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Preface

As with previous editions, our goal in writing this book is to make it routine to carry out
the complex calculations necessary to fully interpret regression models for categorical
outcomes. Interpreting these models is complex because the models are nonlinear.
Software packages that fit these models often do not provide options that make it simple
to compute the quantities that are useful for interpretation; when they do provide these
options, there is usually little guidance as to how to use them. In this book, we briefly
describe the statistical issues involved in interpretation and then show how you can use
Stata to make these computations.

While our purpose remains the same, this third edition is an almost complete rewrite
of the second edition—almost every line of code in our SPost commands has been rewrit-
ten. Advances in computing and the addition of new features to Stata has expanded
the possibilities for routinely applying more sophisticated methods of interpretation.
As a result, ideas we noted in previous editions as good in principle are now much
more straightforward to implement in practice. For example, while you could compute
average marginal effects using commands discussed in previous editions, it was difficult
and few people did so (ourselves included). Likewise, in previous editions, we relegated
methods for dealing with nonlinearities and interactions on the right-hand side of the
model to the last chapter, and our impression was that few readers took advantage of
these ideas becanse they were comparatively difficult and error-prone to use.'

These limitations changed with the addition of factor variables and the margins
command in Stata 11. It took us personally quite a while to fully absorb the potential
of these powerful enhancements and decide how best to take advantage of them. Plus,
Stata 13 added several features that were essential for what we wanted to do.

This third edition considers the same models as the second edition of the book. We
still find these to be the most valuable models for eategorical ontcomes. And, as in
previous editions, our diseussion is limited to models for cross-sectional data. While
we would like to consider models for panel data and other hierarchical data structures,
doing so would at least double the size of an already long book.

1. Those who have read previous editions will note that this last chapter has been dropped entirely. In
addition to covering linked variables of the right-hand side, that chapter also discussed adapting our
commands to other estimation commands; however, this is now obsolete because margins works
with most estimation commands. We also dropped the section on working effectively in Stata
because Long's (2009) Workflow of Data Analysis Using Stata covers these topics in detail.
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Preface

We note, however. that many of our SPost commands—such as mtable, mgen, and
mchange (hereafter referred to as the m* commands)—are based on margins and can
be used with any model that is supported by margins. This is a substantial change
from our carlier prchange, prgen, prtab, and prvalue commands, which only worked
with the models discussed in the book. A second major improvement is that our m#

commands work with weights and survey estimation, because these are supported by
margins.

SPost was originally developed using Stata 4 and Stata 5. Since then, onr commands
have often been enhanced to use new features in Stata. Sometimes these enhancements
have led to code that was not as efficient, robust, or elegant as we would have liked. In
SPost13, we rewrote much of the code, incorporated better returns, improved output,
and removed obscure or obsolete features.

How to cite

Owr commands are not officially part of Stata. We have written them in an effort
to contribute to the cominunity of researchers whose work involves extensive use of the
models we cover. If you use our commands or other materials in published work, we
ask that you cite our work in the same way thatl you cite other useful sources, We

ask that you simply cite the book rather than providing different citations to different
commands:

Long, J. S., and J. Freese. 2014. Regression Models for Categorical Depen-
dent Variables in Stata. 3rd ed. College Station, TX: Stata Press.

Thanks

Hundreds of people have contributed to our work since 2001. We caunot possibly
mention them all here, but we gratefully acknowledge them for taking the time to give
us their ideas. Thousands of students have taken classes using previous editions of the

books, and many have given us suggestions to make the book or the commands more
effective.

In writing this third edition, several people deserve to be mentioned. Tan Anson
and Trent Mize tested commands and provided comments on draft chapters. Tom
VanHeuvelen ran labs in two classes that used early versions of the commands, helped
students work around bugs, made valuable suggestions on how to improve the com-
mands, provided detailed comments on each chapter, was a sounding board for ideas,
and was an exceptional research assistant. Rich Williams gave us many suggestions that
improved the book and our commands. He has a (sometimes) valuable gift for finding
bugs as well. Scott Long gratefully acknowledges the support provided by the College
of Arts and Sciences at Indiana University,

People at StataCorp provided their expertise in many ways. More than this, though,
wo are grateful for their engagement and support of our project. Jeff Pithlado was enor-
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mously helpful as we incorporated factor variables and margins into our commands. His
advice made our code far more compact and reliable. Vince Wiggins provided valuable
advice on our graphing commands and helped us understand margins better. Lisa
Gilmore, as always, did a great job moving the book from draft to print. Most im-
portantly, discussions with David Drukker stimulated our thinking about a new edition
and, as always, asked challenging questions that made our ideas better.

linois and Indiana Jeremy Freese
August 2014 Scott Long






Part |

General information

Our book is about using Stata to fit and interpret regression models with categorical
outcomes, with an emphasis on interpretation. The book is divided into two parts.
Part [ containg general information that applies to all the regression models that are
then considered in detail in part 11,

e Chapter 1 is a brief orienting discussion that also includes eritical information
about installing a collection of Stata commands, known collectively as SPost13,
that we have written to facilitate the interpretation of regression models. Without
these commands, you cannot do many of the things we suggest in later chapters.

e Chapter 2 includes an introduction to Stata for those who have not used the
program or are just beginning to use it. In addition to this basic information on
the Stata interface, the chapter includes an infroduction to using macros, returns,
and loops, Beecause these tools are used extensively in later chapters, we encourage
more advanced Stata users to at least skim these sections.

e Chapter 3 considers issnes of estimation, testing, and assessing fit that are com-
mon to all the models considered in later chapters. We discuss both the statistical
issties involved and the Stata commands that carry out these operations. Readers
already using Stata may be familiar with much of this material. Still, we think
the chapter is worth at least a quick read through, paying particular attention to
factor-variable notation, which is used extensively in later chapters.

e Chapter 4 considers commands and approaches to interpretation that are used
with all the regression models in part II of the book. Most importantly, we discuss
the margins command along with the mtable, mgen, and mchange commands we
have written that use margins. You do not need to master this material on first
reading, but you should at least skim each section so that you can return to
reloevant sections as you read later chapters.

Part 11 encompasses chapters 5-9 and is organized by the type of outcome being mod-
eled. These chapters apply the methods introduced in chapters 3 and 4 using the package
of commands we show you how to install in chapter 1.




We must add some words of caution: First, we have not be able to test our commands
with every margins-compatible estimation command. We have been encouraged that
our commands have worked with other models we have used in our research, Nonethe
less, if yon use our m* commands with other models, you should include the details
option so that you can compare the output from margins with the summaries provided
by our connmards.

Second, margins is an extremely powerful command that has features for applica-
tions that we have not considered, such as experimental design. Our philosophy in
designing our commands is to allow them to allow these options, which are passed along
to margins to do the computation. Everything should work, but we have not been
able to test every option. While we could have designed our commands to intercept all
margins options that we have not tested, this seemed less nseful than allowing you to.
try them. If you use options that are not discussed in the book, please let us know if
vou encounter problems.

Third, just because margins can compute a particular statistic does not mean that
it is reasonable to interpret that statistic. [t ean estimate statistics that are valuable
and appropriate for a given model, and it will also compute the same statistics for
another model for which those statistics are inappropriate. The burden of what to
compute is left with the user, This is more broadly true of margins: its great power
and Hexibility also put an extra burden of responsibility on the user for making sure
results are interpreted corroctly.

Another cost of the remarkable generality of margins is that very general routines
are used to make computations. These routines are slower— sometimes much slower—
than routines that are optimized for a specific model.  As a consequence. our earlier
SPost commands (which we now refer to as SPost9), are actually much faster than the
corresponding commands in SPost13. Interestingly. our m* commands take about as
long to run today as our earlier commands took a decade ago. While those moving from
SPost9 to SPost13 might be put off by how much slower the commands are, we think the
advantages are overwhelming. With each new release of Stata, margins is faster, and
your computer is likely to be more powerful. For now, however. in our own research,
we take advantage of Stata 13 where margins is noticeably faster and use Stata/MP to
take advantage of multiple computing cores.

The new methods of interpretation that are possible using margins and our m#*
commands sometimes require using loops and macros. They also reguire you to think
carefully abont how you want to compute predictions to interpret your model. We
have marked some sections as Advanced to indicate that they involve more advanced
methods of interpretation or require more sophisticated Stata programming. The box at
the beginning of each of these sections explaing what is being done in that section, why it
is important, and when new users might want read the entire section. *Advanced” does
not mean that the content of these sections is less valuable to some readers; indeed, we
believe these sections inchide some of the most importaut contributions of this edition.
Nor does it mean the commands are too difficult for substantive researchers. Rather, we
think some readers might benefit from finishing the other sections in a chapter before
reading the advanced sections.




We strangly encourage you to be at your computer so that you can experiment with
the commands as you read. Initially, we suggest you replicate what is done in the book
and then experiment with the commands. The spost13.do packages (see section 1.6.1)
will download to your working directory the datasets we use and do-files to reproduce
most of the results in the book. In the examples shown throughout the book, we assume
the commands are being run in a working directory in which the spost13_do package has
been installed. We have written the spex command (standing for “Stata postestimation
examples”), which makes it simple to use the datasets and run the baseline estimation
commands we use in the book. For example, the command spex logit downloads the
data and fits the model we use as the baseline example for the binary logit model. After
you type it, vou are immediately ready to explore postestimation commands.

For each type of outcome that we consider in later chapters, we rely primarily on a
single running example throughoit. We have found this works best in teaching these
materials. However, it does make selecting examples very challenging. We wanted
examples to be interesting, accessible to diverse andiences, simple enough to follow
casily without being trivial, representative of what yon might find in other data, and
illustrative of kev points. In trying to balance these sometimes conflicting goals, we
use examples that do not always make a compelling case for a particular method of
interpretation. For example, an effect might be small or a plot rather uninteresting.
We hope you will not decide on this basis that the method being illustrated will be
ineffective with your data. A given method might not be effective in your application,
but the nature of interpretation in nonlinear models is that you often need to try multiple
approaches to interpretation until you find the one that is most effective. Of course,
in some cases. the relationship you were expecting simply is not in the data you are
analyzing. While we have tried dozens of variations and approaches to interpretation
for each model, we cannot show them all. Just becanse we do not show a particular
approach to interpretatiou for a given model does not imply that yon should not consider
that approach.

Conventions

We use several conventions throughout the book. Stata commands, variable names,
filenames, and output are presented in a typewriter-style font 1ike this. [lalics are
used to indicate that something should be substituted for the word in italics. For
example, logit variablelist indicates that the command logit is to be followed by a
list of variables.

When output from Stata is shown, the command you would type into Stata is
preceded by a period (which is the Stata prompt). For example,

. logit lfp age wc hc k5, nolog
Logistic regression Number of obs = 753
(output vmitted )



To reproduce the output. do not type the period before the command. If following
along, only type those commands with a dot prompt. Commands without the dot
prompt are just shown as examples, Also, as just illustrated, when we have deleted part
of the output, we indicate this with output omitted. Keystrokes are set in this font. For
example, Alt-f means that you are to hold down the Alt key while pressing the f key.
The headings for seetions that discuss advanced topies are indicated as Advanced.

We reler to entries in the Stata manuals by using the Stata convention in which
the abbreviation for the manual is presented in brackets and the topic in boldface (for
example. [R] logit). Typing help manuals in Stata will provide more information about
these abbreviations.

The screenshots that we present are from Stata 13 for Windows. Il you are using
a different operating system or version, your sereen might tot lpok the same. See the

StataCorp publication Getting Started with Stata for your operating system for further
dotails.

The SPost commands

Many of the conmnands that we discuss are commands that we have written, and
as such. they are not part of official Stata. To follow examples, you must install these
commands as described in section 1.5. Although we assume you are using Stata 12 or
later, most commands should work in Stata 11 (though we cannot support problems
you might encounter in Stata 11).

Stata 13 added two features that we find extremely valuable, First, output for factor
variables is much clearer. Second, it is possible to use margins to compute average
diserete changes for variables that are not binary (full details are given in chapter 3).

The sposti3.ado package cannot be installed along with the older spost9_ado.
While the SPost9 commands asprvalue, case2alt, misschk, mlogplot, mlogview,
praccum, prchange, prcounts, prgen, prtab, and prvalue have been dropped from
SPost13, their functionality remains in other commands. The pr* commands are re-
placed by the m* commands. mlogplot and mlogview, written using Stata 7 graphics
and dialog boxes, have been replaced by mlogitplot and the related mchangeplot com-
mands. misschk is no longer needed becanse of the introduction of Stata’s misstable
command. The asprvalue and case2alt commands have been mostly superseded by
changes Stata has made to fitting models with alternative-specific variables.

Still, if you have used SPost9, yvou might want to use some of the old commands.
With this in mind, we created the spost9_legacy package that includes commands that
have been dropped. The versions of the commands in this package are not exactly the
same as those in the spost9_ado package. but they have the same syntax as the earlier
commands. We cannot, however, provide technical support for this package. If you
need to run the SPost9 commands as described in the second edition—for example, to

continue work on a project using these commands—you should uninstall spost13_ado
and then install spost9_ado.




Getting help

We are gratified that many people have bought our book, but as a consequence, we
receive many emails with questions. While we try to respond to everyone who contacts
us. this is not always possible. Please read section 2.3 for information on the best way
to resolve questions or problems as quickly as possible. We appreciate it.






1 Introduction

1.1 What is this book about?

Our book shows you effective and efficient ways to use regression models for categorical
and count outcomes. It is a book about data analysis and is not a formal treatment
of statistical models., To be effective in analyzing data, you want to spend your time
thinking about substantive issues and not laboring to get your software to generate the
results of interest. Accordingly, good data analysis requires good software and good
techuique.

Although we believe that these points apply to all data analyses, they are particularly
important for the regression models that we examine. These models are nonlinear;
consequently, the simple interpretations that are possible in linear models are no longer
appropriate. In nonlinear models, the effect of each variable on the outcome depends
on the level of all variables in the model. Becanse of this nonlinearity, which we discuss
in detail in chapter 3, no method of interpretation can fully describe the relationships
among the independent variables and the outcome. Rather, a series of postestimation
explorations are needed to uncover the most important aspects of these relationships.
If you limit your interpretations to the standard output of estimated slope cocfficients,
your interpretation will usnally be incomplete and sometimes even misleading.

In the linear regression model (LRM), most of the work of interpretation is com-
plete once the estimates are obtained. You simply read off the coefficients, which can
be interpreted as follows: “For a unit increase in zy. y is expected to increase by Gy
units, holding all other variables constant.” In nonlinear models, such as logit or neg-
ative binomial regression, additional computations are necessary after the estimates
are obtained. Indeed, when interpreting nonlinear models, most of the work involves
sometimes complex postestimation analyses, which are the focus of our book.

To make these computations, we use Stata's postestimation commands along with
comimands that we have written. Without these commands, the computations are time
constming and error-prone. All in all, it is not fun work. and it is tempting to limit your
analyses to an uninformative table of parameter estimates. Fortunately, the commands
we discuss in this book make sophisticated postestimation analysis routine and even
enjoyable, Although these analyses can take a lot of work, our commands reduce the
tedium so that yvon can focus on substantive issues.
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1.2 Which models are considered?

Regression models analyze the relationship between an explanatory variable and an
outecome variable while controlling for the effects of other variables. The LRM is probably
the most commonly nsed regression model in the social sciences. A key advantage of
the LM is the ease of interpreting results. Unfortunately, this model applies only
to cases in which the dependent variable is unbounded. Using the LEM when it is
not appropriate may produce coefficients that are biased and inconsistent, and there
ix nothing advantageous about the simple interpretation of results that are incorrect,
Fortunately, many appropriate models exist for categorical ontcomes, nnd these models:
are the foens of our book., We cover models for four kinds of dependent variables: binary
ontcomes, ordinal onteomes, nominal outcomes, and count variables,

Binary outcomes have two values, such as whether a citizen voted in the last election,
whether a patient was cured after receiving some medical treatment. or whether a
respondent attended college. The regression models and commands we consider include
binary logit (logit) and binary probit (probit).

Ordinal outcomes have more than two eategories that are assumed to be ordered on
a single, underlying dimension. For example, a survey might ask il vou would be “very
likely”, “somewhat likely”, or “not at all likely” to take a new subway to work, or if you
agree with the president on “all issues”, “most issues”, “some izsues”, or “almost no
issues”™. We focus on the ordered logit (ologit) and ordered probit (oprobit) models,
but we also consider the sequential logit model (seqlogit), stereotype logistic regression
(slogit). and the generalized ordered logit (gologit2). which is also appropriate for
nominal outcomes.

Nominal outcomes also have more than two categories, but the categories ave not
ordered. Examples include the mode of transportation a person takes to work (for ex-
ample, bus, car, train) or an individual's emnployment status (for example, employed,
unemployed, out of the labor force). The primary model we consider is the multino-
mial logit model (mlogit) along with its counterpart, the multinomial probit model
with uncorrelated ervors (mprobit). We also review the related conditional logit model
(clogit and asclogit). the alternative-specific multinomial probit with correlated er-
rors (asmprobit), and the rank-ordered logit model (rologit).

Finally, count variables count the number of times something has happened. such as
the number of articles written by a scientist or the number of patents a biotechnology
company has obtained. We begin with the Poisson regression model (poisson), followed
by the negative binomial regression model (nbreg). the zero-truncated Poisson and
negative binomial models (tpoisson and tnbreg), the hurdle regression model, and
lastly, the zero-inflated Poisson and negative binomial models (zip and zinb).

