
DREYFUS HUBERT L. 
a tien 



CLIFTON M. MILLER LIBRARY 

Washington College 

Chestertown, MD 21620 

Presented By 

Friends of the Gibrarv 





Digitized by the Internet Archive 

in 2022 with funding from 

Kahle/Austin Foundation 

https://archive.org/details/whatcomputerssti0000drey 



What Computers Still Can’t Do 

A Critique of Artificial Reason 

Hubert L. Dreyfus 

The MIT Press 

Cambridge, Massachusetts 

London, England 



To my parents 
> 

s) { 

cs CJ - 

4 ‘ 

1992 

Sixth printing, 1999 

©1972, 1979, 1992 Hubert L. Dreyfus 
All rights reserved. No part of this book may be reproduced in any form by any 
electronic or mechanical means (including photocopying, recording, or infor- 
mation storage and retrieval) without permission in writing from the publisher. 

Printed and bound in the United States of America. 

Library of Congress Cataloging-in-Publication Data 

Dreyfus, Hubert L. 

What computers still can’t do : a critique of artificial reason / 
Hubert L. Dreyfus. 

yey, Cena 
Rev. ed. of: What computers can’t do, 1979. 
Includes bibliographical references and index. 
ISBN 0-262-04134-0. — ISBN 0-262-54067-3 (pbk.) 
1. Artificial intelligence. I. Title. 

Q335.D74 1992 
006.3—dc20 92-27715 

CIP 



The difference between the mathematical mind (esprit de géomé- 

trie) and the perceptive mind (esprit de finesse): the reason that math- 

ematicians are not perceptive is that they do not see what is before them, 

and that, accustomed to the exact and plain principles of mathematics, 

and not reasoning till they have well inspected and arranged their princi- 

ples, they are lost in matters of perception where the principles do not 

allow for such arrangement. . . . These principles are so fine and so 

numerous that a very delicate and very clear sense is needed to perceive 

them, and to judge rightly and justly when they are perceived, without 

for the most part being able to demonstrate them in order as in math- 

ematics; because the principles are not known to us in the same way, and 

because it would be an endless matter to undertake it. We must see the 

matter at once, at one glance, and not by a process of reasoning, at least 

to a certain degree. .. . Mathematicians wish to treat matters of percep- 

tion mathematically, and make themselves ridiculous ... the mind... 

does it tacitly, naturally, and without technical rules. 

—PASCAL, Pensées 
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Introduction to the MIT Press Edition 

This edition of What Computers Can’t Do marks not only a change of 

publisher and a slight change of title; it also marks a change of status. 

The book now offers not a controversial position in an ongoing debate 

but a view of a bygone period of history. For now that the twentieth 

century is drawing to a close, it is becoming clear that one of the great 

dreams of the century is ending too. Almost half a century ago computer 

pioneer Alan Turing suggested that a high-speed digital computer, 

programmed with rules and facts, might exhibit intelligent behavior. 

Thus was born the field later called artificial intelligence (AI). After 

fifty years of effort, however, itis now clear to all but a few diehards that 

this attempt to produce general intelligence has failed. This failure does 

not mean that this sort of Al is impossible; no one has been able to come 

up with such a negative proof. Rather, it has turned out that, for the time 

being at least, the research program based on the assumption that human 

beings produce intelligence using facts and rules has reached a dead 

end, and there is no reason to think it could ever succeed. Indeed, what 

John Haugeland has called Good Old-Fashioned AI (GOFAI) is a 

paradigm case of what philosophers of science call a degenerating 

research program. 

A degenerating research program, as defined by Imre Lakatos, is a 

scientific enterprise that starts out with great promise, offering a new 

approach that leads to impressive results in a limited domain. Almost 

inevitably researchers will want to try to apply the approach more 

eX: 
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broadly, starting with problems that are in some way similar to the 

original one. As long as it succeeds, the research program expands and 

attracts followers. If, however, researchers start encountering unex- 

pected but important phenomena that consistently resist the new tech- 

niques, the program will stagnate, and researchers will abandon it as 

soon as a progressive alternative approach becomes available. 

We can see this very pattern in the history of GOFAI. The program 

began auspiciously with Allen Newell and Herbert Simon’s work at 

RAND. In the late 1950s Newell and Simon proved that computers 

could do more than calculate. They demonstrated that a computer’s 

strings of bits could be made to stand for anything, including features 

of the real world, and that its programs could be used as rules for 

relating these features. The structure of an expression in the computer, 

then, could represent a state of affairs in the world whose features had 

the same structure, and the computer could serve as a physical symbol 

system storing and manipulating such representations. In this way, 

Newell and Simon claimed, computers could be used to simulate 

important aspects of intelligence. Thus the information-processing 

model of the mind was born. 

Newell and Simon’s early work was impressive, and by the late 

1960s, thanks to a series of micro-world successes such as Terry 

Winograd’s SHRDLU, a program that could respond to English-like 

commands by moving simulated, idealized blocks (see pp. 12-13), AI 

had become a flourishing research program. The field had its Ph.D. 

programs, professional societies, international meetings, and even its 

gurus. It looked like all one had to do was extend, combine, and render 

more realistic the micro-worlds and one would soon have genuine 

artificial intelligence. Marvin Minsky, head of the M.I.T. AI project, 

announced: “Within a generation the problem of creating ‘artificial 

intelligence’ will be substantially solved.”! 

Then, suddenly, the field ran into unexpected difficulties. The trouble 
started with the failure of attempts to program an understanding of 
children’s stories (see pp. 57-62). The programs lacked the common 
sense of a four-year-old, and no one knew how to give them the 
background knowledge necessary for understanding even the simplest 
stories. An old rationalist dream was at the heart of the problem. GOFAI 
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is based on the Cartesian idea that all understanding consists in forming 

and using appropriate symbolic representations. For Descartes, these 

representations were complex descriptions built up out of primitive 

ideas or elements. Kant added the important idea that all concepts are 

rules for relating such elements, and Frege showed that rules could be 

formalized so that they could be manipulated without intuition or 

interpretation. Given the nature of computers as possible formal sym- 

bol processors, AI turned this rationalist vision into a research program 

and took up the search for the primitives and formal rules that captured 

everyday knowledge. Commonsense understanding had to be repre- 

sented as a huge data structure comprised of facts plus rules for relating 

and applying those facts. As it turned out, though, it was much harder 

than anyone expected to formulate, let alone formalize, the required 

theory of common sense. It was not, as Minsky had hoped, just a 

question of cataloging 10 million facts. Minsky’s mood changed com- 

pletely in the course of fifteen years. In 1982 he told a reporter: “The AI 

problem is one of the hardest science has ever undertaken.” 

My work from 1965 on can be seen in retrospect as a repeatedly 

revised attempt to justify my intuition, based on my study of Martin 

Heidegger, Maurice Merleau-Ponty, and the later Wittgenstein, that the 

GOFAI research program would eventually fail. My first take on the 

inherent difficulties of the symbolic information-processing model of 

the mind was that our sense of relevance was holistic and required 

involvement in ongoing activity, whereas symbol representations were 

atomistic and totally detached from such activity. By the time of the 

second edition of What Computers Can’t Do in 1979, the problem of 

representing what I had vaguely been referring to as the holistic context 

was beginning to be perceived by AI researchers as a serious obstacle. 

In my new introduction I therefore tried to show that what they called 

the commonsense-knowledge problem was not really a problem about 

how to represent knowledge; rather, the everyday commonsense back- 

ground understanding that allows us to experience what is currently 

relevant as we deal with things and people is a kind of know-how. The 

problem precisely was that this know-how, along with all the interests, 

feelings, motivations, and bodily capacities that go to make a human 

being, would have had to be conveyed to the computer as knowledge — 
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as a huge and complex belief system—and making our inarticulate, 

preconceptual background understanding of what it is like to be a 

human being explicit in a symbolic representation seemed to me a 

hopeless task. 

For this reason I doubted that the commonsense-knowledge problem 

could be solved by GOFAI techniques, but I could not justify my 

suspicion that the know-how that made up the background of common 

sense could not itself be represented by data structures made up of facts 

and rules. Granted that our background knowledge consists largely of 

skills for dealing with things and people rather than facts about them, 

what I needed was an argument against those who assumed that such 

skills were representable in symbolic form. As it turned out, my brother 

Stuart provided the missing argument in his phenomenological account 

of skill acquisition. 

Skill acquisition, he pointed out, usually begins with a student 

learning and applying rules for manipulating context-free elements. 

This is the grain of truth in the information-processing model. Thus a 

beginner at chess learns to follow strict rules relating such features as 

center control and material balance. After one begins to understand a 

domain, however, one sees meaningful aspects, not context-free fea- 

tures. Thus the more experienced chess player sees context-dependent 

characteristics such as unbalanced pawn structure or weakness on the 

king side. At the next stage, a competent performer learns to set goals 

and then look at the current situation in terms of what is relevant to 
achieving those goals. A further stage of proficiency is achieved when, 
after a great deal of experience, a player is able to see a situation as 
having a certain significance tending toward a certain outcome, and 
certain aspects of the situation stand out as salient in relation to thatend. 
Given an appropriate board position, for example, almost all masters 
would observe after a few seconds of examination that to win white 
must attack the king side. 

Finally, after even more experience, one reaches the level where one 
sees immediately what must be done. A chess grandmaster, for ex- 
ample, not only sees the issues in a position almost immediately, but the 
right response just pops into his or her head. There is no reason to 
suppose that the beginner’s features and rules, or any other features and 
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rules, play any role in such expert performance.‘ That we once followed 

a rule in learning to tie our shoelaces does not show, as Edward 

Feigenbaum argues it does,* that we must still be following that same 

rule unconsciously whenever we tie a lace. That would be like claiming 

that since we needed training wheels when learning how to ride a 

bicycle, we must now be using invisible training wheels whenever we 

ride. There is no reason to think that the rules that play a role in the 

acquisition of a skill play a role in its later application. 

When Mind Over Machine came out, however, Stuart and I faced the 

same objection that had been raised against my appeal to holism in What 

Computers Can’t Do. You may have described how expertise feels, 

critics said, but our only way of explaining the production of intelligent 

behavior is by using symbolic representations, and so that must be the 

underlying causal mechanism. Newell and Simon resort to this type of 

defense of symbolic AI: 

The principal body of evidence for the symbol-system hypothesis . . . is 

negative evidence: the absence of specific competing hypotheses as to how 

intelligent activity might be accomplished whether by man or by machine.® 

In order to respond to this “what else could it be” defense of the physical 

symbol system research program, we appealed in Mind Over Machine 

to a somewhat vague and implausible idea that the brain might store 

holograms of situations paired with appropriate responses, allowing it 

to respond to situations in ways it had successfully responded to similar 

situations in the past. The crucial idea was that in hologram matching 

one had a model of similarity recognition that did not require analysis 

of the similarity of two patterns in terms of a set of common features. 

But the model was not convincing. No one had found anything resem- 

bling holograms in the brain. 

At this point, like Charlie Chaplin in Modern Times emerging from a 

manhole with a red flag just as the revolutionaries came swarming by, 

we happily found ourselves surrounded by the rapidly growing ranks of 

neural-network modelers. As the commonsense-knowledge problem 

continued to resist the techniques that had worked so well in problem 

solving, and as pattern recognition and learning turned out to be much 
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more intractable than anticipated, this alternative way of using comput- 

ers to produce intelligence reemerged as an attractive research program 

after a long period of dormancy. The triumphant arrival of the neural- 

net revolutionaries, also called connectionists, completed the degen- 

eration of the GOFAI research program. 

The proposal that we should set about creating artificial intelligence 

by modeling the brain’s learning power rather than the mind’s symbolic 

representation of the world drew its inspiration not from philosophy but 

from what was soon to be called neuroscience. It was directly inspired 

by the work of D. O. Hebb, who had suggested in 1949 that a mass of 

neurons could learn if the simultaneous excitation of neuron A and 

neuron B increased the strength of the connection between them.’ This 

lead was followed in the late 1950s by Frank Rosenblatt, who reasoned 

that since it was probably going to be hard to formalize intelligent 

behavior, AI should instead attempt to automate the procedures by 

which a network of neurons learns to discriminate patterns and respond 

appropriately. Researchers seeking symbolic representations were looking 

for a formal structure that would give computers the ability to solve a 

certain class of problems or discriminate certain types of patterns. 

Rosenblatt, conversely, wanted to build a physical device, or simulate 

such a device on a digital computer, that could generate its own 

abilities. 

When symbolic AI seemed to stall, Donald Norman’s Parallel Dis- 

tributed Processing group and others started investigating variations of 

Rosenblatt’s project and chalked up surprising successes. Soon, frus- 

trated AI researchers, tired of clinging to a research program that Jerry 

Lettvin characterized in the early 1980s as “the only straw afloat,” 

began defecting to the revived paradigm. Rumelhart, McClelland, and 
the PDP Research Group’s two-volume work, Parallel Distributed 
Processing, had 6000 backorders the day it went on the market in 1986, 

and over 45,000 sets are now in print. Like the dissolution of the Soviet 
Union, the speed of collapse of the GOFAI research program has taken 
everyone, even those of us who expected it to happen sooner or later, by 
surprise.® 

Happily for Stuart and me, the neural-network modelers had a much 
more plausible answer to the question, If not symbols and rules, what 
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else? Their model showed that one need not store cases at all; instead, 
a designer could tune a simulated multilayer perceptron (MLP) neural 
network’ by training it to respond to specific situations and then having 
it respond to other situations in ways that are (the designer hopes) 
appropriate extrapolations of the responses it has learned. Indeed, the 
most striking difference between neural-network modeling and GOFAI 
is that the neural-network modeler provides not rules relating features 

of the domain but a history of training input-output pairs, and the 

network organizes itself by adjusting its many parameters so as to map 

inputs into outputs, that is, situations into responses. Thus computers 

running simulations of such nets do not count as physical symbol 

systems. Paul Smolensky, one of the PDP researchers, sums up the 

point: 

Connectionist systems are large networks of extremely simple processors, 

massively interconnected and running in parallel. Each processor has a nu- 

merical activation value which it communicates to other processors along 

connections of varying strengths. The activation value for each processor 

constantly changes in response to the activity of the processors to which it is 

connected. The values of some of the processors form the input to the system, 

and the values of other processors form the output. The connections between 

the processors determine how input is transformed to output. In connectionist 

systems, knowledge is encoded not in symbolic structures but rather in the 

pattern of numerical strengths of the connections between processors.'° 

In retrospect, the stages of my critique of attempts to use computers 

as physical symbol systems to simulate intelligence now fell into place. 

My early appeal to holism, my concern with commonsense understand- 

ing as know-how, Stuart’s phenomenology of everyday skills, and the 

capacities of simulated neural networks all added up to a coherent 

position —one that predicted and explained why GOFAI research should 

degenerate just as it had. 

Here is where I would like to say “and the rest is history,” but there 

are two issues that must be faced before we lay the whole controversy 

to rest. First, the GOFAI research program has refused to degenerate 

gracefully and is fighting on, and we have to ask why this is happening. 

Second, the question remains whether neural networks can be intelli- 
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gent or whether network researchers, like AI researchers in the 1960s, 

are basing their hopes on ad hoc successes that may not be generaliz- 

able. 

That GOFAI was not as dead as I believed was brought home to me 

by public television. Readers may have seen an impressive five-part 

series called “The Machine That Changed the World,” one episode of 

which was devoted to AI. In that episode my objections to symbolic Al, 

and specifically my conclusion that in attempting to represent common 

sense GOFAI had run into a problem it could not solve, was played off 

against the claims of alone AI researcher, Douglas Lenat. In 1984 Lenat 

had shared my sense of Al’s stagnation: 

By the mid-1970s, after two decades of humblingly slow progress, workers in 

the new field of artificial intelligence had come to a fundamental conclusion 

about intelligent behavior in general: it requires a tremendous amount of 

knowledge, which people often take for granted but which must be spoon-fed 

to a computer. . . . Understanding even the easiest passages in common 

English, for example, requires a knowledge of the context, the speaker and the 

world at large that is far beyond the capabilities of present-day computer 

programs.!! 

And by 1991 his concern was even clearer: “Most of the current AI 

research we’ve read about is currently stalled.”!? Nevertheless, he is not 

discouraged. He heads a research team at the Microelectronics and 

Computer Technology Corporation (MCC) that is in the middle of a ten- 

year project aimed at formalizing consensus knowledge, that is, “the 

millions of abstractions, models, facts, rules of thumb, representations, 

etc., that we all possess and that we assume everyone else does,”!3 

This is not the sort of knowledge that is in an ordinary encyclopedia. 

Rather, it is the taken-for-granted knowledge that is used by readers in 
understanding an encyclopedia article and, more generally, in under- 

standing what goes on in the world. Consensus knowledge ranges from 
“George Bush is President of the United States” to “George Bush wears 
underwear” to “When George Bush is in Washington, his left foot is 

also in Washington.” Lenat presents himself as the only person willing 
to take on the commonsense-knowledge problem as a major research 
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program instead of trying to finesse it. And he is confident that, thanks 

to his research, “artificial intelligence is within our grasp.”'4 

Through cross-cut interviews, the Black Knight of AI, as I have been 

called, met the White Knight of symbolic information processing for a 

final joust. Lenat claimed that his project was going well and had a 60 

percent chance of success. I came across as dubious but ill-informed 

and made some unconvincing objections. Clearly, my claim that the 

GOFAI program is degenerating can be dismissed as merely reporting 

a transient sociological phenomenon unless I can defend my conviction 

that Lenat’s project is doomed. 

To understand my critique of the GOFAI approach to common sense, 

it helps to know its ancestry. Rationalists such as Descartes and Leibniz 

thought of the mind as defined by its capacity to form representations 

of all domains of activity. These representations were taken to be 

theories of the domains in question, the idea being that representing the 

fixed, context-free features of a domain and the principles governing 

their interaction explains the domain’s intelligibility. On this view all 

that we know—even our general know-how for getting around in the 

world and coping with things and people — must be mirrored in the mind 

in propositional form. I shall call this view of the mind and its relation 

to the world “representationalism.” Representationalism assumes that 

underlying everyday understanding is a system of implicit beliefs. 

This assumption is shared by intentionalist philosophers such as 

Edmund Husserl and computationalists such as Jerry Fodor and GOFAI 

researchers. The specific AI problem of representing all this knowledge 

in formal rules and features only arises after one has already assumed 

that common sense derives from a vast data base of propositional 

knowledge. When, instead of developing philosophical theories of the 

transcendental conditions that must hold if the mind is to represent the 

world, or proposing psychological models of how the storage and 

retrieval of propositional representations works, researchers in AI 

actually tried to formulate and organize everyday consensus knowl- 

edge, they ran into what has come to be called the commonsense- 

knowledge problem. There are really at least three problems grouped 

under this rubric: 
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1. How everyday knowledge must be organized so that one can make 

inferences from it. 

2. How skills or know-how can be represented as knowing-that. 

3. How relevant knowledge can be brought to bear in particular situations. 

While representationalists have written programs that attempt to deal 

with each of these problems, there is no generally accepted solution, nor 

is there a proof that these problems cannot be solved. What is clear is 

that all attempts to solve them have run into unexpected difficulties, and 

this in turn suggests that there may well be in-principle limitations on 

representationalism. At the very least these difficulties lead us to 

question why anyone would expect the representationalist project to 

succeed. 

Lenat, however, thinks that his predecessors have simply not tried 

hard enough to systematize common sense. His goal is to organize 

commonsense knowledge using general categories that make no refer- 

ence to the specific uses to which the knowledge is to be put: 

Naturally, all programs are built on some primitives (predicates, frames, slots, 

rules, functions, scripts).'* But if you choose task-specific primitives, you’ll 

win in the short run (building a program for that narrow domain) but lose in the 

long run (you'll find yourself painted into a corner when you try to scale the 

program up).!° 

Lenat relates his work to the traditional philosophical job of working 
out an ontology—a description of the various types of context-free 
entities and their relationships—and he sees that turning traditional 

ontology into a research program is no small task: 

A serious attempt at [capturing consensus knowledge] would entail building a 
vast knowledge base, one that is 10*to 10‘ larger than today’s typical expert 
system, which would contain general facts and heuristics and contain a wide 
sample of specific facts and heuristics for analogizing as well... . Moreover, 
this would include beliefs, knowledge of others’ (often grouped by culture, age 
group, or historical era) limited awareness of what we know, various ways of 
representing things, knowledge of which approximations (micro-theories) are 
reasonable in various contexts, and so on.!” 
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The data structures must represent objects and their properties, 
individuals, collections, space, time, causality, events and their ele- 

ments, agency, institutions, and oddly, from a traditional philosophical 
point of view, recurrent social situations such as dinner at a restaurant 

or a birthday party. This data-base ontology, like any traditional 

rationalist ontology, must bottom out in primitive elements. 

Choosing a set of representation primitives (predicates, objects, functions) has 

been called ontological engineering —that is, defining the categories and 

relationships of the domain. (This is empirical, experimental engineering, as 

contrasted with ontological theorizing, which philosophers have done for 
millennia.)'® 

Lenatis clear that his ontology must be able to represent our commonsense 

background knowledge — the understanding we normally take for granted. 

He would hold, however, that it is premature to try to give a computer 

the skills and feelings required for actually coping with things and 

people. No one in AI believes anymore that by 2001 we will have an 

artificial intelligence like HAL. Lenat would be satisfied if the Cyc data 

base could understand books and articles, for example, if it could 

answer questions about their content and gain knowledge from them. In 

fact, itis a hard problem even to make a data base that can understand 

simple sentences in ordinary English, since such understanding re- 

quires vast background knowledge. Lenat collects some excellent 

examples of the difficulty involved. Take the following sentence: 

Mary saw a dog in the window. She wanted it.’ 

Lenat asks: 

Does “it” refer to the dog or the window? What if we’d said “She smashed it,” 
or “She pressed her nose up against it”?”° 

Note that the sentence seems to appeal to our ability to imagine how 

we would feel in the situation, rather than requiring us to consult facts 

about dogs and windows and how a typical human being would react. 

It also draws on know-how for getting around in the world, such as how 

to get closer to something on the other side of a barrier. In this way the 



Introduction to the MIT Press Edition ite 

feelings and bodily coping skills that were excluded to make Lenat’s 

problem easier return. We need to be able to imagine feeling and doing 

things in order to organize the knowledge we need to understand typical 

sentences. There are also all the problems of “deixis,” that is, the way 

we locate things with respect to our own locations, as “over there,” 

“nearby,” etc. All these problems point to the importance of the body. 

Lenat does not tell us how he proposes to capture in propositional terms 

our bodily sense of what is inside and outside, accessible and inacces- 

sible, and what distance we need to be from various sorts of things to 

get an optimal grip on them. He just tells us dogmatically that this can 

be done. 

Our response—in principle and in CYC—is to describe perception, emotion, 

motion, etc., down to some level of detail that enables the system to understand 

humans doing those things, and/or to be able to reason simply about them.”! 

In our constructed television debate my claim that an intelligence 

needs a body was dismissed by reference to the case of Madeleine, a 

wheelchair-bound woman described by Oliver Sacks, who was blind 

from birth, could not use her hands to read braille, and yet acquired 

commonsense knowledge from books that were read to her. But this 

case does not in fact support Lenat. Madeleine is certainly not like a 

computer. She is an expert at speaking and interacting with people and 

so has commonsense social skills. Moreover, she has feelings, both 
physical and emotional, and a body that has an inside and outside and 
can be moved around in the world. Thus she can empathize with others 
and to some extent share the skillful way they encounter their world. 
Her expertise may well come from learning to discriminate many 
imagined cases and what typically occurs in them, not from forming a 
model of the world in Lenat’s sense. Indeed, Sacks says that Madeleine 

had “‘an imagination filled and sustained, so to speak, by the images of 
others, images conveyed by language.”*? Thus the claim that Madeleine’s 
acquisition of commonsense knowledge from books despite her inabil- 
ity to see and move her hands proves that a person can acquire and 
organize facts about the world on the model of a symbolic computer 
being fed rationally ordered representations ignores the possibility that 
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a person’s bodily skills and imagination are a necessary condition for 
acquiring common sense even from books. 

Mark Johnson gives a good argument for the importance of imagina- 
tion even in conscious problem solving: 

Imagination is a pervasive structuring activity by means of which we achieve 
coherent, patterned, unified representations. It is indispensable for our ability 
to make sense of our experience, to find it meaningful. The conclusion ought 

to be, therefore, that imagination is absolutely central to human rationality, 

that is, to our rational capacity to find connections, to draw inferences, and to 

solve problems.” 

To assume that Madeleine’s body and imagination are irrelevant to her 

accumulation, organization, and use of facts, and that her skills them- 

selves are the result of just more storing and organizing of facts, begs 

the question. Why should we assume that the imagination and skills 

Madeleine brings to the task of learning and using common sense can 

be finessed by giving a computer facts and rules for organizing them? 

A way to see the implausibility of this claim is to ask how the 

computer—with its millions of facts organized for no particular pur- 

pose—might be able to retrieve just the relevant information for 

understanding a sentence uttered in a specific situation. This is a far 

harder problem than that of answering questions on the basis of stored 

data, which seems to be all that Lenat has considered until now. In order 

to retrieve relevant facts in a specific situation, a computer would have 

to categorize the situation, then search through all its facts following 

rules for finding those that could possibly be relevant in this type of 

situation, and finally deduce which of these facts are actually relevant 

in this particular situation. This sort of search would clearly become 

more difficult as one added more facts and more rules to guide it. 

Indeed, AI researchers have long recognized that the more a system 

knows about a particular state of affairs, the longer it takes to retrieve 

the relevant information, and this presents a general problem where 

scaling up is concerned. Conversely, the more a human being knows 

about a situation or individual, the easier it is to retrieve other relevant 

information. This suggests that human beings use forms of storage and 
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retrieval quite different from the symbolic one representationalist 

philosophers and Lenat have assumed. 

Lenat admits that there is a problem: 

The natural tendency of any search program is to slow down (often combina- 

torially explosively) as additional assertions are added and the search space 

therefore grows.... [T]he key to preserving effective intelligence of a growing 

program lies in judicious adding of meta-knowledge.** 

The problem is that the rules and meta-rules are just more meaningless 

facts and so may well make matters worse. 

In the end, Lenat’s faith that Cyc will succeed is based neither on 

arguments nor on actual successes but on the untested traditional 

assumption that human beings have a vast library of commonsense 

knowledge and somehow solve the scaling-up problem by applying 

further knowledge: 

We're often asked how we expect to efficiently “index” — find relevant partial 

matches —as the knowledge base grows larger and larger. ... Our answer... 

often appears startling at first glance: wait until our programs are finding 

many, far-flung analogies, but inefficiently, i.e. only through large searches. 

Then investigate what additional knowledge people bring to bear, to eliminate 

large parts of the search space in those cases. Codify the knowledge so 

extracted, and add it to the system.*® 

But the conviction that people are storing context-free facts and 
using meta-rules to cut down the search space is precisely the dubious 
rationalist assumption in question. It must be tested by looking at the 
phenomenology of everyday know-how. Such an account is worked out 
by Heidegger and his followers such as Merleau-Ponty and the anthro- 
pologist Pierre Bourdieu. They find that what counts as the facts 
depends on our everyday skills. In describing a society in which gift- 
exchange is important, Bourdieu tells us: 

If it is not to constitute an insult, the counter-gift must be deferred and 
different, because the immediate return of an exactly identical object clearly 
amounts to a refusal... . It is all a question of style, which means in this case 
timing and choice of occasion, for the same act—giving, giving in return, 



Introduction to the MIT Press Edition P segyyi 

offering one’s services, paying a visit, etc.—can have completely different 

meanings at different times.” 

Yet members of the culture have no trouble understanding what to do. 

Once one has acquired the necessary social skill, one does not need to 

recognize the situation objectively as having the features of one in 

which gift-giving is appropriate and then decide rationally what gift to 

give. Normally one simply responds in the appropriate circumstances 

by giving an appropriate gift. That this is the normal response is what 

constitutes the circumstance as a gift-giving situation. The same, of 

course, holds for the know-how of what gift is appropriate. One does 

not have to figure out what is appropriate, or at least not the range of 

what is appropriate. Everyone’s skills are coordinated so that normally 

one is just solicited by the situation to give a certain type of gift, and the 

recipient, socialized into the same shared practices, finds it appropriate. 

Bourdieu comments: 

The active presence of past experiences ... deposited in each organism in the 

form of schemes of perception, thought, and action, tend to guarantee the 

‘correctness’ of practices and their constancy over time, more reliably than all 

formal rules and explicit norms.”’ 

This sort of experience suggests that structuring a knowledge base so 

as to represent all facts about gift-giving is necessary only fora stranger 

or spectator who does not already have the appropriate skill. Bourdieu 

insists that it is a mistake — one often made by anthropologists, philoso- 

phers, and, we can add, AI researchers —to read the rules we need to 

appeal to in breakdown cases back into the normal situation and then to 

appeal to such representations for a causal explanation of how a skillful 

response is normally produced. 

The point of this example is that knowing how to give an appropriate 

gift at the appropriate time and in the appropriate way requires cultural 

savoir faire. So knowing what a gift is is not a bit of factual knowledge, 

separate from the skill or know-how for giving one. The distinction 

between what a gift is and what counts as a gift, which seems to 

distinguish facts from skills, is an illusion fostered by the philosophical 

belief in a nonpragmatic ontology. Since the organization and content 
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sleeping, tasting, growing, containing, moving, making noise, hearing, birth, 

death, strain, exhaustion, .. .*! 

The fact that these are somatic primitives does not seem to bother him 

at all. 

Lenat, nonetheless, asks the right question: “How can a program 

automatically find good mappings?’*? But he gives the simplistic 

rationalist answer: “If A and B appear to have some unexplained 

similarities, then it’s worth your time to hunt for additional shared 

properties.” 

This begs the question. Everything is similar to everything else in an 

indefinitely large number of ways. Why should we suppose that any two 

items should be compared? Even if two frames have many slots in 

common, why should we think these are the important similarities? 

Perhaps the important similarities cannot be symbolically represented 

at all. Both the defenders of the basic role of our sense of our active body 

with inside/outside, forward/backward, and up/down dimensions and 

those who hold that similarity of style is what defines what is worth 

comparing would hold that there is no reason to think that the con- 

straints on similarity can be represented symbolically. 

When John Searle tried to understand metaphors as proportions, he 

found that metaphors like “Sally is a block of ice” could not be analyzed 

by listing the features that Sally and a large, cold cube have in common. 

If we were to enumerate quite literally the various distinctive qualities of 

blocks of ice, none of them would be true of Sally. Even if we were to throw 

in the various beliefs that people have about blocks of ice, they still would not 

be literally true of Sally... . Being unemotional is not a feature of blocks of 

ice because blocks of ice are not in that line of business at all, and if one wants 
to insist that blocks of ice are literally unresponsive, then we need only point 
out that that feature is still insufficient to explain the metaphorical utterance 
meaning .. . because in that sense bonfires are “unresponsive” as well.* 

Searle concludes: 

There are .. . whole classes of metaphors that function without any underlying 
principles of similarity, It just seems to be a fact about our mental capacities 
that we are able to interpret certain sorts of metaphor without the application 
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of any underlying ‘rules’ or ‘principles’ other than the sheer ability to make 

certain associations. I don’t know any better way to describe these abilities 

than to say that they are nonrepresentational mental capacities.** 

So far we have only discussed the facts and metaphors that are 

constituted by our social skills. What about the facts of nature? Where 

a domain of facts is independent of us, as is the domain of physical 

objects, do we then need a theory of the domain? Not likely. The way 

people cope with things is sometimes called commonsense physics. 

This leads to the comforting illusion that just as the planets do not move 

around at random but obey general principles, so everyday objects do 

not stick, slide, fall, and bounce in an unprincipled way but obey 

complex and particular laws. Attempts to work out commonsense 

physics for the simplest everyday objects, however, lead to formal 

principles that are subject to many exceptions and are so complex that 

it is hard to believe they could be in a child’s mind.** Lenat concludes 

from this that what we know concerning how everyday objects behave 

cannot be principles but must be a lot of facts and rules. 

[The Cyc] methodology will collect, e.g., all the facts and heuristics about 

“Water” that newspaper articles assume their readers already know. This is in 

contrast to, for instance, naive physics and other approaches that aim to 

somehow capture a deeper theory of “Water” in all its various forms.’ 

But granted that there is no reason to think that there can be a theory of 

commonsense physics as there is of celestial physics, that is no reason 

to think that our know-how for dealing with physical objects can be 

spelled out in some all-purpose data base concerning physical objects 

and their properties. Perhaps there is no set of context-free facts 

adequate to capture the way everyday things such as water behave. We 

may just have to learn from vast experience how to respond to thou- 

sands of typical cases. That would explain why children find it fascinat- 

ing to play with blocks and water day after day for years. They are 

probably learning to discriminate the sorts of typical situations they 

will have to cope with in their everyday activities. For natural kinds like 

water, then, as well as for social kinds like gifts, common sense seems 

to be based on knowing-how rather than knowing-that, and this know- 
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how may well be a way of storing our experience of the world that does 

not involve representing the world as symbolic AI required. 

This still leaves the important question of how human beings manage 

to engage in purposive behavior. The traditional view, accepted by 

GOFAT, has been that they use their theory of the domain in question to 

work out a plan for accomplishing whatever they are trying to do. But 

rather than suggesting that people store vast numbers of facts and then 

plan how to use them, the phenomena, which have to be trusted until 

psychology or neuroscience gives us any reason to think otherwise, 

suggest that when one has had a great deal of experience in a domain, 

one simply sees what needs to be done. It seems that when a person has 

enough experience to make him or her an expert in any domain, the field 

of experience becomes structured so that one directly experiences 

which events and things are relevant and how they are relevant. 

Heidegger, Merleau-Ponty, and the gestaltists would say that objects 

appear to an involved participant not in isolation and with context-free 

properties but as things that solicit responses by their significance. 

In the first edition of this book I noted that good chess players don’t 

seem to figure out from scratch what to do each time they make a move. 

Instead, they zero in on a certain aspect of the current position and 

figure out what to do from there (pp. 102-106). In Mind Over Machine 

Stuart went further and pointed out that a mere master might need to 

figure out what to do, but a grandmaster just sees the board as demand- 

ing a certain move.*® 

We are all masters in our everyday world. Consider the experience of 
entering a familiar type of room. We know but do not appeal to the sort 
of facts that can be included in a room frame, such as that rooms have 
floors, ceilings, and walls, that walls can have windows in them, and 

that the floor can have furniture on it. Instead, our feeling for how rooms 
normally behave, a skill for dealing with them that we have developed 
by crawling and walking around many rooms, gives us a sense of 
relevance. We are skilled at not coping with the dust, unless we are 
janitors, and not paying attention to whether the windows are open or 
closed, unless it is hot, in which case we know how to do what is 
appropriate. Our expertise in dealing with rooms determines from 
moment to moment both what we cope with by using and what we cope 
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with by ignoring (while being ready to use it should an appropriate 
occasion arise). This global familiarity maps our past experience of the 
room onto our current activity, so that what is appropriate on each 
occasion is experienced as perceptually salient or simply elicits what 
needs to be done. 

In general, human beings who have had vast experience in the natural 
and social world have a direct sense of how things are done and what to 
expect. Our global familiarity thus enables us to respond to what is 
relevant and ignore what is irrelevant without planning based on 

purpose-free representations of context-free facts. Such familiarity 

differs entirely from our knowledge of an unfamiliar room, such as the 

room of an seventeenth-century nobleman. In that sort of room our 

knowledge resembles the sort of knowledge a data base might have. But 

even if a Jacobean drawing-room frame and its slots were all in place, 

we would still be disoriented. We would not know what to pay attention 

to or how to act appropriately. 

Global sensibilities (or the imagination thereof) determine situ- 

ational relevance because our world is organized by these preconceptual 

meanings. It is in terms of them that objects and events are experienced 

as something. Our everyday coping skills and the global familiarity 

they produce determine what counts as the facts and the relevance of all 

facts and so are already presupposed in the organization of the frames 

and slots GOFAI uses for representing these facts. That is why human 

beings cope more easily and expertly as they learn to discriminate more 

aspects of a situation, whereas, for data bases of frames and rules, 

retrieving what is relevant becomes more and more difficult the more 

they are told. 

Lenat does seem to be correct in seeing the Cyc project as the last 

defense of the AI dream of producing broad, flexible human intelli- 

gence. Indeed, just because of its courage and ambition, the Cyc 

project, more than any previous one, confronts the problems raised by 

the idea of basing intelligence on symbolic representations. As we have 

just seen, the somatic and stylistic background sensitivities that deter- 

mine what counts as similar to what and the background coping 

familiarity that determines what shows up as relevant are presupposed 

for the intelligent use of the facts and rules with which symbolic Al 
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starts. The hope that these background conditions can be analyzed in 

terms of the features whose isolation and recognition they make pos- 

sible is, on the face of it, implausible. The only arguments that are ever 

given in support of the physical symbol system hypothesis are the 

rationalist assumption that understanding equals analysis, so that all of 

experience must be analyzable (that is, there must be a theory of every 

intelligible domain), or the GOFAI response that the mind must be a 

symbol manipulator since no one knows what else it might be. Now that 

both of these arguments have lost plausibility, there remains only the 

pragmatic argument that GOFAI will demonstrate its possibility by 

producing an intelligent machine. So far that sort of claim has not been 

made good, and Cyc faces all the old problems in their most daunting 

form. The project has five more years to go, but Lenat has given us no 

reason to be optimistic. It seems highly likely that the rationalist dream 

of representationalist AI will be over by the end of the century. 

For three groups of AI researchers whose work now focuses on 

alternative approaches, GOFAI is already over. One of these ap- 

proaches, associated with the work of Philip Agre and David Chapman, 

attempts to produce programs that interact intelligently with a micro- 

world without using either context-free symbolic representations or 

internal model-based planning. The second, represented by the neural- 

network modelers, abandons representation altogether. This approach 
uses conventional features but produces outputs by a direct mapping 
from the inputs, with the mapping extrapolated from examples pro- 
vided by an expert. A third new approach to AI, called reinforcement 
learning, aims to develop a program that dispenses with the expert and 
uses actual performance in the skill domain in order to find, on its own, 
a successful input-output rule. It is worth considering the advantages 

and limitations of each of these approaches. 

The interactionists are sensitive to the Heideggerian critique of the 
use of symbolic models of the world and attempt to turn Heidegger's 
account of ongoing skillful coping*® into an alternative research pro- 
gram. At MIT, where this approach was developed, it is sometimes 
called Heideggerian AI. Terry Winograd, who was the first to introduce 
Heidegger into his computer science courses, has described this sur- 
prising new development: 
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For those who have followed the history of artificial intelligence, it is ironic 

that [the MIT] laboratory should become a cradle of “Heideggerian AI.” It was 

at MIT that Dreyfus first formulated his critique, and, for twenty years, the 
intellectual atmosphere in the AI Lab was overtly hostile to recognizing the 

implications of what he said. Nevertheless, some of the work now being done 

at that laboratory seems to have been affected by Heidegger and Dreyfus.” 

The AI Lab work Winograd is referring to is the influential theory of 

activity developed by Agre and Chapman, implemented in two pro- 

grams, Pengi and Sonja, that play computer games. Agre and Chapman 

question the need for an internal symbolic model of the world that 

represents the context-free features of the skill domain. Following 

Heidegger, they note that in our everyday coping we experience our- 

selves not as subjects with mental representation over against objects 

with fixed properties, but rather as absorbed in our current situation, 

responding directly to its demands. 

Interactive AI takes seriously the view I attributed to Heidegger in 

this book—that there is usually no need for arepresentation of the world 

in our mind since the best way to find out the current state of affairs is 

to look to the world as we experience it. Chapman tells us: 

If you want to find out something about the world that will affect how you 

should act, you can usually just look and see. Concrete activity is principally 

concerned with the here-and-now. You mostly don’t need to worry about 

things that have gone before, are much in the future, or are not physically 

present. You don’t need to maintain a world model; the world is its own best 

representation.*! 

Agre and Chapman also adapt another Heideggerian thesis that Stuart 

and I developed in Mind Over Machine, namely that behavior can be 

purposive without the agent having in mind a goal or purpose. 

In a great many situations, it’s obvious what to do next given the configuration 

of materials at hand. And once you’ve done that the next thing to do is likely 

to be obvious too. Complex sequences of actions result, without needing a 

complex control structure to decide for you what to do.” 

What is original and important in Agre and Chapman’s work is that 

these ideas are taken out of the realm of armchair phenomenology and 
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made specific enough to be implemented in programs. What results is 

a system that represents the world not as a set of objects with properties 

but as current functions (what Heidegger called in-order-tos). Thus, to 

take a Heideggerian example, I experience a hammer I am using not as 

an object with properties but as in-order-to-drive-in-the-nail. Only if 

there is some disturbance does the skilled performer notice what I have 

called aspects of the situation. In Heidegger’s example, the carpenter 

notices that the hammer is too heavy. Both of the above ways of being, 

which Heidegger calls the available (the ready-to-hand) and the un- 

available (the unready-to-hand), are to be distinguished from what he 

calls the occurrent (the present-at-hand) mode of being, the mode of 

being of stable objects. Objects can be recognized as the same even 

when they are used in different contexts or when some of their proper- 

ties change. Such reidentifiable objects with their changing features or 

properties have been the only mode of being represented in GOFAI 

models. The interactionists seek to represent the available and the 

unavailable modes. Chapman speaks in this respect of “deictic repre- 

sentations”: 

The sorts of representations we are used to are objective: they represent the 

world without reference to the representing agent. Deictic representations 

represent things in terms of their relationship with the agent. The units of 

deictic representation are entities, which are things in a particular relationship 

to the agent, and relational aspects of these entities. For example, the-cup-I- 

am-drinking-from is the name of an entity, and the-cup-]-am-drinking-from- 
is-almost-empty is the name of an aspect of it. The-cup-J-am-drinking-from is 
defined in terms of an agent and the time the aspect is used. The same 
representation refers to different cups depending on whose representation it is 
and when it is used. It is defined functionally, in terms of the agent’s purpose: 
drinking.*? 

The other important Heidegger-inspired innovation in interactive 
programming is its implementation of purposive action. A GOFAI 
planner searches the space of possible sequences of actions to deter- 
mine how to get from a symbolic representation of the current situation 
to a specified goal. The interactive approach to action stipulates a 
mapping from situations directly to actions. 
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Interactive AI has implemented Heidegger’s phenomenolo gy of everyday 
coping but has not attempted to implement his account of the back- 
ground familiarity on the basis of which certain equipment is seen as 
relevant and certain courses of action solicit my response. This gap 
shows up in Chapman’s unsatisfying account of relevance. Chapman 
tells us that “agents represent only relevant aspects of the situation.” 
But this turns out to mean that, as in all GOFAI programs, the program- 
mer has predigested the domain and determined for the system what are 

the possibly relevant features at any given moment. 

So far it looks like Heideggerian AI is true to Heidegger’s phenom- 

enology in what it leaves out— long-range planning and internal repre- 

sentations of reidentifiable objects with context-free features—but it 

lacks what any intelligent system needs, namely the ability to discrimi- 

nate relevant distinctions in the skill domain and to learn new distinc- 

tions from experience. To provide this crucial capability, more and 

more researchers are looking to simulated neural networks. We there- 

fore turn to the question of whether such networks can exhibit what I 

have called familiarity or global sensitivity and, if not, whether they can 

cope in some other way with relevance and learning. (My use of “we” 

here is not royal but literal, since my brother Stuart has made indispens- 

able contributions to the rest of this introduction.) 

We have already mentioned that neural-network modeling, the fash- 

ionable answer to the what-else-could-it-be question, has swept away 

GOFAI and given AI researchers an optimism they have not had since 

the 1960s. After all, neural networks can learn to recognize patterns and 

pick out similar cases, and they can do this all in parallel, thus avoiding 

the bottleneck of serial processing. But neural networks raise deep 

philosophical questions. It seems that they undermine the fundamental 

rationalist assumption that one must have abstracted a theory of a 

domain in order to behave intelligently in that domain. In its simplest 

terms, as understood from Descartes to early Wittgenstein, finding a 

theory means finding the invariant features in terms of which one can 

map specific situations onto appropriate responses. In physical symbol 

systems the symbols in the representation are supposed to correspond 

to these features, and the program maps the features onto the response. 

As we saw, Lenat, the last heir to GOFAI, assumes that there must be 
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such context-free primitives in which his ontology would bottom out. 

When neural networks became fashionable, traditional AI researchers 

assumed that the hidden nodes in a trained net would detect and learn 

the relevant features, relieving the programmer of the need to discover 

them by trial and error. But this turned out to be problematic. 

The input to neural networks must, of course, be expressed in terms 

of stable, recognizable features of the domain. For example, a network 

that is to be trained to play chess would take as its inputs board positions 

defined in terms of types and locations of pieces. The question is 

whether a network that has learned to play chess has detected higher- 

order features, such as unbalanced pawn structure, that combine these 

input features in such a way that any position that shares the same 

higher-order features maps into the same move. If a given network 

architecture trained on a given set of examples could be shown to detect 

such higher-order features independently of its connection strengths 

prior to training, then it could be said to have abstracted the theory of 

the domain. If, for example, such features turned out to be the kinds of 

features chess masters actually think about, then the net would have 

discovered the theory of the chess domain that chess theorists and 

symbolic AI researchers have sought for so long. If these higher-order 

features were not the sort of features an expert in the domain could 

recognize, the belief that programmers of AI systems could invent 

higher-order features based on chess knowledge would of course be 

shaken, but the assumption that there must be a theory of any domain 

in which intelligent behavior is possible would not have been called 

into question. 

The implications for rationalism, however, may be much more serious. 

To defend the theory theory, rationalists might well insist that, given 
any particular set of connection strengths as a starting point for training 
a network with examples, we can always identify higher-order features, 
even if these features cannot be used consciously by experts. Consider 
the simple case of layers of binary units activated by feedforward, but 
not lateral or feedback, connections. To construct such higher-order 

features from a network that has learned certain associations, we could 
interpret each node one level above the input nodes, on the basis of the 
connections to it, as detecting when any one of a certain set of identi- 
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fiable input patterns is present. (Some of the patterns will be the ones 
used in training, and some will never have been used.) If the set of input 
patterns that a particular node detects is given a name (it almost 

certainly won’t have one already), the node could be interpreted as 

detecting the highly abstract feature so named. Hence, every node one 

level above the input level could be characterized as a feature detector. 

Similarly, every node a level above those nodes could be interpreted as 

detecting a higher-order feature defined as the presence of one of a 

specified set of patterns among the first level of feature detectors. And 

so on up the hierarchy. A similar story could be constructed for neurons 

with graded (continuous, nonbinary) responses. One would then speak 

of the extent to which a higher-order feature is present. 

The fact that intelligence, defined as the knowledge of a certain set of 

associations appropriate to a domain, can always be accounted for in 

terms of relations among a number of such highly abstract features of 

a skill domain does not, however, preserve the rationalist intuition that 

these explanatory features capture the essential structure of the domain. 

The critical question is whether, if several different nets with different 

initial connection strengths were trained to produce a given set of input/ 

output mappings, the same higher-order features would be detectable in 

all of them or, at least, whether, at some level of abstraction, all of the 

nets could be seen as abstracting equivalent invariances. 

No such invariances have been found. The most thorough search 

concerns a neural network called NETtalk that converts printed text 

into speech. NETtalk is given several pages of text plus the correct 

pronunciation of the middle letter of every string of seven characters in 

the text. The net starts with random connection strengths, and its 

reading of the text sounds like noise. After many hours of training using 

backpropagation, a technique that changes the connection strengths 

repeatedly, each time bringing the actual output closer to the correct 

output, the net learns to read the text aloud in a way that a native speaker 

can easily understand.** But careful analysis of the activity of the 

hidden nodes when the net was producing correct responses failed to 

reveal any consistent higher-order features in trials with different 

initial connection strengths. Thus we can say that so far neural-network 

research has tended to substantiate the belief that coping does not 
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require the abstraction of a theory of the skill domain.* This is bad news 

for rationalism but gives networks a great advantage over GOFAI. 

Nevertheless, the commonsense-knowledge problem resurfaces in 

this work and threatens its progress just as it did work in GOFAI. All 

multilayer perceptron neural-network modelers agree that an intelli- 

gent network must be able to generalize; for example, for a given 

classification task, given sufficient examples of inputs associated with 

one particular output, it should associate further inputs of the same type 

with that same output. But what counts as the same type? The network’s 

designer usually has in mind a specific definition of “type” required for 

a reasonable generalization and counts it a success if the net generalizes 

to other instances of this type. But when the net produces an unexpected 

association, can one say that it has failed to generalize? One could 

equally well say that the net has all along been acting on a different 

definition of “type” and that that difference has just been revealed. 

For an amusing and dramatic case of creative but unintelligent 

generalization, consider one of connectionism’s first applications. In 

the early days of this work the army tried to train an artificial neural 

network to recognize tanks in a forest. They took a number of pictures 

of a forest without tanks and then, on a later day, with tanks clearly 

sticking out from behind trees, and they trained a net to discriminate the 

two classes of pictures. The results were impressive, and the army was 

even more impressed when it turned out that the net could generalize its 

knowledge to pictures that had not been part of the training set. Just to 

make sure that the net was indeed recognizing partially hidden tanks, 

however, the researchers took more pictures in the same forest and 

showed them to the trained net. They were depressed to find that the net 
failed to discriminate between the new pictures of trees with tanks 
behind them and the new pictures of just plain trees. After some 
agonizing, the mystery was finally solved when someone noticed that 
the original pictures of the forest without tanks were taken on a cloudy 
day and those with tanks were taken on a sunny day. The net had 
apparently learned to recognize and generalize the difference between 
a forest with and without shadows! This example illustrates the general 
point that a network must share our commonsense understanding of the 
world if it is to share our sense of appropriate generalization. 
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One might still hope that networks different from our brain will make 
exciting new generalizations and add to our intelligence. After all, 

detecting shadows is just as legitimate as detecting tanks. In general, 

though, a device that could not learn our generalizations and project our 

practices to new situations would just be labeled stupid. For example, 

thanks to our bodies, we normally see symmetric objects as similar. If 

a system consistently classified mirror images of otherwise identical 

objects as different but classified objects that cast the same shadows or 

had any red on them as similar, we would count it not as adding to our 

intelligence but as being unteachable or, in short, stupid as far as joining 

our community or giving us new insights was concerned. For an 

exercise in interesting but unintelligible categorization, consider Jorge 

Luis Borges’s story of “a ‘certain Chinese encyclopedia’ in which it is 

written that ‘animals are divided into: (a) belonging to the Emperor, (b) 

embalmed, (c) tame, (d) sucking pigs, (e) sirens, (f) fabulous, (g) stray 

dogs, (h) included in the present classification, (i) frenzied, (j) innumer- 

able, (k) drawn with very fine camelhair brush, (1) et cetera, (m) having 

broken the water pitcher, (n) that from a long way off look like flies.’”*’ 

Neural-network modelers were initially pleased that their nets were 

a blank slate (tabula rasa) until trained, so that the designer did not need 

to identify and provide anything resembling a pretraining intelligence. 

Recently, however, they have been forced by the problem of producing 

appropriate, human-like generalizations to the recognition that, unless 

the class of possible generalizations is restricted in an appropriate a 

priori manner, nothing resembling human generalizations can be con- 

fidently expected.** Consequently, after identifying in advance the 

class of allowable human-like generalizations appropriate to the prob- 

lem (the hypothesis space), these modelers then attempt to design the 

architecture of their networks so that they transform inputs into outputs 

only in ways that are in the hypothesis space. Generalization would then 

be possible only on the designer’s terms. While a few examples will be 

insufficient to identify uniquely the appropriate member of the hypoth- 

esis space, after enough examples only one hypothesis will account for 

all the examples. The network will then have learned the appropriate 

generalization principle. That is, all further input will produce what, 

from the designer’s point of view, is the right output. 
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The problem here is that the designer has determined, by means of the 

architecture of the network, that certain possible generalizations will 

never be found. All this is well and good for toy problems in which there 

is no question of what constitutes a reasonable generalization, but in 

real-world situations a large part of human intelligence consists in 

generalizing in ways that are appropriate to a context. If the designer 

restricts the network to a predefined class of appropriate responses, the 

network will be exhibiting the intelligence built into it by the designer 

for that context but will not have the common sense that would enable 

it to adapt to other contexts as a truly human intelligence would. 

Perhaps a network must share size, architecture, and initial-connec- 

tion configuration with the human brain if it is to share our sense of 

appropriate generalization. Indeed, neural-network researchers with 

their occasional ad hoc success but no principled way to generalize 

seem to be at the stage of GOFAI researchers when I wrote about them 

in the 1960s. It looks likely that the neglected and then revived 

connectionist approach is merely getting its deserved chance to fail. 

To generalize in the way that human beings do, a network’s architec- 

ture would have to be designed in such a way that the net would respond 

to situations in terms of what are for human beings relevant features. 

These features would have to be based on what past experience has 

shown to be important and also on recent experiences that determine the 

perspective from which the situation is viewed. Only then could the 
network enter situations with perspective-based human-like expecta- 
tions that would allow recognition of unexpected inputs (such as tanks 
in forests) as well as significant expected inputs that are not currently 
present in the situation. No current networks show any of these abili- 
ties, and no one at present knows or even speculates about how our 
brain's architecture produces them. 

There is yet another fundamental problem with the route to artificial 
intelligence through the supervised training of neural networks. In 
GOFAT it has long been clear that whatever intelligence the system 
exhibits has been explicitly identified and programmed by the system 
designer, The system has no independent learning ability that allows it 
to recognize situations in which the rules it has been taught are 
inappropriate and to construct new rules. Neural networks do appear to 
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have learning ability; but in situations of supervised learning, itis really 
the person who decides which cases are good examples who is furnish- 
ing the intelligence. What the network learns is merely how to capture 
this intelligence in terms of connection strengths. Networks, like 
GOFAI systems, therefore lack the ability to recognize situations in 
which what they have learned is inappropriate; instead, it is up to the 
human user to recognize failures and either modify the outputs of 
situations the net has already been trained on or provide new cases that 
will lead to appropriate modifications in behavior. The most difficult 
situation arises when the environment in which the network is being 

used undergoes a structural change. Consider, for example, the situa- 

tion that occurred when OPEC instigated the energy crisis in 1973. In 

such a situation, it may well happen that even the human trainer does not 

know the responses that are now correct and that should be used in 

retraining the net. Viewed from this perspective, neural networks are 

almost as dependent upon human intelligence as are GOFAI systems, 

and their vaunted learning ability is almost illusory. What we really 

need is a system that learns on its own how to cope with the environment 

and modifies its own responses as the environment changes. 

To satisfy this need, recent research has turned to an approach 

sometimes called “reinforcement learning.”’*? This approach has two 

advantages over supervised learning. First, supervised learning re- 

quires that the device be told the correct action for each situation. 

Reinforcement learning assumes only that the world provides a rein- 

forcement signal measuring the immediate cost or benefit of an action. 

It then seeks to minimize or maximize the total reinforcement it 

receives while solving any problem. In this way, it gradually learns 

from experience the optimal actions to take in various situations so as 

to achieve long-term objectives. To learn skillful coping, then, the 

device needs no omniscient teacher, just feedback from the world. 

Second, in supervised learning, any change in the skill environment 

requires new supervision by an expert who knows what to do in the new 

environment. In reinforcement learning, new conditions automatically 

lead to changes in reinforcement that cause the device to adapt appro- 

priately. 
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An example will clarify what reinforcement learning in its most 

elemental form is all about. Suppose a device is to learn from repeated 

experience the shortest path from point A to point B in acity. The device 

knows where it is (its current state) and the possible directions it can go 

in (its space of allowable current actions). After it chooses an action (a 

direction), it observes the distance to the next intersection (its next 

decision point). This cost is its immediate reinforcement. It also ob- 

serves the location of the next intersection (its new situation). The 

standard AI approach would be to have the device create an internal 

map of the city based on its experiences and then use that map and some 

computational algorithm to determine the shortest path. The new 

approach, like Heideggerian AI, dispenses with models and long-range 

planning. Instead the device repeatedly takes various paths from A to 

B, learning in which direction it should go at each intersection to create 

the shortest path from a given starting intersection to B. It does this not 

by trying alternative paths and remembering the best but by gradually 

learning only one piece of information besides its best decision at each 

intersection, namely the shortest distance from that intersection to B. 

This is the “value” of the intersection. After each decision and obser- 

vation of the distance to the next intersection, the reinforcement 

algorithm evaluates that decision in terms of its current estimates of the 

value of the intersection it is at and the one to which it is going next. If 

it looks to be a good decision, it renders that decision more likely to be 

chosen in the future when the path problem is repeated and it finds itself 

at the same intersection. It also updates its estimate of the value of the 

current intersection. 

We have so far described a problem in which a given action in a given 

situation always leads to the same next situation and the same immedi- 
ate reinforcement, but the approach is equally appropriate to probabi- 
listic environments in which the device seeks actions that minimize or 
maximize expected long-term reinforcement. Values learned for situa- 
tions are then minimal or maximal expected values. To cite one ex- 
ample, reinforcement-learning ideas (together with other mechanisms 
that are less like what brains seem to do but that speed up the learning) 
have been tried on the stochastic game of backgammon.*! A program 
that played hundreds of thousands of games against itself, without 
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expert-specified principles of the game or expert-supplied positional 
values or correct moves, learned expected values of positions well 
enough to play at the level of a good human tournament player. It was 
as proficient as any computer program using more conventional AI or 
supervised learning methods.*? 

All of this fits well with the phenomena. Most of our skills involve 
action in evolving situations and are learned from trial-and-error expe- 
rience with environmental feedback but without teachers (or, some- 

times, from experience-based fine-tuning of what we initially learned 

through instruction). Moreover, while experts generally cannot access 

any information explaining their ability, they can usually assess the 

value or desirability of a situation easily and rapidly and recommend an 

appropriate action. 

Assuming that reinforcement-learning ideas correctly capture some 

of the essence of the human intelligence involved in learning skillful 

coping, the question naturally arises, Can one build a device that does 

as well as expert human beings using the phenomenologically plausible 

minimal essence of reinforcement learning, at least in particular skill 

domains? At least two improvements on present practice, neither of 

which appears achievable based on current knowledge, are needed. 

First, should reinforcement learning be applied to a problem in which 

the number of situations that might be encountered far exceeds the 

number that are actually encountered during training, some method of 

assigning fairly accurate actions and values to the novel situations is 

needed. Second, if reinforcement learning is to produce something 

resembling human intelligence, the reinforcement-learning device must 

exhibit global sensitivity by encountering situations under a perspec- 

tive and by actively seeking relevant input. 

Consider first the problem of behavior in unique situations. This 

problem has been dealt with by two procedures. The first is an automatic 

generalization procedure that produces actions or values in previously 

infrequently encountered situations on the basis of actions or values 

learned for other situations.°? The second is to base one’s actions on 

only a relevant subset of the totality of features of a situation and to 

attach a value to the situation based only on those relevant features; in 

this way, we lump together experiences with all situations sharing the 
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same relevant features regardless of the nonrelevant ones. Actions are 

chosen or values learned based on experiences with situations sharing 

these relevant features. Both of these approaches are unsatisfactory. 

Concerning an automatic generalization procedure, at the point where 

generalization is required, the situation is identical with the one faced 

by supervised learning. No one has any idea how to get a network or any 

other mechanism to generalize in the way that would be required for 

human-like intelligence. 

The second problem mentioned above—learning what features of a 

situation should be treated as a relevant subset and used in determining 

actions and values — is equally difficult. One can find out which features 

of the current state of affairs are relevant only by determining what sort 

of situation this state of affairs is. But that requires retrieving relevant 

past situations. This problem might be called the circularity of rel- 

evance. To appreciate its implications, imagine that the owner of a 

baseball team gives the team manager a computer loaded with facts 

about each player’s performance under various conditions. One day, 

after consulting the computer late in the last inning, the manager 

decides to replace the current batter, A, with a pinch hitter, B. The pinch 

hitter hits ahome run, and the team wins the game. The owner, however, 

is upset and accuses the manager of misusing the computer, since it 

clearly shows that B has a lower batting average than A. But, says the 

manager, the computer also showed that B has a higher batting average 

in day games, and this was a day game. Yes, responds the owner, but it 

also showed that he has a lower average against left-handed pitchers, 

and there was a leftie on the mound today. And so on. The point is that 

a manager’s expertise, and expertise in general, consists in being able 

to respond to the relevant facts. A computer can help by supplying more 

facts than the manager could possibly remember, but only experience 

enables the manager to see the current state of affairs as a specific 
situation and so see what is relevant. That expert know-how cannot be 
put into the computer by adding more facts, since the issue is which is 
the current correct perspective from which to determine which facts are 
relevant. 

Current procedures attempt to learn about relevance by keeping track 
of certain statistics during trial-and-error learning. A procedure pro- 
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posed by Chapman and Kaelbling™ starts by assuming that no features 
are relevant to action or value assessment, that is, that the same action 
should be taken no matter what the situation and that the same value 
should be attached to all situations. Then, for each possibly relevant 

feature of a situation, the procedure keeps track of statistics on how 
things work when that feature takes on each of its possible values (often 
just “present” or “not present”). If, on the basis of current statistics, the 
value of the feature seems to affect actions or values significantly, it is 
declared relevant. The situation receives an ever finer description as the 

set of features discovered to be relevant grows. 

Something vaguely of this sort is probably what the brain does. There 

are, however, serious problems with the particular procedure described 

above and variations on it. First, a feature may not be relevant to 

behavior on its own but may be relevant when combined with one or 

more other features. To remedy this, we would need to gather statistics 

on the relevance of combinations of features, leading to an exponential 

explosion of possibly important statistics. 

Second, this approach assumes that the relevance of a feature is a 

property of the domain; what is measured is the feature’s relevance in 

all situations encountered. But a feature may be relevant in certain 

situations and not in others. We would therefore need to gather rel- 

evance data separately for each situation, again leading to exponential 

growth in the quantity of statistics gathered. Statistics gathering, there- 

fore, does not seem a practical way for current computer procedures to 

deal with the relevance-determination aspect of intelligent behavior. 

As we shall see, given the size and structure of the brain, it may well be 

no accident that no one currently has any idea how to deal with this 

problem without gathering an impractical amount of statistical data. 

A related third problem is that there is no limit to the number of 

features that might conceivably be relevant in some situations. We 

cannot simply start with all features that might possibly be relevant, 

gather statistics on each, and then leave out those that experience 

indicates can safely be ignored. But if we start with a finite set of 

possibly relevant features, there is no known way of adding new 

features should the current set prove inadequate to account for the 

learned facts about reinforcement and situation transition. 
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So how does the brain do it? No one knows. But certain facts seem 

relevant. First, it appears that experience statistically determines indi- 

vidual neural synaptic connections, so that the brain, with its hundreds 

of thousands of billions of adjustable synapses, can indeed accumulate 

statistical information on a scale far beyond current or foreseeable 

computers. Second, the reinforcement-learning procedures now being 

studied generally produce simple stimulus-response behavior in the 

sense that the input, a situation description, maps directly forward into 

the output, an action or situation value. The brain clearly has internal 

states that we experience as moods, anticipations, and familiarities that 

are correlated with the current activity of its hidden neurons when the 

input arrives. These are determined by its recent inputs as well as by the 

Synaptic connection strengths developed on the basis of long-past 

experiences, and these as well as the input determine the output. One 

can in principle include such internal states in reinforcement-learning 

procedures by adding the current internal state of the device to the 

situation description, and a few researchers have moved in this direc- 

tion. In effect, such an extended procedure in which the internal state 

is viewed as the perspective brought to the problem based on recent 
events would allow the incorporation of perspective into neural models. 
But since no one knows how to incorporate internal states appropri- 
ately, a breakthrough will be necessary before human behavior can be 
imitated successfully. 

Most important, there is evidence that the internal brain state inter- 
acts with an input and then feeds its output to motor-control neurons as 
well as back into the input pathways, affecting receptors through motor 
control so that they actively seek information and simultaneously 
influencing perceived relevance through the feedback into input path- 
ways. This would be the brain basis of the phenomenon of global 
sensitivity that enables a skilled person to see directly what is relevant 
in his or her skill domain. This feedback based on the interaction of 
sensory input and internal brain state would be a powerful mechanism 
for dealing with information pickup and relevance problems, but cur- 
rently no details of this mechanism are understood or even hypoth- 
esized in a way that could guide AI research. It thus seems reasonable 
to hold that mechanisms exist in the brain that can in principle be 
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understood and duplicated in hardware so as to produce artificial 

intelligence in restricted domains and that reinforcement learning is a 

small step in the right direction, while simultaneously holding that our 

current ignorance concerning the brain and practical limitations on 

computer memory size make it highly unlikely that there will be 

substantial progress toward this kind of brain-inspired AI in the fore- 

seeable future. 

One problem would remain even if the above practical problems were 

solved. In all applications of reinforcement learning the programmer 

must use his or her knowledge of the problem to formulate a rule that 

specifies the immediate reinforcement received at each step. For path 

problems and games the objective nature of the problem dictates the 

rule. If, however, the problem involves human coping, there is no 

simple objective answer as to what constitutes immediate reinforce- 

ment. Even if we assume the simplistic view that human beings behave 

so as to maximize their total sense of satisfaction, a reinforcement- 

learning approach to producing such behavior would require a rule for 

determining the immediate satisfaction derived from each possible 

action in each possible situation. But human beings do not have or need 

any such rule. Our needs, desires, and emotions provide us directly with 

a sense of the appropriateness of our behavior. If these needs, desires, 

and emotions in turn depend on the abilities and vulnerabilities of a 

biological body socialized into a culture, even reinforcement-learning 

devices still have a very long way to go. 

All work in AI, then, seems to face a deep dilemma. If one tries to 

build a GOFAI system, one finds that one has to represent in a belief 

system all that a human being understands simply by being a skilled 

human being. In my preface to the second edition of this book, the 

extreme unlikelihood of successfully programming the computer to 

show common sense by making explicit enough of what human beings 

understand simply by being embodied and skilled led me to skepticism 

concerning the GOFAI research program. Happily, recent research in 

machine learning does not require that one represent everything that 

human beings understand simply by being human. But then, as we have 

just seen, one encounters the other horn of the dilemma. One needs a 

learning device that shares enough human concerns and human struc- 
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ture to learn to generalize the way human beings do. And as improbable 

as it was that one could build a device that could capture our humanity 

in a physical symbol system, it seems at least as unlikely that one could 

build a device sufficiently like us to act and learn in our world. 
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47.1 found this quoted in Michel Foucault, The Order of Things (New York: 
Vintage Books, 1973), p. xv. 

48. For a statistical path to this conclusion, see §. Geman, E. Bienenstock, and 
R. Doursat, “Neural Networks and the Bias/Variance Dilemma,” Neural 
Computation, Vol. 4, No. 1 (1992), pp. 1-58, esp. pp. 46-48. For a discussion 
of a psychological perspective on this realization, see R. N. Shepard, “Internal 
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Representation of Universal Regularities: A Challenge for Connectionism,” in 
Neural Connections, Mental Computation, ed. Lynn Nadel et al. (Cambridge, 
Mass.: MIT Press, 1989), pp. 104-134. 

49. Useful references on this subject are: Machine Learning, Vol. 8, Nos. 3/4 
(May 1992), and A. G. Barto, “Reinforcement Learning and Adaptive Critic 

Methods,” in Handbook of Intelligent Control: Neural, Fuzzy and Adaptive 

Approaches,ed.D.A. White and D. Sofge (New York: Van Nostrand Reinhold, 

1992). In what follows we shall describe what might be called the minimal 

essence of such reinforcement learning. More complicated schemes using 

more derived information and optimization over alternatives at each decision 

point perform better on toy problems than what we shall describe but require 

much greater memory capacity and, more importantly, deviate from what 

seems to us to be phenomenologically plausible. 

50. The technique can be seen as an asynchronous, successive-approximation 

version of the dynamic programming optimization procedure; what is being 

gradually learned, in the terminology of dynamic programming, is the optimal 

policy and the optimal value functions. In many real-world situations, there are 

no intermediate payoffs; the reinforcement comes only at the end of a process. 

In a game of chess, for example, most decisions (move choices) in a situation 

(board position) produce no reinforcement but only a transition to a new 

situation. Only a move terminating the game produces a positive, zero, or 

negative reinforcement. The device would nevertheless attempt to learn from 

experience a best value for each position (based on whether the position leads 

to a win, a draw, or a loss with perfect play) and a move that attains that value. 

51. Gerald Tesauro, “Practical Issues in Temporal Difference Learning,” 

Machine Learning, Vol. 8, Nos. 3/4 (May 1992), pp. 257-277. 

52. When eight handcrafted features computed from the board position were 

added to its board description input features, the device learned to play at very 

close to grandmaster level and well above the level of any other program 

known to the net’s creator. 

53. To implement an automatic generalization procedure, one chooses some 

parameterized formulas and adjusts their parameters to give what are currently 

believed to be correct actions and values for situations in which such actions 

and values have been learned, and then one uses these formulas to produce 

actions and values in all cases. One often-used formula takes the form of a 

neural network in which the parameters are the connection strengths. 

The backgammon program uses a network to produce its positional values. 

It avoids directly choosing actions by examining all possible actions in a 

situation and choosing the one that looks best on the basis of the situational 

values assigned by the algorithm. This goes beyond what we have called the 

minimal essence of reinforcement learning and does not fit the phenomenology 
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of human intelligent action. As in the case of supervised-learning networks, 

there is nothing in the algorithm that guarantees that it will generalize 

correctly when applied to a new situation. For this very reason, its success 

surprised its designer. It may well be that, as in the case of NETtalk, this 

seemingly successful generalization merely shows that in this domain accu- 

racy in generalization is not essential. 

54. David Chapman and Leslie Pack Kaelbling, “Input Generalization in 

Delayed Reinforcement Learning: An Algorithm and Performance Compari- 

sons,” Proceedings of the 1991 International Joint Conference on Artificial 

Intelligence (Cambridge, Mass.: AAAI Press/MIT Press, 1991), pp. 726-731. 
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What Computers Can’t Do stirred up a controversy among all those 

interested in the possibility of formal models of man by arguing that, 

despite a decade of impressive print-outs and dire predictions of superin- 

telligent robots, workers in artificial intelligence (AI) were, in 1967, 

facing serious difficulties which they tended to cover up with special- 

purpose solutions and rhetorical claims of generality. During the subse- 

quent decade this critique has been more or less acknowledged. In the 

five-year period from 1967 to 1972 the ad hoc character of AI work was 

admitted and, indeed, elevated to a methodological principle. The study 

of artificially circumscribed gamelike domains was proclaimed a study 

of micro-worlds and was defended as a necessary first step toward 

broader and more flexible programs. Then, during the next five years 

(1972-1977) the micro-world “‘successes” were seen to be ungeneraliza- 

ble, and in the best AI laboratories workers began to face the problem 

of representing the everyday general understanding which they had spent 

the first fifteen years of research trying to circumvent. Recently, even the 

wishful rhetoric characteristic of the field has been recognized and ridi- 

culed by AI workers themselves. 

My early outrage at the misleading names given to programs such as 

Newell, Shaw, and Simon’s General Problem Solver (GPS) is now shared 

by M.I.T.’s Drew McDermott, who writes: 

Fl 
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{I]n AI, our programs to a great degree are problems rather than solutions. If 

a researcher tries to write an “understanding” program, it isn’t because he has 

thought of a better way of implementing this well-understood task, but because 

he hopes he can come closer to writing the first implementation. If he calls the 

main loop of his program “UNDERSTANDING”, he is (until proven innocent) 

merely begging the question. He may mislead a lot of people, most prominently 

himself, and enrage a lot of others.'*§ 

McDermott also singled out overrated GPS: 

Many instructive examples of wishful mnemonics by AI researchers come to 

mind once you see the point. Remember GPS? By now, “GPS” is a colorless term 

denoting a particularly stupid program to solve puzzles. But it originally meant 
660 
General Problem Solver’, which caused everybody a lot of needless excitement 

and distraction. It should have been called LFGNS—“Local Feature-Guided 

Network Searcher”’.’ 

Even my earliest assessment that work in AI resembled alchemy more 

than science’ has been accepted by Terry Winograd, formerly at M.L.T., 

now at Stanford: 

In some ways, [AI] is akin to medieval alchemy. We are at the stage of pouring 

together different combinations of substances and seeing what happens, not yet 
having developed satisfactory theories. This analogy was proposed by Dreyfus 
(1965) as a condemnation of artificial intelligence, but its aptness need not imply 
his negative evaluation . . . it was the practical experience and curiosity of the 
alchemists which provided the wealth of data from which a scientific theory of 
chemistry could be developed.‘ 

Winograd is right; as long as researchers in AI admit and learn from 
their failures their attempt to supply computers with human knowledge 
may in the end provide data for a totally different way of using computers 
to make intelligent artifacts. But until recently, admitting their failures 
so that others can learn from their mistakes—an essential part of any 
scientific field—has been virtually unknown in AI circles. McDermott 
reiterates my point that, as he puts it, “... Al as a field is starving for 
a few carefully documented failures.” And he warns: “Remember, 

§Notes begin on p. 307. [Citations are indicated by a superior figure. Substantive notes 
are indicated by a superior figure and an asterisk. ] 
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though, if we can’t criticize ourselves, someone else will save us the 
trouble.’” I take this as my cue to return for a critical look at the research 
of the past ten years.°* 

What strikes me, and has struck other writers reviewing the history 
of the field,’ is how my views and those of workers interested in the 
theoretical issues in AI have gradually converged. In recent years the 

attempt to produce special-purpose programs tailored to narrowly re- 

stricted domains, with the concomitant principle that this should be 

achieved in whatever way is most efficient regardless of whether such 

methods are used by human beings, has been abandoned by AI theorists 

and frankly and quite successfully taken over by self-styled AI engineers, 

with no interest in making generally intelligent machines. Among those 

still interested in the theoretical issue of using computers to produce the 

full range of human intelligent behavior there is now general agreement 

that, as I argue in this book, intelligence requires understanding, and 

understanding requires giving a computer the background of common 

sense that adult human beings have by virtue of having bodies, interact- 

ing skillfully with the material world, and being trained into a culture. 

Given the epistemological assumptions dictated by the information- 

processing model (see Chapter 4) this precondition of intelligent behav- 

ior necessarily appears to AI workers as the need to find a formal 

representation in which all the knowledge and beliefs of an average adult 

human being can be made explicit and organized for flexible use. Almost 

everyone now (with one exception we will deal with later) agrees that 

representing and organizing commonsense knowledge is incredibly diffi- 

cult, and that facing up to this problem constitutes the moment of truth 

for AI. Either a way of representing and organizing everyday human 

know-how must be found, or AI will be swamped by the welter of facts 

and beliefs that must be made explicit in order to try to inform a disem- 

bodied, utterly alien computer about everyday human life. With this 

recognition, which characterizes the most recent five-year phase of AI 

research, unfounded optimism has given way to somewhat self-critical 

caution. 

AI research has thus passed from stagnation to crisis during the 

decade since I concluded my research for this book. If I were to rewrite 
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the book today I would divide this decade into two phases and include 

them as Chapters 3 and 4 of Part I, so as to cover the full twenty years 

the field has been in existence. And I would modify the Conclusion to 

take into account the recent maturation of the field. But since the overall 

argument of the book is confirmed rather than contradicted by the latest 

developments, I would rather leave the original book intact—only re- 

working the material where a sentence or a paragraph has proved to be 

murky or misleading—while including what are, in effect, Chapters 3 

and 4 and the new conclusion in this Introduction. The reader who wants 

to get a chronological sense of how research in artificial intelligence 

developed should skip ahead to Chapters | (Phase 1) and 2 (Phase 2), 

and then return to this critical survey of the past ten years. Moreover, 

since the arguments at the end of this Introduction presuppose and 

extend ideas which are more fully developed in the last half of the book, 

the conclusion of the Introduction to the Revised Edition might be best 

read after finishing Part III. 

Phase III (1967-1972) 
Manipulating Micro-Worlds 

When What Computers Can't Do appeared in January 1972, making 

a case that after an exciting start which raised high hopes, work in 

artificial intelligence had been stagnating, reviewers within the field of AI 
were quick to point out that the research criticized was already dated and 
that my charge of stagnation did not take into account the “break- 
throughs” which had occurred during the five years preceding the publi- 
cation of my critique. Bruce Buchanan’s reaction in Computing Reviews 
is typical: 

One would hope that a criticism of a growing discipline would mention work in 
the most recent one-third of the years of activity. .. . To this reviewer, and other 
persons doing AI research, programs developed in the last five years seem to 
outperform programs written in the tool-building period of 1957-1967. 

For example, it is dishonest to entitle the book a “critique” of AI when it 
dwells on the failure of early language translation programs (based primarily on 
syntactical analysis) without analyzing the recent work on understanding natural 
language (based on syntax, semantics, and context).* 



Introduction to the Revised Edition #S 

If the point of these objections had been that my book did not take 
account of excellent programs such as M.I.T.’s MATHLAB (1970) for 
manipulating symbolic algebraic expressions, and Stanford’s DEN- 
DRAL (1970) for inferring chemical structure from mass spectometry 

data, I would plead guilty. I would point out, however, that these pro- 

grams, while solving hard technical problems and producing programs 

that compete with human experts, achieve success precisely because they 

are restricted to a narrow domain of facts, and thus exemplify what 

Edward Feigenbaum, the head of the DENDRAL project, has called 

“knowledge engineering.” They, thus, do not constitute, nor are they 

meant to constitute, progress toward producing general or generalizable 

techniques for achieving adaptable intelligent behavior. 

Buchanan would presumably agree since the programs he mentions as 

giving the lie to my accusations of stagnation are not these engineering 

triumphs, but theoretically oriented projects such as Winograd’s natural 

language understanding program, and the perception programs devel- 

oped at M.I.T. and Stanford.'° These, plus Patrick Winston’s concept 

learning program, are the programs most often cited by those who claim 

that my book ignores a breakthrough which occurred around 1970. If 

these programs do constitute progress they roundly refute my charge of 

stagnation, so we must now take a detailed look at each of the programs, 

as well as a brief look at robot research, which was generating a great 

deal of excitement just as this book went to press. 

Since by all accounts it is Winograd’s natural language understanding 

program (SHRDLU—1971) which demonstrates what Papert and 

Minsky call “a major advance,” we will turn to it first. SHRDLU 

simulates a robot arm which can move a set of variously shaped blocks 

and allows a person to engage in a dialogue with the computer, asking 

questions, making statements, issuing commands, about this simple 

world of movable blocks. The program is an integrated system which 

makes use of syntax, semantics, and facts about blocks. It is thus, as 

Winograd cautiously claims, ‘a computer program which ‘understands’ 

language in a limited domain, by including a model of the subject being 

talked about and a context of discourse. . . .”"’* Furthermore, this 

program explores the new idea of representing this knowledge in the 



Introduction to the Revised Edition / 6 

form of procedures. The resulting dialogue is strikingly natural. Here is 

a sample. (The sentences in capital letters are computer print-out. The 

parentheses contain Winograd’s comments.) 

1. pick up a big red block. 

OK. 

(The system answers “OK” when it carries out a command. In order to 

pick up the red block, it had to clear it off by finding a space for the green 

one and moving the green one away.) 

2. grasp the pyramid. 

I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN. 

(There are three pyramids in the scene, so the program does nothing.) 

3. find a block which is taller than the one you are holding and put it into 

the box. 

(The system has to figure out what is meant by “one” and “‘it’’, as well 

as using deduction to decide which block it is holding.) 

BY “IT”, I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE 

ONE I AM HOLDING. 

(Printed out to keep us informed.) 

OK. 

(The hand has to set down the red block to pick up the taller blue one.) 

4. what does the box contain? 

THE BLUE PYRAMID AND THE BLUE BLOCK. 

5. what is the pyramid supported by? 

(Earlier the systém responded to “the pyramid” by saying “I don’t under- 

stand which pyramid you mean”. Now, it assumes that we mean the one 

just mentioned.) 

THE BOX. 

9. can the table pick up blocks? 

NO. 

(The semantic rules make this a nonsensical question which therefore 
must be false.) 
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10. can a pyramid be supported by a block? 

YES. 

(The deductive system finds an actual example, so it knows this is possi- 
ble.) 

11. can a pyramid support a pyramid? 

I DON’T KNOW. 

(The question makes sense, but there is no example in the scene, so there 
is no easy way to tell without being able to examine the robot’s pro- 
grams.) 

12. stack up two pyramids. 

I CAN'T. 

(The robot tries and fails.) 

13. the blue pyramid is mine. 

I UNDERSTAND. 

(This data is added to the data base.) 

14. I own blocks which are not red, but I don’t own anything which supports 

a pyramid. 

I UNDERSTAND. 

(Two new theorems are created for proving things about “‘owning”’.) 

15. do I own the box? 

NO.) | 

If being a major advance means being more general than its predeces- 

sors, then SHRDLU, since it no longer depends for its analysis of lan- 

guage on external constraints of the sort essential to Bobrow’s STU- 

DENT, is a major achievement. Winograd himself points out the 

superiority of his program over earlier language understanding pro- 

grams: 

... A program may succeed by carefully choosing the problem it will attack, 

so that some simple special-purpose solution will work. ELIZA (Weizenbaum, 

1964) and STUDENT (Bobrow, 1967) are examples of programs which give 

impressive performances owing to a severe and careful restriction of the kind of 



Introduction to the Revised Edition /8 

understanding they try to achieve. If a model is to be of broader significance, it 

must be designed to cover a large range of the things we mean when we talk of 

understanding. The principles should derive from an attempt to deal with the 

basic cognitive structures." 

