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Introduction

In 1906. Henry S. Graves wrote: “Forest mensuration deals with the deter-
mination of the volume of logs, trees, and stands, and with the study of increment
and yield.” Since that definition was written, however, the scope of forestry has
widened. Although some foresters feel that Grave’s definition is still adequate, others
feel that mensuration should embrace the new measurement problems that have been
created as the horizons of forestry have expanded.

If we accept the challenge of a broader field of study, we must ask: To what degree
should mensuration be concerned with the measurement problems of wildlife man-
agement, recreation, watershed management, and the other aspects of multiple-use
forestry? Furthermore, one might argue that it is unrealistic to imagine that forest
mensuration can take as its domain such a diverse group of subjects.

The question becomes irrelevant and the objection allayed if we recognize fores:
mensuration as a subject that provides principles applicable to all measurement prob-
lems. Consequently, this book will include principles that provide a foundation for
solving measurement problems in all aspects of forestry. However, the traditional
measurement problems of forestry will not be neglected.

Through the years a number of textbooks on forest mensuration have been prepared
in the United States and in foreign lands. In the United States the most recent are
Bruce and Schumacher (1950); Spurr (1952); Mever (1953); Husch (1963); Husch.
Miller, and Beers (1972); and Avery (1975). In other countries the most recent are
Prodan (1965), Germany; Seip (1964), Norway: Giurgiu (1968). Romania; and Carron
(1968), Australia. Also. Loetsch, Zéhrer, and Haller (1973) give a comprehensive
and imaginative treatment of many aspects of forest mensuration.

Since the end of World War II the application of statistical theory and the use of
computers and programmable calculators in forest mensuration have wrought a rev-
olution in the solution of forest measurement problems. Consequently, the mensura-
tionist must be competent in these areas as well as in basic mathematics. A knowledge
of calculus is also desirable. In addition. a knowledge of systems analysis and oper-
ations research, approaches to problem solving that depend on model building and
techniques that include simulation and mathematical programming. is also helpful.

1-1 IMPORTANCE OF FOREST MENSURATION

Forest mensuration is one of the keystones in the foundation of forestry. Forestry.
in the broadest sense. is 4 management activity involving forest land. the plants and

1



animals on the land. and humans as they use the land. Thus, the forester is faced
with many decisions in the management of a forest. The following questions convey
a general idea of the problems that must be solved for a particular forest.

1. What silvicultural treatment will result in the best regeneration and growth?

~

. What species is most suitable for reforestation?

3. Is there sufficient timber for an economical harvesting operation?
4. What is the value of the timber and land?

5. What is the recreational potential?

6. What is the wildlife potential?

A forester needs information to make intelligent decisions for these and countless
other questions. Whenever possible, this information should be in quantifiable terms.
As it has aptly been said. “You can’t efficiently make. manage, or study anything
vou don't locate and measure.” In this sense. forest mensuration is the application
of measurement principles to obtain quantifiable information for decision making.

1-2 PRINCIPLES OF MEASUREMENT

Knowledge is to a large extent the result of the acquisition and systematic accumulation
of observations. or measurements. of concrete objects and natural phenomena. Thus.
measurement is a basic requirement for the extension of knowledge.

In its broadest sense. measurement consists of the assignment of numbers to meas-
urable properties. Ellis (1966) gives this definition: *Measurement is the assignment
of numerals to things according to any determinative, non-degenerate rule.” (“De-
terminative” means that the same numerals. or range of numerals, are always assigned
to the same things under the same conditions. “Non-degenerate™ allows for the pos-
sibility of assigning different numerals to different things. or to the same thing under
different conditions.) This definition implies that we have a scale that allows us to
use a rule, and that each scale inherently has a different rule that must be adhered
to in representing a property by a numerical quantity. Stevens (1946) summarized the
problem and formulated a classification for different kinds of scales. In spite of some
shortcomings. Stevens classification is useful in understanding the measurement proc-
ess (Table 1-1).

