Self-thinning
Introduction
Self-thinning is the natural process whereby numbers of trees per unit area decrease as average tree size increases over
time. It is a process intrinsic not only to oak forests but to all forest and plant communities whose composition and
structure are influenced by competition for growing space. Whereas self-thinning is a process, the term stand density
refers to various expressions of the absolute or relative amounts of an attribute of tree populations (e.g. numbers of trees
or stand basal area) per unit land area. As might be expected, the two concepts are closely connected. Together, they rank
among the most important concepts in forest ecology and silviculture.

Self-thinning

The principle of self-thinning is most easily described by the temporal changes that occur in the numbers of trees in
undisturbed even-aged stands. However, self-thinning also occurs in uneven-aged stands. According to this principle, the
finite growing space of a stand is occupied by progressively fewer trees as average tree size increases with stand age.
Trees at a competitive disadvantage die from crowding and suppression as stands approach a limiting number of trees of a
given average size that can coexist within an area. As stands reach the stem exclusion stage of development (Chapter 5),
tree crowns expand to fill the available growing space. Crown expansion continues until an upper limit of tree crowding is
reached. Thereafter, stands follow a relatively predictable course of density-dependent tree mortality as numbers of trees
per unit area decrease with increasing average tree size. It is generally assumed that the combined effects of crown
expansion and tree mortality are compensatory so that canopy closure is always maintained except in the presence of
‘irregular’ mortality. The latter may be caused by such factors as air pollution, high winds, flooding, epidemic insect and
disease outbreaks, and other factors.

Reineke’s model

Reineke’s model for defining average maximum stand density expresses the negative relation between number of trees per
unit area and average stand diameter in undisturbed, even-aged stands (Reineke, 1933). Plotting the logarithm of number
of trees over the logarithm of mean stand diameter produces a straight line. The relation is given by:

log(N) = a” + b[log(D)], [6.1]

where N is number of trees per unit area, D is the diameter (dbh) of the average tree, and a’and b are constants for a given
species or group of species, where the constant b defines the slope of the line. The non-linear analogue of Equation 6.1 is
given by:

N=aD’ [6.2]

The relation has often been used to describe the average maximum limits of stand density and, by extension, to provide a
relative measure or index of stand density (Reineke, 1933). Similar models of self-thinning based on the relation between
numbers of trees and tree height are used in European forestry. Such models can be empirically derived by regression
analysis and other statistical methods (Weller, 1987b) using data from temporary or permanent field plots from
undisturbed stands encompassing a wide range of average stand diameters within a given forest type. Data from
permanent plots with repeated measurements are preferred because periodic mortality is actually observed, which reduces
assumptions about the self-thinning process (Zeide, 1987). Stands selected to define a line or limit of average maximum
stand density should be at or near the upper limits of stand density with respect to their average diameter. The resulting
line showing number of trees per acre by mean stand dbh is sometimes interpreted as a self-thinning line, or line of 100%
relative density (Fig. 6.1). The line provides a useful definition of the upper limits of stand density because the number of
trees per unit area and mean dbh are highly correlated.

Reineke (1933) postulated that the coefficient b, which determines the slope of the self-thinning line (Equations
6.1 and 6.2), assumes a value close to -1.605 for al tree species. For even-aged, upland oak forests in the eastern United
States dominated by white, black, scarlet and chestnut oaks, the estimated slope coefficient was -1.5 based on temporary
plot data from undisturbed stands ranging in site index from 50 to 80 ft (Fig. 6.1). Data from permanent plots in similar
oak stands in the Central Hardwood Region produced a self-thinning line with a slope coefficient of _1.57 (Fig. 6.1).