Although this book covers many models for different types of outcomes, they are all
models for cross-sectional data. We do not consider models for survival or event-history
data, even though Stata has a powerful set of commands for dealing with these data.
We recommend Cleves et al. (2010) and the Stata Survival Analysis Reference Man-
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ual for more information on these types of models. Likewise, we do not consider any
models for panel or other multilevel data, even though Stata contains commands for fit-
ting these models. For additional information, see Rabe-Hesketh and Skrondal (2012),
Cameron and Trivedi (2010}, and the Stata Longitudinal-Data/Panel-Data Reference
Manual.

1.3 Whom is this book for?

We expect that readers of this book will vary considerably in their knowledge of hoth
statistics and Stata. With this in mind, we have tried to structure the book to accom-
maodate the diversity of our andience. Minimally, however, we assume that you have a
solid familiarity with the linear regression model and that you are comfortable using the
basic features of the operating system of your computer. Although we have provided
sufficient information about each model so that vou can read each chapter without prior
exposire to the models discussed, we strongly recommend that you do not use this book
as your sole source of information on the models (see section 1.8 for reading recommen-
dations). Our book will be most useful if you have already studied or are studying the
models considered herein in conjunction with reading our hook.

Ideally, you are running Stata 13 or later. Most of our examples will, however, run
in Stata 11 and 12. If you are using a version of Stata earlier than Stata 11, we suggest
that you instead use the second edition of our book (Long and Freese 2006). However,
with the powerful new features in Stata 13 and the new methods of inferpretation in
this third edition, we hope you decide instead to upgrade your software. To make the
most out of the book, you will need access to the Internet to download our commands,
datasets, and sample programs (see section 1.5 for details). For information about
obtaining Stata, see the StataCorp website at http://www.stata.com.

1.4 How is the book organized?

Chapters 2-4 introduce materials that are essential for working with the models we
present in the later chapters:

Chapter 2: Introduction to Stata reviews the basic features of Stata that are
necessary 1o get new or inexperienced users up and running with the program.
New users should work through the brief tutorial that we provide in section 2.18.
This introduction is by no means comprehensive, so we include information on
how to learn more about using Stata. Those who are familiar with Stata can skip
this chapter, although even these readers might benefit from scanning it.

Chapter 3: Estimation, testing, and fit reviews Stata commands for fitting mod-
els, testing hypotheses, and computing measures of model fit. Those who regularly
use Stata for regression modeling might be familiar with much of this material:
however, we suggest at least a quick review of the material. Most importantly,
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von should read our detailed discussion of factor-variable notation, which was in-
troduced in Stata 11. Understanding how to use factor variables is essential for
the methods of interpretation presented in the later chapters.

Chapter 4: Methods of interpretation is an overview of varions approaches to
interpreting regression models. We introduce the margins command that is part
of official Stata and the mtable, mgen, and mchange commands that are part of
SPost13. This chapter is essential background before proceeding to part 11 Study:
this chapter carefully, even if you are an advanced user. Readers new to Stata are
likely to find that this chapter has more detail than initially needed; therefore,
throughout the chapter, we suggest which sections you may wish to only skim on’
first reading.

Part IT covers regression models for different types of outcomes.

Chapters 5 and 6: Models for binary outcomes begin with an overview of how
the binarvy logit and probit models are derived and how they can be fit. After
the model has heen fit, we show how to test hypotheses, compute residuals and
influence statistics, and caleulate scalar measures of model fit. Chapter 6 uses
postestimation commands that assist in interpretation using predicted probabili-
ties, discrete and marginal change in the predicted probabilities. and for the logit
model, odds ratios. Because binary models provide a foundation on which many
models for other kinds of ontcomes are derived, and becanse these two chapters
provide more detailed explanations of common tasks than later chapters do, we
recommend reading these chapters carefully even if you are interested mainly in
another type of outcome,

Chapter 7: Models for ordinal outcomes presents the ordered logit and ordered
probit models, We show how these models are fit and how fo test hypotheses
about coeflicients. We also consider tests of a key assumption of both models,
known as the parallel regression assumption. For interpreting results, we discuss
methods similar to those described in chapter 6, and we also discuss interpretation
in terms of a latent dependent variable. Methods of interpretation using predicted
probabilities apply directly to models for nominal ontcomes, so it is useful to fa-
miliarize yourself with these methods before proceeding to chapter 8. This chapter:
also details the implications of assuming that an ordinal model is appropriate for
your outcome and recommends that you use miodels for nominal outcomes as part
of your evaluation of ordinal models.

Chapter 8: Models for nominal outcomes focuses on the multinomial logit model.
We show how to fest hypotheses that involve niltiple coefficients and discuss tests.
of a key assnmption known as the independence of irrelevant alternatives assump-
tion. Methods of interpretation using predictions are identical to those for ordinal
models. Interpretation using odds ratios is a simple extension of the methods
introduced in chapter 6, although the multinomial logit model’s many parame-
ters make the process of interpretation much more complicated. To deal with




1.5 The SPost software 11

this complexity, we present a graphical method for summarizing the parameters.
The multinomial probit model without correlated erfors is discussed briefly, and
then the multinomial logit model is used to explain the stereotype logit model.
This model, which is often used with ordinal outcomes, also has applications with
nominal outcomes. These models assume case-specific independent variables (each
independent variable has one value for each observation). We end the chapter with
I 4 short review of models that also inelude alternative-specific data, in which some
variables vary over the alternatives for each individual, such as an individual’s sim-
ilarity to each eandidate in an election. We consider the conditional logit model
and the alternative-specific multinomial probit model, the latter of which allows
correlations between alternative-specific error terms, Lastly, we present the rank-
ordered logistic regression model, which can be used when you have information
about the ranking of outcomes as opposed to information about only the selected
or most preferred ontecome.

Chapter 9: Models for count outcomes begins with the Poisson and negative
binomial regression models, including a test to determine which model is appro-
priate for your data. We also show how to incorporate differences in exposure
time into parameter estimation. Next, we consider interpretation for changes in

" the predicted rate and changes in the predicted probability of observing a given
count. The rest of the chapter deals with models that address problems associated
with having too many zeros relative to what the model predicts or having no zeros
at all. We start with zero-truncated models for which zeros are missing from the
outcome variable, perhaps because of the way the data were collected. We then
merge a binary model and a zero-truncated model to create the hurdle model.
We also consider fitting and interpreting zero-inflated count models, which are
designed to account for the many zero counts often found in count outcomes.

1.5 The SPost software

I From our point of view, one of the best things about Stata is how easy it is to add your
own commands, If Stata does not have a command you need or some command does not
work the way you like, you can program a new command yourself, and it will work as if it
were part of official Stata. We have created a suite of programs, referred to collectively
as SPostl3 (Stata postestimation commands for version 13), for the postestimation
interpretation of regression models. These commands must be installed before you can
try the examples in later chapters.

If you have used SPost before, read this! For this book, we completely rewrote
our eatlier SPost commands, which we will refer to as SPost9. If you have the
spost9.ado package installed on your computer, you should uninstall it (details
below) before you install the spost13_ado package.
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To get the most out of this book, you need to try each method using both the
official Stata commands and our SPost13 commands. Ideally, you are running Stata 13
or later. If yon are running Stata 11 or Stata 12, most of our examples will work, but
a few valuable features new in Stata 13 will not be available. Before we discuss how
to install our commands and update your software, we have suggestions for new Stata
users, those with earlier versions of Stata, and those who used SPost9:

If you are new to Stata. If you have never used Stata, you might find the instructions in
this section to be confusing. 1t might be easier if you skim the material now and return
o it after you have read the introduction to Stata in chapter 2,

If you are using Stata 10 or earlier. The SPost13 commands used in this book will not
with run with Stata 10 and earlier. You can use SPost9 contained in the spost9._ado
package, which is deseribed in the second edition of our book (Long and Freese 2006).
However, if vou are investing the time to learn these methods, we think you are much
better off upgrading your software so that you can use sposti3.ado.

If you are using an earlier version of SPost. Before using the spost13_ado package, you
must uninstall any earlier versions of SPost, such as the spostade package or the
spost9_ado package. SPostl3 replaces our earlier prvalue, prtab, prgen, prchange,
and praccum commands with the more powerful mtable, mgen, mchange, and mlistat
commands based on Stata's remarkable margins command, which did not exist when
the previous edition of this book was written. If you want to use our new commands but
also want access to the SPost9 commands, you can install the spost9_legacy package,
Details are given below.

1.5.1 Updating Stata

Before you install SPost13, we strongly recommend that you update your version of
Stata. This does not mean to upgrade to Stata 13, but rather to make sure you have
the latest updates for whatever version of Stata yon are running. You should do this
even if you have just installed Stata because the DVD or download that you received
might not have the latest changes to the program. When you are online and in Stata, you
can update Stata by selecting Check for Updates from the Help menu; equivalently,
you can type the command update query, as we did here:
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This screen shows the nupdate status and recommends an action. Our installation is up
to date. If it was not, Stata would recommend an update and would provide instructions
on how to do that.

1.5.2 Installing SPost13

We begin with some background of what happens when you install user-written com-
mands in Stata. The good news is that once they arve installed, these commands behave
Jjust like official Stata commands. Programs that add commands to Stata are contained
in files that end in the extension .ado, which stands for antomatic do-file. For exam-
ple, listecoef . ado is the file that contains the command listcoef. When you type the
command listcoef, Stata antomatically runs listcoef.ado. The ado-files, along with
supplementary files that might have other suffixes, are included as part of a package.
In Stata, a package comprises a list of included files along with instruetions on how to
install them on your computer.

To install SPost13, you install the spost13_ado package. We consider two methods
for installation. but first we explain how to uninstall the spost9_ado package.
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Uninstalling SPost9

To determine if you have this package installed, type the command ado. If spost9._ado
is listed, vou can uninstall it by typing

ado uninstall spost9_ado

package spostf_ado from http://www.indiana.edu/" jslsoc/stata
~ Distribution-date: 25Jul2012

(package uninstalled)

Installing SPost13 using search

The search word command searches an online database wherein StataCorp keeps track
of nser-written additions to Stata. Typing search spost13.ado opens a Viewer window
thiat looks like this:

o Viewer - search spost13_ado - o IEl
File Edit Fistory Help A

¢ D O B [ sechspouiiage R

- searchspost13_ado X |

+ Disleg » | Alio 5o = Iﬂ rni

~
search for spostlld_ado (manual: [R] search) |

Search of official help files, FAQs, Exauples, SJs, and STBs

Web 1 ces from S and other users 1

(contacting http://www.acata.com)

2 packages found (Stata Journal and 5TB listed firac)

spostll ado from hicp://www.indiana.edu/-3slsoc/stata !
Distribution-date: 13May2014 / spostld_ado | SPostl3 commands from Long |
and Freese (under preparation) / Regression Models for Categorical o
Cutcomes using Scata, 3rd Edition. / Support
www.indians. edu/~jalapc/spost.hte / Scott Long (jslong@indians.edu) &

spost9 legacy from http://www.indiana.edu/-jslscc/scacs =
Distribution-date: 18Feb2014 / spostd legacy | SPost? commands not
included in spostl3_adc. / From Long and Freese, 2014, Regression Models |
for Categorical Outcomsa2 / using Stata, 3rd Editien. / Suppeort
www.indiana.edu/~jslscc/spost.hte / Scott Long (jalong@indiana.=duj &

(click here To Teturn to the previous screen)

{end of search)

| |Ready;



http://www.indiana.edu/~jslsoc/stata
http://www.stata.com
http://www.indiana.edu/-jslsoc/stata
http://www.indiana.edu/~jslsoc/spost.htm
mailto:jslong@indiana.edu
http://www.indiana.edu/-jslsoc/stata
http://www.indiana.edu/~jslsoc/spost.htm
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When you click on sposti3.ado from http://www.indiana.edu/~jslsoc/stata,
which is a blue link, a new Viewer window opens:

= er netdesmbe spusﬂi;do I'romontp'ﬂmmdiana.edu!~jﬂ50dstaia) _
File Edt Hstory Help

Lﬁ?ﬂ e e e el -

describe spost13_ada, from{— %] - %
3 - > Taxi
A

package spostl3 ado from htrp://www.indiane.edu/-jslsoc/scaca

TITLE
Distribucion-dave: 13May2014

DESCRIPTION/AUTHOR(S)
sposti3 ado | ‘SPoatl3 commands from Long and Fresse (under preparation)
Regression Models for Cavegorical Quc using Stata, 3rd Editiom.
Support www.indiana.edu/-3jslsoc/spost.him
Seatt Long (jslong@indiana.edu) & Jeremy Freese (3f Gnorthvestern.edu)
INSTALLATION FILES (click Bere to install)

spoatls ado/mlogirtplot.ado

spestil ado/mlogitplot.sthip

spost13_ado/_orme dara.ado

spostl3_ado/ orme data getmatrix.ado

spoxtl3 ado/ orme | daca _germe.ado

speatl B_udni_cm_dtu_wem -ado

spoacl3_ado/_orme_data_plotpairs,ado

spostl3 asdo/ orme dats_plotvariables.ado

spestl3 ado/ orme graph.ado

spostld _ade/ orme syntax.sdo

sposcl3_ado/orplot.ado

sposatld ado/orplot.sthlp |
spestll_ado/meplot.ado |
spestl3 ado/meplor.sthip v

Click on the linked text that says (click here to install). After a delay during
which files are downloaded, Stata will respond with one of the following messages:

installation complete means that the package has been successfully installed and
that vou can now use the commands. Just above the installation complete
message, Stata tells vou the directory where the files were installed.

all files already exist and are up to date means that your system already has
the latest version of the package. You can now nse the commands,



http://www.indiana.edu/~jslsoc/stata
http://www.indiana.edu/~jslsoc/stata
http://www.indiana.edu/~jslsoc/s
http://www.indiana.edu/~jslsoc/scata
mailto:jslong@indiana.edu
mailto:jfreese@northwestern.edu
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the following files exist and are different indicates that your system already
has files with the same names as those in the package being installed and that the
existing files differ from those in the package. The names of the differing files are
listed, and you are given several options, Most likely, the files listed are earlier
versions of our programs. so you should select the option Force installation
replacing already-installed files. This is not as ominous as it sounds. Be-

cause the files on our website are the latest versions, voun want Stata to replace
vour current files with these new files.

cannot write indirectory directoryname means that you do not have write privileges
to the directory where Stata is trying to install the files. This usnally oceurs only
when you are using Stata on a network. We recommend that you contact your
network administrator and ask whether our commands can be installed using the
instructions given above. If you cannot wait for a network administrator to install
the commands or to give yon the needed write access, you can install the programs
to any directory where vou do have write permission, incliding a flash drive or
your personal directory on a network. For example. suppose that you want to
install SPost13 to your directory called d:\username (which can be any directory
where you have write access). You should use the following connmands:

. cd d:\username
d:\username

. mkdir ade
. sysdir set PERSONAL "d:\username\ado"
. net set ado PERSONAL

. net search spost
(contacting http://www.stata.con)

Then follow the installation instructions provided above for installing SPost13.
If you get the error “could not ereate directory” after typing mkdir ado, you
probably do not have write privileges to the directory,

If you install ado-files to your own directory, then each time von begin a new Stata
session vou must tell Stata where these files are located. You do this by typing

sysdir set PERSONAL directoryname. where directoryname is the location of the
ado-files. For example,

. sysdir set PERSONAL d:\username\ado

Installing SPost13 using net install

You can also install the spost13.ado package entirely from the Command window, If
the method listed above does not work, the following steps might. While online, type

- net from http://www.indiana.edu/-jslsoc/stata/

Available packages will be listed in the Results window. You cau click on spost13_ado
and follow the instructions, or you can type


http://www.stata.com
http://www.indiana.edu/-jslsoc/stata/

1.6.2  Using spex to load data and run examples 17

. net install spostl3_ado

net get can be used to download supplementary files (for example, datasets and sample
do-files) from our website. For example, to download the package spost13_do (discussed
below), type

. net get sposti3d_do

These files are downloaded to the eurrent working directory (see chapter 2 for a full
discussion of the working directory).

1.5.3 Uninstalling SPost13

If vou want to uninstall our commands, simply type ado uninstall spost13.ado. When
things do not seem to work right, onr first suggestion is to uninstall spost13.ado and
then reinstall it.

1.6 Sample do-files and datasets

Although we hope youn will soon be using the methods in the book with your own
data, we think it is valuable to first reproduce our examples and then modify them
to try tew things, To facilitate this, we have written the spex command (inchided in
spost13.ado), which makes it casy to load our data and run our baseline models. We
also ereated the sposti3d_do package, which lets you download the data and do-files for
each chaptor.

1.6.1 |Installing the spostl3_do package

The spost13.do package contains the datasefs used in the book along with do-files
that reproduce most of the analyses. The do-files have names like rm3ch9-count.do
and eontain comments that link the commands to sections of the book. To down-
load these files to your working directory, while in Stata and online. type search
sposti3.do. In the Viewer window that opens. elick on the blue link spost13.do from
http://www.indiana,edu/~jslsoc/stata. A new Viewer window will open, and you
can follow the instruetions to download the files.