If, however, ‘‘a major advance” means that a step has been made in 

dealing with the basic cognitive structures needed to cover everyday 

understanding—that thanks to SHRDLU there is now reason to be 

optimistic about the possibility of Al—then no progress at all can be 

claimed. To justify this negative judgment we must first find out how the 

optimists of the early seventies were able to convince themselves that, 

with SHRDLU, AI was at last on the right track. 

If one holds, as some AI workers such as Winograd do, that there are 

various kinds of understanding so that whether an entity has understand- 

ing Or not is just a question of degree, it may seem that each new program 

has a bit more understanding than the last, and that progress consists in 

inching out on the understanding continuum. If, on the other hand, one 

holds that ‘‘understanding” is a concept that applies only to entities 

exactly like human beings, that would stack the deck and make AI 

impossible. But it is not up to either side in the debate to stipulate what 

“understanding” means. Before talking of degrees of “understanding,” 

one must note that the term “understand” is part of an interrelated set 

of terms for talking about behavior such as “ask,” ‘“‘answer,” “know,” 

etc. And some of these terms—such as “answer,” for example—simply 

do have an all-or-nothing character. If one is tempted to say that the 

DENDRAL program, for example, literally understands mass spectros- 

copy, then one must be prepared to say that when it is fed a problem and 

types out the answer it has literally been asked and answered a question, 
and this, in turn, involves, among other things, that it knows that it has 

answered. But whatever behavior is required for us to say of an entity 
that it “knows” something, it should be clear that the computer does not 

now come near to meeting these conditions, so it has not answered even 
a little. If one is sensitive to the central meaning of these interconnected 
intentional terms it follows that the claim that programs like SHRDLU 
have a little bit of understanding is at best metaphorical and at most 
outright misleading. 

Workers in AI were certainly not trying to cover up the fact that it 
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was SHRDLU’s restricted domain which made apparent understanding 
possible. They even had a name for Winograd’s method of restricting the 
domain of discourse. He was dealing with a micro-world. And in a 1970 
internal memo at M.I.T., Minsky and Papert frankly note: 

Each model—or “micro-world” as we shall call it—is very schematic; it talks 
about a fairyland in which things are so simplified that almost every statement 
about them would be literally false if asserted about the real world."° 

But they immediately add: 

Nevertheless, we feel that they [the micro-worlds] are so important that we 
are assigning a large portion of our effort toward developing a collection of 
these micro-worlds and finding how to use the suggestive and predictive 
powers of the models without being overcome by their incompatibility with 
literal truth.'® 

Given the admittedly artificial and arbitrary character of micro-worlds, 
why do Minsky and Papert think they provide a promising line of 
research? 

To find an answer we must follow Minsky and Papert’s perceptive 

remarks on narrative and their less than perceptive conclusions: 

... Ina familiar fable, the wily Fox tricks the vain Crow into dropping the meat 

by asking it to sing. The usual test of understanding is the ability of the child 

to answer questions like: 

“Did the Fox think the Crow had a lovely voice?” 

The topic is sometimes classified as “natural language manipulation” or as 

“deductive logic”, etc. These descriptions are badly chosen. For the real 

problem is not to understand English; it is to understand at all. To see this 

more clearly, observe that nothing is gained by presenting the story in sim- 

plified syntax: CROW ON TREE. CROW HAS MEAT. FOX SAYS “YOU HAVE A 

LOVELY VOICE. PLEASE SING.” FOX GOBBLES MEAT. The difficulty in getting 

a machine to give the right answer does not at all depend on “disambiguat- 

ing’? the words (at least, not in the usual primitive sense of selecting one 

“meaning” out of a discrete set of ““meanings”). And neither does the diffi- 

culty lie in the need for unusually powerful logical apparatus. The main 

problem is that no one has constructed the elements of a body of knowledge 

about such matters that is adequate for understanding the story. Let us see 

what is involved. 
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To begin with, there is never a unique solution to such problems, so we do not 

ask what the Understander must know. But he will surely gain by having the 

concept of FLATTERY. To provide this knowledge, we imagine a “micro-theory” 

of flattery—an extendible collection of facts or procedures that describe condi- 

tions under which one might expect to find flattery, what forms it takes, what 

its consequences are, and so on. How complex this theory is depends on what 

is presupposed. Thus it would be very difficult to describe flattery to our Under- 

stander if he (or it) does not already know that statements can be made for 

purposes other than to convey literally correct, factual information. It would be 

almost impossibly difficult if he does not even have some concept like PURPOSE 

or INTENTION." 

The surprising move here is the conclusion that there could be a cir- 

cumscribed ‘‘micro-theory” of flattery—somehow intelligible apart 

from the rest of human life—while at the same time the account 

shows an understanding of flattery opening out into the rest of our 

everyday world, with its understanding of purposes and intentions. 

What characterizes the period of the early seventies, and makes 

SHRDLU seem an advance toward general intelligence, is the very 

concept of a micro-world—a domain which can be analyzed in isolation. 

This concept implies that although each area of discourse seems to open 
out into the rest of human activities its endless ramifications are only 
apparent and will soon converge on a self-contained set of facts and 
relations. For example, in discussing the micro-world of bargaining, 
Papert and Minsky consider what a child needs to know to understand 
the following fragment of conversation: 

Janet: “That isn’t a very good ball you have. Give it to me and I'll give you my 
lollipop."* 

And remark: 

. we conjecture that, eventually, the required micro-theories can be made 
reasonably compact and easily stated (or, by the same token, /earned) once we 
have found an adequate set of structural primitives for them. When one begins 
to catalogue what one needs for just a little of Janet's story, it seems at first to 
be endless: 

Time Things Words 
Space People Thoughts 
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Talking: Explaining. Asking. Ordering. Persuading. Pretending 

Social relations: Giving. Buying. Bargaining. Begging. Asking. Presents. Steal- 

Inga 

Playing: Real and Unreal, Pretending 

Owning: Part of, Belong to, Master of, Captor of 

Eating: How does one compare the values of foods with the values of toys? 

Liking: good, bad, useful, pretty, conformity 

Living: Girl. Awake. Eats. Plays. 

Intention: Want. Plan. Plot. Goal. Cause. Result. Prevent. 

Emotions: Moods. Dispositions. Conventional expressions. 

States: asleep. angry. at home. 

Properties: grown-up. red-haired. called ‘Janet’. 

Story: Narrator. Plot. Principal actors. 

People: Children. Bystanders. 

Places: Houses. Outside. 

Angry. State 

caused by: Insult 

deprivation 

assault 

disobedience 

frustration 

spontaneous 

Results not cooperative 

lower threshold 

aggression 

loud voice 

irrational 

revenge 
Etc.” 

They conclude: 

But [the list] is not endless. It is only large, and one needs a large set of 

concepts to organize it. After a while one will find it getting harder to add new 

concepts, and the new ones will begin to seem less indispensable.” 

This totally unjustified belief that the seemingly endless reference to 

other human practices will converge so that simple micro-worlds can be 

studied in relative isolation reflects a naive transfer to AI of methods that 

have succeeded in the naturai sciences. Winograd characteristically de- 

scribes his work in terms borrowed from physical science: 
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We are concerned with developing a formalism, or “representation,” with which 

to describe . . . knowledge. We seek the “atoms” and “particles” of which it is 

built, and the “forces” that act on it.”! 

It is true that physical theories about the universe can be built up by 

studying relatively simple and isolated systems and then making the 

model gradually more complex and integrating it with other domains of 

phenomena. This is possible because all the phenomena are presumably 

the result of the lawlike relations of a set of basic elements, what Papert 

and Minsky call “structural primitives.”” This belief in local success and 

gradual generalization was clearly also Winograd’s hope at the time he 

developed SHRDLU. 

The justification for our particular use of concepts in this system is that it is 

thereby enabled to engage in dialogs that simulate in many ways the behavior 

of a human language user. For a wider field of discourse, the conceptual structure 

would have to be expanded in its details, and perhaps in some aspects of its 

overall organization.” 

Thus, for example, it might seem that one could “expand” SHRDLU’s 

concept of owning, since in the above sample conversation SHRDLU 

seems to have a very simple “micro-theory” of owning blocks. But as 

Simon points out in an excellent analysis of SHRDLU’s limitations, the 

program does not understand owning at all because it cannot deal with 
meanings. It has merely been given a set of primitives and their possible 

relationships. As Simon puts it: 

The SHRDLU system deals with problems in a single blocks world, with a fixed 
representation. When it is instructed to “pick up a big red block”, it needs only 
to associate the term “pick up” with a procedure for carrying out that process; 
identify, by applying appropriate tests associated with “big”, “red”, and “block”, 
the argument for the procedure and use its problem-solving capabilities to carry 
out the procedure. In saying “it needs only”, it is not my intention to demean 
the capabilities of SHRDLU. It is precisely because the program possesses stored 
programs expressing the intensions of the terms used in inquiries and instructions 
that its interpretation of those inquiries and instructions is relatively straightfor- 
ward.” 

In understanding, on the other hand, “the problem-understanding sub- 
system will have a more complicated task than just mapping the input 
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language onto the intentions stored in a lexicon. It will also have to create 

a representation for the information it receives, and create meanings for 

the terms that are consistent with the representation.” So, for example, 

in the conversation concerning owning: 

. . although SHRDLU’s answer to the question is quite correct, the system 

cannot be said to understand the meaning of ‘‘own” in any but a sophistic sense. 

SHRDLU’s test of whether something is owned is simply whether it is tagged 

“owned”’. There is no intensional test of ownership, hence SHRDLU knows what 

it owns, but doesn’t understand what it is to own something. SHRDLU would 

understand what it meant to own a box if it could, say, test its ownership by 

recalling how it had gained possession of the box, or by checking its possession 

of a receipt in payment for it; could respond differently to requests to move a 

box it owned from requests to move one it didn’t own; and, in general, could 

perform those tests and actions that are generally associated with the determina- 

tion and exercise of ownership in our law and culture.” 

Moreover, even if it satisfied all these conditions it still wouldn’t under- 

stand, unless it also understood that it (SHRDLU) couldn’t own any- 

thing, since it isn’t a part of the community in which owning makes 

sense. Given our cultural practices which constitute owning, a computer 

cannot own something any more than a table can. 

This discussion of owning suggests that, just as it is misleading to call 

a program UNDERSTAND when the problem is to find out what 

understanding is, it is likewise misleading to call a set of facts and 

procedures concerning blocks a micro-world, when what is really at 

stake is the understanding of what a world is. A set of interrelated facts 

may constitute a universe, a domain, a group, etc., but it does not 

constitute a world, for a world is an organized body of objects, purposes, 

skills, and practices in terms of which human activities have meaning or 

make sense. It follows that although there is a children’s world in which, 

among other things, there are blocks, there is no such thing as a blocks 

world. Or, to put this as a critique of Winograd, one cannot equate, as 

he does, a program which deals with “a tiny bit of the world,” with a 

program which deals with a “mini-world.””° 

In our everyday life we are, indeed, involved in various “sub-worlds” 

such as the world of the theater, of business, or of mathematics, but each 
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of these is a “mode” of our shared everyday world.’’* That is, sub-worlds 

are not related like isolable physical systems to larger systems they 

compose; rather they are local elaborations of a whole which they presup- 

pose. If micro-worlds were sub-worlds one would not have to extend and 

combine them to reach the everyday world, because the everyday world 

would have to be included already. Since, however, micro-worlds are not 

worlds, there is no way they can be combined and extended to the world 

of everyday life. As a result of failing to ask what a world is, five more 

years of stagnation in AI was mistaken for progress. 

Papert and Minsky’s 1973 grant proposal is perhaps the last time the 

artificially isolated character of the micro-world is defended as a scien- 

tific virtue—at least at M.I.T.: 

Artificial Intelligence, as a new technology, is in an intermediate stage of de- 

velopment. In the first stages of a new field, things have to be simplified so 

that one can isolate and study the elementary phenomena. In most successful 

applications, we use a strategy we call “working within a Micro-World”.** 

SHRDLU is again singled out as the most successful version of this 

research method. ‘A good example of a suitably designed Micro-world 

is shown in the well-known project of Winograd, which made many 

practical and theoretical contributions to Understanding Natural Lan- 

guage.” But while gestures are still made in the direction of generaliza- 

tion it is obvious that SHRDLU is running into difficulty. 

Since the Winograd demonstration and thesis, several workers have been adding 

new elements, regulations, and features to that system. That work has not gone 
very far, however, because the details of implementation of the original system 
were quite complex." 

Such failures to generalize no doubt lie behind the sober evaluation in 
a proposal two years later: 

... Artificial Intelligence has done well in tightly constrained domains—Wino- 
grad, for example, astonished everyone with the expertise of his blocks-world 
natural language system. Extending this kind of ability to larger worlds has not 
proved straightforward, however. . . . The time has come to treat the problems 
involved as central issues.’! 
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But typically, it is only from the vantage point of the next phase of 
research, with its new hopes, that the early seventies’ illusion that one 
can generalize work done in narrowly constrained domains is finally 

diagnosed and laid to rest. Winograd himself acknowledges that: 

The AI programs of the late sixties and early seventies are much too literal. 

They deal with meaning as if it were a structure to be built up of the bricks and 

mortar provided by the words, rather than a design to be created based on the 

sketches and hints actually present in the input. This gives them a “brittle” 

character, able to deal well with tightly specified areas of meaning in an artifi- 

cially formal conversation. They are correspondingly weak in dealing with natu- 

ral utterances, full of bits and fragments, continual (unnoticed) metaphor, and 

reference to much less easily formalizable areas of knowledge.” 

Another supposed breakthrough mentioned by Buchanan is Adolfo 

Guzman’s program, SEE (1968), which analyzes two-dimensional pro- 

jections of complicated scenes involving partially occluded three-dimen- 

sional polyhedra. (See Figure 1). Already as developed by Guzman this 

program could outdo human beings in unscrambling some classes of 

complicated scenes, and as generalized by David Waltz it is even more 

impressive. It not only demonstrates the power gained by restricting the 

domain analyzed, but it also shows the kind of generalization that can 

be obtained in micro-world work, as well as indirectly showing the kind 

of generalization that is precluded by the very nature of special-purpose 

heuristics. 

Guzman’s program analyzes scenes involving cubes and other such 

rectilinear solids by merging regions into bodies using evidence from the 

vertices. Each vertex suggests that two or more of the regions around it 

belong together depending on whether the vertex is shaped like an L, an 

arrow, a T, aK, an X, a fork, a peak, or an upside-down peak. With these 

eight primitives and commonsense rules for their use, Guzman’s pro- 

gram did quite well. But it had certain weaknesses. According to Win- 

ston, “The program could not handle shadows, and it did poorly if there 

were holes in objects or missing lines in the drawing.”’? Waltz then 

generalized Guzman’s work and showed that by introducing three more 

such primitives, a computer can be programmed to decide if a particular 

line in a drawing is a shadow, a crack, an obscuring edge, or an internal 
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seam in a way analogous to the solution of sets of algebraic equations. 

As Winston later sums up the change: 

Previously it was believed that only a program with a complicated control 

structure and lots of explicit reasoning power could hope to analyze scenes like 

that in figure [1]. Now we know that understanding the constraints the real world 

imposes on how boundaries, concave and convex interiors, shadows, and cracks 

can come together at junctions is enough to make things much simpler. A table 

which contains a list of the few thousand physically possible ways that line types 

can come together accompanied by a simple matching program are all that is 

required. Scene analysis is translated into a problem resembling a jigsaw puzzle 

or a Set of linear equations. No deep problem solving effort is required; it is just 

a matter of executing a very simple constraint dependent, iterative process that 

successively throws away incompatible line arrangement combinations.” 

This is just the kind of mathematical generalization within a domain 

one might expect in micro-worlds where the rule-governed relation of the 

primitives (in this case the set of vertices) are under some external 

constraint (in this case the laws of geometry and optics). What one would 

not expect is that the special-purpose heuristics which depend on corners 

for segregating rectilinear objects could in any way be generalized so as 

to make possible the recognition of other sorts of objects. And, indeed, 

none of Guzman’s or Waltz’s techniques, since they rely on the intersec- 

tion of straight lines, have any use in analyzing a scene involving curved 

objects. What one gains in narrowing a domain, one loses in breadth of 

significance. Winston’s evaluation covers up this lesson: 

... It is wrong to think of Waltz’s work as only a statement of the epistemology 

of line drawings of polyhedra. Instead I think it is an elegant case study of a 

paradigm we can expect to see again and again, and as such, it is a strong 

metaphoric tool for guiding our thinking, not only in vision but also in the study 
of other systems involving intelligence.’ 

But in a later grant proposal he acknowledges that: 

To understand the real world, we must have a different set of primitives from 
the relatively simple line trackers suitable and sufficient for the blocks world.* 

Waltz’s work is a paradigm of the kind of generalization one can strive 
for within a micro-world all right, but for that very reason it provides 
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no way of thinking about general intelligent systems. In the light of these 

later evaluations my assumption that work in the early seventies did not 

refute my accusation of stagnation seems vindicated. 

The nongeneralizable character of the programs so far discussed 

makes them engineering feats, not steps toward generally intelligent 

systems, and they are, therefore not at all promising as contributions to 

psychology. Yet Winston includes Waltz’s work in his claim that * 

. making machines see is an important way to understand how we 

animals see. . . .”*’? and Winograd makes similar claims for the psycholog- 

ical relevance of his work: 

The gain from developing AI is not primarily in the usefulness of the programs 

we create, but in the set of concepts we develop, and the ways in which we can 

apply them to understanding human intelligence.* 

These comments suggest that in the early seventies an interesting 

change was taking place at M.I.T. In previous papers Minsky and his 

co-workers sharply distinguished themselves from workers in Cognitive 

Simulation, such as Simon, who presented their programs as psychologi- 

cal theories, insisting that the M.I.T. programs were “an attempt to build 

intelligent machines without any prejudice toward making the system 

... humanoid.” Now in their book, Artificial Intelligence, * a summary 

of work done at M.I.T. during the period 1967-1972, Minsky and Papert 

present the M.I.T. research as a contribution to psychology. They first 

introduce the notion of a symbolic description: 

What do we mean by “description”? We do not mean to suggest that our 

descriptions must be made of strings of ordinary-language words (although they 
might be). The simplest kind of description is a structure in which some features 
of a situation are represented by single (“primitive”) symbols, and relations 

between those features are represented by other symbols—or by other features 

of the way the description is put together.*! 

They then defend the role of symbolic descriptions in a psychological ac- 
count of intelligent behavior by a constant polemic against behaviorism 
and gestalt theory which have opposed the use of formal models of the mind. 

One can detect, underlying this change, the effect of the proliferation 
of micro-worlds, with their reliance on symbolic descriptions, and the 
disturbing failure to produce even the hint of a system with the flexibility 
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of a six-month-old child. Instead of concluding from this frustrating 

situation that the special-purpose techniques which work in context-free, 

gamelike, micro-worlds may in no way resemble general-purpose human 

and animal intelligence, the AI workers seem to have taken the less 

embarrassing if less plausible tack of suggesting that even if they could 

not succeed in building intelligent systems, the ad hoc symbolic descrip- 

tions successful in micro-world analysis could be justified as a valuable 

contribution to psychology. 

Such a line, however, since it involves a stronger claim than the old 

slogan that as long as the machine was intelligent it did not matter at 

all whether it performed in a humanoid way, runs the obvious risk of 

refutation by empirical evidence. An information-processing model must 

be a formal symbolic structure, however, so Minsky and Papert, making 

a virtue of necessity, revive the implausible intellectualist position ac- 

cording to which concrete perception is assimilated to the rule-governed 

symbolic descriptions used in abstract thought. 

The Gestaltists look for simple and fundamental principles about how perception 

is organized, and then attempt to show how symbolic reasoning can be seen as 

following the same principles, while we construct a complex theory of how 

knowledge is applied to solve intellectual problems and then attempt to show 

how the symbolic description that is what one ‘‘sees” is constructed according 

to similar processes.” 

Some recent work in psychology, however, points in the exactly oppo- 

site direction. Rather than showing that perception can be analyzed in 

terms of formal features, Erich Goldmeier’s extention of early Gestalt 

work on the perception of similarity of simple perceptual figures—arising 

in part in response to “the frustrating efforts to teach pattern recognition 

to [computers]’*—has revealed sophisticated distinctions between 

figure and ground, matter and form, essential and accidental aspects, 

norms and distortions, etc., which he shows cannot be accounted for in 

terms of any known formal features of the phenomenal figures. They can, 

however, according to Goldmeier, perhaps be explained on the neurolog- 

ical level, where the importance of Pragnanz—.e., singularly salient 

shapes and orientations—suggests underlying physical phenomena such 

as “regions of resonance’ in the brain. 
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Recent work in neurophysiology has suggested new mechanisms 

which might confirm the Gestaltist’s intuition that other sorts of process 

than the manipulation of formal representations of the sort required by 

digital computers underlie perception. While still nothing definite is 

known about how the brain “processes information,” computer models 

look even less likely now than in 1970, while models based on the 

properties of optical holograms look perhaps more promising. As John 

Haugeland summarizes the evidence: 

First, [optical holograms] are prepared from the light bouncing off an ordinary 

object, and can subsequently be used to reconstruct a full three-dimensional 

colored image of that object. Second, the whole image can be reconstructed from 

any large enough portion of the hologram (i.e., there’s no saying which portion 

of the hologram “encodes” which portion of the image). Third, a number of 

objects can be separately recorded on the same hologram, and there’s no saying 

which portion records which object. Fourth, if a hologram of an arbitrary scene 

is suitably illuminated with the light from a reference object, bright spots will 

appear indicating (virtually instantaneously) the presence and location of any 

occurrences of the reference object in the scene (and dimmer spots indicate 

“similar” objects). So some neurophysiological holographic encoding might ac- 

count for a number of perplexing features of visual recall and recognition, 

including their speed, some of their invariances, and the fact that they are only 

slightly impaired by large lesions in relevant areas of the brain. . . . 

Another interesting property of optical holograms is that if a hologram [com- 

bining light from two separate] objects is illuminated with the light from one of 

them, an image of the other (absent) object appears. Thus, such a hologram can 

be regarded as a kind of “‘associator’’ of (not ideas, but) visual patterns. . . .* 

Haugeland adds: 

... Fairly detailed hypothetical models have been proposed for how holograms 

might be realized in neuronal structures; and there is some empirical evidence 

that some neurons behave in ways that would fit the models.* 

Of course, it is still possible that the Gestaltists went too far in trying 

to assimilate thought to the same sort of concrete, holistic, processes they 
found necessary to account for perception. Thus, even though the expo- 
nents of symbolic descriptions have no account of perceptual processes, 
they might be right that the mechanism of everyday thinking and learn- 
ing consists in constructing a formal description of the world and trans- 
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forming this representation in a rule-governed way. Such a formal model 

of everyday learning and categorization is proposed by Winston in his 

1970 thesis, “Learning Structural Descriptions from Examples.’’*’ Given 

a Set of positive and negative instances, Winston’s self-proclaimed ‘‘clas- 

sic” program can, for example, use a descriptive repertoire to construct 

a formal description of the class of arches. Since, as we mentioned earlier, 

Winston’s program (along with those of Winograd and Guzman) is often 

mentioned as a success of the late sixties, we must examine it in detail. 

Is this program a plausible general theory of learning? Winston’s 

commitment to a computer model dictates the conclusion that it must 

be: 

Although this may seem like a very special kind of learning, I think the implica- 

tions are far ranging, because I believe that learning by examples, learning by 

being told, learning by imitation, learning by reinforcement and other forms are 

much like one another. In the literature of learning there is frequently an un- 

stated assumption that these various forms are fundamentally different. But I 

think the classical boundaries between the various kinds of learning will disap- 

pear once superficially different kinds of learning are understood in terms of 

processes that construct and manipulate descriptions.“ 

Yet Winston’s program works only if the “student” is saved the trouble 

of what Charles Sanders Peirce called abduction, by being “told” a set 

of context-free features and relations—in this case a list of possible 

spacial relationships of blocks such as “left-of,” “standing,” “above,” 

and “supported by”—from which to build up a description of an arch. 

Minsky and Papert presuppose this preselection when they say that “to 

eliminate objects which seem atypical . . . the program lists all relation- 

ships exhibited by more than half of the candidates in the set.’’*” Lurking 

behind this claim is the supposition that there are only a finite number 

of relevant features; but without preselected features all objects share an 

indefinitely large number of relationships. The work of discriminating, 

selecting, and weighting a limited number of relevant features is the 

result of repeated experience and is the first stage of learning. But since 

in Winston’s work the programmer selects and preweights the primitives, 

his program gives us no idea how a computer could make this selection 

and assign these weights. (In this respect Winston’s program shows no 
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progress beyond Newell, Shaw, and Simon’s 1958 proposal; see p. 83 of 

this book.) Thus the Winston program, like every micro-world program, 

works only because it has excluded from its task domain the very ability 

it is supposed to explain. 

If not a theory of learning, is Winston’s program at least a plausible 

theory of categorization? Consider again the arch example. Once it has 

been given what Winston disarmingly calls a “good description” and 

carefully chosen examples, the program does conclude that an arch is a 

structure in which a prismatic body is supported by two upright blocks 

that do not touch each other. But, since arches function in various ways 

in our everyday activity, there is no reason to suppose that these are the 

necessary and sufficient conditions for being an arch, or that there are 

any such defining features. Some prominent characteristics shared by 

most everyday arches are “helping to support something while leaving 

an important open space under it,” or “being the sort of thing one can 

walk under and through at the same time.”’ How does Winston propose 

to capture such contextual characteristics in terms of the context-free 

features required by his formal representation? 

Winston admits that having two supports and a flat top does not begin 

to capture even the geometrical structure of arches. So he proposes 

“generalizing the machine’s descriptive ability to acts and properties 

required by those acts”*' by adding a functional predicate, ‘something 

to walk through.”’* But it is not at all clear how a functional predicate 

which refers to implicit knowledge of the bodily skill of walking through 

is to be formalized. Indeed, Winston himself provides a reductio ad 

absurdum of this facile appeal to formal functional predicates: 

To a human, an arch may be something to walk through, as well as an appropri- 

ate alignment of bricks. And certainly, a flat rock serves as a table to a hungry 
person, although far removed from the image the word table usually calls to 
mind. But the machine does not yet know anything of walking or eating, so the 
programs discussed here handle only some of the physical aspects of these human 
notions. There is no inherent obstacle forbidding the machine to enjoy functional 
understanding. It is a matter of generalizing the machine’s descriptive ability to 
acts and properties required by those acts. Then chains of pointers can link 
TABLE to FOOD as well as to the physical image of a table, and the machine will 
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be perfectly happy to draw up its chair to a flat rock with the human given that 
there is something on that table which it wishes to eat.” 

Progress on recognition of arches, tables, etc., must, it seems, either wait 

until we have captured in an abstract symbolic description much of what 

human beings implicitly know about walking and eating simply by hav- 

ing a body, or else until computers no longer have to be told what it is 

to walk and eat, because they have human bodies and appetites them- 

selves! 

Despite these seemingly insurmountable obstacles Winston boasts that 

“there will be no contentment with [concept learning] machines that 

only do as well as humans.” But it is not surprising that Winston’s work 

is nine years old and there has been little progress in machine learning, 

induction, or concept formation. In their account Minsky and Papert 

admit that “we are still far from knowing how to design a powerful yet 

subtle and sensitive inductive learning program.”** What is surprising is 

that they add: “but the schemata developed in Winston’s work should 

take us a substantial part of the way.”** The lack of progress since 

Winston’s work was published, plus the use of predigested weighted 

primitives from which to produce its rigid, restricted, and largely irrele- 

vant descriptions, makes it hard to understand in what way the program 

is a substantial step. 

Moreover, if Winston claims to “shed some light on [the question:] 

How do we recognize examples of various concepts?’’*’ his theory of 

concepts as definitions must, like any psychological theory, be subject 

to empirical test. It so happens that contrary to Winston’s claims, re- 

cent evidence collected and analyzed by Eleanor Rosch on just this 

subject shows that human beings are not aware of classifying objects 

as instances of abstract rules but rather group objects as more or less 

distant from an imagined paradigm. This does not exclude the possi- 

bility of unconscious processing, but it does highlight the fact that 

there is no empirical evidence at all for Winston’s formal model. As 

Rosch puts it: 

Many experiments have shown that categories appear to be coded in the mind 

neither by means of lists of each individual member of the category, nor by means 
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of a list of formal criteria necessary and sufficient for category membership, but, 

rather, in terms of a prototype of a typical category member. The most cogni- 

tively economical code for a category is, in fact, a concrete image of an average 

category member.” 

One paradigm, it seems, is worth a thousand rules. As we shall soon see, 

one of the characteristics of the next phase of work in AI is to try to take 

account of the implications of Rosch’s research. 

Meanwhile, what can we conclude concerning AI’s contribution to the 

science of psychology? No one can deny Minsky and Papert’s claim that 

“Computer Science has brought a flood of . . . ideas, well defined and 

experimentally implemented, for thinking about thinking. . . .”** But all 

of these ideas can be boiled down to ways of constructing and manipulat- 

ing symbolic descriptions, and, as we have seen, the notion that human 

cognition can be explained in terms of formal representations does not 

seem at all obvious in the face of actual research on perception, and 

everyday concept formation. Even Minsky and Papert show a commend- 

able new modesty. They as much as admit that AI is still at the stage 

of astrology (not unlike alchemy), and that the much heralded break- 

through still lies in the future: 

Just as astronomy succeeded astrology, following Kepler's discovery of planetary 

regularities, the discoveries of these many principles in empirical explorations of 

intellectual processes in machines should lead to a science, eventually.” 

Happily, ‘‘should” has replaced “will” in their predictions. Indeed, this 

period’s contribution to psychology suggests an even more modest hope: 

As more psychologists like Goldmeier are frustrated by the limitations 

of formal computer models, and others turn to investigating the function 

of images as opposed to symbolic representations, the strikingly limited 

success of AI may come to be seen as an important disconfirmation of 
the information processing approach. 

To complete our survey of the state of AI research as it entered its 

second decade we need to consider briefly the state of robot research, 
both because work in this area received a lot of misleading publicity 
during this period and because, as we have just seen in discussing Win- 
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ston’s claims, workers in AI often take refuge in the idea that computers 
will finally achieve human understanding when they have humanoid 
bodies. 

Our account will have to be brief because there is not much to report. 

After the usual optimistic start, the M.I.T. robot arm was stopped cold 

by just the problem of representing its own body space which I suspected 

would be its undoing (see p. 251). In the 1968-1969 AI Progress Report 

this problem is clearly an embarrassment: 

. . . [H]ow should one represent a machine’s body image? For the problem of 

a single, not-too-complicated arm, one can doubtless get by with cleverly coded, 

sparse, three-dimensional arrays, but one would like something more symbolic. 

And one wonders what happens in the nervous system; we have not seen any- 

thing that might be considered to be a serious theory. Consider that a normal 

human can place an object on a table, turn about and make a gross change in 

his position and posture, and then reach out and grasp within one or two inches 

of the object, all with his eyes closed! It seems unlikely that his cerebellum could 

perform the appropriate vector calculations to do this. . . .*' 

However, rather than see this as evidence that their attempt to 

represent the robot’s arm as one more object in physical space was 

misguided, the authors of the report get into deeper trouble defend- 

ing their faith. 

... We would presume that this complex motor activity is made up, somehow, 

of a large library of stereotypical programs, with some heuristic interpolation 

scheme that fits the required action to some collection of reasonably similar 

stored actions. But we have found nowhere any serious proposal about neurologi- 

cal mechanisms for this, and one can hope that some plausible ideas will come 

out of robotics research itself.” 

Neurophysiology offers, admittedly speculative, accounts of such 

similarity, but these are holographic not information processing models. 

As for the AI approach, it merely raises the further problem of recogniz- 

ing similarity, which is discussed in connection with chess-playing pro- 

grams in the next section. In the light of these problems, when the report 

adds: “Unfortunately, at present this area is somewhat dormant,”® we 

can only take “dormant” as a polite synonym for stagnant or even 

comatose. 
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In spite of its better press (see p. 300) the SRI robot, Shakey, was in 

no better shape. As Bertram Raphael frankly sums up the situation in 

response to exaggerated coverage by the media: 

... Many experiments were performed with Shakey between 1968 and 1972 

. .. [but] we made much less progress than various press reports might suggest 

toward the creation of an independent sentient robot capable of meaningful 

performance in a normal human environment. Responsible scientists consider 

this intriguing idea premature, probably by at least several decades.“ 

In effect, Shakey is another case of a micro-world success which 

turned into a real-world failure. 

At his peak, Shakey could only function in a sterile “play-pen” environment of 

walls, doorways, carefully painted baseboards (so he could “see” where the walls 

met the floor), and a few simply-shaped wooden blocks; he had only about a 

dozen pre-programmed “‘instinctive’ abilities, such as TURN, PUSH, GO- 

THROUGH-DOORWAY, and CLIMB-RAMP, which could be combined in various 

ways by the planning programs. . . . The scientists who worked on Shakey 

developed a deep appreciation of how difficult it is to produce a robot even with 

relatively trivial abilities, let alone the true science-fiction-like independent com- 
petence.® 

According to Raphael, Shakey and the SRI robot project have been 

“temporarily put aside” and there will be no interesting robot work to 
report until AI workers solve the basic problem of knowledge representa- 
tion: 

Surprisingly, the issues of how to acquire, represent, and make use of a broad 
store of knowledge has been the most neglected part of past robot research. The 
developers of the laboratory robot systems were so busy patching together exist- 
ing capabilities (in vision, language, and problem solving), and filling in essential 
new areas (representing the physical world, providing for error recovery), that 
they did not attend to the fundamental issue of knowledge structures.* 

So now we have the overall picture. In all those areas where en- 
thusiasts saw signs of success at just the time this book appeared— 
language understanding, scene analysis, concept learning, and robot 
building—the work turned out to be based on brilliant but nongeneraliza- 
ble exploitation of specific features of the task domain. With this realiza- 
tion AI finally had to face the problem of representing everyday knowl- 
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edge—a difficult, decisive, and philosophically fascinating task with 
which it is still struggling today. 

Phase IV (1972-1977) Facing the Problem of 
Knowledge Representation 

As the restricted interest of work in restricted domains became appar- 
ent, the distinction between specific applications and research on basic 
principles became sharper. Feigenbaum comes to refer to his work on 
DENDRAL and his more recent program for inferring the rules of mass 

spectometry, META-DENDRAL, as “knowledge engineering’ while 

Winograd and his associates call their work “‘cognitive science.”’*** At 

M.I.T., a grant proposal from this period distinguishes between ‘“‘no- 

holds-barred, special purpose, domain-dependent work” and ‘‘no-tricks 

basic study.’ And it seems to be generally accepted that every program 

we discussed in Phase III, and, indeed, the whole micro-world concept, 

was in this straightforward sense, a trick. 

We shall now see that in Phase IV the special-purpose work makes 

steady progress, while the basic study faces a crisis. Everyday human 

know-how is increasingly acknowledged to be presupposed by intelligent 

behavior, yet it turns out to be incredibly difficult, perhaps in principle 

impossible, to program. 

The areas in which knowledge engineering has been successful are just 

those in which the first edition of What Computers Can’t Do predicted 

that progress could be expected. (See Column III, of my breakdown of 

the field, p. 292.) As long as the domain in question can be treated as 

a game, 1.e., as long as what is relevant is fixed, and the possibly relevant 

factors can be defined in terms of context-free primitives, then computers 

can do well in the domain. And they will do progressively better relative 

to people as the amount of domain-specific knowledge required is in- 

creased. In such special-purpose programs the form of knowledge repre- 

sentation can be limited to situation — action rules in which the situa- 

tion is defined in terms of a few parameters and indicates the conditions 
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under which a specific heuristic rule is relevant. Again, because relevance 

is defined beforehand, reasoning can be by inference chains with no need 

for reasoning by analogy. 

All these features can be found in one of the most impressive practical 

programs to date: Shortliffe’s MYCIN program (1976) for diagnosing 

blood infections and meningitis infections and recommending drug treat- 

ment. The rules in this case are of the form: 

RULE 85 

IF: 

1. The site of the culture is blood, and 

2. The gram stain of the organism is gramneg, and 

3. The morphology of the organism is rod, and 

4. The patient is a compromised host 

THEN: 

There is suggestive evidence (.6) that the identity of the organism is pseudomo- 
nas-aeruginosa.”° 

The program has been tested by a panel of judges: 

... In 90% of the cases submitted to the judges, a majority of the judges said 
that the program’s decisions were the-same-as or as-good-as the decisions they 
would have made.’'* 

This approach, although successful as an engineering feat, involves 
several assumptions which may conceal potential limitations. Feigen- 
baum, in his analysis of MYCIN, assumes that acquiring expert skill is 
acquiring rules for recognizing situations and rules for evaluating evi- 
dence. 

. . . In most “crafts or branches of learning” what we call “expertise” is the 
essence of the art. And for the domains of knowledge that we touch with our 
art, it is the “rules of expertise” or the rules of “good judgment” of the expert 
practitioners of the domain that we seek to transfer to our programs.” 

He conscientiously notes that the experts themselves are not aware of 
using rules: 
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. .. Experience has also taught us that much of this knowledge is private to the 
expert, not because he is unwilling to share publicly how he performs, but 
because he is unable. He knows more than he is aware of knowing. (Why else 
is the Ph.D. or the Internship a guild-like apprenticeship to a presumed “master 
of the craft’? What the masters really know is not written in the textbooks of 
the masters.)” 

But Feigenbaum with his assumption that expert performance must 
result exclusively from following rules, is nonetheless convinced that by 
suitable questioning he can get the expert, as Plato would say, to “recol- 

lect’? the complete set of unconscious heuristics: 

. . . But we have learned also that this private knowledge can be uncovered by 

the careful, painstaking analysis of a second party, or sometimes by the expert 

himself, operating in the context of a large number of highly specific performance 
problems.’ 

If internship and the use of examples play an essential role in expert 

judgment, i.e., if there is a limit to what can be understood by rules, 

Feigenbaum would never see it—especially in domains such as medicine 

where there is a very large and rapidly increasing body of factual infor- 

mation concerning drugs and their side effects and interactions, so that 

the computer can make up in data-processing capacity for what it lacks 

in judgment. Yet, the fact remains that in each field where “knowledge 

engineering” has made its valuable contribution and rivaled the experts, 

there are still masters who do better than the machine. To determine 

whether this is an accident, or whether skill may involve more than rule 

following, it is helpful to look at developments in chess, where the 

domain is restricted, factual knowledge is at a minimum, and where we 

have some psychological evidence of what master players actually do. 

Chess is an ideal micro-world in which relevance is restricted to the 

narrow domain of the kind of chess piece (pawn, knight, etc.), its color, 

and the position of the piece on the board. But while the game’s circum- 

scribed character makes a world champion chess program in principle 

possible, there is a great deal of evidence that human beings play chess 

quite differently from computers; and I was not surprised to find that up 

to 1971 computers played fairly low-level chess (see pp. 82-85). In July 

1976, however, the Northwestern University chess program, called 
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CHESS 4.5, won the class B section of the Paul Masson American Chess 

Championship with an impressive 5 wins and no losses. It then went on 

in February 1977 to win the 84th Minnesota Open Tournament against 

experts and high-class A players.’* Such unexpected impressive results 

require a reexamination of the difference between human and computer 

chess playing. 

A chess program has the sort of situation — action rules discussed 

above. A situation is characterized in terms of context-free features: the 

position and color of each piece on the board. All possible legal moves 

and the positions which result are then defined in terms of these features. 

To evaluate and compare positions, rules are provided for calculating 

scores on attributes such as “material balance” (where a numerical value 

is assigned to each piece on the board and the total score is computed 

for each player), or “center control” (where the number of pieces bearing 

on each centrally located square is counted). Finally, there must be a 

formula for evaluating alternative positions on the basis of these scores. 

Using this approach and looking at a tree of around 3 million potential 

positions CHESS 4.5 can beat some players at the expert level, but a 

chess master generally looks at the results of less than 100 possible moves 

(see p. 102) and yet plays a far better game. How can this be? 

In Chapter 1, I note that human beings avoid the counting out of large 

numbers of alternatives characteristic of a computer program by “zero- 

ing in” on the appropriate area in which to look for a move and I suggest 

that this ability is the result of having a sense of the developing game. 

While no doubt correct, this now seems to me an inadequate account, 

for it does not take into consideration the fact that to develop this ability 

to zero in, chess masters must play thousands of actual and book games. 

What does this apprenticeship add to their skill? 

By playing over book games chess masters presumably develop the 

ability to recognize present positions as similar to positions which oc- 

curred in classic games. These previous positions have already been 
analyzed in terms of their significant aspects. Aspects of a chess position 
include such overall characteristics as “control of the situation” (the 
extent to which a player’s opponent’s moves can be forced by making 
threatening moves), ““crampedness of the position” (the amount of free- 
dom of maneuver inherent in both the player’s position and the oppo- 
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nent’s position), or “overextendedness” (the fact that while the position 
might be superficially quite strong, one is not in sufficient control of the 
situation to follow through and, with correct play by the opponent, a 
massive retreat will be required). The already analyzed remembered 
positions focus the player’s attention on critical aspects of the current 
position, and the master can thus zero in on these critical areas before 
beginning to count out specific moves. 

The distinction between features and aspects is central here. Aspects 
play a role in an account of human play similar to that of features in 

the computer model, but there is a crucial difference. In the computer 

model the situation is DEFINED IN TERMS OF the features, whereas in 

human play situational understanding is PRIOR TO aspect specification. 

For example, the numerical value of a feature such as material balance 

can be calculated independently of any understanding of the game, 

whereas an aspect like overextendedness cannot be calculated simply in 

terms of the position of the pieces, since the same board position can 

have different aspects depending on its place in the long-range strategy 

of a game. In a game in which white’s long-range strategy is an attack 

on the opponent’s king, the advanced position of white’s pieces does 

not constitute overextension, whereas otherwise it would. No present 

or envisaged chess program attempts to include such long-range strat- 

egy, yet to recognize aspects requires some such overall interpretation 

of the game. 

For the same reason some sort of feature-based matching of the pre- 

sent position against a stored library of previous positions won’t help 

account for a master player’s ability to use past experience to zero in. It 

is astronomically unlikely that two positions will ever turn out to be 

identical, so that what has to be compared are similar positions. But 

similarity cannot be defined as having a large number of pieces on 

identical squares. Two positions which are identical except for one pawn 

moved to an adjacent square can be totally different, while two positions 

can be similar although no pieces are on the same square in each. Thus 

simitarity depends on the player’s sense of the issues at stake, not merely 

on the position of the pieces. Seeing two positions as similar is exactly 

what requires a deep understanding of the game. And structuring the 

situation in terms of aspects of remembered similar situations in turn 
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enables the human player to avoid the massive counting out required 

when the positions are characterized only in terms of context-free fea- 

tures. 

Aspects also enable masters to formulate heuristic maxims which play 

a role in this account analogous to heuristic ru/es in the computer model. 

Polanyi calls attention to the difference between strict rules and maxims: 

Maxims are rules, the correct application of which is part of the art which they 

govern. The true maxims of golfing or of poetry increase our insight into golfing 

or poetry and may even give valuable guidance to golfers and poets; but these 

maxims would instantly condemn themselves to absurdity if they tried to replace 

the golfer’s skill or the poet’s art. Maxims cannot be understood, still less applied 

by anyone not already possessing a good practical knowledge of the art.” 

At present computers using exhaustive search, and masters using 

selective search guided by aspect analysis and maxims, can each look 

ahead about six or seven ply.”’* Given the exponential growth of alterna- 

tive moves it will not be possible without better tree-searching heuristics 

to significantly increase the computer’s power to look ahead. Thus with 

present programs what is really at stake is how far computers which 

must use tactics based on context-free features can make up by sheer 

brute force for the use of long-range strategy, the recognition of 

similarity to other preanalyzed games, and the zeroing in on crucial 

aspects characteristic of advanced human play. 

In general being able to see similarity to prototypical cases and to 

recognize shared aspects in terms of this similarity, as well as the possi- 

bility of profiting from maxims formulated in terms of these aspects, all 

seem to play an essential role in the acquisition and utilization of ex- 

pertise. But since these abilities are not based on context-free features 

but depend on the overall situation they cannot be captured in the 

situation — action rule formalism. Thus we can expect in every area 

where expertise is based on experience to continue to find some experts 

who outperform even the most sophisticated programs. 

Although chess programs and knowledge engineering in general have 
made remarkable progress during the past two years, discourse under- 
standing, despite the introduction of interesting new ideas, is still in the 
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same state of stagnation as it was in 1972. While this has led some 
researchers to ever more extravagant promises and claims, it has led 

others to sober thoughts on the difficulty of programming human under- 
standing. In order to form a reasonable opinion about what has yet to 
be done to make computers intelligent, we must turn from the com- 

puter’s successes in restricted domains to the stag/flation afflicting the 

field of discourse understanding. 

The difference between programs like MYCIN and CHESS 4.5, and 

programs for understanding discourse, is precisely the difference between 

domain-specific knowledge and general intelligence; between anything- 

goes engineering and no-tricks basic study; or, as we can now see, the 

difference between areas in which relevance has been decided beforehand 

(Area III in my chart, p. 292), and areas in which determining what is 

relevant is precisely the problem (Area IV). 

In the past five years, the problem of how to structure and retrieve data 

in situations when anything might be relevant has come to be known as 

the knowledge representation problem. As Patrick Winston, head of the 

M.I.T. AI Laboratory, puts it in a section of a 1975 research proposal 

entitled ‘““The Need for Basic Studies”: 

... We believe that proper representation is the key to advanced vision, common 

sense reasoning, and expert problem solving, just as it is to many other aspects 

of Artificial Intelligence.” 

Of coursé, the representation of knowledge was always a central prob- 

lem for work in AI, but earlier periods were characterized by an attempt 

to repress it by seeing how much could be done with as little knowledge 

as possible. Now, the difficulties are being faced. As Roger Schank of 

Yale recently remarked: 

... Researchers are starting to understand that tour-de-forces in programming 

are interesting but non-extendable . . . the AI people recognize that how people 

use and represent knowledge is the key issue in the field. . . .” 

Papert and Goldstein explain the problem: 

It is worthwhile to observe here that the goals of a knowledge-based approach 

to AI are closely akin to those which motivated Piaget to call . . . himself an 

“epistemologist” rather than a psychologist. The common theme is the view that 
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the process of intelligence is determined by the knowledge held by the subject. 

The deep and primary questions are to understand the operations and data 

structures involved.*° 

Another memo illustrates how ignoring the background knowledge can 

come back to haunt one of AI’s greatest tricks in the form of nongeneral- 

izability: 

... Many problems arise in experiments on machine intelligence because things 

obvious to any person are not represented in any programs. One can pull with 

a String, but one cannot push with one. One cannot push with a thin wire, either. 

A taut inextensible cord will break under a very small lateral force. Pushing 

something affects first its speed; only indirectly its position! Simple facts like these 

caused serious problems when Charniak attempted to extend Bobrow’s “Stu- 

dent” program to more realistic applications, and they have not been faced up 

to until now.*! 

The most interesting current research is directed toward the underlying 

problem of developing new, flexible, complex data types which will allow 

the representation of background knowledge in large, more structured 

units. 

In 1972, drawing on Husserl’s phenomenological analysis, I pointed 

out that it was a major weakness of AI that no programs made use of 

expectations (see pp. 241, 242, and 250). Instead of modeling intelligence 

as a passive receiving of context-free facts into a structure of already 

stored data, Husserl thinks of intelligence as a context-determined, goal- 

directed activity—as a search for anticipated facts. For him the noema, 

or mental representation of any type of object, provides a context or 

“inner horizon” of expectations or “predelineations” for structuring the 

incoming data: a “rule governing possible other consciousness of [the 

object] as identical—possible, as exemplifying essentially predelineated 

types.”"’* As I explain in Chapter 7: 

... We perceive a house, for example, as more than a fagade—as having some 
sort of back—some inner horizon. We respond to this whole object first and then, 
as we get to know the object better, fill in the details as to inside and back. 
[p. 241] 

The noema is thus a symbolic description of all the features which can 
be expected with certainty in exploring a certain type of object—features 



Introduction to the Revised Edition i, ERS 

which remain “‘inviolably the same: as long as the objectivity remains 

intended as this one and of this kind’”® . . . plus “‘predelineations” of 

those properties which are possible but not necessary features of this type 

of object. 

A year after my objection, Minsky proposed a new data structure 

remarkably similar to Husserl’s for representing everyday knowledge: 

A frame is a data-structure for representing a stereotyped situation, like being 

in a certain kind of living room, or going to a child’s birthday party. . . . 

We can think of a frame as a network of nodes and relations. The “‘top levels” 

of a frame are fixed, and represent things that are always true about the supposed 

situation. The lower levels have many terminals—“slots” that must be filled by 

specific instances or data. Each terminal can specify conditions its assignments 

must meet... . 

Much of the phenomenological power of the theory hinges on the inclusion 

of expectations and other kinds of presumptions. A frame’s terminals are nor- 

mally already filled with ‘default’? assignments.* 

In Minsky’s model of a frame, the ‘top level” is a developed version 

of what in Husserl’s terminology “remains inviolably the same” in the 

representation, and Husserl’s predelineations have been made precise as 

“default assignments’”—additional features that can normally be ex- 

pected. The result is a step forward in AI techniques from a passive 

model of information processing to one which tries to take account of 

the context of the interactions between a knower and his world. Husserl 

thought of his method of transcendental-phenomenological constitution, 

i.e., ‘“explicating” the noema for all types of objects, as the beginning of 

progress toward philosophy as a rigorous science, and Patrick Winston 

has hailed Minsky’s proposal as “‘the ancestor of a wave of progress in 

AI.”®> But Husserl’s project ran into serious trouble and there are signs 

that Minsky’s may too. 

During twenty years of trying to spell out the components of the 

noema of everyday objects, Husserl found that he had to include more 

and more of what he called the “outer horizon,” a subject’s total knowl- 

edge of the world: 

... To be sure, even the tasks that present themselves when we take single types 

of objects as restricted clues prove to be extremely complicated and always lead 

to extensive disciplines when we penetrate more deeply. That is the case, for 
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example, with a transcendental theory of the constitution of a spatial object (to 

say nothing of a Nature) as such, of psycho-physical being and humanity as such, 

cultures as such.* 

He sadly concluded at the age of seventy-five that he was “a perpetual 

beginner” and that phenomenology was an “‘infinite task”—and even 

that may be too optimistic. His successor, Heidegger, pointed out that 

since the outer horizon or background of cultural practices was the 

condition of the possibility of determining relevant facts and features and 

thus prerequisite for structuring the inner horizon, as long as the cultural 

context had not been clarified the proposed analysis of the inner horizon 

of the noema could not even claim progress. 

There are hints in an unpublished early draft of the frame paper that 

Minsky has embarked on the same misguided “‘infinite task” that eventu- 

ally overwhelmed Husserl: 

Just constructing a knowledge base is a major intellectual research problem. 

... We still know far too little about the contents and structure of common-sense 

knowledge. A ‘‘minimal’’ common-sense system must “know” something about 

cause-effect, time, purpose, locality, process, and types of knowledge. . . . We 

need a serious epistemological research effort in this area.*’ 

Minsky’s naiveté and faith are astonishing. Philosophers from Plato 

to Husserl, who uncovered all these problems and more, have carried on 

serious epistemological research in this area for two thousand years 

without notable success. Moreover, the list Minsky includes in this pas- 

sage deals only with natural objects, and their positions and interactions. 

As Husserl saw, and as I argue in Chapter 8, intelligent behavior also 

presupposes a background of cultural practices and institutions. Obser- 

vations in the frame paper such as: 

Trading normally occurs in a social context of law, trust, and convention. Unless 
we also represent these other facts, most trade transactions will be almost mean- 
ingless™ 

show that Minsky has understood this too. But Minsky seems oblivious 
to the hand-waving optimism of his proposal that programmers rush in 
where philosophers such as Heidegger fear to tread, and simply make 
explicit the totality of human practices which pervade our lives as water 
encompasses the life of a fish. 

To make this essential point clear it helps to take an example used by 
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Minsky and look at what is involved in understanding a piece of everyday 
equipment as simple as a chair. No piece of equipment makes sense by 
itself. The physical object which is a chair can be defined in isolation as 
a collection of atoms, or of wood or metal components, but such a 

description will not enable us to pick out chairs. What makes an object 

a chair is its function, and what makes possible its role as equipment for 

sitting is its place in a total practical context. This presupposes certain 

facts about human beings (fatigue, the ways the body bends), and a 

network of other culturally determined equipment (tables, floors, lamps), 

and skills (eating, writing, going to conferences, giving lectures, etc.). 

Chairs would not be equipment for sitting if our knees bent backwards 

like those of flamingos, or if we had no tables as in traditional Japan or 

the Australian bush. 

Anyone in our culture understands such things as how to sit on 

kitchen chairs, swivel chairs, folding chairs; and in arm chairs, rocking 

chairs, deck chairs, barber’s chairs, sedan chairs, dentist’s chairs, basket 

chairs, reclining chairs, wheel chairs, sling chairs, and beanbag chairs— 

as well as how to get out of them again. This ability presupposes a 

repertoire of bodily skills which may well be indefinitely large, since there 

seems to be an indefinitely large variety of chairs and of successful 

(graceful, comfortable, secure, poised, etc.) ways to sit in them. More- 

over, understanding chairs also includes social skills such as being able 

to sit appropriately (sedately, demurely, naturally, casually, sloppily, 

provocatively, etc.) at dinners, interviews, desk jobs, lectures, auditions, 

concerts (intimate enough for there to be chairs rather than seats), and 

in waiting rooms, living rooms, bedrooms, courts, libraries, and bars (of 

the sort sporting chairs, not stools). 

In the light of this amazing capacity, Minsky’s remarks on chairs in 

his frame paper seem more like a review of the difficulties than even a 

hint of how AI could begin to deal with our commonsense understanding 

in this area. 

There are many forms of chairs, for example, and one should choose carefully 

the chair-description frames that are to be the major capitols of chair-land. These 

are used for rapid matching and assigning priorities to the various differences. 

The lower priority features of the cluster center then serve . . . as properties of 

the chair types... .” 
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There is no argument why we should expect to find elementary context- 

free features characterizing a chair type, nor any suggestion as to what 

these features might be. They certainly cannot be legs, back, seat, etc., 

since these are not context-free characteristics defined apart from chairs 

which then “cluster” in a chair representation, but rather legs, back, etc. 

come in all shapes and variety and can only be recognized as aspects of 

already recognized chairs. Minsky continues: 

Difference pointers could be “functional” as well as geometric. Thus, after 

rejecting a first try at ‘chair’? one might try the functional idea of “something 

one can sit on” to explain an unconventional form.” 

But, as we already saw in our discussion of Winston’s concept-learning 

program, a function so defined is not abstractable from human embodied 

know-how and cultural practices. A functional description such as 

“something one can sit on” treated merely as an additional context-free 

descriptor cannot even distinguish conventional chairs from saddles, 

thrones, and toilets. Minsky concludes: 

Of course, that analysis would fail to capture toy chairs, or chairs of such 

ornamental delicacy that their actual use would be unthinkable. These would be 

better handled by the method of excuses, in which one would bypass the usual 

geometrical or functional explanation in favor of responding to contexts involv- 
ing art or play.” 

This is what is required all right, but by what elementary features are 

these contexts to be recognized? There is no reason at all to suppose that 
one can avoid the difficulty of formally representing our knowledge of 
chairs by abstractly representing even more holistic, concrete, culturally 

determined, and loosely organized human practices such as art and play. 
Minsky in his frame article claims that: “the frame idea . . . is in the 

tradition of . . . the ‘paradigms’ of Kuhn,”” so it is appropriate to ask 
whether a theory of formal representation such as Minsky’s, even if it 
can’t account for everyday objects like chairs, can do justice to Thomas 
Kuhn’s analysis of the role of paradigms in the practice of science. Such 
a comparison might seem more promising than testing the ability of 
frames to account for our everyday understanding, since science is a 
theoretical enterprise which deals with context-free data whose lawlike 
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relations can in principle be grasped by any sufficiently powerful “‘pure- 

intellect,” whether human, Martian, digital, or divine. 

Paradigms, like frames, serve to set up expectations. As Kuhn notes: 

“In the absence of a paradigm or some candidate for paradigm, all the 

facts that could possibly pertain to the development of a given science 

are likely to seem equally relevant.” Minsky interprets as follows: 

According to Kuhn’s model of scientific evolution ‘normal’ science proceeds by 

using established descriptive schemes. Major changes result from new ‘para- 

digms’, new ways of describing things. Whenever our customary viewpoints do 

not work well, whenever we fail to find effective frame systems in memory, we 

must construct new ones that bring out the right features.” 

But what Minsky leaves out is precisely Kuhn’s claim that a paradigm 

or exemplar is not an abstract explicit descriptive scheme utilizing formal 

features, but rather a shared concrete case, which dispenses with features 

altogether: 

The practice of normal science depends on the ability, acquired from exemplars, 

to group objects and situations into similarity sets which are primitive in the 

sense that the grouping is done without an answer to the question, “Similar with 

respect to what?’ 

Thus, although it is the job of scientists to find abstractable, exact, 

symbolic descriptions, and the subject matter of science consists of such 

formal accounts, the thinking of scientists themselves does not seem to 

be amenable to this sort of analysis. Kuhn explicitly repudiates any 

formal reconstruction which claims that the scientists must be using 

symbolic descriptions: 

I have in mind a manner of knowing which is misconstrued if reconstructed in 

terms of rules that are first abstracted from exemplars and thereafter function 

in their stead.” 

Indeed, Kuhn sees his book as raising just those questions which Minsky 

refuses to face: 

Why is the concrete scientific achievement, as a locus of professional commit- 

ment, prior to the various concepts, laws, theories, and points of view that may 

be abstracted from it? In what sense is the shared paradigm a fundamental unit 
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for the student of scientific development, a unit that cannot be fully reduced to 

logically atomic components which might function in its stead?*’ 

Although research based on frames cannot deal with this question and 

so cannot account for commonsense or scientific knowledge, the frame 

idea did bring the problem of how to represent our everyday knowledge 

into the open in AI. Moreover, it provided a model so vague and sugges- 

tive that it could be developed in several different directions. Two alter- 

natives immediately presented themselves: either to use frames as part 

of a special-purpose micro-world analysis dealing with commonsense 

knowledge as if everyday activity took place in preanalyzed specific 

domains, or else to try to use frame structures in ‘“‘a no-tricks basic 

study” of the open-ended character of everyday know-how. Of the two 

most influential current schools in AI, Roger Schank and his students 

at Yale have tried the first approach, Winograd, Bobrow, and their 

research group at Stanford and Xerox, the second. 

Schank’s version of frames are called ‘scripts.’ Scripts encode the 

essential steps involved in stereotypical social activities. Schank uses 

them to enable a computer to “understand” simple stories. Like the 

micro-world builders of Phase III, Schank believes he can start with 

isolated stereotypical situations described in terms of primitive actions 

and gradually work up from there to all of human life. 

To carry out this project, Schank invented an event description lan- 

guage consisting of eleven primitive acts such as: ATRANS—the trans- 

fer of an abstract relationship such as possession, ownership, or control; 

PTRANS—the transfer of physical location of an object; INGEST—the 

taking of an object by an animal into the inner workings of that animal, 

etc.,”* and from these primitives he builds gamelike scenarios which 

enable his program to fill in gaps and pronoun reference in stories. 
Such primitive acts, of course, make sense only when the context is 

already interpreted in a specific piece of discourse. Their artificiality can 
easily be seen if one compares one of Schank’s context-free primitive acts 
to real-life actions. Take PTRANS, the transfer of physical location of 
an object. At first it seems an interpretation-free fact if ever there was 
one. After all, either an object moves or it doesn’t. But in real life things 
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are not so simple; even what counts as physical motion depends on our 

purposes. If someone is standing still in a moving elevator on a moving 

ocean liner, is his going from A to B deck a PTRANS? What about when 

he is just sitting on B deck? Are we all PTRANSing around the sun? 

Clearly the answer depends on the situation in which the question is 

asked. 

Such primitives can, however, be used to describe fixed situations or 

scripts once the relevant purposes have already been agreed upon. 

Schank’s definition of a script emphasizes its predetermined, bounded, 

gamelike character: 

We define a script as a predetermined causal chain of conceptualizations that 

describe the normal sequence of things in a familiar situation. Thus there is a 

restaurant script, a birthday-party script, a football game script, a classroom 

script, and so on. Each script has in it a minimum number of players and objects 

that assume certain roles within the script . . . [E]ach primitive action given 

stands for the most important element in a standard set of actions.” 

His illustration of the restaurant script spells out in terms of primitive 

actions the rules of the restaurant game: 

Script: restaurant 

Roles: customer; waitress; chef; cashier 

Reason: to get food so as to go down in hunger and up in pleasure 

Scene 1 entering 

PTRANS—go into restaurant 

MBUILD—find table 

PTRANS—go to table 

MOVE —sit down 

Scene 2 ordering 

ATRANS—receive menu 

ATTEND—look at it 

MBUILD—decide on order 

MTRANS—tell order to waitress 

Scene 3 eating 

ATRANS—receive food 

INGEST—eat food 
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Scene 4 exiting 

MTRANS—ask for check 

ATRANS—give tip to waitress 

PTRANS—go to cashier 

ATRANS—give money to cashier 

PTRANS—go out of restaurant'” 

No doubt many of our social activities are stereotyped and there is 

nothing in principle misguided in trying to work out primitives and rules 

for a restaurant game, the way the rules of Monopoly are meant to 

capture a simplified version of the typical moves in the real estate busi- 

ness. But Schank claims that he can use this approach to understand 

stories about actual restaurant-going—that in effect he can treat the 

sub-world of restaurant going as if it were an isolated micro-world. To 

do this, however, he must artificially limit the possibilities; for, as one 

might suspect, no matter how stereotyped, going to the restaurant is not 

a self-contained game but a highly variable set of behaviors which open 

out into the rest of human activity. What “normally” happens when one 

goes to a restaurant can be preselected and formalized by the program- 

mer as default assignments, but the background has been left out so that 

a program using such a script cannot be said to understand going to a 

restaurant at all. This can easily be seen by imagining a situation that 

deviates from the norm. What if when one tries to order he finds that 

the item in question is not available, or before paying he finds that the 

bill is added up wrongly? Of course, Schank would answer that he could 

build these normal ways restaurant-going breaks down into his script. 

But there are always abnormal ways everyday activities can break down: 

the juke box might be too noisy, there might be too many flies on the 

counter, or as in the film Annie Hall, in a New York delicatessen one’s 

girl friend might order a pastrami sandwich on white bread with mayon- 

naise. When we understand going to a restaurant we understand how to 

cope with even these abnormal possibilities because going to a restaurant 

is part of our everyday activities of going into buildings, getting things 

we want, interacting with people, etc. 

To deal with this sort of objection Schank has added some general 

rules for coping with unexpected disruptions. The general idea is that in 
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a story “it is usual for non-standard occurrences to be explicitly men- 
tioned’’'*! so the program can spot the abnormal events and understand 
the subsequent events as ways of coping with them. But here we can see 
that dealing with stories allows Schank to bypass the basic problem, since 
it is the author’s understanding of the situation which enables him to 
decide which events are disruptive enough to mention. 

This ad hoc way of dealing with the abnormal can always be revealed 
by asking further questions, for the program has not understood a restau- 
rant story the way people in our culture do, until it can answer such 
simple questions as: When the waitress came to the table did she wear 

clothes? Did she walk forward or backward? Did the customer eat his 

food with his mouth or his ear? If the program answers, “I don’t know,” 

we feel that all of its right answers were tricks or lucky guesses and that 

it has not understood anything of our everyday restaurant behavior.!”* 

The point here, and throughout, is not that there are subtle things human 

beings can do and recognize which are beyond the low-level understand- 

ing of present programs, but that in any area there are simple taken-for- 

granted responses central to human understanding, lacking which a 

computer program cannot be said to have any understanding at all. 

Schank’s claim, then, that “‘the paths of a script are the possibilities 

that are extant in a situation’’'™ is insidiously misleading. Either it means 

that the script accounts for the possibilities in the restaurant game 

defined by Schank, in which case it is true but uninteresting; or he is 

claiming that he can account for the possibilities in an everyday restau- 

rant situation which is impressive but, by Schank’s own admission, false. 

Real short stories pose a further problem for Schank’s approach. In 

a script what the primitive actions and facts are is determined before- 

hand, but in a short story what counts as the relevant facts depends on 

the story itself, For example, a story which describes a bus trip contains 

in its script that the passenger thanks the driver (a Schank example). But 

the fact that the passenger thanked the driver would not be important 

in a story in which the passenger simply took the bus as a part of a longer 

journey, while it might be crucially important if the story concerned a 

misanthrope who had never thanked anyone before, or a very law- 

abiding young man who had courageously broken the prohibition against 
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speaking to drivers in order to speak to the attractive woman driving the 

bus. Overlooking this point, Schank claimed at a recent meeting that his 

program which can extract death statistics from newspaper accident 

reports had answered my challenge that a computer would count as 

intelligent only if it could summarize a short story.'* But Schank’s 

newspaper program cannot provide a clue concerning judgments of what 

to include in a story summary because it works only where relevance and 

significance have been predetermined, and thereby avoids dealing with 

the world built up in a story in terms of which judgments of relevance 

and importance are made. 

Another way to see that script analysis of story understanding leaves 

out something essential is to consider the question: In reading a story 

how do we call up the appropriate script? In discussing this question 

Schank points out: 

... While the restaurant script can be a subpart of a larger script (such as STRIP) 

[In Schank’s notation the dollar sign indicates a script.] it must be marked as not 

being capable of being subsumed by $DELIVERY."* 

But this “solution” raises the problem of negative information which 

dogs a proposal like Schank’s. It seems implausible to suppose that one 

could mark the restaurant script as mot subsumed under such other 

scripts as making a phone call, answering a call for help, retrieving a lost 
object, looking for a job, getting signatures for a petition, repairing 
equipment, coming to work, doing an inspection, leaving a bomb, arrang- 
ing a banquet, collecting for the Mafia, looking for change for the meter, 
buying cigarettes, hiding from the police, etc., etc., which might lead one 
to enter a restaurant without intending to eat. It would be more manage- 
able to write a program which, whenever someone in a story enters a 
restaurant, follows the restaurant script until the understander’s expecta- 
tions fail to be fulfilled. Presumably because he thinks of his programs 
as having psychological reality, Schank neglects this alternative, and on 
this point he is right. Normally in reading a story we do not suppose that 
a person who enters a restaurant for a purpose that does not involve 
eating is preparing to eat; so we do not have to be jolted out of this 
hypothesis by the fact that the waitress does not bring him a menu. But 
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Schank’s proposal leaves completely unanswered the problem of how we 
do choose the right script. 

Schank’s latest book does have some interesting ideas about how to go 
beyond scripts, since he readily admits that much of our everyday activi- 
ties is not scripted. He introduces “plans” as our way of dealing with 
stories about situations which don’t have fixed scripts. And he points out 
that plans are made up of subplans or planboxes, which are useful in 
many situations. For example, 

one kind of instrumental goal is a general building block in many planning 
processes. In a plan for satisfying hunger, one of the crucial steps is to go to where 
food is. Going to an intended location is a very general process, useful in all sorts 
of specific plans.’ 

Thus a planbox is used whenever no script is available. If a planbox is used often 
enough, it will generate a script that eliminates the need for the planbox as long 

as the surrounding context stays the same.'” 

But here the persistent problem of recognizing similarity again arises. 

How can we tell whether the surrounding context is the same? It won’t 

be identical, and Schank gives us no theory of how to recognize contexts 

as similar. 

Finally, Schank has to deal with the short-term goals which motivate 

everyday plans, the long range goals which generate the short term ones, 

and the life themes, in terms of which people organize their goal-oriented 

activities. 

. .. The expectations that we generate from themes are an important part of 

understanding stories because they generate the goals that generate the plans that 

we expect to be carried out.'” 

Here Schank has to face the important way desires, emotions, and a 

person’s interpretation of what it means to be a human being open up 

endless possibilities for human life. If the themes which organize our 

lives turn out to be unprogrammable Schank is in trouble and so 1s all 

of AI. But Schank again imperturbably uses his engineering approach 

and starts making lists of life themes. This leads to what would seem to 

be an in-principle problem: 



Introduction to the Revised Edition / 46 

Because life themes are continuous goal generators, it is not really possible to 

delimit a set of possible life themes. There are as many life themes as there are 

possible long term goals.'”” 

But Schank passes over this difficulty, as he does all others, by stipulating 

a few more ad hoc primitives. 

. .. As understanders we attempt to type people we hear about in terms of one 

of our standard life themes. As we hear of differences from the normal type we 

create a private life theme for the individual we are hearing about. The infinity 

of possible life themes comes from this possibility of the unique combination of 

goals for any individual. What makes life themes manageable is that the number 

of life theme types is small (six) and the number of standard life themes within 

those typings is a tractable size (say 10 to SO for each type).'® 

If these primitives don’t account for our understanding of the variety of 

possible human lives, Schank is ready, as always, to add a few more. 

Nothing could ever call into question Schank’s basic assumption that 

all human practice and know-how is represented in the mind as a system 

of beliefs constructed from context-free primitive actions and facts, but 

there are signs of trouble. Schank does admit that an individual’s “belief 

system” cannot be fully elicited from him; although he never doubts that 

it exists and that it could in principle be represented in his formalism. 

He is therefore led to the desperate idea of a program which could learn 

about everything from restaurants to life themes the way people do. In 

a recent paper he concludes: 

We hope to be able to build a program that can learn, as a child does, how to 
do what we have described in this paper instead of being spoon-fed the tremen- 
dous information necessary. In order to do this it might be necessary to await 
an effective automatic hand-eye system and an image processor.'!! 

For Schank’s ad hoc approach there is no way of ever facing an interest- 
ing failure, but the fact that robot makers such as Raphael report that 
progress in their area must await an adequate scheme for knowledge 
representation, and that those like Schank who hope to provide such 
representation systems finally fall back on robots as a means for acquir- 
ing them, suggests that the field is in a loop—the computer world’s 
conception of a crisis. 
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In any case, Schank’s appeal to learning is at best another evasion. 

Developmental psychology has shown that children’s learning does not 

consist merely in acquiring more and more information about specific 

routine situations by adding new primitives and combining old ones as 

Schank’s view would lead one to expect. Rather learning of specific 

details takes place on a background of shared practices which seem to 

be picked up in everyday interactions not as facts and beliefs but as bodily 

skills for coping with the world. Any learning presupposes this back- 

ground of implicit know-how which gives significance to details. Since 

Schank admits that he cannot see how this background can be made 

explicit so as to be given to a computer, and since the background 1s 

presupposed for the kind of script learning Schank has in mind, it seems 

that his project of using preanalyzed primitives to capture commonsense 

understanding is doomed. 

A more plausible, even if in the last analysis perhaps no more promis- 

ing, approach would be to use the new theoretical power of frames or 

stereotypes to dispense with the need to preanalyze everyday situations 

in terms of a set of primitive features whose relevance is independent of 

context. This approach starts with the recognition that in everyday 

communication “ ‘Meaning’ is multi-dimensional, formalizable only in 

terms of the entire complex of goals and knowledge [of the world] being 

applied by both the producer and understander.”'” This knowledge, of 

course, is assumed to be ‘“‘A body of specific beliefs (expressed as symbol 

structures . . .) making up the person’s ‘model of the world’.”’” Given 

these assumptions Terry Winograd and his co-workers are developing a 

new knowledge representation language (KRL), which they hope will 

enable programmers to capture these beliefs in symbolic descriptions of 

multidimensional prototypical objects whose re/evant aspects are a func- 

tion of their context. 

Prototypes would be structured so that any sort of description 

from. proper names to procedures for recognizing an example could 

be used to fill in any one of the nodes or slots that are attached to a 

prototype. This allows representations to be defined in terms of each 

other, and results in what the author calls “a wholistic as opposed to 
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reductionistic view of representation.’’'* For example, since any de- 

scription could be part of any other, chairs could be described as 

having aspects such as seats and backs, and seats and backs in turn 

could be described in terms of their function in chairs. Furthermore, 

each prototypical object or situation could be described from many 

different perspectives. Thus nothing need be defined in terms of its 

necessary and sufficient features in the way Winston and traditional 

philosophers have proposed, but rather, following Rosch’s research 

on prototypes, objects would be classified as more or less resembling 

certain prototypical descriptions. 

Winograd illustrates this idea using the traditional philosophers’ fa- 

vorite example: 

The word “bachelor” has been used in many discussions of semantics, since (save 

for obscure meanings involving aquatic mammals and medieval chivalry) it 

seems to have a formally tractable meaning which can be paraphrased “an adult 

human male who has never been married”’. . . . In the realistic use of the word, 

there are many problems which are not as simply stated and formalized. Con- 

sider the following exchange: 

Host: I’m having a big party next weekend. Do you know any nice bachelors 

I could invite? 

Friend: Yes, I know this fellow X. ... 

The problem is to decide, given the facts below, for which values of X the 

response would be a reasonable answer in light of the normal meaning of the 

word “‘bachelor’’. A simple test is to ask for which ones the host might fairly 

complain “You lied. You said X was a bachelor.”: 

A: Arthur has been living happily with Alice for the last five years. They have 

a two year old daughter and have never officially married. 

B: Bruce was going to be drafted, so he arranged with his friend Barbara to 

have a justice of the peace marry them so he would be exempt. They have never 

lived together. He dates a number of women, and plans to have the marriage 

annulled as soon as he finds someone he wants to marry. 

C: Charlie is 17 years old. He lives at home with his parents and is in high 
school. 

D: David is 17 years old. He left home at 13, started a small business, and is 
now a successful young entrepreneur leading a playboy’s life style in his pent- 
house apartment. 
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E: Eli and Edgar are homosexual lovers who have been living together for 
many years. 

F: Faisal is allowed by the law of his native Abu Dhabi to have three wives. 
He currently has two and is interested in meeting another potential fiancee. 

G: Father Gregory is the bishop of the Catholic cathedral at Groton upon 
Thames. 

[This] cast of characters could be extended indefinitely, and in each case there 
are problems in deciding whether the word “bachelor” could appropriately be 
applied. In normal use, a word does not convey a clearly definable combination 
of primitive propositions, but evokes an exemplar which possesses a number of 
properties. This exemplar is not a specific individual in the experience of the 

language user, but is more abstract, representing a conflation of typical proper- 

ties. A prototypical bachelor can be described as: 

1. a person 

2. a male 

3. an adult 

4. not currently officially married 

5. not in a marriage-like Jiving situation 

6. potentially marriageable 

7. leading a bachelor-like life style 

8. not having been married previously 

9. having an intention, at least temporarily, not to marry 

10 

Each of the men described above fits some but not all of these characteriza- 

tions. Except for narrow legalistic contexts, there is no significant sense in which 

a subset of the characteristics can be singled out as the “central meaning” of the 

word. In fact, among native English speakers there is little agreement about 

whether someone who has been previously married can properly be called a 

“bachelor” and fairly good agreement that it should not apply to someone who 

is not potentially marriageable (e.g. has taken a vow of celibacy). 

Not only is this list [of properties] open-ended, but the individual terms are 

themselves not definable in terms of primitive notions. In reducing the meaning 

of ‘bachelor’ to a formula involving ‘adult’ or ‘potentially marriageable’, one is 

led into describing these in terms of exemplars as well. ‘Adult’ cannot be defined 

in terms of years of age for any but technical legal purposes and in fact even in 

this restricted sense, it is defined differently for different aspects of the law. 

Phrases such as ‘marriage-like living situation’ and ‘bachelor-like life style’ reflect 

directly in their syntactic form the intention to convey stereotyped exemplars 

rather than formal definitions.''° 
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Obviously if KRL succeeds in enabling AI researchers to use such 

prototypes to write flexible programs, such a language will be a major 

breakthrough and will avoid the ad hoc character of the “solutions” 

typical of micro-world programs. Indeed, the future of AI depends on 

some such work as that begun with the development of KRL. But there 

are problems with this approach. Winograd’s analysis has the important 

consequence that in comparing two prototypes, what counts as a match 

and thus what counts as the relevant aspects which justify the match will 

be a result of the program’s understanding of the current context. 

The result of a matching process is not a simple true/false answer. It can be 

stated in its most general form as: “Given the set of alternatives which I am 

currently considering . . . and looking in order at those stored structures which 

are most accessible in the current context, here is the best match, here is the 

degree to which it seems to hold, and here are the specific detailed places where 

match was not found... .” 

The selection of the order in which sub-structures of the description will be 

compared is a function of their current accessibility, which depends both on the 

form in which they are stored and the current context. '° 

This raises four increasingly grave difficulties. First, for there to be “a 

class of cognitive ‘matching’ processes which operate on the descriptions 

(symbol structures) available for two entities, looking for correspon- 

dences and differences’’''’ there must be a finite set of prototypes to be 

matched. To take Winograd’s example: 

A single object or event can be described with respect to several prototypes, with 
further specifications from the perspective of each. The fact that last week Rusty 
flew to San Francisco would be expressed by describing the event as a typical 
instance of Travel with the mode specified as Airplane, destination San Fran- 
cisco, etc. It might also be described as a Visit with the actor being Rusty, the 
friends a particular group of people, the interaction warm, etc.!"* 

But efc. covers what might, without predigestion for a specific purpose, 
be a hopeless proliferation. The same flight might also be a test flight, 
a check of crew performance, a stopover, a mistake, a golden opportu- 
nity, not to mention a visit to brother, sister, thesis adviser, guru, etc., 
etc., etc. Before the program can function at all the total set of possible 
alternatives must be pre-selected by the programmer. 
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Second, the matching makes sense only after the current candidates 

for comparison have been found. In chess, for example, positions can be 

compared only after the chess master calls to mind past positions the 

current board positions might plausibly resemble. And, as we saw in the 

chess case, the discovery of the relevant candidates which makes the 

matching of aspects possible requires experience and intuitive associa- 

tion. 

We saw also, in both the chess and the robot cases, that the discovery 

of this prior similarity seems to point to some entirely different sort of 

processing than symbolic description—perhaps the sort of processing 

provided by some brain equivalent of holograms in which similarity is 

basic. The only way a KRL-based program (which must use symbolic 

descriptions) could proceed would be to guess some frame on the basis 

of what was already “understood” by the program, and then see if that 

frame’s features could be matched to some current description. If not, 

the program would have to backtrack and try another prototype until 

it found one into whose slots or default terminals the incoming data 

could be fitted. This seems an altogether implausible and inefficient 

model of how we perform, and only rarely occurs in our conscious life 

(see p. 248 of this book for a Husserlian discussion of this problem). Of 

course, cognitive scientists could answer the above objection by main- 

taining, in spite of the implausibility, that we try out the various proto- 

types very quickly and are simply not aware of the frantic shuffling of 

hypotheses going on in our unconscious. But, in fact, most would agree 

with Winograd that at present the frame selection problem is unsolved. 

The problem of choosing the frames to try is another very open area. There is 

a selection problem, since we cannot take all of our possible frames for different 

kinds of events and match them against what is going on.'”” 

There is, moreover, a third and more basic question which may pose 

an in-principle problem for any formal holistic account in which the 

significance of any fact, indeed what counts as a fact, always depends on 

context. Winograd stresses the critical importance of context: 

The results of human reasoning are context dependent, the structure of memory 

includes not only the long-term storage organization (what do I know?) but also 
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a current context (what is in focus at the moment?). We believe that this is an 

important feature of human thought, not an inconvenient limitation.'” 

He further notes that “the problem is to find a formal way of talking 

about . . . current attention focus and goals. . . .””’?' Yet he gives no formal 

account of how a computer program written in KRL could determine 

the current context. 

Winograd’s work does contain suggestive claims such as his remark 

that “the procedural approach formalizes notions such as ‘current con- 

text’... and ‘attention focus’ in terms of the processes by which cognitive 

state changes as a person comprehends or produces utterances.”’'** There 

are also occasional parenthetical references to “current goals, focus of 

attention, set of words recently heard, etc.”’'?? But reference to recent 

words has proven useless as a way of determining what the current 

context is, and reference to current goals and focus of attention is vague 

and perhaps even question-begging. If a human being’s current goal is, 

say, to find a chair to sit on, his current focus might be on recognizing 

whether he is in a living room or a warehouse. He will also have short- 

range goals like finding the walls, longer-range goals like finding the light 

switch, middle-range goals like wanting to write or rest; and what counts 

as satisfying these goals will in turn depend on his ultimate goals and 

interpretation of himself as, say, a writer, or merely as easily exhausted 

and deserving comfort. So Winograd’s appeal to “current goals and 

focus” covers too much to be useful in determining what specific situa- 

tion the program is in. 

To be consistent, Winograd would have to treat each type of situation 

the computer could be in as an object with its prototypical description; 

then in recognizing a specific situation, the situation or context in which 

that situation was encountered would determine which foci, goals, etc. 

were relevant. But where would such a regress stop? Human beings, of 

course, don’t have this problem. They are, as Heidegger puts it, already 

in a situation, which they constantly revise. If we look at it genetically, 

this is no mystery. We can see that human beings are gradually trained 
into their cultural situation on the basis of their embodied precultural 

situation, in a way no programmer using KRL is trying to capture. But 
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for this very reason a program in KRL is not always-already-in-a-situa- 

tion. Even if it represents all human knowledge in its stereotypes, includ- 

ing all possible types of human situations, it represents them from the 

outside like a Martian or a god. It isn’t situated in any one of them, and 

it may be impossible to program it to behave as if it were. 

