to those one would choose by a priori stratification wtih proportional allocation.



152 STRATIFIED SAMPLING DESIGNS

An estimator of the stratum total, 7y j is

~ Yk
Fpsth = Z np/Np
Uesy (5.40)

Npyn.

Despite the superficial similarity of (5.40) to 7, 5 in Tables 5.1 and 5.3, the statistical
properties of 7y pg jp differ from those of 7, 5 because jj, in 7y pgi.n is a ratio of
two random variables. Nonetheless, provided the population has been sampled by
SRSwoR or SRSwR, fy,pst,h is a design-unbiased estimator of 7 ; (see Chapter 5
Appendix).

The estimators of strata totals add together to estimate 7, i.e.,

L

Bypst = D By psth- (5.41)
h=1

Likewise, 7y pst is a design-unbiased estimator of 7, (see Chapter 5 Appendix),
provided that the strata sizes are known without error. When the stratum weight
is incorrectly presumed to be W), the bias of 7, i following poststratification of
a SRS sample is N Z,le (W}, = Wi) ty,n (Smith 1991). Consequently, the bias
due to inaccurately determined strata sizes or weights may outweigh any potential
gains in precision of estimation made possible by poststratifying. Pfeffermann &
Krieger (1991) present an alternative, regression-type estimator for situations where
information on poststrata sizes is missing or in error.

The variance of the conditional distribution of 7, p, given the set of observed
strata sample sizes, is

L
11
V[#ypstlnnh=1,...,L]= NZ(———)JZ. (5.42)
[ypst h ] }; h n, Ny v,h

This expression of variance is a quantitative measure of the average squared distance
between estimates of 7, over all samples with the same set of realized strata sample
sizes, ny. That is, it accounts for the variable set of y values one would get among
the subset of ; C,, (see page 36 to review the meaning of the y C,, notation) samples
with the same set of realized strata sample sizes. This is not the same as the variance
of the distribution of all possible estimates possible under the design, because the
latter distribution necessarily accounts for the variable set of n; values that occur.
This latter, unconditional variance is given by the expression:

L
X 1 1
Vil =32 (B[ o] = 5) o2 643
1

n
h= h

an approximation to which is derived by expanding 1/n;, in a Taylor series and which
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yields the expression

L 2
R 1 1 N
VBN (; B N) 2Nkt

Some sampling texts, e.g., Thompson (2002, p. 124), show the second term of (5.44)
multiplied by (N — n)/(N — 1), the effect of which becomes inconsequential when
the population is very much greater in size than the sample.

An unbiased estimator of V[ fy,pst |np,h=1,...,L]givenin (5.42) is

> (1 - %) ol (5.44)

L
h=1

L
A f 1 1
u[ry,pstmh,h:l,...,L]:E N} (E—N—h)sih. (5.45)
h=1

In a similar fashion, an unbiased estimator of V[ fy,pst] given in (5.44) is

L 2 L

s 1o , N Ni\ o

) [Ty,pst] =N (; — N) E Nhsy,h + ? E (1 - W) Sy h (5.46)
h=1 h=1

Whether the variance of 7 ps should be assessed conditionally or unconditionally
is a contentious issue among statisticians. A conditional assessment is based on the
distribution of all possible sample estimates with the observed poststrata sample
sizes. This conditional distribution reflects variation among estimates that might
have been realized had the sample sizes been allocated a priori. By contrast, an
unconditional assessment is based on the distribution of all estimates from all
possible samples with all realizable poststrata sample sizes (including cases where
np = 0). This unconditional distribution reflects the variation in estimates from all
possible allocations of poststrata sample sizes.

Many statisticians concur that the unconditional variance is appropriate for survey
planning purposes, but that the conditional variance is more appropriate for inferring
the reliability of the estimator based on the observed sample. An informative,
although somewhat advanced discussion of these issues is found in Holt & Smith
(1979) and Smith (1991). We support the view that the conditional variance and
its estimator are most appropriate when reporting the results of estimation from
poststratification.

5.7.3 Poststratification of samples other than SRSwoR

Poststratification may be used even when the population has been stratified a priori
and sampled according to that stratified design. For example, suppose the original
strata were defined by political boundaries, which may not be well correlated with
subdivisions within those boundaries of environmental variables such as concentra-
tions of toxins in the air. Therefore, the sample from each politically based stratum
could be poststratified by other, more relevant criteria to permit more precise estima-
tion of air pollution. For example, provinces of Canada vary greatly in land area and
there is reason to have estimates of air pollution effects for each province. This need
argues for a stratified sample wherein each province is a stratum. Environmental pro-



154 STRATIFIED SAMPLING DESIGNS

ASIDE: A brief explanation for preferring the conditional variance is that by
using the realized poststrata sample sizes, ny,h = 1,..., L, the variance is
sensitive to the actual sample allocation, whereas the unconditional variance, by
its use of the expected poststrata sample sizes, is not. One poststratified sample
of overall size n might result in realized poststrata sample sizes that are nearly
identical to those from a proportional allocation of the n units, whereas another
might be far from it. One would rightfully expect the precision from the former
sample to be greater than that from the latter, and this is the result one gets from
the conditional variance, (5.42). In contrast the unconditional variance, (5.44), is
identical for both samples.

tection administrators, however, might be more interested in knowing the magnitude
of difference in air pollution levels between urban and rural areas. Therefore, it would
be sensible to poststratify each provincial stratum into two poststrata, a rural subdi-
vision and an urban subdivision. In this situation, the poststrata weights within each
geographic stratum must be known, and this may limit the applicability of poststrati-
fication in this setting. When they are known, Sérndal ef al. (1992, p. 268) provide an
estimator of 7. Smith (1991) addresses the bias that occurs when poststrata weights
are incorrect.

We are unaware of any applications of poststratification following the selection of
a systematic sample.

For general unequal probability sampling, and estimator discussed by Smith
(1991) and Zhang (2000) replaces 7y ps,; in (5.41) with

Zruk ep, Yk/ Tk
zuk P, I/mk
Essentially fy,genpst’h replaces yy in (5.40) with an alternative ratio estimator of

the stratum mean, u, ;. An expanded discussion of ratio-type estimators is given in
Chapter 6.

fy,genpst,h = Np (5.47)

5.8 Stratified sampling of a continuous population

We have defined a continuous population in terms of a domain of integration, D,
comprising infinitely many points (see §1.5.2). Stratified sampling of a continuous
population first involves dividing the domain, D, into strata in the form of two
or more mutually exclusive and completely exhaustive subdomains, Dy, h =
1,2,..., L. These strata, or subdomains, are then sampled independently by the
methods of Chapter 4.

Recall that the total amount of attribute of interest in D is

T, =/@p(x)dx.
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where p(x) is the density of the attribute at a point x within D. In the stratified
population, the amount of attribute in stratum /% is

rp,hz/ p(x) dx.
Dp

Hence,

L

Tp = 2  Tpih-

h=1
The mean attribute density in stratum £ is

Tph
= 5.48
Hp,h Dn ( )

where Dy, is the size—the length, area, or volume—of stratum #, i.e.,

Dy, =/ dx
Dpy

The domain 2 divides into the subdomains without gaps or overlaps, so the size of
DisD=D1+Dy+---+ Dp.

The mean attribute density in the total population is a weighted average of the
stratum means

Hp

We can also express u, in terms of strata weights, i.e.,

L
:uﬂ = Z Wh:up,/’l’
h=1

where W), is the weight for stratum 4, i.e.,
Dy,

W, = =2
"=
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5.8.1 Probability densities

In order to sample the stratified population, we require a probability density function,
fn(x), for selecting the sample points from each stratum. The sampling design may
vary among strata, so the probability density may be constant across one stratum
and vary across another. For example, the crude Monte Carlo design could be used
in, say, stratum 1, in which case the probability density, f1(x), would be constant
or uniform for all x in the subdomain ;. By contrast, importance sampling might
be used in stratum 2, in which case the probability density would vary across the
subdomain D,.
Regardless of the shape of f},(x), two constraints must be met, i.e.,

fn(x) > 0 forall x € Dy

and
frx)dx =1.

Dpy
If f(x) has been specified for D, we may integrate over the subdomain Dy,

th/ fx)dx, h=1,2,...,L
XEDp

and define

fh(x) = @ forall x € D,
F

in which case,
1 F
fr(x)dx = —/ fXdx=—=1
Dy, Fh Dy Fh

as required.

5.8.2 Estimation

We assume, in this section, that one of the designs described in Chapter 4 is used in
stratum /. Estimation formulae are summarized in Table 5.4.

Let 7, , be an estimator of 7, ; based on the sth of n;, sample points in stratum
h. Combining the results from n;, > 1 selections,

R

b= 3
p,h ny Plts

s=1
which also estimates 7, j,. The variance of fp,h, ie.,V [fp,h ] is estimated by

1 o

Z (fp,hs - fp,h)z, np > 2.
s=1

o] = 0

The population total, z,, is estimated by the sum of the strata estimates, i.e.,

L
TA/J,st = 2 fp,fr
h=1



STRATIFIED SAMPLING OF A CONTINUOUS POPULATION
Table 5.4 General estimation following stratified sampling of a continuum
Stratum total Population total
L
Parameter Tp.h :/ p (%) dx T, = Z Tph
D h=1
1 np L
Estimator Tyn = o Z Ty, Tyst = Z Tp.h
s=1 h=1
Variance of <
ariance o A A . A
i Vlina] V= vl
ny (2 A 2 L
Estimated AT A 2 (Tp,hx - Tp,h) AT A AT A
. - 1) S = 1))
variance 5[ 2] mn(n — 1) [ ] hz_; [0 ]
Confidence A NN A T A
interval Epn Etmy—1 /D[ Ep0] TpstETn—L /0 [ 75t ]
Percentage tnp=1+/0 [ Tp.n | th-r /0 [Tt ]
margin Tph T —Fx Tpst T~ hng
of error 7p.n/100% Tp,5t/100%
Stratum mean Population mean
L
p(x) Dy
Parameter Uph = / —dx Uy = — Upoh
p », Dn p }; p M
. . Tp.h . 73
Estimator Aph = g—h fipst = %St
Variance of . V{zn] . V[tps]
: Vv = —7= \%
estimator Lipa] D} [2p.s] D2
Estimated AT A _ 0 [fp,h ] AT A . ) [fp,st]
variance o[apn]= D? o[ ips]= D2
Confidence N AT A A [aT ~
interval Hp.,h Eln,—14/0 [#p,h] ,up,stiln—L v [ﬂp,st]
Percentage tn—1 /0 [ pi | ) tner /O [ fp,st ]
margin bph £ —F———— Hpst T ——F———"—

of error

fiy.1/100%

ip.st/100%
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The variance of 7, g is

which is estimated by

>

L
0[] Zzﬁ[fﬂ,h]-

h
The mean attribute density in stratum h, h =

1,2,..., L, is estimated by
~ _ fp,h
ok = Dy, .
The variance of i, j, is
N v [fp h]
VI[ipn]=—5—"
D
which is estimated by
AT A 0 [fp,h]
v [l“p,h ] = 2
Dy

The mean attribute density in the population, x,, is estimated by

L
ﬁp,st = z Whﬁp,h
h=1

Il
ol -
)
=
=>
X

=

The variance of /i, g is

which is estimated by

5.8.3 Sample allocation

The sample allocation methods for stratified sampling of discrete populations have
continuous analogs. Equal allocation remains just that: the allocation of an equal
number of sample points to each stratum. Under proportional allocation, the number
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of sample points in stratum /4 is proportional to Fj,, the integral of the probability
density, f(x), over the subdomain Dy, i.e.,

lh
np=n h— —nl

where n = 211;:1 npand F = Z;IZ:1 F, = 1 (see, e.g., Rubinstein (1981, p. 133) or
Evans & Swartz (2000, p. 186)). If f(x) is uniform and equal across all subdomains
and, therefore, uniform over D, then

The need to round to a whole number of sample points in each stratum nearly always
precludes exact proportionality.

Optimal allocation generally is not possible in stratifications of natural and envi-
ronmental continuums. As in stratifications of discrete populations, the optimization
requires knowledge of the within-stratum variances. Since continuums comprise pop-
ulations of infinitely many points, the prospect of ascertaining the requisite variances
is hopeless.

An allocation is optimal for the estimation of 7,, i.e., V[ 7, | is mimimal, if

14 [fl)ahs ]

ZiLzl vV 14 [fp,is ]

See Evans and Swartz (2000, p. 185) for a proof. If importance sampling is the
sampling design in stratum /, then

np=n

2
A p-(x) 2
V = —d —
o=, T ™~

Of course, if we could calculate V[ 7, , 1 = n,V[7, ] for each stratum, then we
would also be able to calculate 7,, thus obviating any need of stratified sampling.
Any attempt at optimal allocation necessarily involves the use of estimates of the
variances. Formulae that incorporate costs are analogous to the formulae for discrete
populations.



160 STRATIFIED SAMPLING DESIGNS

5.9 Terms to Remember

Allocation rules Sample allocation rules
Double sampling for stratification  Strata

Equal allocation Stratified sampling

Power allocation Stratified random sampling
Proportional allocation Stratum

Optimal allocation Stratum weight
Poststratification x-Proportional allocation

5.10 Exercises

1.

Retrieve the daphnia data and verify the result reported in Example 5.6, and also
estimate the standard error of the estimated population total number of daphnia.

. Retrieve the daphnia data used in Example 5.6 and compute a 90% confidence

interval for the mean number of daphnia per liter in each stratum and for the
population.

With the aboveground biomass population used in Example 5.7, compare the
strata sample sizes when allocating the sample proportionally with that needed
for optimal allocation (equal costs). In both cases, the overall sample size should
be set to n = 52.

How does the proportional allocation in the preceding Exercise compare to x-
Proportional allocation when using tree diameter as the auxiliary variate? Again,
set overall sample size to n = 52.

Select stratified random samples from the biomass population according to the
allocations in the previous two exercises.

Use the population of biomass data to compute 7y, from a simple random sample
of n = 52 units. Compare its magnitude to V[ 7y, ] for a proportionally-
allocated stratified random sample of n = 52 units (as given in Table 5.3). By
how much does the stratification increase precision of estimation of 7, ?

Use the population of biomass data to compute V[ 7y ps ] in (5.44) for a SRSwoR
sample of n = 52 units. How does this compare to the results of the preceding
exercise?

5.11 Appendix

5.11.1 Proof of design-unbiasedness of Ty pgi -

Conditionally on the selected sample sizes np,h = 1,..., L, fy,pst,h is a design-
unbiased estimator of 7, because under this condition, it is identical to the HT
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estimator of 7y ;. To be specific, suppose that the realized sample size in  is nj = 1.

~ Yk
E[Ty,pst,h|”h=1]:E Z |np, =1
ey, Tt/ Nn
(5.49)
= Nnltyn

= Ty,/’la

where py j = Nh’1 Zﬂkei’h Yk. This same result, namely zy j,, occurs when n, = 2,
ny = 3, or any other value, v, up through v = Nj;. Therefore, since the expected
value of fy,pst, » conditionally on any realized value of ny, is just the constant value of
the target parameter 7y j, its unconditional expected value is also 7y ;. Formally, the
unconditional expected value of 7y n j is

E[%ypsh] = Ev {E [y psen lmn =]}

Np
= z Ty,hp(nh = V)

v=1
(5.50)
Nj
=7y D, pluy =v)
v=1
= Ty,ha
since Ziv 2, p(ny =v) = 1. Consequently,
L
E [fy,pst] =E [Z fy,pst,h}
h=1
L
=2 E[#vpu] (5.51)

3.
I

1

1
Ml\
«
=
=

)

5.11.2 Double sampling for stratification from Resource Inventory Notes (Frayer
1978)

The first-phase sample consists of 80,000 photo plots, i.e., point locations of aerial
photographs over a region A4 with land area A = 20,580,000 ha. A trained
photo interpreter classifies each photo plot into one of two strata: forest (h =
1) or non-forest (h = 2). There were m; = 64,526 forested photo plots and
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my = 15,474 non-forested photo plots, thereby yielding estimated strata weights
of W = 64,526/80,000 = 0.806575 and W, = 15,474/80,000 = 0.193425. Of
the m; = 64,526 forested photo plots, n; = 403 were located and measured by a
field crew in the second phase of sampling, and of the m, = 15,474 nonforested
plots, no = 97 were visited likewise in phase two. The target parameter was the total
number of hectares in forest:

7, = A X (proportion of area under forest cover)
=A My, st
=A (Wl,uy,l + W2ﬂy,2) 5

where Wy, h = 1, 2, is the proportion of land area in 4 in , and py 5, h = 1,2, is
the proportion of forested land in 2.

The second phase of sampling, the ground phase, revealed that 386 of the n; = 403
field plots in ; were truly under forest cover, as were 10 of the np = 97 field
plots in . Hence, x, 1 was estimated as /i, 1 = 386/403 = 0.957816 and x> as
fy2 =10/97 = 0.103093. With these data, the proportion of 4 in forest is estimated
to be it o = 0.792491, yielding an estimate of total forested area of

2, ast = 16,309,474 ha,

The estimated standard error of 7 g using (5.36) is

VO [ Ty.ast | = 208,707 ha.

When a third ‘I do not know’ stratum was established in the first (photo-
interpretation) phase, the following results were obtained: m; = 64,101 forested
photo plots yielding an estimated stratum weight of W = 64,101/80,000 =
0.801263; my = 15,104 non-forested photo plots yielding an estimated stratum
weight of W, = 15,104/80,000 = 0.188800; and m3 = 795 I do not know’ photo
plots yielding an estimated stratum weight of W3 = 795 /80,000 = 0.009938.

The second phase of sampling provided 396 forested plots among the n; = 401
second-phase ground plots in the forest stratum; a single forested plot among the
ny = 94 second-phase ground plots in the non-forest stratum; and two forested plots
among the n3 = 5 ground plot selected from the ‘I do not know’ stratum. Hence,

fy,dst =AX I:Wl,&y,l + WZ/Aly,Z + W3/A4y,3:|
396 1 2
= 20,580,000 [ 0.801263 x { — ) + 0.188800 x { — ) 4+ 0.009938 x { =
401 94 5

= 20,580,000 x 0.797255
= 16,407,512 ha.

While the estimate of forested area is not much changed by the establishment of
the third, uncertain stratum in the photo-interpretation phase, the estimated standard
error is reduced substantially to

VO [ Tyast | = 113,229 ha.



CHAPTER 6

Using Auxiliary Information to Improve
Estimation

The use of auxiliary information was introduced in Chapter 3 in connection with the
selection of samples. In Example 3.20, an easily measured tree attribute, diameter
(x), was known for all elements in the population of red oak trees, whereas the
attribute of interest, the aggregate volume in the boles of the trees (y), was estimated
from a systematic sample. The trees were ordered from smallest to largest for the
systematic selection. This proved efficient because bole volume, y, is correlated with
diameter, x, so any sample which tends to span the range of diameters also tends to
span the range of volumes. Elsewhere in Chapter 3 we described (a) how to select
units with replacement with probability proportional to an auxiliary variate, x, and (b)
how to use an auxiliary variate to select units systematically with unequal probability.

In this chapter we consider the use auxiliary information for the purpose of
improving the estimation of 7y, regardless of how samples are selected. To effectively
serve that purpose, the auxiliary attribute, x, must be well, and usually positively,
correlated with the attribute of interest, y.

The question of how well correlated the two variates must be is a difficult one
to answer, in general, because the auxiliary information usually costs something
(labor, financial resources, effort) to acquire. Hence, when deciding whether to
use auxiliary information, one must consider the potential reduction in variance
achievable by measuring both x and y relative to the reduction that would be realized
by investing in a larger sample and measuring y only. The most common measure of
the strength of correlation between two variables is the linear correlation coefficient,
pxy. Which we discuss in the appendix to this chapter. In some situations it may
be possible to establish a minimum value of p,, needed in order to make the use
of auxiliary information worthwhile. The appended discussion is intended mainly
to impart an appreciation of linear correlation via graphical examination of the
relationship between two variates. Indeed, we make relatively little direct use of
Pxy Or estimates of py, when estimating 7, or other population parameters, while
nonetheless appealing repeatedly to the notion of correlation between two variates.
In a loose sense, if y and x are correlated, there is information about y that can
be gleaned from a knowledge of x. Ratio and regression estimators presented in
this chapter exploit this feature. These estimators are practical and feasible when
information about x can be obtained for lesser cost than information about y; if not,
it may be better to sample y solely and use estimators that do not depend on auxiliary
information.

An excellent overview of ratio and regression estimation following SRSwoR is

163
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provided by Rao (1988). For a more general treatment, Sidrndal ef al. (1992) is
recommended. Regression estimation is surveyed nicely by Fuller (2002) but at a
somewhat challenging level of mathematical detail.

6.1 Generalized ratio estimator

The generalized ratio estimator was mentioned briefly in Chapter 3 in the discussion
of the Poisson sampling design, yet it has far wider applicability than was indicated
there. To motivate the generalized ratio estimator of 7, note that r, can be written
as a product:

Ty = Ry|xTx, (6.1)
where the population parameter Ry |y = 7y/ty, as defined in Chapter 1. This suggests
that an alternative estimator of 7, can be constructed as the product of an estimator
of Ry, and the known population total, .. For example, one could estimate Ry, by
the ratio of the HT estimators of 7, and 7,:

N Tyx
Ryx=+—. (6.2)
Txrm
A ratio estimator of 7y is
fyzr,rat = Ry\x Txs (6.3)
which can be expressed equivalently as
~ ~ Tx
Tym,rat = Tyrx (A_) . (6.4
Txm

The latter expression reveals that 7, o constitutes a multiplicative adjustment of
the HT estimator of z,: when the sample provides an estimate 7,, which is smaller
in magnitude than the known ty, then 7, /7y, > 1 and fyn is adjusted upwards;
in samples where 7, /%, < 1, 7 is adjusted downwards. The efficacy of this
adjustment of 7,, derives from the presumed positive correlation between x and
y, which implies that when 7, is too small as an estimate of 7, then it is likely that
fy,r will be too small as an estimate of 7y, and hence an upwards adjustment will
tend to bring it closer in value to z,. Conversely, when 7, is too large, 7,, will tend
to be larger than 7, and the ensuing downward multiplicative adjustment will bring
it closer to 7. As is evident from (6.3), 7,7 rar presumes knowledge of the aggregate
value, 7. It is not necessary to have a census of all x¢, k = 1, ... N, however.
When x and y are well and positively correlated, a consequence of this ratio
adjustment to 7,, is that the randomization distribution of possible estimates with
the chosen sampling design will be clustered more tightly and hence V[fyﬂ’mt] can
be expected to be less than V[fy,,]. In other words 7, rar Will be a more precise
estimator of 7, than 7y,. As mentioned in Chapter 3, if y and x are perfectly
correlated, then the variance of 7, ra is identically zero, a characteristic that Brewer
and Hanif (1982, page 7) term the ratio estimator property. In a practical setting
where perfect correlation will never hold, the magnitude of the gain in precision
depends, also, on the shape of the relationship between y and x: the closer that it
is to being a straightline trend, the better. As we discuss later in Example 6.9 it
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Figure 6.1 A graphical display to accompany Example 6.1 illustrating ratio estimation
following a SRSwoR design.

is necessary for the linear trend to pass at least approximately through the origin
y = 0,x = 0 for 7,7 ra to be more efficient than 7,, or other alternative estimators
that use auxiliary information. Relationships that intersect the vertical axis at a point
far removed from y = O can be exploited better by an estimator that makes an
additive, rather than a multiplicative, adjustment to fy,r, as will be explained in §6.8.

Example 6.1
Suppose the sampling design is SRSwoR so that 7,; = Ny, T,y = NX, and
hence
5 y
Ryx = =. (6.5)
X
Substitution into (6.3) yields
T _ T
ym,rat — )E X
y
= = Nﬂx
X
Ny i
X
- 6.6)
X
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Example 6.2

Suppose the sampling design is Poisson sampling with expected sample size
E[n] and 7y = E[n]xx/zy, as presented in §3.3.2. Hence,

£ = Tx Z Yk
yr = o3 —
Eln] 2= %k

~ ( Tx )
Txr = n
E[n]

so that Iéypc = Tyz /Txz is equivalent to

and

o 1 Vi
Ry =~ > o 6.7)
U es k
d
" Fyra = = > 6.8)
ym,rat — T > .
n Uk es Xk

which also can be expressed in the form of (6.4), i.e.,

~ Tx

O e, /Eln]

Tyr,rat =

E[n]
_Try,r.

Example 6.3

With the unequal probability systematic sampling design of §3.3, the inclusion
probability of Uy is proportional to x, viz. 7y = nxi/tx, providing that all x; <
7 /n. Therefore, 7,; = quk es Xk/mk = 7y, and, as a consequence, not only
does Ii’y‘x simplify to Iéy|x = (1/n) Zﬂkes Yk /X, but also, Tyz ra is identical
to 7y . This result implies that all the properties of the HT estimator apply to
Tyx,rat following systematic sampling with inclusion probability proportional to
Xk.

Example 6.4

An important use of ratio estimation arises when there is interest in subgroups
of unknown size in the population. This was mentioned in a side comment

ASIDE: The result displayed in (6.5) for Iéy| x following SRSwoR has given rise
to the name ratio of means estimator for fyn,m when used with this design.
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ASIDE: Ratio estimation has a long history, which antedates the formal com-
pilation of sample survey methods by many decades. Hald’s (2003) historical
excursus devotes an entire chapter to Laplace’s use of (6.5) to estimate the pop-
ulation of France in 1786.

following Example 3.7, where the interest was in estimating the average radon
concentration in houses with basements separately from that of houses lacking
basements. For this situation, define the variate of interest, y, as follows:

radon concentration, if house U; has a basement;
Yk = .
0, otherwise.

Let the auxiliary variate be a binary valued indicator:

1, if house U has a basement;
Xk = .
0, otherwise.

Assuming n houses are selected by SRSwoR, 7, = Ny = (N/n) Zwesl Vk
and 7, = Nx = (N/n)n|, where n; is the number of houses in the sample
with basements. Consequently, I€’y| x = Tyz /Txx is identical to the estimator, y1,
given in (3.14):

where s1 indicates the subset of the sample s consisting of the n houses with
basements. In other words, the mean value of y for a subgroup of the SRSwoR
sample is just a special case of Ry|y.

If the sampling design is unequal probability sampling with replacement (list
sampling of §3.3.1), with selection probabilities py = xi /7y, an alternative estimator
of Ry is

R, =2 (6.9)
Txp

In contrast to Iéy‘ s Ié’y‘x following list sampling is an unbiased estimator of Ry|,. A
demonstration of this is left as an exercise at the end of the chapter.

6.2 Bias of the generalized ratio estimator

Evidently, Ryx = 7y/7x = E[%yz 1/E[%xz ]. This identity does not ensure that
E[Ryx] = E [yz /xx | coincides with E[ 7z 1/E[ 7.z ], however. Lahiri (1951)
apparently was the first to recognize that I§y|x unbiasedly estimates Ry, for those
sampling designs which result in p(s) o¢ >, o Xk. Failing this, E[I%y|x] # Ry|x,
and hence B[Ry : Ryjx] # 0. Whenever B[Ry : Ryjx] # O, fyzrat is a design-



168 USING AUXILIARY INFORMATION TO IMPROVE ESTIMATION

biased estimator of zy: B[fyn,rat : ry] # 0. In particular, fy,mat is a design-biased
estimator of 7, when the design is SRSwoR.

Its bias under some designs notwithstanding, 7,z o has proved to be a very
accurate estimator of 7, in situations where x and y are positively correlated.
Indeed Sérndal et al. (1992, p. 248) asserted, “Over the history of survey sampling,
most of the considerable experience gathered with this estimator points to excellent
performance under a variety of conditions.”

Various bounds on B[§y|x : Ry|x] have been derived, as Sérndal er al. (1992)

have summarized well. These results show that B[Iéy| xRy x] is sufficiently minor
to obviate concern when the size of the sample is large enough to meet requirements
of precision: both B[I%yh : Ry|x] and V[7yz rat] decrease with increasing sample size,
the former at a faster rate than the latter.

There are a number of ways to modify Iéy‘ » to reduce or remove its bias as an
estimator of Ry|. None are universally better than Iéy| » when using mean square
error as the criterion by which to compare performance, and almost all presume a
SRSwoR sampling design. Sukhatme et al. (1984, §5.9), provides a nice review. For
situations where bias of ﬁy| + 1S a primary concern, any of these alternative estimators
can be used. For reasonably large samples for which the bias of R y|x can be expected
to be negligible, the simplicity of I%W is attractive.

Example 6.5

To illustrate the diminution of the bias of I§y|x with increasing sample size, we
drew every possible SRSwoR sample of n = 2 trees from the sugar maple
population presented in Table 2.1, and then evaluated E [ﬁy|x]. We repeated
this exercise for samples of size 3,4, ..., 29. The magnitude of B[l:’y‘x : Ry|x],
expressed as a percentage of Ry, is plotted against » in Figure 6.2. For samples

of n > 5, the relative bias is less than 0.5%.

Example 6.6

In Example 3.32, results were reported from a simulated sampling experiment
involving samples of size n = 12 from the N = 236 population of red oak
trees. As part of that experiment, 100,000 samples were selected according to a
SRSwoR design. In this experiment, y; was the volume of tree Uy and x; was
its basal area. The average R ylx value among the 100,000 estimates was 1.04%
larger than the parameter value Ry, = 9.2635 m3 m~2. That is, the relative bias
of Iéﬂx as an estimator of Ry, was observed to be 1.04% for this particular
design and population and choice of y and x attributes. Therefore, the bias in
fy,,,mt as an estimator of zy is also 1.04% under these circumstances.
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Figure 6.2 The relative bias of Iéy‘ x versus n when sampling the N = 29 tree population of
sugar maples by SRSwoR.

6.3 Variance of the generalized ratio estimator

Using principles of the calculus omitted here, Iéy‘ x can be expanded as a linear series,
leading to the approximation

B 1 Vi — Ry|x Xk
o~ Ry~ L 3 R

T T
X Ures k

The right side of this approximation is nothing more than a scaled version of the HT
estimator of >°7_, i, where

Tk = Yk — Ryjxxk.

In a regression context, ry commonly is termed a residual value, a nomenclature
adopted here as well.

The variance of the HT estimator, 7y, can be expressed generally as

N N N
VI = 3002 (F52) + 2 3 o (BEEE) 6o

Ty
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By analogy to this result,
\% I:Iéﬂxil =V I:I%y‘x - Ry|x]

1 Tk

N
1 1 — 7y Tk — T
= — ). 6.11
LIS (52) T S e (2| e

k=1 k=1 1'%k
k=1

We introduce the symbol Va[ ¥l x] for the right side of (6.11), viz.

N N N
A 1 2 Tk — Wy
‘/a I:Ry‘x:I:T_XZ Zrk ( )+erkrk/ (Tn—k, (612)
k=1 k=1k'#k
kK'=1

and hence

Va [Tyn' rdt] =Ty Va [ }\x]

> (s

k=1

) Z Z Firy (”kk’n;r?:cnk’) (6.13)

which is usually a satisfactory approximation to V [ yz rat]-
With a SRSwoR design, V,[R,.] simplifies to

. /11
v, [RW] - — (— - —) o2 (6.14)
px \n N

where o is the residual variance:

1
2 2
o =31 T - (6.15)
k=1
This leads to
Va [Fymra] = N? LI P (6.16)
a|tym,rat|f — n N r .

as an approximate variance of 7, ro; under a SRSwoR strategy.
An alternative expression for (6.14) is given by
. 1 /(1 1 2
Va [RW] = -w ( + R2,00 2R}|xpxy0'xay) 6.17)

The latter expression is revealing: it makes evident the reduction in variance resulting
from a large, positive linear correlation between y and x.



VARIANCE OF THE GENERALIZED RATIO ESTIMATOR 171

We emphasize that (6.13) is the general result for any design and that (6.14) and
(6.17) apply only for SRSwoR.

The following simple example serves to illustrate the formulae of the previous
three sections. We emphasize that it is illustrative only, and that in practice ratio
estimation with such a small sample as the one presented is ill-advised.

Example 6.7

The data used in this example appear in the following table.

Ue Y Xk
w 1 1

w 3 2
U 5 4

For these data,

9
Ry = = ~ 1.286

7 7
xy= [(1—3)(1—§)+(3—3)( )+(5—3)(4—§):|=3

pry A 0.98

The Q = 3 samples of size n = 2 are {U;, W}, {U, Uz}, and {U>, U3}, which
yield the following estimates of Ry,: 4/3,6/5, and 4/3. Presuming a SRSwoR
design so that p(s) = 1/3 for each of the Q = 3 samples,
E[# ]—1 Tr0 )~ s
WIT3\3TsT3) T

with bias of magnitude B[ yix i Ryjx] & 0.003, or 0.24% in relative terms.
Because 7; = 2/3 and 7y the variance of 7, from (6.10) evaluates to

V[tye]=(1+9+25) (%) +23+5+15) (—%) =6.

The ratio residuals are r1 = y; — Ryjxx1 = —2/7,r, =3/7,and r3 = —1/7.
The variance of these residuals, from (6.15), is

5 1(4+9+1

oF = < = 0.142857.
5)

)
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ASIDE: With the fabricated data of Example 6.7, the variance of Iém was

0.003951 so that in this case V,[Ry.] exceeds V[R,).] by about 11%. While
this example is intended to be illustrative of the degree of approximation
introduced by the linear expansion of Ry, to derive Va[Ry| X], there are many

other factors that influence how close in value V, [Iéy| o] isto V[Iéﬂ <.

Using uy = 7/3, the approximate variance of ﬁylx from (6.14) is

. o1
Va [Rye] = g (E - 3) 0.142857 = 0.004373.

The approximate variance of 7y ra from (6.16) is
Vo [2yr,ra] = 0.214286,

which is only 3.6% of the value of V[fy,,].

Example 6.8

There are Q = 635,376 distinct samples of size n = 4 that can be selected
from the N = 64 leaf population shown in Figure 3.4. For this population,
Ryx = 200 cm?/g, and for the SRSwoR design with n = 4, it is possible to
compute the variance of IQW and to compare it to the usual approximation. In
this case, the difference between Va[ﬁﬂ ] and V[Iéy\ «] is —8.3% of the latter.
For the Q = 74,974,368 samples of size n = 6, the difference between V, [I%y| N
and V[li’y‘x] is —5.9% of the latter.

Example 6.9

Consider the data used in Example 6.7, but modified by the addition of 5
to each value of y. So doing does not change the value of py, ~ 0.98,
however the straightline trend now intercepts the vertical y-axis at a point
closer to five than zero. Due to this, V, [Iéypc] = 0.332362, which is a huge

A

increase over the approximate variance of Ry, in Example 6.7. Because of this,
Va [fy,mat] = 16.283, which is more than double the variance of fw. Moreover,

the bias of Ry, is 21.851%, and the difference between V,, [Iém] and V[ﬁy|x],
as computed from (2.2), —30.5%. While overly simplistic, this example serves
to underscore the deterioration of fy,r,rat when the trend between y and x is far
removed from the origin, despite a very strong positive correlation between the
two variates. In this situation, the generalized regression estimator presented in
§6.8 is preferable.
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The usual procedure is used to estimate 4y, namely

A~ {'yn:,rat
MHyr,rat = N
the approximate variance of which is
N Va [fyﬂ,rat]
Va [ﬂyn,rat] =7 N2
1 N 1 Tk VoY Tk T
2 - / — ’
- r + rirpy | ——— )| . (6.18
v |22 (50) X e (M) | 6w
k=1 k=1k#k
k=1

Under a SRSwoR design, this simplifies to

Va [%\yn',rat]

_(L1_1Y),:
_(n N)a,. (6.19)

Va [ﬁ yn,rat]

Example 6.10

The ratio estimator was introduced explicitly in Chapter 3 in conjunction with
the Bernoulli sampling design. In this context, x; = 1 for all 7, and therefore
7, = N. Consequently, Ry|x = 7y/7x = 7y/N = uy, and 7, = N, = n/wr =
nN/E[n]. This leads to

~ T
Ryjx = Ay”
Nz
E[n],
= T
nN "
E[n] .,
= n :uyﬂ'
= [‘yzr,rat,

as presented in (3.40). Using this result one gets

Tyr,rat = Rylx Tx

Eln],
Hym
n

E[n].

- Tyms
n y
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as presented in (3.38c).
Since ry = yr — RyjxXx = Yk — py and myp = 72 with Bernoulli sampling,
Va[Zyz rat] in (6.18) reduces to

Va [Tyn rat ,u) (6.20)

as in (3.41a). Upon substituting E[ n ] / N for 7 one gets

1 I\ N-1
N 2 2
Va [Tyn',rat] =N (E[I’l] - N) N Oy

PYEY LI P (6.21)
E[n]l] N) '
as in (3.41b).

To check the closeness of the above approximations, a simulation experiment
was run in which 100,000 Bernoulli samples were drawn from the red oak
population using an inclusion probability of # = 0.05 for each element in the
population. Based on a population size of N = 236, the expected sample size
was E[n] = Nz = 12. The variance observed among the 100,000 estimates
Tyx,rat Was 4863.3 m? (30.3% relative standard error). The approximate variance,
Va[Zyz,rat], computed by (6.20) was 4391.0m°® (28.8%), and that computed by
(6.21) was 4409.7 m® (28.9%).

Example 6.11

In the same SRSwoR simulation experiment reported in Example 6.6, the rela-
tive standard error among the 100,000 estimates, fyn,rat, was 6.5%. The relative
standard error computed by using the variance approximation, V, [fy,,,rat], was
very close, 6.4%.

6.4 Estimated variance of the generalized ratio estimator

Consider, first, the estimation of the variance of fy,,,rat in conjunction with fixed
sample size designs. Two alternative estimators of V, [RW] commonly are used:

&1 [lém] - % > Az(l - ”")+ S A (—”"” — ”"”"’) (6.22)

Lin Uy €s UEs k' +k kT Tick!

U €8

and
T 1 l—nk ik — Tk
b [Rye| = = | 372 £ A (BTN | (6.3

y 72 Tk Tk
X | ues U Es |/ k' ik

k€ k€S k'F£k

U €8
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where 7, = y; — Iéy| +Xk. These two estimators differ only in the divisor of ff” ort XZ

where the latter is invariant to the particular sample that is selected. For that reason,
01 [ Ry|x ]is preferred by many.
Using (6.22) or (6.23), the variance of 7, ra may be estimated as

1 [fvmral = 221 [ Ry (6.24)
or
02 [ymra] = 7262 [ Ryt (6.25)
It follows that the variance of /iy rac may be estimated as
.~ ra 2 T4
0] [,uyn',rat] = N_XZ 01 I:Rylx]
(6.26)
1. .
= m 01 [Tyn,rat]
or
1'2 A
02 [ﬂyn,rat] = N_XZ 02 [Rylx]
(6.27)
L.
= ml)z [Tyn',rat] .

Under SRSwoR, the joint inclusion probability has the straightforward form
T = [n(n — 1)]/[N(N — 1)], Using this result, (6.22) simplifies to

- (1 1),
N [Ry|x] == (>-v ) (6.28)
and (6.23) to
) (1 1
Ba [Ry‘le == (— - —) 52, (6.29)
uz \n N
where | )
B > (76— Rywe) (6.30)
Uk es

For designs other than SRSwoR, the estimators, O [}%m] and 132[1§y|x], may simplify
further than is shown, depending on the joint inclusion probabilities, 7z;/. For with-
replacement designs, 7y = w7y, and hence the second terms in each of these
variance estimators vanishes. Hartley & Rao (1962) provided an approximation of
myr for unequal probability systematic sampling, which we reproduce for sake of
convenience in this chapter’s Appendix (see page 203).

Example 6.12

From the exhaustive sampling of the sugar maple tree population which provided
the results displayed in Figure 6.2, both 01 [ Ry|x ] and 0o [ Ry« | were negatively

biased estimators of V[ Iéy‘x ]. While the absolute bias of 0 [Iéy‘x] exceeded
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that of 0 [ Iéy| » ] for all sample sizes, for n > 10 the expected values of two
estimators were virtually identical. In contrast, the variance of v [1§y|x] was
always sufficiently smaller than the variance of v; [ §y| + ], so the mean square
error of v; [ Iéy‘ + ] was uniformly smaller than that of v; [ 1§y| ¥

In the 100,000 sample simulation experiment from the red oak population
(see Examples 6.6 and 6.11), the 100,000 estimates, v [Iéy‘x] and vy [ I@y‘x 1,
provided average values that were nearly identical. Both slightly underestimated
the observed variation in 7y, 1o among samples, on average. In terms of relative
standard error of estimation, they were 5.90% and 5.91%, respectively.

The comparative performance of 9 [ Iéy‘ + ] versus 07 [ Iéy| + ] has been studied
too little to know how well these limited results generalize to other sampling
designs and populations.

From (6.28) and (6.29) it follows that

N A N2ui (1 1Y ,
0] [Tyn',rat] = 2 2 (; - N) Sy (6.31)
and
A A 2 (1 1 2
02 [Tyepat] = N ——~) (6.32)
under SRSwoR. For /i 7 ra the analogous estimators are
2
A A us (1 1Y »
|l == - —— , 6.33
0] [ﬂyn‘,rdt] 2 (I’l N) s, ( )
and
02 [fym,rat] = LR (6.34)
yz,rat n N ro .

A technique introduced by Quenouille (1956) can be used both to reduce the bias
of Ry| x and to estimate its variance robustly. Later dubbed the jackknife owing to
its utility, Gregoire (1984) demonstrated its application to the ratio estimator with a
SRSwoR design, as explained in the Appendix (§6.12).

For random » designs such as the Bernoulli and Poisson, the estimation of variance
must also account for the variation introduced by the randomness of the size of the
sample itself. Grosenbaugh (1976, p. 174) proposed an estimator that he denoted as
v S. Written in our notation, this estimator is

. 1 1 1 . 2
= =) — -1 . 6.35
03 [Tyn,rat] (E[n] N) E[n](n — 1) ‘l%g (7Tk T)n,rat) ( )
Brewer & Gregoire (2000) proposed the following alternative to (6.35):
N 2 A 2
AT _ n-— Zk:l Ty /n TTin vk E[n] Tym,rat
4 [Tyﬁ,rat] = z ( n—1 - Elnl - " . (6.36)

TKn
Uk Es k
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6.5 Confidence interval estimation

Using v [Iéy\x ], an approximate 100(1 — a)% confidence interval for ﬁy|x is given
by

Ry ey [61 [ Ry (6.37)
Similarly,
fyn,rat + tn—l\/ 131 [fyn',rat], (6.38)
and

,&yn,rat =S P V 01 [,&yn,rat} (6.39)

Intervals based on the other estimators of variance follow in an analogous fashion.

6.6 Ratio estimation with systematic sampling design

As presented in Chapter 3, well-correlated auxiliary information can be used to great
advantage when sampling systematically by ordering the sampling frame in order
of increasing (or decreasing) magnitude of x. A further gain in precision may be
possible by using 7y rat.

Example 6.13

The eight possible equal probability systematic samples of size n = 8 were
selected from the N = 64 population of leaves used in Example 6.8. The variate
of interest, y, was the total leaf surface area, which totaled 7, = 1,582 cm?. The
sampling frame was arranged in order of increasing leaf weight. Drawing all
possible systematic samples from the ordered frame, the standard error of 7,
expressed relatively as a percentage of 7y, was 4.3% (V[7y;] = 4,540 cm?). In
contrast, systematic selection from the randomly ordered frame using the square
root of leaf weight as the auxiliary variate resulted in a relative standard error
of Tyz rar that was 3.0% (V[7yz rat] = 2,204 cm*). When using the logarithm of
leaf weight as the auxiliary variate, the relative standard error of 7,z rar When
sampling from the randomly ordered frame was 2.8% (V[7,z ra] = 1,987 cm?).

In this case, a further gain in precision is realized by the sampling strategy
which combines ordering of the sampling frame with the generalized ratio
estimator. When sampling systematically from the frame ordered by leaf weight
the relative standard error of fy,r’rat was 2.3% with the square root of leaf weight
as the auxiliary variate, and it was 2.4% with the logarithm of leaf weight as the
auxiliary variate.

Example 6.14

All possible equal probability systematic samples were selected from the N =
1,058 unstratified population of trees shown in Figure 5.1 using a sampling
interval of @ = 50. The variate of interest, y, was total aboveground biomass,
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which totaled 7, = 76,396.1 kg. Using tree basal area as the auxiliary variate, x,
the sampling frame was arranged in order of increasing x. Drawing all possible
systematic samples from the ordered frame, the standard error of 7, expressed
relatively as a percentage of 7, was 8.7%, whereas the relative standard error
of Tyz rac Was 5.6%. In fact the relative standard error of 7y ¢ Was 7.5% even
when the sampling frame was not deliberately ordered.

When the sample has been selected systematically, it is not possible to unbiasedly
estimate the sampling variance of Ryx, Tyz rat, OF fyz rat-

6.7 Generalized ratio estimation with stratified sampling

When a stratified sampling design is used, at least two options generally are
considered for ratio estimation of population and strata parameters.

With the first option the stratum ratio, Ry|x s, s = Ty, n/Tx 5 is estimated separately
for each of the L strata as

. Tonh
ym,

Ry|x,sth = . (6.40)
xT,

With the second option the population ratio Ry|x = 7,/7, is estimated as the ratio
of the estimator of 7, from a stratified population to the analogous estimator of t,
namely

5 f ,st

Rylx,st,c = Ay > (6.41)

Txm,st

where 7,7 ¢ was defined in (5.4) of Chapter 5, and 7y« is the corresponding
estimator of 7.
The subscribed “h” in Ry ¢, 1S a necessary index, inasmuch as a ratio is

computed for each stratum. In contrast, the subscribed “c” in Iéy\x,st,c is used as a
visual cue that all L strata are combined when computing this single ratio for the
entire stratified population.

6.7.1 Ratio estimation of population and strata totals

When Ry, is estimated separately for each stratum, 7 ; is estimated by

A

fyn,h,srat = Rylx,st,h Tx,h (6.42)
which leads naturally to an estimator of the stratified population total, 7y, as

L

fyzr,st,srat = Z fyn',h,srat' (6~43)
h=1

With the combined estimator of Ry, the stratum total 7, ; can be estimated by

fyn,h,crat = Ry\x,st,cfx,h> (6.44)
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and 7y, is estimated as

Tyrm,st,crat = Rylx,st,c Tx

L
E fyﬂ:,h,crat
h=1

The subscribed “srat” in 7,z s srac 1S @ mnemonic device to remind that this
estimator uses an estimate of Ry, for each stratum separately, whereas Tz gt crat Uses
a single estimate for all L strata combined. Both 7y g srac and 7yz gt,crar are biased
estimators of 7, but the bias of the estimators is expected to be small provided that
the linear correlation between y and x is strong, the within-strata samples are not too
small.

Because (6.44) uses information from other strata to estimate the zy ;, it is known
as a synthetic or indirect estimator Rao (2003).

The approximate variance of the separate ratio estimator, Iéy| x.st,h» 18 given by

(6.45)

~ 1
Va I:Ry\x,st,h:l = E r]?(
T

xh | wep,

Tkk' — k)
LD I I
T

UkePn k'#k
Uy €Ppy

(6.46)
in which ry, is the separate-ratio residual: ry = yx — Ryx s 1 Xk. Therefore,

Va [fyn,h,srat] = x hV [ y|x,st h]

1-— r— / 6.47
S () 3 F (o) 0

U D)y UePh k'#£k
U €y

which leads to
L
Va ['Eyzr,st,srat] = Z Va [fyn,h,srat] ) (6~48)

because the estimated strata totals, Tyz 4 srat, # = 1, - - - L are independent.
For the special case of stratified random sampling, (6.46) simplifies to

A 1 11
v, [Ry‘x,st,,,] -3 (— - —) o2, (6.49)
lux,h U Py h Nh '

where O'rzh is the residual variance:

1
R N > (6.50)

U Py

Hence

« 1 1
Va [Tyn,h,srat] = N}% (a - Fh) O'rzh (6.51)
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and

1 1
Va [fyn,st,srat] = Z N}% (_ - _) O-rzh' (6'52)

n N,
h=1 h h

Turning to the combined ratio estimator, the approximate variance of I§y| x,st,c 18
given by (6.12) provided that the residuals in that expression are ry = yr — Ry|xXk.
With this same provision on the ratio residuals, (6.14) is the approximate variance of
ﬁy|x,st,c with a stratified random sampling design.