1-2.1 Scales of Measurement

The four scales of measurement are nominal. ordinal, interval, and ratio (Table 1-1).
The nominal scale is used for numbering objects for identification (e.g.. numbering

of forest types in a stand map). and for numbering a class when each member of the

class is assigned the same numeral (e.g.. the assignment of code numbers to species).
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Table 1-1
Classification of Scales of Measurements’

Mathematical
Group Structure

Examples

Permissible Statistics

Basic Operation

Scale

Numbering of forest types on

Number of cases

Mode
Contingency correlation

Permutation group

Determination of equality

Nominal

a stand map
Assignment of code numbers

(numbering and counting)

where f(X) means any

to tree species in studying

stand composition

one-to-one substitu-

tion

Lumber grading

Determination of greater or Isotonic group Median

Ordinal

Tree and log grading
Site class estimation

Percentiles

X' = fx)

where f(X) means any

less (ranking)

Order correlation

increasing monotonic

function

Fahrenheit temperature

Mean

Determination of the equal- Linear group

Interval
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PRINCIPLES OF MEASUREMENT

cation by a constant). The rank-order correlation coefficient is usually considered

n remains invariant only under the similarity transformation {mu

appropriate to the ordinal scale, although the lack of a requirement for equa

SOURCE: Adapted from S. 5. Stevens,

ervals between successive ranks really invalidates this statistic.

" Science 103(2684): 677-680.

“On Theory of Scales of Measurement
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The ordinal scale is used to express degree, quality, or position in a series, such as
first, second, and third. In a scale of this type. the successive intervals on the scale
are not necessarily equal. This scale is used for lumber grades, log grades. tree grades,
and site classifications.

The interval scale includes a series of graduations marked off at uniform intervals
from a reference point of fixed magnitude. There is no absolute reference point or
true origin for the scale. The origin is arbitrarily chosen. The Celsius temperature
scale is a good example of an interval scale. Equal intervals of temperature are scaled
off by noting equal volumes of expansion referenced to an arbitrary zero.

The ratio scale is similar to the interval scale in that there is equality of intervals
between successive points on the scale. However, an absolute zero of origin is always
present or implied. Ratio scales are the most commonly employed and the most
versatile in that all types of statistical measures are applicable. It is convenient to
consider ratio scales as fundamental and derived.

® Fundamental scales are represented by such things as frequency, length,
weight. and time intervals.

® Derived scales are represented by such things as stand volume per acre,
stand density. and stand growth per unit of time. (These are derived scales
in that the values on the scale are functions of two or more fundamental
values.)

1-3 UNITS OF MEASUREMENT

To describe a physical quantity. one must establish a unit of measure and determine
the number of times the unit occurs in the quantity. Thus, if an object has a length
of 3 meters, the meter has been taken as the unit of length. and the length dimension
of the object contains three of these standard units.

The fundamental units in mechanics are measures of length, mass. and time. These
are regarded as independent and fundamental variables of nature. although they have
been chosen arbitrarily by scientists. Other fundamental units have been established
for thermal, electrical, and illumination quantity measurement.

Derived units are expressed in terms of fundamental units or in units derived from
fundamental units. Derived units include ones for the measurement of volume (cubic
feet or meters), area (acres or hectares). velocity (miles per hour, meters per second).
force (kilogram-force), etc. Derived units are often expressed in formula form. For
example, the area of a rectangle is defined by the equation

Area = WL

where W and L are fundamental units of length.

Physical quantities such as length, mass, and time are called scalar quantities or
scalars. Physical quantities that require an additional specification of direction for
their complete definition are called vecror quantities or vectors.
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1-4 SYSTEM OF UNITS

There are two methods of establishing measurement units. We mav select an arbitrary
unit for each type of quantity to be measured. or we may select fundamental units
and formulate from them a consistent system of derived units. The first method was
employed extensively in our early history. For example. units for measuring the length
of cloth, the height of a horse. or land distances were all different. Reference units
were objects such as the width of a barleycorn. the length of a man’s foot, the length
of a man’s forearm (a cubit). and so on. However. these primitive units lacked
uniformity. Vestiges of this system still exist. particularly in English-speaking countries
(foot, yard, pound, etc.), although the units are now uniform.

The second method of establishing a system of units is illustrated by the metric
system. In this system. an arbitrary set of units has been chosen that is uniformly
applicable to the measurement of any object. Moreover, there is a logical, consistent.
and uniform relationship between the basic units and their subdivisions.