This leads to my fourth and final question: Is the know-how which 

enables human beings constantly to sense what specific situation they 

are in, the sort of know-how which can be represented as a kind of 

knowledge in any knowledge representation language no matter how 

ingenious and complex? It seems that our sense of our situation is 

determined by our changing moods, by our current concerns and 

projects, by our long-range self-interpretation and probably also by 

our sensory-motor skills for coping with objects and people—skills 

we develop by practice without ever having to represent to ourselves 

our body as an object, our culture as a set of beliefs, and our propen- 

sities as situation — action rules. All these uniquely human capacities 

provide a “richness” or a “thickness” to our way of being-in-the-world 

and thus seem to play an essential role in situatedness, which in turn 

underlies all intelligent behavior. 
There is no reason to suppose that moods, mattering, and embodied 

skills can be captured in any formal web of belief, and except for Kenneth 

Colby, whose view is not accepted by the rest of the AI community, no 

current work assumes that they can. Rather, all AI workers and cogni- 

tive psychologists are committed, more or less lucidly, to the view that 

such noncognitive aspects of the mind can simply be ignored. This belief 

that a significant part of what counts as intelligent behavior can be 

captured in purely cognitive structures defines cognitive science and is 

a version of what, in Chapter 4, I call the psychological assumption. 

Winograd makes it explicit: 

AI is the general study of those aspects of cognition which are common to all 

physical symbol systems, including humans and computers.'*** 

But this definition merely delimits the field; it in no way shows there is 

anything to study, let alone guarantees the project’s success. 

Seen in this light, Winograd’s grounds for optimism contradict his 
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own basic assumptions. On the one hand, he sees that a lot of what goes 

on in human minds cannot be programmed, so he only hopes to program 

a significant part: 

[C]ognitive science . . . does not rest on an assumption that the analysis of mind 

as a physical symbol system providés a complete understanding of human 

thought. . . . For the paradigm to be of value, it is only necessary that there be 

some significant aspects of thought and language which can be profitably under- 

stood through analogy with other symbol systems we know how to construct.** 

On the other hand, he sees that human intelligence is ““‘wholistic’’ and 

that meaning depends on “the entire complex of goals and knowledge.” 

What our discussion suggests is that all aspects of human thought, 

including nonformal aspects like moods, sensory-motor skills, and long- 

range self-interpretations, are so interrelated that one cannot substitute 

an abstractible web of explicit beliefs for the whole cloth of our concrete 

everyday practices. 

What lends plausibility to the cognitivist position is the conviction that 

such a web of beliefs must finally fold back on itself and be complete, 

since we can know only a finite number of facts and procedures describ- 

able in a finite number of sentences. But since facts are descriminated and 

language is used only in a context, the argument that the web of belief 

must in principle be completely formalizable does not show that such a 
belief system can account for intelligent behavior. This would be true 
only if the context could also be captured in the web of facts and proce- 
dures. But if the context is determined by moods, concerns, and skills, 
then the fact that our beliefs can in principle be completely represented 
does not show that representations are sufficient to account for cognition. 
Indeed, if nonrepresentable capacities play an essential role in situated- 
ness, and the situation is presupposed by all intelligent behavior, then the 
“aspects of cognition which are common to all physical symbol systems” 
will not be able to account for any cognitive performance at all. 

In the end the very idea of a holistic information processing model in 
which the relevance of the facts depends on the context may involve a 
contradiction. To recognize any context one must have already selected 
from the indefinite number of possibly descriminable features the possi- 
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bly relevant ones, but such a selection can be made only after the context 

has already been recognized as similar to an already analyzed one. The 

holist thus faces a vicious circle: relevance presupposes similarity and 

similarity presupposes relevance. The only way to avoid this loop is to 

be always-already-in-a-situation without representing it so that the prob- 

lem of the priority of context and features does not arise, or else to return 

to the reductionist project of preanalyzing all situations in terms of a 

fixed set of possibly relevant primitives—a project which has its own 

practical problems, as our analysis of Schank’s work has shown, and, as 

we Shall see in the conclusion, may have its own internal contradiction 

as well. 

Whether this is, indeed, an in-principle obstacle to Winograd’s ap- 

proach only further research will tell. Winograd himself is admirably 

cautious in his claims: 

If the procedural approach is successful, it will eventually be possible to 

describe the mechanisms at such a level of detail that there will be a verifiable 

fit with many aspects of detailed human performance . . . but we are nowhere 

near having explanations which cover language processing as a whole, including 

meaning.'*° 

If problems do arise because of the necessity in any formalism of isolating 

beliefs from the rest of human activity, Winograd will no doubt have the 

courage to analyze and profit from the discovery. In the meantime 

everyone interested in the philosophical project of cognitive science will 

be watching to see if Winograd and company can produce a moodless, 

disembodied, concernless, already adult surrogate for our slowly ac- 

quired situated understanding. 

Conclusion 

Given the fundamental supposition of the information processing ap- 

proach that all that is relevant to intelligent behavior can be formalized 

in a structured description, all problems must appear to be merely prob- 

lems of complexity. Bobrow and Winograd put this final faith very 

clearly at the end of their description of KRL: 
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The system is complex, and will continue to get more so in the near future. 

. . . [W]e do not expect that it will ever be reduced to a very small set of 

mechanisms. Human thought, we believe, is the product of the interaction of a 

fairly large set of interdependent processes. Any representation language which 

is to be used in modeling thought or achieving “‘intelligent” performance will 

have to have an extensive and varied repertoire of mechanisms.'*’ 

Underlying this mechanistic assumption is an even deeper assumption 

which has gradually become clear during the past ten years of research. 

During this period AI researchers have consistently run up against the 

problem of representing everyday context, just as I predicted they would 

in the first edition of this book. Work during the first five years (1967- 

1972) demonstrated the futility of trying to evade the importance of 

everyday context by creating artificial gamelike contexts preanalyzed in 

terms of a list of fixed-relevance features. More recent work has thus been 

forced to deal directly with the background of commonsense know-how 

which guides our changing sense of what counts as the relevant facts. 

Faced with this necessity researchers have implicitly tried to treat the 

broadest context or background as an object with its own set of prese- 

lected descriptive features. This assumption, that the background can be 

treated as just another object to be represented in the same sort of 

structured description in which everyday objects are represented, is es- 

sential to our whole philosophical tradition. Following Heidegger, who 

is the first to have identified and criticized this assumption, I will call it 

the metaphysical assumption. 

The obvious question to ask in conclusion is: Is there any evidence 

besides the persistent difficulties and history of unfulfilled promises in AI 

for believing that the metaphysical assumption is unjustified? It may be 

that no argument can be given against it, since facts put forth to show 

that the background of practices is unrepresentable are in that very act 
shown to be the sort of facts which can be represented. Still, since the 
value of this whole dialogue is to help each side to become as clear as 
possible concerning its presuppositions and their possible justification, I 
will attempt to lay out the argument which underlies my antiformalist, 
and, therefore, antimechanist convictions. 

My thesis, which owes a lot to Wittgenstein,'*** is that whenever 

human behavior is analyzed in terms of rules, these rules must always 
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contain a ceteris paribus condition, i.e., they apply “everything else being 
equal,” and what “everything else” and “‘equal” means in any specific 

situation can never be fully spelled out without a regress. Moreover, this 

ceteris paribus condition is not merely an annoyance which shows that 

the analysis is not yet complete and might be what Husserl called an 

“infinite task.’’ Rather the ceteris paribus condition points to a back- 

ground of practices which are the condition of the possibility of all 

rulelike activity. In explaining our actions we must always sooner or later 

fall back on our everyday practices and simply say “‘this is what we do” 

or “that’s what it is to be a human being.” Thus in the last analysis all 

intelligibility and all intelligent behavior must be traced back to our sense 

of what we are, which is, according to this argument, necessarily, on pain 

of regress, something we can never explicitly know. 

This argument can be best worked out in terms of an example. Back 

in 1972 when Minsky was working on the frame concept, one of his 

students, Eugene Charniak, was developing a scriptlike approach for 

dealing with children’s stories. Papert and Goldstein provide a revealing 

analysis of this approach: 

. . . [CJonsider the following story fragment from Charniak, 

Today was Jack’s birthday. Penny and Janet went to the store. They were 

going to get presents. Janet decided to get a kite. “Don’t do that,” said Penny. 

“Jack has a kite. He will make you take it back.” 

The goal is to construct a theory that explains how the reader understands that 

“it” refers to the new kite, not the one Jack already owns. Purely syntactic 

criteria (such as assigning the referent of ‘7t’’ to the last mentioned noun) are 

clearly inadequate, as the result would be to mistakenly understand the last 

sentence of the story as meaning that Jack will make Janet take back the kite 

he already owns... . [I]t is clear that one cannot know that “it” refers to the 

new kite without knowledge about the trading habits of our society. One could 

imagine a different world in which newly bought objects are never returned to 

the store, but old ones are. The question we raise here is how this knowledge 

might be represented, stored and made available to the process of understanding 

Charniak’s story.'” 

Their answer to this question is, of course, dictated by the metaphysi- 

cal assumption. They try to make the background of practices involved 

explicit as a set of beliefs: 
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Charniak’s formal realization of a frame was in the form of base-knowledge 

about a large variety of situations that arise in the context of these stories. The 

mechanism of his program was for the content of sentences to evoke this base 

knowledge with the following effect: demons (‘‘frame-keepers” in our ter- 

minology) were created to monitor the possible occurrence in later sentences of 

likely (but not inevitable) consequences of the given situation. Thus, for our story 

fragment the birthday knowledge creates expectations about the need for partici- 

pants of the party to buy presents and the possible consequence of having to 

return these gifts. Hence, these demons expect the possibility of Jack already 

possessing the present and the resulting need for Janet to return it, where if is 

known to be the present.'® 

But once games and micro-worlds are left behind, a yawning abyss 

threatens to swallow up those who try to carry out such a program. 

Papert and Goldstein march bravely in: 

. . . But the story does not include explicitly all important facts. Look back 

at the story. Some readers will be surprised to note that the text itself does 

not state (a) that the presents bought by Penny and Janet were for Jack, (b) 

that the [kite] bought by Janet was intended as a present, and (c) that hav- 
ing an object implies that one does not want another. All of the above facts 
are inserted into the database by other demons made activated by the birth- 
day frame.'! 

Our example turns on the question: How does one store the “facts” 
mentioned in (c) above about returning presents? To begin with there are 
perhaps indefinitely many reasons for taking a present back. It may be 
the wrong size, run on the wrong voltage, be carcinogenic, make too 
much noise, be considered too childish, too feminine, too masculine, too 
American, etc., etc. And each of these facts requires further facts to be 
understood. But we will concentrate on the reason mentioned in (c): that 
normally, i.e., everything else being equal, if one has an object, one does 
not want another just like it. Of course, this cannot simply be entered 
as a true proposition. It does not hold for dollar bills, cookies, or marbles. 
(It is not clear it even holds for kites.) Papert and Goldstein would 
answer that, of course, once we talk of the norm we must be prepared 
to deal with exceptions: 

[T]he typical situation in comprehension is to be faced with a set of clues that 
evoke a rich and detailed knowledge structure, the frame, that supplies the 
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unstated details. Naturally, these defaults may be inappropriate for some situa- 

tions and, in those cases, the text must supply the exceptions.'” 

But here the desperate hand waving begins, for the text need not 

explicitly mention the exceptions at all. If the gift were marbles or cookies, 

the text surely would not mention that these were exceptions to the 

general rule that one of a kind is enough. So the data base would have 

to contain an account of all possible exceptions to augment the text—if 

it even makes sense to think of this as a definite list. Worse, even if one 

listed all the exceptional cases where one would be glad to possess more 

than one specimen of a certain type of object, there are situations which 

allow an exception to this exception: already having one cookie is more 

than enough if the cookie in question is three feet in diameter; one 

thousand marbles is more than a normal child can handle, etc. Must we 

then list the situations which lead one to expect exceptions to the excep- 

tions? But these exceptions too can be overridden in the case of, say,a 

cookie monster or a marble freak, and so it goes. . . . The computer 

programmer writing a story understander must try to list all possibly 

relevant information, and once that information contains appeals to the 

normal or typical there is no way to avoid an infinite regress of qualifica- 

tions for applying that knowledge to a specific situation. 

The only “answer” the M.I.T. group offers is the metaphysical as- 

sumption that the background of everyday life is a set of rigidly defined 

situations in which the relevant facts are as clear as in a game: 

The fundamental frame assumption is the thesis that . . . [m]ost situations in 

which people find themselves have sufficient in common with previously encoun- 

tered situations for the salient features to be pre-analyzed and stored in a Situa- 

tion-specific form.'” 

But this ‘‘solution” is untenable for two reasons:'*** 

1. Even if the current situation is, indeed, simi/ar to a preanalyzed one, 

we still have the problem of deciding which situation it is similar to. We 

have already seen that even in games such as chess no two positions are 

likely to be identical so a deep understanding of what is going on is 

required to decide what counts as a similar position in any two games. 

This should be even more obvious in cases where the problem is to decide 
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which preanalyzed situation a given real-world situation most resembles, 

for example whether a situation where there are well-dressed babies and 

new toys being presented has more in common with a birthday party or 

a beauty contest. 

2. Even if all our lives were lived in identical stereotypical situations, 

we have just seen that any real-world frame must be described in terms 

of the normal, and that appeal to the normal necessarily leads to a regress 

when we try to characterize the conditions which determine the applica- 

bility of the norm to a specific case. Only our genera/ sense of what is 

typical can decide here, and that background understanding by defini- 

tion cannot be “situation-specific.” 

This is the other horn of the dilemma facing the information-process- 

ing model. We have seen in discussing KRL that the holistic approach 

leads to a circle as to which comes first, similarity or relevant aspects, 

now it turns out that the reductionist alternative leads to a regress. 

Still, to this dilemma the AI researchers might plausibly respond: 

“Whatever the background of shared interests, feelings, and practices 

necessary for understanding specific situations, that knowledge must 

somehow be represented in the human beings who have that understand- 

ing. And how else could such knowledge be represented but in some 

explicit data structure?” Indeed, the kind of computer programming 

accepted by all workers in AI would require such a data structure, and 

so would philosophers who hold that all knowledge must be explicitly 

represented in our minds, but there are two alternatives which would 
avoid the contradictions inherent in the information-processing model 
by avoiding the idea that everything we know must be in the form of 

some explicit symbolic representation. 

One response, shared by existential phenomenologists such as Mer- 
leau-Ponty and ordinary language philosophers such as Wittgenstein, is 
to say that such “knowledge” of human interests and practices need not 
be represented at all. Just as it seems plausible that I can learn to swim 
by practicing until I develop the necessary patterns of responses, without 
representing my body and muscular movements in some data structure, 
so too what I “know” about the cultural practices which enables me to 
recognize and act in specific situations has been gradually acquired 
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through training in which no one ever did or could, again on pain of 

regress, make explicit what was being learned. 

Another possible account would allow a place for representations, at 

least in special cases where I have to stop and reflect, but such a position 

would stress that these are usually nonformal representations, more like 

images, by means of which I explore what I am, not what I know. On 

this view I don’t normally represent to myself that I have desires, or that 

standing up requires balance, or, to take an example from Schank’s 

attempt to make explicit our interpersonal knowledge, that: 

[I]f two people are positively emotionally related, then a negative change in one 

person’s state will cause the other person to develop the goal of causing a positive 

change in the other’s state.'* 

Still, when it is helpful, I can picture myself in a specific situation and 

ask myself what would I do or how would I feel—if I were in Jack’s place 

how would I react to being given a second kite—without having to make 

explicit all that a computer would have to be told to come to a similar 

conclusion. We thus appeal to concrete representations (images or 

memories) based on our own experience without having to make explicit 

the strict rules and their spelled out ceteris paribus conditions required 

by abstract symbolic representations. 

Indeed, it is hard to see how the subtle variety of ways things can 

matter to us could be exhaustively spelled out. We can anticipate and 

understand. Jack’s reaction because we remember what it feels like to be 

amused, amazed, incredulous, disappointed, disgruntled, saddened, an- 

noyed, disgusted, upset, angry, furious, outraged, etc., and we recognize 

the impulses to action associated with these various degrees and kinds 

of concerns. A computer model would have to be given a description of 

each shade of feeling as well as each feeling’s normal occasion and likely 

result. 

The idea that feelings, memories, and images must be the conscious 

tip of an unconscious framelike data structure runs up against both 

prima facie evidence and the problem of explicating the ceteris paribus 

conditions. Moreover, the formalist assumption is not supported by one 

shred of scientific evidence from neurophysiology or psychology, or from 
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the past successes of AI, whose repeated failures required appeal to the 

metaphysical assumption in the first place. 

AlI’s current difficulties, moreover, become intelligible in the light of 

this alternative view. The proposed formal representation of the back- 

ground of practices in symbolic descriptions, whether in terms of situa- 

tion-free primitives or more sophisticated data structures whose building 

blocks can be descriptions of situations, would, indeed, look more and 

more complex and intractable if minds were not physical symbol sys- 

tems. If belief structures are the result of abstraction from the concrete 

practical context rather than the true building blocks of our world, it is 

no wonder the formalist finds himself stuck with the view that they are 

endlessly explicatable. On my view “the organization of world knowl- 

edge provides the largest stumbling block”’'** to AI precisely because the 

programmer is forced to treat the world as an object, and our know-how 

as knowledge. 

But this metaphysical assumption definitive of cognitive science is 

never questioned by its practitioners. John McCarthy notes that “‘it is 

quite difficult to formalize the facts of common knowledge,”"*’ but he 

never doubts that common knowledge can be accounted for in terms of 

facts. 

The epistemological part of AI studies what kinds of facts about the world are 
available to an observer with given opportunities to observe, how these facts can 
be represented in the memory of a computer, and what rules permit legitimate 
conclusions to be drawn from these facts.'"* 

When AI workers finally face and analyze their failures it might well be 
this metaphysical assumption that they will find they have to reject. 

Looking back over the past ten years of AI research we might say that 
the basic point which has emerged is that since intelligence must be 
situated it cannot be separated from the rest of human life. The persistent 
denial of this seemingly obvious point cannot, however, be laid at the 
door of AI. It starts with Plato’s separation of the intellect or rational 
soul from the body with its skills, emotions, and appetites. Aristotle 
continued this unlikely dichotomy when he separated the theoretical 
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from the practical, and defined man as a rational animal—as if one could 

Separate man’s rationality from his animal needs and desires. If one 

thinks of the importance of the sensory-motor skills in the development 

of our ability to recognize and cope with objects, or of the role of needs 

and desires in structuring all social situations, or finally of the whole 

cultural background of human self-interpretation involved in our simply 

knowing how to pick out and use chairs, the idea that we can simply 

ignore this know-how while formalizing our intellectual understanding 

as a complex system of facts and rules is highly implausible. 

However incredible, this dubious dichotomy now pervades our think- 

ing about everything including computers. In the Star Trek TV series, 

the episode entitled “The Return of the Archons”’ tells of a wise states- 

man named Landru who programmed a computer to run a society. 

Unfortunately, he could give the computer only his abstract intelligence, 

not his concrete wisdom, so it turned the society into a rational plannified 

hell. No one stops to wonder how, without Landru’s embodied skills, 

feelings, and concerns, the computer could understand everyday situa- 

tions and so run a society at all. 

In Computer Power and Human Reason,'”” Joseph Weizenbaum, a 

well-known contributor to work in AI (see pp. 218 ff.) makes this same 

mistake. Indeed, the radical separation of intelligence and wisdom is the 

basic assumption which seems to support but actually undermines the 

thesis of his otherwise eloquent book. Weizenbaum warns that we de- 

mean ourselves if we come to think of human beings on the AI model 

as devices for solving technical problems. But to make the argument that 

we are not such devices he embraces the very dichotomy which gives 

plausibility to AI. Weizenbaum argues, for example, that since a com- 

puter cannot understand loneliness it cannot fully understand the sen- 

tence “ ‘Will you come to dinner with me this evening’ . . . to mean a 

shy young man’s desperate longing for love’’*°* (a point which workers 

in AI would readily admit), while at the same time Weizenbaum grants 

the dubious AI assumption that ‘“‘it may be possible, following Schank’s 

procedures, to construct a conceptual structure that corresponds to the 

meaning of the sentence.”’'*! Stressing these extremes of emphathetic 

wisdom and formalized meaning leads Weizenbaum to overlook the 
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essential point that all meaningful discourse must take place in a shared 

context of concerns. 

Ironically, Weizenbaum was the first major contributor to AI to recog- 

nize the essential relation of meaning and pragmatic context. As he put 

it in 1968: “[I]n real conversation global context assigns meaning to what 

is being said. . . .””*? But once he overlooks this essential connection there 

is no way he can resist the conclusions of his AI colleagues. Thus, in spite 

of his well-documented claim that each culture has what Justice Oliver 

W. Holmes called its “tacit assumptions” and “unwritten practices,” 

and his commitment to the strong thesis argued for in this book that 

these practices “cannot be explicated in any form but life itself,’’'** 

Weizenbaum, like Minsky, concludes: “I see no way to put a bound on 

the degree of intelligence such an organism [i.e., a computer] could, at 

least in principle attain.”’*° 

This surprising admission can be explained only if Weizenbaum holds 

the AI view that the unexplicatable assumptions and unwritten practices 

of a culture play no essential role in the intelligent behavior of its mem- 

bers. Indeed, at times Weizenbaum seems to embrace the most implausi- 

ble implications of this implausible view, viz., that these tacit assump- 

tions and practices play no role in everyday linguistic communication, 

for he concedes that: 

It is technically feasible to build a computer system that will interview patients 

applying for help at a psychiatric out-patient clinic and will produce their psychi- 

atric profiles complete with charts, graphs, and natural-language commentary.'* 

Consistent with this view that intelligence and natural language com- 

munication—as distinct from intuition and wisdom—are in-principle 

completely formalizable, Weizenbaum further allows that: 

. . the view of man as a species of the more general genus “information- 

processing system” does concentrate our attention on one aspect of man. . . .'47* 

He calls to aid in justifying this claim the latest “scientific” version of 
the Platonic dichotomy—the split brain. This is a natural association, 
since pop literature on the split brain seems to support the science-fiction 
illusion of the separation of intuition and pure intelligence. As Weizen- 
baum explains it: 
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The LH [Left Hemisphere] thinks, so to speak, in an orderly, sequential, and, 
we might call it, /ogical fashion. The RH [Right Hemisphere], on the other hand, 
appears to think in terms of holistic images. Language processing appears to be 
almost exclusively centered in the LH... .'* 

Here again linguistic capacity is isolated and equated with context-free 
logicality, forgetting, what Weizenbaum was the first AI worker to see, 
that when language is used in communication (and the Left Hemisphere 
alone is perfectly able to use language to communicate), “‘a global [holis- 

tic] context assigns meaning to what is being said. . . .””"* 

After these damaging admissions Weizenbaum is left with only the 

moralistic position that “however intelligent machines may be made to 

be, there are some acts of thought that ought to be attempted only by 

humans.”’!°°* This stricture presumably follows from the notion that 

although the background of cultural practices plays no essential role in 

intelligent behavior, including everyday conversation, it does play a role 

in the wisdom required in making sound legal decisions and psychiatric 

evaluations—although even here Weizenbaum is wary of making any 

in-principle claim. And he has good reason for caution, since once every- 

day activity has been admitted to be a technical problem amenable to the 

powers of pure formal intelligence it is impossible to draw a line limiting 

what computers may ultimately be able to do. All Weizenbaum has left 

is the high-minded platitude that “since we do not now have any ways 

of making computers wise, we ought not now to give computers tasks 

which demand wisdom.’’'*'* 

From the perspective we have been laying out here the real problem 

is that Weizenbaum accepts the metaphysical assumption that whatever 

is required for everyday intelligence can be objectified and represented 

in a belief system. Whether this assumption takes the form of the deep 

philosophical claim that goes back to Leibniz and is still made by Husserl 

that the perceptions and practices required for situated intelligence can 

all be represented in a symbolic description, or the shallow technological 

view, shared by Weizenbaum and the “artificial intelligentsia”’ he op- 

poses, that everyday understanding and natural language communica- 

tion does not essentially involve our embodied, socialized skills, this 

assumption distorts our perception of our humanity. 

Great artists have always sensed the truth, stubbornly denied by both 
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philosophers and technologists, that the basis of human intelligence 

cannot be isolated and explicitly understood. In Moby Dick Melville 

writes of the tattooed savage, Queequeg, that he had “written out on his 

body a complete theory of the heavens and the earth, and a mystical 

treatise on the art of attaining truth; so that Queequeg in his own proper 

person was a riddle to unfold; a wondrous work in one volume; but 

whose mysteries not even himself could read. . . .”'*? Yeats puts it even 

more succinctly: “I have found what I wanted—to put it in a phrase, I 
. 99 

say, ‘Man can embody the truth, but he cannot know it’. 

Hubert L. Dreyfus 

1979 
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Since the Greeks invented logic and geometry, the idea that all reasoning 

might be reduced to some kind of calculation—so that all arguments 

could be settled once and for all—has fascinated most of the Western 

tradition’s rigorous thinkers. Socrates was the first to give voice to this 

vision. The story of artificial intelligence might well begin around 450 

B.C. when (according to Plato) Socrates demands of Euthyphro, a fellow 

Athenian who, in the name of piety, is about to turn in his own father 

for murder: “I want to know what is characteristic of piety which makes 

all actions pious. . . that I may have it to turn to, and to use as a standard 

whereby to judge your actions and those of other men.’’'§ Socrates is 

asking Euthyphro for what modern computer theorists would call an 

“effective procedure,” “‘a set of rules which tells us, from moment to 

moment, precisely how to behave.’” 

Plato generalized this demand for moral certainty into an epistemolog- 

ical demand. According to Plato, all knowledge must be stateable in 

explicit definitions which anyone could apply. If one could not state his 

know-how in terms of such explicit instructions—if his knowing how 

§Notes begin on p. 307. [Citations are indicated by a superior figure. Substantive notes 

are indicated by a superior figure and an astersik.] 
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could not be converted into knowing that—it was not knowledge but 

mere belief. According to Plato, cooks, for example, who proceed by 

taste and intuition, and poets who work from inspiration, have no knowl- 

edge: what they do does not involve understanding and cannot be under- 

stood. More generally, what cannot be stated explicitly in precise 

instructions—all areas of human thought which require skill, intuition, 

or a sense of tradition—are relegated to some kind of arbitrary fum- 

bling. 

But Plato was not yet fully a cyberneticist (although according to 

Norbert Wiener he was the first to use the term), for Plato was looking 

for semantic rather than syntactic criteria. His rules presupposed that 

the person understood the meanings of the constitutive terms. In the 

Republic Plato says that Understanding (the rulelike level of his divided 

line representing all knowledge) depends on Reason, which involves a 

dialectical analysis and ultimately an intuition of the meaning of the 

fundamental concepts used in understanding. Thus Plato admits his 

instructions cannot be completely formalized. Similarly, a modern com- 

puter expert, Marvin Minsky, notes, after tentatively presenting a Pla- 

tonic notion of effective procedure: “This attempt at definition is subject 

to the criticism that the interpretation of the rules is left to depend on 

some person or agent.’”* 

Aristotle, who differed with Plato in this as in most questions concern- 

ing the application of theory to practice, noted with satisfaction that 

intuition was necessary to apply the Platonic rules: 

Yet it is not easy to find a formula by which we may determine how far and up 
to what point a man may go wrong before he incurs blame. But this difficulty 
of definition is inherent in every object of perception; such questions of degree 
are bound up with the circumstances of the individual case, where our only 
criterion is the perception.* 

For the Platonic project to reach fulfillment one breakthrough is 
required: all appeal to intuition and judgment must be eliminated. As 
Galileo discovered that one could find a pure formalism for describing 
physical motion by ignoring secondary qualities and teleological consid- 
erations, so, one might suppose, a Galileo of human behavior might 
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succeed in reducing all semantic considerations (appeal to meanings) to 

the techniques of syntactic (formal) manipulation. 

The belief that such a total formalization of knowledge must be possi- 

ble soon came to dominate Western thought. It already expressed a basic 

moral and intellectual demand, and the success of physical science 

seemed to imply to sixteenth-century philosophers, as it still seems to 

suggest to thinkers such as Minsky, that the demand could be satisfied. 

Hobbes was the first to make explicit the syntactic conception of thought 

as calculation: ““When a man reasons, he does nothing else but conceive 

a sum total from addition of parcels,” he wrote, “for REASON .. . is 

nothing but reckoning. . . .’” 

It only remained to work out the univocal parcels or “bits” with which 

this purely syntactic calculator could operate; Leibniz, the inventor of 

the binary system, dedicated himself to working out the necessary unam- 

biguous formal language. 

Leibniz thought he had found a universal and exact system of nota- 

tion, an algebra, a symbolic language, a ‘‘universal characteristic” by 

means of which “‘we can assign to every object its determined character- 

istic number.’’* In this way all concepts could be analyzed into a small 

number of original and undefined ideas; all knowledge could be ex- 

pressed and brought together in one deductive system. On the basis of 

these numbers and the rules for their combination all problems could be 

solved and all controversies ended: “if someone would doubt my re- 

sults,’’ Leibniz said, “I would say to him: ‘Let us calculate, Sir,’ and thus 

by taking pen and ink, we should settle the question.’”’ 

Like a modern computer theorist announcing a program about to be 

written, Leibniz claims: 

Since, however, the wonderful interrelatedness of all things makes it extremely 

difficult to formulate explicitly the characteristic numbers of individual things, 

I have invented an elegant artifice by virtue of which certain relations may be 

represented and fixed numerically and which may thus then be further deter- 

mined in numerical calculation.* 

Nor was Leibniz reticent about the importance of his almost completed 

program. 
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Once the characteristic numbers are established for most concepts, mankind will 

then possess a new instrument which will enhance the capabilities of the mind 

to far greater extent than optical instruments strengthen the eyes, and will 

supersede the microscope and telescope to the same extent that reason is superior 

to eyesight.’ 

With this powerful new tool, the skills which Plato could not formal- 

ize, and so treated as confused thrashing around, could be recuperated 

as theory. In one of his ‘‘grant proposals’’—his explanations of how he 

could reduce all thought to the manipulation of numbers if he had money 

enough and time—Leibniz remarks: 

the most important observations and turns of skill in all sorts of trades and 

professions are as yet unwritten. This fact is proved by experience when passing 

from theory to practice we desire to accomplish something. Of course, we can 

also write up this practice, since it is at bottom just another theory more complex 
and particular. . . .\° 

Leibniz had only promises, but in the work of George Boole, a math- 

ematician and logician working in the early nineteenth century, his 
program came one step nearer to reality. Like Hobbes, Boole supposed 
that reasoning was calculating, and he set out to “investigate the funda- 
mental laws of those operations of the mind by which reasoning 1s 
performed, to give expression to them in the symbolic language of a 
Calculus. 3." 

Boolean algebra is a binary algebra for representing elementary logical 
functions. If “a” and “b” represent variables, ‘.” represents “and,” 
“+ " represents “or,” and “1” and “0” represent “true” and “false” 
respectively, then the rules governing logical manipulation can be writ- 
ten in algebraic form as follows: 

II a+a=aa+t+O=a a+1=1 

a-a=a a-0 = 0 ab=<¢ 

Western man was now ready to begin the calculation. 
Almost immediately, in the designs of Charles Babbage (1835), prac- 

tice began to catch up to theory. Babbage designed what he called an 
“Analytic Engine” which, though never built, was to function exactly 
like a modern digital computer, using punched cards, combining logical 
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and arithmetic operations, and making logical decisions along the way 

based upon the results of its previous computations. 

An important feature of Babbage’s machine was that it was digital. 
There are two fundamental types of computing machines: analogue and 

digital. Analogue computers do not compute in the strict sense of the 

word. They operate by measuring the magnitude of physical quantities. 

Using physical quantities, such as voltage, duration, angle of rotation of 

a disk, and so forth, proportional to the quantity to be manipulated, they 

combine these quantities in a physical way and measure the result. A 

slide rule is a typical analogue computer. A digital computer—as the 

word digit, Latin for “‘finger,”’ implies—represents all quantities by dis- 

crete states, for example, relays which are open or closed, a dial which 

can assume any one of ten positions, and so on, and then literally counts 

in order to get its result. 

Thus, whereas analogue computers operate with continuous quanti- 

ties, all digital computers are discrete state machines. As A. M. Turing, 

famous for defining the essence of a digital computer, puts it: 

[Discrete state machines] move by sudden jumps or clicks from one quite definite 

state to another. These states are sufficiently different for the possibility of 

confusion between them to be ignored. Strictly speaking there are no such 

machines. Everything really moves continuously. But there are many kinds of 

machines which can profitably be thought of as being discrete state machines. For 

instance in considering the switches for a lighting system it is a convenient fiction 

that each switch must be definitely on or definitely off. There must be intermedi- 

ate positions, but for most purposes we can forget about them."” 

Babbage’s ideas were too advanced for the technology of his time, for 

there was no quick efficient way to represent and manipulate the digits. 

He had to use awkward mechanical means, such as the position of 

cogwheels, to represent the discrete states. Electric switches, however, 

provided the necessary technological breakthrough. When, in 1944, H. 

H. Aiken actually built the first practical digital computer, it was elec- 

tromechanical,using about 3000 telephone relays. These were still slow, 

however, and it was only with the next generation of computers using 

vacuum tubes that the modern electronic computer was ready. 

Ready for anything. For, since a digital computer operates with ab- 
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stract symbols which can stand for anything, and logical operations 

which can relate anything to anything, any digital computer (unlike an 

analogue computer) is a universal machine. First, as Turing puts it, it can 

simulate any other digital computer. 

This special property of digital computers, that they can mimic any discrete state 

machine, is described by saying that they are universal machines. The existence 

of machines with this property has the important consequence that, considera- 

tions of speed apart, it is unnecessary to design various new machines to do 

various computing processes. They can all be done with one digital computer, 

suitably programmed for each case. It will be seen that as a consequence of this 

all digital computers are in a sense equivalent." 

Second, and philosophically more significant, any process which can be 

formalized so that it can be represented as series of instructions for the 

manipulation of discrete elements, can, at least in principle, be repro- 

duced by such a machine. Thus even an analogue computer, provided 

that the relation of its input to its output can be described by a precise 

mathematical function, can be simulated on a digital machine.'** 

But such machines might have remained overgrown adding machines, 

had not Plato’s vision, refined by two thousand years of metaphysics, 
found in them its fulfillment. At last here was a machine which operated 

according to syntactic rules, on bits of data. Moreover, the rules were 
built into the circuits of the machine. Once the machine was pro- 
grammed there was no need for interpretation; no appeal to human 
intuition and judgment. This was just what Hobbes and Leibniz had 
ordered, and Martin Heidegger appropriately saw in cybernetics the 
culmination of the philosophical tradition.'* 

Thus while practical men like Eckert and Mauchly, at the University 
of Pennsylvania, were designing the first electronic digital machine, theo- 
rists, such as Turing, trying to understand the essence and capacity of 
such machines, became interested in an area which had thus far been the 
province of philosophers: the nature of reason itself. 

In 1950, Turing wrote an influential article, “Computing Machinery 
and Intelligence,” in which he points out that “the present interest in 
‘thinking machines’ has been aroused by a particular kind of machine, 
usually called an ‘electronic computer’ or a ‘digital computer.’ ”!* He 
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then takes up the question “Can [such] machines think?” 

To decide this question Turing proposes a test which he calls the 
imitation game: 

The new form of the problem can be described in terms of a game which we call 

the “imitation game.” It is played with three people, a man (A), a woman (B), 

and an interrogator (C) who may be of either sex. The interrogator stays in a 

room apart from the other two. The object of the game for the interrogator is 

to determine which of the other two is the man and which is the woman. He 

knows them by labels X and Y, and at the end of the game he says either ‘““X 

is A and Y is B” or “X is B and Y is A.” The interrogator is allowed to put 

questions to A and B thus: 

C: Will X please tell me the length of his or her hair? Now suppose X is 

actually A, then A must answer. It is A’s object in the game to try to cause C 

to make the wrong identification. His answer might therefore be 

“My hair is shingled, and the longest strands are about nine inches long.” 

In order that tones of voice may not help the interrogator the answers should 

be written, or better still, typewritten. The ideal arrangement is to have a tele- 

printer communicating between the two rooms. Alternatively, the question and 

answers can be repeated by an intermediary. The object of the game for the third 

player (B) is to help the interrogator. The best strategy for her is probably to give 

truthful answers. She can add such things as “I am the woman, don’t listen to 

him!” to her answers, but it will avail nothing as the man can make similar 

remarks. 

We now ask the question, ‘““What will happen when a machine takes the part 

of A in this game?”’ Will the interrogator decide wrongly as often when the game 

is played like this as he does when the game is played between a man and a 

woman? These questions replace our original, ““Can machines think?”"’ 

This test has become known as the Turing Test. Philosophers may 

doubt whether merely behavioral similarity could ever give adequate 

ground for the attribution of intelligence,'* but as a goal for those actually 

trying to construct thinking machines, and as a criterion for critics to use 

in evaluating their work, Turing’s test was Just what was needed. 

Of course, no digital computer immediately volunteered or was 

drafted for Turing’s game. In spite of its speed, accuracy, and universal- 

ity, the digital computer was still nothing more than a general-symbol 

manipulating device. The chips, however, were now down on the old 

Leibnizian bet. The time was ripe to produce the appropriate symbolism 
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and the detailed instructions by means of which the rules of reason could 

be incorporated in a computer program. Turing had grasped the possibil- 

ity and provided the criterion for success, but his article ended with only 

the sketchiest suggestions about what to do next: 

We may hope that machines will eventually compete with men in all purely 

intellectual fields. But which are the best ones to start with? Even this is a difficult 

decision. Many people think that a very abstract activity, like the playing of 

chess, would be best. It can also be maintained that it is best to provide the 

machine with the best sense organs that money can buy, and then teach it to 

understand and speak English. This process could follow the normal teaching of 

a child. Things would be pointed out and named, etc. Again I do not know what 

the right answer is, but I think both approaches should be tried."* 

A technique was still needed for finding the rules which thinkers from 

Plato to Turing assumed must exist—a technique for converting any 

practical activity such as playing chess or learning a language into the 

set of instructions Leibniz called a theory. Immediately, as if following 

Turing’s hints, work got under way on chess and language. The same 

year Turing wrote his article, Claude E. Shannon, the inventor of infor- 

mation theory, wrote an article on chess-playing machines in which he 

discussed the options facing someone trying to program a digital com- 

puter to play chess. 

Investigating one particular line of play for 40 moves would be as bad as investi- 
gating all lines for just two moves. A suitable compromise would be to examine 
only the important possible variations—that is, forcing moves, captures and 
main threats—and carry out the investigation of the possible moves far enough 
to make the consequences of each fairly clear. It is possible to set up some rough 
criteria for selecting important variations, not as efficiently as a chess master, but 
sufficiently well to reduce the number of variations appreciably and thereby 
permit a deeper investigation of the moves actually considered.” 

Shannon did not write a chess program, but he believed that “‘an elec- 
tronic computer programmed in this manner would play a fairly strong 
game at speeds comparable to human speeds.””?! 

In 1955 Allen Newell wrote a sober survey of the problems posed by 
the game of chess and suggestions as to how they might be met. Newell 
notes that “These [suggested] mechanisms are so complicated that it is 
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impossible to predict whether they will work.”’?? The next year, however, 
brought startling success. A group at Los Alamos produced a program 
which played poor but legal chess on a reduced board. In a review of this 
work, Allen Newell, J. C. Shaw, and H. A. Simon concluded: “With very 
little in the way of complexity, we have at least entered the arena of 
human play—we can beat a beginner.”’? And by 1957, Alex Bernstein 
had a program for the IBM 704 which played two “passable amateur 
games.”’** 

Meanwhile, Anthony Oettinger was working on the other Turing line. 
Having already in 1952 programmed a machine which simulated simple 
conditioning, increasing or decreasing a set response on the basis of 

positive or negative reinforcement, Oettinger turned to the problem of 

language translation and programmed a Russian-English mechanical 

dictionary. Further research in these directions, it seemed, might lead to 

a computer which could be taught to associate words and objects. 

But neither of these approaches offered anything like a general theory 

of intelligent behavior. What was needed were rules for converting any 

sort of intelligent activity into a set of instructions. At this point Herbert 

Simon and Allen Newell, analyzing the way a student proceeded to solve 

logic problems, noted that their subjects tended to use rules or shortcuts 

which were not universally correct, but which often helped, even if they 

sometimes failed. Such a rule of thumb might be, for example: always 

try to substitute a shorter expression for a longer one. Simon and Newell 

decided to try to simulate this practical intelligence. The term “‘heuristic 

program” was used to distinguish the resulting programs from programs 

which are guaranteed to work, so-called algorithmic programs which 

follow an exhaustive method to arrive at a solution, but which rapidly 

become unwieldy when dealing with practical problems. 

This notion of a rule of practice provided a breakthrough for those 

looking for a way to program computers to exhibit general problem- 

solving behavior. Something of the excitement of this new idea vibrates 

in the first paragraph of Newell, Shaw, and Simon’s classic article “Em- 

pirical Explorations with the Logic Theory Machine: A Case Study in 

Heuristics.” 
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This is a case study in problem-solving, representing part of a program of 

research on complex information-processing systems. We have specified a system 

for finding proofs of theorems in elementary symbolic logic, and by programming 

a computer to these specifications, have obtained empirical data on the problem- 

solving process in elementary logic. The program is called the Logic Theory 

Machine (LT); it was devised to learn how it is possible to solve difficult problems 

such as proving mathematical theorems, discovering scientific laws from data, 

playing chess, or understanding the meaning of English prose. 

The research reported here is aimed at understanding the complex processes 

(heuristics) that are effective in problem-solving. Hence, we are not interested in 

methods that guarantee solutions, but which require vast amounts of computa- 

tion. Rather, we wish to understand how a mathematician, for example, is able 

to prove a theorem even though he does not know when he starts how, or if, he 

is going to succeed.** 

But Newell and Simon soon realized that even this approach was not 

general enough. The following year (1957) they sought to abstract the 

heuristics used in the logic machine, and apply them to a range of similar 

problems. This gave rise to a program called the General Problem Solver 
or GPS. The motivation and orientation of the work on the General 
Problem Solver are explained in Newell, Shaw, and Simon’s first major 

report on the enterprise. 

This paper . . . is part of an investigation into the extremely complex processes 
that are involved in intelligent, adaptive, and creative behavior. .. . 

Many kinds of information can aid in solving problems: information may 
Suggest the order in which possible solutions should be examined: it may rule 
out a whole class of solutions previously thought possible; it may provide a cheap 
test to distinguish likely from unlikely possibilities; and so on. All these kinds 
of information are Aeuristics—things that aid discovery. Heuristics seldom pro- 
vide infallible guidance. . . . Often they “work,” but the results are variable and 
success is seldom guaranteed.*® 

To convey a sense of the general heuristics their program employed, 
Newell and Simon introduced an example of everyday intelligent be- 
havior: 

I want to take my son to nursery school. What's the difference between what I 
have and what I want? One of distance. What changes distance? My automobile. 
My automobile won’t work. What’s needed to make it work? A new battery. 
What has new batteries? An auto repair shop. I want the repair shop to put in 
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a new battery; but the shop doesn’t know I need one. What is the difficulty? One 

of communication. What allows communication? A telephone. .. . And so on. 

This kind of analysis—classifying things in terms of the functions they serve, 

and oscillating among ends, functions required, and means that perform them 

—forms the basic system of heuristic of GPS. More precisely, this means-end 

system of heuristic assumes the following: 

1. If an object is given that is not the desired one, differences will be detectable 

between the available object and the desired object. 

2. Operators affect some features of their operands and leave others un- 

changed. Hence operators can be characterized by the changes they produce and 

can be used to try to eliminate differences between the objects to which they are 

applied and desired objects. 

3. Some differences will prove more difficult to affect than others. It is profita- 

ble, therefore, to try to eliminate ‘‘difficult’’ differences, even at the cost of 

introducing new differences of lesser difficulty. This process can be repeated as 

long as progress is being made toward eliminating the more difficult differences.’’ 

With digital computers solving such problems as how to get three 

cannibals and three missionaries across a river without the cannibals 

eating the missionaries, it seemed that finally philosophical ambition had 

found the necessary technology: that the universal, high-speed computer 

had been given the rules for converting reasoning into reckoning. Simon 

and Newell sensed the importance of the moment and Jjubilantly an- 

nounced that the era of intelligent machines was at hand. 

We have begun to learn how to use computers to solve problems, where we do 

not have systematic and efficient computational algorithms. And we now know, 

at least in a limited area, not only how to program computers to perform such 

problem-solving activities successfully; we know also how to program computers 

to learn to do these things. 

In short, we now have the elements of a theory of heuristic (as contrasted with 

algorithmic) problem solving; and we can use this theory both to understand 

human heuristic processes and to simulate such processes with digital computers. 

Intuition, insight, and learning are no longer exclusive possessions of humans: 

any large high-speed computer can be programmed to exhibit them also.* 

This field of research, dedicated to using digital computers to simulate 

intelligent behavior, soon came to be known as “artificial intelligence.” 

One should not be misled by the name. No doubt an artificial nervous 

system sufficiently like the human one, with other features such as sense 
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organs and a body, would be intelligent. But the term “artificial” does 

not mean that workers in artificial intelligence are trying to build an 

artificial man. Given the present state of physics, chemistry, and neuro- 

physiology, such an undertaking is not feasible. Simon and the pioneers 

of artificial intelligence propose to produce something more limited: a 

heuristic program which will enable a digital information-processing 

machine to exhibit intelligence. 

Likewise, the term “‘intelligence” can be misleading. No one expects 

the resulting robot to reproduce everything that counts as intelligent 

behavior in human beings. It need not, for example, be able to pick a 

good wife, or get across a busy street. It must only compete in the more 

objective and disembodied areas of human behavior, so as to be able to 

win at Turing’s game. 

This limited objective of workers in artificial intelligence is just what 

gives such work its overwhelming significance. These last metaphysicians 

are staking everything on man’s ability to formalize his behavior; to 

bypass brain and body, and arrive, all the more surely, at the essence of 

rationality. 

Computers have already brought about a technological revolution 

comparable to the Industrial Revolution. If Simon is right about the 

imminence of artificial intelligence, they are on the verge of creating an 

even greater conceptual revolution—a change in our understanding of 

man. Everyone senses the importance of this revolution, but we are so 

near the events that it is difficult to discern their significance. This much, 

however, is clear. Aristotle defined man as a rational animal, and since 
then reason has been held to be of the essence of man. If we are on the 
threshold of creating artificial intelligence we are about to see the tri- 
umph of a very special conception of reason. Indeed, if reason can be 
programmed into a computer, this will confirm an understanding of man 

as an object, which Western thinkers have been groping toward for two 
thousand years but which they only now have the tools to express 
and implement. The incarnation of this intuition will drastically change 
our understanding of ourselves. If, on the other hand, artificial intelli- 
gence should turn out to be impossible, then we will have to distinguish 
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human from artificial reason, and this too will radically change our view 

of ourselves. Thus the moment has come either to face the truth of the 

tradition’s deepest intuition or to abandon the mechanical account of 

man’s nature which has been gradually developing over the past two 

thousand years. 

Although it is perhaps too early for a full answer, we must make an 

attempt to determine the scope and limits of the sort of reason which has 

come fully into force since the perfection of the ‘‘analytical engine.” We 

must try to understand to what extent artificial intelligence is possible, 

and if there are limits to the possibility of computer simulation of intelli- 

gent behavior, we must determine those limits and their significance. 

What we learn about the limits of intelligence in computers will tell us 

something about the character and extent of human intelligence. What 

is required is nothing less than a critique of artificial reason. 

The need for a critique of artificial reason is a special case of a general 

need for critical caution in the behavioral sciences. Chomsky remarks 

that in these sciences ‘there has been a natural but unfortunate tendency 

to ‘extrapolate,’ from the thimbleful of knowledge that has been attained 

in careful experimental work and rigorous data-processing, to issues of 

much wider significance and of great social concern.” He concludes 

that 

the experts have the responsibility of making clear the actual limits of their 

understanding and of the results they have so far achieved. A careful analysis 

of these limits will demonstrate that in virtually every domain of the social and 

behavioral sciences the results achieved to date will not support such “extrapola- 

(HON. =? 

Artificial intelligence, at first glance, seems to be a happy exception to 

this pessimistic principle. Every day we read that digital computers play 

chess, translate languages, recognize patterns, and will soon be able to 

take over our jobs. In fact this now seems like child’s play. Literally! In 

a North American Newspaper Alliance release, dated December 1968, 

entitled ““A Computer for Kids” we are told that 
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Cosmos, the West German publishing house . . . has come up with a new idea 

in gifts. .. . It’s a genuine (if small) computer, and it costs around $20. Battery 

operated, it looks like a portable typewriter. But it can be programmed like any 

big computer to translate foreign languages, diagnose illnesses, even provide a 

weather forecast. 

And in a Life magazine article (Nov. 20, 1970) entitled ‘Meet 

Shakey, The First Electronic Person,” the wide-eyed reader is told of a 

computer ‘“‘made up of five major systems of circuitry that correspond 

quite closely to basic human faculties—sensation, reason, language, 

memory [and] ego.”” According to the article, this computer “sees,” 

“understands,” “learns,” and, in general, has ““demonstrated that ma- 

chines can think.” Several distinguished computer scientists are quoted 

as predicting that in from three to fifteen years “we will have a machine 

with the general intelligence of an average human being . . . and in a few 

months [thereafter] it will be at genius level. . . .” 

The complete robot may be a few years off, of course, but anyone 

interested in the prospective situation at the turn of the century can see 

in the film 2001; A Space Odyssey a robot named HAL who is cool, 

conversational, and very nearly omniscient and omnipotent. And this 

film is not simply science-fiction fantasy. A Space Odyssey was made with 

scrupulous documentation. The director, Stanley Kubrick, consulted the 

foremost computer specialists so as not to be misled as to what was at 

least remotely possible. Turing himself had in 1950 affirmed his belief 

that ‘“‘at the end of the century the use of words and general educated 

opinion will have altered so much that one will be able to speak of 

machines thinking without expecting to be contradicted.”*® And the 
technical consultant for the film, Professor Marvin Minsky, working on 
an early prototype of HAL in his laboratory at M.I.T., assured Kubrick 

that Turing was, if anything, too pessimistic. 

That Minsky was not misunderstood by Kubrick is clear from Min- 
sky’s editorial for Science Journal, which reads like the scenario for 

2001: 

At first machines had simple claws. Soon they will have fantastically graceful 
articulations. Computers’ eyes once could sense only a hole in a card. Now they 
recognize shapes on simple backgrounds. Soon they will rival man’s analysis of 
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his environment. Computer programs once merely added columns of figures. 
Now they play games well, understand simple conversations, weigh many factors 
in decisions. What next? 

Today, machines solve problems mainly according to the principles we build 

into them. Before long, we may learn how to set them to work upon the very 

special problem of improving their own capacity to solve problems. Once a 

certain threshold is passed, this could lead to a spiral of acceleration and it may 

be hard to perfect a reliable ‘governor’ to restrain it.*! 

It seems that there may be no limit to the range and brilliance of the 

properly programmed computer. It is no wonder that among philoso- 

phers of science one finds an assumption that machines can do every- 

thing people can do, followed by an attempt to interpret what this bodes 

for the philosophy of mind; while among moralists and theologians one 

finds a last-ditch retrenchment to such highly sophisticated behavior as 

moral choice, love, and creative discovery, claimed to be beyond the 

scope of any machine. Thinkers in both camps have failed to ask the 

preliminary question whether machines can in fact exhibit even elemen- 

tary skills like playing games, solving simple problems, reading simple 

sentences and recognizing patterns, presumably because they are under 

the impression, fostered by the press and artificial-intelligence research- 

ers such as Minsky, that the simple tasks and even some of the most 

difficult ones have already been or are about to be accomplished. To 

begin with, then, these claims must be examined. 

It is fitting to begin with a prediction made by Herbert Simon in 1957 

as his General Problem Solver seemed to be opening up the era of 

artificial intelligence: 

It is not my aim to surprise or shock you. . . . But the simplest way I can 

summarize is to say that there are now in the world machines that think, that 

learn and that create. Moreover, their ability to do these things is going to 

increase rapidly until—in a visible future—the range of problems they can han- 

dle will be coextensive with the range to which the human mind has been ap- 

plied. 

Simon then predicts, among other things, 

1. That within ten years a digital computer will be the world’s chess champion, 

unless the rules bar it from competition. 
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2. That within ten years a digital computer will discover and prove an impor- 

tant new mathematical theorem. 

3. That within ten years most theories in psychology will take the form of 

computer programs, or of qualitative statements about the characteristics of 

computer programs.” 

Unfortunately, the tenth anniversary of this historic talk went unno- 

ticed, and workers in artificial intelligence did not, at any of their many 

national and international meetings, take time out from their progress 

reports to confront these predictions with the actual achievements. Now 

fourteen years have passed, and we are being warned that it may soon 

be difficult to control our robots. It is certainly high time to measure this 

original prophecy against reality. 

Already in the five years following Simon's predictions, publications 

suggested that the first of Simon’s forecasts had been half-realized, and 

that considerable progress had been made in fulfilling his second predic- 

tion. This latter, the theorem-discovery prediction, was “‘fulfilled” by W. 

R. Ashby (one of the leading authorities in the field) when, in a review 

of Feigenbaum and Feldman’s anthology Computers and Thought, he 

hailed the mathematical power of the properly programmed computer: 

“‘Gelernter’s theorem-proving program has discovered a new proof of the 

pons asinorum that demands no construction.’ This proof, Dr. Ashby 

goes on to say, is one which “the greatest mathematicians of 2000 years 

have failed to notice... which would have evoked the highest praise had 

it occurred.” 

The theorem sounds important, and the naive reader cannot help 

sharing Ashby’s enthusiasm. A little research, however, reveals that the 

pons asinorum, or ass’s bridge, is the elementary theorem proved in 

Euclidian geometry—namely that the opposite angles of an isosceles 

triangle are equal. Moreover, the first announcement of the “new” proof 

“discovered” by the machine is attributed to Pappus (A.D. 300).** There 

is a striking disparity between Ashby’s excitement and the antiquity and 
simplicity of this proof. We are still a long way from “the important 

mathematical theorem” to be found by 1967. 

The chess-playing story is more involved and might serve as a model 
for a study of the production of intellectual smog in this area. In 1958, 
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the year after Simon’s prediction, Newell, Shaw, and Simon presented 
an elaborate chess-playing program. As described in their classic paper, 
“Chess-Playing Programs and the Problem of Complexity,” their pro- 
gram was “not yet fully debugged,” so that one “cannot say very much 
about the behavior of the program.” Still, it is clearly ‘‘good in [the] 
... opening.” This is the last detailed published report on the program. 
In the same year, however, Newell, Shaw, and Simon announced: “We 

have written a program that plays chess,”*’ and Simon, on the basis of 

this success, revised his earlier prediction: 

In another place, we have predicted that within ten years a computer will 

discover and prove an important mathematical theorem. On the basis of our 

experience with the heuristics of logic and chess, we are willing to add the further 

prediction that only moderate extrapolation is required from the capacities of 

programs already in existence to achieve the additional problem-solving power 

needed for such simulation." 

Public gullibility and Simon’s enthusiasm was such that Newell, Shaw, 

and Simon’s claims concerning their-still bugged program were sufficient 

to launch the chess machine into the realm of scientific mythology. In 

1959, Norbert Wiener, escalating the claim that the program was “‘good 

in the opening,” informed the NYU Institute of Philosophy that ‘‘chess- 

playing machines as of now will counter the moves of a master game with 

the moves recognized as right in the text books, up to some point in the 

middle game.”’” In the same symposium, Michael Scriven moved from 

the ambiguous claim that “machines now play chess” to the positive 

assertion that ‘machines are already capable of a good game.’’*° 

In fact, in its few recorded games, the Newell, Shaw, Simon program 

played poor but legal chess, and in its last official bout (October 1960) 

was beaten in 35 moves by a ten-year-old novice. Fact, however, had 

ceased to be relevant. 

While their program was losing its five or six poor games—and the 

myth they had created was holding its own against masters in the middle 

game—Newell, Shaw, and Simon kept silent. When they speak again, 

three years later, they do not report their difficulties and disappointment. 

Rather, as if to take up where the myth left off, Simon published an 

article in Behavioral Science announcing a program which played 
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‘highly creative” chess end games involving “combinations as difficult 

as any that have been recorded in chess history.”*’ That the program 

restricts these end games to dependence on continuing checks, so that 

the number of relevant moves is greatly reduced, is mentioned but not 

emphasized. On the contrary, it is misleadingly implied that similar 

simple heuristics would account for master play even in the middle 

game.‘?* Thus, the article gives the impression that the chess prediction 

is almost realized. With such progress, the chess championship may be 

claimed at any moment. Indeed, a Russian cyberneticist, upon hearing 

of Simon’s ten-year estimate, called it ‘‘conservative.”** And Fred 

Gruenberger at RAND suggested that a world champion is not enough 

—that we should aim for ‘ta program which plays better than any man 

could.’’** This regenerating confusion makes one think of the mythical 

French beast which is supposed to secrete the fog necessary for its own 

respiration. 

Reality comes limping along behind these impressive pronounce- 

ments. Embarrassed by my exposé of the disparity between their enthusi- 

asm and their results, AI workers finally produced a reasonably 

competent program. R. Greenblatt’s program called MacHack did in 

fact beat the author,*** a rank amateur, and has been entered in several 

tournaments in which it won a few games. This limited success revived 

hopes and claims. Seymour Papert, the second in command at the M.I.T. 

robot project, leaped in to defend Simon’s prediction, asserting that “‘as 

a statement of what researchers in the field consider to be a possible goal 

for the near futute, this is a reasonable statement.’** And on page | of 

the October 1968 issue of Science Journal, Donald Michie, the leader of 

England’s artificial intelligentsia, writes that “today machines can play 

chess at championship level.’**’? However, chess master de Groot, discuss- 

ing the earlier chess programs, once said: “programs are still very poor 

chess players and I do not have much hope for substantial improvement 

in the future.”” And another chess master, Eliot Hearst, discussing the 

M.I.T. program in Psychology Today, adds: “De Groot’s comment was 

made in 1964 and MacHack’s recent tournament showing would not 

require him to revise his opinion.”** Nor would most recent events. 

Greenblatt’s program has been gradually improved, but it seems to have 
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reached a point of saturation. During the past two years, it lost all games 
in the tournaments in which it had been entered, and received no further 
publicity. We shall soon see that given the limitations of digital comput- 

ers this is just what one would expect. 

It is to Greenblatt’s credit that even in the heyday of MacHack he 

made no prediction; as for Simon and the world championship, the ten 

years are well up, and the computer is at best a class C amateur.*?* 

This rapid rundown of the state of the art vis-a-vis two of Simon’s 

predictions has, I hope, cleared the air. It is essential to be aware at the 

outset that despite predictions, press releases, films, and warnings, artifi- 

cial intelligence is a promise and not an accomplished fact. Only then can 

we begin our examination of the actual state and future hopes of artificial 

intelligence at a sufficiently rudimentary level. 

The field of artificial intelligence has many divisions and subdivisions, 

but the most important work can be classified into four areas: game 

playing, language translating, problem solving, and pattern recognition. 

We have already discussed the state of game-playing research. We shall 

now look at the work in the remaining three fields in detail. In Part I 

my general thesis will be that the field of artificial intelligence exhibits 

a recurring pattern: early, dramatic success followed by sudden unex- 

pected difficulties. This pattern occurs in all four areas, in two phases 

each lasting roughly five years. The work from 1957 to 1962 (Chapter 

1), is concerned primarily with Cognitive Simulation (CS)—the use of 

heuristic programs to simulate human behavior by attempting to re- 

produce the steps by which human beings actually proceed. The second 

period (Chapter 2) is predominantly devoted to semantic information 

processing. This is artificial intelligence in a narrower sense than I have 

been using the term thus far. AI (for this restricted sense I shall use the 

initials) is the attempt to simulate human intelligent behavior using 

programming techniques which need bear little or no resemblance to 

human mental processes. The difficulties confronting this approach have 

just begun to emerge. The task of the rest of Part I is to discover the 

underlying common source of all these seemingly unconnected setbacks. 

These empirical difficulties, these failures to achieve predicted prog- 
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ress, never, however, discourage the researchers, whose optimism seems 

to grow with each failure. We therefore have to ask what assumptions 

undelie this persistent optimism in the face of repeated disappoint- 

ments. Part II attempts to bring to light four deeply rooted assumptions 

or prejudices which mask the gravity of the current impasse, and to lay 

bare the conceptual confusion to which these prejudices give rise. 

But these prejudices are so deeply rooted in our thinking that the only 

alternative to them seems to be an obscurantist rejection of the possibility 

of a science of human behavior. Part III attempts to answer this objec- 

tion, insofar as it can be answered, by presenting an alternative to these 

traditional assumptions, drawing on the ideas of twentieth-century 

thinkers whose work is an implicit critique of artificial reason, although 

it has not before been read in this light. 

We shall then, in the Conclusion, be in a position to characterize 

artificial reason and indicate its scope and limits. This in turn will enable 

us to distinguish among various forms of intelligent behavior and to 

judge to what extent each of these types of intelligent behavior is pro- 

grammable in practice and in principle. 

If the order of argument presented above and the tone of my opening 
remarks seem strangely polemical for an effort in philosophical analysis, 
I can only point out that, as we have already seen, artificial intelligence 
is a field in which the rhetorical presentation of results often substitutes 
for success, so that research papers resemble more a debater’s brief than 
a scientific report. Such persuasive marshaling of facts can only be an- 
swered in kind. Thus the accusatory tone of Part I. In Part II, however, 
I have tried to remain as objective as possible in testing fundamental 
assumptions, although I know from experience that challenging these 
assumptions will produce reactions similar to those of an insecure be- 
liever when his faith is challenged. 

For example, the year following the publication of my first investiga- 
tion of work in artificial intelligence, the RAND Corporation held a 
meeting of experts in computer science to discuss, among other topics, 
my report. Only an ‘“‘expurgated” transcript of this meeting has been 
released to the public, but even there the tone of paranoia which per- 
vaded the discussion is present on almost every page. My report is called 
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“sinister,” “dishonest,” “hilariously funny,” and an “incredible misrep- 

resentation of history.’’ When, at one point, Dr. J. C. R. Licklider, then 

of IBM, tried to come to the defense of my conclusion that work should 

be done on man-machine cooperation, Seymour Papert of M.I.T. re- 

sponded: 

I protest vehemently against crediting Dreyfus with any good. To state that you 

can associate yourself with one of his conclusions is unprincipled. Dreyfus’ 

concept of coupling men with machines is based on thorough misunderstanding 

of the problems and has nothing in common with any good statement that might 

go by the same words.” 

The causes of this panic-reaction should themselves be investigated, 

but that is a job for psychology, or the sociology of knowledge. However, 

in anticipation of the impending outrage I want to make absolutely clear 

from the outset that what I am criticizing is the implicit and explicit 

philosophical assumptions of Simon and Minsky and their co-workers, 

not their technical work. True, their philosophical prejudices and naiveté 

distort their own evaluation of their results, but this in no way detracts 

from the importance and value of their research on specific techniques 

such as list structures, and on more general problems such as data-base 

organization and access, compatibility theorems, and so forth. The fun- 

damental ideas that they have contributed in these areas have not only 

made possible the limited achievements in artificial intelligence but have 

contributed to other more flourishing areas of computer science. 

In some restricted ways even AI can have, and presumably will have 

practical value despite what I shall try to show are its fundamental 

limitations. (I restrict myself to AI because it is not clear that naive 

Cognitive Simulation, as it is now practiced, can have any value at all, 

except perhaps as a striking demonstration of the fact that in behavirg 

intelligently people do not process information like a heuristically pro- 

grammed digital computer.) An artifact could replace men in some tasks 

—for example, those involved in exploring planets—without performing 

the way human beings would and without exhibiting human flexibility. 

Research in this area is not wasted or foolish, although a balanced view 

of what can and cannot be expected of such an artifact would certainly 

be aided by a little philosophical perspective. 
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Phase I (1957-1962) Cognitive Simulation 

1. Analysis of Work in Language Translation, 

Problem Solving, and Pattern Recognition 

LANGUAGE TRANSLATION 

The attempts at language translation by computers had the earliest 

success, the most extensive and expensive research, and the most un- 

equivocal failure. It was soon clear that a mechanical dictionary could 

easily be constructed in which linguistic items, whether they were parts 

of words, whole words, or groups of words, could be processed indepen- 

dently and converted one after another into corresponding items in 

another language. Anthony Oettinger, the first to produce a mechanical 

dictionary (1954), recalls the climate of these early days: ‘““The notion of 

. .. fully automatic high quality mechanical translation, planted by 

overzealous propagandists for automatic translation on both sides of the 

Iron Curtain and nurtured by the wishful thinking of potential users, 

blossomed like a vigorous weed.”’'§ This initial enthusiasm and the 

subsequent disillusionment provide a sort of paradigm for the field. It is 

aptly described by Bar-Hillel in his report ‘““The Present Status of Auto- 

matic Translation of Languages.” 

§Notes begin on p. 307. [Citations are indicated by a superior figure. Substantive notes 

are indicated by a superior figure and an asterisk.] 

pool 
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During the first year of the research in machine translation, a considerable 

amount of progress was made. . . . It created among many of the workers actively 

engaged in this field the strong feeling that a working system was just around 

the corner. Though it is understandable that such an illusion should have been 

formed at the time, it was an illusion. It was created . . . by the fact that a large 

number of problems were rather readily solved. . . . It was not sufficiently realized 

that the gap between such output . . . and high quality translation proper was 

still enormous, and that the problems solved until then were indeed many but 

just the simplest ones whereas the ‘“‘few’’ remaining problems were the harder 

ones—very hard indeed.’ 

During the ten years following the development of a mechanical dic- 

tionary, five government agencies spent about $20 million on mechanical 

translation research.’ In spite of journalistic claims at various moments 

that machine translation was at last operational, this research produced 

primarily a much deeper knowledge of the unsuspected complexity of 

syntax and semantics. As Oettinger remarks, ‘““The major problem of 

selecting an appropriate target correspondent for a source word on the 
basis of context remains unsolved, as does the related one of establishing 
a unique syntactic structure for a sentence that human readers find 
unambiguous.”’* Oettinger concludes: “The outlook is grim for those who 
still cherish hopes for fully automatic high-quality mechanical transla- 
tion.”’** 

That was in 1963. Three years later, a government report, Language 
and Machines, distributed by the National Academy of Sciences Na- 
tional Research Council, pronounced the last word on the translation 
boom. After carefully comparing human translations and machine 
products the committee concluded: 

We have already noted that, while we have machine-aided translation of general 
scientific text, we do not have useful machine translation. Furthermore, there is 
no immediate or predictable prospect of useful machine translation.* 

Ten years have elapsed since the early optimism concerning machine 
translation. At that time, flight to the moon was still science fiction, and 
the mechanical secretary was just around the corner. Now we have 
landed on the moon, and yet machine translation of typed scientific texts 
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—let alone spoken language and more general material—is still over the 
horizon, and the horizon seems to be receding at an accelerating rate. 
Since much of the hope for robots like those of 2001, or for more modest 
servants, depends on the sort of understanding of natural language which 

is also necessary for machine translation, the conclusion of the National 

Academy of Sciences strikes at all predictions—such as Minsky’s—that 

within a generation the problem of creating artificial intelligence will be 

substantially solved. 

PROBLEM SOLVING 

Much of the early work in the general area of artificial intelligence, 

especially work on game playing and problem solving, was inspired and 

dominated by the work of Newell, Shaw, and Simon at the RAND 

Corporation and at Carnegie Institute of Technology.’ Their approach 

is called Cognitive Simulation (CS) because the technique generally em- 

ployed is to collect protocols from human subjects, which are then 

analyzed to discover the heuristics these subjects employ.** A program 

is then written which incorporates similar rules of thumb. 

Again we find an early success: in 1957 Newell, Shaw, and Simon’s 

Logic Theorist, using heuristically guided trial-and-error search, proved 

38 out of 52 theorems from Principia Mathematica. Two years later, 

another Newell, Shaw, and Simon program, the General Problem Solver 

(GPS), using more sophisticated means-ends analysis, solved the ‘“‘canni- 

bal and missionary” problem and other problems of similar com- 

plexity.** 

In 1961, after comparing a machine trace (see Figure 2, p. 95) with a 

protocol and finding that they matched to some extent, Newell and 

Simon concluded rather cautiously: 

The fragmentary evidence we have obtained to date encourages us to think that 

the General Problem Solver provides a rather good first approximation to an 

information processing theory of certain kinds of thinking and problem-solving 

behavior. The processes of “thinking” can no longer be regarded as completely 

mysterious. '° 
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Soon, however, Simon gave way to more enthusiastic claims: 

Subsequent work has tended to confirm [our] initial hunch, and to demonstrate 

that heuristics, or rules of thumb, form the integral core of human problem- 

solving processes. As we begin to understand the nature of the heuristics that 

people use in thinking the mystery begins to dissolve from such (heretofore) 

vaguely understood processes as “intuition” and “‘judgment.””"' 

But, as we have seen in the case of language translating, difficulties have 

an annoying way of reasserting themselves. This time, the ‘““mystery” of 

judgment reappears in terms of the organizational aspect of the problem- 

solving programs. Already in 1961 at the height of Simon’s enthusiasm, 

Minsky saw the difficulties which would attend the application of trial- 

and-error techniques to really complex problems: 

The simplest problems, e.g., playing tic-tac-toe or proving the very simplest 

theorems of logic, can be solved by simple recursive application of all the avail- 

able transformations to all the situations that occur, dealing with sub-problems 

in the order of their generation. This becomes impractical in more complex 

problems as the search space grows larger and each trial becomes more expensive 
in time and effort. One can no longer afford a policy of simply leaving one 
unsuccessful attempt to go on to another. For, each attempt on a difficult prob- 
lem will involve so much effort that one must be quite sure that, whatever the 
outcome, the effort will not be wasted entirely. One must become selective to the 
point that no trial is made without a compelling reason. . . ." 

This, Minsky claims, shows the need for a planning program, but as he 
goes on to point out: 

Planning methods . . . threaten to collapse when the fixed sets of categories 
adequate for simple problems have to be replaced by the expressions of descrip- 
tive language." 

In “Some Problems of Basic Organization in Problem-Solving Pro- 
grams” (December 1962), Newell discusses some of the problems which 
arise in organizing the Chess Program, the Logic Theorist, and especially 
the GPS with a candor rare in the field, and admits that “most of [these 
problems] are unsolved to some extent, either completely, or because the 
solutions that have been adopted are still unsatisfactory in one way or 
another.”'* No further progress has been reported toward the successful 
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“LO ~(~Q-P) 
Ll (RD~P)*(~R3Q) 

GOAL 1 TRANSFORM Ll INTO LO 
GOAL 2 DELETE R FROM Ll 

GOAL 3 APPLY R8TO Ll 
PRODUCES L2 R5>~P 

GOAL 4 TRANSFORM L2 INTO LO 
GOAL 5 ADD Q TO Lt2 

REJECT 

GOAL 2 
GOAL 6 APPLY R&B TO L1 

PRODUCES L3 ~RD3Q 

GOAL 7 TRANSFORM L3 INTO LO 
GOAL 8 ADD P TO L3 

REJECT 

GOAL 2 
GOAL 9 APPLY R7 TO Ll 

GOAL 10 CHANGE CONNECTIVE TOVIN LEFT LI 
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PRODUCES L4 (~RV —P)- (~R>Q) 

GOAL 12 APPLY R7 TO L4 
GOAL 13 CHANGE CONNECTIVE TO VY IN RIGHT L4 

GOAL 14 APPLY R6 TO RIGHT L4 
PROOUCES L5 (~RV~P)-(RVQ) 

GOAL 15 APPLY R7 TO L5 
GOAL 16 CHANGE SIGN OF LEFT RIGHT L5 

GOAL 17 APPLY R6 TO RIGHT LS 
PRODUCES L6 (~RV ~P)*(~R>Q) 

GOAL 18 APPLY R7 TO L6 
GOAL 19 CHANGE CONNECTIVE TO V 

IN RIGHT L6 
REJECT 

GOAL 16 
NOTHING MORE 

GOAL 13 
NOTHING MORE 

GOAL 10 
NOTHING MORE 

Figure 2 
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hierarchical organization of heuristic programs. (Significantly, the great- 

est achievement in the field of mechanical theorem-proving, Wang’s 

theorem-proving program, which proved in less than five minutes all 52 

theorems chosen by Newell, Shaw, and Simon, does not use heuristics.) 

Public admission that GPS was a dead end, however, did not come 

until much later. In 1967, the tenth anniversary of Simon’s predictions, 

Newell (and Ernst) soberly, quietly, and somewhat ambiguously an- 

nounced that GPS was being abandoned. The preface to their paper 

reveals that peculiar mixture of impasse and optimism which we have 

begun to recognize as characteristic of the field: 

We have used the term “‘final’”’ in several places above. This does not indicate 

any feeling that this document marks a terminus to our research on general 

problem solvers; quite the contrary is true. However, we do feel that this particu- 

lar aggregate of IPL—V code should be laid to rest." 

That GPS has collapsed under the weight of its own organization 

becomes clearer later in the monograph. The section entitled “History 

of GPS” concludes: 

One serious limitation of the expected performance of GPS is the size of the 
program and the size of its rather elaborate data structure. The program itself 
occupies a significant portion of the computer memory and the generation of new 
data structures during problem solving quickly exhausts the remaining memory. 
Thus GPS is only designed to solve modest problems whose representation is not 
too elaborate. Although larger computers’ memories would alleviate the extrava- 
gances of GPS’s use of memory, conceptual difficulties would remain." 

This curve from success to optimism to failure can be followed in 
miniature in the case of Gelernter’s Geometry Theorem Machine (1959). 
Its early success with theorems like the pons asinorum gave rise to the 
first prediction to be totally discredited. In an article published in 1960, 
Gelernter explains the heuristics of his program and then concludes: 
“Three years ago, the dominant opinion was that the geometry machine 
would not exist today. And today, hardly an expert will contest the 
assertion that machines will be proving interesting theorems in number 
theory three years hence,” that is, in 1963.\’ There has been no further 
word from Gelernter and no further progress in purely mechanical math- 
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ematics. No more striking example exists of an “astonishing” early 
success and an even more astonishing failure to follow it up. 

PATTERN RECOGNITION 

This field is discussed last because the resolution of the difficulties 
which have arrested development in game playing, language translation, 
and problem solving presupposes success in the field of pattern recogni- 
tion (which in turn suffers from each of the difficulties encountered in 
the other fields). As Selfridge and Neisser point out in their classic article 

“Pattern Recognition by Machine,” 

a man is continually exposed to a welter of data from his senses, and abstracts 

from it the patterns relevant to his activity at the moment. His ability to solve 

problems, prove theorems and generally run his life depends on this type of 

perception. We suspect that until programs to perceive patterns can be devel- 

oped, achievements in mechanical problem-solving will remain isolated technical 

triumphs. '® 

There has as usual been some excellent early work. For example, the 

Lincoln Laboratory group under Bernard Gold produced a program for 

transliterating hand-sent Morse code. More recently, programs have 

been written for recognizing a limited set of handwritten words and 

printed characters in various type fonts. These all operate by searching 

for predetermined topological features of the characters to be recognized, 

and checking these features against preset or learned “‘definitions’’ of 

each letter in terms of these traits. The trick is to find relevant features, 

that is, those that remain generally invariant throughout variations of 

size and orientation, and other distortions. This approach has been sur- 

prisingly successful where recognition depends on a small number of 

specific traits. 

But none of these programs constitutes a breakthrough in pattern 

recognition. Each is a small engineering triumph, an ad hoc solution of 

a specific problem, without general applicability. As Murray Eden, who 

has done some of the best work in pattern recognition, summed up the 

situation in 1968: 
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Where there have been successes in performing pattern-recognition tasks by 

mechanical means, the successes have rested on rules that were prescribed ad 

hoc, in the literal sense of that phrase; that is to say, the successful methods 

classify reliably that particular set of patterns for which the methods were 

designed, but are likely to lack any significant value for classifying any other set 

of patterns."” 

Even in these special cases, as Selfridge and Neisser remark, “The only 

way the machine can get an adequate set of features is from a human 

programmer.’’? They thus conclude their survey of the field with a 

challenge rather than a prediction: 

The most important learning process of all is still untouched: No current pro- 

gram can generate test features of its own. The effectiveness of all of them is 

forever restricted by the ingenuity or arbitrariness of their programmers. We can 

barely guess how this restriction might be overcome. Until it is, ‘artificial intelli- 

gence’ will remain tainted with artifice.*! 

Even these remarks may be too optimistic, however, in their supposi- 

tion that the present problem is feature-generation. The relative success 

of the Uhr-Vossler program, which generates and evaluates its own 

operators, shows that this problem is partially soluble.” But as long as 

recognition depends on a limited set of features, whether ad hoc or 

general, preprogrammed or generated, mechanical recognition has gone 

about as far as it can go. The number of traits that can be looked up in 

a reasonable amount of time is limited, and present programs have 

already reached this technological limit. In a paper presented at the 

Hawaii International Conference on the Methodologies of Pattern Rec- 

ognition (1968), Laveen Kanal and B. Chandrasekaran summed up the 

impasse as follows: 

Obviously, the engineering approach has built in limitations. There is a certain 

level of complexity above which the engineer’s bag of tricks fails to produce 

results. As an example while even multifont printed character recognition has 

been successfully handled, a satisfactory solution of cursive script recognition 

defies all attempts. Similarly there seems to be a fairly big jump between isolated 

speech recognition and continuous speech recognition. Those who have been 

hoping to model human recognition processes have also reached an impasse. It 

is probable that those problems which the engineers have found difficult to 

handle are precisely those which have to await more detailed understanding of 
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human recognition systems. In any case, these feelings of crisis are intimately 

related to those in other aspects of artificial intelligence: game playing and 

mechanical translation.” 

Again we find the same pattern of optimism followed by disillusion- 

ment. Often the disillusioned do not even understand why their hopes 

have been dashed, and their questioning goes unheard amidst the prom- 

ises and announcements of small technological advances. Such a dis- 

senter is Vincent Giuliano, formerly of Arthur D. Little Corporation. If 

Giuliano had a more detailed and insightful account of what went wrong, 

he would be the Oettinger or Bar-Hillel of the pattern recognition field. 

Like many of my colleagues, I was in hot pursuit of ways to develop something 

we sometimes refer to as artificial intelligence. . . . in the mid-fifties, many 

ambitious research projects were launched with the goal of clearly demonstrating 

the learning capabilities of computers so that they could translate idiomatically, 

carry on free and natural conversations with humans, recognize speech and print 

it out, and diagnose diseases. All of these activities involve the discovery and 

learning of complex patterns. 

Only a few years ago we really believed that ultimately computers could be 

given the entire task of solving such problems, if only we could find the master 

key to making them do so. 

Alas! I feel that many of the hoped-for objectives may well be porcelain eggs; 

they will never hatch, no matter how long heat is applied to them, because they 

require pattern discovery purely on the part of machines working alone. The 

tasks of discovery demand human qualities.” 

Conclusion 

By 1962, if we are to judge by published results, an overall pattern had 

begun to take shape, although in some cases it was not recognized until 

later: an early, dramatic success based on the easy performance of simple 

tasks, or low-quality work on complex tasks, and then diminishing re- 

turns, disenchantment, and, in some cases, pessimism. This pattern is not 

the result of overenthusiastic pressure from eager or skeptical outsiders 

who demand too much too fast. The failure to produce is measured solely 

against the expectations of those working in the field. 

When the situation is grim, however, enthusiasts can always fall back 
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on their own optimism. This tendency to substitute long-range for opera- 

tional programs slips out in Feigenbaum and Feldman’s claim that “the 

forecast for progress in research in human cognitive processes is most 

encouraging.’’*> The forecast always has been, but one wonders: how 

encouraging are the prospects? Feigenbaum and Feldman claim that 

tangible progress is indeed being made, and they define progress very 

carefully as “displacement toward the ultimate goal.’’** According to this 

definition, the first man to climb a tree could claim tangible progress 

toward reaching the moon. 

Rather than climbing blindly, it is better to look where one is going. 

It is time to study in detail the specific problems confronting work in 

artificial intelligence and the underlying difficulties that they reveal. 

Il. The Underlying Significance of Failure to 

Achieve Predicted Results 

Negative results, provided one recognizes them as such, can be interest- 
ing. Diminishing achievement, instead of the predicted accelerating suc- 
cess, perhaps indicates some unexpected phenomenon. Perhaps we are 
pushing out on a continuum like that of velocity, where further accelera- 
tion costs more and more energy as we approach the speed of light, or 
perhaps we are instead facing a discontinuity, which requires not greater 
effort but entirely different techniques, as in the case of the tree-climbing 
man who tries to reach the moon. 