The variance of the combined estimator of the stratum total is approximated by

~ 2 ~
Va [Tyn:,h,crat] =Tx.h Va I:Rylx,st,c:I

2
Tih 21— g Tk — Ty
== E i + E E rrp | ———— s
T V3 LT
x| gen, k UEB, K'£k Kk
Uy €Pp

(6.53)
whereas the variance of the stratified population total is

- \— Ty
Va [fyn,st,crat] = z r/?( n_knk) + Z Z Tl (M) (6.54)

Ty
Uk €Dy UePy k'#£k
Uy €Pp

‘We note that

L
Va [fyn',st,crat] 5& Z Va ["[\yn,h,crat] P (6.55)
h=1
because positive covariance is induced among estimated strata totals owing to the
common use of Iéy\x,st,c in all strata.
For the SRSwoR design, (6.54) simplifies to

L
. 11
Va [2ymsterat] = D Njp (— — Vh) o2 (6.56)

h=1
where arzh is the residual variance:

1

N >k~ Rywi)” (6.57)

U ePy

2 _
Orp =

Regarding ratio estimation following stratified sampling, Cochran (1977, §6.12)
asserted that Ty s srae is likely to be more precise if (a) the sample in each
stratum is large enough that Va[fyﬂ,st,srat] provides a satisfactory approximation
of the actual sampling variance of fyﬂ,st,srat and (b) its bias is small. Failing those
conditions, the use of fy,,,st,crat is recommended. Jessen (1978, $7.9) concurs with
this recommendation, yet Sukhatme & Sukhatme (1970, $7.9) do not, at least when
the strata ratios do not vary considerably. Rao & Ramachandran (1974) used a
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model to relate y to x and then studied conditions that must hold for separate
ratio estimation to be more precise than combined ratio estimation. Their results,
which are too complicated to present here, provide quantitative guidelines on within-
stratum sample sizes following proportional allocation that are needed to ensure the
superiority of separate ratio estimation.

Example 6.15

In Example 5.9 we reported the results of a single, proportionally allocated
stratified random sample of size n = 54 trees comprising a population of
N = 1058 from four different species. The stratification variable was species,
and the variable of interest, y, was total aboveground biomass. This sample
consisted of n; = 15 balsam fir trees, np = 16 black spruce trees, n3 = 14
white birch trees, and ngs = 9 white spruce trees.

The results from that particular sample notwithstanding, in the present exam-
ple we used data from the entire population with (5.5) to compute the variance
of 7,z . For this sampling design, the relative standard error of 7y & is 14.3%.

In contrast, the relative standard error of T,z g crac in (6.45) is reduced to
8.6% when bole diameter was used as the auxiliary variate for combined ratio
estimation of 7,. When the basal area of the bole was used as the auxiliary
variate, the relative standard error was further reduced to 4.5%. As expected,
ratio estimation results in a substantial increase in the precision of estimation in
this context.

For this population, the further gain in precision by using ratio estimation
separately in each stratum and then estimating 7, with (6.43) is modest: 8.3%
and 3.7% when diameter and basal area, respectively, are used as the auxiliary
variate. Evidently, the relationship between aboveground biomass and bole
diameter or basal area is so similar in these four species, that there is little
additional gain by estimating Ry, separately by stratum.

6.7.2 Estimating the variances of Tyz st srat GNd Tyx st crat

The usual estimator of V, [y, s,srat | following stratified random sampling is

L 2.2

Nt 1 1

A [A h“x,h 2

U1 [Tyzr,sl,sral] = E 7 (_ - _) Syhos (6.58)
h=1 rxn:,h Mh Ni
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A

where 7 in srzh is computed as ry = yr — Ry|x st,nXk. This is a special case of the
following expression which may be used with any sampling design:

L
A Ta _ 22 1 —my
V] [Tyn,st,srat = 8k"k 2
Ty

h=1 | Ur€eS

L
+ Z Z Z gkTk &K' T (—nkk, — ﬂknk{) (6.59)

k' Tk T
h=1 | wes, Ktk ke Tk Tk
‘UkIGSh

where
(Tx,h - Txn:,h) Xk

3 .
Zukejh Xn /7Tk

The variance estimators of V, [fyﬂyst,crat] following stratified random sampling

A

use fy = yr — Ry|x,st,cxk. For the SRSwoR design, the variance estimator for the
combined-ratio estimator is

2 L
A [ T 1 1
U1 [‘L’yn,st,srat] == E N}% (— — Fh) Srzh’ (6.60)

and for any design it is

L
A TA 242 1 — g
31 [Tyn',st,srat] = Z Z 8k Tk 7

gr=1+

"‘Z Z Z 8kFk gk i (M) ,  (6.61)

T T
prll k' Tk T
Uy €S
where
(Tx — Tam) Xk

gk =1+ :
211{\7:1 xlgn'/”k

6.7.3 Ratio estimation of population and strata means

To estimate the mean of stratum & with the separate ratio estimator, divide (6.42) by
Np, to get

A

/&yn:,h,srat = Ry|x,st,hﬁy7r,h, (662)
The population mean is estimated by dividing 7y st crat by N, i.e.,

Tyr,st,srat

/}yn,st,srat = T, (6.63)
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which is identical to
L
ﬁ}’n’,st,srat = Z Whﬁyn’,h,srat- (664)
h=1
The variance of fiyz j srat is approximately

Va [fyn,h,srat]

Va [/Alyn',h,srat] = N2

(6.65)
= ﬂ;zc,h Va [ﬁ)’lx,st,h:l .

Estimators of these parameters with the combined ratio estimator for each stratum
are derived similarly:

A

/,)yn,h,crat = Rylx,sl,c,ux,h~ (6.66)
and
L
ﬁyn,st,crat = Z Whﬁyn,h,crat- (6.67)
h=1

The expressions for the approximate variance of [z i srats Hyz,stsrats Ayz,h,crats
and [l yz stcrat can be derived by dividing the expressions given earlier for 7y j srat,
Tyz stsrats Tymhcrats ad Tyz st crae DY N2, Variance estimators of strata or population
means are obtained similarly.

6.8 Generalized regression estimator

One can view the generalized ratio estimator in (6.3) as the ordinate of a straight
line evaluated at z,, where the line passes both through the points (z Y [ixz) and
(fy,,, Txz)» and which extrapolates to the origin (0,0). When y and x are well
correlated but do not follow the trend implied by this line, the regression estimator
is a possible alternative estimator of 7,. Useful when the data are either positively or
negatively correlated, regression estimation exploits a linear relationship of the form

y~ A+ Bx, (6.68)

where B is the slope of the line and A is the intercept—the ordinate of the line at the
point x = 0. If the relationship shown in (6.68) held exactly, then A = yuy, — B u, for
any parametric value of B. As is customary, we define the slope B as the following
parametric function:
B=22— Z’I‘le, ek~ Ty/N (6.69)
Ox >io1 X — /N
The slope, B, as defined in (6.69) is unique for any universe of the population
values {yk, xx, k = 1, ..., N}, provided that axz # 0 (Jonrup & Rennermalm 1976).
Furthermore, from a sample of x and y values, it is possible to estimate A and B in
(6.68) consistently. Equation 6.68 is a regression estimator of 7, if it is evaluted at
x = 1,, with consistent estimates of A and B.
The generalized ratio estimator of (6.3) is a special case of (6.68) in which the
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ASIDE: In multiresource surveys one may wish to estimate many attributes,
though the auxiliary information at one’s disposal may be positively correlated
with some attributes but not all. When the auxiliary variate is negatively
correlated with the variate of interest, the analog to the generalized ratio
estimator is the generalized product estimator:

Tyr Txm

‘En',r:
yzT,p T

This estimator was introduced by Robson (1957) and Murthy (1964). For use
following SRSwoR, it simplifies to

Tyr X

Tym,pr =
X

Gupta (1972) and Singh & Horn (1998) have examined the product estimator
under general unequal probability sampling designs. The latter authors have
proposed a clever composite estimator that uses the linear correlation coefficient
between the variate of interest and the auxiliary variate in such a way that
the estimator reverts automatically to the generalized ratio estimator when the
linear correlation is positive and to the product estimator under negative linear
correlation. Singh & Espejo (2003) have proposed a mixture of the two. Much
empirical work remains to be done to determine the practical utility of these
estimators in multiresource surveys.

magnitude of the intercept, A, is predetermined as zero and the slope is estimated by

Ry|x. The utility of regression estimation results from having a nonzero estimate of
the intercept term and different estimator of the slope.

6.8.1 Regression estimation following SRSwoR

To ease the notational burden, we start by considering regression estimation follow-
ing a SRSwoR sample which selects n units from the discrete population of N units.
The conventional estimator of the slope of the line is

A Sxy
B = %’, (6.70)
S.X
where sy is the sample covariance between y and x, i.e.,
1 _ -
Sy =——r D k=P (w5, (6.71)
U, eS

and 52 is the sample variance of x,

52 = ! > Gk — 57 (6.72)

n—1
UyeS
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Following SRSwoR, s, is a design-unbiased estimator of the population covariance,
oxy (see Chapter 6 Appendix) and s% estimates axz unbiasedly. Like Iéy‘x, B is a ratio
of random variables, and therefore it is a biased estimator of the population parameter
B =o0yy/ axz .

Following SRSwoR, the estimator of the intercept of the line is

~

AA _ fyn' —B fxn
N (6.73)
= y - éia

which can be regarded as an estimator of the population parameter A = u, — Bu,.

Both A and Aé consistently estimate A and B, respectively, because when n = N,
A= Aand B = B.
The conventional regression estimator of 7, following SRSwoR is

fyzr,reg = NA + éfx (6.74a)
- N [y 4B (uy — )E)] (6.74b)

which can be expressed equivalently as
"[\yn,reg = fyn + é (Tx - fxn) . (6.75)

The latter expression makes it evident that the 7y g constitutes an additive
adjustment of the HT estimator of 7y, in contrast to the multiplicative adjustment
implicit in fy,,,mt. Like the generalized ratio estimator, fy,r’reg is a biased estimator
of 7y, but the bias is usually negligible if (6.74) reasonably portrays the trend in the
data and the sample is not too small.

The variance of 7y reg is closely approximated by

A I 1
Vo [Fyres] = N? (E _ ﬁ) o2, (6.76)
where arzeg is the residual variance:
1 N
Oy = 55 2 k= A= Bxp)’. (6.77)
k=1
The usual estimator of (6.76) is
TR 11
b [2yzree] = N? (; _ N) 52 . (6.78)
where srzeg is the residual variance:
1
Seg =~ > (6.79)
Uy es

and
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Figure 6.3 Leaf surface area versus leaf length x width of 20 Eucalyptus nitens leaves.

Example 6.16

A simple random sample of 20 leaves was selected without replacement from a
population of 744 leaves of shining gum (Eucalyptus nitens). The area, length,
and width of each leaf was measured, with the objective of estimating the foliar
area of all 744 leaves. The sample of leaves is shown in Figure 6.3 and listed
in Table 6.1. In the figure the rectangular area, computed as the product of leaf
length, and width is shown on the horizontal axis. Measuring the length and
width of each leaf is far less time-consuming than measuring its area, and the
strong linear relationship between leaf area and this rectangular area is evident
in Figure 6.3 suggests that the regression estimator of total area might work well.

The average leaf area in the sample is y = 52.12cm? and the average
rectangular area is X = 74.39 cm?. The sample covariance is sxy = 1262.4 cm?,
and the sample variance of the auxiliary variate is s% = 1990.0cm?. The
aggregate rectangular area for all 744 leaves was 7, = 57,266.6 cm?.

Using these values, the slope, B, is estimated as B = 1262.4/1990.0 =
0.6344 and the intercept, A, is estimated as A=5212— 0.6344(74.39) cm? =
4.93 cm?. Therefore, Tyr,reg = 3667.9 4 0.6344(57,266.6) = 39,996.2 cm? is
the estimate of total surface area. From (6.79), srzeg = 18.06 cm?, and with this
result the estimated standard error of fy,,,reg is 697.7 cm?2. This is considerably
smaller than the estimated standard error of 7,, which is 4,696.2 cm?.

Example 6.17

In the same simulated sampling trial reported in Example 3.32, the regression
estimator, fyn,reg, was computed for each of 100,000 SRSwoR samples from
the red oak tree population. Each sample included n = 12 trees. Tree basal area
serves as the covariate in the regression estimator.
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Table 6.1 A simple random sample of 20 Eucalyptus nitens leaves from a population of 744
leaves.

Leaf Area Length x Width Leaf Area Length x Width

(cm2) (cmz) (cmz) (cm2)

1 80.7 113.08 11 28.5 39.15
2 69.7 98.40 12 47.8 55.35
3 66.1 97.17 13 73.4 101.43
4  124.6 198.40 14 48.4 58.80
5 72.6 103.20 15 74.1 102.50
6 36.3 55.10 16 24.3 36.57
7 37.0 55.10 17 16.7 26.28
8 31.5 43.96 18 19.3 30.20
9 21.1 28.35 19 914 143.63
10 49.5 61.10 20 29.4 40.00

The average value among the 100,000 estimates was within —0.2% of the
target value, 7y. In other words, the observed bias of fy,r,reg in this case is
negligibly small.

Compared to the relative standard error of 28.6% for the 100,000 HT
estimates of 7y, the relative standard error observed for fy,,,reg was 4.9%. The
gain in precision which was realized by including this auxiliary information in
the regression estimator is sizeable.

We also investigated the closeness of V, [fy,,,reg] as given in (6.76) to the
variance observed in the simulation. In this case, the relative standard error of
Ty, reg computed on the basis of V, [z reg | Was 4.98%, compared to the 4.92%
actually observed.

The performance of the variance estimator, 01 [ 7z reg | given in (6.78), was
monitored, also, by computing its average value among the 100,000 samples.
The relative standard error of 7, r; computed on the basis of this average value
was 3.86%, which understates the actual relative standard error of fy,r,reg. The
variance estimator, 0 [ 7yz reg |, yielded results nearly identical to 1 [ Ty reg |-

6.8.2 Regression estimation following any sampling design

For sampling designs more general than SRSwoR it is possible to consistently
estimate B by combining separate HT estimators of each of its terms, as in (6.69).
To be explicit, a consistent estimator of B is

é” _ fxy;r - 'Exn‘?yﬂ/Nﬂ (680)

A~ _ A2 e
T)C27l' T.X?T/Nn'
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ASIDE: Estimation of 7, or u, following poststratification of the sample (see
§5.7) can be cast as a specific case of regression estimation, as explicated by
Bethlehem & Keller (1987). Smith (1991) indicates that, in this framework,
conditional estimation of variance is not possible.

where
R Xk Yk
Poyr = D = (6.81)
Uk es k
and
x2
Bog = f (6.82)
Uk Es k

which may be expressed equivalently (see the Appendix, page 202) as

5 Do Ok = B /M) Ok = Ey /N )

T ——= (6.83)
Z‘ukes(xk - Txn/Nn)z/n'k
The corresponding estimator of A is
A, = M (6.84)
Ny
As before
N
Pyrreg = D Pk (6.852)
k=1
= NA; + By, (6.85b)
N | o N |,
= = Ty; + By (rx - rm) s (6.85¢)
N Ny

where J; = A + Bxy, is a biased estimator of 7y, which may be very precise if the
linear correlation between y and x is strong.
The variance of 7y s following a general sampling design is approximated by

N N N
A 1-— Tk Tk — Tk
2
Vi [ymreg] = D 7 ( - ) +D° > nrw (T . (6.86)
k=1 k=1 k’;ék
K'=1
where the regression residual is defined as ry = yy — A — Bxy. Except for the

difference in the definition of rx, Vg [yr,reg ] is identical to V [y rac]-
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For fixed sample size designs, the customary estimator of V, [fy,r,reg] is

01 [‘LA'yn,reg] = Z f,?( ) z Z Fele (M) (6.87)

U s Ukes k'#£k Tk Tk Tkk!
U €s

~

where 7, = yp — Ay — é”xk.

It is possible to express fy,,,reg as a linear combination of the sample y; values.
Borrowing the notation of Sirndal et al. (1992), Tyz e = Z’Ukes (gk/mk) Yk, where
gk 1s a sample-dependent function of x; and quantities other than y; (see (6.5.12),
page 233 of Sérndal ef al. (1992)). This led Siarndal (1982) to propose and advocate
an alternative estimator of the variance of fy,,,reg as

02 [fyn,reg Z gkrk ( )

Uk es

Tkl — Tk
+ > D afrawi (—) (6.88)

UkEs k'#k Tk Tk
U €s

where

(N - Nn') (fx27[ _xkfxn') + (Tx - fxn:) (kan - f)cn:)
Nito, — 2 '

X7

gk=1+

Following SRSwoR, the preceding expression for gx collapses to
n(uy —x) (xp — x)
Z’Ukes (.Xk - 2)2

Following unequal probability systematic sampling with 7, = nxy /7., the preceding
expression for g collapses to

gk =1+

Example 6.18

In the same simulated sampling trial reported in Example 3.32, the regression
estimator, 7yz reg, Was computed for each of the 100,000 unequal probability
systematic samples. Not only did tree basal area serve as the auxiliary variate to
affix the inclusion probability 7y = nxi/ty, it was also used as the covariate in
the regression estimator. As reported above, each sample included n = 12 trees.
The average value among the 100,000 estimates was within 0.4% of the target
value, 7,. In other words, the observed bias of 7,7 reg in this case is negligibly
small in this case.

Compared to the relative standard error of 5.25% for the 100,000 HT
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estimates of 7, under this probability proportional to size (mx o xi) systematic
sampling design, the relative standard error observed for 7,7 reg Was 4.0%.
The gain in precision beyond that which was realized by including elements
with probability proportional to basal area was modest, yet it is provided at no
marginal increase in cost.

We also investigated the closeness of V, [fy,r,reg] as given in (6.86) to the
variance observed in the simulation. The requisite joint inclusion probabilities
in (6.86) were computed using the results provided by Hartley & Rao (1962)
and reproduced in this chapter’s Appendix on page 203. In this case, the relative
standard error of fy,[,reg computed on the basis of V, [fyn,reg] is 3.4%, compared
to the 4.0% actually observed. The discrepancy between the variance observed
in the 7 s estimates and that computed from the formula for approximate
variance is noticeably larger than in Example 6.17.

Moreover, the variance estimator, 01 [fy,,,reg] given in (6.87) was 3.3% on
average among the 100,000 samples, which is much closer to the discrepant
approximate variance result than it is to the observed variance.

The regression estimator may be extended to include covariates in addition to
xi. For a thorough treatment of a multiple linear regression estimator of z, consult
Sdrndal et al. (1992, Chap. 6).

Regression estimation may also be used following stratified sampling. The coeffi-
cients of the regression equation can be estimated separately by strata or for all strata
combined, in direct analogy to the situation discussed in §6.7 for ratio estimation.

Example 6.19

Following an extensive simulation study, Valiant (1990) concluded that system-
atic sampling within strata from a frame ordered by x performed very well com-
pared to stratified random sampling. Based on results from stratified system-
atic sampling of six artificial populations having a variety of straight-line and
curvilinear trends with both uniform and nonuniform variation of observations
around the trend lines, he concluded that a jackknife variance estimator success-
fully estimated the variance of the estimated population mean even in systematic
samples, as long as the size of the sample was not too small.

6.9 Double sampling with ratio and regression estimation

Double sampling was introduced in §5.6, for the purpose of estimating strata weights
for a stratified sampling design. Another common application of double sampling
occurs in conjunction with ratio or regression estimation.

When double sampling for stratification, a large first-phase sample is conducted
for the purpose of estimating the strata weights, W;,,h = 1,..., L. By contrast,
when employing double sampling with ratio and regression estimation, the objective
of the first phase of sampling is to provide a precise estimate of z,, thereby avoiding
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the need to know the value of this population parameter. The rationale for double
sampling in this context is that it may be infeasible to know 7, yet feasible to estimate
its value precisely without suffering too great a loss in precision in estimating 7, by
so doing.

Let 51 denote the first phase sample comprising 7 elements, Uy, each of which is
included in s; with probability 74 (1. For each U € s1, x; is measured and recorded,
but yj is not, unless U has also been included into the second phase sample. Based
on s1 alone, 7, is estimated unbiasedly by 7y (1)

R X
) = D — (6:89)

b
/9
Uk sy k(l)

where U € s indicates summation over all elements that are included into the first-
phase sample.

In many applications of double sampling for ratio and regression estimation, the
second-phase sample, s7, is a subsample of s1. The results which follow presume this
second-phase subsampling design in which n, < n; elements, Uy, are selected from
s1 with inclusion probability 7, (2). When s, is not a subset of s1, the properties of the
double sampling ratio and regression estimators differ from those presented below.
oY N

A pseudo-HT estimator of 7y is 7}, :

o= > A (6.90)

e, TROTHQ)

The reason that f;” in (6.90) is not the HT estimator is that the actual inclusion
probability of T, 7, is not identical to 7 (1)7k(2), for reasons explained in Sérndal
et al. (1992, §9.1). We defer to these authors for a more comprehensive discussion
of fy’,” and its properties. A corresponding estimator of z,, which we use below, is

A/ Xk
&= Tk (6.91)
o ﬂéz k(1) Tk (2)

If U € s, then yy is measured. The selection of s, and the subsequent measure-
ment of y; constitutes the second phase of sampling. Evidently, Z‘Zlkes1 Yk can be
unbiasedly estimated from this second-phase information by

~ k
Tyz(2) = z e (6.92)

b
T
Uesy K2

and zﬂk cs, Xk 1s unbiasedly estimated by

Xk

Ter(2) = —_— (6.93)
TTk(2)
Uk sy
This suggests that
A Tyr(2
Rysy = 272 (6.94)
x7(2)

may serve usefully as an estimator of Ry, leading to the double sampling ratio
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estimator as
Tyﬂ rat,ds = Rylx(2)fx7r(l) + ( Tyr — Ry|x(2)rx7r) . (6.95)

In (6.95), one may interpret the parenthesized term as an adjustment to account for
the use of 7,,(1) rather than 7, in the term preceding it. In the case of SRSwoR at
both phases of sampling, 7y rar,ds simplifies to

i:yn,rat,ds = Nﬁy\x(Z)il, (6-96)

where x| is the sample mean of x in the first-phase sample. To those familiar with
traditional books of sampling methods, such as Cochran (1977), (6.96) will seem
familiar, whereas (6.95) will seem foreign, yet it is the latter which permits use
of ratio estimation following a broad suite of (fixed sample size) double sampling
designs other than SRSwoR.

As derived by Sérndal ef al. (1992, §9.7, eqn.9.7.27), the variance of fyn,rat,ds is
approximately

Va [fyn',rat,ds]

1 — 7w Tk (2) — k() Tk’
~ z 2 (2) Z Z kk'(2) k@) Tk (2)
~ B T ( ) Tkl ( )

Upes ﬂk(])n'k(z) Ueest k' Tr(H)TkQ)TL' (1) Tk (2)
Uy €51

T — 7T T
+Z ( nk(l))_l_zzykyk,( kk'(1) — Tk(1) k(])) 697)

k(1) k=1 b2k Tk()Tk' (1)
K=1

where E(1 indicates expected value over all first-phase samples; 74 in this context is
the residual value ry = yr — Ry|x(1)Xk, With Ryjx(1) = 7y(1)/Tx(1)- Ry|x(1) Obviously
will vary from one first-phase sample to another.

Again relying on Sérndal ef al. (1992, §9.7, eqn.9.7.28), V, [fy,,,rat,ds] is esti-
mated by

n " 1—m=m 1—x
vl[Tyn',rat,ds] = z 8/% ]3( . k2(2))+ Z J’/%( . k(l))
T T T /3
Uk Esy k(1) k(2) Uesy k(D))

A Tik'(2) — ThQ)TK' Q2
+Z ng”kgk/rk/( < ATLE) )

Tk ()T 3 T (1))’
e izt KK QTR TR TR (DT (2)
Uy €57

Tik'(1) — Tk()7Tk'(1
+ > Zykyk/( W~ ZHNZED ) (6.98)

Tk’ (DT kk' ()T T
Uy K4k kk! (1) T kk' (2) T (1) ke’ (1)
Uy €57

where g in this context is
Txr(1)

= , (6.99)
Txm(2)
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and where

P = yi — Ryx@xk- (6.100)

When the sampling design for both phases is SRSwoR, 131[fy,,,rat,ds] simplifies
(greatly) to

e 11 11\ (a)°
01 [Fyzorads] = N? (Z - N) sy + N? (Z — n—l) (x_2) 52, (6.101)

where sr2 is the sample variance of the 7 values in the second phase sample, and s)z,
is the sample variance of the y; values in the second phase, i.e.,

1
2 ~2
s = r (6.102)
" ny — 1 Uéz k
and
1 _
5= D, k=) (6.103)
n Uk €Sy

The first term in (6.101) estimates the variance of the HT estimator of 7, when
drawing a simple random sample of n; units without replacement, whereas the
second term constitutes the increased variability incurred by the second phase
of sampling n, units from the n| units of the first phase. The simplification of
01 [fy,,,m,ds] to the expression in (6.101) is left as an exercise at the end of the chapter.

Example 6.20

In Example 3.8 we reported an estimate of i1, = y = 81.0 kg following a
SRSwoR of size n = 52 trees from the N = 1058 population of trees shown
in Figure 5.1. The estimated standard error of /i, was 12.9 kg. This population
was also sampled systematically with equal probability from an ordered frame
in Example 6.14.

Here we report the results from a double sample of the population using
SRSwoR at both phases. The size of the first-phase sample was set at n| = 104,
while the size of the second-phase sample was ny = 26. The auxiliary variate
was the basal area of each tree, which implies that the only measurement of
trees in the first-phase sample was its diameter. The variate of interest was
aboveground biomass, as in the previous examples.

The sample mean biomass from phase 1 was X; = 0.0178228 m?, hence
Ten(l) = 18.9m2. From the second-phase sample, Tar2) = 21.7 m? and
Tyz(2) = 88,400 kg and s% = 7682.29kg>.

With these results, the population ratio was estimated as Ii’y|x(2) = 4063.7kg/m,
and s,2 = 1760.22 kg2 /m*. Consequently, the estimator of the total biomass

from (6.96) is Ty ra,ds = 76,798.6 kg, in other words, the estimated average
biomass per tree is it yz rat,ds = 72.6 kg.
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Appealing to (6.101), we obtain

. 1 1
U1 [Tyn,rat,ds] = 10582 (m — ﬁ) 7682.29
1 1 0.0178228\ >
+10582 ( — — — ) ——222) 1760.22
26 104 ) \ 0.020561

= 11,745,670.5kg>.

Consequently, 0 [ I yﬂ,rat,ds] =104.9 kgz, in other words the estimated standard
error of [iyz ra,ds is estimated at 10.2 kg.

In other words, a double sample coupled with ratio estimation resulted in a
about a 20% kg reduction in standard error compared to the one-phase SRSwoR
results from Example 3.8. Here the diameter of twice as many trees were
measured, but the biomass of only half as were measured in the earlier example.

Turning now to the regression estimator of 7, following double sampling, the
regression coefficients, A and B, of §6.8 are estimated with the n, pairs of x — y
values obtained from the units sampled in the second phase. For a general sampling
design, the double-sampling estimator of B is

R o — it /N
Br) = f/’” XA” )Z/A ” (6.104a)
t, (/N
_ e, Ok — T IND Ok = 20 /N T TR () (6.104b)
Daes, Ok = Tin /N Tr()Th(2)
where the terms not previously defined are

f)/cyir = z kI > (6.105)

Upes, TRDTKQ)

>
A/

T, = _— (6.106)

T e, THOTHE)

and
.\ 1

N, = _ (6.107)

i ﬂéz T(1) Tk (2)

The corresponding estimator of A is

. ' — B.oyt!

Apgy = D, (6.108)
Ny

The double sampling regression estimator has a form that is similar to that of the
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double sampling ratio estimator fyn,rat,ds in (6.95):
tyrreads = Ne(hAz@) + Bz @) tan (1)
+ (f)/,” — I\A/;TAA,TQ) — éﬂ(z)f;”) . (6.109)

Here, too, the parenthesized term may be interpreted as the adjustment that is needed
to account for the use of ]\7”(1) and 7y, (1) rather than N and 7, (compare (6.109) to
(6.85)b).

The approximate variance of 7y reg ds is given by the same expression as used
for the approximate variance of 7,z ra,s in (6.97), but with the following regression
residuals:

rk = Yk — A — Bxg. (6.110)

Furthermore, the expression given for 0; [fy,,,rat,ds] in (6.98) can be used to estimate
Vs [fyn,reg,dg] provided that the following values of g; and 7y are substituted into it:

_ e B — Bar0 B (fmm - ﬁ;nNﬂl)) X

g =—x2t - N i 6.111)
N7/r T)/Czn— - luf\”ﬂ.' T)én' 1)22” - lugcn: T)/cn
and
Pk = Yk — Az @) — Bz (2)Xk- 6.112)

In (6.111), ,&xn(l) = fx;r(l)Nn(l) and ,[t;m = ‘LA')/CEN;T.

Sarndal et al. (1992) assert that the variance estimator can be simplified by putting
gk = 1 rather than evaluating (6.111), but did not indicate how this simplification
affects the performance of 9 [fy,,,reg,ds] as an estimator of V, [fyﬂ,reg,ds].

A

For SRSwoR at both phases, By (2) simplifies to
Br) = sy /530y 6.113)

where sy (2) and sf(z) are the sample covariance between y and x and the sample
variance of x, respectively, both computed from the second-phase sample values.
Moreover, fy,r,reg,ds simplifies to

Zyrreads = N¥2 + Bra) (X1 — %2) (6.114)

and ﬁl[fy,,,reg,ds] simplifies to the same expression as given for 131[fyn,rat,ds] in
(6.101) provided that the regression residuals given by (6.112) are used to compute

2
sy

Example 6.21

Gilbert & Eberhardt (1976) recount an application of double sampling with
regression estimation for the purpose of estimating the average amount of
plutonium in surface soil. In this application, y was the measure of plutonium
(in curies) by an accurate but expensive procedure, and x was the measure
of plutonium by a more fallible but less expensive device. They concluded
that double sampling with regression estimation reduced the standard error of
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estimated plutonium by 35%, and that a reduction in the cost of sampling by
20% to 30% was possible without any sacrifice in the level of precision.

6.10 Terms to Remember

Combined ratio estimator Ratio estimator
Covariance Ratio estimator property
Double sampling ratio estimator Ratio of means

Double sampling regression estimator ~ Regression estimator
Linear correlation coefficient Separate ratio estimator

6.11 Exercises

1.

Use the technique shown on page 83 in the Appendix to Chapter 3 to derive the
expected value and variance of 7y, to show that R}, is an unbiased estimator of
R

yix-

. Derive a simplified expression for (6.13) when the sampling design is Bernoulli

with constant inclusion probability, 7.

Derive a simplified expression for (6.13) when the sampling design is the Poisson
design explained in Example 6.2.

Using the Eucalypt leaf data of Example 6.16, compute the HT estimate of total
leaf area and verify that the estimated standard error is 4,696.2 cm?.

Using the Eucalypt leaf data of Example 6.16, compute the ratio estimate of total
leaf area and estimate its standard error.

. Show that N = 2 aes 1/mk is identical to N under SRSwoR. Use this result to

show, further, that A, in (6.84) and B, in (6.80) simplify to A in (6.73) and B in
(6.70), respectively.

. Show that 03 [ Tyz rat ] in (6.25) simplifies to (3.2.3) under Bernoulli sampling.

A

Derive 01 [ Ry, ] as expressed in (6.28) from its more general expression in (6.22).
Use this result to derive (6.29) from (6.22).

The data shown in Table 6.2 were obtained from a sample of n = 20 1-meter
wide belt transects. The purpose of the study was to estimate the total number of
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Table 6.2 Pale white larkspur abundance on a sample of 1 m wide belt transects in Stheman
& Salzer (2000). Area of all N = 150 transects was t, = 5897m?.

Transect No. plants Transect area Transect No. plants Transect area

(m?) (m?)
1 0 22.0 11 19 37.0
2 22 27.0 12 63 42.0
3 1 33.0 13 55 30.5
4 12 38.4 14 39 30.0
5 4 41.0 15 17 27.0
6 21 45.0 16 7 3.0
7 77 34.0 17 18 13.0
8 27 34.0 18 3 12.0
9 4 41.0 19 12 14.0
10 23 31.0 20 5 13.0

10.

11.

pale white larkspur plants in this grassy region between a river and the edge of
the forest. Because neither the forest edge nor the river were straight, the lengths
of the N = 157 non-overlapping belt transects varied. With the area of transect
as the x-variable, use 7y ra to compute a 90% confidence interval for the total
number of pale white larkspur on the property.

Barrett & Nutt (1979) provide data derived from aerial photography and field
examination of the number of dead trees in a 80 ha parcel of forested land where
a disease had inflicted considerable mortality. As they aptly describe, the field
counts are much more accurate than the counts of dead trees assessed from the
photos, yet it is also considerably more costly. The relationship between field (y)
and photo (x) counts of dead trees is shown in Figure 6.4 for the complete census
of 80 “photoplots”.

As an exercise, select a SRSwoR of n = 10 of these photos and with the paired
x — y data, estimate the total number of dead trees on this parcel of land. Do
these data suggest that the ratio or the regression estimator would be preferred?
Compute a 90% confidence interval for 7, using a) the ratio estimator, and b) the
regression estimator. Which of the two intervals is narrower? Explain the reason
for the result you obtained.

Using the biomass data displayed in Figure 3.1 and discussed in Examples 6.16
and Example 6.15, among others, select a stratified random sample of overall
sample size n = 28 trees. Allocate the sample equally among the four strata.
Compute a 90% confidence interval for total foliar biomass for each species
and for the population as a whole using a) the HT estimator, b) the combined
ratio estimator using basal area as the auxiliary variate, and c) the separate ratio
estimator using basal area as the auxiliary variate. Is the improvement offered by
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Table 6.3 Counts of dead trees from aerial photography and from field assessment. Data
provided in Barrett & Nutt (1979, p. 175).

Photo Photo Field Photo Photo Field

No. count count No. count count
1 9 10 41 18 16
2 11 6 42 16 10
3 3 4 43 13 7
4 8 10 44 14 13
5 17 13 45 17 12
6 2 4 46 12 11
7 16 10 47 14 9
8 13 9 48 8 6
9 12 10 49 10 13
10 6 7 50 15 15
11 14 15 51 12 9
12 17 17 52 14 11
13 9 8 53 14 9
14 15 13 54 13 8
15 16 14 55 18 11
16 6 8 56 5 6
17 12 8 57 19 15
18 7 5 58 19 14
19 9 9 59 9 7

20 14 12 60 10 6

21 16 12 61 1 2

22 15 9 62 7 8

23 11 9 63 8 9

24 16 11 64 12 7

25 11 7 65 3 8

26 10 8 66 6 6

27 9 6 67 7 9

28 8 7 68 10 8

29 18 12 69 12 10

30 16 12 70 13 10

31 3 6 71 12 12

32 10 9 72 2 3

33 15 11 73 8 11

34 17 13 74 11 10

35 1 5 75 4 7

36 15 10 76 19 14

37 5 5 77 18 13

38 19 12 78 7 7

39 17 15 79 19 13

40 10 11 80 11

oo
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12.

14.

15.

16.
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Figure 6.4 Dead tree counts from ground plots and from photos of the ground plots.

ratio estimation observed in Example 6.15 apparent in these results, also? Is the
similarity between the combined ratio estimator and the separate ratio estimator
observed in Example 6.15 also observed when estimating aggregate foliar biomass
for each species?

Repeat the previous exercise but allocate the sample of n = 28 trees proportion-
ally to the sizes of the strata, i.e., n, = n(Ny/N).

. Repeat the previous exercise but allocate the sample of n = 28 trees proportion-

ally to the aggregate basal area in the strata, i.e., n, = n(zy 5 /7x), as discussed in
§5.4.3.

Derive g as given on page 189 for SRSwoR.

Derive gi as given on page 189 for unequal probability systematic sampling with
Tk = NXk/Tx.

Starting with the general expression for 0 [fy,r,rat,ds] given in (6.98), derive the
result for SRSwoR given in (6.101).

6.12 Appendix

6.12.1 Linear correlation coefficient

The strength of the linear correlation between two variates, x and y, is quantified
by the linear correlation coefficient. For a population of N distinct elements, this
coefficient is

pry = —22 (6.115)
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Figure 6.5 Two functional relationships, the left of which is linear.

where
| N
77 2 Ok =) (o = ) (6.116)
k=1
is the covariance between y and x. Two features of p,, are noteworthy:

nyz

1. It has no units of measure, therefore its magnitude does not depend on the unit of
measure associated with x or y

2. Its value is bounded by the interval —1 < p,, < 1, with p,, = 1 indicating
perfect positive correlation, py, = —1 indicating perfect negative correlation, and
pxy = O indicating that x and y are uncorrelated.

When pyy = 1, a graph of y; versus x; would reveal a straight line with
positive slope. That is, for some constant value, a, and positive constant, b, yy =
a+bxi,k =1,...,N. When p,, = —1, the same relationship holds but with b

now being a negative constant. For sake of illustration, suppose we had a collection
of N circles and y; was the circumference and x; the diameter of the kth circle.
Because diameter multiplied by the mathematical constant, 7, yields circumference
(i.e., yx = 0+ mxy), any collection of circle diameters and circumferences would
yield pyy = 1. Perfect linear correlation, either positive or negative, means that any
value of yj can be exactly calculated from x, provided that a and b were known.
In other words, a linear correlation of py, means that there is a linear functional
relationship between x and y.

Two variates may be functionally related, but not linearly so, in which case
pxy < 1. For example, let y; be the area of a circle and x; be diameter. Geometry
informs us that y; = nx,% /4, which is a relationship that can not be expressed as
vk = a + bxy for any constant b. These two functional relationships are displayed in
Figure 6.5.

A value of pyy, = 0 indicates that the two variates have no linear association,
which does not mean that x and y are unassociated or independent. This point
is demonstrated in Figure 6.6. In each frame of the figure, the linear correlation
coefficient is identically zero. In the left frame there is no association between the y
variate on the vertical axis and the x variate on the horizontal axis. Yet there is a clear
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Figure 6.6 Two relationships, each of which with pxy = 0.

pattern among the x and y values in the right frame, despite py, = 0. It would be a
mistake, therefore, to conclude that two variates are unrelated whenever p,, = 0, as
this coefficient is a measure of linear association only.

It is rare that attributes of biological, ecological, and environmental phenomena
are perfectly linearly correlated or completely uncorrelated. A positive correlation
between two variates, whether linear or not, will be revealed graphically as a trend
showing increasing value of y for increasing value of x, as, for example, in Figure 3.2
which displays bole volume (y) versus bole diameter (x) of 236 red oak trees. At any
value of diameter on the horizontal axis, there is a spectrum of volumes that could
correspond to it. The smaller the range of y at each x, the more highly correlated
are x and y. A positive trend bespeaks a positive correlation, and a positive linear
correlation coefficient, pyy, even if the trend is curvilinear. A positive value of py,
does not imply that x and y share a straight-line relationship.

The population parameter, py,, commonly is estimated from a SRSwoR by

o 2ges Ok —Y) (ke — X)

Py = 242
n—1 5355

(6.117)

6.12.2 The jackknife estimator of Ryx.

Let Iéy\x,_k be the estimate of Ry, using all n observations but the kth. In other
words,

~ fyn' — Vi/ Tk
Ryjy,—k = ————.
Tyg — Xk /g

(6.118)
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The ‘omit-one’ jackknife estimator of Ry, is

~ ~ n—1 .
Ryprg = nRyp — — ; Rk (6.119)

n
Ryjx.er (6.120)
k=1

S| =

. 1 .
where Ryjy.e = 7 2 i—i Ryjx,—&-
The approximate variance of Iéy‘ x,J 18 unbiasedly estimated by
n

Ta I . . \2
85 [Ry,x,,] == > (Rm_k _ Ry\x,.) . (6.121)

k=1
Efron (1982) showed that 0 ][IQW, ]] has a slight positive bias, and he asserted that

Dy [Iéy‘xJ] is appropriate as an estimator of V[I%ypc], also.

6.12.3 Equivalent expression of B,

To show the equivalence of (6.80) to (6.83), begin by expanding the product inside
the numerator of (6.83):

Xk — fxn/]\?ﬂ) ()’k - fyir/ﬁn)

> -

Uk es
_ Z Xk Yk Tyn Z Xk Txrm Yk + Txr Tym Z 1
T Y T Y T V2 T
Uy es k N” Ui es k N” Uy es k N7f Uges k
~ Tym Txm ~ Txrx Tym 2
=Txyr — = Txrn — = Uyrm = Ny
N, N2
T 4 P
~ Txn Tym
= Txyr — ~ 5
Nz

which is identical to the numerator in (6.80).
The equivalence of the denominator of (6.83) to that of (6.80) follows a similar
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progression:
A e 2
Xk — Txz /N 2 A 22
ZM—ZL"— b gk Ee g L
= s
Uk es Tk Uges Tk Nﬂ Uges Tk N7r U es Tk
A A2
A Txm A T
=T, — 2Tz + 2T N,
T T
A2
_ 2 Txr
= Txyr — "~ >

T

which is identical to the denominator in (6.80).

6.12.4 Joint inclusion probability under unequal probability systematic sampling

The following expression was derived by Hartley & Rao (1962) as an approximation
to the joint inclusion probability of Uy and Uy,. With appropriate adjustment to the
differences in notation, it appears as their expression (5.15).

n—1 n—1
Tk + ——5— 7wk (T + k)
n

ﬂkk/ =

n—1 n
3 Tk P + 2
n

_lnﬂ/(n2+7r7r/+7r2)
n3 k7k k k7k k'

n—1 n
-3 T TkTK (i + ) P +3

-1 5
STk P

n

n—1

— 22— Ty (6.122)
n

In the above expression, ¢ = Z,](V:] nfand ¢ = Z,](V:] n,?.






CHAPTER 7

Sampling with Fixed Area Plots

7.1 Introduction

Plot sampling often is used where the populations of interest comprise elements
that are distributed spatially over a landscape, e.g., plants, ant hills, wildlife dens,
etc. Sampling over the landscape usually relies on an areal sampling frame because
of the infeasibility of compiling a list frame of individual elements or clusters of
elements. By an areal sampling frame we mean a device, such as a map or a GIS, that
permits the selection of any point location within a region, denoted by 4, on which all
the discrete elements 7, k = 1, ..., N, are situated. Sampling locations are point
locations, which ordinarily are selected uniformly at random from the continuous
areal frame. A sampling location may serve as the center point of a circular plot,
the centroid or a corner point of a rectangular plot (quadrat), or it may be distinct
from the plot, where the sampling protocol indicates the distance and direction from
the sampling location to a plot with a prescribed shape and size. Plots of any shape
are permissible, but shapes other than circular or rectangular are rarely employed in
practice. The elements that occur within a plot constitute a probability sample of the
population of discrete elements.

In addition to the sampling design that establishes a single plot at each sampling
location, there are a number of variants. Frequently plots of the same shape, but
of different sizes, will be located at a single sampling location. Often a nested-plot
design is employed to permit smaller but more frequently occurring elements to be
sampled on smaller plots in order to allocate the sampling effort more equably among
the larger elements of the population. For example, trees exceeding some threshold
diameter will be sampled on 0.1 ha plots, whereas trees smaller than the threshold
diameter will be sampled only if they occur on a 0.05 ha plot located at the same
place in 4. Another variant is the establishment of not one but a cluster of plots
equidistant from a central sampling location. An example of a plot cluster appears in
Figure 7.8.

These variants notwithstanding, a distinguishing feature of plot sampling is that,
with some exceptions, each element of the population is sampled with a probability
proportional to the area of the plot in which it occurs. The exceptional elements
are close to the boundary of 4, where, it turns out, their inclusion probabilities are
somewhat diminished. This interesting complication will be explained in detail in
section 7.5. With the exception of these elements close to the boundary of 4, plot
sampling is an example of equal probability sampling with an areal frame.

205
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l&e—5 m—>

Shrubs
[11im [« Herbs

Trees
10m

Figure 7.1 The layout of the nested plot from Ponce-Hernandez (2004). As described in
Example 7.1, successively smaller vegetation, organisms, and features are measured on
successively smaller plots.

Example 7.1

In a manual prepared by the Food and Agriculture Organization of the United
Nations (Ponce-Hernandez 2004), a nest of square plots, shown in Figure 7.1,
was described for the sampling of aboveground biomass and assessment of land
degradation.

Morphometric measurements of the trees and large woody detritus are gath-
ered over the entire 10 m x 10 m quadrat. On this plot, too, tree species and in-
dividual organisms within a species are recorded for the purpose of biodiversity
assessment, as well as site measurements and observations for land degradation
assessment.

In addition to the measurements just noted, the shrub layer is also measured in
the 5 m x 5 m quadrat. At this level the stem and canopy of shrubs are measured,
plus small deadwood, and shrub species and individual shrub organisms are
identified and recorded.

Information about the herbaceous species is added to the mix in the 1 m? plot.
Litterfall, fine debris, and stems and roots of herbaceous species and grasses
are sampled for the determination of live and dead biomass. The number of
herbaceous species and number of individuals within species are counted.

7.2 Notation

As already noted, 4 indicates the region on which the population of interest is
situated. The region often is demarcated by political or property boundaries. For
example, 4 may be a parcel of forested property owned by an individual; or a
national or district park; or a conservation area or landfill; or an industrial plantation
of commercially harvestable trees or agricultural crop; or a riparian zone surrounding
a recreation area; and so on. Let the horizontal land area of 4 be denoted by A.

The number of sampling locations at which a plot or cluster of plots is established
on 4 is denoted by m. With plot sampling it is convenient to regard the number of
sampling locations as the size of the sample, rather than the number, #, of population
elements that are included in the sample: the number of plots to establish is a design
parameter to be stipulated by the survey planner, whereas 7 is not. The number of
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elements sampled from the population at each sampling location can not be known
in advance of sampling.

Let 7 denote sample plot s, where s = 1,...,m. With respect to the origin
of orthogonal axes encompassing the horizontal plane of 4, let (x;, z5) denote the
location coordinates of ®;. For example, the x-axis may point East, the z-axis may
point North, and (x, z) = (0, 0) may be the southwest corner of a rectangle which
completely encloses the horizontal projection of 4 onto a map or GIS.

Let a denote the area of each plot. A circular plot of radius R m implies that
a = 107*z R? ha. A rectangular plot of dimension L m by W m implies that
a = 107*LW ha. Although plots of other shapes are rarely used in practice, it is
not uncommon to find plots in clusters arranged in a geometric pattern such a star or
an ell or a hexagon.

7.2.1 Selection and installation

Sampling locations ordinarily are selected by the acceptance-rejection method. Let
X and Z be the length and width of a rectangle that encompasses 4. Let u; and
uy be two uniform random numbers drawn from UJ[0, 1]. Calculate x = u;X and
z = upZ. If the coordinates (x, z) occur in 4, then this point location is selected
as a sampling location; otherwise, this point location is rejected and the selection
procedure is repeated with two new random numbers.

All distances and dimensions of plots are measured in the horizontal plane. On
steeply sloping land, this requirement may cause circular plots to appear as ellipses,
if dimensions are measured on the slant. Likewise, a square plot may appear as
a rectangle or a distorted rectangle, depending on the orientation of the plot with
respect to the aspect of the landscape.

7.3 Sampling protocol

All population elements situated inside a plot are included into the sample for that
plot—provided all these elements are within 4. If a plot overlaps the boundary of 4,
then it may contain some elements that are not in 2; these elements are not part of the
sample. We regard location of an element as a point property. For this purpose, we
let (xg, zx) denote the location of U,k = 1, ..., N on 4. In contrast to the random
nature of the sampling locations, (xs, z5), s = 1, ..., m, the locations of the elements
are regarded as fixed. With a circular plot of radius R, the protocol implies that an
element, Uy, is tallied if (x, zx) is closer than R to (xy, 7). Regardless of plot shape,
there is a need to determine the location of 7 unambiguously. If the population of
interest is one of single-stemmed plants, the location of 7 is normally taken to be
the center of the base of the stem. For other types of populations, the point location of
each element may be less obvious. For example, if the population consists of woody
detritus or coarse woody debris (CWD), part of U may lie outside the plot.

Part of the sampling protocol must be an a priori definition of the point on each
Uy that determines its location. In the case of log-shaped CWD, this point might be
defined as the furthermost extreme of the small end of the log; or the midpoint of
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ASIDE: We do not envision the situation where the the region 4 is tessellated
into a finite number of non-overlapping cells, each of approximate area a, from
which m will be selected at random. In the design we have proposed, plots
may well overlap if randomly located over 4. To prevent overlap, plots often
will be established on a systematic grid. Whether randomly or systematically
established, there are an infinite number of potential plot locations, (xs, z5), in
the design we present. Except for very small land areas, we do not view the
tessellation of 4 as a realistic or practical design for sampling with an areal
frame. For that reason, we do not consider it further.

An alternative design, having elements of both the tessellation design above and
systematic sampling, has been termed “unaligned systematic sampling.” In this
design, 4 is tesselated into a grid of m rectangular cells, each of which will be
considerably larger in area than a. Within each cell, one plot is located at random.
Analytical and empirical results from simulation studies reported by Barabesi
& Pisani (2004) indicate that this design warrants further attention. Despite its
apparent merits, however, we do not consider this design for the location of plots
on A4 further, either.

the log; or any other point that can be unequivocally identified on any piece of CWD
that might be encountered. How the location of 7 is defined is less important than
(i) the ease with which it can be determined in the field, and (ii) the consistent use
of this definition for all plots in a particular survey. Failure of the latter is a form
of measurement error which may make estimation of the population parameters less
precise than otherwise. Errors from the inconsistent or sloppy determination of the
location of population elements within a plot may also result in biased estimation of
population parameter values. An element is either in a plot, or not; and the errors that
accrue from incorrect determinations rarely average to zero. The risk of measurement
error of this sort usually is lessened by working in a systematic manner. For example,
tally elements within a circular plot by starting from a fixed direction, e.g., due north,
and working in a clockwise direction.

