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PREFACE

This book on decision methods for forest resource management is a complete
revision and extension of our 1987 book, Forest Management and Economics: A
Primer in Quantitative Methods. There are three main differences between the
two books. First, since 1987, much more emphasis has been placed on ecolog-
ical objectives in forest management. The new book reflects this change by con-
sidering many examples of managing forest systems with ecological objectives
or constraints, including the landscape diversity of forests, the tree diversity of
forest stands, and the use of forests for carbon sequestration. Second, every col-
lege student now uses a computer regularly and has been using one at least
since high school or earlier. Almost universally, the basic software on a personal
computer includes a spreadsheet program, often with a built-in optimizer. Thus,
every chapter in this new book shows how to implement the method under study
with a spreadsheet. Thirdly, during the past 10 years, considerable research has
been done on uncertainty in forest decision making. This has led to the addi-
tion of four chapters on modeling uncertainty, two with simulation methods
and two on Markov processes and related optimization models.

This book started from a set of notes and laboratory exercises for a course in
decision methods for resource management, taught for many years at the Uni-
versity of Wisconsin—Madison. The course is designed for senior undergrad-
uates in forest science and environmental studies, although a few graduate
students in forestry and other disciplines often take it. Like the course, this
book is meant mostly for undergraduates with little patience for theory. Our
students chose forestry to walk the woods, not to dissect arcane equations or to
waste their young years staring at computer screens. Smart undergraduates are
willing to study abstract methods and principles only if they can clearly see their
application in the woods.

Having learned this, not without a few setbacks, we developed a pedagogy in
which no more than one lecture would deal with methods or principles without
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being followed by a solid application. Wherever possible the method and the
application are developed together, the application almost calling for a method
to solve the problem being posed.

The book follows this general principle. It is meant to be mostly a book in
forest management, but with the belief that modeling is a good way to train
managers to think in terms of alternatives, opportunity cost, compromises, and
best solutions. The mathematics used are kept to a minimum. Proofs of theorems
and detailed descriptions of algorithms are avoided. Heuristics are used instead,
wherever possible. Nevertheless, mathematics are used freely if they describe a
particular concept more succinctly and precisely than lengthy verbosities.

The book does not assume any specific preparation in mathematics or other
sciences. Nevertheless, the material presented does require, by its very nature, a
certain level of mathematical maturity. This should not be a problem for most
forestry seniors, of whom a fair knowledge of mathematics and statistics is expected.

Some parts, such as the end of the Chapters 8 and 9 on uneven-aged man-
agement, use elementary linear algebra. However, all the matrix definitions and
operations needed are presented in Appendix B. This material can be taught in
less than one lecture. It would be a pity if that little extra effort stopped anyone
from studying thoroughly what is perhaps the oldest and certainly one of the
best-looking forms of forest management.

Modern quantitative methods are inseparable from computers. Again, many
forestry students now take formal courses in computer science. Nevertheless,
programming knowledge is not required to understand and use the methods
discussed in this book. All the examples in the chapters, and the related prob-
lems, can be solved with a spreadsheet with a built-in optimizer, such as the
Solver within Excel. Even the stochastic simulations are done with a spread-
sheet. Simulation being such a powerful modeling tool, we hope that this will
be only a prelude for more extensive studies using more specialized software.

In fact, our objectives in planning the book were to awaken the curiosity of
students, to expose them to many different methods, and to show with a few
examples how these methods can be used in forest resource management. The
emphasis throughout is not on how particular methods work, but rather on
how they can be used. For example, we do not want to teach how linear pro-
grams are solved, but rather how forestry problems can be expressed as linear
programs. The task of a forest manager is not to solve models, but rather to
express managerial problems in model forms for which solutions exist.

Consequently, this book is more about the art of model formulation than
about the science of model solution. Like any art, mastering it takes a long
apprenticeship, in which exposure to a variety of methods prepares students to
resist the urge to cast every problem in the mold of the technique that they
know best. Being aware of different approaches helps ensure that the best
method is selected for a particular problem.
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The decisions to discuss many different methods and to formulate and solve
the related models with spreadsheets meant that each application had to be a
simplification of models used in actual decision making. We feel that this is the
most appropriate approach for classroom instruction. The students should
spend the short time they have learning the principles of a method rather than
the intricate details of its application. Nevertheless, the longest exercises at the
end of each chapter are realistic enough that they give a good idea of the power
and limitations of each method and of the time needed for formulating and
solving a practical problem.

The undergraduate course on decision methods for resource management at
the University of Wisconsin—Madison covers Chapters 1–12, Chapter 15,
Chapter 18, and sometimes Chapter 19. Chapter 14, on uneven-aged simula-
tion, is no more difficult and could also be substituted, or added, time permit-
ting. We feel confident that Chapter 16, on Markov chains, could also be part
of an undergraduate course, if so desired. Only Chapters 13 and 17 may be
regarded as graduate-level material, although we are confident that bright
undergraduates with good guidance can master recursive optimization. 

Despite the extensive forest modeling literature, we have deliberately limited
the number of references at the end of each chapter, listing only a few that we
deemed accessible to undergraduates wanting further study of the concepts
addressed in that chapter. 

We thank our students for having served as involuntary, though sometimes
vocal, guinea pigs for the successive versions of the material presented in this
book. We also thank warmly our colleagues who have reviewed the initial
drafts, corrected errors, and provided suggestions for improvement, in partic-
ular James Turner, Joseph Chang, Lauri Valsta, Larry Leefers, Jing-Jing Liang,
Anders Nyrud, Oka Hiroyasu, Bowang Chen, Brian Schwingle, Chris Edgar,
Alan Thomson, Xiaolei Li, Mo Zhou, Ronald Raunikar, and Sijia Zhang.

We are also grateful to the people at Academic Press, in particular to Charles
Crumly and Angela Dooley for their care in managing this project.

SUPPLEMENTARY MATERIALS: Excel workbooks containing all the
spreadsheets shown in this book are available at the web page address:
www.forest.wisc.edu/facstaff/buongiorno/book/index.htm.

An instructor manual entitled Problems and Answers for Decision Methods for
Forest Resource Management is available from Academic Press (ISBN 0-12-141363-2).

We welcome comments and suggestions. Please, send them by e-mail to:
jbuongio@facstaff.wisc.edu or gilless@nature.berkeley.edu. Thank you.

Joseph Buongiorno
J. Keith Gilless
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CHAPTER 1

Introduction

1.1 SCOPE OF FOREST RESOURCE
MANAGEMENT

Forest resource management is the art and science of making decisions with
regard to the organization, use, and conservation of forests and related
resources. Forests may be actively managed for timber, water, wildlife, recre-
ation, or a combination thereof. Management also includes the “hands-off”
alternative: letting nature take its course, which may be the best thing to do in
some cases. Forest resource managers must make decisions affecting both the
very long-term future of the forest and day-to-day activities. The decisions may
deal with very complex forest systems or with simple parts. The geographic area
of concern may be an entire country, a region, a single stand of trees, or an
industrial facility. Some of the forest resource management problems we shall
consider in this book include:

Scheduling harvesting and reforestation in even-aged forests to best meet
production and ecological objectives (Chapters 4–7)

Determining what trees to harvest in uneven-aged forests and when to
harvest them to optimize timber production, revenues, or ecological
diversity (Chapters 8 and 9)



Planning the production activities in forest stands and in forest industries
to meet goals concerning revenues, employment, and pollution control
(Chapters 10 and 13)

Designing efficient road networks to provide access to recreation and
timber production projects (Chapter 11)

Managing complex projects in efficient and timely ways, given fixed
budgets and other constraints (Chapters 12 and 18) 

Recognizing the uncertainty of biological and economic outcomes and
dealing with this uncertainty in the best possible way (Chapters 14–17)

Ranking alternative investment projects in such a way that those selected
maximize the contribution to private or public welfare (Chapter 18)

Forecasting the demand, supply, and price of forest products (Chapter 19)

1.2 THE NATURE OF MODELS

In tackling problems of this sort and making related decisions, forest managers
use models. Models are abstract representations of the real world that are useful
for purposes of thinking, forecasting, and decision making. 

Models may be very informal, mostly intuitive, and supported by experience
and information that is not put together in any systematic manner. Neverthe-
less, in the process of thinking about a problem, pondering alternatives, and
reaching a decision, one undoubtedly uses a model, that is, a very abstract rep-
resentation of what the real-life problem is. Most decisions are made with this
kind of informal model. The results may be very good, especially for a smart,
experienced manager, but the process is unique to each individual and it is dif-
ficult to learn. 

Forest managers have long used more concrete models. Some are physically
very similar to what they represent. For example, a forest hydrologist may use
a sand-and-water model of a watershed that differs from the real watershed only
with respect to scale and details. Water or a liquid of higher density is made to
flow through the model at varying rates to simulate seasonal variation in pre-
cipitation and flooding. The resulting erosion is observed, and various systems
of dams and levees can be tested using this model.

A forest map is an example of a more abstract model. There is very little phys-
ical correspondence between the map and the forest it represents. Nevertheless,
maps are essential in many forestry activities. Few management decisions are
made without referring to them to define the location and the extent of activities
such as harvesting, reforestation, campground development, and  road building. 

The models dealt with in this book are even more abstract than maps. They
are mathematical models. Here, little visual analogy is left between the real world
and the model. Reality is captured by symbolic variables and by formal algebraic
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relations between them. Yet, despite or because of their abstraction, mathe-
matical models are very powerful. 

Mathematical models are not new in forestry. For example, tabular and
mathematical functions have long been used to express biometric relationships
between a stand volume per unit area, its age, and site quality. Forest econo-
mists long ago developed formulas to calculate the value of land as a function
of its expected production, forest product prices (both timber and nontimber),
management costs, and interest rates. These investment models are fundamental
to forest resource decision making. We shall study them in detail in Chapter 18.

However, most of the mathematical methods used in this book can deal with
much broader questions than the narrow issues just mentioned. They can tackle
problems with a very large number of variables and relationships. This makes
them well suited to complex, real-life managerial situations.

1.3 SYSTEMS MODELS

Forest resource management problems involve many different variables. Some
are biological, like the growth potential of a particular species of trees on a par-
ticular soil. Others are economic, like the price of timber and the cost of labor.
Still others are social, like the environmental laws that may regulate for whom
and for what a particular forest must be managed. Often, these variables are
interrelated. Changes in one of them may influence the others.

All these variables and the relationships that tie them together constitute a
system. Because of the complexity of the real forest resource systems, foresee-
ing the consequences of a particular decision is not an easy task. For example,
to increase the diversity of the trees in a forest, we may think of changing the
method, timing, or intensity of harvesting. But what exactly is the relation
between harvest, or lack thereof, and diversity? How much does the frequency
and the intensity of the harvest matter? What is the effect on the long-term
health of the forest of taking some trees and leaving others? What is the effect
of changing the harvesting pattern on the timber income from the forest? How
much will it cost, if anything, to increase forest diversity? 

System models are meant to help answer such questions. They are tools that
managers can use to predict the consequences of their actions. In a sense, a
model is a device to bring the real world to the laboratory or to the office. Man-
agers can and do carry out experiments with models that would be impossible
in reality. For example, they can try several management alternatives on a
model of their forest and observe the consequences of each alternative for many
future decades, a thing that is impossible to do with a real forest. It is this abil-
ity to experiment and predict, to ponder different choices, that makes forest sys-
tems modeling such an exciting endeavor.
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Some of the first systems models and the methods to solve them were devel-
oped during the Second World War, to assist in military operations. This led to
a body of knowledge known as operations research or management science. After
the war, operations research methods began to be applied successfully in indus-
try, agriculture, and government. In the United States, the society that coordi-
nates and promotes the activities of professionals in this field is the Institute for
Operations Research and Management Sciences. 

The first applications of operations research to forest management problems
date from the early 1960s. Their number has been growing rapidly since then.
The Society of American Foresters has had for many years an active Operations
Research Working Group. A similar group exists within the International
Union of Forest Research Organizations.

Most of the quantitative methods presented in this book are part of the field
of operations research, but investment and econometric models have an even
longer history within the field of economics. Several modern systems models in
forest resource management combine the methods of operations research and
those of economics. Economics remains an essential part of forest resource
management. Even when the objectives of management are purely ecological,
such as in designing a conservation program, economics are needed to compare
the costs, if not the benefits, of alternative approaches. 

1.4 THE ROLE OF COMPUTERS

Although systems models are formulated via mathematics, mathematics alone
cannot make them work. The reason is that only very simple mathematical models
have exact analytical solutions. For example, a simplistic model of the growth of
a deer population in a forest would state that the growth proceeds at a rate pro-
portional to the number of animals. That relation can be expressed as a simple
equation. A solution of that equation would give the population size as a function
of time. In fact, the growth of the population is also a function of the amount of
food available in the forest, which itself changes at a rate that depends on the way
the forest is managed, and so on. To model these relationships properly one needs
a system of equations for which there is no exact solution, only approximate ones.

This example is typical of systems models. By their very nature, they do not
have exact analytical solutions. They must be solved by numerical methods,
that is to say, essentially by trial and error. But algorithms can decrease the
number of trials considerably. Algorithms are methods of calculation that
ensure that, starting from a rough approximation, a good solution is approached
within a reasonable number of steps.

Algorithms have long been used in approximating solutions of equations.
But the power of algorithms has been increased immensely by computers.
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The advent of computers has caused a scientific revolution akin to the discov-
ery of differential and integral calculus. Problems that a mere 50 years ago could
not even be considered are now routinely solved in a few seconds on a personal
computer. Computers can now easily determine the best solution to problems
with several thousand variables and as many constraints on the values of these
variables. The search for optimality, that is, seeking not just a solution but the
best solution among a possibly infinite number of solutions, is a recurring theme
in operations research and a feature of several of the models studied in this book.

1.5 GOOD MODELS 

The availability of powerful and cheap computers is not without dangers. In
forestry, as in other fields, it has often led to the development of many awkward,
expensive, and cumbersome models. A good roadmap does not need confusing
topographical detail. Similarly, the best forest system models are usually the
simplest ones that reflect the key elements of the question to be answered. Too
many times, models have been sought that could “do everything.” It is usually
better to precisely define the problem to be solved and to limit a model strictly
to that problem.

In this respect, one can recognize three elements in model development:
problem definition, model building, and model implementation. There is a tight
dependency between them. A well-defined problem is half solved, and the solu-
tion of a well-defined problem is likely to be readily understood and imple-
mented. To be any good, models must ultimately help managers make decisions.
Thus, it is unfortunate that managers do not usually build models themselves.

A recent development that is helping to bridge the gap between forest resource
managers and model builders is the popularity of computer spreadsheets. Most
managers are now using spreadsheets routinely for a variety of purposes. Modern
spreadsheets have sophisticated built-in functions, including optimizers that avoid
the need for specialized computer programming. A spreadsheet is an ideal medium
for managers to develop simple, small, purpose-oriented models on their own.

With the spreadsheet as a medium and a basic knowledge of decision meth-
ods of the kind presented in this book, forest resource managers should be in a
position to develop at least prototype models of their problems and to explore
the consequences of various courses of action. A full implementation of their
models may require specialized software or programming, but the approach
itself ceases to be a “black box” with little managerial input or understanding. 

Good modeling is not a way of computing, but rather a way of thinking. More
than finding a particular solution, good models should help forest resource
managers reason through a problem in a logical manner. Thus, although the
quality of data underlying the model is important, it is not critical. Much useful

Introduction 5



understanding of a problem can be acquired by building a model with very
rough data. All-important decisions must often be made quickly. Good models
do not need the perfect data set to materialize. Instead, they help make the best
decision possible in a timely fashion with whatever data are available.
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CHAPTER 2

Principles of Linear
Programming: Formulations

2.1 INTRODUCTION

This chapter is an introduction to the method of linear programming. Here we
shall deal mostly with simple examples showing how a management problem
can be formulated as a special mathematical model called a linear program. We
shall concentrate on formulation, leaving the question of how to solve linear
programs to the next chapter.

Linear programming is a very general optimization technique. It can be
applied to many different problems, some of which have nothing to do with
forestry or even management science. Nevertheless, linear programming was
designed and is used primarily to solve managerial problems. In fact, it was one
of the first practical tools to tackle complex decision-making problems common
to industry, agriculture, and government.

For our immediate purpose, linear programming can be defined as a method
to allocate limited resources to competing activities in an optimal manner. This
definition describes well the situation faced by forest managers. The resources
with which they work, be they land, people, trees, time, or money, are always
limited. Furthermore, many of the activities that managers administer compete
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for these resources. For example, one manager might want to increase the land
area that is growing red pine, but then less land would be available for aspen.
Another manager might want to assign more of her staff to prepare timber sales,
but then fewer people would be available to do stand improvement work. She
could hire more people, but then she would have too little money.

No matter what course of action they choose, managers always face con-
straints that limit the range of their options. Linear programming is designed
to help them choose. Not only can the method show which alternatives are
possible (“feasible” in linear programming jargon), it can also help determine
the best one. But this requires that both the management objective as well as the
constraints be defined in a precise mathematical manner. Finding the best alter-
native is a recurring theme in management science, and most of the methods
presented in this book involve optimization models.

The first practical way of solving linear programs, the simplex method, was
invented by George Dantzig in the late 1940s. At first, by hand and with
mechanical desk calculators, only small problems could be solved. Using com-
puters and linear programming, one can now routinely solve problems with
several thousands of variables and constraints.

Linear programming is by far the most widely used operations research
method. Although simulation (which we shall examine in Chapters 14 and 15)
is also a very effective method, linear programming has been and continues to
be used extensively in forest management. Some of the most widely used forest
planning models to date, in the United States and abroad, in industry and on
National Forests, use linear programming or its close cousin, goal program-
ming, which we shall study in Chapter 10.

2.2 FIRST EXAMPLE: A POET AND HIS WOODS

This first example of the application of linear programming is certainly artifi-
cial, too simple to correspond to a real forestry operation. Nevertheless, it will
suffice to introduce the main concepts and definitions. Later on we will use this
same example to discuss the graphical and simplex methods for solving linear
programs. Anyway, the story is romantic.

PROBLEM DEFINITION

The protagonist is a congenial poet-forester who lives in the woods of Northern
Wisconsin. Some success in his writing allowed him to buy, about 10 years ago,
a cabin and 90 hectares (ha) of woods in good productive condition. The poet
needs to walk the beautiful woods to keep his inspiration alive. But the muses do
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not always respond, and he finds that sales from the woods come in very handy
to replenish a sometimes-empty wallet. In fact, times have been somewhat harder
than usual lately. He has firmly decided to get the most he can out of his woods.
But the arts must go on. The poet does not want to spend more than half of his
time in the woods; the rest is for prose and sonnets. Our poet has a curious mind.
He has even read about linear programming: a method to allocate scarce
resources to optimize certain objectives. He thinks that this is exactly what he
needs to get the most out of his woods while pursuing his poetic vocation.

DATA

In order to develop his model, the poet has put together the following information:

About 40 ha of the land he owns are covered with red pine plantations. The
other 50 ha contain mixed northern hardwoods. 

Having kept a very good record of his time, he figures that since he bought
these woods he has spent approximately 800 days managing the red
pine and 1500 days on the hardwoods. 

The total revenue from his forest during the same period was $36,000
from the red pine land and $60,000 from the northern hardwoods.

PROBLEM FORMULATION

Decision Variables

To formulate his model, the poet-forester needs to choose the variables to sym-
bolize his decisions. The choice of proper decision variables is critical in build-
ing a model. Some choices will make the problem far simpler to formulate and
solve than others. Unfortunately, there is no set method for choosing decision
variables. It is part of the art of model building, which can only be learned by
practice.

Nevertheless, the nature of the objective will often give some clue as to
what the decision variables should be. We noted earlier that the poet’s objec-
tive is to maximize his revenues from the property. But this has meaning only
if the revenues are finite; thus he must mean revenues per unit of time, say, per
year (meaning an average year, like any one of the past 10 enjoyable years that
the poet has spent on his property). Formally, we begin to write the objective
as:

Maximize Z = $ of revenues per year
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The revenues symbolized by the letter Z arise from managing red pine or north-
ern hardwoods or both. Therefore, a natural set of decision variables is:

X1 = the number of hectares of red pine to manage

X2 = the number of hectares of northern hardwoods to manage

These are the unknowns. We seek the values of X1 and X2 that make Z as large
as possible.

Objective Function

The objective function expresses the relationship between Z, the revenues gen-
erated by the woods, and the decision variables X1 and X2. To write this func-
tion, we need an estimate of the yearly revenues generated by each type of
forest. Since the poet has earned $36,000 on 40 ha of red pine and $60,000 on
50 ha of northern hardwoods during the past 10 years, the average earnings
have been $90 per ha per year (90 $/ha/y) for red pine and 120 $/ha/y for north-
ern hardwoods. Using these figures as measures of the poet’s expected revenues
during the coming years, we can now write his objective function as:

where the units of measurement of each variable and constant are shown in
parentheses. A good modeling practice is always to check the homogeneity of
all algebraic expressions with respect to the units of measurement. Here, Z is
expressed in dollars per year; therefore, the operations on the right of the equal-
ity sign must also yield dollars per year, which they do.

To complete the model, we must determine what constraints limit the
actions of our poet forester and then help him express these constraints in terms
of the decision variables, X1 and X2.

Land Constraints

Two constraints are very simple. The area managed in each timber type cannot
exceed the area available; that is:

Time Constraint

Another constraint is set by the fact that the poet does not want to spend more
than half his time, let us say 180 days a year, managing his woods. In order to
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write this constraint in terms of the decision variables, we note that the time he
has spent managing red pine during the past 10 years (800 days for 40 ha of
land) averages to 2 days per hectare per year (2 d/ha/y). Similarly, he has spent
3 d/ha/y on northern hardwoods (1500 days on 50 ha). 

In terms of the decision variables X1 and X2, the total time spent by the poet-
forester to manage his woods is:

and the expression of the constraint limiting this time to no more than 180 days
is:

Nonnegativity Constraints

The last constraints needed to complete the formulation of the problem state
that none of the decision variables may be negative, since they refer to areas.
Thus:

Final Model

In summary, combining the objective function and the constraints, we obtain
the complete formulation of the poet-forester problem as: Find the variables X1

and X2, which measure the number of hectares of red pine and of northern hard-
woods to manage, such that:

max Z = 90X1 + 120X2

subject to:

Note that northern hardwoods are cultivated under a selection system. This
requires more time per land area, especially to mark the trees to be cut, than the
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even-aged red pine. But in exchange, the hardwoods tend to return more per
unit of land, as reflected in the objective function. Therefore, the choice of the
best management strategy is not obvious.

In the next chapter we will learn how to solve this problem. But before that,
let us consider another example.

2.3 SECOND EXAMPLE: KEEPING THE 
RIVER CLEAN

The purpose of this second example is to illustrate the formulation of a linear
programming model that, in contrast to the poet’s problem, involves (1) mini-
mizing an objective function and (2) constraints of the greater-than-or-equal-
to form.

Also, in this problem we move away from the strict interpretation of con-
straints as limits on available resources. Here, some of the constraints express
management objectives. Furthermore, this example shows that the objective
function being optimized does not have to express monetary returns or costs.
Indeed, because it is a general optimization method, linear programming has
much broader applications than strictly financial ones.

PROBLEM DEFINITION

This story deals with a pulp mill operating in a small town in Maine. The pulp
mill makes mechanical and chemical pulp. Unfortunately, it also pollutes the
river in which it spills its spent waters. This has created enough turmoil to
change the management of the mill completely.

The previous owners felt that it would be too costly to reduce the pollution
problem. They decided to sell. The mill has been bought back by the employees
and local businesses, who now own the mill as a cooperative. The new owners
have several objectives. One is to keep at least 300 people employed at the mill.
Another is to generate at least $40,000 of revenue per day. They estimate that
this will be enough to pay operating expenses and yield a return that will keep
the mill competitive in the long run. Within these limits, everything possible
should be done to minimize pollution.

A bright forester who has already provided shrewd solutions to complex
wood procurement problems is asked to suggest an operating strategy for the
mill that will meet all these objectives simultaneously and in the best possible
way. She feels that it could be done by linear programming. Towards this end,
she has put together the following data:

Both chemical and mechanical pulp require the labor of one worker for
about 1 day, or 1 workday (wd), per ton produced.
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The chemical pulp sells at some $200 per ton, the mechanical pulp at
$100.

Pollution is measured by the biological oxygen demand (BOD). One ton of
mechanical pulp produces 1 unit of BOD, 1 ton of chemical pulp
produces 1.5 units.

The maximum capacity of the mill to make mechanical pulp is 300 tons
per day; for chemical pulp it is 200 tons per day. The two manufacturing
processes are independent; that is, the mechanical pulp line cannot be
used to make chemical pulp, and vice versa.

Given this, our forester has found that the management objectives and the tech-
nical and financial data could be put together into a linear program. Next we
show how she did it.

LINEAR PROGRAMMING FORMULATION

Decision Variables

Pollution, employment, and revenues result from the production of both types
of pulp. A natural choice for the decision variables then is:

X1 = amount of mechanical pulp produced (in tons per day, or t/d) and

X2 = amount of chemical pulp produced (t/d)

Objective Function

The objective function to minimize is the amount of pollution, Z, measured
here by units of BOD per day. In terms of the decision variables, this is:

where the units of measurement are shown in parentheses. Verify that the
objective function is homogeneous in units, that is, that the operations on the
right-hand side of the equality sign give a result in BOD/d.

Employment Constraint

One constraint expresses the objective to keep at least 300 workers employed.
In terms of the decision variables, this is:

1 1 3001 2
( )( ) ( ( ) ( )wd/t t /d wd/t) t /d workers

X X+ ≥

min .
( ) ( )( ) ( )( )

Z X X
BOD/d BOD/t t /d BOD/t t /d

= +1 1 51 2
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Revenue Constraint

A second constraint states that at least $40,000 of revenue must be generated
every day:

Capacity Constraints

Two other constraints refer to the fact that the daily production capacity of the
mill cannot be exceeded:

Nonnegativity Constraints

The quantity of mechanical and chemical pulp produced must be positive or
zero; that is:

In summary, the final form of the linear program that models the dil-
emma of the pulp-making cooperative is to find the values of X1 and X2, which
measure the amount of mechanical and chemical pulp produced daily, such
that:

min Z = X1 + 1.5X2

subject to:
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A NOTE ON MULTIPLE OBJECTIVES

In this example, although there were several management objectives (pollu-
tion, employment, and revenue), only one of them was expressed by the
objective function. The other objectives were expressed as constraints. The fact
that there is only one objective function is a general rule and not peculiar to
linear programming. In any optimization problem, only one function can be
optimized.

For example, strictly speaking it makes no sense to say that we want to max-
imize the amount of timber that a forest produces and maximize the recreation
opportunities offered in the same forest. As long as timber and recreation con-
flict, that is, as long as they use common resources, we must choose between
two options: Either we maximize timber, subject to a specified amount of recre-
ation opportunities, or we maximize recreation, subject to a certain volume of
timber production. 

One of the teachings of linear programming is that we must choose which
objective to optimize. Later, we will study methods designed to handle several
objectives with more flexibility. Goal programming is one such method, but
even in goal programming (as we shall see in Chapter 10), the optimized objec-
tive function is unique. 

2.4 STANDARD FORMULATION OF A LINEAR
PROGRAMMING PROBLEM

Any linear program may be written in several equivalent ways. For example,
like the poet’s problem, the river pollution problem can be rewritten as a max-
imization subject to less-than-or-equal-to constraints, the so-called standard
form, as follows:

max(−Z) = −X1 − 1.5X2

subject to:
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The minimization of the objective function has been changed to a maximiza-
tion of its opposite, and the direction of the first two inequalities has been
reversed by multiplying both sides by −1.

Strict equality constraints can also be expressed as less-than-or-equal-to con-
straints. For example if the cooperative wanted to employ exactly 300 workers,
the first constraint would be:

which is equivalent to these two inequalities:

the second of which can be rewritten as a less-than-or-equal-to constraint:

Furthermore, if any variable in a problem, say, X3, might take a negative
value (for example, if X3 designated the deviation with respect to a goal), then
it could be replaced in the model by the difference between two nonnegative
variables:

Thus, a linear programming problem may have an objective function that is
maximized or minimized, constraints may be inequalities in either direction
or strict equalities, and variables may take positive or negative values. Still,
the problem can always be recast in the equivalent standard form, with an
objective function that is maximized, inequalities that are all of the less-than-
or-equal-to type, and variables that are all nonnegative. The general expres-
sion of this standard form is: Find the values of n variables X1, X2,…,Xn

(referred to as decision variables or activities) such that the objective func-
tion, Z, is maximized. The objective function is a linear function of the n deci-
sion variables:

where c1,…,cn are all constant parameters. Each parameter, cj, measures the
contribution of the corresponding variable, Xj, to the objective function. For
example, if X1 increases (decreases) by one unit, then, other variables remain-
ing equal, Z increases (decreases) by c1 units.

The values that the variables can take in trying to maximize the objective
function are limited by m constraints. The constraints have the following

max Z c X c X c Xn n= + + +1 1 2 2 L

X X X X X3 4 5 4 50 0= − ≥ ≥      with            and      

− − ≤ −X X1 2 300

X X X X1 2 1 2300 300+ ≤ + ≥      and      

X X1 2 300+ =
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general expression:

where b1, b2,…,bm are constants. These constants often reflect the amounts of
available resources. For example, b1 could be the land area that a manager can
use, b2 the amount of money available to spend. In that case, each aij is a con-
stant that measures how much of resource i is used per unit of activity j. For
example, keeping the interpretation of b2 just given and assuming that X1 is the
number of hectares planted in a given year, a21 is the cost of planting one
hectare.

More generally, this interpretation means that the product aijXj is the amount
of resource i used when activity j is at the level Xj. Adding these products up
over all activities leads to the following general expression for the total amount
of resource i used by all n activities:

In linear programming Ri is referred to as the row activity i, in symmetry with
the column activity, Xj.

Adding the nonnegativity constraints completes the standard form:

The standard linear programming model can be expressed in a more com-
pact form by using the Greek capital letter sigma (Σ) to indicate summations.
The general linear programming problem is then to find Xj (j = 1,…,n) such
that:

subject to:
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2.5 SPREADSHEET FORMULATION 
OF LINEAR PROGRAMS

Much of the power of mathematical models stems from the ability to formulate
and solve them quickly with computers. For ease of learning and application,
modern spreadsheets have become the ideal software to handle many manage-
ment models. Throughout this book, we shall give examples of modeling with
the Excel software. Like several other spreadsheets, Excel contains a Solver to
find the best solution of linear programs and other problems.

SPREADSHEET FORMULATION OF THE POET’S PROBLEM

Figure 2.1 shows how the poet’s problem can be formulated in a spreadsheet.
All the fixed parameters, that is, the data, are in bold characters, while the vari-
ables, or the cells that depend on the variables, are not. The decision variables,
or activities, X1 and X2 are in cells B3:C3. The amounts of land and time avail-
able are in cells F6:F8. The data in cells B6:C8 are the amounts of resources
used per unit of each activity. The data in cells B10:C10 are the revenues per
unit of each activity.

Cells D6:D8 contain formulas expressing the amount of resource used by
the activities (the row activities). For example, the formula in cell D6 is the

FIGURE 2.1 Spreadsheet formulation of the poet’s problem. Excel workbooks containing all
the spreadsheets shown in this book are available at the web page address: www.forest.wisc.edu/
facstaff/buongiorno/book/index.htm
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POET PROBLEM
Red pine Hardwoods

Managed area 10 10
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Hardwoods land 1 10 <= 50 (ha)

Poet's time 2 3 50 <= 180 (d/y)
Total
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D6 =SUMPRODUCT(B6:C6,B$3:C$3) D6:D8
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Resources required

Objective function
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equivalent of 1X1 + 0X2, expressing the amount of red pine managed by the
poet. The “<=” symbols in cells E6:E8 remind us that the amounts of resources
used should not exceed the amounts available.

Cell D10 contains the formula of the objective function, the equivalent of Z =

90X1 + 120X2.
The spreadsheet in Figure 2.1 shows that by managing only 10 ha of red pine

and 10 ha of hardwoods, the poet would obtain yearly revenues of $2,100. He
would be using only 50 days of his time to do this.

Set up this simple model on your own spreadsheet, and explore the effect of
different values of the decision variables. In each case, check to see whether the
decision is feasible or whether it uses too much of some resource. You might find
the best solution by trial and error. In the next chapter we will learn a way to find
the best solution easily and surely with Excel’s optimization program, Solver.

SPREADSHEET FORMULATION OF THE RIVER

POLLUTION PROBLEM

Figure 2.2 shows the spreadsheet for the river pollution problem. The two vari-
ables X1 and X2, defining the production levels for mechanical and chemical
pulp, are in cells B3 and C3.

FIGURE 2.2 Spreadsheet formulation of the river pollution problem.
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RIVER POLLUTION PROBLEM
Mech pulp Chem pulp

Production 100 100

(t/d) (t/d)

Total

Employment 1 1 200 >= 300 (workers)

Revenues 100 200 30000 >= 40000 ($/d)

Mech capacity 1 100 <= 300 (t/d)

Chem capacity 1 100 <= 200 (t/d)

Total

Pollution 1 1.5 250 Min
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D6 =SUMPRODUCT(B6:C6,B$3:C$3) D6:D9

D11 =SUMPRODUCT(B11:C11,B$3:C$3)

Constraints

Objective function
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The formula in cell D6 corresponds to 1X1 + 1X2, the total number of work-
ers employed. Cell F6 contains the lower bound for the number of workers
employed. The revenues constraint is set up in the same way in cells D7 and F7. 

The last two constraints refer to the limits on production capacity. Cells
F8:F9 contain data on the mill capacity for producing each type of pulp, while
cells D8:D9 contain formulas expressing the amount of each type of capacity
being used.

Cell D11 contains the formula for the daily amount of BOD produced, cor-
responding to the objective function Z = 1X1 + 1.5X2. The “Min” label in cell
E11 is a reminder that we are trying to minimize the amount of daily BOD.
The “>=” and “<=” symbols in cells E6:E9 remind us of the direction of each
constraint.

The spreadsheet in Figure 2.2 is set up with a production of mechanical and
chemical pulp of 100 tons per day. However, this is not a feasible solution.
Although the production of each product is less than capacity, employment
and revenue generated are too low. Set up this problem in a spreadsheet, and
find a solution by trial and error that would meet all of the constraints while
possibly keeping pollution very low. You may not get the best solution; how-
ever, you will learn how to do that in the next chapter. 

2.6 ASSUMPTIONS OF LINEAR PROGRAMMING

Before proceeding to study the solutions and applications of linear program-
ming, it is worth stressing the assumptions that it makes. A linear programming
model is a satisfactory representation of a particular management problem when
all these assumptions are warranted. They will never hold exactly, but they
should be reasonable. The determination of what is reasonable or not is part of
the art of management and model building. Keep in mind that bold assumptions
are more useful in understanding the world than are complicated details.

PROPORTIONALITY

A linear programming model assumes that the contribution of any activity to
the objective function is directly proportional to the level of that activity. As the
level of the activity increases or decreases, the change in the objective function
due to a unit change of the activity remains the same. For example, in the poet-
forester problem, the contribution of red pine management to revenues is
directly proportional to the area of red pine being managed.

In a similar manner, the amount of resource used by each activity is assumed
to be directly proportional to the level of that activity. For example, the time the
poet must put in managing his land is directly proportional to the area being
managed. If, as the managed area increased, each additional hectare required an
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increasing amount of time, then the linear programming model would not be
valid, at least not without some modification.

ADDITIVITY

A linear programming model assumes that the contribution of all activities to
the objective function is just the sum of the contributions of each activity con-
sidered independently. Similarly, the total amount of a resource used by all
activities is assumed to be the sum of the amounts used by each individual
activity considered independently. This means that the contribution of each
variable does not depend on the presence or absence of the others.

In our example, regardless of what the poet-forester does with his northern
hardwoods, he will always get $90 per hectare from each hectare of managed
red pine, and it will still take him 2 days per hectare per year to manage.

DIVISIBILITY

A linear programming model assumes that all activities are continuous and can
take any positive value. This means that linear programming models are not
generally suitable in situations where the decision variables can take only inte-
ger values. For example, management decisions may require yes or no answers:
Should we build this bridge or not? 

For some problems that involve integer variables, it may be enough to com-
pute a continuous solution by ordinary linear programming and then round the
variables to the nearest integer. But this is not always appropriate. We will study
programming models that use integer variables in Chapter 11.

DETERMINISM

A linear programming model is deterministic. In computing a solution, it does
not take into account that all of the coefficients in the model are only approxi-
mations. For this reason, it is wise when using linear programming to compute
not only one solution, but several. Each solution corresponds to different, but
reasonable, assumptions regarding the values of the parameters. Such sensitiv-
ity analysis shows how sensitive a solution is to changes in the values of para-
meters. In order to arrive at good decisions, one should examine carefully those
parameters that have the most impact.

Most of the models examined in this book are deterministic. Stochastic
models, in which the random nature of some parameters is considered explicitly,
will be examined in Chapters 12 and 13 (on network analysis and dynamic pro-
gramming), in Chapters 14 and 15 (on simulation), and in Chapters 16 and 17
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(on Markov chains). Interestingly, the linear programming method will turn out
to be useful even to solve some stochastic problems.

2.7 CONCLUSION

The two examples considered in this chapter have shown the flexibility of linear
programming. Problems involving the optimization of a specific objective, sub-
ject to constraints, can be cast as linear programs. The objective may be to min-
imize or maximize something. The constraints may represent the limited
resources that the manager can work with, but they may also refer to objectives.
Only one objective can be optimized.

Formulating a forest management problem so that it could be solved by
linear programming is not always easy. It takes ingenuity and much practice,
plus some courage. The world, to be understood, must be simplified; this is
what models are all about. Linear programming is not different. It makes some
drastic assumptions, but the assumptions are not so critical as to render the
method useless. On the contrary, we shall discover in the forthcoming chapters
that linear programming is so flexible that it can be usefully applied to a wide
array of forest management problems, from harvest scheduling and multiple-
use planning to investment analysis. It can even help deal with uncertainty.
There is almost no limit, except our imagination.

PROBLEMS

2.1 Several management problems are listed here. For each, what kind of
objective function would be appropriate in a linear programming model? What
kinds of decision variables? What kinds of constraints?

(a) A farmer wants to maximize the income he will receive over the next
20 years from his woodlot. The woodlot is covered with mature sugar maple
trees that could be sold as stumpage or managed to produce maple syrup.
(b) The manager of a hardwood sawmill wants to maximize the mill’s net
revenues. The mill can produce pallet stock, dimension lumber, or some
combination of the two. Pallet stock commands a lower price than dimen-
sion lumber, but it can be produced from less expensive logs, and the daily
capacity of the mill to produce pallet stock exceeds its capacity to produce
dimension lumber.
(c) A logging contractor wants to minimize the cost of harvesting a stand
of timber. She can use mechanical fellers, workers with chainsaws, or some
of both. Leasing and operating a mechanical feller is more expensive than
hiring a worker with a chainsaw, but the feller can do more work per hour.
On the other hand, a mechanical feller cannot be used to harvest some of
the largest and most valuable trees in the stand.
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2.2 Consider the linear programming model of the poet and his woods in
Section 2.2.

(a) If the poet had received $50,000 over the last 10 years from managing his
red pine plantations and $30,000 from managing his hardwoods, how would
the coefficients of X1 and X2 change in the objective function?
(b) Suppose that the poet found that time spent pruning branches had a par-
ticularly inhibiting effect on his literary endeavors and that two-thirds of the
time devoted to managing hardwoods had to be spent pruning. If he wanted
to limit the time he spent pruning to no more than 70 days per year, what
constraint would have to be added to the model?
(c) If one-half of the time devoted to managing red pine plantations had to
be spent pruning, how would this constraint have to be further modified?
2.3 Consider the linear programming model of pulp mill management in

Section 2.3. The mill management might prefer to maximize gross revenues
while limiting pollution to no more than 300 BOD per day. Reformulate the
model to reflect this new management orientation, leaving the employment and
capacity constraints unchanged.

2.4 Consider the linear programming model of the poet and his woods in
Section 2.2.

(a) If the poet decided to manage 25 acres of red pine and 35 acres of hard-
woods, how much income would he receive from his lands each year?
(b) How much of his time would he need to manage his lands?
2.5 Consider the linear programming model of pulp mill management in

Section 2.3.
(a) If the mill’s management decided to produce 150 tons of chemical pulp
and 190 tons of mechanical pulp per day, how much pollution would result?
(b) How much revenue would this decision generate?
(c) How many people would be employed?
2.6 A logging contractor wants to maximize net revenues per day from the

operation of her four tractor-skidders and six wheeled-skidders. From her
records, she estimates her net revenue per day of operation for a tractor-skidder
at $300 and for a wheeled-skidder at $600. Only 18 people trained to operate
this kind of logging equipment are available in the local labor market, and it
takes two people to run a wheeled-skidder and three to run a tractor-skidder.

(a) Formulate this problem as a linear program, defining the units of all deci-
sion variables, coefficients, and parameters in the model.
(b) What logical constraints must be placed on the values each decision vari-
able can take?
(c) Can this problem be solved as an ordinary linear program?
2.7 A logging contractor wants to allocate her logging equipment between

two logging sites to maximize daily net revenues. She has determined that the
net revenue from a cubic meter (m3) of wood is $19 from Site 1 and $21 from
Site 2. At her disposal are two feller-skidders, one brancher-slasher, and one
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truck. Each type of equipment can be used for nine hours per day, and this time
can be divided in any proportion between the two sites. The equipment hours
needed to produce a m3 of wood from each site varies as shown in the follow-
ing table. Formulate this problem as a linear program, defining the units of all
decision variables, coefficients, and parameters in the model. (Hint: You will
need two variables, plus one constraint for each kind of equipment.)

2.8 You and your partner own a ranch on which you raise sheep and cows.
You love cows, but your partner is all for sheep. The ranch produces 1200
animal-unit months (AUM) of forage per year. An AUM is the amount of forage
necessary for the sustenance of one cow for a month. Sheep require only 0.20
AUM per month. The average profit from a cow is $300/y, compared to $100/y
from a sheep. After intense discussion, you and your partner have agreed to a
compromise in which you will keep at least 100 sheep and 50 cows on the
ranch, but no more than 200 animals in total.

(a) Formulate this problem as a linear program to find the number of cows
and sheep that would maximize total profit from the ranch, defining the
units of all decision variables, coefficients, and parameters in the model.
(b) Set up this linear program in a spreadsheet, and explore some feasible
solutions.
2.9 Consider a ponderosa pine forest that could be managed either as a mul-

tiple-use area for recreation and timber or as a wilderness that would allow
only for recreational activities. The forest consists of 1,600 ha of high-site (i.e.,
high-productivity) land and 2,400 ha of low-site land. The expected outputs
from the forest, by site and management option, are given in the following table.
(Note that the sediment going into streams in the forest is higher with multiple-
use management than with wilderness management.)

Outputs per Hectare, by Site and Management Option

High-site land Low-site land

Output Wilderness Multiple use Wilderness Multiple use

Timber (m3/ha/y) 3.5 1.2
Sediment (m3/ha/y) 0.06 0.12 0.03 0.06
Recreation (vd/ha/y) 1 0.25 0.6 0.15

Equipment Hours Needed to Produce a Cubic Meter of Wood

Feller-skidder Brancher-slasher Truck

0.30 0.30 0.17
0.40 0.15 0.17
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(a) Formulate this problem as a linear program to find the management plan
that would maximize the amount of recreation (in visitor-days per year,
vd/y) while producing at least 1,400 m3/y of timber and keeping sediments
less than 200 m3/y, defining the units of all decision variables, coefficients,
and parameters in the model. (Hint: use decision variables Xhw = hectares of
high-site land assigned to wilderness, Xhm = hectares of high-site land
assigned to multiple use, Xlw = hectares of low-site land assigned to wilder-
ness — you should be able to guess the last decision variable you need.)
(b) Set up this linear program in a spreadsheet, and explore some feasible
solutions.
2.10 You are the manager of two paper mills that manufacture three grades

of paper. You have contracts to supply at least 1600 tons of low-grade paper,
500 tons of medium-grade paper, and 200 tons of high-grade paper. It costs
$1,000/day to operate the first mill, and $2,000/day to operate the second mill.
Mill 1 produces 8 tons of low-grade paper, 1 ton of medium-grade paper, and
2 tons of high-grade paper per day. Mill 2 produces 2 tons of low-grade paper,
1 ton of medium-grade paper, and 10 tons of high-grade paper per day. 

(a) Formulate this problem as a linear program to determine how many days
each mill should operate to satisfy the order at least cost, defining the units
of all decision variables, coefficients, and parameters in the model.
(b) Set up this linear program in a spreadsheet, and explore some feasible
solutions.
(c) If you had signed a labor contract that specifies that both mills must
operate the same number of days, how would this change the problem?
2.11 Gifford Pinchot, one of the founding fathers of American forestry,

once said: “Where conflict of interest must be reconciled, the question will
always be decided from the standpoint of the greatest good for the greatest
number in the long run.” How does this statement fit with what you learned
about optimization at the end of Section 2.3?
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CHAPTER 3

Principles of Linear
Programming: Solutions

After a forest management problem has been formulated as a linear program,
the program must be solved to determine the most desirable management strat-
egy. This chapter deals with two different methods of solution. The simplest
procedure is graphic, but it can be used only with very small problems. Com-
puters use a more general technique, the simplex method. After an optimum
solution has been obtained, one can explore how sensitive it is to the values of
the parameters in the model. To this end we shall study duality, a powerful
method of sensitivity analysis in linear programming.

3.1 GRAPHIC SOLUTION OF THE 
POET’S PROBLEM

Large linear programming models that represent real managerial problems must
be solved with a computer. However, the small problem that we developed in
Section 2.2 for the poet-forester can be solved with a simple graphic procedure.
The technique illustrates well the nature of the general linear programming
solution. Recall the expression of that problem:

max Z = 90X1 + 120X2 ($/y)



subject to:

where the variable X1 is the number of hectares of red pine that the poet should
manage and X2 is the number of hectares of northern hardwoods. The object is
to find the values of these two variables that maximize Z, which measures the
poet’s annual revenue from the property. There are 40 hectares of red pine on
the property and 50 hectares of hardwoods, and the poet is willing to use up to
180 days per year to manage his forest.

Because the problem has only two decision variables, it can be represented
graphically as in Figure 3.1(a). The number of hectares of red pine is measured
on the horizontal axis, that of hardwoods on the vertical axis. Each point on this
graph represents a management decision. For example, the point P corresponds
to the decision to manage 15 hectares of red pine and 20 hectares of hardwoods.

However, given the resource constraints, not all points on the diagram cor-
respond to a possible (feasible) decision. The first task in solving a linear pro-
gram is to find all the points that are feasible; among those points we then seek
the point(s) that maximize the objective function.

FEASIBLE REGION

Since both X1 and X2 cannot be negative, only the shaded portion of Figure
3.1(a) can contain a feasible solution. In addition, the constraint X1 ≤ 40 means
that a feasible point (X1, X2) cannot lie to the right of the vertical line X1 = 40.
This is reflected in Figure 3.3(b), where the shaded area contains only the
values of X1 and X2 that are permissible thus far.

Next, the constraint X2 ≤ 50 eliminates all the points above the horizontal
line X2 = 50; the feasible region now consists of the points within the shaded
rectangle in Figure 3.1(c).

The last constraint is set by the poet’s time: 2X1 + 3X2 ≤ 180. Only the points
that lie on one side of the line 2X1 + 3X2 = 180 satisfy this restriction. To plot
that line on our figure, we need two of its points. For example, if X1 = 0, then
X2 = 60. Similarly, if X2 = 30, then X1 = (180 − 90)/2 = 45. To find on which side
of the line 2X1 + 3X2 = 180 the feasible region lies, we need to check for one
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point only. For example, at the origin, both X1 and X2 are zero and the time con-
straint holds; therefore, all the points on the same side of 2X1 + 3X2 = 180 as
the origin satisfy the poet’s time constraint.

In summary, the feasible region is represented by the shaded polygon in
Figure 3.1(d). The coordinates of any point within that region simultaneously
satisfy the land constraints, the poet’s time constraint, and the nonnegativity
constraints. In the next step we shall determine which point(s) in the feasible
region maximize the objective function.
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FIGURE 3.1 Graphic determination of the feasible region.
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BEST SOLUTION

To find the optimum solution graphically, we first determine the position of the
line that represents the objective function for some arbitrary value of the objec-
tive. For example, let Z = $1,800 per year. All the combinations of X1 and X2 that
lead to these returns lie on the line

This line has been plotted in Figure 3.2. Many of its points lie in the feasible
region. Therefore, it is indeed possible for the poet to get this amount of rev-
enue from his property, and there are many ways in which he can do it. But
could he get more? For example, could he double his income? This question is
readily answered by plotting the line

Again, there are many points on this line that are feasible. Note that this line is
parallel to the previous one but farther from the origin. 

It is clear that the best solution will be obtained by drawing a straight line
that is parallel to those we have just plotted that has at least one point within
the feasible region and that is as far from the origin as possible. Thus, the opti-
mum solution must correspond to point C in Figure 3.2.

Reading the coordinates of C on the graph (X1 = 40, X2 = 33) gives an approx-
imation of the best solution. A more precise solution can be obtained by solv-
ing the system of equations of the two lines that intersect at C:

X X X1 1 240 2 3 180= + =       and

3600 90 1201 2= +X X

1800 90 1201 2= +X X
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FIGURE 3.2 Graphic determination of the best solution.
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Therefore, the best value of X1 is:

X1
∗

= 40 ha

Substituting X1
∗ in the second equation leads to:

Therefore, the best strategy for the poet is to cultivate all the red pine he has
but only 33 ha of the hardwoods, leaving the rest idle. That it may be best in
some circumstances not to use all of the available resources is an important
lesson of linear programming.

The best value of the objective function, that is, the maximum revenue that
the poet can obtain from his land, is, then:

SENSITIVITY ANALYSIS

As mentioned in Section 2.6, linear programming assumes that the parameters
of the model are known exactly. The solution just obtained is best only if the
parameters are correct. This may not be true. It is therefore useful to do a sen-
sitivity analysis; that is to explore how the best solution changes with different
values of the parameters. The simplest form of sensitivity analysis is to observe
how the best solution responds to a change in one single parameter, keeping all
other things equal. 

For example, assume that the returns to hardwood management were
$150/ha/y, instead of $120/ha/y, while everything else stays the same. Show how
this would change the objective function and produce the best solution at point B
instead of C in Figure 3.2. The new best solution would then be X1

∗
= 15 hectares

of red pine, X2
∗

= 50 hectares of hardwoods, and Z∗
= $8,850/year of revenue.

Note that one of the resources would still not be fully used in this new best solu-
tion; the poet would now be better off by not managing 25 hectares of his red pine. 

3.2 GRAPHIC SOLUTION OF THE RIVER
POLLUTION PROBLEM

The problem of the cooperative owning the pulp mill (as described in Section
2.3) consisted of finding X1 and X2, the daily production of mechanical and
chemical pulp, such that the river pollution from mill effluents would be as
small as possible:

min Z = X1 + 1.5X2 (BOD units/day)

90 120 76001 2X X∗ ∗
+ =  y ($/ )

X2

180 80

3
33 33* .=

−
=  ha
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subject to:

The graphic solution of this linear program proceeds as follows. There are
only two decision variables in the problem; these are measured along the axes
of Figure 3.3. We first determine the possible values of X1 and X2 (feasible
region) and then find the point in this region that maximizes the objective
function (best solution).

FEASIBLE REGION

The nonnegativity constraints (X1 ≥ 0, X2 ≥ 0) limit the possible solution to the
positive part of the plane defined by the axes in Figure 3.3. In addition, the
employment constraint (X1 + X2 ≥ 300 workers) limits the solution to the half
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FIGURE 3.3 Graphic solution of the river pollution problem.
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plane to the right of the boundary line X1 + X2 = 300, which goes through the
points (X1 = 0, X2 = 300) and (X1 = 300, X2 = 0). This can be verified by observ-
ing that for any point to the left of that line, say, the origin, the employment
constraint is not satisfied.

The feasible region is limited further by the revenue constraint (100X1 +

200 X2 ≥ 40,000 $/day). The boundary line of this constraint goes through the
points (X1 = 0, X2 = 200) and (X1 = 400, X2 = 0). For the origin the constraint
is false; therefore the feasible region lies to the right of the boundary line.

Last, the possible solutions must satisfy the capacity constraints (X1 ≤ 300 tons
per day of mechanical pulp and X2 ≤ 200 tons per day of chemical pulp). Thus,
the feasible area lies below the line X2 = 200 and to the left of the line X1 = 300.

In summary, the feasible region is inside the polygon ABCD in Figure 3.3.
The figure shows that any solution to the problem requires the production of
some of both kinds of pulp. More precisely, all objectives can be achieved simul-
taneously only if at least 100 tons per day of mechanical pulp are produced
(point B in Figure 3.3) along with at least 50 tons per day of chemical pulp
(point D).

BEST SOLUTION

We find the best solution graphically by first finding the slope of the family of
straight lines that correspond to the objective function. This is done by draw-
ing the objective function for an arbitrary level of pollution, say, Z = 150 units
of BOD per day. The corresponding line, 150 = X1 + 1.5X2, goes through the
points (X1 = 0, X2 = 100) and (X1 = 150, X2 = 0).

At the origin, Z = 0; thus, the value of the objective function decreases the
closer the line Z = X1 + 1.5X2 is to the origin. Consequently, the point in Figure
3.3 that leads to the smallest possible value of Z while satisfying all the con-
straints is A.

The coordinates of A can be read directly from the graph. Alternatively, one
can solve the system of equations that define the coordinates of A:

X1 + X2 = 300 and 100X1 + 200X2 = 40,000

We eliminate X1 by first multiplying the first equation by 100 and then sub-
tracting it from the second. Solving this leads to:

X2
∗

= 100 tons/day of chemical pulp

Substituting this result in the first equation then gives:

X1
∗

= 200 tons/day of mechanical pulp
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The value of the objective function that correspond to this optimum operat-
ing strategy is:

Z∗
=X1

∗
+ 1.5X2

∗
= 350 units of BOD/day

This is the minimum amount of pollution that the pulp mill can produce while
satisfying all other objectives.

3.3 THE SIMPLEX METHOD

The graphic method that we have used to solve the two previous examples is lim-
ited to cases where there are at most two or three decision variables in the model.
For larger problems, a more general technique is needed. The simplex method is
an algebraic procedure that, when programmed on a computer, can solve prob-
lems with thousands of variables and constraints quickly and cheaply. 

This section will give only an overview of the method. The objective is to
show the principles involved rather than the laborious arithmetic manipula-
tions. The principles of the simplex method are straightforward and elegant.
The arithmetic is best left to a computer. 

SLACK VARIABLES

The first step of the simplex method is to transform all inequalities in a linear
programming model into equalities. This is done because equalities are much
easier to handle mathematically. In particular, a lot is known about the prop-
erties and solutions of systems of linear equations.

As an example, let’s recall the formulation of the poet’s problem (Section
2.2): Find the areas of red pine, X1, and of hardwoods, X2, to manage such that:

max Z = 90X1 + 120X2 ($/y)

subject to:

The first constraint can be changed into an equality by introducing one addi-
tional variable, S1, called a slack variable, as follows:

X1 + S1 = 40 and S1 ≥ 0
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Note that S1 simply measures the area of red pine that is not managed. We pro-
ceed in similar fashion with each constraint and obtain the following trans-
formed model: Find X1, X2, S1, S2, S3 such that:

max Z = 90X1 + 120X2

subject to:

where S2 is the slack variable measuring unused hardwoods land and S3 is the
slack variable measuring unused poet time.

BASIC FEASIBLE SOLUTIONS

Let us return to the geometric representation of the feasible solutions for this
linear program. For convenience, it is reproduced in Figure 3.4. The feasible
region is the entire area inside the polygon OABCD. The equations of the
boundary lines are shown on the figure.

A basic feasible solution of this linear program corresponds to the corners of
the polygon OABCD; we shall call these corners the extreme points of the fea-
sible region. For example, extreme point O corresponds to the basic feasible
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FIGURE 3.4 Extreme points and basic feasible solutions.
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solution:

(X1, X2, S1, S2, S3) = (0, 0, 40, 50, 180)

since at O, X1 = X2 = 0 and thus, from the constraints S1 = 40, S2 = 50, and S3 =

180.
Similarly, the extreme point A corresponds to the basic feasible solution:

(X1, X2, S1, S2, S3) = (0, 50, 40, 0, 30)

Note that in each basic feasible solution, there are as many positive variables as
there are constraints. Positive variables are called basic variables, while those
equal to zero are called nonbasic variables. In this example, there are always
three basic variables and two nonbasic variables. Verify that this is true for the
basic feasible solutions corresponding to extreme points B, C, and D.

This property of basic feasible solutions is general. In a linear program with
n variables and m independent constraints, a basic feasible solution has m basic
variables and n − m nonbasic ones. Constraints are independent if none can be
expressed as a linear combination of the others; that is, no constraint is a direct
consequence of the others and thus unnecessary. 

THEOREM OF LINEAR PROGRAMMING

The fundamental theorem of linear programming, which we give without proof,
states that if a best solution exists, then one of them is a basic feasible solution.

This theorem implies that in a linear program, there may be one, many, or
no solution. The theorem is fundamental because it means that to solve a linear
program one needs to consider only a finite number of solutions—the basic fea-
sible solutions corresponding to the extreme points of the feasible region.

Since the best solution of a linear program is a basic feasible solution, it has
exactly as many positive variables as there are independent constraints. If a
problem has 10 independent constraints and 10,000 variables, only 10 vari-
ables in the best solution have positive values; all the rest are zero. 

There may be even fewer positive variables in the best solution if all con-
straints are not independent. Assume there are 10 constraints in a linear pro-
gram and we get only 8 positive variables in the best solution. Then two of the
constraints must be redundant; they result necessarily from the others, and thus
they can be omitted from the model without altering the results. 

SOLUTION ALGORITHM

Given the theorem of linear programming, a possible solution procedure (an
algorithm) would be to calculate all the basic feasible solutions and to find the
one that maximizes or minimizes the objective function. But this is impractical
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for large problems, because the number of basic feasible solutions may still be
too large to examine all of them, even with a fast computer. 

The simplex method uses, instead, a steepest-ascent algorithm. It consists of
moving from one extreme point to the next adjacent extreme point of the fea-
sible region in the direction that improves the objective function most.

The process can be visualized in this way: Think of the feasible region as a
mountain, the peak of which corresponds to the optimum solution. A climber
is lost in the fog and can barely see her feet. To reach the summit, she proceeds
cautiously but surely. Keeping one foot fixed at one point, she moves the other
foot around her to find the direction of the next step that will raise her most.
When she has found it she moves in that direction. If no step in any direction
lifts the climber, she has reached the summit.

The flowchart in Figure 3.5 summarizes the various steps of the simplex
method. Step (a) consists in finding an initial feasible solution. In step (b) we
move from one extreme point to an adjacent extreme point in the direction that
most increases the objective function Z. If step (b) has improved the objective
function, step (b) is repeated. The iterations continue until no improvement in

FIGURE 3.5 Flowchart of the simplex algorithm.
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Z occurs, indicating that the optimum solution was obtained in the penultimate
iteration.

EXAMPLE

To illustrate the principles of the simplex method we will solve the poet’s prob-
lem by following the steps just described (see Figure 3.6).

Step a: Find an initial basic feasible solution. The simplest one corresponds
to point O in Figure 3.6; that is:

Nonbasic variables: X1 = 0, X2 = 0
Basic variables: S1 = 40, S2 = 50, S3 = 180
Objective function: Z0 = 0

The three slack variables are basic in this initial solution.

FIGURE 3.6 Iterations of the simplex algorithm.
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Step b1: Since the coefficient of X1 in the objective function is $90 per
hectare while the coefficient of X2 is $120 per hectare, the objective function
increases most by moving from O, in the direction of OX2, to the adjacent
extreme point A, which corresponds to the new basic feasible solution:

Nonbasic variables: S2 = 0, X1 = 0
Basic variables: X2 = 50, S1 = 40, S3 = 30
Objective function: ZA = $6,000/year

In the movement from extreme point O to A, the variable X2 that was nonbasic
has become basic, and the variable S2 that was basic has become nonbasic. This
is general; the algebraic equivalent of an adjacent extreme point is a basic fea-
sible solution with a single different basic variable. The steepest ascent chooses
as the new basic variable the one that increases the objective function the most.

Since the value of the objective function for this new basic feasible solution
is higher than for the last one, we try another iteration.

Step b2: From extreme point A we now move in the direction OX1, since
this is the only way the objective function may be increased. The adjacent
extreme point is B, corresponding to the following basic feasible solution:

Nonbasic variables: S2 = 0, S3 = 0
Basic variables: X1 = 15, X2 = 50, S1 = 25
Objective function: ZB = $7,350/year

Since the last iteration has increased the objective function, we try another one. 

Step b3: The only way the objective function may be increased is by moving
to the adjacent extreme point C, which corresponds to the basic feasible solu-
tion:

Nonbasic variables: S1 = 0, S3 = 0
Basic variables: X1 = 40, X2 = 33.3, S2 = 17.7
Objective function: ZC = $7,600/year

The last iteration having increased the objective function, we try another
one.

Step b4: The next adjacent extreme point is D, corresponding to the basic
feasible solution:

Nonbasic variables: S1 = 0, X2 = 0
Basic variables: X1 = 40, S2 = 50, S3 = 100
Objective function: ZD = $3,600/year
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This iteration has decreased the value of the objective function; therefore, the
optimum solution is the basic feasible solution corresponding to extreme point
C, reached in the previous iteration.

3.4 DUALITY IN LINEAR PROGRAMMING

Every linear programming problem has a symmetric formulation that is very
useful in interpreting the solution, especially to determine how the objective
function changes if one of the constraints changes slightly, everything else
remaining equal. This symmetric formulation is called the dual problem. It con-
tains exactly the same data as the original (primal) problem, but rearranged in
a symmetric fashion. This different way of looking at the same data yields very
useful information.

GENERAL DEFINITION

Recall the standard formulation of the linear programming problem given in
Chapter 2: Find X1, X2,…, Xn, all nonnegative, such that:

max Z = c1X1 + c2X2 + … + cnXn

subject to:

The dual of this problem is a linear program with the following characteristics:

The objective function of the dual is minimized (it would be maximized if
the primal problem were a minimization).

It has as many variables (dual variables) as there are constraints in the
primal, and all dual variables are positive or zero.

It has as many constraints as there are variables in the primal.
The coefficients aij in each column of the primal problem become

coefficients in corresponding rows of the dual (first column becomes
first row, second column second row, etc.) 

The coefficients of the objective function in the primal become the coefficients
on the right-hand side of the constraints in the dual, and vice versa.

The direction of the inequalities is reversed.
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Consequently, the dual of the standard linear program given earlier is to find
Y1 to Ym, all nonnegative, such that: 

subject to:

Duality is symmetric in that the dual of the dual is the primal. You can verify
this by applying the definition of duality to the dual, thereby recovering the
primal formulation.

APPLICATIONS OF DUALITY

The duality theorem, one of the most important of linear programming,
states that a solution of the dual exists if and only if the primal has a solution.
Furthermore, the optimum values of the objective functions of the primal and
of the dual are equal. In our notations, Z∗ = Z′∗. We shall see the usefulness of
this theorem in the following two examples.

Dual of the Poet’s Problem

Recall the linear programming model we formulated for the poet who wanted
to find the areas of red pine and hardwoods he should manage (X1, X2) in order
to maximize his annual revenues (Z) while spending no more than half of his
time in the woods. 

max Z = 90X1 + 120X2 ($/y)

subject to:
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Applying the duality definition leads to the following dual problem:

subject to:

Shadow Prices

We know from Section 3.3 that the best value of the objective function for the
primal problem is Z = $7,600 per year. The duality theorem states that the best
value of the objective function of the dual must be equal to the best value of the
objective function of the dual:

Z′∗ = Z∗ = $7,600/y

Thus, Z′, the objective function of the dual, must be measured in dollars per
year. In addition, we know the units of measurement of the coefficients of
the objective function of the dual because they are the coefficients of the right-
hand side of the primal. Consequently, one can infer the units of measurement
of the dual variables by making the objective function of the dual homoge-
neous in its units. This leads to:

where y and d refer to year and day, respectively. Verify that, with these units
for Y1, Y2, and Y3, the two constraints are also homogeneous in their units.

It is now apparent that Y1 expresses the value of using red pine land, in dol-
lars per hectare per year. Similarly, Y2 is the value of using hardwoods land, and
Y3 is the value of the poet’s time, in dollars per day. In linear programming ter-
minology, Y1, Y2, and Y3 are shadow prices.

The qualifier shadow is a reminder that these prices are not necessarily equal
to the market prices of the resources. For example, Y3 is not the value of the
poet’s time for hire; it is only an implicit value that reflects the activities in which
the poet can engage (in this problem), managing red pine and hardwoods.

The duality theorem indicates that when all resources are used in an optimal
manner, the total implicit value of the resources is equal to the annual returns.
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The shadow prices are very useful in getting the most out of a linear pro-
gramming model. To see this, assume that the dual of the poet’s problem has
been solved. Designate the value of the shadow prices at the optimum by Y1

∗, Y2
∗,

and Y3
∗. Then the expression of the objective function of the dual problem at the

optimum is:

Thus, if the red pine land available increased or decreased by 1 hectare (from
40 to 41 or 39 ha) while the amounts of hardwoods land and poet time
remained fixed, the objective function would increase or decrease by Y1

∗ ($/y).
Similarly, if the amount of hardwoods land available changed from 50 to 51 or
49 ha, the objective function would increase or decrease by Y2

∗ ($/y). And if the
amount of time available to the poet increased or decreased by 1 day per year,
the objective function would increase or decrease by Y3

∗ ($/y).
In summary, the shadow prices measure by how much the best value of the

objective function would change if the right-hand side of a constraint changed
by one unit, other things being equal.

To obtain the shadow prices it is not necessary to formulate and solve the
dual separately. Modern versions of the simplex method give simultaneously
the optimal primal and dual solution. The next section shows how to get the
dual solution with the Excel Solver. It turns out that the shadow prices for the
poet’s problem are:

Y1
∗ = 10 ($/y/ha of red pine)

Y2
∗ = 0 ($/y/ha of hardwoods)

Y3
∗ = 40 ($/day of poet’s time)

These shadow prices show that one additional hectare of land would increase
the poet’s annual revenues by $10. On the other hand, extra hardwoods would
be worth nothing. This is consistent with the fact that in the best primal solu-
tion we found that about 16.7 ha of hardwoods were not used. The third
shadow price shows that one additional day working in the woods is worth $40
to the poet. This is the most revenue that he could get by managing his woods
optimally with that additional time. This information should be most useful for
the poet to decide if the financial and esthetic benefits of versification are worth
that much.

In interpreting dual solutions, keep in mind that shadow prices are strictly
marginal values. They measure changes in the objective function that result
from small changes in each of the constraints. For example, in the poet’s prob-
lem, the shadow price Y2

∗ is zero as long as the hardwoods constraint is not bind-
ing. The best solution found in Section 3.3 showed that 16.7 ha of hardwoods

′ = + +Z Y Y Y*
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should be left idle. Thus, were the poet to sell more than 16.7 ha of his land,
the hardwoods constraint would become binding and the shadow price Y2

∗

would become positive.

Dual of the River Pollution Problem

In using the shadow prices of a linear program one must keep in mind the
direction of the inequalities and whether the objective function is minimized or
maximized. As an example of a slightly more involved interpretation of shadow
prices, let us recall the river pollution problem formulated in Section 2.3. The
primal problem was: Find X1 and X2, the tonnages of mechanical and chemical
pulp produced daily, such that:

min Z = X1 + 1.5X2 (units of BOD per day)

subject to:

This primal problem is not in the standard format, so the interpretation of the
shadow prices requires some care. 

Solving the river pollution problem with a computer program (see next sec-
tion and problem 3.4) gives the following shadow prices:

Y1
∗ = 0.5 (BOD units/day/worker)

Y2
∗ = 0.005 (BOD units/$)

Y3
∗ = 0 (BOD units/t)

Y4
∗ = 0 (BOD units/t)

We have inferred the units of each shadow price by dividing the unit of the
objective function by the units of the constraint to which the shadow price
applies.

The two easiest shadow prices to interpret are Y3
∗ and Y4

∗. They are both zero
because at the optimum solution there is excess capacity for both pulp-making
processes. This can be checked in Figure 3.3. Additional capacity would have
no effect on pollution. 

The workers’ constraint is binding. Its shadow price shows that pollution
would increase by 0.5 units of BOD per day for each additional worker that the
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cooperative might employ. Similarly, pollution would increase by 0.005 units
of BOD for each additional dollar of daily revenues that the cooperative earned.

In many linear programming problems, some careful thinking will bring
useful information out of the dual solution. Nevertheless, there are situations
in which the shadow prices are either difficult to interpret or do not have any
economic meaning because of the structure of the problem.

3.5 SPREADSHEET SOLUTION 
OF LINEAR PROGRAMS 

In Section 2.5 we learned how to formulate linear programming problems with
a computer spreadsheet and to use the spreadsheet to explore the effects of dif-
ferent choices of variables. We can then use the Solver optimization program
of Excel to find the best solution. 

SPREADSHEET SOLUTION OF THE POET’S PROBLEM

To invoke the Solver in Excel, choose the Solver command from the Tools
menu. This displays a Solver Parameters dialog box. The Solver Parameters
dialog box with the parameters for the poet’s problem is shown in Figure 3.7.
The target cell, D10, is the cell that contains the objective function in the
spreadsheet formulation of the poet’s problem.

FIGURE 3.7 Solver parameters for the poet’s problem.



Selecting the Max button directs the Solver to maximize the objective func-
tion. The Solver seeks the best solution by changing cells B3:C3, which contain
the two decision variables. 

The first line in the Subject to the Constraints window shows that the deci-
sion variables must be nonnegative. The second line indicates that the cells
D6:D8 must be less than or equal to the corresponding cells F6:F8. This means
that the red pine land managed must be at most 40 ha, the hardwoods land
managed must be at most 50 ha, and the poet’s time used must be at most 180
days per year. The Add, Change, and Delete buttons allow you to add, change,
or delete constraints. 

Before launching the Solver, click on the Options button, and check Assume
Linear Model in the Solver Options dialog box (Figure 3.8). This directs the
Solver to use the simplex method to solve the problem. 

Launch the Solver by clicking on the Solve button in the Solver Parameters
dialog box. In an instant, the program lets you know that it has found a solu-
tion. This solution (Figure 3.9) prescribes that the poet should cultivate 40 ha
of red pine and about 33.3 ha of hardwoods. The maximum annual return
would then be $7,600 per year.
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FIGURE 3.8 Setting Solver options for a linear model.
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GETTING SHADOW PRICES WITH THE SOLVER

After the Solver has found a solution, you can get the shadow prices by choos-
ing Sensitivity in the Solver Results dialog box (Figure 3.10). This commands
the Solver to do a series of sensitivity analyses, to show how the solution
responds to changes in the problem parameters. The shadow prices are the
most useful part of this sensitivity analysis. They show how the objective func-
tion changes with slight changes of the constraints.

FIGURE 3.9 Solver best solution for the poet’s problem. 
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Figure 3.11 shows the sensitivity report for the poet’s problem. The shadow
price for the red pine land constraint, which is in cell D6, is $10/ha/y. The final
value of the constraint, the land managed, is 40 ha, while the constraint right-
hand side, the land available, is also 40 ha. For the hardwoods land constraint
in cell D7 instead, the land managed is 33 ha, while the land available is 50 ha.
As a result, the shadow price is zero. Can you interpret the sensitivity report
data for cell D8? 

3.6 SUMMARY AND CONCLUSION

Linear programs with many constraints but no more than two decision variables
can be solved graphically. This graphic solution illustrates nicely the key steps
in finding a solution: First we determine the feasible region, that is, the set of
all possible values of the decision variables. Then we find the point within the
feasible region where the objective function is highest or lowest.

The simplex algorithm can be applied to a linear program of any size. It uses the
fact that if optimum solutions exist, one of them is at a corner point of the feasible
region. The simplex method consists, then, in moving from one extreme point of
the feasible region to the next in the direction that most increases the objective func-
tion. When the objective function ceases to increase, the objective function has
been found.

Every linear program has a dual formulation. The dual has one variable for
each constraint of the primal and one constraint for each variable of the primal.
At the optimum, the objective functions of primal and dual are equal. The dual
variables, or shadow prices, have a very useful interpretation: they indicate by
how much the optimum value of the objective function would change if the
right-hand side of the constraint of the primal changed by one unit. 

Linear programs can be formulated and solved efficiently with spreadsheets.
The Solvers use variants of the simplex method and calculate simultaneously
the primal problem and dual solution. To interpret the dual solution correctly
requires a full understanding of the meaning of the primal problem.
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FIGURE 3.11 Shadow prices in the Solver sensitivity report.
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PROBLEMS

3.1 Consider the problem of the poet and his woods that was solved graph-
ically in Section 3.1. Suppose that the price of hardwood lumber goes up,
increasing the return from managing northern hardwoods from $120 to
$180/ha/y.

(a) How would this change the objective function of this problem?
(b) Use the graphic solution method to determine the best way for the poet
to allocate his time between managing red pine and northern hardwoods
land given this change in his economic environment. 
(c) Perform the same analysis assuming that the return from managing
northern hardwoods increases, but this time to only $135/ha/y. Is there still
a unique best way for the poet to allocate his time?
3.2 Consider the river pollution problem that was solved graphically in

Section 3.2. Suppose that the pulp mill installs chemical recycling equipment
that reduces the pollution resulting from producing chemical pulp from 1.5 to
0.9 units of BOD/ton.

(a) How would this change the objective function?
(b) Use the graphic solution method to determine the best way for the mill
owners to allocate productive capacity between mechanical and chemical
pulp given this new technology. 
(c) Perform the same analysis assuming that the pulp mill installs, instead of
chemical recycling, solid waste treatment equipment that reduces the pollu-
tion due to mechanical pulp production from 1.0 to 0.6 units of BOD/ton.
3.3 Consider the linear programming model developed for Problem 2.7.
(a) Use the graphic solution method to determine the best way for the log-
ging contractor to allocate her logging equipment between the two logging
sites.
(b) Use the simplex algorithm demonstrated in Section 3.3 to solve the same
problem.
(c) Compare the solutions you obtained with these two different solution
methods.
3.4 Consider the river pollution problem that was solved graphically in

Section 3.2 and for which a spreadsheet model is shown in Figure 2.2.
(a) Use the Excel Solver to solve this problem, and compare your solution to
the solution obtained by solving the problem graphically.
(b) Use the Solver Results dialog box to do a sensitivity analysis (see Figure
3.10 showing how this was done for the problem of the poet and his woods).
What is the shadow price for the employment constraint?
(c) To analyze the effects of increasing the pulp mill’s employment target,
change the right-hand-side constant in the employment constraint from 300
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to 302 workers, and use the Excel Solver to solve this revised problem. How
much does the best value of the objective function change?
(d) Explain this change in terms of the shadow price you obtained in part (c).
3.5 Consider the problem of the poet and his woods, for which a spreadsheet

model is shown in Figure 2.1 and Excel Solver parameters are shown in Figure
3.7. The dual of this problem was solved in Section 3.4, and shadow prices for
the constraints are shown in Figure 3.11.

(a) Assume that the poet is willing to spend more time managing his forest.
Change the right-hand-side constant in the time constraint from 180 to 182
days, and then use the Excel Solver to solve this revised problem. How much
does the best value of the objective function change?
(b) Explain this change in terms of the fact that the shadow price for the
poet’s time constraint in the original problem was $40/day.
(c) Assume that the poet is considering buying more land. Change the right-
hand-side constant in the hardwood land constraint from 50 ha to 55 ha, and
then use the Excel Solver to solve this revised problem. How much does the
best value of the objective function change?
(d) Explain this change in terms of the fact that the shadow price for the
northern hardwoods land constraint in the original problem was $0/ha.

ANNOTATED REFERENCES

Blanning, R.W. 1974. The sources and uses of sensitivity information. Interfaces 4(4):32–38.
(Describes four different methods of evaluating the sensitivity of a model to its parameters.)

Davis, L.S., K.N. Johnson, P.S. Bettinger, and T.E. Howard. 2001. Forest Management: To Sustain

Ecological, Economic, and Social Values. McGraw-Hill, New York. 804 pp. (Chapter 6 discusses
solving linear programming models.) 

Hof, J., M. Bevers, and J. Pickens. 1995. Pragmatic approaches to optimization with random yield
coefficients. Forest Science 41(3):501–512. (Discusses several ways to account for uncertainty
in harvest yields in linear programming models.)

Kent, B.M. 1989. Forest Service Land Management Planners’ Introduction to Linear Programming.
USDA Forest Service, Gen. Tech. Report RM-173. Fort Collins, CO. 36 pp. (Discusses simple
linear programming models for forest resource management.)