1-4.1 Metric System

This system of weights and measures was formulated by the French Academy of

- Sciences in 1790. The system was adopted in France in 1799 and made compulsory

in 1840. In 1875. the International Metric Convention, which was established by treaty.
furnished physical standards of length and mass to the 17 member nations. The General
Conference on Weights and Measures (referred to as CGPM from the French *‘Con-
férence Générale des Poids et Mesures™) is an international organization established
under the Convention. This organization meets periodically. The CGPM controls the
International Bureau of Weights and Measures (BIPM). which is headquartered at
Sévres. near Paris, and maintains the physical standards of units. The United States
Bureau of Standards represents the United States on the CGPM and maintains our
standards of measure.

The metric system has been adopted by most of the technologically developed
countries of the world. Although conversion in Great Britain and in the United States
has met with some resistance, a gradual changeover is taking place. In 1975, the
President signed the Metric Conversion Act in which the United States adopted a
policy of actively encouraging a voluntary changeover to the metric system of weights
and measures.

Discussions of the problems affecting forestry in converting to the metric system
in the United States and Great Britain are presented by White (1971), Bruce (1974.
1976), and Hamilton (1974). Furthermore. an excellent summary of the system as
now internationally accepted is given in the National Bureau of Standards Publication
330 (1977). The following information is abstracted from this publication.

The 11th meeting of the CGPM in 1960 adopted the name “International System
of Units” with the international abbreviation Sl (from the French “Le Systéme In-
ternational d'Unités™). This is now the accepted form of the metric system. Other
adaptations of metric units such as in the CGS, MTS. and MKS systems are dis-
couraged.

SYSTEMS OF UNITS 5



The SI considers three classes of units: (1) base units, (2) derived units, and (3)
supplementary units. There are seven base units, which by convention are considered
dimensionally independent. These are the meter, kilogram, second. ampere, kelvin,
mole, and candela. The derived units are formed by combining base units accerding
to algebraic statements that relate the corresponding quantities. The supplementary
units are those that the CGPM established without stating whether they are base or
derived units.

Here is a list of the dimensions that are measured by these base units, along with
the definitions of the units. The conventional symbol for each unit is shown in pa-
rentheses.

1. Length—meter (m). The meter is equal to 1,650,763.73 wavelengths in a
vacuum of the orange-red light given off by krypton-86.

2. Mass—kilogram (kg).' The kilogram is equal to the mass of the interna-
tional prototype standard. a cylinder of platinum-iridium alloy kept at the
BIPM.

3. Time—second (s). The second was originally defined as 1/86,400 part of
a mean solar day. In 1956, it was redefined as 1/31.556.925.9747 of the
tropical year for 1900. More recently, it has been calculated by atomic
standards to be 9,192,631,770 periods of vibration of the radiation emitted
at a specific wavelength by an atom of cesium-133.

4. Electric current—ampere (A). The ampere is the current in a pair of
equally long, parallel, straight wires (in vacuum and 1 meter apart) that
produces a force of 2 x 10-7 newtons between the wires for each meter
of their length.

wn

. Temperature—kelvin (K). The kelvin is 1/273.15 of the thermodvnamic
temperature of the triple point of water. The temperature 0 K is called
absolute zero. The kelvin degree is the same size as the Celsius degree
(also called centigrade). The freezing point of water (0°C) and the boiling
point of water (100°C) correspond to 273.15 K and 373.15 K, respectively.
On the Fahrenheit scale, 1.8 degrees are equal to 1.0°C or 1.0 K. The
freezing point of water on the Fahrenheit scale is 32°F.

6. Amount of substance—mole (mol). The mole is a base unit used to specify
the quantity of chemical elements or compounds. It is the amount of
substance of a system that contains as many elementary entities as there
are atoms in 0.012 kilogram of carbon-12. When the mole is used, the
elementary entities must be qualified. They may be atoms, molecules,
ions, electrons, or other particles. or specified groups of such particles.

' The term “weight™ is commonly used for mass although this is. strictly speaking. incorrect.
The weight of 2 body means the force caused by gravity, acting on a mass, which varies in time and space
and which differs according to the location on earth. Since it is important to know whether mass or force
is being measured, the SI has established two units: the kilogram far mass and the newton for force.
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7. Luminous intensity—candela (cd). The candela is 1/600,000 of the inten-
sity. in the perpendicular direction. of one square meter of a black body
radiator at the temperature at which platinum solidifies (2045 K) under ax
pressure of 101,325 newtons per square meter.

