Statistical distributions for fitting diameter and height
data in even-aged stands'

W. L. HAFLEY
Sehool af Furest Resources, North Carolina Srate University, Raleigh, NC, U.5.A. 27607

AND
H. T. SCHREUDER

U.S. Department of Agriculture Forest Serrvice, Southeastern Forest Experiment Sration,
Forest Sciences Laboratory. Research Triangle Park, NC, US.A. 27709

Received October 5, 197462
Accepted April 27, 1977

HarLey, W. L., and H. T. Scureuper. 1977, Statistical distributions for fitting diameter and
height data in even-aged stands. Can. J. For. Res. 7: 481487,

The beta, Johnson's Sy, Weibull, lognormal. gamma, and normal distributions are discussed
in terms of their flexibility in the skewness squared (3,) - kurtosis (8:) plane. The S and the
beta are clearly the most flexible distributions since they represent surfaces in the plane, whereas
the Weibull, lognormal, and gamma are represented by lines, and the normal is represented by
a single point.

The six distributions are fit to 21 data sets for which both diameters and heights are available.
The log likelihood criterion is used to rank the six distributions in regard to their fit 1o each
data set. Overall, Johnson's Sy, distribution gave the best performance in terms of quality of
fit to the variety of sample distributions.

HarLey, W, L., et H. T. ScHreuper. 1977. Statistical distributions for fitting diameter and
height data in even-aged stands. Can. J. For. Res, 7: 481487,

Les fonctions de distribution béta, Johnson S, Weibull, lognormale, zamma et normale sont
discutées en termes de leur flexibilité dans le plan des coefficients (3, 3:) mesurant respective-
ment le degré de symétrie et le degré d'aplatissement. Les fonctions Sy et béta sont les distribu-
tions les plus flexibles parce qu'elles représentent des surfaces dans le plan alors que les fonctions
Weibull. lognormale et gamma sont représentées par des lignes et la normale par un point.

Les six distributions ont €té utilisées a partir d'un ensemble de 21 observations comprenant
des mesures pour le diameétre et la hauteur. Le critere de vraisemblance maximum a €té utilisé
pour ordonner les six distributions en fonction de leur ajustement aux observations. La dis-
tribution Johnson Sy s'est avérée la meilleure en terme d'ajusiement a la distribution échan-
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tillonnale,

Introduction

For manv years there has been activity and
interest in describing the frequency distribution
of diameter measurements in forest stands using
probability density functions. In 1898 DeLio-
court applied the exponential distribution to
frequency data from all-aged forests (Mever and
Stevenson 1943). Since then, rescarchers have
used various distributions for both even-aged
and mixed-aged stands with varying degrees of
success (Bailey and Dell 1973 and references
therein: Clutter and Allison 1974 Zéhrer 1972).
Very little work has been done on height dis-
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tributions although Assmann (1961) indicates
that heights usually have negatively skewed
distributions, whereas diameters usuallv have
positively skewed distributions.

The main problem in fitting distributions has
been the choice of statistical distribution fune-
tion for describing the probabilities of interest.
The criteria for choosing a distribution appear
to be that the distribution be relatively simple to
fit in terms of parameter estimation. be suffi-
ciently flexible to fit a relatively broad spectrum
of shapes, lend itself easily to simple integration
techniques for estimating proportions in various
size classes, and, finallv, fit any given set of
observations well.

In this paper we offer what we believe to be a
new viewpoint, at least for foresters, of this
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TasLe 1. Summary of skewness and kurtosis for diameter, height, and number of trees per acre,
species composition, origin, and age for each stand?®