7.4 Estimation
7.4.1 Inclusion zone of an element

By definition (see §1.3.2), the inclusion probability of € is the probability of
including it in the sample. For present purposes, we focus on the probability of
including Uy in the sample from a sample plot, Z;. Whether or not U € P; depends
on the location of Uy relative to (xg, zs). It is instructive to visualize the locus of
points on A4 where (x;, z5) could be randomly located such that 7 € 2. We do
so with a series of examples for plots of various shapes and orientations. In the
figures accompanying these examples, the open circle o indicates the point (x;, z5)
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Figure 7.2 Three differently located I m x 2 m plots and the inclusion zones implied by them.
The o indicates the location, (xs, zs) of a typical plot, and e indicates the location, (xj, zj)
of a typical population element, Uy. The rectangular plot described in Example 7.2 is shown
in frame (a); the inclusion zone of Uy corresponding to plots of this size, shape, orientation
in frame (b); An example plot in the inclusion zone is shown in (c). Frames (d), (e), and (f)
display the sample plot described in Example 7.3, with the corresponding inclusion zone and
specific example. Frames (g), (h), and (i) display the sample plot described in Example 7.4,
with the corresponding inclusion zone and specific example.

by which the plot is located. The filled dot e indicates the location of an element of
the population, Ty.

Example 7.2

Consider a rectangular plot of dimensions 1 m by 2 m, oriented with its
longer side in an East-West direction, and with (xy, z5) as its northeast corner,
as displayed in Figure 7.2a. Only those points within the shaded region of
Figure 7.2b could serve as the location of % such that 7 € ®;. One such point
location of a plot is shown in frame (c), from which it is clear that this sample
plot would include ;. We term this shaded region the inclusion zone for .
Any (x;, z5) located outside the shaded region could not include that element in
a plot of this size, shape, orientation, and located by its northeast corner.

Example 7.3

Consider the same size plot as in the preceding example, but with its southeastern
corner as the point which serves to locate the plot on 4, as shown in Figure 7.2d.
The inclusion zone of ¥ for a plot of this dimension and orientation is shown
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in frame (e). Evidently it is the same size as the inclusion zone in Example 7.2,
but its placement relative to (x, zx) has shifted.

Example 7.4

Suppose the same plot dimensions as in Example 7.2, but with the longer side of
the plot aligned in a North-South direction. The plot is located by its northeastern
corner, as in shown in Figure 7.2f. The inclusion zone of Uy for a plot of this
dimension and orientation is shown in frame (g). The change in orientation of
the plot causes a similar change in the orientation of the inclusion zone with
respect to (xg, Zx)-

The inclusion zone of an element is a subregion of 4. The shape and areal size
of the inclusion zone is determined by, and is identical to, the shape and size of the
intended field plot. The location of the inclusion zone relative to the point location of
Uy, is determined by the placement of a plot relative to the sampling location (x;, zs).
As illustrated in Examples 7.2 and 7.3, any change in the position of a plot relative
to the sampling location causes a predictable change in the position of the inclusion
zone relative to the location of the element. Examples 7.2 and 7.4 illustrate the effect
of changing the orientation of the plot on the position of the inclusion zone relative
to the location of .

The following examples illustrate further the relationship between the shape and
orientation of the plot around its point of location to the shape, orientation, and
location of the inclusion zone of Uy.

Example 7.5

A triangular plot rarely is used in practice, however it is instructive to consider
the use of one. We suppose that each side of the plot is 2 m long, that its base
runs in an East-West direction, and the location point (x;, z5) is its upper vertex,
as shown in frame (a) of Figure 7.3. Obviously for any such plot to include U,
(x5, z5) of the plot must be north of g, leading to an inclusion zone whose
orientation is inverted from that of the triangular plot as described, as shown in
frame (b) of the figure. In frame (c) is a typical plot that is within the element’s
inclusion zone and hence includes the element within it.

Example 7.6

Suppose one elects to use a plot in the shape of an L, and the inner corner of
the L serves to locate the plot at (xy, zg). Suppose that the short leg runs in a
North-South direction and is 3 m long and 2 m wide. The long side of the L-
shaped plot is 5 m long and 1 m wide, as shown in frame (a) of Figure 7.4. The
corresponding inclusion zone for 7 is shown in frame (b). Two typical plots
which include U are shown in frames (c) and (d).
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Figure 7.3 An example of a triangular plot: a) the plot located at o described in Example 7.5;

b) the inclusion zone for Uy when sampling with such a triangular plot; c) a typical plot in the
inclusion zone of Uy.

a) b)
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c) d)
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Figure 7.4 The inclusion zone for Uy when sampling with an L-shaped plot described in
Example 7.6. The layout of the plot located at o is shown in (a); the corresponding inclusion
zone of Uy, is shown in frame (b); typical plots within the inclusion zone of Uy are shown in
frames (c) and (d).

Example 7.7

A circular plot of radius R located at (xy, z;) implies a circular inclusion zone
for each element of the population. Any plot located within R of (xi, zx) will
include .

ASIDE: An image of the inclusion zone corresponding to any size and shape
plot can be generated by making the location point, (xs,zs), of the plot
coincident with the location, (xg, zx), of U, and then rotating the plot 180°
around (xg, zx). The subregion mapped out by this rotated “plot” is the locus
of points where the (x;, z5) of any plot of the prescribed size and shape can be
located and include Uy.
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Figure 7.5 The triangular cluster of circular plots described in Example 7.8 is shown in frame
(a). The corresponding inclusion zone for Uy appears in frame (b). A typical plot cluster within
the inclusion zone of Uy, is shown in frame (c).

Example 7.8

Suppose the sampling location (x;, zs) is the center of a triangular cluster of
circular plots, each of radius R. One plot is located 20 m directly north of
(x5, zs), while the other two satellite plots are 20 m distant from (x;, z5) at 120°,
and 240°, respectively. The orientation of a typical plot cluster is shown in frame
(a) of Figure 7.5. The inclusion zone for Uy is shown in frame (b). With this type
of plot cluster, the sampling location (x;, zs) is not within any of the plots of the
cluster.

If the sampling protocol prescribes that all (x;, z5) must be located within 4, then
it is possible that some units of the population will have an inclusion zone smaller
than the size of the plot or plot cluster. This occurs for those U sufficiently close
to the edge of 4 that part of its nominal inclusion zone lays outside of 4, and hence
gets truncated by the boundary. This situation is illustrated in Figure 7.6, in which
we presume that a single circular plot is established at each (xy, z5). In this figure,
4 is located a distance greater than R from any boundary of 4, and hence has an
inclusion zone with an area equal to the area of a sample plot. In contrast, U is
less than R from one boundary of 4; because its inclusion zone is truncated by the
boundary, its area is less than that of a sample plot. In the same figure, the inclusion
zone of 73 is truncated by adjoining boundaries. We discuss methods to deal with
edge units with truncated inclusion zones in §7.5. For the present, we denote the area
of the inclusion zone of 7 by a;. When a single plot of area a is established at each
sampling location, a; < a; when a cluster of plots is established at each sampling
location, ay < ca, where ¢ denotes the number of plots in each cluster; when different
size plots are nested at each sampling location, the area of the inclusion zone for Uy
is less than or equal to the area of the nested plot appropriate for elements of its size
class.
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Figure 7.6 When sampling with circular plots, each having radius R, element Uy is sufficiently
into the interior of 4 that its inclusion zone is the same size and shape as the plot. In contrast,
elements Uy and Uz are so close to one or more boundaries of A that their inclusion zones
are truncated.

7.4.2 Estimation following plot sampling

The notion of inclusion zone is integral to understanding the inclusion probability of
Uk by a randomly located sampling unit, i.e., a plot or plot cluster. The latter is the
horizontal area where a sampling unit can be located such that it would include U,
expressed as a proportion of the area where a sampling unit can be located. When
(x5, z5) is restricted to 4, the above implies that
ak
A
The probability of including each Uy at each sampling location enables HT estima-
tion of 7y, for whatever characteristic y is measured on those Uy sampled. That is, the
estimate of 7, from % is

N k
ey = > 7yz— (7.22)
Uk Py k
Yk
= A X 7.2b
> 5 02
U €Py
=A Z Dk (7.2¢)
U €Py
= Aps, (7.2d)

where py = yi/ax is the value of yj prorated to a unit area basis, and p; is the sum
of all such prorated values for plot s. If plot s contains no elements, then p; = 0 and,
therefore, 7,7, = 0.

The installation of multiple, independent sample plots on 4, followed by HT
estimation of 7, with the data from each plot, has been called replicated sampling;
e.g., see Barabesi & Fattorini (1998), and Barabesi & Pisani (2004, §4). The
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ASIDE: The quantity pr = yi/ar can be interpreted as an attribute density
of ¥ within its inclusion zone, i.e., the amount of attribute per unit land area.
Likewise, pj is the total attribute density—the total amount of attribute per unit
land area—at the sampling location (x;, z5). These quantities are fundamental to
the formulation of plot sampling as an application of Monte Carlo integration,
which is described in Chapter 14.

customary estimator of 7, based on a replicated sample of m plots is

. | <.
Tymrep =~ z Tyxs (7.3a)
s=1
A m
== (7.3b)
s=1
= Ap, (7.3¢)

where p is the average p; value among the m plots.
The design-based variance of 7, is the same as given in (6.10), namely

N N N
R I — 7y Tk — Ty
2
V [tyzs] = Zyk ( 7 ) + Z Z Yk Vi (T ) (7.4)
k=1 k k=1 K'#k Kk
K'=1

where my = agr /A and agy is the area of the joint inclusion zone for Uy and Uy .
The joint inclusion zone for any two elements is the locus of points common to the
inclusion zones of both Uy for Uy ; see the Appendix (§7.10) for a discussion of joint
inclusion zones.

If the m plots have been independently established on 4, the variance of 7y rep is

N 1 .
4 [T}’”arep] o 14 [Tyns] . (7.5)

Moreover, V [fyﬂ,rep] can be estimated unbiasedly by

1 m

0 [fyn,rep] = m(m——l) Z (fy,” - ‘Eyn,rep)z (7.6a)
s=1
Y/
=——> (ps—p). (7.6b)
m(m — 1) =

As the number, m, of plots grows large, theoretical results from mathematical
statistics indicate that the distribution of 7, rep is approximately normal or Gaussian.
A confidence interval for 7, is constructed using a f-value with m — 1 degrees of
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fyn',rep + tmfl\/ ) [fyn,rep} (7.7)

freedom i.e.,

Example 7.9

Barrett & Nutt (1979) report the results of a plot sample with m = 8 plots,
each of area @ = 0.01 hectare. The diameter of each tree on a sample plot
was recorded, as well as the number of Nectria cankers on each tree, as shown
in Table 7.1. Because none of the plots were near the edge of the tract, the
inclusion zone of each of the trees, and hence cankers, on these plots had an
inclusion probability of 7y = 0.01/10 = 0.001. From the first plot alone, the
total number of cankers on the 10 hectare tract is estimated to be

2
Tyrl = 0001 = 2000 cankers.

From the second plot, the number of cankers on the entire tract is estimated to
be

R 2 N 2 N 1 5
Ty = =
270,001 0.001 ' 0.001 _ 0.001

Continuing in this fashion and averaging the m = 8 plot estimates together
provides a replicated sampling estimate of

= 5000 cankers.

Tyz,rep = 3750 cankers.

The plot-to-plot variance was s, = 5,071,429, leading to an estimated standard
error of Tyz rep Of

0 [Fyr.rep] = 796,

or 21%. A 90% interval estimate of the number of cankers is 3750 & 40%, or
from 2242 to 5258 cankers.

Example 7.10

Often there is interest in estimating the size of the population, N. This is simply
ty when y; = 1 (the count of an individual element) for all 7 on 4. With a
plot sample consisting of a single plot of area a at each sampling location, 7y
simplifies to

P = D — (7.8a)

=A —. (7.8b)
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Table 7.1 Tree diameters and numbers of Nectria cankers from a sample of 8 plots of size
a = 0.01 ha on a tract of A = 10 ha.

Plot

Dia. (cm) No. cankers Plot

Dia. (cm) No. cankers

1

10
12
15

13
14
18
18
19

11
11

10
10
11
12
14
16

9
10

5

13
15

9
10
11
12
14
15
17

10
12
12
14
18
18

10
13
15
17
18

1

If there are no elements in 2 close to the edge of 4, then the above result further
simplifies to Ty,s = nsA/a, where n; is the count of the number of elements
sampled on Z; .

Combining the estimates from all m plots provides

A

Tym,rep

1 m
= — E Ty
YIS
m
s=1

1 m
nZ
A m
539

s=1 Uy Py

= Nz rep» Say.

(7.9a)

(7.9b)

(7.9¢)

(7.9d)
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Barring the occurrence of edge elements in the sample, this simplifies to

A m
Eymrep = — > ny (7.102)
s=1
nA
_nA (7.10b)
ma

where n = 3" | n, is the total number of elements sampled on all m plots.

7.4.3 Prorating estimates to unit area values

The average amount of y per unit area, say 4y, is a population parameter functionally
related to 7,: A, = 7,/A. Similarly, 1, may be estimated unbiasedly with the data
sampled at 2 by

A Ty
yrs = %. (7.11)
The estimator of 1, from the replicated sample of m plots is
l m
Iymrep = — > Ayes (7.12)
s=1
fyn,rep
==, 7.12b
" ( )
This estimator can also be expressed in terms of the p; introduced earlier:
1< Vk
/Iyn',rep = m z M (7133)
s=1 U P

I < Yk
ZZ > o (7.13b)

s=1 U ePs
1 m
=—> ps (7.13¢)
m
s=1
= p. (7.13d)

Result (7.13b) makes it clear that estimates prorated to a unit area basis do not
require knowledge of the area of 4 nor the explicit determination of inclusion
probabilities.

The variance of 1 ya,rep 18

. 1 R
14 I:jvyﬂ,rep] = A2 14 [Tyn,rep] > (7.14)
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which is unbiasedly estimated by

. 1 o R 2
B[ Aymrep] = —— D (/lym - Ayn,rep) . (1.15)

m(m — 1) =

Alternatively, one can use 9 [Zyz rep| in

~ 1 ...
v [;Lyn,rep] = ﬁ v [Tyn,rep] . (7.16)

to obtain the estimated variance.

Example 7.11

The result, ngy/a, in Example 7.10 represents the number of elements in sample
plot s, prorated to a unit area basis. When multiplied by A, the area of 4, as in
(7.9¢), it estimates the size of the population in the entire region.

To convert this to an estimate of frequency per unit area, calculate

A

Nn,rep
A b

whose standard error is computed analogously:

/ﬁ[iN] :% B[ Nrrep |- (7.18)

where 3| Nn,rep] is given by (7.6b).

In = (7.17)

Example 7.12

The grass Agropyron smithii Rydb. is native to the prairies of North Dakota
(USA). Data from a sample of 12 rectangular quadrats were presented in Hanson
(1934). A summary of these data appear in Table 7.2, and the complete listing
of data can be obtained at the book’s website at http://www.crcpress.com.

Each quadrat had an area of « = 0.8 m?2, so that the inclusion probability
of each grassland plant was approximately 0.000,024. From (7.3c) we get

Tyz,ep = 1088.8 Mg, with an estimated standard error of /ﬁ[fy,,,rep] = 150.9
Mg, which is 13.9% of 7,z rep. In percentage terms a 90% confidence interval
for the total biomass of A. smithii on this prairie is 1088.8 Mg + 25%, or
817.7to 1359.8 Mg.

Example 7.13

The results from the preceding example can be expressed as a density by means
of (7.13) by dividing 1088.8 Mg by 3.24 ha to yield an interval estimate of
ly =336 Mgha~! £25%.
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Table 7.2 Biomass (g) of Agropyron smithii Rydb. and all grasses and forbs sampled from 12
quadrats on a grassland prairie of A = 8 ac = 3.24 ha.

Grasses and forbs (g)
Plot A. smithii All

1 27.5 76.0
2 374 138.6
3 1.2 54.5
4 8.7 79.8
5 43.2 98.0
6 40.3 106.0
7 30.1 93.1
8 20.4 81.2
9 25.7 81.1
10 343 131.1
11 36.3 118.1
12 17.5 82.6

Example 7.14

Table 7.2 also shows the amount of sampled biomass for all grasses and forbs
on each plot. The biomass per hectare is estimated to be 1187.5 Mg, and the
estimated standard error in percentage terms is 7.5%. The latter is lower than the
13.9% when estimating the biomass of only A. smithii. It is almost always true
that an estimate of a subset of a population is less precise than the corresponding
estimate for the whole, regardless whether the criterion for subsetting is species,
sex, age, or other grouping variable. In this case, it is testimony to the fact that
grass vegetation is more uniformly distributed on the prairie than is A. smithii.

7.4.4 Estimating the mean attribute per element

When sampling with an areal frame the size of the population, N, usually is
unknown. Because of this, estimation of u, = 7,/N by fi, = 7,/N evidently is
impossible with data from a plot sample. However, Example 7.10 shows how one
can estimate N by treating y; as a count of U. This suggests that when y is some
additional characteristic of interest, u, can be estimated by dividing (7.3¢) by (7.9d):
~ fyzr,rep
Hym,rat = —= . (7.19)

7, rep

This estimator is reminiscent of the estimator of the population ratio, Iéy‘ » in (6.2),
presented in Chapter 6. In /iy7 ra, however, we are using the replicated sampling
estimators of 7, and N, rather than the HT estimators of these parameters. Although
they are not quite the same, we do not expect their sampling distributions to be
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markedly different in large samples of plots (in the case of [iyz ra) and elements
(in the case of Iéy‘x).

7.4.5 Stratification

It often is possible to stratify an areal sampling frame of 4 to great advantage in
order to simplify the sampling effort in the field, to obtain separate estimates of the
population parameters by strata for administrative or management purposes, or to
increase the precision of estimation. As explained in Chapter 5, the criterion used to
stratify 4 will vary from one type of survey to the next, but common stratification
variables are land cover class, ownership, land use, and size or age class of the
population elements. For surveys of small land areas, the benefits of stratification
often will justify the cost of an initial effort to traverse the property for the purpose
of deciding on an apt stratification criterion (e.g., cover type, drainage, past land use),
and rough delineation of strata boundaries. For extensive surveys covering large land
areas, satellite images or other forms of remotely sensed data are often used for this
purpose.

Sampling and estimation following stratification of 4 proceeds along the lines
presented in Chapter 5, using the estimators presented earlier in this section of each
stratum’s parameters of interest.

7.4.6 Sampling intensity

It is generally true that precision is directly related to sampling intensity, which is the

proportion of land area included in the sample:
mca

SI = —. 7.20
" (7.20)

In the forestry vernacular, SI expressed as a percentage, is known as the percent
cruise.

Although SI is not identical to the sampling fraction, n/N, it generally is the
case that by increasing SI one effectively increases the sampling fraction, and hence
the precision of estimation, too. Evidently SI increases with increasing number of
plots, and for a fixed number of plots, m, SI increases as the area, a, of each plot is
increased. If plots are allowed to overlap, then it is possible for SI to exceed unity. In
practice SI is a small proportion of the land area of 4.

7.4.7 Elements near the plot border

One of the mensurational burdens which accompany plot sampling is the determi-
nation of which of the population elements are contained within the plot located at
(x5, zg). For many elements it will be obvious whether they are inside or outside of
the plot, but there will some elements that are so near to the border, or margin, of
the plot, that an optical determination of their inclusion in the plot will be difficult.
Errors in this determination introduce bias into the estimators of 7, and 4, presented
above. A commonly employed tactic is to include the first ‘borderline element’ into
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the sample, and to exclude the next one encountered, and to keep alternating inclu-
sion into the sample with this pairwise strategy. This is bad practice for at least two
reasons. First, for elements near the boundary of the plot, optical determination of
presence within the plot by human eyesight is faulty and inconsistent, and will yield
results that are not repeatable if different observers were to conduct the sampling.
Second, errors of inclusion or exclusion by this method will rarely even out or sum
to zero on average.

Measurement errors of this sort are never entirely avoidable, but a modicum of
good field procedure will reduce their prevalence and impact considerably: use a
mechanical instrument (e.g., a tape measure and compass) or an electronic instrument
(e.g., a laser range finder) of verified tolerance, in order to determine whether
the element is in the plot, or not. If the burden to take careful measurements is
too great for the budget allocated to the sample, then the SI should be lessened.
A diminished SI will decrease the precision of estimation, but lessened precision
usually is preferable to introducing a bias of indeterminant and possibly sizable
magnitude by failing to measure carefully.

7.5 Edge effect

The boundary overlap problem, as it is known in the forestry literature, arises where
an element, Uy, occurs so close to the boundary of 4 that its inclusion zone overlaps
the boundary. However, boundary overlap is not restricted to sampling in forestry;
indeed, it attends all applications of sampling with an areal frame.

Boundary overlap effectively truncates the element’s inclusion zone, reducing the
area of the inclusion zone by the area of the overlapping portion. Were it not for
elements near the edge of 2 with truncated inclusion zones, the inclusion probability
of all elements would be a constant value ca/A, where a is the area of each plot in
a cluster of ¢ > 1 plots established at any (xy, z5) in 4. The estimator fy,” in (7.2d)
requires knowledge of the inclusion probability of each element in the sample, which
means that the inclusion areas of any edge units need to be determined. For example,
additional measurements would be required in the field to determine the truncated
circular inclusion area of 7 and U3 in Figure 7.6. Determination of the inclusion
area of each element provides a general solution to the boundary overlap problem for
both single-plot and cluster-plot designs that use plots of any shape. We call this the
‘measure 7 method.’

Other, less labor intensive, solutions have been advanced to solve the boundary
overlap problem, and most of them apply to designs that prescribe independent
circular plots (¢ = 1). An exception is the buffer method, which applies to both
single-plot and cluster-plot designs.

7.5.1 External peripheral zone

This method—commonly called the buffer method—solves the boundary overlap
problem allowing sampling locations to fall both within 4 and within a tract buffer,
i.e., an external zone that surrounds 4. In essence, this method ‘un-truncates’ the
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inclusion zones of the elements near the boundary. The external buffer zone must be
wide enough that no population element within 4 can have an inclusion zone which
overlaps the exterior boundary of the peripheral zone; otherwise, some inclusion
zones may still be truncated, though to a lesser extent. For example in Figure 7.6,
the peripheral zone must be at least as wide as the radius of the plot or plot cluster.
With this method, first suggested by Masuyama (1954), the population of interest
remains the N elements within 4: similar elements located in the peripheral zone
are not included in the tally from any sample plot even if the plot itself is within the
peripheral zone. The effect of enlarging the region where (x;, z5) may be located is
twofold: for all Uy, the area of the inclusion zone is ca (for single plots, ¢ = 1), and
the constant inclusion probability is 7 = ca/A*, where A* = A4+ Ap; and A, is
the horizontal land area of the peripheral zone. With this method, some of the field
effort is reduced because there is no need to check or otherwise be concerned with
elements near the edge of 4. Estimation is simplified, too, because fyns in (7.2d)
reduces to

zA'yn's = E Z Yk (7.212)

= A%p;, (7.21b)

where p; = Zw e, Yk/ca is the aggregate sum of the y-attribute, prorated to a unit
area basis, measured on %;. The price to be paid for the convenience of obviating
the boundary overlap problem in this manner is a likely increase in the variance of
fy,,,rep and the difficulties that may be introduced in the field work to locate plots
outside 4.

7.5.2 Pullback method

If it is infeasible to locate plots outside the boundaries of 2 and also infeasible to take
the requisite measurements to calculate the inclusion area of edge units, a number
of alternative tactics can be used. One, which applies to single-plot designs, is to
alter the sampling protocol: any P that overlaps the boundary of 4 is relocated
orthogonally back from the edge until the overlap is nil. This tactic was called
the Move-to-R method in Gregoire & Scott (1990) and the pullback method in
Gregoire & Scott (2003), who studied the method for the situation where boundaries
are straight and plots are circular. This method does not really solve the boundary
overlap problem, because it ignores the fact that it is the overlap of inclusion zones
of population elements that is the source of the problem, not the overlap of a plot
cluster with the edge. Nonetheless, this method has been widely used in conjunction
with the estimator

Zyns = Aps. (7.22)

Because 7y # ca/A for all elements of the population, 7y, is biased. Figure 7.7
provides a detailed illustration of the alteration to the inclusion zone of edge elements
caused by this pullback protocol.
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Figure 7.7 Inclusion zones without and with alteration by the pullback method; d denotes the
distance separating Uy, from the edge.

When using a single plot at each sampling location, an alternative tactic is to
use 7yrs but to leave the sample plots where they were initially located, regardless
of whether some overlap the boundary of 4. Again, 7, is biased under this no-
correction plot sampling method, although the magnitude of the bias will differ from
its magnitude under the pullback method.

For the above two methods, the magnitude of the bias is affected by the size of
the sampling units, because smaller plot clusters provide correspondingly smaller
inclusion areas. There will be fewer population elements with truncated inclusion
areas when smaller plots are used. The ratio of the length of the edge to area of the
region being sampled also affects bias, because the smaller the ratio, the smaller the
bias. Advice that bias is ignorable when this ratio is sufficiently small, however, ought
to be heeded with caution. If the region is stratified into distinct land use classes, the
length of edge in a stratum in relation to the stratum area is the relevant metric to
examine in this regard, rather than the length of edge along the external boundary
of the unstratified region. Also, if plots are not permitted to be located in roads,
bodies of water, or other subregions of 4, then the length of edge along all these
areas, which are excluded from the areal sampling frame, also must be taken into
account. In other words, many more elements in 4 may have truncated inclusion
areas than would be inferred from a simple calculation of the ratio of external edge
length to A. Finally, the composition of the population may change as one recedes
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from the edge into the interior of 4. This almost always is true when sampling trees
or other vegetation and where there is a distinct difference in light conditions near the
edge compared to the interior. In many vegetation surveys, estimates of frequency,
biomass, or other attributes are desired for each separate species or species group.
To the extent that some species occur only along the edge, or with much greater
frequency along the edge compared to the interior, the pullback or no-correction
sampling strategies presented above may result in estimates with consequential bias.
By the same reasoning, estimates indexed by size-class of vegetation may have
unacceptably large bias.

7.5.3 Grosenbaugh’s method

Grosenbaugh (1958) suggested an alteration to the sampling protocol when sampling
with circular plots of radius R that permits an easy determination of the inclusion area
of edge units. He suggested that any 2 that are located within an internal peripheral
zone of width R be semicircular in shape of radius R, such that the flat edge of
the semicircle is oriented towards the outside of 4 with its flat side parallel to the
boundary, as shown in Figure 7.8a. This has the effect of halving the area of the
inclusion zone of a element, 7, in the peripheral zone, and orienting the semicircular
inclusion zone towards the interior, as shown Figure 7.8b. Consequently its inclusion
probability is 7 = a/2A. For any % located in a right-angled corner zone, a quarter-
circle plot is used, resulting in an inclusion probability of a /4 A. With this method of
sampling near the edge, as long as those elements that are in the interior peripheral
zone are noted, fy,m is easy to compute, and remains an unbiased estimator of zy.

Certain limitations of the above procedure are evident. For regions with boundaries
that are not straight lines, the inclusion zone corresponding to a semicircular plot will
deviate from a semicircle in a way that will make the actual inclusion area difficult
to determine exactly. For regions that are not rectangular, the inclusion zone for a
tree near a corner will not be exactly a quarter-circle in shape or size. Therefore, if
a/2A and a/4 A are used as the inclusion probabilities for edge and corner elements,
then 7y, will be biased. For very irregularly shaped regions, field implementation
of this method may become altogether too unwieldy. Moreover, the method is not
very amenable to plot clusters where ¢ > 2 plots are established at each sampling
location.

7.5.4 Mirage method

The mirage correction procedure solves the boundary overlap problem by both
altering the sampling protocol in the field and using an estimator similar to 7y,
but with each y; measured in P; multiplied by a weight, ;. The method provides
for unbiased estimates if the boundaries are straight with square corners. Also called
the reflection method, the mirage method was introduced into the forestry literature
by Schmid (1969). Regardless of where % is located, one tallies all 7, within the
plot of radius R. Then if ?; is within an internal peripheral zone of width R, the
plot location is reflected across the boundary, as shown in Figure 7.9a. To do this in
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Figure 7.8 The Grosenbaugh (1958) method to deal with boundary overlap. Half- and
quarter-circle plots prescribed by the Grosenbaugh (1958) method alter the plot sampling
protocol for edge elements. a) Half-circle and quarter-circle plots in interior peripheral zone
of width R; (b) the corresponding inclusion areas for trees within the interior and peripheral
zones; (c) typical plots within the inclusion zones of the trees shown in frame (D).

the field, the distance of (x;, z5) orthogonally to the boundary is measured. Keeping
the same bearing, an identical distance is measured exterior to 4, at which point the
‘mirage plot’ (or ‘reflected plot’) is established.

An additional tally is taken from the miraged plot, i.e., any U within 4 that also is
within the bounds of the miraged plot is included with the sample from the original
plot location. Gregoire (1982) showed, for circular plots, that it is impossible to
include any element from the mirage plot that had not already been tallied in the
original plot. A ‘multi-tally estimator’ of 7, from the sample at %, which includes
any elements also tallied from the miraged location of (x;, zy), is

A
7 = — t Vies 7.23
Tyms P Z k Yk ( )

Uk €Py

where 7, = 1 if U was tallied from (xy, z;) only, or fy = 2 if U was tallied from
both (x;, z5) and its miraged location. In Figure 7.9b the tree closer to the edge of
the tract is tallied on both the original and the miraged plot (t = 2), but the tree
farther to the interior is tallied only on the original plot (t = 1). Gregoire (1982)
showed that E[# ] = a/A, and thereby established the unbiasedness of 7, as an
estimator of 7. In right-angled corners, three reflections of (xy, z,) are required, as
shown in Figure 7.9c. Naturally, the multi-tally estimate, 7y, substitutes for 7, in
the estimator of the variance.

Similar to the Grosenbaugh method, the mirage method works exactly to remove
bias that otherwise would be incurred from boundary overlap only when A2 is
rectangular. For slightly curved boundaries, the bias of 7, is likely to be small.

Example 7.15

In order to compare the performance of the pullback, no-correction, Grosen-
baugh, and mirage strategies of dealing with boundary overlap, Gregoire & Scott
(1990) computed the bias and root MSE of the estimators associated with these
methods. In their case study, they used the measurements of size and location of
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Figure 7.9 The mirage correction method for boundary overlap. In (a), a sample plot at
(x5, z5), and its reflection across the boundary; in (b), an example showing the inclusion
zones of two trees. Both trees are selected by the original plot, and the tree closer to the edge
is selected again from the miraged plot; in (c) the plot is miraged across both boundaries
and reflected 180°across the square corner; the tree closer to the corner is selected by the
original plot and the mirage plot across the right boundary (d), the bottom boundary (e), and
the corner-mirage plot (f), but the other tree is selected only by the original plot and the mirage
plot across the bottom boundary.

Table 7.3 Performance of estimators of N and total basal area for Example 7.15. All results
are expressed as a percentage of N = 4676 trees or of the total basal area, 109.7 m2.

Bias (%) Root MSE (%)
Method Estimator N Basal area N Basal area
No-correction Tyas —4.6 —4.0 57.1 46.6
Pullback Tyxs —-14 1.4 57.7 46.6
Grosenbaugh Tyrs 0 0 66.0 53.6
Mirage Tyms 0 0 58.9 46.1

Measure 7 Tyrs 0 0 58.9 46.6
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Figure 7.10 The walkthrough method: walk from plot center (o) to element Uy, (o), and beyond
the element an equal distance to the reflection point (©). If the reflection point is inside the
tract, as in (a) and (c), then Uy, is tallied once (t;, = 1). If the reflection point is outside the
tract, as in (b) and (d), then Uy, is tallied twice (t, = 2). If the plot center were to fall anywhere
in the dark-shaded region in (b) or (d), then U would be tallied twice. Note that the area of
the dark-shaded region equals the area of the region of the inclusion zone that is outside the
tract. Note also that the method works with curved or straight boundaries.

4676 sapling and sawtimber trees in a 5.2 ha tract. The upper half of the tract
contained a stand of 3396 saplings, whereas the lower half contained a stand of
1280 sawtimber-size trees. The sampling unit was a 0.04 ha circular plot. As a
percentage of the N = 4767 trees on the plot, the bias of 7, as an estimator of
N for the pullback method was —1.4% and for the no-correction method it was
—4.6%.

They also computed ,/MSE (fy,,s) when using the actual inclusion area to
compute the inclusion probability of each tree under the measure-7 method, and

compared this to .,/ MSE (fy,,s) under the no-correction method. Despite the bias

of the latter, it was slightly more accurate, based on a comparison of root mean
square errors. These results and other comparisons appear in Table 7.3.

7.5.5 Walkthrough method

The walkthrough method (Ducey et al. 2004) may be used to correct for edge effect
if the plot shape is radially symmetric about (x;, z;), i.e., if both the plot and a 180°
rotation of the plot about (xy, z5) cover the same ground. Designs that meet this
requirement include, but are not limited to, those that prescribe a circular, square, or
rectangular plot centered about (x;, z5). Square or rectangular plots that use (x;, z5)
as a corner point do not meet this requirement.

If a plot is symmetric about (xg, z5), then the inclusion zone of each element is
symmetric about the element’s center point. Hence, if (x4, z5) falls in the inclusion
zone of U, then one may walk from (x;, z5) to the center point of 7 and then
beyond the center point an equal distance to a reflection point of (x;, z5). In effect,
the walkthrough procedure checks to see, for each U, € 2, whether the reflection
point of (xg, z5) is inside or outside of AZ: if inside, the element is tallied once; if
outside, the element is tallied twice.

Operationally, the walkthrough method is applied element by element on each
plot (Figure 7.10). One walks straight from the center point of the plot, (x;, z5), to
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the center point of 7J; and then straight through and beyond 7 an equal distance.
Ordinarily, if the boundary is encountered before the walk is completed, then the
reflection point is outside of 4 and U is tallied twice (1 = 2). Conversely, if the
reflection point is reached before encountering the boundary, then 7 is tallied once
(tx = 1). In some cases it might be possible to cross a curved or zig-zag boundary
twice, first leaving and then re-entering 4, in which case the reflection point of
(x5, z5) is inside of A4, so Uy is tallied once. Usually, however, any element that
is closer to the boundary than to (x;, z5) will be tallied twice. And, if circular or
rectangular plots are used, then only those elements that appear about equidistant
between the boundary and (x;, zs) actually require walkthrough, the tallies for other
elements (#; = 1 or #; = 2) being obvious.

The walkthrough method is more generally applicable than Grosenbaugh’s method
or the mirage method, since it can be applied with straight or curved boundaries.
Moreover, the method is applicable where work outside of 4 is prohibited or
infeasible, for example, where a boundary is marked by a natural feature such as
a cliff or the shore of a river or lake. The method provides for unbiased estimates if,
for all k, every point in the inclusion zone of ¥, but outside of 4, has a reflection
point inside of 4. Some amount of bias will persist if more than half of any inclusion
zone is outside of 4.

Ordinarily, the walkthrough method is expected to greatly reduce edge bias, not
necessarily eliminate it entirely. Either way, t is estimated with the multi-tally
estimator (7.23). Ducey et al. (2004) reported that, in simulations, the walkthrough
method reduced under-estimation of tree volume on a 46.5 ha tract in New Hampshire
from 6.7% to 0.11%, when the tract was sampled with fixed-radius plots.

7.5.6 Edge corrections for plot clusters

The boundary overlap problem for plot clusters is somewhat complicated owing to
the dispersed and disjoint inclusion zones of the population elements. Mandallaz
(1991) devised a design where sample locations are allowed to fall in an external
peripheral zone. In each cluster, circular plots are installed only if their center points
fall within 4, so the number of plots in a cluster is a random variable. Boundary
overlap is corrected on a plot-by-plot basis within each cluster, possibly with the
walkthrough method or the mirage method. The estimate of 7 is then calculated by
treating all the plots of all clusters as independent plots. The estimate that results is
asymptotically unbiased.

Valentine et al. (2005) described, in detail, the theory and operation of four
methods that correct for boundary overlap, where sampling locations are not allowed
to fall outside of 4. Here we provide brief sketches of the protocols. All four
methods were formulated for clusters of circular plots, with one plot centered
about the sampling location (xy, z;). However, squares, rectangles, and some other
shapes could substitute for circles, provided all the plots in a cluster have the
same directional orientation, e.g., the long edges of rectangles all point in the same
direction. Boundaries may be straight or curved, and corrections usually can be
carried out without leaving 4. The authors noted that radially symmetric cluster
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Figure 7.11 The walkthrough method is applicable to radially symmetric plot clusters—each
satellite plot is matched by another equidistant from the central plot in the opposite direction.
If the plot center were to fall anywhere in the dark-shaded region in (a), (b) or (c), then Uy
would be tallied twice. Plots that fall completely outside of A (dashed circles) are not installed.
That plots may overlap the boundary is not a problem, but elements that occur in these plots
are not tallied unless they occur within A.

designs seem to afford the easiest options for correction of edge bias. The multi-tally
estimator is used to estimate ¢ with each of the methods, i.e.,

A
Tyms = — 1 Vi, 7.24
Tyms ac z k Yk ( )

Uy Py

where c is the usual number of plots in the cluster and the fixed number of plot-
shaped regions in the inclusion zone of each element.

The walkthrough method, which applies to single plots that are radially symmetric
about the sampling location, also applies to radially symmetric plot clusters (Figure
7.11). The protocols are the same as for single plots, though the walks are longer,
since the inclusion zones are disjoint. Plots that are entirely outside A4 are not
installed. Nevertheless, the value of ¢ is not altered in the estimator, as ac is
the area of each inclusion zone, whether ¢ plots are installed or not. A closely
related ‘walkabout method’ applies to some radially asymmetric cluster designs (see
Valentine et al. 2005).

Two other methods, the vectorwalk and reflection methods, are most easily
described in terms of direction vectors and inverse vectors (Figure 7.12). Direction
vectors indicate the direction and distance from the sampling location, (x;, zg), to
the center points of a cluster’s satellite plots. The inverse vectors are simply the
direction vectors rotated 180°. In radially symmetric clusters, each direction vector
is coincident with an inverse vector (Figure 7.12c).

Vectorwalk method

Under the protocols of the vectorwalk method, each satellite plot is installed only if
the center point of the plot is inside 2 (Figure 7.13). Edge correction is performed in
each individual plot within the cluster by the walkthrough method. If the boundary
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Figure 7.12 Direction vectors indicate the direction and distance from the sampling location

(o) to the center points of satellite plots (a). Inverse vectors are direction vectors rotated 180°
(b). In radial symmetric clusters, each direction vector is conincident with in an inverse vector

b)@ 2
&0 ogC

Figure 7.13 a) An element, which is centered in its nominal inclusion zone (grey), occurs in
the central plot of a plot cluster, which is shown with its direction vectors. The ‘north plot’ is
not installed because its center point is outside A. b) Application of the walkthrough method
indicates that the element is tallied twice, but this is a preliminary tally, since the element
occurs in the central plot. c) Vector walks would indicate that only the ‘northwest inverse
vector’ crosses the boundary, so the final tally for the element is tj, = 4.

) b) ©)

is straight, the mirage method may substitute for walkthrough. The plot-by-plot
application of walkthrough or mirage provides a final tally (#; = 1 or #; = 2) for each
element, 7, that occurs in a satellite plot, but it provides only a preliminary tally
(t,i =1lor t,i = 2) for an element, Uy, that occurs in the central plot (Figure 7.13b).
For a final tally we start at the sampling location, (x;s, ys), in the central plot and
walk along each of the ¢ — 1 inverse vectors, keeping count of the total number of
inverse vectors, v, that intersect the boundary (Figure 7.13c). The final tally for the
element 7Jj in the central plot is #; = (14 v)t;. The vector walks are not necessary if
radially symmetric clusters are used, because each inverse vector is coincident with
a direction vector, and it turns out that v is simply the number of satellite plots that
were not installed. Regardless of whether or not ¢ plots are installed in the cluster,
the value of c is not altered in the estimator.

Reflection method

The reflection method for symmetric plot clusters begins with installation: each
satellite plot is installed in the usual way unless the direction vector intersects the
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Figure 7.14 The reflection method: a) The ‘north section’ of the inclusion zone of an element
is outside 4. Each point in the north section has a reflection point inside A. These reflection
points coalesce into a ‘reflected north section’ (dashed circle). The reflected section plus the
sections of the inclusion zone that are already inside of A constitute a ‘reflected inclusion zone.’
c) Under the protocols of the reflection method for radially symmetric clusters, a satellite plot
is installed as usual unless its direction vector intersects the boundary of A. In that case,
the direction vector is folded back at the boundary and the ‘reflected plot’ is installed where
the vector terminates inside A (d). If the sampling location falls in a reflected section of the
inclusion zone, then, in general, the element is tallied by a reflected plot.

boundary. In that case, the direction vector is folded back over itself at the boundary
and the ‘reflected plot’ is installed where the vector terminates inside of 4. If need
be, the walkthrough method is applied in each installed plot, which provides the
edge-corrected tally for each element in that plot (the mirage method may substitute
for walkthrough if the boundary is straight). It is possible for plots to overlap, so
the same element may have different edge-corrected tallies in two or more different
plots.

The method is successful if every location point in a section of an inclusion zone
that falls outside of 2 has a reflection point inside of 2 (Figure 7.14). These reflection
points coalesce into reflected sections of inclusion zone. In general, if the sampling
location, (x;, zg), is within a reflected section of an element’s inclusion zone, then
the element is tallied in a reflected plot.

The reflection method for radially symmetric plot clusters also applies to radially
asymmetric plot clusters, provided the orientation of each cluster, i.e., the direction
of the first direction vector, is selected uniformly at random. If the orientation of each
asymmetric cluster is fixed, then the reflection method is slightly more complicated.
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Each satellite plot is installed only if its center point falls inside of 4. Direction
vectors are not folded at the boundary. Instead, we check whether any inverse vectors
intersect the boundary. If, and only if, an inverse vector intersects the boundary, then
that inverse vector is folded back over itself at the boundary and a plot is installed
where the inverse vector terminates inside of 4. Walkthrough is applied on a plot-
by-plot basis, which provides the tally for each element in each plot. Again, the same
element may occur in more than one plot and have a different tally in each plot.
The reflection method always results in the installation of ¢ plots in each radially
symmetric plot cluster. However, in an asymmetric plot cluster with fixed orientation,
the number of installed plots may turn out to be c, less than ¢, or more than c. Again,
regardless of whether or not ¢ plots are installed in the cluster, the value of ¢ is not
altered in the estimator, as the area of each inclusion zone, ac, is unaffected by the
edge-corrected plot count.

7.6 Plot size and shape

An issue of longstanding interest is the most appropriate, or best, size of the plot to
use when sampling natural, ecological, agricultural, entomological, or environmental
resources. Related to this issue is the optimal shape of the plot and its effect on the
precision and cost of sampling. There is a voluminous literature on these two topics,
with an array of different and partly contradictory results.

The search for an optimal plot size and shape—the “perennial quest” according
to Daubenmire (1959)—has been motivated by a desire to minimize the cost and
time of sampling yet still achieve the objectives of the survey, experiment, or
monitoring plan. The best size/shape of plot is likely to differ depending on the
resource of interest. Sampling grasslands for aboveground biomass is a far different
task than sampling trees in a mature forest for the same purpose; an ideal plot
size for trees is usually far too large for sampling grasses, herbs, and forbs. Even
for a single resource, the optimal plot size/shape for one purpose may not be best
for other purposes; for example, estimating the number of species may require
larger plots than is needed for estimation with the same precision of the number
of individuals in all species. Moreover, the criterion to determine optimality is likely
to influence the result. For example, Wiegert (1962) observed that optimal quadrat
size when sampling grass and forb biomass is sensitive to the pattern and dispersion
of vegetation in the field. He searched for the optimal quadrat size that provided
the smallest confidence limits for estimating u, for a predetermined cost. There is
no reason to believe that this will indicate the same optimal size when a different
constraint is imposed.

In the context of forest inventory, Mesavage & Grosenbaugh (1956) realized that
optimal plot size and arrangement of plots on a forested tract is unique to each tract.
Freese (1961) also intoned that the relationship between plot size and variability can
not be generalized, and that for exactness a special study of the population of interest
must be undertaken. Because of this lack of generality, many investigations have
been launched to determine the ideal plot size. In the following, we summarize the
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ASIDE: The empirical relationship propounded by Smith (1938) relating vari-
ability to plot size is unrelated to another empirical relationship that relates vari-
ability to density. Taylor’s power law, as it has come to be known, asserts that
sg x lly’. Clark & Perry (1994) report that Bliss (1941) apparently was the first
to notice this relationship, but it attracted widespread attention of ecologists only
after publication by Taylor (1971) in Nature.

results of a few of these studies, only. Additional results for grassland studies can be
found in Bonham (1989, §5.3.2).

Clapham (1932) concluded that long narrow quadrats (with length 16 times greater
than width) were best for sampling herbaceous vegetation. Such plots tended to
minimize the variance of plant counts among plots, compared to other shaped
plots. For phytosociological sampling, for purposes relevant to forest ecology,
Bormann (1953) also concluded that long narrow plots were best. Bormann examined
aggregate basal area of trees > 2.5 cm in a climax oak-hickory forest. Long, narrow
strips plots were recommended by Meyer (1948) and Freese (1961)

When investigating the heterogeneity of yield of agricultural crops, Smith (1938)
derived an empirical relationship between the variance of yield among plots and the
size of the plot. Namely, he discerned that the sample variance decreases according
to a power law:

syoca™, (7.25)

for some real-valued exponent, b. The value of b varied depending both on the crop
and on the season of year. He combined this empirical law with a linear cost function
to derive an optimal plot size. He did not find any consistent change of variability
related to plot shape.

Both Mahalanobis (1946) and Sukhatme (1947) found that the measurement error
increased as plot size decreased, thereby biasing the estimate of rice yield per
unit area. This increasing overestimation as the size of sample plots shrank was
attributed to the tendency to include plants that were actually outside the plot. The
greater edge to area ratio in small plots compared to larger plots exacerbates this
effect. Wiegert (1962) echoed this warning about sizeable measurement error when
counting elements near the border of the plot.

For sampling timber volume in old-growth Douglas-fir forests of the Pacific
northwest (USA), Johnson & Hixon (1952) investigated the efficiency of circular
plots with 5 different radii and rectangular plots with different sizes and shapes.
Defining efficiency to mean smallest variance for a given amount of work, they
concluded that rectangular plots were more efficient than circular plots. Further,
when comparing the efficiency of rectangular plots of the same area but different
shapes, the less elongated plot was better, and its ideal size was approximately 0.1 ha.
This size plot is appreciably larger than the 0.04 ha plot recommended by Mesavage
& Grosenbaugh (1956) for sampling in shortleaf pine and mixed hardwood forests
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of Arkansas (USA). These authors also found plots located on a square lattice to be
the most efficient arrangement.

The results of Mesavage & Grosenbaugh (1956) contrast with that of Daubenmire
(1959) who concluded that the elongate plot is superior, but are attended by two
practical limitations: 1) they are difficult to lay out, and 2) the frequency of borderline
plants, i.e., those near the border of the plot which require close decisions as to
whether a plant is inside the plot or not, increases. Because variability is greatly
influenced by the clumpiness of the population and the space between clumps, long
and narrow plots are less likely to entirely miss or wholly include a clump.

Kulow (1966) examined the efficiency of circular, triangular, square, and rectan-
gular plots of various sizes for the purpose of estimating basal area per hectare. He
concluded that the shape of the plots did not appreciably affect sampling efficiency,
and that larger plots were more efficient.

In an aptly named article on “Plot size optimization,” Zeide (1980) proposed
a methodology to determine optimal size of plot for sampling. It is based on an
empirical relationship, apparently first discussed by Freese (1961), namely

LI (7.26)

where the subscribed numbers index plots of different sizes. By relating the time
needed to measure a plot and the time to travel between plots, an expression for the
optimal plot size to minimize the total time requirement of the survey can be derived.

Spetich & Parker (1998) deduced that the most efficient plot size was directly
related to the patchiness of mortality, with smaller plots being more efficient when
mortality was less evenly distributed. They were interested in aboveground biomass
of live trees greater than 10 cm in diameter.

An excellent discussion of the size, shape, and configuration of plots for the
purpose of silvicultural research is contained in Curtis & Marshall (2005, pp. 9-22).

7.7 Estimating change

Interest in the value of one or more parameters of the population being sampled may
extend to the change in these values since some prior survey. Surveys conducted
over time, known as longitudinal surveys, commonly are conducted by government
agencies charged with oversight of natural and environmental resources. But non-
governmental stakeholders may also be concerned with the changing value(s) of the
attribute(s) of interest, and also may rely on longitudinal studies. Repeated surveys
may be conducted on a periodic basis or on an irregular schedule. The statistical is-
sues surrounding repeated surveys are summarized well in Fuller (1990) and Fuller
(1999), whereas more descriptive discussions of specific longitudinal surveys for var-
ious natural resources can be found in Olsen et al. (1999), Nusser & Goebel (1997),
and Scott et al. (1999).