Derived units are expressed algebraically in terms of the base units by means of
mathematical symbols of multiplication and division. Some examples of derived units
are given here.

Quantity SI Unit for the Quantity Symbol
Area square meter m*
Volume cubic meter (the liter, 0.001 cubic me- m?

ter, is not an Sl unit although com-
monly used to measure fluid volume)

Specific volume cubic meter per kilogram m/kg
Force newton (1 N = 1 kg-m/s?) N
Pressure pascal (1 Pa = 1 N/m?) Pa
Work " joule (1J = 1Nm) J
_Power watt (1 W = 1 J/s) W
Speed meter per second m/s
Acceleration (meter per second) per second m/s?
Voltage volt (1 V =1 W/A) V
Electric resistance ohm (18 = 1 V/A) 9]
Concentration (amount mole per cubic meter mol/m*

of substance)

At present, there are only two supplementary units, the radian and the steradian.
They are defined as follows.

® The radian (rad) is the plane angle between two radii of a circle that cuts
off on the circumference an arc equal to the radius. It is 57.29578 degrees
for every circle.

® The steradian (sr) is the solid angle at the center of a sphere subtending
a section on the surface equal in area to the square of the radius of the
sphere.

There is a number of widely used units that are not part of SI. These units, which
the International Committee on Weights and Measures (CIPM) recognized in 1969.
are shown below.

Unit Symboal Equivalence in SI Units
minute min I min = 60 s
hour h I h = 60 min = 3600 s

SYSTEMS OF UNITS 7



Unit Symbol Equivalence in SI Units

day d 1d=24h = 86,400 s

degree (angular) ) 1° = (m/180) rad

minute (angular) ‘ 1' = (1/60)° = (w/10.800) rad
second (angular) Y 1" = (1/60)" = (w/648,000) rad
liter IL. 1L =1dm? = 103 m?
metric ton t l1t=10°kg

To form decimal multiples or fractions of SI units. the following prefixes or ab-
breviations are used.

Prefix Factor Abbreviation
tera 1012 T
giga 10° G
mega 10° M
- kilo 107 k
hecto 102 h
deka 10! da
deci = d
centi 102 ¢
milli 102 m
micro )t M
nano i{E)=5 n
pico 105ES p

1-4.2 English System

The English system of weights and measures is still widely used in the United States
but it should be supplanted gradually by the metric svstem (SI). This may be a long
process since custom and tradition are strong. and the conversion is currently vol-
untary. Great Britain has taken a more vigorous stance and conversion to the metric
system is proceeding rapidly (Hamilton. 1974).

The units of the English system still commonly used in the United States are
practically the same as those emploved i the American colonies prior to 1776. The
names of these units are generally the same as those of the British Imperial System.
However. their values differ slightly.

In the English system, the fundamental length is the vard. The British yard is the
distance between two lines on a bronze bar kept in the Standards Office, Westminster,
London. Originally. the United States vard was based on a prototype bar, but in 1893
the United States vard was redefined as 3600/3937 meter = 0.9144018 meter. The
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British yard. on the other hand, was 3600/3937.0113 meter = (.914399 meter. The
foot is defined as the third part of a yard, and the inch as a twelfth part of a foot. In
1959, it was agreed by Canada. United States, New Zealand. United Kingdom. South
Africa, and Australia that they would adopt the value of 1 yard = 0.9144 meter. In
the United Kingdom. these new values were used only in scientific work. the older.
slightly different values being used for other measurements. And in the United States.
the results of geodetic surveys are still expressed in feet based on the former definition
of the yard (3600/3937 meter).

In the British system, the unit of mass, the avoirdupois pound. is the mass of a
certain cylinder of platinum in the possession of the British government (1 pound =
0.45359243 kilogram). In the United States. the unit of mass is also the pound. but
in 1893 it was defined in terms of the mass unit of the metric system (1 pound =
0.4535924277 kilogram). Thus, the United States pound and the British pound were
not exactly equal. The 1959 agreement of English-speaking countries established a
new value of 1 pound = 0.45359237 kilogram.