No. . 2
trees per Diameter Height
Stand Species® Ape acre Origin® Vb ba NN by
1 SL 20 105 N 0,08 1.95 -0.3 1.81
2 5L 25 230 P 0.68 3.87 -0.85 319
3 5L 30 200 N — 0,60 2.39 —1.13 3.10
4 5L 25 223 N 0.69 2.85 —0.18 1.63
5 SL i5 220 N —0.07 2.75 —1.77 7.64
6 SL 30 169 N —0.48 2:72 -1.60 6.07
7 LB a0 289 ™ 1.21 4.20 0.26 2,58
8 LL i5 229 N —-0.29 1.74 -0.71 2.06
o LB 20 738 N 0.76 3.33 —-0.27 2.74
10 LB 20 565 P —0.12 3.25 —0.568 3.30
11 LB 30 113 N —}.62 3.05 —1.6% 524
12 5L 18 162 P —0.65 3.40 —1.58 5.87
13 SL 1E 566 N 0.47 2.58 —0.06 2.10
14 5L a0 286 ™ 1.06 4.29 —0.31 2.26
15 5L a0 161 M 0.23 2.11 —0.64 2.32
16 5L 18 183 P -0.77 3.54 —1.86 6.33
Iy e LL 32 176 N 0.05 1.73 —0.66 2.43
18 SL 12 07 P 0.17 2.81 —0.84 3.5
19 SL a0 213 N 0.50 2.30 —0.37 2.04
20 LL 18 231 N 0.60 2.62 =0.16 2.38
21 LL 34 198 ™ —0.11 2.50 —-1.28 4.54

dEach stand 15 | acre in size (| acre = (L4035 ha).

bLL = longleaf pine, 5L = shortleal ping, and LB = loblolly pine,

¢N = natural stand and P = planted stand.

fitting activity and discuss some of the strengths
and weaknesses of distributions that have been
used for describing diameter distributions in
even-aged stands. In particular we resort to a use
of the skewness coefficient, + 3;. and kurtosis
coefficient, 3., of various statistical distributions
as a measure of the flexibility of the distributions
in regard to their changes in shape. Here
VB = gy pe¥? and Ba = py'u.®, where g, =
[Z olx — E(x))*f(x)dx, and f(x)is the probability
density function of the random variable .
Skewness. or asymmetry. is defined as a de-
parture from symmetry about the mean where
negative values indicate a distribution with a
long tail to the left and positive values a long
tail to the right. Kurtosis is zenerally considered
to be a relative measure of the flatness or
peakedness of a distribution, the larger the value
of 8- the more peaked the distribution: however,
Darlington (1970) and Hildebrand (1971) show
that in several cases g. may better be considered
a measure of bimodality, It must also be ob-
served that knowing the values of 3, and 8. does
not in itself uniguely define a distribution. 1t 1,
however, helpful in identifying distributions that

should not be fit. We present a chart of the
31-d: space and discuss the flexibility of various
statistical distributions based on this chart. We
also compare six distributions in terms of how
well they fit diameter and height data obtained
from 21 even-aged stands of southern pine
species located in the Coastal Plains geographic
region of the southeastern United States. The
data were gathered from l-acre plots (I acre =
(0.403 ha) and the stand ages span a range from
[4 to 35 vears. Five of the stands were planta-
tions and the rest were natural stands. A sum-
mary of the stand data is presented in Table I.

The 3, and 3. Space

In the statistical literature a graph of the g,-8-
spuce is commonly used to demonstrate the
range of skewness and kurtosis covered by
various statistical distributions (see Johnson and
Kotz 1970). Such a graph is extremely informa-
tive in considering the strengths and weaknesses
of the distributions. In Fig. 1, we present such a
eraph for statistical distributions that have been
suguested for describing diameter distributions,




HAFLEY AND SCHREUDER

'I_q'.
o] 1 2 2 a
2 L 1
| T IMPOSSIELE REGION
'-Lwnrnqu e
el —
1 —
[
k.
[y \\
AN
1y et 1
2 \\\
| T
| DIIRM-HL \\l\. M
i | W . W
,'32 ot \ I
[ St
' o,
! A .
o S
(‘. at G\'\\
() -
o
= T EXFONENTIAL
Eh o )
| b i |
@t ™, i "

Fic. 1. The §,—d: space showing the plois of possible
values for selected distributions,

There is in the graph an “impossible region for
which combinations of @, and 3. are mathe-
matically impossible. Further, the ordinate scale
is presented upside down. This is by tradition.
and while we can offer no plausible explanation
for why it should be so, we have chosen to con-
form to that tradition. Finally, the 3,-3- space
presented simply spans the segment of the space
appropriate to our discussion. One use of such a
graph is to suggest distributions which might fit
a set of data based on sample estimates of
8 and 8.