It seems natural to take stock of the field at this point, yet surprisingly 
no one has done so. If someone had, he might have found that each of 
the four areas considered presupposes a specific form of human “‘infor- 
mation processing” that enables human subjects in that area to avoid the 
difficulties an artificial ‘subject’ must confront. This section will isolate 
these four human forms of “information processing” and contrast them 
with their machine surrogates. 

FRINGE CONSCIOUSNESS VS. HEURISTICALLY GUIDED SEARCH 

It is common knowledge that certain games can be worked through 
on present-day computers with present-day techniques—games like nim 
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and tic-tac-toe can be programmed so that the machine will win or draw 

every time. Other games, however, cannot be solved in this way on 

present-day computers, and yet have been successfully programmed. In 

checkers, for example, it turns out that there are reliable ways to deter- 

mine the probable value of a move on the basis of certain parameters such 

as control of center position, advancement, and so forth. This, plus the 

fact that there are relatively few moves since pieces block each other and 

captures are forced, makes it possible to explore all plausible moves to 

a depth of as many as twenty moves, which proves sufficient for excellent 

play. 

Chess, however, although decidable in principle by counting out all 

possible moves and responses, presents the problem inevitably connected 

with choice mazes: exponential growth. Alternative paths multiply so 

rapidly that we cannot even run through all the branching possibilities 

far enough to form a reliable judgment as to whether a given branch is 

sufficiently promising to merit further exploration. Newell notes that it 

would take much too long to find an interesting move if the machine had 

to examine the possible moves of each of the pieces on the board one after 

another. He is also aware that if this is not done, the machine may 

sometimes miss an important and original combination. ‘““We do not 

want the machine to spend all its time examining the future actions of 

committed men; yet if it were never to do this, it could overlook real 

opportunities.””?’ 

Newell’s first solution was ‘“‘the random element”: “The machine 

should rarely [that is, occasionally] search for combinations which sac- 

rifice a Queen.’’* But this solution is unsatisfactory, as Newell himself, 

presumably, now realizes. The machine should not look just every once 

in a while for a Queen sacrifice but, rather, look in those situations in 

which such a sacrifice would be relevant. This is what the right heuristics 

are supposed to assure, by limiting the number of branches explored 

while retaining the more promising alternatives. 

But no master-level heuristics have as yet been found. All current 

heuristics either exclude some moves masters would find or leave open 

the risk of exponential growth. Simon is nonetheless convinced, for 

reasons to be discussed in Part II, that chess masters use such heuristics, 
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and so he is confident that if we listen to their protocols, follow their eye 

movements, perhaps question them under bright lights, we can eventu- 

ally discover these heuristics and build them into our program—thereby 

pruning the exponential tree. But let us examine more closely the evi- 

dence that chess playing is governed by the use of heuristics. 

Consider the following protocol quoted by Simon, noting especially 

how it begins rather than how it ends. The subject says, 

Again I notice that one of his pieces is not defended, the Rook, and there must 

be ways of taking advantage of this. Suppose now, if I push the pawn up at Bishop 

four, if the Bishop retreats I have a Queen check and I can pick up the Rook. 

If, etc:, etc.” 

At the end we have an example of what I shall call ‘“‘counting out”— 

thinking through the various possibilities by brute-force enumeration. 

We have all engaged in this process, which, guided by suitable heuristics, 

is supposed to account for the performance of chess masters. But how 

did our subject notice that the opponent’s Rook was undefended? Did 
he examine each of his opponent’s pieces and their possible defenders 
sequentially (or simultaneously) until he stumbled on the vulnerable 

Rook? That would use up too many considerations, for as Newell, Shaw, 
and Simon remark, “The best evidence suggests that a human player 
considers considerably less than 100 positions in the analysis of a 
move,”** and our player must still consider many positions in evaluating 
the situation once the undefended Rook has been discovered. We need 
not appeal to introspection to discover what a player in fact does before 
he begins to count out; the protocol itself indicates it: the subject “zeroed 
in” on the promising situation (“I notice that one of his pieces is not 
defended”). Only after the player has zeroed in on an area does he begin 
to count out, to test, what he can do from there. 

An analysis of the MacHack program written by Richard Greenblatt 
will illustrate this difference between the way a human being sizes up a 
position and the machine’s brute-force counting out. Even MacHack 
could not look at every alternative. The program contains a plausible 
move generator which limits the moves considered to the more prom- 
ising ones. Yet in a tough spot during a tournament, the Greenblatt 
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program once calculated for fifteen minutes and considered 26,000 
alternatives, while a human player can consider only 100, or possibly 
200, moves. MacHack came up with an excellent move, which is not to 
Say a master could not have done even better; but what is significant 
here is not the quality of the move, but the difference between 26,000 
and 200 possibilities. This order of difference suggests that when play- 
ing chess, human beings are doing something different than just con- 
sidering alternatives, and the interesting question is: what are they 
doing that enables them, while considering 100 or 200 alternatives, to 
find more brilliant moves than the computer can find working through 

26,000? 

The human player whose protocol we are examining is not aware of 

having explicitly considered or explicitly excluded from consideration 

any of the hundreds of possibilities that would have had to have been 

enumerated in order to arrive at a particular relevant area of the board 

by counting out. Nonetheless, the specific portion of the board which 

finally attracts the subject’s attention depends on the overall position. To 

understand how this is possible, we must consider what William James 

has called “the fringes of consciousness”: the ticking of a clock which 

we notice only if it stops provides a simple example of this sort of 

marginal awareness. Our vague awareness of the faces in a crowd when 

we search for a friend is another, more complex and more nearly appro- 

priate, case.. 

While suggesting an alternative to the explicit awareness of counting 

out, neither example is entirely appropriate, however. In neither of these 

cases does the subject make positive use of the information resting on the 

fringe. The chess case is best understood in terms of Michael Polanyi’s 

general description of the power of the fringes of consciousness to con- 

centrate information concerning our peripheral experience. 

This power resides in the area which tends to function as a background because 

it extends indeterminately around the central object of our attention. Seen thus 

from the corner of our eyes, or remembered at the back of our mind, this area 

compellingly affects the way we see the object on which we are focusing. We may 

indeed go so far as to say that we are aware of this subsidiarily noticed area 

mainly in the appearance of the object to which we are attending.’'* 



What Computers Can't Do / 104 

Once one is familiar with a house, for example, to him the front looks 

thicker than a facade, because he is marginally aware of the house 

behind. Similarly, in chess, cues from all over the board, while remaining 

on the fringes of consciousness, draw attention to certain sectors by 

making them appear promising, dangerous, or simply worth looking 

into. 

As Newell and Simon themselves note: 

There are concepts in human chess playing that are much more global than those 

above; for example, a “‘developed position,” “control of the center,” ‘a won 

position,” “a weak king side,” “‘a closed position.” 
> 66 

Moreover, they admit that: 

Sometimes de Groot’s subject used very global phrases such as “. . . and it’s a 

won position for White,” where it is not possible to see what structure or feature 

of the position leads to the evaluation.* 

This is Newell and Simon’s way of saying that they see no way of 

analyzing this evaluation of the overall position in terms of heuristically 

guided counting out. And judiciously, but without seeming to realize 
what this does to the plausibility of Simon’s predictions, Newell and 
Simon go on to note: 

To date the work on chess programs has not shed much new light on these 
higher-level concepts.*** 

The attitude of Newell and Simon is typically ambiguous here. Do 
they think that better static evaluators—that is, better heuristics for 
generating plausible moves—could simulate zeroing in? Their continued 
belief in the possibility of a mechanical chess master suggests they do. 
However, their analysis of master play, based on the work of de Groot, 
should be grounds for pessimism. (As we have seen, de Groot himself 
says he does not have much hope for substantial improvement of heuris- 
tic chess programs.) 

Newell and Simon note that 

De Groot finally succeeded in Separating strong from weak players by using 
perceptual tests involving the reproduction of chess positions after brief exposure 
to them (3-7 seconds). The grandmaster was able to reproduce the positions 
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perfectly, and performance degraded appreciably with decrease in chess ability. 
De Groot was led to propose that perceptual abilities and organization were an 
important factor in very good play.°° 

In the article we have already discussed, chess master Hearst casts 
some further light on this perceptual process and why it defies program- 
ming: 

Apparently the master perceives the setup in large units, such as pawn structure 
of cooperating pieces. ... When he does make an error, it is often one of putting 
a piece on a very desirable square for that type of position.* 

Hearst sums up his view as follows: 

Because of the large number of prior associations which an experienced player 
has acquired, he does not visualize a chess position as a conglomeration of 
scattered squares and wooden pieces, but as an organized pattern (like the 
“Gestalt,” or integrated configuration, emphasized by the Gestalt psycholo- 
gists).°’ 

Applying these ideas to our original protocol, we can conclude that 

our subject’s familiarity with the overall chess pattern and with the past 

moves of this particular game enabled him to recognize the lines of force, 

the loci of strength and weakness, as well as specific positions. He sees 

that his opponent looks vulnerable in a certain area (just as one familiar 

with houses in general and with a certain house sees it as having a certain 

sort of back), and zeroing in on this area he discovers the unprotected 

Rook. This move is seen as one step in a developing pattern. 

There is no chess program which even tries to use the past experience 

of a particular game in this way. Rather, each move is taken up anew 

as if it were an isolated chess problem found in a book. This technique 

is forced upon programmers, since a program which carried along infor- 

mation on the past position of each piece would rapidly sink under the 

accumulating data. What is needed is a program which selectively carries 

over from the past just those features which were significant in the light 

of its present strategy and the strategy attributed to its opponent.*** But 

present programs embody no long-range strategy at all. 

In general what is needed is an account of the way that the background 

of past experience and the history of the current game can determine 
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what shows up as a figure and attracts a player’s attention. But this 

gestaltist notion of figure and ground has no place in explicit step-by-step 

computation. 

Since this global form of “information processing” in which informa- 

tion, rather than being explicitly considered remains on the fringes of 

consciousness and is implicitly taken into account, is constantly at work 

in organizing our experience, there is no reason to suppose that in order 

to discover an undefended Rook our subject must have counted out 

rapidly and unconsciously until he arrived at the area in which he began 

consciously counting out. Moreover, there are good reasons to reject this 

assumption, since it raises more problems than it solves. 

If the subject has been unconsciously counting out thousands of alter- 

natives with brilliant heuristics to get to the point where he focuses on 

that Rook, why doesn’t he carry on with that unconscious process all the 

way to the end, until the best move just pops into his consciousness? 

Why, if the unconscious counting is rapid and accurate, does he resort 

to a cumbersome method of slowly, awkwardly, and consciously count- 

ing things out at the particular point where he spots the Rook? Or if, on 
the other hand, the unconscious counting is inadequate, what is the 
advantage of switching to a conscious version of the same process? 

This sort of teleological consideration—while not a proof that uncon- 
scious processing is nonheuristic—does put the burden of proof on those 
who claim that it is or must be. And those who make this claim have 
brought forward no arguments to support it. There is no evidence, 
behavioral or introspective, that counting out is the only kind of “infor- 
mation processing” involved in playing chess, that “the essential nature 
of the task [is] search in a space of exponentially growing possibilities.’’*? 
On the contrary, all protocols testify that chess involves two kinds of 
behavior: (1) zeroing in, by means of the overall organization of the 
perceptual field, on an area formerly on the fringes of consciousness, and 
which other areas still on the fringes of consciousness make interesting; 
and (2) counting out explicit alternatives. 

This distinction clarifies the early success and the later failure of work 
in cognitive simulation. In all game-playing programs, early success is 
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attained by working on those games or parts of games in which heuristi- 
cally guided counting out is feasible; failure occurs at the point where 
complexity is such that global awareness would be necessary to avoid an 

overwhelming exponential growth of possibilities to be counted. 

AMBIGUITY TOLERANCE VS. CONTEXT-FREE PRECISION 

Work on game playing revealed the necessity of processing “informa- 

tion” which is not explicitly considered or excluded, that is, information 

on the fringes of consciousness. Work in language translation has been 

halted by the need for a second nonprogrammable form of “information 

processing”: the ability to deal with situations which are ambiguous 

without having to transform them by substituting a precise description. 

We have seen that Bar-Hillel and Oettinger, two of the most respected 

and best-informed workers in the field of automatic language translation, 

agree in their pessimistic conclusions concerning the possibility of fur- 

ther progress in the field. Each has realized that in order to translate a 

natural language, more is needed than a mechanical dictionary—no 

matter how complete—and the laws of grammar—no matter how so- 

phisticated. The order of the words in a sentence does not provide 

enough information to enable a machine to determine which of several 

possible parsings is the appropriate one, nor do the surrounding words 

—the written context—always indicate which of several possible mean- 

ings is the one the author had in mind. 

As Oettinger says in discussing systems for producing all parsings of 

a sentence acceptable to a given grammar: 

The operation of such analyzers to date has revealed a far higher degree of 

legitimate syntactic ambiguity in English and in Russian than has been an- 

ticipated. This, and a related fuzziness of the boundary between the grammatical 

and the non-grammatical, raises serious questions about the possibility of effec- 

tive fully automatic manipulations of English or Russian for any purpose of 

translation or information retrieval.*° 

Instead of claiming, on the basis of his early partial success with a 

mechanical dictionary, and later (with Kuno and others) with syntac- 
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tic analyzers, that in spite of a few exceptions and difficulties, the mystery 

surrounding our understanding of language is beginning to dissolve, 

Oettinger draws attention to the “very mysterious semantic processes 

that enable most reasonable people to interpret most reasonable sen- 

tences unequivocally most of the time.’’*' 

Here is another example of the importance of fringe consciousness. 

Obviously, the user of a natural language is not aware of many of the 

cues to which he responds in determining the intended syntax and mean- 

ing. On the other hand, nothing indicates that he considers each of these 

cues unconsciously. In fact, two considerations suggest that these cues 

are not the sort that could be taken up and considered by a sequential 

or even a parallel program.*** 

First, there is Bar-Hillel’s argument, which we shall later study in 

detail (Chapter 6), that there is an infinity of possibly relevant cues. 

Second, this suggests that perhaps it is not primarily a question of cues 

at all. In any particular context most of the abstractly conceivable am- 

biguities do not arise. The sentence is heard in the appropriate way 

because the context organizes the perception; and since sentences are not 

perceived except in context they are always perceived with the narrow 

range of meanings the context confers. The common stream of sounds 

which is the same in each context and must be disambiguated is a 

problem for computers, not human beings. 

Insofar as cues are relevant we must remember that natural language 

is used by people involved in situations in which they are pursuing 

certain goals. These extralinguistic goals, which need not themselves be 

precisely stated or statable, provide some of the cues which reduce the 

ambiguity of expressions as much as is necessary for the task at hand. 

A phrase like “stay near me” can mean anything from “press up against 

me”’ to ‘stand one mile away,” depending upon whether it is addressed 

to a child in a crowd or a fellow astronaut exploring the moon. Its 

meaning is never unambiguous in all possible situations—as if this ideal 

of exactitude even makes sense—but the meaning can always be made 

sufficiently unambiguous in any particular situation so as to get the 

intended result. Wittgenstein makes this pragmatic point: 
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We are unable clearly to circumscribe the concepts we use; not because we don’t 

know their real definition, but because there is no real “definition” to them. To 

suppose that there must be would be like supposing that whenever children play 

with a ball they play a game according to strict rules.*?* 

Our ability to use a global context to reduce ambiguity sufficiently 

without having to formalize (that is, eliminate ambiguity altogether) 

reveals a second fundamental form of human “information processing,” 

which presupposes the first. Fringe consciousness takes account of cues 

in the context, and probably some possible parsings and meanings, all of 

which would have to be made explicit in the output of a machine. Our 

sense of the situation, however, allows us to exclude most possibilities 

without their ever coming up for consideration. We shall call the ability 

to narrow down the spectrum of possible meanings by ignoring what, out 

of context, would be ambiguities, “ambiguity tolerance.” 

Since a human being uses and understands sentences in familiar 

situations, the only way to make a computer that can understand ac- 

tual utterances and translate a natural language may well be, as Tur- 

ing suspected, to program it to learn about the world. Bar-Hillel re- 

marks: “I do not believe that machines whose programs do not 

enable them to learn, in a sophisticated sense of this word, will ever 

be able to consistently produce high-quality translations.”** When oc- 

casionally artificial intelligence enthusiasts admit the difficulties con- 

fronting present techniques, the appeal to learning is a favorite pana- 

cea. Seymour Papert of M.I.T., for example, has recently claimed 

that one cannot expect machines to perform like adults unless they 

are first taught, and that what is needed is a machine with the child’s 

ability to learn. This move, however, as we shall see, only evades the 

problem. 

In the area of language learning, the only interesting and successful 

program is Feigenbaum’s EPAM (Elementary Perceiver and Memo- 

rizer). EPAM simulates the learning of the association of nonsense sylla- 

bles, which Feigenbaum calls a simplified case of verbal learning.*? The 

interesting thing about nonsense syllable learning, however, is that it is 

not a case of language learning at all. Learning to associate nonsense 

syllables is, in fact, acquiring something like a Pavlovian conditioned 
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reflex. The experimenter could exhibit “DAX” then “JIR,” or he could 

flash red and then green lights; as long as two such events were associated 

frequently enough, one would learn to anticipate the second member of 

the pair. In such an experiment, the subject is assumed to be completely 

passive. In a sense, he isn’t really learning anything, but is having some- 

thing done to him. Whether the subject is an idiot, a child, or an adult 

should ideally make no difference in the case of nonsense syllable learn- 

ing. Ebbinghaus, at the end of the nineteenth century, proposed this form 

of conditioning precisely to eliminate any use of meaningful grouping or 

appeal to a context of previously learned associations. 

It is no surprise that subject protocol and machine trace most nearly 

match in this area. But it is a dubious triumph: the only successful case 

of cognitive simulation simulates a process which does not involve com- 

prehension, and so is not genuinely cognitive. 

What is involved in learning a language is much more complicated and 
more mysterious than the sort of conditioned reflex involved in learning 
to associate nonsense syllables. To teach someone the meaning of a new 

word, we can sometimes point at the object which the word names. 

Augustine, in his Confessions, and Turing, in his article on machine 
intelligence, assume that this is the way we teach language to children. 
But Wittgenstein points out that if we simply point at a table, for exam- 
ple, and say “brown,” a child will not know if brown is the color, the 

size, or the shape of the table, the kind of object, or the proper name of 
the object. If the child already uses language, we can say that we are 
pointing out the color; but if he doesn’t already use language, how do 
we ever get off the ground? Wittgenstein suggests that the child must be 
engaged in a “form of life” in which he shares at least some of the goals 
and interests of the teacher, so that the activity at hand helps to delimit 
the possible reference of the words used. 

What, then, can be taught to a machine? This is precisely what is in 
question in one of the few serious objections to work in artificial intelli- 
gence made by one of the workers himself. A. L. Samuel, who wrote the 
celebrated checkers program, has argued that machines cannot be intelli- 
gent because they can only do what they are instructed to do. Minsky 
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dismisses this objection with the remark that we can be surprised by the 

performance of our machines.** But Samuel certainly is aware of this, 

having been beaten by his own checkers program. He must mean some- 

thing else, presumably that the machine had to be given the program by 

which it could win, in a different sense than children are taught to play 

checkers. But if this is his defense, Samuel is already answered by Mi- 

chael Scriven. Scriven argues that new strategies are “ ‘put into’ the 

computer by the designer . . . in exactly the same metaphorical sense that 

we put into our children everything they come up with in their later 

life.’’*” Still, Samuel should not let himself be bullied by the philosophers 

any more than by his colleagues. Data are indeed put into a machine but 

in an entirely different way than children are taught. We have just seen 

that when language is taught it is not, and, as we shall see in Chapter 

6, cannot be, precisely defined. Our attempts to teach meaning must be 

disambiguated and assimilated in terms of a shared context. Learning as 

opposed to memorization and repetition requires this sort of judgment. 

Wittgenstein takes up this question as follows: 

Can someone be a man’s teacher in this? Certainly. From time to time he gives 

him the right tip. ... This is what learning and teaching are like here. .. . What 

one acquires here is not a technique; one learns correct judgements. There are 

also rules, but they do not form a system, and only experienced people can apply 

them right. Unlike calculation rules.*** 

It is this ability to grasp the point in a particular context which is true 

learning; since children can and must make this leap, they can and do 

surprise us and come up with something genuinely new. 

The foregoing considerations concerning the essential role of context 

awareness and ambiguity tolerance in the use of a natural language 

should suggest why, after the success of the mechanical dictionary, 

progress has come to a halt in the translating field. Moreover, since, as 

we have seen, the ability to /earn a language presupposes the same 

complex combination of the human forms of “information processing” 

needed to understand a language, it is hard to see how an appeal to 

learning can be used to bypass the problems this area must confront. 
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ESSENTIAL/INESSENTIAL DISCRIMINATION VS. TRIAL-AND-ERROR 

SEARCH 

Work in problem solving also encounters two functions of thought: 

one, elementary and piecemeal, accounts for the early success in the field; 

another, more complex and requiring insight, has proved intractable to 

stepwise programs such as Simon’s General Problem Solver. For simple 

problems it is possible to proceed by simply trying all possible combina- 

tions until one stumbles on the answer. This trial-and-error search is 

another example of a brute-force technique like counting out in chess. 

But, just as in game playing, the possibilities soon get out of hand. In 

problem solving one needs some systematic way to cut down the search 

maze so that one can spend one’s time exploring promising alternatives. 

This is where people rely on insight and where programmers run into 

trouble. 

If a problem is set up in a simple, completely determinate way, with 

an end and a beginning and simple, specifically defined operations for 

getting from o1.2 to the other (in other words, if we have what Simon calls 

a “simple formal problem’), then Simon’s General Problem Solver can, 

by trying many possibilities, bring the end and the beginning closer and 

closer together until the problem is solved. This would be a successful 

example of means-ends analysis. But even this simple case presents many 

difficulties. Comparing the machine print-out of the steps of a GPS 

solution with the transcript of the verbal report of a human being solving 

the same problem reveals steps in the machine trace (explicit searching) 

which do not appear in the subject’s protocol. And Simon asks us to 

accept the methodologically dubious explanation of the missing steps in 

the human protocol that ‘many things concerning the task surely oc- 

curred without the subject’s commenting on them (or being aware of 

them)’ and the even more arbitrary assumption that these further 

operations were of the same elementary sort as those verbalized. In fact, 

certain details of Newell and Simon’s article, “GPS: A Program That 

Simulates Human Thought,” suggest that these further operations are 

not like the programmed operations at all. 
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In one of Simon’s experiments, subjects were given problems in formal 
logic and a list of rules for transforming symbolic expressions and asked 
to verbalize their attempt to solve the problems. The details of the rules 
are not important; what is important is that at a point in the protocol 

the subject notes that he applies the rule (A -B—+A) and the rule 

(A - B—>B), to the conjunction ( —R v —P) - (R v Q). Newell and 

Simon comment: 

The subject handled both forms of rule 8 together, at least as far as his comment 

is concerned. GPS, on the other hand, took a separate cycle of consideration for 

each form. Possibly the subject followed the program covertly and simply re- 

ported the two results together.” 

Possibly, however, the subject grasped the conjunction as symmetric 

with respect to the transformation operated by the rule, and so in fact 

applied both forms of the rule at once. Even Newell and Simon admit 

that they would have preferred that GPS apply both forms of the rule 

in the same cycle. Only then would their program provide a psychologi- 

cal theory of the steps the subject was going through. They wisely refrain, 

however, from trying to write a program which could discriminate be- 

tween occasions when it was appropriate to apply both forms of the rule 

at once and those occasions when it was not. Such a program, far from 

eliminating the above divergence, would require further processing not 

reported by the subject, thereby increasing the discrepancy between the 

program and the protocol. Unable thus to eliminate the divergence and 

unwilling to try to understand its significance, Newell and Simon dismiss 

the discrepancy as ‘“‘an example of parallel processing.’’*'* 

Another divergence noted by Newell and Simon, however, does not 

permit such an evasion. At a certain point, the protocol reads: “. . . I 

should have used rule 6 on the left-hand side of the equation. So use 6, 

but only on the left-hand side.” Simon notes: 

Here we have a strong departure from the GPS trace. Both the subject and GPS 

found rule 6 as the appropriate one to change signs. At this point GPS simply 

applied the rule to the current expression; whereas the subject went back and 

corrected the previous application. Nothing exists in the program that corre- 
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sponds to this. The most direct explanation is that the application of rule 6 in 

the inverse direction is perceived by the subject as undoing the previous applica- 

tion of rule 6.” 

This is indeed the most direct explanation, but Newell and Simon do 

not seem to realize that this departure from the trace, which cannot be 

explained away by parallel processing, is as detrimental to their theory 

as were the discrepancies in the movements of the planets to the 

Ptolemaic system. Some form of thinking other than searching is taking 

place! 

Newell and Simon note the problem: “It clearly implies a mechanism 

(maybe a whole set of them) that is not in GPS,”’*’ but, like the ancient 

astronomers, they try to save their theory by adding a few epicycles. 

They continue to suppose, without any evidence, that this mechanism is 

just a more elaborate search technique which can be accommodated by 

providing GPS with “‘a little continuous hindsight about its past ac- 

tions.’’** They do not realize that their assumption that intelligent behav- 

ior is always the result of following heuristic rules commits them to the 

implausible view that their subject’s decision to backtrack must be the 

result of a very selective checking procedure. Otherwise, all past steps 

would have to be rechecked at each stage, which would hopelessly en- 

cumber the program. 

A more scientific approach would be to explore further the implica- 

tions of the five discrepancies noted in the article, in order to determine 

whether or not a different form of ‘information processing” might be 

involved. For example, Gestalt pyschologist Max Wertheimer points out 

in his classic work, Productive Thinking, that the trial-and-error account 

of problem solving excludes the most important aspect of problem- 

solving behavior, namely a grasp of the essential structure of the prob- 

lem, which he calls “‘insight.’’** In this operation, one breaks away from 

the surface structure and sees the basic problem—what Wertheimer calls 

the “deeper structure’’-—which enables one to organize the steps neces- 

sary for a solution. This gestaltist conception may seem antithetical to 

the operational concepts demanded by artificial intelligence, but Minsky 

recognizes the same need in different terms: 
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The ability to solve a difficult problem hinges on the ability to split or transform 

it into problems of a lower order of difficulty. To do this, without total reliance 

on luck, requires some understanding of the situation. One must be able to 

deduce, or guess, enough of the consequences of the problem statement to be able 

to set up simpler models of the problem situation. The models must have enough 

structure to make it likely that there will be a way to extend their solutions to 

the original problem.°* 

Since insight is necessary in solving complex problems and since what 

Minsky demands has never been programmed, we should not be sur- 

prised to find that in the work of Newell and Simon this insightful 

restructuring of the problem is surreptitiously introduced by the pro- 

grammers themselves. In The Processes of Creative Thinking, Newell, 

Shaw, and Simon introduce “the heuristics of planning” to account for 

characteristics of the subject’s protocol lacking in a simple means-ends 

analysis. 

We have devised a program . . . to describe the way some of our subjects handle 

O. K. Moore’s logic problems, and perhaps the easiest way to show what is 

involved in planning is to describe that program. On a purely pragmatic basis, 

the twelve operators that are admitted in this system of logic can be put in two 

classes, which we shall call “essential” and “‘inessential” operators, respectively. 

Essential operators are those which, when applied to an expression, make “large” 

changes in its appearance—change ‘“P v P” to “P,” for example. Inessential 

operators are those which make “small” changes—e.g., change “P v Q” to 

“Q v P.” As we have said, the distinction is purely pragmatic. Of the twelve 

operators in this calculus, we have classified eight as essential and four as inessen- 

tial ier, 

Next, we can take an expression and abstract from it those features that relate 

only to essential changes. For example, we can abstract from “P v Q” the 

expression (PQ), where the order of the symbols in the latter expression is 

regarded as irrelevant. Clearly, if inessential operations are applied to the ab- 

stracted expressions, the expressions will remain unchanged, while essential 

operations can be expected to change them. . . . 

We can now set up a correspondence between our original expressions and 

operators, on the one hand, and the abstracted expressions and essential opera- 

tors, on the other. Corresponding to the original problem of transforming a into 

b, wecan construct a new problem of transforming a’ into 6b’, where a’ and b’ 

are the expressions obtained by abstracting a and b respectively. Suppose that 

we solve the new problem, obtaining a sequence of expressions, a’c'd’... 6’. 
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We can now transform back to the original problem space and set up the new 

problems of transforming a into c, c into d, and so on. Thus, the solution of the 

problem in the planning space provides a plan for the solution of the original 

problem.°’ 

No comment is necessary. One merely has to note that the actual pro- 

gram description begins in the second paragraph. The classification of 

the operators into essential and inessential, the function Wertheimer 

calls ‘finding the deeper structure” or “insight,” is introduced by the 

programmers before the actual programming begins. 

This sleight of hand is overlooked by Miller, Galanter, and Pribram 

in Plans and the Structure of Behavior, a book which presents a psycho- 

logical theory influenced by Newell, Shaw, and Simon’s work. Miller et 

al. begin by quoting Polya, who is fully aware of the necessary role 

insight plays in problem solving: 

In his popular text, How to Solve It, Polya distinguishes . . . phases in the heuristic 

process: 

—First, we must understand the problem. We have to see clearly what the data 

are, what conditions are imposed, and what the unknown thing is that we are 

searching for. 

—Second, we must devise a plan that will guide the solution and connect the 
data to the unknown.** 

Miller et al. then minimize the importance of phase I, or rather simply 
decide not to worry about it. 

Obviously, the second of these is most critical. The first is what we have described 
in Chapter 12 as the construction of a clear Image of the situation in order to 
establish a test for the solution of the problem; it is indispensable, of course, but 
in the discussion of well-defined problems we assume that it has already been 
accomplished.*° 

Still the whole psychological theory of problem solving will not be 
worth much if there is no way to bring step one into the computer model. 
Therefore, it is no surprise that ten pages later, after adopting Simon’s 
means-ends analysis, we find Miller et al. referring with relief to Simon’s 
“planning method,” presumably the very paragraphs we have just dis- 
cussed: 
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A second very general system of heuristics used by Newell, Shaw, and Simon 
consists in omitting certain details of the problem. This usually simplifies the task 
and the simplified problem may be solved by some familiar plan. The plan used 

to solve the simple problem is then used as the strategy for solving the original, 

complicated problem. In solving a problem in the propositional calculus, for 

example, the machine can decide to ignore differences among the logical connec- 

tives and the order of the symbols. . . .°! 

But, as we have seen, it is not the machine that decides, but Newell, 

Shaw, and Simon, themselves. To speak of heuristics here is completely 

misleading, since no one has succeeded in formulating the rules which 

guide this preliminary choice or even in showing that at this stage, where 

insight is required, people follow rules. Thus we are left with no com- 

puter theory of the fundamental first step in all problem solving: the 

making of the essential/inessential distinction. Only those with faith 

such as that of Miller et al. could have missed the fact that Simon’s 

“planning method,” with its predigesting of the material, poses the prob- 

lem for computer simulation rather than provides the solution. 

This human ability to distinguish the essential from the inessential in 

a specific task accounts for the divergence of the protocol of the problem- 

solving subjects from the GPS trace. We have already suggested that the 

subject applies both forms of rule 8 together because he realizes at this 

initial stage that both sides of the conjunction are functionally equiva- 

lent. Likewise, because he has grasped the essential function of rule 6, 

the subject can see that a second application of the rule simply neutral- 

izes the previous one. As Wertheimer notes: 

The process [of structuring a problem] does not involve merely the given parts 

and their transformations. It works in conjunction with material that is structur- 

ally relevant but is selected from past experience... .” 

Since game playing is a form of problem solving we should expect to 

find the same process in chess playing, and indeed we do. To quote 

Hearst: 

De Groot concluded from his study that differences in playing strength depend 

much less on caiculating power than on “‘skill in problem conception.”’ Grand- 

masters seem to be superior to masters in isolating the most significant features 

of a position, rather than in the total number of moves that they consider. 
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Somewhat surprisingly, de Groot found that grandmasters do not examine more 

possibilities on a single move than lower-ranked experts or masters (an average 

of two to four first moves per position) nor do they look further ahead (usually 

a maximum of six to seven moves ahead for each). The grandmaster is somehow 

able to ‘‘see”’ the core of the problem immediately, whereas the expert or lesser 

player finds it with difficulty, or misses it completely, even though he analyzes 

as many alternatives and looks as many moves ahead as the grandmaster.* 

In 1961, as we have seen, Minsky was already aware of these problems. 

But his only hope was that one would discover a planning program 

which would use more of the same sort of heuristic searching on a higher 

level: 

When we call for the use of “reasoning,” we intend no suggestion of giving up 
the game by invoking an intelligent subroutine. The program that administers 
the search will be just another heuristic program. Almost certainly it will be 
composed largely of the same sorts of objects and processes that will comprise 
the subject-domain programs. 

But such a planning program itself would require a distinction between 
essential and inessential operators. Unless at some stage the programmer 
himself introduces this distinction, he will be forced into an infinite 
regress of planning programs, each one of which will require a higher- 
order program to structure its ill-structured data. At this point, the 
transition from the easy to the difficult form of “information proces- 
sing,” Minsky makes the typical move to learning. 

The problem of making useful deductions from a large body of statements (e.g. 
about the relevance of different methods to different kinds of problems) raises a 
new search problem. One must restrict the logical exploration to data likely to 
be relevant to the current problem. This selection function could hardly be 
completely built in at the start. It must develop along with other data ac- 
cumulated by experience.” 

But thus far no one has even tried to Suggest how a machine could 
perform this selection operation, or how it could be programmed to learn 
to perform it, since it is one of the conditions for learning from past 
experience. 

Feigenbaum, in a recent appraisal of work done since Computers and 
Thought, notes the glaring lack of learning programs: 
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The AI field still has little grasp of the machine learning problem for problem 
solvers. For many years, almost the only citation worth making was to Samuel’s 
famed checker playing program and its learning system. (Great interest arose 
once in a scheme proposed by Newell, Shaw, and Simon for learning in GPS, 
but the scheme was never realized.) Surprisingly, today we face the same situa- 
tion.® 

This lack of progress is surprising only to those, like Feigenbaum, who 

do not recognize the ability to distinguish the essential from the inessen- 

tial as a human form of “information processing,” necessary for learning 

and problem solving, yet not amenable to the mechanical search tech- 

niques which may operate once this distinction has been made. It is 

precisely this function of intelligence which resists further progress in the 

problem-solving field. 

It is an illusion, moreover, to think that the planning problem can be 

solved in isolation; that essential/inessential operations are given like 

blocks and one need only sort them out. It is easy to be hypnotized by 

oversimplified and ad hoc cases—like the logic problem—into thinking 

that some operations are essential or inessential in themselves. It then 

looks as if we can find them because they are already there, so that we 

simply have to discover a heuristic rule to sort them out. But normally 

(and often even in logic) essential operations are not around to be found 

because they do not exist independently of the pragmatic context. 

In the light of their frank inevitable recourse to the insightful predi- 

gesting of their material, there seems to be no foundation for Newell, 

Shaw, and Simon’s claim that the behavior vaguely labeled cleverness or 

keen insight in human problem solving is really just the result of the 

judicious application of certain heuristics for narrowing the search for 

solutions. Their work with GPS, on the contrary, demonstrates that all 

searching, unless directed by a preliminary structuring of the problem, 

is merely muddling through. 

Ironically, research in Cognitive Simulation is a perfect example of 

so-called intelligent behavior which proceeds like the unaided GPS. Here 

one finds the kind of tinkering and ad hoc patchwork characteristic of 

a fascination with the surface structure—a sort of tree-climbing with 

one’s eyes on the moon. Perhaps it is just because the field provides no 
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example of insight that some people in Cognitive Simulation have mis- 

taken the operation of GPS for intelligent behavior. 

PERSPICUOUS GROUPING VS. CHARACTER LISTS 

A computer must recognize all patterns in terms of a list of specific 

traits. This raises problems of exponential growth which human beings 

are able to avoid by proceeding in a different way. Simulating recognition 

of even simple patterns may thus require recourse to each of the funda- 

mental forms of human “information processing” discussed this far. And 

even if in these simple cases artificial intelligence workers have been able 

to make some headway with mechanical techniques, patterns as complex 

as artistic styles and the human face reveal a loose sort of resemblance 

which seems to require a special combination of insight, fringe conscious- 

ness, and ambiguity tolerance beyond the reach of digital machines. It 

is no wonder, then, that work in pattern recognition has had a late start 

and an early stagnation. 

In Chapter | we noted that a weakness of current pattern recognition 

programs (with the possible exception of the Uhr-Vossler program, the 

power of whose operators—since it only recognizes five letters—has not 

yet been sufficiently tested) is that they are not able to determine their 

own selection operators. Now, however, we shall see that this way of 

presenting the problem is based on assumptions that hide deeper and 

more difficult issues. 

Insight. A first indication that human pattern recognition differs radi- 

cally from mechanical recognition is seen in human (and animal) toler- 

ance for changes in orientation and size, degrees of incompleteness and 

distortion, and amount of background noise. 

An early artificial intelligence approach was to try to normalize the 
pattern and then to test it against a set of templates to see which it 
matched. Human recognition, on the other hand, seems to simply disre- 
gard changes in size and orientation, as well as breaks in the figure, and 
so on. Although certain perceptual constants do achieve some normali- 
zation (apparent size and brightness do not vary as much as correspond- 
ing changes in the signal reaching the retina), it seems clear that we do 
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not need to fully normalize and smooth out the pattern, since we can 

perceive the pattern as skewed, incomplete, large or small, and so on, at 

the same time we recognize it. 

More recent programs, rather than normalizing the pattern, seek pow- 

erful operators which pick out discriminating traits but remain insensi- 

tive to distortion and noise. But human beings, when recognizing 

patterns, do not seem to employ these artificial expedients either. In 

those special cases where human beings can articulate their cues, these 

turn out not to be powerful operators which include sloppy patterns and 

exclude noise, but rather a set of ideal traits which are only approximated 

in the specific instances of patterns recognized. Distorted patterns are 

recognized not as falling under some looser and more ingenious set of 

traits, but as exhibiting the same simple traits as the undistorted figures, 

along with certain accidental additions or omissions. Similarly, noise is 

not tested and excluded; it is ignored as inessential.*’* Here again, we 

note the human ability to distinguish the essential from the inessential. 

Fringe Consciousness. To determine which of a set of already analyzed 

patterns a presented pattern most nearly resembles, workers have pro- 

posed analyzing the presented pattern for a set of traits by means of a 

decision tree; or by combining the probabilities that each of a set of traits 

is present, as in Selfridge’s Pandaemonium program. Either method 

uncritically assumes that a human being, like a mechanical pattern 

recognizer, must classify a pattern in terms of a specific list of traits. It 

seems self-evident to Selfridge and Neisser that “a man who abstracts a 

pattern from a complex of stimuli has essentially classified the possible 

inputs.”®* Earl Hunt makes the same assumption in his review of pattern 

recognition work: “Pattern recognition, like concept learning, involves 

the learning of a classification rule.” 

Yet, if the pattern is at all complicated and sufficiently similar to many 

other patterns so that many traits are needed for discrimination, the 

problem of exponential growth threatens. Supposing that a trait-by-trait 

analysis is the way any pattern recognizer, human or artificial, must 

proceed thus leads to the assumption that there must be certain crucial 

traits—if one could only find them, or program the machine to find them 

for itself—which would make the processing manageable. 
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One is led to look for a sort of perceptual heuristic, the “powerful 

operators” which no one as yet has been able to find. And just as the 

chess masters are not able to provide the programmer with the heuristic 

shortcuts they are supposed to be using, Selfridge and Neisser note in the 

case of pattern recognition that “very often the basis of classification is 

unknown, even to [the analyzer].’’ Nevertheless, Selfridge and Neisser 

assume, like Newell and Simon, that unconsciously a maze is being 

explored—in this case, that a list of traits is being searched. They are thus 

led to conclude that “‘it [the basis of classification] is too complex to be 

specified explicitly.’’”° 

But the difficulties involved in searching such a list suggest again that, 

for human beings at least, not all possibly relevant traits are taken up in 

a series or in parallel and used to make some sort of decision, but that 

many traits crucial to discrimination are never taken up explicitly at all 

but do their work while remaining on the fringe of consciousness. 

Whereas in chess we begin with a global sense of the situation and have 

recourse to counting out only in the last analysis, in perception we need 

never appeal to any explicit traits. We normally recognize an object as 

similar to other objects without being aware of it as an example of a type 

or as a member of a class defined in terms of specific traits. As Aron 

Gurwitsch puts it in his analysis of the difference between perceptual and 

conceptual consciousness: 

Perceived objects appear to us with generic determinations. . . . But—and this 

is the decisive point—to perceive an object of a certain kind is not at all the same 

thing as grasping that object as representative or as a particular case of a type.” 

Of course, we can sometimes make the defining traits explicit: 

The first step in the constituting of conceptual consciousness consists in effecting 
a dissociation within the object perceived in its typicality. The generic traits 
which until then were immanent and inherent in the perceived thing are detached 
and disengaged from it. Rendered explicit, these traits can be seized in them- 
selves. . . . Consequent upon this dissociation, the generic becomes the general. 
From this aspect it opposes itself to the thing perceived from which it has just 
been disengaged, and which now is transformed into an example, a particular 
instance. .. . 

[Thus, cues] can be grasped and become themes [specific traits we are aware 
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of]... , whereas previously they only contributed to the constitution of another 
theme [the pattern] within which they played only a mute role.” 

This shift from perceptual to conceptual consciousness (from the per- 
ceptive to the mathematical frame of mind, to use Pascal’s expression), 

is not necessarily an improvement. Certain victims of aphasia, studied 

by Gelb and Goldstein, have lost their capacity for perceptual recogni- 
tion. All recognition for the patient becomes a question of classification. 
The patient has to resort to checklists and search procedures, like a 

digital computer. Some such aphasics can only recognize a figure such 

as a triangle by listing its traits, that is, by counting its sides and then 

thinking: “‘A triangle has three sides. Therefore, this is a triangle.””? Such 

conceptual recognition is time consuming and unwieldy; the victims of 

such brain injuries are utterly incapable of getting along in the everyday 

world. 

Evidently, in pattern recognition, passing from implicit perceptual 

grouping to explicit conceptual classification—even at some final stage, 

as in chess—is usually disadvantageous. The fact that we need not con- 

ceptualize or thematize the traits common to several instances of the 

same pattern in order to recognize that pattern distinguishes human 

recognition from machine recognition, which only occurs on the explicit 

conceptual level of class membership. 

Context-Dependent Ambiguity Reduction. In the cases thus far consid- 

ered, the traits defining a member of a class, while generally too numer- 

ous to be useful in practical recognition, could at least in principle always 

be made explicit. In some cases, however, such explicitation is not even 

possible. To appreciate this point we must first get over the idea, shared 

by traditional philosophers and workers in artificial intelligence alike, 

that pattern recognition can always be understood as a sort of classifica- 

tion. In this overhasty generalization three distinct kinds of pattern 

recognition are lumped together, none of which has the characteristics 

philosophers and digital computers demand. 

First there is the recognition of what Gurwitsch calls the generic. An 

example of such recognition would be the recognition of a certain object 

as a pencil. As Gurwitsch has pointed out, this form of recognition, while 
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not explicit, lends itself to explicitation in terms of a set of features. It 

might thus seem adapted to being programmed. But what Gurwitsch 

overlooks in his account is that in this form of recognition our purposes 

serve to select which features are significant, and, among these, certain 

features which are crucial. For example, it is significant for our purposes 

that a pen have a point. However, when a writing instrument with a ball 

at the end was introduced, the end was nonetheless called a point (not 

a tip), and the instrument a ball-point pen (not a pencil), presumably 

because it was crucial to the users that the mark this instrument made 

could not be erased. 

We might conclude that making an indelible mark is a defining crite- 

rion for being a pen, whereas having a point is only what Wittgenstein 

calls a symptom—“. . . a phenomenon of which the experience has taught 

us that it coincided, in some way or other, with the phenomenon which 

is our defining criterion.’”” We might even try to introduce this distinction 

between symptom and criterion into our program. But Wittgenstein’s 

essential point in distinguishing between symptom and criterion is that 

the distinction is not fixed once and for all but changes with our changing 

purposes and knowledge: 

In practice, if you were asked which phenomenon is the defining criterion and 

which is a symptom, you would in most cases be unable to answer this question 

except by making an arbitrary decision ad hoc. It may be practical to define a 

word by taking one phenomenon as the defining criterion, but we shall easily be 

persuaded to define the word by means of what, according to our first use, was 

a symptom. Doctors will use names of diseases without ever deciding which 

phenomena are to be taken as criteria and which as symptoms; and this need not 

be a deplorable lack of clarity.” 

Indeed, it is one way our concepts gain the openness crucial to human 

pattern recognition, a flexibility lacking in a computer using a fixed set 

of essential features. 

A second sort of pattern recognition is the recognition of resemblance. 

In this sort of recognition, as in “narrowing down’’’** the meaning of 

words or sentences, the context plays a determining role. The context 

may simply lead us to notice those resemblances which we can subse- 

quently recognize in isolation—as in the case of ambiguous figures such 
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as Wittgenstein’s duck-rabbit, which resembles a duck when surrounded 

by pictures of ducks and a rabbit when surrounded by rabbits—or it may 

lead us to focus on certain aspects of the pattern, as in Pudovkin’s famous 

experiment: 

One day Pudovkin took a close-up of Mosjoukin with a completely impassive 

expression and projected it after showing: first, a bowl of soup, then, a young 

woman lying dead in her coffin, and last, a child playing with a teddy-bear. The 

first thing noticed was that Mosjoukin seemed to be looking at the bowl, the 

young woman, and the child, and next one noted that he was looking pensively 

at the dish, that he wore an expression of sorrow when looking at the woman, 

and that he had a glowing smile for the child. The audience was amazed at his 

variety of expression, although the same shot had actually been used all three 

times and was, if anything, remarkably inexpressive.’ 

Here, in a striking way, the meaning of the context determines what 

expression is seen on the face in a situation in which no traits of the face 

as projected on the screen could account for these differences. Still one 

might say that the expressive face, the one that the viewers thought they 

saw, had certain traits, like sad eyes, or a happy smile, which led the 

viewer to recognize the expression. But the expression of a person’s eyes, 

for example, may depend on the whole face in such a way as to be 

unrecognizable if viewed through a slit. Moreover, a certain expression 

of the eyes may bring out a certain curve of the nose which would not 

be noticed if the nose were in another face; the nose in turn may give a 

certain twist to the smile which may affect the appearance of the eyes. 

As Wittgenstein remarks: ““A human mouth smiles only in a human 

face.”’”’ In such cases, the traits necessary for recognizing a resemblance 

(dancing eyes, mocking smile, etc.) cannot, even when thematized, be 

isolated and defined in a neutral, context-free way. Moreover, as in the 

case of linguistic disambiguation, the context—in this example the whole 

face—not only determines the features essential for recognition, but is 

reciprocally determined by them. The expression is not deduced from the 

traits; it is simply the organization of the eyes, the mouth, and so forth, 

just as a melody is made up of the very notes to which it gives their 

particular values. In this sort of resemblance, the notion of recognizing 

the pattern in terms of isolated traits makes no sense. 
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In another case of resemblance, objects recognized as belonging to- 

gether need not have any traits in common at all—not even context- 

dependent ones. Wittgenstein, in his study of natural language, was led 

to investigate this type of nonclassifactory recognition: 

We see a complicated network of similarities overlapping and criss-crossing: 

Sometimes overall similarities, sometimes similarities of detail. 

I can think of no better expression to characterize these similarities than 

“family resemblances’’; for the various resemblances between members of a 

family: build, features, color of eyes, gait, temperament, etc. etc., overlap and 

criss-cross in the same way. ... We extend our concept . . . as in spinning a thread 

we twist fiber on fiber.” 

Family resemblance differs from class membership in several impor- 

tant ways: classes can be defined in terms of traits even if they have no 

members, whereas family resemblances are recognized only in terms of 

real or imaginary examples.”* Moreover, whereas class membership is 

all or nothing,*°* family resemblance allows a spectrum ranging from the 

typical to the atypical. An atypical member of a family, for example, may 

be recognized by being placed in a series of faces leading from a typical 

member to the atypical one. Similarly, certain concepts like graceful, 

garish, and crude can not be defined in terms of necessary and sufficient 

conditions, but only by exhibiting a typical case. Since this sort of recog- 

nition of a member of a “family” is accomplished not by a list of traits, 

but by seeing the case in question in terms of its proximity to a paradigm 
(i.e., typical) case, such recognition gives us another kind of openness 

and flexibility. 

Finally Wittgenstein goes even further and suggests that in some kinds 

of recognition there may be no common traits, even overlapping ones. 
Wittgenstein continues the above remarks rather obscurely: 

.. . If someone wishes to say: “There is something common to all these construc- 
tions—namely the disjunction of all their common properties” —I should reply: 
Now you are only playing with words. One might as well say: “Something runs 
through the whole thread—namely the continuous overlapping of these fibres.””*! 

Wittgenstein here may be suggesting a third kind of recognition which 
he does not clearly distinguish from resemblance, but which we might 

call the recognition of similarity. 
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Wittgenstein, on this interpretation, should not be taken to mean that 

recognition involves so many overlapping traits, but that one cannot use 

such an unwieldy disjunction. A more consistent way of understanding 

his analysis would be to conclude that each of the traits he mentions in 

discussing family resemblance—the build, color of eyes, gait, etc.—is not 

identical in any two members of the family, but in turn consists of a 

network of crisscrossing similarities. To follow the analogy, each fiber is 

made of fibers all the way down. Thus, no two members of a family need 

have any identical features for them all to share a family resemblance. 

Similarity is the ultimate notion in Wittgenstein’s analysis and it cannot 

be reduced—as machine-thinking would require—to a list or disjunction 

of identical, determinate features. * 

Those capable of recognizing a member of a “‘family”’ need not be able 

to list any exactly similar traits common to even two members, nor is 

there any reason to suppose such traits exist. Indeed, formalizing family 

resemblance in terms of exactly similar traits would eliminate a kind of 

openness to new cases which is the most striking feature of this form of 

recognition. No matter what disjunctive list of traits is constructed, one 

can always invent a new “family” member whose traits are similar to 

those of the given members without being exactly similar to any of the 

traits of any of them, and which in some situation would be recognized 

as belonging with the others. 

This sophisticated but nonetheless very common form of recognition 

employs a special combination of the three forms of “information pro- 

cessing” discussed thus far: fringe consciousness, insight, and context 

dependence. To begin with, the process is implicit. It uses information 

which, in a manner of speaking, remains on the fringes of consciousness. 

To see the role of insight we must first distinguish the generic from the 

typical, although Gurwitsch uses these two terms interchangeably. As 

Gurwitsch defines it, recognition of the generic depends on implicit cues 

which can always be made explicit. Recognition of the typical, as we have 

been using the term, depends on similarities which cannot be thematized. 

Recognition of the typical, then, unlike recognition of the generic, re- 

quires insightful ordering around a paradigm. A paradigm case serves its 

function insofar as it is the clearest manifestation of what (essentially) 
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makes all members, members of a given group. Finally, recognition in 

terms of proximity to the paradigm is a form of context dependence. 

Wittgenstein remarks that “‘a perspicuous representation produces just 

that understanding which consists in seeing connections.’’*’ Following 

Wittgenstein, we have called this combination of fringe consciousness, 

insight, and context determination “‘perspicuous grouping.”’ This form 

of human “information processing” is as important as the three funda- 

mental forms of information processing on which it depends. 

Summary. Human beings are able to recognize patterns under the 

following increasingly difficult conditions: 

1. The pattern may be skewed, incomplete, deformed, and embedded in 

noise; 

2. The traits required for recognition may be “‘so fine and so numerous” that, 

even if they could be formalized, a search through a branching list of such 

traits would soon become unmanageable as new patterns for discrimina- 

tion were added; 

3. The traits may depend upon external and internal context and are thus not 

amenable to context-free specification; 

4. There may be no common traits but a “complicated network of overlap- 

ping similarities,’ capable of assimilating ever new variations. 

Any system which can equal human performance must, therefore, be 
able to 

1. Distinguish the essential from the inessential features of a particular in- 
stance of a pattern; 

2. Use cues which remain on the fringes of consciousness; 
. Take account of the context; 

4. Perceive the individual as typical, i.e., situate the individual with respect 
to a paradigm case. 

Ww 

Since the recognition of patterns of even moderate complexity may 
require these four forms of human “information processing,” work in 
pattern recognition has not progressed beyond the laborious recognition 
of simple alphanumeric patterns such as typewriter fonts and zip code 
figures. Moreover, it is generally acknowledged that further progress in 
game playing, language translation, and problem solving awaits a break- 
through in pattern recognition research. 
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Conclusion 

The basic problem facing workers attempting to use computers in the 
simulation of human intelligent behavior should now be clear: all alter- 
natives must be made explicit. In game playing, the exponential growth 
of the tree of these alternative paths requires a restriction on the paths 
which can be followed out; in complicated games such as chess, pro- 
grams cannot now select the most promising paths. In problem solving, 

the issue is not only how to direct a selective search among the explicit 

alternatives, but how to structure the problem so as to begin the search 

process. In language translation, even the elements to be manipulated are 

not clear due to the intrinsic ambiguities of a natural language; in pattern 

recognition, all three difficulties are inextricably intertwined, as well as 

the fact that similarity and typicality seem to be irreducible characteris- 

tics of perception. These difficulties have brought to a standstill the first 

five years of work on Cognitive Simulation. 

None of Simon’s predictions has been fulfilled. The failure to fulfill the 

first two, about how well machines could do in chess and mathematics, 

gave the lie to Simon’s third prediction concerning a psychological the- 

ory of human behavior. In spite of the eagerness and gullibility of psy- 

chologists, within the past ten years most theories in psychology have not 

taken the form of computer programs. 

Instead of these triumphs, an overall pattern has emerged: success 

with simple mechanical forms of information processing, great expecta- 

tions, and then failure when confronted with more complicated forms of 

behavior. Simon’s predictions fall into place as just another example of 

the phenomenon which Bar-Hillel has called the ‘‘fallacy of the success- 

ful first step.”’*** Simon himself, however, has drawn no such sobering 

conclusions. In his latest prediction, made in 1965, Simon now affirms 

that ‘“‘machines will be capable, within twenty years, of doing any work 

that a man can do.”’*° 

We shall devote Part II to the reasons for this imperturbable optimism, 

but first we must consider the work in AI which has taken up where work 

in Cognitive Simulation gave out. 
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Phase II (1962-1967) Semantic Information 

Processing 

To place Phase I in perspective and to form an idea of what was 

expected and accomplished in Phase II, it is helpful to begin by quot- 

ing Minsky’s brief account of the history of work on machine intelli- 

gence: 

In the early 1950's, as general-purpose computers became available to the scien- 

tific community, Cybernetics divided . . . into three chief avenues: The first was 

the continuation of the search for simple basic principles. This became trans- 

formed into the goal of discovering what we might call minimal, Self-Organizing 

Systems. A paradigm of this approach is to find large collections of generally 

similar components that, when arranged in a very weakly specified structure and 

placed in an appropriate environment, would eventually come to behave in an 

“adaptive” fashion. Eventually, it was hoped, intelligent behavior would emerge 

from the evolution of such a system.! 

Since those still pursuing this course, sometimes called cybernetics, 

have produced no interesting results—although their spokesman, Frank 

Rosenblatt, has produced some of the most fantastic promises and 

claims’*—they will not be dealt with here. 

The second important avenue was an attempt to build working models of hu- 

man behavior, . . . requiring the machine’s behavior to match that of human sub- 

aig SE 
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The book, Computers and Thought, edited by E. Feigenbaum and J. Feldman 
who did their graduate work in the Carnegie group, gives a good view of the state 

of affairs as it stood by about the end of 1961.4 

This is the research in Cognitive Simulation, led by Newell and Simon, 

which we have criticized in Chapter 1. Minsky is similarly critical of this 

work in a paper delivered at the time Phase I was nearing its end: 

Methods that worked quite well on easy problems did not extend smoothly to 

the difficult ones. Continued progress will require implementation of new ideas, 

for there are some very tough problems in our immediate path.° 

This is Minsky’s way of recognizing the stagnation we have noted. At 

the same time Minsky and his group at M.I.T. undertook to provide new 

ideas and their implementation: 

The third approach, the one we call Artificial Intelligence, was an attempt to 

build intelligent machines without any prejudice toward making the system 

simple, biological, or humanoid. Workers taking this route regarded the self- 

organizing systems as unpromising or, perhaps, premature. Even if simplicity of 

initial organization was to be an ultimate goal, one might first need experience 

with working intelligent systems (based if necessary on ad hoc mechanisms) if 

one were eventually to be able to design more economical schemes.* 

We shall now turn to this third and most recent approach, the results 

of which are reported in Minsky’s book Semantic Information Process- 

ing, to see just what has actually been accomplished. Minsky once sug- 

gested that in evaluating the programs presented in his book one might 

ask five questions: 

. Why were these particular problems selected? 

. How do these programs work? 

. What are their limitations? 

. What do the programs actually achieve? 

. How can they be extended to larger domains of competence? AP WN — 

If, following this method, we analyze the programs which Minsky pre- 

sents as the best work since 1962, we shall find that unlike work done 

before 1961, which tended to give the impression of intelligence by 

simulating simple, mechanical aspects of intelligent behavior, the current 

approach is characterized by ad hoc solutions of cleverly chosen problems, 
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which give the illusion of complex intellectual activity. In fact, however, 

problems which arrested work in 1961 still remain unsolved. We shall 

also find again that only an unquestioned underlying faith enables work- 

ers such as Minsky to find this situation encouraging. 

Let us look at the programs in detail. 

|. Analysis of Semantic Information Processing 

Programs 

ANALYSIS OF A PROGRAM WHICH “UNDERSTANDS ENGLISH’’— 

BOBROW’S STUDENT 

Of the five semantic information processing programs collected in 

Minsky’s book, Daniel Bobrow’s STUDENT—a program for solving 

algebra word problems—is put forward as the most successful. It is, 

Minsky tells us, “‘a demonstration par excellence of the power of using 

meaning to solve linguistic problems.’’’ Indeed, Minsky devotes a great 

deal of his Scientific American article to Bobrow’s program and goes so 

far as to say that “it understands English.’ 

Since this program is presented as the best so far, we shall begin 

by analyzing it in detail, according to Minsky’s suggested five ques- 

tions. 

First: Why was this particular problem selected? 

Bobrow himself tells us: 

In constructing a question-answering system many problems are greatly sim- 

plified if the problem context is restricted.’ 

Moreover, 

There are a number of reasons for choosing the context of algebra story problems 
in which to develop techniques which would allow a computer problem solving 
system to accept a natural language input. First, we know a good type of data 
structure in which to store information needed to answer questions in this 
context, namely, algebraic equations.'° 

It is important to note that the problem was chosen because the 
restricted context made it easier. The full significance of this restriction, 
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however, will only be evident after we have answered the next two 
questions. 

How does the program work? 

The program simply breaks up the sentences of the story problem into 
units on the basis of cues such as the words “times,” “‘of,” “equals,” etc..; 
equates these sentence chunks with x’s and y’s; and tries to set up 
simultaneous equations. If these equations cannot be solved, it appeals 

to further rules for breaking up the sentences into other units and tries 

again. The whole scheme works only because there is the constraint, not 

present in understanding ordinary discourse, that the pieces of the sen- 

tence, when represented by variables, will set up soluble equations. As 

Minsky puts it: “. . . some possibly syntactic ambiguities in the input are 

decided on the overall basis of algebraic consistency. . . .”!! 

Choosing algebra problems also has another advantage: 

In natural language, the ambiguities arise not only from the variety of structural 

groupings the words could be given, but also from the variety of meanings that 

can be assigned to each individual word. In STUDENT the strong semantic 

constraint (that the sentences express algebraic relations between the designated 

entities) keeps the situation more or less under control." 

What are the limitations of the program? 

The advantage of using algebraic constraints is also a serious limita- 

tion on the generality of the program, however, for such a “strong 

constraint” eliminates just that aspect of natural language, namely its 

ambiguity, which makes machine processing of natural language diffi- 

cult, if not impossible. Such a program is so far from semantic under- 

standing that, as Bobrow admits, “. . . the phrase ‘the number of times 

I went to the movies’ which should be interpreted as a variable string will 

be interpreted incorrectly as the product of the two variables ‘number 

of’ and ‘I went to the movies,’ because ‘times’ is always considered to 

be an operator.”’” 

What, then, has been achieved? 

Bobrow is rather cautious. Although his thesis is somewhat mislead- 

ingly entitled ‘“‘Natural Language Input for a Computer Problem Solving 
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Program,” Bobrow makes clear from the outset that the program “‘ac- 

cepts as input a comfortable but restricted subset of English.”* He 

adds: 

In the following discussion, I shall use phrases such as “the computer under- 

stands English.” In all such cases, the “English” is just the restricted subset of 

English allowable as input for the computer program under discussion." 

This is straightforward enough, and seems an admirable attempt to claim 

no more than is justified by the restricted choice of material. In the 

course of the work, Bobrow even makes clear that ““The STUDENT 

program considers words as symbols, and makes do with as little knowl- 

edge about the meaning of words as is compatible with the goal of finding 

a solution of the particular problem.”’'® 

In other words this program embodies a minimum of semantic under- 

standing. Bobrow is proud that he can get so much for so little: “The 

semantic model in the STUDENT system is based on one relationship 

(equality) and five basic arithmetic functions.” 

Bobrow is equally careful in noting he has given a special meaning to 

“understands.” 

For purposes of this report I have adopted the following operational definition 

of “understanding.” A computer understands a subset of English if it accepts 

input sentences which are members of this subset, and answers questions based 

on information contained in the input. The STUDENT system understands 

English in this sense.'** 

Bobrow concludes cautiously: “I think we are far from writing a pro- 

gram which can understand all, or even a very large segment, of English. 
However, within its narrow field of competence, STUDENT has demon- 
strated that ‘understanding’ machines can be built.’’!’ 

Yet Minsky says in his Scientific American article that “STUDENT 

. understands English.’’ What has happened? 

Bobrow’s quotation marks around “understanding” are the key. If we 
remember that ‘“‘understands” merely means “answers questions in a 
restricted subset of English subject to algebraic constraints,” then we will 
also remember that although the words in quotation marks have nothing 
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to do with what human understanding normally means, they are 

nonetheless accurate. However, one can’t help being misled into feeling 

that if Bobrow uses ‘“‘understands” rather than “processes,” it must be 

because his program has something to do with human understanding. 

Minsky exploits this ambiguity in his rhetorical article simply by drop- 

ping the quotation marks. 

Minsky makes even more surprising and misleading claims concerning 

the “enormous ‘learning potential’ ”” of Bobrow’s program: 

Consider the qualitative effect, upon the subsequent performance of Bobrow’s 

STUDENT, of telling it that “distance equals speed times time!” That one 

experience alone enables it to handle a large new portion of “high-school alge- 

bra”’; the physical position-velocity-time problems. It is important not to fall into 

the habit . . . of concentrating only on the kind of “learning” that appears as 

slow-improvement-attendant;upon-sickeningly-often-repeated experience! 

Bobrow’s program does not have any cautious statistical devices that have 

to be told something over and over again, so its /earning is too brilliant to be 

called so.”° 

Again it is easy to show that what has been acquired by the machine 

can in no way be called “understanding.” The machine has indeed been 

given another equation, but it does not understand it as a formula. That 

is, the program can now plug one distance, one rate, and one time into 

the equation d = rt; but that it does not understand anything ts clear 

from the fact that it cannot use this equation twice in one problem, 

for it has no way of determining which quantities should be used in 

which equation. As Bobrow admits: “the same phrase must always be 

used to represent the same variable in a problem.’”' No learning has 

occurred. 

Once he has removed the quotation marks from “understand” and 

interpreted the quotation marks around “learning” to mean superhuman 

learning, Minsky is free to engage in the usual riot of speculation. 

In order for a program to improve itself substantially it would have to have at 

least a rudimentary understanding of its own problem-solving process and some 

ability to recognize an improvement when it found one. There is no inherent 

reason why this should be impossible for a machine. Given a model of its own 
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workings, it could use its problem-solving power to work on the problem of 

self-improvement. . . . 

Once we have devised programs with a genuine capacity for self-improvement 

a rapid evolutionary process will begin. As the machine improves both itself and 

its model of itself, we shall begin to see all the phenomena associated with the 

terms “consciousness,” “intuition” and “intelligence” itself. It is hard to say how 

close we are to this threshold, but once it is crossed the world will not be the 

same.” 

It is not as hard to say how close we are to this threshold as Minsky 

would like us to believe. Since the success of Bobrow’s program has 

allegedly given us the rudiments of understanding and learning that 

Minsky is relying on, we need only ask: to what extent can Bobrow’s 

techniques be generalized and extended? 

Which leads us to question five: How can the program in question be 

extended to larger domains of competence? 

Here even Bobrow throws his caution to the winds and—in spite of 

his earlier remark that the semantic model is based on one relationship 

(equality); that is, only sets up and solves equations where it can use the 

algebraic constraint—claims that his “semantic theory of discourse can 

be used as a basis for a much more general language processing sys- 

tem.””*’ And Bobrow concludes the abstract of his thesis with the now 

familiar first-step fallacy: “The STUDENT system is a first step toward 

natural language communication with computers. Further work on the 

semantic theory proposed should result in much more sophisticated 

systems.””** 

Five years have passed since Bobrow made this claim, and no more 

sophisticated semantic theory has been forthcoming. Why Bobrow and 

Minsky think, in the face of the peculiar restrictions necessary to the 

function of the program, that such a generalization must be possible is 

hard to understand. Nothing, I think, can justify or even explain their 

optimism concerning this admittedly limited and ad hoc approach. Their 

general optimism that some such computable approach must work, how- 

ever, can be seen to follow from a fundamental metaphysical assumption 

concerning the nature of language and of human intelligent behavior, 

namely that whatever orderly behavior people engage in can in principle 
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be formalized and processed by digital computers. (See Chapter 5.) This 
leads Minsky and Bobrow to shrug off all current difficulties as techno- 
logical limitations, imposed, for example, by the restricted size of the 
storage capacity of present machine memories.*°* 

Were it not for such an assumption, Bobrow’s limited success, her- 
alded by Minsky as the most promising work thus far, would be recog- 
nized as a trick which says nothing either for or against the possibility 
of machine understanding, and the fact that this is the best that an 
intelligent person like Bobrow could do would lead to discouragement 
as to the possibility of ever reaching the threshold of self-improving 
machines. 

EVANS’ ANALOGY PROGRAM 

The same pattern occurs throughout Minsky’s collection: an ad hoc 
solution of a restricted problem, first reported with caution, and then 

interpreted as being the first step to more general methods. Yet all the 

work presented in Minsky’s book was completed by 1964, and although 

seven more years have elapsed, none of the promised generalizations has 

been produced. 

Evans’ analogy-finding program, for example, is a masterful complex 

program for solving the sort of analogy problems used in intelligence 

testing. (See Figure 3.) It performs its particular restricted task as well 

as an average tenth grader, which, granted the state of the art, is an 

impressive performance. Evans, moreover, realizes that this success as 

such has little value unless the techniques he employs can be generalized. 

But, unlike Bobrow, he does not content himself with the assertion that 

such a generalization is possible. Rather, he attempts at the end of his 

paper to sketch the form such a generalization would take, and the 

contribution it would make to problem-solving programs such as GPS 

and work in pattern recognition. 

In the final pages of this chapter we describe a “pattern recognition” process of 

which the main outlines are based on the conception of ANALOGY described. 

It is more ambitious chiefly in that a more powerful and more general-purpose 

descriptive framework for the ‘“‘objects” is introduced.’* 
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GPS treats sub-objects of a given object through its goal-subgoal organization. 

That is, GPS avoids looking at complex structures on a given level by decompos- 

ing them into smaller structures tied to subgoals. So GPS never sees a single 

complex structure as such; when a substructure is handled at some deeper 

subgoal level it is ‘‘out of context” in that the necessary information as to how 

the achievement of this subgoal contributes to the achievement of larger goals 

is lacking. Newell discusses a form of this “lack of context” problem and several 

rather unsatisfactory attempts at solving it. The mechanism we have sketched 

provides a pattern-recognition device capable of taking a look at the problem 

which is “global” yet has access to the full structure. Such “global” guidance 

could be expected to save GPS a large amount of the time now spent in setting 

up and pursuing subgoals that do not contribute to achieving goals at or near 

the top level. This alone would be a worthwhile contribution.’ 

Evans also has proposals for learning: 

Certainly the study of these problems in the relatively well-understood domain 

of phrase-structure languages is a natural next step toward the development of 
genuine “generalization learning” by machines and a prerequisite to considera- 
tion of learning in still more complex descriptive language environments. One 
interesting possibility, since the transformation rules themselves can be described 
in phrase-structure terms, would be to apply the entire “phrase-structure + 
GPS” apparatus to improving its own set of transformation rules.”* 

Evans realizes that ‘this may, of course, turn out to be very difficult.’’?® 

Presumably it has so turned out, because no more has been published 

concerning this scheme since this work was completed in 1963, and, as 
we have seen, since then Newell has abandoned GPS and Murray Eden 
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has reported that in 1968 pattern recognition was as ad hoc as ever. 
Which, of course, raises the usual question: Why do Minsky and Evans 

so confidently expect that the ad hoc techniques used to solve this specific 
and rather complex analogy problem can be generalized? A hint as to 
the assumptions underlying this confidence can be found in Minsky’s 
surprising comparison of Evans’ program to human analogy solving. In 
spite of his disclaimers that AI is not interested in cognitive simula- 

tion, Minsky gives the following “mentalistic” description of Evans’ pro- 

gram. 

To explain the spirit of this work, it is best to describe the program in mentalistic 

form. Given a set of figures, it constructs a set of hypotheses or theories as 

follows: 

1. Based on the descriptions D(A) and D(B) of Figures A and B [see Figure 

3] there are many ways in which D(A) can be transformed into D(B); 

choose one of these. 

2. There are also many ways in which the parts of A can be put into corre- 

spondence with the parts of C: each such correspondence suggests a rela- 

tion like that proposed in (1), but which now relates Fig. C and some other 

figures. 

3. It is unlikely that any of the relations found in (2) will apply perfectly to 

any of the answer-figures. (If just one does, then that will be the program’s 

answer.) For each answer figure, ‘““weaken,”’ 1.e., generalize each relation 

just enough so that it will apply to the figure. 

4. Finally, the program measures how much it had to weaken each relation. 

It chooses the one that required the least change, and gives the correspond- 

ing answer figure as its answer. 

By choosing that hypothesis which involved the least “weakening” of the 

original A—> B transformation hypothesis, the program selects that explanation 

that contains the most information common to both A—> B and C —>D 

relations. The details of the selection rules in steps (1), (2), (3), and (4), amount, 

in effect to Evans’ theory of human behavior in such situations. I feel sure 

that something of this general character is involved in any kind of analogical rea- 

soning.*° 

This “something” is put more clearly in Minsky’s Scientific American 

article. There he says: ‘‘I feel sure that rules or procedures of the same 

general character are involved in any kind of analogical reasoning.”””' 

This is the same assumption which, as we have seen, underlies Newell 
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and Simon’s work in CS. In fact, Evans uses a quotation from Newell 

to describe the problem-solving procedure involved: 

“These programs are all rather similar in nature. For each the task is difficult 

enough to allow us to assert that the programs problem-solve, rather than simply 

carry out the steps of a procedure for a solution invented by the programmer. 

They all operate on formalized tasks, which, although difficult, are not unstruc- 

tured. All the programs use the same conceptual approach: they interpret the 

problem as combinatorial, involving the discovery of the right sequence of opera- 

tions out of a set of possible sequences. All of the programs generate some sort 

of tree of possibilities to gradually explore the possible sequences. The set of all 

sequences is much too large to generate and examine in foto, so that various 

devices, called heuristics, are employed to narrow the range of possibilities to a 

set that can be handled within the available limits of processing effort.” 

Evans then concludes: 

The geometric-analogy program also fits this description. Stated very briefly, 
given a problem of this type, the program uses various heuristics to select a 

“correct” rule (in a reasonable time) from a very extensive class of possible 
rules,* 

It is true that if human beings did solve analogy problems in this way, 

there would be every reason to expect to be able to improve and general- 
ize Evans’ program, since human beings certainly surpass the machines’ 
present level of performance. But, as in the case of GPS, there is no 
evidence that human beings proceed in this way, and descriptive, psycho- 

logical evidence suggests that they do not. 

Rudolph Arnheim, professor of psychology at Harvard University, in 
discussing Evans’ work, has described the different way in which human 
beings approach the same sort of problem. His description is worth 
quoting in full: 

What happens when a person is confronted with a figure such as Figure [3]? The 
reaction will vary somewhat from individual to individual as long as no particu- 
lar context calls for concentration on specific structural features. By and large, 
however, the observer is likely to notice a vertical arrangement, made up of two 
units, of which the upper is larger and more complex than the lower; he may also 
notice a difference in shape. In other words, he will perceive qualitative charac- 
teristics of placement, relative size, shape; whereas he is unlikely to notice much 
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of the metric properties from which the computer’s reading of the pattern must 
set out, namely, absolute size and the various lengths and distances by which this 
individual figure is constructed. If one asks observers to copy such a figure, their 
drawings will show concentration on the topological characteristics and neglect 
of specific measurements. 

Confronted now with a pairing of A and B, the human observer may have a 
rather rich and dazzling experience. He may see, at first, fleeting, elusive resem- 
blances among basically different patterns. The over-all figure, made up of the 

pairing of the two, may look unstable, ungraspable, irrational. There are two 

vertical arrangements, combining in a sort of symmetry; but these two columns 

are crossed and interfered with by diagonal relations between the two “filled”’ 

large circles and the two smaller, unfilled shapes. The various structural features 

do not add up to a unified, stable, understandable whole. Suddenly, however, 

the observer may be struck by the simple rectangular arrangement of the four 

smaller figures: two equal circles on top, two equal squares at the bottom. As 

soon as this group becomes the dominant theme or structural skeleton of the 

whole, the remainder—the two large circles—joins the basic pattern as a sec- 

ondary, diagonal embellishment. A structural hierarchy has been established. 

Now the double figure is stable, surveyable, understandable, and therefore ready 

for comparison with other figures. A first act of problem solving has taken 

place. 

If the observer turns to Figure C, his view of this new pattern is determined 

from the outset by his preceding concern with A and B. Perceived from the 

viewpoint of A, C reveals a similar vertical structure, distinguished from A 

mainly by a secondary contrast of shapes. The family resemblance is great, the 

relation comes easily. But if C is now paired with D,, the resemblance looks 

excessive, the symmetry too complete. On the contrary, a comparison with D, 

offers too little resemblance. D, is recognized immediately as the correct partner, 

the missing fourth element of the analogy, if the relation between A and B had 

been properly grasped before. 

This episode of perceptual problem solving has all the aspects of genuine 

thinking: the challenge, the productive confusion, the promising leads, the partial 

solutions, the disturbing contradictions, the flash appearance of a stable solution 

whose adequacy is self-evident, the structural changes brought about by the 

pressure of changing total situations, the resemblance discovered among different 

patterns. It is, in a small way, an exhilarating experience, worthy of a creature 

endowed with reason; and when the solution has been found, there is a sense of 

dis-tension, of pleasure, of rest. 

None of this is true for the computer, not because it is without consciousness, 

but because it proceeds in a fundamentally different fashion. We are shocked to 

learn that in order to make the machine solve the analogy problem the experi- 



What Computers Can't Do / 142 

menter ‘“‘had to develop what is certainly one of the most complex programs 

ever written.” For us the problem is not hard; it is accessible to the brain of a 

young student. The reason for the difference is that the task calls for the han- 

dling of topological relations, which require the neglect of purely metric ones. 

The brain is geared to precisely such topographical features because they inform 

us of the typical character of things, rather than of their particular measure- 

ments.”? 

As in the case of chess, it turns out that global perceptual grouping 

is a prior condition for the rule-governed counting out—the only kind 

of procedure available to the machine. As Arnheim puts it, “Topology 

was discovered by, and relies on, the perceptual powers of the brain, not 

the arithmetical ones.” 

Obviously Minsky and Evans think that analogies are solved by hu- 

man beings by applying transformation rules, because the prospects for 

AI are only encouraging if this is how humans proceed. But it is clearly 

circular to base one’s optimism on an hypothesis which, in turn, is only 

justified by the fact that if the hypothesis were true, one’s optimism 

would be justified. 

QUILLIAN’S SEMANTIC MEMORY PROGRAM 

The final program we shall consider from Phase II, Ross Quillian’s 
Semantic Memory Program, is the most interesting, because most gen- 
eral; and the most modest, in that its author (working under Simon 
rather than Minsky) has made no sweeping promises or claims.°** This 
program confirms a general evaluation heuristic already apparent in 
Samuel’s modesty and success and“Simon’s and Gelernter’s claims and 
setbacks, namely that the value of a program is often inversely propor- 
tional to its programmer's promises and publicity. 

Quillian, like Bobrow, is interested in simulating the understanding of 
natural language; but, unlike Bobrow and Minsky, he sees that this 
problem cannot be dealt with by ad hoc solutions. 

In the first place, we do not believe that performance theories or computer 
models can ignore or put off semantics, as most language processing programs 
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so far have done, and yet hope to achieve success. Whether a program is intended 
to parse sentences, to translate languages, or to answer natural language ques- 
tions, if it does not take account of semantic facts both early and often, I do not 
think it has a chance of approaching the level of human competence.*° 

After reviewing all work in the field, including that of Bobrow, Quil- 
lian remarks: 

Programs such as Bobrow’s have been able to set up the equations corresponding 

to certain algebra word problems by an almost entirely “syntactic” procedure. 

... However, if one attempts to extend the range of language that such a program 

can handle, it becomes necessary to incorporate increasing numbers of semantic 
facts.*” 

Quillian concludes that 

the problems of what is to be contained in an overall, human-like permanent 

memory, what format this is to be in, and how this memory is to be organized 

have not been dealt with in great generality in prior simulation programs. 

. .. Further advances in simulating problem-solving and game playing, as well 

as language performance, will surely require programs that develop and interact 

with large memories.* 

Quillian then proceeds to propose a complex heuristic program for 

storing and accessing the meaning of words and “anything that can be 

stated in language, sensed in perception, or otherwise known and remem- 

bered”’*® in one “enormous interlinked net.’’*° Quillian proposes this 

program as “a reasonable view of how semantic information is organized 

within a person’s memory.”*! He gives no argument to show that it is 

reasonable except that if a computer were to store semantic information, 

this would be a reasonable model for it. People, indeed, are not aware 

of going through any of the complex storage and retrieval process Quil- 

lian outlines, but this does not disturb Quillian, who, like his teacher, 

Simon, in similar trouble can always claim that these processes are 

nonetheless unconsciously taking place: 

While the encoding process is of course not identical to the covert processing that 

constitutes the understanding of the same text during normal reading, it is 

. in some ways a slowed-down, overt version of it.* 
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That such unconscious processing is going on, and moreover, that 

such processing follows heuristic rules is by no means obvious. We have 

seen in the cases of chess playing and analogy solving that gestalt group- 

ing plays a crucial role, and it may well do so here. Yet Quillian seems 

to have inherited Newell and Simon’s unquestioned assumption that 

human beings operate by heuristic programs. 

The heuristic methods by which one particular comprehension of text is selected 

is the central problem for anyone who would explain “understanding,” just as 

the heuristic methods by which one particular chess move is selected from 

all those possible is the central problem for anyone who would explain chess 

playing.*’ 

In terms of this assumption Quillian must assume that the task of the 

program involves working from parts to wholes. 

In selecting a task to perform with a model memory, one thinks first of the ability 

to understand unfamiliar sentences. It seems reasonable to suppose that people 

must necessarily understand new sentences by retrieving stored information 

about the meaning of isolated words and phrases, and then combining and 

perhaps alte-ing these retrieved word meanings to build up the meanings of 

sentences. Accordingly, one should be able to take a model of stored semantic 

knowledge, and formulate rules of combination that would describe how sen- 

tence meanings get built up from stored word meanings.“ 

Quillian also has great hopes for his system: 

It further seems likely that if one could manage to get even a few word meanings 

adequately encoded and stored in a computer memory, and a workable set of 

combination rules formalized as a computer program, he could then bootstrap 

his store of encoded word meanings by having the computer itself “understand” 

sentences that he had written to constitute the definitions of other single words. 

That is, whenever a new, as yet uncoded, word could be defined by a sentence 

using only words whose meanings had already been encoded, then the represen- 
tation of this sentence’s meaning, which the machine could build by using 
its previous knowledge together with its combination rules, would be the ap- 
propriate representation to add to its memory as the meaning of the new 
word.*’ 

But with a frankness, rare in the literature, Quillian also reports his 
disappointments: 
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Unfortunately, two years of work on this problem led to the conclusion that the 
task is much too difficult to execute at our present stage of knowledge. The 
processing that goes on in a person’s head when he ‘“‘understands” a sentence and 
incorporates its meaning into his memory is very large indeed, practically all of 
it being done without his conscious knowledge.* 

The magnitude of the problem confronting Quillian becomes clear 
when we note that 

the definition of eight hundred and fifty words comprise far more information 
than can be modeled in the core of today’s computers. . . .*” 

These difficulties suggest that the model itself—the idea that our un- 

derstanding of a natural language involves building up a structured 

whole out of an enormous number of explicit parts—may well be mis- 

taken. Quillian’s work raises rather than resolves the question of storing 

the gigantic number of facts resulting from an analysis which has no 

place for perceptual gestalts. If this data structure grows too rapidly with 

the addition of new definitions, then Quillian’s work, far from being 

encouraging, would be a reductio ad absurdum of the whole computer- 

oriented approach. Before taking a stand on whether Quillian’s work is 

grounds for optimism, one would expect an answer to the basic question: 

Does Quillian’s data base grow linearly or exponentially with additional 

entries? 