In the examples shown throughout the book, we assume the commands are being run
from within a working directory in which the sposti13.do package has been installed.
These do-files assume that you are nsing Stata 13.1. If you are using Stata 12. install
the spost13._dol13 package instead.

1.6.2 Using spex to load data and run examples

Experimenting with the postestimation commands that we discuss requires that you
have first fit, the appropriate model. In our examples, we show you how to open a dataset
and fit models as you wonld if you were working with your own data. Accordingly, we


http://www.indiana.edu/-jslsoc/stata
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begin with a use command to load the data and then use an estimation command, such
us logit, to fit the model.

To make it simpler for you to experiment with the methods in later chapters, we
have written the command spex (Stata postestimation examples). Typing spex com-
mandname will produce pour primary example for that estimation command. If you
type spex logit. for example, Stata will automatically load the data and fit the model
that serves as our main logit example. Alternatively, you can specify the name of any
dataset that we use (spex datasetname), and spex will load those data but not fit any
model. By default, spex looks for the dataset on our website. If it does not find the
dataset there, it will look in the current working directory and all the directories where
Stata searches for ado-files. For more information, type help spex.

The running examples in this edition of the book are different from those used in
the second edition. If you want to run the earlier examples, use the spex9 command.
For example. spex9 logit runs the logit example that was used with spost9_ado.

1.7 Getting help with SPost

Because things do not always work as intended and commands that we say will work
might not, we have some troubleshooting recommendations for yon. We ask you to
please read this section carefully to try to resolve any problems you may be experiencing
with SPost13. If none of these suggestions fixes the issue, you can then contact us.

1.7.1 What if an SPost command does not work?

We assume here that you have installed SPost13 but that some of or all the commands
do not work. Here are some things to consider:

1. Make sure Stata is properly installed and up to date, Typing verinst will verify
that Stata has been properly installed. Typing update query will tell you whether
the version you are running is up to date and what yon should do next. If you are
running Stata over a network, vour network administrator may need to do this
for you. See [U] 28 Using the Internet to keep up to date and [R] update.

2. Make sure SPost13 is up to date. Type adoupdate, update to check, or uninstall
spost13.ado and then reinstall it.

3. If you get the error message unrecognized command, there are several possibilities.

a. If the command used to work. consider whether vou are working on a different
computer or station in a computer lab. User-written programs must be
installed on each machine that you use, i

b. If you sent a do-file using SPost13 commands to another person who cannot

get the commands to work, that person should verify he or she has SPost13
installed. Your do-file will not work with SPost9.
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c. If you get the error message unrecognized command: strangename after typ-
ing one of our commands, where strangename is not the name of the command
that vou typed, it means that Stata cannot find an ancillary ado-file that the
conumand needs. We recommend that yvou uninstall the spost13_ado package
and then reinstall it.

4. If you get an error message that you do not understand, click on the blue return
code beneath the error message for more information about the error.

vy ]

. Often, what appears to be a problem with one of our commands is actually a
mistake the user has made. We know this because we make these mistakes, too.
For example, make sure that you are not using = when you should be using ==.

6. Because onr commands are for use after you have fit a model, they will not have
the information needed to operate properly if Stata was not successful in fitting
your model. Our commands should trap such errors but sometimes do not, so
make sure there were no problems with the last model fit.

Irregular value labels can canse commands to fail. Where possible, we recom-
mend using labels that have fewer than eight characters and contain no spaces
or special characters other than underscores (). If you are having problems and
your variables do not meet this standard (especially the labels for your dependent
variable), then try changing your value labels with the label command (details
are given in section 2.15).

=1

8. Unnsual values of the onteome categories can also cause problems. For ordinal
or nominal outcomes, some of our commancs require that all the outcome values
be integers between 0 and 99. The behavior of some official Stata commands can
also be confusing when unusual values are used. For these types of outeomes, we
strongly recommend using consecutive integers starting with 1.

1.7.2 Getting help from the authors

If you have tried everything we recommended in section 1.7.1 and you are still encoun-
tering an error, the next step is to contact us. We hear from hundreds of readers and
do our best to help. To make this easier for us, please carefully follow the suggestions
in this section.

We encourage you to start by reviewing William Gould’s blog entry “How to suc-
cessfully ask a question on Statalist” (2010). His advice will increase your chances of
getting vour question answered, either from the Statalist, from us, or elsewhere. In
addition. we have found that in the process of carefully preparing a question, we often
find the solution ourselves.

Here are other suggestions to make it easier for ns to answer your question, which
will also inerease your chances of getting a prompt answer:
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1. Check http://www.indiana.edu/-jslsoc/spost.htm and
http://www.indiana.edn /- jslsoc/spost_help.htmn for advice on what to try before
contacting us. There might be recent information that solves your problem.

2. Make sure that both Stata and sposti13_ado are up to date. We keep repeating
this because it is the most common solution to problems our readers bring to us.

3. Look at the sample files in the spost13.do package. It is sometimes easiest to
figure ont how to use a command by seeing how others use it. Try what you are
doing on one of our datasets and see if you can reproduce it.

4. 1If you still have a problem, send us the information deseribed in the next section.

What we need to help you

To solve your problem, we need to be able to reproduce it. Simply describing the
problem rarvely is sufficient. Please send us the following:

1. A do-file that reproduces the problem (see a sumple do-file at the end of this
section).

a. Include your name, email address, and s description of the problem.
b. Begin with the commands about and spost13which, which displays the ver-
sions of software you are using.
¢. Inclide the results of summarize nsed in the analysis (not all variables in the
dataset) and the results of tabulate for categorical variables.
d. Include only the commands needed to reproduce or explain the problem.
Remove all unrelated commands.
e. Remove all referemces to  specific  directories, such as log using
c:\data\project3\problem, text or use c:\data\project3\sample.dta.
Our computer will not have your directory structure, so your do-file will not
run on our computer. The do-file should read the data [rom the working
directory and save the log file to the working directory. '

2. The dataset used by the do-file. This should be a small dataset extracted from
the full dataset you are using. Only send the variables used in your do-file and
create a dataset with only a subset of your observations (assuming, of course, that
the error is reproduced with the smaller sample).

3. A plain text log file showing the error. Do not send the log in SMCL format. To.
avoid this, add the text option to your log command, for example, log using
myproblem.log, text replace.

Send this information to jslong@indiana.edu or jfreese@northwestern.edu.
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Here is an example of what a do-file might look like:

capture log close
log using yourname.log, text replace

* mtable generates a variable not found error.
* scott long - jslong@indiana.edu - 2014-06-089

about
sposti3which

use jslong-error.dta
logit y x1 x2

* the following command causes the error
mtable x1, at(x2=(1(1)3))

log close

1.8 Where can | learn more about the models?

If you waiit to learn more about the regression models that are covered in this book, we
recommend the [ollowing valuable sources;

Cameron, A. ., and P. K. Trivedi. 2005. Microeconometrics: Methods and Applica-
tions. New York: Cambridge University Press. This is an excellent introduction
to the methods and models discussed in this book, as well as models for panel
data,

Cameron, A. C., and P. K. Trivedi. 2010. Microeconometries Using Stata. Rev. ed.
College Station, TX: Stata Press. This companion to Microeconometrics: Methods
and Applications (Cameron and Trivedi 2005) shows how to use Stata for cross-
section and panel models.

Cameron, A. C., and P, K, Trivedi. 2013. Regression Analysis of Count Data. 2nd
ed. Cambridge: Cambridge University Press. This is a definitive reference abont
count models.

Hardin, J. W., and J. M. Hilbe, 2012. Generalized Linear Models and Extensions. 3rd
ed. College Station, TX: Stata Press. This is a thorough review of the generalized
linear model (or GLM) approach to modeling and includes detailed information
about using these models with Stata.

Hosmer, D. W., Jr.. 8. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic
Regression. 3rd ed. New York: Wiley. This book. written primarily for biostatis-
ticians and medical researchers, considers logit models for binary, ordinal, and
nominal outcomes. The authors often discuss how their recommendations can be
executed using Stata.

Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent
Variables. Thousand Qaks, CA: Sage. This book provides more details about the
models discussed in our book.
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Train, K. 2000, Discrete Choice Methods with Simulation. 2nd ed. New York: Cam-
bridge University Press. This is a thorough review of a wide range of models
discrete choice and includes details on new methods of estimation using simulation.

Wooldridge, J. M. 2010. Econometric Analysis of Crass Section and Panel Data. 2ud
e, Cambridge. MA: MIT Press. This is a comprehensive review of econometric
methods for eross-section and panel data.
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Introduction to Stata

This book is about fitting and interpreting regression models using Stata; to earn our
pay, we must get to these tasks quickly. With that in mind, this chapter is a relatively
coneise introduction to Stata 13 for those with little or no familiarity with the software.
Experienved Stata users can skip this chapter, although a quick reading might be useful.
We focus on teaching the reader what is necessary to work through the examples later
in the book and to develop good working techniques when using Stata for data analysis.
These discussions are not exhaustive; often, we show you either our favorite approach
or the approach that we think is simplest. One of the great things about Stata is that
there are usually several ways to accomplish the same thing—so if you find a better way
than what we have shown you, use it!

You cannot learn how to use Stata simply by reading. We strongly encourage you to
try the commands as we introduee them. We have also included a tutorial in section 2.18
that covers the basics of using Stata. Indeed, you might want to try the tutorial first
and then read our detailed discussions of the commands.

The screenshots in this chapter were created in Stata 13.1 running under Windows
using the defanlt windowing preferences. If you have changed the defaults or are running
Stata under Unix or Mae 08, your screen might look slightly different. Those of you
uew to Stata, regardless of the operating system you are using, should examine the
appropriate Getting Started manual, available in PDF format with your copy of Stata,
for further details: Getting Started with Stata for Mac, Getting Started with Stata
for Unix, or Getting Started with Stata for Windows. How to access this and other
docnmentation from within Stata is discussed in section 2.3.2.

For further instruction beyond what is provided in this chapter, look at the resources
listed in seetion 2.3, We assume that you know how to load Stata on the computer you
are using and that you are familiar with your computer’s operating system. By this,
we mean that vou should be comfortable copying and renaming files. working with
subdirectories, closing and resizing windows, selecting options with menus and dialog
boxes, and so on,

2.1 The Stata interface

Figure 2.1 shows what Stata looks like after several commands have been entered and
data have been loaded into memory. The five main windows that you will use most
often are the Review, Results, Command, Variables, and Properties windows. Except

23
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for the large Results window, each has its name listed in its title bar. There are
other, more specialized windows, such as the Viewer, Data Editor, Variables Ma.
Do-file Editor, Graph, and Graph Editor windows.
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The Command window is where you type commands that are executed when

The Results window echoes tlw command typed in the Command window (the com=

mmnm':rkhgrﬁ'wlw Commands are

Command log status
appears here

Current log status

Figure 2.1. The Stata user interface

press Enter. As you type commands, you can edit them at any time before p
Enter. Pressing Page Up brings the most recently nsed command into the C
mand window, where you can edit it and then press Enter to run the modilie
command.

mands are preceded by a =.”, called the dot prompt, as shown in figure 2. l)
then displays the ontpunt frum that command. Within the window. you can hi
light text and right-click on that text to see options for copying the highli
text. The Copy Table option copies the selected lines to the Clipboard,
Copy Table as HTML allows you to copy the selected text as an HIML t7
(see page 114 for more information). You also have the option to print the
tents of the window. Only the most recent output is available this way; es
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lines are lost nnless yon have saved them to a log file (discussed below). Details
on setting the size of the scrollback buffer are given below.

The Review window lists the commands that have been typed in the Command
window. If you click on a commund in this window, it is pasted into the Command
window, where vou can edit it and then press Enter to run the modified command.
If you double-click on a command in this window, the command is immediately
execnted.

The Variables window lists the names and labels of all the variables for the dataset
in memory. 1f vou click on a variable in this window, information about it is shown
in the Properties window. If you double-click on a variable in this window, its
name is pasted into the Command window.

The Properties window lists attributes of the most recently selected variable and of
the dataset as a whole. For example, under the Data tab, you can see at a glance
liow many variables and observations are in your dataset.

The Command and Results windows illustrate Stata’s origins in a command-based
system, That is, you tell Stata what to do by typing commands that consist, of one line of
text and then pressing Enter. At the same time, there is a graphical user interface (GUI)
for accessing virtually all commands. At the risk of seeming old-fashioned, however,
we greatly prefer the command-based interface. Although it can take longer to learn,
vou will find it much faster to use once you do learn it. If you currently prefer using
pull-down menus, stick with us, and you will likely change vour mind. Also, althongh
we first consider entering only one command at a time, in section 2.9, we show you how
to run a series of commands at onee, which is vital to doing serious work in Stata and
requires moving bevond the GUI to do-files.

This is not to say that we never use the mouse when using Stata. For example,
some impartant tasks can be performed by clicking on icons on the toolbar at the top of
the sereen, For example, if you click on the Data Editor (Browse) button, &, Stata
opens a spreadsheet for examining your data. Instead of elicking on the icon, you conld
liave done the same thing by typing browse in the Command window.

You can also use menus and dialogs to ereate commands. At the top of figure 2.1 are
a series of menus, beginning with File, then Edit, and so on. The Data, Graphics, and
Statistics menus provide point-and-click aceess to almost every command in Stata, For
example, instead of typing the poisson command for the Poisson regression model that
is discussed in chapter 9, you could select Statistics > Count outcomes > Poisson
regression. which displays this dialog:
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This dialog box gives you access to all the options for the poisson command and &
you to select variables. After yon construct your command in the dialog box, y
click on Submit to send the command to the Command window and execute it.
find this feature especially useful for making graphs, because the options for maki
graphs are many and can be hard to remember. If we use dialog boxes to make a
approximation of the graph we want, Stata will put the syntax in the Results win
We can then copy and tweak the syntax to get our graph just right. We illnstrate doing
this below.

We urge you to get used to working in Stata by entering commands. It is ultimately
much faster. It also makes things much easier to automate later, which is key to doi
work that you can reproduce and modify in the future because you have a compl
record of the commands used to create your results. Consequently. we describe |
below mainly in terms of commands.

That said. we also encourage you to explore the tasks available through menus ami
the toolbar and to figure out what combination of dialogs and commands works most
easily and efficiently for you.

Changing the scrollback buffer size

How far back you can scroll in the Results window is controlled by the command
set scrollbufsize #

where 10,000 < # < 2,000,000. By default, the buffer size is 200,000 bytes. When you
change the size of the buffer uging set scrollbufsize, the change will take effect the
next time you launch Stata. This means that if you are trying to look at earlier res

rerun your analyses. Unless computer memory is a problem, we recommend you set the
buffer to its maximumm.
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Tip: Changing defaults. If you type help set, you can get an idea of the range of
different parameters that users may set in Stata. Many of these can be switched
permanently by adding the permanently option. For preferences that cannot be
set permanently in this way, you could enter the command to reset the parameter
at the start of each Stata session, but it is easier to add all the commands to reset
parameters to profile.do, a file that is automatically run each time Stata begins.
See [Gs] B.3 Executing commands every time Stata is started for details.

2.2 Abbreviations

Commands and variable names often can be abbreviated. For variable names, the rule
is easy: Any variable name can be abbreviated to the shortest string that uniquely
identifies it. For example, if there are no other variables in memory that begin with a,
the variable age can be abbreviated as a or ag. If you have the variables income and
income?2 in your data, neither of these variable names can be abbreviated.

There is no general rule for abbreviating commands, but as you might expect, typ-
ically the most common and general command names can be abbreviated. For exam-
ple, four of the most often used commands are summarize, tabulate, generate, and
regress, and these can be abbreviated as su, ta, g, and reg, respectively. Although
very short abbreviations are easy to type, they can be confusing when you are getting
started. Accordingly, when we use abbreviations, we stick with at least three-letter
abbreviations,

2.3 Getting help

We briefly review here the many ways to get help as you use Stata. If yon need more
information about getting help, type the command help help, read the information
that appears in & Viewer window, and click on anything shown in blue type that sounds
interesting. (Text shown in blue in the Viewer or Results window is a link to additional
information.)

2.3.1 Online help

If you find our description of a command incomplete, or if we use a command that is not
explained, you ean use Stata to find more information. Use the help command when you
know the name of the command you want more information about. For example, help
regress pulls up information about the regress command. The search command is
more general: you are given a list of references related to your search. For example,
search regress lists over 100 references with information about “regress” in Stata
manuals, the Stata website (including frequently asked questions, or FAQs), and articles
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from the Stata Journal (often abbreviated $J). search even provides information about
related user-written commands that are not part of official Stata. The search command
is s0 useful for tracking down information that we encourage vou to type help search
and read more about how it works. Alternatively, see [GS] 4 Getting help in the Stata
documentation.