Perry, C., and K.C. Crellin. 1982. The precise management meaning of a shadow price. Interfaces

12(2):61–63. (Precise explanation of shadow prices and how they can be used in decision making.)
Ragsdale, C.T. 1998. Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Man-

agement Science. South-Western College Publishing, Cincinnati, OH. 742 pp. (Chapters 2 and
3 discuss solving linear programming models graphically and with spreadsheets, and Chapter
4 discusses sensitivity analysis of solutions.)

Weintraub, A., and A. Abramovich. 1995. Analysis of uncertainty of future timber yields in forest man-
agement. Forest Science 41(2):217–234. (Discusses an approach to handling uncertainty in har-
vest yields in linear programming models by formulating constraints as probability statements.)

Winston, W.L. 1995. Introduction to Mathematical Programming. Duxbury Press, Belmont, CA.
818 pp. (Chapter 4 discusses solving linear programming models, and Chapters 5 and 6 dis-
cuss sensitivity analysis of solutions.)



53

CHAPTER 4

Even-Aged Forest
Management: A First Model

4.1 INTRODUCTION

In the next six chapters we shall study applications of linear programming to
timber harvest scheduling. Chapters 4 through 7 deal with even-aged forests,
Chapters 8 and 9 with uneven-aged, or selection, forests. 

Planning the future sequence of harvests on a forest is only one of the
numerous tasks of a forest resource manager, but it is essential for industrial
forests and it is important for multiple-use forests as well. One of the main
purposes of forestry is still to produce wood. Indeed, this is often the domi-
nant goal for industrial forests. On public forests, and many private forests as
well, an adequate balance between timber, recreation, water, and wildlife is
almost always required. The nontimber goals may constrain timber produc-
tion, or they may define the objective function. Thus, timber harvesting may
sometimes be primarily a tool to achieve nontimber objectives, such as land-
scape diversity. Regardless, it is useful to be able to plan harvest operations to
reach the desired objectives in the best possible way. The harvest-scheduling
models in this and the following chapters will help us do that, first in even-aged
forests and then in uneven-aged forests. Then, in Chapter 10, we will study
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goal-programming techniques that may be used to weigh timber production
against other goals. 

4.2 DEFINITIONS

Even-aged management deals with forests composed of even-aged stands. In
such stands, individual trees originate at about the same time, either naturally
or artificially. In addition, stands have a specific termination date at which time
all remaining trees are cut. This complete harvest is called a clear-cut.

Regeneration of even-aged stands may be done by planting or seeding. The
latter may be natural. For example, in a shelterwood system, a few old trees are
left during the period of regeneration to provide seed and protect the young
seedlings. Natural regeneration may continue for a few years after initial plant-
ing or seeding. Nevertheless, the basic management remains the same, it leads
to a total harvest and a main crop when the stand has reached rotation age.
Light cuts called thinnings are sometimes done in even-aged stands before the
final harvest.

An even-aged forest consists of a mosaic of even-aged stands of different age
and size called management units or compartments. Each unit must be big
enough for practical management, but size may vary greatly, depending on the
management objectives.

Even-aged management is used widely. Many valuable commercial species
grow best in these full-light conditions. Furthermore, even-aged management
has many economic advantages. Site preparation and planting can be done eco-
nomically over large areas, using machinery and fire. Artificial regeneration
allows the foresters to control the quality of the trees they use and to select the
best trees. As trees grow they all have approximately the same size within each
compartment. This standardization of products helps in mechanizing harvest
and simplifies processing later on at the sawmill or pulp mill. Logging costs per
unit of timber removed are lower in a clear-cutting operation than in a selec-
tion harvest, because mechanical harvesting is easier and the area that must be
covered to extract a specific amount of timber is smaller. Finally, the fresh veg-
etation that succeeds a clear-cut is a favorite food for some wildlife, such as
deer.

Nevertheless, even-aged management has some disadvantages. Clear-cut
land is ugly. This has caused considerable opposition to clear-cutting on
public forests. This esthetic problem is sometimes reduced by clear-cutting
only small tracts of land and by leaving a screen of trees around the clear-cut
areas, at least until the young trees cover the ground. In this and the follow-
ing chapters we shall learn how to alleviate some of the negative aspects of
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even-aged management with appropriate constraints in harvest-scheduling
models.

4.3 EXAMPLE: CONVERTING SOUTHERN
HARDWOODS TO PINE

In this example we shall study a linear programming model, originally pro-
posed by Curtis (1962), to manage the very simple forest represented in
Figure 4.1(a). There are only two compartments on this forest, labeled 1 and 2.
Compartment 1 has an area of 120 ha, compartment 2 has 180 ha. Southern
hardwoods of low quality currently cover the two compartments. However,
they are on distinct soils, and timber grows better in compartment 1 than in
compartment 2.

One objective of the owner of this property is to convert the entire area to
a pine plantation during a period of 15 years. The forest created at the end of
this period should be regulated, with a rotation age of 15 years. That is to say,
one-third of the forest should be covered with trees 0–5 years old, a third with
trees 6–10 years old, and another third with trees 11–15 years old. This would
lead to a pattern of age classes like that shown in Figure 4.1(b). Note, however,
that the age classes do not have to be contiguous.

Finally, the owner desires to maximize the amount of wood that will be pro-
duced from his forest during the period of conversion to pine. However, the
owner will not cut any of the pine stands before they are 15 years old.

We shall learn how to represent this problem as a linear program with deci-
sion variables, constraints, and an objective function and how to solve it to find
the best solution.

FIGURE 4.1 Hardwood forest with (a) two initial age classes converted to a regulated pine plan-
tation with (b) three age classes.
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4.4 MODEL FORMULATION

DECISION VARIABLES

The harvest-scheduling problem consists of deciding when, where, and how
much timber to cut in order to reach all management objectives.

Since we use an even-aged silviculture, a natural decision variable should
measure the area cut. More precisely, let Xij be the area to be cut from com-
partment i in period j, where i and j are integer subscripts. Here, i may take the
value 1 or 2, since there are only two compartments in the initial forest. To keep
the number of variables reasonably small, we must work with time units that
are often longer than 1 year. Let us use a time unit of 5 years in this example.
Therefore, j can take the values 1, 2, or 3, depending on whether a cut occurs
during the first 5 years of the plan, the second 5 years, or the third. As soon as
an area is cut over, it is immediately replanted with pine trees, so Xij is also the
area replanted in compartment i during period j.

Thus, all the possible harvests and reforestations in compartment 1 are
defined by the three decision variables—X11, X12, and X13—while those possi-
ble in compartment 2 are X21, X22, and X23. Naturally, all the decision variables
must be positive or zero.

CONSTRAINTS

One set of constraints expresses the fact that, no matter what the choice of vari-
ables is, the entire forest must have been cut once during the management plan.
This is necessary and sufficient to convert the entire forest to southern pine.
Therefore, for the first initial compartment we must have:

X11 + X12 + X13 = 120 ha

For the second we must have:

X21 + X22 + X23 = 180 ha

The second set of constraints expresses the requirement that the sequence of
harvests be such that it leads to a regulated pine forest at the end of the 15-year
plan. To achieve this, one must cut one-third of the forest every 5 years and
then plant it immediately with southern pine. In terms of the decision variables
we are using, this means that:

This is the area cut during the first 5 years, which by the end of the conversion
will be covered with trees 10–15 years older than when they were planted.

X X11 21

180 120

3
100+ =

+
= ha
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Similarly, during the second period we must cut and reforest:

X12 + X22 = 100 ha

and during the third period: 

X13 + X23 = 100 ha

OBJECTIVE FUNCTION

One of the management objectives is to maximize the total amount of hard-
woods produced during the conversion. Therefore, the objective function must
express the amount harvested in terms of the decision variables, Xij. Since the
decision variables measure areas cut, we need data on the amount of hard-
woods available in each compartment, per unit area, throughout the 15 years
of management. These data are shown in Table 4.1. The expected timber yield
is given in tons because we assume that the hardwoods are of poor quality,
useful only to make pulp. For example, Table 4.1 states that each hectare cut
from compartment 1 in period 2 will yield 23 tons of hardwoods (on average).
Note that the yield per unit area increases over time, because the trees in com-
partments 1 and 2 grow.

With these yield data, we can now express the objective function as a linear
function of the decision variables. The expected total forest output during the
15-year management plan is:

Z = 16X11 + 23X12 + 33X13 + 24X21 + 32X22 + 45X23 (tons)

where 16X11 + 23X12 + 33X13 is the expression of the tonnage of hardwood cut
from compartment 1 and 24X21 + 32X22 + 45X23 is the tonnage cut from com-
partment 2.

In similar fashion, one can readily calculate the tonnage produced during
any one of the three periods, in terms of the decision variables. For example,
the tonnage produced during the last 5 years of the plan is 33X13 + 45X23.

In summary, the model that expresses the problem posed in this example has
the following expression: Find X11, X12, X13, X21, X22, X23, all nonnegative, such

TABLE 4.1 Projected Yield by Compartment and 5-Year Management Period

Compartment Tons per hectare

No. Area (ha) Period 1 Period 2 Period 3

1 120 16 23 33
2 180 24 32 45
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that:

max Z = 16X11 + 23X12 + 33X13 + 24X21 + 32X22 + 45X23

subject to:

X11 + X12 + X13 = 120

X21 + X22 + X23 = 180

X11 + X21 = 100

X12 + X22 = 100

X13 + X23 = 100

A convenient way of displaying this model is shown in Table 4.2. This tableau
form gives all the information necessary to prepare the input for most linear
programming computer programs. Each column has a name (of a variable), and
each row has a name (of a constraint). For example COM1 indicates that the first
constraint refers to compartment 1, while AGC3 indicates that the last constraint
refers to the third period. In this manner, the position of each coefficient in the
tableau is clearly defined by the name of the column and the name of the row in
which it is located. 

An equivalent way of formulating this problem is as a spreadsheet, as pre-
sented in upcoming Section 4.8.

4.5 SOLUTION

The solution of the model developed in the previous section and solved with a
spreadsheet or some other computer program is given in Table 4.3. It shows the
sequence of harvests that would maximize the tonnage of wood produced in con-
verting the initial hardwood forest into a regulated pine forest. For example, 100 ha
of the first compartment are cut and replanted during the first 5 years, and the
other 20 ha during the next 5 years. We would start cutting and replanting in

TABLE 4.2 Linear Programming Tableau for the Hardwoods Conversion Example

X11 X12 X13 X21 X22 X23

Z 16 23 33 24 32 45
COM1 1 1 1 = 120
COM2 1 1 1 = 180
AGC1 1 1 = 100
AGC2 1 1 = 100
AGC3 1 1 = 100
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compartment 2 only in the second period, on 80 ha, and finishing that compart-
ment in the last period. 

The column totals show clearly that three blocks of 100 ha each are created
every 5 years, thus leading to the regulated forest that is desired. Note that the
three age classes that have been created cover land of different productivity (see
the yield data in Table 4.1). Therefore, regulation done in this way does not
ensure that the periodic yield of the forest created at the end of the conversion
will be constant. This may not be important to some owners. If it is important,
the model should be changed to reflect this objective. We shall learn how to do
that in the following chapters.

Table 4.4 shows the tonnage of wood harvested in each compartment of the
forest, by period. The total amount produced by the forest is 9,120 tons. This
is the maximum that can be obtained, given the constraints specified. But it
should be kept in mind that this may not be the only way of getting that
amount. As the theorem of linear programming told us (see Section 3.3), the
solution we get may just be one of several that would lead to the same value of
the objective function.

4.6 MAXIMIZING PRESENT VALUE

The column totals in Table 4.4 show an increasing production, from 1,600 tons
in the first five years to 3,020 tons in the next five and to 4,500 tons in the last
five. This may be just what the owner wants, but someone who is selling wood
for profit would prefer, other things being equal, to harvest earlier and to invest

TABLE 4.3 Harvest Plan That Maximizes Tonnage: Area Data

Hectares per 5-year period

Compartment 1 2 3 Total ha

1 100 20 0 120
2 0 80 100 180

Total 100 100 100 300

TABLE 4.4 Harvest Plan That Maximizes Tonnage: Tonnage Data

Tons per 5-year period

Compartment 1 2 3 Total tons

1 1,600 460 0 2,060
2 0 2,560 4,500 7,060

Total 1,600 3,020 4,500 9,120



60 Decision Methods for Forest Resource Management

the returns at an interest rate better than what is offered by the growth of the
poor hardwoods. 

The linear program we have developed earlier can be used to determine the
harvesting plan that will best meet this new objective. To do this, the objective
function must be changed. The coefficients of the decision variables should
now express the present value of the timber cut on each hectare of land and in
each time period. 

Since the timber is similar in both compartments, the price per unit of timber
is the same over the whole forest. We will also assume that the price will remain
the same in every period. In this example, the timber is arbitrarily assigned a
value of $1 per ton.

The calculations will be done with an interest rate of 5% per year. The ton-
nage cut is accounted for at the middle of the 5-year period during which it is
harvested. For example, one hectare cut from compartment 2 in period 3 yields
$45/ha when cut in period 3, i.e., 12.5 years from now on average. But its pre-
sent value at an interest rate of 0.05 per year is only:

This becomes the coefficient of X23 in the objective function. Doing this present-
value calculation for each compartment and period produces the final expres-
sion of the new objective function:

max Z′ = 14.2X11 + 16.0X12 + 17.9X13 + 21.2X21 + 22.2X22 + 24.5X23

The new optimal harvesting strategy, expressed in tonnage produced, is shown
in Table 4.5. The total volume produced by the forest is smaller than when ton-
nage was maximized. However, more is produced in the first 5 years. Also, the
entire cut in the first 5 years is in the second compartment instead of the first.

4.7 A NOTE ON REDUNDANCIES

A careful examination of the solutions of the two linear programs in Tables
4.3–4.5 shows that there are only four positive variables in the optimum solu-
tion, yet there are five constraints in the linear program (see Table 4.2). 

45
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TABLE 4.5 Harvest Plan That Maximizes Present Value: Tonnage Data

Tons per 5-year period

Compartment 1 2 3 Total tons

1 0 2,300 660 2,960
2 2,400 0 3,600 6,000

Total 2,400 2,300 4,260 8,960
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In Section 3.3 we saw that the best solution found by the simplex procedure,
if it exists, is a basic feasible solution. We also observed that a basic feasible
solution has as many basic (nonzero) variables as there are independent con-
straints. The key word here is independent. In fact, in the hardwoods conversion
example the five constraints are not independent. Any one of the constraints in
Table 4.2 can be obtained by algebraic manipulation of the other four.

For example, consider the constraint named AGC1 in Table 4.2. It can be
obtained in the following steps:

1. Add constraints COM1 and COM2, left and right, thus getting:

X11 + X12 + X13 + X21 + X22 + X23 = 300 ha

2. Add constraints AGC2 and AGC3 in the same manner:

X12 + X13 + X22 + X23 = 200 ha

3. Then subtract the second equation from the first, left and right. This
yields: X11 + X21 = 100 ha, which is the constraint AGC1.

Verify that this can be done for any one of the constraints in this model. Any
one results necessarily from the others; in other words, any one constraint is
redundant and can be eliminated without changing the problem.

Redundancy is not very important in this case since it leads to the elimina-
tion of only one equation. However, in some situations hundreds of redundant
equations can be present in a model. This increases unnecessarily the cost of
solving a model. More important, it is useful to look for redundancies because
this gives additional insight on the structure of the model. 

4.8 SPREADSHEET FORMULATION 
AND SOLUTION

Figure 4.2 shows how the forest conversion problem studied in this chapter can
be formulated in a spreadsheet. The example is the same as the one treated earlier.
Entries in bold characters are the given data. The others either are variables or are
related by formulas to the variables and the parameters.

SPREADSHEET FORMULAS

Cells B7:D8 contain the areas cut and reforested in each compartment in every
period. These are the decision variables, corresponding to the Xij in the mathe-
matical formulation. The cells E7:E8 contain the formulas for the total area cut
and reforested in each compartment during the three periods. Cells B9:D9 con-
tain the formulas for the total area cut and reforested in each period. 
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Cells G7:G8 contain the initial area in each compartment. Cells B10:D10
contain the area we want to convert in each period. 

Cells B12:D13 contain the data in Table 4.1, the tonnage per unit area in each
compartment and period. Cells B15:D16 contain the formulas for the volume
produced in each compartment and period.

FIGURE 4.2 Spreadsheet model to plan conversion of hardwoods to pine plantations.
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A B C D E F G
CONVERSION PLAN THAT MAXIMIZES PRODUCTION

Price $1 (per ton) D 5 (years)

Rate 5.0% (per year)

Period Area

1 2 3 Total available

Area converted (ha)

Comp1 100 20 0 120 = 120

Comp2 0 80 100 180 = 180

Total 100 100 100 300

Area wanted 100 100 100 300

Yield (tons/ha)

Comp1 16 23 33

Comp2 24 32 45

Production (tons)

Comp1 1600 460 0 2060

Comp2 0 2560 4500 7060

Total 1600 3020 4500 9120 max

Present value ($/ha)

Comp1 14.2 16.0 17.9

Comp2 21.2 22.2 24.5

Present value ($)

Comp1 1416 319 0 1735

Comp2 0 1775 2445 4221

Total 1416 2095 2445 5956

Key cell formulas

Cell Formula Copied to

E7 =SUM(B7:D7) E7:E10, E15:E17, 

E22:E24

B9 =SUM(B7:B8) B9:D9, B17:D17, 

B24:D24

B15 =B7*B12 B15:D16

B19 =B12*Price/(1+Rate)^(B$5*D-D/2) B19:D20

B22 =B19*B7 B22:D23



Even-Aged Forest Management: A First Model 63

Cells B19:D20 contain the formulas for the present value generated by har-
vesting 1 ha in each compartment and period. “Price,” “Rate,” and “D” are the
names of the cells that contain, respectively, the price of hardwoods per ton, the
interest rate per year, and the duration of each period, in years. 

Cells B22:D23 contain the formulas for the total present value generated
from each compartment in each period. 

SOLVER PARAMETERS

The spreadsheet in Figure 4.2 may be used to maximize either production (in
tons) or present value (in $). The figure shows the solution that maximizes pro-
duction. Figure 4.3 shows the corresponding Solver parameters. The objective
function is in the target cell, E17. This is the total production, in tons, that must
be maximized. The solver tries to maximize production by changing cells
B7:D8, which contain the decision variables. This is done while respecting the
following constraints:

B7:D8 >= 0, meaning that the decision variables must be nonnegative.
B9:D9 = B10:D10, meaning that the total hardwoods area cut and

reforested in each period must equal the area that must be converted to
pine.

E7:E8 = G7:G8, because the area cut from each compartment must equal
the area available in that compartment.

To get the conversion plan that maximized net present value, instead, one
would change the target cell to E24.

FIGURE 4.3 Solver parameters for conversion that maximizes production.
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4.9 GENERAL FORMULATION

The model we have used to solve the small example of conversion of a southern
hardwoods forest to a regulated pine plantation can be generalized to handle as
many initial compartments as necessary and as many time periods as desired.

In general, there are m initial compartments in the forest, and the manage-
ment plan is established for p periods. Each decision variable, Xij, measures the
area cut from compartment i in period j. Therefore, the complete set of mp deci-
sion variables is:

X11, X12,…, X1p, X21,…, Xm1, Xm2,…, Xmp (all positive or zero)

The area in each initial compartment is indicated by ai. A first set of con-
straints states that the area cut and reforested in each compartment throughout
the planning horizon must equal the area of that compartment; that is:

There are as many constraints of this kind as there are compartments.
A second set of constraints specifies the area that must be cut and reforested

during each period from the entire forest. Let this area be designated by yj; then:

There are as many constraints of this kind as there are periods in the plan. Any
one of the constraints is redundant, due to the fact that

where A is the total area of the forest.
To write the general form of the objective function, let cij be the increase of

the objective function due to cutting 1 hectare of land from compartment i in
period j. For example, these coefficients might measure tons of wood per
hectare or present value of the timber cut per hectare. Then each harvest Xij

contributes the amount cijXij to the objective function. The amount contributed
by compartment i alone throughout the plan is:
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and the amount contributed by the entire forest is:

In summary, the general form of the model is: Find Xij ≥ 0 for i = 1,…, m and
j = 1,…, p such that:

subject to:

In our example, all yj were equal to A/p, where A is the total area of the forest.
This was done to obtain a regulated forest with rotation age p by the end of the
plan.

4.10 CONCLUSION

The simple programming model for even-aged management presented in this
chapter is useful when one is able to decide in advance what area of the forest
will be cut and reforested periodically throughout the duration of the plan being
drawn up. The best solution will then show the location and timing of harvests
that lead to the highest production or to the highest present value.

For example, the model would be suitable in a situation where the dominant
goal is to create a regulated forest in a specified amount of time. However,
unless one is very firm about the regulation objective and on how to achieve it,
this may not be the best way to manage a forest, especially if the goal is to max-
imize production or present value.

Another limitation of the model is that, once an area of a compartment is
reforested, the plantation that is created is not reconsidered for harvest during
the entire duration of the plan. This is adequate as long as the planning hori-
zon is not too long, certainly not much longer than the desired rotation on the
target forest. The models we will study in the next two chapters will help cir-
cumvent some of these limitations.
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PROBLEMS

4.1 Consider the even-aged management model in Section 4.4 that maxi-
mizes production.

(a) Would changing the constraints for each compartment from equalities to
less-than-or-equal-to inequalities change the best solution? Why?
(b) Would changing the conversion constraints for each period from equali-
ties to greater-than-or-equal-to inequalities change the best solution? Why?
(c) What about changing the conversion constraints for each period from
equalities to less-than-or-equal-to inequalities?
4.2 Consider the even-aged management model in Section 4.4 that maxi-

mizes production and the model in Section 4.6 that maximizes present value.
(a) Would you expect the shadow prices for the corresponding constraints
in the two models to be the same? If not, why not?
(b) Verify your intuition by solving the two problems and then comparing
the shadow prices for the corresponding constraints. 
4.3 Consider the even-aged management model in Section 4.4 that maxi-

mizes production.
(a) Remove the first-period conversion constraint (X11 + X21 = 100), and
solve the revised model to verify that this constraint is redundant.
(b) Do the same with the other constraints to test that anyone of the con-
straints is redundant, given the others.
4.4 Consider the even-aged management model in Section 4.6 that maxi-

mizes present value.
(a) Calculate new objective function coefficients assuming that the guiding
rate of interest is 10% per year instead of 5%.
(b) Substitute these new coefficients into the objective function, and solve
the revised model. How does the best harvesting plan change? Why does it
change in this way?
4.5 The forester responsible for managing of 3,038 ha of southern hard-

woods wants to convert this land to a regulated pine plantation. The pine plan-
tation will be managed with a 20-year rotation. The conversion will be done in
20 years. The forester intends to maximize pulpwood production while doing
this conversion. 

The conversion will require that one-quarter of the total forest area be har-
vested and replanted in each of four (5-year) planning periods. The initial forest
consists of five compartments. The area and expected yield of hardwood pulp-
wood by compartment is shown in the following table. 

Write the objective function and constraints of a linear program that the
forester could use to determine which areas to harvest and replant in each
period.
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4.6 Formulate and solve the linear programming model developed for Prob-
lem 4.5 with a spreadsheet, and describe the solution in terms of the produc-
tion in each period and of the area and volume harvested from each
compartment in each period.

4.7 Assume a discount rate of 5% per year and a pulpwood price of $20 per
green ton.

(a) Calculate new objective function coefficients for the spreadsheet model
developed for Problem 4.6 so that the revised model could be used to deter-
mine which areas to harvest and replant in each period to maximize the pre-
sent value of pulpwood production over 20 years.
(b) How does the harvest plan differ from that obtained in Problem 4.6?
Why?
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CHAPTER 5

Area- and Volume-Control
Management with Linear
Programming

5.1 INTRODUCTION

The model we shall study in this chapter was first developed by Loucks (1964).
Part of it is similar to Curtis’ model studied in Chapter 4. The initial condition
of the forest is represented in the same manner. There are several distinct com-
partments, each treated as a separate management unit. The decision variables
are the same; they refer to the area cut from each compartment in different
periods of the management plan.

The difference lies in the way the regulation objective is handled. In Curtis’
model, this was done in a very rigid manner. In every time period, a prespec-
ified fraction of the entire forest area was cut and reforested immediately. By
the end of the plan, the entire forest had been cut and regenerated. In Louck’s
model, regulation is pursued less rigidly. Only part of the forest may be cut
during the management plan, and constraints are used to ensure that the
amount of timber removed does not exceed the long-term sustainable output
of the forest. Two specifications of these constraints will be considered, based
on the traditional management methods of area control and volume control.
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Another difference in this chapter’s model lies in the attention given to the
periodic production of the forest throughout the management plan. In Curtis’
model, production could vary from period to period as long as production
was maximized and regulation achieved. However, foresters often want har-
vests that do not vary too much over time. For example, managers of national
forests must, by law, make sure that the forest produces a nondeclining even
flow of timber. That is to say, the amount produced may increase over time,
but it should not decline. Departures may be allowed from year to year from
the planned even-flow level due to special circumstances; but decade after
decade, even flow is still the rule. It is also common, for ecological and
esthetic reasons, to limit the area or volume of harvests to a prescribed level.

5.2 PRELIMINARY DEFINITIONS

Before laying out the model to be used in this chapter, let us define the concepts
of area control and volume control as we shall use them. We should stress that
these concepts mean slightly different things to different people. The definition
given here is a somewhat flexible interpretation. We shall use another inter-
pretation in the simulation model of Chapter 15.

The concepts of area- and volume-control management are based on the model
of the regulated forest. Let A be the area of a forest. This forest is regulated if it con-
sists of r blocks of equal area, A/r, each one covered by a stand of trees in a single
age class. Therefore, if the time unit is one year, the youngest age class consists
of trees that are 0–1 year of age, the second youngest age class has trees 1–2 years
old, and so on to the oldest age class, which consists of trees r − 1 to r years old.

Every year the oldest age class is cut, starting with the oldest trees, and then
reforested immediately. For that reason, r is referred to as the rotation age. Let
vr be the volume per hectare of timber in the oldest age class, in cubic meters
(m3). Then the yearly production of the regulated forest is:

With this formula it is easy to determine the best rotation, in the sense that it
maximizes the yearly timber production. It is r*, the value of r for which vr/r is
highest. That is to say, the best rotation to maximize timber production per unit
of time is equal to the age of the stand at which its “mean annual increment” is
highest. Of course, quite different rotations are possible, depending on the
objective. We shall see in Chapter 7 that the economic rotation is usually
shorter than the rotation that maximizes the volume produced per unit of time.
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vr r
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Conversely, much longer rotations may be needed to obtain stands with large
trees and snags for purpose of biodiversity.

No matter what rotation age is used, the yearly production of the regulated
forest can be maintained perpetually, and it remains constant as long as the pro-
ductivity of the land, measured by vr, does not change.

It is this image of a rotation, so similar to the movement of a clock, and the
idea of a perpetual and constant output, akin to perpetual celestial motion, that
may explain the fascination of pioneer foresters of the sixteenth and seventeenth
centuries with the model of a regulated forest. Even now, foresters use the model
frequently, almost automatically. Although few forests are regulated or even
approach regulation, the concept is useful as a target for the future condition of
the forest, because regulation is a sufficient condition of sustained production.
We have already used the rotation concept briefly in the previous chapter. It also
plays a key role in the methods of area control and volume control. The purpose
of these methods is to ensure that no more is cut from a particular forest during
the time spanned by the management plan than what the forest could produce
in the long run, if it were regulated.

Area-control management is based on the observation that, were a regulated
forest of area A managed for y years, the total area cut during that period would
be exactly y(A/r) ha. Area-control management proceeds then to suggest that,
regardless of the status of the current forest, the area cut from it during a period
of y years should be no more than y(A/r) ha.

Volume-control management applies the same logic to standing volume
instead of area. It suggests that at most the fraction y/r of the original standing
volume be cut from the existing forest during the y years for which the harvest
schedule is being drawn up.

Both area-control and volume-control methods are largely rules of thumb.
In no way are they optimal guides. It should be clear, for example, that area con-
trol makes little sense in a forest that has very little initial volume. In that
respect, volume control has the advantage that it takes into consideration the
condition of the growing stock, but it still lacks rigor. Nevertheless, both man-
agement principles are widely used. We shall see in the next sections how they
can be integrated into a linear programming model.

5.3 EXAMPLE: OPTIMIZING THE YIELD
OF A LOBLOLLY PINE EVEN-AGED FOREST

Consider a loblolly pine forest of 500 ha, with two age classes, one of trees
20–25 years old, covering an area of 200 ha, and the other one of trees 40–45
years old, covering an area of 300 ha.
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The owner of the forest wants to maximize the volume that the forest will
produce during the next 15 years. In addition, the amount of timber produced
by the forest should increase regularly by 10% every 5 years. The silviculture is
even-aged management, with clear-cutting followed by planting. The initial
plan is to use area-control management, but the consequences of volume con-
trol should also be investigated.

DECISION VARIABLES

As in Curtis’ model in Chapter 4, the decision variables that define the future
harvest schedule are the areas cut from each initial compartment in every period
of the plan. To keep the number of variables small we must choose a suffi-
ciently long lapse of time for each period, let us say 5 years. In this example this
leads to the following decision variables: X11, X12, X13, X21, X22, X23, where the
first subscript of each variable refers to the compartment where the cut occurs
and the second refers to the time period.

OBJECTIVE FUNCTION

The objective function expresses the total volume of timber cut during the 15 years
of the plan as a linear function of the decision variables. To write it, we need
the quantity per hectare that is expected from each compartment at different
points in time in the future. These data are presented in Table 5.1. With these
data, we can now express the objective function as:

Z = 120X11 + 230X12 + 250X13 + 310X21 + 320X22 + 350X23 (m3)

The object of the problem is to find the values of the decision variables that
make this function as large as possible, subject to the constraints expressing the
other management objectives and the amount of resources available. 

There are three kinds of constraints in this model: (1) constraints that refer
to the limited land available; (2) constraints expressing the desired pattern of
production during the plan; (3) constraints subjecting the management alter-
natives to either area control or volume control.

TABLE 5.1 Expected Volumes for a Loblolly Pine Forest

Volume (m3/ha)

Compartment Period 1 Period 2 Period 3

1 120 230 250
2 310 320 350
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LAND AVAILABILITY CONSTRAINTS

The area of land that is cut in each compartment cannot exceed the area avail-
able. As in the harvest-scheduling model of Chapter 4, land that is planted
during the management plan will not be cut again before the end of the plan.
However, in contrast with that model, the entire area of each compartment does
not need to be cut. Thus, the land availability constraints take the form:

X11 + X12 + X13 ≤ 200 ha for the first compartment

and

X21 + X22 + X23 ≤ 300 ha for the second compartment

TIMBER FLOW CONSTRAINTS

These constraints express the fact that the amount of timber produced by the
forest should increase regularly by at least 10% every 5 years. Let V1, V2, and V3

be the amount of timber cut during the first, second, and third 5-year periods
of the plan, respectively. Then, a pattern of production that satisfies this man-
agement objective must be such that:

V2 = 1.10V1 and V3 = 1.10V2

The expressions of V1, V2, and V3 in terms of the decision variables are:

V1 = 120X11 + 310X21

V2 = 230X12 + 320X22

V3 = 250X13 + 350X23

The final expression of the timber flow constraints is then:

230X12 + 320X22 = 1.1(120X11 + 310X21)

and

250X13 + 350X23 = 1.1(230X12 + 320X22)

or, more compactly:

230X12 + 320X22 − 132X11 − 341X21 = 0

and

250X13 + 350X23 − 253X12 − 352X22 = 0
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AREA-CONTROL CONSTRAINT

If the forest is managed under the area-control system for y years, only the frac-
tion y/r of the entire forest area may be cut during the entire duration of the
plan, where r is the rotation age (in our example, y = 15 years).

Because the objective of the owner is to maximize the volume of timber pro-
duced by this forest, a suitable value of the rotation is the age that maximizes the
mean annual increment. For loblolly pine on this site the mean annual incre-
ment is highest at an age of 30 years. The productivity is then about 8.3 m3/ha/y.

Given this rotation age, and following the area-control principle, the allow-
able cut for this loblolly pine forest is 500 × (15/30) = 250 ha. The expression
of the area control constraint is then:

X11 + X12 + X13 + X21 + X22 + X23 ≤ 250 ha

VOLUME-CONTROL CONSTRAINT

If, instead, we choose to manage the forest according to the volume-control
principle, the allowable cut would be 1/30 of the initial standing volume during
the average year of the plan, which would amount to half of the initial volume
in 15 years. However, Loucks suggests a correction for the fact that the stand-
ing volume of the forest will grow during the 15 years. For this reason, Louck’s
allowable-cut formula is based on the average expected standing volume in any
5-year period of the entire plan rather than on just the initial volume. That is:

The allowable cut during 15 years under volume control is then: 

The final form of the volume control constraint for this example is:

120X11 + 230X12 + 250X13 + 310X21 + 320X22 + 350X23 ≤ 69,000 m3

In summary, here is the linear programming model for the management plan
of the loblolly pine forest in the example.

Find X11, X12,…, X23 such that:

max Z = 120X11 + 230X12 + 250X13 + 310X21 + 320X22 + 350X23 (m3)
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subject to:

Land availability:

X11 + X12 + X13 ≤ 200 ha

X21 + X22 + X23 ≤ 300 ha

Timber flow:

230X12 + 320X22 − 132X11 − 341X21 = 0

250X13 + 350X23 − 253X12 − 352X22 = 0

Area control:

X11 + X12 + X13 + X21 + X22 + X23 ≤ 250 ha

or
Volume control:

120X11 + 230X12 + 250X13 + 310X21 + 320X22 + 350X23 ≤ 69,000 m3

This model is presented in Table 5.2 in a form appropriate for linear pro-
gramming packages. Each column is defined by the name of a variable, and
each row or constraint is defined by a four-character name. For example, FLO1
is the constraint that imposes the 10% increase in production between period
1 and period 2. Each parameter in the linear program is then defined by the
name of the row and of the column to which it belongs.

In Table 5.2, the blank line that separates the last two constraints indicates
that usually only one of them is imposed at a time. That is, the forest is managed
under either area control or volume control but not both. In the next section we
will examine the best solutions corresponding to these two management strate-
gies. As a practical matter, both constraints can be left in the model, and in gen-
eral only one of them will be binding at the optimum.

TABLE 5.2 Linear Programming Tableau for Area Control or Volume Control

X11 X12 X13 X21 X22 X23 Control

Z 120 230 250 310 320 350 Max
COM1 1 1 1 ≤ 200 ha
COM2 1 1 1 ≤ 300 ha
FLO1 −132 230 −341 320 =
FLO2 −253 250 −352 350 =
AREC 1 1 1 1 1 1 ≤ 250 ha

VOLC 120 230 250 310 320 350 ≤ 69,000 m3

The constraint AREC is used for area-control management only, and VOLC for volume control only.
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5.4 SOLUTIONS

The solutions of the loblolly pine example are in Table 5.3 for the case of area-
control management and in Table 5.4 for volume control. The data in the two
tables show that the two management strategies do not lead to very different
results. Under both systems the first compartment remains completely
untouched. More land is cut under area control (250 ha instead of 212 ha) and
more total volume is also produced. In both cases, the quantity of timber cut
every 5 years rises regularly by 10%, as required by the timber flow constraints.

Nevertheless, it is unclear how good these control procedures really are. The
usefulness of any regulatory system depends in part on the long-term objectives
of the forest owners and on the suitability of the forest that is left at the end of
the plan to meet these objectives.

For example, Table 5.4 shows that if the owners of this forest opt for volume
control, at the end of the 15 years they will have a forest with 72 ha in the
youngest age class (trees 0–5 years old), 72 ha in the second age class (trees
6–10 years old), and 68 ha of trees 11–15 years old. In addition, there will
remain 300 − 212 = 88 ha of land from compartment 2 covered with trees 56–60
years old, which would be well beyond the rotation age of maximum mean
annual increment (30 years). The 200 ha of compartment 1 will be covered by
trees 36–40 years old.

The timber value of such a forest, including the land on which it grows, is a
function of its long-term ability to produce timber. However, what it can produce

TABLE 5.3 Best Management Plan Under Area Control 

Period

Compartment 1 2 3 Total

1 Area cut (ha) 0 0 0 0
Volume (m3) 0 0 0 0

2 Area cut (ha) 80 85 85 250
Volume (m3) 24,702 27,173 29,890 81,765

TABLE 5.4 Best Management Plan Under Volume Control

Period

Compartment 1 2 3 Total

1 Area cut (ha) 0 0 0 0
Volume (m3) 0 0 0 0

2 Area cut (ha) 67 72 72 212
Volume (m3) 20,846 22,931 25,224 69,000
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may not be easy to forecast. For that purpose it would be useful to require that
the forest be in some form of a steady-state regime when the end of the plan is
reached. We will study a model that permits one to do this in a flexible way in
the next chapter.

Meanwhile, the area- and volume-control formulas remain simple and useful
rules to lay out timber-harvesting schedules. They do, at least in a rough manner,
ensure that the long-term productive potential of the forest is not exceeded. 

5.5 ADDING CONSTRAINTS AND OBJECTIVES

The core model just presented may be changed in several ways to adapt to dif-
ferent biophysical conditions of the forest or to represent other management
objectives. Here we give two examples: (1) to recognize different land produc-
tivity in various compartments; (2) to control the size of the harvests for
esthetic reasons.

ALLOWING FOR DIFFERENT ROTATIONS

In the example used earlier, it was assumed that the two compartments differed
only by the age of the stands they were carrying but that the site quality was the
same in both. This led to the choice of the same rotation to manage the entire
forest (30 years, the age of highest mean annual increment). However, if the
sites or the species grown on the two compartments are so different that they
justify different rotation ages, then the model must be modified.

Assume, for example, that 30 years is the appropriate rotation for the second
compartment only but that it should be 40 years on the first compartment because
of its lower site quality. Then there should be two area-control constraints in the
model:

For compartment 1:

For compartment 2:

These two constraints would now replace the area-control constraint AREC in
the linear programming tableau in Table 5.2.
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Similarly, if volume control were applied, we would now have two constraints:

For compartment 1: 

For compartment 2:

CONTROLLING THE AREA OF THE CLEAR-CUTS

As pointed out earlier, one of the main drawbacks of even-aged management is
clear-cuts are unsightly. One natural way to limit this negative visual impact is
to limit the size of the clear-cut. This would be a natural thing to try in our
example, because with either area control or volume control, the harvest is con-
centrated in compartment 2, which contains the oldest trees, and the area cut
is large relative to the total area of that compartment. One may control the area
cut in each compartment and period with constraints of the form:

where is an upper bound for the area that may be clear-cut from compart-
ment i during period j. The next section shows the consequences of applying
such a constraint in the example of the loblolly pine forest.

5.6 SPREADSHEET FORMULATION 
AND SOLUTION

Figure 5.1 shows a variant of the problem studied in this chapter, formulated
and solved in a spreadsheet. The setting is the same as that of the loblolly pine
forest considered earlier. Area control is applied; but to correct for the concen-
tration of harvests in compartment 2 noted in Table 5.3, we shall limit the area
clear-cut in each compartment and period to at most 50 ha. 

SPREADSHEET FORMULAS

The entries in bold characters in Figure 5.1 are the given data; the other entries
either are variables or are related by formulas to the variables and the parameters.
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Cells B7:D8 contain the decision variables, the area cut and reforested in
each compartment and period, corresponding to the Xij in the mathematical for-
mulation. Cell F2 contains the upper bound on the area that may be cut and
reforested in each compartment and period. 

Cells E7:E8 contain the formulas for the total area cut and reforested in each
compartment. Cells B9:D9 contain the formulas for the total area cut and refor-
ested in each period. The formula in cell E9 gives the total area cut and refor-
ested from all compartments over all periods.

Cells G7:G8 contain the initial area in each compartment. The formula in cell
F3 uses these data, together with the rotation age in cell B2 and the length of the
plan in cell B3, to compute the allowable cut according to the area-control rule.

Cells B11:D12 contain the same data as Table 5.1, the volume of standing
timber per hectare in each compartment and period.

FIGURE 5.1 Spreadsheet solution of the loblolly pine forest plan, with area control and an upper
bound on the size of clear-cuts.
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HARVEST PLAN WITH AREA-CONTROL 

Rotation 30 (years) Largest cut 50 (ha)

Plan length 15 (years) Allowable cut 250 (ha)

 Period Area

1 2 3 Total available

Area cut (ha)

Comp1 42 29 29 100 <= 200

Comp2 50 50 50 150 <= 300

Total 92 79 79 250

Yield (m
3
/ha)

Comp1 120 230 250

Comp2 310 320 350

Production (m
3
)

Comp1 5035 6589 7348 18972

Comp2 15500 16000 17500 49000

Total 20535 22589 24848 67972 max

Periodic change 0.10 0.10

Timber flow constraint 0 0

Key cell formulas

Cell Formula Copied to

E7 =SUM(B7:D7) E7:E9,E14:E16

B9 =SUM(B7:B8) B9:D9, B16:D16 

F3 =SUM(G7:G8)*B3/B2

B14 =B7*B11 B14:D15

C18 =C16-(1+C17)*B16 C18:D18
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Cells B14:D15 contain the formulas for the volume harvested in each com-
partment and period. Cells B16:D16 contain the formulas for the total volume
harvested in each period. The formulas in cells E14:E15 give the volume har-
vested from each compartment, over all periods. The formula in cell E16 gives
the volume harvested from all compartments, over all periods.

Cells C17:D17 contain the desired relative change in production from period
1 to period 2 and from period 2 to period 3, expressed as fractions. The for-
mulas in cells C18:D18, when forced to equal zero, ensure that the relative
change in production from period 1 to period 2 and from period 2 to period 3
is equal to the desired relative change. 

SOLVER PARAMETERS

Figure 5.2 shows the Solver parameters to get the solution that maximizes pro-
duction, subject to area control and an upper bound on the size of the harvest
areas. The objective function is in the target cell, E16. This is the total produc-
tion, in cubic meters. The solver tries to maximize production by changing cells
B7:D8, which contain the decision variables. It does this while respecting the fol-
lowing constraints:

B7:D8 <= F2, meaning that the area harvested in each compartment and
period may not exceed 50 ha

B7:D8 >= 0, because the areas harvested cannot be negative

FIGURE 5.2 Solver parameters for the loblolly pine forest plan, with area control and an upper
bound on the size of the clear-cuts.
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C18:D18 = 0, to force the volume harvested to increase by 10% from
period 1 to period 2 and from period 2 to period 3

E7:E8 <= G7:G8, because the area harvested from each compartment may
not exceed the area of that compartment

E9 <= F3, to force the total area harvested to less than the allowable cut
according to the area-control formula

PRIMAL SOLUTION

The spreadsheet in Figure 5.1 shows the best solution for the primal problem
obtained with the Solver. In contrast with the solution shown in Table 5.3, har-
vests occur in both compartments, and only 50 ha are now harvested in the
second compartment in any one period. This would certainly reduce the visual
impact of the harvest. However, this improvement comes at a cost, because pro-
duction is now only 67,972 m3 instead of the 81,765 m3 obtained without con-
straining the size of the harvested areas.

DUAL SOLUTION

Figure 5.3 shows the dual solution produced by the sensitivity report of the
solver. The shadow price of the land in compartments 1 and 2 is zero, because
the land constraints are not binding. At the optimum, only 100 ha of the 200 ha
in compartment 1 are used, as are only 150 ha of the 300 ha available in com-
partment 2. So, having more land in either compartment would not improve
the objective function. The shadow prices of the timber flow constraints are
also zero. However, the shadow price of the area-control constraint is 184
m3/ha. Because the area-control constraint is binding (all of the allowed 250
ha are cut), increasing the allowable cut by 1 ha would increase production by
184 m3.

FIGURE 5.3 Solver dual solution for the loblolly pine forest plan, with area control and an upper
bound on the size of the clear-cuts. 

Constraints

Final Shadow Constraint

Cell Name Value Price R.H. Side

$E$7 Comp1 Total 100 0 200

$E$8 Comp2 Total 150 0 300

$C$18 Timber flow constraint   Period 0 0 0

$D$18 Timber flow constraint 0 0 0

$E$9 Total Total 250 184 250



82 Decision Methods for Forest Resource Management

5.7 GENERAL FORMULATION 

The model we have just used in the small example of the loblolly pine forest can
be generalized to deal with a forest that has many compartments and with a
management plan as long as desired.

Using the same general notation as in Chapter 4, we may have initially m com-
partments. The plan is for p periods. Then the set of decision variables is Xij,
with i = 1,…,m and j = 1,…,p. In all, there are m × p variables. Each variable
refers to the area cut from compartment i in period j .

The object of the problem is to find the values of the Xij such that the total
amount of timber produced throughout the plan is maximized. The general
form of the objective function is then:

where cij is the expected volume per hectare in compartment i and period j. The
summation over j expresses the volume produced by a specific compartment, i,
throughout the plan. The summation over both i and j expresses, then, the
volume produced by the whole forest. The objective function may be given
another meaning by changing the coefficients cij. For example, a manager may
be interested in maximizing the discounted value of the timber produced. In
that case, cij would be the expected discounted value resulting from harvesting
one hectare of land in compartment i during period j.

The land availability constraints state that the area cut in each compartment
during the plan cannot exceed the area available:

where ai is the area of compartment i. There are m constraints of this kind, one
for each compartment. In this model, an area can be cut only once during the
plan. Thus, the model is suitable only as long as the length of the plan is shorter
than the rotation.

The timber flow constraints express the relationship between the volume cut
in successive periods. Let fj be the percentage by which the cut in period j must
exceed that in period j − 1. Then the general expression of the flow constraint is:

There are p − 1 constraints of this kind.
If area control is used, the total area cut cannot exceed y(A/r), where y is the

length of the plan and r is the rotation, expressed in the same unit of time, and

c X f c X j pij ij j ij ij

i

m

i

m

− + = =− −

==

∑∑ ( )     ,...,1 0 21 1

11

X a i mij i

j

p

= =
=

∑     , ,1
1

K

max Z c Xij ij

j

p

i

m

=
==

∑∑
11



Area- and Volume-Control Management with Linear Programming 83

A is the total area of the forest. In terms of the decision variables, this gives:

If volume control is used, the volume cut cannot exceed the fraction y/r of
the expected growing stock throughout the plan. The expected growing stock
in any period j is:

and the average growing stock over the entire plan is:

So the final expression of the volume-control constraint is:

As noted in the example, there should be more than one area- or volume-
control constraint if the rotation age is not the same throughout the forest. In that
case, there is one constraint for each compartment or group of compartments that
is managed under the same rotation age. The expression of the constraints
remains the same, except the subscript i in the area and volume constraints
refers only to compartments that are managed under the same rotation.

Last, for esthetic reasons the largest area of the clear-cut in any compartment
and period may have a prespecified upper bound:

where is the largest acceptable clear-cut size. This constraint may be uni-
form over the forest, or it may vary by compartment and period.

5.8 SUMMARY AND CONCLUSION

In this chapter we have formulated and applied a model of timber harvest
scheduling in an even-aged forest that uses the old concepts of area control
and volume control, embedded within a linear program. Area control and
volume control are expressed as constraints limiting either the total area or
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the total volume cut during the duration or the plan. Additional constraints
may regulate the volume of timber produced over time or the size of the clear-
cuts. The linear program was used to maximize the volume produced, within
these constraints. 

Several variants of this model are possible. As in Chapter 4, one could try to
maximize the present value of the harvest instead of its volume. Or one could
minimize the total area harvested, subject to producing the amount of timber
allowed by the volume-control principle, of some fraction thereof. We leave the
formulation of these variants as an exercise (see Problems 5.4–5.6). 

This model does not allow cutting an area twice during the period of the
plan, a limitation that applied also to the model of Chapter 4. This may not be
a serious problem as long as the management plan is shorter than one rotation.
A more serious criticism, perhaps, is that area control and volume control are
somewhat arbitrary rules of thumb. It is hard to determine the value of the
forest left at the end of the plan under these policies. Furthermore, they may be
limiting the cutting alternatives too much, eliminating possibilities that would
increase the achievement of the management objectives. Or they may suggest
excessive harvests that would not be truly sustainable in the long run. The
model we shall study in the next chapter will correct some of these limitations. 

PROBLEMS

5.1 A forest is composed of three even-aged compartments of ponderosa
pine. The area in each compartment is shown in the table, along with projected
per-hectare volumes on each during the next three 5-year periods.

(a) With volume control, how much volume could be harvested over the
next 15 years, based on the average forest volume over all three periods?
Assume a 65-year rotation.
(b) For a harvest-scheduling model based on 5-year periods, how would you
express this volume-control constraint? (Use Xij to represent the area har-
vested from compartment i in period j.)

Projected Lumber Volume (m3/ha) per Compartment and Period for

a Ponderosa Pine Forest

Area Period
Compartment (ha) 1 2 3

1 2,450 88 99 117
2 3,760 117 157 198
3 8,965 82 93 111
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(c) With area control, how much area could be harvested over the next 15
years? Assume a 65-year rotation.
(d) For a harvest-scheduling model based on 5-year periods, how would you
express this area-control constraint?
5.2 Consider the ponderosa pine forest described in Problem 5.1. Assume that

the higher volumes per hectare in compartment 2 are a reflection of a higher site
quality than in compartments 1 and 3 so that it might be appropriate to manage
compartment 2 on a shorter rotation. Assume that compartment 2 will be man-
aged on a 55-year rotation and compartments 1 and 3 on a 75-year rotation. 

(a) With area control, what area could be harvested over the next 15 years
in compartment 2 alone?
(b) With area control, what area could be harvested in compartments 1 and
3 together?
(c) For a harvest-scheduling model based on 5-year periods, how would you
express these area-control constraints? (Use Xij to represent the area har-
vested from compartment i in period j.)
(d) With volume control, how much volume could be harvested over the
next 15 years in compartment 2 alone?
(e) With volume control, how much volume could be harvested in com-
partments 1 and 3 together?
(f) For a harvest-scheduling model based on 5-year periods, how would you
express these volume-control constraints?
5.3 Consider the ponderosa pine forest described in Problem 5.1. In a harvest-

scheduling model with a 15-year planning horizon and 5-year periods, how
would you constrain harvests to do the following? 

(a) Have an equal periodic volume. (Use Xij to represent the area harvested
from compartment i in period j.)
(b) Increase by 25% per period.
(c) Vary by no more than 10%, plus or minus, from the volume harvested in
the previous period. (Hint: This requires the use of two inequalities for each
period.)
5.4 The forester for a paper company in Wisconsin is developing a long-

term harvesting plan for 6,000 ha of aspen forestland. This plan covers a 20-
year planning horizon and is broken down into five 4-year operating periods.
The forest consists of four compartments. The area in each compartment is
shown in the table, along with the projected volume per hectare of aspen
pulpwood during the next five 4-year periods. Compartment 4 cannot be har-
vested during the first two periods because it has been cut over recently. Com-
pany policy dictates that this land must supply a constant periodic output of
pulpwood. Furthermore, production of pulpwood should be maximized; thus
the land should be managed on the rotation that maximizes mean annual
increment. For all four compartments, this implies a 40-year rotation.
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(a) Applying the area-control principle to each period, what area could be
harvested in any 4-year period? 
(b) Applying the volume-control principle to each period, what volume could
be harvested in any 4-year period? 
5.5 For the aspen forest management problem (5.4), do the following:
(a) Write the equations of a linear program to determine the harvest and
reforestation schedule that would maximize total harvest over the planning
horizon, with area control.
(b) Formulate and solve this model with a spreadsheet to determine the pro-
duction in each 4-year period and the area and volume harvested from each
compartment in each period.
(c) Add a constraint requiring that no more than 300 ha be clear-cut in any
compartment and period. How does this change the solution you obtained
in part (b)?
5.6 For the aspen forest management problem (5.4), do the following:
(a) Write the equations of a linear program to determine the harvest and
reforestation schedule that would harvest the allowable cut set by volume
control while minimizing the total area harvested over the planning horizon. 
(b) Formulate and solve this model with a spreadsheet to determine the pro-
duction in each 4-year period and the area and volume harvested from each
compartment in each period.
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CHAPTER 6

A Dynamic Model of the
Even-aged Forest

6.1 INTRODUCTION

The models we studied in the two previous chapters did not allow a tract of
land to be harvested twice during the planning period. Consequently, the
objective function was influenced only by the cut from stands that existed at
the beginning of the plan. New stands, arising from the reforestation done
after cutting, did not affect the solution. Their potential productivity was
ignored.

Nevertheless, the young stands that are created by a particular harvesting
and reforestation schedule determine the long-term production of a forest.
Therefore, the longer the planning horizon, the more important it is to take into
account how the forest left at the end of the plan influences the forest perfor-
mance. The models we studied so far had only fairly short planning horizons
(15–50 years), but regulations and owner objectives may require planning hori-
zons of a century or more. In that case, a truly dynamic model is needed, one
in which young stands can be harvested to produce timber and generate more
young stands as many times as necessary to achieve all management objectives
during the planning period. 
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The purpose of this chapter is to study such a dynamic model. It is based on
a model originally developed by Nautiyal and Pearse (1967). This model also
describes the condition of the forest at the end of the plan in a way that is more
flexible than that used in Chapter 3 and more rigorous than the area- or
volume-control approach of Chapter 4. It turns out that it is not necessary to
regulate a forest, in the sense used in Chapter 4, to ensure sustainability. We
shall present some applications of this model here; more applications will
follow in Chapter 7. 

6.2 EXAMPLE

Consider a small even-aged forest of short-leaf pine that consists of four distinct
age classes. The land is of the same quality throughout the forest (site index of
20 m at age 50 years). Age class 1 occupies 100 ha, age class 2 covers 200 ha,
and age classes 3 and 4 cover 50 ha and 150 ha, respectively. The trees of age
class 1 are 1–10 years old, those of age class 2 are 11–20 years, and those of age
class 3 and 4 are 21–30 years old and 31–40 years old, respectively.

The silvicultural program for the forest consists of clear-cutting from any age
class and reforesting immediately with trees of the same species. The owners
want to keep this property for an indefinite length of time. Therefore, the very
long-term consequences of management decisions must be predicted. Initially,
we shall assume that the owners’ objective is to maximize the landscape diver-
sity of the forest. We shall later study the effect of economic objectives and
alternative timber flow policies.

6.3 A MODEL OF FOREST GROWTH

To monitor the evolution of the forest over time, the forest is inventoried at the
beginning of each decade. The state of the forest at each inventory is repre-
sented with state variables, and the interventions between inventories (the areas
harvested and reforested) are designated by decision variables, as described
next.

STATE VARIABLES

Let Aij be the area in age class i at the beginning of decade j. Stand age is mea-
sured in decades. This set of variables defines the state of the forest at that time.
Thus, in our example, the initial forest state is: A11 = 100 ha, A21 = 200 ha, A31 =
50 ha, A41 = 150 ha. Age classes may be contiguous or dispersed throughout the
forest.
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DECISION VARIABLES

Let Xij be the area cut and reforested from age class i during decade j. In con-
trast with the models studied in the last two chapters, the subscript i does not
refer to a geographic location. For example, X34 refers to harvest in age class 3
(trees 21–30 years old) during the 4th decade, without specifying where that
age class is located. One could keep track of location with another subscript,
but we shall not do so, to keep the notation simple.

GROWTH EQUATIONS

With these definitions, it is possible to predict the state of the forest at each
future inventory. Table 6.1 shows all the state and decision variables needed to
describe the evolution of our sample forest over 30 years and the equations that
link them. The table assumes that trees 31 years old or older are lumped into
age class 4.

1st Inventory The area in each age class at the beginning of the first
decade is:

A11 = 100 ha, A21 = 200 ha, A31 = 50 ha, A41 = 150 ha

2nd Inventory The forest state at the beginning of the second decade
depends on the state at the beginning of the first decade and on the
harvest and reforestation during the first decade. In particular, the area
in age class 1 is the total area cut and reforested during the first decade:

A12 = X11 + X21 + X31 + X41

The area in age class 2 is what remains of the area that was in age class 1 at
the beginning of the first decade:

A22 = A11 − X11

Similarly, the area in age class 3 is:

A32 = A21 − X21

The oldest age class, 4, consists of the unharvested areas that were in age
classes 3 and 4 at the beginning of the first decade:

A42 = (A31 − X31) + (A41 − X41)

3rd and 4th Inventory The equations to predict the forest state at the
beginning of the third and the fourth decades are similar to those for the
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TABLE 6.1 Growth Equations for an Even-Aged Forest

Decade

Age 1 2 3 4
class Stock Cut Stock Cut Stock Cut Stock

1 A11 = 100 X11 A12 = X11 + X21 + X31 + X41 X12 A13 = X12 + X22 + X32 + X42 X13 A14 = X13 + X23 + X33 + X43

2 A21 = 200 X21 A22 = A11 − X11 X22 A23 = A12 − X12 X23 A24 = A13 − X13

3 A31 = 50 X31 A32 = A21 − X21 X32 A33 = A22 − X22 X33 A34 = A23 − X23

4 A41 = 150 X41 A42 = (A31 − X31) + (A41 − X41) X42 A43 = (A32 − X32) + (A42 − X42) X43 A44 = (A33 − X33) + (A43 − X43)
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2nd inventory. Only the subscript referring to the current decade
changes from decade to decade (see Table 6.1). 

The calculations have been continued in Table 6.1 to show the status of the
forest at the beginning of the fourth decade. This description of the cut and
stock can be pursued into the future as long as desired. The results clearly show
that the area in each age class at any point in time is a linear function of the ini-
tial condition of the forest and of all subsequent harvesting and reforestation.
Thus, the evolution of the forest is defined entirely by the initial state and by
the decision variables. The state variables showing the stock are needed only as
accounting devices. 

The process of writing all the equations may seem laborious, but because
they are fully recursive, it is easy to implement them in a spreadsheet (see
upcoming Section 6.6).

Before continuing, we note that any feasible solution of the equations in
Table 6.1 must be such that the area cut in each age class is less than the
corresponding stock:

and the areas cut cannot be negative:

Note that these inequalities are enough to ensure that the stock in every age
class and period is nonnegative. For example, X11 ≤ A11 and X11 ≥ 0 necessarily
imply that A11 ≥ 0.

6.4 SUSTAINABILITY CONSTRAINTS

The quality of a forest plan depends in part on the values of the goods and ser-
vices that the forest will continue to produce beyond the end of the plan. Some
goods such as timber, are tied to the trees that are cut; others, such as esthet-
ics, protection, and biodiversity, depend on the growing stock. Regardless of the
objectives, a primary requirement of a forest management plan is that the forest
left at the end be in a sustainable condition. One way to ensure sustainability is
with steady-state constraints. 
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STEADY-STATE CONSTRAINTS

A forest of the type described in this example is in a steady state if the growing
stock in each age class remains constant under the prevailing interventions
(harvest followed by reforestation). If the stock in each age class is the same in
two successive inventories, then the decisions between the two inventories
must necessarily constitute a sustainable management regime. The time it takes
to convert the initial forest into a steady-state structure is called the conversion
period. Beyond this period, production could continue at a constant level, and
the growing stock would remain unchanged.

In the example of Table 6.1, to say that the forest has reached a steady state
by the end of the third decade means that:

A13 = A14

A23 = A24

A33 = A34

A43 = A44

That is, the stock in each age class is the same at the beginning of the fourth
decade as it was at the beginning of the third decade. If this is true, then the
growth of the forest during the third decade is just enough to replace the har-
vest during the third decade. Thus, the harvest symbolized by X13, X23, X33, and
X43 is sustainable, and applying it again in the fourth decade would produce a
mosaic of age classes identical to the one at the beginning. This process could
then continue in perpetuity.

A SPECIAL STEADY STATE: THE REGULATED FOREST

As seen in the previous chapter, a regulated forest has the same area in each
age class. The cut always removes the oldest age class, and reforestation fol-
lows immediately. A regulated forest is thus in a steady state, because the
growing stock and the cut remain constant in perpetuity. It is possible to
constrain a management plan to lead to a regulated forest after a given
amount of time. For example, to obtain a regulated forest with a rotation of
20 years by the end of the third decade, one would require that by that date
the first two age classes each occupy half of the forest and that the other two
be absent:

A A A A14 24 34 44

500

2
250 0= = = = = ha    and     ha
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However, although regulation is a sufficient condition for a steady state, it is
not a necessary condition. For example, the state and harvest values

A13 = 425 ha, X13 = 350 ha

A23 = 75 ha, X23 = 75 ha

do not depict a regulated forest, but they do describe a steady state, because the
stock we would observe at the beginning of decade 4 would be the same as at
the beginning of decade 3, since:

A14 = X13 + X23 = 425 ha and A24 = A13 − X13 = 75 ha

In fact, the number of possible steady states is generally infinite. This means
that managers have the flexibility to choose the steady state most suitable for
their purpose without restricting themselves to a regulated forest. A drawback
of the regulated forest is that, given the initial conditions, it may not be possi-
ble to reach a desired regulated forest within a specific amount of time, though
it still may be possible to reach a different steady state.

6.5 OBJECTIVE FUNCTION

The growth equations and the steady-state equations define completely the
transformation of the forest from its initial condition to the terminal state. In
general, the equations have an infinite number of solutions. However, with
linear programming, one can find a solution that maximizes a particular func-
tion of the decision variables. Here we shall consider two kinds of objectives:
timber production and landscape diversity.

TIMBER PRODUCTION

Let us assume that the volume per unit area in each age class of our example
forest is given by the yield function in Figure 6.1. For example, regardless of
when it occurs, 1-ha cut from age class 1 yields 50 m3 of timber, a 1-ha cut from
age class 2 yields 250 m3, and so on. 

Thus, the volume cut from the entire forest during the 30 years of the con-
version period is:

Z X X X X

X X X X

X X X X

= + + +

+ + + +

+ + + +

50 250 500 600

50 250 500 600

50 250 500 600

11 21 31 41

12 22 32 42

13 23 33 43 (m3)
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where the first, second and third lines express the volume produced during the
first, second, and third decades, respectively. 

Z is the appropriate objective function if the objective is to maximize the
total volume produced during the conversion of the forest to a steady state.
Alternatively, if the management objective is to create the steady-state forest of
highest productivity, the appropriate objective function would be:

Z′ = 50X13 + 250X23 + 500X33 + 600X43 (m3)

because this is the expression of the constant volume that the steady-state forest
would produce, decade after decade. Although the objective function Z′ is part
of the objective Z, maximizing either objective will generally give quite differ-
ent results. In the next chapter we investigate how to write the objective func-
tion that gives appropriate economic weights to the production during and after
conversion to the steady state.

FIGURE 6.1 Yield and mean annual increment (MAI) of short-leaf pine on land of site index
18 m. (Data derived from Smalley and Bailey, 1974.)
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LANDSCAPE DIVERSITY AND THE

MAXIMIN CRITERION

Maximizing the minimum value in a set of values is a useful objective in many
decision settings. To pursue our example, assume that the managers want a
management plan that would keep the forest landscape as diverse as possible.
Thinking of the forest as a mosaic of age classes, one way to promote diversity
would be to ensure that there is some area in every age class. A plausible diver-
sity objective would then be to maximize the smallest area in any age class at
the beginning of each decade considered except the first. That is, with the nota-
tions of our model:

max[min( A12, A22,…, A44)]

The initial conditions A11, A12,…, A14 are not part of the objective function
because they are fixed. To express this objective in a form usable in linear pro-
gramming, let Amin be a new variable designating the smallest area in any age
class. Then, by definition, Amin must satisfy these constraints:

And since the smallest area in any age class must be as large as possible, the
objective function is:

max Amin

This optimization is done by varying simultaneously the decision variables X11,
X21,…, X43 and the smallest area in any age class and decade, Amin.

6.6 SPREADSHEET FORMULATION 
AND SOLUTION

Figure 6.2 shows the spreadsheet for the short-leaf pine forest of our example.
The entries in bold are input data; the other entries are the results of formulas
based on those data and on the decision variables. The input data in this
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spreadsheet are the initial forest condition and the yields per unit area of the
various age classes. 

The cells in Figure 6.2 under the heading “Stock” show the state of the forest
at the beginning of each decade, that is, the Aij state variables. Cells C5:C8 con-
tain the initial condition: 100 ha in age class 1, 200 ha in age class 2, 50 ha in
age class 3, and 150 ha in age class 4. The cells under the heading “Cut” show
the harvest and reforestation activities during each decade, that is, the decision
variables Xij. The cells G11:G14 contain the yield per hectare.

Cells D5:F8 contain the growth equations in Table 6.1, giving the stock of the
forest at the beginning of each decade as a function of the stock 10 years earlier
and of the decisions during the previous decade. For example, the formula in cell
D5 corresponds to the equation A12 = X11 + X21 + X31 + X41; the formula in cell
D6 corresponds to A21 = A11 − X11; and the formula in cell D8 corresponds to

FIGURE 6.2 Spreadsheet model for converting a short-leaf pine forest to a steady state in
30 years while maximizing production. 
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A B C D E F G

MAX PRODUCTION

Age Decade

class 1 2 3 4

Stock (ha)

1 100 200 300 300

2 200 100 200 200

3 50 200 0 0

4 150 0 0 0

Cut (ha) Yield (m
3
/ha)

1 0 0 100 50

2 0 100 200 250

3 50 200 0 500

4 150 0 0 600

Cut (m
3
) max(Total)

115000 125000 55000 295000

Key cell formulas

Cell Formula copied to

D5 =SUM(C11:C14) D5:F5

D6 =C5-C11 D6:F7

D8 =C7-C13+C8-C14 D8:F8

C16 =SUMPRODUCT($G11:$G14,C11:C14) C16:E16

F16 =SUM(C16:E16)
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A42 = A31 − X31 + A41 − X41. Copying cells D5:D8 into cells E5:E8 and F5:F8 then
gives the stock at the beginning of decades 3 and 4.

The formula in cell C16 corresponds to the equation giving the volume
of timber produced during the first decade as a function of the decision
variables: 50X11 + 250X21 + 500X31 + 600X41(m3). Cell F16 contains the for-
mula of the volume produced during the first 30 years, corresponding to the
equation:

MAXIMIZING TIMBER PRODUCTION

Figure 6.3 shows the Solver parameters to maximize production during 30
years while ending with a steady-state forest. The solver seeks the largest pro-
duction, in target cell F16, by changing cells C11:E14, the decision variables
defining the area cut and reforested from each age class in each decade: X11,
X21,…, X43. The optimization is done subject to the following constraints:

Z X X X X

X X X X

X X X X

= + + +

+ + + +

+ + + +

50 250 500 600

50 250 500 600

50 250 500 600

11 21 31 41

12 22 32 42

13 23 33 43     (m3 )

FIGURE 6.3 Solver parameters to convert a short-leaf pine forest to a steady state while maxi-
mizing production.
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C11:E14 <= C5:E8, meaning that the area cut in each age class and decade
must be less than the area available, corresponding to these equations: 

C11:E14 >= 0, because the area cut and reforested in each age class and
period cannot be negative, corresponding to these equations: 

X11, X12,…, X43 ≥ 0

E5:E8 = F5:F8, to ensure that the forest is in a steady state at the end of
the third decade, corresponding to these equations:

A13 = A14

A23 = A24

A33 = A34

A43 = A44

The best solution for this problem is in Figure 6.2. It shows the best pattern
of harvest and reforestation, the corresponding production, and the evolution
of the forest state over time. For example, the plan calls for cutting and refor-
esting 50 ha and 150 ha from age classes 3 and 4 during the first decade, pro-
ducing 115,000 m3 of timber. This leads to a forest with 200 ha in age class 1,
100 ha in age class 2, 200 ha in age class 3, and 0 ha in age class 4 by the end
of the decade. The total maximum production over the 30 years is 295,000 m3.
At the end of the plan, the forest would be in a steady state. The steady-state
forest has 300 ha in age class 1 and 200 ha in age class 2. This steady state could
be maintained in perpetuity by cutting and reforesting 100 ha from age class 1
and all of age class 2 every decade. Note that this steady state is not a regulated
forest, nor does it maximize the productivity of the forest in the long run,
because it cuts the timber when it is 20 years old, while the maximum mean
annual increment occurs at age 30 (see Figure 6.1). 

A solution that maximized the long-term productivity of the forest could be
found with the same spreadsheet by changing the target cell from F16 to E16,
that is, by maximizing the production of the steady-state forest. We leave this
as an exercise (see Problem 6.5 at the end of this chapter). 
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MAXIMIZING LANDSCAPE DIVERSITY

Figure 6.4 shows a spreadsheet set up for the same short-leaf pine forest but
with the objective of maximizing the landscape diversity of the forest through-
out the conversion. The initial conditions and the yield data are the same as in
Figure 6.2. The conversion to a steady state is still done in 30 years. The growth
equations and the steady-state equations are unchanged. The only difference is
in the objective function.

The cell being optimized is now G8, which contains the smallest area in any
age class and decade, the variable Amin in the notation used earlier. The solver
tries to make this variable as large as possible. Because Amin is also a variable,
cell G8 has been added to the list of adjustable cells in the Solver parameters
(Figure 6.5). 

FIGURE 6.4 Spreadsheet model for converting a short-leaf pine forest to a steady state in 30 years
while maximizing landscape diversity.
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MAX DIVERSITY OF FOREST LANDSCAPE

Age Decade

class 1 2 3 4

Stock (ha)

1 100 100 100 100

2 200 100 100 100

3 50 200 100 100 max(Amin)

4 150 100 200 200 100

Cut (ha) Yield (m
3
/ha)

1 0 0 0 50

2 0 0 0 250

3 50 100 0 500

4 50 0 100 600

Cut (m
3
) Total

55000 50000 60000 165000

Key cell formulas

Cell Formula copied to

D5 =SUM(C11:C14) D5:F5

D6 =C5-C11 D6:F7

D8 =C7-C13+C8-C14 D8:F8

C16 =SUMPRODUCT($G11:$G14,C11:C14) C16:E16

F16 =SUM(C16:E16)
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Furthermore, the following constraints have been added to the solver para-
meters: D5:F8 >= G8, corresponding to these inequalities:

which ensure that Amin is the smallest area in any age class in every decade. 
Figure 6.4 shows the best solution for this problem. In contrast with the solu-

tion that maximized production shown in Figure 6.2, there would never be an
age class missing from the forest. In fact, the smallest area in stock in any age
class and decade is 100 ha. The conversion plan would end up with a steady-state
forest that again is not exactly regulated. From the beginning of the fourth
decade onward, there would be 100 ha in all age classes but the oldest, which
would contain 200 ha. The harvest, 100 ha, would always occur in this oldest
age class. The total production during the 30 years of conversion would be
145,000 m3. This is less than half what would be obtained by the plan that max-
imized production without regard to the consequences for the diversity of the
forest landscape. It is up to the stakeholders to decide whether the gain in diver-
sity is worth that much loss in production or whether a compromise solution is
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FIGURE 6.5 Solver parameters to convert a short-leaf pine forest to a steady state while maxi-
mizing landscape diversity.
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warranted. This issue of the opportunity cost of alternative policies in discussed
further in Chapter 7. 

6.7 GENERAL FORMULATION

The model developed in this chapter applies to the following general situation.
We describe the state of an even-aged forest at successive periodic inventories
by the area in each of m age classes. The time unit to define age classes is the
length of the period between inventories, u. Aij is the area in age class i at the jth
inventory.

The forest is managed for p periods, each u years long. At the end of this con-
version period we want to reach a sustainable forest structure and harvest. The
management plan is defined by the decision variables Xij, the area cut and refor-
ested from age class i in period j. The growth equations describe the state of the
forest at the start of each successive period as a function of the initial condition
and of the prior decisions.

GROWTH EQUATIONS

where is the initial area in age class i. To be feasible, the state variables and
decision variables must be such that the area harvested and reforested from
each age class in each period is nonnegative and less than the corresponding
stock:
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STEADY-STATE CONSTRAINTS

These constraints ensure that the forest left at the end of the plan is sustainable, by
forcing the stock to be constant in all age classes, during the last two inventories:

Aip = Ai,p+1 i = 1,…, m

which implies that the harvest obtained in period p may continue indefinitely.

OBJECTIVE FUNCTION

If the objective is to maximize the total timber production, the objective func-
tion would be:

where vi is the volume per unit area in age class i.
If, instead, the objective is to maximize the landscape diversity of the forest,

the objective function would be:

max Amin

subject to:

Aij ≥ Amin i = 1,…, m; j = 2,…, p + 1

where Amin is a new variable designating the smallest area in any age class and
period.

Verify that the special cases described in Section 6.6 fit within this general
formulation. Of course, no one needs to remember these formulas. All that is
needed is to understand the spreadsheets in Figures 6.2 and 6.4 and to be able
to adapt them to different initial conditions, conversion periods, end states, and
objective functions. 

6.8 SUMMARY AND CONCLUSION

In this chapter we have developed a model of the even-aged forest that can
describe fully the condition of the various age classes at any point in time, given
initial conditions and the intervening harvests and reforestation. Conditions
were added to guarantee that the forest at the end of the plan had a sustainable
structure and harvest. Sustainability was ensured by steady-state constraints,

max Z v Xi ij

j

p

i

m

=
==

∑∑
11
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such that the stock in each age class remains constant beyond the last period of
the plan. We observed that a steady-state forest could look quite different from
the classical regulated forest. Regulation is sufficient to ensure sustainability,
but it is not necessary. The growth equations and the steady-state equations
became the constraints of a linear program for which a large number of solu-
tions were possible. Particular solutions were obtained with objective functions
that maximized either timber production or landscape diversity. The highest
landscape diversity was defined as the mosaic of age classes that maximized the
smallest area in any age class and period. This MaxiMin criterion was formu-
lated as a new objective function within the linear programming framework. In
the next chapter we shall see how the model can also be used to design harvest
schedules with economic objectives, subject to additional environmental and
managerial constraints. 

PROBLEMS

6.1 Section 6.3 shows a method for representing the area in any age class in
any period for an even-aged forest. Table 6.1 illustrates this method for four
decades of growth of a forest that has initially four age classes. Extend the table
to show the growth of this same forest for two more decades. 

6.2 Construct a table similar to Table 6.1 for an even-aged forest with five
age classes. Write the equations to predict the forest state at the beginning of
period 3. Assume that the initial forest state consists of 50 ha in age class 1,
100 ha in age class 2, 0 ha in age class 3, 200 ha in age class 4, and 40 ha in
age class 5.

6.3 Consider the forest described by the growth equations in Table 6.1.
Assume that the desired forest state at the beginning of the fourth period is
a regulated forest with a rotation of 30 years. Using the state and decision
variables in Table 6.1, write the end-state constraints needed to achieve this
conversion.

6.4 Consider the short-leaf pine forest conversion problem for which a
spreadsheet model is shown in Figure 6.2.

(a) Modify this model so that the end state of the forest would be not only a
steady state but also a regulated forest with a rotation of 30 years. (Note: The
area in all age classes must add up to exactly 500 ha for the solution to be
feasible.)
(b) Solve this modified model, and discuss the effects of this additional con-
straint on the solution relative to that shown in Figure 6.2.
6.5 Consider the short-leaf pine forest conversion problem for which a

spreadsheet model is shown in Figure 6.2.
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(a) Modify this model so that the objective is to maximize the periodic pro-
duction of the steady-state forest created by conversion, instead of the pro-
duction during all of the conversion period.
(b) Solve this modified model, and discuss the effects of this change on the
solution.
6.6 Consider the short-leaf pine forest conversion problem for which a

spreadsheet model is shown in Figure 6.2.
(a) Modify this model to change the conversion period to 40 years instead of
30 years. 
(b) Solve this modified model, and discuss the effects of changing the con-
version period on the solution.
6.7 Consider the short-leaf pine forest conversion problem for which a spread-

sheet model is shown in Figure 6.2. Assume that for ecological reasons you
want to maintain 150 ha in the oldest age class forever.

(a) What constraint should you add to the model to ensure this result?
(b) Modify the spreadsheet in Figure 6.2 accordingly, and compute the new
management plan. Discuss the effects of this constraint on the solution.
6.8 Consider the short-leaf pine forest conversion problem in which land-

scape diversity is maximized, for which a spreadsheet model is shown in Figure
6.4. Assume you wished to maximize the diversity of the steady-state forest
only at the end of the conversion and were not concerned about diversity
during the conversion. Specifically, assume you wished to maximize the small-
est area in any age class in the steady-state forest.

(a) How would you modify the objective function and the constraints to
reflect this new objective?
(b) Modify the spreadsheet in Figure 6.4 accordingly, and compute the new
management plan. Discuss the effects of this new objective on the solution.
6.9 Consider the short-leaf pine forest conversion problem in which land-

scape diversity is maximized, for which a spreadsheet model is shown in Figure
6.4. Assume that for esthetic reasons your objective is to maximize the area in
the oldest age class by the end of the conversion period.