Over time, stands lying below the self-thinning line will grow and move towards the line. On approaching the
self-thinning line, stand development trajectories converge with the self-thinning line. Stand development then proceeds
along the line from upper left (younger stands) to lower right (older stands) (Fig. 6.1). However, density-dependent
mortality does not occur among trees with equal probability; it is concentrated among the suppressed trees. The overall
rate of mortality thus is greatest during the stem exclusion stage of stand development, which is when alarge proportion
of trees succumb to suppression.
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Fig. 6.1. Self-thinning lines (lines of average maximum stand density) for even-aged upland oak forests in the eastern United
States based on the Reineke model. The dotted line is derived from Schnur’s (1937) stand table for mixed upland oak stands
widely distributed across the eastern United States. The solid line is derived from Gingrich’s (1971) stand table for mixed
upland oak stands in the Central Hardwood Region. The arrow from a hypothetical disturbed stand represented by the dot on
the graph illustrates a typical trajectory of convergence with the Gingrich-based self-thinning line. Trajectories of stands
below the self-thinning line generally move slightly downward from left to right. The downward trend results from competition-
induced mortality, which occurs even in stands below average maximum density. After convergence with the self-thinning
line and in the absence of further disturbance, the trajectory continues along the self-thinning line. The slope coefficient for
the Schnur-based self-thinning line is -1.50 and for the Gingrich-based line is -1.57.

The _3/2 rule

Another approach to defining the self-thinning line is based on the relation between average total plant biomass and
number of plants per unit area in single-species populations undergoing density-dependent mortality (Yoda et al., 1963).
The power function model, similar to Equation 6.2, is used to describe the relation. However, in this case the model
expresses the relation between average plant dry weight (biomass), w, and number of plants per unit area (N) such that:

w=aN’ [6.3]

where a and b are usually estimated by regression from experimental data or field observations. Alternatively, the relation
can be expressed as total plant weight (W) per unit area by:

w=aN” [6.4]
The _3/2 power relation is displayed with N on the horizontal axis, in contrast to Reineke’s model, where N is displayed

on the vertical axis. Self-thinning for the _3/2 power relation thus graphically proceeds from lower right (younger stands)
to upper left (older stands) aong the self-thinning line (Fig. 6.2).
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Fig. 6.2. A self-thinning line (line of average maximum stand density) for normally stocked even-aged upland oak forests in
the eastern United States based on the relation between average dry weight of tree bole (inside bark) and number of trees
per acre. The relation is conceptually similar to Reineke’'s model (Fig. 6.1), but differs in format. The arrow from a
hypothetical disturbed stand represented by the dot on the graph illustrates a possible trajectory of convergence with the
self-thinning line. As stand biomass increases and the number of trees per acre decreases over time, the stand trajectory
moves upward and to the left along the self-thinning line. (Adapted from Schnur 1937)

Numerous studies have shown that b, the slope coefficient in Equation 6.3, approximates -1.5 (and equivaently,
b’ =-0.5 in Equation 6.4) for many plant species including herbs, shrubs and trees (Yoda et al., 1963; Harper, 1977;
Miyanishi et al., 1979; White, 1985; Weller, 1987a). The relation consequently has become known variously as the -3/2
power law of self-thinning’, the ‘self-thinning rule” and the ‘-3/2 rule’. However, the relation is herein referred to as a
rule rather than alaw because of its demonstrated lack of generality (Sprugel, 1984; Weller, 1987a; Zeide, 1987; Norberg,
1988; Lonsdale, 1990) and the absence of a supporting theory (Hutchings, 1983). Discrepancies between observed slope
values and -1.5 nevertheless have been interpreted as experimental error because of the coefficient’s presumed generality
(Miyanishi et al., 1979; White, 1981). The rule aso is purported to be independent of environmental factors (Yodaet al.,
1963; White and Harper, 1970), and to be applicable to species mixtures as well as single-species stands (Westoby, 1984;
White, 1985).

The -3/2 rule can be interpreted geometrically. The rule assumes that plant weight, w, is proportional (o) to plant
volume, v, which in turn is proportional to any linear plant dimension on which volume depends raised to the third power:

vaw=aN’ [6.5]

If we select crown diameter (Cd) as a linear dimension of interest, then (Cd) o aN®. To conceptualize the relation
geometrically, it is convenient to consider (Cd) proportional to a cylinder representing the ‘exclusive space’ of a tree
(Norberg, 1988). Then (Cd), which is proportional to the cylinder’s cross-sectional area, can be used to represent crown
area. Further, the cylinder’s height is assumed proportional to crown diameter. This three-dimensiona space conceptually
envelopes the tree, extending downward from the top of the crown to its corresponding ‘exclusive ground area’ and into
its soil space. The volume of exclusive space also can be viewed as a hexagona column, which conceptually alows for
symmetrical packing of trees without producing crown overlap or unoccupied area as in circular crown areas (Fig. 6.3).
The explanatory value of this ssimplified geometric view and its relation to the -3/2 rule is apparent from the geometric
relation between the volume of a cylinder and its diameter (i.e. volume is equal to the cylinder’s squared diameter raised
to the 3/2 power). Note that this relation only holds when the cylinder’s height is proportional to its diameter.