The normal, exponential, and uniform are all
represented by points in the space, a verification
of the fact that they all have but one shape, Very
limited regions of the space can be approximated
by distributions represented by points.

The other three distributions shown in the
figure are more flexible in terms of their ability
to approximate a broader segment of the space.
The three distributions gamma, lognormal, and
Weibull are represented by lines in the 3,-8-
space, demonstrating their capability to assume
a variety of shapes. The fact that these lines fall
rather close to each other helps to explain why
sets of data can often be fitted equally well
(or equally poorly) by either of these distribu-
tions. Their respective locations on the graph
also offer an explanation as to why the Weibull
distribution has often been found to give a
‘better fit" to diameter data than either the
gamma or lognormal. Our experience has shown
that the skewness and kurtosis estimates from
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forest mensurational data senerally fall in the
region above the upper Weibull line of Fig. 1.

A further distinction between these three dis-
tributions is their ability to represent different
types of skewness. Both the lognormal and
gamma distributions are limited to shapes that
have positive skewness, while the Weibull dis-
tribution has the ability to describe both positive
and negative skewness. Since the graph of Fig. |
presents 8, the square of the skewness coeffi-
cient, the positive and negative skewness aspect
of a set of data is not readily obvious from the
graph. One must consider the sign of v 3,. For
instance, the lower line of the Weibull plot in
Fig. | is generated by negatively skewed shapes.

Not identified in Fig. 1 is the beta distribution.
The beta distribution covers the entire region
between the gamma distribution line, the im-
possible region, and the 3. axis. Hence, the beta
distribution covers a broad spectrum of shapes
and ‘is quite flexible, fitting both positively and
negatively skewed data.

Another distribution not identified in Fig. 1,
one that has not to our knowledge been sug-
vested for use in forestry, is Johnson's Sg
distribution. N.L. Johnson (1949} proposed a
svstem of distributions which span the 3,-8.
space that are based on transformations of a
standard normal variate, His system consists
basically of three distributions identified as Sg,
Si, and Sp. (Sometimes the normal distribution,
which is a special case of the three, is included
and denoted by Sx.) The 5p distfibation is a
three-parameter lognormal distribution with one
parameter being the lower limit, the Sg dis-
tribution covers the region above the lognormal
line in Fig. 1, and the Sy distribution covers the
region below the lognormal line. Hence, John-
son’'s Sp distribution provides somewhat more
flexibility in skewness and kurtosis than the
beta distribution.

One feature of both the beta and 5y distribu-
tions is the range of positive density from 0 to 1,
thus it is necessary to identify upper and lower
limits of any data set to which the distributions
are to be fit and make the approprniate trans-
formation of scale. In many instances this
identification requires sample estimation of the
limit parameters.

We believe that the Sp distribution has some
important advantages over the beta distribution
from the viewpoint of practical application. First,
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it spans a slightly broader range of the 35,-8-
space than the beta distribution (i.e.. it covers, in
addition, the region between the lognormal and
the gamma). Second, it is possible to obtain
maximum likelihood estimators that have closed-
form solutions once we identify upper and lower
limits of the data set, where the beta distribution
requires iterative solution for the maximum like-
lihood estimators. Further, since the distribution
is obtained by a transformation on a standard
normal variate, integration over specific classes
can be accomplished by simple application of the
well tabulated standard normal. This transforma-
tion on the normal distribution also facilitates
the consideration of multivariate problems since
the wealth of literature on the multivariate nor-
mal distribution becomes appropriate (Johnson
1949b). The S distribution has four parameters,
two of which are the lower limit, e, and range.
A, respectively.