2.3.2 PDF manuals

The Stata manuals are extensive, and it is worth taking an hour to browse them to
pot an idea of the many features available in Stata. The manuals come as PDF
that you can access from within Stata throngh the menu system. Select the memt
itemn Help—PDF Documentation to open a list of all the Stata manuals, which you
can then browse individually by elicking on the one you want to open. You can also
easily aceess a specific manual entry from its help file. Suppose you type the comman
help regress. In the Viewer window that opens, you will see in blue [R] regrew
-- Linear regression. If you click on this link, a PDF of the Stata Base Reference
Manual will open to the entry for the regress command. Within the mannals, you will
find many cross-references in the form of clickable links that allow you to browse easily
among related topics. See [GS] 4 Getting help and [U] 1.2 The User’s Guide and

the Reference manuals for further details.
[}

In general, we find that learning how to read the manuals and use the help system
is more efficient than asking someone, and it allows you to save your questions for the
really hard stuff. For those new to Stata, we recommend Stata’s Getting Started manual
(which is specific to your platform) and the first part of the Stata User’s Guide. As
you become more acquainted with Stata, the manuals will become inereasingly valuahle
for detailed information about each command, including a discussion of the statistical
theory related to the command and references for further reading.

2.3.3 Error messages

If you type an incorrect command, an error message appears in the Results window.
The message is printed in red, along with a return code (for example, (199)) listed
in blue. Clicking on the return code provides a more detailed description of the error.
Although error messages often can be helpful in resolving a problem. sometimes ’t.hey
are terse and even misleading, Stata knows how to understand a correct command but
does not necessarily know what an incorrect command is trying to do. For additional
information on debngging Stata programs, see Long (2009).

2.3.4 Asking for help

Sometimes, despite your best efforts, your program still will not work. Before you nsli |
someone for help, tuke a few minutes to review William Gould's blog entry *How
successfully ask a question on Statalist” (2010). His advice will increase your cham@
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of getting your question answered, either from the Statalist, from s, or elsewhere. In
addition, we have found that in the process of carefully preparing a question, we often
find the solution onurselves. With this in mind, if you have questions abonut this book or
the SPost commands, we suggest that you carefully read section 1.7 before contacting
us. Thank you.

2.3.5 Other resources

The Stata website (http://www.stata.com) contains useful resources, including links
to tutorials, an extensive FAQ section that discusses both introductory and advanced
topics, and information about NetCourses and short courses. StataCorp has free tutorial
videos on their YonTube channel (http://www.youtube.com/user/statacorp) that cover
a variety of topics of interest. Another excellent resource is UCLA’s Institute for Digital
Research and Education at htip://www.ats.ucla.edn/stat /stata/.

A Stata forum known as Statalist is not run by StataCorp, but many programmers
and statisticians from StataCorp participate. This formn (http://www.statalist.org/)
is 1 wonderful resource for information on Stata and statistics, You will often find that
your questions have already been asked and answered by someone in the past, but you
can submit your questions and often receive answers quickly. Monitoring the forum is
also a good way to pick up insights from Stata veterans.

We also recommend Long's (2009) book on managing the workflow of data analysis
projects. Chapter 3 of that book has a detailed discussion of how to use do-files ef-
fectively to efficiently produce results that can be reproduced. Chapter 4 extends the
discnssion of Stata automation that we only touch upon in our book.

2.4 The working directory

The working directory is the defanlt directory for any file operations, such as using data,
saving data, or logging output, If you type ed or pwd in the Command window, Stata
displays the name of the current working directory (see help cd or [D] ed). To load a
data file stored in the working directory, you simply type use filename (for example,
use binlfpd). If a file is not in the working directory, vou must specify the full path
(for example, use d: \spostdata\examples\binlfp4). At the beginning of each Stata
sossion. we like to change our working directory to the directory where we plan to work,
because this is easier than repeatedly enfering the path name for the directory. For
example, typing cd d:\spostdata changes the working directory to d:\spostdata. If
the directory name includes spaces, you must put the path in quotation marks (for
example, cd "d:\my work\").

Stata's menu system allows vou to change the working directory from the File
menit. As always, when you use the menus to do this, the Stata command will appear
in the Results window. You can then copy and paste this command into your do-files
(deseribed below) to automate the process. Stata also allows you to select a file from


http://www.stata.com
http://www.youtube.com/user/statacorp
http://www.ats.ucla.edu/stat/stata/
http://www.statalist.org/

30 Chapter 2 Introduction to

vour computer via File—Filename...; selecting a file this way simply pastes the full
direetory path and filename into the Command window for you so that you can easily
copy it.

You can list the files in your working directory by typing dir or 1s. With these
commands, you can use the * wildeard. For example, dir *.dta lists all files with the
extension .dta and so is a quick way to obtain a list of all the Stata data files in your
working directory.

As we mentioned in chapter 1, the commands used in the examples in this book are
available in the package spost13_do, which you can find and download by typing senr b
spost13., When working through our examples, we do not specify a path when opening
data files, because we assume those data files are already in your working directory.

2.5 Stata file types

Stata uses and creates many types of files, which are distinguished by extensions at
end of the filename. A full list of file extensions used in Stata is available by typing
help extensions. The extensions you are likely to encounter are the following:

.ado Programs that add commands to Stata, such as the SPost commands.
.do Seript or bateh files that contain Stata commands.

.dta  Data files in Stata's format.

-gph Graphs saved in Stata's proprietary format.

.log  Output saved as plain text by the log using command.

.smcl  Output saved in the SMCL format by the log using command.

The most important of these for a new user are the .smcl, .log, .dta, and .do files,
all of which we will cover in the sections that follow.

2.6 Saving output to Iog files

output in the RC‘Sﬂﬂtb wmduw Tu save your output to print or examine later, you must
open a log file. Once a log file is opened, both the commands and the output they
generate are saved in that log file. Because the commands are recorded, you can tell
exactly how the results were obtained. The syntax for the log command is

log using filename [, append replace [ §mc1|§extl]

By default, the log file is saved to your working directory. You can save it to a dif
ferent directory by typing the full path (for example, log using d:\project\mylog,
replace).
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Options

append specifies that if the file exists, new output should be added to the end of the
existing file.

replace indicates that you want to replace the log file if it already exists. For exam-
ple. log using mylog creates the file mylog.smel. If this file already exists, Stata
generates an error message. So, you could use log using mylog, replace, and the
existing file would be overwritten by the new output.

smcl and text specify the format in which the log is to be recorded.

smcl, the default option, requests that the log be written using the Stata Markup and
Control Language (SMCL) with the file suffix .smel. SMCL files contain special
codes that add solid horizontal and vertical lines, bold and italic typefaces, and
hyperlinks to the Results window. The disadvantage of SMCL is that the special
features can be viewed only within Stata. 1f you open a SMCL file in a text editor,
your results will appear amidst a jumble of special codes.

text specifies that the log be saved as plain text (ASCIl), which is the preferred
format for loading the log into a text editor for printing. Instead of adding the
text option (for example, log using mywork, text), you can specify plain text
by including the .log extension (for example, 1log using mywork.log).

Tip: Plain text logs by default. We prefer plain text for output rather than SMCL.
Typing set logtype text at the beginning of a Stata session makes plain text
the default for log files for the current session. Typing set logtype text,
permanently makes plain text the default for the current and future sessions.
In practice, we always use plain text log files; we do not find the advantages of
SMOL to be enough to offset the disadvantage of only being able to read the files
within Stata. If you have a question and would like to send us a log file, please
send it in text format rather than in SMCL!

Closing a log file
To close a log file, type
. log close

When vou exit Stata, the log file closes automatically.

Viewing a log file

Regardless of whether a log file is open or closed, a log file can be viewed in the Viewer
by selecting File—Log—View... from the menu. When in the Viewer, you can print
the log by selecting File—Print.
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Converting from SMCL to plain text or PostScript

If von want to convert a log file from SMCL format into plain text, you can use the
translate command. For example,

. translate mylog.smcl mylog.log, replace
(file mylog.log written in .log format)

converts the SMCL file mylog.smcl into the plain-text file mylog.log. Or, you can
convert a SMCL file into a PostSeript file, which is useful if you are using TEX or IXTEX.
For example.

. translate mylog.smcl mylog.ps, replace
(file mylog.ps written in .ps format)

You can also convert a SMCL file into a PDF file:

. translate mylog.smcl mylog.pdf, replace .
(file mylog.pdf written in PDF format)

Conversions can also be done through the menus by selecting File— Log— Translate.

2.7 Using and saving datasets
2.7.1 Data in Stata format

Stata uses its own data format with the extension .dta. The use command loads:

such data into memory. Pretend that we are working with the filo binlfp4.dta in the
directory d:\spostdata. We can load the data by typing

. use d:\spostdata\binlfp4, clear

where the .dta extension is assumed by Stata. The clear option erases all data cur-
rently in memory and proceeds with loading the new data. (Stata does not give an
error if you include clear when there are no data in memory.) If d:\spostdata was
our working directory, we could use the simpler command

. use binlfp4, clear
In practice. we almost always keep data in our working directory.

If you have changed the data by deleting cases, merging in another file, or creating
new variables, yon can save the file with the save command. For example, }

. save d:\spostdata\binlfp4_V2, replace

where we did not need to include the .dta extension. We saved the file with a different
name so that we can use the original data later. The replace option indicates that if
binlfpd V2.dta already exists, Stata should overwrite it. (If the file does not already
exist. replace is ignored.) If d:\spostdata was our working directory, we could save
the file with 1
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. ‘save binlfp4_VZ, replace

save stores the data in Stata’s eurrent format, which sometimes changes with a new
version of Stata, including with Stata 13. This means that a dataset saved in Stata 13
camot be opened in Stata 12, but a dataset saved in Stata 11 or 12 can be opened in
Stata 13. The saveold command writes the dataset in a format that is compatible with
thie prior format of datp in Stata. If you save a dataset using saveold in Stafa 13, you
can use it in Stata 11 or 12 but not in Stata 10.

2.7.2 Data in other formats

To load data from another statistical package, such as SAS or SPSS, you need to con-
vert it into Stata’s format. The easiest way to do this is with a conversion program
such as Stat/Transfer (http://www.stattransfer.com). We recommend obtaining one
of these programs if you are using more than one statistical package or if you often
share data with others who use different packages. The free statistics package R also
has utilities that allow reading and writing data in different formats. including Stata
format, althongh value labels and notes cannot be transferred this way. Stata has a set
of import and export commands that allow you to deal with data that is in Microsoft
Excel format, varions ASCIL formats, OBDC format, SAS export files, and XML. For de-
tails, type help import or help export, which include links to videos that illustrate
these commands (see also [D] import and [D] export).

2.7.3 Entering data by hand

Data can also be entered by hand with a spreadsheet-style editor. Although we do
not recommend nsing Stata’s Data Editor to change existing data, because it is too
easy to make a mistake, we find the Editor useful for entering small datasets. To open
the Editor, type edit on the command line. Stata’s Getting Started manual has a
tutorial for the Data Editor, but most people who have used a spreadsheet before will
be immediately comfortable. Tt is also easy to import data from Microsoft Excel into
Stata, So, you coull enter data in Excel or another spreadsheet program with which
vou are comfortable and which allows saving in Exeel format (or .xml), and then you
conld import the data.

As you use Stata’s Data Editor, every change that you make to the data is reported
in the Results window and is captured by the log file (if it is open). For example, if
vou change age for the fifth observation to 32, Stata reports replace age = 32 in 5.
This tells yon that instead of using the Editor, you could have changed the data with
# replace command. When you close the Editor, Stata asks if you want to keep the
changes or revert to the unaltered data.
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2.8 Size limitations on datasets

I you receive the error message no room to add more variables, r(900) or system
limit exceeded--see manual, r(1000) when you try to load a dataset or add a vari-
able, your dataset might have too many variables or be too large. These limits depend
on the version of Stata that you are using: 32,767 variables in Stata/SE and Stata/MP,
2,47 in Stata/IC, and 99 variables in Small Stata, For details on other size limits, type
the command help limits. If a dataset is too large for your version of Stata, you can
use transfer programs such as Stat/Transfer to drop specified variables and optimize
variable storage.

2.9 Do-files

You can execute commands in Stata by typing one command at a time into the Com-
mand window and pressing Enter. as we have been doing, This interactive mode is
usefnl when you are learning Stata, exploring your data, or experimenting with alter-
native specifications of your regression model.

You can also create a text file containing a series of commands and then tell Stata
to execute all the commands in that file, one after the other. These files, which are
known as do-files because they use the extension .do, have the same function as syntax
files in SPSS or batch files in other statistics packages. For serious work, we always use
do-files because they make it easier to redo the analysis later with small modifications.

and because they provide an exact record of what has been done.
I
To get an idea of how do-files work, consider the file example.do saved in the working

directory:

log using example, replace text
use binlfpd, clear

tabulate hc we, row nolabel
log close

To execute a do-file, yon type the command
do dofilename

in the Command window. For example, do example tells Stata to run each of the
commands in example.do, one after the other. If the do-file is not in the working
directory, you need to specify the directory path, such as do d:\spostdata\example.
When Stata executes example.do it begins by opening the log example.log, then loads
binlfp4.dta, and finally constructs a table with hc and we. Here is what the log file
looks like:
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name: <unnamed>
log: d:\spostdata\example.log
log type: text
opened on: 01 Mar 2014, 06:04:21

. use binlfp4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

. tabulate hc wc, row nolabel

Key

freguency
row percentage

Husband Wife attended
attended college?
college? 0 1 Total
o 417 41 458
91.05 8.95 100.00
1 124 171 295
42.03 57.97 100.00
Total 541 212 783
71.85 28.15 100.00
. log close

2.9.1 Adding comments

Comments provide documentation within programs. Comments are simply reprinted as
output; they are not treated as commands. Stata has four methods for adding comments
to your do-file, and we use them all.

1. Any line that beging with * is a comment. Because * is also used as the multipli-
cation operator for expressions and as a wildeard operator for variable names and
filenames, * must appear at the beginning of a line to denote a comment.

2. Text following // is a comment, but // can appear anywhere within the line, not
just at the beginning,

3. Text following /// is also a comment except Stata will treat the next line as a
continuation of the current line before the ///. As we will discuss shortly, this is
our preferred way of handling long command lines.

4. Everything between /* and #/ is treated as a comment. no matter how many lines
this spans.
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The following do-file executes the same commands as the one above but includes
commeoents:

/»
==> ghort simple do-file

==> for didactic purposes
-/

log using example, replace // this comment is ignored

// next we load the data
use binlfp4, clear

// tvabulate husband’s and wife s education

tabulate hc we, /// the next line is treated as a continuation of this one
rov nolabel

// close the log file
log close :
[

If you look at the do-files in the spost13_do package that roproduce the examples in this
book, yon will see that we nse many comments. For serious work, we caunot emphasize
enough the importance of including them. Comments are indispensable if others will

be using your do-files or examining the log files, or if there is a chance that you will use
them again later.

2.9.2 Long lines

Sometimes yvou need to execute a command that is longer than the text that fits on
the screen. If you are typing the command interactively, the Command window simply
pushes the left part of the command off the screen as space is needed. In general, we
recommend that none of your lines in a do-lile extend beyond column 80. If the lines

are too long, they will eithier wrap in the output, which makes it harder to read, or be
truncated.

You can deal with long commands in two ways. Specifying /// at the end of a line
in a do-file tells Stata to ignore the line break. Accordingly, the current line and next
line(s) are be treated as one command. For example,

recode inco=e®l 1=500 2=1500 3=3500 4=4500 5=5500 6=6500 7=7500 8=9000 i
9=11250 10=13750 11=16260 12=18750 13=21250 14=23750 15=27500 16=32500 ///
17=37500 1B=45000 19=656000 20=67500 21=75000 »=.

You can also use the #delimit ; command. This tells Stata to interpret ; as the
end of the command instead of interpreting a carriage return as the end of the command.
(A carriage return is the character created when you press the Enter key.) After the
long command is complete, you can run #delimit cr to return to using the carriage
return as the end-of-line delimiter. For example,
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#delimit |

recode income91 1=500 2=1500 3=3500 4=4500 5=5500 6=6500 7=7600 8=8000
9=11250 10=13750 11=16260 12=18750 13=21250 14=23750 16=27500 16=32500
17=37500 18=45000 19=66000 20=67500 21=75000 ==, ;

#delimit cr

Some other programs use ; as the line terminator and nsers familiar with those
programs may be more comfortable using #delimit. Most often we use /// for long
commands. The one time in which we use #delimit ; is when typing a very long graph
command.

2.9.3 Stopping a do-file while it is running

If yon are running a conunand or a do-file that you want to stop before it completes
execution, click on @ or press Ctrl-Break. Sometimes you will have to do this multiple
times, This is becanse some commands ignore the breaks when making computations
that should not be interrupted.

2.9.4 Creating do-files
Using Stata's Do-file Editor

Do-files can he ereated with Stata’s built-in Do-file Editor. To use the Editor, type the
command deedit to create a file to be named later or type doedit filename to create or
edit a file named filename.do. You can also click on & . The Do-file Editor is easy to use
and works like most text editors except that it has several features designed specifically
to support writing do-files for Stata.

e Syntax highlighting assigns colors to different keywords in Stata; the color of
the text changes antomatically as you type. For example, if you are typing the
poisson command. the letters poisso will appear in black until you add the last
n, at which point the entire word becomes blue. If you mistakenly type poison,
the command remains black to indicate that you have the name of the command
wrong. Syntax highlighting may sound merely decorative if you do not have much
experience with coding, but it is actually extremely helpful for detecting and
preventing simple errors.

e You can highlight a section of the do-file, and Stata will execute only the com-
mands that you have highlighted. Yon can also execute only the commands start-
ing wherever the cursor is located to the end of the file.

e A gray vertical line in the Editor indicates where column 80 is, to nudge you to
try to keep individual lines shorter than this.

e Auto-indenting and line folding are features that will become very useful as you
write more complicated programs that use loops.
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I vou have not used the Do-file Editor since earlier versions of Stata, we encourage
VoI to try it again with the many new features added in recent years. Spending some
timme up-front reading (Gs] 13 Using the Do-file Editor can save you a lot, of time in

the long run, |

Using other editors to create do-files

Becanse do-files are plain text files, you can create do-files with any program that
creates text files. Specialized text editors work much better than word processors such
as Microsoft Word. We put this emphatically: If you are writing do-files using a word
processor, you are making life far more difficult than it needs to be, Among other things,
with word processors it is easy to forget to save the file as plain text. While one of the
authors prefers to use Stata’s built-in Do-file Editor, the other prefers a stand-alone
editor that has many features, making it faster to create do-files. For example, you can
create templates that quickly insert commonly used commands,

If you use an editor other than Stata’s built-in Do-file Editor, you might not be able
to run the do-file by clicking on an icon or selecting from a menn.' Instead, you will
need to switch from your editor and then type the command do filename.