(a) How would you modify the objective function and the constraints to
reflect this new objective?
(b) Modify the spreadsheet in Figure 6.4 accordingly, and compute the new
management plan. Discuss the effects of this new objective on the solution.
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CHAPTER 7

Economic Objectives
and Environmental Policies
for Even-Aged Forests

7.1 INTRODUCTION

In the preceding chapter we used a dynamic model to forecast the growth of an
even-aged forest. Given the initial state of the forest and a specific harvesting
and reforestation schedule, we could predict what the forest would look like at
any future date. The model also ensured that at the end of the management plan
we would have a steady-state forest that could be sustained forever. We applied
that model to calculate harvest and reforestation schedules to maximize either
timber production or landscape diversity.

The purpose of this chapter is to extend the model in Chapter 6 to define the
economic value of a forest for timber production and the effects of environ-
mental constraints on this value. Forests produce many goods and services
other than timber, but timber is one of the few with a well-defined price, set by
markets. Forest value for timber production is therefore amenable to estima-
tion, a task that we tackle in this chapter. 

This concept of forest value is useful even if the management objectives for
a forest have nothing to do with timber production, for it informs us about the
opportunity cost of the policies designed to favor the production of other goods



and services. If a national forest has a value of, say, $1 billion for timber pro-
duction and the forest is turned into a national park with no timber production,
this implies that the services and amenities provided by the park are worth at
least $1 billion. As we shall see, there are many, more mundane, situations
where this concept of opportunity cost is helpful to compare management alter-
natives with mixed economic and environmental objectives. 

The beginning of the chapter deals with one of the simplest cases for esti-
mation of forest value: where we start with bare land and want to estimate the
value of that land for timber production. Then we shall use the dynamic model
of the even-aged forest developed in the last chapter to calculate the value of a
forest with many initial age classes, converted to a steady state within a speci-
fied period. The method will give us a way to find the management that would
bring about the highest forest value and to predict the effect of constraints such
as even-flow policies on forest value. At the end we shall use this same model
to investigate the effect of different environmental goals on forest value and
thus to measure the trade-off between economic and environmental objectives.

7.2 LAND EXPECTATION VALUE
AND ECONOMIC ROTATION

What is the value of land if we use it to grow trees? The answer can be found
with a simple, yet powerful, formula originally developed by Martin Faustmann
in 1849 (Faustmann, 1995).

LAND EXPECTATION VALUE

Consider a piece of land on which we plan to grow trees. When the trees have
reached a particular rotation age, R, they are harvested, yielding the volume per
hectare vR. The land is reforested immediately after harvest. This sequence of
reforestation, growth, and harvest is repeated in perpetuity, with each rotation
identical to the preceding rotation (Figure 7.1). Faustmann’s insight was to
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FIGURE 7.1 Stand growth and harvest in Faustmann’s model.
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realize that the value of the land is equal to the present value of the income from
this infinite sequence of harvests. 

Let w be the price of timber, per unit of volume, net of harvesting cost, and
let c be the cost of reforestation per hectare. Then the initial cost of establish-
ing the forest is c, and the income at the end of each successive rotation, net of
the reforestation cost, is:

wvR − c

Therefore, denoting the interest rate by r, the net present value of the income,
starting from bare land, for an infinite sequence of successive rotations is:

Or, in a more compact form (see Appendix A):

This, then, is the land expectation value, that is, the value of bare land used for
this kind of silviculture.

ECONOMIC ROTATION

Faustmann’s formula gives the land expectation value for a particular rotation.
It can also be used to find the economic rotation, that is, the rotation leading to
the highest land expectation value for a given yield function, timber price, refor-
estation cost, and interest rate. 

For example, Figure 7.2 shows a spreadsheet model to compute the land
expectation value for land forested to short-leaf pine for rotations of 10, 20, 30,
or 40 years. All entries in bold are input data; the other entries are the results
of formulas. The yield data are the same as those used in the previous chapter
(see Figure 6.1), the timber price is set at $50/m3, the interest rate at 6% per
year, and the reforestation cost at $500/ha.

Cells E5:E8 show that the highest net income per unit area is obtained with
a rotation of 40 years. However, cells F5:F8 show that the land expectation
value is highest for a rotation of only 20 years. With an interest rate of 6%, it is
financially better to earn $12,000 every 20 years than $29,500 every 40 years. 

Cells C5:C8 show the mean annual increment for different rotations. The
highest productivity occurs for a rotation of 30 years and gives 16.7 m3/ha/y. Yet it
is better, from a purely financial point of view, to harvest the stand at 20 years of
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age. The higher the interest rate, the larger would be this difference between the
economic rotation and the rotation with the highest mean annual increment.

OPPORTUNITY COST AND ALTERNATIVE LAND USES

Faustmann’s formula has many applications besides computing the economic
rotation. It can be amended to include the value of nontimber goods and ser-
vices provided by trees of a certain age, as long as we have prices for these
goods and services. But even if prices are not available, the formula is useful to
show the opportunity cost of decisions. For example, assume that the owners
of the land considered in Figure 7.2 like big trees for esthetic reasons and thus
choose a rotation of 40 years instead of 20 years. The opportunity cost of this
choice, in terms of land expectation value, is $2,260/ha ($4,937 − $2,677).
Choosing the longer rotation makes sense only if the esthetic value of the older
trees is worth at least that much to the owners. 

Not only is Faustmann’s formula useful to compare forest management alter-
natives, it is also useful to compare totally different land uses. Suppose that the
owner of the land considered in Figure 7.2 is a farmer who could grow corn on
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FIGURE 7.2 Spreadsheet model to compute the land expectation value.
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Stand Stand Mean annual Gross Net

age yield increment income income LEV

(y) (m
3
/ha/y) (m

3
/ha/y) ($/ha) ($/ha) ($/ha)

10 50 5.0 2500 2000 2029

20 250 12.5 12500 12000 4937

30 500 16.7 25000 24500 4665

40 600 15.0 30000 29500 2677

Timber price ($/m
3
) 50

Interest rate (/y) 0.06

Reforestation cost ($/ha) 500

Cell Formula Copied to

C5 =B5/A5 C6:C8

D5 =$D$10*B5 D6:D8

E5 =D5-$D$12 E6:E8

F5 =E5/((1+D11)^A5-1)-$D$12 F6:F8

Financial data

Key cell formulas



the same land instead of trees. Because corn is a yearly crop, R = 1 y, and the
land expectation formula simplifies to:

where I is the yearly crop income, net of harvesting cost, and c is the yearly
planting cost. For example, assume I = $600/ha, c = $200/ha, and r = 6%/y. Then
the land expectation value for growing corn is $6,467/ha. If the farmer decides
to grow trees instead, the implication is that the tangible or intangible benefits
of doing so must be at least $1,530/ha ($6,467 − $4,937).

7.3 ESTIMATING FOREST VALUE
BY LINEAR PROGRAMMING

Faustmann’s fundamental insight can be generalized to define the value of any
forest, regardless of its initial condition, and the values of the constraints that
apply to its management. In general, the forest value in terms of timber produc-
tion is the present value of the income that the forest is capable of producing over
an infinite time horizon, subject to various management goals and constraints.
This future income is produced by the land and by any tree initially growing on
it. Thus the forest value we seek includes land and trees.

In the remainder of this chapter we shall study how to compute forest value
with linear programming. The basic forest model is the same as in Chapter 6,
and we shall continue to use the same example. The initial condition of the
forest is a mosaic of even-aged short-leaf pine stands: There are 100 ha in age
class 1, that is, with trees 1–10 years old. There are 200 ha in age class 2, with
trees 11–20 years old. There are 50 ha in age class 3, with trees 21–30 years old,
and there are 150 ha in age class 4, with trees 31–40 years old. The forest is
inventoried every decade, and the state variable Aij is the area in age class i at
the beginning of decade j.

The silviculture remains the same as in Chapter 6: immediate artificial regen-
eration after harvest. The decision variable Xij refers to the area harvested and
reforested in age class i during decade j. The yield function is that described in
Figure 6.1. For example, regardless of when it occurs, 1 ha harvested from age
class 1 yields 50 m3/ha. The conversion period is set initially at 30 years. There-
fore, the equations that give the stock in each age class at the beginning of each
decade are the same as in Table 6.1. The steady-state equations are also the
same: The area in each age class at the beginning of the third decade must be
the same as the area at the beginning of the fourth decade. 

The difference lies in the objective function. Here it expresses the forest
value. This forest value consists of the present value of the income up to the
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steady state (the first 30 years) plus the present value of the income after the
steady state. Although the steady-state production continues forever, the fact
that it is constant will allow a simple computation of its value, similar to
Faustmann’s formula. 

PRESENT VALUE OF INCOME UP TO

THE STEADY STATE

As seen in the previous chapter, the volume of timber produced in each decade
for the first 30 years is:

where Q j is the volume of timber produced in decade j and Xij is the area cut
and reforested from age class i during the jth decade. Let the price of timber be
$50/m3. The gross income in each decade, Bj, is:

Assume that the reforestation cost is $500/ha. Then the reforestation cost in
each decade, Cj, is:

Thus, the net income in each decade, Nj, is:

Assume an interest rate of 6% per year. Then the present value (PV) of the
net income from decade j is:

($)PVj

j

j

N
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N B Cj j j
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Although the net revenue Nj is generated throughout decade j, for simplicity we
count it as if it occurred at the end of the decade. Alternatively, the net revenue
could be accounted for at the beginning of the decade or in the middle. This
would only multiply the objective function by a constant and thus leave the best
solution unchanged when the objective is to maximize present value.

The total present value of the net income up to the steady state is:

Total present value is a linear function of the decision variables, X11, X21,…, X43,
because each periodic present value PVj is a linear function of the net income
Nj, which itself is a linear function of the benefit and cost, Bj and Cj, which are
themselves linear functions of the decision variables.

PRESENT VALUE OF INCOME AFTER THE

STEADY STATE

In our example, the initial forest is converted to a steady-state forest within 30
years. This means that the stock at the beginning of the third decade is the same
as at the end, and the production during the third decade can continue forever. 

Using the foregoing notation, the steady-state forest will produce a constant
periodic income from the third decade onward equal to N3 ($). It can be shown
(see Appendix A) that the net present value of this constant periodic income, if
it started in the first decade, would be:

However, the forest will take 30 years to reach the steady state. Therefore, the
net present value of the income after the steady state is:

This is a linear function of the decision variables because the net income during
the third decade, N3, is a linear function of X13, X23, X33, and X43, which define
the harvest and reforestation activities during the third decade.

FOREST VALUE

The forest value, FV, is the total net present value of the timber income that the
forest would produce during and after the conversion to the steady state:

FV PV PV= + ∞c

PV∞ =
+ − +

N3
10 301 0 06 1 1 0 06[( . ) ]( . )

N3
101 0 06 1( . )+ −

PV PV PV PVc = + +1 2 3 ($)

Economic Objectives and Environmental Policies for Even-Aged Forests 115



This is the value of the initial forest, land and trees, from the point of view of
timber production alone. Forest value measures what the owners may expect
to earn from the forest by following a particular management regime, defined
by the decision variables. The only constraint is that the management end with
a steady state, that is, a sustainable regime. 

The management regime leading to the highest forest value can be obtained
by solving the following linear programming problem: Find the harvest and
reforestation activities, X11, X21,…, X43, such that:

max FV

subject to:

Growth equations (as in Table 6.1)
Steady-state:

A13 = A14

A23 = A24

A33 = A34

A43 = A44

Cut less than stock:

Nonnegative cut:

7.4 SPREADSHEET OPTIMIZATION
OF FOREST VALUE

Figure 7.3 shows the spreadsheet to compute the management plan leading to
the highest forest value for the short-leaf pine forest studied in Chapter 6. The
initial age classes of the forest and the yield data, in bold characters, are the
same as in Figure 6.2. The new data are the timber price of $50/m3, the refor-
estation cost of $500/ha, and the interest rate of 6% per year. 
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The decision variables Xij are in cells C11:E14. The growth equations in cells
D5:F8 are the same as in Figure 6.2. The formulas to compute the periodic pro-
duction are also the same. For example, cell C16 contains the formula of the
volume produced during the first decade, corresponding to this equation: 

Q1 = 50X11 + 250X21 + 500X31 + 600X41 (m3)

Cells C18:E18 contain the formulas to compute the net income every
decade. For example, cell C18 contains the formula of the net income during
the first decade, corresponding to this equation: 

N1 = B1 − C1 = 50Q1 − 500(X11 + X21 + X31 + X41) ($)
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FIGURE 7.3 Spreadsheet model to maximize forest value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

A B C D E F G H

MAX FOREST VALUE

Age Decade

class 1 2 3 4

Stock (ha)

1 100 250 250 250

2 200 100 250 250

3 50 150 0 0

4 150 0 0 0

Yield Price Cost Interest

Cut (ha) (m
3
/ha) ($/m

3
) ($/ha) (/y)

1 0 0 0 50 50 500 0.06

2 50 100 250 250

3 50 150 0 500

4 150 0 0 600

Cut (m
3
) Total

127,500 100,000 62,500 290,000

Net income ($)

6,250,000 4,875,000 3,000,000

Present value up to steady state ($) After ($) Total ($)

3,489,967 1,520,048 522,330 660,469 6,192,815 max

Key cell formulas

Cell Formula copied to

D5 =SUM(C11:C14) D5:F5

D6 =C5-C11 D6:F7

D8 =C7-C13+C8-C14 D8:F8

C16 =SUMPRODUCT($G11:$G14,C11:C14) C16:E16

F16 =SUM(C16:E16)

C18 =$H$11*C16-$I$11*SUM(C11:C14) C18:E18

C20 =C18/(1+$J$11)^(C3*10) C20:E20

F20 =(E18/((1+J11)^10-1))/(1+J11)^(E3*10)

G20 =SUM(C20:F20)

I J



Cells C20:E20 contain the formulas for the present value of the net period
income. For example, cell C20 gives the present value of the income during the
first decade, corresponding to this formula:

Cell F20 contains the formula for the net present value of the net income
obtained after the steady state, corresponding to this equation:

The forest value, then, is in cell G20, containing the sum of the present value
up to the steady state and after the steady state, corresponding to this equation:

FV = PV1 + PV2 + PV3 + PV∞

Figure 7.4 shows the Solver parameters to maximize this forest value. The target
cell is G20. The decision variables are in cells C11:E14, and the constraints
specify the steady state at the end of the third decade (E5:E8 = F5:F8), the cut
in each decade and age class being less than the stock (C11:C14 <= C5:E8), and
the nonnegativity of the cut (C11:E14 >= 0).

The best solution is shown in Figure 7.3. Compared to the solution that
maximized production for the same initial conditions and conversion period
(Figure 6.2), maximizing forest value would produce 5,000 m3 less timber

PV∞ =
+ − +

N3
10 301 0 06 1 1 0 06[( . ) ]( . )

PV1
1

101 0 06
=

+

N
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FIGURE 7.4 Solver parameters to maximize forest value.



during the 30 years. But it would produce 12,500 m3 more during the first
decade. This is due to the fact that the present value formula gives more weight
to early revenues than to late revenues. Still, the steady-state forest contributes
$660,469, or about 11% of the total forest value.

In this example, the steady state after 30 years is a regulated forest. This
steady-state forest has two age classes of 250 ha each. The oldest age class is cut
and reforested every decade. Thus, the rotation in the steady-state forest is 20
years. This is also the economic rotation given by Faustmann’s formula (Figure
7.2). The initial condition of the forest becomes less important as time goes by;
only the land productivity determines long-term production, and its highest
return is governed by Faustmann’s formula.

7.5 EVEN-FLOW POLICY: COST AND BENEFITS

The model we have just developed can be extended to a wide range of applica-
tions where the economic effects of specific forest policies are of interest. As a
first example, we apply the model to study the economic consequences of an
even-flow policy. The even-flow or nondeclining even-flow principle states that
forests should be managed in such a way that no more timber should be cut
today than can be cut in the future. 

The rationale for even-flow policies is to ensure stability of forest production.
While the steady-state constraints ensure sustainability and stability in the long
run, the even-flow principle seeks stability of production in the short run as
well. The implicit belief is that an even flow of timber production will stabilize
local economies. In addition, even-flow policies are expected to have environ-
mental benefits because they tend to limit the size of the harvests, especially in
old timber stands. 

Within the example used so far, a strict even-flow policy means that the
timber production must be the same in every decade, during the period con-
sidered explicitly in the plan, and after. 

The steady-state constraints, which force the growing stock at the beginning
of the third decade to be the same as at the beginning of the fourth decade,
ensure that the production during the third decade, Q3, can be sustainable in
perpetuity. Thus, all that is needed to ensure strict even flow is that the pro-
duction during the first and second decades also equal the production in the
third decade:

Q1 = Q2 = Q3

We can use the model developed so far to predict the effect of this strict
even-flow policy on forest value. Figure 7.5 shows a spreadsheet model to
maximize the forest value of the short-leaf pine forest in our example while
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following an even-flow policy. The initial state, the yield function, the state
variables, the decision variables, and the growth equations are the same as in
Figure 7.3. 

The Solver parameters in Figure 7.6 show the usual steady-state constraints,
the cut-less-than-stock constraints, and the nonnegative cut constraints. The
new constraints specify that production is constant in every decade: 

C16 = E16, corresponding to Q1 = Q3

D16 = E16, corresponding to Q2 = Q3

The solution that maximizes forest value under this strict even-flow policy is
shown in Figure 7.5. It shows that strict even-flow could be achieved by pro-
ducing 74,163 m3 every decade. The forest left at the end of the third decade
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FIGURE 7.5 Spreadsheet model to maximize forest value with an even-flow policy.
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MAX FOREST VALUE WITH EVEN-FLOW POLICY

Age Decade

class 1 2 3 4

Stock (ha)

1 100 248 183 183

2 200 100 183 183

3 50 0 100 100

4 150 152 33 33

Yield Price Cost Interest

Cut (ha) (m
3
/ha) ($/m

3
) ($/ha) (/y)

1 0 65 0 50 50 500 0.06

2 200 0 83 250

3 48 0 67 500

4 0 118 33 600

Cut (m
3
) Total

74,163 74,163 74,163 222,488

Net income ($)

3,583,971 3,616,507 3,616,507

Present value up to steady state ($) After ($) Total ($)

2,001,271 1,127,644 629,671 796,197 4,554,782 max

Key cell formulas

Cell Formula copied to

D5 =SUM(C11:C14) D5:F5

D6 =C5-C11 D6:F7

D8 =C7-C13+C8-C14 D8:F8

C16 =SUMPRODUCT($G11:$G14,C11:C14) C16:E16

F16 =SUM(C16:E16)

C18 =$H$11*C16-$I$11*SUM(C11:C14) C18:E18

C20 =C18/(1+$J$11)^(C3*10) C20:E20

F20 =(E18/((1+J11)^10-1))/(1+J11)^(E3*10)

G20 =SUM(C20:F20)

J



could continue to produce this periodic harvest forever. The best forest value is
about $4.5 million, 23% less than the forest value without the even-flow con-
straints. Thus, the even-flow policy has a substantial cost in terms of foregone
timber production.

However, a strict even-flow policy also has benefits. Even-flow constraints
eliminated the rapid decline in production in the second and third decades
observed in Figure 7.3. At the scale of a state or country, an even-flow policy
might smooth out the boom-and-bust cycles that have been so pervasive in
forest history. It is to reduce those fluctuations and to foster economic stability
that the even-flow principle has been advocated widely.

Another advantage of the even-flow policy is that it leads to a steady-state
forest much more diverse than that obtained without the even-flow constraints.
As seen in Figure 7.5, all four age classes are present in the steady state with the
even-flow policy, compared to only age classes 1 and 2 without it (Figure 7.3).
This diversity is valuable for esthetic reasons, and to provide a variety of habi-
tats for a wide range of fauna and flora. 

7.6 MIXED ECONOMIC AND 
ENVIRONMENTAL OBJECTIVES

As just seen, a policy that forces constant periodic timber production, such as
the even-flow policy, may have indirect environmental benefits, such as conserv-
ing old trees and improving biological diversity. However, specific ecological
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FIGURE 7.6 Solver parameters to maximize forest value with an even-flow policy. 



objectives can be pursued more directly with similar models by making appro-
priate changes in the objective function and/or constraints. Meanwhile, having
forest value as the objective function or as a constraint gives a useful measure
of the trade-off between economic and ecological objectives.

ECONOMICALLY EFFICIENT AND

DIVERSE LANDSCAPE

In Chapter 6 we studied a model to convert an even-aged forest to a steady state
while maximizing landscape diversity. This was done by defining a new vari-
able, Amin, equal to the smallest area in any age class in any period. The prob-
lem was then to find the sequence of harvesting and reforestation activities that
maximized Amin while leading to a steady-state forest. 

Another way of approaching this problem would be to treat Amin not as a vari-
able to maximize, but as an input parameter, . One would then seek the
economically efficient management plan that would keep the area in any age
class and period at or above . By “economically efficient,” we mean the plan
that maximizes forest value, subject to the landscape diversity constraints. 

Figure 7.7 shows the spreadsheet formulation of this problem for our exam-
ple forest. The only change with respect to Figure 7.3 is in cell H6, which con-
tains the value of = 100 ha. So the solution must be such that there are at
least 100 ha in any age class at the beginning of each decade.

Figure 7.8 shows the Solver parameters. The objective function, in G20, is
the forest value, defined as earlier. In addition to the constraints that keep the
growth less than the cut and the cut nonnegative, there are constraints forcing
the stock in each age class to be at least 100 ha (D5:E8 >= H6).

BEST SOLUTION AND OPPORTUNITY COST

The best solution for this example is shown in Figure 7.7. As required, there are
at least 100 ha in every age class at the beginning of each decade. Incidentally,
this policy has also led to periodic timber production that varies little from
decade to decade. 

With the constraint on landscape diversity, the highest forest value is about
$4.7 million. Comparing this result to the forest value of about $6.2 million
obtained without landscape diversity constraint (Figure 7.3) shows that the
opportunity cost of achieving landscape diversity is $1.5 million of foregone
timber revenues. Thus, the environmental gains of landscape diversity should
be worth at least $1.5 million to justify this policy; otherwise the lower bound,

, should be smaller than 100 ha.Amin
∗

Amin
∗

Amin
∗

Amin
∗
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Alternatively, if the opportunity cost is less than the environmental gain, A∗
min

could be increased. However, there are definite limits to the possible values of
A∗

min. For example, verify that with the initial state assumed in Figure 7.7 it is
not feasible to manage the forest to keep at least 150 ha in stock in every age
class and every period. 

7.7 GENERAL FORMULATION

The model studied in this chapter uses the same representation of forest growth
as that in Chapter 6. We describe the state of an even-aged forest at successive
periodic inventories by the area in each of m age classes. The time unit to classify
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FIGURE 7.7 Spreadsheet model to maximize forest value with landscape diversity constraints.
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MAX FOREST VALUE WITH LANDSCAPE DIVERSITY

Age Decade

class 1 2 3 4

Stock (ha) Lower bound

1 100 150 150 150 on forest area:

2 200 100 150 150 100 (ha)

3 50 150 100 100

4 150 100 100 100

Yield Price Cost Interest

Cut (ha) (m
3
/ha) ($/m

3
) ($/ha) (/y)

1 0 0 0 50 50 500 0.06

2 50 0 50 250

3 0 50 0 500

4 100 100 100 600

Cut (m
3
) Total

72,500 85,000 72,500 230,000

Net income ($)

3,550,000 4,175,000 3,550,000

Present value up to steady state ($) After ($) Total ($)

1,982,301 1,301,785 618,091 781,555 4,683,732 max

Key cell formulas

Cell Formula copied to

D5 =SUM(C11:C14) D5:F5

D6 =C5-C11 D6:F7

D8 =C7-C13+C8-C14 D8:F8

C16 =SUMPRODUCT($G11:$G14,C11:C14) C16:E16

F16 =SUM(C16:E16)

C18 =$H$11*C16-$I$11*SUM(C11:C14) C18:E18

C20 =C18/(1+$J$11)^(C3*10) C20:E20

F20 =(E18/((1+J11)^10-1))/(1+J11)^(E3*10)

G20 =SUM(C20:F20)



age classes is the length of the period between inventories, u. Aij is the area in
age class i at the jth inventory. 

The forest is managed for p periods. At the end of this conversion period we
want to leave a sustainable forest. The management plan is defined by the deci-
sion variables Xij, the area cut and reforested from age class i in period j.

The growth equations, not repeated here, describe the state of the forest at
the start of each successive period as a function of the initial condition and of
the prior decisions. 

As in Chapter 6, the area cut and reforested must be nonnegative, and the
area cut must be less than the stock in each age class and period. The steady-
state constraints ensure that the forest left at the end of the plan is sustainable.

The objective function used throughout this chapter is the forest value, FV.
This is the net present value of the income that the forest would produce over
an infinite horizon. It consists of the present value of the income up to the
steady state, PVc, and of the present value after the steady state, PV∞:

where:

PVc

j

ju

j

p N

r
=

+
=

∑
( )1

1

FV PV PV= + ∞c
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FIGURE 7.8 Solver parameters to maximize forest value with a landscape diversity constraint.



and

where Nj = Rj − Cj is the net income, Rj is the gross revenue, and Cj is the refor-
estation cost during period j:

where w is the unit price of timber, Qj is the timber harvest in period j, vi is the
volume per unit area in age class i, and c is the reforestation cost per unit area. 

The forest value FV is a linear function of the decision variables, Xij; thus it
can be used as the objective function in a linear program to seek the manage-
ment plan that converts a particular initial forest to a steady state within a spec-
ified amount of time while maximizing the forest value. 

This maximum forest value can be viewed as the value of the initial stock and
of the land for a forest managed purely for timber production, with the only con-
straint being to leave a sustainable regime at the end of the management plan. 

Other constraints may be imposed to control timber production. For exam-
ple, under the even-flow policy, the production of the forest should be constant
before and after the steady state. This is expressed by these constraints:

Environmental goals and their effects on forest value can be investigated by
adding other constraints. For example, landscape diversity of the forest can be
ensured by forcing the area in stock in every age class and period to be at least
equal to a threshold value, , with the following set of constraints:

7.8 SUMMARY AND CONCLUSION

The dynamic model of even-aged forest management developed in Chapter 6
has been expanded in this chapter to investigate the economic consequences of
different management regimes and objectives. According to Faustmann’s  theory,
the value of bare forest land, or land expectation value, is equal to the net present

A A i m j pij ≥ = = +min
*   , , ;  , ,1 2 1K K

Amin
∗

Q Q Q p1 2= = =L

R wQ w v X C c Xj j i ij

i

m

j ij
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m

= = =
= =
∑ ∑
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      and

PV∞ =
+ − +

N

r r

p
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value of the income that the land is capable of producing over an infinite hori-
zon. The economic rotation for an even-aged stand is the rotation that maxi-
mizes the land expectation value. Faustmann’s formula is useful to compare
forest management regimes and to compare land uses. 

Similarly, the value of a complex even-aged forest, including land and trees,
is, from the point of view of timber production, the present value of the income
that the forest will produce in the future. For an even-aged forest consisting of
a mosaic of age classes, the management leading to the highest forest value can
be found by linear programming. The objective function is the sum of the pre-
sent value of the income up to the steady state and the present value of the income
after the steady state. 

Under a strict even-flow policy, periodic production is held constant before
and after reaching the steady state. The highest forest value with an even flow
may be much lower than the forest value obtained without these constraints.
However, even flow can yield environmental benefits because it tends to result
in older and more diverse forests.

Various environmental objectives can be investigated with the model devel-
oped in this chapter, by changing the constraints or the objective function. In
particular, the forest value defined in this chapter may be a constraint, or it may
be the objective function. Setting it as the objective function does not neces-
sarily mean that timber production has the highest priority. Recall that linear
programming finds the best solution within the feasible region defined by all the
constraints. Even if forest value is optimized, the constraints reflecting other
goals may reduce forest value drastically. 

The main benefit of computing forest value, regardless of the forest manage-
ment goals, is to assess the opportunity cost of decisions in terms of the value of
timber income foregone, a value that is well defined by markets. Once a decision
is made, the implication is that the value of the tangible and intangible benefits
is at least equal to the opportunity cost in terms of decreased timber production.

PROBLEMS

7.1 Set up your own spreadsheet model for computing land expectation
value like the one shown in Figure 7.2. Using the same data, verify that your
results are the same as in Figure 7.2.

(a) Reduce the interest rate from 6% to 3%, and then increase it to 10%. How
does this change the land expectation value for a given rotation?
(b) How does this change the economic rotation?
(c) For an interest rate of 3%, how does decreasing the price of timber from
$50/m3 to $25/m3 change the land expectation value for a given rotation?
(d) For an interest rate of 3%, how does decreasing the price of timber from
$50/m3 to $25/m3 change the economic rotation?
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(e) For an interest rate of 3% and a timber price of $50/m3, how does decreas-
ing the reforestation cost from $500/ha to $250/ha affect the land expecta-
tion value for a given rotation?
(f) How does this change the economic rotation?
7.2 Set up your own spreadsheet model for computing forest value like the

one shown in Figure 7.3. Using the same data, verify that your results are the
same as in Figure 7.3.

(a) With the data in Figure 7.3, compute the coefficients of the harvest vari-
ables (Xij) in the objective function. The objective function, the forest value,
is the sum of the present value up to and after the steady state.
(b) Verify that substituting the solution values of the harvest variables into
the objective function obtained in part (a) gives the forest value.
7.3 With the spreadsheet model to maximize forest value (Figure 7.3),

change the interest rate from 6% per year to 3% per year. How does this affect
the forest value, the production per decade, and the structure of the steady-state
forest?

7.4 Consider the forest represented by the spreadsheet model in Figure 7.3.
Suppose that for environmental reasons you want to transform this forest into
a steady-state forest, with the largest possible area in the oldest age class.

(a) Modify the model to maximize the area in the oldest age class in the
steady-state forest.
(b) How does this change in objective affect the forest value, the periodic
production, and the structure of the steady-state forest?
(c) What is the opportunity cost of this policy?
7.5 Consider the spreadsheet model for maximizing forest value with an

even-flow policy (Figure 7.5). Because the strict even-flow policy has a high
opportunity cost, you consider an alternative policy that would produce a
forest value of at least $5 million, lead to a steady state in 30 years, and mini-
mize the total volume cut. Modify the spreadsheet model to reflect this new
policy by:

(a) Removing the even-flow constraints.
(b) Adding a constraint that the forest value must be at least $5 million. 
(c) Changing the objective function to minimize the total volume cut during
30 years. Discuss how these changes affect the forest value and the periodic
production in the best solution.
7.6 Consider the forest represented by the spreadsheet model in Figure 7.3.

Assume that you are concerned with the possible disruption harvesting  would
cause to wildlife species associated with each age class.

(a) Modify the objective of the model to find the management plan that min-
imizes the largest area cut in every period and age class. (Hint: Create a new
variable, Cmax, corresponding to the largest area cut in every period and age
class, and set the objective function to minimize Cmax. Add constraints to
ensure that Cmax is the largest area in every period and age class. 
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(b) How does this new policy change the forest value, the periodic produc-
tion, and the structure of the steady-state forest?
(c) What is the opportunity cost of this policy?
(d) Why is there any harvesting at all in the solution to this modified model?
7.7 Assume that you are the supervisor of a national forest ranger district in

the Pacific Northwest. Your task is to develop a long-term management plan for
the district. Your objective is to maintain a diverse forest landscape in order to
protect the forest against epidemics and fires and to provide habitat for varied
wildlife and for esthetic reasons. The property currently consists of a mosaic of
even-aged stands of Douglas fir. The stands are classified in age classes of 20
years each. Many of the stands are old growth (more than 140 years old). In
your management, harvesting is immediately followed by planting the land with
1-year-old seedlings. The current and anticipated price of timber is $50/m3 , the
cost of reforestation is $500/ha, and the interest rate is 3% per year. Anticipated
per-acre yields depend only on stand age, as shown in this table along with the
forest’s initial state:

(a) Modify the spreadsheet in Figure 7.3 to predict the forest state up to the
beginning of period 6 (that is, after 100 years). Check the growth equations
by showing how this forest would grow if you cut and reforested one-fourth
of the forest every 20 years, always cutting from the oldest age classes.
(b) Use this modified spreadsheet to find the management plan that maxi-
mizes forest value while leading to a sustainable forest. 
(c) What is the forest structure in period 5? How does it score in terms of
landscape diversity?
(d) Modify this spreadsheet to determine the plan that maximizes landscape
diversity, in the sense of maximizing the smallest area in any age class and
period. The plan should also end with a sustainable forest.
(e) What is the opportunity cost of the plan that maximizes landscape
diversity?
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Initial State and Expected Yields for a Douglas Fir Forest

Age Age Yield Initial area
class (y) (m3/ha) (ha)

1 1–20 3 500
2 21–40 27 500
3 41–60 57 500
4 61–80 73 500
5 81–100 87 1,000
6 101–120 97 1,000
7 121–140 103 2,000
8 141+ 110 4,000



(f) Modify the spreadsheet again to determine a compromise plan that would
maximize landscape diversity without allowing forest value to be less than
half of the unconstrained maximum forest value found in part (b).
(g) Compare this compromise plan with those that maximize diversity or
forest value. 
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CHAPTER 8

Managing the Uneven-Aged
Forest with Linear
Programming

8.1 INTRODUCTION

In an uneven-aged (or selection) forest, many trees of different age and size
coexist on small tracts of land. In contrast with the even-aged forest, distinct
areas of homogeneous age-classes cannot be distinguished. However, the ideal
uneven-aged forest, where trees of all ages appear on the same acre, is rare.
Trees may be grouped in patches of similar age, but these patches are usually
too small to be administered like the even-aged compartments that we dealt
with in previous chapters. 

Large contiguous tracts are never clear-cut in the uneven-aged forest. Rather,
one selects single trees or group of trees within stands. Consequently, unlike even-
aged stands, uneven-aged stands have no beginning and no end. There are always
trees left on each hectare of the uneven-aged forest, even immediately after harvest.
For this reason, uneven-aged management is sometimes referred to as continuous-
cover forestry. The French term for the uneven-aged forest is la futaie jardinée, or
“the garden forest,” reflecting the care in management and the high value that
mountain communities in the Jura and in the Alps place on their forests, not only
as sources of income, but also for protection against avalanches and erosion.
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In uneven-aged silviculture, regeneration is usually, though not necessarily,
natural. It comes from the stock of saplings in the understory emerging through
the openings left by cutting the large trees. Therefore, this form of management
works best with trees that are shade tolerant, for example, maples, hemlocks,
cedars, spruces, and firs. Nevertheless, many forests of ponderosa pine in the
West of the United States are uneven aged, despite the species needs for enough
light for good regeneration. In this case, instead of the pure form of selection
cutting, trees are cut in small patches, leading to an overall structure that is
essentially uneven aged for management purposes.

Uneven-aged management leads to a forest with a more natural aspect than
its even-aged counterpart. For that reason, it is very attractive for forests
managed for multiple uses, including recreation. It is often the only form of
cutting that is acceptable for small, private woodlots. In that case, a good-
looking forest not only pleases the owners, but often enhances the value of
their property. 

Unfortunately, uneven-aged management is often believed to be inferior
from a purely economic point of view. This is certainly not the case for a wood-
lot in which timber production is only a secondary object. But even for pure
timber management, the case against uneven-aged management is doubtful.
Starting a new crop of good trees is often the most costly operation in forestry.
This cost is minimal in uneven-aged systems with natural regeneration.

On the other hand, the costs of harvesting, per unit of volume, are gener-
ally greater in a selection forest. There are two reasons for this. First, more area
must be covered to extract a given volume than is the case with clear-cutting.
This means higher costs for roads and for movement of machinery and people.
Second, the felling of trees and the hauling of logs are more delicate operations
in a selection forest. Care must be taken not to damage the trees that are left,
especially young saplings that will constitute the future crops. This is a labor-
intensive process that only skilled labor can do and that is difficult to mecha-
nize. For this reason, uneven-aged management is most appropriate for the
production of large trees yielding expensive, high-quality timbers for which
the cost of harvesting represents only a small part of the value of the final
product.

Perhaps because they are more complex than even-aged systems, uneven-
aged forest systems have not been studied as much. Relatively few models of
selection forests exist, and little is known about the real economics of these
forests for timber production. The object of this chapter is to study such a
model and to use it to investigate problems of interest to forest managers. These
problems include the length of the cutting cycle, that is, the interval between
successive cuttings on a given tract of land, and the intensity of the cut, that is,
the number and size of trees to be removed, if any, given the owner’s economic
and environmental objectives.
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8.2 A GROWTH MODEL OF THE 
UNEVEN-AGED FOREST STAND

The model presented here deals with an uneven-aged stand. A stand is an area
of forest that can be treated as a unit because it has uniform land quality, topog-
raphy, and species composition. Typically, a stand is no less than 1 ha and no
more than 20 ha in area. The state of a stand is described by the size distribu-
tion of trees on an average hectare. Usually, this distribution is determined from
a few sample plots rather than by exhaustive counting of all the trees. 

The first three columns of Figure 8.1 show the size distribution for a sugar
maple stand in Wisconsin that we shall use throughout this chapter. For
simplicity, only three size (diameter) classes were used. This may be enough
for some purposes, for example, if the trees are classified as poles, small saw
timbers, or large saw timbers. For other purposes, there may be a dozen or
more size classes. The trees may also be distinguished by species or species
categories, such as shade-intolerant vs. shade-tolerant trees. 

The data in cells C3:C5 show the typical “inverse J”-shape size distribution
found in uneven-aged stands: The number of trees per unit area decreases pro-
gressively as the size of the trees increases. Cells E3:E5 show the basal area of an
average tree in each size class, which is the area of the cross section of the tree,
measured at breast height. Cells F3:F6 show the basal area per hectare of the
trees in each size class, as well as the total basal area per hectare. The basal area

FIGURE 8.1 Spreadsheet to compute the basal area distribution of a stand of trees.
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(/ha)

Average

diameter

(cm)

Basal area of 

average tree 

(m
2
)

Total basal 

area

(m
2
/ha)

1 10-19.9 840 15 0.02 14.8

2 20-34.9 234 27 0.06 13.4

3 35+ 14 40 0.13 1.8
Total 1088 30.0

Key cell formulas

Cell Formula Copied to

E3 =PI()*(D^2)/40000 E3:E5

F3 =E3*C3 F3:F5

F6 =SUM(F3:F5)

C6 =SUM(C3:C5)
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is a useful measure of the forest density per unit of land. It plays an important
part in the model studied here, and it is relatively easy to measure in the field.

The tree size distribution in Figure 8.1 represents the stand state at a particular
point in time, the time when the stand has been inventoried. Over time, the stand
state changes because some trees die, some are cut, and new trees appear in the
smallest size class.

To represent the general stand state at a given point in time, t, we use three
variables, y1t, y2t, and y3t, where yit is the number of trees per acre in size class
i at time t.

The stand growth model is a set of equations that predicts the state of the
stand at time t + 1, given its current state. The time from t to t + 1 is a fixed unit
of one or more years. There is one equation for each size class:

(8.1)

where the variable Rt in the first equation stands for the recruitment (or ingrowth),
the number of young trees that enter the smallest size class during the interval t to
t + 1.

Each parameter ai is the fraction of live trees in size class i at time t that are
still alive and in the same size class at time t + 1. Each parameter bi is the frac-
tion of live trees in size class i at time t that are still alive and have grown into
size class i + 1 at time t + 1.

Consequently, the fraction of trees in age class i at time t that are dead at time
t + 1 is 1 − ai − bi, because a tree can only remain in the same class, grow into a
larger class, or die. The time unit used is short enough that no tree can skip one
size class.

Table 8.1 shows examples of values of the parameters ai and bi for the stand
summarized in Figure 8.1. The parameters are based on observations from per-
manent plots in sugar maple stands in Wisconsin. In Table 8.1, a1 = 0.80 and
b1 = 0.04 mean that 80% of the trees in the smallest size class were in the same
class 5 years later, while 4% of the trees in the smallest size class grew into the
larger class in 5 years. The remaining 16% died.

y a y R

y b y a y

y b y a y

t t t

t t t

t t t

1 1 1 1

2 1 1 1 2 2

3 1 2 2 3 3

,

,

,
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+

+

= +

= +

= +

TABLE 8.1 Proportion of Trees Staying in the Same Size Class,

Growing into the Next Size Class, or Dying Within 5 Years

Size Proportion Proportion Proportion dying, 
class, i staying, ai growing up, bi 1 − ai − bi

1 0.80 0.04 0.16
2 0.90 0.02 0.08
3 0.90 0.00 0.10
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Assuming that the rates of transition in Table 8.1 are constant and independent
of the stand state, and substituting them in the growth Equations (8.1) leads to:

(8.2)

To complete the model, we need an expression of the recruitment, Rt. The
simplest option is to assume that it is constant. However, biometric studies
have shown that although recruitment is very erratic, it is influenced by the
stand state. For the sugar maple forests in our example, Buongiorno and Michie
(1980) found that recruitment was affected mostly by the stand basal area and
by the number of trees per hectare. More precisely, the average relation between
recruitment, basal area, and number of trees was:

(8.3)

where Bt is the stand basal area at t, Nt is the number of trees, and the recruit-
ment is measured over a 5-year period. The equation shows that, other things
being equal, recruitment tends to be lower on stands of high basal area and
larger on stands with many trees. 

In this form, recruitment is a function only of the state variables y1t, y2t, and
y3t, because:

(8.4)

and

(8.5)

where each coefficient is the basal area of the average tree in the corresponding
size class (see Figure 8.1). Substituting Equations (8.4) and (8.5) in Equation
(8.3) then gives the expression of recruitment as a linear function of the state
variables:

Rt = 109 + 0.12y1t − 0.29y2t − 0.96y3t

Substituting this expression for recruitment in the first of Equations (8.2)
gives the final growth model:

(8.6)
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This basic growth model involves only variables describing the state of the
stand at times t and t + 1. We shall use it in the next section to describe the
growth of a stand without human or catastrophic disturbance. Then we shall
use the model to determine the best cutting regime given different manage-
ment objectives.

8.3 PREDICTING THE GROWTH 
OF AN UNMANAGED STAND

STAND DYNAMICS

Let y1,0, y2,0, and y3,0 be a particular initial stand condition for the uneven-aged
stand for which we have just developed the growth equations. This is the stand state
at time t = 0. We would like to predict its future state with the growth and death
processes embedded in the model parameters, assuming no other disturbance.
To do this we can apply the basic growth model of Equations (8.6) iteratively. 

For example, to predict the undisturbed growth of the sugar maple forest dis-
played in Figure 8.1 we set the initial conditions at:

y1,0 = 840, y2,0 = 234, y3,0 = 14    (trees/ha)

Substituting these initial conditions into the growth equations gives the stand
state after 5 years:

y11 = 0.92 × 840 − 0.29 × 234 − 0.96 × 14 + 109 = 801 (trees/ha)

y21 = 0.04 × 840 − 0.90 × 234 = 244 (trees/ha)

y31 = 0.02 × 234 + 0.90 × 14 = 17 (trees/ha)

Thus, the model predicts that after 5 years there would be fewer trees in size
class 1 and more in size classes 2 and 3. Substituting these values of y11, y21, and
y31 back into the growth equations gives the stand state after 10 years, y12, y22,
and y32 . We can proceed in this manner for as long as we want. 

Figure 8.2 shows how the recursive growth equations can be programmed
in a spreadsheet. Regardless of how the computations are done, the approach
is general and can be applied to a model with as many size classes as necessary.
Figure 8.2 shows predictions of number of trees per acre, starting with the stand
described in Figure 8.1. That stand was logged heavily in the recent past. As a
result, there were initially many trees in the smallest size class. Were the stand
to grow undisturbed for 75 years, the number of trees in the smallest size class
would decline, the number in the middle size class would remain about constant,
and that in the largest size class would increase.
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STEADY STATE

The spreadsheet in Figure 8.2 projects the number of trees in each size class 75
years into the future. Pursuing the calculations further would show number of
trees and basal areas that oscillate with very long periods, but at decreasing
amplitude and ultimately converging toward a steady state in which the stand
remains unchanged forever. The steady state is independent of the initial stand
condition (see Problems 8.2 and 8.3 at the end of this chapter). Biologically, this
steady state corresponds to the undisturbed climax forest, where the growth
would just replace mortality and the average stand structure per unit area would
change little over time.

FIGURE 8.2 Spreadsheet to predict the growth of an undisturbed forest stand. 
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26

A B C D E F G          H

STAND DYNAMICS WITHOUT HARVEST
Stock (trees/ha)

Year Size1 Size2 Size3

0 840 234 14

5 801 244 17

10 758 252 20

15 714 257 23

20 669 260 26

25 624 261 29

30 580 259 31

35 537 257 33

40 497 253 35

45 459 247 37

50 425 241 38

55 394 234 39

60 366 226 40

65 342 218 40

70 322 210 41

75 305 202 41

Key cell formulas

Cell Formula Copied to

A5 =A4+5 A6:A19

B5 =0.92*B4-0.29*C4-0.96*D4+109 B6:B19

C5 =0.04*B4+0.90*C4 C6:C19

D5 =0.02*C4+0.90*D4 D6:D19
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There is a more direct way to determine the steady-state forest. By definition,
a steady state means that, regardless of when the stand is observed, it always has
the same number of trees in each size class. That is, in our example:

yi,t+1 = yit = yi for i = 1, 2, 3 and for all t

Substituting for yi,t+1 and yit with their unknown steady-state value, yi, in the
growth model of Equations (8.6) gives:

(8.7)

This is a system of three equations in three unknowns that can be solved by
substitution. The third equation yields y2 = 5y3 and the second yields y1 =
2.5y2, which implies that y1 = 12.5y3. This shows that in the steady-state stand,
there are 12.5 times as many trees in the smallest size class as in the largest, and
2.5 times as many as in the intermediate. Then, replacing y1 and y2 in the first
equation by their expression in terms of y3 gives y3 = 32.0, which in turn
implies y2 = 159.8 and y1 = 399.6 trees/ha.

The steady-state distribution has the classical inverse J shape of uneven-aged
stands. However, compared with the initial forest, it has fewer trees in the two
smallest size classes and more in the largest. This is plausible since the stand
we started with is currently being managed and has its largest trees removed
periodically.

A more powerful and informative way to calculate the steady state is by
linear programming. The object is to find the number of trees at time t: y1t, y2t,
y3t, subject to:

Growth equations:

Steady-state constraints:
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Nonnegativity constraints:

yit ≥ 0 for i = 1, 2, 3 (8.9)

(Note that, together, constraints (8.8) and (8.9) also ensure that yi,t+1 ≥ 0.)
Any function of the state variables will do as the objective function because the

system of Equations (8.6) and (8.8) has a unique solution, which we found ear-
lier by substitution (for that reason, the nonnegativity constraints are not strictly
necessary). For example, we could set the objective as maximizing the number of
trees in the largest size class (max y3t) or minimizing the number of trees in the
medium size class (min y2t) and get the same unique solution for the steady state.

Figure 8.3 shows a spreadsheet to compute the steady state for this exam-
ple. Cells D5:D7 contain the growth formulas predicting the stand state at time
t + 1 given its state at time t. Figure 8.4 shows the corresponding Solver para-
meters. Here, the arbitrary target cell contains the number of trees in the medium
age class, which is minimized. The changing cells are the number of trees in
each size class at time t.

The first set of constraints forces the state at time t to be the same as the state
at time t + 1. The second set of constraints requires that the number of trees in
each size class be nonnegative. 

The Solver solution is shown in Figure 8.3. This solution is unique and is
independent of the objective function. In effect, the Solver role in this case is to
find the solution of a system of linear equations. Regardless of the initial con-
dition of the stand, the growth and mortality processes embodied in the growth
equations will lead to this steady state after a sufficiently long period of time.
Figure 8.2 suggests that in this example the steady state would be nearly
reached after a century. 

FIGURE 8.3 Spreadsheet to compute the steady state of an undisturbed uneven-aged stand.
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STEADY STATE WITHOUT HARVEST
Stock

y t y t+ 1

(trees/ha) (trees/ha)

1 399.6 399.6

2 159.8 159.8 min

3 32.0 32.0

Key cell formulas

Cell Formula

D5 =0.92*B5-0.29*B6-0.96*B7+109

D6 =0.04*B5+0.90*B6

D7 =0.02*B6+0.90*B7

Size

class



140 Decision Methods for Forest Resource Management

8.4 GROWTH MODEL FOR A MANAGED STAND

We shall now adapt the model just developed to predict the growth of a stand
with periodic harvesting. This will be done in two steps, first establishing the
relationships that govern the growth of a managed uneven-aged stand, and then
determining the equations that define the steady state for such a stand.

STAND DYNAMICS WITH HARVEST

The number of trees cut per unit area in each size class describes the harvest
at a certain point in time, t. In our example the harvest is designated by three
variables, h1t, h2t, and h3t, where hit is the number of trees cut from size class i
at time t. The number of trees left after the cut in each size class i is thus yit −
hit. These remaining trees develop according to the growth Equations (8.6).
Consequently, the growth of an uneven-aged stand that is cut periodically is
described by Equations (8.6), where each yit is replaced by yit − hit:

(8.10)
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y y h y h
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FIGURE 8.4 Solver parameters to compute the steady state of an undisturbed uneven-aged stand.
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This system of recursive equations describes the evolution of the stand under
any sequence of harvests, regardless of their timing and level, as long as hit ≤ yit.

For example, Figure 8.5 shows a spreadsheet to predict the growth of the
stand, with a fixed-proportion periodic harvest. Specifically, the cut occurs
every 5 years, starting at year 0. The cutting rule is always to take 20% of the
smallest trees, 15% of the mid-size trees, and 10% of the largest trees. 

As a result of this management regime, the forest has reached a near steady
state after 75 years (note that the stock as well as the harvest in each size class
change little between 65 and 75 years). In fact we shall see later that there is an
infinite number of management regimes capable of maintaining a steady state.

FIGURE 8.5 Spreadsheet to predict uneven-aged stand growth with a fixed-proportion periodic
harvest.
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STAND DYNAMICS WITH HARVEST
Stock (trees/ha) Cut (trees/ha) Proportion cut

Year Size1 Size2 Size3 Size1 Size2 Size3 0.20 0.15 0.1

0 840 234 14 168 35 1

5 657 206 15 131 31 2

10 529 179 16 106 27 2

15 441 154 16 88 23 2

20 382 132 16 76 20 2

25 344 113 15 69 17 1

30 322 97 14 64 15 1

35 310 85 13 62 13 1

40 305 75 12 61 11 1

45 305 67 11 61 10 1

50 307 61 10 61 9 1

55 312 56 9 62 8 1

60 317 53 8 63 8 1

65 322 51 8 64 8 1

70 327 49 7 65 7 1

75 331 48 7 66 7 1

Key cell formulas

Cell Formula Copied to

A5 =A4+5 A5:A19

B5 =0.92*(B4-F4)-0.29*(C4-G4)-0.96*(D4-H4)+109 B5:B19

C5 =0.04*(B4-F4)+0.90*(C4-G4) C5:C19

D5 =0.02*(C4-G4)+0.90*(D4-H4) D5:D19

F4 $J$3*B4 F4:F19

G4 $K$3*C4 G4:G19

H4 $L$3*D4 H4:H19
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In the next section we shall study how to define a managed steady state and how
to choose one that is best for specific management objectives.

STEADY STATE FOR A MANAGED STAND

We shall assume for now that the interval between harvests, or the cutting
cycle, has the same length as the time unit in the growth equations. In our
example, the interval between t and t + 1 in the growth equations is 5 years, and
thus the cutting cycle is also five years long. 

A managed uneven-aged stand is in a steady state if the trees harvested in
each size class are just replaced by the growth of the stand between harvests
(Figure 8.6). As observed earlier, the growth of a managed stand between har-
vests is governed by Equations (8.10).

The steady state means that the stand state must be the same at the end as at
the beginning of the cutting cycle:

(8.11)

Furthermore, the cut must be less than the stock:

(8.12)

And the cut must be nonnegative:

(8.13)

(Note that, together, Constraints (8.13) and (8.12) ensure that, yit ≥ 0; together
with Constraint (8.11) this also ensures that yi,t+1 ≥ 0.)

h iit ≥ =0 1 2 3for , ,

h y iit it≤ =for 1 2 3, ,

y y ii t it, , ,+ = =1 1 2 3for

FIGURE 8.6 In the steady state, growth replaces harvest within a cutting cycle.

Tree/ha       

t

hit

y=stock
h= harvest

t       +   1 t       im    e

yit yi,t+1=yit



Managing the Uneven-Aged Forest with Linear Programming 143

There is an infinite number of solutions to the system defined by Equations
and Inequalities (8.10) to (8.13) and therefore an infinite number of feasible
steady states. This gives the manager the opportunity to choose the steady state
that is best for a particular purpose. 

8.5 OPTIMIZING UNEVEN-AGED STANDS 

A wide range of management objectives can be explored with the model we
have just set up. The first example we will consider seeks the management that
maximizes the production per unit of time, parallel to the search for the maxi-
mum mean annual increment in even-aged management. The second will find
the management leading to the climax forest with the largest possible number
of “big trees,” for environmental reasons, especially esthetics.

MAXIMIZING SUSTAINABLE PRODUCTION

A classical goal of sustained-yield management is to maximize the volume pro-
duced per unit of time while maintaining the forest in a steady state. In our
example this means that the stand is restored every 5 years to the state it was in
5 years earlier, and as a result the volume cut every 5 years is constant. Table 8.2
shows the volume and value of the average tree in each size class. Given this per-
tree volume, the equation for the volume cut from the stand every 5 years is:

The object is to find the harvest, h1t, h2t, and h3t, and the corresponding grow-
ing stock, y1t, y2t, and y3t, that maximize production while satisfying Constraints
(8.10) to (8.13).

Z h h hQ t t t

( )

. . .
m /ha (m /tree) (tree/ha)3 3

= + +0 20 1 00 3 001 2 3

TABLE 8.2 Volume and Value of the Average Tree,

by Size Class

Size Volume Value
class per tree (m3) per tree ($)

1 0.20 0.30
2 1.00 8.00
3 3.00 20.00
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Figure 8.7 shows a spreadsheet model to solve this problem. Cells D5:D7
contain the formulas for the growth equations predicting the stand state at time
t + 1, given the stand state and harvest at t. Cell C14 contains the formula for
the periodic timber production, ZQ, as a function of the harvest variables and of
the volume per tree in cells C11:C13.

Figure 8.8 shows the corresponding Solver parameters. The target cell is the
periodic production. The changing cells contain the harvest and stock vari-
ables, hit and yit. The constraints specify that the harvest must be less than the
stock, the harvest must be nonnegative, and the stock at time t must be equal
to the stock at time t + 1 to ensure a steady state.

The best solution, shown in Figure 8.7, is a stand in which no tree ever grows
into the largest size class. Furthermore, all the trees in the second size class are
removed every 5 years. The growth of the residual trees in the first size class and
the recruitment of new trees are enough to restore the stand to its preharvest
state after 5 years. This system gives the highest periodic production, about 54
m3/ha/5y.

FIGURE 8.7 Spreadsheet model to maximize the periodic production of an uneven-aged stand in
steady state.
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MAX PERIODIC PRODUCTION
Stock

Size y t y t +1

class (trees/ha) (trees/ha)

1 1362.5 1362.5

2 54.5 54.5

3 0.0 0.0

Harvest

Size h t Volume

class (trees/ha) (m
3
/tree)

1 0 0.20

2 54.5 1.00

3 0 3.00

Production 54.5 (m
3
/ha/5y)

max

Key cell formulas

Cell Formula

D5 =0.92*(B5-B11)-0.29*(B6-B12)-0.96*(B7-B13)+109

D6 =0.04*(B5-B11)+0.90*(B6-B12)

D7 =0.02*(B6-B12)+0.90*(B7-B13)

C14 =SUMPRODUCT(C11:C13,B11:B13)

E
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SEEKING ENVIRONMENTAL QUALITY

Timber production is rarely the only objective of forest management. In fact,
some owners have little interest in timber production. They may own a forest
purely for recreational and esthetic reasons. Public forests are generally man-
aged for many purposes, including watershed protection, recreation, wildlife
habitat, and biological diversity. 

Thus, the management of forests often reflects a multitude of goals. The var-
ious goals may be expressed with an objective function, which must be unique,
and with one or more constraints. To pursue our example, assume that the
owners have a special interest in maintaining a beautiful forest. In their eyes,
beauty is associated with the presence of many big trees: the more, the better.
As far as timber production is concerned, they would be satisfied with half of
the maximum production computed earlier, that is, about 25 m3/ha/5 y.

The model just developed can help find the best management for this set of
goals. The decision variables are the same as to maximize production. Growth
Equations and Constraints (8.10) to (8.13) are the same. However, periodic
production is now subject to a constraint:

Furthermore, the new objective function is the number of trees in the largest
size class, y3t, which should be as large as possible. 

0 20 1 00 3 00 251 2 3. . .
(m /tree) (tree/ha) (m /ha)3 3

h h ht t t+ + ≥

FIGURE 8.8 Solver parameters to maximize the periodic production of an uneven-aged stand.
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Figure 8.9 shows the spreadsheet set up to solve this problem. It is similar
to the one in Figure 8.7, except for the addition of the lower bound on pro-
duction in cell C15. The Solver parameters in Figure 8.10 have been changed
so that the target cell is now B7, which contains the number of trees in the
largest size class. The constraint C14 >= C15 has been added to force the
periodic production to be at least 25 m3/ha/5 y.

The results in Figure 8.9 show that the maximum sustainable number of
trees in the largest size class is about 17 trees/ha. This is done by thinning the
medium size class, removing about 25 trees/ha every 5 years. 

Relaxing the timber production constraint would allow for more large
trees. Exactly how many is revealed by the sensitivity option of the Solver in
Figure 8.11. The shadow price for the production constraint in cell C14
shows that decreasing the timber production constraint from 25 to 24
m3/ha/5 y would increase the number of trees in the largest size class by 0.6
trees/ha. In the next chapter we shall learn how to put a monetary value on
this kind of trade-off.

FIGURE 8.9 Spreadsheet to maximize the number of large trees with a production constraint.
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MAX BIG TREES
Stock

Size y t y t +1

class (trees/ha) (trees/ha)

1 841.3 841.3

2 111.5 111.5

3 17.3 max 17.3

Harvest

Size h t Volume

class (trees/ha) (m
3
/tree)

1 0 0.20

2 25.0 1.00

3 0 3.00

Production 25.0 (m
3
/ha/5y)

Lower bound 25 (m
3
/ha/5y)

Key cell formulas

Cell Formula

D5 =0.92*(B5-B11)-0.29*(B6-B12)-0.96*(B7-B13)+109

D6 =0.04*(B5-B11)+0.90*(B6-B12)

D7 =0.02*(B6-B12)+0.90*(B7-B13)

C14 =SUMPRODUCT(C11:C13,B11:B13)
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8.6 GENERAL FORMULATION

The example used in this chapter is a particular case of a general model of
uneven-aged stand management. For conciseness, matrix notation is used
throughout (see Appendix B for a brief introduction to matrix algebra).

GROWTH MODEL

The column vector yt designates the state of an uneven-aged stand at time t, where
each vector element is the average number of trees per hectare in each of n size
classes. Similarly, the column vector ht designates the harvest. Stand growth is

FIGURE 8.10 Solver parameters to maximize the number of large trees with a production
constraint.

FIGURE 8.11 Solver sensitivity option data showing the shadow price of the production constraint.

Constraints

Final Shadow Constraint
Cell Name Value Price R.H. Side

$B$5 (trees/ha) 841.3 0.3 0

$B$6 (trees/ha) 111.5 0.6 0
$B$7 (trees/ha) 17.3 7.2 0

$B$11 (trees/ha) 0 0
$B$12 (trees/ha) 25.0 0.0 0
$B$13 (trees/ha) 0 0
$C$14 Production (m3/tree) 25.0 -0.6 25

0

0
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represented by these recursive equations:

(8.14)

where G and c are matrices of constant parameter. The time interval t to t + 1
is u years. In the example used in this chapter, n = 3, and:

Recursive Equation (8.14) allows prediction of the stand state at any point
in the future, starting from a particular initial state y0 and subject to a specific
sequence of harvests: h0, h1,…, hT:

UNDISTURBED STEADY STATE

When there is no harvest and ht = 0 for all t, the stand will converge to a steady
state as t increases. The steady state is independent of the initial conditions and
depends only on the growth parameters. This undisturbed steady state is found
by solving this system of linear equations:

(8.15)

with this steady state condition:

(8.16)

This system has a unique solution, which can be found by linear programming,
with Equations (8.15), (8.16), and yt ≥ 0 as constraints and with an arbitrary
objective function, such as:

where y1t is the number of trees in the smallest size class.
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MAXIMIZING PERIODIC PRODUCTION

The sustainable regime that maximizes production per unit of time is found by
solving a linear program with the following constraints:

Growth equations:

Steady-state constraints:

Cut less than stock, and nonnegative:

(8.17)

Objective function is the constant periodic production:

where v is a row vector of dimension n, the elements of which are the volumes
per tree in each of the n size classes.

ENVIRONMENTAL OBJECTIVES

A variety of environmental objectives can be studied with this model. For
example, we may seek the regime that obtains the highest sustainable number
of large trees, subject to a lower bound on periodic production. The objective
function is then:

where ynt is the number of trees in the largest size class. This objective function
is maximized subject to Constraints (8.14), (8.16), and (8.17) and this addi-
tional constraint:

where Z*
Q is the lower bound on production.
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8.7 SUMMARY AND CONCLUSION

In this chapter we studied a growth model of uneven-aged forest stands and
applied it to different management issues. The stand state is defined by the
number of trees per unit area in different size classes. The growth model con-
sists of a set of recursive equations predicting the state of the stand as a func-
tion of its past state and of the last harvest. The model parameters are the
probabilities that live trees in particular size classes will stay in that size class
or move up a size class in a specified interval. The model is completed with a
recruitment equation that predicts the rate at which trees enter the smallest size
class. Recruitment is modeled as a function of the stand state.

This model was used to predict first the growth of an undisturbed stand and
then the growth with a particular sequence of harvests. In the absence of distur-
bances, the model predicts the convergence of the stand to a natural steady state,
or climax, where the growth and death processes just balance and the stand state
remains constant over time. This undisturbed steady state can be found by solving
the growth equations with the condition that the stand state remain the same over
time. The solution can also be found by linear programming with an arbitrary
objective function, subject to the growth equations and steady-state conditions. 

With human intervention, in the form of harvest, a steady state is defined as
a system where the stand growth during the cutting cycle just replaces the har-
vest. Thus, the stand state at the end of the cycle is the same as at the begin-
ning, and the harvest can continue forever. There is an infinite number of
possible steady states. Those that best meet specific objectives can be found by
linear programming. 

In particular, we specified linear programs to find sustainable management
regimes (harvest and corresponding growing stock) that maximized the pro-
duction per unit of time. This emphasis on timber productivity would have
environmental drawbacks for some owners because it leaves few if any of the
largest trees. Another model gave priority to environmental and esthetic con-
siderations by finding a regime that maximized the sustainable number of large
trees while producing a specified amount of timber. These are just two exam-
ples of management alternatives. The model structure has the potential to deal
with many more scenarios. In the next chapters we will look in particular at the
economic dimension of uneven-aged management, with a view to measure the
trade-off between economic and environmental goals.

PROBLEMS

8.1 The table here shows the fractions of trees staying in the same size class
or growing into a larger class over a 5-year period for a sugar maple stand.
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(a) Assuming that the definitions of the size classes are the same as those
used in the example in Section 8.2, do the given data describe a faster or a
slower growing stand than the one described in Table 8.1?
(b) What proportion of the trees in each size class dies every 5 years?
8.2 Set up the spreadsheet model in Figure 8.2 on your own spreadsheet, and

verify the results. Then extend the stand projection to 500 years. 
(a) How does the number of trees in each size class change over time?
(b) How long does it take for the stand to approach a steady state?
(c) Compare this approximate steady state with the exact steady state in
Figure 8.3.
8.3 In the spreadsheet model in Figure 8.2, change the initial stand state to

y1,0 = 300 trees/ha, y2,0 = 100 trees/ha, and y3,0 = 20 trees/ha. 
(a) What is the effect on the number of trees, by size class, over time?
(b) What is the effect on the steady state?
8.4 Consider the following equations of recruitment into the smallest size

class for an uneven-aged stand:

Rt = 100 − 10Bt + 0.2Nt

where all terms are defined as in Equation (8.3).
(a) For a stand of 30 m2/ha of basal area and 1200 trees/ha, what is the recruit-
ment rate?
(b) Assume two stands with 20 m2/ha basal area, but one with 1200 trees/ha
and another with 1500 trees/ha. Which stand has the higher recruitment rate?
(c) Assume two stands with 1200 trees/ha, but one with 20 m2/ha basal area
and another with 15 m2/ha. Which stand has the higher recruitment rate?
8.5 Equation (8.1) describes the state of an uneven-aged stand at time t + 1

in terms of state of the stand at time t and recruitment. Expand this system of
growth equations to include a fourth size class.

8.6 The owners of a vacation home have asked for your advice regarding the
management of the northern oaks grown on their property. Because the home
is located in the center of the property, they are interested in pursuing uneven-
aged silviculture to minimize the esthetic impact of harvesting activities. They
have already obtained some growth data for northern oak stands growing on

Proportion of Trees Staying in the Same Size Class or Growing

into the Next Size Class Within 5 Years (sugar maple)

Size Proportion staying Proportion growing
class in same class into next class

1 0.79 0.02
2 0.88 0.01
3 0.85 0.00



152 Decision Methods for Forest Resource Management

similar sites. The data are shown in the table. Use these data to construct a set
of equations similar to Equations (8.6) to predict the growth of the oak stand.
Use the recruitment equation Rt = 80 − 10Bt + 0.1Nt.

8.7 Consider an uneven-aged stand of trees that grows according to the fol-
lowing equations:

where the interval between times t and t + 1 is 5 years.
(a) Write the steady-state conditions for this stand similar to Equations (8.7).
(b) Set up a spreadsheet model similar to that in Figure 8.3 to find this steady
state by linear programming. Verify that the steady state is unique by chang-
ing the objective function. 
8.8 Consider two different initial states for stands growing according to the

equations in Problem 8.7.

Initial state 1: y1,0 = 200, y2,0 = 30, y3,0 = 0, y4,0 = 0
Initial state 2: y1,0 = 20, y2,0 = 10, y3,0 = 5, y4,0 = 1

State 1 describes a stand that has been cut over, leaving a residual stand of
small trees. State 2 describes a stand with relatively few trees in the smallest size
class as a result of mortality from browsing deer. Set up a spreadsheet model
similar to that in Figure 8.2 to predict the growth of the stand given different
initial states. Can you detect any convergence toward the steady state identified
in Problem 8.7?
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Proportion of Trees Staying in the Same Size Class or Growing into the Next

Size Class Within 5 Years (oak)

Size Proportion staying Proportion growing Basal area per
class in same class into next class tree (m2)

1 0.78 0.04 0.02
2 0.80 0.06 0.07
3 0.80 0.04 0.14
4 0.90 0.00 0.25
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8.9 Consider an uneven-aged stand whose growth can be described by the
equations given in Problem 8.7.

(a) Modify these growth equations to describe the growth of a stand from
which harvesting can occur in any size class every 5 years.
(b) Assume the harvesting policy for the stand will be to harvest all the trees
in the largest size class and nothing from the two smaller size classes. Set up
a spreadsheet similar to that in Figure 8.5 to predict the growth of the stand
over the next 100 years, given this policy. What do you observe? 
8.10 Consider an uneven-aged stand whose growth can be described by the

equations given in Problem 8.7. Wood volumes per tree are given in the table.
Set up a spreadsheet model similar to that in Figure 8.9 to find the steady-state
regime that would maximize the number of stock trees in the third and fourth
size classes and produce at least 10 m3/ha/5 y. 
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CHAPTER 9

Economic and 
Environmental Management
of Uneven-Aged Forests

9.1 INTRODUCTION

In the preceding chapter we studied a dynamic model for forecasting the growth
of uneven-aged forest stands. Given the initial state of the stand and a specific
schedule of periodic harvests, we could predict how the stand would look at any
future date, with or without human intervention. This model also gave us a way
to define sustainable management regimes. Among all possible sustainable
regimes, we used linear programming to identify those that best met objectives
such as maximizing productivity or esthetics.

The purpose of this chapter is to extend this model to define the economic
value of uneven-aged forest stands for timber production and the effects of envi-
ronmental constraints on this value. Economic objectives are important for
many forest owners. Some own forests mostly for financial reasons, and they are
interested in managing them to maximize timber income. Other owners have
nonfinancial reasons for managing or not managing their forest, such as soil
protection, esthetics, and biological diversity.

Even for owners with no direct financial objective, knowledge of the economic
potential of the forest is useful to judge the opportunity cost of management



decisions. Even in a publicly owned forest that is being devoted exclusively to
recreation, it is worth knowing how much timber income is lost due to this
choice. Knowledge of the full opportunity cost of alternative land uses is essen-
tial for making good decisions.

A large part of this chapter deals with steady-state conditions. That is, we seek
ideal combinations of harvest and growing stock that are sustainable and that
best meet different management goals. Steady-state regimes can be viewed as
ideal conditions that management should strive for. At the end of the chapter we
shall turn to the issue of how to convert a given stand to such a steady state. 

We shall begin by studying purely economic management regimes, adapting
Faustmann’s theory studied in Chapter 7 to the case of valuing an uneven-aged
stand and thus finding the land expectation value in uneven-aged silviculture.
We shall then apply the model to investigate the effect of different environ-
mental goals on land expectation value and thus measure the trade-off between
economic and environmental objectives in uneven-aged management.

The last part of the chapter deals with the issue of converting a given initial
stand to the steady state that best meets various combinations of economic and
environmental objectives.

9.2 ECONOMIC STEADY STATE 
FOR UNEVEN-AGED STANDS

The object here is to determine the structure of sustainable uneven-aged stands
and the corresponding harvest that maximize the return to the land. We shall
proceed in two steps. First finding the best stock and harvest for a given cut-
ting cycle, and then determining the effect of changing the cycle. 

LAND EXPECTATION VALUE

FOR UNEVEN-AGED STANDS

When we studied Faustmann’s formula for even-aged stands in Chapter 7 we
defined the land expectation value (LEV) as the present value of the perpetual
income stream produced by periodic crops of trees, beginning with bare land. 

We can apply the same concept to an uneven-aged stand in a steady state.
The forest value of an even-aged stand (land plus trees) is the present value
of the income that it will produce in perpetuity. The value of the land only
(the fixed input), or the land expectation value, is the present value of the
income produced by the land and trees, minus the initial value of the trees (a
variable input). The object is to choose the stock of trees in the uneven-aged
stand and the corresponding harvest to maximize the land expectation value.
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This optimization is done within constraints that define the biological growth
of the stand under consideration, the steady state, and ancillary conditions. 

CONSTRAINTS

Biological Growth

Throughout this chapter we shall continue to use as an example the stand of
sugar maple trees studied in Chapter 8. The stands evolves over time according
to these growth equations:

(9.1)

where yit is the number of trees in size class i at time t, hit is the number of trees
cut from size class i at time t, and the interval between times t and t + 1 is 5 years. 

Steady State

For the stand to be in a steady state, the number of trees at time t + 1 must be
the same as the number at times t , in every size class:

(9.2)

This ensures that the stand growth from time t to time t + 1 just replaces the
harvest and, therefore, that the harvest hit could be repeated at t + 1, t + 2, t + 3,...
and so on forever.

Feasible Harvest

Equations (9.1) and (9.2) have an infinite number of solutions. However, a
meaningful solution must be such that the number of trees harvested in every
size class is less than the stock: 

(9.3)

Nonnegativity

Last, the number of trees harvested in every size class cannot be negative:
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Even with Constraints (9.3) and (9.4), Equations (9.1) and (9.2) still have
an infinite number of solutions. There is an infinite number of possible steady
states, some better than others for specific ends. Here, we seek the steady state
that maximizes the return to the land, what we called the land expectation value
in Chapter 7.

ECONOMIC OBJECTIVE FUNCTION

The land expectation value of an uneven-aged stand in steady state derives from
the stream of constant periodic returns that the stand will produce indefinitely.
For the sugar maple stand in our example, and using the data on tree value in
Table 8.2, the equation for the value of the periodic harvest in steady state is:

This value is realized at time t and every 5 years thereafter, and is sustainable for-
ever. Thus, the present value of all the harvests starting at time t, assuming an
interest rate of 5% per year, is:

However, this income results from the land and from the stock of trees that
uneven-aged management keeps on it. Thus Ph is the value of the land and the
trees that are on it, in other words, the forest value at time t. The value of the
stock of trees alone is:

Thus, the value of the land alone (the land expectation value) is: 

The formula shows that the owner affects the returns to the fixed input, the land,
by simultaneously choosing the harvest and the inventory of growing stock. 

The land expectation value is a linear function of the harvest and stock vari-
ables, because Ph is a linear function of Vh, and Vh is itself a linear function of
h1t, h2t, and h3t. As a result, we may seek the management of highest land expec-
tation value by linear programming. 
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LINEAR PROGRAMMING SOLUTION

The decision variables are the harvest variables and the stock variables: h1t, h2t,
h3t, y1t, y2t, and y3t. The objective function is LEV. The constraints are the growth
Equations (9.1), the steady state Constraints (9.2), the harvest-less-than-stock
Equations (9.3), and the nonnegativity-of-the-harvest Equations (9.4).

Figure 9.1 shows a spreadsheet to compute the highest land expectation
value for the uneven-aged stand used throughout this chapter. As in Chapter 8,
cells D5:D7 contain the formulas for the growth equations, predicting the stand
state at time t + 1 given the stand state and the harvest at t. Cells C11:C13 con-
tain the tree value data. With these data, the formula in cell C14 computes the
harvest value, Vh, and the formula in cell C15 computes the forest value, Ph. The
formula in cell C16 gives the stock value, Vs.
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FIGURE 9.1 Spreadsheet to maximize land expectation value.
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A B C D E

MAX LAND EXPECTATION VALUE, 5 YEAR CYCLE

Stock

Size y t y t+ 1

class (trees/ha) (trees/ha)

1 1362.5 1362.5

2 54.5 54.5

3 0.0 0.0

Harvest

Size h t Value

class (trees/ha) ($/tree)

1 0.0 0.30

2 54.5 8.00

3 0.0 20.00

Harvest value: 436 ($/ha)

Forest value: 2014 ($/ha)

Stock value: 845 ($/ha)

max LEV: 1169 ($/ha) 

Key cell formulas

Cell Formula

D5 =0.92*(B5-B11)-0.29*(B6-B12)-0.96*(B7-B13)+109

D6 =0.04*(B5-B11)+0.90*(B6-B12)

D7 =0.02*(B6-B12)+0.90*(B7-B13)

C14 =SUMPRODUCT(C11:C13,B11:B13)

C15 =C14+C14/((1.05)^5-1)

C16 =SUMPRODUCT(C11:C13,B5:B7)

C17 =C15-C16



The land expectation value in cell C17 is the target cell in the solver para-
meters shown in Figure 9.2. The adjustable cells contain the number of trees in
stock in each size class and the number of trees cut. The first line of constraints
ensures that the cut is less than the stock, the second line that the cut is non-
negative, and the third line that the stock is the same at time t as at time t + 1
so that the stand is in a steady state.

The results in Figure 9.2 show that the best management decision is to har-
vest all of the middle-sized trees every 5 years. The forest value, land plus trees,
of a stand in this steady state is $2,014/ha. The value of the growing stock is
$845/ha, and the land expectation value is $1,169/ha. Comparing the solutions
in Figures 9.1 and 8.7 shows that the management that gives the highest land
expectation value is the same as that which maximizes periodic production,
although this is not always the case. 

Thus, $1,169/ha is our estimate of the best value of the land used in this type
of uneven-aged management. Together with other data, this land expectation
value can help us choose between management alternatives and between dif-
ferent land uses, such as forestry, agriculture, and wilderness.

ECONOMIC CUTTING CYCLE

So far, we have assumed that the interval between harvests is the same as the
time unit of the growth equations. In our example, both were equal to 5 years.
The choice of cutting cycle, however, is itself a managerial decision. A longer
cutting cycle may be desirable for environmental reasons, to decrease the
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FIGURE 9.2 Solver parameters to maximize land expectation value.



frequency of disturbances. Longer cutting cycles may even be superior in eco-
nomic terms. There is usually a fixed cost attached to a harvest entry, namely,
a cost per unit area, that is independent of the amount harvested. The existence
of a fixed cost may lengthen the best economic cutting cycle. 

To study the effect of different cutting cycles, it is convenient to write the
growth Equations (9.1) in matrix notation (see Appendix B):

(9.5)

where yt is the state of the stand at time t, ht is the harvest at time t, and G and
c are the constant parameters in Equations (9.1).