In an extension of prior notation, let 7, (¢1) denote the the population or stratum
total of y at the occasion of the first survey, and let 7, () denote the total at the
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second occasion. The change parameter of interest is thus
Ay =1,(12) — 75(11). (7.27)

If (7.3c) is used to estimate both 7,(#2) and 7, (¢1), then a natural estimator of A is

Ay = fyn',rep(t2) - fyn,rep(tl)- (7.28)
This estimator of change is very general: there is no presumption that the same plots
used at occasion #; are also used a occasion #», and there is no presumption that
the same number of plots are used on both occasions, nor that the same population
elements are measured on both occasions. However, if the plots sampled at #; are
again visited at 7, then A y in (7.28) can be expressed and computed alternatively as

~

Ay =

M=

1 A .
m £ (Tyns(t2) - Tyns(tl)) . (7.29)

If both 7yz rep(f2) and 7yz rep(f1) are unbiased, then A y is also. Its variance is

V[Ay] =V [fyn,rep(IZ)] +V ["[\yn,rep(tl)] -2C [fyn,rep(l2)s fyn,rep(tl)] ., (7.30)

where C [fyn,rep(tz), fy,,,rep(tl)] is the covariance between the two estimators. If
the sample plots are independently selected at #; and t», then this covariance will
be identically zero, leading to the well known result that the variance between two
independent estimators is the sum of their respective variances. When the same plots
are used on both occasions, 7. (#2) generally is positively correlated with 7y, (t1),
though the strength of the correlation usually diminishes as the interval of time
between t; and 7, lengthens. However, any positive correlation implies a positive
covariance, so the variance of A y is expected to be smaller if the same plots, rather
than different plots, are used on the two occasions. To put it another way, A y is
expected to be a more precise estimator of A, if the same plots are measured at both
ty and at 7.
A natural estimator of V [A y] is

ﬁ[Ay] =0 [fyn,rep(tZ)] +0 ['Eyn,rep(tl)] —2¢ [fyn',rep(IZ)s fyn,rep(tl)] P (7-31)
where 0 [ 2y rep(12)] and d [y rep(#1)] are given in (7.6b), and where

¢ [fyzr,rep (IZ)a 'LA'yn,rep (tl )]

1 m
= m(m——l) Z [fym'(@) - fy;z,rep(tZ)] [fyfrs(tl) - fyzr,rep(tl)] (7.32)

s=1

is a design-unbiased estimator of C [Zyz,rep(12), Tyz,rep(t1)].

If the same population elements are measured on both occasions, and the sampled
elements at ¢ are labelled in a manner which permits these same elements to be
identified at #,, then the change in y; can be computed and used to estimate A,.
Provided that no new elements have become members of the population in between
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11 and 1, then a second alternative expression for (7.28) is

21 (2) — ye(n)
by=—3"3" % (7.33)

s=1 U ePs

If interest lies solely with the estimation of A, there is no advantage to computing

A y by (7.33) rather than (7.29): both will yield identical estimates. By contrast, if
there is interest in estimating the change in identifiable subsets within the population
or within each stratum, then (7.33) permits this. Suppose, for example, that the
population consists of trees in a forest, and that we are interested in estimating the
change in aggregate aboveground biomass for trees that survived until #, separately
from the change in those that died in the interim. For this purpose, it is necessary to
be able to match up the biomass of each tree measured at #, with its biomass at #1.

In the general statistics literature on survey sampling, special subsets of interest
are known as domains of interest (see Siarndal et al. 1992, p. 69). These domains
differ from population strata, because elements in one domain may appear in more
than one stratum. In addition, a priori information to permit stratification based on
domain membership usually is lacking. Nor do domains constitute post-strata in the
usual sense, inasmuch as the sizes of the different domains are unknown even after
sampling has concluded. Indeed, estimation of the size of each domain may be an
objective of the survey.

To provide a more general treatment of change in domains of interest, as well
as for changes in the composition of the population between #; and t,, we relax the
constraint that no elements enter or exit the population between surveys. The turnover
of elements is common in organic populations owing to birth and death processes,
or death and decay processes. Or, if domains correspond to size classes, organisms
move from one domain to another through growth or decay.

Let there be D domains of interest, and let D; indicate the dth domain, where

d =1,..., D. The population totals in the dth domain at #; and 1, are 7,4(#;) and
7y4(t2), respectively. Let A4 denote the change in the domain total, then
Ayg = 1yq(2) — Tya(t1), d=1,...,D. (7.34)

If every U belongs to a domain of interest, and these domains do not overlap in
composition, then

D
A, :ZAyd, DiNDy =0, d#d. (7.35)
d=1

In order to estimate A 4, we must specify the population of interest in domain d.
For example, the population may comprise the elements present only at 1, plus the
elements present at both #; and #,, plus the elements present only at 7. Let dy, denote
the change in y, from #; to t>. Then,

-y (t1), Uy 1s present only at t1;
Oy, = 1Yk(t2) — yk(t1), Uy is present at #1 and tp; (7.36)
i (t2), Uy is present only at 5.
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We assume that the same size plot is used on both occasions, so that 7y is constant
over time. The parameter A 4 is estimated from the elements in plot s by

A Oy, Ck
Ayas= D e (7.37)
Uy €Ps
where
1, if Uy, € Dy;
= 7.38
< IO, otherwise. ( )
Alternatively, we may use changes in attribute densities, d,,, k =1, ..., N, where
6 V;
8y = = 7.39
o= (139)
in which case,
Ayas =AD" 6,4 (7.40a)
Uk ePs
A
- = Z Sy k.- (7.40b)
ac
Uy €Ps
In replicated sampling, A4 can be estimated by
. 1 & Oy
Ra=— 3 S Quck (7.41a)
m Tk
s=1 Uy Py
A< P
SE nck (7.41b)
m ca
s=1 U P
A m
== > ok (7.41¢)
m
s=1 Uy ePy
1 m
- _ Z A yag (7.41d)
m s=1

The variance of A g is

N N N
o 1 5 1 — 7y Tkk' — Tk
Vil = | 2050 () + 20 B owanase (0
k=1 k=1 k’;ék
kK'=1

(7.42)
Moreover, V [A yd] can be estimated unbiasedly by

R 1 LN . N\2
”[Ayd] = m Z (Ayds - Ayd) . (7.43)

s=1
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Table 7.4 Basal areas (inz) of trees at t| and ty (min. tree dia. > 5.5 in) on a 60 ft x 40 ft

rectangular plot.
t 15 f 1) 3| 5]
27.34 72.38 2642 81.71 28.27 78.54
39.59 66.48 24.63
27.34 56.74 29.22  49.02 25.52
24.63 59.45 39.59 38.48
26.42 76.98 31.17 7543 27.34 78.54
28.27 7543 30.19 72.38 52.81
69.40 27.34 69.40 32.17 78.54
28.27 44.18 39.59
Example 7.16

In forestry, changes in populations of trees often are estimated from periodic
measurements of trees in permanent sample plots. Trees smaller than some
minimal size ordinarily are not measured. Once a tree achieves the minimal
size (usually minimal diameter), and can be measured for first time, it is called
an ‘ingrowth tree.” Trees that can be measured on two successive occasions
are called ‘survivor trees,” and those that die naturally (as opposed to being
cut) between one occasion and the next are called ‘mortality trees.” Each of
these three subpopulations—ingrowth, survivors, and mortality—are domains
of interest for forest managers and, by convention, are called components of
change. Restricting our temporal interest to measurements at ¢; and #p, trees
measured on a sample plot only at #; are mortality, trees measured at #; and
ty contribute to survivor growth, and trees measured only at 7, contribute to
ingrowth. Hence,

— (1), Uy is a mortality tree;
Oy, = 1 Yk(t2) — yr(t1), U is a survivor;
yi(12), Uy is ingrowth.

Table 7.4 contains basal areas (in?) of trees on a 40 ft by 60 ft (0.0551 ac)
rectangular plot in a loblolly pine plantation at ages #; = 8 and f, = 20 years. A
tree was not measured unless its diameter exceeded 5.5 in. The plantation size,
A, is unknown.

Basal area lost to mortality on the plot from #; to #, was

—24.63 — 25.52 = —50.15in’.
or —0.35 ft?, and the change in basal area from the growth of survivors was

(72.38 — 27.34) + (56.74 — 27.34)
44 (78.54 — 27.34) + (78.54 — 32.17) = 574.31in?
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or 3.99 ft%. Ingrowth of basal area on the plot at time ¢, was
39.59 + 69.40 + 66.48 + 39.59 + 39.59 + 38.48 + 52.81 = 345.94in’

or 2.40 ft2. The total increase in basal area on the plot from #; to f, was —0.35 +
3.99 + 2.40 = 6.04ft>. Based on the information from the plot, total basal
area growth in the plantation is estimated to be A ys/A = 6.04 ft2/0.0551 ac =
109.6 ft?ac™! over the 12 year period. Breaking this total down into the com-
ponents of change yields: A}VU/A = 6.4ftac™! lost to mortality; A)QS/A =
72 .4 ft2ac™! accrued from survivor growth; and A y3s/A =43.6 fi2ac~! accrued
from ingrowth.

7.8 Terms to remember

Areal frame Inclusion zone Plot cluster
Boundary overlap Joint inclusion zone Pullback method
Change estimation Measure 7 method Reflection method
Domains of interest Mirage method Replicated sampling
Edge effect No-correction method  Vectorwalk method
Grosenbaugh method  Optimal plot size Walkthrough method

7.9 Exercises

1. Use the data in Table 7.2 to derive the results presented in Example 7.12.

2. Use the data in Table 7.2 to derive the results presented in Example 7.13.

3.

4. With the data used in Example 7.9 and tabulated in Table 7.1, compute a 90%

Use the data in Table 7.2 to derive the results presented in Example 7.14.

confidence interval for the number of trees per hectare.

With the data used in Example 7.9 and tabulated in Table 7.1, compute a 90%
confidence interval for the aggregate basal area per acre per hectare. The basal
area of a tree stem is defined as the cross-sectional area of a tree, assuming a
circular cross-sectional shape. With diameter, d, measured in cm, the basal area
of an individual tree is computed as 7 d?/40,000m>.

With the data in Table 7.1, how would you estimate the average number of cankers
per tree?

With the data in Table 7.5 from Monkevich (1994), estimate the number of
fragments per hectare of petrified wood in each size class for each year. Also,
estimate V[ 4, ] of each of these estimates.

Use the petrified wood data of Table 7.5. Pool the counts for both size classes
together. For example, the pooled count in 1993 for quadrat 1 is 330. For each
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Table 7.5 Number of pieces of petrified wood from 1/24,000 hectare quadrats in the Petrified
Wood National Park, Arizona, USA. Size class 1 included pieces smaller than 0.635 cm. Size
class 2 included pieces larger than 0.635 cm, but smaller than 2.540 cm. Dashes indicate the
absence of a count owing to destruction of the quadrat.

Size class 1 Size class 2

Quadrat 1993 1994 1993 1994

1 120 0 110 8
2 220 0 84 4
3 4 0 46 5
4 0 124 172 324
5 0 14 2 68
6 2 1 22 8
7 11 34 69 45
8 0 0 4 10
9 6 0 7 11
10 0 0 1 6
11 120 - 110 -
12 220 - 84 -
13 4 - 46 -
14 0 - 172 -
15 1 12 7 71
16 4 19 15 66
17 0 4 10 37
18 22 5 23 85
19 31 23 114 21
20 0 12 7 70
21 0 76 49 128
22 0 25 12 20
23 12 68 46 180
24 0 36 53 332
25 0 0 5 11
26 0 0 0 0
27 0 0 0 0
28 0 0 0 0
29 0 0 0 0
30 0 0 0 0
31 0 0 0 0
32 0 0 6 6
33 0 0 0 0
34 2 5 12 12
35 0 0 0 0
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10.

11.

Table 7.6 Aggregate bole volume of wood in standing trees on a = 0.1 ha plots.

Stratum I Stratum II Stratum 111

Plot Vol. (m3) Plot Vol.(m?) Plot Vol. (m3)

1 8.1 1 2.5 1 0.0
2 8.9 2 8.5 2 0.1
3 13.7 3 7.2 3 0.3
4 22.3 4 6.5 4 0.0
5 7.0 5 6.3 5 1.9
6 19.4 6 5.8 6 1.3
7 20.4 7 6.2 7 22
8 28.1 8 4.5 8 3.7
9 10.6 9 9.1 9 0.0
10 27.6 10 4.1 10 4.4
11 14.3 11 10.6 11 0.0
12 233 12 3.1 12 0.4
13 12.3 13 2.9 13 1.1
14 31.9 14 8.7
15 12.5 15 8.0
16 18.5 16 9.3
17 6.5 17 54
18 9.9 18 6.9

19 23.5 19 11.3
20 17.7 20 12.3

21 9.3 21 22
22 33.1
23 17.2
24 4.1
25 11.6
26 7.8

year, estimate the number of fragments per hectare in this pooled size class, and
estimate the variance of each.

Suppose one discounted all the quadrats with zero counts in the petrified wood
data, and adjusted the sample size accordingly. Therefore, consider the sample
of size class 1 in 1993 as consisting only of the 15 quadrats on which there was
at least a single fragment of petrified wood. Would the estimator iy still be an
unbiased estimator of the number of fragments per hectare in this size class?
Would it be a more precise estimator?

Use the petrified wood data of Table 7.5 to estimate the change in abundance of
fragments of petrified wood in size class 2 from 1993 to 1994.

A forest inventory was conducted with a = 0.1 ha circular plots. The plots were
established independently in 3 strata: I-softwood cover type, II-mixed cover type,
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12.

IlI-hardwood cover type. The volume of wood in the boles of trees on each plot
are shown in Table 7.6. These data were presented in Cunia (1979, p.73).

The area of Stratum I was 42,541 ha; stratum II contained 17,250 ha; and stratum
IT had 32,435 ha. Compute 90% confidence interval estimates for the total volume
of wood in each stratum, and for the entire tract.

Sample plots were randomly located at four different elevations on Watershed
5 of the Hubbard Brook Experimental Forest http: //www.hubbardbrook.
org/research/overview/hbguidebook .htm. The Lower elevation was
centered at 525 m; the Mid at 585 m; the Upper at 725 m; and the High at 800
m. These plots served as littertraps for coarse woody debris (> 2 cm diameter),
which was collected and weighed annually between the years of 1996 through
2002. These data appear in Table 7.7. Each plot had an area of ¢ = 6.25m?. a)
Compute a 90% confidence interval estimate of the dry weight per square meter in
the Lower elevation for each year; b) Pool the Lower elevation data for all years,
and then compute 90% confidence interval estimate of the dry weight per square
meter; ¢) Explain why the width of the interval computed from the pooled data is
shorter than that for the separate intervals computed for each year’s data.
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Table 7.7 Weight of coarse litterfall (> 2 cm diameter) at the Hubbard Brook Experimental
Forest by year.

Biomass (g m~2)

Elevation Plot 1996 1997 1998 1999 2000 2001 2002

Lower 165 19.64 16.05 39.67 67.88 2340 83.67  0.00
Lower 162 2847 9.62 34.86 59.27 3347 206.80 64.04
Lower 171 2072 2859 39.79 33.74 5220 15651 1230
Lower 170 18.15 32.85 73.72 21.80 78.02 158.85  7.58
Lower 168 1339 1133 21.00 47.16 3670 8324 -
Lower 172 4267 19.69 3590 23.12 3584 - 0.29
Mid 147 1171 623 7921 1575 30.06 50.60  2.07
Mid 153 8.16 10.69 84.86 19.34 3595 225.82  36.55
Mid 144 5230 6.69 49.11 38.06 2291 - 0.00
Mid 142 3756 959 4675 4239 3972 11756 21.26
Mid 152 5504 11.36 4694 2225 4602 93.87 54.28
Mid 154 - - - - - 82.39  0.00
Upper 121 5744 10.14 19.43
Upper  127/130 3629 31.80 7.55
Upper 132 23.59 20.09 3.68
Upper  134/133 8177 1241 - - - - 4.16
Upper 120 948 15.14 47.98
Upper 123 1542 11.49 0.00
High 104 3958 10.13 63.51
High 109 3886 27.13 - - - - 6.34
High 105 2532  9.38 71.04
High 106 9671 21.16 31.27
High 115 4128  6.60 136.57

High 111 119.75 2130 - - - - 14.18
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e W W

Figure 7.15 a) Three circular inclusion zones, each overlapping the other two. The joint
inclusion area of two elements is the shared area of their overlapping inclusion zones, as
depicted by the darkly shaded areas in (b), (c), and (d). An inclusion zone is truncated by the
boundary in (e), and two inclusion zones and their joint inclusion zone are truncated by the
boundary in (f).

&

&

7.10 Appendix
7.10.1 Joint inclusion zones

The inclusion zones of two or more elements in 4 may overlap. Indeed, two or more
elements occur in the same plot only if their inclusion zones overlap. The region
of the overlap between two elements is called joint inclusion zone. If the inclusion
zones of three elements— U, U, and Uz—overlap, as in Figure 7.15, then three joint
inclusion zones are present: the region shared by U; and U, the region shared by
and U3, and the shared region of U, and 3. If four elements occur in the same plot,
there are six joint inclusion zones. Any two elements, U and Uy, with overlapping
inclusion zones have a joint inclusion probability (7)) equal to the area of their
joint inclusion zone divided by the area of the tract. This joint inclusion probability
is diminished if part of their joint inclusion zone is truncated by the boundary of 4.



CHAPTER 8

Bitterlich Sampling

8.1 Introduction

The sampling design described in this chapter is applicable chiefly to standing
trees. It was first articulated by Walter Bitterlich (1949) under the German name
Winkelsédhlprobe, which translates into English as “angle-count sampling”. An Aus-
trian forester, Bitterlich began as early as 1931 (see Bitterlich 1984) to think about
distances between neighboring trees in the forest and the geometric interrelationships
between them. From these musings sprang an ingenious probability-proportional-to-
size sampling design that allows for the precise estimation of aggregate basal area
per hectare merely by counting trees that are selected into the sample. Shortly after
Bitterlich’s initial publication of the method, an American forester, Lewis R. Grosen-
baugh, discerned the probabilistic basis of angle-count sampling, deduced its applica-
bility for estimating characteristics of the forest other than basal area, and he coined
the term horizontal point sampling (Grosenbaugh 1952, 1958). Other names that have
appeared for this sampling design are Bitterlich sampling, variable radius plot sam-
pling, Relaskop sampling, point sampling, plotless sampling, and prism sampling.

Stage & Rennie (1994) present a very readable discussion of the commonalities of
sampling with fixed-radius plots compared to variable-radius plots. A Monte Carlo
integration approach to Bitterlich sampling is described in Chapter 14.

8.2 Fundamental concepts

As in Chapter 7, the population of interest comprises N trees that are located within
aregion 4 of horizontal area A, and we assume that interest lies in estimating some
parameter of this population such as the total number of trees, total aboveground
biomass, basal area, carbon, and so on. There may be supplemental interest in
estimating these parameter values for each species or group of related species, or
compiling estimates by size class, or on a per unit area basis.

As in the previous chapter, we assume that a set of m sampling locations are
established randomly on 4. Without risk of confusion (we hope!), the sth sampling
unit, or sampling point as it is known in the forest-sampling literature, will be denoted
as P, and its location as (x;, z5). The kth tree of the population will be denoted as
U and its fixed location as (xg, zx).

With Bitterlich sampling the population of trees that is of interest will will vary
from one application to another. Almost always there will be a minimum size
requirement, stipulated in terms of the diameter of the bole of the tree, or its height,
or possibly a combination of the two. In Example 8.4 we use data from a Bitterlich

245
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sample in which only those trees exceeding 20 cm in diameter constituted the
population of interest. The size threshold will usually be dictated by the purpose
of the forest inventory. Because inventories are conducted for a variety of different
reasons, there is no universally accepted size threshold. Moreover, the Bitterlich
sample may be restricted to certain species of trees rather than all trees growing
on the forested region. For example, sampling may be restricted to only conifers that
exceed some minimum height, rather than trees of all species.

8.2.1 Limiting distance for inclusion

There is a very close relationship between Bitterlich sampling and sampling with
circular plots with fixed radius R, but there is an important difference, as well. The
circular-plot design prescribes a circular inclusion zone with fixed radius R centered
about each tree. If the sample point, 2, occurs within the inclusion zone of Uy, then
tree Uy is selected into the sample. As implied in Example 7.7, the decision to include
Uy is solely a function of R. In this sense, R is a limiting distance because Uy would
be excluded from the sample if the distance from (xg, z5) to (xk, zx) were greater
than R.

Like the fixed-radius plot design, the Bitterlich design prescribes a circular
inclusion zone for each tree, and the tree’s limiting distance is equivalent to the radius
of its inclusion zone. However, under the Bitterlich design, the radius of the inclusion
zone for a particular tree is proportional to the radius of the tree’s bole at breast height
(1.37 m). Let rx, (m) and Ry (m), respectively, denote the bole radius and the inclusion
zone radius of tree Uy. Then

Ry =arg 8.1

where o (mm~!) is constant, independent of k. As will be explained, the value of
o is selected indirectly as part of the sampling design, and it is closely related to
Bitterlich’s “angle.” However, it is important to note that the values of a and ry
jointly determine the limiting distance, Ry, for tree Uy. If the distance from % to tree
Ui does not exceed Ry, then Uy is selected into the sample at %.

By convention, the cross-sectional area of a tree bole at breast height is called
basal area. Let by (m2) denote the basal area of tree T,

by =mr. (8.2)

Let ay (ha) denote the area of the inclusion zone of . Since 1 m? = 10~ ha,
axr = 107z R? (8.32)
= 10"%a>by. (8.3b)

Consequently, barring truncation by the edge of 4, the inclusion probability of 7 is
ak

= — 8.4

= (8.4)

where A is measured in hectares.
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ASIDE: The literature of forest sampling is replete with descriptions of Bitter-

EERNT34

lich sampling which mention “imaginary circles surrounding trees”, “imaginary
zones”, “z-circles” and other apocrypha. These fanciful terms signify nothing
more than the circular inclusion zones of trees when sampling with Bitterlich’s

method.

8.2.2 Basal area factor

The ratio F' = by /ay (m2ha™') is tree basal area per unit land area of inclusion zone.
Because a is constant, F is also constant, independent of k, i.e.,

= (8.5)

In the Bitterlich sampling literature, F is called the basal area factor. In practice,
the basal area factor is a design parameter in direct analogy to the choice of plot
size, a, when designing a plot sample. The sampler chooses the value of F, and this
determines the value of a, i.e.,

0 =—. (8.6)
VF
Because F determines o and because a; = 10™%a2b;, = by /F, we can also express
the inclusion probability of Uy in terms of F, i.e.,

=Ta
From (8.7) it is evident that the probability of including tree 7 in a sample is
proportional to the tree’s basal area. This is a defining characteristic of Bitterlich

sampling, and one that makes it a method of sampling with probability proportional
to size (pps).

Tk 8.7

8.2.3 Plot radius factor

Practitioners of Bitterlich sampling usually calculate the limiting distance, Ry (m),
from diameter, dy, measured in cm. The plot radius factor, k (m cm_l), is the ratio
of Ry to di, independent of k, so

Ry = kdj. (8.8)
Note that dy (cm) = 2 r (m) x 100 (cmm™"), therefore
a
K = 200" 8.9
Substitution of (8.6) relates the plot radius factor to the basal area factor, i.e.,
1
K= ——. (8.10)



248 BITTERLICH SAMPLING

A better name for ¥ would be the ‘limiting distance factor’, since it relates a tree’s
limiting distance, Ry, to the tree’s diameter. However, plot radius factor is the
standard terminology in numerous forest mensuration texts.

Example 8.1

A Bitterlich sample with basal area factor F = 4m?ha~! provides x =
1/(2v/4) = 0.25mcem™!. Thus, a tree with diameter d;y = 16 cm has a limiting
distance of Ry = 0.25mcm~! x 16cm = 4.0m, and its inclusion area is
ai = 10747 (4.0)2 = 0.005027 ha. By contrast, a tree with a 24 cm diameter
would have a limiting distance of 6.0 m, and an inclusion area of 0.011310 ha.

The inverse relationship between limiting distance and basal area factor
implies that a tree may be excluded from the sample if sampling is conducted
with F = 4 but included if sampling with F' = 3. For example, the limiting
distance of the tree with a 20 cm diameter, when sampling with a basal area
factor of size F = 3m? ha’], is 5.77 m. Had this tree been 5.50 m from the
sample point, then it would have been included in the latter case, but not in the
former case.

8.2.4 Sampling protocol

As implied by (8.1) and the preceding example, Uy is included into the sample 2
if the distance from (xx, zx) to (xy, z5) is less than or equal to Ry. This could be
discerned by measuring di, calculating the limiting distance, Ry, with the plot radius
factor and comparing this limiting distance to the actual distance to from (x, zx) to
(x5, z5). This would be repeated for all trees in the vicinity of (xs, z5). Heuristically,
one can think of sampling with nested, concentric circular plots centered at (x;, zs),
where the plot radius for Uy is Ry, which obtains from dj and the plot radius factor,
x. Indeed, this construct has given rise to the an alternative name for Bitterlich
sampling: variable radius plot sampling. Fortunately, however, various devices can
be used to determine optically whether or not the distance from (x;, z5) to (xx, zk)
exceeds Ry, so, for the most part, the measurements of actual distances and the
calculations of limiting distances are rendered unnecessary.

The devices collectively are known as angle gauges and their use relates directly to

the name “angle count sampling” that Bitterlich bestowed on this method of sampling
standing trees. The angle to which Bitterlich refers can be derived by picturing a point
exactly Ry = ary (m) away from (xk, zx). Such a point lies on the perimeter of the
inclusion zone of tree Uy (Figure 8.1a). Rays emanating from this point, which are
exactly tangent to the (circular) bole of Uy as shown in Figure 8.1b, form an angle
v. The length from each point of tangency to the center of the tree is simply the tree
radius, r¢ (m), so

. (U) Tk 'k 1
sin{ = )= —=—=—.
2 R, ary «a
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) b) ) d) (Xs, Zs)

O

Figure 8.1 a,b) The ratio r/ar, i.e., the ratio of the cross section of a tree to the radius of the
tree’s inclusion zone, defines the angle, v, of an angle gauge. c) The width of a tree fills the
field of view of the angle gauge if the sample point falls inside the inclusion zone. d) Otherwise,
the sample point is outside the inclusion zone.

Therefore,
1
v = 2 arcsin (—) . (8.11)
a

Substituting (8.6) relates the angle v to the design parameter F, i.e.,

v F
v =2arcsin{ — }. (8.12)
100

Bitterlich sampling with a basal area factor of size F = 4m?ha~! implies that
v = 0.040 radians, or 2.29°. A basal area factor of size F = 3m?ha~! implies
that v = 0.035 radians, or 1.98°. The smaller the basal area factor, F', the smaller
the angle v.

Example 8.2

When conducting Bitterlich sampling at the sample point, (xy, z), each tree in
the vicinity is sighted with the angle gauge such that the rays propagated at angle v
emanate directly over the sample point. If a tree is closer than its limiting distance to
(x5, z5), its diameter at breast height (1.37 m aboveground) will appear wider than the
distance between the rays, as in Figure 8.1c. Conversely, it will appear narrower than
the distance between the rays if its distance away from (x;, z5) exceeds its limiting
distance, as in Figure 8.1d. This result suggests the procedure to follow at ?; to
decide which trees to include in the sample at that point: trees included in the sample
are those that appear larger than the projected angle when viewed at breast height
through the angle gauge.

With this protocol for sampling standing trees in the forest, proper care must be
exercised that no trees are inadvertently omitted from the tally at a sampling point.
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ASIDE: Equivalent basal area factors (BAF) and plot radius factors (PRF) can
be couched in terms of the ratios a2 and a, for example,

104 1 1 43560
BAF : — [m2 hafl] =— [m2 mfz] =— [ft2 ft72] =— [ft2 acil]
o a o a

PRF : % [m cm_l] = % [m m_l] = % [ft ft_l] = ;—4 [ft in_l]

With Bitterlich sampling, very large trees can be quite some distance from (x;, z5) yet
still be closer than their limiting distance. For example, suppose U has a diameter
of dy = 107 cm, and that sampling is conducted with a wedge prism that has been
manufactured at an angle to ensure F = 3m?ha~!. This tree can be 30 m from
(x5, 25), yet still be included in the sample at that point. The opposite phenomenon
will also be encountered, namely the occurrence of small diameter trees close to
the sampling point yet further away from it to be included in the tally from that
point. When sampling with fixed-area circular plots, if T is closer to (xg, z5) than
a neighboring tree, and if the neighbor is in the sample at (xy, z5), then 7 will
be in it, also. This need not be the case with Bitterlich sampling, as the limiting
distance and hence the inclusion probability is a function of tree diameter. It is a
tree’s relative proximity to the sample point that determines sample inclusion with
Bitterlich sampling, not absolute proximity. In this regard the title of Bitterlich’s book
is revealing: The Relascope Idea: Relative Measurements in Forestry.

Although Bitterlich sampling can be conducted without the aid of an optical
device, this is never done on a routine basis. Occasionally there will be trees that
will be borderline when viewed through an angle gauge. This situation is similar
to the one discussed in §7.4.7 in the context of sampling with fixed-area plots. A
borderline tree in the context of Bitterlich sampling is one that appears to be exactly
at its limiting distance when viewed through the optical device. In accordance with
the recommendation of Iles (2003, p. 506), we believe that the horizontal distance of
each borderline tree from the sample point should be measured and compared to the
limiting distance appropriate for a tree of its diameter. In particular, the practice of
including every second borderline tree into the sample is not to be trusted, owing to
possible systematic errors of sighting which will inject bias of unknown magnitude
into the estimation of population parameters.

8.2.5 Bitterlich sampling with English units

In North American forestry, practitioners customarily perform Bitterlich sampling in
English units. Tree diameters are measured in inches (in), basal areas are calculated
in square feet (ft), and land areas are measured in acres (ac).

An English basal area factor, Fg (ft2 ac_l), obtains directly from a metric basal
area factor, F' (m2 ha™! ), with the conversion formula 4.356 fZac™! = 1 m? ha’l,
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ASIDE: There are a number of fine texts on forest mensuration that describe
various angle gauges and their proper use in Bitterlich sampling. For example,
the section on Implementing Point Sampling, in Chapter 11 of Avery & Burkhart
(2002), explains the use of stick-type angle gauges, wedge prisms, and Bitter-
lich’s Relascope. In Chapter 7 of Schreuder ef al. (1993, pp. 268-273) there is
an informative section on Instruments Used in VRP Sampling that also compares
the advantages and disadvantages of the wedge prism to the Relascope.

Le.,
Fp =4356F. (8.13)
Since a (m m’l) =a (ft ft’l), equation (8.5) converts to
43560
= (8.14)

Substituting (8.14) into (8.11) gives the angle, v, appropriate for the design parameter

FE, i.e.,
F
v = 2arcsin | ———. (8.15)
43560

The English plot radius factor, g, has units ft in_l, where 1 ft = 121in, so
o
Equations (8.14) and (8.16) relate the plot radius factor to the basal area factor, i.e.,

KE (8.16)

75.625
Kp = . (8.17)
Fg

English basal area factors of 10, 20, and, 40 fi> ac~! are popular choices. Thus,
for example, a basal area factor of 20 ft2 ac™! provides kg = 1.9445ft in_l, so the
inclusion zone radius for a tree with a 10 in diameter is 19.45 ft. A metric basal area
factor of 4mZ2ha~! converts to 17.424 ft ac~!, which provides kg = 2.0833 ft in_],
so a 10 in tree has an inclusion zone radius of 20.83 ft.

8.2.6 Noncircular tree boles

When a tree’s cross-sectional shape at breast height is not circular, then the tree’s
basal area will be computed inaccurately by (8.2). This has a crucial effect on the
calculation of the limiting distance and inclusion probability of the tree. Grosenbaugh
(1958) provided an extensive discussion about the consequences of elliptical boles
on bias in estimation following Bitterlich sampling, and he provided a protocol to
reduce it. Ellipticity of tree boles is ignored in most applications, inasmuch as the
bias will be less than 1% if the ratio of the minor to major axes of the ellipse is not
less than 0.9 (Grosenbaugh 1958, p. 25)
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8.2.7 Expected number of trees selected at a point

Let &, be a binary indicator of inclusion of €I at the sth sampling location.
Specifically,

(8.18)

) 1, if u € 7,
éks = .
0, otherwise.

Then ng, number of trees selected at (xs, z5), can be expressed as ny; = z,ivzl ks
which has expected value E[ng | = Z,]cvzl Elés] = Z,ICVII 7. When sampling with
fixed-size plots, each with area a, the expected number of trees selected on a plot is
approximately (that is, ignoring the truncated inclusion probabilities of trees near
the edge) Aya, where Ay is the average number of trees per hectare. With Bitterlich
sampling it is approximately A,/F, where 4, is the average basal are per hectare.
These results indicate that with fixed-size plots, the average number of trees depends
on the density as measured by numbers of trees but not their size, whereas with
Bitterlich sampling it depends on the density as measured by basal area. Since the
number of small trees in a forest usually outnumber the number of large trees, fixed-
size plot sampling will entail sampling more of the smaller trees of the forest than
will Bitterlich sampling.

Conventional wisdom from practical experience suggests that F should be chosen
so that ny is in the range of 4 to 8.

8.3 Estimation following Bitterlich sampling
8.3.1 Estimating t,

In Chapter 7, the HT estimator, (7.2d), was presented as the estimator of 7, based
on the sample from the sth plot. This also is suitable when trees are selected by the
Bitterlich design, namely

N k
Byrs = D ;— (8.192)
Uy Py k
Yk
=FA Z b (8.19b)
Uk €Py

If no trees are sampled on %, then 7y, = 0.
Barring edge effects, an unbiased estimator of 7, based on a Bitterlich sample of
m points is

. I < .
Tym,rep = — Z Tyxs (8.20a)
n s=1
FA & Vi
= — =. 8.20b
2y (8.20b)
s=1 Uy Py

The similarity of (8.20) to (7.3c) is evident. Indeed, all the estimators of population
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parameters presented in Chapter 7 are equally applicable to data acquired through
Bitterlich sampling, provided the inclusion probabilities appropriate for Bitterlich
sampling, i.e., my = by/FA, are used in place of the inclusion probabilities
appropriate for fixed-area plot sampling. Therefore, we shall not repeat all the
estimators presented in Chapter 7 again in this chapter.

8.3.2 Estimating basal area

It is worthwhile, however, to consider estimation of total basal area of the population,
namely 7, when y; = by, as in (8.2), for all 4. Because basal area has such a central
role in Bitterlich sampling, we designate its total on 4 and its per hectare value as 7,
and Ap, respectively. From the sample selected at & , an unbiased estimator of 7, is

. by
Thrs = -
Uk €Py Tk
by
=FA > B (8.21a)
Uk ePs
—n,FA (8.21b)

[3P)

where n; is the count of the number of trees that are selected, or are “in” according
to forestry vernacular, at % . Based on a replicated sample of m points,

. 1 .
Tomrep = — D Toms (8.22a)
mn s=1
FA <
=", (8.22b)
m
s=1
FA
- (8.22¢)
m
=nFA (8.22d)

is unbiased for 7. In (8.22c¢), n is the total number of “in” trees selected in the m

x99

points, and in (8.22d), 7 = > i, ny/m is the average number of “in” trees at a point.
On a per unit area basis,

(8.23)

— nyF (8.24)
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unbiasedly estimates basal area per hectare, as does
1 m
Dbrgep=— D b
T, 1ep m le TS
§=

=nF. (8.25)

The result of practical importance in the above is that one needs only to count the
number of trees sampled at a point in order to estimate aggregate basal area and basal
area per hectare unbiasedly. This is the origin of Bitterlich’s moniker “angle count
sampling.”

Example 8.3

At P atotal of ny = 7 trees were selected by Bitterlich sampling using an angle
gauge which provides a basal area factor of ' = 4m2ha~!. This provides an
estimate of Ap; = 28 mZha™".

Aggregate basal area and basal area per hectare are very highly correlated with
aboveground biomass, volume, carbon, foliar surface area, and other parameters
of the forest that are of importantance ecologically, and therefore of silvicultural
interest for managers of forest resources. Being able to estimate basal area simply
by counting trees with the probabilistic basis provided by Bitterlich sampling was a
major breakthrough in the field of forest inventory.

In §3.3 we discussed the statistical implications of unequal probability sampling
when elements are selected into the sample with probabilities that are proportional to
some measure of the size of each element. Of principal importance, is that if 73 o< x,
and yy is strongly correlated with xi, then we can expect that HT estimation of 7,
under this pps-sampling design will be more precise than under an equal probability
sampling design. This is exactly the situation for which Bitterlich sampling is ideal,
when the goals of a forest inventory are to estimate precisely the amount of biomass,
volume, carbon stored in the trees of the forest.

An alternative to 7z rep Was proposed by Flewelling & Iles (2004) which dis-
penses with the need to know A.

8.3.3 Estimating population size

Based on a Bitterlich sample at 7, an estimator of the total number of trees in the
population is

. 1
Ny = — (8.262)

(8.26b)

|

&

=
aM
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which leads to
1 m
Nerep = — Z; Nps. (8.27)
s=

As has been mentioned elsewhere in this book, y; = 1 implicitly when estimating
N, and Nﬂ,rep is termed the estimator of tree frequency in the literature on forest
inventory. Because the correlation between tree frequency and basal area is nil, there
is no special advantage to Bitterlich sampling for estimation of population size.

8.3.4 Estimating iy

To estimate the average value of y per tree in the population of interest, i.e.,
ty = ty/N, one ratio-type estimator is

X .
Ry = =, (8.28)
T, rep
asin §7.4.4.
An alternative estimator is the replicated estimator of x,, namely
A 1 - fyﬂ'S
fiymrep = — > > o (8.29)

s=1 UeP; " '7>S

8.3.5 Variances and variance estimators

As in Chapter 7, V [fyn’rep] is unbiasedly estimated by

m

A 1 . .
v [Tyﬂ,fep] = m (Tyirs - Ty7r,rep)2 . (8.30)
s=1

~

Similarly, V [/1 y,,,rep] is unbiasedly estimated by
1 m

5 [iy,,,rep] = =D S (ZW - fly,,,rep)z . (8.31)

s=1

8.3.6 Product estimator

In an obvious fashion the replicated-sampling estimator of 7, can be expressed as a
product:

Ty
~ ~ Yy, rep
Tyr,rep = Thm,rep (A ) . (8.32)

Tbr,rep
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Less obviously, the ratio term reduces to a simple average value:

) AF m %
Tym,rep m ZS=1 Z‘UkETS by,

ELEL A (8.33a)
Thr,rep ‘:1—Fn
1o
iy, (8.33b)
n s=1 U ePs
=V, (8.33¢)

where vy = yi/bk, and v is the average vy value across the n trees selected in the m
replicated sample points. Substituting this result into (8.32) yields

fyn,rep = %bn,rep‘_) (834&)

= aFAD (8.34b)

In forestry, vy is called ‘the VBAR’ if yy is tree volume. VBAR (pronounced vee
bar) is an acronym originally for volume to basal area ratio for the Uth tree. Iles
(2003) suggested that the broader applicability of (8.34) might be better appreciated
if VBAR were interpreted as variable (of interest) to basal area ratio.

Expressing 7yz rep as a product suggests an alternative expression for the variance
of fy,,,rep based on the derivations by Goodman (1960) on the variance of a product
of random variables. He showed that when the two multiplicands, say a and b, are
independent random variables, a design-unbiased estimator of the variance of their
product is

blabl=a*0[b]+b*0[al—0[ald[b] (8.35)

In the notation of this chapter, this result is

Ty

~| A y,1ep <2 O oAl A

v |:Tb7f,fCP (fb )i| = Tbn,repv[v] +v7o [Tbﬂ,fep]
,1ep

=0 Tharep | D[V ], (8.36)

where 0 [ D ] is an estimator of the variance of I = ?h”i The magnitude of the third

term is almost always considerably smaller than that of the first two terms.

When the random variables are not independent, the variance of their product is
more complicated. Inasmuch as 7j rp appears in both terms of (8.32), obviously
these terms are dependent random variables. However, their correlation is quite
small, apparently, in many applications; Brooks (2006), however, observed positive
correlations in the range 0.25-0.55..

In forestry, 0 [ V] is usually computed as

o 1< _
v[v]:n(n—_l)z > =), (8.37)

s=1 U €Ps
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which is not design-unbiased, as it would be had the n trees been chosen by
SRSwoR. Because v is just a ratio estimator analogous to Ii’y‘ » of Chapter 6, the
variance estimators presented in (6.28) and (6.29) are possible alternative estimators
for the variance of v. Specifically we suggest the following unbiased estimator of the
approximate variance of v:

. N
D[V]ZD[M]

fbn',rep
1 s?
= x, (8.38)
Tbn,rep m
where
1 - 2
52 = — Z;‘ (fyzs — Diprs)” (8.39)
§=
An equivalent expression is
b[D]="0 fymp
ihn’,rep
1 s
/Ibn',rep mn
where
1 < /. L N\2
52 = e (zy,” - mbm) . (8.41)

s=1
In the forestry literature, an alternative estimator (since Bell & Alexander 1957) of
the variance of 7y rat,ds is commonly seen, and credited to Bruce (1961). It is based
on the first two terms of (8.36) from Goodman (1960):

0 [f)'”,rep] = :[\b27r,repl3 [‘7 ] + 13213 [ szr,rep] . (8.42)

With regard to this alternative estimator, (Bruce 1961, page 27) wrote that it “does
not yield exactly the same estimator of the percentage sampling error of volume per
acre as can be calculated directly. However, since all the values used are safe rather
than unbiased, exact agreement is of little moment.” We interpret this statement to
mean that the estimator based on the product of random variables may overestimate
the variance when compared to the estimate based on (8.50). If our interpretation
is correct, then it does not coincide with our experience using o [fy,r,rep] as given
in (8.30). In other words, we have found that & [ 7yz rp | may give quite different
estimates of variance compared to » [fy,r’rep — at times substantially smaller
values, as shown in Table 8.1.

Table 8.1 Empirical comparison of 0 [fyn,rep] to 0 [fy,r,rep ] HTV: ought we include this
table, or not? I am in a quandary!
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Data Attribute 0 tyarep| O [ Zyrep |
DeVries Tree frequency, N 100% 99%
Volume/ha 100% 100%
ONRC Tree frequency, N 100% 85%
Volume/ha 100% 83%
Ohio  Tree frequency, N 100% 80%
Volume/ha 100% 121%
Example 8.4

The data displayed in Table 8.2 were tallied on a single sampling location in the
Pacific northwest region of the USA. A prism with factor Fz = 20ft?/ac was
used to select the sample trees. All measurements that were recorded in English
units have been converted to metric units. The equivalent metric basal area factor
is F = 4.59m?/ha.

On the basis of this sample point alone, the estimated basal area per hectare
is, using (8.23),

Aprs = 9(4.59) = 41.3 m? /ha.

The corresponding number of trees per acre is estimated as
ANzs = Ngg/A = 4058 trees/ha,

having an estimated above-ground biomass is estimated as

dyns = tyns/A = 227,352kg/ha.

Estimates of basal area, tree frequency, and biomass of QUGA are ob-
tained by using these same formulas restricted to the data from only the three
QUGA trees sampled at this point. The corresponding estimates are 13.8 m? /ha,
227.1 trees/ha, and 95,068 kg /ha.

For PSME, the estimates provided from this single point are 27.5m?/ha,
178.6 trees/ha, and 132,284 kg/ha.

Evidently, the estimates for the individual species sum to the estimate ob-
tained for all species combined. For example, the estimated 227.1 QUGA and
the 178.6 PSME trees per hectare sum to 405.7 trees per hectare, which is iden-
tical but for rounding error to the estimate computed directly.

This additivity will always obtain with linear, homogeneous estimators such
as the HT estimators 7y, and Ay, used here. Additivity is sacrificed when
either the ratio or regression estimator is used. In particular, fiyz o Will not
be additive across species.

In addition to separate estimates for each species, estimates may also be
computed separately for discrete size (e.g., diameter or height) classes of trees.
Estimates that are summed across size classes will be additive, too, subject to
the proviso of the preceding paragraph. In other words, if trees are grouped into
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Table 8.2 Diameters and heights of trees from one Bitterlich sample location. Biomass values
were derived from equations in Jenkins et al. (2004).

Breast
Species height Above-ground
Code diameter (cm) Height (m) Biomass (kg)
QUGA 49.530 13.777 1445.21
PSME 49.530 31.090 938.96
QUGA 24.638 16.307 316.25
PSME 69.342 31.333 2034.81
PSME 41.656 30.846 630.70
PSME 46.228 30.846 801.27
PSME 31.750 24.140 337.87
QUGA 23.368 17.770 281.85
PSME 49.784 29.322 950.07

successive 5 cm diameter classes, not only can the number of trees per hecare in
each class be computed, but these will sum to the same estimate on obtains by
pooling all trees together for all diameter classes.

Example 8.5

The sample data in Table 8.2 are part of a forest inventory comprising m = 27
sample locations. These data are stored in file OlympicNaturalResourcesCen-
ter_bigtrees_phase2.dat.

On these 27 sample points, the average number of sample trees per point was
n = 6.926 trees per point. From (8.25), the estimated basal area per hectare from
the replicated sample data is /Alh,,,rep = 31.8 m? /ha.

Using (7.15), the variance of Apyrep is estimated to be o [ Ayecep] =
17.5m* /haz, which yields an estimated standard error, relative to ;Ib,r,rep, of
13%.

A 90% confidence interval for A is 31.8 m? /ha=+22.5%, which extends from
24.7 to 38.9 m? /ha.

Estimates of tree frequency and aggregate biomass per hectare is left as an
exercise at the end of the chapter.

Example 8.6

To continue the preceding example, six species of trees were sampled on the
m = 27 points. Table 8.3 summarizes the replicated sampling estimates of basal
area per hectare, the standard error or each estimate as a percentage of estimated
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basal area, and the corresponding 90% confidence interval for 4. A column
is also included which displays the number of sample points on which each
species was found. This information is displayed as a implicit reminder that the
size of the sample on which the estimates are based is m = 27, regardless of
the number of points on which a species was actually found. Consequently, all
confidence intervals shown in the rightmost column were computed with a z-
value appropriate for 26 degrees of freedom.

A noteworthy aspect of these results is that individual species estimates are
more variable than the estimate for all species combined. This is a common
occurrence, and one which is due to the greater variability with which trees of a
particular species are selected from one sampling location to another compared
to the variability of the number of trees of any species selected at each point.
Indeed, the variability is so large for some species shown in Table 8.3 that the
lower end of the 90% confidence interval is less than zero.

Table 8.3 Replicated sampling estimates of basal area per hectare for each species found in
the m = 27 point sample. The column for “number of points” displays the number of sampling
points on which at least one tree of the species was selected.

Species Number /Albnjrep /0 [xly,r,rep] 90% Confidence

Code of points  (m?/ha) (%) interval (m?/ha)
ABAM 2 1.4 260.4 47— 74
ALRU 2 0.3 254.8 -1.1- 1.8
PSME 25 18.7 13.5 14.4 -23.0
QUGA 1 0.5 519.6 40- 50
THPL 5 1.9 97.7 -1.2- 5.0
TSHE 13 9.0 39.5 29-15.1

All species 27 31.8 13.2 24.7 -38.9

8.4 Edge effect

All the methods that correct for truncated inclusion probabilities when sampling with
fixed-area circular plots work with Bitterlich sampling, too.

8.5 Double sampling

Double sampling may be employed to increase the precision of estimation for any
attribute of interest that is well and positively correlated with total basal area of trees
in 4 or basal area per unit land area. Ordinarily, a precise estimate of basal area
obtains from a large set of first-phase sample points. The attribute of interest—for
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example, tree volume—may be measured for all the in-trees at a subset of the first-
phase sample points (Bruce 1961), or a subset of the in-trees may be measured at
each sample point (e.g., Bell er al. 1983; Iles 1989, 2003).

8.5.1 Double sampling with second-phase subset of sample points

Let m; be the number of first-phase sample points, and let ng, be the number of
in-trees at the s1th sample point. Then 7}, is unbiasedly estimated by

AF &

Thr,(1) = P ng, (8.43a)
1 s1=1

= AF (8.43b)

where 7 is the average number of “in” trees per first-phase sample point.

Let the second phase consist of a subset of the m sample points from the first
phase. The number of second-phase sample points is my (< m). If all sample trees
are measured both for y and b at each second-phase sample point, an estimate of 7,
at the s>th such point is

A Yk
B = AF 3 3, (8.44)
ﬂkeﬂz
whereas the corresponding estimator of 7, is

Thrsy = N5, AF, (8.45)

where n;, is the number of trees included into the sample at the sample point.
Therefore, unbiased estimators of 7, based solely on the m; replicated, second-
phase sampling points are

1 <&
@ = - > Fyrsy (8.462)
sp=1
=npAFv(, (8.46b)

where 7, is the average number of trees selected at the m, second-phase sample
points, and V() is the average yi /by among these trees.
The corresponding estimator of 7; and

1 &

Tor.2) = — D Thrsy (8.47a)
2 so=1

— i AF. (8.47b)

Generally speaking, Tpz,(2) 7 Tbx,(1)-
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In analogy to (6.94), the ratio of these two estimators is

Ryp = 222 (8.48)
Tpr,(2)
=1(2), (8.48b)

which is the average vx among all trees selected in the second phase, only.