In the British system, the second is the base unit of time. as in the metric system.

Secondary units in the English system also have different values in the United States
and the United Kingdom. For example, the U.S. gallon is defined as 231 cubic inches.
The British gallon is defined as 277.42 cubic inches. There are other secondary units
used in English-speaking countries that are as arbitrary as the gallon. but some are
derived from the fundamental units. For example, the unit of work in English and
American engineering practice has been the foot-pound.

Very commonly, conversions from one system of measurement to another are
required. Appendix Table A-1 shows unit conversions for length. area, volume, and
mass in the English and the metric systems.

1-5 NUMBERING SYSTEMS

The numbering system in general use throughout the world is the decimal system.
This can probably be attributed to the fact that human beings have ten fingers. But
the decimal system is merely one of many possible numbering systems that could be
utilized. In fact, there are examples of other numbering systems used by earlier
civilizations (e.g., the vigesimal system, based on twenty, utilized by the Mayas, and
the sexagesimal system of the Babylonians, based on sixty). Our own system of
measuring time and angles in minutes and seconds comes from the sexagesimal system.
Systems to other bases, such as the duodecimal system, based on twelve (which seems
to have lingered on in the use of dozen and gross), may also have been used. For a
discussion of the history of number theory, the student is referred to Ore (1948).

With the development of the electronic computer. interest has been revived in
numbering systems using bases other than ten. Of primary interest is the binary system.
because electronic digital computers that use two basic states have been found most
practical.

NUMBERING SYSTEMS 9



1-6 CONTINUOUS AND DISCRETE VARIABLES

A variable is a characteristic that may assume any given value or set of values. Some
variables are continuous in that they are capable of exhibiting every possible value
within a given range. For example, height, weight, and volume are continuous vari-
ables. Other variables are discontinuous or discrete in that they only have values
which jump from one number or position to the next. The number of employees in
a company, of trees in a stand, or of deer per unit area are examples of discrete
variables.

Data pertaining to continuous variables are obtained by measuring. Data pertaining
to discrete variables are obtained by counting. The problems of measuring continuous
variables are dealt with in Chapters 2, 3, 4, 5, 6, and 7 and will not be discussed here.
But we will consider the measurement of discrete variables at this time.

The process of measuring according to nominal and ordinal scales, as shown in
Table 1-1, consists of counting the frequencies of occurrences of specified events.
Discrete variables describe these events. The general term “event” can refer to a
discrete physical standard. such as a tree, which exists as a tangible object occupying
space, or to an occurrence that cannot be thought of as spatial, such as a timber sale.
In either case, the measurement consists of defining the variable and then counting
the number of its occurrences. There is no choice for the unit of measurement—the
frequency is the only permissible numerical value.

It is important not to confuse a class established for convenience in continuous-
type measurement with a discrete variable. Classes for continuous variables are often
established to facilitate the handling of data in computations. Frequencies may then
be assigned to these classes. These frequencies represent the occurrence or recurrence
of certain measurements of a continuous variable that have been placed in a group
or class of defined limits for convenience.

A discrete variable can thus be characterized as a class or series of classes of defined
characteristics with no possible intermediate classes or values. A few examples of
discrete variables used in forestry are species, lumber grades. and forest-fire danger
classes.

At times. it may not be clear as to whether a discrete or continuous variable is
being measured. For example, in counting the number of trees per acre or per hectare,
the interval, one tree, is so small and the number of trees so large that analyses are
made of the frequencies as though they described a continuous variable. This has
become customary and may be considered permissible if the true nature of the variable
is understood.

1-6.1 Forest Measurements on a Nominal Scale

Species names or forest types are examples of the use of discrete variables on nominal
scales. Tree species. for example, can be the classes for the variable. The order in
which the classes are recorded does not affect the discrete variable, the species. Indeed.
the order could be changed without changing the meaning.

10 INTRODUCTION

It is frequently convenient to assign a code number or letter to each class of a
discrete variable. Code numbers are especially useful if data are to be entered on
punch cards for machine computation. It is important to be aware that the code
numbers have no intrinsic meaning but are merely identifving labels. No meaningful
mathematical operations can be performed on such code numbers.