On this crucial point it is surprising to find much hope but little 

information. Quillian’s program contains definitions of only from 50 to 

60 words, and, in describing Quillian’s work, in his book written in 1968, 

three years after the work was completed, Minsky has to admit that “we 

simply do not know enough about how powerful Quillian’s methods 

would be when provided with a more substantial knowledge bank.””** 

Again, no further progress has been reported. 

Il. Significance of Current Difficulties 

What would be reasonable to expect? Minsky estimates that Quillian’s 

program now contains a few hundred facts. He estimates that “a million 

facts would be necessary for great intelligence.’’*” He also admits that 
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each of “‘the programs described [in this book] will work best when given 

exactly the necessary facts, and will bog down inexorably as the informa- 

tion files grow.”*° 

Is there, thus, any reason to be confident that these programs are 

approaching the “superior heuristics for managing their knowledge 

structure’’ which Minsky believed human beings must have; or, as 

Minsky claims in another of his books, that 

within a generation . . . few compartments of intellect will remain outside the 

machine’s realm—the problem of creating “artificial intelligence” will be sub- 

stantially solved.*! 

Certainly there is nothing in Semantic Information Processing to justify 

this confidence. As we have seen, Minsky criticizes the early programs 

for their lack of generality. ‘Each program worked only on its restricted 

specialty, and there was no way to combine two different problem- 

solvers.”*? But Minsky’s solutions are as ad hoc as ever. Yet he adds 

jauntily: 

The programs described in this volume may still have this character, but they 

are no longer ignoring the problem. In fact, their chief concern is finding methods 

of solving it. 

But there is no sign that any of the papers presented by Minsky have 

solved anything. They have not discovered any general feature of the 
human ability to behave intelligently. All Minsky presents are clever 
special solutions, like Bobrow’s and Evans’, or radically simplified mod- 

els such as Quillian’s, which work because the real problem, the problem 
of how to structure and store the mass of data required has been put 
aside. Minsky, of course, has already responded to this apparent short- 
coming with a new version of the first step fallacy: 

The fact that the present batch of programs still appear to have narrow ranges 
of application does not indicate lack of progress toward generality. These pro- 
grams are steps toward ways to handle knowledge.“ 

In Phase II the game seems to be to see how far one can get with the 
appearance of complexity before the real problem of complexity has to 
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be faced, and then when one fails to generalize, claim to have made a first 
step. 

Such an approach is inevitable as long as workers in the field of AI 
are interested in producing striking results but have not solved the 
practical problem of how to store and access the large body of data 
necessary, if perhaps not sufficient, for full-scale, flexible, semantic infor- 
mation processing. Minsky notes with satisfaction, looking over the 
results, “‘one cannot help being astonished at how far they did get with 

their feeble semantic endowment.”*’ Bar-Hillel in a recent talk to SI- 
GART (Special Interest Group in Artificial Intelligence of the Associa- 
tion for Computing Machinery) calls attention to the misleading 

character of this sort of claim. 

There are very many people—in all fields but particularly in the field of AI— 

who, whenever they themselves make a first step towards letting the computer 

do certain things it has never done before, then believe that the remaining steps 

are nothing more than an exercise in technical ability. Essentially, this is like 

saying that as soon as anything can be done at all by a computer, it can also be 

done well. On the contrary, the step from not being able to do something at 

all to being able to do it a little bit is very much smaller than the next step— 

being able to do it well. In AI, this fallacious thinking seems to be all perva- 

sive.*° 

But Bar-Hillel is too generous in suggesting that the fallacy is sim- 

ply overestimation of the ease of progress. To claim to have taken even 

an easy first step one must have reason to believe that by further such 

steps one could eventually reach one’s goal. We have seen that Min- 

sky’s book provides no such reasons. In fact these steps may well be 

strides in the opposite direction. The restricted character of the results 

reported by Minsky, plus the fact that during the last five years none 

of the promised generalizations has been produced, suggests that 

human beings do not deal with a mass of isolated facts as does a digital 

computer, and thus do not have to store and retrieve these facts by 

heuristic rules. Judging from their behavior, human beings avoid rather 

than resolve the difficulties confronting workers in Cognitive Simu- 

lation and Artificial Intelligence by avoiding the discrete informa- 
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tion-processing techniques from which these difficulties arise. Thus it 

is by no means obvious that Minsky’s progress toward handling 

“knowledge” (slight as it is) is progress toward artificial intelligence 

at all. 



Conclusion 

We have seen how Phase I, heralded as a first step, ends with the 

abandonment of GPS and the general failure to provide the theorem 

proving, chess playing, and language translation programs anticipated. 

Minsky himself recognizes this failure, and while trying to minimize it, 

diagnoses it accurately: 

A few projects have not progressed nearly as much as was hoped, notably 

projects in language translation and mathematical theorem-proving. Both cases, 

I think, represent premature attempts to handle complex formalisms without 

also representing their meaning.' 

Phase II—a new first step—begins around 1961 with Minsky’s gradu- 

ate students at M.I.T. undertaking theses aimed at overcoming this 

difficulty. It ends in 1968 with the publication of Minsky’s book Semantic 

Information Processing, which reports these attempts, all completed by 

1964. After analyzing the admittedly ad hoc character of those programs 

which Minsky considers most successful, and noting the lack of follow- 

up during the last five years, we can only conclude that Phase II has also 

ended in failure. 

Most reports on the state of the art try to cover up this failure. In a 

report undertaken for the IEEE in 1966, covering work in AI since 1960, 

R. J. Solomonoff devotes his first three pages to speaking of GPS and 

other past achievements, already completed by 1960, and the next three 

/ 149 
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pages to talking of the glorious future of work on induction by S. Amarel: 

“Although Amarel hasn’t programmed any of his theories, his ideas and 

his analysis of them are important.’ There is little mention of the 

semantic information processing programs touted by Minsky. All hope 

is placed in induction and learning. Unfortunately, ‘‘in all the learning 

systems mentioned, the kinds of self improvement accessible to the ma- 

chines have been quite limited. . . . We still need to know the kind of 

heuristics we need to find heuristics, as well as what languages can 

readily describe them.’” 

Since no one has made any contribution to finding these heuristics, 

Solomonoffs final hope is placed in artificial evolution: 

The promise of artificial evolution is that many things are known or suspected 

about the mechanisms of natural evolution, and that those mechanisms can be 

used directly or indirectly to solve problems in their artificial counterparts. For 

artificial intelligence research, simulation of evolution is incomparably more 
promising than simulation of neural nets, since we know practically nothing 
about natural neural nets that would be at all useful in solving difficult problems.‘ 

This work in artificial evolution, however, has hardly begun. ‘Research 

in simulation of evolution has been very limited in both quantity and 
quality.’” 

When an article supposed to sum up work done since 1960 begins with 
earlier accomplishments and ends in speculations, without presenting a 
single example of actual progress, stagnation can be read between the 
lines. 

Occasionally one catches hints of disappointment in the lines them- 
selves. For example, Fred Tonge, whose solid, unpretentious paper on 
a heuristic line-balancing procedure was reprinted in Computers and 
Thought, after reviewing progress in AI, concluded in 1968: 

While many interesting programs (and some interesting devices) have been pro- 
duced, progress in artificial intelligence has not been exciting or spectacular. 
... This is due at least in part to lack of a clear separation between accomplish- 
ment and conjecture in many past and current writings. In this field, as in many 
others, there is a large difference between saying that some accomplishment 
“ought to” be possible and doing it. 

Identifiable, significant, landmarks of accomplishment are scarce.° 
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Tonge then gives his list of “landmarks.” They are Newell, Shaw, and 

Simon’s Logic Theory Machine, Samuel’s Checker Program, and the 

Uhr-Vossler pattern recognition program—all completed long before 

1961, and all dead ends if we are to judge from subsequent work. 

That mine is no unduly prejudiced reaction to Tonge’s summary of the 

work done thus far can be seen by comparing P. E. Greenwood’s review 

of Tonge’s article for Computing Reviews: ‘From this brief summary of 

the state of the art of artificial intelligence, one would conclude that little 

significant progress has been made since about 1960 and the prospects 

for the near future are not bright.” 

Why, in the light of these difficulties, do those pursuing Cognitive 

Simulation assume that the information processes of a computer reveal 

the hidden information processes of a human being, and why do those 

working in Artificial Intelligence assume that there must be a digital way 

of performing human tasks? To my knowledge, no one in the field seems 

to have asked himself these questions. In fact, artificial intelligence is the 

least self-critical field on the scientific scene. There must be a reason why 

these intelligent men almost unanimously mimimize or fail to recognize 

their difficulties, and continue dogmatically to assert their faith in prog- 

ress. Some force in their assumptions, clearly not their success, must 

allow them to ignore the need for justification. We must now try to 

discover why, in the face of increasing difficulties, workers in artificial 

intelligence show such untroubled confidence. 
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Introduction 

In spite of grave difficulties, workers in Cognitive Simulation and 
Artificial Intelligence are not discouraged. In fact, they are unqualifiedly 
optimistic. Underlying their optimism is the conviction that human 
intelligent behavior is the result of information processing by a dig- 
ital computer, and, since nature has produced intelligent behavior 

with this form of processing, proper programming should be able to elicit 

such behavior from digital machines, either by imitating nature or by 

out-programming her. 

This assumption, that human and mechanical information processing 

ultimately involve the same elementary processes, is sometimes made 

naively explicit. Newell and Simon introduce one of their papers with the 

following remark: 

It can be seen that this approach makes no assumption that the “hardware” of 

computers and brains are similar, beyond the assumptions that both are general- 

purpose symbol-manipulating devices, and that the computer can be pro- 

grammed to execute elementary information processes functionally quite like 

those executed by the brain.' 

But this is no innocent and empty assumption. What is a general- 

purpose symbol-manipulating device? What are these ‘“‘elementary infor- 

mation processes” allegedly shared by man and machine? All artificial 

intelligence work is done on digital computers because they are the only 

fe JISIS) 



What Computers Can't Do i 136 

general-purpose information-processing devices which we know how to 

design or even conceive of at present. All information with which these 

computers operate must be represented in terms of discrete elements. In 

the case of present computers the information is represented by binary 

digits, that is, in terms of a series of yeses and noes, of switches being 

open or closed. The machine must operate on finite strings of these 

determinate elements as a series of objects related to each other only by 

rules. Thus the assumption that man functions like a general-purpose 

symbol-manipulating device amounts to 

1. A biological assumption that on some level of operation—usually 

supposed to be that of the neurons—the brain processes information in 

discrete operations by way of some biological equivalent of on/off 

switches. 

2. A psychological assumption that the mind can be viewed as a 

device operating on bits of information according to formal rules. Thus, 

in psychology, the computer serves as a model of the mind as conceived 

of by empiricists such as Hume (with the bits as atomic impressions) and 

idealists such as Kant (with the program providing the rules). Both 

empiricists and idealists have prepared the ground for this model of 

thinking as data processing—a third-person process in which the in- 

volvement of the “processor’”’ plays no essential role. 

3. An epistemological assumption that all knowledge can be formal- 
ized, that is, that whatever can be understood can be expressed in terms 
of logical relations, more exactly in terms of Boolean functions, the 
logical calculus which governs the way the bits are related according to 
rules. 

4. Finally, since all information fed into digital computers must be in 
bits, the computer model of the mind presupposes that all relevant 
information about the world, everything essential to the production of 
intelligent behavior, must in principle be analyzable as a set of situation- 
free determinate elements. This is the ontological assumption that what 
there is, is a set of facts each logically independent of all the others. 

In the following chapters we shall turn to an analysis of the plausibility 
of each of these assumptions. In each case we shall see that the assump- 
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tion is taken by workers in CS or AI as an axiom, guaranteeing results, 

whereas it is, in fact, only one possible hypothesis among others, to be 

tested by the success of such work. Furthermore, none of the four 

assumptions 1s justified on the basis of the empirical and a priori argu- 

ments brought forward in its favor. Finally, the last three assumptions, 

which are philosophical rather than empirical, can be criticized on phil- 

osophical grounds. They each lead to conceptual difficulties when fol- 

lowed through consistently as an account of intelligent behavior. 

After we have examined each of these assumptions we shall be in a 

better position to understand the persistent optimism of workers in 

artificial intelligence and also to assess the true significance of results 

obtained thus far. 
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The Biological Assumption 

In the period between the invention of the telephone relay and its 

apotheosis in the digital computer, the brain, always understood in terms 

of the latest technological inventions, was understood as a large tele- 

phone switchboard or, more recently, as an electronic computer. This 

model of the brain was correlated with work in neurophysiology which 

found that neurons fired a somewhat all-or-nothing burst of electricity. 

This burst, or spike, was taken to be the unit of information in the brain 

corresponding to the bit of information in a computer. This model is still 

uncritically accepted by practically everyone not directly involved with 

work in neurophysiology, and underlies the naive assumption that man 

is a walking example of a successful digital computer program. 

But to begin with, even if the brain did function like a digital computer 

at some level it would not necessarily provide encouragement for those 

working in CS or AI. For the brain might be wired like a very large array 

of randomly connected neurons, such as the perceptrons proposed by the 

group Minsky dismisses as the early cyberneticists.'* Such a neural net 

can be simulated using a program, but such a program is in no sense a 

heuristic program. Thus the mere fact that the brain might be a digital 

computer is in no way ground for optimism as to the success of artificial 

intelligence as defined by Simon or Minsky. 

Moreover, it is an empirical question whether the elementary informa- 

T19 
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tion processing in the brain can best be understood in terms of a digital 

model. The brain might “process information” in an entirely different 

way than a digital computer does. Information might, for example, be 

processed globally the way a resistor analogue solves the problem of the 

minimal path through a network. Indeed, current evidence suggests that 

the neuron-switch model of the brain is no longer empirically tenable. 

Already in 1956 John von Neumann, one of the inventors of the modern 

digital computer, had his doubts: 

Now, speaking specifically of the human nervous system, this is an enormous 

mechanism—at least 10° times larger than any artifact with which we are familiar 

—and its activities are correspondingly varied and complex. Its duties include 

the interpretation of external sensory stimuli, of reports of physical and chemical 

conditions, the control of motor activities and of internal chemical levels, the 

memory function with its very complicated procedures for the transformation of 

and the search for information, and of course, the continuous relaying of coded 

orders and of more or less quantitative messages. It is possible to handle all these 

processes by digital methods (1.e., by using numbers and expressing them in the 

binary system—or, with some additional coding tricks, in the decimal or some 

other system), and to process the digitalized, and usually numericized, informa- 

tion by algebraical (i.e., basically arithmetical) methods. This is probably the way 

a human designer would at present approach such a problem. The available 

evidence, though scanty and inadequate, rather tends to indicate that the human 

nervous system uses different principles and procedures. Thus message pulse trains 

seem to convey meaning by certain analogic traits (within the pulse notation— 

i.e., this seems to be a mixed, part digital, part analog system), like the time 

density of pulses in one line, correlations of the pulse time series between different 

lines in a bundle, etc.’ 

Von Neumann goes on to spell out what he takes to be the “‘mixed 

character of living organisms.” 

The neuron transmits an impulse. . . . The nerve impulse seems in the main to 

be an all-or-none affair, comparable to a binary digit. Thus a digital element is 

evidently present, but it is equally evident that this is not the entire story. 

... It is well known that there are various composite functional sequences in the 

organism which have to go through a variety of steps from the original stimulus 

to the ultimate effect—some of the steps being neural, that is, digital, and others 

humoral, that is, analog. 
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But even this description grants too much to the digital model. It does 
not follow from the fact that the nerve impulse is an all-or-none affair 
that any digital processing at all is taking place. The distinction between 

digital and analogue computation is a logical distinction, not a distinc- 

tion based on the hardware or the sort of electrical impulses in the 

system. The essential difference between digital and analogue informa- 

tion processing is that in digital processing a single element represents 

a symbol in a descriptive language, that is, carries a specific bit of 

information; while in a device functioning as an analogue computer, 

continuous physical variables represent the information being processed. 

The brain, operating with volleys of pulses, would be a digital computer 

only if each pulse were correlated with some symbol in an information- 

processing sequence; if, however, the rate at which pulses are transmitted 

turns out to be the minimum unit in an account of the relevant activity 

of the nervous system—as von Neumann seems to hold—then the brain 

would be operating as an analogue device.** 

Once this conceptual confusion has been cleared up, von Neumann 

can be understood as suggesting that the brain functions exclusively like 

an analogue computer, and subsequent work has tended to confirm this 

hypothesis. Even for those unfamiliar with the technical details of the 

following report, the conclusion 1s clear: 

In the higher invertebrates we encounter for the first time phenomena such as 

the graded synaptic potential, which before any post-synaptic impulse has arisen 

can algebraically add the several incoming presynaptic barrages in a complex 

way. These incoming barrages are of a different value depending upon the 

pathway and a standing bias. Indeed, so much can be done by means of this 

graded and nonlinear local phenomenon prior to the initiation of any post- 

synaptic impulse that we can no more think of the typical synapse in integrative 

systems as being a digital device exclusively as was commonly assumed a few 

years ago, but rather as being a complex analog device. . . .° 

The latest suggestion from Jerome Lettvin of M.I.T. is that the diame- 

ter of the axon may play a crucial role in processing information by 

acting as a filter.’ An individual neuron fires at a certain frequency. The 

diameter of its various axon branches would act as low pass filters at 
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different cutoff frequencies. Output from a given cell would then produce 

different frequencies at different terminals. The filter characteristics of 

the axon would vary with its diameter which in turn might be a function 

of the recency of signals passing down that axon, or even, perhaps, of 

the activation of immediately environing axons. If such time factors and 

field interactions play a crucial role, there is no reason to hope that the 

information processing on the neurophysiological level can be described 

in a digital formalism or, indeed, in any formalism at all. 

In 1966, Walter Rosenblith of M.I.T., one of the pioneers in the use 

of computers in neuropsychology, summed up the situation: 

We no longer hold the earlier widespread belief that the so-called all-or-none law 

from nerve impulses makes it legitimate to think of relays as adequate models 

for neurons. In addition, we have become increasingly impressed with the in- 

teractions that take place among neurons: in some instances a sequence of nerve 

impulses may reflect the activities of literally thousands of neurons in a finely 

graded manner. In a system whose numerous elements interact so strongly with 

each other, the functioning of the system is not necessarily best understood by 

proceeding on a neuron-by-neuron basis as if each had an independent personal- 

ity... . Detailed comparisons of the organization of computer systems and brains 

would prove equally frustrating and inconclusive.’ 

Thus the view that the brain as a general-purpose symbol-manipulat- 

ing device operates like a digital computer is an empirical hypothesis 

which has had its day. No arguments as to the possibility of artificial 

intelligence can be drawn from current empirical evidence concerning 

the brain. In fact, the difference between the “strongly interactive” 

nature of brain organization and the noninteractive character of machine 

organization suggests that insofar as arguments from biology are rele- 

vant, the evidence is against the possibility of using digital computers to 

produce intelligence. 
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The Psychological Assumption 

Whether the brain operates like a digital computer is a strictly empiri- 

cal question to be settled by neurophysiology. The computer model 

simply fails to square with the facts. No such simple answer can be given 

to the related but quite different question: whether the mind functions 

like a digital computer, that is, whether one is justified in using a com- 

puter model in psychology. The issue here is much harder to define. The 

brain is clearly a physical object which uses physical processes to trans- 

form energy from the physical world. But if psychology is to differ from 

biology, the psychologist must be able to describe some level of function- 

ing other than the physical-chemical reactions in the brain. 

The theory we shall criticize claims that there is such a level—the 

information-processing level—and that on this level the mind uses com- 

puter processes such as comparing, classifying, searching lists, and so 

forth, to produce intelligent behavior. This mental level, unlike the physi- 

cal level, has to be introduced as a possible level of discourse. The issues 

involved in this discussion will, therefore, be philosophical rather than 

empirical. We shall see that the assumption of an information-processing 

level is by no means so self-evident as the cognitive simulators seem to 

think; that there are good reasons to doubt that there is any information 

processing going on, and therefore reason to doubt the validity of the 

claim that the mind functions like a digital computer. 

ff ils 
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In 1957 Simon predicted that within ten years psychological theories 

would take the form of computer programs, and he set out to fulfill this 

prediction by writing a series of programs which were meant to simulate 

human cognition by simulating the conscious and unconscious steps a 

person goes through to arrive at a specific cognitive performance. And 

we have seen that despite the general inadequacy of such programs, 

admitted even by enthusiasts such as Minsky, all those involved in the 

general area of artificial intelligence (Minsky included) share the as- 

sumption that human beings, when behaving intelligently, are following 

heuristic rules similar to those which would be necessary to enable a 

digital computer to produce the same behavior. 

Moreover, despite meager results, Simon’s prediction has nonetheless 

been partially fulfilled. There has been a general swing from behaviorism 

to mentalism in psychology. Many influential psychologists and philoso- 

phers of psychology have jumped on Simon’s bandwagon and begun to 

pose their problems in terms of computer analogies. Ulric Neisser as- 

sumes that “the task of a psychologist trying to understand human 

cognition is analogous to that of a man trying to discover how a com- 
puter has been programmed.”’' And George Miller of Harvard now 
speaks of “recent developments in our understanding of man viewed as 
a system for processing information.’” 

Usually no argument is given for this new dogma that man is an 
information-processing system functioning like a heuristically pro- 
grammed digital computer. It seems rather to be an unquestioned axiom 
underlying otherwise careful and critical analysis. There is no doubt 
some temptation to suppose that since the brain is a physical thing and 
can be metaphorically described as “processing information,” there must 
be an information-processing level, a sort of flow chart of its operations, 
in which its information-processing activity can be described. But we 
have seen in Chapter 3 that just because the brain is physical and pro- 
cesses information is no reason for biologists to suppose that it functions 
like a digital computer. The same holds for the psychological level. 
Although psychologists describe that function called the mind as “pro- 
cessing information,” this does not mean that it actually processes infor- 
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mation in the modern technical sense, nor that it functions like a digital 

computer, that is, that it has a program. 

“Information processing” is ambiguous. If this term simply means 
that the mind takes account of meaningful data and transforms them into 

other meaningful data, this is certainly incontrovertible. But the cyber- 

netic theory of information, introduced in 1948 by Claude Shannon, has 

nothing to do with meaning in this ordinary sense. It is a nonsemantic, 

mathematical theory of the capacity of communication channels to 

transmit data. A bit (binary digit) of information tells the receiver which 

of two equally probable alternatives has been chosen. 

In his classic paper ‘““The Mathematical Theory of Communication” 

Shannon was perfectly clear that his theory, worked out for telephone 

engineering, carefully excludes as irrelevant the meaning of what is being 

transmitted. 

The fundamental problem of communication is that of reproducing at one point 

either exactly or approximately a message selected at another point. Frequently 

the messages have meaning; that is they refer to or are correlated according to 

some system with certain physical or conceptual entities. These semantic aspects 

of communication are irrelevant to the engineering problem.’ 

Warren Weaver in explaining the significance of Shannon’s paper is 

even more emphatic: 

The word information, in this theory, is used in a special sense that must not be 

confused with its ordinary usage. In particular, information must not be confused 

with meaning. 

In fact, two messages, one of which is heavily loaded with meaning and the 

other of which is pure nonsense, can be exactly equivalent, from the present 

viewpoint, as regards information. It is this, undoubtedly, that Shannon means 

when he says that ‘“‘the semantic aspects of communication are irrelevant to the 

engineering aspects.’”* 

When illegitimately transformed into a theory of meaning, in spite of 

Shannon’s warning, information theory and its vocabulary have already 

built in the computer-influenced assumption that experience can be 

analyzed into isolable, atomic, alternative choices. As a theory of mean- 

ing this assumption is by no means obvious. Gestalt psychologists, for 

example, claim (as we have seen in Part I and shall argue in detail in Part 
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III) that thinking and perception involve global processes which cannot 

be understood in terms of a sequence or even a parallel set of discrete 

operations.’* Just as the brain seems to be, at least in part, an analogue 

computer, so the mind may well arrive at its thoughts and perceptions 

by responding to “fields,” “force,” “configurations,” and so on, as, in 

fact, we seem to do insofar as our thinking is open to phenomenological 

description.*® 

It is precisely the role of the programmer to make the transition from 

statements which are meaningful (contain information in the ordinary 

sense) to the strings of meaningless discrete bits (information in the 

technical sense) with which a computer operates. The ambition of artifi- 

cial intelligence is to program the computer to do this translating job 

itself. But it is by no means obvious that the human translator can be 

dispensed with. 

Much of the literature of Cognitive Simulation gains its plausibility by 

shifting between the ordinary use of the term “information” and the 

special technical sense the term has recently acquired. Philosophical 

clarity demands that we do not foreclose the basic question whether 

human intelligence presupposes rulelike operations on discrete elements 

before we begin our analysis. Thus we must be careful to speak and think 

of “information processing” in quotation marks when referring to hu- 

man beings. 

Moreover, even if the mind did process information in Shannon’s sense 

of the term, and thus function like a digital computer, there is no reason 

to suppose that it need do so according to a program. If the brain were 

a network of randomly connected neurons, there might be no flow chart, 

no series of rule-governed steps on the information-processing level, 

which would describe its activity. 

Both these confusions—the step from ordinary meaning to the techni- 

cal sense of information and from computer to heuristically programmed 

digital computer—are involved in the fallacy of moving from the fact 

that the brain in some sense transforms its inputs to the conclusion that 
the brain or mind performs some sequence of discrete operations. This 
fallacy is exhibited in the baldest form in a recent paper by Jerry Fodor. 

It is instructive to follow his argument. 
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Fodor begins with generally accepted facts about the central nervous 
system: 

If the story about the causal determination of depth estimates by texture gradi- 
ents is true and if the central nervous system is the kind of organ most sensitive 
people now think it is, then some of the things the central nervous system does, 
some of the physical transactions that take place in the central nervous system 
when we make estimates of depth, must satisfy such descriptions as ‘monitoring 
texture gradients’, ‘processing information about texture gradients’, ‘computing 
derivatives of texture gradients’, etc.’ 

He thus arrives at the view that “every operation of the nervous system 

is identical with some sequence of elementary operations.’ 

Disregarding the question-begging use of “processing information” in 

this account, we can still object that computing the first derivative of a 

texture gradient is the sort of operation very likely to be performed by 

some sort of analogue device. There is, therefore, no reason at all to 

conclude from the fact that the nervous system responds to differences 

in texture gradients that “every operation of the nervous system is identi- 

cal with some sequence of elementary operations. . . .”” There is, indeed, 

not the slightest justification for the claim that ‘‘for each type of behavior 

in the repertoire of that organism, a putative answer to the question, 

How does one produce behavior of that type? takes the form of a set 

of specific instructions for producing the behavior by performing a set 

of machine operations.’” 

The argument gains its plausibility from the fact that if a psychologist 

were to take the first derivative of a texture gradient, he would compute 

it using a formalism (differential calculus) which can be manipulated in 

a Series of discrete operations on a digital computer. But to say that the 

brain is necessarily going through a series of operations when it takes the 

texture gradient is as absurd as to say that the planets are necessarily 

solving differential equations when they stay in their orbits around the 

sun, or that a slide rule (an analogue computer) goes through the same 

steps when computing a square root as does a digital computer when 

using the binary system to compute the same number. 

Consider an ion solution which might be capable of taking a texture 

gradient or of simulating some other perceptual process by reaching 
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equilibrium. Does the solution, in reaching equilibrium, go through the 

series of discrete steps a digital computer would follow in solving the 

equations which describe this process? In that case, the solution is solv- 

ing in moments a problem which it would take a machine centuries to 

solve—if the machine could solve it at all. Is the solution an ultrarapid 

computer, or has it got some supposedly clever heuristic like the chess 

master, which simplifies the problem? Obviously, neither. The fact that 

we can describe the process of reaching equilibrium in terms of equations 

and then break up these equations into discrete elements in order to solve 

them on a computer does not show that equilibrium is actually reached 

in discrete steps. Likewise, we need not conclude from the fact that all 

continuous physicochemical processes involved in human “information 

processing”’ can in principle be formalized and calculated out discretely, 

that any discrete processes are actually taking place. 

Moreover, even if one could write such a computer program for simu- 

lating the physicochemical processes in the brain, it would be no help to 

psychology. 

If simulation is taken in its weakest possible sense, a device is simu- 

lated by any program which realizes the same input/output function 

(within the range of interest). Whether achievable for the brain or not, 

this clearly lacks what is necessary for a psychological theory, namely 

an account of how the mind actually “works.” For psychological expla- 

nation, a representation, somehow stronger than a mere simulation, is 

required. As Fodor notes: 

We can say that a machine is strong/y equivalent to an organism in some respect 

when it is weakly equivalent in that same respect and the processes upon which 

the behavior of the machine is contingent are of the same type as the processes 

upon which the behavior of the organism are contingent."° 

That is, equivalence in the psychological respect demands machine pro- 
cesses, of the psychological type.''* Psychological operations must be the 
sort which human beings at least sometimes consciously perform when 
processing information—for example, searching, sorting, and storing— 
and not physicochemical processes in the organism. Thus a chess player’s 
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report as he zeroed in on his Rook, ‘“‘And now my brain reaches the 

following chemical equilibrium, described by the following array of diff- 

erential equations,” would describe physiological processes no doubt 

correlated with “information processing,” but not that “information 

processing”” itself. 

Fodor is not clear whether his argument is supposed to be a priori or 

empirical, that is, whether or not he thinks it follows logically or merely 

contingently from the claim that the brain is taking account of the 

texture gradient that it is performing a sequence of elementary opera- 

tions. The fact that he chooses this example, which is one of the least 

plausible cases in which one would want to argue that the brain or the 

mind is performing any elementary operations at all, suggests that he 

thinks there is some kind of necessary connection between taking a 

texture gradient, computing, and performing a sequence of operations. 

When this argument is shown to be a series of confusions, however, the 

advocates of the psychological assumption can always shift ground and 

claim that theirs is not an a priori argument but an empirical conclusion 

based on their experiments. 

Fodor took this tack in defending his paper at the meeting of the 

American Philosophical Association at which it was delivered, while 

Miller et al. justify their work strictly on the basis of what they take to 

be the success of CS. 

A Plan is, for an organism, essentially the same as a program for a computer. 

. . . Newell, Shaw, and Simon have explicitly and systematically used the hier- 

archical structure of lists in their development of “‘information-processing lan- 

guages” that are used to program high-speed digital computers to simulate 

human thought processes. 

Their success in this direction—which the present authors find most impressive 

and encouraging—argues strongly for the hypothesis that a hierarchical structure 

is the basic form of organization of human problem-solving." 

We have seen in Part I that Newell, Shaw, and Simon’s results are 

far from impressive. What then is this encouraging empirical evidence? 

We must now look at the way Newell, Shaw, and Simon’s work is 

evaluated. 
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|. Empirical Evidence for the Psychological 

Assumption: Critique of the Scientific 

Methodology of Cognitive Simulation 

The empirical justification of the psychological assumption poses a ques- 

tion of scientific methodology—the problem of the evaluation of evi- 

dence. Gross similarities of behavior between computers and people do 

not justify the psychological asumption, nor does the present inability to 

demonstrate these similarities in detail alone justify its rejection. A test 

of the psychological assumption requires a detailed comparison of the 

steps involved in human and machine information processing. As we 

have seen (Chapter 1, Sec. IT), Newell, Shaw, and Simon conscientiously 

note the similarities and differences between human protocols and ma- 

chine traces recorded during the solution of the same problem. We must 

now turn to their evaluation of the evidence thus obtained. 

Newell and Simon conclude that their work 

provide{s] a general framework for understanding problem-solving behavior 

. and finally reveals with great clarity that free behavior of a reasonably 

intelligent human can be understood as the product of a complex but finite and 

determinate set of laws." 

This is a strangely unscientific conclusion to draw, for Newell and Simon 

acknowledge that their specific theories—like any scientific theories— 

must stand or fall on the basis of their generality, that is, the range of 

phenomena which can be explained by the programs."* Yet their program 

is nongeneral in at least three ways. The available evidence has neces- 

sarily been restricted to those most favorable cases where the subject can 

to some extent articulate his information-processing protocols (game 

playing and the solution of simple problems) to the exclusion of pattern 

recognition and the acquisition and use of natural language. Moreover, 

even in these restricted areas the machine trace can only match the 

performance of one individual, and only after ad hoc adjustments. And 

finally, even the match is only partial. Newell and Simon note that their 

program “provides a complete explanation of the subject’s task behavior 
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with five exceptions of varying degrees of seriousness.”’! 

In the light of these restrictions it is puzzling how Newell and Simon 

can claim a “general framework,” and in the light of the exceptions it 

is hard to see how they can claim to have any kind of scientific under- 

standing at all. There seems to be some confusion here concerning the 

universality of scientific laws or theories. In general, scientific Jaws do 

not admit of exceptions, yet here the exceptions are honestly noted—as 

if the frank recognition of these exceptions mitigates their importance; 

as if Galileo might, for example, have presented the law of falling bodies 

as holding for all but five objects which were found to fall at a different 

rate. Not that a scientific conjecture must necessarily be discarded in the 

face of a few exceptions; there are scientifically sanctioned ways of deal- 

ing with such difficulties. One can, to begin with, hold on to the generali- 

zation as a working hypothesis and wait to announce a scientific law until 

the exceptions are cleared up. A working hypothesis need not explain all 

the data. When, however, the scientist claims to present a theory, let 

alone a “general framework for understanding,”’ he must deal with these 

exceptions either by subsuming them under the theory (as in the appeal 

to friction to explain deviations from the laws of motion), or by suggest- 

ing where to look for an explanation, or at least by showing how, accord- 

ing to the theory, one would expect such difficulties. Newell and Simon 

take none of these lines. 

They might argue that there is no cause for concern, that there are 

exceptions to even the best theories. In his study of scientific revolutions, 

Thomas Kuhn notes the persistence of anomalies in all normal science. 

There are always some discrepancies. . . . Even the most stubborn ones usually 

respond at last to normal practice. Very often scientists are willing to wait, 

particularly if there are many problems available in other parts of the field. We 

have already noted, for example, that for sixty years after Newton’s original 

computation, the predicted motion of the moon’s perigee remained only half of 

that observed." 

But this cannot be a source of comfort for Newell and Simon. Such 

tolerance of anomalies assumes that there already is an ongoing science, 

an “accepted paradigm” which “must seem better than its competi- 
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tors.”'’ This supposes that the theory works perfectly in at least some 

clearly defined area. But Newell and Simon’s cognitive theory is not only 

not general. It does not work even in a carefully selected special case. It 

is just where we would have to find a perfect match in order to establish 

a paradigm that we find the exceptions. Thus Newell and Simon’s work, 

even though it offers some surprising approximations, does not establish 

a functioning science which would justify a claim to have found general 

laws even in the face of anomalies. 

In discussing the Newtonian anomaly above, Kuhn goes on to point 

out that ‘““Europe’s best mathematical physicists continued to wrestle 

unsuccessfully with the well-known discrepancy. . . .”'’ The absence of 

this sort of concern further distinguishes Newell and Simon's work from 

normal scientific practice. After noting their exceptions, no one in CS— 

least of all Newell and Simon—seems interested in trying to account for 

them. Rather all go on to formulate, in some new area, further ad hoc 

rough generalizations. 

There is one other acceptable way of dealing with exceptions. If one 

knew, on independent grounds, that mental processes must be the prod- 

uct of a rule-governed sequence of discrete operations, then exceptions 

could be dealt with as accidental difficulties in the experimental tech- 

nique, or challenging cases still to be subsumed under the law. Only then 

would those involved in the field have a right to call each program which 

simulated intelligent behavior—no matter how approximately—an 

achievement and to consider all setbacks nothing but challenges for 

sharper heuristic hunting and further programming ingenuity. The prob- 

lem, then, is how to justify independently the assumption that all human 
“information processing” proceeds by discrete steps. Otherwise the ex- 

ceptions, along with the narrow range of application of the programs and 
the lack of progress during the last ten years, would tend to disconfirm 

rather than confirm this hypothesis. The “justification” seems to have 

two stages. 

In the early literature, instead of attempting to justify this important 
and questionable digital-assumption, Newell and Simon present it as a 
postulate, a working hypothesis which directs their investigation. “We 
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postulate that the subject’s behavior is governed by a program organized 

from a set of elementary information processes.”’!’ This postulate, which 

alone might seem rather arbitrary, is in turn sanctioned by the basic 

methodological principle of parsimony. According to Newell, Shaw, and 

Simon, this principle enjoins us to assume tentatively the most simple 

hypothesis, in this case that all information processing resembles that 

sort of processing which can be programmed on a digital computer. We 

can suppose, for example, that in chess, when our subject is zeroing in, 

he is unconsciously counting out. In general, whenever the machine trace 

shows steps which the subject did not report, the principle of parsimony 

justifies picking a simple working hypothesis as a guide to experimenta- 

tion and assuming that the subject unconsciously went through these 

steps. But of course further investigation must support the working 

hypothesis; otherwise, it must eventually be discarded. 

The divergence of the protocols from the machine trace, as well as the 

difficulties raised by planning, indicate that things are not so simple as 

our craving for parsimony leads us to hope. In the light of these difficul- 

ties, it would be natural to revise the working hypothesis, just as scien- 

tists had to give up Newtonian Mechanics when it failed to account for 

certain observations; but at this point, research in Cognitive Simulation 

deviates from acceptable scientific procedures. In summarizing their 

work in CS, Newell and Simon conclude: 

There is a growing body of evidence that the elementary information processes 

used by the human brain in thinking are highly similar to a subset of the 

elementary information processes that are incorporated in the instruction codes 

of the present-day computers.” 

What is this growing body of evidence? Have the gaps in the proto- 

cols been filled and the exceptions explained? Not at all. The growing 

body of evidence seems to be the very programs whose lack of univer- 

sality would cast doubt on the whole project but for the independent 

assumption of the information-processing hypothesis. Given the excep- 

tions, the psychological assumption would have to already have been 

taken as independently justified, for the specific programs to be presented 

as established theories; yet now the assumption is recognized as an 

hypothesis whose sole confirmation rests on the success of the specific 
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programs. An hypothesis based on a methodological principle is often 

confirmed later by the facts. What is unusual and inadmissible is that, in 

this case, the hypothesis produces the evidence by which it is later 

confirmed. 

No independent, empirical evidence exists for the psychological as- 

sumption. In fact, the same empirical evidence presented for the assump- 

tion that the mind functions like a digital computer tends, when 

considered without making this assumption, to show that the assumption 

is empirically untenable. 

This particular form of methodological confusion is restricted to those 

working in Cognitive Simulation, but even workers in Artificial Intelli- 

gence share this belief in the soundness of heuristic programs, this ten- 

dency to think of all difficulties as accidental, and this refusal to consider 

any setbacks as disconfirming evidence. Concluding from the small area 

in which search procedures are partially successful, workers of both 

schools find it perfectly clear that the unknown and troublesome areas 

are of exactly the same sort. Thus, all workers proceed as if the credit 

of the psychological assumption were assured, even if all do not—like 

those in Cognitive Simulation—attempt to underwrite the credit with a 
loan for which it served as collateral. For workers in the field, the 
psychological assumption seems not to be an empirical hypothesis that 
can be supported or disconfirmed, but some sort of philosophical axiom 

whose truth is assured a priori. 

Il. A Priori Arguments for the Psychological 

Assumption 

A clue to the a priori character of this axiom can be gained from another 
look at the way Miller et al. introduce their computer model. The same 
page which concludes that Simon’s success argues strongly for their 
position opens with a statement of their aims: 

Any complete description of behavior should be adequate to serve as a set of 
instructions, that is, it should have the characteristics of a plan that could guide 
the action described.2! 
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Miller et al. assume that our very notion of explanation or complete 
description requires that behavior be described in terms of a set of 
instructions, that is, a sequence of determinate responses to determinate 

situations. No wonder psychologists such as Newell, Neisser, and Miller 
find work in Cognitive Simulation encouraging. In their view, if psychol- 
ogy is to be possible at all, an explanation must be expressible as a 
computer program. This is not an empirical observation but follows from 
their definition of explanation. Divergences from the protocol and fail- 
ures can be ignored. No matter how ambiguous the empirical results in 
Cognitive Simulation, they must be a first step toward a more adequate 
theory. 

This definition of explanation clearly needs further investigation: Does 

it make sense? Even if it does, can one prejudge the results in psychology 

by insisting theories must be computer programs because otherwise psy- 

chology isn’t possible? Perhaps, psychology as understood by the cogni- 

tive simulationists is a dead end. 

To begin with it is by no means clear what the pronouncement that 

a complete description must take the form of a set of instructions means. 

Consider the behavior involved in selecting, on command, a red square 

from a multicolored array of geometrical figures. A complete description 

of that behavior according to Miller et al. would be a set of instructions, 

a plan to follow in carrying out this task. What instructions could one 

give a person about to undertake this action? Perhaps some very general 

rules such as listen to the instructions, look toward the objects, consider 

the shapes, make your selection. But what about the detailed instructions 

for identifying a square rather than a circle? One might say: ‘“Count the 

sides; if there are four, it is a square.’” And what about the instructions 

for identifying a side? ““Take random points and see if they fall on a line 

which is the shortest distance between the end points,” and so on. And 

how does one find these points? After all, there are no points in the field 

of experience when I am confronting a display of geometrical figures. 

Perhaps here the instructions run out and one just says: ““But you uncon- 

sciously see points and unconsciously count.’’ But do you? And why do 

the instructions stop here and not earlier or later? And if all this does 
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not seem strange enough, what instructions do you give someone for 

distinguishing red from blue? At this point it is no longer clear why or 

how a complete description in psychology should take the form of a set 

of instructions. 

Still such a claim is the heir to a venerable tradition. Kant explicitly 

analyzed all experience, even perception, in terms of rules, and the no- 

tion that knowledge involves a set of explicit instructions is even older. 

In fact, we have seen that the conviction that a complete description 

involving an analysis into instructions must be possible, because only 

such an analysis enables us to understand what is going on, goes back 

to the beginning of philosophy, that is, to the time when our concepts 

of understanding and reason were first formulated. Plato, who formu- 

lated this analysis of understanding in the Euthyphro, goes on to ask in 

the Meno whether the rules required to make behavior intelligible to the 

philosopher are necessarily followed by the person who exhibits the 

behavior. That is, are the rules only necessary if the philosopher is to 

understand what is going on, or are these rules necessarily followed by 

the person insofar as he is able to behave intelligently? Since Plato 

generally thought of most skills as just pragmatic puttering, he no doubt 

held that rules were not involved in understanding (or producing) skilled 

behavior. But in the case of theorem proving or of moral action, Plato 

thought that although people acted without necessarily being aware of 

any rules, their action did have a rational structure which could be 

explicated by the philosopher, and he asks whether the mathematician 

and the moral agent are implicitly following this program when behaving 

intelligently. 

This is a decisive issue for the history of our concepts of understanding 

and explanation. Plato leaves no doubt about his view: any action which 

is in fact sensible, i.e., nonarbitrary, has a rational structure which can 

be expressed in terms of some theory and any person taking such action 

will be following, at least implicitly, this very theory taken as a set of 

rules. For Plato, these instructions are already in the mind, prepro- 

grammed in a previous life, and can be made explicit by asking the 

subjects the appropriate questions.” Thus, for Plato, a theory of human 

behavior which allows us to understand what a certain segment of that 
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behavior accomplishes is also an explanation of how that behavior is 

produced. Given this notion of understanding and this identification of 

understanding and explanation, one is bound to arrive at the cognitive 

simulationists with their assumption that it is self-evident that a complete 

description of behavior is a precise set of instructions for a digital com- 

puter, and that these rules can actually be used to program computers 

to produce the behavior in question. 

We have already traced the history of this assumption that thinking 

is calculating.” We have seen that its attraction harks back to the Pla- 

tonic realization that moral life would be more bearable and knowledge 

more definitive if it were true. Its plausibility, however, rests only on a 

confusion between the mechanistic assumptions underlying the success 

of modern physical science and a correlative formalistic assumption 

underlying what would be a science of human behavior if such existed. 

On one level, this a priori assumption makes sense. Man is an object. 

The success of modern physical science has assured us that a complete 

description of the behavior of a physical object can be expressed in precise 

laws, which in turn can serve as instructions to a computer which can 

then, at least in principle, simulate this behavior. This leads to the idea 

of a neurophysiological description of human behavior in terms of inputs 

of energy, physical-chemical transactions in the brain, and outputs in 

terms of motions of the physical body, all, in principle, simulatable on 

a digital machine. 

This level of description makes sense, at least at first approximation, 

and since the time of Descartes has been part of the idea of a total 

physical description of all the objects in the universe. The brain is clearly 

an energy-transforming organ. It detects incoming signals; for example, 

it detects changes in light intensity correlated with changes in texture 

gradient. Unfortunately for psychologists, however, this physical de- 

scription, excluding as it does all psychological terms, is in no way a 

psychological explanation. On this level one would not be justified in 

speaking of human agents, the mind, intentions, perceptions, memories, 

or even of colors or sounds, as psychologists want to do. Energy is being 

received and transformed and that is the whole story. 

There is, of course, another level—let us call it phenomenological— 
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on which it does make sense to talk of human agents, acting, perceiving 

objects, and so forth. On this level what one sees are tables, chairs, and 

other people, what one hears are sounds and sometimes words and 

sentences, and what one performs are meaningful actions in a context 

already charged with meaning. But this level of description is no more 

satisfactory to a psychologist than the physiological level, since here 

there is no awareness of following instructions or rules; there is no place 

for a psychological explanation of the sort the cognitive simulationist 

demands. Faced with this conceptual squeeze, psychologists have always 

tried to find a third level on which they can do their work, a level which 

is psychological and yet offers an explanation of behavior. 

If psychology is to be a science of human behavior, it must study man 

as an object. But not as a physical object, moving in response to inputs 

of physical energy, since that is the task of physics and neurophysiology. 

The alternative is to try to study human behavior as the response of some 

other sort of object to some other sort of input. Just what this other sort 

of object and input are is never made clear, but whatever they are, if there 

is to be an explanation, man must be treated as some device responding 

to discrete elements, according to laws. These laws can be modeled on 

causal laws describing how fixed propensities in the organism interact 

with inputs from the environment to produce complex forms of behavior. 

The device, then, is a reflex machine, and the laws are the laws of 

association. This gives us the empiricist psychology of David Hume with 
its modern descendant, S-R psychology. Or the object can be treated as 

an information-processing device and the laws can be understood on the 
Kantian model, as reasons, which are rules in the mind applied by the 
mind to the input. In psychology this school was called idealist, intellec- 

tualist, or mentalist, and is now called “cognitive psychology.” 

Until the advent of the computer the empiricist school had the edge 
because the intellectualist view never succeeded in treating man as a 
calculable object. There was always a subject, a “transcendental ego,” 
applying the rules, which simply postponed a scientific theory of behav- 
ior by installing a little man (homunculus) in the mind to guide its 
actions. Computers, however, offer the irresistible attraction of operating 
according to rules without appeal to a transcendental ego or homun- 
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culus. Moreover, computer programs provide a model for the analysis 
of behavior such as speaking a natural language which seems to be too 
complex to be accounted for in terms of S-R psychology. In short, there 
is now a device which can serve as a model for the mentalist view, and 
it is inevitable that regardless of the validity of the arguments or the 
persuasiveness of the empirical evidence, psychologists dissatisfied with 

behaviorism will clutch at this high-powered straw. 

A computer is a physical object, but to describe its operation, one does 

not describe the vibrations of the electrons in its transistors, but rather 

the levels of organization of its on/off flip/flops. If psychological con- 

cepts can be given an interpretation in terms of the higher levels of 

organization of these rule-governed flip/flops, then psychology will have 

found a language in which to explain human behavior. 

The rewards are so tempting that the basic question, whether this third 

level between physics and phenomenology is a coherent level of discourse 

or not, is not even posed. But there are signs of trouble. The language 

of books such as those by Miller et al., Neisser, and Fodor is literally 

incoherent. On almost every page one finds sentences such as the fol- 

lowing: 

When an organism executes a Plan he proceeds step by step, completing one part 

and then moving to the next.*** 

Here all three levels exist in unstable and ungrammatical suspension. 

“When an organism [biological] executes [machine analogy borrowed 

from human agent] a Plan he [the human agent] . . .”” Or, one can have 

it the other way around and instead of the organism being personified, 

one can find the mind mechanized. Fodor speaks of ‘‘mental process- 

ing,» or “mental operations,”’** as if it were clear what such a form of 

words could possibly mean. 

This new form of gibberish would merely be bizarre if it did not reveal 

more serious underlying conceptual confusions. These are implicit in the 

work of Miller et al. but become clear in the works of Neisser and Fodor, 

who, of all the writers in this area, make the greatest effort to articulate 

their philosophical presuppositions. The confusion can best be brought 

to light by bearing firmly in mind the neurophysiological and phe- 
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nomenological levels of description and then trying to locate the psycho- 

logical level somewhere between these two. 

In trying to make a place for the information-processing level Neisser 

tells us: 

There is certainly a real world of trees and people and cars and even books. 

. . . However, we have no immediate access to the world nor to any of its 

properties.”’ 

This is certainly true insofar as man is regarded as a physical object.*** 

As Neisser puts it, ‘*. . . the sensory input is not the page itself; it is a 

pattern of light rays. . . .”’’ So far so good, but then, Neisser goes on to 

bring the physical and the phenomenological levels together: “Suitably 

focussed by the lens. . . the rays fall on the sensitive retina, where they 

can initiate the neural processes that eventually lead to seeing and reading 

and remembering.’*° Here, however, things are by no means obvious. 

There are two senses of “lead to.” Light waves falling on the retina 

eventually lead to physical and chemical processes in the brain, but in 

this sequential sense, the light rays and neural processes can never even- 

tually lead to seeing.*'* Seeing is not a chemical process; thus it is not 

a final step in a series of such processes. If, on the other hand, “lead to” 

means “‘necessary and sufficient condition for,” then, either seeing is the 

whole chain or something totally different from the chain or any link of 

it. In either case it is no longer clear why Neisser says we have no 

immediate access to the perceptual world. 

Once the neural and phenomenological levels have thus been illegiti- 

mately amalgamated into one series, which stands between the person 

and the world, a new vocabulary is required. This no-man’s-land is 

described in terms of “sensory input” and its “transformations.” 

As used here, the term “cognition” refers to all the processes by which the 

sensory input is transformed, reduced, elaborated, stored, recovered, and used. 
. . . Such terms as sensation, perception, imagery, retention, recall, problem- 
solving, and thinking, among many others, refer to hypothetical stages or aspects 
of cognition.” 

Once a “sensory input” which differs from the world we normally see 
has been introduced, it seems necessary that our perception be ‘“‘devel- 
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oped from,” or a “transformation of” this “stimulus input.’** But what 

this transformation means depends on the totally ambiguous notion of 

“stimulus input.” If the input is energy, then it is only necessary that it 

be transformed into other energy—the processes in the brain are surely 

physical from beginning to end. Matter-energy can be transformed, re- 

duced, elaborated, stored, recovered, and used, but it will never be any- 

thing but matter-energy. If, however, the stimulus is some sort of 

primitive perception, as Neisser later seems to suggest—‘“‘a second stimu- 

lus will have some effect on how the first brief one is perceived’’**—then 

we have to know more about what this new percept is. Philosophers have 

ceased to believe in sense data, and if Neisser has some notion of a 

primitive percept, it cannot be introduced without a great deal of argu- 

ment and evidence. Phenomenologically we directly perceive physical 

objects. We are aware of neither sense data nor light rays. If Neisser 

wants to shift his notion of input from physical to perceptual, it is up to 

him to explain what sort of perception he has in mind, and what evidence 

he has that such a percept, which is neither a pattern of light rays nor 

a perspectival view of a physical object, exists. 

“Information” is the concept which is supposed to rescue us from this 

confusion. Neisser says ‘“‘/nformation is what is transformed, and the 

structured pattern of its transformation is what we want to under- 

stand.’’* But as long as the notion of “stimulus input” is ambiguous, it 

remains unclear what information is and how it is supposed to be related 

to the “‘stimulus input,”’ be it energy or direct perception. 

Finally, in a dazzling display of conceptual confusion, these two inter- 

dependent and ambiguous notions, “stimulus input” and “information,” 

are combined in the ‘“‘central assertion” of the book: 

The central assertion is that seeing, hearing, and remembering are all acts of 

construction, which may make more or less use of stimulus information [sic] 

depending on circumstances. The constructive processes are assumed to have two 

stages of which the first is fast, crude, wholistic, and parallel, while the second 

is deliberate, attentive, detailed, and sequential.” 

The ambiguity of ‘‘stimulus information” and the subsequent incoher- 

ence of the conceptual framework underlying this approach and its 
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consequences can best be seen by following a specific example. Let us 

take Neisser’s analysis of the perception of a page. 

If we see moving objects as unified things, it must be because perception results 

from an integrative process over time. The same process is surely responsible for 

the construction of visual objects from the successive “snapshots” taken by the 

moving eye.’ 

The question to be asked here is: What are these snapshots? Are they 

‘patterns of energy” or are they momentary pictures of a page? If they 

are patterns of energy they are in no sense perceived, and are integrated 

not by the subject (the perceiver) but by the brain as a physical object. 

On the other hand, on the phenomenological level, we do not have to 

integrate distinct snapshots of the page at all. The page is steadily seen, 

and the notion that it is seen as a series of “snapshots” or “inputs” is 

an abstraction from this continuously presented page. Of course, this 

steadily seen page is correlated with some “processing,” but not the 

processing of rudimentary perceptual objects, or “‘snapshots’”—which 

could only give rise to the question of how these elementary perceptual 

objects were themselves ‘‘constructed’”’—but the processing of some fluc- 

tuating pattern of energy bombarding the eye.*** 

This conceptual confusion, which results from trying to define a level 

of discourse between the physiological and the phenomenological, is even 

more pronounced in Fodor's work, because he tries even harder to be 

clear on just these points. In discussing the perception of visual and 

acoustic patterns Fodor notes that ‘the concept you have of a face, or 

a tune, or a shape. . . includes a representation of the formal structure 

of each of these domains and the act of recognition involves the applica- 

tion of such information to the integration of current sensory inputs.” 

One wonders again what “sensory input” means here. If the “sensory 
input” is already a face, or a tune, or a shape, then the job is already done. 

On the other hand, if the “sensory input” is the physical energy reaching 
the sense organ, then it is impossible to understand what Fodor means 
by the “application” of a “concept” or of “information” to the integra- 
tion of such inputs, since what would integrate such physical energy 

would surely be further energy transformations. 
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Of course, if we begged the question and assumed that the brain is a 

digital computer, then sense could be made of the notion that a concept 

is a formal structure for organizing data. In that case the “sensory input” 

would be neither a percept nor a pattern of energy, but a series of bits, 

and the concept would be a set of instructions for relating these bits to 

other bits already received, and classifying the result. This would amount 

to an hypothesis that human behavior can be understood on the model 

of a digital computer. It would require a theory of just what these bits 

are and would then have to be evaluated on the basis of empirical 

evidence. 

But for Fodor, as for Miller et al., the notion of ‘‘sensory input’? and 

of a concept as a rule for organizing this input seems to need no justifica- 

tion but rather to be contained in the very notion of a psychological 

explanation. 

Insofar as it seeks to account for behavior, a psychological theory may be thought 

of as a function that maps an infinite set of possible inputs to an organism onto 

an infinite set of possible outputs.*° 

As a conceptual analysis of the relation of perception and behavior, 

which is supposed to be accepted independently of empirical assump- 

tions about the brain, such an account is incomprehensible. 

As with Neisser, this incoherence can best be seen in a specific case. 

Fodor takes up the problem of how “‘we have learned to hear as similar” 

—as one melody—‘“what may be physically quite different sequences of 

tones.’’*' Here the question-begging nature of the analysis 1s clear: Are 

these sequences of tones physical or phenomenal? Are they patterns of 

sound waves or percepts? The talk of their physical difference suggests 

the former. And indeed on the level of physical energy it is no doubt true 

that inputs of energy of various frequencies are correlated with the same 

perceptual experience. The energy transformations involved will pre- 

sumably someday be discovered by neurophysiologists. But such physical 

sequences of tones cannot be “‘heard’’—we do not hear frequencies; we 

hear sounds—and thus a fortiori these frequencies cannot be “‘heard as 

similar.” If, on the other hand, we try to understand the input as se- 

quences of phenomenal tones, which it would make sense to “hear as 
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similar,” then we are on the level of perception, and unfortunately for 

Fodor the problem of how we hear these sequences of tones as similar 

vanishes; for in order to pose the problem in the first place we have 

already assumed that the phenomenal tone sequences are heard as simi- 

lar. On the phenomenal level we hear them as similar because they sound 

similar. 

To put it another way, Fodor speaks of “which note in particular (i.e., 

which absolute values of key, duration, intensity, stress, pitch, ampli- 

tude, etc.) we expect after hearing the first few notes of a performance 

of Lilliburlero. . . .”*? But we do not “expect” any “‘absolute values” at 

all. We expect notes in a melody.The absolute values pose a problem for 

the neurophysiologist with his oscilloscope, or for someone hearing the 

notes in isolation, not for the perceiver. 

If we did perceive and expect these ‘absolute values,” we would indeed 

need the “elaborate conceptualism” defended by Fodor, in order to 

recognize the same melody in various sequences: 

It is unclear how to account for the ability to recognize identity of type despite 
gross variations among tokens unless we assume that the concepts employed in 
recognition are of formidable abstractness. But then it is unclear how the applica- 
tion of such concepts . . . is to be explained, unless one assumes psychological 
mechanisms whose operations must be complicated in the extreme.” 

Here the confusion shows up in the use of “token” and “type.” What 
are these tokens? The perceived phenomenal sound sequence (the mel- 
ody) cannot be an abstraction (a type) of which the physical energy in- 
puts are instantiations (tokens). The percept and the physical energy 
are equally concrete and are totally different sorts of phenomena. No 
amount of complication can bridge the gap between shifting energy 
inputs and the perception of an enduring sound. One is not an instantia- 
tion of the other. But neither can the tokens be taken to be the phenome- 
nal sequence of isolated absolute tones (as a sense data theorist would 
have it). In listening to a melody absolute tones are not perceived, so 
under this interpretation there would be no tokens at all. 

Even if one assumes that Fodor has in mind the physical model, which 
could be computerized, this kind of pattern recognition could conceiva- 
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bly be accomplished by a neural net or by an analogue device, if it could 
be accomplished at all. There is no reason to suppose that it is accom- 
plished by a heuristic program (a set of abstract concepts), let alone that 

such a program is a conceptual necessity. 

Yet Fodor never questions the assumption that there is an informa- 
tion-processing level on which energy transformation can be discussed 
in terms of a sequence of specific operations. His only question is: How 
can we tell that we and the machine have the same program, that is, 

perform the same operations? Thus, for example, after asking how one 

could know whether one had a successful machine simulation, Fodor 

replies: “. . . we need only accept the convention that we individuate 

forms of behavior by reference not solely to the observable gestures 

output by an organism but also to the sequence of mental operations that 

underlie those gestures.’”** 

Or even more baldly: 

strong equivalence requires that the operations that underlie the production of 

machine behavior be of the same type as the operations that underlie the produc- 

tion of organic behavior.* 

It should now be clear that Fodor’s argument depends on two sorts 

of assumptions: First, like Miller et al. and Neisser, he introduces the 

ambiguous notion of “input” to allow a level of description on which it 

seems to make sense to analyze perception as if man were a computer 

receiving some sort of data called “stimulus information.”’ This amounts 

‘to the assumption that besides energy processing, “‘data processing is 

involved in perception.’’* 

Fodor then makes two further assumptions of a second sort, of which 

he seems to be unaware: (1) that this data processing takes place as if on 

a digital computer, that is, consists of discrete operations, and (2) that 

this digital computer operates serially according to something like a 

heuristic program, so that one can speak of a sequence of such opera- 

tions. Fodor’s defense of his ‘“‘elaborate conceptualism,” of his notion 

that perception requires complicated mental operations, seems to turn on 

thus dogmatically introducing information processing and then simply 

overlooking all alternative forms of computers and even alternative 
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forms of digital data processing. This blindness to alternatives can be 

seen in the conclusion of Fodor’s discussion of such phenomena as the 

recognition of melodies: 

Characteristically such phenomena have to do with “constancies”—that is, cases 

in which normal perception involves radical and uniform departure from the 

informational content of the physical input. It has been recognized since Helm- 

holtz that such cases provide the best argument for unconscious mental opera- 

tions for there appears to be no alternative to invoking such operations if we are 

to explain the disparity between input and percept.*’ 

Fodor’s whole discussion of the logic of computer simulation is vi- 

tiated by his unquestioned reliance on these questionable assumptions. 

The ease with which his nonarguments pass for conceptual analysis 

reveals the grip of the Platonic tradition, and the need to believe in the 

information-processing level if psychology is to be a science. 

Of course, the use of the computer as a model is legitimate as long as 

it is recognized as an hypothesis. But in the writing of Miller et al., 

Neisser, and Fodor, as we have seen, this hypothesis is treated as an a 

priori truth, as if it were the result of a conceptual analysis of behavior. 

Occasionally one glimpses an empirical basis for this assumption: 

Fodor’s argument for the legitimacy of a computer program as a psycho- 

logical theory ultimately rests on the hypothetical supposition “that we 

have a machine that satisfies whatever experimental tests we can devise 

for correspondences between its repertoire and that of some organism.”™** 

However, this covertly empirical character of the argument is implicitly 

denied since the whole discussion is couched in terms of “sequences of 

mental operations,” as if it were already certain that such a machine 

could exist. 

Only if such a machine existed, and only if it did indeed operate in 

sequences of steps, would one be justified in using the notions connected 

with heuristically programmed digital computers to suggest and inter- 
pret experiments in psychology. But to decide whether such an intelligent 

machine can exist, and therefore whether such a conceptual framework 

is legitimate, one must first try to program such a machine, or evaluate 
the programs already tried. To use computer language as a self-evident 
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and unquestionable way of formulating the conceptional framework in 
terms of which experiments are undertaken and understood without 
valid a priori arguments or an empirical existence-proof of the possibility 

of such a machine, can only lead to confusion. 

Conclusion 

So we again find ourselves moving in a vicious circle. We saw at the end 

of Section I of this chapter that the empirical results, riddled with 

unexplained exceptions, and unable to simulate higher-order processes 

such as zeroing in and essential/inessential discrimination, are only 

promising if viewed in terms of an a priori assumption that the mind 

must work like a heuristically programmed digital computer. But now 

we have seen that the only legitimate argument for the assumption that 

the mind functions like a computer turns on the actual or possible 

existence of such an intelligent machine. 

The answer to the question whether man can make such a machine 

must rest on the evidence of work being done. And on the basis of actual 

achievements and current stagnation, the most plausible answer seems 

to be, No. It is impossible to process an indifferent “input”? without 

distinguishing between relevant and irrelevant, significant and insignifi- 

cant data. We have seen how Newell, Shaw, and Simon have been able 

to avoid this problem only by predigesting the data, and how Miller et 

al. have been able to avoid it only by mistakenly supposing that Newell, 

Shaw, and Simon had a program which performed this original selection. 

But if there is no promising empirical evidence, the whole self-supporting 

argument tumbles down like a house of cards. 

The only alternative way to cope with selectivity would be analogue 

processing, corresponding to the selectivity of our sense organs. But then 

all processing would no longer be digital, and one would have reason to 

wonder whether this analogue processing was only peripheral. All of 

which would cast doubt on the “‘sequence of operations” and reopen the 

whole discussion. These difficulties suggest that, although man is surely 

a physical object processing physical inputs according to the laws of 
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physics and chemistry, man’s behavior may not be explainable in terms 

of an information-processing mechanism processing inputs which repre- 

sent features of the world. Nothing from physics or experience sug- 

gests that man’s actions can be so explained, since on the physical level 

we are confronted with continuously changing patterns of energy, and 

on the phenomenological level with objects in an already organized field 

of experience. 

An analysis of this field of experience would provide an alternative 

area of study for psychology. But before we turn to this alternative the- 

ory in Part III, we must follow up two other assumptions, which, even 

if work in CS cannot be defended, seem to lend plausibility to work 

in AT. 
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The Epistemological Assumption 

It should now be evident that it is extremely difficult to define what 

the mental level of functioning is, and that whatever the mind is, it is by 

no means obvious that it functions like a digital computer. This makes 

practically unintelligible the claims of those working in Cognitive Simu- 

lation that the mind can be understood as processing information accord- 

ing to heuristic rules. The computer model turns out not to be helpful 

in explaining what people actually do when they think and perceive, and, 

conversely, the fact that people do think and perceive can provide no 

grounds for optimism for those trying to reproduce human performance 

with digital computers. 

But this still leaves open another ground for optimism: although 

human performance might not be exp/ainable by supposing that people 

are actually following heuristic rules in a sequence of unconscious opera- 

tions, intelligent behavior may still be forma/izable in terms of such rules 

and thus reproduced by machine.'* This is the epistemological assump- 

tion. 

Consider the planets. They are not solving differential equations as 

they swing around the sun. They are not following any rules at all; but 

their behavior is nonetheless lawful, and to understand their behavior we 

find a formalism—in this case differential equations—which expresses 

their behavior as motion according to a rule. Or, to take another example: 

/ 189 
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A man riding a bicycle may be keeping his balance just by shifting his 

weight to compensate for his tendency to fall. The intelligible content of 

what he is doing, however, might be expressed according to the rule: 

wind along a series of curves, the curvature of which is inversely propor- 

tional to the square of the velocity.** The bicycle rider is certainly not 

following this rule consciously, and there is no reason to suppose he is 

following it unconsciously. Yet this formalization enables us to express 

or understand his competence, that is, what he can accomplish. It is, 

however, in no way an explanation of his performance. It tells us what 

it is to ride a bicycle successfully, but nothing of what is going on in his 

brain or in his mind when he performs the task. 

There is thus a subtle but important difference between the psychologi- 

cal and the epistemological assumptions. Both assume the Platonic no- 

tion of understanding as formalization, but those who make the 

psychological assumption (those in CS) suppose that the rules used in the 

formalization of behavior are the very same rules which produce the 
behavior, while those who make the epistemological assumption (those 

in AT) only affirm that all nonarbitrary behavior can be formalized 
according to some rules, and that these rules, whatever they are, can then 

be used by a computer to reproduce the behavior. 

The epistemological assumption is weaker and thus less vulnerable 
than the psychological assumption. But it is vulnerable nonetheless. 
Those who fall back on the epistemological assumption have realized 
that their formalism, as a theory of competence, need not be a theory of 
human performance, but they have not freed themselves sufficiently 
from Plato to see that a theory of competence may not be adequate as 
a theory of machine performance either. Thus, the epistemological as- 
sumption involves two claims: (a) that all nonarbitrary behavior can be 
formalized, and (b) that the formalism can be used to reproduce the 
behavior in question. In this chapter we shall criticize claim (a) by 
showing that it is an unjustified generalization from physical science, and 
claim (b) by trying to show that a theory of competence cannot be a 
theory of performance: that unlike the technological application of the 
laws of physics to produce physical phenomena, a timeless, contextless 
theory of competence cannot be used to reproduce the moment-to-: 
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moment involved behavior required for human performance; that indeed 

there cannot be a theory of human performance. If this argument is 

convincing, the epistemological assumption, in the form in which it 

seems to support AI, turns out to be untenable, and, correctly under- 

stood, argues against the possibility of AI, rather than guaranteeing its 

success. 

Claim (a), that all nonarbitrary behavior can be formalized, is not an 

axiom. It rather expresses a certain conception of understanding which 

is deeply rooted in our culture but may nonetheless turn out to be 

mistaken. We must now turn to the empirical arguments which can be 

given in support of such a hypothesis. It should also be clear by now that 

no empirical arguments from the success of AI are acceptable, since it 

is precisely the interpretation, and, above all, the possibility of significant 

extension of the meager results such as Bobrow’s which is in question. 

Since two areas of successful formalization—physics and linguistics— 

seem to support the epistemological assumption, we shall have to study 

both these areas. In physics we indeed find a formalism which describes 

behavior (for example, the planets circling the sun), but we shall see that 

this sort of formalism can be of no help to those working in AI. In 

linguistics we shall find, on the other hand, a formalism which is relevant 

to work in AI, and which argues for the assumption that all nonarbitrary 

behavior can be formalized, but we will find that this formalism which 

expresses the competence of the speaker—that is, what he is able to 

accomplish—cannot enable one to use a computer to reproduce his 

performance—that is, his accomplishment. 

I. A Mistaken Argument from the Success of 

Physics 

Minsky’s optimism—that is, his conviction that all nonarbitrary behav- 

ior can be formalized and the resulting formalism used by a digital 

computer to reproduce that behavior—is a pure case of the epistemologi- 

cal assumption. It is this belief which allows Minsky to assert with 

confidence that “there is no reason to suppose that machines have any 

limitations not shared by man.”? We must now examine the arguments 
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supporting this claim, but first we must be clear what the formalist means 

by machine. 

A digital computer is a machine which operates according to the sort 

of criteria Plato once assumed could be used to understand any orderly 

behavior. This machine, as defined by Minsky, who bases his definition 

on that of Turing, is a “rule-obeying mechanism.” As Turing puts it: 

“The . . . computer is supposed to be following fixed rules. . . . It is the 

duty of the control to see that these instructions are obeyed correctly and 

in the right order. The control is so constructed that this necessarily 

happens.’ So the machine in question is a restricted but very fundamen- 

tal sort of mechanism. It operates on determinate, unambiguous bits of 

data, according to strict rules which apply unequivocally to these data. 

The claim is made that this sort of machine—a Turing machine—which 

expresses the essence of a digital computer can, in principle, do anything 

that human beings can do—that it has, in principle, only those limita- 

tions shared by man. 

Minsky considers the antiformalist counterclaim that “perhaps there 

are processes . . . which simply cannot be described in any formal 

language, but which can nevertheless be carried out, e.g., by minds.” 

Rather than answer this objection directly, he refers to Turing’s “bril- 

liant’’ article which, he asserts, contains arguments that “amount 

... toa Satisfactory refutation of many such objections.’’* Turing does, 

indeed, take up this sort of objection. He states it as follows: “It is not 
possible to produce a set of rules purporting to describe what a man 
should do in every conceivable set of circumstances.’ This is presuma- 

bly Turing’s generalization of Wittgenstein’s argument that it is impossi- 
ble to supply normative rules which prescribe in advance the correct use 
of a word in all situations. Turing’s “refutation” is to make a distinction 

between “rules of conduct” and “laws of behavior’ and then to assert 
that “we cannot so easily convince ourselves of the absence of complete 
laws of behavior as of complete rules of conduct.”* 

Now as an answer to the Wittgensteinian claim, this is well taken. 
Turing is in effect arguing that although we cannot formulate the norma- 
tive rules for the correct application of a particular predicate, this does 
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not show that we cannot formulate the rules which describe how, in fact, 
a particular individual applies such a predicate. In other words, while 
Turing is ready to admit that it may in principle be impossible to provide 
a set of rules describing what a person should do in every circumstance, 
he holds there is no reason to doubt that one could in principle discover 
a set of rules describing what he would do. But why does this supposition 
seem so self-evident that the burden of proof is on those who call it into 
question? Why should we have to “convince ourselves of the absence of 
complete laws of behavior” rather than of their presence? Here we are 

face to face again with the epistemological assumption. It is important 

to try to root out what lends this assumption its implied a priori plausi- 

bility. 

To begin with, “laws of behavior” is ambiguous. In one sense human 

behavior is certainly lawful, if lawful simply means orderly. But the 

assumption that the laws in question are the sort that could be embodied 

in a computer program or some equivalent formalism is a different and 

much stronger claim, in need of further justification. 

The idea that any description of behavior can be formalized in a way 

appropriate to computer programming leads workers in the field of 

artificial intelligence to overlook this question. It is assumed that, in 

principle at least, human behavior can be represented by a set of indepen- 

dent propositions describing the inputs to the organism, correlated with 

a Set of propositions describing its outputs. The clearest statement of this 

assumption can be found in James Culbertson’s move from the assertion 

that one could build a robot using only flip/flops to the claim that in 

theory at least it could therefore reproduce all human behavior. 

Using suitable receptors and effectors we can connect them together via central 

cells. If we could get enough central cells and if they were small enough and if 

each cell had enough endbulbs and if we could put enough bulbs at each synapse 

and if we had time enough to assemble them, then we could construct robots to 

satisfy any given input-output specification, 1.e., we could construct robots that 

would behave in any way we desired under any environmental circumstances. 

There would be no difficulty in constructing a robot with behavioral properties 

just like John Jones or Henry Smith or in constructing a robot with any desired 

behavioral improvements over Jones and Smith.’ 
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Or put more baldly: 

Since [these complete robots] can, in principle, satisfy any given input-output 

specifications, they can do any prescribed things under any prescribed circum- 

stances—ingeniously solve problems, compose symphonies, create works of art 

and literature and engineering, and pursue any goals."® 

But as we have seen in Chapter 4, it is not clear in the case of human 

beings what these inputs and outputs are supposed to be.''* Culbertson’s 

assumption that the brain can be understood as correlating isolated bits 

of data rests on the assumption that the neurons act as on/off switches. 

Since, as we have seen in Chapter 3, this is probably not the case, there 

is no reason to suppose, and several reasons to doubt, that human inputs 

and outputs can be isolated and their correlation formalized. Culbert- 

son’s assumption is an assumption and nothing more, and so in no way 

justifies his conclusions. 

The committed formalist, however, has one more move. He can ex- 

ploit the ambiguity of the notion of “laws of behavior,” and take behavior 

to mean not meaningful human actions, but simply the physical move- 

ments of the human organism. Then, since human bodies are part of the 

physical world and, as we have seen, objects in the physical world have 

been shown to obey laws which can be expressed in a formalism manipu- 

lable on a digital computer, the formalist can still claim that there must 

be laws of human behavior of the sort required by his formalism. To be 

more specific, if the nervous system obeys the laws of physics and chemis- 

try, which we have every reason to suppose it does, then even if it is not 

a digital computer, and even if there is no input-output function directly 

describing the behavior of the human being, we still ought to be able to 

reproduce the behavior of the nervous system with some physical device 

which might, for example, take the form of a new sort of “analogue 
computer” using ion solutions whose electrical properties change with 

various local saturations. Then, as we pointed out in Chapter 4, knowing 

the composition of the solutions in this device would enable us at least 
in principle to write the physicochemical equations describing such wet 
components and to solve these equations on a dry digital computer. 
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Thus, given enough memory and time, any computer—even such a 
special sort of analogue computer—could be simulated on a digital ma- 
chine. In general, by accepting the fundamental assumptions that the 
nervous system is part of the physical world and that all physical pro- 
cesses can be described in a mathematical formalism which can in turn 
be manipulated by a digital computer, one can arrive at the strong claim 
that the behavior which results from human “information processing,” 
whether directly formalizable or not, can always be indirectly repro- 

duced on a digital machine. 

This claim may well account for the formalist’s smugness, but what 

in fact is justified by the fundamental truth that every form of “informa- 

tion processing” (even those which in practice can only be carried out 

on an “analogue computer’’) must in principle be simulable on a digital 

computer? We have seen it does not prove the mentalist claim that, even 

when a human being is unaware of using discrete operations in process- 

ing information, he must nonetheless be unconsciously following a set of 

instructions. Does it justify the epistemological assumption that all 

nonarbitrary behavior can be formalized? 

One must delimit what can count as information processing in a 

computer. A digital computer solving the equations describing an ana- 

logue information-processing device and thus simulating its function is 

not thereby simulating its ‘information processing.” It is not processing 

the information which is processed by the simulated analogue, but en- 

tirely different information concerning the physical or chemical proper- 

ties of the analogue. Thus the strong claim that every form of information 

can be processed by a digital computer is misleading. One can only show 

that for any given type of information a digital computer can in principle 

be programmed to simulate a device which can process that information. 

Thus understood as motion—as the input and output of physical 

signals—human behavior is presumably completely lawful in the sense 

the formalists require. But this in no way supports the formalist assump- 

tion as it appears in Minsky and Turing. For when Minsky and Turing 

claim that man is a Turing machine, they cannot mean that a man is a 

physical system. Otherwise it would be appropriate to say that planes or 
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boats are Turing machines. Their behavior, too, can be described by 

mathematically formulable laws—relating their intake and output of 

energy—and can at least in principle be reproduced to any degree of 

accuracy on a digital computer. No, when Minsky or Turing claims that 

man can be understood as a Turing machine, they must mean that a 

digital computer can reproduce human behavior, not by solving physical 

equations but by processing data representing facts about the world using 

logical operations that can be reduced to matching, classifying, and 

Boolean operations. As Minsky puts it: 

Mental processes resemble . . . the kinds of processes found in computer pro- 

grams: arbitrary symbol associations, treelike storage schemes, conditional trans- 

fers, and the like.'2 

Workers in AI are claiming that there is such a mental level of symbolic 
descriptions which can be described in a digital formalism. All AI re- 
search is dedicated to using logical operations to manipulate data repre- 
senting the world, not to solving physical equations describing physical 
objects. Considerations from physics show only that inputs of energy, 
and the neurological activity involved in transforming them, can in 
principle be described and manipulated in digital form. 

No one has tried, or hopes to try, to use the laws of physics to calculate 
in detail the motion of human bodies. Indeed, this may well be physically 
impossible, for H. J. Bremermann has shown that: 

No data processing system whether artificial or living can process more than 
(2 x 10*’) bits per second per gram of its mass." 

Bremermann goes on to draw the following conclusions: 

There are 7T x 10’ seconds in a year. The age of the earth is about 10° years, 
its mass less than 6 X 10°’ grams. Hence even a computer of the size of the earth 
could not process more than 10” bits during a time equal to the age of the earth. 
[Not to mention the fact, one might add, that the bigger the computer the more 
the speed of light would be a factor in slowing down its operation.] ... Theorem 
proving and problem solving . . . lead to exponentially growing problem trees. 
If our conjecture is true then it seems that the difficulties that are currently 
encountered in the field of pattern recognition and theorem proving will not be 
resolved by sheer speed of data processing by some future super-computers. '* 
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If these calculations are correct, there is a special kind of impossibility 
involved in any attempt to simulate the brain as a physical system. The 
enormous calculations necessary may be precluded by the very laws of 
physics and information theory such calculations presuppose. 

Yet workers in the field of AI from Turing to Minsky seem to take 
refuge in this confusion between physical laws and information-process- 
ing rules to convince themselves that there is reason to suppose that 
human behavior can be formalized; that the burden of proof is on those 
who claim that “‘there are processes ... which simply cannot be described 
in a formal language but which can nevertheless be carried out, e.g., by 
minds.”’'* Once we have set straight the equivocation between physical 

laws and information-processing rules, what argument remains that hu- 

man behavior, at what AI workers have called “the information process- 

ing level,’’ can be described in terms of strict rules? 

ll. A Mistaken Argument from the Success of 

Modern Linguistics 

If no argument based on the success of physics is relevant to the success 

of AI, because AI is concerned with formalizing human behavior not 

physical motion, the only hope is to turn to areas of the behavioral 

sciences themselves. Galileo was able to found modern physics by ab- 

stracting from many of the properties and relations of Aristotelian phys- 

ics and finding that the mathematical relations which remained were 

sufficient to describe the motion of objects. What would be needed to 

justify the formalists’ optimism would be a Galileo of the mind who, by 

making the right abstractions, could find a formalism which would be 

sufficient to describe human behavior. 

John McCarthy expresses this longing for a rapprochement between 

physics and the behavioral sciences: 

Although formalized theories have been devised to express the most important 

fields of mathematics and some progress has been made in formalizing certain 

empirical sciences, there is at present no formal theory in which one can express 

the kind of means-ends analysis used in ordinary life. .. . Our approach to the 

artificial-intelligence problem requires a formal theory.'* 



What Computers Can't Do / 198 

Recently such a breakthrough has occurred. Chomsky and the trans- 

formational linguists have found that by abstracting from human perfor- 

mance—the use of particular sentences on particular occasions—they 

can formalize what remains, that is, the human ability to recognize gram- 

matically well-formed sentences and to reject ill-formed ones. That is, 

they can provide a formal theory of much of linguistic competence.'’* 

This success is a major source of encouragement for those in AI who are 

committed to the view that human behavior can be formalized without 

reduction to the physical level, for such success tends to confirm at least 

the first half of the epistemological hypothesis. A segment of orderly 

behavior which at first seems nonrulelike turns out to be describable in 

terms of complex rules, rules of the sort which can be processed directly 

by a digital computer (directly—that is, without passing by way of a 

physical description of the motions of the vocal cords of a speaker or the 

physiochemical processes taking place in his brain). 

But such a formalization only provides justification for half the epis- 

temological hypothesis. Linguistic competence is not what AI workers 

wish to formalize. If machines are to communicate in natural language, 

their programs must not only incorporate the rules of grammar; they 

must also contain rules of linguistic performance. In other words, what 

was omitted in order to be able to formalize syntactic theory—the fact 

that people are able to use their language—is just what must also be 

formalized. 