Warning. Stata executes commands when it encounters a line break (also called a
carriage return, created when you press the Enter key). If you do not include a
line break after the last line in a do-file. that last line will not be exeented. Stata’s
Do-file Editor handles this automatically by default.

2.9.5 Recommended structure for do-files
This is the basic structure that we recommend for do-files:

1] capture log close
2] 1log using <filename>, replace text

3] versiom 13.1
4] set linesize BO
6] set scheme s2color

6] clear all
7] macro drop _all

8] // task:
sl // m
10] // #2

11] log close
12]  exit

1. Friedrich Huehler's blog (2013) has information on how to integrate Stata with some external text
editors. We have not, however, tried this.
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Because we hope vou will use do-files a lot. let’s briefly review these commands.

Lines 1-2. The command capture log close is very useful. Suppose you have a do-

Line

file that starts with log using mylog, replace. You run the file and it “crashes”
before reaching log close, which means that the log file remains open. If you
revise the do-file and run it again, an error is generated when Stata tries to open
the log file because the file is already open. The prefix capture tells Stata not to
stop the do-file if the command that follows produces an error (see [P] capture).
Accordingly, capture log close closes the log file if it is open. If it is not open,
the error generated by trying to close an already-closed file is ignored. Because of
line 1, line 2 will never generate the error that the log is already open.

3. The version 13.1 command indicates that the program was written for use
in Stata 13.1. This command tells any future version of Stata that you want the
commands that follow to work just as they did in Stata 13. This prevents the
problem of old do-files not running correctly in newer releases of the program. If
vou place the version command after the log command, you ean confirm the
version that was used to generate the ontput in the log.

Lines 4-5. By setting the line size within the do-file, you can be sure that the output

will look the same if you later run the do-file with the line size set to some other
value. The set scheme command controls how graphs will look. By including
this line in the do-file, graphs should look the same when you run the do-file later.

Lines 6—7. These lines remove everything from memory. Although it seems that clear

all would do this by itself, clear all does not remove macros. Accordingly, we
drop them in line 7. We prefer a do-file to be self contained, meaning that it does
not depend on anything in memory from interactive commands or other do-files
that were run in the same session. This way, the do-file will run the same way
later,

Lines 8-10. The comment // task: is where we explain what the do-file is doing.

This might require multiple lines. We generally like to include what is being done,
what project it is associated with, who did it, and when. This information proves
very useful when you return to the do-file later. For long do-files, we find it is
also useful to add numbered comments that explain what each major step of the
program is doiug. This is particularly handy when you are working collaboratively
and discussing the output over the phone or by email.

Lines 11-12. Line 11 closes the log file, but this command will ouly run if line 11 ends

with a carriage return (obtained when yon press the Enter key on your keyboard).
Including exit in line 12 is not required, but it is helpful in two ways: First,
you know that line 11 will execnte, because it is followed by another line, which
required a carriage return at the end of line 11. Second. because exit tells Stata
to exit the do-file, you can use the end of your do-file for recording notes.
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2.10 Using Stata for serious data analysis

Valtaire is said to have written Candide in three days. Creative work often rewards
snch inspired. seat-of-the-pants, get-the-details-later activity—data management does
not. Instead. effective data management rewards forethought, carefuluess, double- and
triple-checking of details, and meticulous, albeit tedious, documentation. Errors in data
management are astonishingly (and painfully) easy to make. Moreover, tiny errors can
have disastrous implications that can cost hours and even days of work. The extra time
it takes to conduct data management carefully is rewarded many times over by the
reduced risk of errors. That is, it helps prevent you from getting incorrect results that
vou do not know are incorrect.

With this in mind, we begin with some broad, perhaps irritatingly practical, sug-
gestions for doing data analysis efficiently and effectively.

1. Ensure replicability by using do-files and log files for everything. For data analysis
to be credible, yon must be able to reproduce entirely and exactly the trail from
the original data to the tables and graphs in your paper. Thus any permanent
changes you make to the data should be made by running do-files rather than by
using the interactive mode. If you work interactively, be sure that the first thing
you do is to open a log file. Then when you are done, you can use these files
to create a do-file to reproduce yvour interactive results. Stata's datasignature
command (see [D] datasignature) also provides a way to ensure that the values
in a dataset yon are using are exactly the same as those used earlier,

2. Document yvour do-files. Reasoning that is obvious today can be baffling in
six months. We use comments extensively in our do-files—they are invaluable
for remembering what we did and why we did it (or for sharing our code with
others). If you use intuitive names for variables and for files, that will also make
it easier to figure out or remember what a do-file is doing.

3. Keep a research diary. For serious work, you should keep a diary that includes a
deseription of every program you run, the research decisions that are being made
(for example, the reasons for recoding a variable in a particulur way), and the
files that are created. A good research diary allows you fo reproduce everything
you have done starting with the original data. We cannot empliasize enough how
helpful such notes are when you return to a project that was put on hold, when
you are responding to reviewers, or when you are moving on to the next stage of
your research.

4. Develop a system for naming files. Usually, it makes the most sense to have each
do-file generate one log file with the same prefix (for example, clean_data.do,
clean data.log). Names are easiest to organize when brief, but they should
be long enough and logically related enough to make sense of the task the file
does. One author prefers short names, organized by major task (for exam-
ple, recode01.do), whereas the other author likes longer names (for example,
MakeIncomeVars.do). Use whatever works best for you.
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5. Use new names for new variables and files. Never change a dataset and save it
with the original name. If yvou drop three variables from pecoms1.dta and create
two new variables, call the new file pcoms2.dta. When you transform a variable,
give it a new name rather than simply replacing or recoding the old variable. For
example, if you have a variable called workmom with a five-point attitude scale, and
vou want to create a binary variable indicating positive and negative attitudes,
create a new variable called workmom?2.

6. Use labels and notes. When you create a new variable, give it a variable label. If
it is a categorical variable, assign value labels. You can add a note about the new
variable by using the notes command (described below). When you create a new
dataset, you can also use notes to document what it is.

=1

Double-check every new variable. Cross-tabulating or graphing the old variable
and the new varialile are often effective strategies for verifying new variables. As
we deseribe below, using list with a subset of cases is similarly effective for
checking translormations. Be sure to look carefully at the frequency distributions
and summary statistics of variables in your analysis. You would not believe how
many times puzzling regression results turn out to involve miscodings of variables
that would have been immediately apparent by looking at the descriptive statistics.

8. Practice good archiving. 1f you want to retain hard copies of all your analyses,
develop a systemn of binders for doing so rather than a set of intermingling piles on
vour desk. Otherwise, maintain an orderly set of directories and filenames rather
than creating files haphazardly. Back up everything, preferably with a system
that works antomatically and saves older versions of files as well. Make off-site
or Clond-based backups or keep any on-site backups in a fireproof box. Should
cataclysm strike, you will have enongh other things to worry about without also
haying lost months or years of work,

Long’s (2008) The Workflow of Data Analysis Using Stata considers all of these
issues in detail.  Long presents methods for planning, organizing, and documenting
vour research to make your work efficient but also, most importantly, to increase the
reliability and replicability of your research.

2.11 Syntax of Stata commands

Think about the syntax of commands in everyday, spoken English. They usually begin
with a verb telling the other person what to do. Sometimes the verb is the entire
command: “Help!” or “Stop!” Sometimes the verb needs to be followed by an object
that indicates whom or what the verh is to be performed on: “Help Dave!” or “Stop the
car!” Sometimes the verh is followed by a gualifier that gives specific conditions under
which the command should or should not be performed: “Give me a piece of pizza if it
daoes not have mushrooms” or “Call me in 10 minufes™. Verbs can also be followed by
adverbs that specify a particular way the action should be performed. such as when a
teacher commands her students to “Talk clearly”™ or “Walk single file”.
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Stata follows an analogous logic, albeit with some wrinkles that we will introduce
later, The basic syntax of a command has four parts:

. Command: What action do you want performed?

2. Names of variables, files, or other objects: On what things is the command to be
performed?

3. Qualifier on observations: On which observations should the command be per-
formed?

1. Options: What special things should be done when executing the command?

All commands in Stata require the first of these parts, just as a spoken command
requires a verb. Each of the other three parts can be required, optional, or not allowed,
depending on the particular command and circumstances. To illustrate how commands
work before we get into the details, we use the tabulate command to make a two-way
table of the frequencies of variables he by we:

. use binlfp4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

. tabulate hc wc if age>d40, row

Key
frequency
Tow percentage
Husband Wife attended
attended college?
college? no college Total
no 263 23 286
91.96 8.04 100.00
college 58 91 149
38.83 61.07 100.00
Total 321 114 435
73.79 26.21 100.00

By putting he before we, we make he the row variable and we the column variable.
The condition if age>40 specifies that the frequencies should include observations only
for those older than 40. The option row indicates that row percentages should be printed
as well as frequencies. These percentages allow us to see that in 61% of the cases in
which the husband had attended college, the wife had also done so, whereas wives had
attended college in only 8% of cases in which the husbands had not. Notice the comma
preceding row: whenever options are specified, they are at the end of the command with
a single comma to indicate the beginning of the list of options. The precise ordering of
multiple options after the comma is never important.

Next, we provide more information on each of the four components of syntax.
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2.11.1 Commands

Commands define the tasks that Stata is to perform. A great thing about Stata is
that the set of commands is completely open ended. It expands not just with new
releases of Stata but also when users add their own commands, such as our added SPost
commands. Each new command is stored in its own file, ending with the extension
.ado. Whenever Stata encounters a command that is not in its built-in library, it
searches various directories for the appropriate ado-file. A list of the directories it
searches and the order in which it searches them can be obtained by typing adopath.
This list includes all the places Stata intends for storage of official and user-written
commards.

2.11.2 Variable lists

Variable names are case sensitive. For example, you could have three different variables
named income. Income, and inCome. Of course, this is not a good idea because it leads
to confusion. To keep life simple, we typically stick to lowercase names. Stata allows
variable names 1p to 32 characters long, compared with the 8 character maximum im-
posed by earlier versions of Stata and by some other statistics packages. We recommend
using shorter names becanse longer variable names become unwieldy to type. We also
recommend nging variable names that have some mnemonic value because completely
arbitrary names (for example, var00031) invariably lead to confusion. Although vari-
able names can be abbreviated to the initial set of characters that identifies the variable
uniquely. we worry that too much reliance on this feature might cause mistakes to be
made.

Many commands assume that if you have not listed any variables as arguments. then
you want to perform the operation on every variable in the dataset. For example, the
summarize command provides summary statistics on the listed variables:

. summarize inc k5 wc

Variable | Ubs Mean Std. Dev. Min Max
ine 763  20,12897 11.6348 ~-.0280001 a6
k5 763 . 2377158 .523959 v] |

we 753 . 2815405 .4500494 0 1
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We could also get summary statistics on every variable in our dataset by just t}'pinf |
summarize without any variables listed:
3
. summarize s
Variable Obs Mean  Std. Dev. Min Max :
caseid 7583 37 217.5167 1 753
1fp 753 .6683931  .4956295 0 1
k5 753 .23771568 .523959 0 3
k618 753 1.353254  1.319874 0 a 4
age 7563 42.53785  8.072574 30 60
we 753 2815406  .4500494 0 1
he 753 . 3917663 .4884694 0 1
lvg 753 1.097115  .5876664 ~2.054124 3.218876
ine 753 20.12897 11.6348 -.0290001 96 |
age3039 753 L 3957503 +4893363 0 1
age4049 753 3851262 4869486 0 1
ageS0plus 753 +2191236 4139274 0 1
agecat 763 1.823373 7644952 1 3
k5_0 753 8047809 3966327 0 1 |
k5_1 753 . 1667066 363765658 0 1
k5_2 753 0345286 1827038 0 1
k5_2plus 753 ,0385126 . 1926681 0 1
k5_3 763 .0039841 .0630354 0 1
kbcat 763 .2337317 5064257 0 2
k618_0 753 . 3426296 AT49042 0 1
k618_1 753 .2456839  .4307781 0 1
k618_23 753 3619266 4TTB8B3 0 %
k618_4plus 753 080761 .237201 0 1
x518cat 753 1.128818 9582402 0 3
wages 753 3.566993 2.644393 .1282061 25

You can also select all variables that begin or end with the same lefters by using the
wildcard operator *. For example, to summarize all variables that begin with 1, type

. summarize 1®

Variable ] Obs Mean Std. Dev. Min Max
1fp 763 . 5683931 4956295 4] 1
1lwg 753 1.097116 .587ES64 -2.064124 3.2188786

Tip: Removing the separator. If you do not like the horizontal separator that ap-
pears after every five variables in the output for summarize, you can remove it

|
with the option sep(0), such as summarize, sep(0).
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2.11.3 if and in qualifiers

Stata has two qualifiers that restrict the sample being analyzed: if and in. The in
qualifier performs operations on a range of consecutive observations. Typing summarize
in 20/100 gives summary statistics for only the 20th through the 100th observations.
in restrictions depend on the eurrent sort order of the data, meaning that if you re-sort
vour data, the 81 observations selected by the restriction summarize in 20/100 might
be different.?

In practice, if conditions are nsed much more often than in conditions. The if
qualifier restricts the observations to these that fulfill a specified condition. For example,
summarize if age<50 provides summary statistics for only those observations where
age is less than 50. Here is a list of operators that can be used to construct logical if

statements:

Operator Definition Example

== Equal to if female==1
1= Not equal to if female!=1
> Greater than if age>20
>= Greater than or equal to. if age>=21

< Less than if age<66
<= Less than or equal to if age<=65

& And if age==21 & female==1
| Or if age==21 | educ>16

Two notes about the if qualilier:

1. Use a double equal sign (for example, summarize if female==1) to specify a
condition to test. When assigning a value to something, such as when creating
a new variable, use a single equal sign (for example, gen newvar = 1). Putting
these examples together results in gen newvar = 1 if female==1.

2. A missing-value code is treated as the largest positive number when evaluated
with an if condition. In other words, Stata treats missing cases as positive in-
finity when evaluating if expressions. If you type summarize ed if age>50. the
summary statistics for ed are calculated on all observations where age is greater
than 50, including cases where the value of age is missing. You must be care-
ful of this when using if with > or >= operators. If you type summarize ed if
age<.. Stata gives summary statistics for cases where age is not missing. En-
tering summarize ed if age>50 & age<. provides summary statistics for those

2, No Stata command should change the sort order of the data—unless that is the purpose of the
command—but readers should beware that user-written programs may not always follow proper
Stata programming practice.
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cases where age is greater than 50 and is not missing. See section 2.12.3 for more
details on missing values.

Examples of if qualifier

If we wanted summary statistics on income for only those respondents who were between:
the ages of 25 and 65, we would type

. summarize income if age>=25 & age<=65

If we wanted summary statistics on income for only female respondents who were be-
tween the ages of 25 and 65, we would type

. summarize income if age>=25 & age<=65 & female==1

If we wanted summary statistics on income for the remaining female respondents—that
is, those who are younger than 25 or older than 65— we wonld type

. summarize income if (age<26 | age>65) &k age<. & female==1

We need to include & age<. because otherwise, the condition (age<25 | age>65)
wonld include those cases for which age is missing,

2.11.4 Options

Options are set off from the rest of the command by a comma. Options can often be ab-
breviated, although whether and how they can be abbreviated varies across commands.
In this book, we rarely cover all the options available for any given command, but you
can use help to see them all.

2.12 Managing data
2.12.1 Looking at your data

Two easy ways to look at your data are browse and 1ist. The browse command opens:
a spreadsheet (in the Browser) in which you can seroll to view the data but you cannot
change the data. You can view and change data with the edit command (in the Data
Editor), but this is risky. We much prefer making changes to our data using do-files,
even when we are changing the value of only one variable for one observation. The
Browser is also available by clicking on &, and the Data Editor is also available by
clicking on &

The list command creates a list of values of specified variables and observations.
if and in qualifiers can be used to look at just a portion of the data. which is sometimes
useful for checking that transformations of variables are correct. For example, if you
want to confirm that the variable Ininc has been correctly constructed as the natural
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log of inc, you could type list inc lninc in 1/20 to the values of inc and Ininc for
the first 20 observations.
2.12.2 Getting information about variables

You ean obtain basic information about your variables in several ways. Here are the
commands that we find useful. Which one you use will depend mostly on the kind and
level of detail you need.

codebook, compact. This command gives you basic descriptive statistics along with
variable labels:

. codebook 1fp k5 k618 agecat wc hc lwg inc, compact

Variablea Obs Unigque Mean Min Max Label

1fp 753 2 .5683931 0 1 1In paid labor force?

k5 763 4 .2377168 V] 3 #kids < 6

k618 763 9 1,353254 0 8 # kids 6-18

agecat 763 3 1.8233713 1 3 Wife's age group

we 763 2 .2815406 0 1 Wife attended college?

he 753 2 3917663 0 1 Husband attended college?
lug 763 676 1.097116 -2.064124 3.218876 Log of wife's estimated...
ine 763 621 20.12897 -.0290001 96 Femily income excluding...