1-6.2 Forest Measurement on an Ordinal Scale

Ordinal scales for discrete variables abound in forestry. Examples are lumber grades.
log grades, piece products grades, Christmas tree grades. nursery stock grades. and
site quality classes.

The order in which the classes of a discrete variable are arranged on an ordinal
scale has an intrinsic meaning. The classes are arranged in order of increasing or
decreasing qualitative rank, so the position on the scale affords an idea of comparative
rank. The continuum of the variable consists of the range between the limits of the
established ranks or grades. As many ranks or grades can be established as are deemed
suitable. An attempt may be made to have each grade or rank occupy an equal interval
of the continuum. However, this will rarely be achieved. since the ranks are subjec-
tively defined with no assurance of equal increments between ranks.

“ Chapter 10 discusses in more detail the principles of quality measurement and its
applications in forestry.

1-7 PRECISION, ACCURACY, AND BIAS

The terms “precision™ and “accuracy” are frequently used interchangeably in non-
technical parlance and often with varying meaning in technical usage. In this text they
will have two distinct meanings. Precision as used here (and generally accepted in
forest mensuration) means the degree of agreement in a series of measurements.?
Accuracy, on the other hand, is the closeness of a measurement to the true value.
Of course, the ultimate objective is to obtain accurate measurements.

Bias refers to systematic errors that may result from faulty measurement procedures.
instrumental errors, flaws in the sampling procedure, errors in the computations,
mistakes in recording, and so forth.

In sampling, accuracy refers to the size of the deviation of a sample estimate from
the true population value. Precision, expressed as a standard deviation, refers to the
deviation of sample values about their own mean, which, if biased, does not correspond
to the true population value. It is possible to have a very precise estimate in that the
deviations from the sample mean are very small; yet, at the same time, the estimate
may not be accurate if it differs from the true value due to bias. For example, one

? The term is also used to describe the resolving power of a measuring instrument or the smallest
unit in observing a measurement. In this sense. the more decimal places used in the measurement the
more precise the measurement.
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might carefully measure a tree diameter repeatedly to the nearest millimeter with a
caliper that reads about 5 mm low (Section 2-1.3). The results of this series of meas-
urements are precise because there is little variation between readings, but they are
biased and inaccurate because of improper adjustment of the instrument.

Bruce (1975) has shown that bias B and precision P can be equated with accuracy
A as follows.

A=p+P

This indicates that. if we reduce B° to zero, accuracy equals precision.

1-8 SIGNIFICANT DIGITS

A significant digit is any digit denoting the true size of the unit at its specific location
in the overall number. The term significant as used here should not be confused with
its use in reference to statistical significance. The significant figures in a number are
the digits reading from left to right beginning with the first nonzéro digit and ending
with the last digit written, which may be a zero. The numbers 24, 2.5, 0.25, and 0.025
all have two significant figures, the 2 and the 5. The numbers 25.0. 0.250, and 0.0250
all have three significant figures, the 2. 5. and 0. When one or more zeros occur
immediately to the left of the decimal position and there is no digit to the right of
the point, the number of significant digits may be in doubt. Thus, the number 2500
may have two. three, or four significant digits, depending on whether one or both
zeros denote an actual measurement or have been used to round off a number and
indicate the position of the decimal point. Thus, zero can be a significant figure if
used to show the quantity in the position it occupies and not merely to denote a
decimal place. A convention sometimes used to indicate the last significant digit is to
place a dof above it. Thus, 5.121.000 indicates four significant digits and 5,121,000
indicates five significant digits. Another method is to first divide a number into two
factors, one of them being a power of ten. A number such as 150,000,000 could be
written as 1.5 x 10® or in some other form such as 15 % 107. A convention frequently
used is to show the significant figures in the first factor and to use one nonzero digft
to the left of the decimal point. Thus, the numbers 156,000,000 (with three significant
figures), 31.53, and 0.005301 would be written as 1.56 x 10% 3.153 x 10, and
S0 O

If a number has a significant zero to the right of the decimal place following a
nonzero number, it should not be omitted. For example, 1.05010 indicates six sig-
nificant digits including the last zero to the right. To drop it would reduce the precision
of the number. Zeros when used to locate a decimal place are not significant. In the
number 0.00530. only the last three digits 5. 3. and 0 are significam:hthe first two to
the right of the decimal place are not.