Assume a 10-year cutting cycle instead of 5 years. This means that there is a
harvest at time t, but no harvest at time t + 1. Therefore, the state of the stand
at time t + 2 is:

(9.6)

The steady state constraints require that the stand state be the same at the
beginning and at the end of the cutting cycle; i.e.:

(9.7)

In addition, the harvest must be less than the stock:

(9.8)

and the harvest cannot be negative:

(9.9)

The object is to find the harvest ht and the growing stock yt that satisfy Con-
straints (9.5) to (9.9) while maximizing the land expectation value. In the
objective function, the expressions of the value of the periodic harvest Vh and
of the stock Vs remain the same as for the 5-year cutting cycle:

Vh = wht and Vs = wyt

where w = (0.30, 8, 20) is the vector of tree values for each size class given in
Table 8.2. However, the expression of the land expectation value changes,
because the harvest occurs every 10 years instead of every 5:
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Figure 9.3 shows a spreadsheet to compute the management regime that max-
imizes land expectation value with a cutting cycle of 10 years for the example
forest. Most of the data and formulas are the same as those for a 5-year cutting
cycle, shown in Figure 9.1. Added are the formulas in cells F5:F7, copied from
D5:D7, to predict the stand state at time t + 2, given the state at time t + 1, and
the harvest at time t + 1 set at 0. The formula for the forest value, Ph, in cell C15
has been changed to reflect the fact that the harvest occurs every 10 years. 

The Solver parameters in Figure 9.4 have the same target cell as before, cor-
responding to LEV, and the same adjustable cells, corresponding to ht and yt.
The first two rows of constraints are also the same, corresponding to Constraints
(9.8) and (9.9). The steady-state constraints B5:B7 = F5:F7 are different, cor-
responding to Equation (9.7), to reflect the 10-year cutting cycle.
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FIGURE 9.3 Spreadsheet to maximize land expectation value with a 10-year cutting cycle.
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MAX LAND EXPECTATION VALUE, 10 YR CYCLE

Stock

Size yt yt+ 1 yt+ 2

class (trees/ha) (trees/ha) (trees/ha)

1 1266.8 1274.5 1266.8

2 96.6 50.7 96.6

3 1.0 0.0 1.0

Harvest

Size h t Value h t +1

class (trees/ha) ($/tree) (trees/ha)

1 0.0 0.30 0

2 96.6 8.00 0

3 1.0 20.00 0

Harvest value: 793 ($/ha)

Forest value: 2054 ($/ha)

Stock value: 1173 ($/ha)

max LEV: 881 ($/ha) 

Key cell formulas

Cell Formula copy to

D5 =0.92*(B5-B11)-0.29*(B6-B12)-0.96*(B7-B13)+109 F5

D6 =0.04*(B5-B11)+0.90*(B6-B12) F6

D7 =0.02*(B6-B12)+0.90*(B7-B13) F7

C14 =SUMPRODUCT(C11:C13,B11:B13)

C15 =C14+C14/((1.05)^10-1)

C16 =SUMPRODUCT(C11:C13,B5:B7)

C17 =C15-C16

E F



The results in Figure 9.3 show that the best management with a 10-year
cycle consists of cutting all of the trees in the medium and largest size classes.
The value of the periodic harvest ($793/ha) is much higher than with a 5-year
cutting cycle ($436/ha). The forest value, however, is only slightly higher
($2,054/ha against $2,014/ha), because the higher income occurs at longer
intervals. The value of the growing stock with the 10-year cycle is higher
($1,173/ha against $845/ha) because we keep more and larger trees in the stand.
As a result, the land expectation value is higher for the 5-year cutting cycle
($1,169/ha against $881/ha). From a purely economic point of view, the shorter
cutting cycle is superior in this example.

ROLE OF FIXED COST

The result we have just obtained is general. With little or no fixed cost, a shorter
cutting cycle is better from a purely economic standpoint. However, the presence
of a fixed cost may change this result. The decision to harvest a stand usually
entails costs that are independent of the amount harvested. For example, private
owners may need to hire consultants to mark and administer a timber sale.
Assume the fee, F, for such services is set per unit area ($/ha). Then the value of
the periodic harvest, net of the fixed cost, is Vh − F, and the value of the growing
stock is Vs − F. Therefore, the land expectation value with a fixed cost, LEVF, is:

LEV $/haF h
h

D sV F
V F

r
V F= − +

−

+ −
− −( )

( )
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FIGURE 9.4 Solver parameters to maximize land expectation value with a 10-year cutting cycle.



where r is the interest rate and D is the cutting cycle. This simplifies to:

Thus, the land expectation value with a fixed cost is equal to the land expec-
tation value without a fixed cost, minus a constant that depends only on the
fixed cost, the interest rate, and the cutting cycle. As a result, for a given cut-
ting cycle, the harvest that maximizes land expectation value is the same with
and without fixed cost. However, the land expectation value is different. 

To pursue our example further, let the fixed cost be $200/ha, independent
of the harvest. Then the land expectation value for a 5-year cutting cycle is:

while the land expectation value for a 10-year cycle is:

In this scenario, the 10-year cutting cycle is better. Can you determine the
level of fixed cost at which the owners should switch from a 5-year cutting
cycle to a 10-year cycle?

9.3 ENVIRONMENTAL OBJECTIVES 

A common objective of modern uneven-aged management is to create and
maintain diverse stands. In fact, advocacy for uneven-aged silviculture is based
largely on the view that it leads to diverse stands that look more natural than
even-aged single-species stands. The diversity stems in part from the fact that
uneven-aged management maintains trees of very different sizes on a given
patch of land.

Furthermore, the natural regeneration most often used in uneven-aged man-
agement leads to the presence of diverse tree species in a stand. Both diversity
of tree size, sometimes referred to as structural diversity, and the species diver-
sity are useful in promoting general forest biodiversity. 

MANAGING FOR TREE DIVERSITY IN FOREST STANDS

The model used throughout this chapter dealt with the size of trees only. For
example, the state variable yit and the harvest variable hit designate the number
of trees in size class i at time t and the number of trees cut from that size class.
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However, the model is more general. The subscript i may refer to the trees in a
particular size class and species group. All the principles and methods presented
so far remain the same; the only change is in the detail of the data and in the com-
plication of the notations. For simplicity we shall continue to concern ourselves
with tree size only. Keep in mind, however, that when we deal with tree size
(structural) diversity, we are in fact laying down methods to deal with tree
species diversity as well and for combinations of size and species diversity.

A MAXIMIN CRITERION OF DIVERSITY

An operational criterion for structural diversity is to ensure that a stand has
trees in every size class. A way to achieve high diversity is then to seek the man-
agement regime that keeps the smallest number of trees in any size class as
large as possible. This is the same MaxiMin principle we used to obtain land-
scapes of high diversity in even-aged forests (see Chapter 7). 

Linear programming can be used to find the management regime leading to
a sustainable (i.e., steady-state) stand of maximum diversity, in that sense. To
do this we define a new decision variable, Nmin, the smallest number of trees in
any size class. 

The linear programming problem then consists of finding the number of trees
to cut in each size class, h1t, h2t, and h3t, and the number of trees to keep in each
size class, y1t, y2t, and y3t, that maximize Nmin, subject to growth Equations (9.1),
steady-state constraints (9.2), harvest-less-than-stock-Constraints (9.3), and
nonnegativity-Constraints (9.4). New constraints:

(9.10)

ensure that Nmin is the smallest number of trees in any size class. The objective
is to make this number as large as possible.

SPREADSHEET SOLUTION

Figure 9.5 shows a spreadsheet model to find the management that maximizes
tree diversity with a 5-year cutting cycle. The only change with respect to the
spreadsheet in Figure 9.1 is the addition of the variable Nmin in cell C5. 

The corresponding Solver parameters in Figure 9.6 indicate that C5 is the
new target cell and that C5 is also an adjustable cell. The constraints are the
same as in Figure 9.2, except for the addition of the constraints corresponding
to Inequality (9.5).

The best solution in Figure 9.5 shows that cutting no trees at all maximizes
stand diversity, in the sense of obtaining the highest number of trees in the size
class with the least number of trees. Letting the natural growth and death

y N iit ≥ =min , ,     for 1 2 3
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processes take their course leads to the climax stand of highest diversity. This
may not be a general result, but similar results have also been obtained with
much more detailed models and other measures of diversity (see the Annotated
References at the end of this chapter).

OPPORTUNITY COST OF ENVIRONMENTAL GOALS

The results in Figure 9.5 show that the land expectation value for the manage-
ment of highest tree diversity is −$2,038/ha. This value is negative due to the
fact that the stand of highest diversity produces no income yet requires the
owners to carry a stock with a liquidation value of $2,038/ha. 
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FIGURE 9.5 Spreadsheet model to maximize tree diversity in uneven-aged stand.
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A B C D E

MAX TREE DIVERSITY

Stock

Size y t N min y t+ 1

class (trees/ha) (trees/ha) (trees/ha)

1 399.6 32.0 399.6

2 159.8 max 159.8

3 32.0 32.0

Harvest

Size h t Value

class (trees/ha) ($/tree)

1 0.0 0.30

2 0.0 8.00

3 0.0 20.00

Harvest value: 0 ($/ha)

Forest value: 0 ($/ha)

Stock value: 2038 ($/ha)

LEV: -2038 ($/ha)

Key cell formulas

Cell Formula

D5 =0.92*(B5-B11)-0.29*(B6-B12)-0.96*(B7-B13)+109

D6 =0.04*(B5-B11)+0.90*(B6-B12)

D7 =0.02*(B6-B12)+0.90*(B7-B13)

C14 =SUMPRODUCT(C11:C13,B11:B13)

C15 =C14+C14/((1.05)^5-1)

C16 =SUMPRODUCT(C11:C13,B5:B7)

C17 =C15-C16



But this is not the full opportunity cost of following the diversity-maximizing
strategy. The data in Figure 9.1 show that by managing their uneven-aged stand
without any consideration of tree diversity, the owners could obtain a maxi-
mum land expectation value of $1,169/ha. Therefore, the full opportunity cost
of the diversity strategy is: 1,169 − (−2,038) = $3,207/ha.

The implication is that if the owners of this stand, be they public or private,
choose to manage (in effect to leave alone) their forest, the goods, services, and
amenities produced by the undisturbed forest are worth at least $3,207/ha. If
this opportunity cost seems too high, a compromise needs to be struck between
the economic and environmental objectives. 

ECONOMICALLY EFFICIENT ENVIRONMENTAL

MANAGEMENT

One way of shaping a management policy that balances economic and envi-
ronmental objectives is to consider both types simultaneously. We know, how-
ever, that the objective function in any optimization problem must be unique.
In our example, this means that we must choose to optimize either the land
expectation value or the stand diversity and treat the other goal as a constraint. 

One possibility is to seek the most efficient way, in an economic sense, of
achieving a prespecified environmental goal. For example, assume that purely
economic management is unacceptable to the owners of our example forest
because it leaves no tree in the largest size class. On the other hand, the
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FIGURE 9.6 Solver parameters to maximize tree diversity.



opportunity cost of the maximum-diversity management is too high. The
owners feel that their diversity objective would be satisfied by a management
that would keep at least 16 trees/ha in the largest size class, 80 trees/ha in the
medium size class, and 200 trees/ha in the smallest size class (Figure 9.5
shows that this is about half the number of trees in the stand structure that
maximizes diversity).

The economically efficient management to achieve this environmental goal
can be found by solving the following linear programming problem: Find the
harvest, h1t, h2t, and h3t, and the growing stock, y1t, y2t, and y3t, that maximize
LEV, subject to growth Equations (9.1), steady-state Constraints (9.2), the harvest-
less-than-stock Constraints (9.3), nonnegativity Constraints (9.4), and three
new constraints:

(9.11)

Figure 9.7 shows a spreadsheet model to find this compromise solution with
a 5-year cutting cycle. The spreadsheet is similar to the one in Figure 9.1 to
maximize land expectation value. The only new data are the lower bounds on
the number of trees in stock in every size class, in cells C5:C7. The corre-
sponding Solver parameters in Figure 9.8 are the same as those to maximize
land expectation value in Figure 9.2. The only additional constraint is B5:B7 > =
C5:C7, corresponding to the Inequalities (9.11).

The best solution in Figure 9.7 shows that one should harvest about 27 trees
in the medium size class every 5 years. This would maintain the desired 16
trees/ha in the largest size class and more than the desired number in the other
two size classes. The land expectation value for this management is $−436/ha.
This is still a net economic loss, but much smaller than the $2,038/ha loss that
would result from maximizing diversity.

9.4 CONVERTING A STAND TO THE DESIRED
STEADY STATE

The models we have explored so far gave a picture of the ideal steady-state
uneven-aged forest stand that could maintain itself forever while fulfilling
specific economic or environmental objectives. However, upon examining
uneven-aged forest, even one with many stands, it is rare to find the stands in
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this desirable state. In most cases the actual size distribution of trees differs
from the desirable distribution. How, then, should one proceed to convert the
stand to the desirable state?

A simple approach to conversion is to use the best steady-state distribution
as a cutting guide, cutting only the trees in excess of the desired number in the
steady state. For example, we found with the model in Figure 9.7 that the spec-
ified diversity objectives would be met efficiently, in the steady state, with a
stand that had, after harvest, 880.5 trees/ha in the smallest size class, 80 trees/ha
(107.2 − 27.2) in the medium size class, and 16 trees/ha in the largest size class.
Using this distribution as the cutting guide, the trees removed every 5 years are
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FIGURE 9.7 Spreadsheet model to maximize land expectation value in a diverse stand.
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EFFICIENT TREE DIVERSITY
Stock

Size y t Lower bound y t+ 1

class (trees/ha) (trees/ha) (trees/ha)

1 880.5 200 880.5

2 107.2 80 107.2

3 16.0 16 16.0

Harvest

Size h t Value

class (trees/ha) ($/tree)

1 0.0 0.30

2 27.2 8.00

3 0.0 20.00

Harvest value: 218 ($/ha)

Forest value: 1006 ($/ha)

Stock value: 1442 ($/ha)

max LEV: -436 ($/ha) 

Key cell formulas

Cell Formula

D5 =0.92*(B5-B11)-0.29*(B6-B12)-0.96*(B7-B13)+109

D6 =0.04*(B5-B11)+0.90*(B6-B12)

D7 =0.02*(B6-B12)+0.90*(B7-B13)

C14 =SUMPRODUCT(C11:C13,B11:B13)

C15 =C14+C14/((1.05)^5-1)

C16 =SUMPRODUCT(C11:C13,B5:B7)

C17 =C15-C16



defined by these equations:

(9.12)

Figure 9.9 shows a spreadsheet to predict the consequences of this manage-
ment rule over a period of 75 years. It is a modification of the spreadsheet used
earlier to predict stand dynamics with harvest (see Figure 8.5). The difference
lies in the specification of the harvest. The desired growing stock after harvest
is in cells J4:L4. The formulas to calculate the harvest are based on Equations
(9.12). For example, the harvest at time 0 in the largest size class is 0, because
the desired growing stock is 16 trees/ha but the initial stand has only 14
trees/ha. Instead, the harvest in the second size class is 154 trees/ha, because the
desired stock is 80 trees/ha and the actual stock is 234 trees/ha.

Figure 9.9 shows that in this instance, the cutting rule based on the steady-
state solution leads quickly to a state that is similar to the desired state. Indeed,
this method always approaches the desired state. It reaches it asymptotically if
the desired state is truly a steady state. The speed of convergence to the desired
state depends on the difference between the initial stand state and the desired
state. In particular, if the initial stand has more trees than desired in every size
class, then conversion is achieved immediately by the first harvest. The greater
the deficit of trees in any size class relative to the desired level, the longer the
conversion will take.
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FIGURE 9.8 Solver parameters to maximize land expectation value with tree diversity.



9.5 GENERAL FORMULATION

The growth of an uneven-age stand, over a cutting cycle from time t to time t + k,
where k is an integer, is described by these equations:

(9.13)
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FIGURE 9.9 Spreadsheet model to convert an uneven-aged stand to an economically efficient and
diverse stand structure.
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Stock (trees/ha) Cut (trees/ha) Desired stock

Year Size1 Size2 Size3 Size1 Size2 Size3 after cut (trees/ha)

0 840 234 14 0 154 0 880.5 80.0 16.0

5 845 106 14 0 26 0

10 850 106 14 0 26 0

15 854 106 15 0 26 0

20 857 106 15 0 26 0

25 860 106 15 0 26 0

30 863 106 15 0 26 0

35 866 107 15 0 27 0

40 868 107 15 0 27 0

45 870 107 15 0 27 0

50 871 107 15 0 27 0

55 873 107 15 0 27 0

60 874 107 15 0 27 0

65 875 107 15 0 27 0

70 876 107 16 0 27 0

75 877 107 16 0 27 0

Key cell formulas

Cell Formula Copied to

A5 =A4+5 A5:A19

B5 =0.92*(B4-F4)-0.29*(C4-G4)-0.96*(D4-H4)+109 B5:B19

C5 =0.04*(B4-F4)+0.90*(C4-G4) C5:C19

D5 =0.02*(C4-G4)+0.90*(D4-H4) D5:D19

F4 =MAX(0,B4-J$4) F4:H19



The steady-state constraints require that the stand state be the same at the
beginning as at the end of the cycle:

(9.14)

In addition, the harvest must be less than the stock, and the harvest must be
nonnegative:

(9.15)

A solution of Equations and Constraints (9.13) to (9.15) describes a sustainable
management regime. The choice of a particular management regime depends on
the economic and environmental objectives of the forest owners. 

ECONOMIC MANAGEMENT

The economic sustainable management consists of the harvest ht and growing
stock ytthat lead to the highest land expectation value LEV:

(9.16)

where w is a column vector of value per tree, r is the interest rate per year, u is
the time from t to t + 1, in years, and F is the fixed cost per unit area. LEV is a
linear function of ht and yt, and its highest value subject to Constraints (9.13)
to (9.15) can be found by linear programming. For a given cutting cycle, k, the
economic management regime is independent of the fixed cost. When fixed
costs are high, longer cutting cycles tend to give higher land expectation values.

ENVIRONMENTAL MANAGEMENT

A variety of environmental goals can be expressed with the objective function
and/or with constraints on the sustainable harvest ht and growing stock yt. In
particular, the management leading to the stand of highest tree diversity may
be found by maximizing the least number of trees in any tree class, designated
by a new variable, Nmin, subject to Restrictions (9.8) to (9.10) and the additional
constraint:
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The difference between the land expectation value under this management and
the highest possible land expectation value measures the opportunity cost of the
environmental objective.

MIXED OBJECTIVES

Different combinations of economic and environmental objectives can also be
represented with the model. For example, the economically efficient way of
maintaining a stand with a specific number of trees in each size class can be
found by solving a linear program with the land expectation value of Equation
(9.16) as the objective function, subject to growth Equations and Constraints
(9.13) to (9.15) and the additional constraints:

where yL is a vector of the desired number of trees in each size class to be main-
tained in the stand. Some choices of yL may be unfeasible.

CONVERSION TO DESIRED STATE

A stand in a particular initial state y0 can be converted to a chosen steady state
y∗, h∗ by applying the following harvesting rule:

As T increases, yt and ht converge toward y∗ and h∗.

9.6 SUMMARY AND CONCLUSION

In this chapter, we have studied how to model some aspects of the economic
and environmental management of uneven-aged forest stands. Throughout, we
described the biological growth of the stands with the model developed in
Chapter 8. The analysis emphasized sustainable management regimes that keep
the forest stand in a steady state. In this context, the economic objective is to
find the sustainable growing stock and harvest that maximize the land expec-
tation value. 

The land expectation value is the present value of the perpetual periodic
income from the forest, minus the value of the initial growing stock. The land
expectation value is influenced by the presence of fixed costs, i.e., costs per unit

h y y ht t t T= − − =∗ ∗max( , ( ))    , ,0 0  for K

y yt
L≥
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area independent of the level of harvest. High fixed costs make longer cutting
cycles more economical, other things being equal. 

Knowledge of the economic management regime, leading to the highest land
expectation value, is relevant even when the management objective is noneco-
nomical, because it clarifies the opportunity cost of alternative management
policies.

Purely environmental objectives were also explored with the model. In par-
ticular, we used the maxmin criterion to investigate the management that led
to the highest stand diversity, in the sense of maximizing the least number of
trees in any size class. The difference between the land expectation value
obtained with this management regime and the one resulting in the highest
unrestricted land expectation value defines the opportunity cost of the envi-
ronmental objective.

To manage the opportunity cost, we presented a method that would reach a
specific environmental goal, such as a particular stand structure, while maxi-
mizing the land expectation value. Another, symmetric approach would be to
optimize a particular environmental objective, such as stand diversity, subject
to guaranteeing a specific land expectation value. 

After choosing a desirable steady-state regime, stands in any initial state can
be transformed to this desirable steady state with the simple rule of periodically
harvesting the trees in excess of the desired distribution and letting the rest
grow. Following this rule, any initial stand would converge to the desired state.
The conversion would be immediate if the number of trees in the initial stand
exceeded the desired number in all size classes. 

PROBLEMS

9.1 Set up your own spreadsheet model to maximize the land expectation
value of an uneven-aged forest stand like the one shown in Figure 9.1. Using
the same data, verify that your results are the same as in Figure 9.1.

(a) Find the highest land expectation value for interest rates of 5%, 10%, and
15%, other things remaining the same. What is the effect of different inter-
est rates on the maximum land expectation value?
(b) What is the effect of interest rates of 5%, 10%, and 15% on the best har-
vest?
(c) What is the effect of interest rates of 5%, 10%, and 15% on the best grow-
ing stock?
9.2 With the spreadsheet model to maximize the land expectation value of

an uneven-aged stand (Figure 9.1), do the following:
(a) Solve the model with the original unit values for the trees in each size
class, then with the original unit values reduced by half, and then with the
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original unit values doubled. Keep the interest rate at 5%. What is the rela-
tionship between the land expectation value and the unit values for trees?
(b) What is the effect of halving or doubling the unit value of the trees on
the best harvest?
(c) What is the effect of halving or doubling the unit value of the trees on
the best growing stock?
9.3 Equations (9.5) to (9.9) describe biological growth, steady state, feasible

harvest, and nonnegativity constraints for a model to maximize the land expec-
tation value of an uneven-aged forest with a ten-year cutting cycle.

(a) Rewrite the constraints to reflect a 15-year cutting cycle.
(b) Rewrite the constraints to reflect a 20-year cutting cycle.
(c) Rewrite the objective function for this model [shown just after Equation
(9.9)] to reflect a 15-year cutting cycle.
(d) Rewrite the objective function for this model to reflect a 20-year cutting

cycle.
9.4 (a) Set up your own spreadsheet model to maximize the land expecta-

tion value of an uneven-aged forest stand like the one shown in Figure 9.3.
Using the same data, verify that your results are the same as in Figure 9.3.

(b) Modify this spreadsheet to reflect a 15-year cutting cycle by:
i. Adding formulas to grow the stand from time t + 2 to time t + 3
ii. Setting the harvest at time t + 2 at 0 
iii. Changing the cutting cycle in the formula of forest value 
iv. Changing the Solver parameters to reflect the steady state between
times t and t + 3

(c) Compare the best harvest, growing stock, forest value, stock value, and
land expectation value for cutting cycles of 5 years (Figure 9.1), 10 years
(Figure 9.3), and 15 years, other things being equal. Considering only these
three options, what is the economic cutting cycle?
(d) Recalculate the land expectation value for cutting cycles of 5, 10, and 15
years, assuming a fixed cost of $200/ha. Considering only these three
options, what is the economic cutting cycle?
9.5  (a) Set up your own spreadsheet model to maximize tree diversity in an

uneven-aged forest stand like the one shown in Figure 9.5. Using the same data,
verify that your results are the same as in Figure 9.5. 

(b) Add to the model a constraint to produce a constant harvest every 5 years
worth at least $400. How does this change the harvest, growing stock, and
opportunity cost of maximizing tree diversity? ( Note: The land expectation
value without any consideration of tree diversity is show in Figure 9.1.)

9.6 (a) Modify the spreadsheet model to maximize tree diversity in an
uneven-aged forest stand (Figure 9.5) to maximize land expectation value while
keeping at least 40 trees/ha in the largest size class without bound in the other
two. Is there a feasible solution?
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(b) Use this model to determine the highest number of trees you could main-
tain in the largest size class. What is the land expectation value for this man-
agement?
(c) Use this model to maximize the land expectation value while maintain-
ing at least 30 trees/ha in the largest size class.
(d) Change the lower bound on the number of trees in the largest size class
from 30 trees/ha to 20 trees/ha, 10 tree/ha, and 0 tree/ha. Make a table of the
land expectation value as a function of the lower bound on the number of
trees in the largest size class. Interpret the results.
9.7 (a) Set up your own spreadsheet model to convert an uneven-aged stand

to an economically efficient and diverse stand structure like the one shown in
Figure 9.9. Using the same data, verify that your results are the same as in
Figure 9.9. 

(b) Assume two different initial stand states:
Initial state 1: y1,0 = 900, y2,0 = 250, y3,0 = 20
Initial state 2: y1,0 = 100, y2,0 = 50, y3,0 = 0

Assuming the same desired stock and cutting rule as in Figure 9.9, how do
these different initial conditions affect the growth of the stand over 75 years?
9.8 Modify the spreadsheet model to convert an uneven-aged stand to an

economically efficient and diverse stand structure (Figure 9.9) to do the fol-
lowing:

(a) Compute the present value of the harvest every 5 years. Assume that the
interest rate is 5% per year and that the tree values are as in Figure 9.1.
(b) Compute the cumulative present value of all the harvests over 75 years.
This represents most of stand value, that is, the value of the initial stand of trees
and the land they are growing on under this management regime, because
the present value of the harvests from year 80 onward is negligible.
(c) How does the stand value differ given the two different initial states spec-
ified in Problem 9.7?
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CHAPTER 10

Multiple Objectives
Management with 
Goal Programming

10.1 INTRODUCTION

In all the applications of linear programming studied in the preceding chapters,
we assumed that there was a single overriding management objective, such as
maximizing forest value or maximizing landscape diversity. This objective was
represented by the objective function. Other objectives, for example, maintain-
ing an even flow of timber production and maintaining a specific number of
large trees in a stand, were expressed by constraints. 

This way of handling multiple management objectives may not be satis-
factory, for several reasons. Representing goals by standard linear program-
ming constraints is somewhat rigid. For example, managers who follow even-flow
policies have some flexibility in the amount of timber they produce year after
year. The harvest does not have to be exactly constant; rather, it should be
“nearly” constant. A constraint that imposes strict constancy is not only unre-
alistic; it may also lead to infeasible solutions, while a slight relaxation might
allow for a feasible solution. In large problems with many constraints, it is usu-
ally hard to identify the constraint(s) responsible for infeasibility.
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Furthermore, representing some goals by constraints in effect gives them
priority over the goal reflected in the objective function, because the objective
function is optimized within the feasible region defined by the constraints.
Deciding which goal should be selected as the objective function and which
ones should be reflected by constraints is often arbitrary and difficult. 

Goal programming attempts to correct these limitations while retaining the
useful basic structure and numerical solution of linear programming. Goal pro-
gramming provides a way of striving toward selected objectives simultaneously,
treating them all in the same manner, although perhaps giving them different
weights.

10.2 EXAMPLE: RIVER POLLUTION
CONTROL REVISITED

To introduce the basic concepts of goal programming we will use the example
of the Maine pulp mill given in Section 2.3. Recall that the board of directors of
the cooperative owning the pulp mill had decided that they wanted to produce
enough mechanical and chemical pulp to keep at least 300 workers employed
and to generate $40,000 of gross revenue per day while minimizing the amount
of pollution caused by the mill. This multiple-objective problem was formulated
as a standard linear programming model, as follows: Find X1 and X2, the daily
production levels of mechanical and chemical pulp such that: 

Min Z = X1 + 1.5X2 (daily pollution, BOD units)

subject to:

X1 + X2 ≥ 300 (workers employed)

100X1 + 200X2 ≥ 40,000 ($ of daily revenues)

X1 ≤ 300 (tons/day of mechanical capacity)

X2 ≤ 200 (tons/day of chemical capacity)

X1, X2 ≥ 0

This model is useful, but it has some drawbacks. First, it treats the pollution
goal in a way that is entirely different from the employment and revenue goals.
Pollution is treated as an “optimizing” goal, while employment and revenues
are treated as “satisficing” goals. Unless there is a compelling reason for pollution
to figure in the objective function, it could as well be represented by a constraint,
while employment or revenue could be the objective function (to maximize).
Remember, however, that there can be only one objective function.
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Second, the level of the goals may be unrealistic. If employment or/and rev-
enue targets are too high, the problem may have no feasible solution. This
would easily be corrected in this small example, but unrealistic goals can cause
much trouble in large problems. Goal-programming techniques can be used to
reduce these limitations of linear programming.

10.3 GOAL-PROGRAMMING CONSTRAINTS

In goal programming, all or some of the management goals are expressed by
goal constraints. Consider the employment goal expressed by the first con-
straint in the foregoing linear program. In goal programming, that constraint
is written:

X1 + X2 + L− − L+ = 300 (workers)

where L− and L+ are goal variables, both nonnegative like other linear program-
ming variables, such that L− is the amount by which employment falls short of
the 300 worker goal and L+ is the amount by which employment exceeds the
goal. Depending on the values of L− and L+, three cases may occur:

L− = 0 and L+ > 0, in which case X1 + X2 = 300 + L+, that is, X1 + X2 > 300
and employment exceeds the goal of 300 workers. 

L− = 0 and L+ = 0, in which case X1 + X2 = 300 and employment just meets
the goal.

L− > 0 and L+ = 0, in which case X1 + X2 = 300 − L−, that is X1 + X2 < 300
and employment is less than the goal.

With this system, the employment goal cannot cause infeasibility. Even if the
goal is unrealistically high, L− fills the gap between X1 + X2 and the goal. On the
other hand, employment may also exceed the goal, thanks to the variable L+.

In a similar manner, we can write a goal constraint for the revenues goal:

100X1 + 200X2 + R− − R+ = 40,000 ($/day)

where R− is the amount by which daily revenues fall short of $40,000 and R+ is
the amount by which they exceed $40,000. Both goal variables are nonnegative.

To handle the pollution goal in the same way, a level must be set for the pol-
lution goal, say 400 units of BOD per day. Then the corresponding goal con-
straint is:

X1 + 1.5X2 + P− − P+ = 400 (BOD/day)

where P− is the number of units of BOD below the goal and P+ is the number in
excess.



The other constraints remain the same as in the linear program; they set the
limits on the capacity of production of the plant. In summary, all the constraints
in the pulp mill problem recast as a goal program are:

X1 + X2 + L− − L+ = 300 (workers)

100X1 + 200X2 + R− − R+ = 40,000 ($/day) 

X1 + 1.5 X2 + P− − P+ = 400 (BOD/day) (10.1)

X1 ≤ 300 (tons/day)

X2 ≤ 200 (tons/day)

The next step, by far the most difficult part of goal programming, is to spec-
ify the objective function.

10.4 GOAL-PROGRAMMING
OBJECTIVE FUNCTION

The objective function of a goal-programming problem contains some or all of
the goal variables. The general purpose of the objective function is to make the
total deviation from all goals as small as possible. 

WEIGHTING THE GOALS

Because the goal variables are in completely different units, it is generally unsat-
isfactory to minimize the ordinary sum of all deviations, which in our example
is to write the objective function as:

min Z = L− + L+ + R− + R+ + P− + P+

What we should minimize instead is a weighted sum of the deviations from all
the goals:

where are constant weights. These weights have two purposes: (1) to
make all weighted deviations commensurate, and (2) to express the relative
importance of each goal. For example, wl

− and wp
+ must be such that wl

−L− and
wp

+P+ are in the same units. Also, the relative magnitudes of wl
− and wp

+ express
how important it is to fall short of the employment objective by one worker, rel-
ative to exceeding the pollution objective by one unit of BOD per day.

w wl p
− +, ,K

min Z w L w L w R w R w P w Pl l r r p p= + + + + +− − + + − − + + − − + +
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Assigning appropriate weights to the goal variables is not a simple task. It
involves considerable judgment as well as trial and error. A possible approach
is to compute an initial solution based on a first set of goal levels and weights.
Then, if the stakeholders do not find this solution satisfactory, the goals and/or
the weights are changed and a new solution is computed. These iterations con-
tinue until the solution is acceptable to all stakeholders. At that point, the
weights should be good indicators of the relative importance of each goal to the
stakeholders.

SIMPLIFYING THE WEIGHTS

To simplify the choice of weights, it is best to reduce the objective function to
the simplest expression consistent with the problem at hand. Often, only a few
variables are needed. In our example, the cooperative is concerned about falling
short of the employment goal but not about exceeding it. Therefore, L− only
needs to be in the objective function. Any positive value of L+ is welcome. Sim-
ilarly, the cooperative is concerned about underachieving with respect to the
revenue objective, so R− must be kept small and should be in the objective func-
tion, while R+ need not be. Finally, the cooperative wants to keep pollution
low, so P+, but not P−, should be in the objective function. In summary, the rel-
evant expression of the objective function for our example is:

The difficult task of choosing weights can also be simplified by working with
relative deviations from the goals. Rewrite the objective function as:

where the new weights, ul
−, ur

−, and up
+, now express the relative importance of

deviating by one percentage point from the corresponding goals. For example,
assume that the cooperative owning the pulp mill feels that it is indifferent
toward a 1% deviation from any of the three goals. This is equivalent to setting

. The expression of the objective function is then:

where Z is dimensionless. In this equation, the coefficients are very small, espe-
cially that of R−. This may lead to round-off problems in calculating a solution.
To avoid this, we multiply all the coefficients by the same large number, say

min
,

Z L R P= + +− − +1

300

1

40 000

1

400

u u ul r p
− − += = = 1

min
,

Z u
L

u
R

u
P

l r p= + +−
−

−
−

+
+

300 40 000 400

min Z w L w R w Pl r p= + +− − − − + +
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10,000, which will not change the value of the variables in the best solution.
The new value of the objective function is then:

min Z = 33.3L− + 0.25R− + 25P+ (10.2)

A greater concern for employment than for the other two goals could be
translated by setting wl

− = 2 and wr
− = wp

+ = 1, leading to this objective function:

min Z = 66.6L− + 0.25R− + 25P+

Working with relative deviations from goals has the advantage of eliminat-
ing the different units of measurement. However, it should be kept in mind that
this scheme has a precise meaning in terms of the relative value of the goals. For
example, let us determine the relative value of employment and revenues
implied by objective function of Equation (10.2). 

To do this, note that the change in the objective function is related to the
change in each one of the goal variables by this equation:

dZ = 33.3dL− + 0.25dR− + 25dP+

where the prefix d indicates a change in the corresponding variable. Keeping
pollution constant, that is, dP+ = 0, the changes in employment and revenues
that keep the value of the objective function constant must satisfy this equation:

0 = 33.3dL− + 0.25dR−

that is:

($/day/worker)

Thus, the implication of the objective function of Equation (10.2) is that the
members of the pulping cooperative are willing to see revenues decline by $133
per day if employment increases by 1 worker.

10.5 SPREADSHEET FORMULATION
AND SOLUTION

The structure of the goal-programming problem expressed by Constraints
(10.1) and Objective Function (10.2) is that of an ordinary linear program.
Thus, it can be solved by the simplex method. The corresponding spreadsheet
is shown in Figure 10.1. The entries in bold are the coefficients of the constraints,
the goal levels, the capacity limits, and the weights of the objective function.
Cells B4:I4 contain the production variables, X1 and X2, and the goal variables
measuring the deviations from the goals. Cells J5:J9 contain the formula for the

dR

dL

−

−
≈ −133



left-hand side of Constraints (10.1), while cell J10 contains the formula of the
objective function. 

Figure 10.2 shows the Solver parameters for this problem. The target cell,
J10, contains the weighted sum of the deviations from the goals. The Solver
minimizes this objective by changing the production variables and the goal
variables, B4:I4. The first set of constraints, B4:I4 >= 0, expresses the non-
negativity of the decision variables. The second set of constraints, J5:J7 = L5:L7,
refers to the employment goal, the revenues goal, and the pollution goal.
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FIGURE 10.1 Spreadsheet goal-programming model for the river pollution problem.
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A B C D E F G H I J K L M

RIVER POLLUTION PROBLEM

Production Deviations from goals

X 1 X 2
L

-
L

+
R

-
R

+
P

-
P

+

200 100 0 0 0 0 50 0 Total

Employment 1 1 1 -1 300 = 300 (workers)

Revenues 100 200 1 -1 40000 = 40000 ($/d)

Pollution 1 1.5 1 -1 400 = 400 (BOD/d)

Mech capacity 1 200 <= 300 (t/d)

Chem capacity 1 100 <= 200 (t/d)

Objective 33.3 0.25 25.0 0

Cell formula Copied to

J5 =SUMPRODUCT(B5:I5,B$4:I$4) J5:J10

Key cell formulas

min

FIGURE 10.2 Solver parameters for the goal-programming solution of the river pollution problem.



The third set of constraints, J8:J9 <= L8:L9, expresses the capacity limits on
mechanical and chemical pulp production.

The best solution, shown in Figure 10.1, is: 

X1
∗ = 200 tons/day of mechanical pulp

X2
∗ = 100 tons/day of chemical pulp

P−∗ = 50 BOD/day

All other variables are zero. That is, the employment and the revenue goals are
met exactly, and the pollution goal is more than met, since pollution is less than
the target. In a situation like this, where all goals are achieved, one may suspect
that the original goals were too conservative. In essence, the system we are
working with seems capable of doing better than what we asked. The solution
seems inefficient.

Aware of this, the managers of the pulping cooperative decide to increase all tar-
gets boldly. They double the employment goal to 600 workers, increase the rev-
enue goal by 50% to $60,000 per day, and reduce the pollution goal by 25% to 300
units of BOD per day. The new objective function is, using relative deviations from
goals:

Assuming we still weight relative deviations from each goal identically so
that the weights are 1 (but to avoid very small numbers we set them at 10,000
instead), we get:

min Z′ = 16.7 L− + 0.17 R− + 33.3 P+

The revised spreadsheet model is in Figure 10.3. The only changes from
Figure 10.1 are in the goal levels and the objective function weights. The Solver
parameters remain the same as in Figure 10.2. The new best solution shown in
Figure 10.3 is:

= 300 tons/day of mechanical pulp

= 150 tons/day of chemical pulp

L−∗ = 150 workers 

P+∗ = 225 BOD/day 

Therefore, this second trial falls short of the employment goal and pollutes
more than we would like to while meeting the revenue goal exactly.

It may well be that the cooperative does not like this solution either. In that
case, it can proceed through another iteration, changing weights in the objective

X2
∗

X1
∗

min
,

′ = + +−
−

−
−

+
+

Z u
L

u
R

u
P

l r p600 60 000 300
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function or the level of the goals or both. It can also try to force a solution to
satisfy certain restrictions. For example, assume that someone is adamant about
the employment goal of 600 workers. This is equivalent to requiring L− to be
zero, which can be imposed simply by eliminating L− from the model. In that
case, the first constraint is equivalent to X1 + X2 − L+ = 600; that is, X1 + X2 ≥
600. However, this is just a regular linear programming constraint, which may
lead to infeasibilities. In fact, in this particular example it is not possible to reach
an employment target of 600 workers. X1 can be at most 300 tons/day, and X2

can be at most 200 tons/day, implying a maximum employment of 500 workers.
In general, elimination of any of the goal variables may lead to an infeasi-

bility. No infeasibility may arise from any one of the constraints in which both
goal variables are present, however, because the goal variables always fill the
gap between what is achieved and the set goal level.

10.6 OBJECTIVE FUNCTIONS WITH
ORDINAL WEIGHTS

Up to now, the weights used in the objective function were cardinal numbers,
measuring the relative value of each goal. There is another way of expressing
the objective function in goal programming that uses ordinal instead of cardi-
nal weights.

The procedure assumes that the decision makers are only able to rank the
goals in order of importance, without specifying how much more important one
goal is relative to another.

FIGURE 10.3 Spreadsheet for the river pollution problem with revised goals. 
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A B C D E F G H I J K L M

RIVER POLLUTION PROBLEM, REVISED GOALS

Production Deviations from goals

X 1 X 2
L - L + R - R + P - P +

300 150 150 0 0 0 0 225 Total

Employment 1 1 1 -1 600 = 600 (workers)

Revenues 100 200 1 -1 60000 = 60000 ($/d)

Pollution 1 1.5 1 -1 300 = 300 (BOD/d)

Mech capacity 1 300 <= 300 (t/d)

Chem capacity 1 150 <= 200 (t/d)

Objective 16.7 0.17 33.3 9997.5 min

Cell formula Copied to

J5 =SUMPRODUCT(B5:I5,B$4:I$4) J5:J10

Key cell formulas



In our example, assume that the pulping cooperative has decided that employ-
ment has top priority, pollution has second priority, and revenues come last. The
goal levels are the same as in Figure 10.3. As before, the cooperative managers
are concerned about underachieving the employment and revenue goals and
about exceeding the pollution goal. Consequently, the relevant objective func-
tion is:

Goal programming with ordinal weights assumes that: that
is, the employment goal has a very large (in fact infinite) weight relative to the
weight of the pollution goal, which itself has an infinite weight relative to the
weight of the revenue goal. 

The consequences of this weighting scheme are that all resources available
must be used first to approach as close as possible to the employment goal.
Then any remaining resources must be used to approach as close as possible to
the pollution goal. Whatever is left is used to approach the revenue goal.

There are special algorithms to implement this concept. They solve a sequence
of linear programs. In our example, the first linear program is:

min L−

subject to the constraints in Figure 10.3. The best solution is (see Problem 10.2): 

= 300 tons/day

= 200 tons/day

L−∗ = 100 workers 

P+∗ = 300 BOD/day

R+∗ = $10,000/day

The second linear program is:

min P+

subject to the constraints in Figure 10.3 and the additional constraints L− = 100,
L+ = 0 workers, to keep employment as high as possible. 

The solution of this second linear program is the same as the first one (see
Problem 10.2). Thus, the pollution cannot be decreased if L− is to be minimized
before any other goal is considered. In this example, giving top priority to
employment has, in effect, determined both revenues and pollution.

Ordinal ranking of goals is appealing because it seems, superficially at
least, to do away with the difficult problem of specifying relative weights for

X2
∗

X1
∗

w w wl p r
− + −>> >> ;

min Z w L w R w Pl r p= + +− − − − + +
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the various goals. Nevertheless, it is questionable whether it leads to solutions
that reflect the true values of the stakeholders. In forestry, as in all human
endeavors, few goals are absolute. The statement that goal A has top priority
over goal B is more a figure of speech than a strict guideline. It rarely means,
as the algorithm presented earlier implies, that goal A must be satisfied to the
maximum possible extent before goal B is considered at all. Most values are
relative, and goal programming with cardinal weights is more likely to reflect
these values. This leaves the problem of determining the relative weights. It
is a difficult task, but one can hardly escape it.

10.7 GOAL PROGRAMMING IN EVEN-AGED
FOREST MANAGEMENT

Goal-programming procedures can be very useful in adding flexibility to forest
management models. As an example we will modify the dynamic model of even-
aged management studied in Chapters 6 and 7. The model showed how to convert
a forest from its initial state into a steady-state forest within a particular time
period. This conversion was done while optimizing timber production, envi-
ronmental objectives, forest value, or a combination of those objectives.

A potential application of this model is to find the management that would
convert the forest to a state that stakeholders might judge desirable for a vari-
ety of economic and environmental reasons. 

CONVERTING TO A DESIRABLE FOREST LANDSCAPE

As an example, consider the model of the even-aged short-leaf pine forest of
Chapter 6, but with a less diverse initial state. At the beginning, there are trees
in two age classes only: 400 ha with trees aged 1–10 years, and 100 ha with trees
aged 11–20 years. There are no trees aged 21–30 years and no trees 31 years and
older. One of our goals will be to make this forest more diverse.

In Chapter 6 we studied the recursive growth equations to predict the area
by age class at the end of each decade as a function of the area at the beginning
of the decade and of the harvest during the decade. Every area harvested was
reforested immediately. Except for the initial state, the growth equations stay
the same as those in Table 6.1.

Assume one of the management goals is to create a forest of high landscape
diversity. While the initial state has only young stands, we would like to create
a forest with a variety of age classes. This conversion should be done in 30 years.
According to Shannon’s index, the highest diversity would be achieved by a
forest with equal area in every age class. In our example the total area of the forest



is 500 ha, so the goal is to end up at the start of the fourth decade with four age
classes, each one covering 125 ha. This is expressed by the new set of constraints:

A14 = A24 = A34 = A44 = 125 ha

where Ai4 is the area in stock in age class i at the start of the fourth decade. In addi-
tion, there will often be some constraint on production. Here, we assume that the
stakeholders require a total annual production of 150,000 m3 over 30 years.

It turns out that there is no feasible solution for this problem. That is, there
is no sequence of harvest/reforestation activities that, starting with this initial
forest, could produce both the desired distribution of age classes within 30
years and the desired production (see Problem 10.5). 

A natural question to ask is: How close could we get to the desired distribu-
tion of age classes? This can be answered by goal programming. The four rele-
vant goal constraints are:

where Ai4 is the area that is actually in age class i at the start of the fourth
decade. This area falls short of 125 acres by the amount designated by the goal
variable and it exceeds it by the amount designated by the goal variable .
As usual, all the goal variables are nonnegative. The objective function, then, is
to minimize the total deviation from the desired distribution of age classes at
the start of the fourth decade:

Weights are not necessary because all variables are already in the same units
(ha). Weights could be used, for example, if one were more concerned about a
deviation in the older age classes than in the younger.

SPREADSHEET FORMULATION AND SOLUTION

Figure 10.4 shows a spreadsheet version of this goal-programming model. It
extends the spreadsheet in Figure 6.2. The initial stock of the forest is different,
but the growth formulas in cells D5:F8 and the formulas for the periodic and
total volume cut are the same.

min Z A A A A A A A A= + + + + + + +− + − + − + − +
1 1 2 2 3 3 4 4

Ai
+Ai

−,

(10.3)
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Cells K5:K8 contain the goal levels: the area in each age class at the start of the
fourth decade. Cells G5:H8 contain the goal variables: the deviations between the
actual areas and the goal areas. Cells I5:I8 contain the formulas for the left-hand
side of Goal Constraints (10.3). The formula for the objective function is in cell
H9. Cell F16 contains the formula for total production, and cell H16 contains its
lower bound: 150,000 m3.

The corresponding Solver parameters are in Figure 10.5. The target cell, H9,
is set to minimize the sum of the deviations from the goal area by age class. The
changing cells are the areas cut by age class, in cells C11:E14, and the goal vari-
ables in cells G5:H8. The constraints specify that the cut must be less than the
stock, the cut must be nonnegative, total production must exceed 150,000 m3,
the goal variables must be nonnegative, and Goal Constraints (10.3) must
hold. 
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FIGURE 10.4 Spreadsheet to convert an even-aged forest to a diverse landscape.
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APPROACHING A DIVERSE LANDSCAPE
age Decade Deviation:

class 1 2 3 4 A
-

A
+

Total Goal

Stock (ha)

1 400 125 125 175 0 50 125 = 125

2 100 275 125 125 0 0 125 = 125

3 0 100 250 125 0 0 125 = 125

4 0 0 0 75 50 0 125 = 125

100 min

Cut (ha) m
3
/ha

1 125 0 0 50

2 0 25 0 250

3 0 100 175 500

4 0 0 0 600

Cut(m
3
) Total

6250 56250 87500 150000 >= 150000

Key cell formulas

Cell Formula copied to

D5 =SUM(C11:C14) D5:F5

D6 =C5-C11 D6:F7

D8 =C7-C13+C8-C14 D8:F8

C16 =SUMPRODUCT($G11:$G14,C11:C14) C16:E16

F16 =SUM(C16:E16)

H9 =SUM(G5:H8)

I5 =F5+G5-H5 I5:I8



Figure 10.4 shows the best solution. Due to the production constraint, the
desired forest landscape could not be obtained exactly. After 30 years, the forest
would have 50 ha more than the goal in the youngest age class and 50 ha less
than the goal in the oldest, for a total least deviation of 100 ha with respect to
all the area goals.

10.8 GOAL PROGRAMMING IN UNEVEN-AGED
STAND MANAGEMENT

Goal-programming methods may also be used to advantage in the context of
uneven-aged stand management. In Chapters 8 and 9 we studied a linear pro-
gramming model of uneven-aged management, paying special attention to sus-
tainable regimes. Sustainability was guaranteed by steady-state constraints,
whereby the harvest was just replaced by the stand growth over the cutting
cycle. Within all possible steady states, we sought those that best met different
economic or environmental goals, expressed either by the objective function or
by constraints. In so doing it is not unusual to set constraints that are mutually
exclusive, thus leaving a problem with no solution. The ability of goal pro-
gramming to ensure feasibility is then advantageous. Not only are we sure to get
a solution, but we can also find out how close we can get to the desired goal levels.

APPROACHING A DESIRABLE STAND STRUCTURE

In the examples of Chapters 8 and 9, the biological growth of an uneven-aged
stand was described by a set of Growth Equations (8.10), predicting the stand
state after 5 years, given its current state and harvest. Stand state and harvest
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FIGURE 10.5 Solver parameters to convert an even-aged forest to a diverse landscape.



were described by the number of trees standing and harvested in each of three
size classes. In the steady-state analysis, both the current stock and the harvest
for each size class were choice variables. The steady-state constraints specified
that the current state must be the same at the beginning as at the end of the cycle.
For simplicity, and without loss of generality, we will assume again that the cut-
ting cycle is equal to the length of the time unit in the growth model, 5 years in
this example. 

Assume that the owners of a woodlot that grows according to Equations (8.10)
are fond of the current forest structure. They would like to maintain it in perpe-
tuity. The current stand structure has 500 trees/ha in the smallest size class, 100
trees/ha in the intermediate size, and 20 trees/ha in the largest size class. We
already know from Chapter 8 that letting the stand grow undisturbed would not
give this stand structure but instead result in a climax forest with about 400
trees/ha in the smallest size class, 160 trees/ha in the intermediate size class, and
32 trees/ha in the largest size class (see Figure 8.3). This is in itself a useful to
know: Unless the forest is already in its climax state, leaving it alone will not
maintain it in its current state; natural growth and mortality will alter it.

Interestingly, even managing the stand could not obtain the desired sus-
tainable structure. You may verify this with the model in Figure 8.7, set up to
maximize timber production in the steady state. Add these constraints:

(10.4)

and verify that there is no feasible solution. This is another important lesson:
Although, as seen in Chapter 8, the number of managed steady states is infinite,
not all stand structures are possible. They are limited by the biological poten-
tial of the forest under consideration. In particular, with Growth Equations
(8.10), the desired steady state is not sustainable.

What management would produce a sustainable stand as close as possible to
the desired structure of Equations (10.4)? This question can be answered by
goal programming. To do this, we introduce goal variables in Equations (10.4)
to allow the actual number of trees to differ from the desired. The goal con-
straints become:

(10.5)

where the goal variable y1
− is the number of trees less than the goal of 500 trees/ha

in the smallest size class, y1
+ is the number of trees more than the 500 trees/ha,
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and the other goal variables have a similar definition for the medium and large
size classes. All goal variables are nonnegative. 

The objective function should keep the values of the goal variables as small
as possible. One possibility is to minimize the sum of all the deviations from the
goals. This is meaningful because all the goal variables have the same unit,
trees/ha. Let us assume, however, that the large trees matter more to the owners
than the small trees and that we weight the deviations from each goal by the
volume per tree in Table 8.2. Thus, the objective function is:

SPREADSHEET FORMULATION AND SOLUTION

Figure 10.6 shows a spreadsheet version of this goal-programming model. It is
a modification of the spreadsheet used in Chapter 8 to compute the steady-
state regime maximizing production (Figure 8.7). The stand growth formulas
in cells D5:D7 are the same.

min . ( ) . ( ) . ( )Z y y y y y y= + + + + +− + − + − +0 2 1 0 3 01 1 2 2 3 3
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FIGURE 10.6 Spreadsheet model to approach a desirable and sustainable stand.
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APPROACHING A DESIRABLE TREE DISTRIBUTION

Stock Deviation

Size y t y t+1
y

-
y

+

class (trees/ha) (trees/ha) (trees/ha) Total Goal

1 500.0 500.0 0.0 0.0 500.0 = 500

2 100.0 100.0 0.0 0.0 100.0 = 100

3 18.0 18.0 2.0 0.0 20.0 = 20

Harvest 5.9 min

Size h t Volume

class (trees/ha) (

1 27.8 0.20

2 9.9 1.00

3 0.0 3.00

Key cell formulas

Cell Formula Copied to

D5 =0.92*(B5-B11)-0.29*(B6-B12)-0.96*(B7-B13)+109

D6 =0.04*(B5-B11)+0.90*(B6-B12)

D7 =0.02*(B6-B12)+0.90*(B7-B13)

G8 =SUMPRODUCT(C11:C13,F5:F8+G5:G8)

H5 =B5+F5-G5 H5:H7

m3/tree)



Cells J5: J7 contain the goal levels for the number of trees in each size class.
Cells F5:G7 contain the goal variables: the deviations between the actual number
of trees in each size class and the goal. Cells H5:H7 contain the formulas for the
left-hand side of Goal Constraints (10.5). The formula for the objective func-
tion is in cell G8.

The corresponding Solver parameters are in Figure 10.7. The target cell, G8,
is set to minimize the sum of the weighted deviations from the goal number of
trees. The changing cells are the number of trees in stock, in cells B5:B7, the number
of trees cut, in cells B11:B13, and the goal variables, in cells F5:G7. The constraints
specify that the cut must be less than the stock, the cut must be nonnegative, the
stock at the beginning of the cutting cycle must be the same as at the end, the goal
variables must be nonnegative, and Goal Constraints (10.5) must hold. 

Figure 10.6 shows the best solution. The sustainable stand structure closest
to the one desired would have two trees/ha less than desired. The number of
trees in the other two size classes would be as desired. This stand structure
would be sustained by thinning the stand every 5 years, taking about 28 trees/ha
from the smallest size class and about 10 trees/ha from the medium size class. 

10.9 GENERAL FORMULATION

As we have seen in the previous examples, goal programming is just a particular
formulation of the general linear programming problem. If cardinal weights are
used in the objective function, the solution is obtained by applying the simplex
method once; if ordinal weights are used instead, the simplex method must be
applied several times.
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FIGURE 10.7 Solver parameters to approach a desirable and sustainable stand.
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CONSTRAINTS

A goal-programming model has at least some constraints, called goal constraints,
that contain goal variables. The goal variables measure the deviation between
management goal levels and actual outcomes. The general formulation of goal
constraints is:

(10.6)

where:

Xj is the jth activity (decision) variable 

aij is the (constant) contribution to goal i per unit of activity j

gi is a constant measuring the target of goal i, of which there are G

is a goal variable that measures the amount by which the contribution of
all activities to goal i falls short of the target

is the amount by which that contribution exceeds the target

All activities, Xj, and all goal variables, and , are greater than or equal to
zero.

As long as both and are present in a goal constraint, no infeasibility
may result from that constraint. The goal variables always fill the gap between
the goal level and what is actually achieved.

Other constraints may be present, of the usual linear programming variety;
that is:

(10.7)

OBJECTIVE FUNCTION

The general objective of goal programming is to minimize the sum of the
weighted deviations from all goals. Thus the general form of the objective func-
tion is:

(10.8)

where wi
− and wi

+ are the weights per unit of deviations Di
− and Di

+, respectively.
The minimization is done by varying the activities and the goal variables
simultaneously.
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The weights fulfill two purposes. They express all deviations from goals in a
common unit of measurement, and they reflect the relative importance of each
goal. Deviations that concern the decision makers most get the larger weights
relative to the others. Deviations that are of no concern or are looked at favor-
ably may be omitted from the objective function altogether.

If deviations from some goals are unacceptable, the corresponding goal vari-
able may be omitted from the appropriate goal constraint. For example, if goal
gi must not be exceeded, then Di

+ may be omitted from the constraint, thus forc-
ing Di

+ to be zero. This procedure may, however, lead to an infeasibility, since
the constraint is then equivalent to:

The choice of weights for Objective Function (10.8) can be simplified by
considering the relative, rather than the absolute, deviations with respect to
goals. The new expression of the objective function is then:

where each weight ui now applies to a relative deviation from goal i.

ORDINAL WEIGHTING OF GOALS

This procedure consists of subjectively ranking all goals in order of priority.
Then, all resources will be used to approach the top-priority goal as closely as
possible. Any remaining resources are then used to approach the second goal
as closely as possible. This is continued until the last goal is considered or until
the best solution does not change.

In terms of the general objective function of Equation (10.8), ordinal weight-
ing is equivalent to giving to the goal at the top of the list a weight that is infi-
nitely large relative to the second, giving the second a weight infinitely large
with respect to the third, and so on down to the bottom of the list. 

The actual calculations proceed as follows: Assume that goal 1 has top pri-
ority, goal 2 has second priority, and so on. Assume further that the stakehold-
ers are concerned about underachieving goal 1 and overreaching goal 2. Then,
the first goal-programming problem solved is:

min D1
−

subject to Constraints (10.6) and (10.7).
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Let D1
−∗ be the best value of D1

−, indicating how close one can get to goal 1.
Then solve a second goal-programming problem:

min D2
+

subject to Constraints (10.6) and (10.7) and D1
− = D1

−∗. This last constraint
ensures that resources are allocated to achieving goal 2 only after goal 1 is sat-
isfied to the fullest possible extent.

This procedure continues until all goals have been considered. Computer
programs are available to go through these calculations automatically, once
goals have been ranked. The general formulation of Objective Function (10.8)
admits a mixture of ordinal and cardinal weights. In particular, some goals may
have the same rank but different weights.

In using ordinal ranking of goals one must keep in mind its drastic implica-
tions, in fact giving infinite weight to a goal relative to another. Few forestry
decisions involve such a drastic emphasis. More often, stakeholders seek a bal-
ance between goals. Cardinal weights reflect their willingness to make specific
trade-offs. Even if exact cardinal weights cannot be specified, useful sets of
weights can be arrived at by trial and error.

10.10 CONCLUSION: GOAL VERSUS 
LINEAR PROGRAMMING

Goal programming has two advantages relative to standard linear programming
models for management problems with multiple objectives. First, all goals are
represented in the same manner, by goal constraints and variables. All goal vari-
ables are in the objective function. This objective function minimizes the “cost”
of deviating from the various goals. Second, as long as all goal variables are pre-
sent in the model, goals can be set at any level without leading to infeasibilities.
In practice, this is a considerable advantage relative to standard linear pro-
gramming models. Goal programming can also help determine goal levels that
are feasible and efficient. 

On the other hand, determination of the relative importance of the various
goals is difficult. Furthermore, the dual solution gives a useful measure of the
trade-off between the goal in the objective function and those expressed by
constraints in a standard linear programming model. To gain the most out of
this feature, one should always try to work with an objective function expressed
in units that are readily understood by most people. 

For example, consider a management plan for a national forest developed
with linear programming. The objective function is the value of the forest in
terms of timber production only, expressed in dollars. But the forest must also
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provide recreation opportunities, which may in fact be the main objective. This
is expressed by a constraint to provide a specified number of visitor days. Then,
the shadow price for the recreation constraint measures the marginal value of
one unit of recreation, in dollars per visitor day. This is a very useful measure
because it is expressed in a unit that most people can grasp. If the shadow price
seems too low or too high, the recreation goal can be adjusted until a value of
recreation acceptable to all parties involved is obtained. 

PROBLEMS

10.1 Set up the river pollution problems shown in Figures 10.1 and 10.3 on
two separate spreadsheets. Set up the corresponding Solver parameters, and
verify the best solutions.

10.2 (a) Set up your own goal-programming spreadsheet model for the river
pollution problem, as in Figure 10.3. Assume that the goals have been ranked,
with the employment goal being judged most important, the pollution goal
next most important, and the revenue goal least important.

(b) Change the objective function to minimize the underachievement of the
employment goal (that is, to minimize L−). What is the best production level
for each type of pulp? How are the pollution and revenue goals met by this
solution?
(c) Add constraints to force the underachievement of the employment goal
to be equal to the value found in part (a). Then change the objective func-
tion to minimize the overachievement of the pollution goal (that is, to min-
imize P+). Does the production level for either type of pulp change? 
10.3 (a) Set up your own goal-programming spreadsheet model for the river

pollution problem, as in Figure 10.3. Assume that the goals have been ranked,
with the pollution goal being given top priority, the employment goal second
priority, and the revenue goal last priority.

(b) Change the objective function to minimize the overachievement of the
pollution goal (that is, to minimize P+). What is the best production level for
each type of pulp? How are the pollution and revenue goals met by this
solution?
(c) Add constraints to the model that force P− and P+ to be equal to the value
found in part (a). Then change the objective function to minimize under-
achievement of the employment goal (that is, to minimize L−). What is the
best production level for either type of pulp? 
(d) Add other constraints that force L− and L+ to be equal to the value found
in part (c). Then change the objective function to mimimize the under-
achievement of the revenue goal (that is, to minimize R−). Does the produc-
tion level for either type of pulp change?
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10.4 Write the algebra of the growth equations, the constraints, and the
objective function for the goal-programming spreadsheet model for the con-
version of an even-aged forest to a diverse landscape (Figure 10.4). You may
need to refer back to the spreadsheet model in Figure 6.2, on which this model
was based.

10.5 (a) Set up your own goal-programming spreadsheet model for the con-
version of an even-aged forest to a diverse landscape like the one shown in
Figure 10.4. Using the same data, verify that your results are the same as in
Figure 10.4.

(b) Modify the model to require conversion of the initial forest exactly to the
desired forest structure after 30 years (that is, at the beginning of period 4)
while producing at least 150,000 m3 of timber. Is there a feasible solution to
this problem?
(c) Modify the model used in part (b) by removing the lower bound on
timber production during the conversion and maximizing timber produc-
tion. Compare the solution with this model to the solution in Figure 10.4.
Explain the differences.
10.6 Write the algebra of the growth equations, the constraints, and the

objective function for the goal-programming spreadsheet model for approach-
ing a desirable stand structure in an uneven-aged forest (Figure 10.6). You may
need to refer back to the spreadsheet model in Figure 8.7, on which this model
was based.

10.7 (a) Set up your own goal-programming spreadsheet model for approach-
ing a desirable stand structure in an uneven-aged forest like the one shown in
Figure 10.6. Using the same data, verify that your results are the same as in
Figure 10.6.

(b) Modify the model to find the land expectation value for this management
policy. (Hint: Refer to Section 9.1 and use the same values per tree and inter-
est rate as in Figure 9.1.) What is the opportunity cost of the policy described
by the data in Figure 10.6 relative to the unconstrained land expectation
value maximizing policy found in Figure 9.1?
(c) Add a constraint to the model used in part (b) to force the land expecta-
tion value to be no less than half of its unconstrained maximum. How does
the solution change?
10.8 Write the algebra of the growth equations, the constraints, and the

objective function for the goal-programming spreadsheet model for approach-
ing a desirable stand structure (Figure 10.6), but for a cutting cycle of 10 years
instead of 5 years.

10.9 Set up your own goal-programming spreadsheet model for approach-
ing a desirable stand structure for an uneven-aged forest like the one shown in
Figure 10.6, but for a cutting cycle of 10 years instead of 5 years. How does the
length of the cutting cycle affect the best harvest and the best stocking?



10.10 Modify the goal-programming spreadsheet model for approaching a
desirable stand structure (Figure 10.6) to minimize the largest deviation from
the goal stand state. What is the effect on the best harvest and the best stock? 
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CHAPTER 11

Forest Resource
Programming Models
with Integer Variables

11.1 INTRODUCTION

The forestry applications of linear and goal programming presented in the pre-
vious chapters all had continuous variables. For example, in even-aged man-
agement models, the areas cut in different age classes could take any fractional
value. The number of trees per unit area could also take a fractional value in
uneven-aged management models, because it referred to an average number of
trees over an area usually larger than one hectare, rather than to the number of
trees on a particular hectare of land.

However, there are many forest management decisions that deal with items
that cannot be divided. For example, a whole person may have to be assigned
to a particular job. In bidding on a particular timber sale, one must decide
whether to bid for the entire sale or not to bid at all. In building a network of
forest roads, the sections of roads must usually link specific points in a contin-
uous network. Building only a portion of a road section would be pointless.
Similarly, bridges must be built completely or not at all, although different
kinds of bridges may be chosen.
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Situations like these can be addressed using models with integer variables.
Methods exist to find, or at least approximate, the best value of such integer
variables, given a particular objective function and a set of constraints. If only
integer variables are involved, we have a pure integer programming problem. If
both integer and continuous variables are used in a model, we have a mixed inte-
ger programming problem.

In the next section we shall first see briefly how integer programming differs
from standard linear programming. We shall then study in detail some appli-
cations of pure and mixed integer programming in forestry.

11.2 SHORTCOMINGS OF THE SIMPLEX
METHOD WITH INTEGER VARIABLES

Surprisingly perhaps, pure or mixed integer programming problems are more
difficult to solve than linear programming problems with only continuous vari-
ables. For this reason, it is tempting just to solve an integer programming prob-
lem with the simplex method and then round off the solution. This approach
does sometimes yield solutions sufficiently close to the optimal solution for all
practical purposes. The rounding strategy is especially useful when there are
many similar alternatives to choose from. However, a rounded solution may not
be feasible, or if feasible it may be far from optimal. The following example will
show why this may occur.

THE CONSULTANT’S PROBLEM

A forestry consulting firm has the opportunity of contracting for five different
projects. Three of the projects are located in Georgia and two in Michigan. Each
the Georgia projects would require 1 person-year of work and return a profit of
$10,000. Each of the Michigan projects would require 10 person-years and
return $50,000. The firm has a staff of 20 people. For which projects should
they contract to maximize their total profit?

MODEL FORMULATION

This simple problem is clearly of the integer type because it is not possible to
contract for part of a project. Let Xg be the number of projects in Georgia that
the consultant takes on. The possible values of Xg are 0, 1, 2, or 3. Similarly, let
Xm be the number of projects taken on in Michigan. Then, Xm = 0, 1, or 2.

204 Decision Methods for Forest Resource Management 



With these decision variables, the problem of the consulting firm can be
expressed as follows: Find Xg and Xm, both positive integers, such that:

max Z = Xg + 5Xm ($10,000)

subject to:

Xg ≤ 3 (projects)

Xm ≤ 2 (projects)

Xg + 10Xm ≤ 20 (person-years)

GRAPHICAL SOLUTION

This problem can be solved graphically because it has just two decision vari-
ables. The method is similar to the one used in Chapter 3 for linear program-
ming with continuous variables. Figure 11.1 shows the boundaries of the
feasible region for this problem, as defined by the horizontal axis, the vertical
line Xg = 3, and the line Xg + 10Xm = 20. This last goes through the point D, with
coordinates (Xg = 0, Xm = 2) and the point A, with coordinates (Xg = 2, Xm = 1.7).
The constraint Xm ≤ 2 is not graphed because it is redundant.
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FIGURE 11.1 Graphic solution of the consultant’s problem.
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However, in contrast to the linear programming case, the feasible region is
not the entire area within these boundaries. Only the grid of points highlighted
by the black dots in Figure 11.1 represents feasible solutions. Only at these
points are all the constraints satisfied, including the requirement that Xg and Xm

be integers.
The best solution is then represented by the black dot in Figure 11.1 at

which the value of the objective function is highest. To find it, we draw the
graph of the objective function for an arbitrary value of Z, say Z = 2 = Xg + 5Xm.
This line goes through the points with coordinates (Xg = 2, Xm = 0) and (Xg =
0, Xm = 0.4).

The value of the objective function increases regularly as the line represent-
ing the objective function gets farther from the origin. The value of the objec-
tive function is highest when the line goes through point D. This point
corresponds to the best solution:

X∗
g = 0 projects in Georgia

X∗
m = 2 projects in Michigan (11.1)

Z∗ = 10 ($10,000)

PROBLEMS ARISING FROM ROUNDED SOLUTIONS

If instead we had solved the consultant’s problem by ordinary linear program-
ming, the best solution would have corresponded to point A, and the “best”
value of Z identified would have been impossible to achieve. Clearly, that solu-
tion is not feasible, because it is not an integer solution. It would suggest taking

on 1.7 projects in Michigan, which is not possible.
Assume that we recognize this and round the best linear programming solu-

tion to the nearest integer. This would then lead to the solution corresponding

to point B. This is an integer solution, but it is not feasible, because the solu-
tion at point B requires more than the 20 workers (we assume that the firm does
not want to hire more staff). 

Suppose that we see this and decide to round the linear programming solu-
tion to the “nearest”-integer feasible solution. This solution would correspond
to point C in Figure 11.1. But the value of the objective function at point C is
only Zc = 3 + 5(1) = 8, that is, $80,000. This is $20,000 less than the true best
solution at point D.

This example shows the importance of finding exact solutions of program-
ming problems with integer variables. Unfortunately, integer programs can be
very difficult to solve, especially when there are many integer variables. Integer
programs that deal with binary variables, that is, variables that can take only the
values 0 or 1, are generally easier to solve. They also have numerous applications
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in forest management. In the remainder of this chapter we will deal exclusively
with models having binary variables.

11.3 CONNECTING LOCATIONS
AT MINIMUM COST

To start, it is worth observing that some problems with binary variables have
such simple solutions that they do not require sophisticated programs to solve
them. In fact, they can sometimes be solved by hand. An example of such a
simple yet practical problem is the minimum-spanning tree. It arises every time
we want to connect a set of points (locations) so that the total “cost” or “length”
of the connections is minimized.

LOGGING OKUME WITH LEAST

ENVIRONMENTAL IMPACT

A valuable tree species cut in the tropical forest of West Africa is okume
(Aucoumea klaineana). Okume wood is easy to peel into veneer sheets, and it is
used to make high-quality marine plywood, among other things. Okume trees
are typically found in clusters, amid vast areas of forest stocked with trees of
little commercial value. Roads have to be built to reach the okume stands, but
road building disturbs the surrounding virgin forest. Assume that a logging

company has obtained a forest concession for the exploitation of okume in an
area of virgin forest. However, they are under strict injunction to minimize the
disturbance their logging will cause. 

The forest survey has produced a map of the okume stands, sketched in
Figure 11.2. Each circle shows the location of a stand of okume trees. A forest
engineer has started planning a possible road network that could connect the
stands to the Taiwani river. There the logs would be tied into rafts and floated
down to a port where they would be loaded on cargo ships. Not all the roads
that have been drawn on the map are necessary, but only those shown are possi-
ble. The length of each road segment is shown in kilometers. The object is to find
the shortest road network that connects all of the okume stands to the Taiwani.

MANUAL SOLUTION

This is a typical minimum-spanning-tree problem. The solution requires only
pencil and paper and some attention. The shortest road network that connects
all the okume stands can be found by applying the following algorithm:
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Select any stand arbitrarily, and connect it to the nearest stand.
Pick the unconnected stand closest to a connected stand, and connect the

two. Repeat until all stands have been connected.

Any tie can be broken arbitrarily, and the result will still be an optimum solu-
tion. A tie simply shows that there is more than one best solution. Let us apply
this algorithm to the network of possible roads shown in Figure 11.2. 

Start arbitrarily at stand 5. The closest stand is 2. Thus, connect stands 2
and 5.

The unconnected stand closest to either stand 2 or stand 5 is stand 3,
which is closest to 2. Thus, connect stands 2 and 3.

The unconnected stand closest to either stand 5, stand 2, or stand 3 is
stand 1, which is closest to 3. Thus, connect stands 3 and 1.

The unconnected stand closest to either stand 5, stand 2, stand 3, or stand 1
is stand 0, which is closest to 1. Thus, connect stands 1 and 0.

The unconnected stand closest to either stand 5, stand 2, stand 3, stand 1,
or stand 0 is stand 6, which is closest to 0. Thus, connect stands 0
and 6.
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FIGURE 11.2 Possible roads for the exploitation of okume stands. Road lengths are in kilometers.
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The unconnected stand closest to stand 5, stand 2, stand 3, stand 1,
stand 0, or stand 6 is stand 4, which is closest to 6. Thus, connect
stands 4 and 6.

All locations have been connected. Stop.

The bold line in Figure 11.3 shows the shortest road network that connects
all the okume stands. The total length of the network is 235 km. Because
there were no ties, no other system of the same length could connect all the
stands to the Taiwani river. You may verify that the choice of initial stand
does not affect the solution by starting the algorithm with a stand other than
stand 5.

Naturally, the same approach would be applicable, regardless of the measure
of “distance” between locations. For example, the physical distance could be
replaced by the estimated cost of building a particular road section. Then the
objective would be to minimize the cost of connecting all stands, if the company
had the option to mimimize cost rather than the environmental impact. In that
case, if costs estimates were available, they would be better than simple dis-
tance. For a network of equal length, the cost will be much higher if a work of
art, such as a bridge, is needed.
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FIGURE 11.3 Shortest road network for the harvesting of okume stands.
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11.4 ASSIGNING FORESTERS TO JOBS

Another useful model with binary variables that has a simple solution is the so-
called assignment model. The model is useful to assign different people,
machines, or objects to different tasks or locations, or land to alternative uses,
in order to optimize an objective that depends on the way the assignment is done.

PROBLEM DEFINITION

As an example, assume that you are a forest supervisor who has just hired three
new graduate foresters. You have examined their application materials care-
fully, and you have interviewed them all. On this basis you believe that although
they are all good, some will perform better at particular tasks than others. 

Four tasks need additional staff urgently: timber sales management, public
relations, fire fighting, and inventory. Because of the need for additional staff in
all tasks, you do not want to assign more than one forester to a task. How
should you assign each new forester to a task in order to maximize the pro-
ductivity of all three?

DATA

To answer that question, you need some measure of productivity. Clearly, not
much is available besides your subjective judgment. You might try to quantify
that judgment by giving a score of 0–10 to each combination of person and task.
Thus, if you expected that a particular individual would excel at a certain job,
you would give that combination a score of 10. If you expected that an assign-
ment would be a disaster, you would give it a score of 0. Any value between zero
and 10 is possible, as are ties.

Table 11.1 shows the scores for all possible assignments of foresters to tasks.
For example, Peter is expected to do very well in public relations (score of 9)
but poorly in inventory work (score of 3).
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TABLE 11.1 Expected Performance of Foresters in Different Tasks

Service

Forester 1 Timber sales 2 Public relations 3 Fire control 4 Inventory

1 Peter 5 9 8 3
2 Paul 7 6 4 6
3 Mary 6 9 5 8



PROGRAMMING FORMULATION

Your problem is to assign the foresters to tasks in such a way that the total score, 
your measure of the overall performance of the three people together, is maxi-
mized. This problem can be expressed as an integer programming problem.

Define a set of decision variables Xij, each equal to 1 if forester i is assigned
to task j and 0 otherwise. The subscript i varies from 1 to 3, and j varies from 1
to 4, as shown in Table 11.1. Thus, there are 12 decision variables in this prob-
lem. All the possible assignments of Peter can be expressed by the following

inequality:

(11.2)

Because each variable in this constraint may take only the value 0 or 1 and
all the variables must add up to no more than 1, only one variable may take the
value 1. Thus, Constraint (11.2) says that there is only one Peter to assign to a
task, although Peter might not be assigned to any task.

In the same manner, the equation that describes the possible assignments of
foresters Paul and Mary are:

X21 + X22 + X23 + X24 ≤ 1 for Paul

X31 + X32 + X33 + X34 ≤ 1 for Mary
(11.3)

We must now express the fact that each task may be assigned at most one
forester, with the possibility that a task will not receive additional staff. For
example, the constraint

(11.4)

says that at most one forester may be assigned to timber sales. The less-than-
or-equal-to inequality recognizes the possibility that nobody might be assigned
to timber sales, in which case all three variables will be zero. The right-hand-
side value of 1 ensures that timber sales will receive at most one additional
staff.

The corresponding constraints for the three other tasks are:

X12 + X22 + X32 ≤ 1 for public relations

X13 + X23 + X33 ≤ 1 for fire control (11.5)

X14 + X24 + X34 ≤ 1 for inventory 

Last, the objective function is written as follows. Let pij be the measure of the
expected performance of forester i if he or she is assigned to task j. For example,
Table 11.1 shows that p23 = 4. Then the contribution to overall performance of

X X X11 21 31 1+ + ≤

X X X X11 12 13 14 1+ + + ≤
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a particular assignment is pij Xij, and the contribution of all possible assign-
ments is the sum of pij Xij over all possible combinations of i and j. Thus, in our
particular example, the expression of the objective function is:

(11.6)

Objective Function (11.6) and Constraints (11.2) to (11.5) constitute a stan-
dard linear program, except for the fact that each variable is limited to the inte-
ger value 0 or 1. This linear program is presented in Table 11.2. To emphasize
its particular structure: two 1’s appear in each column, and the right-hand side
of every constraint is 1. 