The equation for Johnson's Sg distribution is

8 A
= T Tt o=

] . it )

xew -1+ (555)]

E< X< e+ >0, — o<y <o >0,
—m < ¢ < o = ( elsewhere

X — €

where v + 6 In [ ) = Z. ~ N(0,1).

e+ A—Xx

Some Empirical Results
Moment estimators of v/3, and 3. are

B = (X — 1)
YO T - o
and
2 (Xi — x)*

- EG =0T
Fisher (1930) gives asymptotic
v 6, nand 24 nfory b, and b..
Figure 2 presents the location in the g,-d-
space of the moment estimators, b, and h., from
21 data sets of diameter and height measure-
ments obtained from even-aged stands located in
the Coastal Plain of North and South Carolina
and Georgia. Descriptive information regarding
the data sets and estimates of v 3; and 8. are
presented in Table 1. Since the graph presents b,,
negative skewness is not obvious and must be

vanances of
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evaluated in conjunction with v b, shown in
Table 1. About 40 of the diameter distributions
exhibited negative skewness: while the height
distributions, on the other hand, demonstrated
negative skewness for all but 1 of the 21 data
sets. This 1s not unexpected for even-aged stands,
particularly once stand differentiation has begun.
Hence, it should be unreasonable to attempt to
fit lognormal or gamma distributions to height
data. However, for purposes of demonstration
we have fit the beta, Sg, Weibull, gamma, log-
normal, and normal distributions to both the
diameter and height measurements in our data
sets.

In the fitting procedure we set the lower bound
for diameter at 0 in. (l in. = 254 mm) and for
height at 4.5 ft (1 ft = 0.3048 m) for all distribu-
tions. We solved iteratively to locate the upper
bounds of the Sg and beta distributions. While
the likelihood values could be improved by
iteratively solving for the lower bound of all
distributions, the conclusions would not be sub-
stantially altered. In addition, we feel that the
specified lower bounds are realistic values and
appropriate to the ultimate use of the fitted
distributions.

Tables 2 and 3 present summaries of the
quality of fit based on the log of the likelihood
for each data set. The likelihood is a measure of
the probability of the particular sample arising
given that it came from the distribution of
interest. The log of the likelihood is used because
it 1s much easier to compute than the likelihood
and provides the same result for ranking pur-
poses. The numbers in parentheses beside the
log likelihood values are the relative rankings of
the distributions for the data sets. No attempt
has been made to test for ‘goodness-of-fit’ or to
test differences between distributions. Our goal
in ranking the distributions was to attempt to
identifv one or more distributions which would
perform well over a variety of empirical data sets.

At the bottom of Tables 2 and 3 we present the
rank sums across the 21 data sets. Clearly, the
normal, lognormal, and gamma distributions are
inferior to the other three distributions in terms
of their general performance over the variety of
stands represented. The Si distribution seems to
be the most consistent performer. It was never
the poorest distribution to fit (which was also
true for the beta distribution) and was at least
the second best in all but four instances. The beta
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TabLe 2. Goodness of fit and ranking of the beta (B), Sy, Weibull (W), gamma (G), lognormal (LN), and
normal (N} distributions for diameters as measured by log likelihood criterion, with the rank sums for the
Kolmogorav-Smirnov (K-5) statistics