Provided that the m, second-phase points are selected with equal probability from
among the m points of the first phase sample, a double-sampling ratio estimator of
7y which uses information from both phases of sampling is

A

Ty rat,ds = Ry|b(2) Thr, (1) (8.49a)
= fbr.(1)D2) (8.49D)
=n1FAv() (8.49c¢)

The similarity of (8.49b) and (8.49c¢) to (8.34a) and (8.34b), respectively, is obvious.
The variance of 7y 14,45 may be estimated by appealing to the variance estimator
(6.101). In the notation of this chapter

e sy 1 1\ () 2
8[Fmas] = 2+ (— — ) (2=0) 2, (8.50)
mi my  mi ) \Tor,)

where s§ is the sample variance of the m» point estimates 7y ,, namely

my

Z (fynsz - fyn:,(2))2,

sr=1

1
my — 1

2 _
sy =

and sr2 is the sample variance of the m; ratio residuals, 75, = Tyz5, — Ryp(2)Thrs,:

1 &

2 A2
e zlrk. (8.51)
Sp=

Estimates on a per unit area basis follow directly:

~

/Iyzr,rat,ds = fy,rat,ds/A (8.523)
=n1Fvp); (8.52b)
and
2 A 2 2
e sy 1 1 Thr,(1) S;
! — — =) = 8.53
D[T),rat,ds] m1A2 + my mi f}m,(Z) A2 ( a)
2 5 2
S 1 1 A
_ (_ - —) (b—m) 2, (8.53b)
1 mz  mi ) \dpz,(2)
where

1
my — 1

ma
Z (/lyirsz - /Iyn,(Z))zs

so=1

2 _
Sy/—
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and
1 & s s \2
Srz/ = z (/lynsz - Rylb(Z)j«bnsz) . (8.54)

Sz:]

my — 1

In (8.5.1) and (8.54), Ayrs, = Tyzs,/A and Ayz 2) = Tyz,(2)/ A.

Iles (2003) advocates a variant of the Bruce formula, (8.42) for estimating the
variance of 7y rat.ds. In the notation of double, point sampling established above,
Bruce’s formula is

0 [ Fyraras | = For.1yD [P2) | + 90)D [ B0y |- (8.55)

An alternative estimator for the situation where the second-phase sample of points
is a subset of the first phase, is the double-sampling regression estimator of 7y,

Ty reg,ds = Tyz,(2) + B (Tor,1) — Tbr,(2)) (8.56a)

= A@) + Bo)thr,a) (8.56b)

where 3(2) is the estimated slope of the regression line of 7yrg, versus Zp.g, for
sp = 1,2, ..., mp. The variance of fy,reg,ds may be estimated by the same expression,
(8.53), provided that the regression residuals, s, = Tyzs, — A(2) — E(g) Thrs, are used
in the calculation of the s? term.

Example 8.7

The sample data used in Examples 8.5 and 8.6 were part of a double sample. The
my = 27 second-phase points were a subset of m| = 271 first-phase sampling
points on which the number of trees selected with the F = 4.59 m?/ha angle
gauge were counted. No other measurements were taken on these sample trees.
These data were used to provide

ibn,(l) =350 mz/ha.
These are combined with the results from the second phase (see Example 8.6 to
yield
I3 _197,793.3kg/ha
Y3 = 31 8 m2/ha
= 6220.0kg/m?,

which in turn yields

~

Ayzratds = (6220.0)(35.0) = 217,507.5kg/ha.
Appealing to (8.50),

28,177,925,180 1 1 35.0\2
_ — ) (5,156,092,132
271 31.8

1’)\[jty7z,rat,ds] = 27 271

= 311,900,596.6 (kg/ha)>.
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As a percentage of /Aly,,,rat,ds its estimated standard error is 8.1%. Had 4, been
estimated with the m, = 27 second-phase points alone, the standard error would
have been 16.3% (see Exercise 8.2.).

Example 8.8

(Johnson 1961, page 5) presented data collected from a double point sample
consisting of m; = 62 first-phase points and my = 25 second-phase points.
(These data are available in the file Johnson'1961RN hps.dat.) He reports the
number of trees selected at each point with a prism basal area factor of Fg =
38.55 ft? /ac. While the diameters of trees on the second-phase sample points
must have been measured, Johnson’s data only reports on the volume (in board
feet measure) to basal area ratio, or vbar, of each of the trees selected in the
second phase.

From the n; = 158 trees selected during the first phase, 75 is estimated as
Abr.(1y) = 98.2 % /ac.

From the second phase data,

N 28,226.3 bd ft/ac
Ry = g 1 e
=300.1 bd ft/ft%,

which in turn yields

~

Ay rat,ds = (300.1)(98.2) = 29,480.1bd ft/ac.
with an estimated standard error of 9.2%. Had just the 25 second-phase plots
been used, the relative standard error would have been 15.0%
The double sampling ratio estimator as presented in (8.49) can be rearranged as a

multiplicative adjustment to the second-phase estimator of 7y:

. Thr,(1)
2yrards = 2020 o). (8.57)

In an obvious fashion, the same multiplicative adjustment may be made to per unit
area estimates:

A Abz,(1) 5
/lyn,rat,ds = 7 . )/1)'71,(2)- (8.58)
Abz,(2)

When there is additional interest in obtaining separate estimates by species, as
in Example 8.6, or by size classes, Oderwald (1994) suggested that this same
multiplicative adjustment be applied to each species or size class estimate. In this
fashion, one may hope to reap the benefits of the double sample rather than rely
on estimates by species or size classes solely on the small second-phase sample.
With this approach, the additivity of species, or size-class, estimates is retained, as
the multiplicatively adjusted individual estimates will sum to the similarly adjusted
estimator of 7y or 4,. Oderwald (1994) suggested an estimator of variance of these
individual estimates that is similar in spirit to 9|7y ratas| in (8.50), but with the



DOUBLE SAMPLING 265

ASIDE: The type of adjustement suggested by Oderwald (1994) is similar in
spirit to a procedure termed raking which was introduced, according to Lohr
(1999), by Deming & Stephan (1940) to adjust entries in two- or higher-way
tables so that they summed to consistent totals in the marginal rows and columns.
A brief illustration of raking is given in §8.5.2.2 of Lohr (1999).

expressions for s% and sr2 modified to include only those data belonging to the species
or size class of interest. We defer to Oderwald (1994) for details.

As an alternative to applying the same multiplicative factor to each species’ (or
size-class) estimate from phase two, the fbn,(l)/f;,n,(g) (or, /Alb,r’(])/;lbm(z)) factor
can be based on just those trees sampled in the species (size class) in the two phases.
With this approach, additivity is sacrificed, but other advantages may accrue.

Disagregating 7, and A, into separate estimates by species or size classes follow-
ing double sampling and regression estimation is more complicated than it is with
ratio estimation, as shown by Matney & Parker (1991).

8.5.2 Optimal allocation

With point, double sampling there is a loss of information when the y characteristic of
primary interest is measured only on these trees selected by the second-phase sample
points. This loss of information is manifest as an increase in the sampling variance
of 7y rat,ds compared to the variance of a single-phase estimator, 7y rep, based on an
identical number of sample points.

Conversely, the double sample may cost less, because Bitterlich sampling enables
efficient estimation of 7, simply by counting the number of trees that are selected at
each first-phase point: the comparatively-costly measurement of y on the first-phase
sample trees is foregone.

In other words, there is a tradeoff between sampling cost and precision of
estimation occurs with the point, double sampling design. As with any double
sample, it is necessary to allocate the time and effort between the two phases of
sampling to achieve an acceptable tradeoff. To this end, Oderwald & Jones (1992)
derive optimal sample allocation formulas for point, double sampling. They depend,
inter alia, on being able to stipulate the strength of the linear correlation between
y characteristic and basal area on a per hectare level, as well the average cost of a
first-phase sample point and a second-phase sample point

Typically, when y is the volume or biomass is the bole of a tree, the correlation
with basal area on a per unit area basis is quite strong. When this is coupled with
the ease with which the first phase (angle-count) sampling is conducted in order
to estimate basal area per hectare, point, double sampling can be very efficient
compared to one-phase sampling in which all trees are measured for y.

We defer to Oderwald & Jones (1992) for illustrative examples and for the details
on deriving the optimal sample sizes in the two phases.
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8.5.3 Double sampling with a second-phase subset of trees

Instead of measuring all the trees on a subset of the m first-phase sample points,
an alternative tactic is to select a subset of trees for measurement on each first-phase
point. By selecting a subset of “in” trees at each sample point, the second-phase
sample is distributed more evenly over the forested region. Big BAF sampling, as it
has become known in the forestry literature, (e.g., Iles 2003; Marshall et al. 2004)
provides one way to make the second-phase selections. Choosing the second-phase
trees with probability proportional to height provides another way.

With both methods, the first-phase sample trees are selected with a basal area
factor, say Fi, and the number of “in” trees are counted, possibly by species. As
above, no other measurements are taken on the first-phase selections. An estimator
of 73, is available from 7p, (1) as given in (8.43b).

Big BAF sampling

At each point, a subset of the first-phase trees is selected by using a basal area factor,
F,, that is larger than F7 used in the first phase. This ensures that the trees selected
in the second phase are a subset of those already counted in phase one. The size of
F> compared to F controls indirectly the number of trees selected at a point in the
second phase, ny,, relative to the number of trees, ny,, selected at the first phase. If,
for example, if the objective is to measure, on average, 1/5 of the trees selected in the
first phase at a sample point, then F, = 5F;. As with one-phase Bitterlich sampling,
it is possible that no trees will be measured at some sample points; see, for example,
the data used in Example ??. The larger F; is, the greater is that risk.

The rationale for the “Big BAF sampling” design is that 7j, (1) is usually much
more variable than v(z). Therefore a larger sample of trees ought to be selected to
estimate 75, (1) than is required for equally precise estimation of v(y). By varying
F1 and F> in the manner described, the designer of the forest inventory can account
directly for this, while achieving a more evenly distributed selection of “measured”
trees at the same time.

Estimation of 7, proceeds identically as before by computing Iéyu,(z) in (8.48)
from the second-phase sample information, and then multiplying this by 75, (1) to
yield 7y rar,ds as given in (8.49). Similarly, the variance of 7, 14,45 can be estimated
by 13[fy,rat,ds] in (8.50), although use of (8.55) also is advocated for this purpose.

Subsampling trees with probability proportional to height

Nelson & Gregoire (1994) examined the utility of selecting a subset of the trees
selected at a point in phase one with probability proportional to tree height. This
method requires that the heights of all trees selected in phase 1 at each point
be accumulated into a list so that subsampling may proceed according to the list
sampling method presented in § 3.3.1.

To be specific, let 7;, ¢ denote the total height of all trees selected at the sth point
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in phase one: If ;. denotes the height of 7, then
Ths = Z hy (8.59)
Uy €Py

is the accumulated height of the n trees on 7 . From this list, a subsample of
ng2) < ns trees is selected with replacement using 72y = hg/7p,s as the selection
probability.

Nelson & Gregoire (1994) presented an unbiased estimator of 7, as

1 Yk

fyms = (8.60a)
n5Q) qyiem, TKTK)
FAz,
= s (8.60b)
Q) gen, byhy

From a replicated sample comprising m sampling points, 7, is estimated unbiasedly
by

1 m
Tym,rep = m ; Tymss

as usual. They also provide an exact expression for the variance (see page 252 of that
article), which is estimated unbiasedly by (8.30) in the usual fashion. As with the
‘big baf” method, the motivation for subsampling is to reduce the number of trees
for which y; must be measured without incurring an appreiciable loss of precision
by failing to measure y; on every tree at each sample point. In their simulation
experiments conducted with mapped stands of trees, Nelson & Gregoire (1994)
found but a modest increase in the standard error of estimation when compared to
a comparable one-phase Bitterlich sample. They mention that in stands with little
variation in tree heights, the second-phase selection will be almost the same as
SRSwR. Also, for the purpose for which the information on tree heights is used,
ocular estimation, which can be done quite quickly, should suffice.

8.6 Sampling to estimate change in stock

Motivations for sampling to estimate change in 7, were discussed in 7.7. Ordinarily,
we are interested in the change in 7, between two points in time, #; and #;. For
example, ty, may be the total amount of merchantable volume within the boles of the
trees or the amount of carbon sequestered in the organs of the trees. In the former
case, 7y is called the merchantable stock and, in the latter, the carbon stock. Let 7, (t1)
denote the stock of interest at time #1, and let 7, (#2) denote the stock at time ;. The
net change in stock from #1 to 7, is thus

Ay = ‘L'y(tz) - ‘L'y(tl). (8.61)

and a natural estimator of A is

Ay = 'E_vn,rep(t2) - fyn,rep([l)- (8-62)
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The estimator is very general. Indeed, the sampling may employ fixed-area plots at
time #; and Bitterlich sample points at time #,, or vice versa. Or, Bitterlich sample
points may be used on both occasions. The sample points used at #; may differ in
location and number from those used at #,, or a common set of sample points may be
used on both occasions. In the latter case, A y can be expressed as

. 1 & . .
Ay=— ; Tyrs (12) = Tyas (1) (8.63)

The sampling variance, V[A y], is expressed as equation (7.30), and an estimator of
this variance is expressed as equation (7.31).
Let Ap, denote the change in basal area from #; to 12, i.e.,

Ap = Tbn,rep(t2) - Tbn:,rep(tl)- (3.64)

If Bitterlich sampling is conducted with the same basal area factor at the same set of
m sample points on both occasions, then A p is estimated by

. FA <
Ay=—=2 ny(2) —ns(n) (8.652)
s=1
= FA[i(ty) — n(t1)]. (8.65b)

8.6.1 Conventional components of change

The net change in stock may be decomposed into various components of change (e.g.,
Beers 1962). We shall consider three components that, by convention, are called
ingrowth, survivor growth, and loss. As noted in Chapter 7, trees smaller than some
minimal diameter (dp;in) ordinarily are not measured in forest surveys. Any tree, U,
is ‘measurable’ if dy > din. Ingrowth (A ) is the portion of stock at #, contributed
by those trees which become measurable between #; and 7, and which remain alive at
1. Survivor growth (Ayg) is the increase in stock attributable to the growth of trees
that are alive and measurable at both #; and #,. Loss (A1) is usually defined as the
portion of the stock at #; contributed by trees that are alive and measurable at #; and
either dead or harvested by time #,. Therefore, the stock at #; is

Ty(t2) = AyI + AyS + Ty(ll) - AyL (8.66)
and the net change in stock from #; to 1, is
Ay =Ayr+Ayg—Ayr. (8.67)

Let & indicate whether tree U contributes to ingrowth at 12, i.e.,

1, if U contributes to ingrowth;
& =[ ke s (8.68)
0, otherwise.
Then,
N
Ay =D & yi(t). (8.69)

k=1
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Analogously,
1, if U contributes to survivor growth;
&s = . g (8.70)
0, otherwise
and
1, if Uy contributes to loss;
SkL = ) 8.7D)
0, otherwise.
Hence,
N
Ays =D &s () — yi(t)] (8.72)
k=1
and
N
Ay =D &L y(n). (8.73)
k=1

Under a fixed-area plot design, the estimation of the components of change is
straightforward (see Example 7.16). Under the Bitterlich design, we presume a
common set of m sample points and the same basal area factor at both occasions.
Any tree, Uy, that is ‘in’ at the sample point and measurable at ¢; obviously is a
‘survivor tree’ if that tree is still alive at ;. And, any tree that is in, but too small
for measurement at ¢y, is obviously an ‘ingrowth tree’ if that tree is both alive
and measurable at #,. However, since a tree’s inclusion zone grows in diameter in
proportion to tree diameter, trees that were out at #{—whether measurable or not—
may be in and measurable at #>, and this complicates matters at ;.

Under definitions of Van Deusen et al. (1986), any tree, Uy, which is in and alive
at tp, is an ingrowth tree if di(t]) < dmin and di(#2) > dmin, regardless of whether
the tree was in or out at #;. Moreover, any tree, Uy, which is in and alive at #,, is a
survivor if di (1) > dmin, regardless of whether the tree was in or out at #;. Any tree,
Uk, which was in and alive at t; with di(¢;) > dmin, is a ‘loss tree’ if it is dead or
harvested at 1;.

Correctly identifying the loss trees is easy, provided the measurable ‘in-trees’ are
numbered or mapped at 7. It is more difficult to determine which ‘out-trees’ at ¢ are
ingrowth trees at 5 and which which are survivors. This determination is facilitated
at #; by measuring the diameters and mapping the locations of any out-trees that
could conceivably become measurable in-trees at #,. One way to identify trees that
may transition from out at #; to in at #, is to use an angle gauge with a smaller basal
area factor than that which is used to identify the in-trees at 7.

The net change in stock from #; to f; is unbiasedly estimated from Bitterlich
samples by

A},:A—F z yk(lz)_ Z yi(t1) _ (8.74)

" s=1 [ Uer(n) bit2) U ePs(t1) bi(t)
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The components of ingrowth and loss, respectively, are unbiasedly estimated by

N AF &
I

s=1 U ePs (1)

and

L AF O yi(t1)
Avp=—2" 2 du [bk(n)] (8.76)

s=1 U ePs(t])

Survivor growth is unbiasedly estimated by

AF yi(t)  yi(tr) y(t2)
yS—7§ > gks[bk(tz)_bk(tl)]jL > éks[bk(tz):|

U Py (11) Uy &P (1)
UL (12) U EPs(12)
(8.77)
or, equivalently, by
AySZAy_Ay1+AyL~ (8.78)

Alternative estimators of the components of change—based on alternative defin-
itions of loss-trees, survivors, and ingrowth-trees—were advanced by Grosenbaugh
(1958), Beers & Miller (1964), Martin (1982), and Roesch et al. (1989), among oth-
ers. The estimators of Van Deusen ef al. (1986), given here, and those of Roesch
et al. (1989) are unbiased for the components of change and both sets have the es-
thetic property of component additivity: the sum of the estimates of the components
of change equals the estimate of net change, as provided by (8.74).

However, the conventional components of change generally are not temporally
additive (Eriksson 1995a). The results that obtain from adding the component
estimates for the time interval [#1, f2] to those for the interval [f», 3] differ from
the component estimates for [#1, #3], which obtain from measurements at #; and
t3, omitting measurements at #,. A tree’s contribution to ingrowth, for example,
increases from the time the tree becomes measurable until the time that that tree
is measured. Thus, a tree that becomes measurable between #; and ¢, contributes to
the ingrowth component until #3, if the measurement at #, is omitted.

8.6.2 Eriksson’s components of change

Eriksson (1995a) achieved component and temporal additivity by defining new
precise components of change in continuous time. Trees that are measurable during
all or part of an interval [f1, f] categorize as eligibility trees, growth trees, and/or
depletion trees. An eligibility tree, 7, is too small for measurement at #;, but it
becomes eligible for measurement when it grows to the minimal diameter (dy =
dmin) at time #; g, where ] < txg < t2. As Uy crosses the threshold of eligibility, the
stock in 4 is incremented by yi (fx ). If an eligibility tree dies or is harvested at  p,
where fyg < txp < fp, then that eligibility tree is also a depletion tree. Moreover,
any tree, U, that is measurable at 7; and lost to death or harvest at fxp < 1, is
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also a depletion tree. When any tree, 7, becomes a depletion tree, the stock in 4 is
depleted by vk (txp)-

Any tree—while it is alive and measurable during any part of the interval [¢1, to]—
is a growth tree. Thus, growth trees comprise eligibility trees, depletion trees (while
alive), and survivors—those trees which are both alive and measurable at both #;
and 7. Let wy denote the earliest point in the time interval [t1, t2] that tree Uy is
eligible for measurement, and let v denote the last point in the time interval that T
is measurable. If T is an eligibility tree, then wy = fxg; otherwise, wy = t1. If tree
Uy is a depletion tree, then vy = txp; otherwise vy = . More formally,

wy = max(ty, txg) and v = min(ty, 4p).
Hence, the growth of any measurable tree Uy in the interval [#1, 2] is

Oyk = Yk (vr) — yr(wy). (8.79)

Let T denote the set of growth trees, i.e., all trees that are measurable at any point in
[t1, t2]. Then, the increase in the stock, A7, from the total growth of all measurable
trees in A4 is

Ayr = D o) = ye(wy) (8.80)
weT

= > . (8.81)
wueT

Let E denote the set of trees that become eligible for measurement in [#1, #2]. The total
increment in the stock, A g, attributable to trees crossing the threshold of eligibility
is
Ave = D wltp). (8.82)
UreE
Finally, let D denote the set of trees that become depletion trees in [#1, #2]. The total
decrement in the stock, A, (D), attributable to death or harvest is

Ayp= D w(tip). (8.83)
U eD
Hence,
ty() = Ayr + Aye 4+ 7y(11) — Ayp (8.84)
and the net change in the stock from #; to 7, is
Ay=Ayr +Ayg — Ayp. (8.85)

To estimate these components from Bitterlich samples, we must be able to
distinguish the eligibility trees and the depletion trees from the other measurable
trees that are in at a sample point at time #,. Depletion trees are obvious and, as it
turns out, identification the eligibility trees is easy, because an eligibility tree must
be in at the sample point before it is measurable (Eriksson 1995a). If ¥ is in, but too
small for measurement at 71, then it is an eligibility tree at #; if dy(#2) > dpin. On the
other hand, if Uy is out at ¢, but in and measurable at #,, then we determine whether
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Uy is an eligibility tree with the plot radius factor, x, and the distance, €, from T
to the sample point: to wit, U is an eligibility tree if {; < rkdpnin. Conversely, if
{x > xdmin, then Uy is not an eligibility because it was measurable before it was in
at the sample point.

We do not need to know the point in time, #x g, when U became measurable, but
we should be able to calculate or estimate the attribute of interest, yx (txg ), from dpin-
Similarly, we do not need to know the point in time, #; p, when a depletion tree, Uy,
was lost to death or mortality, but we should be able to measure, calculate, or estimate
the loss, yx (txp).

The net change in stock in [71, 7] is estimated with A y as formulated in (8.74).
The ingrowth or increment in the stock attributable to trees crossing the threshold of
eligibility in [#1, 72] is estimated by

. AF & Vi (tkE)
Ap==—>> ) (8.86)
m = b (txE)
Py (tkg)> U

The decrement in the stock attributable to death or harvest in [#, #2] is estimated by

A AF < Yk (tD)
App=—"—>>5 . (8.87)
m = = br(txp)
P (tkp)> Uk

Hence, an estimator of aggregate tree growth in [#1, 2] is
Ayr = Ay 4+ Ayp — Ayg. (8.88)

Eriksson’s components of change evidently differ from the conventional compo-
nents. However, if Bitterlich sampling were conducted yearly, and the estimators of
Van Deusen et al. (1986) were used to estimate the conventional components, then
the estimate of Eriksson’s growth component could be quite similar in value to the
estimate of conventional survivor growth, and the estimate of Eriksson’s depletion
component could be similar to the estimate of the conventional loss component. And,
naturally, the estimates of eligibilty and conventional ingrowth also could be simi-
lar. Most definitions for the conventional components ignore trees that (a) become
measurable after 7; and (b) are lost to death or harvest before ;. Under Eriksson’s
definitions, these ephemerally measurable trees are eligibility trees, growth trees, and
depletion trees. That the history and growth of these tree are accounted for renders
Eriksson’s components useful in ecological studies. Indeed, if 7, is aboveground car-
bon (Mg) in trees, then (A ,7/A)/(t2 —t1) is the tree component of aboveground net
ecosystem productivity (Mg C ha=! yr™1).
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8.7 Terms to remember

Angle count sampling Limiting distance

Angle gauges Plot radius factor

Basal area factor Point double sample

Big BAF sampling Variable radius plot sampling

Components of change VBAR
Horizontal point sampling ~ Winkelsdhlprobe

8.8 Exercises

1. Explain the consequences of a = 1.

Extend Example 8.5 to include 90% confidence intervals for trees per hectare and
biomass per hectare.

. Repeat Exercise 2. to compute up estimates separately for each species that was

sampled.

Use the data in Table 8.4, previously published in de Vries (1986, §12.6, p. 237),
to estimate number of trees, basal area, and volume per ha.

Use the data in Table 8.4, to estimate the average height per tree in the sampled
population.

. Use the data stored in file Ohio "HPS "subset.dat, a portion of which is displayed in

Table 8.5, to compute 90% confidence interval estimates for number of trees per
acre; basal area per acre; and volume in board feet per acre.

. Repeat Exercise 6. to compute interval estimates separately for each species

tallied in the sample.

Repeat Exercise 6. to compute interval estimates separately for each one-inch
diameter class.

Use the double-point-sampling data in Johnson 1961RN hps.dat to verify the
results reported in Example 8.8, and to compute a 90% confidence itnerval for
volume per acre.

. Use the double-point-sampling data in RGO cruise.dat and displayed in Table 8.6

to compute 90% confidence itnerval estimates of basal area per acre and volume
in board feet per acre. Note that the volumes shown in this table are the 7y
estimates for each point.
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Table 8.4 Bitterlich sample data from a forest inventory consisting of m = 5 sample points
usinga F = 3m?/ha basal area factor. Taken from de Vries (1986).

Breast- Breast-
height Tree Bole height Tree Bole
Point diameter height  volume Point diameter height volume

(em) (m) (m?x10%) (cm) (m) (m?x 103
1 20 17.3 270 3 26 19.4 497
1 25 19.2 456 3 28 20.0 589
1 25 19.2 456 3 30 20.5 688
1 28 20.0 589 3 31 20.7 739
1 29 20.2 636 3 32 20.9 793
1 33 21.0 845 3 33 21.0 845
1 35 213 960 3 40 21.9 1275
1 36 21.5 1020 4 21 17.7 303
1 37 21.6 1080 4 23 18.5 376
1 38 21.7 1145 4 31 20.7 739
2 24 18.8 414 4 32 20.9 793
2 24 18.8 414 4 33 21.0 845
2 28 20.0 589 4 37 21.6 1080
2 30 20.5 688 4 37 21.6 1080
2 30 20.5 688 5 25 19.2 456
2 35 21.3 960 5 25 19.2 456
2 39 21.8 1210 5 28 20.0 589
3 21 17.7 303 5 28 20.0 589
3 25 19.2 456 5 31 20.7 739
3 26 19.4 497 5 34 21.2 904

Table 8.5 Bitterlich sample data from a forest inventory consisted on m = 99 sample points
using a Fg = 10 ftz/ac basal area factor. Data displayed in table comprise the trees tallied
on the first of the 99 sample points. Complete tally is filed in Ohio HPS 'subset.dat.

Breast- Tree
height  volume
Point Species diameter (board

code (in) feet)
1 BO 14 130
1 YP 16 236
1 SM 21 539
1 WO 16 236
1 RO 21 492
1 YP 16 284
1 YP 25 806
1 WO 18 272
1 RO 19 307
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Table 8.6 Tree counts and volume per acre estimates from a double sample consisting if
m1 = 49 first-phase sampling points and mo = 17 second-phase points. The second-phase
sample included every third point. Sampling was conducted with a Fg = 20 ftz/ac

Point No. of Volume Point No. of Volume
trees  (bd. ft.) trees  (bd. ft.)

1 3 7640 26 1

2 2 27 2

3 3 28 2 3880
4 2 2890 29 3

5 5 30 0

6 4 31 0 0
7 3 7220 32 4

8 3 33 3

9 3 34 7 7600
10 5 9560 35 2

11 3 36 3

12 3 37 5 7040
13 0 0 38 0

14 0 39 0

15 4 40 0 0
16 3 5180 41 0

17 3 42 1

18 4 43 0 0
19 2 5160 44 2
20 5 45 3
21 0 46 5 10260
22 0 0 47 5
23 1 48 4
24 4 49 6 14340
25 4 9500

prism.







CHAPTER 9

Line Intersect Sampling

9.1 Introduction

Line intersect sampling (LIS) is a form of pps sampling in which the sampling unit
consists of a line or transect. Also widely known as line intercept sampling, LIS
was popularized in forestry and ecology literature by Canfield (1941) in a Journal
of Forestry article concerned with estimating the density of range vegetation. It is
clear, however, that the use of a line as the sampling unit was not novel with this
exposition; see, for example, Rosiwal (1898), Clements (1905), Schumacher & Bull
(1932), and Bauer (1936). Canfield (1941, p. 388) provided the statistical basis for
estimating density “through randomization in the locations of the sampling units.”
Within the natural resources literature, alone, the range of application of LIS has
been very broad, having been used, for example, for the estimation of boundary
length, diversity indices, fuelwood loading, plant canopy and area coverage, forest
gap size, root length, logging residue, and standing basal area. Presently, LIS is used
widely to estimate the abundance of coarse woody debris (CWD) and woody detritus
on the forest floor.

Despite the similarity in name and overlap in vocabulary, LIS is not the same as
line transect sampling, which is widely used to sample wildlife, fisheries and other
mobile populations. For a description of line transect sampling, consult Thompson
(2002, Chapter 17) or Seber (1982, Chapters 2, 12).

The large literature on LIS in the applied natural sciences is a bit inconsistent
because some authors, e.g., van Wagner (1968), have assumed a Poisson probability
model for the distribution of elements in the population of interest. This differs from
the design-based approach taken in this book, wherein randomness is insinuated only
by the selection of units into the sample, not the realization of the population itself
(see Gregoire (1998) for further elaboration of this point). The inconsistencies appear
in works which incorrectly claim that the Poisson model must hold in order to permit
valid inference. In the design-based framework for statistical inference, this claim is
patently incorrect. None of the results which we report for LIS in this chapter rely on
any assumption about the location or orientation of the population elements within
the region of interest.

While most of the literature on LIS considers transects consisting of a single
straight line with fixed length, there has been interest also in transects consisting
of more than one segment. Howard & Ward (1972) used two transects joined
perpendicularly together in an ell shape as a way to sample elements more robustly.
We present LIS in detail for singly segmented transects first, and then we turn our
attention to multiply-segmented transects later in the chapter. We also consider the
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ASIDE: In some respects LIS is related to a problem posed in 1733 by George
Louis Leclerc, a respected French naturalist of the eighteenth century, better
known as the Comte de Buffon. The Buffon Needle Problem is widely regarded
as the first problem dealing with geometrical probability, according to Uspensky
(1937, p. 251). In it, a needle of length [ is dropped onto a surface marked with
parallel lines spaced a distance d apart. The problem posed by Buffon was to
determine the probability that the randomly dropped needle will cross one of the
marked lines. Its solution is p = 2I/nd.

If the needle is thrown m times and f;; = 1 if the sth thrown needle intersects
aline, ;s = 0 otherwise, then #;, is a Bernoulli random variable with probability
of success p. A count of mg intersections from m > m( throws is a binomial
random variable: mg ~ Bin(m, p). Because p = mo/m unbiasedly estimates p,
an nearly unbiased estimator of 7 is 7 = 2//pd. Lazzerini (1901) conducted an
experiment in which the needle was tossed m = 3408 times, and he estimated
the value of 7 to within 3 x 10~7. For further reading about the Buffon needle
problem and related matters, consult Perlman & Wichura (1975), Watson (1978),
and references cited therein.

case of random length, parallel transects emanating from a baseline and extending to
the opposite boundary of the survey region. A Monte Carlo integration approach to
LIS is described in Chapter 14.

9.2 LIS with straight-line transects
9.2.1 Sampling protocol

We suppose that within a region 4 there are N disjoint elements that constitute the
population of interest. As in the previous chapters, the horizontal area of 4 is A, and
the number of elements comprising the population, N, generally is unknown even at
the conclusion of sampling.

Sampling locations, (xg, z5),s = 1,...,m are established on 4, each of which
will serve as the mid-point or the end-point of a transect of length L. To avoid the
use of conversion factors in the formulas which follow, let L and A have compatible
units of measure in the sense that if L is expressed in m then all other measures of
length are expressed also in m, and that A and all other expressions of area have units
of m2. In like manner, volume is in m?, and so on.

Let the orientation of the sth transect with respect to some reference direction
6 = 0 be indicated by ;,s = 1, ..., m. The sample selected by the sth transect
consists of all population elements, U, that are completely intersected by the
transect, in the sense that the transect crosses the horizontal projection of 7 onto the
floor of 4. For example, in the motivating application discussed by Canfield (1941), a
plant was selected into the sample if the projection of its canopy onto 4 was crossed
by the transect. Some elements that are partially intersected are also admitted into
the sample according to the protocol established below.
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a)

b)

Figure 9.1 Intersection of a non-convex population element, Uy. In each transect, o symbol-
izes (xs, zs), the starting point. a) Examples of complete intersection; b) examples of partial
intersection with the back end of the transect; c) examples of partial intersection by the front
end of the transect.

Kaiser (1983) distinguished between full and partial intersections in a manner that
is suitable when all 7 have rather simple shapes. To prescribe a LIS sampling
protocol suitable for elements that may have non-convex shapes, multiple lobes,
and perhaps interior voids or cavities (e.g., as shown in Figure 9.7 on page 300),
it is necessary to distinguish complete from partial intersections in a more exacting
fashion, which then may be carried over without alteration to transects comprising
multiple segments.

We first consider the case where the transect emanates from (xy, z,) and is oriented
in direction 6, as in Figure 9.1. Uy is completely intersected only if the transect
intersects its boundary as many times as a coincident line of infinite length. This
follows the definition established by Affleck er al. (2005). In Figure 9.1, the
boundary of 7 may be crossed by the transect as many as four times. Yet only
in Figure 9.1a do the transects completely intersect U. The intersections depicted in
Figure 9.1b and Figure 9.1c are partial intersections. By convention, (xs, z5) defines
the starting point or ‘back end’ of the transect. Naturally, the other end of the transect
is called the ‘front end.” For partial intersection of 7l by either end, the transect
necessarily must cross the boundary of its projection onto A4 at least once, yet not so
many times as a complete intersection. Examples of partial intersections by the back
end of the transect are displayed in Figure 9.1b; partial intersections by the front end
are shown Figure 9.1c.

In the topmost example in Figure 9.1b, where (x;, z5) is situated between two
segments of a forked element, the intersection is partial, even though the starting
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I

Figure 9.2 Complete and partial intersections of elements, where (xg, zs) is the midpoint (o)
of the straight-line transect. The left element is partially intersected by the front end of a
transect segment, and the right element is completely intersected by the other segment. The
center element is partially intersected by the back ends of both segments, which meet at the
midpoint, (xg, zs).

point, (x5, z5), is not located within the projection of ¥y onto 4. The intersection
meets our definition of a partial intersection because an extension of the transect in
the direction 65 + 7 (i.e., in the opposite direction of 6;) would intersect two more
boundaries of .

For straight-line transects, where (x;, zs) serves as the midpoint, as in Figure 9.2,
the notion of a complete intersection by the transect remains unchanged. For partial
intersections, it is useful to think of the transect as consisting of two segments joined
at (xy, zg). Each segment has a front end and a back end, and the back ends of
the two segments meet at the starting point, (x, zs). Thus, we may have a partial
intersection of an element by the front end of either segment or by both back ends
simultaneously. The left element in Figure 9.2 is partially intersected by the front end
of a segment; the right element is completely intersected by the other segment; and
the center element is partially intersected by both back ends simultaneously.

Our sampling protocol is the same as that proposed by Affleck et al. (2005),
namely U is selected into the sample by the sth transect if Uy is intersected
completely or if it is intersected partially by the front end of the transect or by the
front end of a segment of the transect. By contrast, an element, Uy, is not selected if
it is partially intersected by the back end of a transect or by the back end of a transect

ASIDE: In some of the literature on LIS, the elements of the population are
termed “particles”, a terminology that has been in use at least since Lucas
& Seber (1977). Adoption of such a neutral moniker is tacit recognition that
“particles may represent plants, shrubs, tree crowns, nearly stationary animals,
animal dens or signs, roads, logs, forest debris, particles on a microscope slide”
(Kaiser 1983, p. 966). For sake of consistency in this book, we shall continue to
refer to the individuals comprising a discrete population as elements.
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wk(0s)
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Figure 9.3 a) Inclusion zone of Uy (gray), where a straight-line transect starts at (xg, Zs)
and is oriented in the direction Og (see Figure 9.1). b) Inclusion zone for the same element
where (x5, zg) is the midpoint of the transect (see Figure 9.2). In both (a) and (b), the element
itself, and the white area between the fork is not part of inclusion zone, i.e., if (xs, zs) occurs
here, the element is not selected, since intersections would be partial intersections by the back
end(s) of the transect or transect segments.

)

b)

~—0s
L/2

segment that emanates from the starting point, (xy, z;). Thus, in Figure 9.2, the left
and right elements are selected by the transect, but the center element is not.

For a nonconvex element, U, such as those shown in Figures 9.1 and 9.2, it
is possible for a transect to intersect two or more branches, lobes, or other types
of connected sections. Regardless of the number of sections of a single, connected
element that are intersected, the element is considered to be intersected but once.

With the proposed sampling protocol, there is nothing to prevent U from being
selected from two or more independently placed transects.

9.2.2 Estimation conditioned on transect orientation

When following the first of the two sampling protocols described above, the inclusion
zone for a forked element is shown in Figure 9.3a, whereas the inclusion zone for
the same element corresponding to the second protocol is shown in Figure 9.3b.
Although the inclusion zones differ, they are identical in some important aspects.
Each has the same orientation, 6, as that of the transect itself. Except near the ends,
both inclusion zones have a constant width, wy (6y), identical to the width of
(expressed in units identical to those used to express L) in the direction perpendicular
to 6s. The area of both inclusion zones is ay = w (6s)L.
Regardless of which of the two sampling protocols is used, the (conditional)
inclusion probability of Uy is
ag
mi(Os) = 1 (9.1a)
wpO)L

v (9.1b)
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The notation wy (6y) and mx(6y) makes explicit the dependence of the element’s
width and inclusion probability on the transect orientation. In statistical parlance,
both measures are conditionally dependent on 6, which implies that the conditional
inclusion probability of Uy is not constant unless all transects have a common
orientation. That is, for two transects indexed by s and s’, respectively, if 8, # 6,
then wy (65) # wg (6y) unless by coincidence or unless Uy is circular. For that reason,
7k (65) # 7 (6y), generally speaking.

With the above inclusion probabilities, the HT estimator of 7, based on the sample
selected on the sth transect is

~C Yk
Ty o = —_— (9.2a)
s ’leze‘zs ﬂk(es)
A Yk
==> , (9.2b)
L Uit wi (0s)

where the superscripted “c” indicates that the inclusion probability of 7 and the
resultant estimate are conditional on the orientation, 6;, of the sth transect. The
estimator based on m replicated transects is
1 m
Brrep = — > . (9.3)
s=1
Being able to estimate 7, conditionally on the set of transect orientations used
in the sampling can be quite convenient in situations where the elements of the
population are arrayed on 4 with a predominant orientation. This situation occurs
sometimes when sampling tree tips and other logging residue, as in Warren & Olsen
(1964). In such situations, a feasible LIS design is one which stipulates transect
orientations roughly perpendicular to the general orientation of the residue.

Example 9.1

LIS has been used to estimate the number and the aggregate size of gaps in
a forest canopy. In Figure 9.4 we show a small section of a 64 ha forest with
several gaps, one of which is intersected by the fifth transect of a survey with
m = 40 transects, each of which is 20 m long. In the direction perpendicular to
the transect, the width of the intersected gap is 2.35. The estimated number of
gaps in the 64 ha forested region from this sample transect is

640,000 (1
2.35

~C

ey = ) = 13,617

or approximately 213 gaps ha™!.

Example 9.2

To measure the area of each gap in Example 9.1 is a time-consuming endeavor
in practice. Without going into details of field procedures to take such measure-
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Figure 9.4 A straight line transect intersects a gap in the forest canopy.

ments, the area of the gap intersected in the preceding example was determined
to be 8.3 m?. The estimated area of the forest with gaps in the canopy is

. _ 640,000 ( 83

_ 2 ) — 113,021
Fyns 20 2.35) :

or approximately 1766 m? ha=!.

Example 9.3

As part of a project to estimate the aboveground live, woody biomass of the state
of Delaware, USA, Nelson et al. (2004) established m = 142 transects, 40 m
long, throughout the state. A tree was selected into the sample if the projection
of its canopy was intersected by the transect. The diameter of this projected area
perpendicular to the transect, wy (6s), was measured, as was the diameter of the
tree bole at breast height. The latter served as input to an allometric regression
equation which provided a model-based prediction of the tree’s aboveground
biomass, yy.

9.2.3 Unconditional estimation

Suppose that the orientation of each transect had been chosen uniformly at random
from the interval O to z. That is, §; ~ U[0,z], s = 1,..., m. The probability of
intersecting Uy, by a single transect that may be located anywhere within 2 and have
any orientation is

my = Eg [m(6y) ] (9.4a)

L
= 3 Eolwx )1, (9.4b)
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where Eg [wy(6)] is the width of 7 averaged over all possible orientations of
a transect. Unlike 7 (0s), it is difficult to provide an areal interpretation to 7y
corresponding to an inclusion zone, because it constitutes an average of a continuum
of inclusion probabilities each with a distinct areal representation.

Following uniform selection of s, a theorem proved by the famous mathematician
Cauchy ensures that

Eg [wi(6y)] = ;_k 9.5)

where ¢y is the convex closure of U and 7 is the mathematical constant. In other
words, ¢, is the measure of the girth of 7 that one obtains from wrapping a cord
tightly around € until it is exactly enclosed, and then measuring the length of
the cord. If 7 is not actually on the floor of 4, then this measurement of convex
closure takes place on its horizontal projection onto the floor. To those familiar with
measuring the diameter of a tree bole with a pair of mechanical calipers and with
a girth tape, the above result implies that the measurement provided by a tape is
the expected value of a random calipering of bole diameter, as discussed by Matérn

(1956, p. 6).
Therefore, an alternative to 7y, in (9.2) is
A Yk
= D p” (9.6a)
Uk e Ly
TA Yk
=— —. 9.6b
T2 (9.6b)
UreLy

Presuming a replicated sample of m transects, the unconditional estimator of 7, is

m

. 1 .
By = — > i (9.7)

s=1

Example 9.4

Suppose that the population of interest comprises logs lying flat on the forest
floor. Each log, Uy, has been trimmed of its branches, and tapers from a diameter
of Dy at its larger end to dj at its smaller end, and its length (on the slant) is /.
Therefore ¢, ~ 2l + dy + Dy, so that Eg [wg(0s)] = Qlx + dy + Dy)/=.
Figure 9.5 depicts a typical log being intersected by a transect. From the mth
transect alone, 7y is estimated by

N k
= > % (9.82)
Tk
UreLy
TA Yk
= — _ 9.8b
L Z 2l + dy + Dy ( )

UreLy
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ok

- Do

Figure 9.5 A straight line transect intersects a log with diameters dy, Dy, and length I}.

When log diameters are very much smaller than their lengths, a close approxi-
mation to (9.8) is

~u _7rA Yk

7 [
yrs 2L I’
Uk €Ly

9.9)

which has appeared in de Vries (1973, p. 7). If the log is tilted at an angle ¢ to
the horizontal, then /; in (9.9) ought to be replaced by /i cos ¢k.
A further approximation appears when y is the volume of the k™ log:

2
R TA -
Bes = 57 > g, (9.10)
UreLy
in which yj is approximated by the cylindrical volume nc?kzlk and dy is the
diameter of the cylinder. See, e.g., van Wagner (1968).

Example 9.5

Refer to the preceding example, but suppose that the population parameter of
interest was the total length of logs in 4. That is yy = I, using the notation of
Example 9.4. Therefore, using (9.9), it is apparent that

wAn

AU s
Tyns - 2L 4 (911)
where ng is the count of the number of logs intersected by the sth transect.
For this purpose, no measurement other than a simple count of the number of
intersected logs is required, whereas if the conditional estimator were used, then

both [ and wy (65) would need to be measured.

Example 9.6

To unconditionally estimate the number of logs on 4, set yy = 1 in (9.9). In this
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situation, the conditional estimator may be preferable, providing that wy (6y) is
easier to measure than [ and possibly Dy and dy.

9.2.4 Estimator variance and variance estimators

The variance of 7y, is

e N (1= (65)
(ECTY

k=1

N N
mi (O5) — (gs)ﬂ'k’(gs))
+ / 9.12
;Ekw"( 710 6,) 120
K'=1

— VE,say, (9.12b)

where 7y (05) is the joint conditional probability of including both 7 and Uy from
the sth transect. Consequently,

3 I < [»
% [r;”,rep] = [T;“] (9.13a)
s=1
VC
=, (9.13b)
m

because > 1 | V [A;,M] =mVe.V [fycﬂﬁrep] is estimated unbiasedly by

N 1 = . 2
v [T}C’”,rep] = m(m — 1) Z (T)(I:ns - T)cvr,rep) : 9.14)
s=1
The variance of 7, ; follows in similar fashion:
J 1 —my Al Wik — Tk
il _ 2 - 5 — ’
AN EDW: ( - ) + 50 wow (—nknk/ ) (9.152)
k=1 k=1k'#k
k'=1
=V (9.15b)

where 7y is the joint unconditional probability of including both 7 and 7 from
the sth transect. This leads to

. 1 &
4 [fy“n,rep] = >V [r;‘m] (9.16a)
s=1

= —, (9.16b)



LIS WITH STRAIGHT-LINE TRANSECTS 287

ASIDE: Long before the probabilistic and statistical basis of LIS was artic-
ulated, sampling with lines as the sampling unit appeared in various fields of
practical endeavor. For example, both Schumacher & Bull (1932) and Osborne
(1942) investigated the sampling error of parallel line surveys to estimate the
land area of each of several cover types in a region, the overall area of which was
known. The length of the line running through each cover type was measured
and summed. The proportion of the total length of all transect lines combined
that were located in a cover type served as an estimate of the proportional area
of the cover type. Sengupta (1954) investigated a similar use of line transects to
estimate the area of rice paddy in India.

which is estimated unbiasedly by

2

T 1 — (. R
v [T;”’rep] = m(m _ 1) ; (T}l'lns - T;n,rep) . 9.17)

9.2.5 Interval estimation

An estimated (1 — a)100% confidence interval for 7, proceeds in the usual fashion,
with a ¢-value appropriate for m — 1 degrees of freedom. Therefore an estimated
interval based on the conditional estimator is

£ rep & 1/ i, rep (9.18a)
tm 1‘[ ‘77; rep

——100%. (9.18b)

or

y7r rep
)7[ rep

One based on the unconditional estimator is

Y rep £ I / y,, rep (9.192)
\/ yzr rep

T Z100%. (9.19b)

or

y7r rep
yn rep

9.2.6 Conditional versus unconditional estimation

Unconditional estimation of 7, is a viable option in the situation where each transect
is oriented uniformly at random and independently of the orientation of any other
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transect, as presented above. It is also appropriate for the situation where a single
orientation is selected in this fashion and applied to all m transects. It perhaps
is obvious that unconditional estimation of 7, is not appropriate when transect
orientations have not been selected uniformly at random. However, it may be less
obvious that one may choose to estimate 7, conditionally on transect orientation
that were assigned even in the situation where these orientations had been selected
randomly. In other words, following random orientation of the transects one is free to
base estimation and inference on the set of orientations that actually were used, rather
than considering the universe of orientations that could have been selected but were
not. An important nuance of this result is that one usually must know in advance
of sampling whether estimation will proceed conditionally on transect orientation,
or not, because this affects whether wy (fy) must be measured on each intersected
element, or whether ¢; must be measured.

If V€ in (9.12b) were known to be smaller than V" in (9.15b), it would be
reasonable, perhaps, to favor conditional estimation. In situations where the Uy
do not have an orientation preponderantly in one direction, it would be difficult to
discern whether V¢ < V", or not. Therefore it is impossible to provide any general
recommendation based on the relative precision of conditional versus unconditional
estimation. From a practical viewpoint, it might be advisable to choose the method
which imposes the lesser burden of field measurement.

9.3 Unit area estimators

Estimators of 7, prorated to a unit area basis proceeds along the same lines as in the
previous two chapters. To establish notation explicitly, the conditional estimator of
Ay = 7,/ A based solely on the sample collected on the sth transect is

o 1 .
Kme = 7 Pons (9.20a)
1 Yk
== ot (9.20b)

ULy

As in the two previous chapters, the area of 4 is not needed to estimate the magnitude
of y on a unit area basis.
The corresponding estimator of 4, based on a replicated sample of m transects is

1

Kornep = 5 Frmrep (9.21a)

1 m
—~ pyien (9.21b)

s=1

Because there often is special interest in estimating the number of elements per
unit area on A4, we treat this special case explicitly. The conditional estimator of
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AN = N/A from the sample on the sth transect is

. NE,
a8 = f (9.22a)
1 1
== (9.22b)
A ukze‘zs 7 (6s)
: > : (9.22¢)
= — , 22¢
L el wk((gs)

where N¢, is just 7€, as in (9.2a) with y; = 1 for all 7.

yms
The corresponding unconditional estimator is

2N = st (9.23a)
_ ! > L (9.23b)

A U e Ly Tk
S 1 (9.23¢)

L U €Ly Ck

Example 9.7

Iles (2003, p. 412-413) shows how one can deduce that a single log of CWD that
has length [y = 4 ft implies a density of 142.55 logs per acre when estimating
unconditionally over all transect orientations. His solution involved estimating
the length per acre of CWD provided by a sample of this 4 ft log on a single
120 ft transect, and then dividing this estimated total length by the length of the
log. Our approach yields an identical result by estimating N directly and then
prorating to a per acre basis.