It turns out that the best solution of an assignment problem solved as if it
were a standard linear program is always such that variables take the value of
either 0 or 1, even though the variables are not explicitly constrained to be
binary. Thus, the standard simplex method of linear programming can be used
to solve assignment models of this kind. 

SPREADSHEET SOLUTION

Figure 11.4 shows a spreadsheet set up for this assignment problem. Cells
B4:E6 contain the scores of each forester for each task; these are input data,
indicated in bold characters. Cells B10:E12 contain the decision variables, the
Xij in the notation used above. Cells F10:F12 contain the formulas of the left-
hand side of the constraints on the foresters [Equations (11.2) and (11.3)].
Cells B13:E13 contain the formulas of the left-hand side of the constraints on
the tasks [Equations (11.4) and (11.5)]. Cell A16 contains the formula of the
objective function: the total score of the assignments.

The corresponding Solver parameters are in Figure 11.5. The objective is to
maximize the target cell, A16, by changing the decision variables in cells

Z X X X X X X X X

X X X X

= + + + + + + +

+ + + +

5 9 8 3 7 6 4 6

6 9 5 8

11 12 13 14 21 22 23 24

31 32 33 34
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TABLE 11.2 Linear Programming Tableau for the Assignement of Foresters to Tasks

X11 X12 X13 X14 X21 X22 X23 X24 X31 X32 X33 X34

Z 5 9 8 3 7 6 4 6 6 9 5 8
Peter 1 1 1 1 <=1
Paul 1 1 1 1 <=1
Mary 1 1 1 1 <=1
Timber sales 1 1 1 <=1
Public relation 1 1 1 <=1
Fire control 1 1 1 <=1
Inventory 1 1 1 <=1
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FIGURE 11.4 Spreadsheet model to assign foresters to tasks.
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Score of forester in:

Forester 1 Timber 2 Public 3 Fire 4 Inventory

1 Peter 5 9 8 3

2 Paul 7 6 4 6

3 Mary 6 9 5 8

Assignment of foresters to:

Forester 1 Timber 2 Public 3 Fire 4 Inventory Total

1 Peter 0.00 0.00 1.00 0.00 1 <= 1

2 Paul 1.00 0.00 0.00 0.00 1 <= 1

3 Mary 0.00 1.00 0.00 0.00 1 <= 1

Total 1.00 1.00 1.00 0.00

<= <= <= <=

1 1 1 1

24 Z(max)

Key cell formulas

Cell formula Copy to

B13 =SUM(B10:B12) B13:E13

F10 =SUM(B10:E10) F10:F12

A16 =SUMPRODUCT(B4:E6,B10:E12)

FIGURE 11.5 Solver parameters to assign foresters to tasks.
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B10:E12. The first set of constraints indicates that the decision variables must
be nonnegative. There is no constraint forcing a decision variable to be 0 or 1;
the problem is solved as an ordinary linear program. The second set says that
each task may be assigned at most one forester [Constraints (11.4) and (11.5)].
The third set of constraints recognizes that there is only one of each forester
[Constraints (11.2) and (11.3)].

Figure 11.4 shows the best solution. The highest measure of performance
(24 points) is achieved by assigning Peter to fire protection, Paul to timber
sales, and Mary to public relations. This best though not unique, solution has
some interesting features.

First, although Peter is better at public relations than at any other task, as
part of a team with Paul and Mary it is best to assign Peter to fire protection.
Second, no one is assigned to the inventory task. The best solution is to assign
each forester entirely to one task, although there is no explicit constraint in the
model to force this to happen. Indeed, assigning foresters partly to different
tasks could satisfy all the constraints. Yet the solution is integer. This is true of
all assignment models, regardless of the objective function and number of con-
straints. However, fractional solutions may result if additional constraints are
imposed on the system. In that case, special integer programming algorithms
are necessary to solve the problem. The next example will illustrate this more
general situation.

11.5 DESIGNING AN EFFICIENT 
ROAD NETWORK

Although the minimum-spanning-tree and the assignment models have many
applications, they deal only with special cases. The problems must have very
special structures to yield integer solutions with simple solution methods. Solv-
ing more general problems requires specialized integer programming algo-
rithms and related computer programs. To illustrate their application, we will
study a problem similar to one solved by Kirby (1975). It deals with the devel-
opment of a road network suitable to serve a set of multiple-use forestry pro-
jects. Roads are a big issue in forestry because the need for access must be
balanced against the negative environmental effects of roads and road building.
It is thus often necessary to design road networks as short as possible while
meeting various management objectives. Optimization methods can be of great
help in this process. Because each road section must either be built to connect
two locations or not be built at all, integer programming with (0, 1) variables
is a natural way to tackle such problems. 



PROBLEM DEFINITION AND DATA

The general setting for our example is illustrated in Figure 11.6. This figure
shows a road network serving four potential multiple-use forestry projects
named Eagle, Highland, Tall Pine, and Golfech. The roads have not yet been
built; the map represents only the possible ways the projects can be connected
to the existing county road, represented by a bold line. 

Each project must be done completely or not at all. But not all four projects
need to be done; thus the simple spanning-tree method cannot be used. On the
other hand, the projects that are done must be connected to the existing county
road because they will require some form of road access. The cost of building

each road section depends on its length, its topography, and any necessary work
of art. For example, road section 1 is especially expensive because it includes a
bridge across Stony Brook. The civil engineers attached to the project have esti-
mated the costs of each road section, shown in Table 11.3. These costs are the
cumulative discounted cost of building and maintaining the roads over the
entire life of the project. 
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FIGURE 11.6 Road network for multiple-use forest development. Dotted lines indicate the
project boundaries.
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On completion, each project is expected to produce the amounts of timber
and recreation shown in Table 11.4. The expected cost of each project is also
shown in this table. Again, this is the discounted value of expected costs over
the entire life of a project. Thus, project costs in Table 11.4 are comparable to
road costs in Table 11.3.

The following objectives have been set for the set of projects and for the
road network linking them: 

All camps taken together must be able to accommodate 2,000 recreation
visitor days (rvd) per year. 

The timber production from all projects should be at least 17,000 m3 per
year.

These goals must be met efficiently. That is, we seek the set of projects and
the road network that meet the timber and recreation goals at least cost.

Because the cost of roads is a large part of the cost of the entire project, this
last objective will act to keep the total length of the road network and the asso-
ciated environmental impact low. 

DECISION VARIABLES

As for an ordinary linear programming problem, formulating a model to solve
this problem requires specification of the decision variables, objective function,
and constraints. In this case, all decision variables take the value 0 or 1, since a
project must either be done or not and a road section must be either built or not.
Specifically, let Y1, Y2, Y3, Y4, and Y5 designate the decision to build particular
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TABLE 11.3 Cost of Building Each Road Section

Section

1 2 3 4 5

Cost (106 $) 0.8 0.4 0.3 0.2 0.4

TABLE 11.4 Output and Cost, by Project

Project

Result Eagle, e Highland, h Tall Pine, t Golfech, g

Recreation (103 rvd) 1 1 2 3
Timber (103 m3) 6 8 13 10
Cost (106 $) 0.7 0.1 0.5 0.8

rvd: recreation visitor days



road sections or not. For example Y1 = 1 means that road section 1 is built; oth-
erwise Y1 = 0.

Similarly, let Xe, Xh, Xt, and Xg refer to the decision to do particular projects
or not. For example, project h (Highland) is done if Xh = 1; otherwise Xh = 0.

In this formulation the problem is a pure integer programming problem, and
all variables are binary: they can take only the value 0 or 1. This is one of the
easier kinds of pure integer programming problems to solve.

OBJECTIVE FUNCTION

The objective function is very similar to those we have used in standard linear
programs. The general expression of the cost of building the roads, in terms of
the decision variables, is:

while the cost of doing the projects is:

So the expression of the objective function, the total cost, is:

(11.7)

The object of the problem is to find the value of the decision variables that
make this total cost smallest while meeting all the constraints.

CONSTRAINTS

Some of the constraints are similar to the familiar constraints of standard linear
programming. For example, the timber production goal is readily expressed as:

(103 m3/y) (11.8)

Our choice of units throughout the formulation of this problem is meant to
avoid very large and very small numbers. This is useful in any programming

problem, but especially so in integer programming. 
Note that the contribution of a particular project to this goal is either its total

potential output, shown in Table 11.4, or nothing. For example, Xt = 1 implies
that project Tall Pine is done and produces 13,000 m3 of timber a year. Xt = 0
implies no production from Tall Pine.

6 8 13 10 17X X X Xe h t g+ + + ≥

min . . . . .

. . . . ($ )

Z Y Y Y Y Y

X X X Xe h t g

= + + + +

+ + + +

0 8 0 4 0 3 0 2 0 4

0 7 0 1 0 5 0 8 10

1 2 3 4 5

6

0 7 0 1 0 5 0 8 106. . . . ($ )X X X Xe h t g+ + +

0 8 0 4 0 3 0 2 0 4 101 2 3 4 5
6. . . . . ($ )Y Y Y Y Y+ + + +
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Similarly, the recreation goal is expressed by the following constraint:

(103 rvd/y) (11.9)

The road-building options require a new form of constraint, for which inte-
ger (0, 1) variables are eminently suited. Consider first the road sections that
end at a project, say section 1. This section must be built if and only if project
Eagle is done. This is ensured by the following constraint:

Xe ≤ Y1

This constraint forces Y1 to take the value 1 (section 1 is built) if Xe is equal to
1 (project Eagle is done). On the other hand, if Xe = 0 (project Eagle is not
done), then cost minimization will result in Y1 = 0 (section 1 is not built),
unless the road section is needed as part of the network accessing other pro-
jects that are done. The constraints that ensure that each project is served by
a road are:

(11.10)

Some road sections may have to be built not because they end up at a pro-
ject themselves, but because they collect traffic from other sections. Consider
road section 1. We have just recognized that it must be built if project Eagle is
done. But section 1 must also be built if either section 3 or 2 is built, even if pro-
ject Eagle is not done. The following constraint expresses this possibility:

Y2 + Y3 ≤ 2Y1

This ensures that if either Y2 or Y3 or both are equal to 1 (that is, either section
2 or 3 or both are built), then Y1 must equal 1 (section 1 is built). It is neces-
sary to multiply Y1 by 2 to allow for the fact that both Y2 and Y3 may equal 1.
Any number larger than 2 would also work, but numerical solutions are easiest
with coefficients that are close to 1 in absolute value. Minimizing the objective
function will result in Y1 = 0 (road section 1 is not built) if Y2 = Y3 = 0 (neither
section 2 nor 3 is built), unless project e (Eagle) is done. A similar constraint is
needed to model the branching of road section 3 into sections 4 and 5. In sum-
mary, the constraints that ensure that a collector road is built if branches are
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built are:

(11.11)

SPREADSHEET FORMULATION AND SOLUTION

Figure 11.7 shows the spreadsheet version of the integer programming model
with Objective Function (11.7) and Constraints (11.8) to (11.11). The bold
numbers are input data. Other numbers are values of the decision variables or
the results of formulas that depend on the decision variables. Cells B4:J4 contain
the values of the decision variables. Cell K5 contains the formula of Objective
Function (11.7). Cells K6:K7 contain the formulas for the left-hand side of the
constraints on timber production [Equation (11.8)] and recreation [Equation
(11.9)]. Cells K8:K11 contain the formula of the left-hand side of Road Con-
straints (11.10), and cells K12:K13 contain the formula of the left-hand side of
Road Constraints (11.11). 

The corresponding Solver parameters in Figure 11.8 indicate that the target
cell is K5, to be minimized by changing the decision variables in cells B4:J4. The
first set of constraints indicates that the decision variables are binary, that is, 0
or 1. The second set of constraints sets the lower bounds on timber production
and recreation. The last set expresses the constraints on the road sections
[Equations (11.10) and (11.11)]. 
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FIGURE 11.7 Spreadsheet model to design a road network.
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Road section: Project:

Y 1 Y 2 Y 3 Y 4 Y 5 X e X h X t X g

1 1 1 1 0 0 1 1 0 Total

Cost 0.8 0.4 0.3 0.2 0.4 0.7 0.1 0.5 0.8 2.3 min ($10
6
)

Timber 6 8 13 10 21 >= 17 (103 m3/y)

Recreation 1 1 2 3 3 >= 2 (103 rvd/y)

1 to e -1 1 -1 <= 0

2 to h -1 1 0 <= 0

4 to t -1 1 0 <= 0

5 to g -1 1 0 <= 0

1 to 2 or 3 -2 1 1 0 <= 0

3 to 4 or 5 -2 1 1 -1 <= 0

Key cell formulas

Cell formula Copy to

K5 =SUMPRODUCT(B5:J5,B$4,J$4) K5:K13
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The best solution is in Figure 11.7. It shows that all the objectives could be met
at least cost by doing only projects h (Highland) and t (Tall Pine). These projects
should be connected to the existing county road by building road sections 1, 2,
3, and 4. Timber production would then exceed the required amount by 4,000
m3/y, and the recreation goal would be exceeded by 1,000 rvd/y. The total cost
would be $2.3 million.

AVOIDING ADJACENT LAND DISTURBANCES

As shown in Figure 11.6, the Highland and Tall Pine project areas share a long

common boundary. Because all the projects involve building a road and timber
harvesting, it may be desirable, for esthetic reasons, to avoid doing projects on
adjacent land areas. This requirement is expressed with the following adjacency
constraint:

Xt + Xh ≤ 1

Because Xt and Xh may take only the value 0 or 1, the adjacency constraint
allows only one of them to take the value 1, thus ensuring that either project t
(Tall Pine) or project h (Highland) is done, but not both.

This setup still admits a solution that meets the timber production and recre-
ation goals, at somewhat higher cost (see Problem 11.5). Adjacency constraints
of this kind could be added for other projects as appropriate. In large problems,
however, one must keep in mind that the more constraints there are, the more
difficult it is to solve the model. 

FIGURE 11.8 Solver parameters to design a road network.



11.6 MODELS WITH INTEGER
AND CONTINUOUS VARIABLES

In previous chapters we have worked with linear programming models with
only continuous variables, and so far in this chapter our models have had only
binary integer (0, 1) variables. However, there are many applications where
both types of variables are needed in the same model. We shall illustrate this in
the context of our road network design problem. 

PARTIALLY COMPLETED PROJECTS

In the model of the previous section we assumed that each of the projects
shown in Figure 11.6 had to be done completely or not at all. However, the pro-
jects may be divisible and need not be completed as planned. In land use plan-
ning, it is common to measure the size of a project by the amount of the
available land that it uses.

With this interpretation, the decision variables Xe, Xh, Xt, and Xg are not inte-
ger (0, 1) variables, but continuous variables that may take any value between
0 and 1. For example, Xe = 0.8 means that project Eagle is done using 80% of
the land that could be allocated to the project.

Let us assume further that the output and cost of each project are directly
proportional to the level of completion of the project. For example, using the
data in Table 11.4, if Xe = 0.8, then the Eagle project is expected to produce:

0.8 × 1 = 0.8 × 103 rvd/y of recreation 

0.8 × 6 = 4.8 × 103 m3/y of timber

and to cost:

0.8 × 0.7 = $0.56 million

Assume that the objectives remain the same. Then the spreadsheet formula-
tion of the problem, shown in Figure 11.9, is exactly as in Figure 11.7. The dif-
ference is in the Solver parameters (Figure 11.10), where the first set of constraints
specifies that only the decision variables referring to roads, Y1 to Y5, are binary.
The second and third set of constraints indicate that variables referring to pro-
jects, Xe to Xg, can take any value between 0 and 1. 

The best solution of the model with divisible projects is shown in Figure
11.9. Project h (Highland) is completely done, but only 70% of project t (Tall
Pine) is completed. Doing only part of Tall Pine decreases total cost by
$200,000 but still meets the timber production goal exactly, while the recre-
ation goal is exceeded by 400 rvd/y.
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START-UP COSTS

A useful application of mixed integer programming is to model discontinuous
functions. As an example, consider the cost of project Golfech. In the previous sec-
tion, we assumed that costs were directly proportional to the level of completion
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FIGURE 11.9 Spreadsheet model to design a road network, with divisible projects.
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Road section: Project:

Y 1 Y 2 Y 3 Y 4 Y 5 X e X h X t X g

1 1 1 1 0 0.0 1.0 0.7 0.0 Total

Cost 0.8 0.4 0.3 0.2 0.4 0.7 0.1 0.5 0.8 2.1 min ($10
6
)

Timber 6 8 13 10 17 >= 17 (103 m3/y)

Recreation 1 1 2 3 2.4 >= 2 (103 rvd/y)

1 to e -1 1 -1 <= 0

2 to h -1 1 0 <= 0

4 to t -1 1 -0 <= 0

5 to g -1 1 -0 <= 0

1 to 2 or 3 -2 1 1 0 <= 0

3 to 4 or 5 -2 1 1 -1 <= 0

Key cell formulas

Cell formula Copy to

K5 =SUMPRODUCT(B5:J5,B$4,J$4) K5:K13

FIGURE 11.10 Solver parameters to design a road network, with divisible projects.



of the project, as indicated by the value of Xg. This would not be a satisfactory
representation of costs if the costs of starting the project were very large. In that
case, the cost function could look like line OAB in Figure 11.11. If the project
is started, $0.3 million is needed for basic infrastructure. Thereafter, costs
increase in proportion to the level of completion.

Using the decision variables of the previous section, the cost function of pro-
ject Golfech is:

Note that we cannot simply add 0.3 + 0.5Xg to the objective function, because
the $0.3 million is spent only if the project is started. This problem can be
solved by introducing a binary integer (0, 1) variable, Sg. Sg takes the value 1 if
project Golfech is started, 0 otherwise. The new objective function is:

min . . . . ($ )Z Y X S Xt g g= + + + +0 8 0 5 0 3 0 5 101
6

L

C
X g=

+





0 3 0 5

0

. . if the project is started

otherwise
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FIGURE 11.11 Cost function for a project with large start-up costs.



to which we add this additional constraint:

Xg ≤ Sg (11.13)

Now, since Sg can take only the value 0 or 1, it must equal 1 when Xg acquires
a positive value (that is, when project Golfech is undertaken at any scale). This
in turn causes the objective function to increase by $0.3 million, the project
start-up cost. On the other hand, if Xg is 0 (project Golfech is not undertaken
at any scale), minimization of the objective function will force Sg to be equal to
0, as desired. 

TIMBER OR RECREATION

The previous examples showed some of the problems that may be modeled
with binary integer (0, 1) variables. There are many more possibilities. For
example, assume that the management objectives are to meet either the timber
production goal of 17,000 m3/y or the recreation goal of 2,000 rvd/y, but not
necessarily both, if that could decrease total cost.

This situation can be represented by changing the timber production and the
recreation constraints as follows:

(103 m3/y) (11.8)∗

(103 rvd/y) (11.9)∗

where m is an arbitrary number, larger than either the timber or the recreation
goal, and D is an additional binary (0, 1) decision variable. The program seeks
the values of D, of the road variables, Y, and the project variables, X, that min-
imize total cost. If the best solution is D = 1, the recreation objective is met, but
not necessarily the timber objective. If D = 0, the timber objective is met, but
not necessarily the recreation objective.

The corresponding spreadsheet model is in Figure 11.12. It is the same as
Figure 11.9, except for the addition of the option of satisfying either the
timber goal or the recreation goal. The binary variable D is in cell M2. The
constant m = 100 is in cell M3. Cells K6 and K7 contain the left-hand side of
the revised timber and recreation constraints [Equations (11.8)∗ and (11.9)∗,
respectively].

The Solver parameters are in Figure 11.13. The only changes with respect to
Figure 11.8 are the addition of M2 to the list of changing cells and the constraint
that M2 is binary. The best solution is to do project t (Tall Pine) entirely, thus
meeting the recreation objective, but not the timber objective.

1 1 2 3 1 2X X X X m De h t g+ + + + − ≥( )

6 8 13 10 17X X X X mDe h t g+ + + + ≥

224 Decision Methods for Forest Resource Management 



Forest Resource Programming Models with Integer Variables 225

FIGURE 11.12 Spreadsheet model to design a road network for timber or recreation.
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Road section: Project: D= 1

Y 1 Y 2 Y 3 Y 4 Y 5 X e X h X t X g
m = 100

1 0 1 1 0 0.0 0.0 1.0 0.0 Total

Cost 0.8 0.4 0.3 0.2 0.4 0.7 0.1 0.5 0.8 1.8 min ($10
6
)

Timber 6 8 13 10 113 >= 17 (103 m3/y)

Recreation 1 1 2 3 2 >= 2 (103 rvd/y)

1 to e -1 1 -1 <= 0

2 to h -1 1 0 <= 0

4 to t -1 1 0 <= 0

5 to g -1 1 0 <= 0

1 to 2 or 3 -2 1 1 -1 <= 0

3 to 4 or 5 -2 1 1 -1 <= 0

Key cell formulas

Cell formula Copy to

K5 =SUMPRODUCT(B5:J5,B$4,J$4) K8:K13

K6 =SUMPRODUCT(B6:J6,B$4,J$4)+M2*M3

K7 =SUMPRODUCT(B7:J7,B$4,J$4+(1-M3)*M2

FIGURE 11.13 Solver parameters to design a road network for timber or recreation.



11.7 CONCLUSION

The methods described in this chapter are useful to model and solve practical
forest management problems that involve integer variables. Nevertheless, some
of the techniques should be used cautiously. General programming problems
with integer variables are difficult to solve, even with powerful computers.
Problems with only (0,1) variables are the easiest to solve. In some cases, hand
computations or ordinary linear programming will suffice, as illustrated by the
minimum-spanning-tree and assignment models. Large mixed integer pro-
gramming problems can be hard to solve, even with a modest number of inte-
ger (0,1) variables. Therefore, in large models, the possibility of working with
ordinary linear programming and rounding the final solution should not be
neglected, as long as the real possibility of obtaining suboptimal or infeasible
solutions is kept in mind. The simplex method and its variants are still the most
powerful mathematical programming algorithms for solving problems with
multiple constraints. 

PROBLEMS

11.1 The paper division of a large forest products company is considering

building new pulp mills, liner board mills, and newsprint mills. Suitable loca-
tions for each kind of mill have been identified in Oregon and Georgia. The
cost of construction and the expected net present value of operation for each
new mill are shown in the table. The paper division has been authorized by
its parent company to spend up to $900 million on new mills, to be selected
with the objective of maximizing the total net present value of their future
operation.

(a) Write the algebra for the objective function and constraints of an integer
programming model to determine which mills the paper division should
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Mill Construction Cost and Net Present Value

Construction cost Net present value
Mill ($106) ($106)

Oregon pulp mill 500 25
Georgia pulp mill 450 22
Oregon liner board mill 260 12
Georgia liner board mill 270 10
Oregon newsprint mill 150 14
Georgia newsprint mill 170 14



build. (Hint: Allow a mill to be built only completely or not at all by express-
ing the decision to build or not to build as a binary variable.)
(b) Set up a spreadsheet model for solving the model you formulated in
part (a). Which mills should the paper division build?
(c) Modify the spreadsheet model you set up in part (b) to build only one
mill of each type. How does the solution change?
11.2 A private developer wants to build a park for recreational vehicles

with nine parking sites. These sites are represented in the figure by numbered
circles. Each site must be connected to a utilities network, and all possible net-
work connections between the sites are shown in the figure. The length of each
connection is indicated in units of 100 m. Construction costs for the utility net-
work will be directly proportional to its total length.

(a) Use the minimum-spanning-tree method to identify the least expensive
utility network that would connect all nine sites.
(b) Suppose that parking sites 2 and 3 are separated from the others by a stream.
As a result, the costs to connect sites 1 and 2, 2 and 5, 5 and 3, or 3 and 4 would
double. Use the minimum-spanning-tree method to identify the least expensive
utility network that would connect all nine sites. 
11.3 The firefighter in charge of preparations for several prescribed burns

has to build a fireline (a cleared strip to control fire spread) around each area
to be burned. He has three machines to do this: a small dozer, a large dozer, and
a brush cutter. Because of differences in vegetation and terrain, the rate at which
each machine can construct a fireline is different for each area, as shown in the
table. The firefighter wants to assign equipment to prescribed burn areas to
maximize the total hourly fireline construction rate.
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(a) Write the algebra for the objective function and constraints of a linear pro-
gramming model to determine which machine should be assigned to each pre-
scribed burn area. Assume that only one machine can be assigned to a given area.
(b) Set up a spreadsheet model for solving the model you formulated in
part (a). What assignments should the firefighter make?
11.4 A logging contractor with three logging crews needs to assign each crew

to one of five timber sales. The terrain and stand characteristics of these sales
vary significantly. One of the crews is equipped for cable logging on steep
slopes, and the other two are equipped for conventional logging. One crew is
less experienced than the other and therefore is less productive. The contrac-
tor’s estimates of the daily harvesting rates for crews at each timber sale are
shown in the table. The contractor wants to assign crews to timber sales to
maximize the total daily harvesting rate.

(a) Write the algebra for the objective function and constraints of a linear
programming model to determine which crew should be assigned to which
timber sale. Assume that only one crew can be assigned to any timber sale.
(b) Set up a spreadsheet model for solving the model you formulated in
part (a). What assignments should the logging contractor make?
11.5 (a) Set up your own spreadsheet model to design a road network like

the one shown in Figure 11.7. Using the same data and assumptions, verify that
your results are the same as in Figure 11.7.

(b) The Highland and Tall Pine projects are adjacent (Figure 11.6 shows
their common boundary). Modify the model so that only one of these two
projects can be done. How does the solution change?
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Fireline Construction Rates (m/hr)

Prescribed burn area

Equipment 1 2 3 4

Small dozer 100 75 50 25
Large dozer 150 100 80 0
Brush cutter 55 70 45 40

Daily Harvesting Rates (m3/day)

Timber sale

Crew 1 2 3 4 5

Cable 75 40 65 35 20
Experienced conventional 20 60 15 55 30
Less experienced conventional 15 55 10 55 25



11.6 Consider the spreadsheet model to design a road network shown in
Figure 11.7. Assume that it is possible to build road section 1 at either a high
or a low standard. A high-standard road would have a higher carrying capacity
but would be more costly to build, as shown in this table.

Modify the model to allow for this possibility by doing the following:
(a) Replace the variable Y1 by two binary variables, one corresponding to
each possible standard. 
(b) Add a constraint to indicate that the section must be built at either high
or low standard. 
(c) Add another constraint to ensure that the carrying capacity of the section
is high enough to support the traffic generated by the projects that are done,
as indicated in this next table. Find the best road network, the correspond-
ing projects, and the best standard for road section 1.

11.7 (a) Set up your own spreadsheet model to design a road network with
divisible projects like the one shown in Figure 11.9. Using the same data, verify
that your results are the same as in Figure 11.9. 

(b) Modify the model to allow for a start-up cost of $0.2 million for project
h (Highland) and a variable cost between $0 and $0.1 million that is directly
proportional to the level of completion of the project. How does the solution
change?
Problems 11.8 to 11.10 are adapted from Kirby (1975).
11.8 The director of a state forest is considering six multiple-use projects

that would provide both timber and hunting opportunities. The projects are
represented in the figure by lettered circles. Each project must be connected by
a road to the existing road shown as a solid line. The dashed lines are the road
sections that might be built. Each road section is identified by a number. 
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Carrying Capacity and Cost for Road Section 1

Standard

Low High

Carrying capacity (103 tons/y) 25 50
Cost ($106) 0.4 0.8

Traffic Generated by Projects 

Project

e h t g

Traffic (103 tons/y) 7 8 15 15



The cost of building and maintaining each road section is:

The benefits of doing each project are:

The Director’s objectives are: 

1. To minimize road construction costs 
2. To provide at least 400 hunting days/year
3. To harvest at least 30,000 m3/y of timber 
4. To get enough revenues from the projects to cover the total costs of road

construction.
(a) Write the algebra for the objective function and constraints of an inte-
ger programming model to determine which projects to undertake and
which roads to build. Assume that each project must be done completely or
not at all.
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(b) Set up a spreadsheet model for solving the model you formulated in part
(a). What would be the timber production and the number of hunting days
provided according to this solution? By how much would the total net pre-
sent value of the projects undertaken exceed the total road cost?
11.9 Consider the state forest planning problem described in Problem 11.8.

Assume that local environmentalists are lobbying the director to scale back the
size of the projects and that local sawmills and logging contractors oppose this.
Modify the spreadsheet model to allow projects to be divisible. Assume that the
outputs and revenues of projects are directly proportional to the scale at which
they are undertaken. For example, if one-third of project A was undertaken, the
amount of timber produced would be 6/3 = 2 (103 m3/y). How does the new
solution compare to the solution of Problem 11.8?

11.10 For the forest development project described in Problem 11.8, road
section 1 will have to bear traffic to and from all of the areas. Thus, it may be
necessary to build this segment to a higher standard than others. 

The carrying capacity and construction costs for road section 1 for three dif-
ferent standards are:

The traffic that would result from each project is:

Modify the model developed in Problem 11.8 (where both road sections and
multiple-use projects were treated as all-or-nothing decisions) to find the best
standard for road section 1. To accomplish this, do the following:

(a) Replace the variable corresponding to road section 1 with three (0, 1)
variables whose sum is constrained to be less than or equal to 1.
(b) Add a constraint to ensure that the carrying capacity of section 1 is high
enough to support the traffic generated by the projects that are done. 
How does the solution compare to the solution from Problem 11.8? What

happens to road construction costs? Why?
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Standard

Low Medium High

Carrying capacity (103 tons/y) 40 50 70
Cost ($103) 25 50 75

Project

A B C D E F

Traffic (103 tons/y) 8 4 14 13 10 7
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CHAPTER 12

Project Management with
the Critical Path Method
(CPM) and the Project
Evaluation and Review
Technique (PERT)

12.1 INTRODUCTION

Often, forestry systems can be symbolized by a set of nodes connected by
branches. Nodes may represent geographic points, such as stands of trees,
campgrounds, and water reservoirs, or activities, such as the drafting of an envi-
ronment statement. Branches may represent actual physical connections, such
as roads and rivers, or constraints, such as the need to complete one task before
starting another.

We have already seen an application of networks in Chapter 11. There we
observed that a simple method, the minimum-spanning-tree algorithm, could
be used to determine the shortest road network that connected forest stands.
This method allowed us to solve simply a complex integer programming problem.

In this chapter, we shall study one of the most important applications of net-
works: the management of time and resources in projects with interdependent
activities. Forestry projects, such as the preparation of a timber sale, the construction
of a recreation area, and the development of a management plan, involve many
activities. Some of these activities may run in parallel, others must be sequenced
properly. Forest managers are responsible for scheduling activities so as to avoid



bottlenecks and meet project deadlines. Sometimes, they must predict the most
likely date for the completion of a project, taking into account all the things to
be done and how they interact. 

Two techniques designed to help project managers are the critical path
method (CPM) and the project evaluation and review technique (PERT). CPM,
developed by the du Pont and Remington Rand Univac companies in the late
1950s, focused on the trade-off between the duration of activities and their cost,
and could be used to allocate resources to tasks to complete a project by a given
deadline. PERT, developed at about the same time by consultants of the U.S.
Navy to help them manage the Polaris weapons system program, was designed
to evaluate the probability of meeting project deadlines, given probabilistic esti-
mates of the duration of each activity in the project. 

The distinction between the two techniques has become blurred over time,
and neither the probabilistic elements of PERT nor the time/cost trade-offs of
CPM are as important to most project managers as their developers anticipated.
Accordingly, we shall emphasize the common elements of PERT and CPM that
are most useful in project management in practice, touching only briefly on the
probabilistic applications of PERT.

12.2 A SLASH-BURN PROJECT

The first step in using CPM/PERT is to identify all of the activities involved in
a project and any precedence relationships among them. A precedence rela-
tionship is a requirement that a particular activity be completed before work
begins on some other activity. In our discussion of CPM/PERT, we shall use an
example described by Davis (1968). It deals with the burning of slash left at a
logging site. Burning the slash is one way to prepare a site for planting or aerial
seeding.

This project can be divided into six distinct activities. These are shown in
Table 12.1, along with their expected duration and the activities that must be
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TABLE 12.1 Activities and Their Precedents for a Slash-Burn Project

Duration Preceding 
Activity (days) activities

A. Prepare external firebreaks 5
B. Fell internal hardwoods 8
C. Fell snags in vicinity 4
D. Check pumps and equipment 2
E. Apply chemical fire retardant 2 A. Prepare external firebreaks
F. Install firing devices 3 A. Prepare external firebreaks

B. Fell internal hardwoods



completed before they can begin. For example, the manager of this project
expects that it will take two days to apply the chemical fire retardant to keep
the fire from spreading to the rest of the forest. But that activity cannot start before
the external firebreaks have been built. To simplify notation, we use a letter to
label each activity. For example, D stands for “Check pumps and equipment.”

12.3 BUILDING A CPM/PERT NETWORK

Once all the activities of a project, their expected duration, and their precedence
relations have been identified, a CPM/PERT network can be drawn to represent
this project. Each node (box) of the network represents an activity. For exam-
ple, in Figure 12.1 the node labeled A stands for “Prepare the external fire-
breaks.” Each arc (arrow) of the network represents a precedence relation. For
example, in Figure 12.1 the arrow going from node A to node F means that
activity A must be completed before activity F may start.

Every CPM/PERT network must have a single starting activity and a single
ending activity. If the project starts or ends with several simultaneous activities,
then we must add an artificial beginning or ending activity of zero duration. For
example, in Figure 12.2, activities A, B, C, and D may all start at the same time.
To make the starting activity unique we add the activity “Start,” of zero dura-
tion. Similarly, C, D, E, and F have no succeeding activity. Adding the activity
“End,” of zero duration, results in a unique ending activity.

All paths through the network lead from the project’s beginning to its end.
There is no circular path from one activity back to the same activity. CPM/PERT
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FIGURE 12.1 Activities and precedence among activities for the slash-burn project.
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networks are usually drawn with the starting event at the top or left-hand side
of the network, and its end on the bottom or right-hand side.

There are other ways to draw CPM/PERT networks. For example, some
people represent activities by arcs (arrows), using nodes to represent the begin-
ning and the end of each activity. There is no substantive difference between the
two representations, but the activities-as-nodes approach used here is some-
what simpler and more popular than the activities-as-arcs approach.

Constructing a CPM/PERT network is a useful exercise in and of itself for
project managers. It forces them to identify the activities that a project will
involve, how long they are likely to take, and what activities require others to
be completed first. Project managers can always use this information whether
or not they use CPM/PERT. But once this information is in hand, drawing a net-
work is a simple task. The network helps everyone involved in a project visu-
alize the “big picture.”

However, CPM/PERT goes well beyond constructing networks. It can also
provide the following useful data: 

The earliest start time and the earliest finish time of each activity—These
are the earliest times at which each activity could start and end if all
preceding activities were completed as quickly as possible. 

The earliest finish time of the project—This is the minimum time required
to complete a project.

The latest start time and the latest finish time of each activity—These are the
latest times at which each activity could start and end without
increasing the earliest finish time of the project.

The slack time of each activity—This is the time that any activity’s start
time can be delayed without increasing the earliest finish time of the
project.
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FIGURE 12.2 Adding beginning and ending activities for the slash-burn project.
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The critical activities—These are the activities that have no slack time.
Their start time cannot be delayed without postponing project
completion beyond the earliest finish time. 

There are different methods of performing the CPM/PERT computations to
get this information. Here we will use linear programming, a method we already
learned in previous chapters.

12.4 EARLIEST START AND FINISH TIMES

Consider the slash-burn example described by the data in Table 12.1 and the
network in Figure 12.2. We use linear programming to find the earliest start and
finish times of all the project activities, and thus the earliest finish time for the
project.

LINEAR PROGRAMMING FORMULATION

Let ESstart, ESA, ESB,…, ESend be variables referring to the earliest start time of
each activity in Figure 12.2 and EFstart, EFA, EFB,…, EFend be variables desig-
nating their earliest finish times. 

Activity Constraints

For each activity, the earliest finish time is equal to the earliest start time plus
the expected duration of that activity:

(12.1)
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Arc Constraints

The earliest start time of each activity must at least equal the earliest finish time
of each of the immediately preceding activities. This leads to one constraint for
each arc in Figure 12.2:

Note that there are two constraints on ESF, because both activity A and activity
B must be finished before activity F can start.

Nonnegativity Constraints

The earliest start of all the activities must at least equal the earliest start of the
project, which we set arbitrarily to 0. This leads to these constraints:

(12.3)

Objective Function

The objective is to find the earliest start of all the activities. This is equivalent to
finding the minimum of the sum of the earliest start times of all the activities:

(12.4)min Z A B C D E F= + + + + + + +ES ES ES ES ES ES ES ESstart end

ES ES ES ES ES ES ES ESstart end, , , , , , ,A B C D E F ≥ 0

(12.2)
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This minimization is accomplished by varying the earliest start of the activities,
subject to the constraints.

SPREADSHEET SOLUTION

Figure 12.3 shows a spreadsheet to use linear programming to compute the ear-
liest start and earliest finish times of each activity in the slash-burn example.
The entries in bold are data, while the others result from the optimization. Cells
A4:A11 contain the name of each activity, including the start and end activities.
Cells B4:B11 contain the data on the expected duration of each activity, in days,
taken from Table 12.1. A duration of 0 has also been entered for the start and
end activities. 

Cells C4:C11 contain the earliest start of each activity, the variables of the
linear program. Cells D4:D11 contain the formulas for the earliest finish time
of each activity, corresponding to Equations (12.1). 

Cells F4:F14 contain the name of the activities at the beginning of each arc of
the network in Figure 12.2, while the formulas in cells G4:G14 record the ear-
liest finish times of these activities. For example, the VLOOKUP function in cell
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FIGURE 12.3 Spreadsheet to compute the earliest start and finish times for the slash-burn project.

1
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4
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8
9
10
11
12
13
14
15
16
17
18
19
20
21

A B C D E     F G H I J
SLASH BURNING EARLIEST START AND FINISH

Arc

Activity

Expected

duration

Earliest

start ES

Earliest

finish EF

From

activity EF

To

activity ES

Start 0 0 0 Start 0 A 0

A 5 0 5 Start 0 B 0

B 8 0 8 Start 0 C 0

C 4 0 4 Start 0 D 0

D 2 0 2 A 5 E 5

E 2 5 7 A 5 F 8

F 3 8 11 B 8 F 8
End 0 11 11 C 4 End 11

Total 24 D 2 End 11

(min) E 7 End 11

F 11 End 11

Key cell formulas

Cell Formula Copied to

D4 =C4+B4 D4:D11

C12 =SUM(C4:C11)

G4 =VLOOKUP(F4,$A$4:$D$11,4,FALSE) G4:G14

J4 =VLOOKUP(I4,$A$4:$C$11,3,FALSE) J4:J14



G4 takes the content of cell F4 (the word “Start”), looks for its match in the first
column of the range A4:D11 (the match is in cell A4), and returns the value in
the fourth column of the range (the value in cell D4). The parameter “FALSE”
induces the VLOOKUP function to match activity names regardless of their
order.

Cells I4:I14 contain the names of the activities at the end of each arc in the
network in Figure 12.2, while the formulas in cells J4:J14 record the earliest
starts of these activities. For example, the VLOOKUP function in the cell J4
takes the content of cell I4 (the letter “A”), looks for its match in the first
column of the range A4:C11 (the match is in cell A5), and returns the value in
the third column of the range (the value in C5).

Cell C12 contains the expression of the objective function, the sum of the
earliest start times for all activities, corresponding to Equation (12.4).

Figure 12.4 shows the Solver parameters to find the earliest start and finish
times of each activity. The Solver minimizes the target cell, C12, by changing
cells C4:C11, the earliest starts of the activities. The minimization is done sub-
ject to:

The nonnegativity constraints: C4:C11 >= 0, corresponding to Inequalities
(12.3)

The constraints that the earliest start time of an activity must at least equal
the earliest finish time of any immediately preceding activity: J4:J14 >=
G4:G14, corresponding to Inequalities (12.2).
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FIGURE 12.4 Solver parameters to find the earliest start and finish times.



The best solution is given in Figure 12.3, which shows that, for example, the
installation of firing devices, activity F, may start, at the earliest, 8 days after the
beginning of the project on day 0 (cell C10). The earliest finish time of activity
F is 11 days (cell D10), which is also the earliest finish time of the slash-burn
project (cell D11).

12.5 LATEST START AND FINISH TIMES

Continuing with the same example, we seek the latest start and finish times of
each activity so that the project may be finished at the earliest time found in
Figure 12.2. We again formulate the problem as a linear program and then solve
it with a spreadsheet.

LINEAR PROGRAMMING FORMULATION

Let LSstart, LSA, LSB,…, LSend be variables referring to the latest start time of each
activity and LFstart, LFA, LFB,…, LFend be variables designating the latest finish
time of each activity.

Activity Constraints

For each activity, the latest finish time is equal to its latest start time plus the
expected duration of that activity:

(12.5)
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In addition, to complete the project by its earliest finish time, the latest finish
time of the end activity must be at most equal to its earliest finish:

(12.6)

Arc Constraints

The latest start time of each activity is at least equal to the latest finish time of
the immediately preceding activities. This leads to one constraint for each arc
in Figure 12.2:

Note that there are two constraints on LSF, because both activity A and activity
B must be finished before activity F can start.

Objective Function

The objective is to find the latest start time of each activity. This is equivalent
to finding the maximum of the sum of the latest starts of all the activities:

(12.8)

This maximization is accomplished by varying the latest start of the activities,
subject to the constraints.

max Z A B C D E F= + + + + + + +LS LS LS LS LS LS LS LSstart end

(12.7)
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SPREADSHEET SOLUTION

Figure 12.5 shows a spreadsheet to compute the latest start and finish times of
each activity in the slash-burn example, using linear programming. Most of the
spreadsheet is the same as that in Figure 12.3. The formulas are the same, but
they now apply to the latest start and finish times instead of the earliest start and
finish times.

Cells C4:C11 now contain the latest start time of each activity, the variables
of the linear program. Cells D4:D11 contain the formulas for the latest finish
times, corresponding to Equations (12.5). 

Cell D14 contains the earliest finish time of the project, copied from cell D11
in Figure 12.3.

The formulas in cells G4:G14 record the latest finish of the activity at the
beginning of each arc in Figure 12.2, and those in cells J4:J14 record the latest
start of the activity at the end of each arc.

Cell C12 contains the sum of the latest start times for all activities, corre-
sponding to Objective Function (12.8).

Figure 12.6 shows the Solver parameters to find the earliest start and finish
times of each activity. The Solver maximizes the target cell, C12, by changing
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FIGURE 12.5 Spreadsheet to compute the latest start and finish times for the slash-burn project.
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cells C4:C11, the latest start times of the activities. The maximization is done
subject to the following constraints:

The latest finish time of the end activity must be less than or equal to its
earliest finish time: D11 <= D14, corresponding to Equation (12.6).

The latest start time of an activity must be at least equal to the latest finish
time of the immediately preceding activities: J4:J14 >= G4:G14,
corresponding to Equations (12.7).

The best solution is given in Figure 12.5, which shows that to complete the
slash-burn project by its earliest finish time of 11 days (cell D14), the latest
time at which activity F may start is 8 days after the beginning of the project
(cell C10).

12.6 ACTIVITY SLACK AND CRITICAL PATH

The slack time of an activity is the difference between the latest and earliest
starts of that activity. It is also equal to the difference between the latest and ear-
liest finish times. 

For example, the slack time for the felling of snags in the vicinity of the
slash-burn, activity C, is, according to the results in Figures 12.3 and 12.5:

SC C C

C C

= − = − =

= − = − =

LS ES days

LF EF days

7 0 7

11 4 7
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FIGURE 12.6 Solver parameters to compute the latest start and finish times.



This means that activity C could be delayed by 7 days after its earliest start time
or finished 7 days after its earliest finish time without causing the project to
extend beyond its earliest finish time.

Similarly, for the installation of firing devices, activity F, the slack time is: 

which means that this activity must start at its earliest start time and be com-
pleted at its earliest finish time to complete the project by the earliest finish.
Because it has 0 slack time, this is a critical activity. 

Figure 12.7 shows a spreadsheet that summarizes all the time data and com-
putes the slack times for the activities of the slash-burn project. Cells B4:D9
contain the duration, earliest start time, and earliest finish time of the activities,
copied from cells B5:D10 in Figure 12.3. Cells F4:G9 contain the latest start and
finish times of the activities, copied from cells C5:D10 in Figure 12.5. 

The slack times computed with the formulas in cells H4:H9 show two criti-
cal activities: B, the felling of internal hardwoods, and F, the installation of
firing devices. These critical activities, together with the start and end activities
constitute the critical path through the network in Figure 12.2.

The sum of the durations of the critical activities determines the earliest
finish time of the project. Other things remaining the same, a lengthening of the

SF F F

F F

= − = − =

= − = − =

LS ES days

LF LF days

8 8 0

11 11 0
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FIGURE 12.7 Spreadsheet to compute activity slacks for the slash-burn project.
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A B C D E F G H
SLASH BURN PROJECT ACTIVITY SLACK

Expected

duration Earliest Latest

Activity (days) Start Finish Start Finish Slack

A.  Prepare external firebreaks 5 0 5 3 8 3

B.  Fell internal hardwoods 8 0 8 0 8 0

C.  Fell snags in vicinity 4 0 4 7 11 7

D.  Check pumps and equipment 2 0 2 9 11 9

E.  Apply chemical fire retardant 2 5 7 9 11 4

F.  Install firing devices 3 8 11 8 11 0

Key cell formulas

Cell Formula

H4 =F4-C4 H4:H9

Copied to



duration of a critical activity will lengthen the earliest finish time of the project.
Conversely, a shortening will reduce it, as long as the critical path remains the
same.

Clearly, managers must monitor carefully the progress of all the critical
activities, since they have the greatest potential for becoming bottlenecks and
preventing a project from being completed on schedule. 

Nearly critical activities (those with little slack) must be closely watched as
well, since the duration of activities can rarely be forecast precisely. When the
completion of critical or near-critical activities begins to slip beyond their latest
finish time, it is often advisable to reallocate resources away from ongoing non-
critical activities to the problem activities.

The critical path for a project may change when the expected duration of any
activity is revised. For example, in the case of the slash-burn project, if prepar-
ing external firebreaks, activity A, were to require 9 days instead of 5, the new
critical path would consist of activities A and F instead of B and F (see Problem
12.3). As activities are completed or estimates of activity durations are revised,
project managers should update their CPM/PERT network. In that way, the
network becomes a useful tool in the day-to-day administration of a project
rather than just a monument to their initial optimism.

12.7 GANTT CHART 

A Gantt chart is a useful way to display the CPM/PERT data for a project.
Figure 12.8 is a Gantt chart for the slash-burn project. It shows the earliest start
time, the expected duration, and the slack time for each activity. 

The Gannt chart in Figure 12.8 can be built with Excel as follows:

1. Click on the chart wizard icon, and select the stacked bar chart as the
chart type.

2. Select as data range the activity names, their duration, and the earliest
start in cells A4:C9 in the spreadsheet in Figure 12.7.

3. Place the chart as a new sheet.
4. Reverse the order of the duration and earliest start series. To do this,

click on the duration data on the chart (series 1). Then click on
Format, selected data series, series order, move down.

5. Add the slack data series (series 3) by pulling down the chart menu, the
add data command, and selecting cells H4:H9 in the spreadsheet in
Figure 12.7.

6. Complete the chart by renaming series1, series2, and series3 as
duration, earliest start time, and slack time, respectively, and formatting
the chart as desired.
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Although some Gannt charts do not do this, it is important to display the
slack time. This allows a clear distinction of the critical activities and of some
of the precedence relations. For example, in Figure 12.8, it is clear that activi-
ties B and F are critical. Furthermore, it is clear that activities A and B precede
activity F. However, that activity A must precede activity E is not obvious from
the Gantt chart, so the Gantt chart cannot fully substitute for the network in
Figure 12.2. Gantt charts can, however, be supplemented with precedence arcs. 

12.8 DEALING WITH UNCERTAINTY

The network computations we have been considering assume that the duration
of each activity is known with certainty. The program evaluation and review
technique (PERT) recognizes that the duration of each activity is in fact a
random variable. PERT uses the same network representation and basic com-
putations to find the critical activities of a project, but it adds a realistic mea-
sure of uncertainty to the results. Thus, instead of predicting that the earliest
completion time for a project is 11 days, the PERT approach gives the proba-
bility of finishing the project within 11 days (or within some other time period).
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FIGURE 12.8 Gantt chart for the slash-burn project.
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UNCERTAIN ACTIVITY DURATION

Duration uncertainty is modeled in PERT by using three estimates of duration
for each activity: an optimistic duration, O, a pessimistic duration, P, and a
most likely duration, L. Then, assuming a beta distribution for the duration, the
expected duration of an activity is obtained as the following weighted average:

(12.9)

And the standard deviation of the duration of that activity is:

(12.10)

Figure 12.9 shows a spreadsheet to compute the expected value and the stan-
dard deviation of the duration of the activities for our slash-burn example.

PERT COMPUTATIONS WITH UNCERTAINTY

The computations of the earliest start and finish times of the activities, their
latest start and finish times, and their slack proceed as before, based on the
expected duration of each activity computed with Equation (12.9).
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FIGURE 12.9 Statistics for the duration of activities in the slash-burn project.
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ACTIVITY DURATION STATISTICS

Duration (days)

Activity Optimistic
Most

likely Pessimistic Expected
Standard

deviation

A. Prepare external firebreaks 2.5 10 6.1 1.3

B. Fell internal hardwoods 4 16 8.0 2.0

C. Fell snags in vicinity 2 8 5.0 1.0

D. Check pumps and equipment 1 4 2.8 0.5

E. Apply chemical fire retardant 1 4 2.8 0.5

F. Install of firing devices 1.5 6

6

7

5

3

3

2 2.6 0.8

Cell Formula

E4 =(B4+4*C4+D4)/6

F4 =(D4-B4)/6 F5:F9

Key cell formulas
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For the slash-burn example, with the expected durations in Figure 12.9, the
critical activities are B, the felling of internal hardwoods, and F, the installation
of firing devices. The expected earliest time of completion of the project is 10.6
days (see Problem 12.4).

This result is close to the results found with the deterministic estimates of
activity durations in Table 12.1. The real difference is that we can now make
probabilistic statements regarding the project duration. For example, let us
determine the probability that the project will be done in 8 days. As just noted,
the duration of the project is determined by the critical activities, B and F.

Assuming that activities B and F are independent, the standard deviation of
the duration of the project is given by:

where sB and sF are the standard deviations of the duration of the critical activ-
ities B and F.

The probability of a project duration of less than 8 days is the probability of a
duration less than T standard deviations from the expected duration, where T is:

This probability can be read from the normal distribution in Table 12.2, which
shows that the probability of completing the slash-burn project in less than 8
days is between .10 and .20.

T =
−

= −
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2 1
1 2

.

.
.
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TABLE 12.2 Values of the

Standard Normal Distribution 

P T

.05 −1.64

.10 −1.28

.20 −0.84

.30 −0.52

.40 −0.25

.50 0.00

.60 0.25

.70 0.52

.80 0.84

.90 1.28

.95 1.64

P is the probability that an obser-
vation from a normal distribu-
tion is T standard deviations or
less from its expected value.



Another way of using the PERT statistics is to compute a confidence inter-
val on the expected duration of 10.6 days. For example, we can compute upper
and lower bounds so that there is a .60 probability that the project duration will
be within those bounds. For this, we note from Table 12.2 that there is a .60
probability that an observation from a normal distribution is 0.84 standard devi-
ations from the mean. Therefore, the 60% confidence interval for the duration
of the slash-burn project is:

which implies a .60 probability that the project duration will be between approx-
imately 9 and 12 days.

The PERT probabilistic calculations are only approximations, because they
assume that the critical activities are independent. This may not be true if activi-
ties share resources. Furthermore, the use of the normal distribution is justified
only if the number of critical activities is large. Still, even as rough approximations,
the probability of project completion in a given time and the confidence inter-
val on project duration are useful information to decision makers. 

12.9 SUMMARY AND CONCLUSION

Network diagrams provide a useful way of conceptualizing many forest resource
management problems. In CPM/PERT, network nodes represent time-consum-
ing activities, while branches show how activities depend on each other, which
ones must be finished before others can start. Drawing up the network of activ-
ities for a project is useful in and of itself to clarify the components of a project
and their interrelations. 

CPM/PERT computations have three phases: (1) finding the earliest start
and finish times of all the activities; (2) finding the latest start and finish times
of the activities; (3) determining the activities slack as the difference between
the latest and earliest finish (or start) times. Linear programming can be used
to do the computations. 

Activities with zero slack are called critical activities. They form a unique
path through the network and determine the earliest finish time of the project.
Managers must closely monitor critical activities to avoid delays.

PERT computations are similar but use probabilistic estimates of activity
duration. Based on the uncertainty attached to the duration of each activity, the
method allows computation of the probability of completing a project by a cer-
tain date and of confidence intervals on the project duration.

10 6 0 84 2 1. . .± ×  days
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Apart from the quantitative data on start, finish, and slack times obtained
from CPM/PERT, the approach has wider benefits. It requires a clear specifica-
tion of project components and their relationships, and it provides a realistic
way to examine them in light of deadlines. It can help avoid major project cost
overruns. It offers a mechanism for communicating project plans to those inside
and outside the project. It can let those inside the project see exactly where they
fit into the big picture and foster a sense of teamwork. Even small projects can
benefit from the CPM/PERT approach.

PROBLEMS

12.1 (a) Set up your own spreadsheet model to compute the earliest start and
finish times for the slash-burn project, like the one shown in Figure 12.3. Using
the same data, verify that your results are the same. 

(b) Change the duration of activity B from 8 days to 10 days. How does this
affect the earliest start and finish times for the other activities and for the pro-
ject as a whole?
12.2 (a) Set up your own spreadsheet model to compute the latest start and

finish times for the slash-burn project, like the one shown in Figure 12.5. Using
the same data, verify that your results are the same.

(b) Change the earliest finish time for the project from 11 days to 15 days.
How does this affect the latest start and finish times for the activities?
(c) Change the earliest finish time for the project from 11 days to 10 days.
Explain what happens.
12.3 (a) Set up your own spreadsheet model to compute activity slack times

for the slash-burn project, like the one shown in Figure 12.7. Using the same
data, verify that your results are the same. 

(b) Change the duration of activity A from 5 days to 9 days in the spread-
sheets, corresponding to Figures 12.3, 12.5, and 12.7, in that order.
Does this change the earliest finish time for the project? Does this change the
critical path? How are these two results linked?
12.4 Replace the durations of the activities in the spreadsheets correspond-

ing to Figures 12.3, 12.5, and 12.7, in that order, with the expected durations
for each activity shown in Figure 12.9. How does this change the earliest finish
time and the critical path? 

12.5 (Adapted from a problem originally formulated by Jeff Martin) The
supervisor of a national forest is experiencing unexpected delays in the prepa-
ration of timber sales. Accordingly, he has directed his staff to use CPM to coor-
dinate the next timber sale. The staff has identified the various activities
involved, their precedence relationships, and the time necessary to do them, as
shown in the table.
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(a) Using the information in the table, draw a network diagram showing the
precedence relationships between activities. Remember that such a network
must have a single starting activity and a single ending activity.
(b) Formulate a linear programming model to compute the earliest start and
finish times for this project. What is the minimum time that will be needed
to conduct the sale?
(c) Formulate a linear programming model to compute the latest start and
finish times for this project.
(d) Use the results in (b) and (c) to compute the slack times for each activity.
(e) What is the critical path for this project?
(f) Summarize your results in a Gantt chart. For each activity, this chart
should show the earliest start time, duration, latest start time, and slack time. 
12.6 (Adapted from a problem originally formulated by George L. Martin)

You have just been hired as director of a newly created national park. The park
will cover almost 80,000 acres of old-growth redwood forest. Prior to its pur-
chase, most of this land was owned by lumber companies. Therefore, it has
very little infrastructure to support recreational use. Your immediate task is to
plan, schedule, and direct the numerous activities that must be completed
before the park can be opened to the public. You plan to use PERT to help
manage this complex project. Accordingly, you have identified the various
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Expected Preceding
Activity duration (months) activities

Timber inventory 4 None
Nontimber inventory 3 None
Initial sale design 2 Timber inventory

Nontimber inventory
Transportation planning 21 Timber inventory

Nontimber inventory
Initial environmental assessment 4 Timber inventory

Nontimber inventory
Final environmental assessment 5 Initial sale design

Transportation planning
Initial environmental assessment

Final sale design 5 Final environmental assessment
Mark sale boundaries 2 Final sale design
Lay out roads 14 Final sale design
Mark timber 5 Mark sale boundaries
Cruise timber 4 Mark timber
Prepare advertisement 2 Lay out roads

Cruise timber
Advertise sale 7 Prepare advertisement
Award sale 2 Advertise sale



activities involved, their precedence relationships, and the time necessary to do
them, as shown in the table. Note that there are three estimates of the activity
for each activity: optimistic (O), most likely (L), and pessimistic (P).
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Redwood Park Project

Duration
(months)

Activity O L P Preceding activities

Establish ranger stations 1 1.5 2 None
Establish fire protection 0.5 1 2 Establish ranger stations
Purchase inholdings 4 6 8 Establish ranger stations
Phase out lumber operations 9 11 13 Establish ranger stations
Secure mineral rights 4 5 6 Establish ranger stations
Obtain scenic easements 8 10 12 Establish ranger stations
Construct signs 3 4 6 Establish fire protection
Construct temporary campgrounds 1 2 3 Establish fire protection
Designate temporary primitive campsites 2 4 6 Establish fire protection
Construct temporary headquarters 1 2 3 Establish fire protection
Repair existing trails 9 11 14 Establish fire protection

Purchase inholdings
Repair boundary fences 10 12 16 Establish ranger stations
Post boundary 10 12 16 Establish ranger stations
Preliminary hydrological study 2 3 5 Establish ranger stations
Archaeological study 4 6 8 Phase out lumber operations
Range study 3 4 6 Phase out lumber operations
Preliminary environmental study 4 6 8 Construct signs

Construct temporary 
campgrounds

Designate temporary 
primitive campsites

Construct temporary 
headquarters

Repair existing trails
Repair boundary fences

Preliminary master plan 3 5 7 Preliminary hydrological
study

Preliminary environmental
study

Public hearings on master plan 1 2 3 Preliminary master plan
Final hydrological study 1 2 3 Public hearings on master 

plan
Final environmental study 3 4 5 Public hearings on master 

plan
Secure mineral rights
Obtain scenic easements

(continues)



(a) Using the information in the table, draw a network diagram showing the
precedence relationships among activities. Remember that such a network
must have a single starting activity and a single ending activity.
(b) Set up a spreadsheet like Figure 12.9 to compute the expected value and
the standard deviation of the duration of each activity. Use these expected
durations in parts (c), (d), and (e).
(c) Formulate a linear programming model to compute the expected earliest
start and finish times for this project. What is the expected minimum time
until the park opening?
(d) Formulate a linear programming model to compute the expected latest
start and finish times for this project.
(e) Using the results in parts (c) and (d), compute the slack time for each
activity.
(f ) What is the critical path for this project?
(g) Summarize your results in a Gantt chart. For each activity, this chart
should show the expected earliest start time, duration, latest start time, and
slack.
(h) Compute the standard deviation of the finish time for this project. 
(i) Using a table of the standard normal distribution, determine the probabil-
ity of getting the park ready for the public in either 52 months or 60 months.
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Redwood Park Project (continued)

Duration
(months)

Activity O L P Preceding activities

Final master plan 5 6 8 Archaeological study
Range study
Final hydrological study
Final environmental study

Construct new trails 12 14 18 Public hearings on master 
plan

Designate permanent primitive campsites 5 6 7 Public hearings on master 
plan

Construct permanent campgrounds 10 12 13 Final master plan
Construct permanent headquarters 10 12 14 Final master plan
Construct vehicle access system 12 14 16 Final master plan
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CHAPTER 13

Multistage Decision Making
with Dynamic Programming

13.1 INTRODUCTION

In the preceding chapters, we have solved many forest management problems
using linear programming. Linear programming is a very powerful method, and
good software is readily available. However, linear programming has some lim-
itations. First, it requires that the model variables be continuous. In Chapter 11
we saw how integer programming could be used to bypass this limitation, but
integer programs can be difficult to solve. Second, linear programming applies
only to problems that can be expressed with linear objective functions and
constraints.

Dynamic programming is another approach to optimization that can readily
handle nonlinear relationships and integer variables. Despite the name, many
dynamic programming applications have nothing to do with time. For exam-
ple, the problem of how to allocate funds to competing projects can be solved
by dynamic programming. The method entails breaking down a problem into
a sequence of subproblems or stages. The solutions of each subproblem are
found first, and then these solutions are put together to find the solution of the
overall problem. 



A disadvantage of dynamic programming, in contrast with linear and inte-
ger programming, is that it does not have a standard form. Although the gen-
eral approach is always the same, the actual mechanics of formulating and
solving a problem depend on the specific case. Therefore, the best way to learn
how to formulate and solve forest resource management problems with dynamic
programming is to study many examples. 

We shall start with one of the earliest applications of dynamic programming
in forestry: the determination of thinning intensity in even-aged stands. From
this simple example we shall be able to infer the common characteristics of
problems solvable by dynamic programming as well as how to solve them. 

We shall then consider two more examples: (1) the trimming of paper rolls
in a paper mill to maximize value, and (2) the allocation of funds to projects to
minimize the probability of extinction of a wild species.

13.2 BEST THINNING OF AN EVEN-AGED
FOREST STAND

A forester in Northern California plans to manage a mixed conifer stand to max-
imize the total yield from thinning and the final harvest. He has already decided
to do the harvest in three stages: an immediate thinning, a second thinning
20 years later, and a clear-cut 20 years after that.

However, he is undecided as to how heavily to thin the stand and will con-
sider three possibilities at the first and second stages: no thinning, a light thin-
ning, and a heavy thinning.

STAGES, STATES, AND DECISIONS

The different ways of managing the stand over the next 40 years can be repre-
sented by a network, as in Figure 13.1. Following dynamic programming ter-
minology, we refer to each time a decision is made as a stage.

The condition of the stand at a particular stage, just before the decision, is
called a state. In Figure 13.1 each node of the network, labeled with a letter, rep-
resents a stand state. A stand state may be defined by a single variable, such as
basal area, or by a combination of variables, such as basal area and number of
trees.

Each arc between nodes in the network represents a decision. The effect of a
decision is to move the stand from a particular stage and state to a different state
at the subsequent stage. The change is due in part to the thinning and in part
to the growth of the timber that remains after thinning. 
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The numbers along the arcs in Figure 13.1 refer to the immediate yield
resulting from a decision. For example, at stage 1, a heavy thinning yields 30 m3/ha
of timber while a light thinning yields 10 m3/ha.

MANAGEMENT ALTERNATIVES

Each path through the network represents an alternative way to manage the
stand. Thus, starting from state A at stage 1, not thinning leads to state D at
stage 2. At stage 2 and state D, a heavy thinning yields 40 m3/ha and leads to
state G at stage 3. The stage 3 final harvest then yields 220 m3/ha. The total yield
of this management regime would then be 260 m3/ha.

Clearly, the best management could be found by following all possible paths
through the network and finding which one has the largest total yield. This
would be a feasible method to solve this small problem. However, the number
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FIGURE 13.1 Different ways of thinning a forest stand (all volumes are per hectare).
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of paths becomes extremely large as we consider more stages and more options
at each stage, for example, allowing thinning in any year. In such cases, the
dynamic programming approach becomes very advantageous. 

A MYOPIC SOLUTION

One intuitive way of solving the thinning problem would be to choose, starting
with stage 1, the decision that gives the largest immediate yield at each stage.
This would result in thinning the stand heavily at stages 1 and 2. The total yield
of the path from state A to B to E to M would then be:

30 + 50 + 150 = 230 m3/ha

However, this solution cannot be optimal, since the path from state A to B
to F to M has a higher yield:

30 + 30 + 180 = 240 m3/ha

Thinning at an early stage can accelerate growth and reduce mortality in
later stages, but it can also leave too little growing material. A correct solution
must take into account this dependence between decisions at various stages.

DYNAMIC PROGRAMMING SOLUTION

Consider the possible decisions at stage t and state i. Let j refer to the decision
to thin to a particular destination state. For example, j = E at stage 2 means that
the stand is thinned to reach state E at stage 3. Let r(i, j) be the immediate yield
of decision j in state i. For example, r(B, E) = 50 m3/ha. Let Vt(i, j) be the high-
est yield from stage t onward, starting in stage i and making decision j and then
making the best decisions in all subsequent stages. And let V∗

t (i) be the highest
yield from stage t onward, starting in state i and making the best current deci-
sion j∗ and the best subsequent decisions. Solving the problem involves finding
this highest yield, V∗

t (i), and the corresponding best decision, j∗, for all stages
and states.

Dynamic programming works backwards from the last stage to the first. First
we determine the highest yield at stage 3 for each state i = E, F, G, H, L and the
corresponding best decision:

(13.1)

This is a trivial problem because there is only one possible decision for each
state at stage 3: to harvest the remaining timber to reach state M.

V i j3
∗ ∗( )            and      
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Next we determine the highest cumulative yield from stage 2 and stage 3 for
each state at stage 2. Thus, for each state i = B, C, D we find the decision j∗ such that: 

(13.2)

Last, we determine the highest cumulative yield from stages 1, 2, and 3 given
the initial state at stage 1. That is, for state A we find the decision j∗ such that:

V1
∗ (A) is the highest total yield that can be obtained over the 40-year plan-

ning period. The corresponding best decision, j∗, leads to the best state at stage 2.
For that state, we know the best decision from having solved Equation (13.2).
This best decision at stage 2 in turn leads to the best state at stage 3. For this
state we know the best decision at stage 3 from having solved Equation (13.1).

The computations proceed as follows, stage by stage.

Stage 3 As shown in Figure 13.1, the stand may be in any one of five states
at the time of final harvest: E, F, G, H, or L. Regardless of the state, the best (in
fact, the only possible) decision is j∗ = M. The corresponding yields are shown
in Table 13.1.

Stage 2 The computations for this stage are shown in Table 13.2. The high-
est yield obtainable from stages 2 and 3 for a particular state i and decision j is
the sum of the current yield from this decision plus the highest subsequent
yield possible given that the stand will be in state j at stage 3:

V i j r i j V j2 3( , ) ( , ) ( )= + ∗

V A r A j V j
j

1 2
∗ ∗= +( ) max[ ( , ) ( )]

V i r i j V j
j

2 3
∗ ∗= +( ) max[ ( , ) ( )]
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TABLE 13.1  Yields of the Final Harvest (Stage 3)

State Yield Decision
i V3

∗(i) j∗

E 150 M

F 180 M

G 220 M

H 240 M

L 250 M
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TABLE 13.2 Best Second Thinning as a Function of State (Stage 2)

Highest yield V2(i, j) = r(i, j) + V3
∗(j) Highest Best

State Decision j yield decision
i E F G H L V∗

2(i) j∗

B 200 = 50 + 150 210 = 30 + 180 240 = 0 + 240 240 H

C 220 = 40 + 180 240 = 20 + 220 250 = 0 + 250 250 L

D 260 = 40 + 220 260 = 20 + 240 250 = 0 + 250 260 G or H



For example, assume that the stand is in state B at stage 2 and that the deci-
sion is E. Then the highest yield obtainable from stages 2 and 3 is:

The row of Table 13.2 for state B repeats this calculation for the two other
possible decisions at stage 2, F and H. This leads to:

Therefore, the highest yield from stages 2 and 3, given state B at stage 2, is:

and the best decision at stage 2 and state B is

Repeating these computations for the other possible states at stage 2 leads,
for state C, to:

with best decision 

and for state D:

with best decision 

Stage 1 The calculations for stage 1, the first thinning, are shown in Table
13.3. The highest yield obtainable from stages 1, 2, and 3 for a particular state
i and decision j is:

V i j r i j V j1 2( , ) ( , ) ( )= + ∗

j G H∗ =  or 

V D2
3260∗ =( ) /m ha

j L∗ =

V C2
3250∗ =( ) /m ha

j H∗ =

V B2
3240∗ =( ) /m ha

V B F

V B H

2
3

2
3

210

240

( , ) /

( , ) /

=

=

m ha

m ha

V B E r B E V E2 3

3

50 150

200

( , ) ( , ) ( )

/

= +

= +

=

∗

m ha
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There is only one possible state at stage 1, i = A. If the decision is j = B, then
the highest yield obtainable from the three stages is:

Repeating these calculations for j = C and j = D leads to:

V1(A, C) = 260 m3/ha

V1(A, D) = 260 m3/ha

Therefore, the highest yield from the three stages is:

with best decision 

j∗ = B

Since the best first decision is j∗ = B, the best state at stage 2 is B. At stage 2
and state B the best decision is j∗ = H (see Table 13.2). This decision in turn
leads to state H at stage 3. At stage 3 and state H there is but one possible deci-
sion, j∗ = M (see Table 13.1).

In summary, given a stand of initial state A and a final harvest in 40 years,
the best management regime consists of an immediate heavy thinning but no
subsequent thinning before final harvest. 

Tables 13.1–13.3 can also be used to determine the best sequence of harvests
starting from any stage and state. For example, assume the crew doing the first
thinning did not thin enough. Twenty years later the stand might be in state C

V A1
3270∗ =( ) / m ha

V A B r A B V B1 2

3

30 240

270

( , ) ( , ) ( )

/

= +

= +

=

∗

 m ha
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TABLE 13.3 Best First Thinning as a Function of State (Stage 1)

Highest yield V1(i, j) = r(i, j) + V2
∗(j) Highest Best

State Decision j yield decision
i B C D V1

∗(i) j∗

A 270 = 30 + 240 260 = 10 + 250 260 = 0 + 260 270 B



at stage 2 rather than in state B as planned. Table 13.2 shows that j∗ = L for i =
C at stage 2, so the best decision would still be not to thin the stand before final
harvest.

The practical value of this particular model is limited, given the few alter-
natives considered. Nevertheless, the same method could be used to investi-
gate additional thinning intensities at more frequent intervals. Besides
thinning, clear-cutting could be considered as an option at every stage, thus
making the rotation length a decision variable. The best rotation could then
be found simultaneously with the best thinning regime. And if this were a
plantation, the initial planting density could also be considered as a decision
variable.

SPREADSHEET FORMULATION AND SOLUTION

Figure 13.2 shows a spreadsheet to solve the thinning problem by dynamic pro-
gramming. The spreadsheet is set up to allow for five states and five decisions
at each of three stages. The entries in bold are data; the other entries are the
results of formulas. Cells C5:G9 contain the immediate yield from each state and
decision at stage 3. The spreadsheet requires data for all 25 possible state and
decision combination at each stage, so the yield data for decision M are repeated
to complete the table. Cells C11:G15 contain the immediate yield from each
state and decision at stage 2. Decisions that are not possible are given an arbi-
trarily high negative yield, −99 m3, so that they will not be picked as best deci-
sions. The yield data for state D are repeated to complete the stage 2 table. Cells
C17:G21 contain the immediate yield from each state and decision at stage 1.
The yield data for state A are repeated to complete the table.

The formulas in cells I5:M9 compute the highest yield for each state and
decision at stage 3. Since this is the last stage, the highest yield is equal to the
immediate yield. The formulas in cells I11:M15 compute the highest yield from
stages 2 and 3 for each state and decision at stage 2. For example, the formula
in cell I11 adds the immediate yield from state B, decision E, to the highest of
stage 3, state E. The VLOOKUP function takes the decision in cell I10, “E,”
looks for its match in the first column of the range B5:B9, and returns the value
in the 13th column (column N), the highest yield for state “E” at stage 3. The
parameter FALSE allows the state names to be in any order. Similarly, the for-
mulas in cells I17:M21 compute the highest yield from stages 1, 2, and 3 for
each state and decision at stage 1.

The formulas in cells N5:N9 compute the highest return for each state at
stage 3. The formulas in cells N11:N15 and N17:N21 repeat this for stages 2
and 1.
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The formulas in cells O5:O9 find the best decision corresponding to the
highest yield for each state at stage 3. The formulas in cells O11:O15 and
O17:O21 repeat this for stages 2 and 1. For example, the MATCH function in
cell O11 finds that the highest yield in cell N11 is in the fourth column of the
range I11:M11, and then the INDEX function determines that the fourth value
in the range of the decision names, I10:M10, is “H.”

The solution in Figure 13.2 shows that starting in state A, the highest yield
of thinning and final harvest is 270 m3/ha. The best decision, starting in state
A, is to go to state B, that is, to thin heavily. From state B at stage 2, 20 years
later, the best decision is go to state H, that is, not to thin at all. From state H
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FIGURE 13.2 Spreadsheet to compute the best thinning policy.
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A 30 10 0 0 0 270 260 260 260 260 270 B

A 30 10 0 0 0 270 260 260 260 260 270 B

A 30 10 0 0 0 270 260 260 260 260 270 B

A 30 10 0 0 0 270 260 260 260 260 270 B

A 30 10 0 0 0 270 260 260 260 260 270 B

Key cell formulas

Cell Formula Copied to

I4 =C4 I4:M4,I10:M10,I16:M16

I5 =C5 I5:M9

I11 =C11+VLOOKUP(I$10,$B$5:$N$9,13,FALSE) I11:M15

I17 =C17+VLOOKUP(I$16,$B$11:$N$15,13,FALSE) I17:M21

N5 =MAX(I5:M5) N5:N9,N11:N15,N17:N21

O5 =INDEX(I$4:M$4,MATCH(N5,I5:M5,0)) O5:O9

O11 =INDEX(I$10:M$10,MATCH(N11,I11:M11,0)) O11:O15

O17 =INDEX(I$16:M$16,MATCH(N17,I17:M17,0)) O17:O21

Immediate yield r (i ,j)
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t
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i

Highest 

yield 

V* t  (i )
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decision

j *

Highest yield 

V t (i,j )=r (i,j )+ V* t +1( j)

Decision j



at stage 3, another 20 years later, the best (and only) decision is to clear-cut the
stand to state M.

The spreadsheet shows other best solutions as well. For example, for a stand
starting in state C at stage 2, it would be best to let the stand grow to state L in
20 years without thinning and then to clear-cut it. For a stand in state D, it
would be best to thin it heavily to reach state G in 20 years and then to clear-
cut it.

13.3 GENERAL FORMULATION 
OF DYNAMIC PROGRAMMING

Despite its simplicity, the thinning problem of the previous section has all the
features of more complex dynamic programming problems. Problems of this
kind are defined in terms of stages, states, and decisions, and they are solved
recursively.

STAGES, STATES, AND DECISIONS

Problems that can be solved by dynamic programming can be divided into
stages, where some decision must be made at each stage. In the thinning exam-
ple, stages were points in time, but this is not always the case, as we shall see
in the subsequent examples. 

Each stage has one or more states associated with it. In defining the state
variables it is helpful to think of what changes from stage to stage and what is
affected by decisions. In the thinning problem, the state was the structure of the
stand. Stand structure could be defined by a number of variables, such as
number of trees, basal area, and volume. 

The effect of a decision is to move from a state at one stage to another state
at the next stage. There is an immediate return associated with a decision. 

RECURSIVE SOLUTION

The objective of a dynamic programming problem is to maximize the returns
from all decisions or to minimize the costs. The solution algorithm starts by
finding the best solution for each possible state at the last stage. This is usually
a trivial problem. The algorithm proceeds backwards using a recursive equation,

Multistage Decision Making with Dynamic Programming 269



one stage at a time. For the thinning problem, the recursive equation was:

where t refers to stage, i refers to state, and j refers to decision. The function
within brackets refers to the current-stage return r (i, j) plus the highest return
from all subsequent stages V∗

t+1 ( j). In the thinning example, the immediate
return depends on the state and decision, but it could also depend on the stage,
as demonstrated in the endangered species example in Section 13.5. 

Once the algorithm has determined the highest return for the first stage, the
sequence of best decisions is found by working through the network from the
first to the last stage. 

13.4 TRIMMING PAPER SHEETS 
TO MAXIMIZE VALUE

This second example of dynamic programming differs from the thinning prob-
lem in that the stages do not correspond to points in time. The relationship
between states and decisions is also different. 

PROBLEM DEFINITION

The Maine pulp-making cooperative considered in Chapters 2, 3, and 10 has
been so successful that it has added a paper machine to its mill. The machine
produces a continuous sheet of high-quality coated book paper. The sheet is 4 m
wide and must be trimmed to narrower dimensions before it is shipped to cus-
tomers. All paper is sold in large rolls of the same diameter but of different
width.

Currently, the selling price of paper of this quality is $400, $1,000, and
$1,500 for rolls 1 m, 2 m, and 3 m wide, respectively. Note that the price is not
directly proportional to the width. The premium per additional meter is higher
between 1 and 2 m than between 2 and 3 m.

Because there are only a few ways of trimming the 4-m-wide sheet coming
out of the paper machine to produce rolls of the desired width, one could find
the combination of highest value by complete enumeration. However, the prob-
lem would become very complex with just a few more alternative widths for
the rolls of paper, and dynamic programming would be needed to solve it
efficiently.