Stand N LN G W Si B
1 —245.87 (5) —249 .43 (6) —=245.55(4) -242.74 (3) =239.11 (1) —240.24 (2)
2 —477.09 (5) —468.80 (1) —468.28 (1) — 479 .40 (6) —468.01 (1) —468.94 (4)
3 —481.28 (4) =512.04 (6) =498.62 (5) —477.59 (3) —-466.23 (1) —467.64 (2)
4 — 501 .46 (6) — 567,38 (2) —570.39(3) —5T7.13 (5) —566.66 (1) —571.37 (4)
5 =447 .12 (%) —J56.86 (6) —451.70 (5) =447 .91 (4) —446.60 (2) —446.54 (1)
[ —393.57 (4) —413.29 (6) —404 .63 (5) —389.901(1) —391.63(2) —391.63 (3)
7 —T15.34 (6) - 666.38 (1) —674.48 (3) —-692.26 (5) —668.60 (2) —678.56 (4)
] —589.71 (4) —~611.54 (6) — 599 .09 (5) — 5B5.89 (3) =564.62 (1) —587.93 (2)
+9 —1404.62 (6) —1355.69 (2) —1360.17 (3} —1398.06 (5) —1355.31 (1) —1363.17 (4)
10 = 1020.24 (1) — 1063 .69 (6} — 1046 .34 (5) —1030.89 (2) = 1037.10 (4) —1034.03 (%)
11 —244 .51 (4) —263.05(6) =255.03 (§) =242.26 (3) —242.21(1) —242.24 (2)
12.» —321.49 (4) — 348 .68 (6) — 336 80 (5) —317.87 (3 =317.03 () =316.91 (1)
13 —1177.86 (6) —1159.56 {(4) —1154 .57 (%) — 1163 .46 (5) —1149.16 (1) —1153.69 (2)
14 —T723.76 (6) —689.91 (1) =693.66 (1) —T0B.11 (5) —690.36(2) — 696,50 (4)
15 —-400.35(5) —400.42 (6) —367.14 (4) =305 B7 (}) =382.17 (1) —393.87(2)
16 -..=384.56 (3) —429 .87 6% =410.06 (5) —382.871(1) - 383.68 (4) —384.50 (2)
17 —415.12(5) —417 .64 (6) —414.23 (4) —411.23(3) —403.32 (1) =404 .08 (2)
18 —983,5%9 (3) —-0993.22(6) —0R4.82 () — 987 .80 (5) —0980.83(2) —080.81 (1)
19 — 538 .8l (6) —525.54(2) — 525 B6 (1) —530.43 (5 —523.07(1) — 515,95 (4)
20 —526.46 (6) -511.19(2) =512.93(3) —522.06 (5) —510.91 (1) —513.79 (4
21 —430.57 (4) =443 .09 (6) — 436 38 (5) —429 .26 (3) =427 98 (D —428.08 (2)
Rank sum 96 95 &4 78 33 55
K-Srank sum 94 T8 76 B3 47 a3

Taece 3. Goodness of fit and ranking {rank in parentheses) of the beta (B), S, Weibull (W), gamma (G),
lognormal (LN}, and normal (N) distributions for heights as measured by likelihood criterion, with the
rank sums for the Kolmogorov-Smirnov (K-5) statistics