We often use this cormmand at the start of do-files to provide a summary of the variables
being analyzed. While codebook, compact does include the variable label, it does not
include the standard deviation.

summarize. To get deseriptive statistics including the standard deviation, we use the
summarize command, which does not include the variable label. By default, summarize
presents the number of nonmissing observations, the mean, the standard deviation, the
minimum values, and the maximum values. Adding the detail option includes more
information. For example.

. summarize inc, detail
Family income excluding wife's

Percentiles Smallest

1% 3.777 -.0290001

74 7.044 1.2
10% 9.02 1.6 Obs 753
26% 13.026 2.134 Sum of Wgt. 753
50% 17.7 Mean 20.12887
Largest Std. Dev. 11.6348

75% 24,466 79.8
0% 32.7 88 Variance 136.3685
857 41.1 91 Skevness 2.2105631
299 68.035 96 Rurtosis 11.38368
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tabulate and tabl. The tabulate command creates the frequency distribution for a
variable. For example,

. tabulate hc

Husband
attended
collage? Freg. Parcent Cum .
no 458 60,82 60.82
college 296 39.18 100.00
Total 753 100.00

If you do not want the valwe labels included, add the nolabel option:

. tabulate hc, nolabel

Husband
attended
college? Freq. Parcent Cum.
0 458 60.82 60.82
1 295 39.18 100.00
Total 783 100.00

If you want a two-way table, type

. tabulate hc wc

Husband Wife attended
attended college?
college? no college Total
no 417 41 458
college 124 171 295
Total 841 212 763

By default, tabulate does not tell you the number of missing valnes for either variable.
You can specify the missing option to include missing walues. We recommend this
option whenever yon are generating a frequency distribution to check that some trans-
formation was done correctly. The options row, col, and cell request row, column,
and cell percentages, respectively, along with the frequency counts. The option chi2
reports the y? for a test that the rows and columns are independent.
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Although you need a separate tabulate command for each variable, tabl computes
univariate [requency distributions for each variable listed. For example,

. tabl hc we
-> tabulation of hc

Husband
attended

college? Freq. Percent Cum.

no 458 60.82 60.82

college 255 39.18 100,00

Total 763 100.00

~» tabulation of wc

Wife
attended
college? Freq. Percent Cum.
no 541 71.85 71.85
collage 212 28.15 100.00
Total 763 100.00

dotplot. This command provides s quick graphical summary of a variable, which is
useful for checking your data. For example, dotplot inc leads to the following graph:
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Details on saving, printing, and enhancing graphs are given in section 2.17.
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codebook and describe. If you click on a variable in the Variables window, information
on that variable will be displayed in the Properties window. You will see the name of
the variable, the labels associated with it, and its storage and display formats. If you
have saved notes about the variable with the notes command (see 2.14.3 below and
|D| notes), these are also displayed in this window. The same information (except for
the notes) is available using the describe command, and describe can be used to list
this information for multiple variables at once. For example,

. describe 1fp k& k618 agecat wc hc lug inc
storage display value

variable name type format label variable label i
I

1fp byte 9.0g 1fp In paid labor force?

kb6 byte %9.0g # kida < 6

k618 byte %9.0g # kids 6-18

agecat byte 49.0g agecat » Wife s age group

ve byte %9.0g Leol Wife attended collage?

hc byte %9.0g Leol Husband attended college?

lwg float %9.0g Log of wife s estimated vages

inc float %9.0g Family income excluding wife’s

The codebook command also provides more detailed information in a format de-
signed for printing a codebook. For example,

. codebook inc
inc Family income excluding wife’s
type: numeric (float)
range: [-.02000009,96) units: 1.000e-09
unique values: 621 miseing .: 0/753
mean: 20.129
std. dev: 11.6348
percentiles: 10% 25% 50Y% T84 a0%
9.02 13.0256 17.7 24,468 32.7

2.12.3 Missing values

Although numeric missing values are automatically excluded when Stata fits models,
they are stored as the largest positive values. Twenty-seven missing values are available,
with the following ordering:

alnumbers < . € a < b < v < 2

This way of handling missing values can have unexpected consequences when deter-
mining samples. For instance, the expression if age>65 is true when age has a value
greater than 65 and when age is missing. Similarly, the expression if occupation!=1
is true if occupation is not equal to 1 or if occupation is missing. When expressions
such as these are required, be sure to explicitly exclude any unwanted missing values.
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For instance, if age>65 & age<. would be true only for those people whose age is not
missing and who are over 65. Similarly, if occupation!=1 & occupation<. would be
true only when the occupation is not missing and is not equal to 1.

The different missing values can be used to record the distinet reasons why a vari-
able is missing. For instance, consider a survey that asked people about their driving
records and contains a variable to record whether the respondent received a ticket after
being involved in an accident. Any missing variables could be denoted .a to indicate
the respondent had not been involved in any accidents or denoted .b to indicate the
respondent refused to answer the guestion.

2.12.4 Selecting observations

As previously mentioned, you can select specific sets of observations with the if and in
qualifiers; for example, summarize age if we==1 provides summary statistics on age for
only those observations where we equals 1. Sometimes it is simpler to remove the obser-
vations with either the drop or the keep command. These commands remove or keep
observations from memory (not from the .dta file) based on an if or in specification.
The syntax is

drop [-i'.n:[ [if]

or

keep [ iﬂ.] [ if ]

With drop, only observations that do not meet the specified conditions are left in
memory. For example, drop if we==1 keeps only those cases where we is not equal to
1, including observations with missing values on we.

With keep, only observations that meet the specified conditions are left in memory.
For example, keep if we==1 keeps only those cases where we is equal to 1; all other
observations, inchiding those with missing values for we, are dropped from memory.

After selecting the observations that you want, you can save the remaining variables
to a new dataset with the save command.

2.12.5 Selecting variables
You ean also simply select which variables you want to drop or keep. The syntax is

drop variable_list
or

keep variable_list
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With drop. all variables are kept except those that are explicitly listed, which are
dropped.  With keep, only those variables that are explicitly listed are kept. After
selecting the variables that you want, you can save the remaining variables to a new
dataset with the save command.

2.13 Creating new variables

The variables that you analyze are often constructed differently from the variables in
the original dataset. Here we consider basic methods for creating new variables. Our
examples always create a new variable from an old variable rather than transforming an
existing variable. Even though you can simply transform an existing variable, we find
that this can lead to mistakes.

In addition to the commands discussed in this section, vou can use Stata’s factor-
variable notation, which tells Stata how to create new varinbles “on the Hy™ from existing
variables during the analysis. For example, specifying regress y c.age c.age#c.age
tells Stata to run a regression with the independent variable age and age-squared. Ouly
the variable age is in the dataset, but c.age#c.age tells Stata that age is a continuous
variable and that a term for the square of age should be added to the regression. Factor-
variable notation allows you to create powers of variables, interactions between variables,
and indicator variables. This valuable tool, which is nsed tliroughout the book. is
discussed in detail in section 3.1.5.

2.13.1 The generate command

The generate command creates new variables. For example. to create age2 as an exact
copy of age, type

. generate age2 = age
. summarize age2 age

Variable | Obs Mean Std. Dev. Min Max
age? 763 42.63785 B8.072674 30 60
age 763 42.53788 B8.072674 30 60

The results of summarize show that the two variables are identical. We used a single
equal sign because we are making a variable equal to some value,

Observations excluded by if or in qualifiers in the generate command are coded
as missing. For example, to generate age3 that equals age for those over 40 but is
otherwise missing, type
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. gen aged = age if age>40
(318 missing values generated)

. summarize age3 age

Variable | Obs Mean Std. Dev. Min Max
age3 438 48.3977 4.936509 41 60
age 753 42.53785 8.072674 30 60

Whenever generate (or gen, as it can be abbreviated) produces missing values, it tells
yvou how many cases are missing.

generate can also create variables that are mathematical functions of existing vari-
ables. For example, we can create agesq that is the square of age and create 1nage
that is the natural log of age:

. gen agesq = age™2
. gen lnage = ln(age)

For quick reference, here is a list of the standard mathematical operators:

Operator Definition Example

# Add gen y = atb

- Subtract gen y = a-b

/ Divide gen density = pop/area
* Multiply gen y = a*b

Take to a power gen y = a™3

Here are some particularly useful functions:

Function Definition Example

In() Natural log  gen lnwage = 1ln(wage)
exp() Exponential gen y = exp(a)
sqrt() Square root  gen agesqrt = sqrt(age)

For a complete list of functions, type help functions. The functions we list above are
listed under Mathematical functions. For working with probability distributions, the
functions in the Probability distributions and density functions category can be very
helpful. For working with string (text) variables, the functions in the String functions
category are valuable.
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Tip: Using clonevar instead of generate. Although generate newvar = oldvar is
the most intuitive way of creating a copy of the values of oldvar as newvar, some-
times clonevar newwar = oldvar is a better alternative. clonevar copies not
only the values of oldvar but also the variable lubel, value label, and other at-
tributes. Note that if you usnally give value labels the same name as the variables
they apply to, clonevar does not re-create or rename value labels. Instead, the
lubel names for oldvar also will be attached to newvar.

Using the generate command with various funetions is only one way to create new
variables. A second approach is to use the egen command, which includes some powerful
tools for creating variables. For example, the egen std() function standardizes variables
by subtracting the mean and dividing by the standard deviation. The egen rom_eano“_
function will compute a new variable that is the mean of a set of variables (althongh
be sure to check the help file for how missing-variable values are handled). Many egen
Tunetions also support the by varlist: prefix that allows you to compute functions based
on group-specific values. For example, by female: egen std(varname) standardizes
a variable within sex, so the mean for both men and women is 0. The best way to
familiarize yourself with the functionality available through egen is to read help egen
or [D] egen.

2.13.2 The replace command

replace has the same syntax as generate but is used to change values of a variable
that already exists. For example, say we want to make a new variable, aged4, that equals
age if age is over 40 but equals 40 for all persons aged 40 and under. First, we create
age4 cqual to age. Then we replace those values we want to change:

- gen aged = age
.- replace aged = 40 if age<40
(208 real changes made)

.- summarize aged age

Variable | Obs Mean Std. Dev. Min Max
aged 753 44.85126 5.593886 40 60
age 753 42.53785 8.072674 30 60

replace reports how many values were changed. This is useful in verifying that the
command did what you intended. summarize confirms that the minimum value of age
is 30 and that age4 now has a minimum of 40 as intended.
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‘Warning. We could have simply changed the original variable: replace age = 40 if
age<40. But if we did this and saved the data, there would be no way to return
to the original values for age if we later needed them. As a general rule, never
change an existing variable. Instead, create a copy and make changes to the copy.

2.13.3 The recode command

The values of existing variables can also be changed using the recode command. With
recode, you specify a set of correspondences between old values and new ones. For
example, you might want old values of 1 and 2 to correspond to new values of 1, old
values of 3 and 4 to correspond to new values of 2, and so on. This is particularly useful
for combining categories.

Like before, we recommend that you start by making a copy of the existing variable
and then recode the copy. Or, to be more efficient, you can use the recode command
with the generate (newwvarname) option. With this option, Stata creates a new variable
instead of overwriting the old one. We include several examples of recode below: for
more, type help recode.

To change 1 to 2 and 3 to 4 but leave all other values unchanged, type

. recode origvar (1=2) (3=4), generate(myvaril)
(23 differences between origvar and myvari)

To change 2 to 1 and change all other values, including missing, to 0, type

. recode origvar (2=1) (+=0), generate(myvar2)
(100 differences between origvar and myvar2)

The asterisk (*) indicates all values, including missing values, that have not been ex-
plicitly recoded.

To change 2 to 1 and change all other values except missing to 0, type

. recode origvar (2=1) (nonmissing=0), gemerate(myvar3)
(B9 differences between origvar and myvar3d)

To change values from 1 to 4, inclusive, to 2 and keep other values unchanged, type

. recode origvar (1/4=2), generate(myvar4)
(40 differences between origvar and myvar4)

To change values 1, 3, 4, and 5 to 7 and keep other values unchanged, type

. recode origvar (1 3 4 5=7), generate(myvarb)
(55 differences between origvar and myvarS)
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To change all values from the minimum through 5 to the minimom, type

. recode origvar (min/S=min), generate(myvar§)
(56 differences between origvar and myvar6)

To change missing values to 9, type

. recode origvar (missing=9), gensrate(myvar7)
(11 differences between origvar and myvarT)

recode can be used to recode several variables at once if they are all to be recoded
the same way, Just include all the variable names before the instructions on how they
are to he recoded and, within the parentheses of the generate() option, include all the
names for new variables if you do not want the old variables to be overwritten.

2.14 Labeling variables and values

Variable labels provide deseriptive information about what a variable measures. For
example, the variable agesq might be given the varinble label “age-squared”, or warm
could have the label “Mother has a warin relationship”. Value labels provide labels for
the different values of a categorical variable. For example, value labels might indicate
that the values 1-4 correspond to survey responses of strongly agree, agree, disagree.
and strongly disagree. Adding labels to variables and values is not much fun, but in the
long run, it ean save much time and prevent misunderstandings. We believe all vm"iabli!_s'
should have variable labels, and value labels should be used for at least all ordinal and
nominal variables, as well as any variables that use multiple missing value codes. Also,
some of the commands in SPost produce output that is more casily understood if the
dependent variable has value labels.

2.14.1 \Variable labels

The label variable command attaches a label of up to 80 characters long to a variable.
For example,

- use geskidvalued, clear
(1993 and 1994 General Social Survey)

- EeR agesq = agesage
. label variable agesq "age-squared of respondent”
. codebook age agesq, compact

Variable Obs Unique Mean Min Max Label
age 4598 T3 46,12376 18 99 age of respondent
agesq 4598 73  2427.72 324 9801 age-squared of respondent

I =
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I no label is specified, any existing variable label is removed. For example,

. label variable agesq
. codebock agesq, compact
Variable Obs Unique Mean Min Max Label

agesq 4598 73 2427.72 324 9801

Tip: Use short labels. Although variable labels can be up to 80 characters long, we
recommend that you strive to be concise. Output often does not show all 80
characters and truncates the label instead. For the same reason. we also find it
useful to put the most important information at the beginning of the label. That
way, if the label is truncated, you will still see the critical information.

Tip: Searching variable labels. Typing lookfor siring will search the dataset in
memory and list all variables in which string appears in either the variable name
or the variable label.

2.14.2 Value labels

Beginners often find value labels in Stata confusing. What may be most nonintuitive is
that Stata splits the process of labeling values into two steps: creating labels and then
attaching the labels to variables.

Step | defines a set of labels without reference to a specific variable. Here are some
examples of vilue labels:

. label define Lyesno 1 yes 0 no

. label define Lposneg4 1 veryN 2 negative 3 positive 4 veryP

. label define Lagreed 1 Strongh 2 Agree 3 Disagree 4 StrongD

. label define Lagreeb 1 StrongA 2 Agree 3 Neutral 4 Disagree 5 StrongD

Several features of the labels demonstrated above are worth noting:

1. Each set of value labels is given a unique name (for example, Lyesno, Lagreed).
We often use the convention of starting a label name with L if it is used with
multiple variables. If a label will be used with only one variable, we give the label
the name of the variable, as illustrated below. This way, if we change a label that
starts with L, we know to make sure that the change is appropriate for all the
variables that use that label.

2. Periods, colons, and curly brackets in value labels produce errors in some com-

mands and should be avoided. Although we commonly use spaces in labels (for
example, Strong A), in rare instances these can also cause problems.
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3. Our labels are generally 10 characters or shorter because some programs have trou-
ble with long value labels. We might use longer labels if we know the commands:
we are using can handle them.

Step 2 assigns the value label definitions to variables. Let’s say that variables female.
black. and anykids all imply “yes and no” categories with 1 as yes and 0 as no. To
assign lnbels to the values, we would use the following commands:

. label values female Lyesno

- label values black Lyesno

. label values anykids Lyesno

. describe female black anykids

storage

display value

variable name  type format label variable label
female byte %8.0g Lyesno Female

black byte %9.0g Lyesno Black

anykids byte %9.0g Lyesno R have any children?

The output for describe shows which value labels were assigned to which variables.
The new value labels are reflected in the output from tabulate:

. tabulate anykids

A have any
children? Freq. Percent Cum,
no 1,267 27.64 27.64
yes 3,317 72.36 100.00
Total 4,584 100.00

For the degree variable, we assign labels that will be used only with that variable.