To satisfy the geometric analogy for the -3/2 power rule, the thinning-rule model must provide a measure of
cd® Such a measure is given by N, the number of trees per unit area (Equation 6.3). Because the reciprocal of N
represents the area occupied by the average tree, N is related to crown area and thus crown diameter (Cdz). For every unit
increase in crown area, the exclusive space (volume) of a tree increases by 3/2. So, given a finite amount of growing
space, the number of trees (N) in that space must decrease at arate of -3/2 per unit increase in crown area. To conform to
this geometric model, however, a tree must maintain the same height-to-diameter ratio during self-thinning (Fig. 6.3).
Accordingly, the various tree structures, including bole and crown, must remain proportionately similar during self-
thinning (Yoda et al., 1963). Such constancy of proportions is known as isometry or geometric similarity (McMahon and
Bonner, 1983; Norberg, 1988).
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Fig. 6.3. The ‘exclusive space’ of closely packed trees. D is the diameter of the ‘exclusive ground area’ associated with each
tree’s crown area and H is tree height. The thinning rule theory implies that the ratio of D:H remains constant throughout
stand development. (Redrawn from Norberg, 1988, with permission from the University of Chicago).

Under the -3/2 power rule, coefficient b (Equation 6.3) is assumed to be -3/2 for al species. In contrast,
coefficient a varies among species and determines the intercept (or elevation) of the thinning lines. This coefficient has
been termed the ‘packing constant’ (Norberg, 1988) because it reflects the proportion of space occupied by plant biomass
and the average plant biomass per unit of ground area. Coefficient a thus increases with increasing density, or packing, of
plant parts within a tree’s exclusive space. Coefficient a also has been theorized to be related to the mass of mechanical
tissue (bolewood in the case of trees) required to support a unit area of canopy (Givnish, 1986).

Relation between Reineke’s model and the _3/2 rule
The diameter of a tree raised to some power between 2 and 3 equals its volume. For many species, the value of the

exponent has been shown to be near 2.5 (Yodaet al., 1963). Reineke’s model and the -3/2 rule therefore are related by the
approximate relation between average tree volume, v, and tree diameter, D, where

v=D?® [6.6]
From Equation 6.2 it then follows that

D 2'50 N 2.5/b [6 7]
When b =-1.605 in Equation 6.1 (Reineke’s postulated constant), the relation becomes:

v=N%® [6.8]

where the exponent approximates -3/2 (Zeide, 1985). In postulating a constant of -1.605, Reineke was implying,
intentionally or not, that the relation between a tree’s growing space and its diameter is not constant (i.e. not isometric).
To be consistent with the assumption of constancy of tree proportions (isometry) inherent in the -3/2 power rule, the
Reineke model must assume a slope constant of -2.

Oak forests and the _3/2 rule

Knowledge of the limiting relation between numbers of trees and volume per tree in oak stands is silviculturally useful.
The relation can be used as a standard against which other stands can be measured. The -3/2 power rule attempts to
describe this limiting relation in general terms for a wide range of plant communities. But to what extent do oak forests
conform to the -3/2 power rule?



Evaluation of the rule can be divided into two questions. First, does the mathematical form of the model (i.e. the
power function) adequately express the relation? Second, is the slope coefficient of -3/2 universally Self-thinning and
applicable? If the answer to the first question is no, then the second becomes irrelevant. However, rejection of -3/2 as a
universal slope coefficient does not, by itself, negate the utility of the model form.