V A r i j V jt
j

t
∗

+
∗= +( ) max[ ( , ) ( )]1
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STAGES, STATES, AND DECISION VARIABLES

The trimmers located at the end of a paper-making machine simultaneously cut
the sheet to specified widths. However, to formulate the problem by dynamic
programming it is helpful to think of the process as a sequence of stages, where
each stage corresponds to choosing the width of one roll of paper to trim from
the sheet, that is, of choosing the setting for one trimmer knife. Only four stages
are needed, because at most four rolls can be obtained, each one 1 m wide. We
shall denote the stage by t, where t varies from 1 to 4. The state i is the width
of the “untrimmed” part of the sheet. The decision at each stage is the width of
the roll of paper to be cut from the untrimmed width or, equivalently, the width
of the untrimmed sheet to be considered at the next stage. This latter definition
underlines the similarity with the stand thinning problem, where the decision
was defined as a choice of the residual stocking after thinning. Therefore, in this
example, if i is the state at a particular stage and j is the decision, then i − j is
the width of the roll trimmed from the sheet at that stage.

DESCRIPTION OF ALTERNATIVES

The different ways of cutting the sheet of paper can be represented by a net-
work, as in Figure 13.3. Each node corresponds to a particular state. A row of
nodes is a stage. The arcs between nodes correspond to possible decisions. 

Stage 1 corresponds to an untrimmed sheet 4 m wide; therefore the initial
state is i = 4. The possible decisions are j = 1 if a 3-m roll worth $1,500 is
trimmed from the sheet, j = 2 if a 2-m roll worth $1,000 is trimmed, and j = 3
if a 1-m roll worth $400 is trimmed. Then, if i = 3 at stage 2 and the width of the
second roll is 3 m, j = 0 at stage 3. The other possible decisions are j = 1 and j = 2.

The complete network in Figure 13.3 is obtained in this way by noting all
possible decisions for each stage and state.

DYNAMIC PROGRAMMING SOLUTION

Consider the possible decisions at stage t and state i. Let r (i, j) be the immedi-
ate return of decision j in state i. This is just the price of a roll of paper i − j m
wide. For example, r(4, 3) = $400. Let V∗

t(i) be the highest value of the rolls of
paper obtained from stage t onward, starting in state i and making the best cur-
rent decision j∗ and the best subsequent decisions. That is:

(13.3)V i r i j V jt
j

t
∗

+
∗= +( ) max[ ( , ) ( )]1
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where the term in brackets is the value of the roll obtained at the current stage
plus the highest value of the rolls obtained at subsequent stages. The objective
is to determine V∗

1(4), the highest value gotten by trimming a 4-m-wide sheet
of paper. We do this by applying Recursive Relation (13.3), stage by stage, from
stage 4 back to stage 1.

Stage 4 Figure 13.3 shows two possible states at stage 4, i = 0 and i = 1. It
is possible to obtain a fourth roll of paper only if i = 1. In that state, the best
decision is to produce a 1-m roll with a return of $400; that is:

V∗
4(1) = $400
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FIGURE 13.3 Different ways of trimming a 4-m-wide roll of paper into rolls 1, 2, or 3 m wide.
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with the best decision 

j* = 0

Stage 3 The computations for this stage appear in Table 13.4. The highest
value obtainable from stages 3 and 4 for a particular state and decision at stage
3 is:

(13.4)

Figure 13.3 shows that the possible states are i = 2, 1, or 0. More rolls can be
obtained only if i = 2 or 1. For example, if i = 2, then producing a 1-m roll would
give an immediate return of $400 and leave j = 1 m of untrimmed sheet at stage
4, which in turn would give a highest return of $400 at stage 4. In terms of
Equation (13.4), we have:

Still assuming i = 2 but producing a 2-m roll would give an immediate return
of $1,000 and leave j = 0 m of untrimmed sheet at stage 4, so there would be no
return at stage 4. Thus:

Therefore, the highest value obtainable from stages 3 and 4 given i = 2 at stage
3 is:

with the best decision

j∗ = 0

And for i = 1 at stage 3, we have only one possible decision, j = 0, so:

V3 1 400∗ =( ) $

V3 2 1 000∗ =( ) $ ,

V r3 2 0 2 0

1 000

( , ) ( , )

$ ,

=

=

V r V3 42 1 2 1 1

400 400 800

( , ) ( , ) ( )

$ $ $

= +

= + =

∗

V i j r i j V j3 4( , ) ( , ) ( )= + ∗
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with the best decision

j∗ = 0

Stages 2 and 1 The calculations for stages 2 and 1 are similar to those for
stage 3. The results for each stage appear in Tables 13.5 and 13.6.

Consider Table 13.6, which refers to stage 1. It shows that: 

with the best decision

j∗ = 2

Thus, the highest value that can be obtained by trimming the 4-m sheet of
paper is $2,000. The best decision in the first stage is j* = 2, that is, to produce

V1 4 2 000∗ =( ) $ ,

274 Decision Methods for Forest Resource Management

TABLE 13.5 Best Width of the Second Roll of Paper as a Function of Remaining

Sheet Width (Stage 2)

Highest return V2(i, j) = r(i, j) + V∗
3(j) Highest Best

State Decision j return decision
i 0 1 2 V∗

2(i) j∗

1 400 400 0
2 1,000 800 = 400 + 400 1,000 0
3 1,500 1,400 = 1,000 + 1,000 1,400 = 400 + 1,000 1,500 0

TABLE 13.6 Best Width of the First Roll of Paper as a Function of Remaining Sheet

Width (Stage 1)

Highest return V1(i, j) = r(i, j) + V∗
2(j) Highest Best

State Decision j return decision
i 1 2 3 V∗

1(i) j∗

4 1,900 = 1,500 + 400 2,000 = 1,000 + 1,000 1,900 = 400 + 1,500 2,000 2

TABLE 13.4 Best Width of the Third Roll of Paper as a

Function of Remaining Sheet Width (Stage 3)

Highest return V3(i, j) = r(i, j) + V∗
4(j) Highest Best

State Decision j return decision
i 0 1 V∗

3(i) j∗

1 400 400 0
2 1,000 800 = 400 + 400 1,000 0



a 2-m roll. The best state at stage 2 is therefore i = 2. At stage 2 and state 2, the
best decision is j∗ = 0 (see Table 13.5), that is, to produce another 2-m roll.

SPREADSHEET FORMULATION AND SOLUTION

Figure 13.4 shows a spreadsheet to solve the paper-trimming problem by
dynamic programming. The spreadsheet is set up to allow up to three states and
three decisions at each of four stages. The entries in bold are data; the other
entries are the results of formulas. Cells C5:E7 contain the immediate return
from each state and decision at stage 4. The spreadsheet requires data for all
nine combinations of states and decision at each stage, so the returns from the
only possible state and decision are repeated. Cells C9:E11 contain the imme-
diate return from each state and decision at stage 3. Decisions that are not pos-
sible (starting and ending with a 1-m-wide sheet) are given an arbitrarily high
negative return, $−999, so that they will not be picked for the best solution. The
return data for state 2 are repeated to complete the table for stage 3. Similarly,
cells C13:E15 and C17:E19 contain the immediate return from each state and
decision at stages 2 and 1, respectively. 

The formulas in cells G5:I7 compute the highest return for each state and
decision at stage 4. Since this is the last stage, the highest return is equal to the
immediate return. The formulas in cells G9:I11 compute the highest yield from
stages 3 and 4 for each state and decision at stage 3. For example, the formula
in cell H10 adds the immediate return from state 2 and decision 1 at stage 3 to
the highest return of state 1 at stage 4. The IF function sets the highest return
from state 1 at stage 4 to 0 if the roll is less than 1 m long. The VLOOKUP func-
tion takes the decision in cell H10, “1,” looks for its match in the first column
of the range B5:B11, and returns the value in the ninth column, the highest yield
for state “1” at stage 4. Similarly, the formulas in cells G13:I15 compute the
highest return from stages 3 and 4 for each state and decision at stage 2, and
the formulas in cells G17:I19 compute the highest return from stages 2, 3, and
4 for each state and decision at stage 1.

The formulas in cells J5: J7 compute the highest return for each state at stage
4. The formulas in cells J9: J11, J13: J15 and J17: J19 repeat this for stages 3, 2,
and 1.

The formulas in cells K5:K7 find the decision giving the highest return for
each state at stage 4. The formulas in cells K9:K11, K13:K15, and K17:K19
repeat this for stages 3, 2, and 1. For example, the MATCH function in cell K9
finds that the highest yield in cell J9 is in the first column of the range G9:I9,
and then the INDEX function determines that the first value in the range of the
decision names, G8:I8, is “0.” 

The solution in Figure 13.4 shows that starting in state 4 at stage 1 (that is,
with a 4-m untrimmed sheet of paper), the highest return is $2,000. The best
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FIGURE 13.4 Spreadsheet to compute the best trimming of a paper sheet.
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decision from state 4 at stage 1 is to go to state 2 at stage 2, that is, to produce
a 2-m roll. From state 2 at stage 2, the best decision is go to state 0 at stage 3,
that is, to produce another 2-m roll of paper. 

13.5 MINIMIZING THE RISK OF LOSING 
AN ENDANGERED SPECIES

The two previous examples of dynamic programming involved additive returns.
The highest returns at stage t were in both cases the highest of the immediate
returns at stage t plus the highest of the possible returns at stage t + 1 and
beyond. However, dynamic programming can be applied to return functions
with other forms. The following example uses a multiplicative return function
in which the highest return at stage t is the product of the immediate return at
stage t and of the highest return at stage t + 1 and beyond. Dynamic program-
ming can deal readily with such nonlinear functions.

PROBLEM DEFINITION

Consider a nonprofit organization whose main objective is the protection of
wildlife. This organization is particularly concerned by the status of a species
that is close to extinction. Three projects have been set up to try to save this
species. Each project is in a different area and uses a somewhat different
approach, so the probability of success or failure of a project is independent of
that of the others. 

The organization has $2 million to grant the three projects. It wants to allo-
cate the money to minimize the probability that all three projects will fail,
which would result in extinction of the species. Recall that the probability of
the simultaneous occurrence of three independent events is the product of the
probabilities of occurrence of each event. Thus, the probability of total failure
is the product of the probabilities of failure of each individual project.

The organization’s managers believe strongly in the effectiveness of large
grants. Therefore, they will consider only three funding levels for each project:
$0, $1 million, or $2 million.

The organization has hired a consultant to determine the probability that
each project will fail, conditional on the amount of money granted to it. The
result of the consultant’s work is summarized in Table 13.7. The table shows,
for example, that if project 1 is granted nothing, there is a 50% chance that it
will fail. A $1 million grant will decrease that probability to 30%, and $2 mil-
lion will reduce it to 20%.
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There are many possible ways of allocating the $2 million to the different
projects. We shall use dynamic programming to find the combination that is
best, in the sense that it minimizes the probability of total failure. 

STAGES, STATES, AND DECISION VARIABLES

Again, as in the paper-trimming example, it is useful to think of the allocation
of money to each project as a sequence of decisions, or stages. Consequently,
stages t = 1, 2, and 3 refer to the allocation of money to projects 1, 2, and 3,
respectively.

Let us define state i as the budget available for allocation at stage t, and deci-
sion j as the budget available for allocation at stage t + 1. Thus, the money allo-
cated at stage t (that is, to project t) is i − j. In this problem, i and j can only take
the value 0, 1, or 2. 

DYNAMIC PROGRAMMING SOLUTION

Consider the possible decisions at stage t and state i. Let pt(i, j) be the proba-
bility of failure of project t if the decision is j, that is, if it is granted (i − j) mil-
lion dollars. In contrast with the previous examples, this probability depends
not only on the state and decision but also on the stage. Let V*

t(i) be the small-
est probability of total failure from stage t onward, starting in state i and making
the best decision j*. Thus:

(13.5)

The objective is to determine V∗
1(2), the smallest probability of total failure

that can be achieved by allocating $2 million to projects 1, 2, and 3. We do this
by applying Recursive Relation (13.5) stage by stage, from stage 3 to stage 1.

Stage 3 Three states are possible at stage 3: i = 0, i = 1, and i = 2. If i = 0,
no money is left for the third project and the only possible decision is j∗ = 0.

V i p i j V jt
j

t t
∗

+
∗=( ) min[ ( , ) ( )]1
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TABLE 13.7 Probability of Project Failure as a Function of Funding Level

Funding level (state)

Project (stage) $0 $106 $2 × 106

1 .5 .3 .2
2 .7 .5 .3
3 .8 .5 .4



The probability that the third project will fail is then V∗
3 (0) = .8 (Table

13.7). If i = 1, the best decision is j∗ = 0, that is, spending $1 million, because
it minimizes the probability of failure V∗

3 (1) = .5. If i = 2, the best decision is
j∗ = 0, that is, spending $2 million, because it minimizes the probability of fail-
ure, V∗

3 (2) = .4. The computations for stage 3 are summarized in Table 13.8.

Stage 2 The computations for this stage are in Table 13.9. The three pos-
sible states are i = $0, $1million, or $2 million. If, for example, i = 1, the possi-
ble decisions are j = 0 or 1. If j = 0, then $1 million is allocated to project 2 and
its probability of failure, is .5, and the state at stage 3 is 0, which in turn leads
to a probability of failure of project 3 of .8 (see Table 13.8). So the lowest prob-
ability of total failure for stages 2 and 3, starting in state i = 1 and making the
decision j = 0, is:

If i = 1 and j = 1, then project 2 receives no money and its probability of fail-
ure is .70. One million dollars is left for the third project, so its probability of
failure is .50. Thus:

V p V2 2 31 1 1 1 0

7 5 35

( , ) ( , ) ( )

. . .

=

= × =

∗

V p V2 2 31 0 1 0 0

5 8 4

( , ) ( , ) ( )

. . .

=

= × =

∗
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TABLE 13.8 Best Funding of Third Project (Stage 3)

Budget state i Smallest probability of failure Best decision j∗

($106) V∗
3(i) ($106)

0 .8 0
1 .5 1
2 .4 2

TABLE 13.9 Best Funding of Second Project (Stage 2)

Smallest
Budget Smallest probability of failure V2(i, j) = p2(i, j) V∗

3(j) probability Best
state i Decision j ($106) of failure decision
($106) 0 1 2 V∗

3(i) j∗ ($106)

0 .56 = .7 × .8 .56 0
1 .40 = .5 × .8 .35 = .7 ×.5 .35 1
2 .24 = .3 × .8 .25 = .5 × .5 .28 = .7 × .4 .24 0



Therefore, the smallest probability of failure for stages 2 and 3, given i = 1 at
stage 2, is:

with the best decision

j∗ = $1 million

Repeating these calculations for state i = 0 leads to:

with the best decision

j∗ = 0

And for i = 2:

with the best decision

j∗ = 0

Stage 1 The calculations for stage 1 follow the same procedure as for
stage 2. However, there is only one state at stage 1, i = 2, meaning that no money
has been allocated yet. The results of the computations appear in Table 13.10.
They show that:

Thus, the lowest probability of failure that the organization can achieve is
.105. Achieving this requires granting $1 million at stage 1, that is, to the first

V j1 2 105 1∗ ∗= =( ) .     $   and        million

V2 2 0 24∗ =( ) .

V2 0 56∗ =( ) .

V2 1 35∗ =( ) .
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TABLE 13.10 Best Funding of First Project (Stage 1)

Smallest
Budget Smallest probability of failure P1(i, j) = p1(i, j) V∗

2(j) probability Best
state i Decision j ($106) of failure decision
($106) 0 1 2 V∗

4(i) j∗ ($106)

2 .112 = .2 × .56 .105 = .3 × .35 .12 = .5 × .24 .105 1



project. This means that i = 1 at stage 2. Table 13.9 shows that the best decision
in state 1 at stage 2 is j∗ = 1, so no money should be granted to the second
project. This leads to state i = 1 at stage 3. Table 13.8 shows that in state 1 at
stage 3 the best decision is j∗ = 0, that is, to allocate the remaining $1 million
to project 3.

One interesting aspect of this solution is that, while project 1 has the lowest
probability of failure among all projects given a $2 million grant, the best solu-
tion is to share the funding between projects 1 and 3. The lower risk achieved
by sharing the budget between two projects is an illustration of the principle
that diversification helps mitigate risk. 

SPREADSHEET FORMULATION AND SOLUTION

Figure 13.5 shows a spreadsheet to solve the species preservation problem by
dynamic programming. The spreadsheet can deal with three states and three
decisions at each of three stages. The entries in bold are data; the other entries
are the results of formulas. Cells C5:E7, C9:E11, and C13:E15 contain the
probability of failure of projects 3, 2, and 1, respectively, by state and decision.
States and decisions that are not possible are given an arbitrarily high proba-
bility of failure, 999, so that they would not be picked in the solution. 

The formulas in cells G5:I7 compute the smallest probability of failure for
each state and decision at stage 3. This is equal to the probability of failure of
the third project for different states and decisions. The formulas in cells G9:I11
compute the smallest probability of failure from projects 2 and 3, for each state
and decision for project 2. For example, the formula in cell G9 multiplies the
probability of failure in state 2 and decision 1 by the highest probability of fail-
ure of state 0 at stage 1. The VLOOKUP function takes the decision in cell G8,
“0,” looks for its match in the first column of the range B5:J7, and returns the
value in the ninth column, .80. Similarly, the formulas in cells G13:I15 com-
pute the lowest probability of failure from stages 1, 2, and 3 for each state and
decision at stage 1.

The formulas in cells J5:J7, J9:J11, and J13:J15 compute the lowest proba-
bility of failure for each state at stages 3, 2, and 1, respectively.

The formulas in cells K5:K7, K9:K11, and K13:K15 find the decision giving
the smallest probability of failure for each state at stages 3, 2, and 1, respec-
tively. For example, the MATCH function in cell K9 finds the decision for
which the probability of failure is smallest. 

The results in Figure 13.5 show that starting with a $2 million budget (state
2 at stage 1), the best decision is to spend $1 million on project 1. At stage 2,
state 1, the best decision is 1, so nothing should be spent on the second project.
Last, at stage 3 and state 1, the best decision is 0, so $1 million should be spent
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on the third project. With this allocation of funds, the probability of total fail-
ure would be .105.

The results also show that if only $1 million were available, it would be best
to allocate it all to project 1, leading to a total probability of failure of .168.

13.6 CONCLUSION

The examples used in this chapter illustrate the potential of dynamic program-
ming to solve many different kinds of forest management problems. The
method is attractive because it is a general way to formulate and solve opti-
mization problems. As the examples have shown, dynamic programming can be
used to solve linear as well as nonlinear problems. 
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FIGURE 13.5 Spreadsheet to allocate funds to minimize the probability of failure.

1

2

3

4
5

6

7

8

9

10

11

12

13

14
15
16

17
18

19
20

21
22

23

24
25

26

A B C D E F G H I J K

MINIMIZING PROBABILITY OF FAILURE

Smallest

probability

Decision

P* t (i ) j *

3 0 1 2 0 1 2

0 0.80 999 999 0.800 999.000 999.000 0.800 0

1 0.50 0.80 999 0.500 0.800 999.000 0.500 0

2 0.40 0.50 0.80 0.400 0.500 0.800 0.400 0

2 0 1 2 0 1 2

0 0.70 999 999 0.560 499.500 399.600 0.560 0

1 0.50 0.70 999 0.400 0.350 399.600 0.350 1

2 0.30 0.50 0.70 0.240 0.250 0.280 0.240 0

1 0 1 2 0 1 2

0 0.50 999 999 0.280 349.650 239.760 0.280 0

1 0.30 0.50 999 0.168 0.175 239.760 0.168 0
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G5 =C5 G5:I7

G9 =C9*VLOOKUP(G$8,$B$5:$J$7,9,FALSE) G9:I11
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The method can also handle stochastic elements. For example, the growth
of the stand in the thinning example could be a function of the state of the stand
and of a random variable reflecting catastrophic events. This will be studied fur-
ther in Chapter 17, which will also deal with infinite time horizons and with
discounted returns, in an application of dynamic programming in conjunction
with Markov chains.

Although the principles of dynamic programming are general, each applica-
tion is specific. In contrast with linear programming, dynamic programming
models do not have a standard form. For this reason, dynamic programming is
generally more difficult to use than linear programming. In addition, solving
dynamic programming problems becomes much more difficult as the number of
state variables increases. The difficulties increase with the number of constraints.
While linear programming routinely solves problems with thousands of con-
straints, this is not possible with dynamic programming. In fact, constraints in
dynamic programming are handled quite differently than in linear programming.
They are embedded in the formulation of the problem, in the definition of the
states and decisions, which is why there isn’t a standard form and why so much
care must be paid to problem formulation, to ensure that it does cover all the
constraints.

Furthermore, many problems that can be solved by dynamic programming can
also be solved by other methods. For example, as suggested in this chapter, com-
paring all alternatives (the so-called exhaustive search approach) may be a good way
to solve even fairly large problems, regardless of how much computer time it takes.

Ultimately, an efficient method is one that gives the correct solution at min-
imum cost. In this cost, computer time is negligible compared to the time spent
in formulating a problem, developing a model, and writing the computer pro-
gram to solve it. 

PROBLEMS

13.1 (a) Set up your own spreadsheet model to compute the best thinning
policy for a mixed conifer stand like the one shown in Figure 13.2. Using the
same data, verify that your results are the same. 

(b) Assume that the objective of the forester managing the stand is to maxi-
mize the present value of the harvests instead of the volume of harvests.
Assume that the real price (net of inflation) of mixed conifer stumpage is
expected to remain at $50/m3 over the next 40 years and that the real rate of
interest is 3% per year. Revise the network diagram in Figure 13.1 to show
the new returns from each decision at each stage.
(c) Solve the new problem by hand, using the dynamic programming
method.
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(d) Revise the data in the spreadsheet in Figure 13.2 to solve the new prob-
lem. Verify that the solutions you obtained in parts (c) and (d) are the same.
(e) How does this solution change if the real guiding rate of interest changes
to 6% per year? Explain the changes.
13.2 The table describes different ways of managing a red pine plantation,

from bare land to final harvest, over the next 60 years. The plantation may be
established with an initial density of 400, 800 or 1,600 trees/ha. After 10 years,
the plantation may be precommercially thinned or left as is. At age 30, a com-
mercial thinning may be done as shown in the table; the yield of the thinning
depends on the state of the stand and thus on earlier decisions. Finally, when
the trees are 60 years old, the stand will be clear-cut.

(a) Use the data in the table to express this problem as a network diagram,
with nodes corresponding to states and arcs to decisions. Show the returns
from each decision at each stage.
(b) Solve this problem by hand, using the dynamic programming method.
(c) Revise the spreadsheet model in Figure 13.2 to solve this problem. Verify
that the solutions you obtained in parts (b) and (c) are the same.
13.3 Assume that the objective of managing the red pine stand described

in Problem 13.2 is to maximize the present value of the harvests instead of

Age Starting Harvest Ending 
(years) state Action (m3/ha) state

0 Bare land Plant 400 trees/ha 0 B
Plant 800 trees/ha 0 C
Plant 1600 trees/ha 0 D

10 B Thin 0 E
None 0 F

C Thin 0 F
None 0 G

D Thin 0 G
None 0 H

30 E Thin 35 I
None 0 K

F Thin 35 J
None 0 L

G Thin 40 K
None 0 M

H Thin 45 L
None 0 N

60 I Clear-cut 200 O (Bare land)
J Clear-cut 225 O (Bare land)
K Clear-cut 235 O (Bare land)
L Clear-cut 275 O (Bare land)
M Clear-cut 245 O (Bare land)
N Clear-cut 240 O (Bare land)
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the volume of the harvests. Assume further that the real price (net of infla-
tion) of red pine stumpage is expected to remain at $50/m3 over the next 60
years, the real guiding rate of interest is 3% per year, the costs of site prepa-
ration and planting are $200, $300, and $400/ha for densities of 400, 800,
and 1,600 trees/ha, respectively, and precommercial thinning costs are
$80/ha.

(a) Revise the network diagram from Problem 13.2 to show the new returns
from each decision at each stage.
(b) Solve the new problem by hand, using the dynamic programming
method.
(c) Revise the data in the spreadsheet model in Figure 13.2 to solve the new
problem. Verify that the solutions you obtained in parts (b) and (c) are the same.
13.4 (a) Set up your own spreadsheet model like the one shown in Figure

13.4 to compute the best way to trim a 4-m roll of paper. Using the same data,
verify that your results are the same. 

(b) Assume that a new market has developed for rolls of paper 2.5 m wide
where they are currently selling for $1,300/roll. Revise the network diagram
in Figure 13.3 to show the new possible decisions at each stage, along with
their returns.
(c) Solve the new problem by hand, using the dynamic programming
method.
(d) Revise the data in the spreadsheet model in Figure 13.4 to solve the new
problem. Verify that the solutions you obtained in parts (b) and (c) are the
same.
13.5 A logging contractor cuts and sells oak logs. To maximize profits, the

contractor must pay careful attention to the bucking operation, that is, how the
crews cut the trees into logs after felling them. On the local market, logs sell
according to three grades based on length and small-end diameter. Grade 1 logs
must be 4 m long and at least 30 cm in diameter at the small end, grade 2 logs
must be 3 or 4 m long and at least 25 cm in diameter, and grade 3 logs must
be 2, 3, or 4 m long and at least 15 cm in diameter. The value of logs, by grade
and length, is shown in the table. Consider a fallen tree that is 8 m long with
a 60-cm large-end diameter. Moving from the large to the small-end of the tree,
the diameter decreases by 5 cm every meter. 

Tree Value, by Log Grade and Length

Length (m)

Log grade 2 3 4

1 — — $75
2 — $55 $60
3 $25 $30 $40
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(a) Use the data in the table to express this problem as a network diagram,
with nodes corresponding to states and arcs to decisions. Show the returns
from each decision at each stage. (Hint: The formulation of this problem is
similar to that of the paper-trimming problem. Be sure to consider small-end
diameter in determining what bucking patterns are possible at each stage.)
(b) Solve the new problem by hand, using the dynamic programming
method.
(c) Revise the spreadsheet model in Figure 13.4 to solve this problem. Verify
that the solutions you obtained in parts (b) and (c) are the same.
13.6 The logging foreman for a hardwood veneer mill has been authorized

to spend up to two extra hours every time she fells a highly valuable tree in
order to reduce the risk of breaking it. The foreman is trying to decide how to
allocate this time between three modifications of the usual felling procedure:
limbing trees that might break the tree as it falls, preparing a “bed” for trees to
fall in; and using greater care in skidding fallen trees.

The foreman has estimated that extra time spent on each modification would
lead to the probabilities of avoiding breakage shown in the table. 

For example, if no extra time is used to limb surrounding trees, the probability
of not breaking the tree when it falls is .80, but this probability increases to .95
if 1 extra hour is spent to fell or limb surrounding trees.

A tree can break while it falls, when it hits the ground, or during skidding.
Thus, the probability of avoiding breakage altogether is the product of the prob-
abilities of avoiding breakage, given how much additional time is devoted to
each modification of the felling procedure.

(a) Formulate this problem as a dynamic programming problem to find how
much of the two extra hours should be spent on each modification to max-
imize the probability of no breakage. (Hint: The formulation of this problem
is similar to the problem of minimizing the risk of losing an endangered
species discussed in Section 13.5.)
(b) Solve this problem by hand.
(c) Revise the spreadsheet model in Figure 13.5 to solve this problem. Verify
that the solutions you obtained in parts (b) and (c) are the same.

Probability of Not Breaking a Tree

Time spent (hours)

Modification 0 1 2

Limbing trees .80 .95 .96
Preparing a bed .90 .92 .93
More careful skidding .91 .96 .96
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CHAPTER 14

Simulation of Uneven-Aged
Stand Management

14.1 INTRODUCTION

Past chapters have dealt mostly with optimization models. The common theme
throughout those chapters was to find management strategies that were best for
specific criteria. The criteria were represented either by an objective function,
by constraints, or by both. Optimization is indeed a fundamental goal in ana-
lyzing forestry operations. Ideally, one wishes always to find a decision that is
not only good, but also better than any other decision.

However, optimization methods such as linear, goal, and integer program-
ming have limitations. They force us to design models that fit very specific
forms. For example, linear programming requires that the objective function
and all the constraints be linear in the variables. Heroic assumptions must
sometimes be made to cast a forest management problem into such a linear
form.

Simulation allows for much more flexibility. Any phenomenon that can be
represented by mathematical relationships is tractable by simulation. Simula-
tion can be described as the process of developing a model of a real system and
then conducting experiments with the model. In a sense, optimality is still the
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goal, since by experimenting with the model we hope to discover the best way
of managing a system. But in contrast with programming models, there are no
general solution algorithms, like the simplex, to identify an optimal solution.
In a simulation experiment, all we do is observe the consequences of a specific
set of actions corresponding to a management strategy. In essence, simulation
allows us to bring the real world to the laboratory for intensive study. For that
reason, simulation has become one of the most powerful and versatile tools for
problem solving in forest management. Given that experiments with real forests
might take decades or centuries and that certain outcomes would result in
public outrage, the benefits of simulation experiments that can be run in an
instant are obvious.

14.2 TYPES OF SIMULATION

Simulation models may be either deterministic or stochastic. A deterministic
simulation assumes that the future state of a forest system can be predicted
exactly from knowledge of the present (which may include memory of the
past). Alternatively, a deterministic simulation may be viewed as an attempt to
predict only the average state of a system, but not its actual state. A stochastic
simulation model explicitly recognizes the uncertainty of all predictions. Uncer-
tainty may take the form of variation in a continuous process. For example, the
annual growth of a tree or stand may vary due to unpredictable changes in the
weather, and the price of timber may vary depending on market conditions.
Uncertainty may also take the form of discrete random events. Such events, for
example, storms and fires, are discrete in that they either do or do not occur in
a given time interval, and they are random, in that their exact time of occur-
rence is unpredictable. 

Many simulation models contain both continuous and discrete elements as
well as both deterministic and stochastic elements. Treating some of the vari-
ables in a stochastic model as if they were known exactly often leads to a model
that is simpler to build and use. The art of the model builder is to recognize the
key features of a system, avoiding detail that only complicates the model with-
out making it necessarily more useful. The precept that “Small is beautiful”
should always guide model building and model selection.

To understand simulation, perhaps more than for any other technique, one
must do it. With this in mind, we will study two simulation examples. In this
chapter we will simulate uneven-aged forest management. We will use the
same growth equations as in the linear programming model in Chapter 8. This
example will help clarify the differences between simulation and optimization
models and between deterministic and stochastic models. In Chapter 15 we
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will simulate even-aged forest management, starting with a deterministic
model and then introducing discrete random events that simulate catastrophic
storms.

14.3 DETERMINISTIC SIMULATION OF
UNEVEN-AGED FOREST MANAGEMENT

As in Chapter 8, the condition of an uneven-aged stand at a particular point in
time is described by the number of trees per unit area in different size classes.
We continue to classify trees by size only, because size is the key monitoring
parameter in uneven-aged management. This costs us nothing in generality,
because both size and species classes can be handled with the same modeling
principles.

The purpose of the deterministic simulation model presented in this section
is to predict the condition of the stand at any future point in time, given: (1) its
initial condition, (2) how the stand grows over short time intervals, and (3) pos-
sible harvests.

The simulator will also compute the present value of the returns obtained
from the stand over a long time period and a nonlinear index of the tree diver-
sity. With these indicators, we shall compare different management regimes in
terms of their economic and environmental effects.

SPREADSHEET SIMULATION

The spreadsheet model in Figure 14.1 uses the deterministic growth equations
for uneven-aged forests studied in Chapter 8. It is designed to simulate q-ratio
management guides for different cutting cycles. The spreadsheet also shows
the economic implications of this type of management and its implications for
stand diversity. 

q-RATIO MANAGEMENT

A common way of specifying the desired tree distribution in uneven-aged
stands is with the q-ratio system. The distribution of trees by size class in
uneven-aged stands typically has an inverse-J shape: the number of trees per
unit area decreases as the size of the trees increases. A q-ratio distribution spec-
ifies that the ratio of the number of trees in successive size classes is a constant, q.
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The growth model in Figure 14.1 deals with three size classes. The number
of trees by size class that satisfy a particular q-ratio are related as follows:

(14.1)
y q y

y q y

1 2

2 3

∗ ∗

∗ ∗

=

=

FIGURE 14.1 Spreadsheet simulation of q-ratio management in uneven-aged stands.
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Stock (trees/ha) BPt Cut (trees/ha) V t F t NPVt

Year Delay Size1 Size2 Size3 index Size1 Size2 Size3 ($/ha) ($/ha) ($/ha)

0 0 840 234 14 1.30 520 194 9 1888 200 1688
5 5 387 49 5 1.14 0 0 0 0 0

10 10 446 59 6 1.15 0 0 0 0

15 15 496 71 6 1.16 0 0 0 0

20 0 539 84 7 1.17 219 44 2 461 200 98

25 5 387 49 5 1.14 0 0 0 0

30 10 446 59 6 1.15 0 0 0 0

35 15 496 71 6 1.16 0 0 0 0

40 0 539 84 7 1.17 219 44 2 461 200 37
45 5 387 49 5 1.14 0 0 0 0
50 10 446 59 6 1.15 0 0 0 0

55 15 496 71 6 1.16 0 0 0 0

60 0 539 84 7 1.17 219 44 2 461 200 14

65 5 387 49 5 1.14 0 0 0 0

70 10 446 59 6 1.15 0 0 0 0

75 15 496 71 6 1.16 0 0 0 0

Cycle (y) Desired stock (trees/ha) q -ratio NPV ($/ha) 1837

20 320 40 5 8

Key cell formulas

Cell Formula Copied to

A5 =A4+5 A5:A19

B5 =IF(B4+5=A$21,0,B4+5) B5:B19

C5 =0.92*(C4-H4)-0.29*(D4-I4)-0.96*(E4-J4)+109 C5:C19

D5 =0.04*(C4-H4)+0.90*(D4-I4) D5:D19

E5 =0.02*(D4-I4)+0.90*(E4-J4) E5:E19

F4 =SUM(C4:E4)/MAX(C4:E4) F4:F19

H4 =IF(B4=0,MAX(0,C4-C$21),0) H4:J19

K4 =0.3*H4+8*I4+20*J4 K4:K19

L4 =IF(SUM(H4:J4)>0,200,0) L4:L19

M4 =(K4-L4)/(1.05)^A4 M4:M19

M20 =SUM(M4:M19)

D21 =E21*$H21 C21

0

0 0

0 0

0 0

0 0

0 0

0 0
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0 0
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where yi
∗ is the desired number of trees in size class i and q is a positive constant

greater than 1. The q-ratio alone is not enough to define a tree distribution. We
also need the number of trees in one size class. Usually, the number of trees in
the largest size class is used. For example, if y3

∗ = 5 trees/ha and q = 8, then, y2
∗ =

40 trees/ha and y1
∗ = 320 trees/ha. 

One advantage of the q-ratio approach is that, regardless of the number of
size classes, the desired distribution is completely defined with two numbers:
the q-ratio itself and the number of trees in one size class. The disadvantage is
that it is less flexible than directly specifying the number of trees desired in each
size class.

A q-ratio-based harvesting rule would be to cut the trees in each size class in
excess of the desired distribution. In our example:

(14.2)

where hit is the number of trees per hectare cut from size class i at time t and yit is
the number of trees per hectare in size class i at time t, before the cut. In Figure 14.1,
the q-ratio is in cell H21, and the desired number of trees in the largest size class
is in cell E21. The formulas in cells C21:D21 compute the desired number of
trees in the small and medium size classes according to Equation (14.1).

VARYING THE CUTTING CYCLE

The stand growth model in Figure 14.1 is the same as in Chapter 8 (see Equa-
tions 8.10):

.

(14.3)

where t is in years so that the model implies that the stand state is recorded
every 5 years. Cells A5:A19 in Figure 14.1 contain the formulas for the current
time, t, starting with t = 0, and cells C5:E19 contain the formulas of the growth
equations. The given initial stand state is in cells C4:E4. 

Harvests, however, need not occur every 5 years just because the growth
model uses that time interval. In many applications, it is desirable to know the
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effect of different cutting cycles. For example, in Chapter 9 we showed the
advantage of lengthening the cutting cycle when there were fixed harvesting
costs per unit area.

To simulate cutting cycles of variable length, we need to keep track of the
elapsed time since the last harvest. This delay starts at zero and increases by
5 years each growth period. When it is equal to the length of the cutting cycle,
delay is reset to zero, signaling a harvesting event and related fixed costs.

In the spreadsheet in Figure 14.1, the cutting cycle is set at 20 years in cell
A21. The delay at year 0 is set at 0 in cell B4. The formulas in cells B5:B19 incre-
ment the delay and reset it to zero when the delay is equal to the cutting cycle.
The formulas in cells H4:J19 compute the harvest according to Equation (14.2)
if the delay is 0; otherwise they set the harvest at 0. 

ENVIRONMENTAL PERFORMANCE

One measure of the environmental performance of a management regime is the
diversity of the stand that it leads to. In Chapters 8 and 9 we used the smallest
number of trees in any size class as an index of diversity. We then used linear
programming to maximize this smallest number (MaxiMin criterion). 

There are many other measures of diversity, most of which are not linear
functions of the number of trees. There is no perfect index of diversity, linear
or nonlinear; It is just not possible to express the full complexity of a popula-
tion structure with a single number. Still, it is best to use simple indices in
models, unless there are strong reasons to do otherwise. 

Among the nonlinear indices of diversity, one of the simplest to express and
interpret is that of Berger and Parker (1970). According to Magurran (1988),
this is one of the most satisfactory indices of diversity available. In our exam-
ple, the Berger–Parker (BP) index of diversity of trees in the uneven-aged stand
observed at time t is:

The Barger–Parker index is smallest and equal to 1 if all the trees are in one
size class. It is largest and equal to the number of size classes if the number of
trees is the same in all size classes. Thus, in this example the largest possible
value of BP is 3. 

In the spreadsheet in Figure 14.1, cells F4:F19 contain the formulas of the
Berger–Parker index of diversity in each period.

BPt
t t t

t t t

y y y

y y y
=

+ +1 2 3

1 2 3max( , , )
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ECONOMIC PERFORMANCE

Assume that the average real prices of trees of different sizes are those used in
Chapter 9: $0.30 per tree in the smallest size class, $8 per tree of medium size,
and $20 per tree of largest size. Then the value of the harvest in year t is:

Furthermore, assume, as in Chapter 9, that the fixed cost of a harvest is
$200/ha. This cost is incurred if and only if there is a harvest, and it is inde-
pendent of the amount harvested. Thus, the expression of fixed cost in year t is:

The net present value of the harvest in year t, assuming an interest rate of 5%
per year, is:

And the total net present value of all harvests is:

where T is the length of the simulation, in years. For large values of T, NPV
would approach the net present value that the stand would produce with this
management over an infinite length of time, that is, the stand value inclusive of
the land and of the initial trees. 

In the spreadsheet in Figure 14.1, the formulas for the value of the harvest
in each period are in cells K4:K19. The formulas for the fixed cost are in cells
L4:L19. They indicate that the fixed cost is incurred if and only if there is a har-
vest. The formulas for the net present value of the periodic harvests are in cells
M4:M19, and the formula for total net present value is in cell M20.

14.4 APPLICATIONS OF DETERMINISTIC
SIMULATION MODEL

Figure 14.1 shows the results of an application of the simulation model for a
particular set of parameters (shown in bold): a given initial stand state (y1t =
840, y2t = 234, y3t = 14), a cutting cycle of 20 years, a q-ratio of 8, and a desired
stock of 5 trees/ha in the largest size class (y3

∗ = 5 trees/ha).
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STAND DYNAMICS

With these parameters, the simulation shows the sequence of harvests that will
maintain the desired number of trees in all size classes throughout the 75 years
of the simulation. The data show that a stand would quickly reach a steady
state. From year 5 onward, the growth of the stand over 20 years just replaces
the harvest (Figure 14.2). Therefore, the management is sustainable in the long
run. However, as shown in cells F4:F19 of Figure 14.1, the index of diversity
would decrease as a result of the initial harvest, although it would remain stable
thereafter at about 1.15. 

STAND VALUE

The financial results in Figure 14.1 show that, under the simulated q-ratio
regime, the value of the first harvest, $1,888/ha, is much larger than that of the
subsequent periodic harvests, which are constant at $461/ha. The effect of dis-
counting reduces the contribution of future harvests to NPV even further (com-
pare the value in cell M4 to those in cells M8, M12, and M16). If the simulation
were continued beyond 75 years, the NPV would converge to a value just
slightly larger than the $1,837/ha obtained with a time horizon of 75 years.
Thus, the stand value, inclusive of land and trees, is, to a close approximation,
$1,837/ha.

FIGURE 14.2 Stand dynamics under management.
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SENSITIVITY TO CUTTING CYCLE

The simulation results in Figure 14.1 are for a cutting cycle of 20 years. As
stated earlier, the cutting cycle is an important management decision because
of its consequences for stand structure, harvest, and economic performance. We
can analyze the sensitivity of the results to the length of the cutting cycle by
repeating the simulation with different cutting cycles, keeping all the other
parameters constant.

Figure 14.3 shows another range of the spreadsheet in Figure 14.1. It auto-
matically performs the simulations for cutting cycles from 5 to 40 years, and
records the corresponding NPV and the Berger–Parker index of diversity at the
end of each 75-year simulation. To create this table in Excel, execute the fol-
lowing steps:

1. Set cell P5 equal to cell M20 in Figure 14.1, which contains the formula
for the NPV. Set cell Q5 equal to cell F19 (in Figure 14.1), which
contains the formula for the Berger–Parker index at year 75. Enter the
different values of the cutting cycle to be tested in cells O6:O10.

2. Select the range of cells O5:Q10. 
3. On the Data menu, click Table. In the Column input cell box, enter

cell A21, which contains the cutting cycle in Figure 14.1.

The results in Figure 14.3 show that the forest value increases markedly as
the cutting cycle increases from 5 to 30 years, and decreases slightly for a cutting

FIGURE 14.3 Spreadsheet to compute the effects of the cutting cycle on net present value and
stand diversity after 75 years.
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cycle of 40 years. The Berger–Parker diversity index is slightly higher for cut-
ting cycles of 20–30 years than for cutting cycles of 5 or 10 years. The highest
diversity is obtained for a cutting cycle of 40 years. 

Thus, in this case there seems to be little conflict between the economic and
diversity goals. Both are best achieved with longer cutting cycles. But this result
is predicated on the use of a target distribution with five trees in the largest size
class, and a q-ratio of 8. How would these results change with different values
of these parameters?

SENSITIVITY TO q-RATIO AND NUMBER

OF LARGE TREES

To explore the sensitivity of our results to the parameters of the q-ratio distri-
bution, we repeat the simulation with a cutting cycle of 20 years and vary first
the desired number of trees in the largest size class, y3

∗, and then the q-ratio, all
other parameters being held constant. Each time, we record the values of the
variables of interest: the Berger–Parker diversity at age 75 years and the net
present value. 

Figure 14.4 shows another range of the spreadsheet in Figure 14.1. It auto-
matically performs the simulations for different values of q and the number of
trees in the largest size class. To create this table in Excel, do the following:

1. Set cell T4 equal to cell F19 in Figure 14.1, which contains the formula
for the Berger–Parker index at year 75. 

2. Type the different q-ratios to be tested in row cells U4:X4 and the
different number of largest trees to be tested in column cells T5:T8.

FIGURE 14.4 Spreadsheet to compute the effect of the q-ratio and the number of largest trees on
stand diversity.
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3. Select the range of cells T4:X8. 
4. On the Data menu, click Table. In the Row input cell box, enter cell

H21, which contains the q-ratio in Figure 14.1. In the Column input
cell box, enter cell E21, which contains the number of trees in the
largest size class in Figure 14.1. 

The results in Figure 14.4 show that diversity is positively related with both
the q-ratio and the number of trees in the largest size class. The highest pre-
dicted diversity would be achieved with a q-ratio of 10 and 30 trees/ha in the
largest size class. But what are the economic implications?

Figure 14.5 shows another range of the spreadsheet in Figure 14.1 to com-
pute the NPV for different q-ratios and number of trees in the largest size class.
The setup is like that in Figure 14.4. The only change is in the formula in cell
T17, equal to cell M20, which contains the formula of the NPV in Figure 14.1. The
results in Figure 14.5 show that forest value decreases as either the q-ratio or
the number of trees in the largest size class increase. 

Figure 14.6 shows a scatterplot of BP diversity index values against the forest
value, using the data from Figures 14.4 and 14.5. Each point corresponds to a
particular combination of q-ratio and number of trees in the largest size class.
All the values assume a cutting cycle of 20 years. There is a clear negative rela-
tionship between stand diversity and net present value. 

However, it must be kept in mind that the net present value is expressed
only in terms of timber revenues. Diversity itself has a value as real as timber,
though it is more difficult to measure in monetary terms due to the absence of
markets for diversity. The benefit of the approach taken here is to show clearly
the trade-off between the two objectives. For example, Figure 14.5 shows

FIGURE 14.5 Spreadsheet to compute the effect of the q-ratio and the number of largest trees on
net present value.
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S T U V W X
 NPV ($/HA)
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1837 2 4 8 10

5 2058 1969 1837 1785

10 1855 1676 1410 1267
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30 1384 847 -237 -293

Key cell formulas

Cell Formula

T17 =M20

U18:X21 see text
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that the management regime leading to the highest Berger–Parker diversity
index after 75 years would have NPV = $−293/ha, while the highest NPV was
$2,058/ha. Therefore, the opportunity cost of the management regime of high-
est diversity was $2,351/ha in terms of foregone timber value. 

14.5 STOCHASTIC SIMULATION

All the simulations done so far were deterministic, that is, based on models
with constant parameters. Although these deterministic models are very useful
and give correct “average” results, they do not give us any information on the
variability of possible outcomes. Most biological processes have a random, or
stochastic, component. Similarly, economic variables such as timber prices fluc-
tuate considerably over time. The goal of stochastic simulation is to represent
this variability as fully as possible. 

BIOLOGICAL RISK

In the stand growth model of Equations (14.3), the number of trees in the
smallest size class, y1t, depends in part on the recruitment, which can be very
erratic. As a result, the number of trees in the smallest size class can be very dif-
ferent from the average number predicted by the deterministic equation. In
comparison, the equations predicting the number of trees in the medium and
large size classes are quite accurate: It is relatively easy to predict the future of
trees that are already big enough to be counted in one of the three size classes.

FIGURE 14.6 Trade-off between net present value and stand diversity.
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Therefore, in a stochastic version of Model (14.3), it is most useful to rec-
ognize the wide possible range of recruitment rates, independent of stand
condition. To this end, rewrite the first equation in Model (14.3) as:

(14.4)

where ut is a random variable representing the random part of recruitment. This
equation means that part of the number of trees in size class 1 at t + 5 years can
be predicted from the state of the stand after harvest at t, while part of it is
unpredictable.

The object of stochastic simulation is to generate a realistic value of ut for
each period of the simulation, t. If the deterministic part of the model is any
good, the mean of ut over many years must be 1, because the deterministic
model should predict correctly on average. Our ability to predict the rest of the
distribution of ut, that is, the spread of ut around its mean of 1, and the proba-
bility of occurrence of particular values depends on our ecological and biomet-
ric knowledge. 

Assume that all we have is a rough estimate of the variability around the
mean. We judge that there may be up to a 25% difference between the actual
number of trees in size class 1 and the number predicted by the deterministic
equation. Furthermore, there is an equal probability for any value of the
number of trees within this interval. Then random values of ut can be generated
by:

(14.5)

where Rt is a random number between 0 and 1. The stochastic simulation entails
drawing such a random number in each period, t. For the highest possible values,
Rt = 1, the number of trees is 25% larger than the number predicted by the
deterministic equation. For the lowest possible values, Rt = 0, it is 25% smaller.
We assume that any value between these bounds can occur with equal proba-
bility. Note that the average value of Rt is 0.50, so on average, 0.50R + 0.75 = 1,
and the stochastic equation predicts the same number of trees as the determin-
istic equation. However, the actual stand dynamics may be quite different from
those predicted by the deterministic model.

Similarly, we may recognize the stochastic elements in the other two growth
equations of the model. They arise from the variability of mortality and growth
rates of individual trees. But this is typically smaller than the variations in
recruitment, because mortality rates are small and trees grow at a fairly constant
rate. Thus, the stochastic part of the growth of trees in the medium and large
size classes is small and can be ignored (see Problem 14.10).

u Rt t= +0 50 0 75. .

y y h y h y h ut t t t t t t t1 5 1 1 2 2 3 30 92 0 29 0 96 109, [( . ( ) . ( ) . ( ) ]+ = − − − − − +
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ECONOMIC RISK

In the deterministic simulations, the economic implications of different man-
agement policies were calculated under the assumption that the price of timber
was constant. In reality, it is well known that most timber prices vary over time.
Real prices (net of inflation) may have a deterministic (predictable) tendency
to increase or decrease. This deterministic trend can be dealt with by adjusting
the interest rate. The interest rate is set lower if the real price is expected to
increase, or it is set higher if the real price is expected to decrease (see Chapter 18).

In addition, there is unpredictable variation around the trend. High demand
or low supply lead typically to prices that are higher than usual. Low demand
or high supply lead instead to prices that are lower than usual. This variation
can be modeled explicitly in different ways, depending on the data available on
price variability. 

Assume that the average real price of trees for timber is, as before, $0.30 per
tree in the smallest size class, $8 per tree of medium size, and $20 per tree of
the largest size. Deterministic price trends are already reflected in the interest
rate, assumed to be 5% per year. However, we know from past experience that
the price may be up to 50% lower or higher than the average price. Prices in this
interval can occur with equal probability. With these assumptions, a price
index, Pt, can be used to change timber prices:

(14.6)

where Rt is a random number, uniformly distributed between 0 and 1. The high-
est possible value of the price index is Pt = 1.5, obtained when Rt = 1. This means
that the price is 50% higher than average. The lowest possible value of the price
index is Pt = 0.5, obtained when Rt = 0. This means that the price is 50% lower
than average. The average value of Pt is 1, because the mean of Rt is 0.5. 

With this expression of the price index, the stochastic value of the harvest
in year t is:

(14.7)

where the expression in parentheses is the value of the harvest at average prices
and the price index Pt randomly increases or decreases this value by up to 50%. 

SPREADSHEET STOCHASTIC SIMULATION

Figure 14.7 shows a spreadsheet to simulate the growth of a managed stand,
subject to biological and economic risk. The changes with respect to the spread-
sheet in Figure 14.1 are:

V h h h Pt t t t t= + +( . )0 30 8 201 2 3

P Rt t= +1 0 0 5. .
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The addition of formulas of the random biological shocks in cells N4:N19
according to Equation (14.5) 

The addition of formulas of the random price index in cells O4:O19
according to Equation (14.6)

The growth formulas in cells C5:C19 according to Equation (14.4).

FIGURE 14.7 Spreadsheet model to simulate uneven-aged management under biological and
economic risk; cutting cycle = 20 years.
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Stock (trees/ha) BP Cut (trees/ha) V t F t NPV t Risk

Year Delay Size1 Size2 Size3 index Size1 Size2 Size3 ($/ha) ($/ha) ($/ha) Bio Price

0 0 840 234 14 1.30 520 194 9 993 200 793 1.2 0.53

5 5 353 49 5 1.15 0 0 0 0 0 0 0.9 1.02

10 10 338 58 6 1.19 0 0 0 0 0 0 0.8 1.37

15 15 356 66 6 1.20 0 0 0 0 0 0 0.9 1.08

20 0 416 73 7 1.19 96 33 2 301 200 38 1.0 0.9

25 5 386 49 5 1.14 0 0 0 0 0 0 1.0 1.05

30 10 363 59 6 1.18 0 0 0 0 0 0 0.8 1.15

35 15 492 68 6 1.15 0 0 0 0 0 0 1.2 1.19

40 0 650 81 7 1.14 330 41 2 650 200 64 1.2 1.39

45 5 415 49 5 1.13 0 0 0 0 0 0 1.1 1.1

50 10 429 61 6 1.15 0 0 0 0 0 0 0.9 1.03

55 15 559 72 6 1.14 0 0 0 0 0 0 1.2 0.64

60 0 543 87 7 1.17 223 47 2 597 200 21 0.9 1.23

65 5 441 49 5 1.12 0 0 0 0 0 0 1.1 1.24

70 10 411 62 6 1.16 0 0 0 0 0 0 0.8 1.02

75 15 488 72 6 1.16 0 0 0 0 0 0 1.1 0.52

Cycle (y) Desired stock (trees/ha) q ratio NPV ($/ha) 917

20 320 40 5 8

Key cell formulas

Cell Formula Copied to

A5 =A4+5 A5:A19

B5 =IF(B4+5=A$21,0,B4+5) B5:B19

C5 =(0.92*(C4-H4)-0.29*(D4-I4)-0.96*(E4-J4)+109)*N4 C5:C19

D5 =0.04*(C4-G4)+0.90*(D4-H4) D5:D19

E5 =0.02*(D4-H4)+0.90*(E4-I4) E5:E19

F4 =SUM(C4:E4)/MAX(C4:E4) F4:F19

H4 =IF(B4=0,MAX(0,C4-C$21),0) H4:J19

K4 =(0.3*H4+8*I4+20*J4)*O4 K4:K19

L4 =IF(SUM(H4:J4)>0,200,0) L4:L19

M4 =(K4-L4)/(1.05)^A4 M4:M19

M20 =SUM(M4:M19)

D21 =E21*$H21 C21

N4 =RAND()*0.5+0.75 N4:N19

O4 =RAND()+0.5 O4:O19
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The formulas of the value of the harvests in cells K4:K19 according to
Equation (14.7)

All other parameters and assumptions are the same as in the deterministic sim-
ulation in Figure 14.1. In particular, the initial stand state is the same, and so
are the cutting cycle, 20 y, the q-ratio = 8, and the desired number of trees in
the largest size class, 5 trees/ha.

The results in Figure 14.7 are for one replication, that is, for one single
sequence of random numbers. In this case, the NPV is $917/ha, which is about
half the forest value obtained in the deterministic simulation in Figure 14.1.
The Berger–Parker index of diversity at year 75 is 1.16, which is the same as the
diversity predicted by the deterministic simulation.

However, this is only one of the many possible outcomes. A few replica-
tions obtained by pressing the F9 key, which generates a new sequence of Rt

values, show that many different results are possible. Thus, we need to repli-
cate this experiment many times to get a better picture of the variability of the
results.

REPLICATING THE EXPERIMENT

The outcome of each simulation is a random observation. To make good sta-
tistical statements about the outcomes, we need many observations, that is,
many replications of the simulation. Let N be the number of replications, and
assume that the performance measure is the Berger–Parker index of stand diver-
sity after 75 years, BP.

Each experiment, i, gives a random observation BPi. The summary statistics
of interest for management include the largest and smallest value of BPi, its
average value or mean, : 

and its standard deviation, SD, which measures the variability of BPi around the
mean:

Furthermore, the mean itself is a random variable, because repeating the N
replications several times would each time give a different mean. This variability
of the mean is measured by the standard deviation of the mean, or standard error,

SD
BP BP
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∑ −
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SE. The standard error of the mean is:

There is a 95% probability that the true mean lies in the interval

To compare the effect of two policies, say, two different cutting cycles on the
mean diversity, one may compare the confidence intervals of the means under
the two policies. If they do not overlap, then the probability that the two poli-
cies will result in the same mean diversity is less than 5%. The same reasoning
applies to the NPV or to any other performance indicator. 

Figure 14.8 shows another range of the spreadsheet in Figure 14.7, set up to
make N = 100 replications, collect the outcomes for the Berger–Parker index
and for the NPV, and calculate their summary statistics. 

The replication numbers are in column Q5:Q104. They range from 1 to 100.
To calculate the 100 replications with Excel, do the following:

1. Set cell R5 equal to cell M20, which contains the formula for NPV
(Figure 14.7). Set cell S5 equal to cell F19, which contains the formula
of the Berger–Parker index of diversity after 75 years. 

2. Select the range of cells Q5:S104.
3. On the Data menu, click Table. In the Column input cell box, enter

cell O1 or any other cell of the spreadsheet that does not affect the
computation. The object is to induce the spreadsheet to redo the
calculations for each row of the table. The results will differ for each
row only because the random numbers change while all the other
parameters remain constant.

The results in Figure 14.8 show that in these 100 replications, the NPV
ranged from a minimum of $823/ha to a maximum of $2,836/ha. The mean
NPV was $1,910/ha, with a standard error of $58/ha. The Berger–Parker index
of stand diversity after 75 years ranged from 1.11 to 1.25, with a mean of 1.17
and a standard error of less than 0.5%.

The 95% confidence interval of the mean NPV is:

1,910 ± 2 × 58 = ($1,794/ha, $2,026/ha)

BP SE± 2

SE
SD

=
N
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This 95% confidence interval contains the NPV obtained by deterministic sim-
ulation, $1,837/ha (Figure 14.1). The standard error of the mean Berger–Parker
index is practically zero, so the 95% upper and lower confidence limits are very
close to the mean value of 1.17, which is close to the value given by the deter-
ministic simulation.

Thus, the mean results from the stochastic simulation are not very different
from those of the deterministic simulation. What has been gained from the sto-
chastic simulation is information about the possible variability of outcomes.
While the law of averages may be relevant for owners who have many stands of
this type, it may not be for owners of a single woodlot. For them, any one of the
outcomes of the stochastic simulation is possible, and variability in outcomes
will affect property values and influence managerial decisions. 

DECIDING WHAT MATTERS

Because it fully reflects the range of outcomes, stochastic simulation can tell us
what policy choices really matter. For example, the deterministic simulation in

FIGURE 14.8 Spreadsheet for 100 replications of net present value and stand diversity under risk;
cutting cycle = 20 years.
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REPLICATIONS SUMMARY STATISTICS

W X

Berger- Berger-

NPV Parker NPV Parker

# ($/ha) index ($/ha) index
1 2373 1.17 Max 2836 1.25

2 2160 1.12 Min 823 1.11

3 1230 1.15 Mean 1910 1.17

4 823 1.15 SD 582 0.03

5 1891 1.21 SE 58 0.00

6 2533 1.12

7 1916 1.13 Key cell formulas

8 2153 1.24 Cell Formula Copy to

9 1350 1.14 Q6 =Q5+1 Q6:Q104

10 924 1.15 R5 =M20

11 2836 1.14 S5 =F19

12 2363 1.17 R6:S104 see text

13 2597 1.19 V5 =MAX(R5:R104) V5:W5

14 1044 1.15 V6 =MIN(R5:R104) V6:W6

15 1858 1.18 V7 =AVERAGE(R5:R104) V7:W7

16 2535 1.21 V8 =STDEV(R5:R104) V8:W8

17 2368 1.14 V9 =V8/10 V9:W9
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Figure 14.3 suggests that a cutting cycle of 40 years is economically inferior to
one of 20 years. To test if this difference is truly significant, we can do 100 repli-
cations of a stochastic simulation with a cutting cycle of 40 years (Figure 14.9).
The 95% confidence interval of the mean NPV is:

1738 ± 2 × 53 = ($1,632/ha, $1,844/ha)

This 95% confidence interval overlaps the 95% confidence interval of the mean
NPV for a cutting cycle of 20 years ($1,794/ha, $2,026/ha). Thus, the means are
not statistically different; that is, there is little chance that the shorter cutting
cycle would give a higher NPV on average.

The mean Berger–Parker index, however, is significantly higher for a cutting
cycle of 40 years than for a cutting cycle of 20 years: 1.23 with a standard error
of 0.00, against 1.17 with a standard error of 0.00.

Most owners would agree that the cutting cycle of 40 years is a better policy,
because it results in greater diversity without significantly affecting the eco-
nomic returns. 

FIGURE 14.9 Spreadsheet for 100 replications of net present value and stand diversity under risk;
cutting cycle = 40 years.
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Stand Berger- Berger-
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1 822 1.17 Max 2823 1.35

2 2043 1.24 Min 822 1.16

3 2405 1.22 Mean 1738 1.23

4 2712 1.27 SD 529 0.04

5 2175 1.17 SE 53 0.00

6 2106 1.26

7 1657 1.19 Key cell formulas

8 2381 1.20 Cell Formula Copy to

9 1410 1.30 Q6 =Q5+1 Q6:Q104

10 1337 1.20 R5 =M20

11 1445 1.25 S5 =F19

12 2265 1.25 R6:S104 see text

13 970 1.23 V5 =MAX(R5:R104) V5:W5

14 1588 1.23 V6 =MIN(R5:R104) V6:W6

15 2086 1.19 V7 =AVERAGE(R5:R104) V7:W7

16 2017 1.20 V8 =STDEV(R5:R104) V8:W8

17 2384 1.28 V9 =V8/10 V9:W9
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14.6 CONCLUSION

A deterministic forest simulator like the one presented in this chapter can be
developed quickly with less knowledge than that needed for the optimization
models of Chapters 8 and 9. And yet, despite its simplicity, it is a powerful tool.
Numerous other management experiments can be done with this model. The
general principle remains the same as for the analysis of the cutting cycle, q-
ratio, and number of trees in the largest size class. To study the effect of one
parameter, conduct a series of simulations in which all parameters remain the
same except the one being studied. Then observe how a selected management
criterion, such as net present value or stand diversity, responds to changes in
the parameter.

One difficulty is that many parameters can be changed. To keep the number
of experiments reasonably small, the analyst must use considerable judgment
and intuition in guessing which parameters are important and in defining man-
agement policies that are likely to yield good results.

A deterministic simulation can be made more realistic by introducing
random variables. These may reflect biological risk or economic risk. Replicat-
ing the simulation with different strings of random numbers gives a set of
random observations of the measures of performance, such as net present value
and tree diversity. The performance can then be analyzed statistically to show
their average behavior and the variations in performance around the average.
As a result it is possible to tell which policy choices really make a difference,
given the variability of the actual outcomes in real life. 

PROBLEMS

14.1 (a) Set up your own spreadsheet model like the one shown in Figure 14.1
to simulate q-ratio management in an uneven-aged stand. Using the same data,
verify that your results are the same.

(b) Use this model to simulate the effect of cutting cycles of 10, 20, and 30
years. What changes do you observe in the stand dynamics?
(c) Change the cutting cycle back to 20 years, and then apply the model
with q-ratios of 6, 8, and 10. What changes do you observe in the stand
dynamics?
(d) Change the q-ratio back to 8, and then use the model with a desired
number of trees in the largest size class of 5, 10, and 15 trees/ha. What
changes do you observe in the stand dynamics?
14.2 The stand simulated in the spreadsheet model in Figure 14.1 moves

quickly to a stable steady state, given the particular harvesting rule used.
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Apply this model to predict the growth of a stand that starts in the same initial
condition but is never cut. (Hint: Make the desired number of trees in the largest
age class very high.) Graph the number of trees in each size class over time.
What do you observe relative to the results in Figure 14.2?

14.3 Repeat the simulation of the growth of a stand that is never cut, as in
Problem 14.2, but starting in two very different states:

(a) What kind of stand does each initial state describe?
(b) Simulate the growth of the stand given each initial state. How do the
results compare with those from Problem 14.2?
(c) Based on these results, how does the initial state of a stand seem to influ-
ence its subsequent growth and steady state?
14.4 Consider the stand simulated by the spreadsheet model in Figure 14.1.

Suppose the owners want to try the following management regime: Cut the
stand every 10 years, and take half of the trees in each size class. 

(a) Modify the spreadsheet model in Figure 14.1 to simulate this policy. Use
the spreadsheet to predict the present value of the returns to the owners and
the Berger–Parker diversity of the stand after 100 years. (Use the prices,
guiding rate of interest, and cutting cycle shown in Figure 14.1.)
(b) Considering net present value and diversity, which management regime
would you choose, this new one or the one simulated in Figure 14.1? Why?
14.5 Consider the stand simulated by the spreadsheet model in Figure 14.1.

Assume that the owners have been offered $50.00 ha/y to allow cattle to graze
on their land. But the cattle would cause many young trees to die, thus reduc-
ing recruitment. Suppose that this damage would reduce the number of trees in
size class 1 by about 90 trees/ha every 5 years. 

(a) Modify the spreadsheet model to reflect this damage. Use the spread-
sheet to predict the net present value of the returns to the owners and the
Berger–Parker diversity of the stand after 100 years. (Use the prices, guiding
rate of interest, and cutting cycle shown in Figure 14.1.)
(b) Compare the net present value of returns with and without grazing.
Should the owners allow cattle grazing for the $50/ha fee that they have been
offered? If not, what minimum price should they charge?
14.6 (a) Set up your own spreadsheet model, linked to the model shown in

Figure 14.1, to predict the effects of the length of the cutting cycle on net present

Trees per Hectare

Size 1 Size 2 Size 3

Initial state 1 0 0 30
Initial state 2 300 0 0
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value and the Berger–Parker index of diversity, as in Figure 14.3. Using the
same data, verify that your results are the same.

(b) What cutting cycle gives the highest NPV if the guiding rate of interest
is 3%, 5%, and 10%?
(c) Set the guiding rate of interest at 5% per year. What is the best cutting
cycle if there is a fixed harvesting cost of $100/ha, $200/ha, and $400/ha?
14.7 Consider the stand simulated by the spreadsheet model in Figure 14.1.

Assume that a veneer mill has just opened in the vicinity of the stand. As a
result, the values of trees in the largest size class have increased to $40 per tree. 

(a) Modify the spreadsheet in Figure 14.1 to reflect this change. What is the
effect of the higher price on the best economic cutting cycle? (Use the prices
for trees in other size classes, guiding rate of interest, and cutting cycle
shown in Figure 14.1.)
(b) What effect has the opening of the mill had on the value of the stand,
inclusive of land and trees?
14.8 Assume that a new pathogen starts to cause heavy mortality in the stand

described by the model in Figure 14.1, especially in the largest trees. A biome-
trician finds that the effect of the disease can be simulated by changing the last
growth equation in Equations (14.3) to:

y3,t+5 = 0.02(y2t − h2t) + 0.80(y3t − h3t)

(a) According to this equation, what fraction of the trees alive and in size
class 3 at time t are still alive at time t + 5? ( Hint: You may want to refer back
to Chapter 8.)
(b) Change the spreadsheet in Figure 14.1 to reflect this pathogen. How
much does the damage cost the stand’s owner? 
(c) Does this pathogen affect the economic cutting cycle?
14.9 Set up your own spreadsheet model to simulate uneven-aged manage-

ment under biological and economic risk, as in Figure 14.7.
(a) With the same data and equations, the simulation results displayed in
your spreadsheet will not be the same as in Figure 14.7. Why?
(b) Add a section to your spreadsheet to collect the outcomes of repeated
simulations, as in Figure 14.8. Run 100 replications. How do the predictions
for net present value and for the Berger–Parker diversity index compare to
the results in Figure 14.8?
(c) Can you say with confidence that your spreadsheet model is the same as
the one shown in Figure 14.7?
14.10 (a) Modify the spreadsheet model in Figure 14.7 to reflect uncer-

tainty in the equations that predict the number of trees in the medium and
large size classes. Assume that there may be up to a 5% difference between the
actual number of trees in size classes 2 and 3 and the number predicted by the
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deterministic equations. Assume also that there is equal probability that the
actual number of trees lies in this interval. 

(b) Run 100 replications of the simulation with a spreadsheet table as in
Figure 14.8. 
(c) How are the means and the standard deviations of the results affected by
this uncertainty? 
14.11 (a) Modify the spreadsheet model in Figure 14.7 to increase the

desired number of trees in the largest size class from 5 to 10 trees/ha, keeping
other things equal. 

(b) Run 100 replications of the simulation with a spreadsheet table as in
Figure 14.8. 
(c) Has the change in management affected significantly the NPV or the
diversity index?
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CHAPTER 15

Simulation of Even-Aged
Forest Management

15.1 INTRODUCTION

This chapter presents a second set of deterministic and stochastic simulations,
but in an even-aged management context. Some of the specific objectives of the
simulation models that we shall develop are to:

Describe the evolution of the forest over time when it is managed
according to a variant of area control.

Predict the effects of changing the allowable cut on both the value of the
timber production and the capacity of the forest to serve as a carbon
sink.

Underline the importance of context in defining best policies. In particular,
we will see how economic rotations may vary when the harvest
influences timber prices.

Simulate uncertain prices and catastrophic events such as fires and storms
and develop best management policies in this context.

As in Chapters 6 and 7, the forest areas in each age class describe the state of the
forest at a specific point in time. The silvicultural regime consists of clear-cutting



followed by immediate artificial regeneration. The volume of timber in a particu-
lar age class is assumed to be strictly a function of the age of the stand. In addi-
tion to timber production, we are interested in the environmental roles of the
forest, in particular in carbon sequestration.

We shall assume throughout that the management policy is a variant of area
control. Specifically, the manager fixes the rotation age, and this determines the
allowable cut during each time interval. Simulation models will be used to
investigate the effect of the choice of the rotation on timber revenues and on
carbon sequestration.

The first part of the chapter deals with a deterministic simulation model, which
assumes constant parameters and constant prices. With this model we show how
to simulate the case where changes in the harvest influence timber prices.

The second part of the chapter deals with a stochastic version of the same
model that simulates both rare random events, such as catastrophic storms, and
continuous random variations, such as those observed in prices.

15.2 DETERMINISTIC SIMULATION 
OF EVEN-AGED MANAGEMENT

As in Chapters 6 and 7, we will classify stands according to their age, because
age is the key monitoring parameter in even-aged management. However, the
same modeling principles would apply if the stands were also distinguished by
species, at the cost of some complication. As in Chapter 6, the time unit is a
decade, and stands are classified in 10-year age classes. The variable Ait refers
to the area in age class i in year t, and the variable Xit refers to the area harvested
and reforested in age class i from year t to year t + 10.

The purpose of the simulation model is to predict the condition of the forest
at any future point in time, given its initial condition, the laws that predict how
the forest grows, and a particular harvesting policy. 

The model will also compute the net present value of the returns obtained
from the stand over a long time period and a measure of the amount of carbon
stored in the forest. With these indicators we shall compare different manage-
ment regimes in terms of some of their economic and environmental effects.

INPUT DATA

The spreadsheet in Figure 15.1 shows a simulation model for a forest with four
age classes. Age class 1 is covered with trees 1–10 years old, age class 2 with
trees 11–20 years old, and so on up to age class 4, which is covered with trees
31 years old and older. The numbers in bold characters in Figure 15.1 show the
input data for this simulation. Cells B4:E4 contain the initial condition of the
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forest, that is, the area in each of the four age classes at time 0. The other inputs
are the volume per hectare in each age class (in cells B15:E15), the timber price
(in cell H15), the reforestation cost per hectare (in cell B16), the yearly inter-
est rate (in cell E16), and the rotation age (in cell I16).

AREA-CONTROL MANAGEMENT

For even-aged management, area control consists of harvesting no more than a
prespecified area from the forest per unit of time. The rotation age, R, and the
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FIGURE 15.1 Spreadsheet model to simulate the effects of even-aged management on timber
production and carbon storage.
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Key cell formulas

Cell Cell formula copied to

A5 =A4+10 A5:A14

B5 =SUM(G4:J4) B5:B14

C5 =B4-G4 C5:D14

E5 =D4-I4+E4-J4 E5:E14

J4 =MIN(E4,$N$16) J4:J14

G4 =MIN(B4,$N$16-SUM(H4:$J4)) G4:I14

L4 =SUMPRODUCT(B$15:E$15,G4:J4)/1000 L4:L14

M4 =L4*$H$15-SUM(G4:J4)*$B$16/1000 M4:M14

N4 =M4/(1+$E$16)^A4 N4:N14

N15 =SUM(N4:N14)

N16 =(SUM(B4:E4)/I16)*10

O4 =0.65*SUMPRODUCT(B$15:E$15,B4:E4)/1000 O4:O14



forest area determine the allowable cut. The rotation is the time it takes to cut
the entire forest. Thus, the allowable cut in any single year is the fraction 1/R
of the entire forest. Then the allowable cut per decade is:

(15.1)

The simulation assumes that the allowable cut is taken first from the oldest age
classes. Thus, the harvest in each age class and decade is given by these equations:

The first equation states that the area cut in the oldest age class is either the area
in that class or the allowable cut, whichever is smaller. The second equation
states that the area cut from the second oldest age class is either the area in that
class or the remaining allowable cut after the cut in the oldest age class,
whichever is smaller. The last two equations are similar.

In the spreadsheet in Figure 15.1, the allowable-cut formula is in cell N16.
The formulas that define the harvest are in cells G4:J14. 

FOREST GROWTH

The forest growth equations used by the spreadsheet in Figure 15.1 are similar
to those in Chapter 6:

The first equation states that the area in age class 1 at the end of each decade
is equal to the area that has been cut during that decade. This assumes that

(15.3)
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reforestation follows harvest immediately. The second equation states that the
area in age class 2 at the end of each decade is the area that was in age class 1 a
decade earlier minus what was cut from it during that decade. The third equa-
tion is similar to the second. The last equation adds the fact that any uncut area
of age class 4 stays in age class 4.

In the spreadsheet in Figure 15.1, the current year, t, is calculated by the for-
mula in cells A5:A14, starting with t = 0. The growth equations are expressed
by the formulas in cells B5:E14.

FINANCIAL PERFORMANCE

In this model, the financial performance of a particular management policy is
judged by: the periodic volume of the harvest, the monetary value of the peri-
odic harvest, net of the reforestation cost, and its net present value at time 0 for
the assumed interest rate.

The volume of the periodic harvest from year t to year t + 10 is:

(15.4)

where vi is the volume per unit area in age class i.
The net income from this periodic harvest is:

(15.5)

where p is the timber price per unit of volume and c is the reforestation cost per
unit area.

The net present value, at time 0, of this future income is:

(15.6)

where r is the yearly interest rate and the net income is accounted for at the
beginning of each decade.

The total present value of all harvests is:
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where T is the length of the simulation, in years. For large values of T, the NPV
would approach the net present value that the forest would produce with this
management over an infinite length of time, that is, the forest value inclusive of
the land and of the initial trees. 

In the spreadsheet in Figure 15.1, the formulas in cells L4:L14 calculate the
periodic production, in 1,000 m3, according to Equation (15.4), using the yields
per unit area in cells B15:E15. 

The formulas in cells M4:M14 compute the net value of the harvest accord-
ing to Equation (15.5), in $1,000, with the reforestation cost in cell B16 and the
timber price in cell H15. 

The formulas in cells N4:N14 compute the net present value of the harvest
in each decade according to Equation (15.6), in $1,000, using the interest rate
in cell E16. 

The formula in cell N15 computes the total net present value of all the har-
vests over T = 100 years according to Equation (15.7).

CARBON STORAGE

In contrast to the timber revenues of the forest, which depend on periodic har-
vests, carbon sequestration/storage in the forest depends on the amount of
timber that is left standing. 

If there were a market for carbon storage, with a well-defined price per unit
of carbon stored, carbon storage could be treated similarly to timber production
to arrive at a global measure of economic performance. We would then seek the
best combination of timber production and carbon storage. However, as long

as markets for environmental services are not well developed, one is forced to
deal separately with the economic performance (for timber production only)
and with the carbon storage. The simulation will help understand the trade-offs
between the two functions.

The amount of carbon stored in trees is closely related to the biomass of
wood, inclusive of roots and branches. This biomass in turn is closely related
to the volume of the standing trees. In this application we shall assume that
each cubic meter of wood contains about 0.65 tons of carbon. Then the amount
of carbon stored in year t is:

(15.8)

In the spreadsheet in Figure 15.1, the formulas in cells O4:O14 calculate the
amount of carbon stored in the forest stock at 10-year intervals.
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15.3 APPLICATIONS OF DETERMINISTIC
SIMULATION

Figure 15.1 shows the result of one simulation, projecting the evolution of the
even-aged forest over 100 years, starting from a specific initial condition, and
applying area-control management with a rotation age of 60 years. 

FOREST DYNAMICS AND CARBON STORAGE

With this 60-year rotation, the allowable cut is 83.3 ha/decade. After 30 years,
the forest has reached a steady state, with 83 ha in each of the three youngest
age classes and 250 ha in the oldest age class. The amount of carbon stored
in the forest decreases during the first 30 years and then remains stable at
88,300 tons.

Because of the large initial area in the oldest age class, the cut always occurs
in that age class; and because the area cut is constant, the production is also
constant, at 33,000 m3 of timber per decade. 

FOREST VALUE

At constant prices, this policy produces a constant periodic net income of about
$1.6 million per decade. However, due to discounting at 5% per year, the net
present value of the periodic income decreases rapidly over time, reaching neg-
ligible values after 100 years. The NPV of the harvests would therefore change
little if the simulation extended beyond 100 years. Thus, the forest value for
timber production, the value of the land and the initial stock of trees, is about
$4.2 million under this particular management policy. This forest value is deter-
mined largely by the initial forest condition.