The question whether the epistemological hypothesis is justified thus 
comes down to the test case: is there reason to suppose that there can 
be a formal theory of what linguists call pragmatics? There are two 
reasons to believe that such a generalization of syntactic theory is impos- 
sible: (1) An argument of principle (to which we shall turn in the next 
chapter): for there to be a formal theory of pragmatics, one would have 
to have a theory of all human knowledge; but this may well be impossi- 
ble. (2) A descriptive objection (to which we shall now turn): not all 
linguistic behavior is rulelike. We recognize some linguistic expressions 
as odd —as breaking the rules—and yet we are able to understand 
them. 

There are cases in which a native speaker recognizes that a certain 
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linguistic usage is odd and yet is able to understand it—for example, the 
phrase “The idea is in the pen” is clear in a situation in which we are 

discussing promising authors; but a machine at this point, with rules for 

what size physical objects can be in pig pens, playpens, and fountain 

pens, would not be able to go on. Since an idea is not a physical object, 

the machine could only deny that it could be in the pen or at best make 

an arbitrary stab at interpretation. The listener’s understanding, on the 

other hand, is far from arbitrary. Knowing what he does about the 

shadow which often falls between human projects and their execution, 

as well as what one uses to write books, he gets the point, and the speaker 

will often agree on the basis of the listener’s response that the listener 

has understood. Does it follow, then, that in understanding or using the 

odd utterance, the human speakers were acting according to a rule—in 

this case a rule for how to modify the meaning of ‘‘in’”? It certainly does 

not seem so to the speakers who have just recognized the utterance as 

“odd.” 

This case takes us to the heart of a fundamental difficulty facing the 

simulators. Programmed behavior is either arbitrary or strictly rulelike. 

Therefore, in confronting a new usage a machine must either treat it as 

a clear case falling under the rules, or take a blind stab. A native speaker 

feels he has a third alternative. He can recognize the usage as odd, not 

falling under the rules, and yet he can make sense of it—give it a meaning 

in the context of human life in an apparently nonrulelike and yet nonar- 

bitrary way. 

Outright misuse of language demonstrates an even more extreme form 

of this ability. People often understand each other even when one of the 

speakers makes a grammatical or semantic mistake. The utterance may 

not only be outside the rules but actually proscribed by them, and yet 

such violations often go unnoticed, so easily are they understood. 

Human beings confronted with these odd cases and outright errors 

adapt as they go along and then may reflect on the revisions they have 

made. A machine has either to fail first and then, when given the correct 

answer, revise its rules to take account of this new usage, or it would have 

to have all the rules—even the rules for how to break the rules and still 

be understood—built into it beforehand. To adopt the first approach, 
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failing first and revising later, would be to admit that in principle, not 

just in practice, machines must always trail behind men—that they could 

not be humanly intelligent. To assume, on the other hand, that the rules 

covering all cases must be explicitly built in or learned—since this is the 

only way a digital computer could simulate the human ability to cope 

with odd uses—runs counter to logic and experience. 

Logically, it is hard to see how one could formulate the rules for how 

one could intelligibly break the rules; for, no matter what metarules are 

formulated, it seems intuitively obvious that the native speaker could 

break them too and count on the context to get his meaning across to 

another speaker. Thus no matter what order of metarules one chooses, 

it seems there will be a higher order of tacit understanding about how 

to break those rules and still be understood. 

Phenomenologically, or empirically, the postulation of a set of uncon- 

scious metarules of which we are not aware leads to other difficulties. 

Just as in chess the acceptance of the digital model led to the assumption 

that the chess player must be using unconscious heuristics, even when 

the player reported that he was zeroing in on patterns of strength and 

weakness, the assumption of the pre-existence of rules for disambigua- 

tion introduces a process of which we have no experiential evidence, and 

fails to take seriously our sense of the oddness of certain uses. 

And here, as in the case of chess, this flouting of phenomenological 

evidence leads to a teleological puzzle: Why, if every understandable use 

of language is covered by rule, should some of these uses appear odd to 

us? So odd, indeed, that we cannot supply any rule to explain our 

interpretation. Why, if we have such a hierarchy of rules and lightning- 

fast capacity for using them on the unconscious level, should we be left 

consciously perplexed in certain cases and find them peculiar even after 

we have understood them? 

These considerations suggest that, although a general theory of syntax 

and semantic competence can be scientific—because it is a timeless for- 

malism which makes no claim to formalize the understanding of lan- 

guage in specific situations, serious problems arise when one demands a 

comparable formalism for linguistic use. 

These difficulties do not disturb those linguists who, like scientists, 
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carefully limit themselves to linguistic competence, that is, the general 
principles which apply to all cases, and exclude as extralinguistic our 
ability to deal with utterances in pragmatic contexts. As Kierkegaard 
points out in his Concluding Unscientific Postscript, the laws of science 
are universal and timeless, treating all experience as if it could as well 
be in the past.'* AI workers, however, want their machines to interact 

with people in present real-life situations in which objects have special 

local significance. But computers are not involved in a situation. Every 

bit of data always has the same value. True, computers are not what 

Kant would call “‘transcendentally stupid”; they can apply a rule to a 

specific case if the specific case is already unambiguously described in 

terms of general features mentioned in the rule. They can thus simulate 

one kind of theoretical understanding. But machines lack practical intel- 

ligence. They are “‘existentially” stupid in that they cannot cope with 

specific situations. Thus they cannot accept ambiguity and the breaking 

of rules until the rules for dealing with the deviations have been so 

completely specified that the ambiguity has disappeared. To overcome 

this disability, AI workers would have to develop an a-temporal, nonlo- 

cal, theory of ongoing, situated, human activity. 

The originality, the importance, and the curse of work in machine 

communication in a natural language is that the machine must use its 

formalism to cope with real-life situations as they occur. It must deal with 

phenomena which belong to the situational world of human beings as if 

these phenomena belonged to the objective formal universe of science. 

The believer in machine understanding and use of natural language who 

is encouraged by the success of linguistics is not laboring under a mis- 

conception about the way consciousness functions, but rather under a 

misconception about the relation between theoretical and practical 

understanding. He supposes that one can understand the practical world 

of an involved active individual in the same terms one can understand 

the objective universe of science. In short, he claims, as Leibniz first 

claimed, that one can have a theory of practice. 

But such an applied theory could not be the same as the technological 

application of a physical theory, which it seems to parallel. When one 

uses the laws of physics to guide missiles, for example, the present 
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performance of the missile is an instantiation of timeless, universal laws 

which make no reference to the situation except in terms of such laws. 

But in linguistics, as we have seen, speakers using the language take for 

granted common situational assumptions and goals. Thus the general 

laws of competence cannot be directly applied to simulate behavior. To 

get from the linguistic formalism to specific performance, one has to take 

into account the speaker’s understanding of his situation. If there could 

be an autonomous theory of performance, it would have to be an entirely 

new kind of theory, a theory for a local context which described this 

context entirely in universal yet nonphysical terms. Neither physics nor 

linguistics offers any precedent for such a theory, nor any comforting 

assurance that such a theory can be found. 

Conclusion 

But to refute the epistemological assumption that there must be a theory 

of practical activity—in the case of language, to deny that the rules 

governing the use of actual utterances can in principle be completely 

formalized—it is not sufficient to point out that thus far no adequate 

language translation system has been developed, or that our language is 

used in flexible and apparently nonrulelike ways. The formalizer can 

offer the Platonic retort that our failure to formalize our ability to use 

language shows only that we have not fully understood this behavior; 

we have not yet found the rules for completely formalizing pragmatics.'** 

This defense might at first seem to be similar to the heuristic program- 

mer’s assurance that he will someday find the heuristics which will 

enable a machine to play chess, even if he has not yet found them. But 

there is an important difference. The heuristic programmer’s confidence 

is based on an unfounded psychological assumption concerning the way 

the mind processes information, whereas the formalist’s claim is based 

on a correct understanding of the nature of scientific explanation. To the 

extent that we have not specified our behavior in terms of unique and 

precisely defined reactions to precisely defined objects in universally 

defined situations, we have not understood that behavior in the only 
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sense of “‘understanding”’ appropriate to science. 
To answer this a priori claim of the theoretical understanding one 

cannot counter with a phenomenological description. One must show 

that the theoretical claim is untenable on its own terms: that the skill 
which enables a native speaker to speak cannot be completely formal- 
ized; that the epistemological assumption is not only implausible but 
leads to contradictions. 

Wittgenstein was perhaps the first philosopher since Pascal to note: 

“In general we don’t use language according to strict rules—it hasn’t 

been taught us by means of strict rules either.”?? But Wittgenstein did 

not base his argument against the claim that language was a calculus 

solely on a phenomenological description of the nonrulelike use of lan- 

guage. His strongest argument is a dialectical one, based on a regress of 

rules. He assumes, like the intellectualist philosophers he is criticizing, 

that all nonarbitrary behavior must be rulelike, and then reduces this 

assumption to absurdity by asking for the rules which we use in applying 

the rules, and so forth. 

Here it is no longer a question of always being able to break the rules 

and still be understood. After all, we only feel we can go on breaking 

the rules indefinitely. We might be mistaken. It is a question of whether 

a complete understanding of behavior in terms of rules is intelligible. 

Wittgenstein 1s arguing, as Aristotle argued against Plato, that there 

must always be a place for interpretation. And this is not, as Turing 

seemed to think, merely a question of whether there are rules governing 

what we should do, which can legitimately be ignored. It is a question 

of whether there can be rules even describing what speakers in fact do. 

To have a complete theory of what speakers are able to do, one must not 

only have grammatical and semantic rules but further rules which would 

enable a person or a machine to recognize the context in which the rules 

must be applied. Thus there must be rules for recognizing the situation, 

the intentions of the speakers, and so forth. But if the theory then 

requires further rules in order to explain how these rules are applied, as 

the pure intellectualist viewpoint would suggest, we are in an infinite 

regress. Since we do manage to use language, this regress cannot be a 
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problem for human beings. If AI is to be possible, it must also not be 

a problem for machines. 

Both Wittgenstein and the computer theorists must agree that there 

is some level at which rules are simply applied and one no longer 

needs rules to guide their application. Wittgenstein and the AI theorists 

differ fundamentally, however, on how to describe this stopping point. 

For Wittgenstein there is no absolute stopping point; we just fill in as 

many rules as are necessary for the practical demands of the situation. 

At some level, depending on what we are trying to do, the interpretation 

of the rule is simply evident and the regress stops.?'* 

For the computer people the regress also stops with an interpretation 

which is self-evident, but this interpretation has nothing to do with the 

demands of the situation. It cannot, for the computer is not in a situation. 

It generates no local context. The computer theorist’s solution is to build 

the machine to respond to ultimate bits of context-free, completely deter- 

minate data which require no further interpretation in order to be under- 

stood. Once the data are in the machine, all processing must be rulelike, 

but in reading in the data there is a direct response to determinate 

features of the machine’s environment as, for example, holes in cards or 
the mosaic of a TV camera, so on this ultimate level the machine does 
not need rules for applying its rules. Just as the feeding behavior of the 
baby herring gull is triggered by a red spot and the frog’s eye automati- 
cally signals the presence of a moving black spot, so human behavior, if 
it is to be completely understood and computerized, must be understood 
as if triggered by specific features of the environment. 

As a theory of human psychology (CS) this is surely not a plausible 
hypothesis. Our sense of oddness of deviant linguistic uses, as well as our 
feeling that there is nothing in the environment to which we have an 
inevitable and invariable response, argue against this view. Moreover, as 
a theory of our “practical competence” (no matter how we actually 
produce our behavior), this hypothesis is no more attractive. The general 
adaptability of our language, which enables us to modify meanings and 
invent analogies, as well as the general flexibility of human and even 
higher animal behavior, are incomprehensible on this view. Still, these 
objections are all based on appearances. They are plausible, but not 
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necessarily convincing to those committed to the epistemological as- 

sumption. 

A full refutation of the epistemological assumption would require an 

argument that the world cannot be analyzed in terms of context-free 

data. Then, since the assumption that there are basic unambiguous ele- 

ments is the only way to save the epistemological assumption from the 

regress of rules, the formalist, caught between the impossibility of always 

having rules for the application of rules and the impossibility of finding 

ultimate unambiguous data, would have to abandon the epistemological 

assumption altogether. 

This assumption that the world can be exhaustively analyzed in terms 

of context-free data or atomic facts is the deepest assumption underlying 

work in AI and the whole philosophical tradition. We shall call it the 

ontological assumption, and now turn to analyzing its attraction and its 

difficulties. 
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The Ontological Assumption 

Up to now we have been seeking in vain the arguments and evidence 

that the mind processes information in a sequence of discrete steps like 

a heuristically programmed digital computer, or that human behavior 

can be formalized in these terms. We have seen that there are four types 

of human “information processing” (fringe consciousness, ambiguity tol- 

erance, essential/inessential discrimination, and perspicuous grouping), 

which have resisted formalization in terms of heuristic rules. And we 

have seen that the biological, psychological, and epistemological assump- 

tions which allow workers to view these difficulties as temporary are 

totally unjustified and may well be untenable. Now we turn to an even 

more fundamental difficulty facing those who hope to use digital comput- 

ers to produce artificial intelligence: the data with which the computer 

must operate if it is to perceive, speak, and in general behave intelli- 

gently, must be discrete, explicit, and determinate; otherwise, it will not 

be the sort of information which can be given to the computer so as to 

be processed by rule. Yet there is no reason to suppose that such data 

about the human world are available to the computer and several reasons 

to suggest that no such data exist. 

The ontological assumption that everything essential to intelligent 

behavior must in principle be understandable in terms of a set of determi- 

nate independent elements allows AI researchers to overlook this prob- 
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lem. We shall soon see that this assumption lies at the basis of all thinking 
in AI, and that it can seem so self-evident that it is never made explicit 
or questioned. As in the case of the epistemological assumption, we shall 
see that this conviction concerning the indubitability of what in fact is 
only an hypothesis reflects two thousand years of philosophical tradition 
reinforced by a misinterpretation of the success of the physical sciences. 
Once this hypothesis is made explicit and called into question, it turns 
out that no arguments have been brought forward in its defense and that, 
when used as the basis for a theory of practice such as AI, the ontological 

assumption leads to profound conceptual difficulties. 

In his introduction to Semantic Information Processing, Minsky warns 

against 

the dreadfully misleading set of concepts that people get when they are told (with 

the best intentions) that computers are nothing but assemblies of flip-flops; that 

their programs are really nothing but sequences of operations upon binary num- 

bers, and so on.! 

He tries to combat this discouraging way of looking at digital computers: 

While this is one useful viewpoint, it is equally correct to say that the computer 

is nothing but an assembly of symbol-association and process-controlling ele- 

ments and that programs are nothing but networks of interlocking goal-formulat- 

ing and means-ends evaluation processes. This latter attitude is actually much 

healthier because it reduces one’s egotistical tendency to assume total compre- 

hension of all. the possible future implications.’ 

But Minsky sees only half the difficulty arising from his restriction that 

the computer must operate on determinate, independent elements. It is 

true that programmers formulate higher-order rules for the operation 

of a computer so that the fact that there are flip/flops never appears in 

the flow chart, that is, on the information-processing level.’* (On this 

level, as we have seen in the preceding two chapters, trouble arises 

because there must always be explicit rules, not because these rules 

must ultimately be a sequence of operations on binary numbers.) The 

information-processing model, however, restricts the kind of informa- 

tion the machine can be given. We have seen that Newell quite frankly 

described GPS—a program whose information-processing level is cor- 
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rectly described in terms of interlocking goals and means-ends—as “‘a 

program for accepting a task environment defined in terms of discrete 

objects.’ It is these discrete objects which are organized into the data 

structure which makes up the computer’s representation of the world. 

Every program for a digital computer must receive its data in this dis- 

crete form. 

This raises a special problem, or, more exactly, it creates a problem 

by determining the way all questions concerning giving information to 

computers must be raised. Stated in a neutral way the problem is this: 

as we have seen, in order to understand an utterance, structure a prob- 

lem, or recognize a pattern, a computer must select and interpret its data 

in terms of a context. But how are we to impart this context itself to the 

computer? The sharpest statement of this problem—still in neutral terms 

—occurs in Eden’s evaluation of work in handwriting recognition: 

. . when [a human being] reads a letter written in a difficult script . . . he can 

reconstruct it with the help of his knowledge of the grammar of the language, 

the meaning of the text he has been able to read, the character of the subject 

matter, and, perhaps, the state of mind of the writer. There is now, alas, no hint 

of how to embody such knowledge of the world and its ways in the computer.‘ 

Here Eden wisely takes no stand on what we know when we have 

“knowledge of the world and its ways.’’ The information-processing 

model, however, along with the ontological assumption, dictates an an- 

swer to this question which is no longer neutral, but rather embodies the 

computer’s requirements. When one asks what this knowledge of the 

world is, the answer comes back that it must be a great mass of discrete 

facts. 

Thus at the end of his introduction to Semantic Information Process- 

ing, when Minsky finally asks ‘“‘what is the magnitude of the mass of 

knowledge required for a humanoid intelligence?’* he has already pre- 

judged the question and unhesitatingly answers in terms of numbers of 

facts: 

If we discount specialized knowledge and ask instead about the common-every- 

day structures—that which a person needs to have ordinary common sense—we 
will find first a collection of indispensable categories, each rather complex: geo- 
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metrical and mechanical properties of things and of space; uses and properties 

of a few thousand objects; hundreds of “‘facts” about hundreds of people, thou- 

sands of facts about tens of people, tens of facts about thousands of people; 

hundreds of facts about hundreds of organizations. As one tries to classify all his 

knowledge, the categories grow rapidly at first, but after a while one encounters 

more and more difficulty. My impression, for what it’s worth, is that one can find 

fewer than ten areas each with more than ten thousand “links.”’ One can’t find 

a hundred things that he knows a thousand things about. Or a thousand things 

each with a full hundred new links. I therefore feel that a machine will quite 

critically need to acquire the order of a hundred thousand elements of knowledge 

in order to behave with reasonable sensibility in ordinary situations. A million, 

if properly organized, should be enough for a very great intelligence. If my 

argument does not convince you, multiply the figures by ten.’ 

Granting for the moment that all human knowledge can be analyzed 

as a list of objects and of facts about each, Minsky’s analysis raises the 

problem of how such a large mass of facts is to be stored and accessed. 

How could one structure these data—a hundred thousand discrete ele- 

ments—so that one could find the information required in a reasonable 

amount of time? When one assumes that our knowledge of the world is 

knowledge of millions of discrete facts, the problem of artificial intelli- 

gence becomes the problem of storing and accessing a large data base. 

Minsky sees that this presents grave difficulties: 

... As everyone knows, it is hard to find a knowledge-classifying system that 

works well for many different kinds of problems: it requires immense effort to 

build a plausible thesaurus that works even within one field. Furthermore, any 

particular retrieval structure is liable to entail commitments making it difficult 

to incorporate concepts that appear after the original structure is assembled. One 

is tempted to say: ‘It would be folly to base our intelligent machine upon some 

particular elaborate, thesaurus-like classification of knowledge, some ad hoc 

syntopicon. Surely that is no road to ‘general intelligence.’ ””* 

And, indeed, little progress has been made toward solving the large 

data base problem. But, in spite of his own excellent objections, Minsky 

characteristically concludes: 

But we had better be cautious about this caution itself, for it exposes us to a far 

more deadly temptation: to seek a fountain of pure intelligence. I see no reason 

to believe that intelligence can exist apart from a highly organized body of 
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knowledge, models, and processes. The habit of our culture has always been to 

suppose that intelligence resides in some separated crystalline element, call it 

consciousness, apprehension, insight, gestalt, or what you will but this is merely 

to confound naming the problem with solving it. The problem-solving abilities 

of a highly intelligent person lies partly in his superior heuristics for managing 

his knowledge-structure and partly in the structure itself; these are probably 

somewhat inseparable. In any case, there is no reason to suppose that you can 

be intelligent except through the use of an adequate, particular, knowledge or 

model structure.’ 

But this is no argument for optimism. True, people manage to be 

intelligent, but without the ontological assumption this would be no 

consolation to workers in AI. It is by no means obvious that in order to 

be intelligent human beings have somehow solved or needed to solve the 

large data base problem. The problem may itself be an artifact created 

by the fact that AI workers must operate with discrete elements. Human 

knowledge does not seem to be analyzable as an explicit description as 

Minsky would like to believe. A mistake, a collision, an embarrassing 

situation, etc., do not seem on the face of it to be objects or facts about 

objects. Even a chair is not understandable in terms of any set of facts 

or “elements of knowledge.”’ To recognize an object as a chair, for 

example, means to understand its relation to other objects and to human 

beings. This involves a whole context of human activity of which the 

shape of our body, the institution of furniture, the inevitability of fatigue, 

constitute only a small part. And these factors in turn are no more 

isolable than is the chair. They all may get their meaning in the context 

of human activity of which they form a part (see Chapter 8). 

In general, we have an implicit understanding of the human situation 

which provides the context in which we encounter specific facts and 

make them explicit. There is no reason, only an ontological commitment, 

which makes us suppose that all the facts we can make explicit about our 

situation are already unconsciously explicit in a “model structure,” or 

that we could ever make our situation completely explicit even if we 

tned=* 

Why does this assumption seem self-evident to Minsky? Why is he so 

unaware of the alternative that he takes the view that intelligence in- 
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volves a “particular, knowledge or model structure,” a great systematic 
array of facts, as an axiom rather than as an hypothesis? Ironically, 
Minsky supposes that in announcing this axiom he is combating the 
tradition. “The habit of our culture has always been to suppose that 
intelligence resides in some separated crystalline element, call it con- 
sciousness, apprehension, insight, gestalt. . . .” In fact, by supposing that 
the alternatives are either a well-structured body of facts, or some disem- 
bodied way of dealing with the facts, Minsky is so traditional that he 
can’t even see the fundamental assumption that he shares with the whole 

of the philosophical tradition. In assuming that what is given are facts 

at all, Minsky is simply echoing a view which has been developing since 

Plato and has now become so ingrained as to seem self-evident. 

As we have seen, the goal of the philosophical tradition embedded in 

our culture is to eliminate uncertainty: moral, intellectual, and practical. 

Indeed, the demand that knowledge be expressed in terms of rules or 

definitions which can be applied without the risk of interpretation is 

already present in Plato, as is the belief in simple elements to which the 

rules apply.''* With Leibniz, the connection between the traditional idea 

of knowledge and the Minsky-like view that the world must be analyz- 

able into discrete elements becomes explicit. According to Leibniz, in 

understanding we analyze concepts into more simple elements. In order 

to avoid a regress of simpler and simpler elements, then, there must be 

ultimate simples in terms of which all complex concepts can be under- 

stood. Moreover, if concepts are to apply to the world, there must be 

simples to which these elements correspond. Leibniz envisaged ‘‘a kind 

of alphabet of human thoughts”? whose “‘characters must show, when 

they are used in demonstrations, some kind of connection, grouping and 

order which are also found in the objects.”’'’ The empiricist tradition, too, 

is dominated by the idea of discrete elements of knowledge. For Hume, 

all experience is made up of impressions: isolable, determinate, atoms of 

experience. Intellectualist and empiricist schools converge in Russell’s 

logical atomism, and the idea reaches its fullest expression in Wittgen- 

stein’s Tractatus, where the world is defined in terms of a set of atomic 

facts which can be expressed in logically independent propositions. This 

is the purest formulation of the ontological assumption, and the neces- 
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sary precondition of all work in AI as long as researchers continue to 

suppose that the world must be represented as a structured set of descrip- 

tions which are themselves built up from primitives. Thus both philo- 

sophy and technology, in their appeal to primitives continue to posit 

what Plato sought: a world in which the possibility of clarity, certainty, 

and control is guaranteed; a world of data structures, decision theory, 

and automation. 

No sooner had this certainty finally been made fully explicit, how- 

ever, than philosophers began to call it into question. Continental 

phenomenologists recognized it as the outcome of the philosophical 

tradition and tried to show its limitations. Merleau-Ponty calls the as- 

sumption that all that exists can be treated as determinate objects, the 

préjugé du monde, “presumption of commonsense.”’'* Heidegger calls it 

rechnende Denken,"* ‘calculating thought,” and views it as the goal of 

philosophy, inevitably culminating in technology. Thus, for Heidegger, 

technology, with its insistence on the “thoroughgoing calculability of 

objects,’’'** is the inevitable culmination of metaphysics, the exclusive 

concern with beings (objects) and the concomitant exclusion of Being 

(very roughly our sense of the human situation which determines what 
is to count as an object). In England, Wittgenstein less prophetically and 
more analytically recognized the impossibility of carrying through the 

ontological analysis proposed in his Tractatus and became his own sever- 

est Gnitta. |= 

In Part II, we shall have occasion to follow at length the Merleau- 
Pontyian, Wittgensteinian, and Heideggerian critique of the traditional 
ontological assumption, and the alternative view they propose. We have 
already seen enough, however, to suggest that we do not experience the 
world as a set of facts in our everyday activities, nor is it self-evident that 
it is possible to carry through such an analysis. 

But if the ontological assumption does not square with our experience, 
why does it have such power? Even if what gave impetus to the philo- 
sophical tradition was the demand that things be clear and simple so that 
we can understand and control them, if things are not so simple why 
persist in this optimism? What lends plausibility to this dream? As we 
have already seen in another connection, the myth is fostered by the 
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success of modern physics. Here, at least to a first approximation, the 
ontological assumption works. It was only after Galileo was able to treat 
motion in terms of isolable objects moving under the influence of com- 

putable, determinate forces that Hobbes was encouraged to announce 

that all thinking was the addition of parcels. It has proved profitable to 

think of the physical universe as a set of independent interacting ele- 

ments. The ontological assumption that the human world too can be 

treated in terms of a set of elements gains plausibility when one fails to 

distinguish between world and universe, or what comes to the same 

thing, between the human situation and the state of a physical system. 

In Minsky’s work this confusion remains implicit; in the work of his 

former colleague, John McCarthy, now directing AI research at Stan- 

ford, it becomes the very cornerstone of the argument. In his paper 

“Programs with Common Sense,” included in the Minsky volume, 

McCarthy proposes an “‘advice taker’—a program for “solving prob- 

lems by manipulating sentences in formal languages,” the behavior of 

which “will be improvable merely by making statements to it, telling it 

about its symbolic environment and what is wanted from it.”’'* McCarthy 

sees clearly that “the first requirement for the advice taker is a formal 

system in which facts about situation, goals, and actions can be ex- 

pressed.” This leads immediately to the basic problem: how can one 

describe the situation in a formal system? McCarthy, however, does not 

see this as a serious problem because he assumes without question that 

a situation is a physical state: 

One of the basic entities in our theory is the situation. Intuitively, a situation is 

the complete state of affairs at some instant in time. The laws of motion of a 

system determine all future situations from a given situation. Thus, a situation 

corresponds to the notion of a point in phase space.”° 

But the same type of situation can reoccur, involving different objects, 

different people, and a fortiori different physical states. Moreover, the 

same physical organization of matter can be seen as many different 

situations, depending on the goals and intentions of the various human 

beings involved. Thus, although at any given moment the universe is in 

only one physical state, there may be as many situations as there are 
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people. When McCarthy says “‘there is only one situation corresponding 

to a given value of time,’’”! he has clearly confused situation with physical 

state of the universe. More specifically, he has confused token states and 

types of states. A situation token can be identical with a physical state 

token (specified by a point in phase space). But a type of situation cannot 

be identical to a type of physical state. 

A concrete example will help to pinpoint this confusion. A situation 

which McCarthy discusses at length is “being at home.” ** ‘At (I, home) 

(s)’ means I am at home in situation s.”*? McCarthy seems to assume that 

this is the same thing as being in my house, that is, that it is a physical 

state. But I can be at home and be in the backyard, that is, not physically 

in my house at all. I can also be physically in my house and not be at 

home; for example, if I own the house but have not yet moved my 

furniture in. Being at home is a human situation, not in any simple 

correspondence with the physical state of a human body in a house. Not 

to mention the fact that it is a necessary if not sufficient condition for 

being at home in the sense in question that I own or rent the house, and 
owning or renting a house is a complicated institutional set of relations 
not reducible to any set of physical states. Even a physical description 

of a certain pattern of ink deposited on certain pieces of paper in a 
specific temporal sequence would not constitute a necessary and suffi- 
cient condition for a transfer of ownership. Writing one’s name is not 
always signing, and watching is not always witnessing. 

It is easy to see why McCarthy would like to treat the situation as if 
it were a physical state. The evolution of a physical state can, indeed, be 
formalized in differential equations and reproduced on a digital com- 
puter. Situations, however, pose formidable problems for those who 
would like to translate them into a formal system. Such a formalization 
may well be impossible in principle, as can best be seen by returning to 
the problem of machine translation. 

We have seen in Part I that automatic language translation has failed 
because natural language turns out to be much more ambiguous than was 
supposed. In narrowing down this semantic and syntactic ambiguity the 
native speaker may appeal to specific information about the world. Bar- 
Hillel makes this point in an argument which according to him ‘*‘amounts 
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to an almost full-fledged demonstration of the unattainability of fully 
automatic high quality translation, not only in the near future but al- 
together.” The argument is sufficiently important at this point to merit 

quoting at some length. 

I shall show that there exist extremely simple sentences in English—and the same 

holds, I'am sure, for any other natural language—which, within certain linguistic 

contexts, would be uniquely (up to plain synonymy) and unambiguously trans- 

lated into any other language by anyone with a sufficient knowledge of the two 

languages involved, though I know of no program that would enable a machine 

to come up with this unique rendering unless by a completely arbitrary and ad 

hoc procedure whose futility would show itself in the next example. 

A sentence of this kind is the following: 

The box was in the pen. 

The linguistic context from which this sentence is taken is, say, the following: 

Little John was looking for his toy box. Finally he found it. The box was in the 

pen. John was very happy. 

Assume, for simplicity’s sake, that pen in English has only the following two 

meanings: (1) a certain writing utensil, (2) an enclosure where small children can 

play. I now claim that no existing or imaginable program will enable an elec- 

tronic computer to determine that the word pen in the given sentence within the 

given context has the second of the above meanings, whereas every reader with 

a sufficient knowledge of English will do this ‘“‘automatically.” 

What makes an intelligent human reader grasp this meaning so unhesitat- 

ingly is, in addition to all the other features that have been discussed by MT 

workers ..., his knowledge that the relative sizes of pens, in the sense of writing 

implements, toy boxes, and pens, in the sense of playpens, are such that when 

someone writes under ordinary circumstances and in something like the given 

context, ‘““Thé box was in the pen,” he almost certainly refers to a playpen and 

most certainly not to a writing pen.*** 

And, as Bar-Hillel goes on to argue, the suggestion, such as Minsky’s, 

that a computer used in translating be supplied with a universal ency- 

clopedia is ‘‘utterly chimerical.” ““The number of facts we human beings 

know is, in a certain very pregnant sense, infinite.”* 

Bar-Hillel’s point is well taken; his example, however, based on a 

particular physical fact, is unfortunate; it tempts AI workers such as 

Minsky to propose a solution in terms of a model of the facts of physics: 
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“it would be a good idea to build into the semantic model enough 

common-sense geometrical physics to make it unlikely that the box is in 

the fountain-pen. . . .”*°* 

There is a second kind of disambiguation, however, which gets us to 

the very heart of the difficulty. In disambiguating, one may appeal to a 

sense of the situation as in the following example from Katz and Fodor: 

An ambiguous sentence such as “He follows Marx” occurring in a setting in 

which it is clear that the speaker is remarking about intellectual history cannot 

bear the reading “‘he dogs the footsteps of Groucho.””” 

Katz and Fodor discuss this sort of difficulty in their article “The 

Structure of a Semantic Theory”: 

Since a complete theory of setting selection must represent as part of the setting 

of an utterance any and every feature of the world which speakers need in order 

to determine the preferred reading of that utterance, and since . . . practically 

any item of information about the world is essential to some disambiguations, 

two conclusions follow. First, such a theory cannot in principle distinguish 

between the speaker’s knowledge of his language and his knowledge of the world. 

... Second, since there is no serious possibility of systematizing all the knowledge 

about the world that speakers share . . . [such a theory] is not a serious model 

for linguistics.”* 

Katz and Fodor continue: 

None of these considerations is intended to rule out the possibility that, by 

placing relatively strong limitations on the information about the world that a 

theory can represent in the characterization of a setting, a limited theory of 

selection by sociophysical setting can be constructed. What these considerations 

do show is that a complete theory of this kind is not a possibility.”* 

Thus Bar-Hillel claims we must appeal to specific facts, such as the 

size of pens and boxes; Katz and Fodor assume we must appeal to the 

sociophysical setting. The appeal to context, would, moreover, seem to 

be more fundamental than the appeal to facts, for the context determines 
the significance of the facts. Thus in spite of our general knowledge about 
the relative size of pens and boxes, we might interpret “The box is in the 
pen,’” when whispered in a James Bond movie, as meaning just the 
opposite of what it means at home or on the farm. And, conversely, when 



The Ontological Assumption i DUI 

no specifically odd context is specified, we assume a “normal” context 

and assign to the facts about relative size a “normal” significance. Min- 

sky’s physical model hides but does not obviate the need for this implicit 

appeal to the situation. 

The important difference between disambiguation by facts and disam- 

biguation by appeal to the situation is not noted by Minsky, Bar-Hillel, 

or Fodor and Katz, presumably because they each assume that the 

setting is itself identified by features which are facts, and functions like 

a fact in disambiguation. We shall see, however, that disregarding the 

difference between fact and situation leads to an equivocation in both 

Bar-Hillel and Fodor-Katz as to whether mechanical translation is im- 

practical or impossible. 

In Bar-Hillel’s ‘““demonstration”’ that since disambiguation depends on 

the use of facts, and the number of facts is “‘in a certain very pregnant 

sense infinite,” fully automatic high-quality mechanical translation is 

unattainable; it is unclear what is being claimed. If “unattainable” means 

that in terms of present computers, and programs in operation or en- 

visaged, no such massive storage and retrieval of information can be 

carried out, then the point is well made, and is sufficient to cast serious 

doubt on claims that mechanical translation has been achieved or can be 

achieved in the foreseeable future. But if “unattainable” means theoreti- 

cally impossible—which the appeal to infinity seems to imply—then 

Bar-Hillel is claiming too much. A machine would not have to store an 

infinite number of facts, for, as Minsky sees, from a large number of facts 

and rules for concatenating them, such as the laws of physics, it could 

produce further ones indefinitely. True, no present program would en- 

able a machine to sort through such an endless amount of data. At 

present there exist no machine and no program capable of storing even 

a very large body of data so as to gain access to the relevant information 

in manageable time. Still, there is work being done on what are called 

“associative memories” and ingenious tricks used in programming, such 

as hash coding, which may in the distant future provide the means of 

storing and accessing vast bodies of information. Then if all that was 

needed was facts, the necessary information might be stored in such a 
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way that in any given case only a finite number of relevant facts need be 

considered. 

As long as Katz and Fodor, like Bar-Hillel, accept the ontological 

assumption and speak of the setting in terms of “items of information,” 

their argument is as equivocal as his. They have no right to pass from 

the claim that there is “‘no serious possibility” of systematizing the 

knowledge necessary for disambiguation, which seems to be a statement 

about our technological capabilities, to the claim that a complete theory 

of selection by sociophysical setting is ‘‘not a possibility.” If a program 

for handling all knowledge is ever developed, and in their world there 

is no theoretical reason why it should not be, it will be such a theory. 

Only if one rejects the ontological assumption that the world can be 

analyzed as a set of facts—items of information—can one legitimately 

move beyond practical impossibility. We have already seen examples 

which suggest that the situation might be of a radically different order 

and fulfill a totally different function than any concatenation of facts. In 

the “Marx” example, the situation (academic) determines how to disam- 

biguate “Marx” (Karl) and furthermore tells us which facts are relevant 

to disambiguate “follows,” as ideological or chronological. (When was 

the follower born, what are his political views, etc.?) In the box-pen 

example the size of the box and pen are clearly relevant since we are 

speaking of physical objects being “in” other physical objects; but here 

the situation, be it agricultural, domestic, or conspiratorial, determines 

the significance of the facts involved. Thus it is our sense of the situation 

which enables us to select from the potential infinity of facts the immedi- 

ately relevant ones, and once these relevant facts are found, enables us 

to estimate their significance. This suggests that unless there are some 
facts whose relevance and significance are invariant in all situations— 
and no one has come up with such facts—we will have to give the 
computer a way of recognizing situations; otherwise, it will not be able 
to disambiguate and thus it will be, in principle, unable to understand 

utterances in a natural language. 

Among workers in AI, only Joseph Weizenbaum seems to be aware 
of these problems. In his work on a program which would allow people 
to converse with a computer in a natural language, Weizenbaum has had 
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to face the importance of the situation, and realizes that it cannot be 
treated simply as a set of facts. His remarks on the importance of global 
context are worth quoting at length: 

No understanding is possible in the absence of an established global context. To 
be sure, strangers do meet, converse, and immediately understand one another. 
But they operate in a shared culture—provided partially by the very language 
they speak—and, under any but the most trivial circumstances, engage in a kind 
of hunting behavior which has as its object the creation of a contextual frame- 
work.” 

In real conversation global context assigns meaning to what is being said in 
only the most general way. The conversation proceeds by establishing subcon- 
texts, sub-subcontexts within these, and so on.?! 

Weizenbaum sees difficulties in all this but no problems of principle. 

I call attention to the contextual matter . . . to underline the thesis that, while 

a computer program that “understands’’ natural language in the most general 

sense is for the present beyond our means, the granting of even a quite broad 

contextual framework allows us to construct practical language recognition 

procedures.** 

Thus, Weizenbaum proposes to program a nest of contexts in terms 

of a “contextual tree’’: “beginning with the topmost or initial node, a new 

node representing a subcontext is generated, and from this one a new 

node still, and so on to many levels.’”** He clearly supposes these contexts 

can themselves ultimately be treated as sets of facts: “the analogue of a 

conversation tree is what the social psychologist Abelson calls a belief 

structure,’ that is, an organized collection of facts concerning a per- 

son’s knowledge, emotional attitudes, goals, and so forth. 

Evidently, an understanding of the crucial role of the situation does 

not by itself constitute a sufficient argument for abandoning AI. The 

traditional ontologist, reincarnated in Weizenbaum and every AI re- 

searcher, can grant that facts used in conversation are selected and 

interpreted in terms of the global context and simply conclude that we 

need only first pick out and program the features which identify this 

broader situation. But Weizenbaum’s observations contain the elements 

of an objection in principle to the development of humanly intelligent 

machines. To see this we must first show that Weizenbaum’s way of 
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analyzing the problem—separating the meaning of the context from the 

meaning of the words used in the context—is not accidental but is 

dictated by the nature of a digital machine. In our everyday experience 

we do not find ourselves making such a separation. We seem to under- 

stand the situation in terms of the meaning of the words as much as we 

understand the meaning in terms of the situation. For a computer, 

however, this reciprocal determination must be broken down into a series 

of separate operations. Since Weizenbaum sees that we cannot determine 

the sense of the words until we know the meaning of the context, he 

correctly concludes, from a programmer’s point of view, that we must 

first specify the context and then use this fixed context to determine the 

meaning of the elements in it. 

Moreover, Weizenbaum’s analysis suggests that the computerized un- 

derstanding of a natural language requires that the contexts be organized 

as a nested hierarchy. To understand why Weizenbaum finds it necessary 

to use a hierarchy of contexts and work down from the top node, we must 

return to the general problem of situation recognition. If computers must 

utilize the situation or context in order to disambiguate, and in general 

to understand utterances in a natural language, the programmer must be 

able to program into the machine, which is not involved in a situation, 
a way of recognizing a context and using it. But the same two problems 
which arose in disambiguation and necessitated appeal to the situation 
in the first place arise again on the level of context recognition and force 
us to envisage working down from the broadest context: (1) If in disam- 

biguation the number of possibly relevant facts is in some sense infinite 
so that selection criteria must be applied before interpretation can begin, 
the number of facts that might be relevant to recognizing a context is 
infinite too. How is the computer to consider all the features such as how 
many people are present, the temperature, the pressure, the day of the 
week, and so forth, any one of which might be a defining feature of some 
context? (2) Even if the program provides rules for determining relevant 
facts, these facts would be ambiguous, that is, capable of defining several 
different contexts, until they were interpreted. 

Evidently, a broader context will have to be used to determine which 
of the infinity of features is relevant, and how each is to be understood. 
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But if, in turn, the program must enable the machine to identify the 
broader context in terms of its relevant features—and this is the only way 
a computer which operates in terms of discrete elements could proceed 
—the programmer must either claim that some features are intrinsically 
relevant and have a fixed meaning regardless of context—a possibility 
already excluded in the original appeal to context—or the programmer 
will be faced with an infinite regress of contexts. There seems to be only 

one way out: rather than work up the tree to ever broader contexts the 

computer must work down from an ultimate context—what Weizen- 

baum calls our shared culture. 

Fortunately, there does seem to be something like an ultimate context, 

but, as we shall see, this proves to be as unprogrammable as the regress 

it was introduced to avoid. We have seen that in order to identify which 

facts are relevant for recognizing an academic or a conspiratorial situa- 

tion, and to interpret these facts, one must appeal to a broader context. 

Thus it is only in the broader context of social intercourse that we see 

we must normally take into account what people are wearing and what 

they are doing, but not how many insects there are in the room or the 

cloud formations at noon or a minute later. Also only this broader 

context enables us to determine whether these facts will have their nor- 

mal significance. 

Moreover, even the facts necessary to recognize social intercourse can 

only be singled out because social intercourse is a subcase of human 

activity, which also includes working alone or studying a primitive tribe. 

And finally, human activity itself is only a subclass of some even broader 

situation—call it the human life-world—which would have to include 

even those situations where no human beings were directly involved. But 

what facts would be relevant to recognizing this broadest situation? Or 

does it make sense to speak of “recognizing” the life-world at all? It 

seems we simply take for granted this ultimate situation in being people. 

As Wittgenstein puts it: 

What has to be accepted, the given, is—so one could say—forms of life.”° 

Well then, why not make explicit the significant features of the human 

form of life from within it? Indeed, this deus ex machina solution has 
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been the implicit goal of philosophers for two thousand years, and it 

should be no surprise that nothing short of a formalization of the human 

form of life could give us artificial intelligence (which is not to say that 

this is what gives us normal intelligence). But how are we to proceed? 

Everything we experience in some way, immediate or remote, reflects our 

human concerns. Without some particular interest, without some partic- 

ular inquiry to help us select and interpret, we are back confronting the 

infinity of meaningless facts we were trying to avoid. 

It seems that given the artificial intelligence worker’s conception of 

reason as calculation on facts, and his admission that which facts are 

relevant and significant is not just given but is context determined, his 

attempt to produce intelligent behavior leads to an antinomy. On the one 

hand, we have the thesis: there must always be a broader context; other- 

wise, we have no way to distinguish relevant from irrelevant facts. On 
the other hand, we have the antithesis: there must be an ultimate context, 

which requires no interpretation; otherwise, there will be an infinite 

regress of contexts, and we can never begin our formalization. 

Human beings seem to embody a third possibility which would offer 
a way out of this dilemma. Instead of a hierarchy of contexts, the present 
situation is recognized as a continuation or modification of the previous 
one. Thus we carry over from the immediate past a set of anticipations 
based on what was relevant and important a moment ago. This carryover 
gives us certain predispositions as to what is worth noticing. 

Programming this alternative, however, far from solving the problem 
of context recognition merely transforms a hierarchical regress into a 
temporal one. How does the situation which human beings carry along 
get started? To the programmer this becomes the question: how can we 
originally select from the infinity of facts those relevant to the human 
form of life so as to determine a context we can sequentially update? Here 
the answer seems to be: human beings are simply wired genetically as 
babies to respond to certain features of the environment such as nipples 
and smiles which are crucially important for survival. Programming 
these initial reflexes and letting the computer learn might be a way out 
of the context recognition problem; but it is important to note two 
reservations: no present work in artificial intelligence is devoted to this 
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approach.’*** In fact, artificial intelligence as it is now defined by Feigen- 
baum, Simon, Minsky, Weizenbaum, and others seems to be the attempt 
to produce fully formed adult intelligence, the way Athena sprang full 
grown from the head of Zeus. Moreover, it is by no means clear that the 
above proposal avoids the original dilemma. It leaves unexplained how 
the child develops from fixed responses elicited by fixed features of the 
environment, to the determination of meaning in terms of context which 

even AI workers agree characterizes the adult. 

Once the child can determine meanings in terms of the situation, the 

past situation can indeed be updated to arrive at the present one, but the 

original transition from fixed response to flexible response in terms of the 

meaning of the situation remains as obscure as before. Either the transi- 

tion must be understood as an ongoing modification of the previous 

situation, and we have assumed what was to be explained, or the so- 

called global context must be recognized in terms of fixed context-free 

features, and we have ignored the problem rather than solved it. Either 

the child or machine is able to select relevant facts, assign a normal 

significance to all relevant facts, and also to override this normal signifi- 

cance in an open-ended way—and then no set of fixed features, not even 

the infant’s, can be taken as having a fixed significance in terms of which 

to begin this process; or fixed features are all that is needed, but then we 

have to reject as illusory the very flexibility we were trying to explain. 

There seems to be no way to get into a situation and no way to recognize 

one from the outside. 

We nonetheless observe that generality and flexibility are developed 

gradually through learning, but now the whole problem is hidden in this 

learning process. The child seems at each moment to be either developing 

more complex fixed responses, or to have always already interpreted 

specific facts in terms of the overall context and to be gaining a more 

structured sense of the situation. If we reject the analysis in terms of fixed 

responses as inadequate because inapplicable to the adult, we are back 

facing a temporal version of the original antinomy. Either there must be 

a first context which a machine would not be able to recognize for want 

of a previous context in terms of which to single out its relevant features, 

or there will be a temporal regress of contexts extending infinitely into 
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the past and the machine will not be able to begin the recognition 

process. 

As Kant noted, the resolution of an antinomy requires giving up the 

assumption that the two alternatives considered are the only possible 

ones. They are, indeed, the only alternatives open to someone trying to 

construct artificial reason.*’** There must be another alternative, how- 

ever, since language is used and understood. There must be some way 

of avoiding the self-contradictory regress of contexts, or the incompre- 

hensible notion of recognizing an ultimate context, as the only way of 

giving significance to independent, neutral facts. The only way out seems 

to be to deny the separation of fact and situation, which we saw Weizen- 

baum was led to assume because of the serial procedure forced on him 

by the digital computer. If, as all agree, we are unable to eliminate the 

situation in favor of facts whose relevance and significance are fixed 

regardless of context, then the only alternative way of denying the sepa- 

ration of fact and situation is to give up the independence of the facts 

and understand them as a product of the situation. This would amount 

to arguing that only in terms of situationally determined relevance are 

there any facts at all. It also amounts to avoiding the problem of how 

to recognize the situation from outside by arguing that for an intelligence 

to have any facts to interpret, it must already be in a situation. 

Part III will show how this latter alternative is possible and how it is 

related to the rest of human life. Only then will it become clear why the 

fixed-feature alternative is empirically untenable, and also why the hu- 

man form of life cannot be programmed. 



Conclusion 

In surveying the four assumptions underlying the optimistic interpreta- 
tion of results in AI we have observed a recurrent pattern: In each case 

the assumption was taken to be self-evident—an axiom seldom ar- 

ticulated and never called into question. In fact, the assumption turned 

out to be only one alternative hypothesis, and a questionable one at that. 

The biological assumption that the brain must function like a digital 

computer no longer fits the evidence. The others lead to conceptual 

difficulties. 

The psychological assumption that the mind must obey a heuristic 

program cannot be defended on empirical grounds, and a priori argu- 

ments in its defense fail to introduce a coherent level of discourse be- 

tween the physical and the phenomenological. This does not show that 

the task set for Cognitive Simulation is hopeless. However, this lack of 

defense of the psychological axiom does eliminate the only argument 

which suggested any particular reason for hope. If it could have been 

argued that information processing must proceed by heuristic rules, 

Cognitive Simulation would have had the promising task of finding these 

rules. Without the defense provided by this axiom, however, all difficul- 

ties besetting Cognitive Simulation research during the past ten years 

take on new significance; there is no reason to deny the growing body 

of evidence that human and mechanical information processing proceed 

in entirely different ways. 

Uh FIRS 
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Researchers in AI (taking over from CS as Minsky has taken over 

from Simon) have written programs which allow the digital machine to 

approximate, by means of logical operations, the result which human 

beings seem to achieve by avoiding rather than resolving the difficulties 

inherent in formalization. But formalization of restricted contexts is an 

ad hoc “solution” which leaves untouched the problem of how to formal- 

ize the totality of human knowledge presupposed in intelligent behavior. 

This fundamental difficulty is hidden by the epistemological and ontolog- 

ical assumptions that all human behavior must be analyzable in terms 

of rules relating atomic facts. 

But the conceptual difficulties introduced by these assumptions are 

even more serious than those introduced by the psychological one. The 

inevitable appeal to these assumptions as a final basis for a theory of 

practice leads to a regress of more and more specific rules for applying 

rules or of more and more general contexts for recognizing contexts. In 

the face of these contradictions, it seems reasonable to claim that, on the 

information processing level, as opposed to the level of the laws of 

physics, we cannot analyze human behavior in terms of rule-governed 

manipulation of a set of elements. And since we have seen no argument 

brought forward by the AI theorists for the assumption that human 

behavior must be reproducible by a digital computer operating with 

strict rules on determinate bits, we would seem to have good philosoph- 

ical grounds for rejecting this assumption. 

If we do abandon all four assumptions, then the empirical data avail- 

able to date would take on different significance. It no longer seems 

obvious that one can introduce search heuristics which enable the speed 

and accuracy of computers to bludgeon through in those areas where 

human beings use more elegant techniques. Lacking any a priori basis 

for confidence, we can only turn to the empirical results obtained thus 

far. That brute force can succeed to some extent is demonstrated by the 

early work in the field. The present difficulties in game playing, language 

translation, problem solving, and pattern recognition, however, indicate 

a limit to our ability to substitute one kind of “information processing” 

for another. Only experimentation can determine the extent to which 

newer and faster machines, better programming languages, and cleverer 
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heuristics can continue to push back the frontier. Nonetheless, the dra- 

matic slowdown in the fields we have considered and the general failure 

to fulfill earlier predictions suggest the boundary may be near. Without 

the four assumptions to fall back on, current stagnation should be 

grounds for pessimism. 

This, of course, has profound implications for our philosophical tradi- 

tion. If the persistent difficulties which have plagued all areas of artificial 

intelligence are reinterpreted as failures, these failures must be interpre- 

ted as empirical evidence against the psychological, epistemological, and 

ontological assumptions. In Heideggerian terms this is to say that if 

Western Metaphysics reaches its culmination in Cybernetics, the recent 

difficulties in artificial intelligence, rather than reflecting technological 

limitations, may reveal the limitations of technology. 
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Introduction 

The psychological, epistemological, and ontological assumptions have 

this in common: they assume that man must be a device which calculates 

according to rules on data which take the form of atomic facts. Such a 

view is the tidal wave produced by the confluence of two powerful 

streams: first, the Platonic reduction of all reasoning to explicit rules and 

the world to atomic facts to which alone such rules could be applied 

without the risks of interpretation; second, the invention of the digital 

computer, a general-purpose information-processing device, which cal- 

culates according to explicit rules and takes in data in terms of atomic 

elements logically independent of one another. In some other culture, the 

digital computer would most likely have seemed an unpromising model 

for the creation of artificial reason, but in our tradition the computer 

seems to be the very paradigm of logical intelligence, merely awaiting the 

proper program to accede to man’s essential attribute of rationality. 

The impetus gained by the mutual reinforcement of two thousand 

years of tradition and its product, the most powerful device ever invented 

by man, is simply too great to be arrested, deflected, or even fully 

understood. The most that can be hoped is that we become aware that 

the direction this impetus has taken, while unavoidable, is not the only 

possible direction; that the assumptions underlying the conviction that 

artificial reason is possible are assumptions, not axioms—in short, that 

7 231 
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there may be an alternative way of understanding human reason which 

explains both why the computer paradigm is irresistible and why it must 

fail. 

Such an alternative view has many hurdles to overcome. The greatest 

of these is that it cannot be presented as an alternative scientific explana- 

tion. We have seen that what counts as ‘‘a complete description” or an 

explanation is determined by the very tradition to which we are seeking 

an alternative. We will not have understood an ability, such as the human 

mastery of a natural language, until we have found a theory, a formal 

system of rules, for describing this competence. We will not have under- 

stood behavior, such as the use of language, until we can specify that 

behavior in terms of unique and precisely definable reactions to precisely 

defined objects in universally defined situations. Thus, Western thought 

has already committed itself to what would count as an explanation of 

human behavior. It must be a theory of practice, which treats man as a 

device, an object responding to the influence of other objects, according 

to universal laws or rules. 

But it is just this sort of theory, which, after two thousand years of 

refinement, has become sufficiently problematic to be rejected by philoso- 

phers both in the Anglo-American tradition and on the Continent. It is 

just this theory which has run up against a stone wall in research in 

artificial intelligence. It is not some specific explanation, then, that has 

failed, but the whole conceptual framework which assumes that an expla- 

nation of human behavior can and must take the Platonic form, success- 
ful in physical explanation; that situations can be treated like physical 

states; that the human world can be treated like the physical universe. 
If this whole approach has failed, then in proposing an alternative ac- 
count we shall have to propose a different sort of explanation, a different 
sort of answer to the question “‘How does man produce intelligent behav- 
ior?” or even a different sort of question, for the notion of “producing” 

behavior instead of simply exhibiting it is already colored by the tradi- 
tion. For a product must be produced in some way; and if it isn’t 
produced in some definite way, the only alternative seems to be that it 
is produced magically. 

There is a kind of answer to this question which is not committed 
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beforehand to finding the precise rulelike relations between precisely 
defined objects. It takes the form of a phenomenological description of 
the behavior involved. It, too, can give us understanding if it is able to 
find the general characteristics of such behavior: what, if any one thing, 

is involved in seeing a table or a house, or, more generally, in perception, 

problem solving, using a language, and so forth. Such an account can 

even be called an explanation if it goes further and tries to find the 

fundamental features of human activity which serve as the necessary and 

sufficient conditions for all forms of human behavior. 

Such an explanation owes a debt to Aristotle’s method, although not 

to his arguments or descriptions. Whereas Plato sought rulelike criteria, 

Aristotle tried to describe the general structure of perception and judg- 

ment. But, as his notion that action is based on a practical syllogism 

shows, Aristotle still thought of man as a calculable and calculating sort 

of object—a reckoning animal—so that his actual descriptions are one 

step in the tradition which finally separated the rationality from the 

animality and tried to simulate the reckoning all by itself. 

It is only recently, now that the full implications of the attempt to treat 

man merely as an object or device have become apparent, that philoso- 

phers have begun to work out a new view. The pioneers were Heidegger 

and Wittgenstein. Since then many others, notably Maurice Merleau- 

Ponty and Michael Polanyi have, each on his own, applied, consolidated, 

and refined similar insights; and young thinkers such as Charles Taylor 

and Samuel Todes are continuing their research. In trying to lay out the 

alternative view that emerges when we confront the three basic assump- 

tions of the tradition with a phenomenological description of the struc- 

ture of human behavior, I shall be drawing on the work of all these men. 

I am fully aware that this “‘account”’ is vaguer and less experimental 

than that of either the behaviorists or intellectualists which it is meant to 

supplant.'* But one must not become so fascinated with the formalizable 

aspects of a subject that one forgets the significant questions which 

originally gave rise to the research, nor should one be so eager for 

experimental results that one continues to use old techniques just because 

they work, when they have ceased to lead to new insights. Chomsky is 

one of the few in the behavioral sciences who see this danger. 
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Without wishing to exalt the cult of gentlemanly amateurism, one must neverthe- 

less recognize that the classical issues have a liveliness and significance that may 

be lacking in an area of investigation that is determined by the applicability of 

certain tools and methods, rather than by problems that are of intrinsic interest 

in themselves. 

The moral is not to abandon useful tools; rather, it is, first, that one should 

maintain enough perspective to be able to detect the arrival of that inevitable day 

when the research that can be conducted with these tools is no longer important; 

and, second, that one should value ideas and insights that are to the point, though 

perhaps premature and vague and not productive of research at a particular stage 

of technique and understanding.’ 

Taking this suggestion to heart, we shall explore three areas neces- 

sarily neglected in CS and AI but which seem to underlie all intelligent 

behavior: the role of the body in organizing and unifying our experience 

of objects, the role of the situation in providing a background against 

which behavior can be orderly without being rulelike, and finally the role 

of human purposes and needs in organizing the situation so that objects 

are recognized as relevant and accessible. 
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The Role of the Body in Intelligent Behavior 

Adherents of the psychological and epistemological assumptions that 

human behavior must be formalizable in terms of a heuristic program 

for a digital computer are forced to develop a theory of intelligent behav- 

ior which makes no appeal to the fact that a man has a body, since at 

this stage at least the computer clearly hasn’t one. In thinking that the 

body can be dispensed with, these thinkers again follow the tradition, 

which from Plato to Descartes has thought of the body as getting in the 

way of intelligence and reason, rather than being in any way indispens- 

able for it. If the body turns out to be indispensable for intelligent 

behavior, then we shall have to ask whether the body can be simulated 

on a heuristically programmed digital computer. If not, then the project 

of artificial intelligence is doomed from the start. These are the questions 

to which we must now turn. 

Descartes, the first to conceive the possibility of robots, was also the 

first to suggest the essential inadequacy of a finite state machine. He 

remarks in the Discourses: 

Although such machines could do many things as well as, or perhaps even better 

than men, they would infallibly fail in certain others. . . . For while reason is a 

universal instrument which can be used in all sorts of situations, the organs of 

a machine have to be arranged in a particular way for each particular action. 

From this it follows that it is morally [i.e., practically] impossible that there 

y 23D 
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should be enough different devices in a machine to make it behave in all the 

occurrences of life as our reason makes us behave.' 

Thus, although not aware of the difference between a situation and a 

physical state, Descartes already saw that the mind can cope with an 

indefinite number of situations, whereas a machine has only a limited set 

of states and so will eventually reveal itself by its failure to respond 

appropriately. This intrinsic limitation of mechanism, Descartes claims, 

shows the necessity of presupposing an immaterial soul. 

This is an interesting argument, and some version of it may indeed be 

valid, but it gets its plausibility from the assumption that a robot can be 

in only a relatively small number of states. When in a modern computer 

the number of possible states is of the order of 10°’, it is not clear just 

how much Descartes’ objection proves. Such a machine could at least in 

principle respond to what would appear to be an indefinite number of 

situations. It would thus, on Descartes’ view, be indistinguishable from 

a human being, destroying his argument that intelligent behavior is 

possible only if the mechanism behaving is somehow attached to a non- 

material soul. But one can raise a new objection, in some ways the exact 

opposite of Descartes’. A brain in a bottle or a digital computer might 

still not be able to respond to new sorts of situations because our ability 

to be in a situation might depend, not just on the flexibility of our nervous 

system, but rather on our ability to engage in practical activity. After 

some attempts to program such a machine, it might become apparent 

that what distinguishes persons from machines, no matter how cleverly 

constructed, 1s not a detached, universal, immaterial soul but an in- 

volved, situated, material body. 

Indeed, it is just the bodily side of intelligent behavior which has 
caused the most trouble for artificial intelligence. Simon, who has been 
only slightly daunted by the failures of the last ten years, now feels that 
“machines will be capable, within twenty years, of doing any work that 
aman can do,’” but he admits: ‘Automation of a flexible central nervous 
system will be feasible long before automation of a comparatively flexible 
sensory, manipulative, or locomotive system.”? But what if the work of 
the central nervous system depends on the locomotive system, or to put 
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it phenomenologically, what if the “higher,” determinate, logical, and 
detached forms of intelligence are necessarily derived from and guided 
by global and involved “lower” forms? Then Simon’s optimism, based 
on the three assumptions underlying artificial intelligence and traditional 
philosophy, would be unjustified. 

The intractability of the “lower” functions has already produced a 

certain irony. Computer technology has been most successful in simulat- 

ing the so-called higher rational functions—those which were once sup- 

posed to be uniquely human. Computers can deal brilliantly with ideal 

languages and abstract logical relations. It turns out that it is the sort 

of intelligence which we share with animals, such as pattern recognition 

(along with the use of language, which may indeed be uniquely human) 

that has resisted machine simulation. 

Let us reconsider the holism we have already noted in two related 

areas where AI has not fulfilled early expectations: chess playing and 

pattern recognition. Thus far I have tried to account for these failures 

by arguing that the task in question cannot be formalized, and by isola- 

ting the nonformal form of “information processing” necessarily in- 

volved. Now I shall try to show that the nonformalizable form of ‘‘infor- 

mation processing” in quesion is possible only for embodied beings. 

To make this clear we shall first have to consider human pattern 

recognition in more detail. With the aid of concepts borrowed from 

phenomenology, I shall try to show how pattern recognition requires a 

certain sort of indeterminate, global anticipation. This set or anticipation 

is characteristic of our body as a “machine” of nerves and muscles whose 

function can be studied by the anatomist, and also of our body as ex- 

perienced by us, as our power to move and manipulate objects in the 

world. I shall argue that a body in both these senses cannot be repro- 

duced by a heuristically programmed digital computer—even one on 

wheels which can operate manipulators, and that, therefore, by virtue of 

being embodied, we can perform tasks beyond the capacities of any 

heuristically programmed robot. 

We have seen that the restricted applicability of pattern recognition 

programs suggests that human pattern recognition proceeds in some 
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other way than searching through lists of traits. Indeed, phenomenolo- 

gists and Gestalt psychologists have pointed out that our recognition of 

ordinary spatial or temporal objects does not seem to operate by check- 

ing off a list of isolable, neutral, specific characteristics at all. For exam- 

ple, in recognizing a melody, the notes get their values by being perceived 

as part of the melody, rather than the melody’s being recognized in terms 

of independently identified notes. Likewise, in the perception of objects 

there are no neutral traits. The same hazy layer which I would see as dust 

if I thought I was confronting a wax apple might appear as moisture if 

I thought I was seeing one that was fresh. The significance of the details 

and indeed their very look is determined by my perception of the whole. 

The recognition of spoken language offers the most striking demon- 

stration of this global character of our experience. From time to time 

brash predictions such as Rosenblatt’s have been made about mechanical 

secretaries into which (or at whom) one could speak, and whose pro- 

grams would analyze the sounds into words and type out the results. In 

fact, no one knows how to begin to make such a versatile device, and 

further progress is unlikely, for current work has shown that the same 

physical constellation of sound waves is heard as quite different pho- 

nemes, depending on the expected meaning. 

Oettinger has given considerable attention to the problem. His analysis 
of speech recognition work is worth reproducing in detail, both because 
this pattern recognition problem is important in itself and because this 
work exhibits the early success and subsequent failure to generalize 
which we have come to recognize as typical of artificial intelligence 
research. 

There was considerable initial success in building apparatus that would eke out 
a sequence of discrete phonemes out of the continuous speech waveform. While 
phonemic analysis has been dominant in that area, numerous other approaches 
to this decoding problem have also been followed. All have shared this initial 
degree of success and yet all, so far, have proved to be incapable of significant 
expansion beyond the recognition of the speech of a very few distinct individuals 
and the recognition of a very few distinct sound patterns whether they be pho- 
nemes or words or whatever. All is well as long as you are willing to have a fairly 
restricted universe of speakers, or sounds, or of both. 

Within these limitations you can play some very good tricks. There are now 
lots of machines, some experimental, some not so experimental, that will recog- 
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nize somewhere between 20 and 100 distinct sound patterns, some of them quite 
elaborate. Usually the trick is something like identifying a number of features, 
treating these as if they were coordinates in some hyperspace, then passing planes 
that cordon off, if you will, different blocks of this space. If your speech event 
falls somewhere within one of these blocks you say that it must have been that 
sound and you recognize it. 

This game was fairly successful in the range of twenty to a hundred or so 
distinct things, but after that, these blocks become so small and clustered so close 
together that you no longer can achieve any reliable sort of separation. Every- 
thing goes to pot.‘ 

This leads Oettinger to a very phenomenological observation: 

Perhaps . . . in perception as well as in conscious scholarly analysis, the phoneme 
comes after the fact, namely . . . it is constructed, if at all, as a consequence of 

perception not as a step in the process of perception itself.’ 

This would mean that the total meaning of a sentence (or a melody or 

a perceptual object) determines the value to be assigned to the individual 

elements. 

Oettinger goes on reluctantly to draw this conclusion: 

This drives me to the unpopular and possibly unfruitful notion that maybe there 

is some kind of Gestalt perception going on, that here you are listening to me, 

and somehow the meaning of what I’m saying comes through to you all of a 

piece. And it is only a posteriori, and if you really give a damn, that you stop 

and say, ““Now, here was a sentence and the words in it were of such and such 

type, and maybe here was a noun and here was a vowel and that vowel was this 

phoneme and the sentence is declarative, etc.’ 

Phenomenologists, not committed to breaking down the pattern so that 

it can be recognized by a digital computer, while less appalled, are no 

less fascinated by the gestalt character of perception. Indeed, it has been 

systematically studied in their account of perceptual horizons. Two 

forms of awareness are involved. First there is the basic figure-ground 

phenomenon, necessary for there to be any perception at all: whatever 

is prominent in our experience and engages our attention appears on a 

background which remains more or less indeterminate. This back- 

ground, which need never have been made determinate, affects the ap- 

pearance of what is determinate by letting it appear as a unified, bounded 

figure. In Rubin’s famous ‘‘Peter-Paul Goblet” (Figure 4), “the contour 
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which divides figure from ground ‘belongs’ to the figure only and changes 

its shape radically if a figure-ground reversal occurs.’’’ Thus the figure 

has specific determinate characteristics, while the background can be 

characterized only as that-which-is-not-the figure. 

Figure 4 

This indeterminacy plays a crucial role in human perception. Merleau- 

Ponty points out that most of what we experience must remain in the 

background so that something can be perceived in the foreground. 

When Gestalt theory informs us that a figure on a background is the simplest 

sense-datum available to us, we reply that this is not a contingent characteriza- 

tion of factual perception, which leaves us free, in an ideal analysis, to bring in 

the notion of impression. It is the very definition of the phenomenon of percep- 

tion... . The perceptual ‘something’ is always in the middle of something else; 

it always forms part of a ‘field.’* 

It is this ground, or outer horizon as Edmund Husserl, the founder of 

phenomenology, called it, which in our chess example remains indeter- 

minate and yet provides the context of the specific counting out, so that 

one always has a sense of the relevance of the specific move under 
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consideration to the rest of the game. Similarly, our sense of the overall 
context may organize and direct our perception of the details when we 
understand a sentence. For a computer, which must take up every bit of 
information explicitly or not at all, there could be no outer horizon. Any 
information to be taken into account would have to be as determinate 
as the figure. This leads to the unwieldy calculations which we have 
seen in chess programs and which Oettinger deplores in language pro- 
grams. 

This outer horizon, then, describes how background “information” 

about a conversation or a particular game is ignored without being 

excluded. It does not, however, describe the way the background pro- 

vides information which contributes to the player zeroing in on one area 

of the chess board rather than another, or how our anticipation of a 

sentence’s meaning determines our understanding of its elements as they 

fall into place. To understand this, we must consider a second kind of 

perceptual indeterminacy investigated by Husserl and Gestalt psycholo- 

gists: what Husserl calls the inner horizon. The something-more-than- 

the-figure is, in this case, not as indeterminate as the outer horizon. 

When we perceive an object we are aware that it has more aspects than 

we are at the moment considering. Moreover, once we have experienced 

these further aspects, they will be experienced as copresent, as covered 

up by what is directly presented. Thus, in ordinary situations, we say we 

perceive the. whole object, even its hidden aspects, because the concealed 

aspects directly affect our perception. We perceive a house, for example, 

as more than a facade—as having some sort of back—some inner hori- 

zon. We respond to this whole object first and then, as we get to know 

the object better, fill in the details as to inside and back. A machine with 

no equivalent of an inner horizon would have to process this information 

in the reverse order: from details to the whole. Given any aspect of an 

object, the machine would either pick it up on its receptors or it would 

not. All additional information about other aspects of the object would 

have to be explicitly stored in memory—in Minsky’s sort of model—or 

counted out again when it was needed. This lack of horizons is the 

essential difference between an image in a movie or on a TV screen and 

the same scene as experienced by a human being. 
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When, in a film, the camera is trained on an object and moves nearer to it to give 

a close-up view, we can remember that we are being shown the ash tray or an 

actor’s hand, we do not actually identify it. This is because the scene has no 

horizons.’ 

In chess and in recognizing sentences, we find the same phenomenon 

playing a crucial role. Our sense of the whole situation, outer horizon, 

and our past experience with the specific object or pattern in question, 

inner horizon, give us a sense of the whole and guide us in filling in the 

details. '°* 

This process can best be noticed when it is breaking down. If you reach 

for a glass of water and get milk by mistake, on taking a sip your first 

reaction is total disorientation. You don’t taste water, but you don’t taste 

milk either. You have a mouthful that approaches what Husserl would 

call pure sensuous matter or hyletic data, and naturally you want to spit 

it out. Or, if you find the right global meaning fast enough, you may 

recover in time to recognize the milk for what it is. Its other characteris- 

tics, whether it is fresh or sour, buttermilk or skimmed milk, will then 

fall into place. 

One might well wonder how one knows enough to try “milk” rather 

than, say, ‘gasoline.’ Doesn’t one need some neutral features to begin 

this process of recognition? The perceiver’s apparent clairvoyance seems 

so paradoxical that one is tempted to embrace the computer model in 

spite of its difficulties. But the process seems less mysterious when we 

bear in mind that each new meaning is given in an outer horizon which 

is already organized, in this case a meal, on the basis of which we already 

have certain expectations. It is also important that we sometimes do give 

the wrong meaning; in these cases the data coming in make no sense at 

all, and we have to try a new total hypothesis. 

A computer, which must operate on completely determinate data 

according to strictly defined rules, could at best be programmed to try 

out a series of hypotheses to see which best fit the fixed data. But this 

is far from the flexible interaction of underdetermined data and underde- 

termined expectations which seems to be characteristic of human pattern 

recognition. 

As one might expect, the computer people, again with the support of 
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the philosophical tradition, and the success of physics, have rarely faced 
this problem. Philosophers have thought of man as a contemplative mind 

passively receiving data about the world and then ordering the elements. 

Physics has made this conception plausible on the level of the brain as 

a physical object. The brain does passively receive energy from the 

physical world and process it in terms of its present state which is a 

function of past energy received. If one accepts the passive view of mind 

and fails to distinguish the physical-processing level from the ‘“‘informa- 

tion-processing”’ level, it seems self-evident that the mind, like the com- 

puter, simply receives bits of determinate data. In his introduction to the 

Scientific American issue on computers, McCarthy naively confuses 

brain and mind, energy and information, so that the passivity of the 

computer appears to be a self-evident model for human “information 

processing.” 

The human brain also accepts inputs of information, combines it with informa- 

tion stored somehow within, and returns outputs of information to its environ- 

ment.'! 

Neisser 1s much more subtle. He too underestimates the problems 

posed by the role of anticipation, but his work in psychology has at least 

led him to see the need for “‘wholistic operations which form the units 

to which attention may then be directed,’’” and he tries to fit this fact 

into his overall commitment to a digital computer model. The result is 

a confusion between what “global or wholistic” means in a gestalt analy- 

sis and what it would have to mean in a computer program, which is 

sufficiently revealing to be worth following in detail. 

A general characterization of the gestalt, or global, phenomenon ts: 

the interpretation of a part depends on the whole in which it is embed- 

ded. But this is too general. Such a definition allows Minsky, for example, 

to miss the whole problem. In his Scientific American article he speaks 

of Evans’ analogy-solving program as being able to “recognize a ‘global’ 

aspect of the situation.”'’ This turns out to mean that, on the basis of 

calculations made on certain local features of a figure, the program 

segments two superimposed figures in one way rather than another. 

There is nothing here to surprise or interest those concerned with the 
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way the gestalt, or global, configuration functions in our experience. 

To see the difference between the holistic processes which interest 

Neisser and what Minsky calls global recognition, one needs a sharper 

characterization of the gestalt phenomenon. Neisser gives such a charac- 

terization in terms of a temporal gestalt, a rhythm (a favorite example 

of the Gestaltists): 

The parts (individual beats) get their meaning (relative position) from the whole, 

even though that whole does not exist at any moment of time. It exists, as one 

might say, in the subject’s mind, as an intent, . . . a Gestalt... .“ 

The crucial feature of this gestalt interpretation, that what counts as a 

part is defined in terms of the whole, is missing in Minsky’s example, as 

it must be, since, as we have seen, for a digital computer, each complex 

whole must be constructed by the logical combination of independently 

defined elements. In Minsky’s example, the elements already have a 

precise significance (or rather two possible precise significances), and it 

is simply a question of deciding which interpretation is appropriate in 

terms of a decision based on other determinate local features of the 

figure. 

Neisser’s description of the “mind’s intent,” the anticipations which 

segment the individual beats, on the other hand, brings us to the center 
of the problem. The question is how the partially determinate anticipa- 
tions, involved in game playing, pattern recognition, and intelligent be- 
havior in general, can be simulated on a heuristically programmed digital 
computer so that the computer does not have to passively receive mean- 
ingless data but has anticipations of relevant information. Specifically for 
Neisser, the problem is how to reconcile his gestaltist analysis with a 

computer model of human performance. 

Neisser thinks he has a way. In discussing linguistic performance as 
an example of the gestalt effect, Neisser thinks of the rules of grammar 

as the wholes into which the words fit as parts. 

The rules are structural. That is, they do not dictate what particular words are 
to be used, but rather how they are to be related to each other and to the sentence 
as a whole." 
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But this will not work. In the case of the rhythm, the whole determined 
what counted as an element — there is no such thing as a syncopated 
beat, for example, existing all by itself—but for Neisser, in the case of 
language, the words already have a determinate set of possible meanings; 
the grammar simply provides a rule for selecting a meaning and combin- 
ing it with others. The elements in this case are completely determinate 
and can be defined independently of the rules. It is, therefore, misleading 

when Neisser concludes: ¢ 

A sentence is more than the sum of its parts. This is not an unfamiliar slogan. 

Long ago, the Gestalt psychologists used it to describe the wholistic aspects of 

visual perception.'* 

This confusion is already latent in Neisser’s description of the anticipa- 

tion involved in hearing a rhythm in the example quoted above. The 

description concludes: “‘[The anticipation] exists .. . in the subject’s mind 

as an intent, a gestalt, a plan, a description of a response that can be 

executed without further consideration.”’’ This slide from gestalt antici- 

pation to preset plan is an obfuscation necessitated by the computer 

model: A gestalt defines what counts as the elements it organizes; a 

plan or a rule simply organizes independently defined elements. More- 

Over, just as the elements (the beats) cannot be defined independently of 

the gestalt, the gestalt (the rhythm) is nothing but the organization of 

the elements. A plan, on the other hand, can be stated as a rule or 

program, independently of the elements. Clearly his computer model of 

a formal program defined and stored separately from the independently 

defined bits of data which it organizes leads Neisser to betray his own 

gestaltist illustration. This difference is neglected in all CS models, yet 

it is the essence of the gestaltist insight, and accounts for the flexibility 

of human pattern recognition compared to that of machines. 

Thus far computer programs have been unable to approach this inter- 

dependence of parts and whole. Neisser himself never sees this probiem, 

but he unwittingly casts some new light on the important differences 

between mechanist and gestaltist models of psychological processes 

when he contrasts the digital model of neural processes postulated by the 
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transformational linguists with the analogue model of the brain espoused 

by the early Gestalt psychologists. 

[The Gestaltists] were “‘nativists,” believing that the perceptual processes were 

determined by necessary and innate principles rather than by learning. The 

proper figural organization. . .. was due to processes in the brain, which followed 

unvarying (and wholistic) laws of physics and chemistry. . .. The perceived world 

always took the “‘best,”’ the ‘structurally simplest” form, because of the equilib- 

rium principle that transcends any possible effects of learning or practice.'* 

Such an analogue model of brain function, in which information is 

integrated by equilibrium forces rather than on/off switches, was neces- 

sary if the Gestalt psychologists were to account for the role of global 

anticipations in structuring experience. They had been led to break with 

the rationalist tradition running from Descartes to Kant, which con- 

ceived of the mind as bringing independently defined innate principles 

(Descartes) or rules (Kant) to bear on otherwise unstructured experi- 

ence. This rationalist conception (with the addition of minimal bits of 

determinate experience) lends itself perfectly to a computer model, but 

the Gestaltists saw that their principles of organization—like the equilib- 

rium patterns formed by charged particles on curved surfaces—could 

not be separated from the elements they organized. Thus, even if the 
digital model of the brain had existed at the time, the Gestaltists would 

have rejected it.'°* 

Neisser does not see this. He supposes that the digital model of built-in 
rules, which the linguists have been led to propose, is an improvement 
on the analogue model proposed by the Gestaltists. Neisser’s praise of 
the linguists’ “improvement,” ignoring as it does the difficulties in artifi- 
cial intelligence, the latest developments in neurophysiology, and the 
reason the Gestaltists proposed an analogue model in the first place can 
only be a non sequitur: 

The Gestalt psychologists were never able to provide any satisfactory description 
or analysis of the structures involved in perception. The few attempis to specify 
“fields of force” in vision, or “ionic equilibria” in the brain, were ad hoc and 
ended in failure. In linguistics, by contrast, the study of “syntactic structures” 
has a long history.?° 
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How the long history of syntactic structures is supposed to show that 

the linguists have a better model of neural processes than the Gestaltists 
is totally unclear. It seems to mean that at least the rules the linguists 

are looking for would be, if they were found, the sort of rules one could 

process with a digital computer which we already understand, whereas 

the gestaltist equilibrium principles could only be simulated on a brain- 

like analogue computer, which no one at present knows how to design. 

This is no doubt true, but it reminds one of the story of the drunk who 

lost a key in the dark but looked for it under a street lamp because the 

light was better. It would indeed be nice to have a programmable model 

in linguistics, and in psychology in general, but the fact remains that 

modern linguists have no more detailed account of what goes on in the 

brain than did the Gestaltists, and, moreover, as a theory of competence, 

not performance, modern linguistics is not even trying to provide an- 

swers to the problem of how we produce intelligent behavior. Worse, in 

this case, the street lamp is not even lit. We have seen that when digital 

computers have been used to try to simulate linguistic performance, they 

have had remarkably little success. 

The upshot of Neisser’s comparison of gestalt and linguistic models of 

the brain, in opposition to his intent, is to call attention to a difference 

in brain model which exactly parallels the difference in the conception 

of the holistic processes, which he also overlooks. The sort of gestalt 

process illustrated in Neisser’s example of the rhythm which gives mean- 

ing to and is made up of its beats suggests that however the brain 

integrates stimuli, it does not do it like a digital computer applying 

independently defined heuristic rules to independently defined bits of 

data. 

Among computer experts only Donald MacKay has seen this point. 

He concludes: 

It may well be that only a special-purpose ‘analogue’ mechanism could meet all 

detailed needs. .. . We on the circuit side had better be very cautious before we 

insist that the kind of information processing that a brain does can be replicated 

in a realizable circuit. Some kind of ‘wet’ engineering may turn out to be inevi- 

table.’! 
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If, in the light of the phenomenological and neurophysiological evi- 

dence, we accept the view that the nervous system is some sort of 

analogue computer operating with equilibrium fields, we must still be on 

guard against transferring to psychology this model of the nervous sys- 

tem, conceived as a brain in a bottle receiving energy from the world and 

sending out responses. The human perceiver must be understood in 

different terms than his nervous system. To have an alternative account 

of intelligent behavior we must describe the general and fundamental 

features of human activity. In the absence of a workable digital computer 

model, and leaving to the neurophysiologist the question of how the 

brain integrates incoming physical stimuli, we must again ask, How do 

human beings use an underdetermined, wholistic expectation to organize 

their experience? 

Husserl has no further account beyond the assertion that we do: that 

“transcendental consciousness” has the ‘wunderbar” capacity for giving 

meanings and thus making possible the perception, recognition, and 
exploration of enduring objects. Like the Gestaltists, he thinks of these 
meanings as partially indeterminate wholes, not as explicit programs or 
rules. But even Husserl is not free from the traditional intellectualist 
view, and thus he too is vulnerable to the criticism directed at Neisser. 
Husserl, like Descartes and Kant, thinks of form as separable from 
content, of the global anticipation as separable from its sensuous feeling. 
Thus, his noema, or perceptual anticipation, is like a rule or program in 
one crucial way: it exists in the mind or transcendental consciousness 
independently of its application to the experience it structures. 

Merleau-Ponty tries to correct Husserl’s account on this point and at 
the same time develop a general description which supports the Gestalt- 
ists. He argues that it is the body which confers the meanings discovered 
by Husserl. After all, it is our body which captures a rhythm. We have 
a body-set to respond to the sound pattern. This body-set is not a rule 
in the mind which can be formulated or entertained apart from the actual 
activity of anticipating the beats. 

Generally, in acquiring a skill—in learning to drive, dance, or pro- 
nounce a foreign language, for example—at first we must slowly, awk- 
wardly, and consciously follow the rules. But then there comes a moment 
when we finally can perform automatically. At this point we do not seem 
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to be simply dropping these same rigid rules into unconsciousness; rather 

we seem to have picked up the muscular gestalt which gives our behavior 
a new flexibility and smoothness. The same holds for acquiring the skill 

of perception. To take one of Merleau-Ponty’s examples: to learn to feel 

silk, one must learn to move or be prepared to move one’s hand in a 

certain way and to have certain expectations. Before we acquire the 

appropriate skill, we experience only confused sensations. 