Using 2% from (9.23) we get cx &~ 2/; = 8 ftsothat 1%, = 0.003272 logs ft >
or 142.55logsac™!. The distinction between Iles approach to the problem and
ours is more apparent than real: it is chiefly in the manner in which the esti-
mators are derived and presented. A comparison of /Al;‘” in (9.23c), above, to
Iles equation (page 413) reveals that they are identical algebraically, but for the
conversion factor of 43,560 ft2ac !

. S C .
The variance of 45 is

v [31° ] = Loye, (9.24)
and that of :1°

yr,rep 18

V[AC ]—iv[fc ] (9.25)
ym,rep | — A2 ym,rep | * .
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1% [/Al;njrep] is estimated unbiasedly by

~ 3 1 .r.
v [lgﬂ,rep] = A2 v I:T)C'n,rep:l . (9.26)

An estimated (1 — «)100% confidence interval for A, based on the conditional

estimator is
2 rep £ tm1,]0 [x;z,rep] (9.27a)

Im—1,/0 I:ig'zr,rep]

A rep £ — 100%. (9.27b)

or

C
ym,rep

In exactly the same fashion the unconditional estimator of 1, = 7,/A based solely
on the sample collected on the sth transect is

1

Wy = = s (9.282)
1 Yk

= : 9.28b

oy 280

The corresponding estimator of 4, based on a replicated sample of m transects is

1

Byrrep = 7 Dymrep (9.29a)
1 < s
=—2 Ars- (9.29b)
s=1
The variance of /Al‘;ﬂ 5 18
14 [zl)lmsjl = % vy, (9.30)
and that of ﬁ;”,rep is
v [%n,rep] = % 4 [f;*n,rep] : 9.31)
V[/Algﬂ,rep] is estimated unbiasedly by
J [iin,mp] = % b [f}’n,rep] : (9.32)

An estimated (1 — a)100% confidence interval for 1, based on the unconditional

estimator is
2 vep £ 1y [z;ﬂ,mp] (9.33a)

or
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tm—l\/ 0 [’Il)lzn,rep]

W rep £ 2—100%. (9.33b)

u
ym,rep

9.4 Estimation with an auxiliary variate

The estimators of 7, presented so far in this chapter are special cases of a more
general estimator that allows for the use of an auxiliary variate, g (6y), whose value
may depend on the orientation of the transect. Usually we choose an auxiliary variate
that allows us to avoid measuring both y; and wg(05). Whenever y; and wy(6s)
are more difficult or costly to measure than g (fy), this has potential to improve
estimation of 7, either by increasing the precision of estimation or lessening the
burden of measurement.

The choice of the auxiliary variate will depend on the application. The dimensions
of gx (6y) ordinarily are the dimensions of yy /wy (6y). For example, if y, is the volume
of Uy, then we choose g (0;) to be the cross-sectional area where Uy is intersected
by the transect; if y; is the coverage area of Uy, then we choose g (6s) to be the
length of the intersection through U ; and, if yi is the length of g, then g (6;) is
dimensionless, and we may find it expedient to choose g (65) = 1.

Defining the binary-valued random indicator variable

; 1, if U is included into the sample for the sth transect,
ks = .
! 0, otherwise,

the conditional estimator of 7, which utilizes the auxiliary variate is

l m
s = — Ty (9.34)
ya.rep = L yqs :
s=1
where
~c qr(05) vk
¢ = _— (9.35)
Y ‘U%LX E[ tisqr(05) 1 65 ]
When g (0;) = 1 for all @, then 7). = 7y, because in this special case

El trsqr(05) 1051 = El tgs | 05 ] = mi (05).
The corresponding unconditional estimator of 7y is

1 m
f;q,rep = f;qs (9.36)
s=1
where
~u qr (O5) yk
v = —_— (9.37)
v ,u%? E[tsxqx(65) ]
Similar to the simplification for the conditional estimator when g (6s) = 1 for all
Uy, here f}‘,‘qs = f;ﬂs, because E[ ty5qi(6s)] = E[ frs | = 7.
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Both the conditional and unconditional estimators of 7, presented in (9.35) and
(9.37) were formulated by Kaiser (1983).

Example 9.8

Consider the case where 7, is the collective area of all population elements
projected onto 4, such as the aggregate canopy cover of a vegetative population
or the area of canopy gaps considered in Example 9.2. Consider further letting
gk (05) be the length of Uy along the line that is coincident with the sth transect
but unlimited in length, in other words the line containing the transect. For this
choice of g;(6y), E[ trsqx(65) |05 ] is L/A times the projected area of Uy (see
§9.12.2). Therefore,

~c qr(0s)yk
o= D (9.38a)
s (Lyw/A
A
=T 2w, (9.38b)
Uk eLs

In other words, aggregate projected area, 7y, can be estimated unbiasedly with-
out having to measure the projected area of a single Ux. By measuring intersec-
tion length, g (;), instead, the need to measure both y; and wg (6,) is obviated
because the conditional expected value of #;qx(65) in the denominator of fycq s
in (9.35) has a factor that is identically yx of the numerator. The measurement of
length along the transect certainly is simpler than the measurement of the area

of an irregularly shaped canopy gap.

For the particular choice of area and intersection length for y; and g (6s),
respectively, the result that E[ fx5qx (65) | 85 ] = Ly /A evidently does not depend on
the orientation angle, ;. Therefore, E[ fxsqx (65) ] in the denominator of f;'q s 1n(9.37)
is identical to its conditional expected value: E[ fxsqr(65) ] = E[trsqx(65) 651 =
Lyi/A. As aresult, the two estimators of 7, coincide for this choice of y; and g (6):

s = Tygs (9.39a)
A
=7 > ). (9.39b)
UreLy

Example 9.9

Extend the previous example by letting y; be the volume of 7 and letting g (6s)
be the area in the vertical plane that contains the sth transect. Again, because
E [ 1ksqk(O5) 105 ] = E [ 1ksqi(65) ] = Lyx/A, we obtain

~ n A
T)C*qs = T)lilqs = Z Z qr (0y). (9.40)

Ur €Ly
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In this example, measurement of the volume of 7 is obviated by the measure-
ment of the cross-sectional area of 7 in the vertical plane.

Example 9.10

When dealing with a population of logs, where Ty tilts at an angle ¢j to the
horizontal plane and is intersected at angle y; by the transect, the width of
Uy perpendicular to the transect is wy (6y) = I cos @i sin |yx|, where [, is the
length of the central axis of U (i.e., the kth log). Let y; be log volume, as in
the previous example, but now define gx(6s) as the area in the vertical plane
perpendicular to the central axis of the log at the point where the central axis is
intersected by the transect, i.e., gx(65) = nd,? /4, where dy is the log diameter.
Then from Kaiser (1983),

Lwy (0s)yk
I A '

The conditional estimator of the volume of this population of logs is

E [tksCIk(gx) |6 ] =

s gk Os) yilk
= (9.41a)
s uze‘z Yiwi (6s)
A 0,
=z > @) (9.41b)
e, COS @k sin [7k|
TA d,%
= — . (9.41c)
4L ther, COS Pk Sin [7k|
The corresponding unconditional estimator of aggregate volume is
2 2
A d
B = 51 k (9.42a)
es, COS Pk
or if tilt is, say, less than 10°,
2
A
=— dz, 9.42b
5> 0.0
Uk eLs

as in van Wagner (1968).
Iles (2003, pp. 392-400) has a very insightful explanation of this estimator,
(9.42a), of log volume, which we rewrite as

1 rd? T
tro=Al-— k>
Fyas Z dcospr | 2

Uk eLs

In the middle term, cos ¢ corrects for tilt, thereby accounting for the fact that
the elliptical cross-sectional area of ¥ is computed as nd,g /4. The sum of these
tilt-corrected areas, when divided by L, is the average depth of wood above the
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transect. The term 7 /2 is the correction that applies as the result of averaging
over all possible transect orientations in the unconditional estimator. Multiplying
by A simply prorates a per-unit-area estimate to one that applies to the entire
region 4.

Clearly, in this example, the measurement of the angle of intersection,
Yk, 1S unnecessary with the unconditional estimator, and necessary with the
conditional estimator. With either estimator the tilt of the piece from the
horizontal is required, even if Uy lays flat on the surface of sloping ground. For
angles of tilt less than 10°, the correction by cos ¢ is only about 2%, whereas at
20° it is about 8%.

Example 9.11

A transect may intersect the boundary of an element, U, two or more times,
depending on the shape of the element and where the element is intersected (see,
e.g., Figure 9.1a). Suppose that the attribute of interest is the total length of the
boundaries of all the elements in 4. In this application of LIS, it is convenient to
use the number of intersections of boundaries by each transect as the auxiliary
variate.

This auxiliary variate is particularly useful when we need to estimate the total
length of roads, trails, or other linear features in a region, 4. The boundary of 4,
together with, say, the roads within 4 may effectively divide or tessellate 4 into
subregions, in which case an estimate of the total length of the joint boundaries
of the elements is also an estimate the total length of roads in 4.

Hence, let the attribute of interest, z,, be the length of roads in 4. An
unconditional estimator of the total length of boundary was derived by Kaiser
(1983). Applying this estimator to the road-length problem,

f}‘,‘qx = % ng (9.43)
where n; is the total number of intersections of roads with the sth transect. This
result may be deduced from the fact that, for this definition of ny,

E[I’l;] = n_—A‘L'v.

Generally, the observed number of intersections of a straight-line transect
of length L with an open or closed boundary of an element, U, unbiasedly
estimates the length of the boundary of ¥. In this application, it is important
that each intersection of the transect with ; be counted, so that the definition
of n; in this example differs from its definition in Example 9.5 on page 285.

The relationship between the number of intersections of straight lines with
curves in the plane has long been known: Smith & Guttman (1953) used (9.43)
to estimate the total length of crystalline interface in a metallurgical cross-
section; Matérn (1964) used it to estimate the aggregate length of forest roads;
Newman (1966) used it to estimate the total length of plant root; Skidmore &
Turner (1992) used it to estimate the total length of boundary of land-cover



ESTIMATION WITH AN AUXILIARY VARIATE 295

polygons delineated on a map; Iles (2003) used it to estimate the total length
of coarse woody debris. Further reading about the relation between the number
of intersections and the boundary length of the intersected object may be found
in Ramaley (1969).

The conditional estimator of the total length of roads or boundaries, using
qr(fs) as the count of the number of intersections, is not useful because it
requires an impractical measurement of a special type of projection of each U
onto a line perpendicular to the transect.

Example 9.12

As a generalization of the previous example, we consider the estimation of the
total quantity of some attribute other than length for pieces of coarse woody
debris (i.e., logs) on a forest floor in some region 4. Let ng be the number of
times that the sth transect intersects the straight or curved central axis of a log,
Uy, and let £, be the length of the central axis. If the central axis is curved, then
{k 1is the total length of the curve. Let y; be an attribute of the log with central
axis Ui, k =1,2,..., N. An estimator of 7, from de Vries (1986) is

. TA ik
Yyas = 5 Z o 9.44)

U €Ly

Heuristically, 7 A/(2L)ng is the contribution of U, € L to the estimate of
the total length of the N central axes of logs in 4, and yy /{) is the amount of
attribute per unit length of central axis for 7.

The population comprises the N central axes of logs in 4, not the logs
themselves, because a log attribute is measured only if the log’s central axis
is intersected one or more times. The measurement of £; and the count of
intersections, ny, substitutes for the measurement of ¢y, the convex closure of
the central axis. However, the estimator reduces to f}‘,‘“ =7 A/L D g er, YK/ k
if all central axes are straight, as then ng = 1 for Uy € £, and ¢ = 2£;. In the
forestry literature, the central axes of logs, whether straight or curved, are often
called ‘needles.’

When ¢x(05) = 1 for all N elements of the population, E[tysqr(0s)|6s] =
Eltxs |65]1 = mr(65), and thus fycﬂ in (9.2) can be viewed as just a special case
of 7y,. Likewise, 7 ; in (9.6) may be regarded as a special case of 7).

The variance of f;qs in (9.35) is similar to that of 7 in (9.2) but with additional
factors from the auxiliary variate. It is shown in the Chapter 9 Appendix, along with
the variance of 77, ... An unbiased estimator of the variance of 77, .. is
Al ac 1 S ~C ~C 2
B[ 25 rep] = m(m —1) Z (qus - qu,rep) ) ©.45)
s=1
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and the usual interval estimator of 7, namely

et i ]
100%.  (9.46)

’\C
Tygrep T 7¢c
Yq.rep

e.,

yq,rep? L
2
) , (9.47)

Tygurep T =1 [yc'q,rep] or

Analogous results hold for the unconditional estimator, 7\
1 m
A | ~u u 7u
[ Tyq, rep] m(m — 1) Z( Tygs — Tyq.rep
The analogous interval estimator of 7,

unbiasedly estimates the variance of 7y, ...
is
tm—1,/0 [f;q,rep]
~u su
e £ i1y 0 [ Elgrep | 08 Elyrep 5 100%.  (9.48)
¥yq.rep

9.5 Estimating the mean attribute
In order to estimate uy = 7,/N from a replicated sample of m line transects, one

could use
Bgrep (9.49)

Hygrep = e
q.rep

>

where
~ A i Qk(es)
N¢ = — ;
v mL éuZL e E [ge(0:) 1 0s. tes = 1]
or
Tyg.re
By rep = f‘i’ ) (9.50)
where
A _ ﬂ i Z C]k(es) ]
P mL s=1 UpeLy kB lqr(65) [ tis = 1]

In (9.49) and (9.50), there is no requirement that gx(6;) be the same in the
numerator and denominator, which allows for the possibility of using gk @) =1

which reduces it to
9.51)

Nwer = o 2533 T

s=1 UeLy

in Nq rep>
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In a similar fashion, using g (6s) = 1 in NY simplifies its expression in ,&‘;q rep 1O

q.1ep
m

cu A 1

Nwep = f 20 22 o 0-52)
s=1 ULy

Although there is nothing in principle that prevents using the ratio of the uncon-
ditional estimator of 7, in the numerator and the conditional estimator of N in the
denominator, or vice versa, such an estimator of u, might strike many as perverse.

9.6 Nesting transects of different lengths

In the same way that a single sampling location, (x;, z5), can be used to locate two
or more plots of different sizes, each of which is used to sample different size classes
of elements or different types of populations, so too can line transects of different
lengths be nested within each other. See, for example, Brown (1974) and Delisle et al.
(1988). Judging from the lack of published literature, there appears to be limited
experience using nested transects in LIS. It seems eminently reasonable, however, to
consider using transects of appropriate length for smaller, more numerous population
elements, and longer transects for larger, less frequently occurring elements.

9.7 Dealing with edge effect in LIS

For 7y sufficiently close to the edge of 4 or the edge of a stratum within it, there is the
possibility of boundary overlap of its inclusion zone and the edge of the region where
sample transects can be located. Two typical examples are shown in Figure 9.6, the
example in frame (a) for transects emanating from the starting point, (x;, z5); and
the example in frame (b) for transects where (xy, z;) is the midpoint. For the first
case, a solution is provided by the walkback method of Affleck ef al. (2006). For
straight-line transects where (x;, z;) is the midpoint, a remedy is provided by the
reflection method of Gregoire & Monkevich (1994). The reflection method also may
be applied to (a) if the orientation of the transect is selected uniformly at random
at each sampling location. An alternative tactic is to establish an external peripheral
zone around 4, as described in §7.5.1, such that no part of any element within 4
could have an inclusion zone which extended beyond this zone.

9.7.1 Walkback method

The walkback method is implemented where at sampling location is close to the
boundary and the transect is oriented away from the boundary in the direction ;. To
perform edge correction by the walkback method, we extend the transect in opposite
direction (i.e., in the direction 8; 4+ ) by as much as its length, L. If, and only if,
this extension intersects the boundary of 4, then we treat the intersection point with
the boundary as the starting point (or back end) of the extended transect, and ‘walk
back’ toward and past the original sampling location, measuring all the elements that
are intersected by the original transect and its extension. If, on the other hand, the
extension of the transect fails to reach the boundary, then the extended portion of the
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b)

Figure 9.6 Truncated inclusion zone of Uy when sampling with straight-line transects: a)
where (xs, zs) is the starting point; b) where (xs, zs) is the midpoint.

transect and all the elements it intersects are ignored and the sampling is conducted
in the usual manner from the original sampling location.

The area of the inclusion zone of any element, U, is preserved by the walkback
method, though, in expectation, any section of the inclusion zone that falls outside
of 4 is translated into 4. Moreover, no element is intersected more than once by
the extended transect, so the estimators that apply in the absence of edge correction
continue to apply with edge correction.

9.7.2 Reflection method

To apply the reflection method in LIS, the length of the overlapping portion of the
transect that extends outside of 4 is reflected into 4. Or, to put it another way, the
portion that extends outside of 4 is folded back at the boundary atop the portion that
falls within 4. If (x;, z5) is at the midpoint of the transect, then no new U will be
sampled by the reflected portion of the transect: any 7 intersected by the reflected
portion will already have been sampled and measured, and so it simply needs to be
tallied again. A ‘multi-tally estimator’ of 7y, from the sample at £, which includes
any elements also tallied from the reflected portion of Ly, is

. 11501 (0,) i
oy ea@)y 9.53
TymA Z E[ Tksqk (er) | 0Os ] ( Y

UreLy

which, when g (05) = 1 universally, reduces to

. A Tks Yk
A , 9.53b
B =T 2 @) 230

Uk €Ly

where #; = 1 if U is tallied from portion within 4 only, or #;y, = 2 if Uy is
tallied again from the reflected portion of the transect. The estimator obviously is
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conditional on 6;. The unconditional estimator is

1 (7
o ks @k O5) Yk ’ (9.542)
: e E[ trsqr(65) ]
which reduces to
R TA Tks Vk
T;ms = T Z x (9.54b)
ULy

when gi (f5) = 1 universally.
When using the reflection method to counter the truncated inclusion zones of edge
elements, the replicated-sampling, conditional estimator of 7y is

A <.
Bymep = — D s (9.55)
s=1
the variance of which is estimated unbiasedly by

R 1 /. . 2
v I:T)(/:m,rep:l = m(m _ 1) Z (T)C'ms - t;m,rep) . (9'56)

s=1

The corresponding unconditional estimator is

1m
U= g 9.57)

Tym,rep - m Tyms’
s=1

the variance of which is estimated unbiasedly by

m

A 1 . . 2
D[T;m,rep = m(m—_]) Z (r;ms - T;m,rep) : (9.58)

s=1

9.8 Transects with multiple segments

In some populations, the elements have similar shapes and tend to be oriented in
the same direction, for example, a population of trees blown down by a hurricane or
felled by a logger. Populations of this sort have given rise to the common perception
of an ‘orientation bias,” which is thought to occur where transects run more or
less parallel to the directional orientation of the elements. To assuage the perceived
problem, investigators have proposed and used multi-segmented transects in LIS,
where the different segments point in different directions (Gregoire & Valentine
2003). In reality, orientation bias does not exist in the design-based context, so multi-
segmented transect designs do not correct for bias, but they may reduce the risk of
inaccurate estimation.

In this section, we describe the implementation of LIS with multi-segmented
transects, and we provide unbiased estimators that may be used with these designs.
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(Xs, Zs)
(XSv ZS)

Figure 9.7 Examples of transects with multiple segments.

9.8.1 Radial and polygonal transects

Following Affleck et al. (2005), we adopt the term ‘radial transect’ to refer to
a transect consisting of one or more segments directed outwards from a common
vertex, as in the case of straight-line, L-shaped, + -shaped, or Y-shaped transects.
Polygonal transects are made up of three or more segments forming a closed figure,
such as a triangle, square, and more complicated polygonal shapes.

We assume that all m transects in a survey have the same radial or polygonal
design, which is almost always the case in practice. In a radial design, the sampling
location, (x;, zs), is the vertex of the transect, which means that (x;, z5) is also the
starting point of each the J > 2 segments.

By contrast, in a polygonal transect, (x,zs) is the starting point of just the
first segment. We assume that the second and succeeding segments are established
counter-clockwise, so that front end of the first segment connects to the back end of
the second segment, and so on, until the front end the Jth segment connects to the
back end of the first segment at (x;, zy).

Let 651, 652, . . ., 655, respectively, denote the directional orientations of segments
1,2,...,J of the sth transect. The orientation of the first segment (i.e., 651 €
[0, 27)) may be selected uniformly at random or fixed in advance of sampling. The
predetermined shape of the transect determines all succeeding segment orientations
once 6y has been selected. For example, in both the Y-shaped and triangular transects
of Figure 9.7, the orientations of the three segments are 6,1, 651 + 2?”, 01 + %”,
respectively. The segments of a transect may vary in length, but we shall assume that
the length of each of the J segments is identically L/J, so that the total transect
lengthis L.

9.8.2 Sampling protocol for transects having multiple segments

The protocols for radial transects are consistent with those straight transects (§9.2.1).
With a radial transect, an element, 7, may be intersected by more than one segment.
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Figure 9.8 Partial intersections of elements by the front ends of segments of radial transects
(a and b); c) partial intersection by an element by the back ends of all the segments and
d) partial intersection of a forked element by the back end of the east-oriented segment and

complete intersection by the southwest-oriented segment. The elements in (a), (b), and (d)
would be included in the sample; the element in (c) would not.

An element is included in the sample from (x;, z5) only if it is intersected completely
by any segment of the transect (Figure 9.7 left, center) or intersected partially by
the front end of any segment (Figure 9.8a,b). The element is not included in the
sample if all intersections are partial and involve the vertex of the transect. Thus, an
element is excluded from the sample if the vertex of the radial transect is inside the
boundary of the element’s projection onto 4 (Figure 9.8¢). The east-oriented segment
in Figure 9.8d is a partial intersection involving the vertex, yet the element is included
in the sample because it is completely intersected by the segment oriented towards
the southwest.

In a polygonal transect, the front end of one segment connects to the back end of an
adjoining segment. So, with one exception, an element, ¥, is included in the sample
from (xy, z5) if any portion of any segment of a polygonal transect intersects the
element. Hence, an element is included in the sample even if a vertex of the transect
falls within the boundary of the element. However, the element is not included in the
sample if the boundary of 7, completely encompasses the transect.

9.8.3 Estimation from transects having multiple segments

With segmented transects there is a possibility that a population element, Uy, will be
intersected by two or more segments. For this reason, the probability that an element,
Uk, 1s included in the sample from the sth transect with J segments differs from the
element’s probability of being intersected by J replicated transects each of length
L/J.
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Figure 9.9 Inclusion zone of an element as defined by a Y-shaped radial transect with
orientation O;1. If the sampling location (o) is in a light gray region, the element is intersected
either completely or partially by the front end of one segment; in a dark gray region, the
element is intersected by two segments.

Example 9.13

The element depicted in Figure 9.9 is completely intersected by two segments if
the vertex of the radial transect is anywhere in either of the two dark grey regions
of the inclusion zone, which have areas | and >, respectively. Overall, the
area (ay) of the element’s inclusion zone is

L
ar = [wi (Os1) + wi (Os2) + wi (053)] 3 Vi—wm
and the probability of Uy being intersected by the transect is 7y = ay/A.

For now, we assume that no auxiliary variate is used, i.e., gx(6s;) = 1 for all U
and all J segments of the transect. With the sample selected from the transect located
at (xs, z5), a design-unbiased estimator of 7, conditional on the orientation, 6;1, of
the first segment of the transect is

we Tkse Yk
fop= D (9.59a)
Upe Ly E[tkso |9s1 ]

A Tkse Yk
= — E R 9.59b

L lbk (es) ( )
U €Ly

where
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J
thse = D Iksj (9.59¢)
and
1, if U € L; owing to intersection with
tksj = the jth segment of sth transect;
0, otherwise;
and

1 J
D0) = 5 2 wiOy), (9.59d)
=1

where wy (6s;) is the width of Uy perpendicular to the jth segment of the sth transect.
When J = 1, 7j, is identical to 7y, ., which is the HT estimator of 7, conditional
on transect orientation; when J > 1, 77, ¢ is not the HT estimator of 7.

In (9.592), tse is the count of the number of segments that fully or partially
intersect 7. The unbiasedness of 7, was first shown by Gregoire & Valentine
(2003) for ell-shaped transects, and thereafter generalized by Affleck et al. (2005)
by showing that E[fxse |65 | = Liwk(fs)/A. An implication of this result is that
the width of Uy perpendicular to all J segments must be measured, irrespective
of which segments intersect Uy, or else the estimator will be biased. The requisite
measurements of width are most easily accomplised with L-shaped and + -shaped
transects.

The variance of 7, ; is derived in the Chapter 9 Appendix, and with a sample of
m replicated sampling locations, the variance of

Tymrep = Z Tyms (9.60)
is unbiasedly estimated by
" 2
6[‘;)’"1,“’/[’] m(m _ 1) Y_Z] ( Tyns — ym rep) . 9.61)
The corresponding unconditional estimator of t, when g (6;) = 1 is
wu Tkse Yk
Tyms - Z E [tkso] (9623)
Uk eLs
A tkse
=z kseJk (9.62b)
Ck
Uk eLs
Because E [wg(05)] = ¢k /7, ryms multiplies the value yi /cx for each intersected T

by the number of segments which intersect it. Since c¢x need be measured but once,
this unconditional estimator of 7, may require less burdensome field measurements

e
than 7,5, ¢
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The variance of 'r'yL;nS is derived in this chapter’s Appendix, also. As with the
conditional estimator, a sample of m replicated sampling locations allows one to

unbiasedly estimate the variance of

. 1 <.
T):JmJGP = Z Z Tylins (9.63)
s=1
with
i 1 — /.. . 2
o[ Fym,rep | = pY— >, (Tﬁm - Tﬁn,rep) : (9.64)

s=1

When g, (6s;) # 1 because of the potential utility of using an auxiliary variate to
obviate measurements of y and w (6;;), the conditional estimator is

ie = Z ; Zjlzl tksjqi (Os;) ,
Up € Ly Zj:l E [tkszk(esj) | 051 ]
and the unconditional estimator is
F = Z szjzl tksjqr (Os;)
oot =1 E [ tksjqr 6s))

Both (9.65) and (9.66) are design-unbiased estimators of 7y.

k (9.65)

i k. (9.66)

Example 9.14

In an extension of Example 9.8, consider estimating aggregate canopy cover, Ty,
using a transect of J segments, letting g, (¢;) be the length of 7 along the line
that is coincident with the jth segment of the sth transect. For this choice of
qrx(0sj), El trsjqr(0s;) | 05 1is Lyr/J A. Therefore,

o Z ijzl tkstIk((gsj)

& = Yk (9.67a)
M S L/ (JA)
A J
=T 2 2 itk (9.67b)
UreLs j=1

In other words, the interception lengths are summed over all the segments which
cross Uy, for all elements included in the sample from the sth transect, and then
multiplied by A/L.

9.8.4 Averaging estimators for straight transects

Some practitioners interpret segmented transects as clusters of straight transects.
Indeed, one may perform LIS with each of the J segments of the sth transect
(s = 1,2,...,m) in isolation, work up an unconditional estimate of 7, based on
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Figure 9.10 Parallel transects systematically placed from a random start and perpendicular
to a defined baseline.

each individual segment, and average the J estimates, including any zero estimates,
to obtain the final estimate for the sth whole segmented transect. The average of
the J unconditional estimates will equal the estimate of 7, that obtains from the
unconditional estimator for the whole segmented transect. In effect a segmented
transect is disassembled into J straight transects for purposes of measurement, then
the whole is implicitly reassembled in the estimation phase by the averaging process.
Of course, sampling variances should be estimated with the m average estimates, not
the estimates for the individual legs.

On the other hand, averaging unbiased conditional estimates for each of the
J individual segments also yields an average unbiased estimate of 7y, but this
estimate will differ from, and be less precise than, the estimate than obtains from the
unbiased conditional estimator for the segmented transect as a whole. The reduction
in precision results from the fact that the inclusion probability of a population unit,
Uy, varies with the orientation of each individual segment of the transect.

9.9 Parallel transects of uneven length

There have been some applications of LIS wherein a baseline is established outside
the region 4 and transects are established perpendicular to this baseline. The
orientation of the baseline is not usually chosen in a probabilistic manner, although
the location of the transects emanating from the baseline are usually selected
randomly, or perhaps systematically with a random start. In order to ensure that
every element, U, on 4 has a non-zero chance of being selected into the sample, it is
imperative that the baseline span the breadth of 4 (Figure 9.10). Each perpendicular
transect would be run until the boundary of 4 on the side away from the baseline was
encountered. The length of each transect may differ, unless 2 is rectangular or has
some other regular shape.

Seber (1979) apparently was the first to treat this method of LIS statistically.
Because of the random length of the transects under this procedure, the estimators
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ASIDE: Kaiser (1983, pp. 973-974) considered the case where each transect
is run completely across 4 but with an orientation that is chosen at random. He
shows that fycqs and f;qs remain unbiased, despite the randomly varying lengths
of the transects.

proposed above are all biased. He proposed a ratio estimator of A = N /A as

A 1 Ly 1

AN = — - —_— (9.68a)
A ’L;e:s (Z{lkes Ly ) Ukze‘zs stk(es)/A
LN,
— M (9.68b)
Zﬂkes LS

where 1 Ns = Zw er, 1/Lswg (6y) and Ly is the length of the sth transect. He argues
that this ratio estimator is less biased than E;E’rep when transect lengths are random,

and that the jackknife procedure can be used to reduce its bias even more.

However, it is straightforward to estimate 7, and 4 unbiasedly when sampling with
transects of random length. With a baseline of fixed orientation and fixed length L3,
the probability that 7 will be intersected by a transect emanating perpendicularly
from it at a randomly chosen location along its length is wg(6s)/L p. Hence the HT
estimator of 7, with a single transect is just

~ Yk
tyel=Lg Y. —et (9.69)
Uk eLs ’

If several transects are spaced systematically, then the estimates from the separate
transects are averaged. Muttlak & Sadooghi-Alvandi (1993) and Pontius (1998)
discuss this estimator and related estimators for this LIS design.

The utility of this method of sampling large regions is not clear, because the
resultant transects would be extremely long.

9.10 Terms to remember

Conditional estimator ~ Reflection method
Complete intersection  Radial transect

Multiple segments Unconditional estimator
Partial intersection Walkback method
Polygonal transect
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Table 9.1 Diameters (cm) of pieces of coarse woody debris (logs) at the point of intersection
by transects of length 40 m.

Transect Log Dia. Transect Log Dia. Transect Log Dia.
1 1 137 8 1 9.7 13 1 188
1 2 9.9 8 2 7.4 13 2 259

8 3 7.4
2 1 8.9 8 4 4.8 14 1 114
2 2 4.3
9 1 8.1 15 1 9.6
3 1 157 9 2 9.7 15 2 9.4
3 2 7.9 15 3 117
10 1 190 15 4 6.9
4 1 7.1
4 2 9.4 11 1 53 16 1 168
4 3 203 11 2 112 16 2 5.8
4 4 185 11 3 114
11 4 218 17 - -
5 1 6.4 11 5 7.6
11 6 10.7 18 1 7.6
6 1 8.4 11 7 10.7 18 2 8.4
6 2 8.1 18 3 8.6
12 1 155
7 1 119 12 2 150 19 1 378
7 2 10.1 12 3 152 19 2 114
7 3 147 12 4 239 19 3 7.6
7 4 122 12 5 9.4 19 4 188
12 6 122 19 5 114
20 1 173

9.11 Exercises

1. Estimate the volume of coarse woody debris per unit land area (m®> m~2) from the
data in Table 9.1, and estimate the sampling error. Hint: see Example 9.10.
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Figure 9.11 A transect intersects two elements only if the sampling location, (xs, zs), occurs
in their joint inclusion zone (dark grey).

9.12 Appendix
9.12.1 Joint inclusion zones

A transect intersects more than one element only if (a) the inclusion zones of two
more elements overlap to form joint inclusion zones and (b) the sampling location
(x5, z5) occurs in one of the joint inclusion zones (Figure 9.11).

9.12.2 Derivation of E[ tysqr(6s) | 65 ]
Results from statistical theory permit E[ tx5q (65) | 05 ] to be re-expressed as

E [ tesqi(05) |05 ] = E [ trsqi (0s) | Os, trs = 1] Prob(tgs = 1)
+ E [ tksqr(65) | O, tks = 1] Prob(ts = 0)

= E [ tksqi(05) 105, tis = 117 (05) + 0

Luwy (9€)
—x
When yy is the area of Uy projected onto A and g (6) is the length of Uy in the

line containing the sth transect, as discussed on page 292, results from geometrical
probability, as used by Lucas & Seber (1977), show that

= E[qx(0) |05, txs = 1]

area of Uy projected onto 4

E[qit) 105, tis =11= wr(65)

Combining this with the result above provides

Lwy (6y)

E[tstk(‘gsHes]=E[61k(6s)|0mtks =1] I

. ( area of U projected onto 54) Luwy (65)
B Wk (es) A

Ly
= —. 9.70
A (9.70)
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9.12.3 Variance of conditional estimator of ty with auxiliary variate using
transects with a single segment

The variance of 7y,

N 2 2
% I:fc ] Z E [[kSQk(Hs) |05 ] Yk (1 — nk(es))

= OE[eac©@)]6: ] i (6s)

introduced in §9.4, is given by

N N
E [trsqr Os)tk sqie (05)] yk yir (i (Os) — i (Os) e (65))
+2. 20

(9.71a)
k=1 k' £k E [tksCIk(as) ies ] E [tk/sCIk’ (0s) |‘9s ] i (Os) 7 (6s)
K'=1
_ C
= Vq, say. (9.71b)
Therefore, the variance of 7y, . is
R 1
v [r;q,rep] = —V;. 9.72)

9.12.4 Variance of unconditional estimator of ty with auxiliary variate using
transects with a single segment

su

The variance of the unconditional estimator, 7, is
y [fu ] B i E [1sq105)?] 2 (1 - nk)
Wl Elasai09)1 \ m
3 & E [tesqe @) twsqr 09)] vy (m — mamye)
+ z z ks Qi \Os )l s Qi \Us )1 Yie Yk \ T kk kTk (9.73a)
iy E [ 1ksqk(05) 1 E [ 15 qi (05) 1 mimpe
#k
k=1
_ y/u
= Vq , say. (9.73b)
The variance of 7}, ., is
. 1
V[ rep) = — V- (9.74)

9.12.5 Conditional expected value and variance of trse With transects having
multiple segments

Because fy50 = ijzl Iksj and

_ ka(esj)

E[tksj 1651 | = —i (9.75a)

= mr(05j), say, (9.75b)
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it follows that

J
Eltise |0s1]=E Ztksj |09

J
<@/ Dwdy)
= 3 W)

j=1

L _
7 Dk (s)

J
Zﬂ'k(esj)
j=1

= 7k (6y), (9.76)

where 7;(fs) is the sum of the segment-by-segment conditional probabilities of
including I on a multi-segmented transect with 6 as the orientation of the first
segment.

The conditional variance of f;e 1S

J J o J
tkso |0s1 ZV Tksj |9s1 +Z Z C[tksjatksj’ |9S1]9 9.77)
j=1 J=1j'#

’

=1

where

Vi 100] = E[ 2[00 ] = (B[t |02 7))

= ﬂk(esj) (1 - ﬂk(gsj)) >

and where C [tksj, O51 ] is the conditional covariance between the selection
indicator variables for U on distinct segments of the sth transect, namely

C [trsj» thsjr 1651 | = E [thsjtis 1051] — wcOsj)mic(bs0). (9.78)
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Therefore,
J
V ltkse 10511 = DV [trsj 1651]
j=1
7o
+ Z Z (E [tksjtesj' 1651] — 2 Osj)7ic (05)7))
=i

J
Zﬂ'k(ew) ”k(esj))

J J
+ Z Z tkS/tkS]/ |9s1] ”k(QSj)”k(GSJ ))

7 J J o J .,
= Z ﬂk(esj) (1 — ﬂk(esj)) - ”k(esj) Z ”k(eSj/) + Z Z l//k%

= Iy J=Lj#]
j’:l j,=1
J J S J Wi
= > mOy) | 1= m@) — D m@j) | +D. D] _f(j
j=1 i'#i =V
j=1 =1
P COIGACOED I I o
j=1 J=1j'#j
j'=1
J J Wi
= (l—n’k(@g]))zﬂk(‘gq)"'z Z A”
Ji=lj'#j
Jj'=1
J J Wi
S OIERAED IPIEL ©7)
i=lj'#j
j'=1

where yy;;s is the common area of the overlapping inclusion zones of 7y along the
jth and j’th segments of the sth transect, which implies that yy;; /A is the joint
probability of selecting 7 on both segments.
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9.12.6 Unconditional expected value and variance of tse With transects having
multiple segments

Unconditionally, the expected value of fy, is
J
Eg[tise ] = ZEe [ 7ksj 1651 ]
j=1

L LEy[wi(6s))]
=2 gx

— 7, (9.80)

where 7y, is the inclusion probability of the kth element, as was derived in §9.2.3.
The variance of fz5, can be derived by expressing it as

Viitkse ] = Vo[ El tkse |‘9s1 N+ Eg[V[ikse |6s1 1] (981)

where Ejy signifies the expected value over the distribution of 6, and Vj signifies the
variance over the distribution of 6;. Because Eg[ 7x(0;)] = 7, we can use (9.76)
and (9.79) to write

J J .
Vitsel = Vo [#6) ]+ Eo | 26 (1 =m0+ > > L

et £ A
J=1j#
s/
]:

—~

= Eg [7200)] = (Eo [200)])* + Eo [#0)] - Es [7200)]

J J

+ z Z EH[Z/kjj’]
Jj=1 j'/?é]'

J'=l1

J J
Ckjj’
= 1-— — 9.82
ORI P (9.82)
J=1j'#j
j'=1
where ¢y /m A is the unconditional probability of intersecting 7 along both the jth
and j’ segments of the sth transect.
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9.12.7 Variance of T 5

yms
Because t;54 = 0 for all Uy that are not selected by the sth transect, rym s 1n (9.59)
can be expressed alternatively as
tkse
_ 4 Z kso Yk (9.83)

wr (@)

Standard results on the variance of a sum thus provides

V [tkse | U51] yk C [tise, tk'se | G511 Y yir
v [ yms] L2 Z _2(9 ) L2 Z Z wy (O )y (Os) .

k=1k'#k
k'=1
(9.84)
Substituting into the first term of (9.84) from (9.79) provides
o LS gy | 3R
Ve ]=7 Z 70 (1 — 70y + > > Yl [k
— —1 i/ - A wk (GS)
= J=1j'#
=1
[Tkses ti/se | 0?1]
ZZZ—/”/ (9.85)
pasrayt wi (65w ()
k=1

where C [tk sos /s | 1931] indicates the conditional covariance between the multi-tally
count variables of 7, and Uy on the sth transect, i.e.,

C [se, Ti'se |0sl] =FE [tksctk’so |951] — E [tgse |9sl] E [tk’sc |0sl]

J J
=E | Dty D tisj |1 | — 707w 05)

j=t  j=1

‘M-~

J
E [ tksjtirsj 1051] + Z
1 j=1j

j

[
M~

E [ tsjtiosjr 101]

./

~.

I
II S
—_.

./

— 7 (Os) T (O5)

J J J
Chjk' js - -
= _ankf j©05) + Z D T O @), (9.86)
Jj=1 J=1j'#j
=1

where 7y ;(65) is the analog, when dealing with transects having J > 1 segments
to mp (0s) with straight-line transects (see (9.12)). In other words, it is the joint
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conditional probability of selecting Ty and Uy from the jth segment of the sth
transect; and (i jxj7s/A is the joint probability of selecting both 7 and 7 on the
jthand j'th segments of the sth transect.

Upon substitution of (9.86) into (9.85), we get

AT 501 -70)) , AL Lo
N RS 2P IP I

ik j (Os)
PP DI AT AR
N N J Ckk/ -/
JK' ]S
2 2 2 2 Gganay Y

N - ~
i (O5) 7y (65)
P Z i 0 0 87

N 2
v[f;ms]zz y" 1+ ZZ G 0,)

A7y (Oy)
J #J

R
Tk (0?)5 K (9;)

J J J
< | D mue 0) + ZZ "””“ — T 0T (0)) | . (9.88)

;
When J = 1, the terms in (9.88) involving ;- and (i jrs are nil, and V[

Tyms ]
coincides with V{75, ] in (9.12).
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9.12.8 Variance of 7.

yms

An equivalent expression for 7, ¢ to that given in (9.62b) is

TA N Tkse Vi
~u _ A s
foms = 7 > o (9.89)
k=1
Therefore
wu 7!'2A2 N V[lks. 2 C[tkso:tkso]
14 I:Tyms] = L2 Z 2 z Z crLCr VY (990)
=1k k=1k#k kCk
k=1

where C| trse, k5o | indicates the unconditional covariance between the multi-tally
count variables for 7 and Uy on the sth transect, namely

C[tksoa tk’so] = E [lksolirse | — E [frse ] E [Tr/5e |

J J
=E Ztksjszfsj = Wk Tp
j=t  j=1

J J
tkwtk’v] +ZZE tkv]tk’vj’ — Ty

Il
AM\

j=l1 Jj=lj'#j
j'=1
J J J —
J J's
E Tk’ j +§ E — T, 9.91)
j=1 J=1j'#j
j'=1

where 7y is the analog, when dealing with transects having J > 1 segments to
7y with straight-line transects (see (9.15)), namely it is the joint unconditional
probability of selecting 7 and 7 from the jth segment of the sth transect; and
Nkjk j's/A is the joint unconditional probability of selecting 7 and Uy on the jth
and j'th segments of the sth transect.
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Substituting from (9.82) for V [ #xse ] and from (9.91) for C[ tise, t1'se | yields

242 N N J J
T R g 7Tk(1—7fk) 4 A? Ck// /A V2
Ve ] = T > SDIIPIE
k=1 k k=1j=1jj
Jj'=1
2 N N T
LS 33k
k=1k'sk j=1
k=1
2.2 N N J J
z’A Mk s/ A
T 2 22 D T
; o CiCr/
k=1k'#kj=1j'#]
k=1 j'=1
242 N N
T A Ty Ty
L CkCy/
k=1k'#k
k=1

Replacing ¢ and ¢y with 7 Az /L and & Ay /L, respectively, in (9.92) yields

N N
+2. 2 — Z”kk/ +ZZ nkjk///s —mmp |- (9.93)
j= 11—1

J#J

When J = 1, the terms in (9.93) involving cg;; and #yx j7s are nil, and V[

Tyms ]
coincides with V [z}, ] in (9.15a).

9.12.9 Variance of Ty

From (9.65)

we Z Zjlzl tksjqk ()

Tygs = Yk
YT ST E @) | 661 ]
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so that
v I:"C i 4 [Z}:[ tksjqk(esj) |9s1:|y13
qus] = 2
= (S E [wga@) [ 04])

c [ij=1 ksj qk (0s), Zf:] tesjqr Os;) | 051 ] Yk Yk

#k (zjj=1 E [ 1659k (057) 1051 ]) (ij=l E [1wsjqu 0s) | 651 ]).

=1

(9.94)

We examine first the properties of ij=1 tksjqk(0s;) by conditioning on both the
orientation of the transect and gy (6;;). The doubly conditioned expected value of

trsjqk (Os) is
E [ trsjqi(Os)) | Os1, qxOsj) | = E [ tasj | 651 | ax Os))

= i (6s;) gk (6)), (9.95)
which then leads to
J J
E Ztksj‘ﬂc(esj) | 651, qi(6s)) | = Z E [ tksjqk Os)) | Os1. qi(Gs)) |

=1 =1

J
=D 7k (6) 4k 0s)) (9.96a)

=1
= qr(0s1). (9.96b)

The corresponding conditional variance is

J
VI DD tksjak©s)) | 651, ax(6s)
=1

= Z \% [lkstIk(esj) | 051, Clk(esj)]
j:1

Os1, Qk(esj): 6]k(gsj’) ]

J J
+ 30 Otk Osy). tasjran )

=1 %
J =

o

= Z V[ tesj | 051 ] g 05)) + z Z C [ tksj» thsj
=1 =1 %]

J

.

—

051 ] Qk(esj) Qk(esj’)

—
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J
= D> 7k (0s) (1 — 7(6s)) 47 (Os))
j=1

s1 ] - ”k(esj)”k(asj’)) qk(esj) Qk(esj’)

+>° > (E[ny

J J J
= > m0s) (1 = 1 05) 43 0s)) = D~ D~ 7k Os))mi Osjr) qic 0sj) g (B0
j=1

j=1j #J
j'=1
J l//k,
+2° 20 5 a0) k).
J=1i'#
Jj'=1
Continuing,
J
VI DD theiax @) | | 6515 ax6s)

j=1

J J
= > 0k 0s)) | (1= mx6y)) ai 0s)) — D 7 Osj)qi Osjr)
j=1 J'#EJ

j'=1
J Wi

+ Z z %Qk(ew)qk(ew )

J=Ui#d

J'=1
J J J Wi
= 2wk Ok 05)) [k Os)) = @ O] + 2 D" = ai0sy) ak Osj1),
Jj=1 J=1j#j
Jj'=1

(9.97)

where /A is the probability of intersecting 7 by the jth and j’th segments of
the sth transect.
The variance of Z —1 thsjqk (2 j), conditionally on transect orientation only, can
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be expressed as

J J
D tasjqr @) |01 | = Vg | E| D thsjan(Os) | 6s1. gk Osf) (9.982)
j=1 j=1
J
+Eqg | V| D thsjar(0s) | 651, qx @) | |, (9.98b)
j=1

where E, signifies the expected value over the conditional distribution of g (6s;)
given transect orientation, ¢s1, and V, signifies the variance of the conditional
distribution of gy (0s;) given 6.

Examining (9.98a) first, we have

J

Vo | E Z tkszk(Hsj) | Os1, qk (98‘/)
=1

=V | | D 7k (657) k@) | | 651 | from (9.96a)
j=1

J
Z” Qk(evj)|9?1]

J J
+ DD m 0w 0:)Cy [ax 65, ax Os) | 61] (9.99)
J=tj'#i
i

—~.

where C, [qk 0, qr(Os) | 0, 1] is the covariance of g, (6;) and gy (s;) conditional
on transect orientation.
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Examining (9.98b) next, we have

J
E; |V ZlkstIk(asj)}Hsl,Qk(@sj)
j=1

J J o J »
=dﬂ2m%M@M%%%m@o+Z§f@qmwmwﬂ

Jj=1 J=ti#i

Jj'=1

c] E [qk(HSj) (Qk(esj)_Qk(esl)) |<9s1]

HM\

J J
Vijj'
+>° > A” Ey [ qx(6s)) qx0s0) | 651] - (9.100)
J=1j'#
j'=1
Upon combining (9.99) and (9.100), we get
J J
> i) | s Z Vy [ax(6s) | 651 ]
j=1 j=1
J
+ Z Tk Os)) Eq [k Os)) (qx Os)) — @k @s1)) | s1]
j=1

7rk(9sj)7tk(6’sj/)cq [ax65), ax @sjr) | 651]

M~

J
+2.
j=1j

-/

-~
(1S
—.

Vkjj’
A

Eq [ qi (65 Gs1]. (9.101)

M~

J
2
=1y

-/

sj’

-~
(1S
—_——

When g (6s;) = 1 universally, the V, and C, terms in (9.101) are nil, whereas
Eq4[ qi(65))(qk(65))—Gr(651)) | O51] = 1—71(65), and thus V [ijzl tksjq (6s5) | 651 ]

in (9.101) coincides with V[t | 651] in (9.79).
The next term from (9.94) that needs to be derived for V[, ] is that involving
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the conditional covariance between Z,'le trsjqk (Osj) and ijzl twsjqr (Osj).

J J
Cc |:Ztkszk(9sj), Ztk’szk/(esj) |9s1:|

j=1 j=1

J J
=E |:Ztkszk(9sj) Ztk’stIk’(gsj) |9s1:|

j=1 j=1

J J
—E |:ztkstIk(03j) |9s1i| E |:Ztk’sj9k’(9sj) |9s1j|

j=1 j=1

7
= E[ Z tksj Qi Osj) s jqr (Osj)

j=1

o
0D tigjquOstisj i

J=1j'#j
/:

sj’

s

—_—.