Evaluating conformance of oak forests to the -3/2 power rule is complicated by three factors. First, oak yield
tables are the only comprehensive sources of information. But yield tables seldom report total tree biomass or volume;
most yield tables include only bole volume, which must substitute for bole biomass. Moreover, even if bole mass were
measured directly, it is unlikely to be a constant fraction of total tree mass (Sprugel, 1984). Although information on the
allocation of bhiomass to below- and above-ground portions of oaks is sketchy, there is evidence that alocation varies
greatly with site quality and between trees of coppice and non-coppice origin (Canadell and Roda, 1991). Second, most
oak stands are comprised of a mixture of species. This confounds the effects of competition within and among species,
which have fundamentally different explanations in relation to the thinning rule (Zeide, 1985; Norberg, 1988; Weller,
1989). Variation in wood density among species can also introduce error into coefficient estimates. Third, yield tables
available to evaluate self-thinning relations for oak have been smoothed by hand-fit curves or other unspecified
methodologies. As such, they represent models, not data (Weller, 1987a). This obscures variation in the original data and
may introduce other possible errors (Lonsdale, 1990).

Despite these problems, it may be of interest to evaluate the -3/2 rule in relation to existing yield tables. Based
on three oak yield tables for the midwestern and eastern United States, the line representing the relation between bole
volume and number of trees produced slope coefficients that ranged from -1.7 to -2.2 (Fig. 6.4). Those estimates were
based on substituting bole volume for w in Equation 6.3. The yield table values fit the power function with negligible
error (Fig. 6.4), which indicates that their devel opers deemed this function to adequately describe the self-thinning line.

The tenuous conclusions from the above empirical evidence indicate that self-thinning lines in oak forests: (i)
show varying proximity to the theoretical -3/2 slope; and (ii) are nominally, if not statistically, more negative than -3/2.
Other investigators have concluded that self-thinning lines based on yield tables are likely to have slopes steeper than -3/2
because only portions of trees (boles) are represented, and because they include only trees above some minimum size
(Harper, 1977; Lonsdale, 1990). The latter factor may explain, in part, why the yield tables for the Connecticut oak stands
(Fig. 6.4C), limited to stems 2 inches dbh and larger, produce a steeper thinning line than either the upland oak or the
Wisconsin yield tables, which included stems 0.6 inch dbh and larger (Fig. 6.4A and B).

100

100 7
& @
£ E
3 104 o 104
- g
% o
g g
i ;
w1

3 g
o <

0.1 a1 —_—

100 1000 10,000 10D 1000 10,000
Tress per acie TrEeE pEf ae

100 [ —_—
&
g
= 104
[
-
g
&
E
2
a

o1k

100 1000 10,000

Trees [per acre

Fig. 6.4. Self-thinning lines for oak stands derived from published yield tables compared to the -3/2 thinning rule line. (A)
From yield tables for even-aged upland oak stands in the central and eastern states. (From Schnur, 1937.) (B) From yield
tables for mixed hardwood stands dominated by northern red oak in southwestern Wisconsin. (From Gevorkiantz and
Scholz, 1948.) (C) From yield tables for mixed oak stands in Connecticut. (From Frothingham, 1912.) Heavy lines are fit by
linear regression to table values (shown by dots); b is the slope coefficient. Each regression fit is based on the model:
log1o(Vv) = a + log1o[b(N)]

where v is the volume of the average trees, N is stand density (trees acru:-z'l and log1o is the logarithm to the base 10.
Regression estimates are averaged across the site classes given in each yield table.



More recent data based on permanent plot data from unthinned upland oak stands representing three site classes
in the oak—hickory region produced self-thinning lines that were quite different from those derived from earlier yield
tables (Gingrich, 1971).The newer data suggest that each site class produces a separate concave downward curve when
both axes are transformed to logarithmic scale (Fig. 6.5). This pattern is consistent with those derived from Douglas-fir
yield tables based on long-term observations from permanent sample plots (Curtis, 1982; Zeide, 1987). However, it is
possible that at least part of the concave pattern could be caused by incomplete utilization of growing space in younger
oak stands (e.g. stands with less than 500 ft> per acre of volume and more than 1200 trees per acrein Fig. 6.5).

Yield tables for English oak stands in England also show that the self-thinning line plotted on log-log scale does
not form a straight line. The slope coefficient for fully stocked stands up to 100 years old is -1.48, which approximates to
the hypothetical value of -3/2 (White and Harper, 1970). However, in stands between 100 and 150 years old, the
coefficient shiftsto -1. This shift indicates that bole volume per unit of ground area remains constant for English oak with
continued tree growth and self-thinning (Harper, 1977; Norberg, 1988). Accordingly, the volume of bolewood lost to
mortality would be compensated by the gap-filling of survivors. A slope of -1 also could indicate stagnating height growth
in old stands, or root competition and soil physical constraints on root expansion (Norberg, 1988).