Stand N LN G W By B
| =421.47 (4) —432.54 (6) —426.65(5) —419.85(3) —=410.51 (1) —411.80(2)
2 — 759,98 (4) —~784.51 (6) —T774.94 (5) —T745.74 (3) —T741.20 (1) - 742,36 (2)
3 —R16.90 (4) —B52.65 (6) —E39.03 (5) —-B802.12(3) - T761.23 (1) —761.55 (2)
4 —033.21(4) —-0845.31(6) =938.31 (%) —0928.64(3) —910.0% (2) —908.80 (1)
5 =820.02 (4) —H72.19 (6) — 851,77 (5 - 7094 .46 (2) =T91.01 (1) —T95.77 (3)
f — 550,24 (4) —692.17 (6) —f(75.26 (5) —631.55 (1) —621.83 (1) —-625.30(2)
7 =1184.94 (5) —1191.73(6) —11B3.B6 (4) —1182.22(3) —1179.39 (1) —1180.07 (2)
B —-051.94 (4) —=986.51 (6) —971.85(% —045 38 (M) —913.46 (1) =919.07 (2)
9 — 263,69 (4 = 2709.74 (6) = 2677 .60 (5) —2616.52 (1) —2618.01 (3) =2637.31(2)
10 — 184318 () — |RE9 .90 (6) —1870.76 (5) —18X0.49(1) —1821.65(2) — 1823 .34 (3)
1] —424 0804 — 451 .41 (6) =441.31 (%) —409 B4 (3) —302.78 (1) —398.14 (1)
12 - 383.73 (4) — 636,45 (6) —614.95 (5) =571.58 (3 —536.49 (1) —558.47 ()
13 — 2160, T8 (4} —2189.26 (6) =271 .68 (3) =2M533.33 (D —2141.92 (1) = 2143.71 ()
14 - 1172.14 (4) — 1198 .89 (&) = 1185.95 (5) = 1167.27 (2 —1159.82 (1) =1160.62 (2)
15 — 670,86 (J) =695, 26 (6) —6B4.651(5) —~GbhH .69 (1) 650.22 (1) —652.41 ()
16 = 666.01 (4) —T36.81 (6) —T08 .86 (5) — 630,51 (%) —6X.59 (1) —631.73(2)
17 —677.51 () — 699, 29 (6) —690.17 (5) —670.54 (%) 63T .69 (1) — 639 .69 ()
18 — 1629 .00 (4) — 1649 . 34 (6) =1671.11 (% = 1605.53 (1) = 1626.22 (1) = 162017 (2)
19 —B45.92 (4) — 866,32 (6) —B36.61 (5 —B31.34 (3 —8237T.12(1) —BIR.32 (N
0 =R91.03 (4 =901 .94 (6) - RBUG 43 (5 —RBR. W (1) —HET.O6]) —BR7.26 ()
21 = 735,61 (4) = T69.06 (6) —T56_.28 (5) 71234 -705.26 (1) —TOR.06 (2)

Rank sum &S5 126 104 56 27 43

K-Srank sum Rl 125 106 58 26 45
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distribution was generally the second best fitting
distribution. The Weibull was generally third
best. No distribution seemed to perform any
better for either natural stands or plantations.

We performed the same sort of ranking using
the Kolmogorov-Smirnov statistic, and while
we do not present the complete results for this
statistic, the rank sums are given at the bottom
of the tables. The same relative comments hold
for the K-5 statistic as above with the exception
that the Sg failed to be at least second best in
seven instances.

The observations appear to be consistent with
the implications of the plot of the 42 b; and b.
points shown in Fig. 2. With few exceptions
these points are not close to the lines associated
with the Weibull, gamma, and lognormal dis-
tributions. For many of the points which do fall
close to these lines, the sign of b, is inappropri-
ate. In all cases where b, has a negative sign
(29 out of 42) the gamma and lognormal are
always the two poorest performing distributions.
Note, however, that calculation of &; and b. is
insufficient in itself for selecting the best dis-
tribution for a given data set. For example,
because the region of the 8,-§. space spanned by
the Sg and the beta distributions overlap, calcu-
lated values of b, and b. will not identify which
of these two distributions will give the better fit
to a given data set.

Conclusions

Each of the statistical distributions trandition-
ally considered for fitting forest mensuration
data have strengths and weaknesses which can
result in extremes of goodness-of-fit from one
data set to another. Johnson's Sg distribution,
which up to now has not been considered in
forestry, demonstrated a relative stability across
a variety of data sets.

This distribution has a considerable flexibility
in terms of its ability to fit empirical data sets and
15 relatively simple to apply. When the upper and
lower bounds of a data set are known, maximum
likelihood estimators of the parameters of the
distribution are easily computed. When only one
bound, say the lower, is known, the fitting pro-
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cedure is still not complicated. Since the dis-
tribution is a transformation on a normal variate,
the table of the standard normal distribution is
all that is necessary for calculating probabilities
associated with the distribution.

The authors prefer the Sy distribution for
another reason. The assumption of a bivariate
Sp (Sps) distribution for the distribution of
height and diameter yields a regression relation-
ship between height and diameter which appears
to be consistent with accepted concepts of the
height-diameter relationship and is a rather easy
bivariate distribution to work with (Schreuder
and Hafley 1977). The Spp distribution is a
bivariate distribution for which both marginal
distributions are Sy distributions.
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