- Eq [Qk(esl) |031 ] Eq [Qk’(esl) \951]

J
=Eq |:Z”kk’ij(esj)Qk’sj(esj) | 651 :|

j=1

J J
Z Z Ckjk’ j //A Qk(GSJ)C]k/ (ek’s])

J=t#d
]:

s1

—_—

— Eq [GcG51) | 051 | Eq [ Gx 051) | 051 ] - (9.102)

Substituting (9.101) and (9.102) into (9.94), the following expression for V[ T
results:

yqs]

N J 2 es' es' es
v I::L:ycqs] _ z ijl Ty ( _J) Vy [‘Ik( /)2| 1]y£
=1 (Eq[qk(asl) 1651])
+Z j 1 T [qk(aw) (‘Ik(evj) _Qk(esl)) |‘9v1]
( q [Qk(esl) ’@‘1 ])
i X0 wkO)me(O5)Cy (91 Os)), qx @) | Os1]

N ’
Jj'=1 2
+ Z _ P Yk
k=1

(Eq [Qk(esl) |6s1 ])

)’k
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S X (vl A) Eq [ac@s) ax©0) | 01]

al i'=1
+ Z = _ 2 yl%

k=1 (Eq[Qk(9s1)|6sl ])

E, [ijzl ik jqk Os))qursj (Osj) | Os1 ]

N N
t2.2, (Eq [2c@:1) |01 ]) (Eq [Gx @) [ 051 ])° "

Eq |:ij=1 S G/ A)ak Ospai Bugyr) | 51

N N
o Z Z =~ j/:l — Yk Yk
k=1k#k (Eq[Qk(0s1)|‘9sl])(Eq[qk/(9s1)|(931 ])
k=1
N N
DD (9.103)
k=1K' £k
k=1

When g (65) = 1 universally, all V; and C, terms in (9.103) are nil, E [qk s1) | 651 ]

Tk (Os51), Eq[ qu Gs1) | 651 ] = nk/(é)sl) and thus V[7¢ | coincides w1th V[ig, |in
(9.88).
9.12.10 Variance of T
From (9.66)
Fuo Z z] 1 tks]‘]k(ew)
e ULy Z =1 E [tksjqk(eéj)]
so that

N J 0 2
v[f‘}qu]:E ZM —c2
) k=1 Zj 1E[tkrjqk(0€])]

2
_%E Z}J | thsjqk Osj)
k=1 zjj 1E[fks/qk(ﬁs,)]
Z E{ [ Sy tksjax O )] [Z, ltk’quk’(‘gvj)]
YV | — Ty
k=1}/ £k ZI 1E[tks/qk(9sﬂ]z/ 1E[f/\/”qk/( )]
k=1
N ij lth/qk(gV])+z}l 12 /# tkt]’ky"]k(aw)qk(asj/)
=2 F £=! 2 -1
J
k=1 (Zj:] E [’kijk(()xj)])
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v St tksj kO Osf) + Sy Tty 4k Osdags Oygr)
s

(3 fos

k=1

=1 ykyp
K #k S E[sjan @) 1], E I:tk’sjqk’(exj)]

k=1

J 2 2 J J
S e[y O]+ LX) B[t a0paogn)
J =1

2
(S1o) B Lsjan @:)1)

—1 >‘1§

NN ZJ!=1 E [fksjqk(gsj)fk/sjqk/(&sj)] + ij=1 Z]j-/#]- E [’ijfk’ij’qk(ng)‘ik/(esj/)]
-
Jj'=1
+2 2

J ] — 1 o
k=1 k >t E o) ] X5, E [lk’sjqk/(ﬁxj)]

Y ED NIy ( [tksj s a6 @i 0,0 = E [11jax @] E [ 11,5004 0,0)])

N
-3 J'=1

7 2 Vi
(ijl E [ k55 (9.(‘_/')])

Z.J=1 Z;/#J (E [lksjfk/_yj/Qk(ﬁsj)qk/(g_rj/)] —FE [tk_yjqk (Hsj)] E [’k/sj/‘?k/ (Hsj/)])

13D I

Yk
k=1k/2k z}'lzl E [t/\'quk (Hsj)]zjlzl E [tk/sjqk’ (F)Sj)]

N L L ClksjaxOs)s tygiraxOy;0)
-3y Snlialy ],
I#j (Zj=1 E [fkszk(Hsj)])

'=1

CltrsjarOsj)s tyrgirqrr Ogir)

- (sJ SJ kjsj k' Vsj ) - ©.100
2 X E Lo O ISy E [0 05))]

=1
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CHAPTER 11

Randomized Branch Sampling

Randomized branch sampling (RBS) was developed originally by Jessen (1955) to
estimate fruit counts on individual orchard trees. This ingenious method of multistage
probability sampling can be used to obtain estimates of many different attributes of
orchard, forest, and shade trees, and other branched plants. In principle, RBS could
be applied to other branched structures such as corals and river systems, though we
have not seen any ‘non-botanical’ applications.

The usual objective of RBS is the estimation of a total amount of an attribute
contained in, or borne by, a tree or branch, for example, the aggregate volume, dry
weight, and chemical contents of the woody components (e.g., Valentine et al. 1984;
De Gier 1989; Good et al. 2001); the count, surface area, dry weight, and chemical
contents of the leaves (e.g., Valentine et al. 1994; Gaffrey & Saborowski 1999;
Raulier ef al. 2002); the count of tree insects (Furness 1976), and, of course, the
count and aggregate mass of fruits and the seeds within the fruits. In addition, RBS,
with hydraulic excavation, has potential use in the estimation of the radius, volume,
and mass of root systems. In this chapter, we restrict our interest to attributes of the
aboveground portion of a tree. Depending of the objective, the implementation of
RBS may require the felling or the climbing of the tree.

11.1 Terminology

Our terminology follows Valentine et al. (1984) and Gregoire et al. (1995). We
define a ‘branch’ to be the entire stem system that develops from a single bud (lateral
or terminal) and we define a ‘branch segment’ or, simply, ‘segment’ to be a part of
a branch between two consecutive nodes (or forks). No distinction is made between
the segments of the main stem and side branches. The butt of the main stem of a
tree is considered a node and the tree is considered a branch for the purpose of RBS.
Terminal shoots are considered to be both branches and branch segments. Thus, any
tree or branch can be defined as a population of branch segments. Hence, we shall
call the tree or branch that we subject to RBS the ‘object branch.’

We define a ‘path’ to be an acropetal stack of connected branch segments. A path
may extend from the butt of the main stem to a terminal shoot (Figure 11.1), in which
case the number of possible paths equals the number of terminal shoots. However,
the terminus need not be a terminal shoot and the starting point of a path need not be
the butt of the main stem. For example, a path may extend from the butt of a main
stem to a high-order branch, in which case the entire high-order branch is treated as
the terminal segment of the path (Figure 11.1c). A path may extend from the butt of

327
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@ (b)

(© (d)

Figure 11.1 The tree in (a) contains 40 segments and 27 possible paths from the butt of the
main stem to a terminal shoot. The four branch segments of one possible path are shown in (b).
Randomized branch sampling can be stopped at any node, in which case the selected branch
[ 3 (encircled), in example (c)], is treated as the terminal segment of the path. The sampling
can be started from the butt of any branch on the tree [e.g., example (d)], in which case the
resultant estimates pertain only to the entire starting branch (encircled), not the entire tree.

a low-order branch to either a terminal shoot (Figure 11.1d) or a higher order branch
(as in Figure 11.1c), in which case the estimates that derive from RBS are for the
entire low-order branch, not the entire tree.

11.2 Path selection

RBS is used to select a path from the butt of an object branch to a terminal segment.
The first segment of the path extends from the butt of the object branch, which is
defined as the first node, to the second node (Figure 11.2). By convention, the first
segment of the path has selection probability g;. We assign a selection probability to
each branch emanating from the second node and choose one at random. The choice
of this second branch, with selection probability ¢;, fixes the second segment of the
path. The second segment is followed to a third node where a branch, and the third
segment of the path, is chosen with probability g3. This procedure is repeated until a
small branch or terminal shoot is chosen at the final (Rth) node with probability gg.
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Figure 11.2 (a) The basal end of first segment of the object branch is defined as the first
node. The distal end of the first segment is the second node (labeled), where one of the three
branches is selected with probability q;, fixing the second segment of the path (b). Proceeding
to the third node (c), one of the three branches is selected with probability q3, which fixes the
third segment of the path (d). The sampling continues until a terminal node is reached (e), and
the terminal segment of the path is selected (f).

The selection probabilities assigned to the branches at each node must sum to
one. The first node of a path usually gives rise to one branch, which has selection
probability g; = 1. If there are multiple branches, each is assigned a selection
probability, and one is selected with probability ¢g; < 1. Ordinarily, the selection
probabilities are either (a) uniform (i.e., all branches at a node have the same selection
probability) or (b) proportional to some measure of the size. For example, letting
X symbolize the measure of size for the kth of n branches at the rth node, the
probability of selection assigned to this branch (g,,) is:

— Xk
qu - z;fl X]a

Branch 1 is selected if u < g,,, where u ~ U[0, 1], or branch k (k = 2,...,n) is
selected if:

k=1,2,...,n.

k—1 k

<
E qrj <uU = § qr; -
J J=1

=1
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Example 11.1

Suppose that three branches emanate from the rth node of a path. Let the
measure of size be the diameter-square (d?) of a branch and let the diameters
of the three branches be di = 2, d» = 3, and d3 = 5. The selection probabilities

are:
= 2 = 4 =0.105
In=ym i =3"
9 25
G =55 =037, g = 20 = 0658
Hence,
ar, = 0.105

qr, +qr, =0.342
qu +Qr2 +Qr3 = 1‘0

We draw a random number u from U[O, 1]. If u < 0.105, we select branch 1 with
probability g, = g,, = 0.105; if 0.105 < u < 0.342, we select branch 2 with
probability ¢, = q,, = 0.237; otherwise, we select branch 3 with probability
qr = qr, = 0.658.

Technically, the selection probability assigned to a branch is the conditional
probability of selecting that branch given that the path has reached the node at which
the branch arises. The unconditional probability of selection for the rth segment of
the path is:

r
Qr:qu9 r:1929"'9R) (111)
k=1
ie.,
01 =qi

02 =q192 = q20Q1

Or=q192" qr = qrQr-1-

More than one path may be selected in which case the unconditional probability of
selection of the rth of segment of the ith of m > 2 paths is denoted by Q.

Example 11.2

The following table contains branch diameters (cm) measured at each of 10
nodes on an Ocotea guianensis tree in Brazil.

Branches were selected with probability proportional to d>%7. The diameters
of the selected branches are in bold face. For example, there were two branches
at the third node and the larger one with a diameter of 4.1 cm was selected with
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r Dia (cm) qr Or

1 9.1 1.00000 1.00000
2 4.3,2.1 0.87142 0.87142 x 1.00000 = 0.87142
3 1.7,4.1 0.91796 0.91796 x 0.87142 = 0.79992
4 1.5,4.1 0.93612 0.93612 x 0.79992 = 0.74882
5 1.2,3.5,2.2 0.74247 0.74247 x 0.74882 = 0.55598
6 1.5,3.2,1.8 0.74214 0.74214 x 0.55598 = 0.41262
7 1.0,2.9,2.0 0.69976 0.69976 x 0.41262 = 0.28873
8 1.0,2.5,1.5 0.74501 0.74501 x 0.28873 = 0.21511
9 24,12 0.86421 0.86421 x 0.21511 = 0.18590
10 1.6,2.0 0.35531 0.35531 x 0.18590 = 0.06605

conditional selection probability

4.1 2.67
T 17267 141267

The unconditional probability of selecting this branch was:

03 =1.0x0.87142 x 0.91796 = 0.79992

@ =0.91796

11.3 Estimation

Let y;, be the attribute that is measured on the rth segment of the i th path of the object
branch, and let 7, be the target parameter—the total amount of attribute summed over
all the segments of the object branch. Then,

R
Yir

f)’Q' =
! =1 Qir

is an unbiased estimator for 7y,. The results from m > 2 paths can be averaged to give
a combined estimate:

(11.2)

N SN
fo=— Z;‘ Zyo; (11.3)
i=
The joint probability of selecting all R segments that form the ith path is Q;z.

Although the number of segments, R, may vary from path to path, if there are M
possible paths with distinct terminal segments, then

M
ZQ:‘R=1

because the unconditional selection probabilities sum to one at every node. There-
fore, Qi is the probability of obtaining the estimate 7y, , which is one of M possible
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estimates for the object branch. Accordingly, the sampling variance of 7y, is:

The

M
. 1 . 2
V[‘[yQ] = Z |:Z QiR (Tle. - ‘[y) :|
i=1
sampled-based estimator of the variance of 7, is:

(2y0; — Fve)”  m> L. (11.4)

1 m
=1

b (tyo) = 1) -

1

Example 11.3

The measurements in Table 11.1 pertain to the Ocotea guianensis tree from
Example 11.2.

Let 7y, be the fresh weight of the woody tissues and let 7y be the fresh weight
of foliage of the N segments of the tree. Our estimates of the fresh weight of
woody tissues from each of the two paths are:

X 15100 751 380 1967 oo
Tyo, = _ )
vor 1 087142 0.18590 ' 0.06605

15100.0  496.2
P — — 18958.8
yer T T 0.12859

The combined estimate is:

20789.8 4 18958.8
Tyo = + = 19874.3
yo )

The standard error of the combined estimate is [20789.8 — 18958.8|/2 = 915.5

and the estimated relative standard error is: 100% x 915.5/19874.3 = 4.5%.
Note that foliage is attached to the last three segments of the first path. Our

estimate of the fresh weight of foliage attached to the N segments of the tree is:

. 38.1 + 25.9 " 291.0
T =
JO = 021511 T 0.18590  0.06605

The last segment of the second path is a subterminal branch. Our second estimate
is:

=4722.2

. 4410
o= 512859
The combined estimate is:

. 4722.2 + 3429.5
Tro = MR st =4075.9
2
The standard error of this estimate is: [4722.2 — 3429.5|/2 = 646.4 and the

relative standard error is: 100% x 646.4/4075.9 = 15.9%.

= 3429.5
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Table 11.1:  Fresh weights of woody tissues and foliage by path
(i) and segment (r).

i r O, Wood (g) Foliage (g)
1 1 1.00000 15100.0 0.0
1 2 0.87142 75.1 0.0
1 3 0.79992 412.1 0.0
1 4 0.74882 82.5 0.0
1 5 0.55598 252.6 0.0
1 6 0.41262 209.8 0.0
1 7 0.28873 33.0 0.0
1 8 0.21511 154.6 38.1
1 9 0.18590 38.0 25.9
1 10 0.06605 196.7 291.0
2 1 1.00000 15100.0 0.0
2 2 0.12859 3858.9 441.0

11.3.1 Average stem length

Average stem length may be of interest to investigators of vascular transport, carbon
allocation, or meristematic growth. Average stem length is essentially the average
length of all M possible paths for which terminal shoots are terminal segments. The
radius of a root plate is a similar ‘underground parameter.’

Let ¢; be total length of the ith path (i.e., the sum of the lengths of the R segments).
The sum of the lengths of the M possible paths (z/) is unbiasedly estimated by:

R 1l &
T = — —
© m = Oir
i=1
Average stem length, u, = t,/M, is unbiasedly estimated by:
2, = e
He i
Ordinarily, M is not known, but it is unbiasedly estimated by:
1 < s
M=— ® (11.5)
m ; Oir

where s;; is the number of terminal shoots attached to the Rth segment of the ith
path (note: s;z = 1 if the terminal segment is a terminal shoot). The target parameter,
¢, 1s estimated by the ratio (Gregoire and Valentine 1996):

A

= (11.6)
M

As with most ratio estimates, ¢ may be biased. When m = 1, we can use { = l;.
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When m > 2, the variance of £ is approximated by (Sirndal ez al. 1992):

c o L 1= Qi 212
v(f):MZZ( 2 )(&—f) m> 1. (11.7)

11.4 Selection probabilities

As was mentioned, the conditional selection probabilities assigned to the branches
at any node of a path must sum to one. Of interest is the method of assignment that
yields the most precise estimates. This method is evinced by a multistage estimation
process (Valentine ef al. 1984).

For illustrative purposes, let us consider the estimation of the fresh weight of an
entire tree. The tree is felled and a path to a terminal shoot is selected (Figure 11.3a).
Then the segments of the path are separated and weighed. Let y, be the fresh weight
of the rth segment and let w, be the fresh weight of the branch selected at the rth
node. Finally, let 7,,, be the aggregate fresh weight of all the branches at the rth node.

Starting at the last segment (Figure 11.3b) and moving down the path toward the
butt we note that

fip = & =

qr qr

is an unbiased estimate of 7,,, the fresh weight of all the branches that were
attached to the last (Rth) node of our path (Figure 11.3c). Moreover, we note that
if gg = wg/Twg, then 7,,, = 7y,. In other words, if we had assigned selection
probabilities proportional to the actual fresh weights of the respective terminal
shoots, then our estimate of the aggregate fresh weight of the terminal shoots would
equal the actual weight.

Adding the weight of segment (R — 1) gives an unbiased estimate,

Wg

A Yy
Wpr-1 = e + Yr-15
R
of wg_,, the weight of the branch selected at node R — 1 (Figure 11.3d). Inflating
this estimate of the fresh weight of the branch selected at node R — 1 by dividing by
qr_1, We obtain an unbiased estimate,
wail _ Yr n YR-1 _ II)R—I’
qrqr-1  qr-1 qRr-1
of 74, ,, the weight of all the branches which were attached at this node (Figure
11.3e). We also note that if g = wg_; and gg_; = Wr_1/Tw,_,> then Ty, |, =
Twp_,- That is, if we had assigned selection probabilities proportional to the actual
fresh weights of the branches at nodes R and R — 1, then our estimate of the aggregate
fresh weight of the branches at node R — 1, would equal the actual fresh weight.
Adding the weight of segment R — 2 gives an unbiased estimate,

YR n YR-1 ’
qrqr-1  qr-1+ Yro2
of wg_», the weight of the branch selected at node R — 2 (Figure 11.3f).

Wr-—2 =
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Figure 11.3 Multistage estimation: (a) A path with 4 segments. (b) The weight of the terminal
shoot (fourth segment) divided by q4 gives an estimate of the aggregate weight of the three
terminal shoots at the fourth node (c). Adding the weight of the subordinate (third) segment
gives an estimate of the weight of the branch in (d). Dividing the estimate of the weight of
the branch in (d) by q3 gives an estimate an the aggregate weight of the three branches at the
third node (e). Adding the weight of the subordinate (second) segment gives an estimate of the
weight of the branch in (f).

This estimation process can be continued until we arrive at the first node with an
unbiased estimate of the fresh weight of the entire tree.
YR + Yr-1 +...+£+ﬂ
qrYrR-19Rr—2""" 41 4r-19r—2""" 41 9291 41

Tw; =

This heuristic multistage estimation yields 7,,, = ny[., i.e., the estimate of the fresh
weight of the whole tree is equivalent to the estimate of the aggregate fresh weight
of all the segments in the tree as calculated with (11.2). Thus, this exercise provides
an inductive proof of the unbiasedness of 7y, .

More importantly, however, this exercise reveals the ideal way to assign selection
probabilities to branches. If we are estimating the fresh weight of a tree, the selection
probability assigned to each branch ideally should equal the fraction of the total fresh
weight beyond the node and contained in the branch. More generally, the selection
probability assigned to a branch ideally should equal the fraction of the total amount
of an attribute that is beyond the node and contained in, or borne by, the branch.

Of course, we cannot discern the exact amount of an attribute contained in, or
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borne by, a branch; otherwise, we would not be sampling. However, branch-level
attributes tend to be strongly correlated with branch diameter (d), branch length (1),
powers of these quantities (d“ or 1), ora product (d?1).

For example, if the weight of leaves is of interest, then we may choose to calculate
the probabilities proportional to d2 because weights of leaves borne by branches tend
to scale with the diameter-squares of the respective branches (see, e.g., Shinozaki
et al. 1964). Jessen (1955) calculated selection probabilities proportional to the
diameter-squares of branches in connection with the estimation of fruit counts.

The estimation of woody dry matter or volume is a common objective. Murray
(1927) reported that branch weight tends to scale with d% for large branches, and
with @3 for small branches like terminal shoots. Valentine ez al. (1984) assigned
selection probabilities to branches proportional to d*I. De Gier (1989) used d>%7;
the exponent obtained from a least-squares fit of an allometric model. Greenhill
(1881) indicated, for homogeneous stems, that [ should scale with d*/3, in which
case dl o« d®/3 = d>®7. The tendency of branch volume or dry matter to scale with
d8/3 accords with quarter-power scaling rules (e.g., West et al. 1999), which are said
to hold, more or less, for most taxa.

The best way to calculate probabilities of selection in connection with the
estimation of average stem length, uy = 7,/M, is less obvious. Assignments that
are efficient for the estimation of 7, may not be efficient for M. Branches tend to be
area-preserving: the sum of the cross-sectional areas (diameter-squares) of daughter
branches tends to equal the cross-sectional area (diameter-square) of the mother
branch. Thus, if an area-weighted average stem length is desired, then probability
assignments proportional to d? are suggested.

Valentine & Hilton (1977) used ocular estimates of the foliage borne by the re-
spective branches to calculate probabilities of selection for the objective of estimat-
ing leaf count on standing trees. Ocular estimation is, of course, an option for any
RBS objective.

11.5 Tools and tricks of the trade

We assume, for this discussion, that the object branch is a large tree that has been
felled to facilitate the RBS. Dead branches may be removed, depending upon the
objectives of the sampling. Live branches broken during the felling of the tree are
reconstructed and realigned as best as possible. The selection of the path is best
performed by two people, one to (wo)man the field computer and the other to
measure the branches and mark the path. The calculations for the RBS are easily
performed with a calculator, but we prefer a field computer.

During the selection of a path, we usually number the branches emanating from a
node with a lumber crayon. We generally have the computer programmed to accept
measurements of the diameter and/or length of each branch (or other quantities for
the calculation of probabilities of selection) by branch number. The computer applies
exponents to the measurements (if appropriate), sets up the probability sampling
frame, generates a random number, indicates the number of the branch that is
selected, and stores the conditional and unconditional probabilities of selection by



SUBSAMPLING A PATH 337

segment number. This process is repeated until either a terminal shoot or, more often
than not, a sub-terminal branch is selected as the terminal segment of the path.

To avoid large sampling error, small epicormic branches or spurr shoots should
be ignored during the path selection. The RBS should be confined to those branches
that constitute the main architecture of the tree. The ignored shoots or small branches
ultimately are treated as parts of the segments to which they are attached.

We find it advisable to number the segments of each path with the crayon and tie
a piece of flagging around each terminal segment. All of the material in the tree that
is not part of a path may then be cut off and discarded. The bulky mass of the tree
is reduced to just the segments of the path(s) and whatever organs are attached to
them. Depending upon the quantities of interest, it may be necessary to separate the
segments of the path(s) with loppers or a saw before measurements can be taken. On
the other hand, quantities of interest whose direct measurement require the separation
of the segments (e.g., woody dry matter and, perhaps, volume) could be estimated by
subsampling.

Stratified sampling is appealing when the quantity of interest is the weight of
leaves. Declining branches that abut the bole in the lower third of a crown often
have less foliage per unit cross-sectional area of branch than higher branches. We
have had success stratifying crowns of loblolly pines into thirds by length (Valentine
et al. 1994). Within each stratum, all the branches abutting the bole were treated as
though they emanated from a common node. Two object branches were selected from
each of the three strata with probabilitity proportional to d2. RBS was carried out on
each object branch to estimate leaf weight. The resultant estimates of leaf weights
and variances, respectively, were summed across strata to give tree-level estimates.
We programmed a field computer to direct the entire sampling procedure, including
the assignment of identifying codes to foliage samples.

11.6 Subsampling a path

Attributes of interest often include the volume, dry weight, and/or chemical content
of the woody components of a tree. Certainly, we can estimate these attributes for the
tree (if the entire tree is our object branch) with (11.2) after estimating these attributes
for each segment of a path. For example, we could measure the fresh weight of each
segment and then select a disk from the segment in some objective fashion for the
measurement of the ratio of dry to fresh weight. Obviously, such a procedure could
be laborious and time-consuming if it were applied to every path segment. However,
there is an alternative. A subsampling strategy, which was introduced by Valentine
et al. (1984), eliminates the need to section and measure all the segments of a path.

11.6.1 Subsampling strategy

Let y; denote the attribute, i.e., volume, weight, or chemical content, of the rth
segment of the ith path and let us call y;./Q;, the inflated attribute of the segment.
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The inflated attribute for the entire (ith) path is:

R
Yir

Ty, = .
ye
! Qir
r=1

Recall that 7y, is an unbiased estimate of 7y, the total amount of attribute contained
in, or borne by, the object branch. However, we do not calculate nyl. as that would
require measuring the attribute of interest on all the segments of the path, which
is what we want to avoid. Instead, we seek an unbiased estimate of this unbiased
estimate of 7. Valentine et al. (1984) originally used importance sampling as the
subsampling method, but other methods can substitute.

The stem length of the path comprises a continuous population of infinitely many
points. Let x, denote the stem length from the basal end of the first segment (xg = 0)
to the distal end of the rth segment of the path. For the moment we assume that
the final or Rth segment is a terminal shoot; thus, the total length of the path is
xg. Let p(x) be the attribute density at a point x, where 0 < x < xp (i.e., p(x) is
the the volume per unit length = cross-sectional area, dry weight per unit length, or
chemical content per length at x (see §4.2)). Suppose that x falls on the rth segment
of the path. Division of p(x) by the unconditional probability of selection of the rth
segment yields the inflated attribute density, p*(x), i.e.,

p*(x):M Xp_1 <x<x,, r=1,...,R. (11.8)

Or
The inflated attribute of the path is equivalent to the inflated attribute density
integrated from O to xg, i.e.,

R .
yi‘ %
—— =Ty = dx.
é@ MW)A P ()

If the terminal (R th) segment of the path is a sub-terminal branch, we can estimate
7, (xg_1), the inflated attribute of the path from x¢ to x,_;. To this estimate we add
the inflated attribute (yz/ Q) of the terminal segment. Thus, fp*(xR_l) + yr/ Ok is
our estimate of the inflated attribute of the whole path. This estimate substitutes for
Tyg; in equations (11.2) and (11.4).

The integral can be unbiasedly estimated with methods of Monte Carlo integration,
e.g., crude Monte Carlo, importance sampling, or sampling with a control variate.

11.6.2 Crude Monte Carlo

Crude Monte Carlo (§4.2) generally is simplest, but least precise, method. It may
suffice, however, if the estimation of volume is the objective. An estimator of the
inflated attribute of the path, from x = 0 to x = xg, is:

n
~ XR
By =2 p*(xs)
n s
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where x; = ugxz (s = 1,2,...,n)and ug; ~ UJ[0, 1]. Efficiency usually is increased
by the use of either antithetic (§4.2.4) or systematic selection (§4.2.5) of the sample
points. Upon locating a sample point, we must remember that we actually measure
the attribute density p(x;). Hence, we must identify the index of the segment, r,
where x; occurs so we can use equation (11.8) to convert p(xs) to the inflated
attribute density p*(x;).

Example 11.4

To estimate the inflated volume of a path with systematic selection (see §4.2.5),
we measure or estimate cross-sectional area along path at fixed intervals from a
random start. Each cross-sectional area is inflated by dividing by the appropriate
Q. The inflated volume of the path is estimated by the product of the length
of the path and the average inflated cross-sectional area. Cross-sectional area
usually is estimated from circumference (or diameter), which is measured with
a tape (or diameter tape). Such estimates are slightly biased if the stem is not
circular (Matérn 1956). An unbiased estimate obtains from sawing through
the stem and averaging cross-sectional areas calculated with radii selected at
random.

11.6.3 Importance sampling

Estimation of inflated weight or chemical content of a path is most likely best
estimated by either importance sampling or sampling with a control variate. Recall
that importance sampling is a continuous analog of sampling with probability
proportional to size (§4.3). In order to estimate the inflated attribute of a path, we
need to construct a continuous proxy function, g*(x), that is as nearly proportional
to, or coincident with, the inflated attribute density function, p*(x), as is practicable.
The inflated attribute is estimated by:

LG < ()
O Zs:g*(xs)

where x; (s = 1,2, ..., n) is a sample point, and,

G*(xe) = /0 " dr

We substitute x;_; for x; if the last segment of the path is a subterminal branch.
The sample points can be selected by the inverse-transform method (§4.3.2) or the
acceptance-rejection method (§4.3.3).

11.6.4 Constructing a proxy function

Valentine et al. (1984) constructed a segmented linear proxy function from diameters
measured at distances x = L1, Ly, ..., L;, ..., Lt from the butt of the path, where
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L1 = 0and Lt = x; (or xg_;). The placements of L, through Ly_; are arbitrary,
as is the number of measurements, 7. Thus, the segments of the proxy function
ordinarily are not the same as the original segments of the path. Starting at the butt,
we suggest taking measurements every 20 to 25 cm in the region of the butt swell and
every | to 2 m thereafter depending upon taper and local stem deformities. However,
the construction would work if we used just 7 = 2 measurements, viz., L1 = 0 and
L> = xy (or xg_;), in which case the segmented linear proxy function would have
just one segment.
Denoting the diameter at L; by d(L;), we let

d*(Ly)
0,

g*(Lt) =

where r is the index of the original path segment where d(L;) is measured. Proxy
values between L;_1 and L, are found by linear interpolation, i.e.,

g () =g (Lio1) + [g*(L’) — g*(L"l)] [x = Li-1],

Ly =L
Lf—l <x < Ll-

This segmented linear function can be integrated piecewise by the trapezoidal rule,
ie.,

G*(Li) = G*(L_1) + [g*(L’) _zg*(L"l)} (L~ L],

t=2,3,...,T.

To find a sample point, x = x;, by the acceptance-rejection method (§4.3.3), we
require g7 .. Since the proxy function is segmented linear,

Emax = max [ g*(L1), g*(L2). ..., g"(L7)].

Drawing u; and uy from U[O, 1], we let x; = ui L. If us x g, < g*(x5), then
we accept xg as our sample point; otherwise, we begin again with two new random
numbers.

A sample point, x;, calculated by the inverse-transform method, is between L;_
and L; if

G*(Li—1) <us G*(Lt) < G*(Ly),
The exact value of x; is:

—b+ . /b? —4ac

xXg =L, 1+
s t—1 2a
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where

y g"(Ly) — g"(Li—1)
Ly — L

b=2g"(Li—1)
¢ ==2[uy G*(L1) = G*(Ly-1)]

A field computer can be programmed to accept the measurements of diameters and
their locations along the path, formulate the proxy function from the measurements,
generate the random number(s), return x;, prompt the sampler for the index, r, of the
original path segment where x; occurs, and return and/or store G*(L7)/g*(xs) for
the calculation of the estimate.

A computer also affords the option to interpolate the known proxy values with a
spline or some other function instead of a segmented-linear function. Of course, the
inflated proxy function need not interpolate any measurements; but it seems a good
idea to ensure accuracy and precision.

11.6.5 Sampling with a control variate

As noted in §4.4, sampling with a control variate has been shown to have precision
equal to, or greater than, importance sampling in connection with the estimation of
bole volume. This method should also be efficient for estimating the inflated volume,
dry weight, or chemical content of a path. The estimator of the inflated attribute of
the path is :

n
e = PG L) + = D[ 7 — B8 ()]
s=1
where x; = uy L and f is an arbitrary constant. With this method, sample points are
selected uniformly along the length of the path. By contrast, importance sampling
concentrates sample points where the inflated cross-sectional areas are largest.

The segmented linear interpolation function that serves as the proxy function for
importance sampling can also serve as the control variate, g*(x). Ordinarily, we
would let f = 7 /4 for the estimation of volume and f = p,, 7 /4 for the estimation of
dry weight. In the latter case, p,, is the dry weight per unit wet volume of a sample
disk, which gives f g*(x) dimensions of weight per unit length and f# G*(L7) a
dimension of weight.

Example 11.5

If the target parameter is inflated dry weight, then the inflated attribute density at
x, p*(x), is dry weight per unit length (g cm™!) divided by the appropriate Q,.
Since we can not measure weight per unit length at a sample point, one option
is to cut a disk centered at the sample point and divide the weight of the disk
by its thickness. We suggest that disks be cut at least 10 cm thick to diminish
the effects of measurement errors. Because the side cuts of the disk may not be
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parallel, several measurements of length (i.e., the thickness of the disk) should
be averaged. Another option (from Van Deusen & Baldwin 1993) is to extract a
core with an increment borer at each sample point and multiply the weight per
unit volume of the core by the cross-sectional area at the sample point to obtain
the requisite weight per unit length. This is certainly simpler than cutting and
measuring a disk. However, heterogeneity in the density of the wood may affect
accuracy and unbiasedness because old wood is more intensively sampled than
young wood by a core. The thickness of a disk or the volume of a core should
be determined before drying. A disk can divided into wedges and one selected
with probabilility proportional to actual weight or volume for the measurement
the chemical concentration.

It is, of course, possible to select more than one disk per path. However,
looking at the big picture, we speculate that multiple paths, each with one disk,
may be more efficient than a single path with multiple disks.

11.6.6 Choice of method

Importance sampling or sampling with a control variate is perferred over crude
Monte Carlo for estimation of the inflated weight or chemical content of a path be-
cause the cutting, handling, drying, and bioassay of disks is kept to a minimum.
And, volume can be estimated with essentially no extra cost. Whether it is worth-
while to construct a proxy function to estimate just volume depends on the investi-
gator’s preference for unbiased estimators. Volume is estimated from measurements
of cross-sectional area with all three methods. If the investigator chooses to estimate
cross-sectional area by 7d?(x,)/4, then there may be no advantage of importance
sampling or sampling with a control variate over crude Monte Carlo with systematic
selection. Stems generally aren’t perfectly round so 7 d?(x;)/4 is neither a measure-
ment nor an unbiased estimate of cross-sectional area. Thus, we eschew the unbi-
asedness of either sampling technique if we substitute 7 d?(x;)/4 for cross-sectional
area. And, we are left with the fact that we need several measurements of diameters
at random points to achieve a precise, albeit possibly biased, estimate of volume with
crude Monte Carlo. On the other hand, if we use importance sampling or a control
variate, we need several measurements of diameter to construct the proxy function to
select one or, perhaps, two sample points at random, where we measure diameter yet
again. If, however, we make the effort to measure cross-sectional area at the sample
point or unbiasedly estimate this area with random radii, then importance sampling
or sampling with a control variate makes sense.
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11.7 Terms to remember

Conditional selection probability ~ Object

Inflated attribute Path
Inflated attribute density Segment
Node Unconditional selection probability

11.8 Exercises and projects

1. Suppose a sampler begins selecting branches with probability proportional to d%/3
(d = diameter) and then switches to selecting with probability proportional to
d? at the last three nodes. Would this affect the theoretical unbiasedness of the
estimates? Why or why not?

2. In Example 11.3 (also see Example 11.2), the fresh weight of woody tissues is
estimated more precisely than the fresh weight of foliage. What is the most likely
explanation for this?

11.9 Appendix 11
11.9.1 Proof of the unbiasedness of Ty,

We claim that the target parameter, 7y, is unbiasedly estimated by

R

P _ Yir
Yo — .
~ 0

Ordering all the segments of an object branch from 1 to N, the target parameter is

Ty=y1+y2+---+tyn
and the estimator can be written thus:
br) N

Y1
—+h =+ +IN—
o 0> On

where I; is an indicator variable, such that [y = 1, if the kth segment is in the ith
path; or I = 0, if otherwise. In expectation,

Tle. = Il

A Y1 y2 YN
Eltyo.|=E| L=+ L=+ - -+ Iy—
[£re:] []Ql 0, NQN]
i 2 YN
= E[l}]=—— + E[b]-— +---+ E[IN]—.
0 0> o
In the repeated selection of paths, E [Ix] = [Qf - 1]4+[(1 — Qk) - 0] = Qk, therefore,
N Y1 y2 YN
E|ty. | = L Oy == 4.+ 2N
[2ye;] = O1 o 0> 0 On On

=Y+t +yw

= Ty.






CHAPTER 12

Miscellaneous Methods

12.1 Ranked Set Sampling

Ranked set sampling (RSS) originally was devised by Mclntyre (1952) as an
alternative to simple random sampling for the estimation of forage yields in pastures.
A ranking procedure, which may be viewed as a kind of post-stratification, reduces
a large random sample to a smaller ranked set sample, which is expected to contain
units whose attribute values are well representative of the distribution of attribute
values found in the population.

Ranked set sampling is an appealing strategy where it is expensive to obtain
accurate measurements of the attributes of selected units, but where it is cheap and
easy to discern differences among the attributes and rank them by size. Suppose, for
example, that a woodland is sampled with small plots for the purpose of estimating
the dry weight of browse available to wildlife. It should be easy to rank the relative
amounts of browse on different plots by observing the densities and heights of the
vegetation. Measurement of the dry weight, however, involves clipping the vegetation
off at the ground line and then drying it to a constant weight, a process that may take
several days.

The theoretical foundation of ranked set sampling was adduced by Takahasi &
Wakimoto (1968) and Dell & Clutter (1972). In both papers, the authors couched
their descriptions and arguments in terms of order statistics, a practice that continues
to this day. Patil et al. (1994) provided a thorough and clear description of
ranked set sampling for potential users, and Kaur et al. (1995) provided a useful
annotated bibliography of the early literature on ranked set sampling. In recent years,
mathematical statisticians have found ranked set sampling to be a fruitful topic
for study, so much so that the number of publications about ranked set sampling
has outpaced the number of reported applications. Chen et al. (2003) provided a
monograph that contains a comprehensive summary of the theory and applications
of ranked set sampling.

12.1.1 Overview

Ranked set samples usually are described in terms of sets and cycles. A ‘set’ is a
random sample of k units; the selection of k sets in sequence completes a ‘cycle.’
Balanced rank set sampling entails the selection of k sets in each of n cycles of
sampling. Thus, a total of nk? = nk-+nk(k—1) units are selected from the population.
From these nk? units, we extract a ranked set sample of nk units for measurement;
the other nk(k — 1) units are discarded.

345
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A ranking procedure is key to the extraction of the nk units that form the ranked
set sample. Initially, we select k units from the population, which form the first set
of the first cycle. We rank the k units by their attributes, from smallest to largest,
either by visual examination, measurement of an auxiliary variate, or by some other
quick and easy process. Of the k units in the first set, only the smallest unit—the
unit with rank 1—is accepted into the ranked set sample. Next, we select a second
set of k units from the population. In this second set of the first cycle, we repeat
the ranking procedure and accept only the second smallest unit—the unit with rank
2—into the ranked set sample. We continue in this fashion until we accept the kth
smallest unit, i.e., the largest unit, from the kth set. Thus, a total of k units, one unit
of each rank, is accepted into the ranked set sample from the first cycle of k sets. This
entire procedure is repeated in each of the n cycles, yielding a ranked set sample of
nk units, i.e., n units for each of the k ranks. The set size, k, typically is fixed at 3 or
4 to facilitate easy and accurate ranking.

Ranking often involves judgment and errors do occur. Dell & Clutter (1972)
proved that erroneous ranks ordinarily do not lead to biased estimates. However,
ranked set sampling is no more efficient that simple random sampling if the ranking
is no better than random assignment. Bias may result, however, where the individual
doing the ranking gives rank 1 to the unit he or she would most prefer to extract from
first sample; rank 2 to a preferred unit in the second sample; and so forth. One way to
avoid bias due to such preferential or purposive ranking is to randomize the ranks of
the units extracted from the different sets. For example, with k = 4, randomization
might extract the unit with rank 4 from set 1, rank 2 from set 2, rank 1 from set 3, and
rank 3 from set 4. Such randomization could be achieved, for example, by moving
otherwise identical coins minted in years ending in 1, 2, 3, and 4 from one pocket
to another. With n copies of the four coins, it should be possible to randomize the
selection of the ranked set sample across the nk sets.

12.1.2 Traditional applications

The original applications of ranked set sampling were concerned with the estimation
of forage or browse on tracts of land (McIntyre 1952; Halls & Dell 1966; Martin
etal. 1980). In a typical application of this kind, the landscape is sampled with plots,
since the plants involved are too small and too numerous to be treated as discrete
individuals. Plots also may be used in studies of an environmental contaminants,
where an attribute of interest is spread more or less continuously, but with varying
concentration, over the landscape (e.g., Patil et al. 1994). Other applications of
ranked set sampling have been proposed; indeed, ranked set sampling may be applied
to any population from which random samples can be drawn, and the sample units
ranked by size. However, the traditional applications, where a landscape is sampled
with plots or sample points, match best with the general theme of this book, and so
we shall restrict our interest to such usage.

Many of the results in the burgeoning literature on ranked set sampling derive
from the assumption that sets are random samples of k units each, drawn from
infinite populations. These assumptions accord with traditional applications where
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ASIDE: The notation of ranked set sampling is rooted in the notation of order
statistics. Suppose that a sample comprises a set of attributes values y, y2, and
¥3. The order statistics are the attribute values ranked by size, smallest to largest.
If, for example, y» < y3 < yi, then the order statistics (y(), r = 1,...,k)
for this set of values are: y(1) = y2, ¥2) = ¥3, and y3) = y1. Judgmental order
statistics may differ from true order statistics, since judgmental ranking is subject
to error. Suppose that through a judgmental process we rank y» < y; < y3. The
judgmental order statistics, in this case, are y[1] = y2, y[2] = ¥1, and y[3] = y3.
It is customary in ranked set sampling to denote true order statistics with the
rank subscipted in parentheses and judgmental order statistics with the rank
subscripted in brackets.

the population of interest comprises the infinitely many location points on some tract
or planar region of interest.

Let A be the horizontal projection of the area of a tract or region, which we label
4, and let s = (x, z) denote the location coordinates of any point in 4. Moreover, let
p(s) be the attribute density of interest at s € 4. If we are dealing with an attribute
whose density cannot be ranked and directly measured at a point, then

where y(s) denotes the amount of attribute contained in a plot with area a and
centered at s € 4.
Possible target parameters include the total amount of attribute in 4,

Tﬂ = / p(s) ds)
seA

the mean attribute density,

and the population variance,

1
O'/% = X/ [p(s) — ,up]2 ds.
S€EA

In balanced sampling, k sample points are selected to form set » of cycle j, where
r=12,...,kand j = 1,2,...,n. Each sample point is selected independently
with probability density 1/A (see §4.5, p. 114 and §14.1, p. 356). The k sample points
within set r of cycle j are ranked objectively by their relative attribute densities,
possibly with error. The attribute density of the sample point with rank r is denoted
by pir;- If plots are established at the sample points, then the amount of attribute on
the plot with rank r is denoted by yj,;, in which case the attribute density is

YIrlj
Pt

Prrlj =
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Estimation

The mean density, u,, of the attribute of interest is unbiasedly estimated by

k n

. 1
flppss = — Z Z Pirlj (12.1)

r=1 j=1

A consistent estimator of the sampling variance of /i, xss is (see Chen er al. 2003,
p- 26)
k n

TN 1 _
v [:up,Rss] = W_l) Z Z (p[”]./ _p[r])z

r=1 j=1
where

B 1 <
Plr] = ; Z Plrlj-
j=1

The total amount of attribute in, z,, is unbiasedly estimated by

i:p,RSS =A /}p,Rss
and the sampling variance of 7, xss is consistently estimated by
AT A 2 AT A
0 [Tp,Rss] =A% [,u/),Rss] .
MacEachern et al. (2002) provided an unbiased estimator of ¢ /)2, the variance of p (s)
in 4, i.e.,

k n k n

A 1 _ 1 N
Z,Rss = W—l) Z Z (P[r]j - P[r])2 + n Z Z (P[r]j - ﬂp,Rss)z

r=1 j=1 r=1 j=1

k n
AT A 1 .
=0 [ftprss ]+ o Z Z (p1r1j — /‘p,RSS)2

r=1 j=1

Chen et al. (2003, p. 22) provided alternative unbiased estimators of the population
variance. Stokes (1980) provided an asymptotically unbiased estimator that has been
widely used, viz.

. I )
Jpz,STOKEs = nk — 1 z (p[r]j - ,up,RSS)z.

r=1 j=1

This estimator tends to over-estimate the population variance, but the bias diminishes
with increasing sample size. Note, also, that this estimator does not require that we
remember the ranks of the sample units.

Efficiency

Mclntyre (1952) examined the precision of the estimator of the mean for ranked
set sampling relative to the usual estimator for simple random sampling. His
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results extend to continuous populations from which sample points are selected
with uniform density. The continuous ‘simple random sample’ comprises attribute
densities measured at nk sample points and provides i, (see §4.5, p. 114). The
ranked set sample comprises attribute densities measured at nk sample points, which
are extracted by a ranking process from nk> sample points. By definition, relative
precision (RP) is the ratio of the sampling variances, i.e.,

Rp = VLA

VItprss]

Mclntyre found that RP varied with set size, k, and was slightly less than (k + 1)/2
for several distributions.

Takahasi & Wakimoto (1968) showed that, in the absence of ranking error,
(k 4+ 1)/2 an upper bound for RP, and this is achieved only for uniform distributions,
i.e., where all attribute densities occur with equal frequency. The lower bound for
RP is 1, which means that ranked set sampling is always at least as precise as simple
random sampling. Since the upper bound increases with set size, it would seem that
the larger the set size, the better. As was noted, however, set sizes of 3 or 4 units
seem to be the norm. This is because RP is diminished by judgmental ranking errors
(Dell & Clutter 1972), which are more likely with larger set sizes; indeed, RP equals
1 when the ranking is no better than random.

In traditional applications of ranked set sampling, practical considerations often
demand that the k plots within a set be located close together, i.e., clustered,
especially where the ranking process requires visual comparison. Effective use of
digital photography might obviate the need for visual proximity in some applications.
However, cluster plots also help minimize travel time, even when visual proximity
is unnecessary, e.g., when rankings are based on measurements of auxiliary variates.
Unfortunately, RP may also suffer from the use of sets of clustered plots, where
the variability between sets exceeds the variability within sets. Cobby ez al. (1985)
recommended that sets of plots be as spread out as far as practicable.

MacEachern et al. (2002) provided a test of whether a ranking process, with or
without clustered sets, provides effective stratification by ranks. They defined MSE
and MST, respectively, as the mean-square error and mean-square treatment from a
one-way analysis of variance performed on the ranked set sample data with the rank
used as the treatment factor, i.e.,

n

k
MSE = ——— k(n—l) > > (o - pir)’

r=1 j=1
and

n n

k k
MST = k%l Z [r]J /) RSS - Z Z Plrlj [r]

r=1 j=1 r=1 j=I1
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In expectation,
n
n _ 2
E[MST] = E[MSE] + — Z} (Prr1 — tp) " -
r=
Hence, a ranked set sample is equivalent to a random sample if pj,} = u, for all r,
i.e.,if MST = MSE. On the other hand,

MST
=—>
MSE
implies that the ranking process provides some effective stratification, the higher
the value of V,,, the more effective the ranking process. MacEachern et al. (2002)
indicated that, for large n, we may test whether the ranking process is significantly
better than random, since V,, tends toward an F distribution with £ numerator and

k(n — 1) denominator degrees of freedom.

Vi 1

12.1.3 Regression Estimation

The ranking of sample units by measurements of an auxiliary attribute provides an
opportunity for regression estimation. Let 7, denote the amount of auxiliary attribute
in 4, and let A;,; denote the auxiliary density—i.e., the density of the auxiliary
attribute—at the ith sample point in the rth set of the jth cycle of a sampling. If
plots are established at the sample points, then let x;,; be the measure of the auxiliary
attribute on the plot, in which case the auxiliary density at the sample point is

Xirj

hiry = =L
/ a

The mean auxiliary density, x; = 7;/A, can be estimated from the nk? measure-
ments of the random sample, i.e.,

The ranked set sampling provides nk measurements of attribute densities, pf,;, and
concomitant auxiliary densities, A[;, ¥ = 1,2,...,kand j = 1,2, ..., n. Hence,
we can also estimate u, with the nk measurements from the ranked set sample, i.e.,

A | Lo
Rigss = — ; ; Arlj-
An unbiased estimate of x , is provided by the regression estimator (Yu & Lam 1997)
fiprsswec = Bprss + B (R — fligss) s
where /? is the estimated slope of the linear regression model
pirtj =6+ B A + €pj-

There is no guarantee that p,rssxec 1S more precise that I p.rss» though Chen et al.
(2003, p. 159) showed that the former is generally better if either the number of
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cycles, n, or the R? of the regression is large. Ordinarily,

2(1—R? — 2 R2
% )(1+k 1)+0”

A P
V[/up,kss-REG] = nk nk2 nk2
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Sampling in Two Stages
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CHAPTER 14

A Monte Carlo Integration Approach to
Areal Sampling

In this chapter we explore a Monte Carlo approach to special designs that have been
developed by forest mensurationists and ecologists for the purpose of estimating
attributes of forested tracts. Some of these designs can be applied outside the forest,
but we describe each of them, for the most part, in the context of its original
application.

We have already devoted many pages to descriptions of three special designs for
discrete populations, which are widely known by the names plot sampling (Chapter
7), line intersect sampling (Chapter 9), and Bitterlich sampling. Plot sampling
and line intersect sampling are designs with quite general applicability. Bitterlich
sampling, by contrast, is primarily a forest sampling design. Within a forested tract,
a population of interest often comprises N discrete elements, which are scattered
over the landscape. For example, plot sampling or Bitterlich sampling may be used
where the discrete units of interest are standing trees, and line intersect sampling
where the discrete units of interest are fallen trees or pieces of coarse woody debris.
In any case, attributes of the discrete sample units are measured, and an estimate of
the total quantity of each attribute may be calculated for the entire population of N
units. This estimate for the N units may also be considered an estimate for a tract,
insofar as the N units occur within the closed boundary of the tract.

Designs that use plots, lines, or points, and several related designs may also be
formulated as special designs for sampling the areal continuum (e.g., Mandallaz
1991; Eriksson 1995b; Valentine et al. 2001; Barabesi 2003). In each case, the
continuous population comprises the infinitely many location points on the horizontal
projection of the land surface of a tract. Sample points are selected uniformly at
random within a tract and attribute densities are measured at these sample points. In
effect, the special designs for areal sampling reduce to two-dimensional Monte Carlo
integration (§4.5).

Whether one chooses to view the special designs for areal sampling from a
discrete- or continuous-population perspective is a matter of personal choice. In this
chapter, we present the continuous view. If we get down to brass tacks, however, we
find that the sampling protocols for the special designs and the measurements taken
on elements are unaffected by the choice of perspective.