SENSITIVITY TO ROTATION AGE

The simulation results in Figure 15.1 are for a rotation age of 60 years. With this
area-control management, the allowable cut, and therefore the rotation age, is
the key determinant of the results. The rotation age has consequences for the
forest structure, the harvest, the overall financial performance, and the carbon
storage. An analysis of the sensitivity of the results to the rotation involves
repeated simulations with different rotation ages while keeping other parame-
ters constant.
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Figure 15.2 shows another range of the spreadsheet shown in Figure 15.1.
Its purpose is to automatically do the simulations for rotations of 10–100 years
and to record the corresponding NPV and the amount of carbon in the forest
stock at year 100. To create the Table in Figure 15.2 in Excel, execute the fol-
lowing steps:

1. Set cell S5 equal to cell N15, which contains the formula for the NPV
(Figure 15.1). Set cell T5 equal to cell O14, which contains the formula
for the carbon in the forest stock at year 100. Type the different values
of the cutting cycle to be tested in cells R6:R12.

2. Select the range of cells R5:T12. 
3. On the Data menu, click Table. In the Column input cell box, enter cell

I16 (Figure 15.1), which contains the rotation. 

The results in Figure 15.2 show the trade-off between carbon storage and eco-
nomic returns from harvesting. From a purely financial viewpoint, the best rota-
tion is just 10 years, leading to an NPV of about $9 million. Note that 10 years
is not the best rotation according to Faustmann’s formula studied in Chapter 7.
If you check this with the spreadsheet in Figure 7.2 you should find that the rota-
tion that maximizes the land expectation value is 20 years. 

The shorter financial rotation found in this simulation is due to the cutting

policy. With area control, a rotation of 10 years allows cutting more of the valuable
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FIGURE 15.2 Spreadsheet to compute the effects of the rotation on the NPV and carbon stock,
with corresponding chart.

0

2000

4000

6000

8000

10000

0 20 40 60 80 100

Rotation (y)

N
P

V
 (

$
1

,0
0

0
)

0

20

40

60

80

100

120

C
a

rb
o

n
 s

to
c

k
 (

1
,0

0
0

 t
)

NPV Carbon

3

4
5

6
7

8
9

10

11
12

13
14

15

16
17

18

R S T

Rotation NPV Carbon

(y) ($10
3
) (10

3
t)

4189 88.29

10 9053 16.25

20 8549 27.63

30 7562 46.58

40 6284 67.44

50 5027 79.95

60 4189 88.29

100 2514 104.98

Key cell formulas

Cell Cell formula

S5 =N15

T5 =O14

S6:T12 see text



oldest timber than a rotation of 20 years, thus leading to the higher NPV, given
the initial conditions of this particular forest.

This result illustrates a general principle. The best policy, in terms of rota-
tion or some other management parameter, depends on the context. The con-
text includes the initial forest condition, the management regime, and the
economic and social environments. The latter point is worth stressing, since
short rotations and area control would result in quick liquidation of the oldest
age classes. 

For environmental reasons, apart from and in addition to carbon storage,
this would often be unacceptable. In choosing the rotation length, a manager
would want to weigh carefully the financial gain resulting from a shorter rota-
tion against the loss of other values that, although harder to quantify, are no less
real.

The carbon storage and NPV results plotted in Figure 15.2 would help in this
decision. They show carbon stock increasing steadily with rotation length while
NPV decreases. The opportunity cost of a 60-year rotation compared to a 10-
year rotation would be about $5 million. This would be very useful information
to help stakeholders decide whether the carbon storage and the other environ-
mental benefits of maintaining the old age classes resulting from a 60-year rota-
tion are important enough to forego this financial gain.

DOWNWARD-SLOPING DEMAND

As another example of the importance of context in choosing a management
policy, let us consider how variations in prices may influence the choice of a
rotation, still within the area-control framework that we have assumed up to
now. Specifically, we will assume that the amount of timber sold from the forest
influences price. This is often referred to as the case of the “downward-sloping

demand curve,” since it implies that as the volume harvested increases, the
price received by the owner declines. This may happen if there is limited
demand for the timber from a forest, for example, if it is in an isolated area. 

In the next simulation, we will assume that the demand equation has the fol-
lowing form:

where pt is the price received for the timber, in $/ m3, and Ht is the volume of timber
cut, in 1,000 m3, from year t to year t + 10. This equation implies that an increase
of the volume sold of 1% leads to a decline in price of 0.7%. Symmetrically, a rise in
price of 1% causes a decline in demand of 1/0.7 = 1.43%. Since the relative change

p aHt t= − 0 7.
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in quantity is greater than the relative change in price, in absolute value, the
demand for timber is said to be elastic with respect to price. The elasticity of
demand with respect to price is precisely −1.43.

To define the demand equation completely, we need to estimate the coeffi-
cient a. This can be done if we know one point of the demand curve. Assume
that when the volume sold from the forest is 30 (1,000 m3/decade) the price
received is on average $50/m3. Then:

50 = a30−0.7

That is:

a = 50 × 300.7 = 541

So the demand equation is:

(15.9)

The geometric representation of this demand equation in Figure 15.3 shows
that the price may be as high as $115/m3, when the volume offered is near
10,000 m3/decade, and as low as $40/m3, when the volume offered is 50,000
m3/decade.

Figure 15.4 shows a modification of the spreadsheet model in Figure 15.1 to
introduce this downward-sloping demand feature. The fixed price in cell H15
has been replaced by the formulas in cells P4:P14, to give output-dependent

p Ht t= −541 0 7.
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FIGURE 15.3 Demand curve for timber with a price elasticity of −1.43.
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prices based on Equation (15.9). The formulas for the net value of the harvests
in cells M4:M14 have accordingly been changed to use these prices. 

We can use this new spreadsheet to simulate the effect of different rotations
on the value of the forest, given a downward-sloping demand curve (see Prob-
lem 15.6). The results are shown in Figure 15.5. Two things can be observed
from this figure. First, with a price-elastic demand, the NPV is lower at short
rotation ages. Second, the economic rotation increases from 10 to 30 years with
a price-elastic demand. 

The reason for the difference in the NPV is that for a given rotation, the
volume sold is the same, regardless of the assumption on demand, but unit
prices tend to be lower when demand is price elastic. For example, with a rotation
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FIGURE 15.4 Spreadsheet simulation model with a downward-sloping demand curve.

1

2

3

4
5

6
7

8
9

10
11

12
13

14

15
16

17
18

19
20

21
22

23
24

25
26
27

28
29

30
31

32

A B C D E F G H I J K L M N O        P

ELASTIC DEMAND

Stock (ha) in class: Cut (ha) in class: H t N t NPVt Carbon Price

Year 1 2 3 4 1 2 3 4 (10
3
m

3
) ($10

3
) ($10

3
) (10

3
t) ($/m

3
)

0 50 50 100 300 0 0 0 83 33 1507 1507 100.4 46.5

10 83 50 50 317 0 0 0 83 33 1507 925 97.4 46.5

20 83 83 50 283 0 0 0 83 33 1507 568 91.3 46.5

30 83 83 83 250 0 0 0 83 33 1507 349 88.3 46.5

40 83 83 83 250 0 0 0 83 33 1507 214 88.3 46.5

50 83 83 83 250 0 0 0 83 33 1507 131 88.3 46.5

60 83 83 83 250 0 0 0 83 33 1507 81 88.3 46.5

70 83 83 83 250 0 0 0 83 33 1507 50 88.3 46.5

80 83 83 83 250 0 0 0 83 33 1507 30 88.3 46.5

90 83 83 83 250 0 0 0 83 33 1507 19 88.3 46.5

100 83 83 83 250 0 0 0 83 33 1507 11 88.3 46.5

(m
3
/ha) 50 120 260 400 NPV ($10

3
) 3886

($/ha) 500 Interest (/y) 0.05 Rotation (y) 60 Allowable cut (ha) 83.33

Key cell formulas

Cell Cell formula copied to

A5 =A4+10 A5:A14

B5 =SUM(G4:J4) B5:B14

C5 =B4-G4 C5:D14

E5 =D4-I4+E4-J4 E5:E14

J4 =MIN(E4,$N$16) J4:J14

G4 =MIN(B4,$N$16-SUM(H4:$J4)) G4:I14

L4 =SUMPRODUCT(B$15:E$15,G4:J4)/1000 L4:L14

M4 =L4*P4-SUM(G4:J4)*$B$16/1000 M4:M14

N4 =M4/(1+$E$16)^A4 N4:N14

N15 =SUM(N4:N14)

N16 =(SUM(B4:E4)/I16)*10

O4 =0.65*SUMPRODUCT(B$15:E$15,B4:E4)/1000 O4:O14

P4 =541*L4^-0.7 P4:P14



of 40 years, the production is 1,687,000 m3/decade, leading to a price of only
$35/m3 with an elastic demand. This explains also why a rotation of 30 years
gives a higher NPV when the demand is price responsive. Although a longer
rotation results in lower production, it also results in higher prices. The net
result is, for the price elasticity used here, an increase in periodic net revenues
and thus in NPV.

15.4 SIMULATING CATASTROPHIC EVENTS

The even-aged simulation models described so far are deterministic. As time
goes by, the stands move regularly from one age class to another, and the price
of timber remains constant or varies with the volume produced in a fully pre-
dictable way. 

As for the uneven-aged management model in the last chapter, the even-
aged management model can be made more realistic by introducing random
variables to reflect the real-world variability of forest growth and timber
prices.
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FIGURE 15.5 Effect of rotation on NPV at constant price and with elastic demand.
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Some random variables change continuously, such as price shocks and tree
mortality. Others happen rarely, such as catastrophic events. Though infre-
quent, they have important effects on the state of the forest and its performance,
both for timber production and carbon storage. Because of their infrequent
occurrences, catastrophic events must be modeled differently. 

MODELING STORMS

Assume that the forest under consideration is in an area prone to violent wind
storms. The objective is to realistically represent the time of occurrence of a
storm and its effects on the forest.

Storm Frequency

Although the timing of storms is random, this random process can be described
with probalistic models. The models are necessarily simple, but they are con-
sistent with the scarce information that is usually available.

In the case of catastrophic storms, meteorological records or oral history
may lead to statements of the following sort: “In this area, disastrous storms
occur once every 25 years.” This of course does not mean that a storm will
occur regularly every 25 years but that over a very long time the average period
between storms has been 25 years. Some storms may actually have occurred at
5-year intervals, though 50 years may sometimes elapse without a storm. 

One thing is certain: As the length of time since the last storm increases,
there is a higher probability that a storm will occur. A simple model that
expresses this fact quantitatively is the exponential probability distribution.
According to the exponential model, if a is the average interval between storms,
in years, then the probability that a storm will occur within T years, P(T), is
given by this exponential law:

P(T) = 1 − e−(T/a) (15.10)

where the constant e � 2.718 is the base of natural logarithms. Equation
(15.10) states that for a given value of the parameter a, the probability that a
storm will occur within T years approaches 1 as T increases. The exponential
model assumes that the average interval between storms, a, or its inverse, the
average frequency of a storm 1/a (1/25 per year in our example), is constant.
That is, after a storm occurs, the probability of another storm does not change,
an intuitively plausible assumption.

Figure 15.6 shows the graph of the exponential distribution for an average
interval between storms a = 25 years. The graph shows that the probability that
a storm will occur increases at a decreasing rate as T increases. The probability
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that a storm will occur within an interval of 10 years is about .33. Within a
25-year interval it is about .63. It is nearly certain that a storm would occur
within 100 years.

In the context of the simulation model developed so far, time is incremented
by decades. The probability that a storm occurs within a decade is:

P(10) = 1 − e−(10/a)

Stochastic simulation entails generating, every decade, a random number Rt

between 0 and 1. Then a storm occurs within the current decade if and only if
Rt is greater than or equal to P(10); that is:

Rt ≥ 1 − e−(10/a) (15.11)

Storm Intensity

When a storm hits the forest, the amount and location of the damage are
assumed to be distributed randomly throughout the age classes. Specifically, the
uncut area destroyed by a storm is given by the following equation:

Lit = Uit(Ait − Xit) (15.12)

where Lit is the forest area lost to the storm in age class i in the decade t to t + 10
and Uit is a random number between 0 and 1, different for each age class. The
equation assumes that all age classes have the same probability of being

destroyed.
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FIGURE 15.6 Probability that a storm occurs within T years, given an average time between
storms of a = 25 years.
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STORM EFFECTS

A storm has essentially the same effect on forest dynamics as a harvest. The
timber blown down is salvaged, if possible. Then the area is cleaned up and
reforested as if it had been normally harvested. Thus, Growth Equations (15.3)
become:

where X′it = Xit + Lit. That is, in each equation the area cut is replaced by the sum
of the area cut and the area destroyed by the storm.

Because the carbon stored is related to the forest area in each age class by
Equation (15.8), the amount of carbon stock will also be affected by the storms. 

Some of the timber blown down by a storm can usually be salvaged. Let the
salvage rate be a fraction, s. Then the equation of the total periodic harvest from
year t to year t + 10 becomes:

(15.14)

The areas destroyed by storms need to be reforested after cleaning up the
downed trees. This will increase the reforestation costs, so the equation of the
periodic net income becomes: 

(15.15)

where c′ is the cost of cleaning up and reforesting the blown-down areas.

PRICE RISK

The random occurrence of catastrophic storms has a direct economic effect,
because, given an elastic demand for timber, the unusually high volume har-
vested after a storm will depress prices. This effect is already taken into account
in deterministic Price Equation (15.9). 
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In addition, as discussed in the previous chapter, prices may vary over
time, irrespective of what happens in the forest. For example, assume that
while prices are well predicted on average by Price Equation (15.9), they can
be 25% above or below that average, with equal probability of being anywhere
in that range. Then the actual price level is given by the following stochastic
equation:

(15.16)

where Rt is a random number between 0 and 1. When Rt = 1, the simulated
price is 25% above the average price predicted by deterministic Price Equation
(15.9). When Rt = 0, the simulated price is 25% below. Prices between those
extremes have an equal probability of occurring. Because the average value of
Rt is 0.5, the average simulated price is equal to the price predicted by the deter-
ministic equation.

15.5 SPREADSHEET STOCHASTIC SIMULATION

Figure 15.7 shows a spreadsheet to simulate the growth of an even-aged forest
with stochastic storms and prices. The model extends the deterministic model
in Figure 15.4, which includes a price-elastic demand to reflect the fact that
large timber harvests following a storm may indeed depress prices. The follow-
ing changes have been made: 

Cells Q4:Q14 contain the formulas that return the value 1 if a storm
occurs in the current decade, 0 otherwise, according to Rule (15.11).
These formulas use the function RAND() to generate random numbers
between 0 and 1 and the mean interval between storms, a = 30 years, in
cell U15. 

The formulas in cells S4:V14 calculate the losses according to Equation
(15.12) if a storm occurs and set them to zero if there is no storm.

The formulas in cells B5:E14 add the blown-down areas to the areas cut to
predict forest growth according to Equations (15.13).

The formulas in cells L4:L14 add the salvaged volume to the regular
harvest according to Equation (15.14). The salvage rate, s = 0.25, is in
cell S16.

The formulas in cells M4:M14 account for the cost of reforesting the
blown-down areas. The cost per hectare on blown-down areas is
assumed to be double the regular reforestation cost.

The formulas in cells P4:P14 calculate random prices according to
Equation (15.16).

p R Ht t t= + −( . . ) .0 50 0 75 541 0 7
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All other parameters and assumptions are the same as in the deterministic sim-
ulation in Figure 15.4. In particular, the initial forest condition is the same, and
so is the rotation, equal to 60 years. 

The results in Figure 15.7 are for one replication, that is, for one single
sequence of random numbers. In this case, storms occur between years 40 and
50, between years 70 and 80, and between years 80 and 90. As a result, the NPV
is $3.5 million, which is about $400,000 less than the NPV obtained in the
deterministic simulation in Figure 15.4. And there are only 29,000 tons of
carbon stored in the forest by year 100, compared to 88,000 tons in the deter-
ministic simulation.

However, this is only one of the many possible outcomes. A few replications
obtained by pressing the F9 key show that many different results are possible.
We need to replicate this simulation many times to get a better picture of the
variability of the results.
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FIGURE 15.7 Spreadsheet simulation model with stochastic storms and prices.
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A5 =A4+10 A5:A14

B5 =SUM(G4:J4)+SUM(S4:V4) B5:B14

C5 =B4-G4-S4 C5:D14

E5 =D4-I4-U4+E4-J4-V4 E5:E14

J4 =MIN(E4,$N$16) J4:J14

G4 =MIN(B4,$N$16-SUM(H4:$J4)) G4:I14

L4 =SUMPRODUCT(B$15:E$15,G4:J4)/1000

+S$16*SUMPRODUCT(B$15:E$15,G4:J4)/1000 L4:L14

M4 =L4*P4-SUM(G4:J4)*$B$16/1000

-SUM(S4:V4)*2*$B$16/1000 M4:M14

N4 =M4/(1+$E$16)^A4 N4:N14
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N16 =(SUM(B4:E4)/I16)*10
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P4 =(0.50*RAND()+0.75)*541*L4^-0.7 P4:P14
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EFFECT OF ROTATION LENGTH ON STOCHASTIC

CARBON STOCK AND NET PRESENT VALUE

In even-aged management, one key decision variable is the rotation age. To
make good statistical statements regarding the effect of the rotation age, we
need many replications of the simulation at different rotation ages, holding all
parameters constant except for the string of random numbers.

Figure 15.8 shows another range of the spreadsheet in Figure 15.7. It per-
forms automatically 100 replications of the simulation for rotations of 10–100
years and produces summary statistics for carbon stock after 100 years. 

The replication numbers are in columns X4:X103. The alternative rotation
ages are in cells Y3:AD3. To calculate the 100 replications for each rotation age
with Excel, do the following:

1. Set cell X3 equal to the cell O14 in Figure 15.7, which contains the
formula for the carbon stock at year 100.

2. Select the range of cells X3:AD103.
3. On the Data menu, click Table. In the Row input cell box, enter cell

I16, which contains the rotation age in Figure 15.7. In the Column
input cell box, enter cell P1 or any other cell of the spreadsheet that
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FIGURE 15.8 Spreadsheet to calculate 100 replications of the carbon stock under risk with dif-
ferent rotations.
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does not affect the computation. The goal is to induce the spreadsheet to
redo the calculations for each row of the table. The results will vary by
row only, because the random numbers generated are different while all
the other parameters remain constant.

The summary statistics in Figure 15.8 have been computed with the formulas
discussed in Chapter 14. For each rotation they give the largest and smallest
carbon stock observed in 100 replications, the mean stock, the standard devia-
tion of the stock, and the standard error of the mean.

The same spreadsheet can be used to make 100 replications and collect the
data on NPV for different rotations (see Problem 15.7). We only need to reset
cell X3 equal to cell N15, which contains the formula of the NPV in the simu-
lation spreadsheet in Figure 15.7.

To better document the trade-off between carbon storage and NPV, the mean
of carbon storage and the mean NPV have been plotted against rotation age in
Figure 15.9. The 95% confidence interval of the mean is also shown on the
chart. The confidence interval is two standard errors above and below the mean.
There is a 95% probability that the true mean lies in that interval. The variabil-
ity of actual outcomes is much wider, as documented by the minimum, maxi-
mum, and standard deviation of the carbon stock in Figure 15.8.
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FIGURE 15.9 Effects of rotation age on carbon storage and NPV for timber, with stochastic
storms and prices.
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The chart in Figure 15.9 shows a steady increase of carbon stock as the rota-
tion length increases. The variability of the carbon stock also increases with the
rotation, because more catastrophic storms may impact a particular area as the
rotation increases. 

The mean NPV increases with rotation age up to a 30-year rotation and then
decreases with longer rotations. This result is consistent with the deterministic
analysis (see Figure 15.5). However, the variability of the mean NPV, shown by
the standard errors, is quite large. As the confidence intervals of the mean NPV
at rotations of 20–30 years overlap, it is uncertain whether different rotations
truly make a difference within that range. In fact, given the relatively certain
gain in carbon storage, one might very well be willing to prescribe a rotation as
long as 40 years. Whether one would go beyond that depends on the willing-
ness of the stakeholders to give up more timber income to gain carbon storage.

15.6 CONCLUSION

The simulation model of this chapter offers a straightforward approach to eval-
uating some management strategies for even-aged forest management. It has
illustrated the importance of context in choosing management parameters, such
as rotation age. For example, the deterministic version of the model has shown
that under area-control management, the economic rotation tends to increase
when the demand for timber is elastic with respect to its price.

Although the model dealt only with area-control management, it is not hard
to see how it could be adapted to volume control by changing the allowable cut
from a specified area to a volume. Other features could be added to the model
in the same way that we added downward-sloping demand curves. 

The stochastic version of the model illustrates the flexibility of the simula-
tion approach in terms of adding realism to a basic deterministic model. Both
continuous stochastic shocks, such as price changes, and rare discrete events,
such as natural catastrophes can be handled.

There is a natural desire to add many refinements to simulation models to
make them as “realistic” as possible, but this must be resisted. Added features
can make models more difficult to understand and more prone to error. Para-
doxically perhaps, detailed realism is not a characteristic of good models. The
best models have a level of abstraction that captures only the key characteris-
tics of the system being investigated. 

PROBLEMS

15.1 (a) Set up your own spreadsheet model, like the one in Figure 15.1, to
simulate the effects of even-aged management on timber production and carbon
storage. Using the same data, verify that you get the same results.
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(b) Set up a section of this spreadsheet, like that shown in Figure 15.2, to
show how net present value and carbon storage vary with the rotation age.
Using the same data, verify that your results are the same as in Figure 15.2. 
(c) Reduce the interest rate from 5% to 2% per year. How does this affect the
NPV at different rotations? 
(d) How does the change of interest rate from 5% to 2% change the best eco-
nomic rotation?
(e) How does this new best economic rotation change the amount of carbon
stored after 100 years?
15.2 The forest described in the spreadsheet model in Figure 15.1 had an ini-

tial state in which much of the forest was in the oldest age class. 
(a) Change the initial state to describe a forest that has recently been cut
over, with 300 acres in age class 1, 200 acres in age class 2, and nothing in
the two oldest age classes. Leave the other data as in Figure 15.1. 
(b) Set up a section of this spreadsheet, similar to that in Figure 15.2, to find
the NPV and the carbon stored after 100 years for different rotations. Com-
pare your results to those in Figure 15.1.
(c) How important is the initial state in determining NPV? 
(d) How does the initial state affect the economic rotation?
(e) How important is the initial state in determining long-term carbon
sequestration?
15.3 (a) Modify the yield data for the forest shown in Figure 15.1 to reflect

a less productive site with the anticipated yields shown in the table. Keep all
other data the same.

(b) Set up a section of this spreadsheet, similar to that in Figure 15.2, to find
the NPV and the carbon stored after 100 years for different rotations. Com-
pare your results to those in Figure 15.1.
(c) How important is site productivity in determining NPV? 
(d) How does site productivity affect the economic rotation? 
(e) How does site productivity affect long-term carbon sequestration? 
15.4 The spreadsheet model to simulate management of an even-aged forest

shown in Figure 15.1 can be modified to simulate a volume-control policy
rather than area control. Assume that the allowable cut is based on the initial
volume of the forest. The rule is still to take the allowable cut first from the
oldest age classes.

Age class

1 2 3 4

Site productivity (m3/ha) 40 110 230 300
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(a) Change the area-control formula in cell N16 of the spreadsheet to a
volume-control formula. (Hint: Every year, we can cut at most 1/R of the ini-
tial standing volume.) 
(b) Set up a section of this spreadsheet, similar to that in Figure 15.2, to find
the NPV and the carbon stored after 100 years for different rotations under
volume control.
(c) How does the NPV at different rotations compare with the NPV obtained
with area control?
(d) How does the best economic rotation with volume control compare to
the best economic rotation with area control? 
(e) If carbon sequestration is the goal, is volume control or area control the
better policy? Why?
15.5 (a) Set up your own spreadsheet model, like the one in Figure 15.4, to

simulate the management of an even-aged forest facing a downward-sloping

demand curve for timber. Using the same data, verify that your results are the
same as in Figure 15.4. (Note that this spreadsheet calculates timber price
according to Demand Equation (15.9), where a = 541 and the exponent of Ht is
−0.7, which implies an elasticity of demand with respect to price of −1/0.7 =
−1.43.)

(b) Set a = 250 in the demand equation. Does this imply stronger or weaker
demand for timber? How does this affect the NPV and the pattern of har-
vesting over time?
(c) Set a = 750 in the demand equation. Does this imply stronger or weaker
demand for timber? How does this affect the NPV and the pattern of har-
vesting over time?
(d) Change the exponent of Ht to −0.35, keeping all other data as in Figure
15.4. What elasticity of demand with respect to price does this imply? How
does this change in elasticity affect the NPV and the pattern of harvesting

over time?
(e) Change the exponent of Ht in the demand equation to −1.0, keeping all
other data as in Figure 15.4. What elasticity of demand with respect to price
does this imply? How does this change affect the NPV and the pattern of har-
vesting over time?
15.6 Consider the spreadsheet model in Figure 15.4 to simulate management

of an even-aged forest facing a downward-sloping demand curve for timber.
(a) Add a section to this spreadsheet, like the one in Figure 15.2, showing how
net present value and carbon storage vary with the rotation age. Using the
same data, verify that your results are the same as in Figures 15.4 and 15.5. 
(b) Assume that population and income growth in the region where the
forest is located have led to an increase in the demand for houses and hence
for timber. This in turn has caused a permanent shift in the demand for
timber. The forest can now sell a given amount of timber at a higher price; for
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example, the forest could now sell 30,000 m3/decade of wood for $60/m3 rather
than $50/m3. What new value should be used for the constant a in the price
equation, Pt = aHt

−0.7?
(c) How does this change in demand affect the best economic rotation?
15.7 Set up your own spreadsheet model, like the one shown in Figure 15.7,

to simulate the management of an even-aged forest given stochastic storms and
prices.

(a) With the same data and equations, the simulation results displayed in
your spreadsheet will not be the same as in Figure 15.7. Why?
(b) Set up a section of this spreadsheet, like that shown in Figure 15.8, to
summarize the carbon stock data for different rotations. Run 100 replica-
tions. How do the predictions for carbon stock compare to those in Figure
15.8? Should they be the same?
(c) Can you say with confidence that your spreadsheet model is the same as
the one shown in Figure 15.7?
(d) Modify your spreadsheet model to summarize the NPV data for different
rotations. (Hint: Change the cell reference in X3 from the cell that contains
the formula for carbon stock to the one with the formula for NPV.) Make a
chart of the carbon stock and the NPV as a function of rotation age. Check
that your results correspond to those in Figure 15.9.
(e) Modify your spreadsheet so that the average time between storms is only
10 years. Run 100 replications, and make a chart of your results like that in
part (d). Then modify your spreadsheet so that the average time between
storms is 50 years. Run 100 replications, and make a chart of these results.
How does the average time between storms affect the economic rotation and
the carbon sequestration?
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chastic simulation model of dispersed recreation use patterns.)

Starfield, A.M., and A.L. Bleloch. 1986. Building Models for Conservation and Wildlife Management.
Macmillan, New York. 253 pp. (Chapters 3 and 4 describe stochastic simulation models of
wildlife populations.)

Winsauer, S.A. 1982. Simulation of Grapple Skidders and a Whole-Tree Chipper. U.S. Forest Service
Research Paper NC-221. North Central Forest Experiment Station, St. Paul, MN. 42 pp.
(Describes a stochastic simulation model of a logging system.)
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CHAPTER 16

Projecting Forest Landscape
and Income Under Risk
with Markov Chains

16.1 INTRODUCTION

The last two chapters have shown how to model biological or economic risk in
forests with simulation methods. The simulation approach consists in building
a deterministic model of the system of interest, for example, the growth of a
stand of trees (Chapter 14), or the dynamics of an entire forest (Chapter 15),
and then adding stochastic elements. 

Chapter 14 dealt with examples of simulation with continuous stochastic
processes, such as tree regeneration and prices, which vary constantly over
time. Chapter 15 gave an example of discrete event simulation, such as the
occasional occurrence of major disturbances such as storms and fires.

The power of the simulation approach lies in its flexibility. Its drawback is that
it lacks a standard structure. Every simulation model is different, so there are very
few rules governing how to build simulation models or how to evaluate their
output. Lack of a common structure makes it particularly difficult to identify best
management policies. The number of possible policies is usually infinite, and
comparing just a few in a stochastic environment can be cumbersome, as exem-
plified by the relatively simple examples shown in the previous two chapters.
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In contrast to simulation, there are more structured ways of dealing with sto-
chastic processes. Markov chains, in particular, allow problems to be formulated
in a specific, refreshingly simple form. A Markov chain consists of a set of states
and a table of the probabilities of moving from one state to another in a period
of time. This simple form turns out to be quite powerful to predict the evolution
of forests over time and to find the best way to manage them while realistically
considering the role of risk. This chapter concentrates on prediction of forest
landscape and income with Markov chains; the next chapter will deal with the
optimization of forest systems modeled with Markov chains. 

16.2 NATURAL FOREST GROWTH 
AS A MARKOV CHAIN

A forest may be viewed as a mosaic of stands of trees. The stands are usually in
different states. A stand state may be classified by various characteristics, such
as its age (if it is even aged), the species of the trees, the volume per unit area,
the diameter of the trees, and the number of trees per unit area. Thus, the forest
may be entirely even aged or uneven aged or a mix of the two. 

STAND STATES

In practice, it is best to use a small number of characteristics to define stand
states. For example, assume that there are three possible stand states and that
the key characteristic for each state is the volume per unit area, as shown in
Table 16.1. State L refers to a stand with low volume, less than 400 m3/ha, state
M refers to medium volume, from 400 to 700 m3/ha; and state H refers to high
volume, above 700 m3/ha. A stand may move from one state to another due to
biological growth and environmental shocks such as storms and fires or due to
silvicultural treatments. In either case, the Markov model recognizes that the
stand does not move from one state to another with certainty but, rather, in a
probabilistic fashion.

TABLE 16.1 Volume per Unit Area,

by Stand State 

State i Volume (m3/ha)

L <400
M 400–700
H >700
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TRANSITION PROBABILITIES

Table 16.2 shows an example of transition probabilities between stand states
over a period of 20 years and with no intervention. The first row of the table
indicates that for a stand that starts in state L and grows naturally, there is a .40
probability that the stand will still be in the same state after 20 years (the stand
may have changed, but it would still have less than 400 m3/ha). For the same
initial stand state L, there is also a .60 probability that it will be in state M, i.e.,
with a volume between 400 and 700 m3/ha. The second row indicates that for
a stand initially in state M, there is a .30 probability that it will still be in that
state after 20 years, while there is a .70 probability that it will be in state H, with
more than 700 m3/ha. The third row indicates that for a stand in state H, there
is a .90 probability that it will be in the same state after 20 years. Due to dis-
turbances, such as storms or fires, there is also a .05 probability that the stand
will be in state M and the same probability that it will be in state L.

STAND DYNAMICS

The data in Table 16.2 define a one-period transition probability matrix, P,
which provides a means to predict the probability that a stand that starts in a
particular state would be in another state after a certain amount of time. For
example, assume that we start with a low-volume stand (state L); this initial
state is symbolized by the following state vector:

which means that the stand is initially in state L with probability 1 and in the
other states with probability 0. Then the probability distribution of the stand
state after 1 period (20 years), p1, is obtained by postmultiplying the initial
probability distribution p0 by the transition probability matrix P (Appendix B

p0 1 0 0=[ ]

TABLE 16.2 20-Year Transition Probabilities

Without Management

Begin End state j
state i L M H

L .40 .60
M .30 .70
H . .05 .05 .90
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shows how to multiply matrices):

Thus, after 20 years there is a 40% chance that the stand will be still in state L
and a 60% chance that it will be in state M. The probability distribution of the
stand after two periods (40 years) is obtained by postmultiplying the probability
distribution after one period, p1, by the transition probability matrix P:

Thus, after 40 years there is a 16% chance that the stand that started initially in
state L will still be in state L, a 42% chance that it will be in state M, and a 42%
chance that it will be in state H.

In general, the probability distribution of the stand state in period t, pt, is
obtained by postmultiplying the probability distribution of the stand state in the
previous period, pt−1, by the transition probability matrix P:

(16.1)

where T is the number of periods in a projection. As T increases to infinity, the
vector pT converges to a vector of steady-state probabilities, p∗, which is inde-
pendent of the initial state p0. In our example:

which means that after a long time, regardless of the initial stand state, there are
.07, .12, and .82 probabilities of finding the stand in states L, M, and H, respec-
tively. This is similar to what we found earlier for the steady state of an uneven-
aged stand (Chapter 8). In both cases, the steady state depends only on the
growth process, described here by the transition probabilities. The initial stand
condition of a very long time ago does not matter. 

SPREADSHEET IMPLEMENTATION

Figure 16.1 shows a spreadsheet that applies Recursive Equation (16.1) to
predict the future probable state of a forest stand that starts in state L (volume
less than 400 m3/ha) with the transition probabilities in Table 16.2. The bold

p∗ =[. . . ]07 12 82

p p Pt t t T= =−1 1   for , ,K

p p P2 1 40 60 0

40 60 0

0 30 70

05 05 90

16 42 42= =

















=[. . ]

. .

. .

. . .

[. . . ]

p p P1 0 1 0 0

40 60 0

0 30 70

05 05 90

40 60 0= =














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
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characters indicate the input data: the initial probability distribution of stand
states in cells B4:D4 and the matrix of 20-year transition probabilities in cells
I4:K6.

The formula in cells B5:D5 obtains the probability distribution of stand states
after 1 period (20 years) by multiplying the initial probability distribution by
the transition probability matrix. This formula is repeated by copying cells
B5:D5 down to cells B16:D16.

The results show that, as time goes by, the probability that the stand is in the
high-volume state H increases but the probabilities of the other states remain
positive. A steady state is reached after 120 years, in the sense that the proba-
bility that the stand is in any one state remains constant over time. 

FIGURE 16.1 Spreadsheet to predict the probability of stand states and the landscape diversity
index, without management.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G H I J K
PROBABILITY OF STATES WITHOUT MANAGEMENT 

State BP 20-year probability

Year L M H index P L M H

0 1.00 0.00 0.00 1.0 L 0.40 0.60 0.00

20 0.40 0.60 0.00 1.7 M 0.00 0.30 0.70

40 0.16 0.42 0.42 2.4 H 0.05 0.05 0.90

60 0.09 0.24 0.67 1.5

80 0.07 0.16 0.77 1.3

100 0.07 0.13 0.81 1.2

120 0.07 0.12 0.82 1.2

140 0.07 0.12 0.82 1.2

160 0.07 0.12 0.82 1.2

180 0.07 0.12 0.82 1.2

200 0.07 0.12 0.82 1.2

220 0.07 0.12 0.82 1.2

240 0.07 0.12 0.82 1.2

Key cell formulas

Cell Formula

A5 =A4+20 A5:A16

B5:D5* {=MMULT(B4:D4,I$4:K$6)} B5:D16

F4 =SUM(B4:D4)/MAX(B4:D4) F4:F16

* Select B5:D5, enter formula =MMULT(B4:D4,I$4:K$6), 

then press CTRL+SHIFT+ENTER. Excel adds the brackets. 

Copied to
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The steady-state probabilities are independent of the initial state. You can
check this by changing the initial probability distribution in cells B4:D4 of the
spreadsheet (see Problem 16.1).

FOREST LANDSCAPE DYNAMICS

The stand state probabilities just computed also have a landscape interpreta-
tion. The initial probability distribution can be viewed as the proportions of a
large forest that are in each state. For example, the data in Figure 16.1 can be
interpreted as meaning that 100% of the initial forest is occupied by stands in
state L, with less than 400 m3/ha of timber. After 20 years, 40% of the forest
would still be in that state while 60% would be occupied by stands in state M.
After 40 years, 16% of the forest would consist of stands in state L, 42% of
stands in state M, and 42% of stands in state H.

With time, the distribution of stands in this forest would converge to a steady
state so that after about 120 years, 7% of the forest would be covered with
stands in state L, 12% of stands in state M, and 82% of stands in state H. There-
after, although the landscape would continue to change, the proportion of the
forest area covered by stands in the different states would remain constant
indefinitely.

One way of assessing the diversity of the forest landscape as it evolves over
time is with an index like the Berger–Parker (BP) index introduced in Chapter 14.
Here it has this expression:

(16.2)

where pit is the probability that a particular area of the forest is in state i = L, M,
or H at time t, which is also the proportion of the forest area in that state. The
lowest value of BP is 1, which indicates that the entire forest is in the same state.
The highest possible value is the number of states, 3 in this example, which
indicates that an equal area of the forest is in each state.

The values of the Berger–Parker index in cells F4:F16 in Figure 16.1 show
that, for a forest that starts entirely in state L and grows according to the tran-
sition probabilities in Table 16.2, the natural processes of biological forest
growth and natural disturbances would lead to a rapid increase of landscape
diversity, as portions of the forest move from state L to states M and H. After 40
years, however, diversity declines to a much lower steady state, reflecting the
transition of most of the forest to state H. The steady-state value is independent
of the initial state, but how fast the steady state is reached and the probabil-
ity of each stand state in the interim period depend very much on the initial

BPt
Lt Mt Ht

Lt Mt Ht

p p p

p p p
=

+ +

max( , , )
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probability distribution of stand states (see Problem 16.1). Intuitively, it makes
sense that the state of the forest 20 years from now will reflect its current state but
that its state in a couple of centuries will have little to do with the current state.

MEAN RESIDENCE TIME OF STAND STATE

The mean, or expected, residence time of a stand state is defined as the average
time that a stand will stay in that state sequentially, that is, without ever moving
out of the state. Denoted as mi, the expected residence time of each stand state
i can be obtained from the probability that the stand will stay in the same state
from one period to the next:

(16.3)

where D is the length of each period, in years, and pii is the probability that a
stand in state i at the beginning of a period is still in that state at the end. For
example, according to the data in Table 16.2, the expected residence time of a
stand in state L (lowest volume) is:

The complete set of expected residence times for all the possible stand states
in our example are in Table 16.3. It shows that a stand in the low-volume state
would stay there for about 33 years, on average. A stand of medium volume
would stay in that state for 29 years. The expected residence time for the high-
volume state is much longer, 200 years, because once a stand is in that state,
there is a high probability that it will stay there.

The results in Table 16.3 confirm the intuition that as the probability of stay-
ing in a particular state increases, the expected residence time should also
increase. As the probability of staying in a particular state approaches 1, the
expected residence time approaches infinity.

mL =
−

=
20

1 0 40
33 3

.
. years

m
D

pi
ii

=
−( )1

TABLE 16.3 Mean Residence Time Without Management

20-year Expected
probability of residence

State i staying pii time mi (y)

L .40 33.3
M .30 28.6
H .90 200.0
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MEAN RECURRENCE TIME OF STAND STATE

In our example, the mean recurrence time, denoted by mii, is the average time
it takes for a stand in a particular state, i, to return to that same state after exit-
ing it. The mean recurrence time is inversely related to the steady-state proba-
bility of a particular state, πi:

(16.4)

where D is the length of each time period (20 years in our example). 
Table 16.4 shows the mean recurrence time for each stand state, given the

steady-state probabilities of each state, obtained from cells B16:D16 of the spread-
sheet in Figure 16.1. A stand in low-volume state L, under natural conditions,
would take on average about 286 years to exit and return to that state. It would
take less than one-tenth of that time for a stand to exit and return to the high-
volume state H.

16.3 PREDICTING THE EFFECTS
OF MANAGEMENT 

A management policy is a rule that calls for a specific decision when the forest
stand is in a particular state. As an example, consider a policy that lets the stand
grow when it is in states L and M and harvests it when it is in state H, thereby
returning it to state L.

TRANSITION PROBABILITIES

This policy changes the transition probabilities for natural growth shown in
Table 16.2 into the transition probabilities for managed growth shown in
Table 16.5. Only the last line of the tables is different. This last line of probabilities

m
D

ii
i

=
π

TABLE 16.4 Mean Recurrence Time Without Management

Mean
Steady state recurrence

State i probability πi time mii (y)

L .07 285.7
M .12 166.7
H .82 24.4
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is the same as the first line, because the harvest policy changes a stand in state
H to state L, and we know from Table 16.2 that the probability that a stand in
state L would still be in state L after 20 years is .40 and that the probability that
it would grow into state M is .60. 

FOREST DYNAMICS WITH MANAGEMENT

Given the matrix of transition probabilities under management, G, the proba-
bility distribution of the stand state at in period t, pt is obtained by postmulti-
plying the probability distribution of the stand state one period ago, pt−1, by the
transition probability matrix G. Thus, the prediction is made with the same
recursive Equation (16.1) as for the unmanaged forest, but replacing matrix P
by matrix G.

Figure 16.2 shows a spreadsheet that applies this new transition probability
matrix to predict the future state of a stand that starts in state L (volume less
than 400 m3/ha). The only difference between the spreadsheets in Figure 16.1
and in Figure 16.2 is in cells I6:K6.

The results in Figure 16.2 show that the effect of this particular harvest
policy is to reduce the probability of stand state H and to increase the proba-
bilities of the two other states. A steady state is reached after 140 years, in the
sense that the probability that the stand is in any one state remains constant
over time. The steady-state probabilities are again independent of the initial
state.

As in the unmanaged case, the stand state probabilities in Figure 16.2 have
a landscape-level interpretation, where the probability distribution in each
period is the proportion of a large forest that would be in each state. Thus,
beginning with a forest covered entirely by stands in state L and managing the
forest according to the prescribed policy, the distribution of stands in this forest
would converge over time to a steady state with 22% of the forest in state L, 46%
in state M, and 32% in state H. According to the Berger–Parker index, the steady
state of the managed forest would be more diverse than the steady state of the
unmanaged forest, because the forest area would be more evenly distributed

TABLE 16.5 Transition Probabilities with Management

Begin End state j
state i L M H

L .40 .60
M .30 .70
H .40 .60
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by state. However, there would be less land occupied by high-volume stands
(state H) in the managed vs the unmanaged forest.

Table 16.6 shows the mean residence time of each stand state under man-
agement. Comparing it with Table 16.3 shows that management has no effect
on the mean time a stand stays sequentially in state L or M. This makes sense
because neither state L nor state M triggers harvesting. However, managed
stands stay in state H for only 20 years, on average, instead of 200 years for
unmanaged stands. This shortening is also intuitively understandable, since the
policy is to harvest a stand when it is in state H.

Comparing the mean recurrence times with and without management in
Tables 16.7 and 16.4 shows that management shortens considerably the mean
recurrence time of states L and M, while it lengthens the mean recurrence time

FIGURE 16.2 Spreadsheet to predict the probability of stand states and the landscape diversity
index, with management.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B C D E F G H JI K
PROBABILITY OF STATES WITH MANAGEMENT

State BP 20-year probability

Year L M H index P ML H

0 1.00 0.00 0.00 1.0 L 0.40 0.60 0.00

20 0.40 0.60 0.00 1.7 M 0.00 0.30 0.70

40 0.16 0.42 0.42 2.4 H 0.40 0.60 0.00

60 0.23 0.47 0.29 2.1

80 0.21 0.46 0.33 2.2

100 0.22 0.46 0.32 2.2

120 0.21 0.46 0.32 2.2

140 0.22 0.46 0.32 2.2

160 0.22 0.46 0.32 2.2

180 0.22 0.46 0.32 2.2

200 0.22 0.46 0.32 2.2

220 0.22 0.46 0.32 2.2

240 0.22 0.46 0.32 2.2

Key cell formulas

Cell Formula Copied to

A5 =A4+20 A5:A16

B5:D5* {=MMULT(B4:D4,I$4:K$6)} B5:D16

F4 =SUM(B4:D4)/MAX(B4:D4) F4:F16

* See Fig. 16.1 
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of state H. This makes sense because the policy is to harvest stands in state H,
returning them to state L, thus shortening the recurrence time of state L and
that of state M, which follows state L. Furthermore, since a stand in state H is
always harvested, it cannot return to state H by the path H to M to H. It must
go through the path H to L to M to H, which takes more time.

EXPECTED BIODIVERSITY PERFORMANCE

Forest management has both positive and negative effects. On the positive side,
cutting trees and selling them for timber generates income, providing timber for
various forest products, such as lumber and paper, and ultimately for housing and
communication. On the negative side, harvests decrease the stock of standing
trees, thus reducing some of the environmental benefits derived from the forest. 

It is plausible that the contributions to biodiversity of the stand states L, M,
and H increase with the standing volume of trees in each state. This would be
especially true if H corresponded to an “old-growth” state, which is plausible
given the mean residence time of 200 years for stand state H without management.

Assume that ecologists have scored the biodiversity value of stand states L,
M, and H on a scale from 0 to 10. State L gets a score of 3, M a score of 7, and
H a score of 10. 

Then the expected, or average long-term biodiversity value, B, of a forest
under a particular management policy is given by:

(16.5)B B B BL L M M H H= + +π π π

TABLE 16.7 Mean Recurrence Time with Management

Mean
Steady-state recurrence

State i probability πi time mi (y)

L .22 90.9
M .46 43.5
H .32 62.5

TABLE 16.6 Mean Residence Time with Management

20-year Mean
probability of residence

State i staying pii time mi (y)

L .40 33.3
M .30 28.6
H .00 20.0
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where πi is the steady-state probability of state i under that policy and Bi is the
biodiversity value of state i.

Thus without management the expected long-term biodiversity value, given
the steady-state probabilities in Figure 16.1, is:

While with the management policy defined earlier, the long-term biodiver-
sity value, based on the steady-state probabilities in Figure 16.2, is:

Note that since the steady-state probabilities are independent of the initial state,
so is the long-term biodiversity value. Indeed, since the steady state is reached
in a finite amount of time and the probabilities stay the same thereafter for an
infinite length of time, the transient probabilities before the steady state have
little weight. In the long run only the steady state matters. 

EXPECTED RETURN PER UNIT OF TIME

Another effect of management is to generate timber income. For example, Table 16.8
shows that harvesting a stand in state H and thereby returning to state L gener-
ates a harvest volume of 817 − 259 = 558 m3/ha and income of $7,254/ha.

Then the expected long-term periodic income that would be obtained with
a policy that cuts a stand to state L if and only if it is in state H is given by an
equation analogous to Equation (16.5):

(16.6)

where Ri is the immediate return obtained from a stand in state i under the
stated policy. In this example, the expected long-term 20-year return is:

0 22 0 0 46 0 0 32 7 254 2 321. . . , ,× + × + × =     ($/ha)

R R R RL L M M H H= + +π π π

B = × + × + × =0 22 3 0 46 7 0 32 10 7 08. . . .

B = × + × + × =0 07 3 0 12 7 0 82 10 9 25. . . .

TABLE 16.8 Immediate Return from Harvest

Average Return with
Volume volume harvest to state L

State (m3/ha) (m3/ha) m3/ha $/ha

L <400 259 0 0
M 400–700 603 344 4,472
H >700 817 558 7,254
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On a yearly basis this would mean an income of $116/ha. Because it is an aver-
age over many periods of equal weight, this result is independent of the initial
stand state and depends only on the steady-state probabilities of stand states.

PRESENT VALUE OF EXPECTED RETURN

The expected yearly income is a useful, but incomplete, measure of the eco-
nomic implications of a policy. A complete economic assessment must take
into account that future returns have less value than immediate returns. How
much less depends on how far in the future the return will occur and on the
interest rate. If the yearly interest rate is r, the discount factor for the 20-year
periods assumed in our example is:

which says that a $1 return in 20 years has a present value, d, that is less than
$1 at any positive interest rate. 

We seek the present value of the expected return from a stand, over an infi-
nite horizon, given its initial state and a management policy. The computations
use backward recursion. We assume the present value of the expected return
with t periods to go before the planning horizon and then derive the present
value of the expected return with t + 1 periods to go. 

Let Vit be the present value of the expected return from a stand in state i = L,
M, or H, managed with a specific harvesting policy and with t periods to go
before the planning horizon. Then the present value of the expected return with
t + 1 periods to go is:

(16.7)

That is, for a stand in state i, the present value of the expected return with t + 1
periods to go is equal to the immediate return plus the present value of the
expected return with t periods to go. Recall that piL, piM, and piH are the proba-
bilities that a stand in state i moves to state L, M, and H in one period. So, the
term in parentheses is the expected present value of the return for a stand in
state i, managed according to the chosen policy, with t periods to go before the
planning horizon.

The backward recursion with Equation (16.7) begins by setting the present value
of expected return with t = 0 periods to go at some arbitrary level. For example:

V V VL M H0 0 0 0= = =

V R d p V p V p Vi t i iL Lt iM Mt iH Ht, ( )+ = + + +1

d
r

=
+

1

1 20( )
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We then calculate the present value of the expected return with t = 1, 2, … peri-
ods to go with Equation (16.7). Due to the discounting factor, d, as t increases,
the present value of expected return Vit approaches a limit Vi

∗, the present value
of expected return for a stand that starts in state i and is managed according to
the chosen policy for a very long (infinite) time. 

Figure 16.3 shows a spreadsheet to obtain the present value of expected
return for each initial stand state for a policy that harvests a stand if and only if
it is in state H, thereby returning to state L. The transition probability matrix in
cells G4:I6 reflects this policy, being the same as matrix G in Figure 16.2. The
immediate returns for this policy are in cells L4:L6:

RM = 0, RL = 0, RH = $7,254

The interest rate in cell L9 is 5% per year, so the discount factor in cell L8 is
d = 1/1.0520 = 0.38. Cells B4:D4 contain the present value of the stand in each
state for t = 0 periods to go before the planning horizon, set at 0, an arbitrary
value that does not affect the solution (see Problem 16.6.). Cells B5:D5 contain
the formulas for Equation (16.7) when there is one 1 period (20 years) to go
until the planning horizon. For example, the formula in cell D5 gives the present

FIGURE 16.3 Spreadsheet to compute the present value of an initial stand state for a specific man-
agement policy.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B C D E F G H I J K L
PRESENT VALUE WITH MANAGEMENT

Years Present value in state 20-year probability Return

to go L M H G L M H state $/ha

0 0 0 0 L 0.40 0.60 0.00 L 0

20 0 0 7254 M 0.00 0.30 0.70 M 0

40 0 1914 7254 H 0.40 0.60 0.00 H 7254

60 433 2130 7687

80 547 2269 7801 Discount factor d 0.38

100 596 2315 7850 Interest rate (/y) r 0.05

120 613 2333 7867

140 620 2339 7874

160 622 2342 7876

180 623 2343 7877

200 624 2343 7878

220 624 2343 7878

Key cell formulas

Cell Formula Copied to

A5 =A4+20 A5:A15

B5 =L$4+d*SUMPRODUCT(G$4:I$4,B4:D4) B5:B15

C5 =L$5+d*SUMPRODUCT(G$5:I$5,B4:D4) C5:C15

D5 =L$6+d*SUMPRODUCT(G$6:I$6,B4:D4) D5:D15

L8 =1/(1+L9)^20
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value of expected return for a stand in state H with one period (20 years) to go
until the planning horizon:

The formulas in cells B5:D5 are copied down to cell B15:D15, to give the pre-
sent value of the expected return for a stand in each initial state with up to 220
years to go. Note that the present value is the same for 200 or 220 years to go,
so this is a close approximation to the present value with an infinite time
horizon.

The results in cells B15:D15 of Figure 16.3 show that, for a stand managed
under this policy over an infinite length of time, the present value of the expected
return is VL

∗ = $624/ha for a stand that starts in state L, VM
∗ = $2,343/ha for a stand

that starts in state M, and VH
∗ = $7,878/ha for a stand that starts in state H.

In contrast with the expected return per period, the present value of the
expected return depends on the initial stand state. The reason is that stands
with higher initial volume per hectare produce more income early on. In fact,
in this example the present value of the income from the stand in state H is not
much larger than the value of the first harvest (RH = $7,254). On the other
hand, although stands in states L and M produce no immediate income because
they are never harvested, they do have a substantial present value, due to the
return they will provide whenever they do reach state H. For each state, the pre-
sent value of the expected return is the value of the trees and of the land on
which they stand, for the chosen management policy.

16.4 SUMMARY AND CONCLUSION

Markov chain models are essentially tables of probabilities signifying the
chances that a particular system changes from one state to another within a spec-
ified amount of time. They have been applied widely and effectively in forestry.

Even the simplest results of Markov chains can give insights on forest growth
dynamics. In particular, they can help predict the effects of natural or human
disturbances on forest landscapes. They can also be used to project the evolu-
tion of a forest stand over time through specific succession phases. The results
of Markov chain theory, such as mean recurrence time and mean residence
time, help clarify the dynamics of forest stands and their consequences for land-
scape diversity. 

Markov chains are also useful to predict the effects of management policies
under risk. Both economic and ecological criteria can be used. The long-term

V R d p V p V p VH H HL L HM M HH H, ( )

. ( . . . ) $ , /

1 0 0 0

7254 0 38 0 40 0 0 60 0 0 00 0 7 254

= + + +

= + × × + × + × = ha
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expected return per unit of time is independent of initial conditions, but the dis-
counted return depends very much on initial conditions.

Despite their simplicity, Markov models are very general. They have some-
times been criticized for having no memory, the future depending exclusively
on the present, regardless of how it came about. But this is not a valid criticism.
There is no reason why the definition of a state could not include past change,
if so desired. The state definition in a particular model may be too coarse for
good prediction, but this does not question the Markovian principle. In fact,
because all predictions, regardless of method, are based on current information,
it can be argued that all scientific knowledge is Markovian. 

In the next chapter, we shall study how to find best policies, according to
specific criteria, for forest systems described by Markov chains. 

PROBLEMS

16.1 (a) Set up your own spreadsheet model, like the one shown in Figure 16.1,
to predict the probability of stand states and landscape diversity without man-
agement. Using the same data, verify that your results are the same.

(b) Change the data in the spreadsheet in Figure 16.1 so that the initial forest
state is M. How does this change the steady-state probabilities as compared
to those in Figure 16.1? How does this change the landscape diversity over
time?
(c) Change the data in the spreadsheet in Figure 16.1 so that the initial forest
state is H. How does this change the steady-state probabilities as compared
to those in Figure 16.1? How does this change the landscape diversity over
time?
(d) Change the data in the spreadsheet in Figure 16.1 so that the initial forest
state is evenly distributed among the three states. How does this change the
steady-state probabilities as compared to those in Figure 16.1? How does this
change the landscape diversity over time?
(e) On the basis of parts (a)–(c), how does the initial state of the forest affect
the steady-state probabilities? How does it influence the landscape diversity
over time?
16.2 Consider a large forest area that grows without management according

to the transition probabilities in Table 16.2 and that starts with 10% of its area
in state L, 10% in state M, and 80% in state H.

(a) Use the model in Figure 16.1 to predict what fraction of the forest is in
state L, in state M, and in state H over time.
(b) Compare the time it takes for this forest to reach a steady state with the
time it takes for the forest in Figure 16.1. Explain the difference. 
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16.3 Consider a forest that grows without management according to this
table of 20-year transition probabilities.

(a) Compare these probabilities with those in Table 16.2. Give plausible rea-
sons for the differences.
(b) Modify the spreadsheet model in Figure 16.1 to reflect these new prob-
abilities. Explain the changes in the steady-state probabilities and in the evo-
lution of the landscape diversity over time. Is this consistent with your
answer to part (a)?
(c) Calculate the mean residence and mean recurrence times without man-
agement for the transition probabilities given here. Compare these to the
times shown in Tables 16.3 and 16.4. Explain the differences.
16.4 Consider a stand that grows without management according to the

transition probabilities shown in Table 16.2. A harvest policy cuts a stand if and
only if it is in state M, thereby changing it to state L. What is the transition prob-
ability matrix associated with this harvesting policy? 

16.5 (a) Set up your own spreadsheet model, like the one shown in Figure
16.2, to predict the probability of stand states and landscape diversity with man-
agement. Using the same data, verify that your results are the same.

(b) Modify the spreadsheet model to reflect the same harvest policy as in
Problem 16.4. 
(c) How does this change the steady-state probabilities and the landscape
diversity over time as compared to those in Figure 16.2? What is the reason
for the differences?
(d) Calculate the mean residence and mean recurrence times with this man-
agement. Compare these to Tables 16.6 and 16.7. Explain the differences.
(e) Calculate the long-term expected biodiversity performance for this man-
agement policy. Use a biodiversity score of 3 for state L, 7 for state M, and 10
for state H. How does this compare with the expected biodiversity performance
of the original management policy of cutting the stand to state L if and only
if it is in state H?

20-Year Transition Probabilities Without Management

End state j

Begin state i L M H

L .40 .60 .00
M .00 .30 .70
H .00 .05 .95
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16.6 (a) Set up your own spreadsheet model, like the one shown in Figure
16.3, to predict the present value of an initial stand for a specific management
policy. Using the same data, verify that your results are the same.

(b) Change the present value by state at the horizon (t = 0 periods to go)
from 0 to $1,000 for state L, $50 for state M, and $99 for state H. What is the
effect on the present value of the expected return by state? 
(c) Assuming the immediate returns in Table 16.8 and an interest rate of 5%
per year, find the long-term expected periodic income of a stand managed
according to the management policy specified in Problem 16.4. How does
this differ from the expected periodic income from cutting a stand if and only
if it is in state H?
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CHAPTER 17

Optimizing Forest Income
and Biodiversity with
Markov Decision Processes

17.1 INTRODUCTION

The last chapter defined Markov chain models and showed applications of the
models to predict the evolution of stands and forests in the presence of uncer-
tainty. In particular, we predicted how a forest would change over time with-
out management. We also used the model to predict the consequences of a
particular management policy. A policy is a rule that chooses a particular action
when the stand is in a particular state.

In Chapter 16 the Markov model was used to predict the effect of particular
management policies on long-term expected biodiversity performance and
financial returns. These procedures are valuable to compare management alter-
natives. However, the possible number of management policies is infinite. It is
then useful to have methods to determine, among all possible policies, those
that are best according to specific criteria. 

The purpose of this chapter is to present methods to optimize decisions for
forest systems represented with Markov chain models. In particular we shall
first study methods to maximize the present value of the income over an infi-
nite horizon. Then we shall seek management policies that would maximize
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long-term expected biodiversity. Last, we shall learn how to develop compro-
mise solutions, for example, by maximizing expected biodiversity while main-
taining a prescribed level of timber income.

17.2 MARKOV DECISION PROCESS

As in Chapter 16, consider a forest composed of a set of stands in different
states. The volume of timber per unit of land defines the stand state. It may be
low, medium, or high (L, M, or H as in Table 16.1). Natural stand dynamics are
described by the probability that a stand will move from one state to another
over 20 years, as in Table 16.2.

As in the previous chapter, assume that decision makers consider stands for
harvest every 20 years. But instead of either never harvesting or always har-
vesting in the same way, they may now choose between two options for stands
in state M or H: Do nothing or harvest.

One effect of the decision to do nothing or harvest is to change the stand state
and therefore the transition probabilities. If the decision is to do nothing, the
stand will grow according to the transition probability matrix N in Table 17.1.
If the decision is to harvest, the stand will grow according to transition proba-
bility matrix C. Matrix C means that the decision to harvest always brings the
stand to state L, which has a 40% chance of still being in state L after 20 years
and a 60% chance of being in state M.

Another effect of the decision is on the immediate returns. The data in Table
17.2 show that if the stand is in state H, the decision to harvest brings an

TABLE 17.1 20-Year Transition Probabilities According to Decision

No cut Cut
N End state j C End state j
Begin Begin
state i L M H state i L M H

L .40 .60 .00 L .40 .60 .00
M .00 .30 .70 M .40 .60 .00
H .05 .05 .90 H .40 .60 .00

TABLE 17.2 Immediate Return According to Decision

Immediate return Rij ($/ha)

State i No cut (n) Cut (c)

L 0 0
M 0 4,472
H 0 7,254
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immediate return RHc = $7,254/ha, and that if the stand is in state M, the deci-
sion brings an immediate return RMc = $4,472/ha. Harvesting when the stand is
in state L brings no return, so RLc = 0.

A Markov chain model like this, with decisions that lead to different out-
comes, is called a Markov decision process model.

17.3 MAXIMIZING DISCOUNTED 
EXPECTED RETURNS

As a first objective, we seek the policy that maximizes the present value of the
expected income produced by a stand over an infinite horizon. A policy is a rule
that specifies a decision for each stand state. The method of finding the best
policy resembles the backward recursion used in Chapter 16 to find the present
value of expected return from a particular policy. It differs by the presence of a
decision in each stand state.

DYNAMIC PROGRAMMING FORMULATION

Let Vit be the highest present value of expected return from a stand in state i = L,
M, or H, managed with a specific policy, with t periods to go before the planning
horizon. Then the highest present value with t + 1 periods to go is related to the
highest value with t periods to go by this equation:

(17.1)

where pijk is the probability that a stand moves from state i to state j when the
decision is k. For example, piLn is the probability that a stand moves from state
i to state L if the decision is to do nothing. As in Chapter 16, d is the 20-year
discount factor:

where r is the interest rate per year.
Equation (17.1) says that for a stand in state i, the highest present value of

future returns with t + 1 periods to go is equal to the largest immediate return
plus the discounted value of the highest expected future returns with t periods

d
r

=
+
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to go. This maximum is obtained by doing nothing (n) or harvesting (c). Thus,
the best decision is n if:

(17.2)

otherwise, the best decision is c.
The backward recursive calculations of Equation (17.1) begin by setting the

highest net present value of expected return with t = 0 periods to go at some
arbitrary level. For example:

(17.3)

We then calculate the best decision and the highest present value of expected
return for t = 1, 2, … periods to go. Due to discounting, as t increases, Vit

approaches a limit, Vi
∗, the highest present value of the expected returns for a stand

that starts in state i managed according to the best policy for a long (infinite) time.

SPREADSHEET SOLUTION

Figure 17.1 shows a spreadsheet to compute the management policy that max-
imizes forest value. Transition probability matrix N for the “no cut” decision is
in cells B5:D7. Transition probability matrix C for the “cut” decision is in cells
G5:I7. The immediate returns for each state and decision are in cells L5:M7. As
in Chapter 16, the discount factor, d, in cell M9 assumes an interest rate of 5%
per year.

Cells B10:D10 contain the present value by stand state when the horizon is
reached (t = 0 periods to go). It is set at 0, an arbitrary value that does not affect
the solution (see Problem 17.2). The formulas in cells B11:D11 compute the
highest present value by stand state with Equation (17.1) when there is one
period (20 years) to go. For example, the formula in cell D11 gives the highest
present value of expected return for a stand in state H with 1 period (20 years)
to go before the planning horizon:

The formulas in cells G11:I11 record the best decision according to Rule
(17.2). For example, the formula in cell I11 gives the best decision for a stand

V R d p V p V p V

R d p V p V p V

H Hn HLn L HMn M HHn H

Hc HLc L HMc M HHc H

1 0 0 0

0 0 0

0 0 38 0 05 0 0 05 0 0 90 0

7254 0 38 0 40 0 0 60 0 0 00 0 7 254

= + + +

+ + +

= + × + × + ×

+ × + × + × =

max[ ( ),     

         ( )]

      max[ . ( . . . ),    

         . ( . . . )] $ ,

V V VL M H0 0 0 0= = =

( ( ) ( )R d p V p V p V R d p V p V p Vin iLn Lt iMn Mt iHn Ht ic iLc Lt iMc Mt iHc Ht+ + + ≥ + + +
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FIGURE 17.1 Spreadsheet to compute the policy that maximizes present value.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

A B C D E F G H I J K L
PRESENT VALUE MAXIMIZING POLICY

 20-year probability Immediate

No cut (n ) Cut (c ) Return ($/ha)

N L M H C L M H State No cut Cut

L 0.40 0.60 0.00 L 0.40 0.60 0.00 L 0 0

M 0.00 0.30 0.70 M 0.40 0.60 0.00 M 0 4472

H 0.05 0.05 0.90 H 0.40 0.60 0.00 H 0 7254

Years Present value in state: Best decision in:

to go L M H L M H Discount factor, d 0.38

0 0 0 0 0.05

20 0 4472 7254 n c c

40 1011 5483 8265 n c c

60 1392 5864 8646 n c c

80 1536 6008 8790 n c c

100 1590 6062 8844 n c c

120 1611 6083 8865 n c c

140 1618 6090 8872 n c c

160 1621 6093 8875 n c c

180 1622 6094 8876 n c c

200 1623 6095 8877 n c c

220 1623 6095 8877 n c c

Key cell formulas

Cell Formula Copied to

A11 =A10+20 A11:A21

B11 =MAX(L$5+d*SUMPRODUCT(B$5:D$5,B10:D10), B11:B21

M$5+d*SUMPRODUCT(G$5:I$5,B10:D10))

C11 =MAX(L$6+d*SUMPRODUCT(B$6:D$6,B10:D10), C11:C21

M$6+d*SUMPRODUCT(G$6:I$6,B10:D10))

D11 =MAX(L$7+d*SUMPRODUCT(B$7:D$7,B10:D10), D11:D21

M$7+d*SUMPRODUCT(G$7:I$7,B10:D10))

G11 =IF(L$5+d*SUMPRODUCT(B$5:D$5,B10:D10)>= G11:G21

M$5+d*SUMPRODUCT(G$5:I$5,B10:D10),"n","c")

H11 =IF(L$6+d*SUMPRODUCT(B$6:D$6,B10:D10)>= H11:H21

M$6+d*SUMPRODUCT(G$6:I$6,B10:D10),"n","c")

I11 =IF(L$7+d*SUMPRODUCT(B$7:D$7,B10:D10)>= I11:I21

M$7+d*SUMPRODUCT(G$7:I$7,B10:D10),"n","c")

M9 1/(1+M10)^20

Interest rate, r (/y)

M N
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in state H with 1 period to go. Because c gives the highest present value of
expected returns, the best decision is to cut the stand. 

The formulas in cells B11:I11 are copied down to cell B21:I21, to give the
highest present value by stand state and the corresponding best decision for up
to 220 years to go. The highest present value is the same for 200 or 220 years
to go, so the present value at this point is approximately the highest present
value with an infinite time horizon. The corresponding best policy is shown in
cells G21:I21, and it is to harvest the stand if it is in state M or H. Note that in
this example the algorithm already found the best policy at the first iteration
with only 20 years to go. But the best policy is guaranteed only when the pre-
sent value has converged to its maximum.

The results in cells B21:D21 of Figure 17.1 show that, for a stand that starts
in state L and is managed with the best policy over an infinite length of time,
the highest expected present value of returns is VL

∗ = $1,623/ha. For a stand that
starts in state M it is VM

∗ = $6,095, and for a stand that starts in state H it is VH
∗

= $8,877/ha. These are the values of the land and trees, the forest values per unit
area, under the best policy. They are higher than the forest values obtained in
the last chapter with the policy that cut the stand if and only if it was in state H
(see Figure 16.3).

17.4 MAXIMIZING LONG-TERM 
EXPECTED BIODIVERSITY

In Chapter 16 we studied how to compute the expected long-term biodiversity
effect of a particular management policy (see Section 16.3). In particular we
found that by harvesting a stand if and only if it was in state H, the expected
long-term biodiversity value was B = 7.08.

We now consider alternative policies and seek the one that leads to the high-
est expected biodiversity in the long run. The possible stand states and corre-
sponding decisions are still L, M, and H, as defined before. The possible
decisions are to do nothing or to harvest, and harvests are possible only in states
M and H, in which case they change the stand to state L.

Therefore, the transition probability matrices with and without harvest are
the same as in Table 17.1. However, the rewards are different. Table 17.3 shows
that the immediate effect of the cut is to reduce the stand biodiversity index
from 10 to 3 when the stand is in state H, and from 7 to 3 when the stand is in
state M.

In this context, there is no discounting: Biodiversity now is assumed to have
the same value as biodiversity in the future. The objective is to maximize the
expected, or average, biodiversity over an infinite horizon.
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LINEAR PROGRAMMING FORMULATION

Let Sik be the probability of being in state i and making decision k. We know
from the results of Chapter 16 that over a very long time, this probability
reaches a constant, or steady-state, value. Thus, the expression of long-term
expected biodiversity that must be maximized is: 

(17.4)

where Sik is the probability that a stand is in state i = L, M, or H and that the deci-
sion is k = c (harvest) or n (do nothing). These probabilities are unknown.
However, because they are probabilities, they must be nonnegative, and they
must add up to 1:

SLn, SMn,…, SHc ≥ 0 (17.5)

SLn + SMn + … SHc = 1 (17.6)

Furthermore, over a very long time period, the probability that a stand
moves out of a state must be equal to the probability that the stand moves into
that state. This implies:

(17.7)

where the expression on the left of the equality is the probability of exiting
state j by either decision n or decision c. The first term on the right of the equal-
ity is the probability of returning to state j from other states through decision n.
The second term on the right of the equality is the probability of returning to
state j from other states through decision c.

The problem formed by Equations (17.4) to (17.7) is a linear program. The
best solution is Sik

∗, the probability of being in state i and making decision k,

S S S p S p S p S p S p S p

j L M H

jn jc Ln Ljn Mn Mjn Hn Hjn Lc Ljc Mc Mjc Hc Hjc+ = + + + + +

=

( ) ( )

, ,    for  or 

maxB S S S S S SLn Mn Hn Lc Mc Hc= + + + + +3 7 10 3 3 3

TABLE 17.3 Biodiversity Effect of Decision

Diversity score

State i No cut (n) Cut (c)

L 3 3
M 7 3
H 10 3
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under the best policy. The best decision is then derived from this solution
as:

(17.8)

where Din and Dic are the probabilities of making decision n or c, respectively,
when the stand is in state i and under the best policy to maximize the long-term
average biodiversity. 

In contrast with the case of the highest present value, the highest expected
biodiversity is independent of the stand state. But as in the case of the highest
present value, the best decision depends only on the stand state. And the best
decision is also deterministic; that is, Din and Dic are always 0 or 1 and the deci-
sion is either n or c all the time. However, as will be seen in Section 17.5, the
solution may not be deterministic with additional constraints. 

SPREADSHEET SOLUTION

Figure 17.2 shows a spreadsheet to compute the management policy to maxi-
mize the long-term expected biodiversity. The bold entries are data; the rest are
decision variables or depend on the decision variables. Cells B6:G8 contain the
transition probability matrix with harvest and the transition probability matrix
without harvest. These two matrices are the same as in Figure 17.1, but they are
transposed, rows becoming columns, to simplify the formulas.

The decision variables of the linear program, the probabilities of being in a
state and making a decision, are in cells B14:G14. Cells B16:G16 contain the
biodiversity scores for each stand state and decision according to Table 17.3.
Cell H16 contains the formula of the objective function, corresponding to Equa-
tion (17.4). Cells H17:H19 contain the left-hand side of the steady-state con-
straints of Equation (17.7) rewritten as:

Cell H20 contains the left-hand side of Constraint (17.6).
Cells B21:G21 contain the formulas to calculate the best decision according

to Equation (17.8).

( ) ( )

          , ,  ( . )
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Figure 17.3 shows the Solver parameters to maximize the long-term
expected biodiversity. The target cell, H16, contains the formula of the objec-
tive function. The Solver seeks the largest long-term biodiversity by changing
cells B14:G14, the probabilities of being in a state and making a given decision.
The optimization is done subject to:

The nonnegativity constraints: B14:G14 >= 0
The steady-state constraints corresponding to Equation (17.7): H17:H19 =

K17:K19
The restriction that the decision variables must add up to unity: H20 = J20

FIGURE 17.2 Spreadsheet to maximize long-term expected biodiversity.

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15

16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K
MAXIMIZING EXPECTED BIODIVERSITY

20-yr transition probability

No cut (n) Cut (c)

Start state i

End j L M H L M H

L 0.40 0.00 0.05 0.40 0.40 0.40

M 0.60 0.30 0.05 0.60 0.60 0.60

H 0.00 0.70 0.90 0.00 0.00 0.00

-1 0 0 -1 0 0

0 -1 0 0 -1 0

0 0 -1 0 0 -1

Probability of state and decision:

S Ln S Mn S Hn S Lc S Mc S Hc

0.07 0.12 0.82 0.00 0.00 0.00

Biodiversity score: Total

State: 3 7 10 3 3 3 9.2 max

L -0.60 0.00 0.05 -0.60 0.40 0.40 0.0 = 0

M 0.60 -0.70 0.05 0.60 -0.40 0.60 0.0 = 0

H 0.00 0.70 -0.10 0.00 0.00 -1.00 0.0 = 0

1 1 1 1 1 1 1.0 = 1

Decision 1 1 1 0 0 0

Key cell formulas

Cell Formula Copied to

B17 =B6+B9 B17:G19

H17 =SUMPRODUCT(B17:G17,B$14:G$14) H17:H20

B21 =B14/(B14+E14) B21:D21

E21 =E14/(B14+E14) E21:G21
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The best solution, shown in Figure 17.2 in cells B14:G14, is:

That is, under the best policy, the stand is in state L and not cut 7% of the time.
It is in state M and not cut 12% of the time, and it is in state H and not cut 82%
of the time.

The corresponding best policy, shown in Figure 17.2 in cells B21:G21, is:

Thus, the probability of not harvesting is 1 regardless of the stand state, which
means that the stand is never harvested. Letting nature take its course, we will
observe the stand 7% of the time in state L, 12% of the time in state M, and 82%
of the time in state H. The linear program has another best solution, but with
the same long-term expected biodiversity (see Problem 17.4).

As in the case of present value maximization, the decision that maximizes
long-term expected biodiversity depends only on the stand state. But in contrast
to the highest present value, the highest long-term expected biodiversity is
independent of the stand state. Cell H16 in Figure 17.2 shows a maximum long-
term expected biodiversity score of 9.2, which is the same (apart from round-
off errors) as that predicted in Chapter 16 for an unmanaged stand, as it should
be.

D D D D D DLn Mn Hn Lc Mc Hc= = = = = =1 0 and    

S S S S S SLn Mn Hn Lc Mc Hc
∗ ∗ ∗ ∗ ∗ ∗= = = = = =. ,    . ,    . ,     07 12 82 0

FIGURE 17.3 Solver parameters to maximize expected biodiversity.
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IMPLICATIONS FOR THE FOREST LANDSCAPE

As noted in the previous chapter, the long-term probability of a stand state can
also be interpreted as the fraction of a large forest that is in a particular state in
the long run. Thus, an implication of the solution just obtained is that in a large
forest that is left unmanaged, we should eventually observe on average 7% of it
covered with stands in state L, 12% with stands in state M, and 82% with stands
in state H. Of course, these are exactly the long-term probabilities of stand states
that were obtained in the last chapter in predicting the stochastic evolution of
a forest in a given initial state and with no harvesting (see Section 16.3). 

17.5 MAXIMUM EXPECTED BIODIVERSITY
WITH INCOME CONSTRAINT

The policy that maximizes the long-term expected biodiversity calls for never
harvesting the stand. Contrasting this with the policy that maximized present
value of timber harvest, we see that this policy has a high opportunity cost
($1,623/ha to $8,877/ha in present value of expected return, depending on the
stand state). For some owners, this cost may not be acceptable, and some com-
promise solution would be called for. 

A possible way of designing such a compromise is to seek a policy that max-
imizes long-term expected biodiversity while providing a specified income. To
be consistent with the model framework, the income must be stated as a long-
term expected periodic income. For example, assume that the owners of the
forest we have studied so far want to maintain an expected yearly return of
$50/ha in the long run. This is equivalent to a long-term expected periodic
return of $1,000/ha for the 20-year periods used in our model. 

For this to hold, the decision variables in the linear program that we have
just solved must also satisfy this constraint:

where the left-hand side of the constraint is the long-term expected income
every 20 years. The coefficients are the returns from each stand state and deci-
sion shown in Table 16.8, while the variables are the probabilities of being in a
state and making a decision, which we seek to optimize. 

The remainder of the linear program is the same as in the previous section.
Figure 17.4 shows a spreadsheet to compute the maximum expected long-term
biodiversity with this additional constraint. This spreadsheet is the same as that

0 0 0 0 4 472 7 254 1 000S S S S S SLn Mn Hn Lc Mc Hc+ + + + + ≥, , ,
($/ha) ($/ha)

    ($/ha)
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in Figure 17.3, except for the addition of the income constraint in row 21. The
corresponding Solver parameters are in Figure 17.5. 

The best solution, shown in Figure 17.4 in cells B14:G14, shows that com-
pared to the biodiversity maximizing policy, the probability of states L and M
increase to .13 and .26, respectively, while the probability of state H decreases
to .47 + .14 = .61. The maximum expected biodiversity decreases from 9.2 to
7.3, while the expected periodic income increases from 0 to $1,000/ha. 