Accordingly, the name of the variable and the label are the same:

. label define degree 0 "no_hs" 1 "hs" 2 "jun_col" 3 "bachelor" 4 “graduate®

. label values degree degree

. tabulate degree

rs highest

degree Freq. Percent Cum.
no_hs 801 17.47 17.47
ha 2,426 52.92 70.40
jun_col 273 5.96 76.35
bachelor 750 16.36 92.71
graduate 334 7.29 100.00

Total 4,584 100.00

If you want a list of the value labels being used in your current dataset, use the

command labelbook, which provides a detailed list of all value labels, including which
labels are assigned to which variables. This can be useful both in setting up a complex

dataset and for documenting

your data,
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2.14.3 The notes command

The notes command allows you to add notes to the dataset as a whole or to specific
variables. This is often referred to as adding metadata. Because the notes are saved in
the dataset, the information is always available when you use the data. Here we add
one note describing the dataset and two describing the income variable:

. notes: Genseral Social Survey extract for Stata book | J Freese | 2014-01-23
. netes income: self-reported family income, measured in dollars
. notes income: refusals coded as migsing

These notes can be viewed in the Properties window. We can also review the notes by
typing

. notes

_dta:
1. GOeneral Social Survey extract for Stata book | J Freese | 2014-01-23

income:
1. self-reported family income, measured in dollars
2. refusals coded as missing

If we save the dataset after adding notes, the notes become a permanent part of the
dataset.

2.15 Global and local macros

Good programming and data analysis practice involves repeating oneself as little as
possible. Among the most powerful and flexible tools toward this end in Stata are
macros. Because later in the book we nse macros extensively, we introduce them briefly
here, Readers who have less familiarity with Stata might want to skim this section and
the next for now and read them later when macros and loops are used in later chapters,

The term “macro” can be confusing for people familiar with its use in some other
software packages, notably, Microsoft Word. We have found it is easier for people to
get the hang of macros in Stata if they simply set aside any sense of the term they have
acquired using other software. In Stata, a macro is a name associated with a string of
characters or a number. Once a macro is created, whenever Stata encounters the macro
name, it autormatically substitutes the contents of the macro.

To give an example, pretend that you want to generate a series of two-by-two tables
where you want cell percentages, requiring the cell option; missing values, requiring
the missing option; values printed instead of value labels, requiring the nolabel option:
the table to be printed without a key, requiring the nokey option: and the chi-squared
test statistic, requiring the chi2 option. Even if you use the shortest abbreviations, this
wonld require typing cell miss nolabel chi2 nokey at the end of each tabulate
command. Instead, you could use the following command to define a global macro
called myoptions:
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. global myoprions ", cell miss nolabel chi2 nokey"

Whenever yon type $myoptions (the $ tells Stata that myoptions is a global macro),
Stata substitutes , cell miss nolabel chi2 nokey; that is, if you type

. tabulate 1fp wc $myoptions
Stata interprets this as if you had typed
. tabulate 1fp wc, cell miss nolabel chi2 nokey

Clobal macros are “global” because, onee they are set. they can be accessed by any
do-file or command until you either exit Stata or drop the macro from memory. The
flip side is that global macros can be reset by any of the do-files or commands that you
use along the way. By contrast, a local macro can be accessed only within the do-file in
which it is defined. When the do-file terminates, the local maero disappears, We prefer
using local macros whenever possible because you do not have to worry about conflicts
with other do-files or commmands that try to nse the same macro name for a different
purpose.

Local macros are defined using the local command, and they are referenced by
placing the name of the local macro in single quotes, for example, “myoptions”. The
two single quote marks use different symbols. On many keyboards, the left single quote
" is in the upper left-hand corner, whereas the right single quote * is next to the Enter
key. If the operations we just performed were in a do-file, we could have produced the
same output with the following lines:

. local myoptions ", cell miss nolabel chi2 nokey"
. tabulate 1fp wc “myoptions’
(cutput cmitted )

Macros can also be used as a shorthand way to refer to lists of variables. For example,
you could use these commands to create lists of variables;

- local demogvars "age white female"
. local edvars “highsch college graddeg"

Then when you run regression models, you could use the command
. regress y “demogvars” "edvars’

which Stata would translate into
. regress y age white female highsch college graddeg

Or you could tise the command
- regress y "demogvars® “edvars” x1 x2 x3

which Stata would translate into

- regress y age white female highsch college graddeg x1 x2 x3
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This technique has several advantages. First, it is easier to write the commands because
yvou do not have to retype a long list of variables. Second, if you change the set of
demographic variables that you want to use, you have to do it in only one place, which
reduces the chance of errors.

Often. when you use a loeal macro name for a list of variables, the list becomes
longer than one line. As with other Stata commands that extend over one line, yon can
use ///, as in

local vars age age squared income education female occupation dadeduc ///
dadocc momeduc momocc

You can also define macros to equal the result of computations. After typing local
four = 2+2, the value 4 will be substifuted for ~four”. Stata contains many macro
functions in which items retrieved from memory are assigned to macros (see [P| macro).
For example, to display the variable label that you have assigned to the variable wc,
you can type

. local wclabel : variable label wc
. display "“wclabel ™"
Wife College: 1=yes O=no

We have only scratehed the surface of the potential of macros. Macros are immensely
flexible and are indispensable for a variety of advanced tasks in data analysis. By the
time you finish this book, you will have mastered their use. For users interested in
advanced applications, read [P] macro.

2.16 Loops using foreach and forvalues

Loops let you execute a set of commands multiple times. Suppose we have a four-
category ordinal variable y with values from 1 to 4. We want to create the binary
variables y.1t2, y.1t3, and y_1t4 that equal 1 if y is less than the indicated value or
equal 0 otherwise. We could create the variables with three generate commands:

generate y_l1t2 = y<2 if y<.
generate y_1t3 = y<3 if y<.
generate y_ltd = y<4 if y<.

The if condition selects cases where y is not missing. The same thing can be done with
a foreach loop:

1] foreach cutpt in 2 3 4 {
2] generate y_lt cutpt™ = y< cutpt” if y<.
3l }

Line 1 starts the loop with the foreach command. cutpt is the name of a local macro
that will hold the cutpoint used to dichotomize y. Each time through the loop, the value

of cutpt changes, where in signals the start of a list of values that will be assigned in
sequence to the local macro cutpt. The numbers 2 3 4 are the values to be assigned
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to cutpt. The curly brace { indicates that the list has ended. Line 2 is the command
we want to execute multiple times. Notice how the generate command is constructed
using the macro cutpt created in line 1. Line 3 ends the foreach loop with }.

Here is what happens when the loop is executed. The first time through foreach,
the loeal macro cutpt is assigned the first value in the list. This is equivalent to the
command local cutpt = 2. Next, the generate command is run, where ~cutpt” is
replaced by the value assigned to cutpt. Thus line 2 is evaluated as

generate y_lt2 = y<2 if y<.

Next, the closing brace } is encountered. which sends us back to the foreach command
in line 1. In the second pass, foreach assigns cutpt to the second value in the list,
which means that the generate command is evaluated as

generate y_lt3 = y<3 if y<.

This continues once more, assigning cutpt to 4. When the foreach loop ends, three
variables have been generated.

Next, we want to estimate binary logits on y_1t2, y.1t3, and y. 1t4.* We assign
the independent variables to the local rhs (which stands for “right-hand side™ of the
model}):

local rhe "yr89 male white age ed prat"
To run the logits, type

logit y_1t2 “rhs”
logit y_1t3 “rhs”
logit y_1t4 “rhs”

Or we could do the same thing with a loop:

foreach 1hs in y_1t2 y_1t3 y_1t4 {
logit "lhs" “rhs”

Using foreach to fit three models is probably wore trouble than it is worth. But
suppose that we also want to compute the frequency distribution of the dependent
variable and fit a probit model. We need to add only two lines to the loop:

foreach lhs in y_1t2 y_1t3 y_1t4 {
tabulate “1lhs~
logit  “1lhs~ “rha”
probit "1hs” “rhs”

If we want to add the missing option to tabulate, we have to make the change in only
one place to apply it to all three outcomes.

3. Essentinlly, we are making an informal assessment of the purallel regression assumption that is
considered in chapter 7.
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The forvalues command loops through numbers. The syntax is

forvalues [ocal-name = range {
commands referring to * local-name”

}
where mange can be specified as
Syntax Meaning Example  Generates
#1(#d)#2 From #1I to #2in steps of #d 1(2)10 1,3,5, 7,9
#11#2 From #1 to #2 in steps of 1 1/10 1,2,3,...,10
#1 #t to #2 From #1to #2insteps of (#t—#1) 1 4 to 15 1,4, 7,10, 13

For example, to loop through ages 40 to 80 by 5s:
forvalues i = 40(5)80 {

Or to loop from 0 to 100 by 0.1;
forvalues i = 0(.1)100 {

Loops are easy to use, and they make yvour workHow faster and more accurate. In
later chapters, we use them regularly to make our work more efficient. For further infor-
mation. type help foreach or help forvalues, or see [P| foreach or [P] forvalues.

2.17 Graphics

Stata has an extensive and powerful graphics system. Not only can you create many
different kinds of graphs, but you have control over almost all aspects of a graph's
appearance, The cost of this is that the syntax for making a graph can ger complicated.
Here we provide a brief introduction to graphics in Stata, focusing on the types of graphs
that we use in later chapters. Our hope is to provide a basic understanding of how the
graphics system works so that you can start using it.

For more information, we suggest the following. The Stata Graphics Reference
Manual is an invaluable reference when you already have a good understanding of what
vou want to do. but we find it less helpful when you want to be reminded of what
an option is called or get ideas about what kinds of graph to use. For this, we find
Mitchell's (2012b) A Visual Guide to Stata Graphics fo be useful. This book shows
hundreds of graphs along with the Stata commands used to generate them. The book
is organized in a way that makes it easy to scan the pictures until you see a graph that
does what you want. You can then look at the text to find out which options to use.

The way we use Stata to make graphs differs from how we use Stata to fit models (or
to do virtually anything else). Namely, when making graphs, we extensively use dialog
boxes. If you pull down the Graphics menu (or press Alt-g), vou will see a list of the
plot types and families of plot types available in Stata:



4

Chapter 2 Introduction to Stata

0
Vi i O S lessscs H-_HM—_M
e N e e e

Stata/MP 15 - Chiatu\binitod dta « [Rewiri]

Wevirw i L]
¥ G Pt e — W
s 7
A e f 1S 131  Copyrigh TMS-I9L3 BtataCoey LY
Tyl e ] b
L A80% Labwwey Duawe
= o) Efitums Callege Itatinm, Teass TTH44 UIR
i d. ol B9~ NTATA PO WETR R
Leataglet mants PN - d0se racabinate e
Tema s gzt . FTEAN-0621 | fan)
e et et .
| Sre Mate Setwcsh perpeisal liemsse
Pegrrres degeaita ea . Y
T prtws o # it oin: Mats Cevelopes
Pt it brw pluts Sratalusy LI
el Bty i e .
RO sy ¥ botize ot e masvai-) U0 masimen warissles
LhAriatr sl gugrs -
Tty oyt .
| Vg worscol gagpi L4
Token f s
Mosays jproven # Bres 2ee e Laked fosoe partizipatisn of wmes | SL-#100
£ Mg 1 S are
et

Selecting any of these graph types opens a dialog box. Here we select Twoway
graph and then the X axis tab, which displays the following;

@ moway_- Twoway graphs - '8 -
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You can make selections from each tab and then click on Submit or OK. Submit
leaves the dialog box open in case you need to make additional changes. whereas OK
closes it before generating the graph. The dialog box translates your options into the
commands needed to draw the graph. These commands are echoed to the Results
window, while the graph appears in a Graph window. Next. we tweak the options until
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we have the graph we want. PageUp brings the graph command into the Command
window. where you can edit it. Then, we copy the command and paste it into a do-file
so that we can reproduce the graph later.

In the rest of this section, we describe the basic syntax for Stata graphics, becanse it
is helpful to understand how this syntax works even il you ultimately use dialog boxes
to do the bulk of the work. We focus on plots of one or more outcomes against a single
explanatory variable, and we use the command graph twoway, which has the syntax

graph twoway plottype ...

(The underlined letters represent the minitnum abbreviation you can type for Stata
to recognize the command.) The Stata Graphies Reference Manual lists over 40 plot
types for the graph twoway command. Because we discuss only the types scatter
and connected here, interested readers are encouraged to consult the Stata Graphies
Reference Manual or to type help graph for more information.

Graphs that you create are drawn in their own window, which should appear in
front of the other Stata windows. You can resize the Graph window by clicking on and
drageing the borders. If the Graph window is hidden, you can bring it to the front by

clicking on i,

2.17.1 The graph command

The type of graph that we use most often in this book shows how the predicted prob-
ability of observing a given outcome changes as a continuous variable changes over a
specified range. For example. in chapter 6. we examine how the probability of a woman
being in the labor foree depends on her age and her lamily’s income. In that chapter,
we show vou how to compute these predictions, but for now you can simply load them
into memory with the command use 1fpgraphd4, clear. The variable income is fam-
ily income measured in thousands of dollars, excluding any contribution made by the
woman of the household, The next three variables contain the predicted probabilities
of being in the labor force for women between ages 30 and 39 (agecatiprl), 40 and 49
(agecat2pri), or 50 and older (agecat3pri):

. use lfpgraph4, clear
(1fpgrah4.dta | Sample predictions to plot | 2014-01-23)

- codebook income agecatiprl agecatZprl agecat3pril, compact

Variable Obs Unique Mean Min Max Label
income 11 11 50 0 100 Family income excluding...
agecatlpri 11 11 .4501184 .1230226 .8236541 ages 30 to 39

agecat2prl 11 11  .3418133 .0697281 .713928% ages 40 to 49
agecat3prl 11 11 .234009 .0375723 .5651833 ages 50 and older
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Becanse there are only 11 values, we can easily list them:

- list income agecatlprl agecat2prl agecat3pri

income age-lprl age-2prl  age-3pri

1. 0 .B236541 .7139289 .5661833
2. 10 .T668772  .6373779 4779363
3. 20 .6985115  .5531632 .3920132
4. 20 .6200306  .4657831 .3122976
5. 40 .5347281  .3B04536 .2423312
6. 50 .4473447  .3019213 .1838493
7. 60 .3630971  .2334903 .1368302
8. 70 .2864809 1766445 .1006104
8. 80 .2204527  .1312684 .0729585
10. 90 .1660933  .0961867 .0526181
11. 100 .1230226 0697281 0376723

We see that as annual income increases, the predicted probability of being in the labor
force decreases, Looking across rows, we see that for a given level of income, the
probability of being in the labor force decreases with age. We want to display these
patterns graphically.

The command graph twoway scatter will draw a scatterplot in which the values
of one or more y variables are plotted against the values of a single 2 variable. Here,
income is the x variable, and the predicted probabilities agecat1pri, agecat2pri, and
agecat3prl are the y variables. Thus for each value of x, we have three values of 3.
When making scatterplots with graph twoway scatter, the y variables are listed first,
and the x variable is listed last. If we type

. graph twoway scatter agecatlpri agecat2pri agecatdprl incoms,
> ytitle(Probability)

B 4
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we obtain the following graph:
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The scatterplot shows the pattern of decreasing probabilities as income or age increases.

Although our simple command produces a reasonable first graph. we can make a
more effective graph by adding options. We focus below on adding lines, adding titles,
and improving the labels for the axes, but many other options are available. A slightly
more detailed syntax for graph twoway is

graph twoway plot, [ploty]...[ploty | [if] [in] [, twoway.options |
where plot; is defined to be

[ (] plottype varlist, [E_it le("string") subtitle("siring") ytitle("string")

xtitle("string") caption("string") xlabel(walues) ylabel (values)

a'J!hf-r'~op!imm] (2]

This syntax highlights that it is possible to put multiple plots in the same graph,
where the parentheses at the beginning and the end are used to separate the different
plots when there are multiple plots, When there is only one plot, those parentheses are
not required. The combined plots cun be of different plot types. For instance, suppose
that we want the symbols in the plot corresponding to “ages 30 to 39”7 to be connected.
This plot type is called connected. For example,

. graph twoway (conmected agecatlpri income)
> (scatter agecatZprl agecatdprl income), ytitle(Probability)
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produces the following graph:
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The default choices for the symbols, line styles, ete., are all quite nice. Stata made
these choices within the context of an overall look, or what Stata calls a scheme, For
example, because our book is published in monochrome, we want our graphs to be
drawn in monochrome. Accordingly, we place

. set scheme s2manual

at the top of our do-files. This scheme makes the graph monochrome. For color graphs,
we often use the s2color scheme. Type help schemes in Stata for the latest informa-
tion about available schemes.

Adding titles

Next. we show how to add an overall title, a subtitle, z-axis and y-axis titles, and a
caption. The following command adds titles to our graph and also replaces the scatter
plot type with the connected type.

. graph twoway connected agecatlprl agecat2prl agecatdpr! income,
title("Predicted Probability of Female LFP")

subtitle("(as predicted by logit model)")
ytitle("Probability") xtitle("Family income, excluding wife's")
caption("Data from 1976 PSID compiled by T Mroz")

VoV VY
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I'his graph is much more effective in illustrating how the probability of a woman being
in the labor force declines as family income increases and with age, with the caption

documenting the source of the data.