It is easiest to become aware of the body’s role in taste, hearing, and 

touch, but seeing, too, is a skill that has to be learned. Focusing, getting 

the right perspective, picking out certain details, all involve coordinated 

actions and anticipations. As Piaget remarks, ‘Perceptual constancy 

seems to be the product of genuine actions, which consist of actual or 

potential movements of the glance or of the organs concerned. . . .”’?? 

These bodily skills enable us not only to recognize objects in each 

single sense modality, but by virtue of the felt equivalence of our explora- 

tory skills we can see and touch the same object. A computer to do the 

same thing would have to be programmed to make a specific list of the 

characteristics of a visually analyzed object and compare that list to an 

explicit list of traits recorded by moving tactical receptors over that same 

object. This means that there would have to be an internal model of each 

object in each sense modality, and that the recognition of an object seen 

and felt must pass through the analysis of that object in terms of common 

features. 

My body enables me to by-pass this formal analysis. A skill, unlike a 

fixed response or set of responses can be brought to bear in an indefinite 

number of ways. When the percipient acquires a skill, he 

does not weld together individual movements and individual stimuli but acquires 

the power to respond with a certain type of solution to situations of a certain 

general form. The situations may differ widely from place to place, and the 

response movements may be entrusted sometimes to one operative organ, some- 

times to another, both situations and responses in the various cases having in 

common not so much a partial identity of elements as a shared significance.” 

Thus I can recognize the resistance of a rough surface with my hands, 

with my feet, or even with my gaze. My body is thus what Merleau-Ponty 

calls a “synergistic system,’ ‘‘a ready-made system of equivalents and 

transpositions from one sense to another.”’”° 
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Any object presented to’one sense calls upon itself the concordant operation of 

all the others. I see a surface colour because I have a visual field, and because 

the arrangement of the field leads my gaze to that surface—I perceive a thing 

because I have a field of existence and because each phenomenon, on its appear- 

ance, attracts towards that field the whole of my body as a system of perceptual 

powers.*° 

A human perceiver, like a machine, needs feedback to find out if he 

has successfully recognized an object. But here too there is an important 

difference in the feedback involved. A machine can, at best, make a 

specific set of hypotheses and then find out if they have been confirmed 

or refuted by the data. The body can constantly modify its expectations 

in terms of a more flexible criterion: as embodied, we need not check for 

specific characteristics or a specific range of characteristics, but simply 

for whether, on the basis of our expectations, we are coping with the 

object. Coping need not be defined by any specific set of traits but rather 

by an ongoing mastery which Merleau-Ponty calls maximum grasp. 

What counts as maximum grasp varies with the goal of the agent and 

the resources of the situation. Thus it cannot be expressed in situation- 

free, purpose-free terms. 

To conclude: Pattern recognition is relatively easy for digital comput- 

ers if there are a few specific traits which define the pattern, but complex 

pattern recognition has proved intractable using these methods. Tran- 

scendental phenomenologists such as Husserl have pointed out that 

human beings recognize complex patterns by projecting a somewhat 

indeterminate whole which is progressively filled in by anticipated ex- 
periences. Existential phenomenologists such as Merleau-Ponty have 
related this ability to our active, organically interconnected body, set to 
respond to its environment in terms of a continual sense of its own 

functioning and goals. 

Since it turns out that pattern recognition is a bodily skill basic to all 
intelligent behavior, the question of whether artificial intelligence is pos- 
sible boils down to the question of whether there can be an artificial 
embodied agent. The question is philosophically interesting only if we 
restrict ourselves to asking if one can make such a robot by using a digital 
computer. (I assume there is no reason why, in principle, one could not 
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construct an artificial embodied agent if one used components sufficiently 

like those which make up a human being.) 

A project to build such a digitally controlled robot is currently under 

way at M.I.T., and it is philosophically interesting to consider its pro- 

gram and its underlying assumptions. The project director, Minsky 

again, 1s modestly trying to make only a mechanical shoulder, arm, and 

hand, coordinated with a TV eye, but he proposes to make it use tools 

to cdnstruct things. The first simple task was to program a simplified 

robot arm to pick up blocks. This has indeed been accomplished and 

represents the early success one has learned to expect in the field. The 

problem which remains is, as usual, that of generalizing the present 

successful techniques. To bring a simple arm over to pick up a block 

requires locating the block in objective space, locating the arm in the 

same space, and then bringing the two together. This is already quite a 

feat. A mathematical description of the way an arm moves in objective 

space runs into surprising discontinuities. There are points which are 

contiguous in objective space which are far apart in reaching space. For 

example, to scratch our back we do not simply extend the position we 

use for scratching our ear. Living in our bodies we have built up a motor 

space, in which we sense these objectively contiguous points as far apart. 

We automatically reach for them in very different ways, and do not feel 

we have gone through the mathematics necessary to work out the opti- 

mal path for each specific case. For the programmer, however, who has 

to program the computer to calculate the movements of the mechanical 

arm in objective space, these discontinuities have so far proved an insur- 

mountable obstacle. The more flexible the arm—the more degrees of 

freedom it has—the more difficult and time consuming such calculations 

become. Rumor has it that an elaborate arm with six degrees of freedom, 

built by Minsky by 1965, has still not even been programmed to move, 

let alone pick up blocks or use tools. If one adds to this the fact that, in 

the case of any skill which takes place in real time (such as playing 

Ping-Pong), all calculations must be completed in real time (before the 

ball arrives), the outlook is not very promising. As Feigenbaum notes in 

his report on the current state of robot work: 
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Both the MIT and Stanford University groups have worked on programs for 

controlling a variety of arm-hand manipulators, from the very simple to the very 

complex, from the anthropomorphic variety to the very non-anthropomorphic. 

None of the more esoteric manipulators seems to have worked out very well, 

though there is no published documentation of successes, failures, and rea- 

sons.”’ 

In the light of these difficulties, what encourages researchers to devote 

their research facilities to such a project? Simply the conviction that since 

we are, as Minsky ingenuously puts it, “meat machines” and are able to 

play Ping-Pong, there is no reason in principle or in practice why a metal 

machine cannot do likewise. But before jumping to such a conclusion, 

the robot makers ought first to examine their underlying assumption that 

no essential difference exists between meat machines and metal ma- 

chines, between being embodied and controlling movable manipulators. 

How do human beings play Ping-Pong, or to make the matter simpler, 

how do human beings use tools? 

Heidegger, Merleau-Ponty, and Michael Polanyi have each devoted a 

great deal of thought to this question. Each discusses the important way 

that our experience of a tool we are using differs from our experience of 

an object. A blind man who runs his hand along the cane he uses to grope 

his way will be aware of its objective position and its characteristics such 

as weight, hardness, smoothness, and so forth. When he is using it, 

however, he is not aware of its position in physical space, its features, 
nor of the varying pressure in the palm of his hand. Rather, the stick has 
become, like his body, a transparent access to the objects he touches with 
it. As Polanyi puts it: 

While we rely on a tool or a probe, these are not handled as external objects 
... they remain on our side . . . forming part of ourselves, the operating persons. 
We pour ourselves out into them and assimilate them as parts of our existence. 
We accept them existentially by dwelling in them.” 

In this way we are able to bring the probe into contact with an object 
in physical space without needing to be aware of the physical location 
of the probe. Merleau-Ponty notes that: 

The whole operation takes place in the domain of the phenomenal; it does not 
run through the objective world, and only the spectator, who lends his objective 
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representation of the living body to the active subject, can believe that . . . the 
hand moves in objective space.’ 

But Merleau-Ponty admits that this ability seems ‘‘magical” from the 
point of view of science, so we should not be surprised to find that rather 
than have no explanation of what people are able to do, the computer 
scientist embraces the assumption that people are unconsciously running 
with incredible speed through the enormous calculation which would be 

involved in programming a computer to perform a similar task. However 

implausible, this view gains persuasiveness from the absence of an alter- 

native account. 

To make embodiment an acceptable alternative we will have to show 

how one could perform physical tasks without in any way appealing to 

the principles of physics or geometry. Consider the act of randomly 

waving my hand in the air. I am not trying to place my objective hand 

at an objective point in space. To perform this waving I need not take 

into account geometry, since I am not attempting any specific achieve- 

ment. Now suppose that, in this random thrashing about, I happen to 

touch something, and that this satisfies a need to cope with things. (More 

about need in Chapter 9.) I can then repeat whatever I did—this time 

in order to touch something—without appealing to the laws necessary 

to describe my movement as a physical motion. I now have a way of 

bringing two objects together in objective space without appealing to any 

principle except: ““Do that again.”’ This is presumably the way skills are 

built up. The important thing about skills is that, although science 

requires that the skilled performance be described according to rules, 

these rules need in no way be involved in producing the performance. 

Human beings are further capable of remembering, refining, and reor- 

ganizing these somewhat indeterminate motor schemata. Piaget has 

amassed an enormous amount of evidence tracing the development of 

these motor skills, which he calls operations, and has come to a Gestaltist 

conclusion: 

The specific nature of operations . . . depends on the fact that they never exist 

in a discontinuous state. . . . A single operation could not be an operation because 

the peculiarity of operations is that they form systems. Here we may well protest 

vigorously against logical atomism . . . a grievous hindrance to the psychology 

of thought.*°* 
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This same analysis helps dissipate the mistaken assumptions underly- 

ing early optimism about language translation. If human beings had to 

apply semantic and syntactic rules and to store and access an infinity of 

facts in order to understand a language, they would have as much trouble 

as machines. The native speaker, however, is not aware of having gener- 

ated multiple semantic ambiguities which he then resolved by appeal to 

facts any more than he is aware of having picked out complex patterns 

by their traits or of having gone through the calculations necessary to 

describe the way he brings his hand to a certain point in objective space. 

Perhaps language, too, is a skill acquired by innately guided thrashing 

around and is used in an nonrulelike way. Many skills such as our 

repertoire of ways to sit in and get up from a wide variety of chairs allow 

an indefinite number of orderly variations without being generated by 

strict rules. 

Such a view is not behavioristic. Our ability to use language in a 

situation and in general the wholistic way the functional meaning organ- 
izes and structures the components of skilled acts cannot be accounted 

for in terms of the arbitrary association of neutral determinate elements 

any more than it can be analyzed in terms of their combination according 

to rules. 

If language is understood as a motor skill, we would then assimilate 
language and dwell in it the way we assimilate an instrument. As Polanyi 
puts it, 

To use language in speech, reading and writing, is to extend our bodily equip- 
ment and become intelligent human beings. We may say that when we learn to 
use language, or a probe, or a tool, and thus make ourselves aware of these things 
as we are of our body, we interiorise these things and make ourselves dwell in 
them. >'* 

Again, because we are embodied, the rules necessary to give an objective 
analysis of our competence need in no way be involved in our perfor- 
mance. 

The AI researcher and the transcendental phenomenologist share the 
assumption that there is only one way to deal with information: it must 
be made an object for a disembodied processor. For the transcendental 
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phenomenologist this assumption makes the organization of our intelli- 

gent behavior unintelligible. For the AI researcher it seems to justify the 

assumption that intelligent behavior can be produced by passively receiv- 

ing data and then running through the calculations necessary to describe 

the objective competence. But, as we have seen, being embodied creates 

a second possibility. The body contributes three functions not present, 

and not as yet conceived in digital computer programs: (1) the inner 

horizon, that is, the partially indeterminate, predelineated anticipation 

of partially indeterminate data (this does not mean the anticipation of 

some completely determinate alternatives, or the anticipation of com- 

pletely unspecified alternatives, which would be the only possible digital 

implementation); (2) the global character of this anticipation which 

determines the meaning of the details it assimilates and 1s determined by 

them; (3) the transferability of this anticipation from one sense modality 

and one organ of action to another. All these are included in the general 

human ability to acquire bodily skills. Thanks to this fundamental ability 

an embodied agent can dwell in the world in such a way as to avoid the 

infinite task of formalizing everything. 

This embodied sort of “information processing,” in which the meaning 

of the whole is prior to the elements, would seem to be at work in the 

sort of complex pattern recognition such as speech recognition with 

which we began our discussion. Indeed, sensory motor skills underlie 

perception whose basic figure/ground structure seems to underlie all 

“higher” rational functions; even logic and mathematics have an hori- 

zontal character. In all these cases individual features get their signifi- 

cance in terms of an underdetermined anticipation of the whole. 

If these global forms of pattern recognition are not open to the digital 

computer, which, lacking a body, cannot respond as a whole, but must 

build up its recognition starting with determinate details, then Oettinger 

is justified in concluding his speech recognition paper on a pessimistic 

note: “If indeed we have an ability to use a global context without 

recourse to formalization . . . then our optimistic discrete enumerative 

approach is doomed... .”” 



PT 

The Situation: Orderly Behavior Without Recourse 

to Rules 

In discussing problem solving and language translation we have come 

up against the threat of a regress of rules for determining relevance and 

significance. Likewise, in starting a learning process, something must be 

known before any rules can be taught or applied. In each case we have 

found that if there are no facts with fixed significance, only an appeal to 

the context can bring this regress to a halt. We must now turn directly 

to a description of the situation or context in order to give a fuller 

account of the unique way human beings are “‘in-the-world,” and the 

special function this world serves in making orderly but nonrulelike 

behavior possible. 

To focus on this question it helps to bear in mind the opposing posi- 

tion. In discussing the epistemological assumption (Chapter 5) we saw 

that our philosophical tradition has come to assume that whatever is 

orderly can be formalized in terms of rules. This view has reached its 

most striking and dogmatic culmination in the conviction of AI workers 

that every form of intelligent behavior can be formalized. Minsky has 

even developed this dogma into a ridiculous but revealing theory of 

human free will. He is convinced that all regularities are rule governed. 

He therefore theorizes that our behavior is either completely arbitrary 

or it is regular and completely determined by rules. As he puts. it: 

/ 256 
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“. .. whenever a regularity is observed [in our behavior], its representa- 
tion is transferred to the deterministic rule region.”'! Otherwise our 
behavior is completely arbitrary and free. The possibility that our behav- 
ior might be regular but not rule governed never even enters his mind. 
We shall now try to show not only that human behavior can be regular 

without being governed by formalizable rules, but, further, that it has to 
be, because a total system of rules whose application to all possible 

eventualities is determined in advance makes no sense. 

In our earlier discussion of problem solving we restricted ourselves to 

formal problems in which the subject had to manipulate unambiguous 

symbols according to a given set of rules, and to other context-free 

problems such as analogy intelligence tests. But if CS is to provide a 

psychological theory—and if AI programs are to count as intelligent— 

they must extend mechanical information processing to all areas of 

human activity, even those areas in which people confront and solve 

open-structured problems in the course of their everyday lives.’* 

Open-structured problems, unlike games and tests, raise three sorts of 

difficulties: one must determine which facts are possibly relevant; which 

are actually relevant; and, among these, which are essential and which 

inessential. To begin with, in a given situation not all facts fall within the 

realm of possible relevancy. They do not even enter the situation. Thus, 

in the context of a game of chess, the weight of the pieces is irrelevant. 

It can never.come into question, let alone be essential or inessential for 

deciding on a specific move. In general, deciding whether certain facts 

are relevant or irrelevant, essential or inessential, is not like taking blocks 

out of a pile and leaving others behind. What counts as essential depends 

on what counts as inessential and vice versa, and the distinction cannot 

be decided in advance, independently of some particular problem, or 

some particular stage of some particular game. Now, since facts are not 

relevant or irrelevant in a fixed way, but only in terms of human pur- 

poses, all facts are possibly relevant in some situation. Thus for example, 

if one is manufacturing chess sets, the weight is possibly relevant (al- 

though in most decisions involved in making and marketing chess sets, 

it will not be actually relevant, let alone essential). This situational 

character of relevance works both ways: In any particular situation an 
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indefinite number of facts are possibly relevant and an indefinitely large 

number are irrelevant. Since a computer is not in a situation, however, 

it must treat all facts as possibly relevant at all times. This leaves Al 

workers with a dilemma: they are faced either with storing and accessing 

an infinity of facts, or with having to exclude some possibly relevant facts 

from the computer’s range of calculations. 

But even if one could restrict the universe for each particular problem 

to possibly relevant facts—and so far this can only be done by the 

programmer, not the program—the problem remains to determine what 

information is actually relevant. Even in a nonformal game like playing 

the horses—which is much more systematic than everyday open-struc- 

tured problems—an unlimited, indefinitely large number of facts remain 

as possibly relevant. In placing a bet we can usually restrict ourselves to 

such facts as the horse’s age, jockey, past performance, and competition. 

Perhaps, if restricted to these facts from the racing form, the machine 

could do fairly well, possibly better than an average handicapper; but 

there are always other factors such as whether the horse is allergic to 

goldenrod or whether the jockey has just had a fight with the owner, 

which may in some cases be decisive. Human handicappers are no more 

omniscient than machines, but they are capable of recognizing the rele- 

vance of such facts if they come across them. The artificial intelligence 

approach to this human ability would have to be to give the machine 

knowledge about veterinary medicine, how people behave when they 

fight their employers, and so forth. But then the problem arises of sorting 

through this vast storehouse of data. To which the answer is that all this 
information would be properly coded and tagged in the machine memory 
so that the machine would just have to do a scan for “horse-race betting” 
and get out the relevant material. But not all relevant material would, 
have been encoded with a reference to this particular use. As Charles 
Taylor has pointed out in an elaboration of this example: 

The jockey might not be good to bet on today because his mother died yester- 
day. But when we store the information that people often do less than their best 
Just after their near relations die, we can’t be expected to tag a connection 
with betting on horses. This information can be relevant to an infinite set of con- 
texts. 
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The machine might select on the basis of the key concepts it was worrying 
about, horses, jockeys, jockey Smith, etc. and pick out all facts about these. But 
this too would give an absurdly wide scatter. Via jockey, man and horse, one 

would find oneself pulling out all facts about centaurs. The only way the machine 

could zero in on the relevant facts would be to take this broad class, or some other 

selected on such a broad swoop basis, and test to see whether each one had causal 

relevance to the outcome of the race, taking it into account if it had, and 

forgetting it if it hadn’t.’* 

But if the machine were to examine explicitly each possibly relevant 

factor as a determinate bit of information in order to determine whether 

to consider or ignore it, it could never complete the calculations neces- 

sary to predict the outcome of a single race. If, on the other hand, the 

machine systematically excluded possibly relevant factors in order to 

complete its calculations, then it would sometimes be incapable of per- 

forming as well as an intelligent human to whom the same information 

was available. 

Even the appeal to a random element will not help here, since in order 

to take up a sample of excluded possibilities at random so that no 

possibility is in principle excluded, the machine would have to be pro- 

vided with an explicit list of all such other possibly relevant facts or a 

specific set of routines for exploring all classes of possibly relevant facts, 

so that no facts would be in principle inaccessible. This is just what could 

be done in a completely defined system such as chess, where a finite 

number of concepts determines totally and unequivocally the set of all 

possible combinations in the domain; but in the real world the list of such 

possibly relevant facts, or even classes of possibly relevant facts, would 

be indefinitely large (‘‘infinite in a pregnant sense,” to use Bar-Hillel’s 

phrase). All the everyday problems—whether in language translation, 

problem solving, or pattern recognition—come back to these two basic 

problems: (1) how to restrict the class of possibly relevant facts while 

preserving generality, and (2) how to choose among possibly relevant 

facts those which are actually relevant. 

Even Minsky implicitly admits that no one knows how to cope with 

the amount of data which must be processed if one simply tries to store 

all facts: 
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At each moment in the course of thinking about a problem, one is involved with 

a large collection of statements, definitions, associations, and so on, and a net- 

work of goals. One has to deal not only with facts about objects, relations 

between objects, and the like, but also facts about facts, classes of facts, relations 

between such classes, etc. The heuristic programs that, as we shall see, so neatly 

demonstrate principles when applied to small models will not work efficiently 

when applied to large ones. Problems like looping, branching, measuring prog- 

ress, and generally keeping track of what is happening will come to require a 

disproportional part of the computation time.‘ 

Whatever it is that enables human beings to zero in on the relevant 

facts without definitively excluding others which might become relevant 

is so hard to describe that it has only recently become a clearly focused 

problem for philosophers. It has to do with the way man is at home in 

his world, has it comfortably wrapped around him, so to speak. Human 

beings are somehow already situated in such a way that what they need 

in order to cope with things is distributed around them where they need 

it, not packed away like a trunk full of objects, or even carefully indexed 

in a filing cabinet. This system of relations which makes it possible to 

discover objects when they are needed is our home or our world. To put 

this less metaphorically it is helpful to return to Charles Taylor’s exten- 

sion of the horse-racing example. 

Much of a human being’s knowledge of situations and their possibilities is 

know-how, that is, it cannot be exhaustively unpacked into a set of specific 

instructions or factual statements, but is a general capacity to generate appropri- 

ate actions and therefore, if necessary, the “instructions” underlying them. Usu- 
ally we think of this kind of indefinitely unpackable form of knowledge as bound 
up with the know-how which underlies our actions. But the same kind of knowl- 
edge underlies what we suffer, our “passions.” Thus just as I have a general grasp 
on what it is to walk around, use my hands, drive a car, conduct a case in court 
(if I'm a lawyer), etc. So I have a general grasp on what it is to be threatened, 
to hear good news, to be jilted by my girl friend, to be made a fool of in public. 
Now the human handicapper has this general grasp of certain common human 

actions and passions. He has the sense of the race as a perilous enterprise which 
needs all the will and effort of jockey (and horse) to win. But included in this 
sense is the capacity to imagine or recognize an indefinite number of ways in 
which this will and effort could miscarry or be countered by fortune. These are 
not stored somewhere as separate facts in the mind or brain, they are not 
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“unpacked”; they are just generatable from the general grasp of the situation. Of 
course, the general grasp of different men may differ in scope and exactitude. If 

the handicapper has ever ridden horses, then he has a much firmer grasp on the 

activity; he can sense a lot more finely what may go wrong. But even the city-bred 

gangster has some general grasp of what it is to fight and strain hard to win. 

But the artificial intelligence proponent may still want to protest that all this 

just represents an alternative method of “storage.” Even if he admits that this 

method is not available to the machine, he might still ask how it solves the 

retrieval problem. How does the handicapper recognize just those odd factors 

which are relevant? The answer is that if we understand our grasp of the world 

as arising out of our dealing with it according to our different capacities, and our 

being touched by it according to our different concerns, then we can see that the 

problem of how a given concern or purpose comes to select the relevant features 

of our surroundings doesn’t arise. For being concerned in a certain way or having 

a certain purpose is not something separate from our awareness of our situation; 

it just is being aware of this situation in a certain light, being aware of a situation 

with a certain structure. Thus being anxious for my own life because I have fallen 

among thugs is to sense the menace in that bulge in his pocket, to feel my 

vulnerability to his fist which might at any moment be swung at my face, and 

so on.” 

The human world, then, is prestructured in terms of human purposes 

and concerns in such a way that what counts as an object or is significant 

about an object already is a function of, or embodies, that concern. This 

cannot be matched by a computer, which can deal only with universally 

defined, i.e., context-free, objects. In trying to simulate this field of con- 

cern, the programmer can only assign to the already determinate facts 

further determinate facts called values, which only complicates the re- 

trieval problem for the machine. — 

In Being and Time Heidegger gives a description of the human world 

in which man is at home, on the model of a constellation of implements 

(Zeuge), each referring to each other, to the whole workshop and ulti- 

mately to human purposes and goals. The directional signal on a car 

serves as an example of a “fact” which gets its whole meaning from its 

pragmatic context: 

The directional signal is an item of equipment which is ready-to-hand for the 

driver in his concern with driving, and not for him alone: those who are not 

travelling with him—and they in particular—also make use of it, either by giving 
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way on the proper side or by stopping. This sign is ready-to-hand within-the- 

world in the whole equipment-context of vehicles and traffic regulations. It is 

equipment for indicating, and as equipment, it is constituted by reference or 

assignment.® 

Wittgenstein too makes frequent references to human forms of life and 

concerns and to certain very general “facts of natural history” taken for 

granted in our use of language and in structuring our everyday activities 

—facts, incidentally, of a very special kind which would presumably 

elude the programmer trying to program all of human knowledge. As 

Wittgenstein says, “The aspects of things that are most important for us 

are hidden because of their simplicity and familiarity. (One is unable to 

notice something—because it is always before one’s eyes.)’*’ Facts, more- 

over, which would be so pervasively connected with all other facts that 

even if they could be made explicit, they would be difficult if not impossi- 

ble to classify. The basic insight dominates these discussions that the 
situation is organized from the start in terms of human needs and pro- 
pensities which give the facts meaning, make the facts what they are, so 
that there is never a question of storing and sorting through an enormous 

list of meaningless, isolated data. 

Samuel Todes** has described in detail the field-structure of experi- 
ence which is prior to the facts and implicitly determines their relevance 
and significance. He points out that the world is experienced as fields 
within fields. Bits or aspects of objects are not experienced as isolated 
facts but as nested in a series of contexts. And “in” has many different 
senses, none of them that of mere physical inclusion, which Minsky and 
McCarthy take as primary. Parts of objects are experienced as in objects 
which they comprise, objects are in places which they fill, a place is 
situated in a local environment, which itself is in the horizon of possible 
situations in a human world. Data, then, are far from brute; aspects of 
objects are not given as directly in the world but as characterizing objects 
in places in a local environment in space and time in the world. 

We can and do zero in on significant content in the field of experience 
because this field is not neutral to us but is structured in terms of our 
interests and our capacity for getting at what is in it. Any object which 
we experience must appear in this field and therefore must appear in 
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terms of our dominant interest at that moment, and as attainable by some 
variant of the activity which generated the field. Since we create the field 

in terms of our interests, only possibly relevant facts can appear. 

Relevance is thus already built in. In the horse race case, racing fits 

into a nested context of activities, games, sports, contests. To see an 

activity as a horse race is to organize it in terms of the intention to win. 

To return to Taylor’s account: 

The handicapper is concerned to pick a winner. As a human being he has a sense 

of what is involved in the enterprise of winning, and his being concerned means 

that he is aware of a horse, jockey, etc., in a way in which dangers are salient. 

Hence he notices when he reads in the obituary columns that Smith’s mother 

died yesterday (Smith being the jockey, and one he knows to be very susceptible), 

and for once he bets against the form. The machine would pick out Smith’s 

mother’s death, as a fact about Smith, along with all the others, such as that 

Smith’s second cousin has been elected dogcatcher in some other city, etc., but 

will then have to do a check on the probable consequences of these different facts 

before it decides to take them into account or not in placing the bet.’ 

Thus our present concerns and past know-how always already deter- 

mines what will be ignored, what will remain on the outer horizon of 

experience as possibly relevant, and what will be immediately taken into 

account as essential. 

Wittgenstein constantly suggests that the analysis of a situation into 

facts and rules (which is where the traditional philosopher and the 

computer expert think they must begin) is itself only meaningful in some 

context and for some purpose. Thus again the elements already reflect 

the goals and purposes for which they were carved out. When we try to 

find the ultimate context-free, purpose-free elements, as we must if we 

are going to find the ultimate bits to feed a machine—bits that will be 

relevant to all possible tasks because chosen for none—we are in effect 

trying to free the facts in our experience of just that pragmatic organiza- 

tion which makes it possible to use them flexibly in coping with everyday 

problems. 

Not that a computer model is ever really purpose-free; even a model 

in terms of information storage must somehow reflect the context, but 

such an analysis of context in terms of facts and rules is rigid and 
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restricting. To see this, let us grant that all the properties of objects 

(whatever that might mean) could be made explicit in a decision tree so 

that each node recorded whether the object has a certain situation- 

independent predicate or its converse. This sort of classification structure 

has been programmed by Edward Feigenbaum in his EPAM model.'** 

Such a discrimination net might, in principle, represent an exhaustive, 

explicit, apparently situation-free characterization of an object, or even 

of a situation, insofar as it was considered as an object. It thus seems to 

provide efficient information storage, while avoiding the field/object 

distinction. But something crucial is omitted in the description of such 

an information structure: the organization of the structure itself, which 

plays a crucial role in the informative storage. The information in the tree 

is differently stored and differently accessible depending on the order in 

which the discriminations are made. As William Wynn notes in a discus- 

sion of EPAM: 

EPAM'’s Classification process is . . . too history-dependent and unadaptable, for 
the discrimination net can be grown only from the bottom down and cannot be 
reorganized from the top. Tests inserted in the net which later prove to be of little 
discriminatory power over a given stimulus set cannot be removed, nor can new 
tests be inserted in the upper portion of the net. Thus, once it is formed, EPAM’s 
discrimination net is difficult to reorganize in the interest of greater retrieval 
efficiency. Any procedure that reorganizes the tests in the structure seriously 
impairs retrieval of many items held in the memory.'! 

So the order of discriminations is crucial. But in the physical world 
all predicates have the same priority. Only the programmer’s sense of the 
situation determines the order in the decision tree. Through the pro- 
grammer’s judgment the distinction between the field and the objects in 
the field is introduced into the computerized model. The pragmatic 
context used by the programmer can indeed itself be characterized in a 
decision tree, but only in some order of discriminations which reflects a 
broader context. At each level information concerning this broader con- 
text is indeed embodied in the general structure of the tree, but at no 
particular node. At each level the situation is reflected in the pragmatic 
intuitions of the programmer governing the order of decisions; but this 
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fixes the facts in one order based on a particular purpose, and inevitably 
introduces the lack of flexibility noted by Wynn. 

If, on the other hand, in the name of flexibility all pragmatic ordering 
could be eliminated so that an unstructured list of purified facts could 
be assimilated by machine—facts about the sizes and shapes of objects 
in the physical world and even about their possible uses, as isolable 
functions—then all these facts would have to be explicitly included or 
excluded in each calculation, and the computer would be overwhelmed 
by their infinity. 

This is not to deny that human beings sometimes take up isolated data 

and try to discover their significance ‘by trying to fit them into a previ- 

ously accumulated store of information. Sherlock Holmes and all detec- 

tives do this as a profession; everyone does it when he is in a very 

unfamiliar situation. But even in these cases there must be some more 

general context in which we are at home. A Martian might have to 

proceed in a very unfamiliar context if he were on earth, but if he shared 

no human purposes his task of sorting out the relevant from the irrele- 

vant, essential from the inessential, would be as hopeless as that of the 

computer. 

We all know also what it is to store and use data according to rules 

in some restricted context. We do this, for example, when we play a game 

such as bridge, although even here a good bridge player stores data in 

terms of purpose and strategies and takes liberties with the heuristic 

rules. We also sometimes play out alternatives in our imagination to 

predict what will happen in the real game before us. But it is just because 

we know what it is to have to orient ourselves in a world in which we 

are not at home; or to follow rulelike operations like the heuristics for 

bidding in bridge; and how to model in our imagination events which 

have not yet taken place, that we know that we are not aware of doing 

this most of the time. The claim that we are nonetheless carrying on such 

operations unconsciously is either an empirical claim, for which there is 

no evidence, or an a priori claim based on the very assumption we are 

here calling into question. 

When we are at home in the world, the meaningful objects embedded 
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in their context of references among which we live are not a model of 

the world stored in our mind or brain; they are the world itself. This may 

seem plausible for the public world of general purposes, traffic regula- 

tions, and so forth. But what about my experience, one may ask; my 

private set of facts, surely that is in my mind? This seems plausible only 

because one is still confusing this human world with some sort of physi- 

cal universe. My personal plans and my memories are inscribed in the 

things around me just as are the public goals of men in general. My 

memories are stored in the familiar look of a chair or the threatening air 

of a street corner where I was once hurt. My plans and fears are already 

built into my experience of some objects as attractive and others as to 

be avoided. The ‘“‘data” concerning social tasks and purposes which are 

built into the objects and spaces around me are overlaid with these 

personal “‘data” which are no less a part of my world. After all, personal 

threats and attractions are no more subjective than general human pur- 

poses. 

Now we can see why, even if the nervous system must be understood 

as a physical object—a sort of analogue computer—whose energy ex- 

change with the world must in principle be expressible as an input/out- 

put function, it begs the question and leads to confusion to suppose that 

on the information-processing level the human perceiver can be under- 

stood as an analogue computer having a precise I/O function reproduci- 

ble on a digital machine. The whole I/O model makes no sense here. 

There is no reason to suppose that the human world can be analyzed into 

independent elements, and even if it could, one would not know whether 

to consider these elements the input or the output of the human mind. 

If this idea is hard to accept, it is because this phenomenological 

account stands in opposition to our Cartesian tradition which thinks of 

the physical world as impinging on our mind which then organizes it 

according to its previous experience and innate ideas or rules. But even 

Descartes is not confused in the way contemporary psychologists and 

artificial intelligence researchers seem to be. He contends that the world 

which impinges on us is a world of pure physical motions, while the world 

“in the mind” is the world of objects, instruments, and so forth. Only 

the relation between these two worlds is unclear. Artificial intelligence 



Orderly Behavior Without Recourse to Rules / 267 

theorists such as Minsky, however, have a cruder picture in which the 

world of implements does not even appear. As they see it, details of the 
everyday world—snapshots, as it were, of tables, chairs, etc.—are re- 

ceived by the mind. These fragments are then reassembled in terms of 
a model built of other facts the mind has stored up. The outer world, a 
mass of isolated facts, is interpreted in terms of the inner storehouse of 

other isolated, but well catalogued, facts—which somehow was built up 

from earlier experiences of this fragmented world—and the result is a 

further elaboration of this inner model. Nowhere do we find the familiar 

world of implements organized in terms of purposes. 

Minsky has elaborated this computer-Cartesianism into an attempt at 

philosophy. He begins by giving a mechanized description of what is in 

fact the role of imagination: 

If a creature can answer a question about a hypothetical experiment without 

actually performing it, then it has demonstrated some knowledge about the 

world. For, his [sic] answer to the question must be an encoded description of 

the behavior (inside the creature) of some submachine or ‘“‘model” responding 

to an encoded description of the world situation described by the question." 

Minsky then, without explanation or justification, generalizes this dubi- 

ous description of the proper function of imagination to all perception 

and knowledge: 

Questions about things in the world are answered by making statements about 

the behavior of corresponding structures in one’s model of the world.” 

He is thus led to introduce a formalized copy of the external world; as 

if besides the objects which solicit our action, we need an encyclopedia 

in which we can look up where we are and what we are doing: 

A man’s model of the world has a distinctly bipartite structure: One part is 

concerned with matters of mechanical, geometrical, physical character, while the 

other is associated with things like goals, meanings, social matters, and the like.'* 

If all knowledge requires a model we, of course, need a model of 

ourselves: 

When a man is asked a general question about his own nature, he will try to give 

a general description of his model of himself.'° 
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And, of course, for this self-description to be complete we will need 

a description of our model of our model of ourselves, and so forth. 

Minsky thinks of this self-referential regress as the source of philosoph- 

ical confusions concerning mind, body, free will, and so on. He does not 

realize that his insistence on models has introduced the regress and that 

this difficulty is proof of the philosophical incoherence of his assumption 

that nothing is ever known directly but only in terms of models. 

In general the more one thinks about this picture the harder it 1s to 

understand. There seem to be two worlds, the outer data- and the inner 

data-structure, neither of which is ever experienced and neither of which 

is the physical universe or the world of implements we normally do 

experience. There seems to be no place for the physical universe or for 

our world of interrelated objects, but only for a library describing the 

universe and human world which, according to the theory, cannot 

exist. 

To dismiss this theory as incoherent is not to deny that physical energy 

bombards our physical organism and that the result is our experience of 

the world. It is simply to assert that the physical processing of the 

physical energy is not a psychological process, and does not take place 

in terms of sorting and storing human-sized facts about tables and chairs. 

Rather, the human world is the result of this energy processing and the 

human world does not need another mechanical repetition of the same 

process in order to be perceived and understood. 

This point is so simple and yet so hard to grasp for those brought up 

in the Cartesian tradition that it may be necessary to go over the ground 

once again, this time returning to a specific case of this confusion. As we 

have seen, Neisser begins his book Cognitive Psychology with an exposi- 

tion of what he calls “the central problem of cognition.” 

There is certainly a real world of trees and people and cars and even books. 

... However, we have no direct, immediate access to the world, nor to any of 

its properties. '° 

Here, as we have noted in Chapter 4, the damage is already done. There 

is indeed a world to which we have no immediate access. We do not 

directly perceive the world of atoms and electromagnetic waves (if it even 
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makes sense to speak of perceiving them)—but the world of cars and 
books is just the world we do directly experience. In Chapter 4 we saw 
that at this point, Neisser has recourse to an unjustified theory that we 
perceive “snapshots” or sense data. His further account only compounds 

the confusion: 

Physically, this page is an array of small mounds of ink, lying in certain positions 

on the more highly reflective surface of the paper.!’ 

But physically, what is there are atoms in motion, not paper and small 

mounds of ink. Paper and small mounds of ink are elements in the 

human world. Neisser, however, is trying to took at them in a special 

way, as if he were a savage, a Martian, or a computer, who didn’t know 

what they were for. There is no reason to suppose that these strangely 

isolated objects are what men directly perceive (although one may per- 

haps approximate this experience in the very special detached attitude 

which comes over a cognitive psychologist sitting down to write a book). 

What we normally perceive is a printed page. 

Again Neisser’s middle-world, which is neither the world of physics 

nor the human world, turns out to be an artifact. No man has ever seen 

such an eerie world; and no physicist has any place for it in his system. 

Once we postulate it, however, it follows inevitably that the human world 

will somehow have to be reconstructed out of these fragments. 

One-sided in their perspective, shifting radically several times each second, 

unique and novel at every moment, the proximal stimuli bear little resemblance 

to either the real object that gave rise to them or to the object of experience that 

the perceiver will construct as a result.'* 

But this whole construction process is superfluous. It is described in 

terms which make sense only if we think of man as a computer receiving 

isolated facts from a world in which it has no purposes; programmed to 

use them, plus a lot of other meaningless data it has accumulated or been 

given, to make some sort of sense (whatever that might mean) out of 

what is going on around it. 

There is no reason to suppose that a normal human being has this 

problem, although some aphasics do. A normal person experiences the 
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objects of the world as already interrelated and full of meaning. There 

is no justification for the assumption that we first experience isolated 

facts, or snapshots of facts, or momentary views of snapshots of isolated 

facts, and then give them significance. The analytical superfluousness of 

such a process is what contemporary philosophers such as Heidegger and 

Wittgenstein are trying to point out. To put this in terms of Neisser’s 

discussion as nearly as sense will allow, we would have to say: “The 

human world is the brain’s response to the physical world.” Thus there 

is nO point in saying it is “in the mind,” and no point in inventing a third 

world—between the physical and the human world—which is an arbi- 

trarily impoverished version of the world in which we live, out of which 

the human world has to be built up again. 

Oettinger, alone among computer experts, has seen that in the world 

of perception and language, where the linguist and artificial intelligence 

worker begins his analysis, a global meaning is always already present. 

What I want to suggest is not necessarily a novel suggestion; but it does seem 

to have been lost from sight, perhaps deservedly so, because, as I have pointed 

out, it doesn’t tell one what to do next. What I suggest is that it almost seems 

as if the perception of meaning were primary and everything else a consequence 

of understanding meaning." 

But Oettinger does not seem to see that if one simply looks for some new 

sort of process, by which this global meaning is ‘‘produced,” thereby 

reversing the current misunderstanding, one is bound to find what seems 

a mystery or a dead end. 

When we try to turn this around and say, “Well now, here is this stream of sound 
coming at you or its equivalent on a printed page, and what is it that happens 

to your listening to me or in reading a printed page that enables you to react to 

the meaning of what I say?” we seem to hit a dead end at this point.”° 

What Oettinger too fails to understand is that there are both sound 
waves and there is meaningful discourse. The meaning is not produced 
from meaningless elements, be they marks or sounds. The stream of 
sounds is a problem for physics and neurophysiology, while on the level 
of meaningful discourse, the necessary energy processing has already 

taken place, and the result is a meaningful world for which no new 
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theory of production is required nor can be consistently conceived. 

To avoid inventing problems and mysteries we must leave the physical 

world to the physicists and neurophysiologists, and return to our descrip- 

tion of the human world which we immediately perceive. The problem 

facing contemporary philosophers is to describe the context or situation 

in which human beings live, without importing prejudices from the 

history of philosophy or the current fascination with computer models. 

This brings us back to the problem of regularity and rules. 

Our context-guided activity in terms of which we constantly modify 

the relevance and significance of particular objects and facts is quite 

regular, but the regularity need not and cannot be completely rule gov- 

erned. As in the case of ambiguity tolerance, our activity is simply as rule 

governed as is necessary for the task at hand—the task itself, of course, 

being no more precise than the rules. 

Wittgenstein, like Heidegger, sees the regulation of traffic as paradig- 

matic: 

The regulation of traffic in the streets permits and forbids certain actions on the 

part of drivers and pedestrians; but it does not attempt to guide the totality of 

their movements by prescription. And it would be senseless to talk of an ‘ideal’ 

ordering of traffic which would do that; in the first place we should have no idea 

what to imagine as this ideal. If someone wants to make traffic regulations stricter 

on some point or other, that does not mean that he wants to approximate to such 

an ideal. 

This contextual regularity, never completely rule governed, but always 

as orderly as necessary, is so pervasive that it is easily overlooked. Once, 

however, it has been focused on as the background of problem solving, 

language use, and other intelligent behavior, it no longer seems necessary 

to suppose that all ordered behavior is rule governed. The rule-model 

only seems inevitable if one abstracts himself from the human situation 

as philosophers have been trying to do for two thousand years, and as 

computer experts must, given the context-free character of information 

processing in digital machines. 



MT 

The Situation as a Function of Human Needs 

We are at home in the world and can find our way about in it because 

it is our world produced by us as the context of our pragmatic activity. 

So far we have been describing this world or situation and how it enables 

us to zero in on significant objects in it. We have also suggested that this 

field of experience is structured in terms of our tasks. These are linked 

to goals, and these in turn correspond to the social and individual needs 

of those whose activity has produced the world. 

What does this tell us about the possibility of AI? If the data which 

are to be stored and accessed are normally organized in terms of specific 

goals, then it would seem that the large data base problem confronting 

AI could be solved if one just constructed a list of objectives and their 

priorities—what computer workers dealing with decision-making pro- 

grams call a utility function—and programmed it into the computer 

along with the facts. 

We have seen, however, that explicit objectives do not work, even for 

organizing simple problem-solving programs. The difficulties of simple 

means-ends analysis suggest that in order for the computer to solve even 

well-structured problems, it is not sufficient for the machine to have an 

objective and to measure its progress toward this preset end. Planning 

requires finding the essential operations, so “‘pragmatic considerations,” 

for example, the relative importance of logical operations had to be 

ES: 
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surreptitiously supplied by the programmers themselves before the logic 
program could begin. We must now try to describe in more detail how 

this pragmatic structuring differs from means-ends analysis, ultimately 

asking, of course, whether this human capacity for purposive organiza- 

tion is in principle programmable on digital machines. 

The difference between human goals and machine ends or objectives 

has been noted by one scientist who has himself been working on pattern 

recognition. Satosi Watanabe describes this difference as follows: 

For man, an evaluation is made according to a system of values which is non- 

specific and quasi-emotive, while an evaluation for a robot could only be made 

according to a table or a specific criterion. . . . This difference is subtle but 

profound. [One might say] that a man has values while a machine has objectives. 

Certainly men too have objectives, but these are derived from a system of values 

and are not the final arbiter of his actions, as they would be for a robot. 

... As soon as the objective is set the machine can pursue it Just as the man can. 

Likewise human utilitarian behavior can be easily simulated by a machine if the 

quantitative utility and the probability of each alternative event is fixed and given 

to the machine. But a machine can never get at the source from which this utility 

is derived.' 

Watanabe claims that these values are essential to intelligent behavior. 

For one thing, as Watanabe points out, “there are infinitely many possi- 

ble hypotheses that are supported by experience. Limitation of these 

hypotheses to a smaller subset is often done by a vaguely conceived 

criterion, such as the principle of simplicity, or the principle of ele- 

gance.’”? More specifically, Watanabe argues that it can be demonstrated 

that any two objects have the same number of predicates in common. If 

this does not seem to us to be the case, it is because we consider certain 

predicates more important than others. This decision as to what is impor- 

tant depends on our system of values.’ 

But why on our system of values and not on a list of objectives? How 

does what Watanabe calls a system of values differ from having a utility 

function? So far the only difference seems to be that values are vaguer. 

But throughout Watanabe’s analysis there is no argument showing why 

these values are not just vague objectives which could be represented by 

a region on a quantitative scale. To understand this important difference, 
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which Watanabe has noted, but not explained, one must first abandon 

his way of posing the problem. To speak of values already gives away 

the game. For values are a product of the same philosophical tradition 

which has laid down the conceptual basis of artificial intelligence. Al- 

though talk of values is rather new in philosophy, it represents a final 

stage of objectification in which the pragmatic considerations which 

pervade experience and determine what counts as an object are conceived 

of as just further characteristics of independent objects, such as their 

hardness or color. A value is one more property that can be added to or 

subtracted from an object. Once he has adopted this terminology and the 

philosophical position it embodies, Watanabe is unable to explain how 

values differ from somewhat vague properties, and thus cannot explain 

why he feels they cannot be programmed. To understand the fundamen- 

tal difficulty Watanabe is trying to get at, we must be able to distinguish 

between objects, and the field or situation which makes our experience 

of objects possible. For what Watanabe misleadingly calls values belongs 

to the structure of the field of experience, not the objects in it. 

We have seen that experience itself is organized in terms of our tasks. 

Like the pattern of a chess game, the world is a field in which there are 

areas of attraction and repulsion, paths of accessibility, regions of activity 

and of repose. In our own perceptual world we are all master players. 

Objects are already located and recognized in a general way in terms of 

the characteristics of the field they are in before we zero in on them and 

concern ourselves with their details. It is only because our interests are 

not objects in our experience that they can play this fundamental role 

of organizing our experience into meaningful patterns or regions. 

Heidegger has described the way human concerns order experiences 

into places and regions: 

Equipment has its place or else it ‘lies around’: this must be distinguished in 

principle from just occurring at random in some spacial position. . .. The kind 

of place which is constituted by direction and remoteness (and closeness is only 

a mode of the latter) is already oriented towards a region and oriented within 

it.... Thus anything constantly ready-to-hand of which circumspective Being-in- 

the-World takes account beforehand has its place. The ‘where’ of its readiness-to- 
hand is put to account as a matter for concern. . . .4 
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Heidegger is also the first to have called attention to the way philoso- 
phy has from its inception been dedicated to trying to turn the concerns 
in terms of which we live into objects which we could contemplate and 

control. Socrates was dedicated to trying to make his and other people’s 
commitments explicit so that they could be compared, evaluated, and 

justified. But it is a fundamental and strange characteristic of our lives 

that insofar as we turn our most personal concerns into objects, which 

we can study and choose, they no longer have a grip on us. They no 

longer organize a field of significant possibilities in terms of which we act 

but become just one more possibility we can choose or reject. Philoso- 

phers thus finally arrived at the nihilism of Nietzsche and Sartre in which 

personal concerns are thought of as a table of values which are arbitrarily 

chosen and can be equally arbitrarily abandoned or transvaluated. Ac- 

cording to Nietzsche, “The great man is necessarily a skeptic. . . . 

Freedom from any kind of conviction is part of the strength of his 

Wiles 

But what is missing in this picture besides a sense of being gripped by 

one’s commitment? What difference does it make when one is trying to 

produce intelligent behavior that one’s evaluations are based on a util- 

ity function instead of some ultimate concern? One difference, which 

Watanabe notes without being able to explain, is that a table of values 

must be specific, whereas human concerns only need to be made as 

specific as the situation demands. This flexibility is closely connected 

with the human ability to recognize the generic in terms of purposes, and 

to extend the use of language in a regular but nonrulelike way. Moreover, 

man’s ultimate concern is not just to achieve some goal which is the end 

of a series; rather, interest in the goal is present at each moment structur- 

ing the whole of experience and guiding our activity as we constantly 

select what is relevant in terms of its significance to the situation at hand.° 

A machine table of objectives, on the other hand, has only an arbitrary 

relation to the alternatives before the machine, so that it must be explic- 

itly appealed to at predetermined intervals to evaluate the machine’s 

progress and direct its next choice. 

Herbert Simon and Walter Reitman have seen that emotion and moti- 

vation play some role in intelligent behavior, but their way of simulating 
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this role is to write programs where “emotions” can interrupt the work 

on one problem to introduce extraneous factors or work on some other 

problem.’ They do not seem to see that emotions and concerns accom- 

pany and guide our cognitive behavior. This is again a case of not being 

able to see what one would not know how to program. 

Heidegger tries to account for the pervasive concern organizing hu- 

man experience in terms of a basic human need to understand one’s 

being. But this analysis remains very abstract. It accounts for significance 

in general but not for any specific goal or specific significance. Thus 

Heidegger in effect assimilates all human activity to creative problem 

solving or artistic creation where we do not fully know what our goal 

was until we have achieved it. For Heidegger there can be no list of 

specifications which the solution must fulfill. Still, our needs are determi- 

nate enough to give things specific meaning for us, and many of our goals 

are quite explicit. To understand this we require a more concrete 

phenomenological analysis of human needs. 

The philosophical and psychological tradition (with the exception of 

the pragmatists), however, has tried to ignore the role of these needs in 

intelligent behavior, and the computer model has reinforced this ten- 

dency. Thus N. S. Sutherland, Professor of Experimental Psychology at 

the University of Sussex, in an article “Machines and Men,” writes: 

Survival and self maintenance are achieved by genetically building into the 

human brain a series of drives or goals. Some of the obvious ones are hunger, 

thirst, the sexual drive and avoidance of pain. All of these drives are parochial 

in the sense that one could imagine complex information processing systems 

exhibiting intelligent behavior but totally lacking them.‘ 

We have seen, however, that our concrete bodily needs directly or 

indirectly give us our sense of the task at hand, in terms of which our 

experience is structured as significant or insignificant. These needs have 

a very special structure, which, while more specific than Heidegger's 

account, does resemble artistic creation. When we experience a need we 

do not at first know what it is we need. We must search to discover what 

allays our restlessness or discomfort. This is not found by comparing 

various objects and activities with some objective, determinate criterion, 



The Situation as a Function of Human Needs eV 

but through what Todes calls our sense of gratification. This gratification 

is experienced as the discovery of what we needed all along, but it is a 

retroactive understanding and covers up the fact that we were unable to 

make our need determinate without first receiving that gratification. The 

original fulfillment of any need is, therefore, what Todes calls a creative 

discovery.’* 

Thus human beings do not begin with a genetic table of needs or values 

which they reveal to themselves as they go along. Nor, when they are 

authentic, do they arbitrarily adopt values which are imposed by their 

environment. Rather, in discovering what they need they make more 

specific a general need which was there all along but was not determinate. 

This is most obvious when dealing with less instinctual psychological 

needs. When a man falls in love he loves a particular woman, but it is 

not that particular woman he needed before he fell in love. However, 

after he is in love, that is after he has found that this particular relation- 

ship is gratifying, the need becomes specific as the need for that particu- 

lar woman, and the man has made a creative discovery about himself. 

He has become the sort of person that needs that specific relationship and 

must view himself as having lacked and needed this relationship all 

along. In such a creative discovery the world reveals a new order of 

significance which is neither simply discovered nor arbitrarily chosen. 

Soren Kierkegaard has a great deal to say about the way one’s person- 

ality or self is redefined in such an experience, and how everything in a 

person’s world gets a new level of meaning. Since such a change, by 

modifying a person’s concerns, changes the whole field of interest in 

terms of which everything gets its significance, Kierkegaard speaks of 

these fundamental changes as changes in our sphere of existence. And 

because such a change cannot be predicted on the basis of our previous 

concerns, yet once it has taken place is so pervasive that we cannot 

imagine how it could have been otherwise, Kierkegaard speaks of a 

change of sphere of existence as a leap.'° 

This same sort of change of world can take place on a conceptual level. 

Then it is called a conceptual revolution. Thomas Kuhn in his book The 

Structure of Scientific Revolutions has studied this sort of transforma- 
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tion. As he puts it: “Insofar as their only recourse to that world is 

through what they see and do, we may want to say that after a revolution 

scientists are responding to a different world.” 

The conceptual framework determines what counts as a fact. Thus 

during a revolution there are no facts to which scientists can appeal to 

decide which view is correct. ‘““The data themselves [have] changed. This 

is the [sense] in which we may want to say that after a revolution 

scientists work in a different world.”’'? The idea that knowledge consists 

of a large store of neutral data, taken for granted by Minsky, is inade- 

quate to account for these moments of profound change. According to 

Kuhn, “there can be no scientifically or empirically neutral system of 

language or concepts.” 

What occurs during a scientific revolution is not fully reducible to a reinterpreta- 

tion of individual and stable data. In the first place the data are not unequivocally 

stable. A pendulum is not a falling stone, nor is oxygen dephlogisticated air." 

This leads Kuhn to a rejection of the whole philosophical tradition 

which has culminated in the notion of reason as based on the storage and 

processing of ‘data.’ On the basis of his research Kuhn sees both the 

inadequacy of this tradition and why it nonetheless continues to seem 

self-evident. 

Are theories simply man-made interpretations of given data? The epistemologi- 

cal viewpoint that has most often guided Western philosophy for three centuries 

dictates an immediate and unequivocal, Yes! In the absence of a developed 
alternative, I find it impossible to relinquish entirely that viewpoint. Yet it no 
longer functions effectively, and the attempts to make it do so through the 
introduction of a neutral language of observations now seem to me hopeless.'* 

In suggesting an alternative view, or more exactly, in analyzing the 
Way science actually proceeds so as to provide the elements of an alterna- 
tive view, Kuhn focuses on the importance of a paradigm, that is, a 
specific accepted example of scientific practice, in guiding research. Here, 
as in the case of family resemblance studied earlier, objects are under- 
stood not in terms of general rules but rather in terms of their relation 
to a specific concrete case whose traits or implications cannot be com- 
pletely formalized. 
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[Scientists can] agree in.their identification of a paradigm without agreeing on, 
or even attempting to produce, a full interpretation or rationalization of it. Lack 
of a standard interpretation or of an agreed reduction to rules will not prevent 

a paradigm from guiding research. . . . Indeed, the existence of a paradigm need 

not even imply that any full set of rules exist.'® 

It is just this open-ended richness of paradigms which makes them 

important: 

Paradigms may be prior to, more binding, and more complete than any set of 

rules for research that could be unequivocally abstracted from them." 

Without such paradigms scientists confront the world with the same 

bewilderment which we have suggested would necessarily confront an 

AI researcher trying to formalize the human form of life: 

In the absence of a paradigm . . . all of the facts that could possibly pertain to 

the development of a given science are likely to seem equally relevant." 

Indeed, without a paradigm it is not even clear what would count as 

a fact, since facts are produced in terms of a particular paradigm for 

interpreting experience. Thus finding a new paradigm is like a Kierke- 

gaardian leap: 

Just because it is a transition between incommensurables, the transition between 

competing paradigms cannot be made a step at a time, forced by logic and neutral 

experience. Like the gestalt switch, it must occur all at once (though not neces- 

sarily in an instant) or not at all.” 

Here it becomes clear that the idea of problem solving as simply 

storing and sorting through data with a specific end in view can never 

do justice to these fundamental conceptual changes, yet these changes 

determine the conceptual space in which problems can first be posed and 

in terms of which data get their pervasive character of relevance and 

significance, so that problems can be solved. The reigning conceptual 

framework implicitly guides research just as the perceptual field guides 

our perception of objects. 

Finally, even more fundamental than these conceptual revolutions 

studied by Kuhn are cultural revolutions; for example, the beginning of 

Greek philosophy, as we have seen, set up a view of the nature of man 
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and rationality on which all subsequent conceptual revolutions have 

rung changes. Equally radically, with the beginning of Christianity a new 

kind of love became possible which was not possible in Greece; heroism 

became suspect as a sign of pride, and goodness came to consist in the 

sacrifices of saints. These cultural revolutions show us, as Pascal first 

pointed out, that there is no sharp boundary between nature and culture 

—even instinctual needs can be modified and overridden in terms of 

paradigms—thus there is no fixed nature of man. 

Man’s nature is indeed so malleable that it may be on the point of 

changing again. If the computer paradigm becomes so strong that people 

begin to think of themselves as digital devices on the model of work in 

artificial intelligence, then, since for the reasons we have been rehearsing, 

machines cannot be like human beings, human beings may become 

progressively like machines. During the past two thousand years the 

importance of objectivity; the belief that actions are governed by fixed 

values; the notion that skills can be formalized; and in general that one 

can have a theory of practical activity, have gradually exerted their 

influence in psychology and in social science. People have begun to think 

of themselves as objects able to fit into the inflexible calculations of 

disembodied machines: machines for which the human form-of-life must 

be analyzed into meaningless facts, rather than a field of concern orga- 

nized by sensory-motor skills. Our risk is not the advent of superintelli- 

gent computers, but of subintelligent human beings. 



Conclusion 

This alternative conception of man and his ability to behave intelligently 

is really an analysis of the way man’s skillful bodily activity as he works 

to satisfy his needs generates the human world. And it is this world 

which sets up the conditions under which specific facts become accessible 

to man as both relevant and significant, because these facts are origi- 

nally organized in terms of these needs. This enables us to see the 

fundamental difference between human and machine intelligence. Artifi- 

cial intelligence must begin at the level of objectivity and rationality 

where the facts have already been produced. It abstracts these facts'* 

from the situation in which they are organized and attempts to use the 

results to simulate intelligent behavior. But these facts taken out of 

context are an unwieldy mass of neutral data with which artificial intelli- 

gence workers have thus far been unable to cope. All programs so far 

“bog down inexorably as the information files grow.”” 

No other data-processing techniques exist at present besides the ac- 

cumulation of facts, and once the traditional philosophical assumptions 

underlying work in artificial intelligence have been called into question 

there is no reason to suppose that digital data storage and retrieval 

techniques will ever be powerful enough to cope with the amount of data 

generated when we try to make explicit our knowledge of the world. 

Since the data about the world may well be infinite and the formalization 
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of our form-of-life may well be impossible, it would be more reasonable 

to suppose that digital storage techniques can never be up to the task. 

Moreover, if this phenomenological description of human intelligence 

is correct, there are in principle reasons why artificial intelligence can 

never be completely realized. Besides the technological problem posed 

by storing a great number of bits of neutral data, there are in the last 

analysis no fixed facts, be they a million or ten million, as Minsky would 

like to believe. Since human beings produce facts, the facts themselves 

are changed by conceptual revolutions. 

Finally, if the philosopher or artificial intelligence researcher proposes 

to meet this objection by formalizing the human needs which generate 

this changing context, he is faced with the source of this same difficulty. 

Indeterminate needs and goals and the experience of gratification which 

guides their determination cannot be simulated on a digital machine 

whose only mode of existence is a series of determinate states. Yet, it is 

just because these needs are never completely determined for the individ- 

ual and for mankind as a whole that they are capable of being made more 

determinate, and human nature can be retroactively changed by individ- 

ual and cultural revolutions. 
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The Limits of Artificial Intelligence 

We are now in a position to draw together the various strands of our 

philosophical argument concerning the limits of artificial intelligence. 

The division of the field of artificial intelligence into two subfields, Cogni- 

tive Simulation (CS) and Artificial Intelligence (AI), has led to the 

treatment of two separate but interrelated questions: (1) Does a human 

being in “processing information” actually follow formal rules like a 

digital computer?, and (2) Can human behavior, no matter how gener- 

ated, be described in a formalism which can be manipulated by a digital 

machine? 

In discussing each of these questions we found, first, that the des- 

criptive or phenomenological evidence, considered apart from tradi- 

tional philosophical prejudices, suggests that nonprogrammable human 

capacities are involved in all forms of intelligent behavior. Moreover, we 

saw that no contrary empirical evidence stands up to methodological 

scrutiny. Thus, insofar as the question whether artificial intelligence is 

possible is an empirical question, the answer seems to be that further 

significant progress in Cognitive Simulation or in Artificial Intelligence 

is extremely unlikely. 

If in the face of these difficulties workers in artificial intelligence still 

wish to justify their optimism, the burden of proof is henceforth on them. 

They must show that despite the empirical difficulties artificial intelli- 
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gence must be possible. But the a priori case for artificial intelligence is 

even weaker here than the empirical one. The very arguments which are 

supposed to show that formalization must be possible turn out to be 

either incoherent or self-contradictory and show, on the contrary, that 

barring certain highly unlikely empirical assumptions which have been 

ruled out by common agreement, formalization is impossible. The a 

priori arguments for formalization thus turn into conditional in principle 

arguments against the possibility of CS and AI. 

Let us review these arguments in more detail. In discussing CS we 

found that in playing games such as chess, in solving complex problems, 

in recognizing similarities and family resemblances, and in using lan- 

guage metaphorically and in ways we feel to be odd or ungrammatical, 

human beings do not seem to themselves or to observers to be following 

strict rules. On the contrary, they seem to be using global perceptual 

organization, making pragmatic distinctions between essential and ines- 

sential operations, appealing to paradigm cases, and using a shared sense 

of the situation to get their meanings across. 

Of course, all this orderly but apparently nonrulelike activity might 

nonetheless be the result of unconsciously followed rules. But when one 

tries to understand this as a philosophical proposal that all behavior 

must be understood as following from a set of instructions, one finds a 

regress of rules for applying rules. This regress cannot be terminated by 

an appeal to ordinary facts for, according to the original claim, the facts 

must themselves always be recognized and interpreted by rule. 

One way to avoid this regress would be to claim that the ultimate data 

are inputs of physical energy and that such inputs can always be digital- 

ized and processed according to rule. This seems to be Fodor’s view. The 

claim that these inputs are processed in a sequence of operations like a 

digital program is not unintelligible, but would, as Fodor admits, de- 

mand an incredibly complex formalism which no one has been able to 

discover or invent. In the absence of any empirical or a@ priori argument 

that such a formalism for processing physical inputs does or must exist, 

and given the empirical evidence that the brain functions like an ana- 

logue computer, there is no reason to suppose and every reason to doubt 
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that the processing of physical inputs in the human brain takes the form 
of a digital computer program. 

The only other way to avoid the regress of rules is to modify the thesis 
and claim that on the lowest level rules are automatically applied without 
instructions. But this leads to trouble in two ways: (1) Once the a priori 
thesis that all behavior must follow instructions is thus weakened, we 
might as well claim that skilled behavior need not be based on uncon- 
sciously followed instructions at any level, so the argument that in spite 

of the phenomenological evidence subjects must be following rules must 
be abandoned. 

(2) If one nonetheless insists that there must be an ultimate level of 
uninterpreted givens, and that the givens are neither physical inputs nor 

ordinary objects, one is left with the view that these givens must be 

impoverished bits of information about the human world. This gives us 

the notion of “stimulus information,” the sense data or snapshots intro- 

duced by Neisser. But this a priori notion of stimulus information turns 

out to be incomprehensible. All that is given empirically are continuous 

physical inputs to the organism, on the one hand, and the world of 

ordinary objects given to the perceiving subject, on the other. No cogni- 

tive psychologist has succeeded in defining another sort of input between 

these two which would provide the ultimate bits of information to which 

the rules are to be applied. All accounts offered thus far turn out to be 

an incoherent mixture of physical description in terms of energy, and 

phenomenalist description in terms of crudely defined sense data. 

Thus the psychological claim that, appearances notwithstanding, in- 

telligent behavior is produced by following fixed formal rules like a 

digital computer is stuck with a regress of rules for applying rules. It can 

not extricate itself from this regress by appeal to a notion of physical 

input which it cannot use or stimulus input which it cannot define. 

Although there is no empirical evidence either from psychology or 

from the success of current work, AI workers, like workers in CS, are 

confident that a formalization of intelligent behavior must be possible. 

Their argument is never explicitly stated, but it seems to be based on an 

ontological assumption that the world can be analyzed into independent 
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logical elements and an epistemological assumption that our understand- 

ing of the world can then be reconstructed by combining these elements 

according to heuristic rules. The first claim is safe enough. Since he is 

not committed to describing human beings, the AI worker, unlike the 

cognitive psychologist, has no trouble identifying the ultimate bits to 

which the rules must be applied—they are digitalized sound waves and 

the elements in the mosaic of a TV tube. These can be recognized without 

appeal to further rules. But the second claim, that these elements can be 

reassembled, when put forward as an a priori necessity, runs into a 

regress of higher and higher order rules, the converse of the regress of 

rules for applying rules faced by those in Cognitive Simulation. 

Since each of the logical elements is assumed to be independent of all 

the others, it has no significance until related to the other elements. But 

once these elements have been taken out of context and stripped of all 

significance it is not so easy to give it back. The significance to be given 

to each logical element depends on other logical elements, so that in 

order to be recognized as forming patterns and ultimately forming ob- 

jects and meaningful utterances each input must be related to other 

inputs by rules. But the elements are subject to several interpretations 

according to different rules and which rule to apply depends on the 

context. For a computer, however, the context itself can only be recog- 

nized according to a rule. 

Here again, too, this computer-dictated analysis conflicts with our 

experience. A phenomenological description of our experience of being- 

in-a-situation suggests that we are always already in a context or situa- 

tion which we carry over from the immediate past and update in terms 

of events that in the light of this past situation are seen to be significant. 

We never encounter meaningless bits in terms of which we have to 
identify contexts, but only facts which are already interpreted and which 
reciprocally define the situation we are in. Human experience is only 

intelligible when organized in terms of a situation in which relevance and 
significance are already given. This need for prior organization reappears 
in AT as the need for a hierarchy of contexts in which a higher or broader 
context is used to determine the relevance and significance of elements 

in a narrower or lower context. 
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Thus, for example, to pick out two dots in a picture as eyes one must 
have already recognized the context as a face. To recognize this context 
as a face one must have distinguished its relevant features such as 
shape and hair from the shadows and highlights, and these, in turn, 
can be picked out as relevant only in a broader context, for example, a 
domestic situation in which the program can expect to find faces. This 
context too will have to be recognized by its relevant features, as social 
rather than, say, meteorological, so that the program selects as signifi- 
cant the people rather than the clouds. But if each context can be 
recognized only in terms of features selected as relevant and interpre- 
ted in terms of a broader context, the AI worker is faced with a regress 

of contexts. 

As in the case of Cognitive Simulation, there might have been an 

empirical way out of the regress. Just as for CS the ultimate uninter- 

preted bits might have been digitalized physical inputs, here the ultimate 

context or set of contexts might have been recognizable in terms of 

certain patterns or objects which had a fixed significance and could be 

used to switch the program to the appropriate subcontext of objects or 

discourse. But again as in CS the evidence is against this empirical 

possibility. There do not seem to be any words or objects which are 

always relevant and always have the same significance the way the red 

spot of a female stickleback always means mating time to the male. 

There remains only one possible “solution.”” The computer program- 

mer can make up a hierarchy of contexts and general rules for how to 

organize them for the computer. He does this by appealing to his general 

sense of what is generally relevant and significant for a human being. In 

some situations, however, any fact may become important. To formalize 

this so that the computer could exhibit human flexibility, the program- 

mer would have to be able to make explicit all that he normally takes 

for granted in being a human being. However, once he tries to treat his 

own situation as if he were a computer looking at it from the outside, 

the computer programmer is himself faced with an infinity of meaning- 

less facts whose relevance and significance could only be determined in 

a broader context. 

Thus it turns out that a logical atomist ontology does not entail a 
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logical atomist epistemology. Even if the world is scanned into the 

computer in terms of logically independent bits, this does not mean that 

one can argue a priori that it can be reassembled. In fact the attempt to 

argue a priori that because the world can be resolved into bits it can be 

interpreted by formal rules ends up showing just the opposite. 

These considerations are supported by a general theory of human 

experience as being-already-in-a-situation in which the facts are always 

already interpreted. This theory also suggests that the ultimate situation 

in which human beings find themselves depends on their purposes, which 

are in turn a function of their body and their needs, and that these needs 

are not fixed once and for all but are interpreted and made determinate 

by acculturation and thus by changes in human self-interpretation. Thus 

in the last analysis we can understand why there are no facts with built-in 

significance and no fixed human forms of life which one could ever hope 

to program. 

This is not to say that children do not begin with certain fixed re- 

sponses—in fact, if they did not, learning could never get started—but 

rather that these responses are outgrown or overridden in the process of 

maturation. Thus no fixed responses remain in an adult human being 

which are not under the control of the significance of the situation. 

Could we then program computers to behave like children and boot- 

strap their way to intelligence? This question takes us beyond present 
psychological understanding and present computer techniques. In this 
book I have only been concerned to argue that the current attempt to 

program computers with fully formed Athene-like intelligence runs into 
empirical difficulties and fundamental conceptual inconsistencies. 
Whether a child computer could begin with situation-free responses and 
gradually learn depends on the role indeterminate needs and ability to 
respond to the global context play in learning. What work has been done 
on learning by Piaget, for example, suggests that the same forms of 
“information processing” are required for learning which are required 
for mature intelligent behavior, and that intelligence develops by ‘“‘con- 
ceptual revolutions.” This should not surprise us. Computers can only 
deal with facts, but man—the source of facts—is not a fact or set of facts, 
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but a being who creates himself and the world of facts in the process of 
living in the world. This human world with its recognizable objects is 
organized by human beings using their embodied capacities to satisfy 

their embodied needs. There is no reason to suppose that a world orga- 

nized in terms of these fundamental human capacities should be accessi- 

ble by any other means. 

The Future of Artificial Intelligence 

But these difficulties give us no idea of the future of artificial intelligence. 

Even if the attempt to program isolated intelligent activities always 

ultimately requires the programming of the whole mature human form 

of life, and even if an Athene-like digital computer is impossible in 

principle—that is, even if mature human intelligence is organized in 

terms of a field which is reciprocally determined by the objects in it and 

capable of radical revision—the question still remains to what extent 

workers in artificial intelligence can use their piecemeal techniques to 

approximate intelligent human behavior. In order to complete our analy- 

sis of the scope and limits of artificial reason we must now draw out the 

practical implications of the foregoing arguments. 

Before drawing our practical conclusions, however, it will be helpful 

to distinguish four areas of intelligent activity. We can then determine 

to what extent intelligent behavior in each area presupposes the four 

human forms of ‘information processing” we distinguished in Part I. 

This will enable us to account for what success has been attained and 

predict what further progress can be expected. 

One can distinguish four types of intelligent activity (see Table 1). We 

have seen that the first two types are amenable to digital computer 

simulation, while the third is only partially programmable and the fourth 

is totally intractable. 

Area I is where the S-R psychologists are most at home. It includes 

all forms of elementary associationistic behavior where meaning and 

context are irrelevant to the activity concerned. Rote learning of non- 

sense syllables is the most perfect example of such behavior so far pro- 

grammed, although any form of conditioned reflex would serve as well. 
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Table 1 
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CLASSIFICATION OF INTELLIGENT ACTIVITIES 

I. Associationistic II. Simple-Formal III. Complex-Formal IV. Nonformal 

Characteristics of Activity 

Irrelevance of mean- 
ing and situation. 

Innate or 
learned by 
repetition. 

Meanings completely 
explicit and situation 
independent. 

Learned by rule. 

/ ] 

In principle, same as 

II; in practice, in- 
ternally situation- | 

dependent, indepen- | 
| dent of external 
situation. 

Learned by rule and 
practice. 

Dependent on 

meaning and 
situation which 
are not explicit. 

Learned by per- 

spicuous examples. 

Field of Activity (and Appropriate Procedure) 

Memory games, e.g., 

“Geography’’ (asso- 
ciation). 

Maze problems 
(trial and error). 

Word-by-word 
translation 
(mechanical 

dictionary). 

Response to rigid 

patterns (innate 
releasers and classi- 

cal conditioning). 

Computable or quasi- 
computable games, 

e.g., mim or tic-tac- 
toe (seek algorithm 
or count out). 

Combinatorial prob- 

lems (nonheuristic 
means/ends analysis). 

Proof of theorems 
using mechanical 

proof procedures 

(seek algorithm). 

Recognition of sim- 
ple rigii patterns, 

e.g., reading typed 

page (search for 
traits whose con- 

junction defines class 

membership) . 

Uncomputable 

games, e.g., chess or 

go (global intuition 
and detailed count- 

ing out). 

Complex combina- 
torial problems 

(planning and maze 

calculation). 

Proof of theorems 
where no mechanical 

proof procedure 

exists (intuition and 
calculation). 

Recognition of com- 
plex patterns in 

noise (search for 
regularities ) . 

lIll-defined games, 
e.g., riddles (percep- 

tive guess). 

Open-structured 
problems (insight). 

Translating a 

natural language 
(understanding in 

context of use). 

Recognition of 
varied and distorted 

| patterns (recogni- 
| tion of generic or 

use of paradigm 
case). 

Kinds of Program 

Decision tree, 
list search, 
template. 

Algorithm. Search-pruning 
heuristics. 

None. 
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Also some games, such as the game sometimes called Geography (which 
simply consists of finding a country whose name begins with the last 
letter of the previously named country), belong in this area. In language 
translating, this is the level of the mechanical dictionary; in problem 
solving, that of pure trial-and-error search routines; in pattern recogni- 

tion, matching pattern against fixed templates. 

Area IT is the domain of Pascal’s esprit de geométrie—the terrain most 
favorable for artificial intelligence. It encompasses the conceptual rather 
than the perceptual world. Problems are completely formalized and 

completely calculable. For this reason, it might best be called the area 

of the simple-formal. Here artificial intelligence is possible in principle 

and in fact. 

In Area II, natural language is replaced by a formal language, of which 

the best example is logic. Games have precise rules and can be calculated 

out completely, as in the case of nim or tic-tac-toe. Pattern recognition 

on this level takes place according to determinate types, which are 

defined by a list of traits characterizing the individuals which belong to 

the class in question. Problem solving takes the form of reducing the 

distance between means and ends by repeated application of formal rules. 

The formal systems in this area are simple enough to be manipulated by 

algorithms which require no search procedure at all (for example, 

Wang’s logic program). Heuristics are not only unnecessary here, they 

are a positive handicap, as the superiority of Wang’s algorithmic logic 

program over Newell, Shaw, and Simon’s heuristic logic program dem- 

onstrates. In this area, artificial intelligence has had its only unqualified 

successes. 

Area III, complex-formal systems, is the most difficult to define and 

has generated most of the misunderstandings and difficulties in the field. 

It contains behavior which is in principle formalizable but in fact intract- 

able. As the number of elements increases, the number of transforma- 

tions required grows exponentially with the number of elements 

involved. As used here, “‘complex-formal” includes those systems which 

in practice cannot be dealt with by exhaustive enumeration algorithms 

(chess, go, etc.), and thus require heuristic programs.'* 

Area IV might be called the area of nonformal behavior. This includes 
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all those everyday activities in our human world which are regular but 

-not rule governed. The most striking example of this controlled impreci- 

sion is our disambiguation of natural languages. This area also includes 

games in which the rules are not definite, such as guessing riddles. 

Pattern recognition in this domain is based on recognition of the generic, 

or of the typical, by means of a paradigm case. Problems on this level 

are open-structured, requiring a determination of what is relevant and 

insight into which operations are essential, before the problem can be 

attacked.’* Techniques on this level are usually taught by generalizing 

from examples and are followed intuitively without appeal to rules. We 

might adopt Pascal’s terminology and call Area IV the home of the esprit 

de finesse. Since in this area a sense of the global situation is necessary 

to avoid storing an infinity of facts, it is impossible in principle to use 

discrete techniques to reproduce directly adult behavior. Even to order 

the four as in Table | is misleadingly encouraging, since it suggests that 

Area IV differs from Area III simply by introducing a further level of 

complexity, whereas Area IV is of an entirely different order than Area 

III. Far from being more complex, it is really more primitive, being 

evolutionarily, ontogenetically, and phenomenologically prior to Areas 

II and III, just as natural language is prior to mathematics. 

The literature of artificial intelligence generally fails to distinguish 

these four areas. For example, Newell, Shaw, and Simon announce that 
their logic theorist “was devised to learn how it is possible to solve 
difficult problems such as proving mathematical theorems [II or III], 
discovering scientific laws from data [III and IV], playing chess [III], or 
understanding the meaning of English prose [IV].°’ The assumption, 
made explicitly by Paul Armer of the RAND Corporation, that all 
intelligent behavior is of the same general type, has encouraged workers 
to generalize from success in the two promising areas to unfounded 

expectation of success in the other two. 

This confusion has two dangerous consequences. First there is the 
tendency, typified by Simon, to think that heuristics discovered in one 
field of intelligent activity, such as theorem proving, must tell us some- 
thing about the “information processing” in another area, such as the 
understanding of a natural language. Thus, certain simple forms of infor- 



Conclusion J 295 

mation processing applicable to Areas I and II are imposed on Area IV, 
while the unique form of “information processing” in this area, namely 

that “data” are not being “processed” at all, is overlooked. The result 

is that the same problem of exponential growth that causes trouble when 

the techniques of Areas I and II are extended to Area III shows up in 

attempts to reproduce the behavior characteristic of Area IV.** 

Second, there is the converse danger. The success of artificial intelli- 

gence in Area II depends upon avoiding anything but discrete, determi- 

nate, situation-free operations. The fact that, like the simple systems in 

Area II, the complex systems in Area III are formalizable leads the 

simulator to suppose the activities in Area III can be reproduced on a 

digital computer. When the difference in degree between simple and 

complex systems turns out in practice, however, to be a difference in kind 

—exponential growth becoming a serious problem—the programmer, 

unaware of the differences between the two areas, tries to introduce 

procedures borrowed from the observation of how human beings per- 

form the activities in Area [V—for example, position evaluation in chess, 

means-ends analysis in problem solving, semantic considerations in theo- 

rem proving—into Area III. These procedures, however, when used by 

human beings depend upon one or more of the specifically human forms 

of “information processing’’—for human beings at least, the use of chess 

heuristics presupposes fringe consciousness of a field of strength and 

weakness; the introduction of means-ends analysis eventually requires 

planning and thus a distinction between essential and inessential opera- 

tions; semantic considerations require a sense of the context. 

The programmer confidently notes that Area III is in principle formal- 

izable just like Area ITI. He is not aware that in transplanting the tech- 

niques of Area IV into Area III he is introducing into the continuity 

between Areas II and III the discontinuity which exists between Areas 

III and IV and thus introducing all the difficulties confronting the for- 

malization of nonformal behavior. Thus the problems which in principle 

should only arise in trying to program the “ill-structured,” that is, 

open-ended activities of daily life, arise in practice for complex-formal 

systems. Since what counts as relevant data in Area III is completely 

explicit, heuristics can work to some extent (as in Samuel’s Checker 
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Program), but since Area IV is just that area of intelligent behavior in 

which the attempt to program digital computers to exhibit fully formed 

adult intelligence must fail, the unavoidable recourse in Area III to 

heuristics which presuppose the abilities of Area IV is bound, sooner or 

later, to run into difficulties. Just how far heuristic programming can go 

in Area III before it runs up against the need for fringe consciousness, 

ambiguity tolerance, essential/inessential discrimination, and so forth, is 

an empirical question. However, we have seen ample evidence of trouble 

in the failure to produce a chess champion, to prove any interesting 

theorems, to translate languages, and in the abandonment of GPS. 

Still there are some techniques for approximating some of the Area IV 

short-cuts necessary for progress in Area III, without presupposing the 

foregoing human forms of “information processing’ which cannot be 

reproduced in any Athena-ltke program. 

To surmount present stagnation in Area III the following improved 

techniques seem to be required: 

1. Since current computers, even primitive hand-eye coordinating ro- 

bots, do not have bodies in the sense described in Chapter 7, and since 

no one understands or has any idea how to program the global organiza- 

tion and indeterminacy which is characteristic of perception and embod- 

ied skills, the best that can be hoped for at this time is some sort of crude, 

wholistic, first-level processing, which approximates the human ability 

to zero in on a segment of a field of experience before beginning explicit 

rule-governed manipulation or counting out. This cannot mean adding 

still further explicit ways of picking out what area is worth exploring 

further. In chess programs, for example, it is beginning to be clear that 

adding more and more specific bits of chess knowledge to plausible move 

generators, finally bogs down in too many ad hoc subroutines. (Samuel 

thinks this is why there has been no further progress reported for the 

Greenblatt chess program.*) What is needed is something which corre- 

sponds to the master’s way of seeing the board as having promising and 

threatening areas. 

Just what such wholistic processing could be is hard to determine, 
given the discrete nature of all computer calculations. There seem to be 
two different claims in the air. When Minsky and Papert talk of finding 
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“global features,” they seem to mean finding certain isolable, and deter- 
minate, features of a pattern (for example, certain angles of intersection 
of two lines) which allow the program to make reliable guesses about the 
whole. This just introduces further heuristics and is not wholistic in any 
interesting sense. Neisser, however, in discussing the problem of seg- 
menting shapes for pattern recognition before analyzing them in detail 
makes a more ambitious proposal. 

Since the processes of focal attention cannot operate on the whole visual field 
simultaneously, they can come into play only after preliminary operations have 
already segregated the figural units involved. These preliminary operations are 
of great interest in their own right. They correspond in part to what the Gestalt 
psychologists called “autochthonous forces,” and they produce what Hebb called 
“primitive unity.” I will call them the preattentive processes to emphasize that 
they produce the objects which later mechanisms are to flesh out and interpret. 