355
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14.1 Areal Sampling

Let A be the horizontal area of tract 4 and let 7, be the total amount of some attribute
of interest within the boundary of 4. By definition, 7, = f f 4P (x,z)dzdx, where
p (x, 7) is the attribute density at the location point with coordinates (x, z) (see §4.5).
In reality, many forest attributes are summations of attributes of an unknown number
of trees or other discrete elements. However, the protocols of the areal designs that
we consider in this chapter define inclusion zones for discrete elements. Hence any
attribute of any element may be converted into a continuous attribute density—the
amount of attribute per unit area—simply by dividing the value of the attribute by
the horizontal area of the inclusion zone.

Let I; denote the inclusion zone of the kth of the N elements in 4, and let a; be
the horizontal land area of I;. The attribute density at any location point within the
inclusion zone is

=2 (o el,
ag
where yy is the value of the attribute of the kth element. The attribute density for the
kth element is zero everywhere outside of I, i.e.,

pr(x,2) =0, (x,2) & Ik.

Example 14.1

In plot sampling with round plots, each of the N elements in 4 is centered
in a round inclusion zone, which is the same size as a plot. If we divide
a measurement of an attribute of an element by the horizontal land area of
element’s inclusion zone, we obtain an attribute density. For example, if the
elements are trees and the attribute of interest is basal area, then the attribute
density is basal area per unit land area.

As noted in previous chapters, edge effect occurs where an element is located so
close to the boundary of 4 that part of the element’s inclusion zone extends outside
of 4. Several edge-correction methods are designed to ‘re-map’ the inclusion zones
of edge elements, reducing the attribute density to zero in any section of the inclusion
zone that occurs outside of 4 and doubling the density in a section of equal size that
occurs inside of 4. In some cases, re-mapped sections with single or double densities
may overlap, in which case the density is tripled or quadrupled at each location point
in the overlapping section (see §14.9). Let t(x,z) = 0, 1,2, 3,4, ... be the factor
by which the attribute density at a location point (x, z) is multiplied to correct for
edge effect. Of course, ;(x, z) = 1 implies no edge correction.

In general, the attribute density for the kth element at any location point (x, z) in
I is
Yilk (x, 2)

Ay

pr(x,z) =

and integration across the horizontal area of the inclusion zone yields the attribute,
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42 // t(x,z)dzdx = &ak = Vk.
473 I ag

Inclusion zones of two or more different elements may overlap a given location
point, in which case the total attribute density at the location point equals the sum of
the attribute densities in the overlapping inclusion zones, i.e.,

ie.,

N
plr.2) =D pilx,2)
k=1

If we let #; (x, z) = 01if (x, z) € I, then the previous equation can be rewritten as

N et (x, 7)
p(x,z)zzykk—’

a
k=1 k

Let 2* be the sets of points comprising the horizontal area of 4 and any portions
of inclusion zones that fall outside of 4, i.e., 4* D 24U [ U, U---U Iy. The total
attribute in A4 is equivalent to the integral of the attribute density over the area of 2%,
Le.,

N
Tp :// p(x,2)dzdx = > .
ax k=1

Hence, 7, may be unbiasedly estimated by Monte Carlo integration if sample points
are allowed to fall anywhere in 2*, but measurements are restricted to elements in 4.
If an correction method for edge effect is used to re-map the attribute densities in the
inclusion zones of edge elements, as indicated above, then 7, obtains by integrating
across the land area of 4 instead of across the larger area of 4%, i.e.,

Ytk (X, 2) s
T, = Lo dzdy = k
g //ﬂl ar ;y

This allows us to select all our sample points from the population of location points
in 4.

14.1.1 Selection

Recall from §4.5 that a sample point at (xg,z5), s = 1,2,...,m, is selected
independently with probability density f (xg, zs), Where f(x, y) > 0 forall (x, y) €
4, and [[, f(x,z)dxdz = 1. Ordinarily, we use a uniform density, ie., f(x,z) =
1/A forall (x, y) € 4. The sample point, (x;, z), may be selected by the acceptance-
rejection method (§4.5.1).

If the sampling protocol indicates that a sample point falls in the inclusion zone
of the kth element, we measure y; and, if need be, ai. If the kth element is near the
edge of 4, we use an edge-correction method to determine the value of # (x;, z5);
otherwise, # (x;, z5) = 1.
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14.1.2 Estimation
The attribute, z,, is unbiasedly estimated by

P p(xs, 25)
P S xs, 25)

If f(xy,z5) = 1/A, then estimator of 7, simplifies to:

Tp5 = A p(xs, 25) (14.12)
1
—a > (14.1b)
ax
(xvas)EIk

where t; = ;. (x5, z5) is the ‘edge-correction factor’ or ‘tally’ for the kth element at
the sample point. The notation (x;, z5) € I indicates that the summation is over all
elements in 4 whose inclusion zones include the sth sample point.

The mean attribute density in 4, i.e., 1, = 7,/A, is unbiasedly estimated by

:[‘ps = p(xs, Z5) (14.2)

Combined estimates obtain by averaging across m > 2 sample points:

1 m
T)=— Y Ty (14.3)
mn s=1
and
1 m
ﬁ,,:n_qz fipg- (14.4)

s=1

The sampling variance of 7, is

V[t ] = % (A//ﬂpz(x,z)dzdx—rpz)

The calculation of this variance is discussed in the appendix (§14.11.1). A sample-
based estimator of the sampling variance of 7, is:

1 m 2
0| T 2—2 Ty — 1T >2 14.5
v [T/’] m(m -1 - (Tﬂs Tﬂ) m = ( )
The sampling variance of i1, is V[i,] = V[i, 1/A2?, and an estimator of this
variance is
5[@,)]:;2" (iipe —2,)°  m=>2. (14.6)
m(m — 1) = g -

Remarkably, these simple estimators, (14.1) — (14.6), may be used with fixed-area
plot sampling, line intersect sampling, Bitterlich sampling and each of the four other
special designs that we discuss in this chapter: point relascope sampling, horizontal
line sampling, sausage sampling, and perpendicular distance sampling. The different
special designs differ principally with regard to how inclusion zones are defined and
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=

Figure 14.1 a) A fixed-radius plot fixed about a sample point (o) defines a fixed-radius
inclusion zone about the center point (e) of any element of interest. The element occupies
a fixed-radius plot if the sample point falls anywhere in the element’s inclusion zone (c).

a) b) c)

their areas are measured. In the following sections, we describe how to measure the
attribute density at a sample point under each of the special designs.

14.2 Plot Sampling

The Monte Carlo approach to fixed-area plot sampling allows plots of any shape, so
it suffices to consider circular plots for illustrative purposes. The target parameter, 7,
is the aggregate quantity of some attribute that is divided among an unknown number
of discrete elements in 4. Each of these elements is centered—in an unambiguous
way—in a circular inclusion zone with radius « and area a = 7 a2. An element’s
inclusion zone includes a sample point if the distance from the center of the element
to the sample point is less than a (Figure 14.1). Obviously, those elements whose
inclusion zones overlap the sample point are the elements that would occupy a
circular plot with radius «, centered at the sample point.

Ordinarily, the distance from a sample point to an element is determined with a
tape. If attributes of standing trees are of interest, then it may be convenient to use
a rangefinder to determine which trees’ inclusion zones overlap a sample point. If
attributes of elongated elements (e.g., fallen trees) are of interest, then a protocol to
define the ‘center’ of such elements is also needed.

Of prime interest is attribute density a sample point, (xs, z5), which is

Yilk
pxg, z5) = Z -

ag
(xs,25) €I

=al Z Yiclies

(x5,25) €Ik

since ax = a for all k. Hence, substituting into (14.1) and (14.2),
. A
Tps = ; Z yktk
(x5,25) €Ik
and

/A‘ps:;l Z YViclk.

(xx ’ZS)E I
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Figure 14.2 a) A cluster of fixed-radius plots fixed about a sample point (o) defines a spatially
disjoint inclusion zone about the location (e) of any element of interest (b). The element
occupies a cluster plot if the sample point falls anywhere in the element’s inclusion zone (c)
and (d).

The former estimator is equivalent to the multi-tally estimator, (7.23), which was
introduced in Chapter 7.

If the attribute of interest is the number of elements in the forest, then y;, = 1 for
all k and, therefore, the attribute density at the sample point is the tally of elements
per unit land area, i.e.,

1
p(xs,25) = 4 Z Ik
(x5,25)€ I
If (xy, zy) is farther than 2a from the boundary of 4, then Z(xs,zs)e 1 Tk is just the
number of elements in the fixed-radius plot, since all the elements are tallied once
(i.e., tr = 1). More generally, this sum will include single and multiple tallies, the
latter resulting from edge correction. Thus, the number of elements per unit land
area at a sample point is ‘measured’ by summing the tallies of those elements whose
inclusion zones include the sample point, i.e., those elements which occur in the plot.

14.2.1 Cluster Plots

A cluster plot usually comprises a fixed-radius plot centered at a sample point and
one or more satellite plots arranged in some standard configuration. Figure 14.2a,
for example, depicts the configuration used by the USDA Forest Service to sample
forested lands across the United States. The configuration of a cluster plot defines a
spatially disjoint inclusion zone about the center point of any element of interest
(Figure 14.2b). A cluster plot includes an element of interest if a sample point,
(xs, zg), falls anywhere in the element’s inclusion zone (Figure 14.2¢,d).

If a cluster plot comprises ¢ fixed-radius plots, each with area a, then the total area
of an inclusion zone is ca and the total attribute density at the sth sample point is

YVilk
pxs, z5) = Z -

ak
(x5,25) €I

=i Z Vil

(xs,25) €Ik

Although a cluster plot comprises two or more disjoint plots, it is treated as a
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single plot because the cluster is tied to a single sample point. Indeed, in the final
analysis, the cluster plot merely serves to identify those elements whose spatially
disjoint inclusion zones include the sample point.

14.3 Bitterlich Sampling

Bitterlich sampling is used in forests around the world. The forest attributes of
interest are summations of attributes of trees whose clear boles extend from the
ground to breast height or higher. Interest may be restricted to attributes of trees
that meet one or more criteria, for example, trees whose diameters at breast height
equal or exceed some minimum, trees of certain species, or trees with health issues.
In American forestry, breast height is standardized at 4.5 ft or 1.37 m. Elsewhere or
in other disciplines, breast height may be standardized at 1.3, 1.37, or 1.4 m.
Trees generally are not circular in cross-section,

but they are assumed to be circular for Bitterlich
sampling, and so tree radius, r (m), is defined as
r = ¢/(2x), where ¢ (m) is circumference at breast /\\§
height. A tree with radius r is centered in a ‘tree N

clght, A free Wih raciy rec In. =
circle,” a circular inclusion zone with radius ar,
where a is a constant (Figure 14.3). Therefore, a

ar —»

tree’s inclusion zone includes a sample point if the
sample point is within a distance of ar (m) from
the center of the tree. The cross-sectional area of
a tree at breast height is called basal area (b). The Figure 14.3 A 1ree with cross-
area of kth tree’s inclusion zone is ax = 7 (a rk)2 —  sectional radius r at breast height

azbk (mz). has a circular inclusion zone with
The ratio of tree radius to inclusion zone radius, radius ar.
r/(ar) = 1/a, can be expressed in terms of an
angle v (deg), i.e.,
.V 1
s z = (; (147)

Consequently, an angle gauge, with angle v, can used to determine which inclusion
zones include a sample point (Figure 14.4). A sample point falls in a tree’s inclusion
zone if the horizontal width of the tree’s bole at breast height, when viewed from the
sample point, fills the field of view of the angle gauge.

The attribute density at a sample point, (x;, zs), is

Yilk
p(xs,z5) = z -

a

(x.rsZ.v)GIk k
1 Vitk
G

('X.YaZS)EIk

since a; = a2by. Where the attribute of interest is the total basal area of the trees in
the forest, the attribute density at a sample point is basal area per unit land area (m?
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Figure 14.4 a,b) The ratio r/ar, i.e., the ratio of the cross section of a tree to the radius of the
tree’s inclusion zone (tree circle), defines the angle, v, of an angle gauge. c) The width of a
tree fills the field of view of the angle gauge if the sample point falls inside the inclusion zone.
d) Otherwise, the sample point is outside the inclusion zone.

m2), ie.,

1 byt
pxs,25) = — Z -

a b
(x.r sZs ) €l k
1

=2 2
(xs,25) €I

A tree whose inclusion zone includes the sample point is said to be ‘in.” Thus, forest
basal area per unit land area at a sample point is measured by tallying the ‘in-trees.’
For the measurement of all other forest attribute densities, it is necessary to measure
the basal areas of the in-trees. As was noted, this is accomplished by measuring the
circumferences and converting them to circular basal areas.

Each borderline tree—a tree that appears just barely in or not quite in when viewed
with the angle gauge—should be checked to see whether its inclusion zone includes
the sample point. Such checking is suggested because samplers’ eyes generally are
not at breast height, the ground is seldom level, and, as was noted, trees generally are
not circular, especially if they are leaning. The check is accomplished by measuring
(i) the horizontal distance, ¢, from the sample point to the center of a borderline
tree and (i) the circumference, c, of the tree at breast height. If 0 < ac/(2x), the
borderline tree is in.

14.4 Point Relascope Sampling

Point relascope sampling (Gove et al. 1999b) evolved from a design called transect
relascope sampling (Stiahl 1998). Either design may be used in connection with the
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estimation of aggregate quantities of attributes of fallen trees and large branches.
Collectively, fallen trees and large branches are called coarse woody debris. An
individual piece of coarse woody debris, regardless of origin, is called a ‘log.” In
applications of point relascope sampling, range poles are erected at each end of a
log, which renders the length of the log (£, m) viewable in the same horizon as
the sampler’s eye. This length is viewed from a sample point with an angle gauge
(or relascope). If the log length fills the field of view of the angle gauge, then the
inclusion zone of the log includes the sample point and the log is said to be ‘in.’

The angle of an angle gauge may take values in the range 0 < v < 90 deg. If
v < 90 deg, the inclusion zone of a log has the shape of a dual circle—two identical
overlapping circles with the log length ¢ serving as a common chord (Figure 14.5).
The horizontal land area (m?) of a dual circle for the kth log is ¢ kz’ where

7 — VU +sinv cosv
» = ) (14.8)
2sin“v

and v is the angle of the angle gauge in radians. For a given {j, increasing values of
v cause the two circles of a dual circle to shrink in size and seemingly move closer
together. At v = 90 deg, the two circles coalesce and so the inclusion zone of the kth
log is a circle with diameter ¢} and area ay = ¢ £k2 = (n/4) £? (Figure 14.5).

Logs whose inclusion zones include a sample point at (x;, z;) are called ‘in-logs.’

e
@’

Figure 14.5 In point relascope sampling with v < 90°, e.g., v = 45°, the inclusion zone of
a log has the shape of two overlapping circles (a,b). A larger angle, e.g., v = 60°, yields an
inclusion zone with a smaller area (c). When v = 90°, the two circles of the inclusion zone
coalesce to a single circle with a diameter equal to the log’s length (d).

A
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The attribute density of the in-logs at the sample point is:

Yilk
pxs,25) = Z a_

(x5,25) €I

4 (xs>zs)€1k k

The aggregate log length-square (sum of length-squares) per unit land area (m? m~2)
at the sample point is measured by simply tallying the in-logs, i.e.,

1 21
plrs,z)=— > A=
k

(xs,25) €I

:-sz

4 (xs5,25) €Ik

For measurement of all other forest attribute densities, it is necessary to measure the
lengths of the in-logs.

Borderline logs should be carefully checked to see if their inclusion zones include
a sample point. The distances from the sample point to the two range poles, J; and
0, are measured and a limiting log length (¢*) is calculated (Gove et al. 1999b), i.e.,

= \/512+(522—25152cosv

If ¢ > ¢*, the inclusion zone of the log in question includes the sample point.

The angles of angle gauges used for point relascope sampling (commonly 30 to
90 deg) are much larger than those used for Bitterlich sampling. At the time of this
writing, angle gauges for point relascope sampling are not commercially available,
but they are simple to construct (see Gove et al. (1999a) for instructions).

14.5 Line Intersect Sampling

This sampling design is so general that different names (e.g., line intercept sam-
pling, line interception sampling, and planar intersect sampling) have been used in
connection with different applications. As a continuous-population design, line in-
tersect sampling may be implemented as an application of either one-dimensional
(e.g., Example 4.14) or two-dimensional importance sampling. In the latter case, the
size and shape of the inclusion zone of an element generally depends on the length
and direction of a transect line and a protocol for handling partial intersections of the
element by either end of the transect line. Further complexity results from the use of
segmented transect lines (e.g., Gregoire & Valentine 2003; Affleck et al. 2005).

We consider an implementation where a straight transect line with length L and
azimuth 6 is centered at a sample point. Hence, in effect, the transect has two
segments, whose back ends meet at the sample point, and whose front ends occur
at distance L from each other. The area of the inclusion zone of the kth element is
wy L, where wy is the ‘projected length’ of the element, i.e., the length of the element
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Figure 14.6 In line intersect sampling, the area of the inclusion zone of an element isa = wL.

measured perpendicular to the transect line (Figure 14.6). The inclusion zone of an
element includes a sample point if the element is intersected completely by either
segment of the transect line or if the element is partially intersected by the front end
of either segment (Figure 14.7).

The attribute density at a sample point, (x;, z;), obtains from measurements of the
intersected elements, i.e.,

YViclk
p(xs,25) = z -

ag
(x5,25) €I

1 Vit
Loy

k
w,
(x5,25) €I k

Aggregate projected length per unit area at the sample point is measured by simply
tallying the intersected elements, i.e.,

1 Wil
pxs, z5) = Z Z e

Wk
(x5,25) €Ik

:-Ztk

(x5,25) €I

Yy
Y
)

Figure 14.7 a) The sample point falls in an element’s inclusion zone if the element is
completely intersected by either segment of the transect line, or if the element is partially
intersected by the front end of either segment (b,c).
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Figure 14.8 a) Sliver of an element with length | and width Aw — 0. b) The inclusion zone of
a sliver of an element appears as two line segments, each with length L /2 and width Aw — 0.

Actual measurement of the projected lengths of the intersected elements is unneces-
sary.

The measurement of projected length may also be rendered unnecessary in
connection with the measurement of some other attribute densities. We simply
assume that a transect line intersects a vanishingly thin sliver of each element rather
than the whole element. Let Aw be the vanishingly thin width of the sliver and let /
be its length across the element (Figure 14.8).

The area of the inclusion zone of a sliver is (Figure 14.8b):

lim AwL
Aw—0
Suppose that the transect line intersects a sliver at a point (-) along the axis of the
projected length of the kth element. Let [ (-) be the length of the intersection across
the kth element. The coverage area of the intersected sliver is:

lim Awl(-
AuleO U)k()

and, so, the aggregate coverage area per unit land area at the sample point is

Awli () ty 1
plas,z) = > 2wl "L > kOn
(x5,25)E L (xX5,25) €L
Now let Ag(-) be the vertical cross-sectional area of the element at the point of
intersection, then the volume of the sliver is
lim AwAg()

Aw—0

and the aggregate volume per unit land area at the sample point is

AwAg () 178 1

Xg, Z = —_— = — A (- t

p(xs, 25) Z AwL L Z k() Tk
(x5,25) €L (Xs,25) €L

We note that the convenience of measuring slivers of elements rather than whole

elements will countered by an increase in the sampling error of z,, since both the

cross-sectional area and the length of intersection ordinarily will vary along an

element’s axis of projected length.
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Figure 14.9 Horizontal line sampling: the inclusion zone of a tree is a rectangle with area
a = adL, where ad is the diameter of the tree circle and L is the length of the transect line.

14.6 Horizontal Line Sampling

This design originated with Strand (1957). It is used in connection with the estima-
tion of forest attributes that are summations of attributes of trees.

Fundamentally, horizontal line sampling can be interpreted as line intersect
sampling of tree-circle diameters. A transect line with length L and azimuth 6 is
centered at a sample point (x;, z5) as in line intersect sampling. Each tree on the tract
is assumed to be circular in cross section and centered in a larger circle with radius
or and diameter ad, as in Bitterlich sampling. The inclusion zone of the kth tree has
the shape of a rectangle with horizontal area ay = ad L, i.e., the area of the inclusion
zone is the product of the length of the transect line and the diameter of the tree circle
(Figure 14.9).

Of interest are those trees with tree-circle diameters that intersect the transect line
at aright angle, which means that the transect line extends at least halfway across the
tree circle (see Figure 14.10). The inclusion zones of these trees include the sample
point. In application, the sampler ambles along the transect line, viewing trees on
either side of the line with an angle gauge with angle v. The angle v is matched
to the value of o (equation (14.7)). If the width of a tree at breast height fills the
field of view of the angle gauge, the inclusion zone of the tree includes the sample
point, and the tree is said to be in. Care must be taken at either end of a transect line
to ensure that any intersections of tree-circle diameters are perpendicular. And, of
course, borderline trees should be checked as in Bitterlich sampling.

The attribute density at a sample point, (xs, z5), is

Ytk
plxg, z5) = Z ;

(xs,25) €I

1 Vilk
T al z di

(x5,25) €Ik

The aggregate tree diameter per unit land area (sum of tree diameters per unit land
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Figure 14.10 Horizontal line sampling: a transect line centered at (xg, zs) with azimuth 6
intersects perpendicular tree-circle diameters. In this example, there are two intersections.

area) at the sample point is
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14.7 Sausage Sampling

A modification of horizontal line sampling has been proposed for the estimation of
attributes of standing dead trees or snags (Ducey et al. 2002). Snags and their cavities
provide habitat for myriad animals, so maintenance of an adequate stock of snags has
become a standard forest-management objective.

The modification, called ‘sausage sampling,” eliminates the need to check whether
intersections of perpendicular tree-circle diameters occur at either end of the transect
line. In a nutshell, the sampler performs horizontal line sampling, accepting in-trees
(or in-snags), as in horizontal line sampling. In addition, the sampler performs a 180
deg sweep with the angle gauge at each end of the transect line, accepting any in-trees
in the sweep. Under this protocol, the inclusion zone of the kth tree takes the shape
of a sausage (Figure 14.11) with area a; = aLdy + a2by, where o Ldy, is the area
of the inclusion zone of a tree under horizontal line sampling and a2by, is the area of
the inclusion zone of a tree under Bitterlich sampling. Sausage sampling effectively
blends the two designs into one: if the transect line intersects any part of a tree circle,
the tree is in. Thus, sausage sampling can be characterized as line intersect sampling
of tree circles, where all partial intersections are accepted. For example, in Figure
14.10, the transect line intersects three tree circles so there would be three in-trees
with sausage sampling, but only two in-trees with horizontal line sampling.
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Figure 14.11 Sausage sampling: the inclusion zone of a tree takes the shape of a sausage with
area a = adL + azb, where o.2b is the area of the tree circle.

The attribute density at a sample point, (xy, zy), is

Yilk
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It would appear, at first glance, that the area of the inclusion zone is not
proportional to any tree attribute, and so there are no attribute densities that can
be measured from tallies of in-trees. However, tree area ratio, a measure of stocking
defined by Chisman & Schumacher (1940), and crown competition factor, a similar
measure of stocking defined by Krajicek et al. (1961), can, in part, be estimated
from a count of the number of sausage-shaped inclusion zones that include a sample
point.

Example 14.2

Let 7, be the aggregate ‘tree area’ on a forested tract as defined by Chisman &
Schumacher (1940). ‘Tree area ratio,” u,, is aggregate tree area per unit land
area, 7,/A. The tree area (yx, m2) of a single tree is the amount of land area
used by the tree:

vk = Po + Prdi + Pabx

where £y (m?), g1 (m*>m™"), and f> (m?>m~2) are defined constants. The
dimensions of dj and by, in this case, are m and m?2, respectively.

In order to estimate tree area ratio from counts of in-trees, we divide 7, into
two parts, 7, = 7, + 7,,, Where

TP[Z//pi(xﬂz)ddea 121)2
Aa

This partitioning allows us to estimate 7, under one design and 7,, under
another.
At the tree-level, we divide the tree area of an individual tree into two parts,
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Yk = Y1k + Y2k, where,
yik = Bo
Yok = Prdi + pabi

We assume that yj is spread over an inclusion zone with area ax and yyy is
spread over an inclusion zone with area ayy. Hence, at a location point, the two
attribute densities of interest are the two portions of aggregate tree area per unit
land area:

Bo tik
peo= 3 o

(x5,25) €I
d byt
p(x.2) = Z (B k‘;[b %) 2%
(x5,25) €Ik 2k

7,, may be estimated with fixed-radius plot sampling and 7, with sausage
sampling. For the former, the density of the first portion of aggregate tree area
per unit land area at the sth sample point is

Po
s <s) = —— t
Pr(Xs; 25) =~ >t

(x5,25) €Ik

where a; (m?) is the area of the fixed-radius inclusion zone of each tree.
For the sausage sampling at the same sample point, the area of the inclusion
zone for the kth tree is:

ax = K (Prdi + pabi) = aLdy + o*by

where ay; has dimensions of m2. Given «, we calculate K = aL /B1, where
L = af1/f>. Hence, the density of the second portion of aggregate tree area per
unit land area at a sample point is:
(Brdy + Pabi) 1k
p2(xs, z5) = A g LA
i = 2, K (B1dy + B2br)

(xs,25) €I

== Z Dk

(xs,25) €I
Added together, the two attribute densities at a sample point provide an estimator
of tree area ratio, i.e.,

Ao = p1(xg, 25) + p2(xs, z5)

=@ Z t1k+% Z .

al
(xs,25) €I (x5,25) €I

Note that the estimator uses only tree tallies; no measurements of tree dimen-
sions involved, except possibly for checking borderline trees in sausage sam-

pling.
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Figure 14.12 a) A log, scaled with 10x diameter relative to length to depict the shape and
taper. b) The same log, scaled with true diameter relative to length, and its inclusion zone for
perpendicular distance sampling (k = 100); L is the perpendicular distance from a sample
point to the central axis of the log.

14.8 Perpendicular Distance Sampling

Perpendicular distance sampling (Williams & Gove 2003) is yet another design that
is intended to be used where the attributes of interest are summations of attributes
of logs on the ground. This clever design is somewhat unique because the area of
a log’s inclusion zone is proportional to log volume. However, the design may be
impractical in connection with the estimation of any attributes other than aggregate
or mean log volume.

In order to develop an intuitive understanding of the design, we consider a
standing tree. Let d (k) and b(h), respectively, be the diameter (m) and cross-sectional
area (m?) of the tree at height 7 (m). We have previously defined—for Bitterlich
sampling—a tree circle with diameter ad (k) for a tree with diameter d (h) at breast
height, where breast height is 4 = 1.37 m. Suppose the tree falls over. We can
imagine that the tree circle tips with the tree so that half of the tree circle covers the
fallen tree like a rainbow.

Now suppose that the diameter of a tree circle at breast height is 2xb(h), where «
(m? m~3) is a constant. In other words, the diameter of the tree circle is proportional
to the cross-sectional area of the tree instead of the diameter of the tree. Suppose,
further, that a tree circle of this sort exists at every height 4, so that the tree is
surrounded by a continuous shell from the ground to the tree top. If the tree falls,
we imagine that the shell tips with the tree, so that half the shell covers the inclusion
zone of the fallen tree. Since the diameter of the half shell at length / from the butt
of the fallen tree is 2kb(h), the land area (m?) covered by the half shell is 2xv, where
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v (m?) is the volume of the fallen tree’s stem (Figure 14.12), i.e.,

v= [ b(h)dh.
/h(>

Thus, the area of the inclusion zone of the kth fallen tree or log is ar = 2k vy.

Let L (m) be the length of a ‘perpendicular line’ from a sample point, (xy, z5), to
a point, (+), on the central axis of the kth log. By perpendicular line, we simply mean
that the line is perpendicular to the central axis. A sample point falls in the inclusion
zone of the kth log if L < xkby(-), where b (+) is the vertical cross-sectional area of
the stem as intersected by the perpendicular line.

If the log curves, the straight central axis should be unambiguously established by
erecting range poles at each end of the log. If the log is branched, bk (-) is the sum of
the cross-sectional areas of all the branches intersected by the perpendicular line on
either side of the central axis. Hence, the inclusion zone is bilaterally symmetric
about the central axis, even though the log, itself, generally will not be. A log
is ‘borderline’ if L ~ xbi(-), in which case care should be taken to locate the
perpendicular line accurately.

The attribute density at a sample point, (xs, z5), iS
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If aggregate log volume is the the attribute of interest then:
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where VF = 1/(2x) is called the ‘volume factor.” For convenience, we may choose
to use a volume factor that converts the dimensions of the attribute density from
m> m~2 to m® ha~!. For example, for x = 100 m? m~3, we obtain 1/(2x) = 0.005
m? m~2. Hence, VF = 10000 m* ha=! x 0.005 m* m~2 = 50 m? ha™!.

Log volume must be measured unless volume is being estimated, which most
likely renders the method impractical in connection with the estimation of any
attribute other than volume.
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14.9 Edge Correction

The problem known variously as edge effect, boundary overlap, or slopover occurs
where the inclusion zone of any element of interest slops over the tract boundary.
Somewhat analogously, in forest fires, slopover occurs where the fire jumps the
fireline. In our Monte Carlo approach to areal sampling, slopover is problematic
because the attributes of an element are distributed across the element’s inclusion
zonewith uniform density. If some fraction of the area of the inclusion zone is outside
the tract, then an equal fraction of the attribute is also outside the tract. Hence, if
sample points are constrained to fall only within the tract, the ‘slopover portion’ of

the attribute is ignored, so
// p(x,z)dzdx < 7,.
a

Because 7, provides an unbiased estimate of the integral, this estimator is expected
to provide estimates of 7, that are biased downward.

Corrections for slopover bias include: (i) allowing sample points to fall outside
the tract, (ii) redefining a; to be the area of the horizontal projection of I N 4, if
I slops over the boundary, and (iii) protocols for reflecting or rotating the attribute
slopover back into the tract. Unfortunately, there is no general panacea for slopover.
This is due, in large part, to the fact that tract boundaries do not always consist
simple defined lines such as property lines. Tract boundaries may also include
natural features such as edges of lakes, rivers, and cliffs, which makes sampling or
working outside the tract infeasible. Penner & Otukol (1998) listed 11 methods for
dealing with slopover in connection with Bitterlich sampling. Here, we discuss three
relatively straightforward approaches for dealing with slopover from the continuous-
population perspective.

14.9.1 Buffer Method

A ‘buffer method,” attributed to (Masuyama 1954), entails allowing sample points to
fall outside the boundary of tract 4, but within some larger region Z* that includes all
of tract 4. For our purpose, region Z* need only be large enough to encompass all the
slopover from the elements within tract 4. Elements outside of tract 4 are ignored.
Under this protocol, the total amount of attribute of interest is:

17 =//ﬂ*p(x,z)dzdx

Let A* the horizontal area of region Z*. Ordinarily, we specify the probability density
function f(x,y) = 1/A* forall (x, y) € 4%, s0 [[ f(x,z)dzdx = 1. Hence, 7,
is unbiasedly estimated by

fps = A" p(xy, z5)
The buffer method is applicable with any boundary configuration and any inclusion

zone shape. However, the method is not useful where inclusion zones extend into
lakes or beyond cliffs, or where working outside the boundary of the tract of interest
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Figure 14.13 Three mirage points are established at a square corner. In the left diagram, one
mirage point falls in a circular inclusion zone, and two mirage points fall outside the inclusion
zone, so the element is tallied twice, i.e., ty = 2. In the right diagram, all three mirage points
fall inside the inclusion zone, so the element is tallied four times.

is prohibited. Moreover, the method tends to inflate the sampling variance because
the average attribute density is lower outside the tract than inside.

The ‘toss back method’ of Iles (2003) prescribes that sample points, both inside
and outside the tract, are arranged on a systematic grid. An attribute density measured
at a sample point outside the tract is ‘tossed back,’ i.e., added, to the attribute density
of the nearest sample point inside the tract. Hence, the target parameter, 7,, is
unbiasedly estimated with equations (14.1) and (14.3).

14.9.2 Mirage Method

The mirage method of Schmid (1969) is a reflection method that was intended for
use with fixed-radius plot sampling or Bitterlich sampling, but it can be used with
any of the sampling designs discussed in this chapter—if boundaries are straight.

The mechanics of the mirage method were described in §7.5.4. Recall that if
a sample point falls near the tract border, we (i) measure the distance J on a
perpendicular line from the sample point to the border and (ii) establish a mirage
point on the same line at a distance J beyond the border. Near a square corner, a
mirage point is established on the perpendicular line across each of the two legs of
the boundary, and a third mirage point is established on a line from the sample point
through the vertex of the boundary corner. Thus, at a square boundary corner, the
sample point and the three mirage points occur at the vertices of a rectangle (Figure
14.13). The tally, ¢, for the kth element equals 1 (for the sample point) plus the
number of mirage points that occur in the element’s inclusion zone.

In expectation, the mirage method re-maps the attribute densities in inclusion
zones that slop over a boundary of 4, reflecting (or folding) the slopover sections
of attribute about the boundary into 4. To see how this works, let us suppose that a
piece of cloth is tailored to cover the entire inclusion zone of the kth element. The
cloth represents the attribute, which is distributed uniformly over the inclusion zone.
We fold the slopover section of the cloth that is outside of 4 back onto 4. The edge of
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Figure 14.14 The mirage method effectively folds portions of attribute that fall outside of 4
back into A. At square corners, two folds are necessary. b) The first fold doubles the attribute
density in the darker grey section of the inclusion zone. The second fold moves all the attribute
into 4, creating sections with double, triple, and quadruple attribute densities, as indicated by
the numbers. Thus, if the sample point falls, say, in the section with triple density, the mirage
method provides a tally for the element of t;, = 3.

the fold is coincident with the straight boundary line. At a square corner, two folds are
necessary to put all the slopover cloth back onto the tract, and a location point may
be covered by as many as four layers of cloth (Figure 14.14). The attribute density
attributable to the kth element at any given location point (x, z) is (yr/ax) x tx(x, 2),
where #; (x, z) is the number of layers of cloth covering the point. Hence the folded
cloth effectively re-maps the attribute density over the section of inclusion zone that
falls in 4. If we paint a spot on each layer of cloth covering a sample point and
then unfold cloth to recreate the slopover, we should find that each paint spot in the
slopover portion of the inclusion zone covers a mirage point.

Note: for point relascope sampling or any of the line methods, it is possible for
a mirage point to fall within different inclusion zones than the sample point. Or, a
mirage point may fall within one or more inclusion zones even though the sample
point falls in no inclusion zones (Figure 14.15). Therefore, it may be necessary to

a) (Xs, Zs) b)

Figure 14.15 a) A mirage point may fall in the slopover portion of a non-circular inclusion
zone, even though the sample point does not fall in the in-tract portion of the inclusion zone.
b) The mirage method alters that shape of the inclusion zone and re-maps the attribute density.
The element is tallied once if the sample point falls in the light gray section, and twice in the
darker gray section.
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Figure 14.16 a) The reflection method for transects, in effect, folds narrow strips of slopover
across the boundary parallel to 6. All the slopover folds neatly and completely back into the
inclusion zone doubling the attribute density in the dark grey section (b). If the sample point
falls in the double density section, the element is intersected by both the straight and the folded
segments of the transect. In this case, the element is a tree-circle diameter, which is intersected
by the straight (thin) segment and by the folded (thick) segment, so the tree is tallied twice

(tr =2).

establish the mirage point(s) even though a zero attribute density was measured at
the sample point.

The mirage method preserves the unbiasedness of 7,,—where the boundary lines
are straight and corners are square. Bias accrues where boundaries are curved. The
method requires working outside of 4, so lakes, rivers, and cliffs are problematic.

14.9.3 Reflection Method for Transects

The reflection method for transects originally was devised for line intersect sampling
by Gregoire & Monkevich (1994). It may also be used in horizontal line sampling.

Like the mirage method, the reflection method for transects is folding method, but
the folding mechanism is different. Once again, for the sake of illustration, let us
assume that a piece of cloth is tailored to cover an inclusion zone perfectly. We cut
the portion of cloth that slops over the boundary into narrow strips of width Aw, the
strips running parallel to the transect line (Figure 14.16). We fold each of these strips
at the boundary back into the tract. This may create a sawtooth edge at the boundary
if the strips are not square to the boundary and are cut too wide. However, if we
imagine that Aw approaches zero, we obtain a smooth edge and the slopover folds
neatly and completely back into the tract. Points covered by two layers of cloth have
twice the attribute density of points covered by one layer.

In application, we establish a transect line with length L centered at a sample point



EDGE CORRECTION 377

and oriented with azimuth 4. If a section of the transect line crosses the border, we
bend it back upon itself reversing its direction. If this folded section of transect line
intersects an element, then the sample point falls in the area where the slopover folds
back into the ‘in-tract’ portion of the element’s inclusion zone, in which case the
attribute density attributable to the element is doubled and, so, the element is tallied
twice.

Implicit in the method is a mirage point along the line defined by the sample point
and 6. If the sample point is a distance J from the border, the mirage point is a
distance J beyond the border. However, since the sample point and the mirage point
are equidistant from the border there is really no need to establish the latter. Folding
a transect line—which is centered at the sample point—at the border and running
the residual back along the same line covers the same ground within the tract as an
unfolded transect line centered at the mirage point.

The reflection method for transects is applicable with curved boundaries, including
natural feature boundaries, since one can implement the method without leaving the
tract.

The reflection method does not, by itself, solve the problem where an element of
interest straddles a boundary. In line intersect sampling, we can use a consistent rule
that establishes whether a straddler element is in 4. And, for calculating the attribute
density, we can use the projected width of the portion of the element that is within
4. In effect, this shrinks the size of the inclusion zone over which the attribute is
spread. In horizontal line sampling, the element is in 4 if the center point of the
element is in 4. The projected width of the element is the tree circle diameter, which
is shortened by the length that extends outside the boundary. In either design, the
reflection method for transects is applied as usual. The walkthrough method solves
the slopover problem in sausage sampling.

14.9.4 Walkthrough Method

The walkthrough method, devised by Ducey et al. (2004), effectively deals with
both defined and natural boundaries. Moreover, the boundaries may be straight or
curved, though some small amount of bias may accrue with curved boundaries. The
walkthrough method may be characterized as a reflection method and, indeed, it
evolved from the ‘boundary reflection method’ of Gove ef al. (1999b).

If an inclusion zone is (i) symmetric about the center point of an element or (i)
bilaterally symmetric about the central axis of an element, then any location point in
the inclusion zone may be reflected to another location point in the inclusion zone.

For example, in the first case, if we start at any location point in an inclusion zone
and walk, say, 3.7 m to the center point of the element, and then continue on this line
‘through the element’ another 3.7 m, we will end at a location point in the inclusion
zone that is 7.4 m from the starting point and 3.7 m from the center point. The
starting point is a reflection point of the ending point, and vice versa. The reflection,
of course, is about the center point of the element, rather than a boundary.

Now suppose that a portion of an inclusion zone slops over a boundary. For most
boundary configurations, each of the location points in the slopover portion of the
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Figure 14.17 a) A symmetric inclusion zone, where the reflection point of the sample point is
outside of 4. b) The walkthrough method reflects the slopover section of the inclusion zone,
point-by-point, into 4, doubling the attribute density in the reflected section. If the sample point
falls in the reflection of the slopover, as in (b), the element is tallied twice. In perpendicular
distance sampling (c), the reflection is about the central axis of the element instead of the
center point. Again, the element is tallied twice, if the sample point falls in the reflection of the
slopover (d).

inclusion zone will have a refection point in the ‘in-tract’ portion of the inclusion
zone. Thus, we can imagine reflecting the slopover portion of attribute back into
the in-tract portion of the inclusion zone, doubling the attribute density where the
reflection occurs (Figure 14.17a,b).

In the case where the inclusion zone is bilaterally symmetric about the central axis
of an element—for example in perpendicular distance sampling—the reflection point
of any location point is on a line perpendicular to the central axis (Figure 14.17¢,d).

Operationally, we need only concern ourselves with just one reflection point in
each inclusion zone, i.e., the reflection point of a sample point. Suppose that a sample
point falls within the inclusion zone of the kth element, which is near a boundary. If
the reflection point falls in slopover, then the sample point falls within of reflection
of the slopover. Hence, the attribute density attributable to the kth element is doubled
at the sample point.

The name of the method derives from the fact that we ‘walk’ from the sample point
to the element, recording the distance, and then ‘through’ and beyond the element an
equal distance. If we reach the boundary before we reach the reflection point, we
double the element’s contribution to the attribute density at the sample point.
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The method is unbiased if every location point in the slopover has a reflection
point inside the tract. This constraint is not met if more than half of the area of an
inclusion zone in outside the tract and it may not be met if the boundary configuration
is unusually convoluted (Ducey et al. 2004).

14.10 Redux: Continuous versus Discrete

Barabesi (2004) has noted that Monte Carlo integration and Horvitz-Thompson
estimation are “two sides of the same coin.” We add the proviso that this is the
case if (i) the sample points are selected uniformly at random and (ii) corrections
for edge-effect do not involve multi-tallies.

In the Monte Carlo or continuous approach to areal sampling, we ordinarily select
a sample point, (x;, z5), at uniformly at random, i.e., with density f(x, z;) = 1/A,
and measure the attribute density at this sample point. The sampling protocol tells
us which elements contribute to the attribute density at the sample point. In the
discrete approach, we select a sampling location at (x;, zgz) with uniform density
f(xs,25) = 1/A, and the sampling protocol tells us which discrete elements
constitute the sample for this sampling location.

In the continuous approach, we use a generic Monte Carlo estimator to estimate

0y = [[;p(x,2)dxdz = Xy, iee,

Tps _ Z p(xs» Zs) Z yktk (14.9)

(xs5,2z5) €l f(xé’zb) (xs5,25) €l Ak

This estimator is, in effect, identical to the multi-tally estimator

1
Fyms = A Z Yekk (14.10)

Uy € Py

which provides an estimate of 7, = 211\7:1 v under the discrete approach. If #; = 1
for all k, then

o=A > X% (14.11)

(xs,25) €l Ak

in which case, the Monte Carlo estimator provides the same result as the Horvitz-
Thompson estimator

B = D, > L3 =4 Z Ly (14.12)

Uy €Ps Uy, ELPY

Let 7yzs(xs,ys) be the ‘Horvitz-Thompson estimate’ for the sampling location
(x5, zs)- The sampling location is selected with uniform density from a continuum,
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SO

E [ £yms (s 35) ] = / RTINS

1 A
X//ﬂryﬂ(x,z)dzdx
1//A (x,z)dzd
1)) Arkdad

N
=D
k=1

Thus, under either approach, we measure the same elements, perform the same
calculations, and obtain the same unbiased estimate of Z,?/:l Vk.

However, the Monte Carlo approach also offers the possibility for non-uniform
selection of sample points, where f (x, z) varies among the location points in 4. For
example, by design we may prescribe f(x, z) to be a function of mapped elevation.
In this case we simply use the more general form of the estimator, i.e.,

AL p(xs, Zs)

v Zl(z), £ (s 25)
_ 1 Ykik (X5, 25) /ax
B Z Z f(xéa Zs)

s=1 (x5,z5) €l

whose sampling variance is

_ P(x ) 2
V[rp (// 70.2) dz dx ‘l,'p).

14.11 Appendix
14.11.1 Variance of T,

In the absence of edge effect, the attribute densities for discrete elements are uniform
across their respective inclusion zones, i.e., pr(x, z) = yx/ax for all (x,z) € Ix. If
sample points are selected uniformly at random, then

A m yk
3 :EZ > ” (14.13)

s=1 (x5,25)€lk

and the sampling variance of 7, is

V[t ]= n% (A //ﬂpz(x,z) dzdx — rpz), (14.14)
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Let ay be the area of overlap of the inclusion zones of the kth and k’th elements,
then the integral portion of the variance can be calculated as

N N N
[ reaca =3 o+ 33 movae
Aa k=1

k=1 k'=1
K £k
Yy L& wy
k k'
= = — — ay 14.15
SULT SRR
k=1 k=1 k'=1
K%k
Thus, substituting into (14.14),
1 " S E wy
Vi, ]=— | A 2k X e | =22, 14.16
[%] - Zak+zzak ap | T (14.16)
k=1 k=1 x'=1
K £k
Moreover,
N N N
=0yt = DN+ DD e (14.17)
k=1 k=1 k'=1
K £k

Substitution of (14.17) into (14.16) gives an equivalent formula

) I L1 —(ax/A)
= 2ot [

k=1
A (ari/A) — (ai/A) (i /A)
+— mw[ ] (14.18)
m ékzz‘; (ax/A)(ar /A)
K £k
Note that V[ 7, ] is equivalent to V[ 7yz rep | (see eqn 7.5) and V[ fycﬂ,rep] (see eqns

9.12 and 9.13).

If the buffer method is used to correct for edge effect, we substitute A* for A
in (14.13), and in (14.16) or (14.18). Alternatively, if the inclusion zone of the kth
element slops over the boundary of 4, we can let a; be the area of the horizontal
projection of AN Iy—the portion of I; in A—in which case (14.13) is the appropriate
estimator and (14.16) is its sampling variance.

14.11.2 Variance with Edge Correction by Walkthrough or Mirage

Calculation of the sampling variance requires more book-keeping if a reflection
method or the walkthrough method is used to correct for edge effect. In either case,
the inclusion zone of an edge element divides into different sections, and the attribute
density varies among these sections, but is uniform within each one (see, e.g., Figure
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14.14c). If a design prescribes non-circular inclusion zones, then correction of edge
effect by a reflection method may both section and alter the shape of the inclusion
zone (see, e.g., Figure 14.16b).

Let Ak, be the area of the j'th of ny sections in I, so a; = Z"/‘_l ag - Let Ak
- J

J
be the area of overlap of the j’th section of I and jth section of I/, and let I be
the tally for the kth element in the j'th section of I;. Then

ny 1ty
// 2(x, z)dde—Zz ( ktk/) ak,+z Z( Mty )akj/k]/.

k=1 j'=1 k=1 j=1
K #k

Substitution of this result into (14.14) gives a formula for the sampling variance
where edge effect is corrected by the mirage or walkthrough method, i.e.,

. 1
V[t ]= m
N  ng ny
Vil Ykl YK, 5
a3 | (5 )ak+zz(
k=1 j'=1 llj;llc j=I1

(14.19)

Alternatively, substituting (14.17) into (14.19), gives an equivalent formula

. (25 12 au /) = (aw/A)
v[i,]= Yk ar/A

&Y (Zhoy ) gt /A = (aw/ A/ A)
) Z § T (ax/ A) (g /A)
;é

(14.20)

Note that this formula reduces to (14.18) if ny = 1 for all k, because #, = 1, = 1
and aklki = dik’ .

14.11.3 LIS with Segmented Transects and Correction of Edge Effect

We consider the case where estimation is conditional upon the orientation () of a
leg of a segmented transect.

The use of segmented transects creates sets of sections within the inclusion zone
of an element. For example, the inclusion zone depicted in Figure 9.9 on page 302
has two sets of sections. Set Ii,, say, comprises the three light gray sections of the
inclusion zone, and I, comprises the two dark gray sections. If (xs, zs) € Ix,, the
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element is intersected by one leg of the transect and is tallied once. If (x,, zy) € Ii,,
the element is intersected by two legs of the transect and is tallied twice. The
total area of this inclusion zone is ax = wr (@)L — (w1 + w2). The area of I, is
wr (@)L — 2(w1 + w»2) and the area of I, is (w1 + w2). The attribute density at any
point (x, z) in I is

_ vktk(x, 2)
pr(x,2) = T OL (14.21)

where #;(x,z) = 1if (x,2) € Ik, and % (x, z) = 2 if (x, z) € Ii,. Thus, integration
of the attribute density over the area of I yields y, i.e.,

// pr(x, z)dz dx =// pk(x,z)dzdx—i-// pr(x,z)dzdx
Iy I, I,
Yk

_ - B 2k
= T OL [k (@)L —2(w1 + y2)] + P OL

(w1 + w2)

_— (14.22)

Equation (14.21) applies generally to transects with one or more legs. However,
the number of sections within an inclusion zone depends on the number or legs, their
arrangement and orientation, and on the shape of the element. Moreover, corrections
for edge effect may increase the number of sections in I;. Regardless of the number
of sections, the attribute density is uniform among the points within each section of
I, but varies among the sections. Let ax;, be the area of the j’th of the n; sections
of Ix. The attribute density in the j’th section is Yl /(g (@)L), but Ik, may take a
value greater than 2, owing to number of legs and/or to edge correction. Hence, an
estimator of 7,, given 0, is

A yktk (-XS E} ZS)
= A A 14.23
s 2 oL (1429

(xs,25)€lk

and the sampling variance of this estimator is

N  ng 2
N Yictk,
Vit ]=4> D> (a)k(ej)L) a;

k=1 j'=1

N ng 1%
Yete,  YK'Ix!
+A S F—12 (1424
Z_ ZZ(wk(Q)L wk,(e)L)a"j/kj T ( )
k=1 j'=1 K'=1 j=1
&

o
=~
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Or, substituting (14.17) and letting 7 = wx (@)L /A,

v ([ e @) -

2
V[Tps ] = Z y =
k=1 k
NN [, 20 gt au a0 /A - Feie
j'=1 j=1 kj/ k_-/k. k7T
+D0 D ww . . (1425)
k=1 k'=1
K £k
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