When the units used for a measurement are changed, it may change the number
of decimal places but not the number of significant digits. Thus. a wéight of 355.62
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grams has five significant figures. as does the same weight expressed as 0.35562
kilograms, although the number of decimal places has increased. This emphasizes the
importance of specifying the number of significant digits in a measurement rather
than simply the number of decimal places.

1-9 SIGNIFICANT DIGITS IN MEASUREMENTS

The numbers used in mensuration can be considered as arising from pure numbers.
from direct measurements, and from computations involving pure numbers and values
from direct measurements.

Pure numbers can be the result of a count in which a number is exact. or they can
be the result of some definition. Examples of pure numbers are the number of sides
on a square, the value of w, or the number of meters in a kilometer.

Values of direct measurements are obtained by reading a measuring instrument
(e.g., measuring a length with a ruler). The numerical values obtained in this way
are approximations in contrast to pure numbers. The precision of the approximation
is indicated by the number of significant digits used. For example. measurement of
a length could be taken to the nearest one, tenth, or hundredth of a foot, and recorded
as 8, 7.6, or 7.60. Each of these measurements implies an increasing standard of
precision. A length of 8 feet means a length closer to 8 than to 7 or 9 feet. The value
of 8 can be considered to lie between 7.5 and 8.5. Similarly, a length of 7.6 means a
measurement whose value is closer to 7.6 feet than to 7.5 or 7.7. The value of 7.6
lies between 7.5500 . . . 01 and 7.6499 . . . 99, or. conventionally, 7.55 and 7.65. In
the measurement 7.60. the last digit is significant and the measurement implies a
greater precision. The value 7.60 means the actual value lies anywhere between
7.59500 . . . 01 and 7.60499 . . . 99, or, conventionally. 7.595 and 7.605.

It is incorrect to record more significant digits than were observed. Thus. a length
measurement of 8 feet taken to the nearest foot should not be recorded as 8.0 feet
since this may mislead the reader into thinking the measurement is more precise than
it actually is. On the other hand. one should not omit significant zeros in decimals.
For example. one should.write 112.0 instead of 112 if the zero is significant.

Since the precision of the final results is limited by the precision of the original
data, it is necessary to consider the numbers of significant figures to take and record
in original measurements. It is well to keep in mind that using greater precision than
needed is a waste of time and money. A few suggestions follow.

1. Do not try to make measurements 1o a greater precision (more significant
digits) than can be reliably indicated by the measuring process or instru-
ment. For example. it would be illogical to try to measure the height of a
standing tree to the nearest tenth of a foot with an Abney level.

2. The precision needed in original data may be influenced by how large a
difference is important in comparing results. Thus. if the results of a series
of silvicultural treatments are to be compared in terms of volume growth
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response to the nearest tenth of a cubic meter, then there would be no
need to estimate volumes more exactly than the nearest tenth of a cubic
meter.

3. The variation in a population sampled and the size of the sample influence
the precision chosen for original measurement. If the population varies
greatly. or if there are few observations in the sample. then high meas-
urement precision is not worthwhile.

1-10 ROUNDING OFF

When dealing with the numerical value of a measurement in the usual decimal no-
tation. it is often necessary to round off to fewer significant figures than originally
shown. Rounding off can be done by deleting the unwanted digits to the right of the
decimal point (the fractional part of a number) and by substituting zeros for those to
the left of the decimal place (the integer part). Three cases can arise: (1) If the deleted
or replaced digits represent less than one-half unit in the last required place. no further
change is required. (2) If the deleted or replaced digits represent more thar one-half
unit in the last required place, then this significant figure is raised by one. (Note that,
if the significant figure in the last required place is 9. it changes to zero and the digit
preceding it is increased by one.) (3) If the deleted or replaced digits represent exactly
one-half unit in the last required place, a recommended convention is to raise this
last digit by unity if it is odd but let it stand if it is even. Thus, 31.45 would be rounded
to 31.4 but 31.55 would be 31.6. Here are a few examples.