The emerging evidence from permanent plot data collectively indicates that the thinning line as expressed by the
-3/2 thinning rule does not form a straight line over the life of a stand. If we accept that evidence, the power function
equation generally, and thus the -3/2 slope coefficient specifically, cannot realistically describe self-thinning in oak stands.
Moreover, there is evidence that the relation is not independent of site effects (Zeide, 1987).

Conformity of tree growth to the slope coefficient of -3/2 requires that trees maintain geometric similarity and constant
proportions, or isometry, among their various components as they grow. Alternatively, elastic similarity occurs when tree
components proportionately change with increasing tree size (allometry) (McMahon and Bonner, 1983).
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Fig. 6.5. Stand volume in relation to stand density for three site index classes in unthinned (normal) stands in upland
hardwoods dominated by mixed oaks in the Central Hardwood Region. The stands represent mixtures of black, white, scarlet
and chestnut oaks. The dotted line is the theoretical self-thinning line (-0.5 from Equation 6.4) assumed by the thinning rule
model; other lines represent table values based on models derived from permanent plots. (Adapted from Gingrich, 1971,
Table 1.)

Constant ratios among tree dimensions such as crown diameter and bole diameter in relation to changing overall
tree size thus represent geometric similarity for those dimensions. For a species or species group to intrinsically conform
to the -3/2 rule, ratios among tree components must remain constant (isometric) astree size increases. A test of isometry is
provided by the ratio of crown diameter to dbh in relation to changing tree size. These relations are defined by tree-area
equations for oaks in stands at average maximum density. The equations indicate that the crown diameter:dbh ratio for
forest-grown trees declines from about 30:1 for trees of small diameter to about 17:1 for trees of large diameter (Fig. 6.6d
and €). For open-grown trees, ratios of crown diameter to dbh vary even more (Fig. 6.6a-c). In either case, small oaks
have proportionately more crown area than large oaks. Such proportionate changes in tree dimensions are not consistent
with geometric similarity and hence the -3/2 rule. In fact, bole diameters must increase at a proportionately faster rate than
crown area (and correlatively crown mass) to prevent trees from collapsing under their own weight (McMahon, 1973).
True isometry in oaks or any other tree species therefore is unlikely. Moreover, predictable changes in crown diameter :



dbh ratios, by themselves, provide an aternative basis for defining a self-thinning line and corresponding measures of
relative density, as discussed later in this chapter.

Self-thinning consequently appears to be heavily influenced by tree geometry, which is continually changing to
meet requirements for structural resistance to bole breakage as crown mass increases (McMahon, 1973). Moreover, trees
grow with great physica plasticity to take advantage of their changing competition environment (Sorrensen-Cothern et
al., 1993). For example, one side of a tree crown may expand into the gap created by the death or removal of one of its
neighbours, resulting in an expanded but nonsymmetrical crown. Trees that survive self-thinning acquire new resources
(space, light, soil moisture and nutrients) as a consequence of spatial adjustments resulting from the death of neighbouring
trees and differential growth rates among competing survivors. Associated with these newly acquired resources are
changes in the alocation of growth to the various parts of trees, which thereby influence their proportions, shape and
competitive relations with neighbours (Sorrensen-Cothern et al., 1993). The capacity of oaks to fill irregular canopy
spaces, and thus their conformity to allometric growth, may be further reinforced by their upward spreading (decurrent)
crowns and weak apical control of lateral branching.

Despite apparent limitations of the -3/2 self-thinning rule to describe the underlying geometric relations for trees
in evenaged oak stands, the general pattern of rapidly decreasing numbers of trees with increasing mean size is well
established. Self-thinning formulae such as the -3/2 rule and Reineke’s model describe stand-level changes in the number
of trees with increasing tree size. These formulae are useful expressions of a relatively predictable process that has
practical silvicultural value for defining limits of stand density in relation to average tree size. In turn, those limits can be
used as a standard or index for expressing the relative density of any other stand. This leads to the subject of stand density
and how it can be measured and expressed in oak forests.
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