However, in contrast with the pure biodiversity maximizing policy, the best
policy with the income constraint, shown in Figure 17.4 in cells B22:G22, is not
deterministic. While states L and M still call for no harvesting, state H calls for
no harvest 77% of the time and for a harvest 23% of the time. This more com-
plicated policy can be implemented by drawing a random number every time a

FIGURE 17.4 Spreadsheet to maximize long-term expected biodiversity with income constraint.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

A B C D E F G H
MAXIMIZING EXPECTED BIODIVERSITY (INCOME >= 1000)

20-yr transition probability

No cut (n) Cut (c)

Start state i

End j L M H L M H

L 0.40 0.00 0.05 0.40 0.40 0.40

M 0.60 0.30 0.05 0.60 0.60 0.60

H 0.00 0.70 0.90 0.00 0.00 0.00

-1 0 0 -1 0 0

0 -1 0 0 -1 0

0 0 -1 0 0 -1

Probability of state and decision:

S Ln S Mn S Hn S Lc S Mc S Hc

0.13 0.26 0.47 0.00 0.00 0.14

Biodiversity score: Total

State: 3 7 10 3 3 3 7.3 max

L -0.60 0.00 0.05 -0.60 0.40 0.40 0.0 = 0

M 0.60 -0.70 0.05 0.60 -0.40 0.60 0.0 = 0

H 0.00 0.70 -0.10 0.00 0.00 -1.00 0.0 = 0

1 1 1 1 1 1 1.0 = 1

Income: 0 0 0 0 4472 7254 1000 >= 1000

Decision: 1 1 0.772 0 0 0.23 ($/ha/20y)

Key cell formulas

Cell Formula Copied to

B17 =B6+B9 B17:G19

H17 =SUMPRODUCT(B17:G17,B$14:G$14) H17:H21

B22 =B14/(B14+E14) B22:D22

E22 =E14/(B14+E14) E22:G22

I J
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stand in state H is considered for harvest and cutting the stand to state L if the
random number is greater than 0.77 and not cutting it otherwise. 

17.6 SUMMARY AND CONCLUSION

Markov decision process models introduce decision making in forest systems
that evolve according to a Markov chain. A policy is a rule that specifies a deci-
sion for each stand state. 

A recursive method was used here to optimize the present value of expected
returns from a stand state over an infinite horizon. The maximum present value
depends significantly on the stand state. The best policy is stationary, indepen-
dent of time and depending only on stand state. The best policy is also deter-
ministic, calling always for a unique decision for each state. 

Decisions that maximize a long-term expected value criterion, such as the
long-term expected biodiversity of a stand or the long-term expected periodic
income, were found by linear programming. The maximum expected return is
independent of the stand state. The best policy is stationary and deterministic.
Multiple-objective policies, such as maximizing long-term expected biodiversity
with a floor on long-term expected income, can be found readily by adding
appropriate constraints. But in that case, the best policies are not necessarily
deterministic.

Markov decision process models are a very powerful approach to optimizing
forest systems under risk. The approach consists first in transforming the ini-
tial system, possibly represented with a complex stochastic simulator, in a table

FIGURE 17.5 Solver parameters to maximize expected biodiversity with income constraint.
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of transition probabilities, as in a Markov chain, and then bringing the power
of optimization to this simplified model. 

PROBLEMS

17.1 Consider Recursive Equation (17.1) to maximize present value and
Equation (17.2) to find the best policy.

(a) Write out these equations using the transition probabilities in Table 17.1,
the immediate returns in Table 17.2, and an interest rate of 5% per year.
(b) Verify by hand the results obtained in the spreadsheet model to compute
the best policy (Figure 17.1) for the first two iterations (20 years to go and
40 years to go). 
17.2 (a) Set up your own spreadsheet model, like the one shown in Figure

17.1, to identify the policy that maximizes present value. Using the same data,
verify that your results are the same. 

(b) Change the maximum present value of expected returns with t = 0 peri-
ods to go from 0 to other values of your choice for states L, M, and H. How
does this change the highest present value of expected returns over an infi-
nite horizon?
17.3 Write out Constraint (17.9) with the transition probabilities in Table

17.1, and verify that they correspond to the formulas in rows 17–19 of the
spreadsheet model shown in Figure 17.2.

17.4 (a) Set up your own spreadsheet model, like the one shown in Figure 17.2,
to identify the policy that maximizes long-term expected biodiversity. Using the
same data, verify that your results are the same. You may find two different solu-
tions by running the Solver twice. Are the biodiversity implications of the two
solutions different? (Hint: In Table 17.3, compare the effect on the diversity score
of a policy that cuts in state L with one that does not).

(b) Based on the immediate returns in Table 17.2, use this spreadsheet
model to find the policy that maximizes expected periodic income instead
of the expected biodiversity. What is the effect of this policy on expected
biodiversity?
(c) Add a constraint to this spreadsheet model to force the expected biodi-
versity score to be at least equal to 75% of the maximum value achievable
without harvesting while maximizing expected periodic income.
17.5 (a) Set up your own spreadsheet model, like the one shown in Figure 17.4,

to find the policy that maximizes long-term biodiversity with an income con-
straint. Using the same data, verify that you get the same results.

(b) Reduce the income constraint to $750/ha/20 y. What is the effect on the
best policy and on the expected biodiversity?
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CHAPTER 18

Analysis of Forest
Resource Investments

18.1 INTRODUCTION

Many of the things foresters do are investments for the future. In fact it is the
very long time required to grow trees of commercial value that distinguishes
forestry from most other economic activities.

Investment analysis is not new to us. In several of the previous chapters we
studied decisions that involved future costs and returns. We routinely discounted
these costs and returns to the present with interest rates, and compared alterna-
tives based on their present value. In doing so, we were doing investment analy-
sis without knowing it, just like Molière’s Monsieur Jourdain was talking prose.

The purpose of this chapter is to study the rationale and methods of invest-
ment analysis in more detail. We shall start with a brief review of the theory of
investment and interest rate. These concepts will then be used to justify the
objective of present-value maximization, a criterion we used in past chapters.
This will be followed by the study of other criteria that are commonly used to
evaluate and compare investments. We shall then examine how inflation should
be handled in investment analysis. Finally we shall make some suggestions
regarding the choice of appropriate interest rates for forestry investments.
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18.2 INVESTMENT AND INTEREST RATE

In past chapters, we have often suggested, without justifying it, that forest
resource managers should compare the net present value of different courses of
action, that is, the discounted value of future benefits minus future costs. To
understand why this is appropriate, we need a broader view of the concepts of
investment and interest rate.

To this end we shall use a model of a very simple economy, that of Robinson
Crusoe. Wheat is his essential crop, and we shall ignore the rest. Every year,
Robinson must decide how much wheat to consume to make bread and how
much to set aside as seed. The amount of wheat he saves for planting is his
investment. How much should he invest?

The factors that influence Robinson Crusoe’s decision are summarized in
Figure 18.1. The amount of wheat he consumes this year is C0, and C1 is the
amount he will have next year. 

PRODUCTIVITY OF INVESTMENTS

The amount of wheat that Robinson Crusoe invests depends in part on the
yield from what he plants. In Figure 18.1 this is represented by curve AB, the

FIGURE 18.1 Optimum investment and interest rate.
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production possibility frontier of Robinson Crusoe. Point A refers to zero invest-
ment: Robinson consumes everything this year and has nothing the next. Point
B is the case where he does not eat any bread this year and invests all his wheat
in the future crop. 

Curve AB is very steep close to point A. This shows that the first bushels of
seed saved and planted have a high yield per bushel. However, as the quantity
planted increases, the yield of each additional bushel of seed gradually decreases.
Yields diminish because Robinson has limited resources. He can take great care
of the first plot he plants, but the more he plants the more he loses to birds and
drought. Ultimately, he reaches a point where he can barely recover the addi-
tional seed he plants. Of course, there is no reason for Robinson to invest that
much. It is the high productivity of the first bushels planted, the fact that Robin-
son gets much more next year than he sacrifices now, that motivates him to set
aside any of his wheat for planting. In sum, one of the reasons for making
investments is their productivity, that they promise to return more in the future
than what we sacrifice now to make them. 

TIME PREFERENCE

Robinson Crusoe does not have all the wheat he wants, so it is a great sacrifice
for him to put aside some of his crop. He is often tempted to give up part of the
potential future harvest for a good loaf of bread now. Thus, a bushel of wheat
next year is worth less to him than a bushel now. 

This time preference for wheat is represented in Figure 18.1 by three indif-
ference curves. The indifference curve E1, for example, represents combinations
of current and future wheat consumption among which Robinson is indifferent.
The curve is steeper as current consumption, C0, decreases. This means that the
less wheat Robinson has now, the more valuable it is to him, so any additional
sacrifice in current consumption must be compensated by a considerable
increase in future consumption for Robinson to accept the trade.

Note that the farther away an indifference curve is from the origin, the higher
the level of well-being associated with that curve. Consider any point on indif-
ference curve E1. There is at least one point on indifference curve E2 that implies
a higher level of both current and future consumption (check this). If more is
better, Robinson must then prefer any combination of present and future con-
sumption on E2 than any on E1.

OPTIMUM INVESTMENT

The best level of investment for Robinson Crusoe is the one that allows him
to reach the highest possible indifference curve, given his production possi-
bility frontier. Thus, the optimum investment is defined by the point where the
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production possibility frontier, AB, is tangent to an indifference curve. This
is the point T in Figure 18.1, where AB is tangent to indifference curve E∗. The
optimum investment is I∗, which corresponds to the optimum current con-
sumption, C0

∗, and the optimum future consumption, C1
∗.

INTEREST RATE

The slope of the tangent of AB and E∗ at T defines Robinson Crusoe’s interest
rate. To be precise, let r be the rate of interest expressed as a positive fraction
per year. Then the following relation defines r:

(18.1)

where the derivative of C1 with respect to C0 is taken at T either along AB or
along E∗. Equation (18.1) means that at the optimum investment level, a one-
unit decrease in current consumption for purpose of investment is just com-
pensated for by a 1 + r increase in future consumption. Thus, the interest rate
is, by definition, the trade-off rate at which Robinson Crusoe is willing to
exchange this year’s consumption for next year’s when he uses his resources in
the best way to reach his highest possible level of well-being.

The investment decision in the simple Robinson Crusoe economy we have
used so far can be generalized to decisions in very complex modern economies
with many time periods and many goods and services. The principles remain
the same. At least part of what every economic system produces can be either
consumed or saved. What is saved can in turn be invested in a process that will
produce something in the future. Investment is thus a sacrifice in current con-
sumption. The sacrifice is induced by the net productivity of investments: They
promise to return more than they cost. However, the attractiveness of investing
is limited by people’s time preference, the fact that one unit of anything tomor-
row is worth less than one unit today. The rate at which current consumption
is traded for future consumption at the optimum is the interest rate.

PRESENT-VALUE MAXIMIZATION

We are now ready to answer the question we posed at the beginning of the pre-
vious section. In making investment decisions, why should one maximize net
present value?

Consider again the economy symbolized by Figure 18.1. Assume that we
know the interest rate, r. Then the net present value of consumption over the

dC

dC
r1

0

1= − +( )
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two time periods is, by definition:

(18.2)

The notations PV(C0) and C1(C0) mean that PV and C1 are functions of C0. Differ-
ent levels of current consumption, C0, correspond to different levels of investment.
These in turn lead to different levels of future consumption, C1. In Figure 18.1 the
relationship between future and current consumption is represented by the pro-
duction possibility frontier AB.

To maximize PV, C0 must be such that the first derivative of PV with respect
to C0 is zero:

That is, by differentiating the right-hand side of equation (18.2): 

or

(18.3)

But this is just Equation (18.1), which must be true for the level of current con-
sumption, C0

∗, which corresponds to the optimum investment, I∗. Therefore,
maximizing present value does lead to the best level of investment, within the
assumptions of our model.

Note, however, that the reasoning we have followed assumes that the “correct”
interest rate, r, is known. In fact, it is difficult to choose an appropriate interest
rate for investment analysis, but not much more difficult than for any other price.
We shall return to this problem at the end of the chapter. Meanwhile, let us
assume that we have a proper guiding rate of interest to evaluate forestry
investments.

We now turn to the study of practical criteria for investment analysis. In
doing this we shall apply the principle we have just established: To be any good,
an investment criterion must be consistent with net present-value maximization. 
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18.3 INVESTMENT CRITERIA

NET PRESENT VALUE

The net present value (or present net worth) criterion extends Equation (18.2)
to consider projects that generate costs and benefits over many years. Let Bt be
the economic benefits in year t, and let Ct be the corresponding costs, both
measured in dollars. In addition, let r be the guiding rate of interest, expressed
as a fraction per year, and n be the duration of the project, in years. Then the
present value of all costs is:

where the ratio 1/(1 + r)t is the discount factor, that is, the present value of one
dollar occurring t years from the present. Similarly, the present value of all the
benefits is: 

The net present value of the project is then the difference between the two:

(18.4)

or, equivalently, it is the present value of the net returns in every year of the
project:

(18.5)

The present value criterion is extremely simple to apply: Any project with a
positive net present value is worth doing.

Figure 18.2 shows an example of net-present-value calculation with a
spreadsheet. The example deals with a reforestation project for a tract of land
planted to ponderosa pine. The bold entries in the spreadsheet indicate the
data. The other entries are the results of formulas. Costs are incurred to plant
the land and subsequently for precommercial thinning, commercial thinning,
and final harvesting. Benefits from thinnings occur at ages 30 and 50 years. The
main benefit comes from a final harvest, expected at age 65. 
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The formulas in cells E4:E8 calculate the value of the discount factor in
various years. For example, with an interest rate of 3% per year, the present
value of each dollar occurring 65 years from the present is only $0.15. 

The total discounted value of costs, calculated in cell F9, is $2,100/ha, while
that of benefits, in cell G9, is $3,725/ha. Therefore, the net present value of
this project, in cell H9, is: $3,725 − 2100 = $1625/ha (due to rounding, the
spreadsheet shows $1,624/ha). Since this net present value is positive, the
project is worth doing, on purely financial grounds and based only on timber
values.

BENEFIT–COST RATIO

The benefit–cost ratio (BC) of a project is the present value of the benefits
expected throughout the life of the project, divided by the present value of the
costs. With the definitions used earlier, this is:

(18.6)

The benefit–cost ratio is dimensionless. For example, the benefit–cost ratio
of the ponderosa pine reforestation project described in the spreadsheet in
Figure 18.2 is given by the formula in cell G10 as 3,724/2,100 = 1.77.
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FIGURE 18.2 Spreadsheet to compute the net present value and the benefit–cost ratio of a pon-
derosa pine reforestation project.
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PONDEROSA PINE REFORESTATION (NPV & B/C RATIO)

Cost Benefit Discount PV(cost) PV(benefit) NPV
Operation Year ($/ha) ($/ha) factor ($/ha) ($/ha) ($/ha)

Plant 0 1460 0 1.00 1460 0 -1460

Precommercial thin 10 610 0 0.74 454 0 -454

Thin 30 200 2270 0.41 82 935 853

Thin 50 200 2280 0.23 46 520 474

Final harvest 65 400 15500 0.15 59 2269 2211
Interest rate (/y) 0.03 Total 2100 3725 1624

Benefit-cost ratio 1.77

Key cell formulas

Cell Formula copied to

E4 =1/(1+$B$9)^B4 E4:E8

F4 =C4*$E4 F4:G8

F9 =SUM(F4:F8) F9:H9

G10 =G9/F9

H4 =G4-F4 H4:H8
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A project that has a benefit–cost ratio of unity has a net present value equal
to 0. To see this, set BC = 1 in Equation (18.6). This leads to: 

That is, the present value of the benefits and of the costs are equal, and thus,
from Equation (18.4), NPV = 0.

Similarly, a project that has a benefit–cost ratio greater than unity has a
positive net present value. One with a benefit–cost ratio less than unity has a
negative net present value.

We know already that only projects of positive NPV are worth doing. Thus, a
project evaluated with the benefit–cost ratio criterion should be accepted only if
its benefit–cost ratio is greater than 1. Used correctly, the benefit–cost ratio is equiv-
alent to the net-present-value criterion in distinguishing good from bad projects.

INTERNAL RATE OF RETURN

The internal rate of return of a project is the interest rate such that the net pre-
sent value of the project is equal to zero. 

Given the definition of net present value of Equation (18.5), the internal rate
of return is the interest rate that satisfies, for a given stream of benefits and
costs, this equation:

(18.7)

Equation (18.7) also shows that the internal rate of return is the interest rate
for which the present value of returns just balances the present value of costs.

Let r∗ be the internal rate of return, that is, the particular value of r that
solves Equation (18.7). Equation (18.7) is a polynomial equation of degree n in
r; thus it may have up to n real roots. Therefore, the definition of the internal
rate of return is ambiguous. But this is not crucial in most practical applications
because the root we are seeking is an interest rate, that is, a number usually
between 0 and 1. In fact, in that interval, the net present value of most projects
decreases monotonically as the interest rate increases.

An example of this relation between net present value and interest rate is
shown in Figure 18.3, which corresponds to another range of the spreadsheet
in Figure 18.2. It uses the benefit and cost data in Figure 18.2, and computes
the net present value for given interest rates ranging from 1% to 7% per year.
The following steps obtain this table in Excel:
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1. Set cell K3 equal to cell H9 in Figure 18.2, which contains the formula
of the net present value.

2. Select the range of cells J3:K10.
3. On the data menu, click Table. In the Column input cell box, enter cell

B9 in Figure 18.2, which contains the interest rate. 

The results in Figure 18.3 show that the net present value decreases as the
interest rate increases. This happens because, with the costs and benefits of this
example, the formula of the net present value is:

As the interest increases, the present values of future benefits and costs decreases
but the initial cost remains the same.

Graphic Solution

A simple graphical method of determining the internal rate of return is to graph
the function NPV(r) for a few values of r. The point where the graph intersects
the horizontal axis is the internal rate of return. This was done in Figure 18.4
for the present example, which shows that the internal rate of return is about
4.3% per year, by definition, because at that rate the net present value is zero.
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FIGURE 18.3 Spreadsheet to compute the net present value at various interest rates.
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Another use of Figure 18.4 is to derive the investment decision rule for the
internal rate of return. The figure shows that the net present value of a project
at a rate of interest smaller than the internal rate of return is positive. Conversely,
the net present value at a rate of interest greater than the internal rate of return
is negative.

Consequently, the rule is: Accept a project if its internal rate of return is
greater than the guiding rate of interest. In that case, the net present value of
the project is positive.

Spreadsheet Solution

A quicker and more precise way of finding the internal rate of return is with a
spreadsheet. Figure 18.5 shows the setup to do this for our example. The
spreadsheet is identical to that in Figure 18.2, but the interest rate is now a
variable instead of an input parameter.

The internal rate of return is the interest rate that makes the net present
value equal to zero. It can be found with the Excel Solver with the setting shown
in Figure 18.6. The target cell is the net present value in cell H9, which must
have the value of zero. Changing cell B9 contains the internal rate of return. The
constraint states that the internal rate of return must be positive. In the options
of the Solver, specify that the model is nonlinear. Indeed, the net present value
is a highly nonlinear function of the interest rate.

The Solver results in Figure 18.5 show that the internal rate of return is 4.25%
per year. At that interest rate, the net present value of the costs, $1,971/ha is just
equal to the net present value of the benefits, the net present value of the refor-
estation project is 0, and the benefit–cost ratio is 1. 

FIGURE 18.4 Graphic determination of internal rate of return.
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SHORTCOMINGS OF BENEFIT–COST RATIO AND

INTERNAL RATE OF RETURN

The conclusion of the previous section is that net present value, benefit–cost
ratio, and internal rate of return all correctly discriminate projects that con-
tribute to net present value from those that do not. For that purpose, it does not

FIGURE 18.5 Spreadsheet to find the internal rate of return.

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
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PONDEROSA PINE REFORESTATION, INTERNAL RATE OF RETURN

Cost Benefit Discount PV(cost) PV(benefit) NPV
Operation Year ($/ha) ($/ha) factor ($/ha) ($/ha) ($/ha)

Plant 0 1460 0 1.00 1460 0 -1460

Precommercial thin 10 610 0 0.66 402 0 -402

Thin 30 200 2270 0.29 57 651 594

Thin 50 200 2280 0.12 25 284 260

Final harvest 65 400 15500 0.07 27 1036 1009

Internal rate of return 0.0425 Total 1971 1971 0

(/y) Benefit-cost ratio 1.00

Key cell formulas

Cell Formula copied to

E4 =1/(1+$B$9)^B4 E4:E8

F4 =C4*$E4 F4:G8

F9 =SUM(F4:F8) F9:H9

G10 =G9/F9

H4 =G4-F4 H4:H8

FIGURE 18.6 Solver parameters to find the internal rate of return. 



384 Decision Methods for Forest Resource Management

matter which criterion we choose. However, there may be reasons for which we
cannot do all projects that have a positive NPV. Limited resources may force a
choice among projects that could, if implemented, increase present value. In
that case, ranking projects according to their benefit–cost ratio or internal rate
of return may lead to the wrong decision.

Benefit–Cost Ratio

To illustrate how the benefit cost ratio criterion may fail to maximize present
value, let us consider two projects, a and b. Only one of the two projects can be
done. Let BCi be the benefit–cost ratio, PVBi be the present value of benefits,
PVCi be the present value of costs, and NPVi be the net present value of project
i(i = a or b).

Assume the following data for the two projects:

Benefits: PVBa = $150,000 PVBb = $250,000
Costs: PVCa = $50,000 PVCb = $100,000

Thus, the benefit–cost ratios are:

while the net present values are:

Choosing the project with the highest benefit–cost ratio would lead to choos-
ing project a. But this would be wrong, because project b has in fact a higher
net present value. This shortcoming of the benefit–cost ratio stems from its
being a ratio, which ignores the scale of a project.

Internal Rate of Return

Choosing projects of highest internal rate of return may also fail to maximize
present value. Figure 18.7 illustrates how this may happen. The figure shows
the graphs of the net present value of two projects, NPVa (r) and NPVb (r), as
functions of the interest rate, r. The graphs cross at the interest rate rm. By def-
inition, the internal rate of return of project a is ra

∗, that of project b is rb
∗. Since

rb is greater than ra, using the internal rate of return as the investment criterion
leads to selecting project b.

Assume, however, that the proper guiding rate of interest is r0. At that rate,
the net present value of project a is greater than that of b, and project a should
be selected. 
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The graph shows that the internal rate of return criterion leads to the wrong
decision when the guiding rate of interest is less than rm, the rate at which the
net-present-value graphs cross. If the guiding rate is greater than rm or if the
graphs do not cross, then the internal rate of return leads to a choice that is con-
sistent with maximizing net present value.

In summary, projects with the highest benefit–cost ratio or the highest
internal rate of return do not necessarily have the highest net present value. But
this does not mean that benefit–cost ratios and internal rates of return are use-
less. First, as seen earlier, they separate correctly projects that are economical
from those that are not. Second, they provide information that complements net
present value. In particular, people are familiar with the concept of rates of
return. For example, the statement that a eucalyptus plantation has a rate of
return of 5% per year has more meaning to most people than the fact that its
net present value is $750 per hectare.

18.4 CHOICE OF PROJECTS
UNDER CONSTRAINTS

The previous section showed a sure way of choosing between two projects:
Select the one with highest net present value. The problem is more difficult if
there are several projects to choose from and several that can be done with the
available resources. This is a situation that foresters face regularly. For example,

FIGURE 18.7 Internal rate of return inconsistent with net present value. 
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in any given year, many tracts of land may be suitable for reforestation, but due
to a limited stock of seedlings or to a limited budget or both, only a few of the
tracts can be planted.

PROJECTS LIMITED BY ONE RESOURCE

If a single resource limits the number of projects, then a simple method can be
used to select those that maximize total net present value. Let R be the maxi-
mum amount of the constraining resource, say the number of seedlings in
stock. Let Ri be the amount of resource needed for project i (i = 1,…, n, where
n is the number of projects). In our example Ri would be the number of seedlings
necessary to plant the ith tract. Finally, let NPVi be the net present value of pro-
ject i if it is completely done. In our example, this would be the present value
of the expected returns minus all the costs that will occur up to the final har-
vest on the ith tract of land.

Then define the net present value–resource ratio for project i, NPRi as:

In our example, NPRi would be the net present value per seedling. There is
a simple way to determine the subset of projects that maximizes total net pre-
sent value given the resource limit R. It consists in ranking all projects in
decreasing order by net present value–resource ratios and then going down the
list until the resource is exhausted. This procedure is a steepest-ascent algo-
rithm (like the simplex method in Chapter 3). Each additional unit of a limit-
ing resource is used in the project where it increases net present value the most.

This method works regardless of the resource involved, be it money, land,
hours of labor, seedlings, etc. Suppose, to pursue the previous example, that the
limiting resource is not the stock of seedlings but the budget for reforestation
in the current year. Then NPRi would be the ratio of net present value to the
cost needed this year to reforest tract i. Note, however, that NPRi is not the
benefit–cost ratio, since the denominator is only this year’s cost, not the pre-
sent value of the costs incurred over the life of the project.

One limitation of this simple method is that it works perfectly only if pro-
jects are divisible, that is, if it is possible to do only part of a project. We shall
return later to the case of indivisible projects.

PROJECTS LIMITED BY MANY RESOURCES

If the number of projects that can be done is limited by more than one resource,
then a more general linear programming model must be used. The purpose of

NPR
NPV

i
i
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=



Analysis of Forest Resource Investments 387

the model is to find the set of projects that maximizes total net present value
without exceeding the available resources.

Let Xi be a decision variable that indicates to what extent project i should be
done. There are n projects in total; thus i = 1,…, n. Assume again that projects
are divisible; thus Xi is a continuous variable of value between zero and 1. Pro-
ject i is all done if Xi = 1, not done at all for Xi = 0, and partly done otherwise. 

Let Rk be the amount of resource k available to do the projects. There are m
such resources; thus k = 1,…, m. Furthermore, let Rik be the amount of resource
k needed to complete project i.

Finally, let NPVi be the net present value of project i if it is completed. We
shall assume that the net present value of a project is directly proportional to
its level of completion. Thus, the net present value of project i is Xi NPVi.

Consequently, the expression of the objective function, the total net present
value of all projects, is:

(18.8)

while the m resource constraints are:

(18.9)

where the left-hand side of each inequality expresses the use of resource k by
all projects. Thus each constraint states that the total amount of resource used
cannot exceed what is available.

The best solution of this linear program X1
∗, X2

∗,…, Xn
∗ shows how much of

each project should be done to maximize the total net present value.

INDIVISIBLE PROJECTS

The methods already discussed should suffice for most cases of project selec-
tion in forestry. However, there may be a few situations where projects are not
divisible. That is, projects must be done completely or not at all. In that case
the linear program of Equations (18.8) and (18.9) may have to be changed into
an integer programming program. This can be done by changing the variables
Xi to integer variables that take the value 1 if project i is selected or 0 otherwise. 

If the number of projects is not too large, integer solutions can be found with
spreadsheet optimizers such as the Excel Solver with a simple change of option
(see Chapter 11). Otherwise, rounded solutions of the ordinary linear program
may give results that are close to the best solution if many projects are being
considered.
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18.5 INFLATION AND INVESTMENT ANALYSIS

Up to now we have assumed that the net present value of a forest resource
investment could be computed without ambiguity once appropriate prices and
interest rates were known. However, the fact that prices change over time
causes some difficulties. This is especially troublesome for forestry investments
that take many years to mature.

NOMINAL AND REAL PRICE CHANGES

In considering prices over a specific time interval [0, t] one must distinguish
nominal from real price changes. Nominal price changes are just changes of
observed market prices. Real price changes refer instead to the change in the
price of a good or service relative to the prices of all other goods and services. 

To define real prices, we need an indicator of the general price level. In the
United States, the producer price index can be used to that end for an interme-
diate good, such as timber. The consumer price index can be used to calculate
the real price of a consumer good, such as forest recreation.

Let I0 and It be the level of the producer price index in years 0 and t, respec-
tively. Let P0 and Pt be the nominal prices of the good of interest, say softwood
lumber, in those years. Finally, let Pt′ be the real price of softwood lumber at
time t. Then, by definition:

(18.10)

That is, the real price change is equal to the nominal price change divided by
the change in the general price level. Consequently, if there is no inflation or
deflation, meaning It = I0, then the real and the nominal price change are equal. 

If there is inflation, then It > I0 and the real price change is less than the nom-
inal change. If there is deflation, the reverse is true. In the remainder of this sec-
tion we will talk about inflation only, but it should be clear that deflation (a
general decline of the price of all goods and services) has just the opposite effect
of inflation; we just do not see it happen very often.

Example

Let us determine the real change of the price of timberland in Vilas County, in
northern Wisconsin, between 1975 and 1994. Data from the Wisconsin Depart-
ment of Revenue show that the average price of timberland in 1975 was about
$532, while in 1994 it was $958. These are nominal prices, unadjusted for infla-
tion. Meanwhile, data from the United States Bureau of Labor statistics show that
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the producer price index for all intermediate goods was 53 in 1975 and 126 in
1994. We use this as the index of inflation because timberland is an intermedi-
ate good: It is used to produce timber. If instead the land were (much more
expensive) shoreline property, then the consumer price index would be a better
standard of inflation. 

Nominal price change of timberland:

Change of general price level:

Thus, over those years, the price of timberland has increased less than the price
of all intermediate goods reflected by the producer price index. Therefore, the real
price of timberland relative to the price of the producer goods had decreased
from 1975 to 1994. To be precise, the real price of timberland has changed
by:

Thus, the real price of timberland in 1994 in Vilas County was about 76% of
what it was in 1975. While the nominal price of timberland increased by 80%
during that interval, the real price decreased by 24%. 

In making forest resource decisions it is real prices that matter, because they
indicate the true changes in the value of resources relative to the value of other
goods and services.

RATES OF PRICE CHANGE

Price changes are often expressed in rates per unit of time, e.g., percent per year,
like interest rates. Let f be the rate of inflation, expressed as a fraction per year.
Then, using the index It as the measure of inflation, the value of f over the inter-
val [0,t] satisfies the well-known compound interest formula:

Similarly, let g be the nominal yearly rate of change of the price of the good or
service of interest, timberland in our example. It is defined by this relationship:
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Last, let g′ be the real rate of price change for timberland. Then, g′ is also
defined by:

Replacing It, Pt, and in Equation (18.10) by their new expressions leads
to the following relationship between the rates of change:

or:

(18.11)

Equation (18.11) may be simplified if the rates of real price change and the
rate of inflation, g, and f are “small”, say under 10%. This can be seen by mul-
tiplying both sides of Equation (18.11) by 1 + f, leading to:

g′ + g′f = g − f (18.12)

If g and f are small, say under 10% per year, the product g′f can be neglected,
giving the approximate formula:

(18.13)

Thus, the rate of real price change is approximately equal to the nominal rate
of price change minus the rate of inflation.

Example

Using the data of the previous example, the nominal rate of price change, g, for
timberland in Vilas County from 1975 to 1994 was such that:

That is:

g = 1.80(1/19) −1 = 0.031 per year

Similar calculations using the fact that I94/I75 = 2.38 show that the rate of infla-
tion, f, was:

f = 0.047 per year
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So the real rate of price change of land was:

that is, a decrease in real price of 1.6% per year.

Equations (18.11) and (18.13) give the real rate of change of any price in
terms of the nominal rate and of the rate of inflation. The same formulas also
apply to obtain the real rate of interest, namely:

(18.14)

where r′ and r are, respectively, the real and the nominal rate of interest during
a period with a rate of inflation of f. If r and f are “small,” the relationship is
approximately:

(18.15)

That is, the real rate of interest is approximately equal to the difference between
the nominal rate of interest and the rate of inflation.

INVESTMENT CRITERIA IN NOMINAL OR REAL TERMS

We are now ready to show that forestry investments may be evaluated equiva-
lently using nominal or real prices and interest rates. The results will be the
same using either system, as long as we are consistent. That is, if nominal costs
and benefits are used, then a nominal interest rate must also be used. A real
interest rate is necessary if project evaluation is done with real costs and bene-
fits. The points to remember are that the interest rate is essentially the price of
money and that all prices in an investment analysis must be on the same basis,
real or nominal.

To illustrate why this is so, consider a stand of black walnut trees currently
of volume Q0. This volume is expected to grow to Qt in t years. The current price
of the trees is P0 per unit of volume. The nominal price is expected to be Pt by
year t. Letting the trees grow instead of harvesting them immediately is an
investment. The nominal net present value of this investment is, at a nominal
interest rate r:
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where the first term on the right is the nominal present value of the future har-
vest and the second term is the opportunity cost of the trees we must leave
standing to reap this harvest. 

Note that the nominal rate of interest, r, is used in discounting. This is con-
sistent with using the nominal price Pt. If, instead, we computed the real net
present value, we would use the real interest rate r′ and the real future price of
black walnut in the analog formula:

But real and nominal net present value are in fact equal, as can be seen by
rewriting the nominal net present value as: 

where, as before, g′ is the real rate of price change between now and time t and
f is the rate of inflation. 

This result is general, extending to complex projects with many costs and
benefits over many periods (see Problem 18.8). Net present value calculated in
real or nominal terms is the same, as long as consistent prices and interest rates
are used. 

Similarly, benefit–cost ratios are the same in real or nominal terms, since
they are simply the ratios of present values. Furthermore, either nominal or real
internal rates of return can be used to make investment decisions. But the inter-
nal rate of return must be compared to a guiding rate of interest that is consis-
tent with the prices used in calculating the internal rate of return.

Thus, if the internal rate of return of a project is computed at nominal prices,
then the project should be accepted if the nominal guiding rate is less than the
internal rate of return. Instead, if the internal rate of return is computed from real
prices, then the guiding rate of interest must also be expressed in real terms, using
Equation (18.14) or (18.15), before comparing it to the internal rate of return. 

18.6 CHOOSING AN INTEREST RATE

Choosing an appropriate interest rate to evaluate forest resources investments
is difficult, but probably not much more difficult than choosing any other price.
The market can serve as a guide, especially for private firms, but considerable
judgment and guess work are still needed.
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SHOULD THE INTEREST RATE BE ZERO?

Before suggesting practical ways of choosing interest rates, it is worth noting
that—whether projects are public or private and the foresters’ love of big trees
notwithstanding—it is difficult to argue for a zero interest rate. To see this let
us return to Figure 18.1 and to Equation (18.1), which defines the interest rate:

A zero interest rate would imply dC1/dC0 = −1. Since dC1/dC0 is the first deriv-
ative along the production possibility frontier AB, this would imply that the net
productivity of investments is zero. Every opportunity to invest and thereby
reap more in the future than what is sacrificed now has been exhausted. 

Furthermore, since dC1/dC0 is also the first derivative along the indifference
curve E∗, this would imply that the time preference is zero, meaning that people
are totally indifferent between current and future consumption. A situation
where both a zero net productivity of investments and a zero time preference
occur simultaneously is difficult to imagine, so a zero interest rate seems very
unlikely.

PRIVATE INVESTMENTS

For a private firm, the interest rate is to a large extent determined by the market
for capital. If the money needed for a project is borrowed, the guiding rate of
interest should be at least equal to the rate charged by the lender. But it may be
higher, depending on the other investment opportunities of the firm. 

If, instead, all the money for an investment is to come from retained prof-
its, then the guiding rate of interest is defined by the best investment oppor-
tunity open to the firm. A great deal of judgment must be used, however, since
investments may differ widely in terms of timing and risk. For long-term
forestry investments, like buying timberland and starting new plantations, it
is the rate of return of alternative investments over long time periods that
matter. For a few investments it is possible to calculate such rates from published
statistics. 

For example, Figure 18.8 shows a spreadsheet with the yields (annual rates
of return, in percent per year) of Aaa corporate bonds in the United States from
1970 to 1994. Column B shows the nominal yield, r, while column C shows the
yearly rates of change of the consumer price index, f, a standard measure of
inflation. The data come from the Economic Report of the President, 2001.
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The real rate of return for every year, r′, in column D, was computed with
Equation (18.14) instead of the simpler Equation (18.15) because some of the
rates were large. The results show that, while the nominal yield in 1970 was 8%,
the real yield was only 2.2% due to the inflation of 5.7% that took place during
that year. In the years 1974, 1975, 1979, and 1980, the nominal yield was less
than inflation and investors in Aaa bonds actually incurred a loss. 

The average nominal yield over the period was 9.1% per year; but with an
average rate of inflation of 5.2%, this left a real rate of return of only 3.8%.
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Aaa BOND YIELDS (%/y)

Nominal yield CPI change Real yield

Year r f r

1970 8.0 5.7 2.2

1971 7.4 4.4 2.9

1972 7.2 3.2 3.9

1973 7.4 6.2 1.2

1974 8.6 11.0 -2.2

1975 8.8 9.1 -0.2

1976 8.4 5.8 2.5

1977 8.0 6.5 1.4

1978 8.7 7.6 1.1

1979 9.6 11.3 -1.5

1980 11.9 13.5 -1.4

1981 14.2 10.3 3.5

1982 13.8 6.2 7.1

1983 12.0 3.2 8.6

1984 12.7 4.3 8.1

1985 11.4 3.6 7.5

1986 9.0 1.9 7.0

1987 9.4 3.6 5.6

1988 9.7 4.1 5.4

1989 9.3 4.8 4.3

1990 9.3 5.4 3.7

1991 8.8 4.2 4.4

1992 8.1 3.0 5.0

1993 7.2 3.0 4.1

1994 8.0 2.6 5.2

1995 7.6 2.8 4.7

1996 7.4 3.0 4.2

1997 7.3 2.3 4.8

1998 6.5 1.6 4.9

1999 7.0 2.2 4.7

Average 9.1 5.2 3.7

Key cell formulas

Cell Formula Copy to

D4 =((1+B4/100)/(1+C4/100)-1)*100 D4:D33

B34 =AVERAGE(B4:B33) C34:D34

FIGURE 18.8 Spreadsheet to compute the real yield of Aaa corporate bonds.
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This is probably less than what most people would expect, which shows the
importance of adjusting for inflation. Many forest resource projects are capable
of yielding comparable real rates of return.

Investments are often financed from funds from a variety of sources. The
interest rates used in evaluating investments should reflect this. For example,
if a corporation plans to buy forest land by borrowing part of the money and
financing the rest from profits, then the rate of interest should be a weighted
average of the rates appropriate for the two sources of fund; that is:

r = rb + (1 − B)rp

where:

r = effective rate
rb = interest rate on borrowed funds 
rp = rate of return on the best possible use of profits 
B = fraction of funds that are borrowed.

PUBLIC PROJECTS

In the public sector, such as on lands administered by the United States Forest
Service and the Bureau of Land Management, one possibility is to use the rate
of return on government bonds, rg, as the guiding rate of interest. Proponents
of this argue that if projects do not return at least that much, then the country
would be better off if the government repaid the national debt, since this would
be equivalent to a public investment returning the rate rg.

The rates of return of U.S. treasury securities with maturities of 3−10 years
do not differ much from the returns on Aaa corporate bonds listed in
Figure 18.8, that is, around 4% in real terms. This is due to the fact that the risks
of these investments are similarly low. To raise money, the government must
pay a return on its bonds that is comparable to the rate earned in the private
sector.

Nevertheless, the rate of return on government bonds should probably be viewed
as a lower bound on the interest rate applicable to public investments, because
many people cannot afford to buy such bonds. This implies that for a large group
of people, current needs are such that they are not willing to trade current con-
sumption for future consumption at the rate rg (see Section 18.1). The guiding
rate of interest appropriate for this group of people is not easy to determine.
However, the fact that there are many of them implies that the rate of discount used
to evaluate forest resource investments on public lands should be no less than 4%
in real terms. 
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18.7 SUMMARY AND CONCLUSION

The basic criterion to evaluate forestry investments is net present value: the dif-
ference between the discounted value of returns and costs. Benefit–cost ratio
and internal rate of return lead to decisions that are consistent with net present
value only when all projects under consideration can be done. 

If only one resource is limiting, projects should be ranked according to their
net present value–resource ratio. If more than one resource is limiting, the cor-
rect choice of projects requires the solution of a programming problem.

Investments can be evaluated in real or nominal terms. However, the guid-
ing rate of interest must be consistent with the price system used: real if other
prices are real, nominal otherwise. 

The guiding rate of interest is critical in assessing the value of investment.
For private firms, this depends on their sources of financing and their invest-
ment opportunities. For public agencies, the rate of return on government
bonds can be viewed as a lower bound on the appropriate guiding rate of
interest.

PROBLEMS

18.1 (a) Set up your own spreadsheet model, like the one in Figure 18.2, to
calculate the net present value and benefit–cost ratio for the ponderosa pine
reforestation project.

(b) Using the same data, verify that your results are the same as in Figure
18.2.
(c) Change the interest rate, the costs, and the benefits, and study the effect
on the net present value and on the benefit–cost ratio.
18.2 (a) Add a spreadsheet like the one in Figure 18.3 to the spreadsheet

developed in Problem 18.1 to determine the sensitivity of the NPV to the rate
of interest. Using the same data, verify that your results are the same as in
Figure 18.3.

(b) Add a column to this spreadsheet to show the sensitivity of the benefit–cost
ratio to the interest rate.
(c) Make a chart, similar to Figure 18.4, of the NPV and of the benefit–cost
ratio against the interest rate.
(d) At what guiding rate of interest does the benefit–cost ratio equal 1? What
is the value of the NPV at this interest rate?
18.3 (a) Set up your own spreadsheet models, like those shown in Figures

18.2 and 18.5, to calculate a forestry project’s net present value, benefit–cost
ratio, and internal rate of return. Verify the results obtained in the text. Use
these models to determine how the three economic criteria change if:
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(b) Prices increase, doubling the benefits from the thinnings and the final
harvest.
(c) Prices decrease, halving the benefits from the thinnings and the final
harvest.
18.4 A Peace Corps forester in Central America must evaluate three short-

rotation fuelwood projects. The costs and benefits associated with each project
and the years in which they will occur are shown in the table. Assume a guid-
ing rate of interest of 3% per year. All data are in real terms.

(a) Use spreadsheets like the ones in Figures 18.2 and 18.5 to calculate each
project’s net present value, benefit–cost ratio, and internal rate of return.
(b) Which projects should the forester undertake if he had enough resources
to do all of them?
(c) Assume that the forester has enough money to do only one project.
Which project looks best according to each criterion you calculated in
part(a)? Explain any differences you observe.
(d) Which criterion should the forester use to select the best project? Why?
18.5 A reforestation manager in the Pacific Northwest has five areas that

need to be replanted, but he does not have enough seedlings to plant all of them
up to the silvicultural standard of 750 trees/ha. The size of each area of each
clear-cut is given in the table, along with an estimate of the net present value of
the plantations.

(a) Given only 200,000 seedlings, which areas should the forester replant? 
(b) Assume that the reforestation policy is to reforest a tract of land or not
reforest it at all. Set up an integer programming problem in a spreadsheet to

Project A Project B Project C
Year Benefit Cost Year Benefit Cost Year Benefit Cost

0 $0 $4,500 0 $0 $10,000 0 $0 $4,100
5 0 2,000 7 1,500 3,000 4 500 1,500
9 2,500 1,000 10 3,500 1,500 8 2,000 5,00
15 15,000 2,500 15 24,000 4,500 15 11,000 1,000

Land tract Area (ha) Net present value

A 150 $12,750
B 290 21,170
C 220 21,780
D 340 21,346
E 120 12,240
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find the tracts that maximize present value. With this policy, would all the
seedlings be used?
18.6 Consider Problem 18.5 again, and assume that in addition to having

only 200,000 seedlings, the forester has a $24,000 budget for labor and that
such labor costs $80 per person-day. Labor requirements to replant each tract
are given in the table. (These requirements vary depending on a tract size,
slope, soil type, and degree of site preparation.) Each tract may be partially
reforested. 

(a) Set up a linear programming model on a spreadsheet to decide which
tracts should be replanted to maximize net present value, subject to the lim-
ited budget and seedlings. For the best solution, how much of each tract is
reforested? How much of the budget and seedlings is used? 
(b) Redo this problem, assuming that the reforestation policy is to reforest
each tract completely or not at all. How does this change the total net pre-
sent value, the tracts reforested, and the use of seedlings and budget?
18.7 The nominal producer price index for softwood lumber in the United

States was 206.5 in 1997 but fell to 178.6 by 2000 as the economy slowed.
Over the same period, the producer price index for intermediate goods rose
from 125.6 to 129.

(a) What was the annual nominal percentage price change for softwood
lumber from 1997 to 2000?
(b) What was the annual percentage price change of all intermediate goods?
(c) What was the annual real percentage price change of softwood lumber?
18.8 Assume that all the data for the analysis of the ponderosa pine project

in Figure 18.2 are in real terms. Create a new spreadsheet, linked to that in
Figure 18.2, to show the data and the results in nominal terms for any given rate
of inflation. The new spreadsheet should contain (1) formulas to calculate nom-
inal costs and benefits based on the real costs and benefits in Figure 18.2 and
the rate of inflation, and (2) a formula to calculate the nominal interest rate
based on the real interest rate and the rate of inflation. Verify that the net pre-
sent value and benefit–cost ratio computed in nominal terms are equal to those
computed in real terms. 

Land tract Person-days for planting

A 50
B 70
C 80
D 110
E 50
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CHAPTER 19

Econometric Analysis 
and Forecasting of Forest
Product Markets

19.1 INTRODUCTION

All the models we have studied so far make bold assumptions regarding the
context in which a forest operates. For example, we often made assumptions
regarding the future price of the commodities or services produced by a forest.
These assumptions are critical; changing them may alter considerably the way
the forest should be managed.

Unfortunately, economic forecasting is still as much an art as a science, but
some progress is being made. Many econometric models have been developed
of the markets for forest products, including timber, water, recreation, and
other goods and services. Since the demand and supply conditions define much
of the context in which forest resource decisions are being made, forest man-
agers should know the general principles upon which these models are built. It
is important that managers be aware of the potential value of econometric
models as well as of their limitations. 

The purpose of this chapter is to provide a brief introduction to economet-
ric analysis and forecasting. We shall do this mostly with an example: a simple
model of the pulpwood market in the United States, built to predict the
demand, supply, and price of pulpwood.



19.2 ECONOMETRICS

An econometric model consists of equations that give a quantitative explana-
tion of the changes in economic variables. Econometrics combines economic
theory and statistical methods. The theory suggests the form of the equations
relating the variables of interest, while the statistical methods provide the means
to estimate the parameters of the equations based on observations.

Econometric models may be weak due to the limitations of economic theory
(we may not know how the economy really works), to the limitations of the sta-
tistical methods used to estimate their parameters, or to the limitations of the
data needed to use these methods. Economic data are often poorly defined,
inaccurate, or altogether nonexistent.

Nevertheless, econometric modeling of forest product markets has progressed
enormously in recent decades. Rigorous empiricism is undoubtedly one of the
best ways to analyze and forecast forest product markets. This is in part because
a formal model is clear: It shows explicitly all the assumptions that have been
made; such clarity facilitates understanding, communication, and progress.

19.3 A MODEL OF THE UNITED STATES
PULPWOOD MARKET

To avoid too much abstraction, throughout this chapter we shall use the case
of the market for pulpwood in the United States. The model is a simplified
version of a model proposed originally by Leuschner (1973) for the state of
Wisconsin.

The model has two objectives: (1) to understand the forces that determine
the demand, supply, and price of pulpwood; (2) to forecast the demand for
pulpwood and its price in the next five years. Forecasts of this kind would be
valuable to forest owners and managers. Demand forecasts would help them
determine whether they should produce more or less pulpwood. Price forecasts
are essential to help them predict the profitability of forest operations, such as
the thinning of forests to produce pulpwood.

STRUCTURAL EQUATIONS

The theoretical model describing the pulpwood market in the United States
consists of the following equations:

Demand: Dt = a + bKt + ut (19.1)

Supply: St = c + dPt + vt (19.2)

Equilibrium: Dt = St (19.3)
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where:

t = a particular year

S = quantity of pulpwood supplied in the United States

D = quantity of pulpwood demanded in the United States

K = capacity of pulp mills

P = price of pulpwood

a, b, c, d = unknown parameters

u, v = random disturbances

These structural equations describe our view of how various forces interact to
determine the supply, demand, and price of pulpwood. The form of the struc-
tural equations of the model may be shaped in part by economic theory, previ-
ous studies, or personal experience.

The first equation is our hypothesis concerning the demand for pulpwood.
It says that in a given year the quantity of pulpwood demanded is a linear func-
tion of pulping capacity. One would expect demand to increase as capacity of
production increases, and therefore the coefficient b should be positive. Note
that the equation suggests that demand for pulpwood is not influenced by price,
presumably because the cost of pulpwood is small compared to other costs of
producing pulp. The fixed costs of pulp manufacturing are particularly high, so
pulp mills are usually run at or near capacity, even when pulp prices are low,
in order to generate revenues to defray the fixed costs. Thus, all the pulpwood
necessary to run a mill at capacity is bought, regardless of the cost. We shall not
try to test whether price does in fact influence demand, but we shall test
whether the data are consistent with the proposed hypothesis.

The second structural equation is a classic supply equation: Quantity sup-
plied in a given year is a linear function of the price of pulpwood. As the price
of pulpwood increases, one expects the supply to increase, and thus the coeffi-
cient d should be positive. This hypothesis is consistent with the organization
of pulpwood production in United States: There are many small independent
pulpwood producers, as assumed in the classical model of supply in a perfectly
competitive market.

The first two equations are stochastic. They hold only approximately. This
is reflected by the disturbances ut and vt, which are assumed to be small and
random.

The third structural equation instead is an identity, supposed to hold exactly.
It states that the quantity of pulpwood demanded in a given year is equal to the
quantity supplied. This identity allows a simplification of the model. Defining
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the quantity of pulpwood demanded and supplied as Qt = St = Dt leads to:

Demand: Qt = a + bKt + ut (19.4)

Supply: Qt = c + dPt + vt (19.5)

TYPES OF VARIABLES

The capacity of pulp mills, Kt, is assumed to be determined by forces not
explained within the model. Presumably, capacity is determined by the demand
for paper and other factors, but this relationship is not clarified in this model.
Capacity is an exogenous variable.

The other variables, Qt and Pt, are determined jointly by the system of equa-
tions when the parameters, the disturbances, and the exogenous variable Kt are
given. They are called endogenous variables. That Qt and Pt are determined
jointly is illustrated in Figure 19.1, in which the pulpwood supply is repre-
sented by the upward-sloping straight line, indicating that pulpwood supply
responds positively to price. The vertical line represents pulpwood demand,
meaning that demand is independent of price. At price Pt the quantity
demanded is equal to the quantity supplied; thus Pt is the equilibrium price. An
increase in capacity, Kt, other things being equal, causes the vertical demand
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FIGURE 19.1 Demand and supply of pulpwood, and equilibrium price.
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line to move to the right. As a result, the quantity demanded and supplied
increases along with the price.

REDUCED FORM

There is an algebraic analog to this graphical explanation of the equilibrium
quantity and price. The system of Equations (19.4) and (19.5) can be solved for
the endogenous variables, Qt and Pt, as a function of the exogenous variable, Kt,
and the parameters and disturbances. The two equations lead to:

and

Therefore, the structural equations imply the following quantity and price
equations:

Quantity: Qt = a + bKt + ut (19.6)

Price: Pt = e + gKt + zt (19.7)

where:

Equations (19.6) and (19.7) are the reduced form of the model. They show
that both the quantity of pulpwood (demanded and supplied) and the price of
pulpwood change simultaneously as pulping capacity changes. Reduced-form
equations can be used to predict future values of the endogenous variables Qt

and Pt. It is clear, however, that these forecasts will be inexact. There are three
sources of error: (1) Predictions of the exogenous variable, Kt, must be made;
(2) the parameters of the reduced-form equations must be estimated; (3) fore-
casts must be made of the disturbances ut and vt. It is generally assumed that the
future value of the disturbances is equal to their expected value, zero, so we
actually make forecasts only of the expected values of Qt and Pt.

The reduced-form equations can also be used to recover the coefficients of
the structural equations. Once a, b, e, and g have been estimated, the supply
equation is fully defined by:
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We shall see later why it is preferable to estimate the supply equation in this
indirect way.

19.4 DATA

To estimate the value of the coefficients in Reduced-Form Equations (19.6) and
(19.7), we need data on the variables Qt, Pt, and Kt. Rarely do we have data that
describe exactly the variables of interest. Often, they are only rough approxi-
mations, many sources must be reconciled, and bold assumptions must be made
to arrive at some estimate of the desired variables. For the present example, we
shall use the following data sources:

For the price of pulpwood, we shall use the data on the price of Southern
pine pulpwood, collected for many years by the Louisiana Department
of Agriculture, Office of Marketing (Howard, 2001). A large part of the
U.S. pulp industry is in the South, so we assume that this price is a good
proxy variable for the price of pulpwood in the country. 

For the quantity of pulpwood supplied and demanded, we shall use data on
pulpwood receipts at U.S. pulpmills. The data come from the Forest
Resources Association for recent years and from Forest Service estimates
for 1996 and earlier years (Ince, 2001).

For pulping capacity, we shall use the data on annual capacity of
production. These data came from the American Forest and Paper
Association annual capacity surveys (Ince, 2001).

The spreadsheet in Figure 19.2 shows all the data used in this chapter. In all,
there are 30 observations, covering the period 1970–1999.

19.5 MODEL ESTIMATION

To get accurate forecasts of pulpwood price and quantity (demanded and sup-
plied) with Reduced-Form Equations (19.6) and (19.7), we need accurate esti-
mates of the parameters a, b, e, and g. A common way of estimating equations
such as Equations (19.6) and (19.7) is the ordinary least squares (OLS) method.

THE ORDINARY LEAST SQUARES METHOD

Consider the reduced-form equation of Quantity Equation (19.6). The OLS
method consists in finding the coefficients a and b such that the sum of the
squared residuals, SSR, is a minimum. That is, given a series of n observations
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on the variables Qt and Kt, we compute:

SSR = = − −
==

∑∑u Q a bKt t t
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FIGURE 19.2 Spreadsheet with data to estimate the demand-and-supply model.
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21

22
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27

28

29

30

31

32

33

34

A B C D

Year K t Q t P t

1970 40.5 156.2 7.46

1971 41.4 154.9 7.31

1972 42.4 158.9 6.99

1973 44.0 167.9 6.77

1974 44.4 178.8 6.64

1975 44.9 151.3 6.43

1976 45.9 168.4 6.43

1977 47.0 173.2 6.41

1978 47.8 177.2 6.55

1979 48.7 186.7 6.92

1980 50.1 194.4 6.73

1981 51.6 190.5 7.57

1982 52.3 179.5 8.38

1983 52.2 196.5 8.60

1984 53.5 199.4 9.97

1985 54.1 197.5 8.63

1986 55.1 211.0 7.05 

1987 56.3 215.1 7.90

1988 57.9 217.0 8.75

1989 59.0 215.0 9.58

1990 59.9 213.3 9.01

1991 61.2 211.6 10.47

1992 62.3 215.7 11.75

1993 61.9 211.0 12.35

1994 62.2 215.6 11.45

1995 63.0 225.7 11.45

1996 63.1 210.8 10.94

1997 64.5 219.0 11.01

1998 64.1 215.2 13.25

1999 63.2 207.2 10.93

K t =pulping capacity (million t/y)

Q t =pulpwood deliveries (million m3/y)

P t =pulpwood price ($/m3)



and find the values of a and b that make SSR as small as possible. These calcu-
lations are performed routinely in spreadsheets with functions that do regres-
sion analysis.

Subject to some assumptions, listed shortly, the estimates of a and b obtained
by the OLS method are best linear estimates of the parameters being sought.
This means that:

The expected value of the estimates is equal to the value of the parameters.
That is, on average, the estimates are equal to the parameters.

Among all possible linear unbiased estimates of a and b, the OLS estimates
have minimum variance. In that sense, then, OLS estimates are the most
accurate that we can get.

But these properties of OLS estimates hold only under the following

conditions:

The expected value of the residuals is zero, and their variance is constant.
The residuals are uncorrelated over time; for example, ut is independent of

ut−1 for all values of t.
The independent variable Kt is predetermined; in particular, it is

independent of ut and vt.

In addition, the residuals must be normally distributed to make statistical tests.
In that case, the ratio of each OLS coefficient to its standard error has Student’s
t distribution.

Part of the work of building an econometric model is to make sure that these
assumptions hold. If they do not, the proposed model is incorrect and must be
changed, or some other method of estimation is needed.

REGRESSION ANALYSIS WITH EXCEL

Regression analysis can be done with the regression procedure in Excel. To
access the regression tool, choose in the Excel menu: Tools, then Data Analy-
sis, and then Regression. 

To estimate the pulpwood Quantity Equation (19.6), complete the regres-
sion dialog box as in Figure 19.3. The Input Y range contains the data for the
dependent, or explained,variable. These are the data for pulpwood receipts, in
cells C1:C31 of the worksheet in Figure 19.2. The Input X range contains the
data for the independent, or explanatory,variable. These are the data for pulp mill
capacity, in cells B1:B31 in the same worksheet. The Labels box has been
checked to indicate that the first row of the data range contains column labels,
Qt for pulpwood deliveries and Kt for pulping capacity. “New Worksheet Ply”
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has been selected to direct the output to a new worksheet named “Qregression.”
“Residuals” has been checked, to obtain the residuals, ut. Last, the “Line Fit
Plots” box has been checked, to obtain a plot of the regression line.

Figure 19.4 shows the results of the estimation of the pulpwood Quantity
Equation (19.6) with the Excel regression procedure. The most important
results are the estimated coefficients a (intercept) and b (on Kt) in cells B17:B18.
They indicate that the equation that best fits the data, in the sense of minimiz-
ing the sum of the squared residuals, is:

(19.8)

The numbers in parentheses below this equation are the standard errors of the
coefficients, in cells C17:C18 in Figure 19.4. The smaller the standard errors,
the more precise are the estimates of the coefficients. Another useful statistic is

Q Kt t= +48 2 2 72
10 50 0 19

. .
( . ) ( . )
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FIGURE 19.3 Regression dialog box for pulpwood quantity equation.



the adjusted R2 = 0.87, in cell B6 in Figure 19.4. It indicates how much of the
variance of the dependent variable, Qt, is explained by the independent variable,
Kt. Here, variations in capacity accounted for 87% of the variance of the quan-
tity of pulpwood receipts from 1970 to 1999. 

Figure 19.5 shows a plot of the regression line of pulpwood deliveries against
capacity. It suggests that the linear relation between pulpwood delivery and
capacity is a plausible model. 

The same regression procedures applied to Price Equation (19.7), with the
price and capacity data in Figure 19.2, lead to the results in Figure 19.6. The
OLS regression for the pulpwood price is:

(19.9)

The corresponding adjusted R2 is 0.76, indicating a less good fit for the price
equation than for the quantity equation. The plot of the best-fitting line in
Figure 19.7 confirms this.

P Kt t= − +3 82 0 23
1 33 0 02

. .
( . ) ( . )
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FIGURE 19.4 Regression results for pulpwood quantity equation.
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RESIDUAL OUTPUT
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2 160.738885 -5.838884664
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FIGURE 19.5 Best-fitting line for pulpwood quantity.
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FIGURE 19.6 Regression results for price equation.
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Before trying to infer anything further from the quantity and price equa-
tions, we must check whether the residuals satisfy the OLS assumptions.

DIAGNOSTIC CHECKS

Are Errors Correlated?

One of the most pervasive problems of econometric analysis with time-series
data is autocorrelation, which means that the residual in any year is not inde-
pendent of the residual in the previous year.

Plotting the residuals in chronological order and watching for systematic
patterns can reveal autocorrelation. For example, the estimated residuals for the
pulpwood quantity equation are:

ut = Qt − (48.2 + 2.72Kt) (19.10)

The residuals for the years 1970 and 1971 are in cells C25:C26 in Figure
19.4. The complete series of residuals for 1970–1999 are plotted in Figure 19.8.
The corresponding residuals for the price equation are plotted in Figure 19.9.
There seems to be some positive autocorrelation, because several sequential
residuals have the same sign. Variants of OLS exist to correct for serial correla-
tion. However, the most useful approach is to find the theoretical reason for the
autocorrelation, often a missing explanatory variable, and to change the model
accordingly. But here, the serial correlation does not seem serious enough to
warrant complicating the model or estimation method.
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FIGURE 19.7 Best-fitting line for pulpwood price.
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Is the Variance of Errors Constant?

One of the assumptions of OLS is that the variance of the residuals is constant. This
is sometimes violated by a tendency of the residuals to become larger, in absolute
value, as the value of the variables increases. In our example, however, there is
no such systematic pattern. The spread of the residuals around the regression
line seems to be independent of the level of capacity (see Figures 19.5 and 19.7).
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FIGURE 19.8 Time plot of the residuals of the quantity equation.
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FIGURE 19.9 Time plot of the residuals of the price equation.
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If this were not the case, a transformation, such as taking the logarithms of the vari-
ables, might help make the variance of the residuals constant.

19.6 INFERENCES, FORECASTING,
AND STRUCTURAL ANALYSIS

HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

The estimated pulpwood Quantity Equation (19.8) suggests that as pulping

capacity increases by 1 million tons per year, the quantity of pulpwood demanded
and supplied increases by about 2.72 million m3. This coefficient is just an esti-
mate that would be different if it were estimated with a different data set, but
the standard error of this coefficient is small, about 0.19. The ratio of the coef-
ficient to its standard error is 2.72/0.19 = 14.1. This ratio, shown in cell D18 of
the Excel regression output in Figure 19.4, has a Student’s t distribution. There
is approximately a 5% chance that the coefficient is zero if its t ratio is 2. Since
the actual t ratio is much larger than that, the probability that the coefficient is
zero is very small. Indeed, this probability, shown in cell E18 in Figure 19.4, is
less than .005. 

Viewed another way, a 95% confidence interval for the elasticity of demand
with respect to capacity is:

(2.72 − 2 × 0.19, 2.72 + 2 × 0.19) = (2.34, 3.10)

There is a 95% chance that the true coefficient lies in this interval. This 95%
confidence interval, computed more accurately by the Excel regression proce-
dure, is shown in cells F18:G18 in Figure 19.4. 

Applying the same principles to the estimated pulpwood Price Equation
(19.9), we observe that the coefficient with respect to capacity is 0.23. Thus, an
increase in pulping capacity of 1 million tons per year leads to an increase in
pulpwood price of $0.23/m3. Cells C18:G18 of the Excel regression output in
Figure 19.6 show that the standard error of this coefficient is 0.02, the t ratio is
9.55, the probability that the coefficient is zero is less than .005, and the 95%
confidence interval of the coefficient is (0.18, 0.28).

FORECASTING

The American Paper Institute publishes annual forecasts of capacity of the pulp
industry in different regions of the United States. This is essentially a com-
pendium of the expansion plans of most pulp mills for the next four years.

Given the estimates of Reduced-Form Equations (19.8) and (19.9), it is a
simple matter to forecast the implications of the expected growth of capacity on
pulpwood demand and price. For example, let us assume that the American
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Paper Institute predicts a pulping capacity in the United States of 60 million
tons/year in 2005. This would imply an expected 5% decrease in capacity rela-
tive to 1999. From the reduced-form pulpwood Quantity Equation (19.8), the
expected demand and supply of pulpwood in 2005 would be:

Similarly, the forecast of the price of pulpwood in 2005, would be obtained
from the reduced-form Price Equation (19.9) as:

It is clear that the quality of the forecast depends not only on the quality of
the model, but also on the accuracy of the forecasts of capacity. Because capac-
ity plans may not be realized, one would usually compute several conditional
forecasts of price and demand for different values of future capacity.

STRUCTURAL ANALYSIS

The reduced-form equations do not show how U.S. pulpwood suppliers
respond to changes in the price of pulpwood. To learn this, we must go back to
Supply Equation (19.5) in the revised structural model. In that equation, coef-
ficient d shows by how much the pulpwood supply changes if the price changes
by one unit. The value of this coefficient can be recovered from the reduced-
form equations. We saw earlier that d = b/g. And from the estimates of the
reduced-form equations we know that b = 2.72 and g = 0.23. Therefore: 

which shows that the total U.S. supply of pulpwood increases by about 12 million
m3 per year as the real price (net of inflation) increases by $1 per m3.

We can also recover the constant of the supply equation. We have already
seen that c = a − de; therefore:

c = 48.2 − 11.83(−3.82) = 93.39

So the estimate of the supply equation is:

Qt = 93.39 + 11.83Pt

A keen reader may wonder why the supply equation was not estimated directly
by OLS using Equation (19.5). The reason is that in that equation, price Pt is not
independent of the residual, vt. This is made clear by Reduced-Form Price
Equation (19.7). A change in vt changes zt, which changes Pt. Thus, the OLS
assumption that the explanatory variable is independent of the residual is violated.

d = =
2 72

0 23
11 83

.

.
.

P2005
33 82 0 23 60 10= − + × ≈. . $ /m

Q2005 48 2 2 72 60 211= + × ≈. . $ / million y
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Applying OLS to the reduced-form equations avoids this problem because inde-
pendent variable Kt is exogenous, thus, by definition, independent of the resid-
uals in our model.

19.7 CONCLUSION

To make forecasts of the demand, supply, and price of pulpwood in the United
States we developed a quantitative model of that market. We started with struc-
tural equations of demand and supply based on economic theory. From them
we derived reduced-form equations that expressed quantity demanded and
price as functions of a single exogenous variable: pulping capacity. We then
estimated these equations by ordinary least squares, using annual data on pulp-
wood receipts, pulpwood prices, and pulping capacity. The reduced-form equa-
tions were used to make conditional forecasts of price and demand, given
published forecasts of the exogenous variables.

Other, more mechanical methods of forecasting exist that rely mostly on observ-
ing the patterns in a variable over time. However, it is advantageous to use models
based on theory. More confidence can be placed on a relationship between vari-
ables if there is a plausible explanation of why the variables are related. 

However, the sophistication of the theory is necessarily limited by available
data. There is little point in adding variables to a model if they cannot be
measured. The quantity and quality of data available on the forestry sector limit
the usefulness of some complex estimation methods. The OLS method used
throughout this chapter remains the workhorse for practical applications. 

In addition to theory, data, and methods, the quality of forecasts in the forest
sector depends on the accuracy of the forecasts of the exogenous variables that
drive the sector, like the pulping capacity in the example of this chapter. Forest
resource managers have generally little means of projecting those exogenous
variables on their own, and they must instead rely on other experts.

PROBLEMS

19.1 (a) Copy the data in Figure 19.2 into a spreadsheet. Use the Excel
regression procedure to obtain OLS estimates of the pulpwood Quantity Equa-
tion (19.6) and of the pulpwood Price Equation (19.7). Verify that your results
are the same as in Figures 19.4 and 19.6.

(b) Chart the best-fitting regression equations. Verify that your results are
the same as in Figures 19.5 and 19.7.
(c) Chart the time plots of the residuals for the price and the quantity equa-
tion. Verify that your results are the same as in Figures 19.8 and 19.9.
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(d) Repeat parts (a) through (c), but use only the data from 1980 through
1999. What differences do you observe in the results? What might be the
reason for the differences?
19.2 Consider the set of structural Equations (19.1) to (19.3) in the model

of U.S. pulpwood supply and demand. This model might be improved by
modifying the Demand Equation (19.1) to allow price to affect the quantity
demanded. The new set of structural equations would then be:

Demand: Dt = a + bKt + ePt + ut

Supply: St = c + dPt + vt

Equilibrium: Dt = St

where:

t = a particular year
D = quantity of pulpwood demanded in the U.S.
P = price of pulpwood in the U.S.
S = quantity of pulpwood supplied in the U.S.
K = capacity of pulp mills in the U.S.

a, b, c, d, e = unknown parameters
u, v = random disturbances

(a) Write the reduced-form equations expressing the endogenous variables
Pt and Qt as functions of the exogenous variable Kt and the unknown para-
meters a, b, c, d, and e.
(b) How do these reduced-form equations differ from Equations (19.6) and
(19.7)?
19.3 In the text, the OLS estimates of the parameters of the reduced-form

pulpwood Price Equation (19.6) and Quantity Equation (19.7) could be used
to derive estimates of the parameters of the structural Demand and Supply
Equations (19.1) and (19.2). When this is possible, the structural equations are
said to be “identified.” It is not always possible to identify the parameters of the
structural equations. Given OLS estimates of the coefficients of the reduced-form
equations derived in Problem 19.2, could you derive estimates of all, some, or
none of the structural equation parameters a, b, c, d, and e? (Hint: Think of each
estimate of a coefficient in a reduced-form equation as providing an equation
of the form 

f (a, b, c, d, e) = estimated coefficient

Are there enough equations to calculate all the parameters?)
19.4 A forest products company needs to decide between investing in a new

lumber mill or a new plywood mill. Since either mill would represent a major cap-
ital investment with a useful life of several decades, the company’s officers have
asked their forest economist to evaluate how lumber and plywood consumption
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will grow in the future. To do this, she will try to forecast U.S. future consump-
tion with the following models:

Lumber consumption: Lt = a + bt + ut

Plywood consumption: Pt = c + dt + vt

where:
t = a particular year
L = consumption of lumber
P = consumption of plywood 

a, b, c, d = unknown parameters
u, v = random disturbances

(a) Use the data in the table and the Excel OLS regression procedure to esti-
mate the unknown parameters in each equation.

Lumber Plywood Housing starts
Year (106 m3/y) (104 m3/y) (103/y)

1977 94.5 2,042 2,279
1978 97.8 2,128 2,312
1979 92.8 1,953 2,037
1980 76.6 1,611 1,534
1981 71.5 1,605 1,341
1982 73.6 1,551 1,311
1983 93.6 1,890 2,008
1984 101.1 1,945 2,051
1985 104.4 2,007 2,029
1986 112.1 2,098 2,051
1987 119.3 2,280 1,856
1988 114.4 2,200 1,706
1989 113.2 2,123 1,574
1990 105.4 2,036 1,381
1991 98.8 1,824 1,185
1992 107.0 1,901 1,411
1993 107.1 1,917 1,542
1994 112.4 1,965 1,761
1995 111.6 1,955 1,694
1996 116.8 1,911 1,840
1997 120.0 1,811 1,828
1998 123.2 1,889 1,990
1999 128.3 1,956 2,023

Sources: Plywood data are from Howard, J.L. 1999. U.S.

Timber Production, Trade, Consumption, and Price Statistics.

FPL-GTR-116, USDA Forest Products Laboratory,
Madison, WI, updated by personal communication from
J.L. Howard. Lumber and housing start data are from the
Western Wood Products Association Statistical Yearbook.



(b) How much of the variation in per capita consumption of lumber and ply-
wood is explained by these simple models?
(c) What do the signs on the estimates of parameters b and d indicate?
(d) What are the 95% confidence intervals for each of these parameters? 
(e) Does either model seem to have a problem with autocorrelation? with the
variance of the errors?
(f) Use the estimated models to forecast the per capita consumption of
lumber and plywood in the year 2010.
19.5 The forecasting models estimated in Problem 19.4 only project

trends in consumption and do not suggest a reason for the change in con-
sumption. In the United States, lumber and plywood are used primarily to
build houses. Therefore, models that make lumber and plywood consumption
functions of housing starts seem plausible. In particular, consider the follow-
ing models:

Lumber consumption: Lt = a + eHt + ut

Plywood consumption: Pt = c + fHt + vt

where:

t = a particular year
L = consumption of lumber in year t
P = consumption of plywood
H = number of housing starts

a, b, e, f = unknown parameters
u, v = random disturbances

(a) Use the data in the table in Problem 19.4 and the Excel OLS regression
procedure to estimate the unknown parameters in each equation.
(b) How much of the variation in per capita consumption of lumber and ply-
wood is explained by these simple models? Is this better or worse than the
models estimated in Problem 19.4?
(c) What do the signs on the estimates of parameters e and f indicate?
(d) What are the 95% confidence intervals for each of these parameters? 
(e) Does either model seem to have a problem with autocorrelation? with the
variance of the errors?
(f) Try to correct for the autocorrelation in the lumber equation by reesti-
mating it with both housing starts and time as explanatory variables. What
do you observe?
(g) Use the estimated models to forecast the per capita consumption of
lumber and plywood in the year 2010, assuming that there will be 2,135
housing starts in that year. Compare these forecasts to those made in part (f)
of Problem 19.4.
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A P P E N D I X A

Compounding and
Discounting

The purpose of this appendix is to review the compounding and discounting
formulas, with finite and infinite time horizons, used in the book.

FUTURE VALUE AT COMPOUND INTEREST

With an interest rate, r, expressed as a fraction per year, $1 invested for one year
earns $r in interest, so the capital at the end of the year is: 

1 + r

This amount invested for another year yields the interest:

r(1 + r)

So the capital after 2 years is:

(1 + r) + r(1 + r) = (1 + r)(1 + r) = (1 + r)2

Similarly, the capital after 3 years is:

(1 + r)2 + r(1 + r)2 = (1 + r)(1 + r)2 = (1 + r)3

Continuing in this fashion shows that $1 invested at the yearly interest rate r
gives at the end of n years the capital:

(1 + r)n (A.1)

PRESENT VALUE AT COMPOUND INTEREST

The present value of $1 paid in n years, given a yearly interest rate r, is:

(A.2)
1

1( )+ r n
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Indeed, Compounding Equation (A.1) shows that the amount 1/(1 + r)n

invested for n years gives $1:

INFINITE PERIODIC DISCOUNTING

The present value of a constant periodic income, say $1, paid every D years for
an infinite number of periods is:

(A.3)

To show this, note that by definition and by application of the basic discount-
ing formula of Equation (A.2), the expression of PV is:

(A.4)

where the fist term on the right is the present value of $1 paid D years from now,
the second term is the present value of $1 paid 2D years from now, and so on
to infinity. The sum of this infinite series is finite because for any positive inter-
est rate, the general term

approaches 0 as the integer m increases to infinity. So each additional $1 con-
tributes less and less to the sum of Equation (A.4) because it is paid later and
later, and eventually it contributes nothing. 

To simplify the calculation of the sum of the infinite series of Equation (A.4),
let

(A.5)

With this notation, Equation (A.4) can be rewritten as:

(A.6)PV = + + +d d d2 3
L
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Multiplying this equation left and right by d gives:

(A.7)

Then, subtracting Equation (A.7) from Equation (A.6), term by term, gives:

PV(1 − d) = d

That is:

Substituting d with its expression in Equation (A.5) gives the final formula for
the present value of $1 paid every D years:

In the special case where the $1 is paid every year, that is, D = 1, the formula
simplifies to:

PV =
1

r

PV =
+ −

1

1 1( )r D

PV =
−

=
−

d

d
d

1

1

11

d d dPV = + +2 3
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A P P E N D I X B

Elements of Matrix Algebra

The purpose of this appendix is to explain the matrix notations and operations
used in some chapters. For example, in Chapter 8 we described the growth of
an uneven-aged stand with the following equations:

(B.1)

To simplify further manipulations, we shall write this system of equations
with matrices and vectors. A matrix is a table of numbers, variables, or algebraic
expressions. A vector is a matrix that has only one row or column.

For example, the coefficients of y1t, y2t, y3t in Equations (B.1) constitute the
following matrix of three rows and three columns:

And the variables and the constant term constitute the three following column
vectors:

With these notations, the system of Equations (B.1) can be written as:

yt+1 = Gyt + c (B.2)
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where Gyt is the product of matrix G by vector yt; that is:

The general law of multiplication of matrices is as follows: Given a matrix A
of m rows and p columns and a matrix B of p rows and n columns, the product
C = AB is a matrix of m rows and n columns of which each element cij is
obtained by multiplying each element of row i in A by the ith element in column
j of B and adding up the products.

Therefore, the product Gyt is the following column vector:

Furthermore, matrices with the same number of rows and columns are
added by adding their corresponding elements. Thus, the right-hand side of
Equation (B.2) is obtained by adding vector c to vector Gc, element by element,
leading to the following vector: 

Equation (B.2) means that each element of this vector is equal to the corre-
sponding element of vector yt+1. Therefore, Equation (B.2) is indeed the same
as the system of Equations (B.1). It is just written in a more compact way with
matrices and vectors.

Similarly, the algebraic equation of the harvest volume per hectare:

(where hit is the number of trees harvested in size class i at time t) has an equiv-
alent matrix notation:

ZQ = vht

Z h h hQ t t t

( / ) ( / )( / )

. . .
m ha m tree trees ha3 3

0 20 1 00 3 001 2 3= + +

Gy ct

t t t

t t

t t

y y y

y y

y y

+ =

− − +

+

+

















0 92 0 29 0 96 109

0 04 0 90

0 02 0 90

1 2 3

1 2

2 3

. . .

. .

. .

Gy t

t t t

t t

t t

y y y

y y

y y

=

− −

+

+

















0 92 0 29 0 96

0 04 0 90

0 02 0 90

1 2 3

1 2

2 3

. . .

. .

. .

Gyt

t

t

t

y

y

y

=

− −































0 92 0 29 0 96

0 04 0 90 0

0 0 02 0 90

1

2

3

. . .

. .

. .

426 Decision Methods for Forest Resource Management



Elements of Matrix Algebra 427

where v is a row vector containing the data on the volume per hectare in each
age class:

and ht is a column vector containing the variables that stand for the number of
trees in each age class at time t:
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