Number Rounded To:

4 Significant 3 Significant 2 Significant
Number Figures Figures Figures
4.6495 4.650 4.65 4.6
93.65001 93.65 93.7 94
567851 567900 568000 570000
0.99687 0.9969 0.997 1.0

1-11  SIGNIFICANT DIGITS IN ARITHMETIC OPERATIONS

In arithmetic operations involving measurements, where figures are only approxi-
mations, the question of how many significant digits there are in the result becomes
important.

In multiplication and division. the factor with the fewest significant figures limits
the number of significant digits in the product or quotient. Thus, in multiplying a
numerical measurement with five significant figures by another with three significant
figures, only the first three figures of the product will be trustworthy, although there
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may be up to eight digits in the product. For example, if the measurement 895.67
and 35.9 are multiplied, the product is 32,154.553. Only the first three figures in the
product—3, 2. and 1—are significant. The number 895.67 represents a measurement
between 898.665 and 895.675. The number 35.9 represents a measurement between
35.85 and 35.95. The products of the four possible limiting combinations will differ
in all except the first three figures; thus.

(895.665)(35.85) = 32109.59025
(895.663)(35.95) = 32199.15675
(895.675)(35.85) = 32109.94875
(895.675)(35.95) = 32199.51625

Therefore, the first three figures are the only reliable ones in the product. Similarly.
in dividing a measurement with eight significant digits by a measurement with three
significant figures, the quotient will have only three significant figures. But, if a
measurement is to be multiplied or divided by an exact number or a factor that is
known to any desired number of significant digits. a slightly different situation occurs.
For example, a total weight could be estimated as the product of a mean weight having
five significant digits times 55. However, the 55 is an exact number and could also

I

-be validly written as 55.000. The product would thus still have five significant digits.

It may be helpful to remember that multiplication is merely repetitive addition and
the 55, in this case. means that a measurement is added exactly 55 times. Similarly.
if the 55 objects had been weighed. as a group. to five significant digits, dividing by
55 would give a mean weight to five significant figures. In these cases, the significant
digits are controlled by the number in the measurement. Another case occurs if a
measurement is to be multiplied or divided by a factor such as w or e (base of Naperian
logarithms), which are known to any number of significant figures. The number of
significant digits in  or e should be made to agree with the number in the measurement
before the operation of multiplication or division so that there is no loss in precision.

A good rule in multiplication or division is to keep one more digit in thé¥groduct
or quotient than occurs in the shorter of the two factors. This minimizes rounding-
off errors in calculations involving a series of operations. At the end of the calculations,
the final answer can be rounded off to the proper number of significant figures.

In addition and subtraction. the position of the decimal points will affect the number
of significant digits in the result. It is necessary to align numbers according to their
decimal places in order to carry out these operations. The statement that measure-
ments can be added or subtracted when significant digits coincide at some place to
the left or right of the decimal point can be used as a primary guide. Also, the number
of significant digits in an answer can never be greater than those in the largest of the
numbers. but may be fewer. As one example. measurements of 134.023 and 1.5 can
be added or subtracted as shown below. since significant digits coincide at some place.

134.023
Fuilisd
135.523
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The sum has only four significant figures and should be expressed as 135.5. The last
two significant figures of 134.023 cannot be used, since there is no information in the
smaller measurement for coinciding positions. It is desirable to take measurements
to uniform standards of significant figures or decimal places to avoid discarding a
portion of a measurement. as we did in the case of the last two digits of 134.023.

Another example to consider is the addition of a series of measurements, the final
total of which may have more figures than any of the individual measurements. The
number of significant digits in the total will not exceed the number in the largest
measurement. Consider the eleven measurements shown here.

Measurement Range
845.6 845.55 845.65
805.8 805.75 805.85
999.6 999,55 999.65
963.4 963.35 963.45
897.6 897.55 897.65
03T 903.05 903.15
986.9 986.85 986.95
876.3 876.25 876.35
863.2 863.15 863.25
ARl 931.15 931.25
998.1 998.05 998.15
10,070.8 10,070.25  10.071.35

The total, 10.070.8, contains six digits, but only the first four are significant. Each
measurement can be thought of as an estimate within a range. as shown in the two
right-hand columns. Ths sum of the lesser values is 10,070.25 and that of the larger
15 10,071.35. The total value of the sum of the eleven measurements can fall anywhere
within these limits. The significant figures are 1. 0. 0, and 7. Beyond this, the digits
are unreliable.
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