The requirements of this task mean that the preattentive processes must be 

genuinely “global” and “wholistic.” Each figure or object must be separated from 

the others in its entirety, as a potential framework for the subsequent and more 

detailed analyses of attention.° 

But Neisser is disappointing when it comes to explaining how this 

crude, first approximation is to be accomplished by a digital computer. 

He seems to have in mind simply cleaning-up heuristics which, as 

Neisser implicitly admits, only work where the patterns are already fairly 

clearly demarcated. “‘Very simple operations can separate units, provided 

they have continuous contours or empty spaces between them. Computer 

programs which follow lines or detect gaps, for example, are as easily 

written as those which fill holes and wipe out local irregularities.””’ But 

such techniques fail, for example, in the case of cursive script. 

Of course, it is hard to propose anything else. What is being asked for 

is a way of dealing with the field of experience before it has been broken 

up into determinate objects, but such preobjective experience is, by defi- 

nition, out of bounds for a digital computer. Computers must apply 

specific rules to determinate data; if the problem is one of first carving 

out the determinate data, the programmer is left with the problem of 

applying determinate rules to a blur. 

The best that can be hoped in trying to circumvent the techniques of 
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Area IV, therefore, may well be the sort of clever heuristics Minsky and 

Papert propose to enable a first-pass program to pick out certain specific 

features which will be useful in directing the program in filling in more 

details. But such ad hoc techniques risk becoming unmanageable and in 

any case can never provide the generality and flexibility of a partially 

determinate global response. 

2. A second difficulty shows up in connection with representing the 

problem in a problem-solving system. It reflects the need for essential/ 

inessential discrimination. Feigenbaum, in discussing problems facing 

artificial intelligence research in the second decade, calls this problem 

“the most important though not the most immediately tractable.’’* He 

explains the problem as follows: 

In heuristic problem solving programs, the search for solutions within a problem 

space is conducted and controlled by heuristic rules. The representation that 

defines the problem space is the problem solver’s ‘“‘way of looking at” the problem 

and also specifies the form of solutions. Choosing a representation that is right 

for a problem can improve spectacularly the efficiency of the solution-finding 

process. The choice of problem representation is the job of the human program- 

mer and ts a creative act.’ 

This is the activity we called finding the deep structure or insight. 

Since current computers, even current primitive robots, do not have 

needs in the sense we have discussed in Chapter 9, and since no one has 

any idea how to program needs into a machine, there is no present hope 

of dispensing with this “creative act.’ The best that can be expected at 

this time is the development of programs with specific objectives which 

take an active part in organizing data rather than passively receiving 

them. Programmers have noticed that, in the analysis of complex scenes, 

it is useful to have the program formulate an hypothesis about what it 
would expect to find on the basis of data it already has, and look for that. 
This should not be confused with the way the human being organizes 
what counts as data in terms of his field of purposes. All that can be 
expected is fixed rules to apply to fixed data; that is, there will be a 
programmed set of alternatives, and the program can, on the basis of 
present data, select one of these alternatives as the most probable and 
look for further data on the basis of this prediction. 
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Thus, specific long-range objectives or a set of alternative long-range 

objectives might be built into game-playing and problem-solving pro- 

grams, so that in certain situations certain strategies would be tried by 

the computer (and predicted for the opponent). This technique, of 

course, would not remove the restriction that all these alternatives must 

be explicitly stored beforehand and explicitly consulted at certain points 

in the program, whereas human purposes implicitly organize and direct 

human activity moment by moment. Thus even with these break- 

throughs the computer could not exhibit the flexibility of a human being 

solving an open-structured problem (Area IV), but these techniques 

could help with complex-formal problems such as strategy in games and 

long-range planning in organizing means-ends analysis. 

3. Since computers are not in a situation, and since no one under- 

stands how to begin to program primitive robots, even those which move 

around, to have a world, computer workers are faced with a final prob- 

lem: how to program a representation of the computer’s environment. 

We have seen that the present attempt to store all the facts about the en- 

vironment in an internal model of the world runs up against the prob- 

lem of how to store and access this very large, perhaps infinite amount 

of data. This is sometimes called the large data base problem. Minsky’s 

book, as we have seen, presents several ad hoc ways of trying to get 

around this problem, but so far none has proved to be generalizable. 

In spite of Minsky’s claims to have made a first step in solving the 

problem, C. A. Rosen in discussing current robot projects after the work 

reported in Minsky’s book acknowledges new techniques are still re- 

quired: 

We can foresee an ultimate capability of storing an encyclopedic quantity of facts 

about specific environments of interest, but new methods of organization are 

badly needed which permit both rapid search and logical deductions to be made 

efficiently.'° 

In Feigenbaum’s report, there is at last a recognition of the seriousness 

of this problem and even a suggestion of a different way to proceed. In 

discussing the mobile robot project at the Stanford Research Institute, 

Feigenbaum notes: 
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It is felt by the SRI group that the most unsatisfactory part of their simulation 

effort was the simulation of the environment. Yet, they say that 90% of the effort 

of the simulation team went into this part of the simulation. It turned out to be 

very difficult to reproduce in an internal representation for a computer the 

necessary richness of environment that would give rise to interesting behavior 

by the highly adaptive robot."! 

We have seen that this problem is avoided by human beings because their 

model of the world is the world itself. It is interesting to find work at 

SRI moving in this direction. 

It is easier and cheaper to build a hardware robot to extract what information 

it needs from the real world than to organize and store a useful model. Crudely 

put, the SRI group’s argument is that the most economic and efficient store of 

information about the real world is the real world itself." 

This attempt to get around the large data base problem by recalculat- 

ing much of the data when needed is an interesting idea, although how 

far it can go is not yet clear. It presupposes some solution to the wholistic 

problem discussed in | above, so that it can segment areas to be recog- 

nized. It also would require some way to distinguish essential from 

inessential facts. Most fundamentally, it is of course limited by having 

to treat the real world, whether stored in the robot memory or read off 

a TV screen, as a set of facts; whereas human beings organize the world 

in terms of their interests so that facts need be made explicit only insofar 

as they are relevant. 

What can we expect while waiting for the development and application 

of these improved techniques? Progress can evidently be expected in 

Area II. As Wang points out, ‘‘we are in possession of slaves which are 

. . . persistent plodders.”'’ We can make good use of them in the area 

of simple-formal systems. Moreover, the protocols collected by Newell, 

Shaw, and Simon suggest that human beings sometimes operate like 

digital computers, within the context of more global processes. Since 

digital machines have symbol-manipulating powers superior to those of 

humans, they should, so far as possible, take over the digital aspects of 

human “information processing.” 
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To use computers in Areas III and IV we must couple their capacity 

for fast and accurate calculation with the short-cut processing made 

possible by fringe-consciousness, insight, and ambiguity tolerance. Leib- 

niz already claimed that a computer ‘“‘could enhance the capabilities of 

the mind to a far greater extent than optical instruments strengthen the 

eyes.”” But microscopes and telescopes are useless without the selecting 

and interpreting eye itself. Thus a chess player who could call on a 

machine to count out alternatives once he had zeroed in on an interesting 

area would be a formidable opponent. Likewise, in problem solving, once 

the problem is structured and an attack planned, a machine could take 

over to work out the details (as in the case of machine-shop allocation 

or investment banking). A mechanical dictionary which could display 

meanings on a scope ranked as to their probable relevance would be 

useful in translation. In pattern recognition, machines are able to recog- 

nize certain complex patterns that the natural prominences in our experi- 

ence lead us to ignore. Bar-Hillel, Oettinger, and John Pierce have each 

proposed that work be done on systems which promote a symbiosis 

between computers and human beings. As Walter Rosenblith put it at 

a recent symposium, ‘“‘Man and computer is capable of accomplishing 

things that neither of them can do alone.” 

Indeed, the first successful use of computers to augment rather than 

replace human intelligence has recently been reported. A theorem-prov- 

ing program called SAM (Semi-Automated Mathematics) has solved an 

open problem in lattice theory. According to its developers: 

Semi-automated mathematics is an approach to theorem-proving which seeks to 

combine automatic logic routines with ordinary proof procedures in such a 

manner that the resulting procedure is both efficient and subject to human 

intervention in the form of control and guidance. Because it makes the math- 

ematician an essential factor in the quest to establish theorems, this approach is 

a departure from the usual theorem-proving attempts in which the computer 

unaided seeks to establish proofs." 

One would expect the mathematician, with his sense of relevance, to 

assist the computer in zeroing in on an area worth counting out. And 

this is exactly what happens. 
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The user may intervene in the process of proof in a number of ways. His selection 

of the initial formulas is of course an important factor in determining the course 

AUTO-LOGIC will take. Overly large or ill-chosen sets of initial formulas tend 

to divert AUTO-LOGIC to the proving of trivial and uninteresting results so that 

it never gets to the interesting formulas. Provided with a good set of initial 

formulas, however, AUTO-LOGIC will produce useful and interesting results. 

As the user sees that AUTO-LOGIC is running out of useful ways in which to 

use the original formulas, he can halt the process and insert additional axioms 

or other material. He can also guide the process by deleting formulas which seem 

unimportant or distracting. This real-time interplay between man and machine 

has been found to be an exciting and rewarding mode of operation." 

Instead of trying to make use of the special capacities of computers, 

however, workers in artificial intelligence—blinded by their early suc- 

cess and hypnotized by the assumption that thinking is a continuum— 

will settle for nothing short of unaided intelligence. Feigenbaum and 

Feldman’s anthology opens with the baldest statement of this dubious 

principle: 

In terms of the continuum of intelligence suggested by Armer, the computer 

programs we have been able to construct are still at the low end. What is 

important is that we continue to strike out in the direction of the milestone that 

represents the capabilities of human intelligence. Is there any reason to suppose 

that we shall never get there? None whatever. Not a single piece of evidence, no 

logical argument, no proof or theorem has ever been advanced which demon- 

strates an insurmountable hurdle along the continuum.’ 

Armer prudently suggests a boundary, but he is still optimistic: 

It is irrelevant whether or not there may exist some upper bound above which 
machines cannot go in this continuum. Even if such a boundary exists, there is 
no evidence that it is located close to the position occupied by today’s machines."* 

Current difficulties, once they are interpreted independently of opti- 
mistic a priori assumptions, however, suggest that the areas of intelligent 
behavior are discontinuous and that the boundary is near. The stagnation 
of each of the specific efforts in artificial intelligence suggests that there 
can be no piecemeal breakthrough to fully formed adult intelligent 
behavior for any isolated kind of human performance. Game playing, 
language translation, problem solving, and pattern recognition, each 
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depends on specific forms of human “information processing,”’ which are 
in turn based on the human way of being in the world. And this way of 
being-in-a-situation turns out to be unprogrammable in principle using 
presently conceivable techniques. 

Alchemists were so successful in distilling quicksilver from what 
seemed to be dirt that, after several hundred years of fruitless efforts to 

convert lead into gold, they still refused to believe that on the chemical 
level one cannot transmute metals. They did, however, produce—as 

by-products—ovens, retorts, crucibles, and so forth, just as computer 

workers, while failing to produce artificial intelligence, have developed 

assembly programs, debugging programs, program-editing programs, 

and so on, and the M.I.T. robot project has built a very elegant mechani- 

cal arm. 

To avoid the fate of the alchemists, it is time we asked where we stand. 

Now, before we invest more time and money on the information-process- 

ing level, we should ask whether the protocols of human subjects and the 

programs so far produced suggest that computer language is appropriate 

for analyzing human behavior: Is an exhaustive analysis of human reason 

into rule-governed operations on discrete, determinate, context-free ele- 

ments possible? Is an approximation to this goal of artificial reason even 

probable? The answer to both these questions appears to be, No. 

Does this mean that all the work and money put into artificial intelli- 

gence have been wasted? Not at all, if instead of trying to minimize our 

difficulties, we try to understand what they show. The success and subse- 

quent stagnation of Cognitive Simulation and of AI, plus the omnipres- 

ent problems of pattern recognition and natural language understanding 

and their surprising difficulty, should lead us to focus research on the 

four human forms of “information processing” which they reveal and the 

situational character of embodied human reason which underlies them 

all. These human abilities are not necessary in those areas of intelligent 

activity in which artificial intelligence has had its early success, but they 

are essential in just those areas of intelligent behavior in which artificial 

intelligence has experienced consistent failure. We can then view recent 

work in artificial intelligence as a crucial experiment disconfirming the 
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traditional assumption that human reason can be analyzed into rule- 

governed operations on situation-free discrete elements—the most im- 

portant disconfirmation of this metaphysical demand that has ever been 

produced. This technique of turning our philosophical assumptions into 

technology until they reveal their limits suggests fascinating new areas 

for basic research. 

C. E. Shannon, the inventor of information theory, sees, to some 

extent, how different potentially intelligent machines would have to be. 

In his discussion of ““What Computers Should be Doing,” he observes: 

Efficient machines for such problems as pattern recognition, language transla- 

tion, and so on, may require a different type of computer than any we have today. 

It is my feeling that this will be a computer whose natural operation is in terms 

of patterns, concepts, and vague similarities, rather than sequential operations 

on ten-digit numbers." 

We have seen that, as far as we can tell from the only being that can deal 

with such ‘“‘vagueness,” a ““machine” which could use a natural language 

and recognize complex patterns would have to have a body so that it 

could be at home in the world. 

But if robots for processing nonformal information must be, as Shan- 

non suggests, entirely different from present digital computers, what can 

now be done? Nothing directly toward programming present machines 

to behave with human intelligence. We must think in the short run of 

cooperation between men and digital computers, and only in the long run 

of nondigital automata which, if they were in a situation, would exhibit 

the forms of “information processing” essential in dealing with our 

nonformal world. Artificial Intelligence workers who feel that some 

concrete results are better than none, and that we should not abandon 

work on artificial intelligence until the day we are in a position to 

construct such artificial men, cannot be refuted. The long reign of al- 

chemy has shown that any research which has had an early success can 

always be justified and continued by those who prefer adventure to 

patience.”°* If researchers insist on a priori proof of the impossibility of 

success, one can at best use formal methods such as Gédel’s to prove the 

limitations of formal systems, but such proofs are irrelevant to AI.?'* 
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Researchers could in any case respond that at least the goal can be 

approached. If, however, one accepts empirical evidence as to whether 

the effort has been misdirected, he has only to look at the predictions and 

the results. Even if there had been no predictions, only hopes, as in 

language translation, the results are sufficiently disappointing to be self- 

incriminating. 

If the alchemist had stopped poring over his retorts and pentagrams 

and had spent his time looking for the deeper structure of the problem, 

as primitive man took his eyes off the moon, came out of the trees, and 

discovered fire and the wheel, things would have been set moving in a 

more promising direction. After all, three hundred years after the al- 

chemists we did get gold from lead (and we have landed on the moon), 

but only after we abandoned work on the alchemic level, and worked to 

understand the chemical level and the even deeper nuclear level instead. 
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M.LT. Artificial Intelligence Laboratory, Memo No. 299 (September 1973), p.. 32. 
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consist of a set of analysis techniques and a set of theoretical formalisms. The 

analysis techniques include such things as protocol analysis, discourse analysis, and 

a variety of experimental techniques developed by cognitive psychologists in recent 

years. The theoretical formalisms include such notions as means-ends analysis, dis- 

crimination nets, semantic nets, goal-oriented languages, production systems, ATN 

grammars, frames, etc.” 

Winston and the Staff of the M.I.T. AI Laboratory, p. 48, cited in note 31 above. 

Shortliffe’s MYCIN program example in Feigenbaum, “The Art of Artificial Intelli- 

gence,” p. 1022, cited in note 67 above. 

Ibid., p. 1023. Before being overly impressed by these statistics, however, the reader 

should realize that to achieve this performance the program requires the aid of human 

experts. Feigenbaum does not mention that in order to know when to prescribe 

powerful but dangerous drugs the program must be given an evaluation of the serious- 

ness of the patient’s illness. This judgment cannot be computed from a battery of 

medical tests but must be arrived at by an experienced phsyician with a holistic grasp 

of the patient’s overall condition. The knowledge engineers have wisely not even tried 

to reduce this intuitive aspect of the diagnosis to heuristics rules. 
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Michael Polanyi, Personal Knowledge (London: Routledge and Kegan Paul, 1962), 
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abstract, but on the same page and on p. 339 in note 10 I claim that noemata are 
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to hold elsewhere that some sort of nonformal abstraction is possible, it seems clear 
that Husserl thought of the noema as a “system of predicates” (see E. Husserl, /deas 
[New York: Collier, 1931], p. 337), i.e., as a formal symbolic description of stereotypi- 
cal objects, and that it was his goal to “explicate systematically ... this set of structural 
types” (Cartesian Meditations, p. 51). 

- Husserl, Cartesian Meditations, p. 51, cited in preceding note. 
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It follows that although scripts capture a necessary condition of everyday understand- 

ing, they do not provide a sufficient condition. 

Schank, “Using Knowledge to Understand,” p. 132, cited in note 99 above. 
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Daniel G. Bobrow and Terry Winograd, “An Overview of KRL, a Knowledge 

Representation Language,” Cognitive Science, Vol. 1, No. 1 (1977), p- 7 

Winograd, ‘‘Towards a Procedural Understanding of Semantics,” pp. 276-278, cited 

in note 112 above. 

Ibid., pp. 281-282. (My italics.) 

Ibid., p. 280. 

Bobrow and Winograd, “An Overview of KRL,” p. 8, cited in note 114 above. 

Winograd, Five Lectures on Artificial Intelligence, p. 80, cited in note 26 above. 

Bobrow and Winograd, “An Overview of KRL,” p. 32, cited in note 114 above. 

Winograd, “Towards a Procedural Understanding of Semantics,” p. 283, cited in note 

112 above. 

Ibid., pp. 287-288. 

Ibid., p. 282. 

Panel on Natural Language Processing (IJCAI-77, Proceedings), p. 1008, cited in note 

79 above. 

This notion of a physical symbol system is Newell and Simon’s refinement of what 

Papert and Minsky called a ‘symbolic description” (see p. 18 above). 

‘A physical symbol system consists of a set of entities, called symbols, which are 

physical patterns that can occur as components of another type of entity called an 

expression (or symbol structure). Thus, a symbol structure is composed of a number 

of instances (or tokens) of symbols related in some physical way (such as one token 

being next to another), At any instant of time the system will contain a collection of 

these symbol structures. Besides these structures, the system also contains a collection 

of processes that operate on expressions to produce other expressions. .. . An expres- 

sion designates an object if, given the expression, the system can either affect the object 

itself or behave in ways dependent on the object.”’ (A. Newell and H. Simon, ““Com- 

puter Science as Empirical Inquiry: Symbols and Search,” in Communications of the 

ACM, Vol. 19, No. 3 [March 1976], p. 116.) 

When spelled out in further detail this definition enables Newell and Simon to state 

with new precision the fundamental assumption of cognitive scilence—an assumption 

which they now (unlike in their earlier papers) clearly recognize as an hypothesis: 

“The Physical Symbol System Hypothesis [states:] A physical symbol system has the 

necessary and sufficient means for general intelligent action.” (/bid.) 

ads, Winograd, “Towards a Procedural Understanding of Semantics,” p. 264, cited in note 

112 above. 
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Bobrow and Winograd, “An Overview of KRL,” p. 43, cited in note 114 above. 

Ludwig Wittgenstein, Philosophical Investigations (Oxford, Eng.: Basil Blackwell, 

1953). This particular way of putting the argument also owes a great deal to discus-" 

sions with John Searle. 

Goldstein and Papert, M.I.T. AI Laboratory, pp. 29-31, cited in note 80 above. 

bid aS 38 

Ibid., p. 34. 

Ibid. 

Ibid., pp. 30-31. (My italics.) 

Not to mention its prima facie implausibility, noted by, of all people, that arch- 

formalizer, John McCarthy: 

“Minsky . . . confused matters by using the word ‘frame’ for patterns into which 

situations may fit. His hypothesis seems to have been that almost all situations encoun- 

tered in human problem solving fit into a small number of previously known patterns 

of situation and goal. I regard this as unlikely. . . . (John McCarthy, ‘‘Epistemological 

Problems of Artificial Intelligence” [IJCAI-77, Proceedings], p. 1040). 

Schank and Abelson, Scripts, Plans, Goals and Understanding, p. 144, cited in note 

101 above. 

Panel on Natural Language Processing (IJCAI-77, Proceedings), p. 1009, cited in note 

79 above. 

McCarthy, “‘Epistemological Problems of Artificial Intelligence,” p. 1038, cited in 

note 134 above. 

Tbid., p. 1038. 

Joseph Weizenbaum, Computer Power and Human Reason (San Francisco: W. H. 

Freeman and Co., 1976). 

Ibid., p. 200. Or, as Weizenbaum puts the same point on p. 222: 

“We are capable of listening with the third ear, of sensing truth that is truth beyond 

any standards of provability. It is that kind of understanding, and the kind of intelli- 

gence that is derived from it, which I claim is beyond the abilities of computers to 

simulate.” 

Ibid., p. 200. 

Cited in Chapter 6, note 30, of this book. 

Weizenbaum. Computer Power and Human Reason, p. 226, cited in note 139 above. 

Ibid., p. 225. This strong thesis, however, conflicts with Weizenbaum’s use of AI 

terminology to describe the background as “‘a conceptual framework” (p. 190), and, 

even more misleadingly as a ‘‘belief structure” (p. 198). Both these terms presuppose 

the possibility of explicit descriptions. 

Tbid., p. 210. 

Ibid., p. 207. 

Ibid., p. 160. In this connection Weizenbaum asserts that cognitive science, because 

it merely seeks to give a mechanical account of how the mind works rather than some 
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sort of general theory on the model of physics or Chomskian linguistics, cannot be 

taken seriously as a contribution to our understanding of the mind. If the mind és even 

in part an information-processing mechanism, which Weizenbaum assumes and I 

doubt, then an explanation of its capacities in terms of its functional components and 

their interactions would, indeed, be just the kind of understanding one would hope 

to obtain. For a detailed account of this sort of understanding, see John Haugeland’s 

“The Plausibility of Cognitive Psychology,” cited in note 45 above. 

Ibid:, p. 214. (My italics.) 

Cited in note 142 above. 

Weizenbaum, Computer Power and Human*Reason, p. 13, cited in note 139 above. 

It is ironic that Weizenbaum, who is generally sensitive to the cues provided by a 

writer’s vocabulary, adopts the jargon of the technologists he abhors in speaking of 

human beings as “humans,” thus taking one step more down the path of assimilating 

human beings to objects like tables and computers. 

Ibid., p. 227. What makes an account of Weizenbaum’s book difficult is that he also 

advances a strong in-principle argument inconsistent with the weak “moral” argu- 

ment we have been following. He asserts that “Shuman becoming” (what I call man’s 

capacity to redefine himself and his world, see p. 277) does, indeed, play an essential 

and unformalizable role in human behavior so that very little of our everyday intelli- 

gence can be formalized: 

“[S]ince the domain of human intelligence is, except for a small set of formal problems, 

determined by man’s humanity, every other intelligence, however great, must neces- 

sarily be alien to the human domain.” (p. 223, my italics.) 

But here Weizenbaum’s commitment to the technologists’ dichotomy between 

intelligence and wisdom shows up along different lines. Rather than distinguishing 

unformalizable wisdom from everyday formalizable intelligence, Weizenbaum now 

distinguishes informal everyday intelligence concerned with what matters to 

human beings from formalizable intelligence ‘absolutely alien to any and all au- 

thentic human concerns” (p. 226). But this notion of an alien intelligence, fre- 

quently appealed to by those in AI who see that without a body and culture a 

computer may well not be able to interact with human beings on their own terms, 

is just another version of the philosopher's illusion of a pure intellect. Once we 

accept that our idea of intelligence is essentially connected with knowing what is 

important in particular contexts, it becomes impossible to say what such an abso- 

lutely alien intelligence would be. We can attribute inferior intelligence to bees 

and bats, and superior intelligences to figures like Landru in Star Trek, because 

we suppose they still share our needs for food, company, etc. and have purposes 

similar to ours such as seeking food, protecting their young, etc. It is these needs 
and purposes which make their activity intelligent and intelligible. There are, in- 
deed, artifacts with completely arbitrary goals, which we refer to metaphorically 
as “intelligent,” as when we speak, for example, of sophisticated goal-directed 
missiles as “smart bombs,” but if it weren’t for Plato and Aristotle, who so dis- 
connected intelligence from human activity that they thought of the planets as 
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governed by “intelligences,” no one would suppose that devices which shared 
none of our human concerns could literally be characterized as having an alien 
intelligence. 

152. Herman Melville, Moby Dick (New York: Modern Library College Editions, 
1952), p. 477. 
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. Plato, Euthyphro, VII, trans. F. J. Church (New York: Library of Liberal 
Arts), 1948, p. 7. 

. Marvin Minsky, Computation: Finite and Infinite Machines (Englewood 
Cliffs, N.J.: Prentice-Hall, 1967), p. 106. Of course, Minsky is thinking of 

computation and not moral action. 
3. Ibid. 

. Aristotle, Nicomachean Ethics, trans. J. A. K. Thomson as The Ethics of 

Aristotle (New York: Penguin Books, 1953), p. 75. 
. Hobbes, Leviathan (New York: Library of Liberal Arts, 1958), p. 45. 

. Leibniz, Selections, ed. Philip Wiener (New York: Scribner, 1951), p. 18. 
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. A. M. Turing, “Computing Machinery and Intelligence,” reprinted in Minds 
and Machines, ed. Alan Ross Anderson (Englewood Cliffs, N.J.: Prentice- 
Hall, 1964), p. 11. 
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. In Chapter 5 we shall have occasion to see how this principle gives strong 
but unwarranted confidence to those working to simulate human thought 

process with digital machines. 

. Martin Heidegger, ““The End of Philosophy and the Task of Thinking,” in 
Basic Writings (New York: Harper & Row, 1977), p. 376. “Philosophy is 
ending in the present age. It has found its place in the scientific attitude. 
.. . [T]he fundamental characteristic of this scientific attitude is its cyber- 
netic, that is, technological character.” 
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. Allen Newell, J. C. Shaw, and H. A. Simon, “Chess-Playing Programs 
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. Allen Newell, J. C. Shaw, and H. A. Simon, “‘Report on a General Problem- 
Solving Program,” Proc. Int. Conf. on Information Processing (Paris: 

UNESCO, 1960), p. 257. 
. Ibid., p. 259. 
. Herbert A. Simon and Allen Newell, ‘‘Heuristic Problem Solving: The Next 
Advance in Operations Research,’ Operations Research, Vol. 6 (January-— 

February 1958), p. 6. 

. Noam Chomsky, Language and Mind (New York: Harcourt, Brace & 

World, 1968), p. v. 

. Turing, op. cit, p. 14, cited in note 12 above. 

. Marvin Minsky, “Machines Are More Than They Seem,” Science Journal 

(October 1968), p. 3. 

. Herbert A. Simon and Allen Newell, “Heuristic Problem Solving: The Next 

Advance in Operations Research,” cited in note 28 above. 
. W. Ross Ashby, “Review of Feigenbaum’s Computers and Thought,” Jour- 

nal of Nervous and Mental Diseases. 
. D. E. Smith, History of Mathematics (Boston: Ginn, 1925), Vol. IT, p. 284. 

. Newell, Shaw, and Simon, “Chess-Playing Programs and the Problem of 
Complexity,” p. 60. 

S Wleviche gry chsy 

. Allen Newell, J. C. Shaw, and H. A. Simon, The Processes of Crea- 

tive Thinking, The RAND Corporation, P-1320 (September 16, 1958), 
p. 6. 

mlbids pers 
. Norbert Wiener, “The Brain and the Machine (Summary),” in Dimensions 

of Mind, Sidney Hook, ed. (New York: Collier, 1961), p. 110. 



Notes to Introduction fe SUG 

40. 

41. 

42. 

43. 

44. 

45. 

50. 

Michael Scriven, “The Complete Robot: A Prolegomena to Androidology,” 
in Dimensions of Mind, p. 122. 

H. A. Simon and Peter A. Simon, “Trial and Error Search in Solving 

Difficult Problems: Evidence from the Game of Chess,” Behavioral Science, 

Vol. 7 (October 1962), p. 429. 

For example, the abstract of the Simon and Simon article (note 41 above) 

makes no mention of the forced mates but rather concludes: “This paper 

attempts to clear away some of the mythology which surrounds the game 

of chess by showing that successful problem solving is based on a highly 

selective, heuristic ‘program’ rather than on prodigies of memory and in- 

sight” (p. 425). And the article itself concludes with the unjustified generali- 

zation: “The evidence suggests strongly that expert chess players discover 

combinations because their programs incorporate powerful selective heuris- 
tics and not because they think faster or memorize better than other people” 

(p. 429). The evidence honestly evaluated suggests that at best this is the case 

only in specific situations in the end game. 

Paul Armer, “Attitudes Toward Intelligent Machines,” in Computers and 

Thought, p. 405. 
Fred Gruenberger, Benchmarks in Artificial Intelligence, The RAND Cor- 

poration, P—2586 (June 1962), p. 6. 

The glee with which this victory was announced to the computer commu- 

nity, as if the prior claims about what computers could do had thereby been 

vindicated, is echoed by Alvin Toffler on p. 187 of Future Shock (New York: 
Random House, 1971). The author interprets me as saying that no computer 

would ever play even amateur chess. From the full quotation it is clear that 

this is a distortion. My assertion was simply a correct report of the state of 

the art at the time (1965): ‘According to Newell, Shaw, and Simon them- 

selves, evaluating the Los Alamos, the IBM, and the NSS programs: ‘All 

three programs play roughly the same quality of chess (mediocre) with 

roughly the same amount of computing time.’ Still no chess program can 

play even amateur chess, and the world championship is only two years 

away.” 
. Seymour Papert, 9th RAND Symposium (November 7, 1966), p. 116. 
. Donald Michie, Science Journal, Vol. 4, No. 10 (October 1968), p. 1. 

. Eliot Hearst, “Psychology Across the Chessboard,” Psychology Today (June 

1967), p. 32. 
. The third prediction—that most psychological theories would take the form 

of computer programs—has indeed been partially fulfilled, although there 

are still plenty of behaviorists. But the important question here is not 

whether a certain task, impressive in itself like master play or original 

theorem proving, has been achieved, but whether what is predicted would 

be an achievement even if it came to pass. The substitution in psychology 

of computer models for behaviorist models is by no means obviously a step 

forward. The issue is complicated and requires detailed discussion (see 

Chapter 4). 

Papert, op. cit., p. 117. 
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Part |. Ten Years of Research in Artificial Intelligence 
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Verarbeitung, ed. Herbert Marchl, Vol. 1, Heft 2 (Munich: Oldenbourg 

Verlage, 1963), p. 18. 
2. Yehoshua Bar-Hillel, “The Present Status of Automatic Translation of Lan- 

guages,” in Advances in Computers, F. L. Alt, ed. (New York: Academic 

Press, 1960), Vol. 1, p. 94. 
3. National Academy of Sciences, Language and Machines (Washington, D.C., 

1966), p. 29. 
4. Oettinger, op. cit., p. 21. 
5. Ibid., p. 27. Such critical evaluations of machine translation often end with 

the comforting conclusion that at least the work added to our knowledge of 

the structure of language. But even this justification is questionable. 

Chomsky takes a dim view of this ‘spin-off’: “. . . an appreciable investment 
of time, energy, and money in the use of computers for linguistic research 

—appreciable by the standards of a small field like linguistics—has not 

provided any significant advance in our understanding of the use or nature 

of language. These judgments are harsh, but I think they are defensible. They 
are, furthermore, hardly debated by active linguistic or psycholinguistic 

researchers.” (Noam Chomsky, Language and Mind [New York: Harcourt, 
Brace & World, 1968], p. 4.) 

6. Language and Machines, op. cit., p. 32. 

7. The most important papers reporting work done during this period have 
been collected in Edward A. Feigenbaum and Julian Feldman, eds., Comput- 
ers and Thought (New York: McGraw-Hill, 1963). 

8. A protocol is a verbal report of a subject in the process of solving a problem. 

Here is a typical protocol from a subject trying to solve a logic problem: 

“Well, looking at the left hand side of the equation, first we want to eliminate 
one of the sides by using rule 8. It appears too complicated to work with first. 

Now—no,—no, I can’t do that because I will be eliminating either the Q or 

the P in that total expression. I won't do that at first. Now I’m looking for 

a way to get rid of the horseshoe inside the two brackets that appear on the 

left and right sides of the equation. And I don’t see it. Yeh, if you apply rule 
6 to both sides of the equation, from there I'm going to see if I can apply 
rule 7... (Computers and Thought, p. 282.) 

9. H. A. Simon, Modeling Human Mental Processes, The RAND Corporation, 
P—2221 (February 20, 1961), p. 15. Not that these problems were unsolved. 
Several routine, nonheuristic, mathematical algorithms have been published 
which solve these and more complex routing problems. 
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The RAND Corporation, P—2276 (April 20, 1961); also published in Science, 
Vol. 134 (December 22, 1961), p. 19. (My italics.) 
H. A. Simon, op. cit., p. 12. 
Marvin Minsky, ‘Descriptive Languages and Problem Solving,” Proceed- 

ings of the 1961 Western Joint Computer Conference; reprinted in Semantic 
Information Processing, Minsky, ed. (Cambridge, Mass.: M.I.T. Press, 
1969), p. 420. 

. Ibid. 

. Allen Newell, Some Problems of Basic Organization in Problem-Solving Pro- 

grams, The RAND Corporation, RM-3283-PR (December 1962), p. 4. 

. G. W. Ernst and A. Newell, Generality and GPS, Carnegie Institute of 

Technology, January 1967, p. 1. 
. Ibid., p. 45. 
. H. Gelernter, J. R. Hansen, and D. W. Loveland, “Empirical Explorations 

of the Geometry-Theorem Proving Machine,” in Computers and Thought, 
p. 160. i 

. Oliver G. Selfridge and Ulric Neisser, “Pattern Recognition by Machine,” 

in Computers and Thought, p. 238. 
. Murray Eden, ‘“‘Other Pattern-Recognition Problems and Some Generaliza- 
tions,” in Recognizing Patterns: Studies in Living and Automatic Systems, 

Paul A. Kolers and Murray Eden, eds. (Cambridge, Mass.: M.I.T. Press, 

1968), p. 196. 
. Selfridge and Neisser, op. cit., p. 244. 
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. Leonard Uhr and Charles Vossler, ‘““A Pattern-Recognition Program that 

Generates, Evaluates, and Adjusts its own Operations: in Computers and 

Thought, p. 251. 
_ Laveen Kanal and B. Chandrasekaran, “Recognition, Machine Recognition 

and Statistical Approaches,” Methodologies of Pattern Recognition (New 

York: Academic Press, 1969), pp. 318, 319. 

. Vincent E. Giuliano, “How We Find Patterns,” International Science and 

Technology (February 1967), p. 40. 
. Feigenbaum and Feldman, Computers and Thought, p. 276. 

. Ibid., p. vi. 

_ Allen Newell, ‘The Chess Machine,” in The Modeling of Mind, Kenneth 

M. Sayre and Frederick J. Crosson, eds. (South Bend, Ind.: Notre Dame 

University Press, 1963), p. 80. 

. Ibid. : 

_ Allen Newell and H. A. Simon, Computer Simulation of Human Thinking, 

The RAND Corporation, P-2276 (April 20, 1961), p. 15. 

Newell, Shaw, and Simon, “Chess-Playing Programs and the Problem of 

Complexity,” in Computers and Thought, p. 47. 

Michael Polanyi, “Experience and Perception of Pattern,” in The Modeling 

of Mind, p. 214. As far as I know, Frederick Crosson was the first to see 
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the relevance of this gestaltist analysis to work in artificial intelligence. In 
the Preface to The Modeling of Mind he writes: “. .. Some human functions 
are at times performed by utilizing information or clues which are not 
explicitly or focally attended to, and this seems to mark a fundamental 
difference between such functions and the processes by which they are 

simulated by automata. The reason for this difference is that the operations 

of the digital computers which are employed as models are binary in nature. 
Consequently, the function which the machine can perform . . . must be, at 
each stage, all-or-none, i.e., sufficiently specific and explicit to be answered 

‘yes’ or ‘no’ ”’ (p. 21). Crosson, however, does not spell out the peculiarities 
and function of this nonfocal form of awareness, so it remains unclear 
whether on his view all implicit cues could in principle be made explicit and 
what, if anything, would be lost in a model which dealt only with explicit 
cues. 
Newell and Simon, An Example of Human Chess Play in the Light of Chess 
Playing Programs, Carnegie Institute of Technology, August 1964, pp. 10— 
iit 
Tbid., p. 13. (My italics.) 
Tbid., p. 11. Newell and Simon go on: “More generally, psychology has had 
little to say about how global concepts organize behavior.” This is, of course, 
incredibly provincial. Gestalt psychology talks of little else. What Newell 
and Simon mean is that the kind of psychology they prefer, i-e., the kind of 
psychology that uses a computer program as its model of explanation, has 
no way of dealing with such global processes. 

. Ibid., p. 14. 

. Ehot Hearst, “Psychology Across the Chessboard,” Psychology Today (June 
1967), p. 35. 

> MeYiehs je SIRh 
. Minsky notes this difficulty, but on sheer faith he supposes that there must 
be a heuristic solution: “This might be done through some heuristic tech- 
nique that can assess relevancy, or through a logic which takes such conse- 
quences into account. The trouble with the latter is that the antecedents of 
all the propositions must contain a condition about the state of the system, 
and for complex systems this becomes overwhelmingly cumbersome. Other 
systematic solutions to the problem seem about equally repellent. It is a 
problem that seems urgently to require a heuristic solution.” (Semantic 
Information Processing, p. 422.) 

. Newell, Shaw, and Simon, ‘*Chess-Playing Programs and the Problem of 
Complexity,” in Computers and Thought, p. 65. 

. Oettinger, op. cit., p. 26, cited in note | above. 

. [bid. 

. In serial processing the program consists of a series of Operations, each one 
depending on the results of the previous ones. In parallel processing several 
such series of computation are performed simultaneously. Parallel process- 
ing can be simulated by a serial program, but the important logical difference 
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remains that in a serial program each step depends on the previous ones, 
while in a parallel program, the operations in each series are independent of 
the operations in any other series. 

Ludwig Wittgenstein, The Blue and Brown Books (Oxford, Eng.: Basil 
Blackwell, 1960), p. 25. The participants in The RAND symposium on 
“Computers and Comprehension” suggest the psychological basis and ad- 
vantage of this nonrulelike character of natural languages. “‘It is crucial that 
language is a combinatory repertoire with unlimited possible combinations 

whose meanings can be inferred from a finite set of ‘rules’ governing the 

components’ meaning. (The so-called ‘rules’ are learned as response sets and 

are only partly formalizable.)” (M. Kochen, D. M. MacKay, M. E. Maron, 

M. Scriven, and L. Uhr, Computers and Comprehension, The RAND Corpo- 
ration, RM-4065-PR [April 1964], p. 12.) 

. Bar-Hillel, op. cit., pp. 105, 106, cited in note 2 above. 

. Edward Feigenbaum, ‘“‘The Simulation of Verbal Learning Behavior,” in 
Computers and Thought, p. 298. 

. Marvin Minsky, “Steps Toward Artificial Intelligence,” in Computers and 
Thought, p. 447. 

. Michael Scriven, Primary Philosophy (New York: McGraw-Hill, 1966), 

p. 186. 

. Wittgenstein, Philosophical Investigations (Oxford, Eng.: Basil Blackwell, 
1953), p. 227. Wittgenstein is here talking about how we learn to judge an 
expression of feeling, but his point is more general. 

. Allen Newell and H. A. Simon, “GPS: A Program That Simulates Human 
Thought,” in Computers and Thought, p. 288. 
Ibid., p. 289. 
Ibid., p. 290. The arbitrary nature of this ad hoc explanation is evident from 
the context. Moreover, when questioned on this point at his 1968 Mellon 

Lecture at M.I.T., Simon answered that he did not believe that parallel 

processing played a role in cognitive processes, and did not remember ever 

having held that it did. 
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. Ibid. 
. Max Wertheimer, Productive Thinking (New York: Harper & Bros., 1945), 

p. 202. 
. Marvin Minsky, “Descriptive Languages and Problem Solving,” in Semantic 
Information Processing, p. 421, cited in note 12 above. 

. Newell, Shaw, and Simon, The Processes of Creative Thinking, The RAND 

Corporation, P-1320 (September 16, 1958), pp. 43-44. 
. George Miller, Eugene Galanter, and Karl H. Pribram, Plans and the Struc- 

ture of Behavior (New York: Holt, Rinehart and Winston, 1960), pp. 179- 

180. 
. Ibid., p. 180. 
. Ibid., p. 191. 
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. Minsky, “Descriptive Languages and Problem Solving,” in Semantic Infor- 
mation Processing, p. 420, cited in note 12 above. 

od bid. i p1123. 
. Edward Feigenbaum, “Artificial Intelligence: Themes in the Second 
Decade,” IFIP Congress 1968, Supplement, p. J—15. 

. Whatever information processing the human brain employs to pick out 
patterns, this work is no doubt aided by the organization of human receptors. 
But even if organization of the input into perceptual prominences (figure and 
ground) could be built into the receptors of a digital machine, such selective 
receptors would amount to introducing a stage of analogue processing, 
which workers in artificial intelligence are committed to avoid. 
Oliver G. Selfridge and Ulric Neisser, “Pattern Recognition by Machine,” 
in Computers and Thought, p. 238. 

Earl Hunt, Computer Simulation: Artificial Intelligence Studies and their 
Relevance to Psychology (Brown and Farber, 1968), p. 145. 

. Selfridge and Neisser, “Pattern Recognition by Machine,” in Computers and 
Thought, p. 238. 

. Aron Gurwitsch, “On the Conceptual Consciousness,” in The Modeling of 
Mind, p. 203. 

. Ibid., pp. 204-205. 

. Maurice Merleau-Ponty, Phenomenology of Perception (London: Routledge 
& Kegan Paul, 1962), pp. 128 ff. 

. Wittgenstein, The Blue and Brown Books, p. 25. 

. Of course, it only looks like “narrowing down” or “dis-ambiguation” to 

someone who approaches the problem from the computer's point of view. 

We shall see later that for a human being the situation is structured in terms 
of interrelated meanings so that the other possible meanings of a word or 

utterance never even have to be eliminated. They simply do not arise. 

. Cited in Merleau-Ponty, Sense and Non-Sense, (Evanston, Ill.: Northwest- 
ern University Press, 1964), p. 54. 

. Wittgenstein, Philosophical Investigations, p. 583. 

. Wittgenstein, Philosophical Investigations, p. 32. 

. Since typicality, unlike classification, depends on comparison with specific 
cases, such resemblance must be fairly concrete. Thus we can speak of a 
typical Indian, but not a typical man. 

. An interesting attempt to overcome this all-or-nothing character of class 
membership has been made by L. A. Zadeh. (See, for example, ‘Fuzzy Sets,” 
Information and Control, Vol. 8, No. 3 [June 1965].) But Zadeh’s work, 
although interesting, still defines classes in terms of specific traits, merely 
allowing class members to be defined in terms of degree of membership in 
the class. ‘‘A fuzzy set is a class of objects with a continuum of grades of 
membership” (p. 338). Moreover, as Zadeh uses it, fuzziness is itself a fuzzy 
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concept. Under fuzziness, Zadeh indiscriminately lumps five different pat- 
tern recognition problems: vagueness of boundary, context-dependence, 
purpose-dependence, dependence on subjective evaluation, and family 
resemblance. Thus it is never clear just which problem, if any, the formaliza- 
tion of fuzziness is supposed to solve. 
Wittgenstein, Philosophical Investigations, p. 32. 
This analysis is worked out in detail by Renford Bambrough, cf. “Universals 
and Family Resemblances,” in Wittgenstein: The Philosophical Investigations 
(New York: Anchor, 1966). 
Tbid., p. 49. 

Alvin Toffler’s Future Shock provides an excellent illustration of this first 
step fallacy. (See note 2 of Chapter 2.) 

Herbert Simon, The Shape of Automation for Men and Management (New 
York: Harper & Row, 1965), p. 96. 

CHAPTER 2. PHASE II (1962-1967) SEMANTIC INFORMATION 
PROCESSING 

. Marvin Minsky, ed., Semantic Information Processing (Cambridge, Mass.: 

M.I.T. Press, 1969), pp. 6, 7. 

. For example, the following report in the Chicago Tribune of June 7, 1963: 
“The development of a machine that can listen to any conversation and type 
out the remarks just like an office secretary was announced yesterday by a 

Cornell University expert on learning machines. The device is expected to 
be in operation by fall [sic]. Frank Rosenblatt, director of Cornell’s cognitive 
systems research, said the machine will be the largest ‘thinking’ device built 
to date. Rosenblatt made his announcement at a meeting on learning ma- 

chines at Northwestern University’s Technological Institute.” 
In their mathematical study, Perceptrons (Cambridge, Massachusetts: 

M.I.T. Press, 1969), Minsky and Papert arrive at a much less optimistic 

evaluation of perceptron work: “‘Perceptrons have been widely publicized as 
‘pattern recognition’ or ‘learning’ machines and as such have been discussed 

in a large number of books, journal articles, and voluminous ‘reports.’ Most 
of this writing . . . is without scientific value. .. . [p. 4]. 

“Rosenblatt’s [1958] schemes quickly took root, and soon there were 
perhaps as many as a hundred groups, large and small, experimenting with 
the model either as a ‘learning machine’ or in the guise of ‘adaptive’ or 
‘self-organizing’ networks or ‘automatic control’ systems. The results of 
these hundreds of projects and experiments were generally disappointing, 
and the explanations inconclusive. The machines usually work quite well on 
very simple problems but deteriorate very rapidly as the tasks assigned to 

them get harder’”’ [p. 9]. 
In the light of these practical difficulties and the theoretical limitations 

Minsky and Papert demonstrate, enthusiasm about the future of Perceptrons 
is a perfect illustration of the first step fallacy. (See rote 84 above.) Typical 
of this falacious extrapolation is Toffler’s claim (Future Shock, p. 186) that: 
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“Experiments by . -. Frank Rosenblatt and others demonstrate that ma- 

chines can learn from their mistakes, improve their performance, and in 

certain limited kinds of learning, outstrip human students.” Toffler gives no 

indication of the seriousness of these limitations. 
. Minsky, Semantic Information Processing, p. 7. 
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. Minsky, “Descriptive Languages and Problem Solving,” in Semantic Infor- 

mation Processing, p. 419. 
. Minsky, Semantic Information Processing, pp. 7-8. 
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. Minsky, “‘Artificial Intelligence,” p. 260, cited in note 8 above. 
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CHAPTER 3. THE BIOLOGICAL ASSUMPTION 
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of perceptrons can be shown to be incapable of recognition and learning (See 

note 2 of Chapter 2.) the theoretical possibility that a neural net of sufficient 
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cal assumptions that the brain or mind must function like a heuristically 
programmed digital computer. 

2. John von Neumann, Probabilistic Logics and the Synthesis of Reliable Orga- 
nisms from Unreliable Components, Collected Works, A. H. Taub, ed. (New 

York: Pergamon Press, 1963), Vol. 5, p. 372. (My italics.) 
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reprinted in The World of Mathematics (New York: Simon and Schuster, 
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CHAPTER 4. THE PSYCHOLOGICAL ASSUMPTION 
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2. Miller, Galanter, and Pribram, Plans and the Structure of Behavior (New 
York: Holt, Rinehart and Winston, 1960), p. 57. 
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ay In this context, Newell, Shaw, and Simon’s claim to have synthesized the 
contributions of behaviorists and Gestaltists by, on the one hand, accepting 
behavioral measures, and, on the other, recognizing that “a human being is 
a tremendously complex, organized system” (‘““GPS: A Program that Simu- 
lates Human Thought,” pp. 280, 293) shows either a will to obscure the 
ees or a total misunderstanding of the contribution of each of these 
schools. 

. See Part ITI. 

. Jerry A. Fodor, “The Appeal to Tacit Knowledge in Psychological Explana- 
tion,” The Journal of Philosophy, Vol. No. 20 (October 24, 1968), p. 632. 

. Ibid., p. 629. 

. Ibid., p. 637. 

. Jerry Fodor, Psychological Explanation (New York: Random House, 1968), 
p. 138. 

. The other reading of the simulability claim, the reading which is relevant to 

the mentalist’s purposes but, unfortunately, lacks the immediate credibility 
of the first, is that any analog processor can also be represented. The flaw 
in this alternative, however, is difficult to grasp until a few examples have 

clarified the distinction between simulation and representation. The division 
function of a slide rule is simulated by any algorithm which yields appropri- 
ate quotients; but it is represented only if the quotients are obtained in a 
sliderulelike manner in which the steps correspond to comparing lengths. 
On a computer this would amount to assigning (colinear) spatial coordinates 
to the mantissas of two log tables, and effecting a “translation” by subtract- 
ing. To treat a more general case, one can simulate any multiply coupled 

harmonic system (such as most commercial analogue computers) by solving 

their characteristic differential equations. On the other hand, a representa- 

tion, roughly a simulation of the inner operation as well as the end result, 

would require a simulation of each electronic component (resistors, capaci- 
tors, wires, etc.), their effects on one another, and thence their variations 

iterated through time. 
Each of these analogues happens to be both simulable and representable, 

but this is not always the case. Some analogues are not composed of identifia- 

ble parts, e.g., a soap film “computing” the minimum surface which is 

bounded by an irregularly shaped wire, and hence are not representable in 

anything like the above fashion. 
Now it might be claimed that since a soap bubble (or any other material 

object) is made of atoms it can still always be represented in principle by 

working out an immense (!) amount of quantum mechanics. But it is at best 

very dubious that such a mountain of equations would or could amount to 

an explanation of how something works, or in the case of the brain, have any 

relevance at all to psychology. If this needs to be any more obvious than it 

is, think of an ordinary adding machine that works with wheels and cogs, 

our conviction that it works mechanically and can be represented in every 

interesting sense is not in the least based on the fact that it is made of atoms. 

In fact, it could be made of some totally mysterious, indivisible substance 
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wheels, cogs, and all, it would still be a mechanism, and any representation 
in terms of the wheels and cogs would count as an explanation. Essentially 
the same point could be made about electronic analogue computers, slide 
rules, and so on. 

Thus, the plausibility of the a priori position that an analogue can always 
be digitally represented is illegitimate, only borrowed, so to speak, from the 
plausibility of the much weaker and irrelevant claim of mere simulability. 

. Miller, Galanter, and Pribram, op. cit., p. 16. (My italics.) 

. Newell and Simon, “GPS: A Program that Simulates Human Thought,” 
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putes thoughts” (p. 1). Quillian in his thesis, Semantic Memory, says, 
“. .. to understand such meaning is either to find or to create in the brain 
of the understander some configuration of symbols. . . .” (p. 70). 

. Jerry Fodor, Psychological Explanation, p. 30. 
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 Neisser, op cit, Dp. 3: 
- Of course, phenomenologically, it is objects, not light waves we have direct 
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. Neisser, op. cit., p. 3. 

. Ibid. (My italics.) 
- Unless one adopts the identity theory of sensations and brain states which 
Neisser does not seem to hold, since it would require a further justification 
which Neisser nowhere gives. 

. Neisser, op. cit., p. 4. (My italics.) 
. Ibid., p. 5. “Our knowledge of the world must be somehow developed from 
the stimulus input. . . .” 
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Msirel., yo, 22. 

Neisser, op. cit., p. 8. 

Tbid., p. 10. 

Tbid., p. 140. 

Rather than revive the Humean notion of sense data and then find oneself 

forced to introduce Kantian rules to account for their combination into the 

perception of objects, it would be more illuminating, and presumably a better 

guide to research, to determine what psychologists such as Neisser actually 
do, regardless of their mistaken conceptualization. Such work involves try- 
ing to find those cues in the perceptual field which are significant in various 

areas of perception; for example, those cues which are essential in our 
perception of depth. One can find out which cues are necessary by systemati- 

cally excluding various factors such as binocular vision, displacement, tex- 

ture gradient, etc. One can even determine the order of dependence of these 
cues and the number of cues that can be taken account of in a given time. 

The results, it is hoped, will resemble the sequential steps diagrammed in the 
flow chart of a computer program. If so, one can formalize the laws which 
relate input to output at each stage. 

Such work requires no talk of ‘unconscious rules” organizing fragmen- 

tary elements into perceptions. It should never lead us to say that “we have 
no immediate access to the world nor to any of its properties.”” What would 

be psychologically real in such a theory would not be fragments and rules, 
but just those cues in our normal perception of objects which play a role in 

the theory. 
Although we are most often not explicitly aware of them, these cues are 

not unconscious. We can become explicitly aware of them by focusing our 
attention on them, whereas we cannot become aware of neural events or even 

the “snapshots” of objects Neisser tells us we actually perceive. Sometimes 
the cues may be so slight that we would never discover them by simply 

looking. For example, one cannot see the slight displacement of each dot of 
a Julesz pattern which produces the illusion of depth. But if told what to look 
for we could presumably find the displacement with a suitable measuring 

device. Thus these cues can be said to be psychologically real in the straight- 

forward sense that we can become aware of them. 

The “flow chart” too has psychological reality in those restricted cases in 

which it expresses the order of dependence of the cues. It is surely in some 

rough way correlated with the physical processes going on in the brain, but 

even in these cases this does not justify talking of unconscious processing as 

if the brain were a digital computer operating according to a program. 

Interestingly enough, when psychologists actually undertake this sort of 

research, they find that no individual cues are necessary and sufficient but 

that different collections of cues are sufficient under specific restricted condi- 

tions. Also the order of dependence of the cues varies from situation to 

situation. The results, then, resemble a flow chart in only a very limited way 

in very sharply restricted cases. To fully formalize their theory in terms of 
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their computer model the experimenters would either have to specify the 
input in terms of abstract situation-independent variables, or find metarules 
for recognizing specific situations and correlating these situations with spe- 

cific orders of dependence. So far no such abstract variables and rules have 

been found. (See my article, “Phenomenology and Mechanism,” NOUS, 
Vola VeeNomle rebel oie) 

. Fodor, Psychological Explanation, p. 26, cited in note 23 above. 

. Ibid., p. 29. 

. Ibid., p. 26. 

. Ibid., p. 28. 

. Ibid. 

. Ibid., p. 140. (My italics.) 
. Ibid., p. 141. 
. Ibid., p. 83. 
. Ibid., p. 85. (My italics.) 
. Ibid., p. 146. 

CHAPTER 5. THE EPISTEMOLOGICAL ASSUMPTION 

. By “reproduction” I mean the production of essential features of the behav- 
ior in question. I do not mean an exact copy, any more than a photographic 

reproduction of the Eiffel Tower is made of steel. Since computers are not 

expected to move and exhibit behavior in the normal sense, we are not 

concerned with using the formal theory of a kind of performance to exactly 
copy that performance. The production of essential characteristics of a 
certain performance without imitating the performance in detail would 
normally be called ‘simulation.’ Thus a computer can simulate an elec- 
tion without casting any votes—but the term “simulation” is already pre- 
empted by the cognitive simulationists who wish to include in their model 

not just the critical behavior but the steps by which that behavior was 
produced. 

. This bicycle example is taken from Michael Polanyi’s Personal Knowledge 
(London: Routledge & Kegan Paul), p. 49. Polanyi’s analysis of the example 
is worth quoting at length: 

“From my interrogations of physicists, engineers, and bicycle manufactur- 
ers, I have come to the conclusion that the principle by which the cyclist 

keeps his balance is not generally known. The rule observed by the cyclist 

is this. When he starts falling to the right he turns the handlebars to the right, 
so that the course of the bicycle is deflected along a curve towards the right. 
This results in a centrifugal force pushing the cyclist to the left and offsets 
the gravitational force dragging him down to the right. This maneuver 

presently throws the cyclist out of balance to the left, which he counteracts 

by turning the handlebars to the left; and so he continues to keep himself 
in balance by winding along a series of appropriate curvatures. A simple 
analysis shows that for a given angle of unbalance the curvature of each 
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winding is inversely proportional to the square of the speed at which the 
cyclist is proceeding. 

“But does this tell us exactly how to ride a bicycle? No. You obviously 
cannot adjust the curvature of your bicycle’s path in proportion to the ratio 
of your unbalance over the square of your speed; and if you could you would 
fall off the machine, for there are a number of other factors to be taken 
account in practice which are left out of in the formulation of this rule.” 

In spite of this important insight—that the formalism cannot account for the 
performance—Polanyi blurs the significance of this example by referring to 
“hidden rules” (p. 53). This reference to hidden rules shows that Polanyi, 

like Plato, fails to distinguish between performance and competence, be- 
tween explanation and understanding, between the rule one is following and 
the rule which can be used to describe what is happening. It is Just such a 
confusion which gives rise to the optimism of those in Cognitive Simulation. 

Polanyi does have an objection of his own to CS. He holds that “in an 

important sense” we do know the rules, but claims that “‘one cannot deal 
with this as if it were unconscious knowledge, for the point is that it is a 
(more or less unconscious) knowledge with a bearing on an end. It is this 
quality of the subsidiary awareness, its functionally performing quality, that 

the machine cannot duplicate, because the machine operates throughout on 
one single level of awareness.”’ (Personal communication.) This is an inter- 
esting intermediate position, but one still wonders why, granted this second 
kind of awareness, Polanyi feels it necessary to assume that we are following 

rules in any sense at all. 
. Minsky, Computation: Finite and Infinite Machines (Englewood Cliffs, N.J.: 

Prentice-Hall, 1967), p. vii. 

A. M. Turing, “Computing Machinery and Intelligence,” in Minds and 
Machines, ed. Alan Ross Anderson (Englewood Cliffs, N.J.: Prentice-Hall, 

1964), p. 8. 
. Minsky, Computation: Finite and Infinite Machines, p. 107. 

Ibid. 
. Turing, op. cit., pp. 22-23. 

Ibid. 
. James T. Culbertson, “Some Uneconomical Robots,” Automata Studies, 

C. E. Shannon and J. McCarthy, eds. (Princeton, N.J.: Princeton University 

Press, 1956), p. 100. 

Tbid., p. 114. 

Why no such isolable inputs and outputs can be found will only become clear 

when we have described the relation of the human subject to his world. See 

Chapter 9, especially p. 266. 
. Minsky, “Matter, Mind, and Models,” in Semantic Information Processing, 

p. 429. 
_ H.J. Bremermann, “Optimization Through Evolution and Recombination,” 

in Self-Organizing Systems (Washington, D.C., 1962), p. 1. 
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Minsky, Computation, p. 107. 

16. John McCarthy, “Programs with Common Sense,” in Semantic Information 

7h. 
Processing, p. 410. 

Chomsky sometimes defines competence and performance so as to preserve 

this separation and to make the relation of a theory of competence to a 

theory of performance an empirical question. For example: “To avoid what 

has been a continuing misunderstanding, it is perhaps worthwhile to reiter- 

ate that a generative grammar is not a model for a speaker or a hearer. It 
attempts to characterize in the most neutral possible terms the knowledge of 
the language that provides the basis for actual use of a language by a 
speaker-hearer. When we speak of a grammar as generating a sentence with 

a certain structural description, we mean simply that the grammar assigns 

this structural description to the sentence.” (Aspects of the Theory of Syntax 

(Cambridge, Mass.: M.I.T. Press, 1965], p. 9.) (My italics.) 
This straightforward definition, however, leaves some doubt as to how 

Chomsky understands the competence/performance distinction he has in- 
troduced. If competence is what one knows when one knows a language, it 
would be an empirical question whether the rules which describe compe- 

tence play any role at all in producing the performance. Yet at times 

Chomsky seems to hold that competence necessarily plays a role in perfor- 

mance and builds this into the very definition of performance and compe- 

tence and their relation: ‘“‘By a ‘generative grammar’ I mean a description 

of the tacit competence of the speaker-hearer that underlies his actual perfor- 
mance in production and perception (understanding) of speech. A generative 

grammar, ideally, specifies a pairing of phonetic and semantic representa- 
tions over an infinite range; it thus constitutes a hypothesis as to how the 
speaker-hearer interprets utterances, abstracting away from many factors 
that interweave with tacit competence to determine actual performance.” 
(Cartesian Linguistics [New York: Harper & Row, 1966], p. 75.) (My ital- 
ics.) 

Or see also “*. .. We must abstract for separate and independent study a 

cognitive system, a system of knowledge and belief, that develops in early 

childhood and that interacts with many other factors to determine the kinds 
of behavior that we observe; to introduce a technical term, we must isolate 

and study the system of linguistic competence that underlies behavior but 
that is not realized in any direct or simple way in behavior.” (Language and 
Mind [New York: Harcourt, Brace and World, 1968], p. 4.) (My italics.) 
When Chomsky speaks of ‘tacit competence” which “underlies . . . actual 

performance” and which “‘determines . . . behavior,” we find the same 

tendency we found in Polanyi when he assumed that the rule he suggests for 
describing bicycle-riding competence is involved in bicycle-riding perfor- 
mance. On this reading, the role of the formalism expressing the competence 
is no longer neutral. Whatever the correct formalism is, it is necessarily 
involved in producing the performance. 
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Yet if the competence/performance distinction is to have the effect of 
separating a formal theory from a psychological theory, the relation of a 
theory of competence to a theory of performance cannot be built in by 
definition; or to put it the other way around, if it belongs to the definition 
of competence to underlie performance, then competence cannot mean sim- 
ply a formal theory which “‘pairs phonetic and semantic representations over 
an infinite range.”’ It would have to mean an idealized psychological theory 
of how language is produced, and the competence/performance distinction 
would only call attention to the fact that other factors such as fatigue and 
learning had been disregarded. 

At times Chomsky seems to hold this view. “We do not interpret what 

is said in our presence simply by application of the linguistic principles that 

determine the phonetic and semantic properties of an utterance. Extralin- 
guistic beliefs concerning the speaker and the situation play a fundamental 
role in determining how speech is produced, identified, and understood. 
Linguistic performance is, furthermore, governed by principles of cognitive 

structure (for example, by memory restrictions) that are not, properly speak- 
ing, aspects of language. 

“To study a language, then, we must attempt to disassociate a variety of 

factors that interact with underlying competence to determine actual perfor- 

mance; the technical term ‘competence’ refers to the ability of the idealized 

speaker-hearer to associate sounds and meanings strictly in accordance with 

the rules of his language.” (“The Formal Nature of Language,” appendix to 
Biological Foundations of Language, Eric Lenneberg, [New York: Wiley, 
1967], p. 398.) (My italics.) 

What, then, is the relation between competence and performance? If one 

discovered in psycholinguistics that language is produced in a way which 
does not involve the rules postulated by Chomsky’s linguistic formalism at 

all, as the latest research seems to suggest (See T. G. Bever, The Cognitive 

Basis for Linguistic Structures, chapter entitled ‘““The Non-Distinction Be- 

tween Linguistic Competence and Performance in the Adult’: “*. . . behav- 

ioral processes manipulate linguistically-defined internal and external 

structures but do not mirror or directly simulate the grammatical processes 

that relate those structures within a grammar. Such a conclusion invalidates 

any model for speech recognition which attempts directly to incorporate 
grammatical rules as an isolable component of the recognition processes.” 

Preprint p. 101), would Chomsky give up his formal description? Chomsky 

seems to want to have it both ways: to make the role of his formalism for 

competence independent of psychology so he would not have to give it up 

no matter what experiments showed and yet to make its role in performance 
a matter of definition. On the one hand, he says: ““When we say that a 

sentence has a certain derivation with respect to a particular generative 

grammar, we say nothing about how the speaker or hearer might proceed, in 

some practical or efficient way, to construct such a derivation. These ques- 

tions belong to the theory of language use—the theory of performance.” 
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(Aspects of the Theory of Syntax, p. 9. [My italics.]) Yet in Language and 
Mind Chomsky says: “The problem of determining the character of such 
grammars and the principles that govern them is a typical problem of 
science, perhaps very difficult, but in principle admitting of definite answers 
that are right or wrong as they do or do not correspond to the mental reality” 

(p. 16). (My italics.) 

Underlying this uncertainty as to the status of the formal grammatical 
structure characterizing the speaker’s intuitions concerning grammaticality 

is the powerful conjunction of the Platonic assumption that the formalism 
which enables us to understand behavior is also involved in producing that 
behavior, and the Kantian assumption that all orderly behavior is governed 

by rules, both reinforced by the idea of a computer program. Chomsky does 

not question the assumption that “the person who has acquired knowledge 

of a language has internalized a system of rules . . .” (Language and Mind, 
p. 23), nor that these rules function as a “mechanism” for “generating” 
sentences. These convictions taken together lead to Chomsky’s Cartesian 
theory of innate ideas, which even he admits is difficult to accept: “It is not 
easy to accept the view that a child is capable of constructing an extremely 

complex mechanism for generating a set of sentences, some of which he has 

heard, or that an adult can instantaneously determine whether (and if so, 
how) a particular item is generated by this mechanism, which has many of 

the properties of an abstract deductive theory. Yet this appears to be a fair 

description of the performance of the speaker, listener, and learner.” (“A 
Review of B. F. Skinner’s Verbal Behavior,”’ The Structure of Language 
[Englewood Cliffs, N.J.: Prentice-Hall, 1964], p. 577.) 

This view, however implausible, seems acceptable thanks to the presence 

of the computer: “*. . . there is no difficulty in principle in programming a 

computer with a schematism that sharply restricts the form of a generative 
grammar, with an evaluation procedure for grammars of the given form, 
with a technique for determining whether given data is compatible with a 
grammar of the given form, with a fixed substructure of entities (such as 
distinctive features), rules, and principles, and so on—in short, with a uni- 
versal grammar of the sort that has been proposed in recent years.” (Lan- 
guage and Mind, p. 73.) 
Chomsky goes on to connect this computer model with the classical 

tradition: “For reasons that I have already mentioned, I believe that these 
proposals can be properly regarded as a further development of classical 
rationalist doctrine, as an elaboration of some of its main ideas regarding 
language and mind.” (Language and Mind, p. 73.) He concludes: “By 
pursuing the kinds of research that now seem feasible and by focusing 
attention on certain problems that are now accessible to study, we may be 
able to spell out in some detail the elaborate and abstract computations that 
determine, in part, the nature of percepts and the character of the knowledge 
that we can acquire—the highly specific ways of interpreting phenomena 
that are, in large measure, beyond our consciousness and control and that 
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may be unique to man.” (Language and Mind, pp. 84-85.) In this neo- 
Cartesianism the traditional philosophical assumption that man’s unique 

attribute may be to be a highly sophisticated computer becomes fully ex- 

plicit, perhaps for the first time since Hobbes prematurely drew the same 
conclusion on the basis of Newtonean physics. 

. SOren Kierkegaard, Concluding Unscientific Postscript (Princeton, N.J.: 
Princeton University Press, 1944), pp. 108 and 311. 

. This attitude is forcefully and naively expressed in Sayre’s introduction to 

The Modeling of Mind, Kenneth M. Sayre, and J. Crosson, eds. (South Bend, 

Ind.: Notre Dame University Press, 1962): 

““Any mental function which is such that (1) its input and output can be 

specified with precision, and (2) the transformation it performs can be ap- 

proximated by equations which express a determinate relationship between 
input and output, can for these reasons alone be simulated with some degree 

of adequacy. If, on the other hand, we do not have a clear understanding 

of either the input, the output, or the transformation, we will be unable to 

achieve an adequate simulation of that function. Our inability in such a case, 
however, is a discredit to the human mind, and not a symptom of any 

‘transcendence’ of mental functions” (p. 14). 

Ludwig Wittgenstein, The Blue and Brown Books (Oxford, Eng.: Basil 

Blackwell, 1960), p. 25. 

See, for example, Wittgenstein, Philosophical Investigations (Oxford, Eng.: 

Basil Blackwell, 1953), pp. 39, 40, 41, 42. 

‘““A rule stands like a sign-post.—Does the sign-post leave no doubt open 

about the way I have to go? Does it show which direction I am to take when 

I have passed it; whether along the road on the footpath or cross-country? 
But where is it said which way I am to follow it; whether in the direction 

of its finger or (e.g.) in the opposite one?—And if there were, not a single 

sign-post, but a chain of adjacent ones or of chalk marks on the ground— 

is there any one way of interpreting them?—So I can say, the sign-post does 

after all leave no room for doubt. Or rather: it sometimes leaves room for 

doubt and sometimes not. And now this is no longer a philosophical proposi- 

tion, but an empirical one” (pp. 39, 40). 

CHAPTER 6. THE ONTOLOGICAL ASSUMPTION 

. Minsky, Semantic Information Processing, p. 11. 

. Ibid. 
._ A digital computer is composed of flip/flops which perform logical opera- 

tions, but this does not limit the computer to instantiating information- 

processing models. The same flip/flops could be organized to represent neu- 

ral sets, or the interference patterns making up holograms. The 

information-processing approach, however, uses the computer to instantiate 

symbolic descriptions so that combinations of flip/flops represent discrete 
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facts. If one assumes that these symbolic descriptions are composed of primi- 

tives which correspond to isolable features of the world, one makes the 

ontological assumption. 

. Allen Newell, Learning, Generality and Problem-Solving, The RAND Cor- 

poration, RM-3285-I-PR (February 1963), p. 17. 

. Murray Eden, “Other Pattern Recognition Problems and Some Generaliza- 

tions,” in Recognizing Patterns: Studies in Living and Automatic Systems, ed. 

Kolers and Eden (Cambridge, Mass.: M.I.T. Press, 1968), p. 153. (My 

italics.) 

. Minsky, Semantic Information Processing, p. 25. 

al bideeppa2oy 20: 
7) [bids ppa2On Ze 
abides pared. 
. Not that we know what it means to make our situation completely explicit 
and cannot do it. We only know what it means to make a situation suffi- 

ciently explicit for a specific purpose. 

. See note 17. 

. Leibniz, Selections, ed. Philip Wiener (New York: Scribner, 1951), p. 20. 

» [bidsipe 10: 
. Merleau-Ponty, Phenomenology of Perception (London: Routledge & Kegan 

Paul, 1962), pp. 5, 58 ff. 

. Martin Heidegger, Der Satz vom Grund (Pfullingen: Giinther Neske, 1957), 
p. 42. 

. Heidegger, p. 203. In Der Satz vom Grund, Heidegger remarks: “. . . the 
determination of language as information originally supplies the basis for the 

construction of thinking machines, and for the construction of large-scale 

computer installations,” and “information theory is, as pronouncement, 
already the arrangement whereby all objects are put in such form as to assure 

man’s domination over the entire earth and even the planets.” (My transla- 
tion.) 

. Wittgenstein, Philosophical Investigations, p. 21. “What lies behind the idea 
that names really signify simples?—Socrates says in the Theaetetus: ‘If I 
make no mistake, I have heard some people say this: there is no definition 
of the primary elements—so to speak—out of which we and everything else 
are composed. . . . But just as what consists of these primary elements is itself 

complex, so the names of the elements become descriptive language by being 
compounded together.’ Both Russell's ‘individuals’ and my ‘objects’ (Trac- 

tatus Logico-Philosophicus) were such primary elements. But what are the 
simple constituent parts of which reality is composed? . . . It makes no sense 
at all to speak absolutely of the ‘simple parts of a chair.’ ”’ 

. John McCarthy, “Programs with Common Sense,” in Semantic Processing 
Information, p. 403. 
Ibid., p. 410. 

. Ibid., p. 411. 
. Ibid., p. 413. 
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25 

26. 

Ibid., p. 411. 

Bar-Hillel, “The Present Status of Automatic Translation of Language,” in 

Advances in Computers, ed. F. L. Alt (New York: Academic Press, 1964), 

Vol. 1, p. 94. 

Ibid., pp. 158, 159. It might seem from Bar-Hillel’s example that the com- 

puter need only check the immediate verbal context for words such as ‘‘toy”’ 

to determine that “playpen” is the relevant reading. But, as John Haugeland 

has suggested, a little modification of the example will show that contextual 

analysis cannot get around Bar-Hillel’s objection: ‘Little Johnny was play- 

ing on the floor beside his pen. He was drawing a picture with a red pen on 

some green paper. When the drawing was finished, he looked for his toy box, 

and found it inside the pen.” It is conceivable that the first two occurrences 

of “‘pen”’ could be disambiguated with information from the surrounding 

words. But it is clear that since the clues to both meanings of pen are in the 

immediate verbal context of the last sentence (indeed, in the sentence it- 

self), the disambiguation of the last occurrence of ‘“‘pen”’ requires the “‘com- 

mon knowledge” that Bar-Hillel has in mind. 

Ibid., p. 160. 

Minsky, Semantic Information Processing, p. 23. It might also seem that 

Bar-Hillel’s argument rests on accidental ambiguities which might be elimi- 

nated by subscripting the various meanings of “‘pen.”” John Haugeland, 

however, has advanced an interesting argument to show that such am- 

biguity, at least in translating between natural languages, is inevitable: 

“Imagine constructing a language Eng* which is like English except that 

the different senses of words are separated by subscripts (i.e., pen, = writing 

instrument, pen, =baby’s enclosure, etc.). Even though this would disam- 

biguate the Bar-Hillel example, it is clear that it is really not going to be any 

easier to translate Eng* into an arbitrary target language (or into Tar*). 

Translating brother, sister, and cousin into Polynesian languages is a good 

example: In the following two tables, the columns specify the possible per- 

mutations of boy and girl for a pair of children, the rows specify genealogical 
connections between them, and the boxes name their relationship under the 

various conditions. Thus, in English, a is the brother of b just in case a is 

a boy and a and 6 have the same parents. The problem is that brother,, which 

has only one meaning in Eng*, is ambiguous to a Tongan because it has the 

two distinct senses ‘brother of a boy’, and ‘brother of a girl’. 

“There are two things to be seen from this example. First, ambiguity in 

the meanings of words is a relative concept. Thus, the word ‘brother’ is 

unambiguous relative to some languages (e.g., German), ambiguous in the 

above way to other languages, and probably ambiguous in still different ways 

relative to other languages again. Second, it would be impossible to have any 

language (say Lang*) which is unambiguous relative to all possible natural 
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English Tongan (Polynesian) 

Sex of a boy boy. girl girl boy boy. girl — girl 

Sex of b girl boy girl boy girl boy girl boy 

a and b have the brother sister 
same parents 5 © 

aS $s £ 
- g 2 

a and b do not have c S Ss 
the same parents, = a 2 
but the same mater- cousin se 
nal or paternal 
grandparents 

languages. For if any noun of Lang* is not a proper noun then it must refer 
to at least two distinguishable states of the universe. But then it is possible 

that there exists a natural language in which two common nouns are distin- 
guished by the same criterion which separates two of the referents of the one 
common noun of Lang*. Since this contradicts the hypothesis, it follows that 

Lang* can have only proper nouns (one for each distinguishable state of the 

universe), which I take to be a reduction to absurdity.” (Private communica- 
tion.) 

27. Jerrold Katz and Jerry Fodor, “‘The Structure of a Semantic Theory,” in The 

Structure of Language, Jerrold Katz and Jerry Fodor (Englewood Cliffs, 
N.J.: Prentice-Hall, 1964), p. 487. 

28. Ibid., p. 489. 
29. Ibid., pp. 489-490. 
30. Joseph Weizenbaum, “Contextual Understanding by Computers,” in Recog- 

nizing Patterns, p. 181, cited in note § above. 

31. Ibid. 
32, [bids po l89) 
33. Ibid., pp. 181-182. 
S40 [DIGS Dralees 

35. Wittgenstein, Philosophical Investigations, p. 226. 
36. The only exception seems to be Thomas L. Jones’ MAC memo no. 195, “A 

Computer Model of Simple Forms of Learning.” 

If this isolated thesis had set a trend, it would have meant a complete shift 
in the goal and methods of artificial intelligence research, but it was appar- 
ently a dead end. 

37. Except for the alternative of facts with context-free fixed significance which 
we have seen AI workers such as Weizenbaum implicitly reject. 
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Part Ill. Alternatives to the Traditional Assumptions 

INTRODUCTION 

There is, however, a new interest in what might be called ‘experimental 
phenomenology.” Eleanor Rosch, for example, has shown that subjects con- 
sistently classify objects not in terms of necessary and sufficient features, but 
as more or less distant from a typical example or prototype. See “Principles 
of Categorization” in Cognition & Categorization, E. Rosch, ed. (Hillsdale, 

N.J.: Erlbaum Press, 1977). There is also much interest in the work of R. N. 

Shepard showing that subjects rotate mental images at constant speeds. See 
R. N. Shepard and B. Metzler, “Mental Rotation of Three-Dimensional 
Objects,”’ Science, Vol. 178, No. 3972 (February 1971), pp. 701-703. Such 
experimental work with images is an embarrassment to workers in AI, since 

all agree that insofar as images are different from symbolic descriptions they 
cannot be accounted for in an information-processing model. 

. Chomsky, Language and Mind, pp. 18-19. 

CHAPTER 7. THE ROLE OF THE BODY IN INTELLIGENT BEHAVIOR 

. Descartes, Discourses, Library of Liberal Arts, p. 36. 

. Herbert Simon, The Shape of Automation for Men and Management (New 

York: Harper & Row, 1965), p. 96. 

. Ibid., p. 40. 

. Anthony Oettinger, “Language and Information,” American Documenta- 

tion, Vol. 19, No. 3 (July 1968), p. 297. 

Oettinger, ‘“The Semantic Wall,” in Human Communication: A Unified View, 

E. David and P. Denes, eds. (New York: McGraw-Hill, 1972), p. 5. 

. Oettinger, “Language and Information,” p. 298, cited in note 4 above. 

. Neisser, Cognitive Psychology, p. 90. 
. Maurice Merleau-Ponty, Phenomonology of Perception (London: Routledge 

& Kegan Paul, 1962), p. 4. 

. Ibid., p. 68. 
. This phenomenon lies at the basis of Husserl’s whole theory of perception. 

For Husserl argued that, in recognizing an object, we give a somewhat 
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CONCLUSION 

. Facts like “A man has two hands,” rather than like “Z flip/flop is on.” The 

difference is the same as the difference between a fact about the content of 
a picture and a fact about one of the dots composing the picture. It is clearly 
these real-world facts which are at stake, since Minsky suggests we have to 
deal with millions of them, not millions of bits. 
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Conclusion: The Scope and Limits of Artificial Reason 
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have been developed for motor design, line balancing, integrating, and so 
forth. These programs are relevant to work in artificial intelligence, but they 

are not clearly successful programs, until (a) like the chess and checker 

programs they are tested against human professionals; and (b) the problems 

attacked by these programs have, if possible, been formalized so that these 

heuristic programs can be compared with nonheuristic programs designed 

for the same purpose. (Wherever such a comparison has been made—in 
checkers, logic, pattern recognition, chess—the nonheuristic programs have 

proved either equal or superior to their heuristic counterparts.) 
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intelligence involved in discovering them or in their judicious application. 
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Shannon, in Computers and the World of the Future, pp. 309-310, cited in 
note 14 above. 

Enthusiasts might find it sobering to imagine a fifteenth-century version of 
Feigenbaum and Feldman’s exhortation: “In terms of the continuum of 

substances suggested by Paracelsus, the transformations we have been able 
to perform on baser metals are still at a low level. What is important is that 

we continue to strike out in the direction of the milestone, the philosopher’s 

stone which can transform any element into any other. Is there any reason 

to suppose that we will never find it? None whatever. Not a single piece of 

evidence, no logical argument, no proof or theorem has ever been advanced 
which demonstrates an insurmountable hurdle along this continuum.” 

There has been much debate concerning this question. For the classical 
presentation of each side see John Lucas’s “Minds, Machines and Godel,” 
Philosophy, Vol. XXXVI (April/July 1961), and Paul Benacerraf’s ‘God, the 
Devil, and Godel,” Monist Vol. 51 (January 1967). The question turns on 

whether the fact that a human mathematician can always recognize as true 
propositions that cannot be proven to be true within a given formal system, 
shows that human beings cannot be modeled by an information-processing 
model which is necessarily a formal system. But such an argument misses the 
point that even if AI did produce an information-processing model of a 
mathematician, that model would be able to see that a specific formula was 
true by means of calculations based on its heuristic rules. Of course, the 
heuristic calculation could itself be viewed as a proof that certain conclusions 
follow from certain premises, but these “premises” would be formulae de- 
scribing what the mathematician perceived, believed, remembered, etc., and 

the “conclusions” would be what he would say or surmise, etc.—obviously 
not the premises and conclusions of an acceptable formal proof of the original 
formula. 
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When it was first published in 1972, Hubert Dreyfus’s manifesto on the © 

inherent inability of disembodied machines to mimic higher mental functions 

caused an uproar in the artificial intelligence community. The world has 

changed since then. Today it is clear that “good old-fashioned Al,” based on 

the idea of using symbolic representations to produce general intelligence, is 

in decline (although several believers still pursue its pot of gold), and the focus 

of the Al community has shifted to more complex models of the mind. It has 

also become more common for Al researchers to seek out and study 

philosophy. For this edition of his now classic book, Dreyfus has added a 

lengthy new introduction outlining these changes and assessing the paradigms 

of connectionism and neural networks that have transformed the field. 

Ata time when researchers were proposing grand plans for general problem 

solvers and automatic translation machines, Dreyfus predicted that they 

would fail because their conception of mental functioning was naive, and he 

suggested that they would do well to acquaint themselves with modern 

philosophical approaches to human being. What Computers Can’t Do was 

widely attacked but quietly studied. Dreyfus's arguments are still provocative 

and focus our attention once again on what it is that makes human beings 

unique. 
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