Labeling tick marks on the axes

Even though the default labels for the tick marks on our graph are reasonable, it is
common to want to change them. The ylabel() and xlabel() options allow users to
specify either a rule or a set of values for the tick marks. A rule in this case is simply
a compact way to specify a list of values. Let’s first consider specifying a list of values.
Suppose that we want to restrict the range on the x axis to be from 10 to 90. We make
this change by listing the values of the tick marks with xlabel ():

. graph twoway conmnected agecatlprl agecat2prl agecat3prl income,
title("Predicted Probability of Female LFP")

subtitle("(as predicted by logit model)")

ytitle("Probability") xtitle("Family income, excluding wife s")
caption("Data from 1976 PSID compiled by T Mroz")

xlabel(10 20 30 40 50 60 70 80 90)

vV VvV VvV vV
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We could have obfained the same graph by specifying a rule for a new set of
a-axis values. Although there are several ways to specify a rule, we find the form
#min(Feap) Fmax most useful. In this form, the user specifies # ., for the beginning of
the sequence of values, #,.., for the increment between each value, and #., for the
maximum value. For instance,

xlabel (10(10)90)
specifies the same tick marks as the more eumbersome
x1abel (10 20 30 40 50 60 70 BO 90)

Type help axis_label options [or other ways to specify a rule.

Saving graphs in memory by naming them

When you create a graph, it is displayed in a Graph window and is also saved in
memory. If you close the Graph window, you can redisplay the graph with the command
graph display. By default, a graph is stored in memory with the name Graph, and
this graph is overwritten whenever you generate a new graph. If you want to store more
than one graph in memory, you need to use the name() option. For example,

scatter y x, name(examplel, replace}

stores the scatterplot for y against x in memory with the name examplel, where the
replace option indicates that you want to replace the graph named examplel if it
already exists. Then

scatter z x, name{example2, replace)

will save the scatterplot for z against x with the name example2.




2.17.1 The graph command 71

Because Stata displays each named graph in its own window, multiple Graph win-
dows can be displayed simultaneously. For example,

graph display examplel

graph display examplel
When multiple graphs have been saved, you can combine them into a single graph as
discussed below.

Saving graphs to a file in .gph format

When a graph is stored in memory, it remains there until you exit Stata or erase
the graph from memory. Accordingly, you are likely to want to save your graphs in a
file. Specifying saving(filename, replace) saves the graph to a file in the working
directory using Stata’s proprietary format with the suffix .gph. Including replace tells
Stata to overwrite a file with that name if it already exists.

Export graphs to a file in other formats

You will probably also want to export graphs to other formats that can be displayed
by other programs or included in documents. This is done with the graph export
command:

graph export newfilename. suffir [, replace optz'ans]

suffir determines the graph format. With the replace option, graph export will over-
write a graph of the same name if it already exists, which is useful in do-files. For
example,

graph export filename.emf, replace

saves the graph as a Windows Enhanced Metafile (EMF), which works well with most
word processors. The command

graph export filename.eps, replace

saves the graph as an Encapsulated Postscript (EPS) file, which is commonly used with
IMTEX or TEX. See [G-2] graph export for a list of all the formats to which you can
export graphs.

If a graph is already saved in .gph format and is no longer in memory, you can export
it to other formats in two steps. First, redisplay the graph with the command graph use
filename. Second, export the graph with the command graph export filename . suffir.

Displaying previously drawn graphs

Several commands can manipulate graphs that have been previously drawn and
saved to memory or disk. graph dir lists graphs saved in memory or in a .gph file
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in the working directory. graph use copies into memory a graph stored in a file and
displays it. graph display redisplays a graph stored in memory.

Printing graphs

It is easiest to print a graph once it is in the Graph window. When a graph is in the
Ciraph window, you can print it by selecting File—Print—Graph(graphname) from
the menus or by clicking on #. You can also print a graph in the Graph window with
the command graph print. To print a graph saved to memory or a file, first use graph
use or graph display to redisplay it, and then print it with the command graph print.

Combining graphs

Multiple graphs that are in memory can be combined. This is useful, for example,
when you want to place two graphs side by side or stack them. To illustrate this, we
combine two graphs from chapter 7 (see section 7.14 for details). When we created these

graphs, we saved them in memory under the names paneld and panelB. We use graph
combine to put the two graphs side by side,

. graph combine panelA panelB, xsize(8) yeizo(4)
> caption("Example of combining horizontally.")

The resulting graph looks like this:

Pane! A: Pradicted Probabilities Panel B: Cumulative Probabilities

™o 150
Housahiold oo (2012 dolers)

| p———p— —— Workiry)
I—o—m —a— gD

Example of combining horizontally,

We unsed the options xsize(8) and ysize(4) to set the aspect ratio that we wanted.
When combining graphs, you will likely need to experiment with these options to get
things to look the way you want. We also used the caption() option to illustrate that
graph options can be used with graph combine to customize the look of the new graph.
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We could stack the graphs vertically with the cols(1) option, which specifies that
we want a single column of graphs, We also change the aspect ratio:

. graph combine panelA panelB, col(1) xsize(4) ysize(6)
> caption("Example of combining vertically.")

Now our graph looks like this:
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Example of combining vertically.

The Stata Graphics Reference Manual describes how almost any part of the com-
bined graph can be changed.

2.18 A brief tutorial

This tutorial uses the scienced.dta dataset that is available from the book’s website.
You can use your own dataset as vou work throngh this tutorial, but you will need to
change some of the commands to correspond to the variables in your data. In addition
to our tutorial, the Stata User’s Guide provides a wealth of information for new users.
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Fhe first step is to open a log file for recording your results. Remember that all
cotnminds are case sensitive. The commands you should type into Stata are listed with
i period in front, but you do not type the period:

. capture log close

. log using tutorial, text

log: d:\spostdata\tuterial.log

log type: text

opened on: 24 Jan 2014, 10:12:50

Loading and examining the dataset

We assume that scienced.dta is in your working directory. clear tells Stata to
delete any existing data from memory before loading the new dataset:

. use scienced, clear

(Long”s scientific career data | 2013-10-25)

Next, we get descriptive statisties and variable labels for all the variables:

. todebook, compact

Variable Obs Unique Mean Min Max Lnbel
citl 308 50 11.60714 0 137 Citations in PhD yrs -1 to 1
cit3 308 67 14.97078 0 196 Citations in PhD yrs 1 to 3
cité 308 85 18.37013 0 143 Citations in PhD yrs 4 t0 6
citd 308 T4 21.07143 (s} 214 Citations in PhD yrs 7 to 9
enrol 278 9 5.664748 3 14 Years from BA to PhD
faculty 302 2 .5298013 0 1 Is a faculty member?

{output omitted )
totpub 308 46 11.86364 0 84 Total publications in 9 yrs s...
work 302 5 2.062014 1 6 Type of first job
workadmn 302 2 085404 0 1 Job is in administration?
worktch 302 2  .615894 0 1 Job is teaching?
workuniv 302 2  .706298 0 1 Job is in a university?

Examining individual variables

A series of commands gives us information about individual variables. You can use
whichever command you prefer or use all of them.
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. summarize work

Variable l Obs Mean Std. Dev. Min Max
work 1 302 2.062914 1.37829 1 5
. tabulate work, missing
Type of first
job Freq. Percent Cum.
university fac 160 51.95 51.95
research univ 53 17.21 69.16
college fac 26 B.44 77.60
industry 36 11.69 89.29
administration 27 B.T7 98.05
6 1.95 100.00
Total 308 100.00

Graphing variables

Graphs are also useful for examining data. The command

. dotplot publ

creates the following distribution of publications:

20

15
Illll'li L] . o L]

Publications in PhD yrs -110.1
10

To save the above graph as a Windows Enhanced Metafile, type

-
8

. graph export tutorial_dotplot.emf, replace
{file d:\spostdata\tutorial dotplot.emf writtem in Enhanced Metafile

> format)

e |

e
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Creating a binary variable

Now let’s make a binary variable with faculty in universities coded 1 and all others
coded 0. The command gen isfac = (work==1) if work<. generates isfac as &
binary variable where isfac equals 1 if work is 1 and equals () otherwise. The statement
if work<. ensures that missing values are kept as missing in the new variable.

. generate isfac = (work==1) if work<.
(& missing values generated)

Six missing values were generated because work contuined six missing observations.

Checking transformations

One way to check transformations is with a table, In general, it is best to look at
the missing values, which requires the missing option:

. tabulate isfac work, missing

Type of first job
isfac | universit research college f industry administr Total
0 0 53 26 36 27 142
1 160 0 0 0 0 160
. ] 0 0 o 0 6
Total 160 53 26 36 a7 308
Type of
first job
isfac s Total
0 0 142
1 o 160
6 6
Total 6 308

Labeling variables and values

For many of the regression commands, value labels for the dependent variable are
essential. We start by creating a variable label, then create isfac to store the value
labels, and finally assign the value labels to the variable isfac:

- label variable isfac "Sclentist is faculty member in university"
. label define isfac O "NotFac" 1 "Faculty"
. label values isfac isfac
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Then we can get labeled output:

. tabulate isfac

Scientist
ie faculty
member in
university Freq. Percent Cum,
NotFac 142 47.02 47.02
Faculty 160 52.98 100.00
Total 302 100.00

Creating an ordinal variable

The prestige of graduate programs is often referred to with the categories of ad-
equate, good, strong, and elite. Here we create such an ordinal variable from the
continuous variable for the prestige of the first job. missing tells Stata to show cases
with missing values.

. tabulate job, missing

Prestige of
1st
university

job Freq. Percent Cum.

1.01 1 0.32 0.32

1.2 1 0.32 0.65

1.22 1 0.32 0.97

1.32 1 0.32 1.30

(output omitred )

4.18 2 0.65 49.03

4.42 1 0.32 49.35

4.5 6 1.95 51.30

4.69 5 1.62 62.92

s 145 47.08 100.00

Total 308 100.00

The recode command makes it easy to group the categories from job. Of course,
we then label the variable:

. generate jobprst = job
(145 missing values generated)

. recode jobprst .=. 1/1.99=1 2/2.99=2 3/3.99=3 4/6=4
(jobprst: 162 changes made)

. label variable jobprst “"Ranking of university job"

. label define prstlbl 1 "Adeq” 2 "Good" 3 "Stronmg" 4 "Elite"
. label values jobprst prstlbl

Here is the new variable (we use the missing option so that missing values are included
in the tabulation):



. tabulate jobprst, missing

Ranking of
university
job Freq. Percent Cum.
Adeq 31 10.06 10.06
Good AT 15.26 25.32
Strong 71 23.05 48.38
Elite 14 4.55 62.92
= 145 47.08 100.00
Total 308 100.00

Combining variables

Now we create a new variable by summing existing variables. If we add pub3, pub6.
and pub8, we can obtain the scientist’s total number of publications over the 9 years
since receiving a PhD.

. generate pubsum = pub3 + pub6 + pub®
. label variable pubsum "Total publications in 9 years since PhD"

. summarize pub3 pub6 pubfd pubsum

Chapter 2 Introduction to! S

Varieble I Ubs Mean Std. Dev. Min Max
pub3 308  3.185065 3.908752 0 31
pubb 308  4.165584 4.780714 0 29
pubg 308  4.512987 5.315134 0 33

pubsum 308  11.86364 12.77623 0 84

A scatterplot matrix graph can be used to plot all pairs of variables simultaneously:

. graph matrix pub3 pub6 pubS pubsum, half msymbol(smcircle_hollow)
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Saving the new data

After you make changes to your dataset, save the data with a new filename. Before
doing this, we add a label to the dataset and add a note that documents how the dataset
was created:

. label data "sciwork.dta | revised scienced data | 2014-01-27"
. note _dta: "Revised by Scott Long | tutorial.do | 2014-01-27"

. save scivork, replace
file sciwvork.dta saved

Closing the log file
Last, we need to close the log file so that we can refer to it in the future.

. log close
log: d:\spostdata\tutorial.log
log type: text

closed on: 24 Jan 2014, 10:12:51

2.19 A do-file template

If you have read section 2.9, you know that a better idea is to create a do-file. If you
download materials for this book, you can download a do-file for each chapter that
repeats all the commands. The file tutorial .do contains the commands from this
tutorial. In the do-file, we ingert the version command after opening the log file so
that our do-file will be robust to any future changes in Stata that may affect how the
commands work. We also add the exit command to the end, which simply allows us
to add additional notes if we wish to the end of the do-file without generating errors.

capturs log close

log using tutorial, replace text
version 13.1

clear all

gset linesize BO

macro drop _all

set scheme sZmanual

// loading and examining the data

use scienced, clear
codebook, compact

// examining individual variables

summarize work
tabulate vork, missing
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// graphing variables

dotplot publ
graph export tutorial_dotplot.emf, replace

// creating a dummy variable
generate isfac = (work==1) if work<.
// checking transformations
tabulate isfac vork, missing

// 1labeling variables and values

label variable isfac "Scientist is faculty member in university"
label define isfac 0 "NotFac" 1 "Faculty"
label values isfac isfac

tabulate isfac

// creating an ordinal variable
tabulate job, missing

generate jobprst = job

recode jobprst .=. 1/1.99=1 2/2.99=2 3/3.99=3 4/6=4

label variable jobprst "Ranking of university job"

label define prstlbl 1 "Adeq" 2 "Good" 3 "Strong' 4 "Elite"
label values jobprst prstlbl

tabulate jobprst, missing
/! combining variables

generate pubsum = pub3 + pub8 + pub®
label variable pubsum "Total publications in 9 years since PhD™
summarize pub3 pubf pubd pubsum

graph matrix pub3 pub6 pub® pubsum, ///
half msymbol(smcircle_hollow)
graph export tutorial_graph_matrix.emf, replace

// saving the new data

label data "scivork.dta | revised scienced data | 2014-01-24"

note _dta: "Revised by Scott Long | tutorial.do | 2014-01-24"
save sciwork, replace

// closing the log

log close
exit

To execute the do-file, type do tutorial in the Command window or select File—Do...
from the menu.
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2.20 Conclusion

This chapter has provided a selective introduction to Stata that has focused on what
is needed to begin work with the chapters that follow, If yonu are new to Stata, we
obviously hope the chapter has been useful in helping you get started. In closing, we
want to re-emphasize that many resources are available to help you improve your skills
with Stata. As we noted, there are introductory books, websites, YouTube videos, and
web forums devoted to helping you. The great payolf of Stata’s elegance is that as you
become comfortable with the logic of the syntax and options of the Stata commands
vou dre using now, you will master other commands more quickly.

Data analysis is a craft, and a skilled craftsperson recognizes the value of investing
in the right tools. Stata is a remarkable tool for the work we present in this book, and it
is worthy of the time you invest in gaining proficiency with it. Our next step in helping
vou in this investment will be to provide a general introduction to using Stata to fit,
evaluate, and interpret regression models. After that. we will proceed to the chapters
on models for different types of categorieal outcomes that comprise the heart of this
book.
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Our book deals with what we think are the most fundamental and useful cross-sectional
regression models for categorical and count outeomes: binary logit and probit, ordinal
logit and probit, multinomial logit, Poisson regression, and negative binomial regression.
We also explore several less common models, such as the stereotype logistic regression
model and the zero-inflated and zero-truncated count models. Although these models
differ in many respects, they generally share common features:'

1. Bach model is fit by maximum likelihood, and many can be fit when data is
collected using a complex sample survey design.

2. Hypotheses about the parameters can be tested with Wald and likelihood-ratio
tests.

3. Measures of fit can be computed.

4. The models can be interpreted by examining predicted values of the outcomes, a
topic that is considered in chapter 4.

Because of these similarities, the same principles and many of the same commands
can be applied to each model. In this chapter, we consider the first three topics, and
then we turn to issues of interpretation in chapter 4. First, we examine estimation
commands, discussing how to specify models, read the results, save estimates, and
create tables. We then consider statistical testing that goes beyond the routine tests
of a single coefficient that are included in the output from estimation commands. This
is done with the test and 1rtest commands for Wald and likelihood-ratio fests. In
later chapters. we present other tests of interest for a given model, such as tests of the
parallel regression assumption for the ordered regression model. Finally, we consider
assessing the fit of a model with scalar measures computed by our fitstat command
and Stata’s estat command. Later chapters focus on the application of these principles
and commands to exploit the unigue features of each model. This chapter and the next
also serve as a reference for the syntax and options for the SPost commands that we
introduce here and use thronghout the rest of the book.

i. Many of the principles and procedures discussed in our book apply to panel models, such as those
fit by Stata’s xt and me commands, or models with multiple equations, such as those fit by biprobit
or atregress. However, these models are not considered here.

83
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3.1 Estimation

Each of the models we consider is fit using maximum likelihood (ML).? ML estimates
are the values of the parameters that have the greatest likelihood of generating the
observed sample of data if the assumptions of the model are true. To obtain the ML
estimates, a likelihood function calenlates how likely it is that we would observe the set
of outcome values we actually observed if a given set of parameter estimates were the
true parameters. For example, in linear regression with one independent variable, we
need to estimate both the intercept a and the slope 4. For simplicity, we are ignoring
the parameter o%. For any combination of possible values for o and 3, the likelihood
function tells us how likely it is that we would have observed the data that we did
observe if these values were the population parameters. If we imagine a surface in
whiich the range of possible values of o makes up one axis and the range of F makes up
another axis, the resulting graph of the likelihood function wonld look like a hill; the
ML estimates would be the parameter values corresponding to the top of this hill. The
variance of the estimates corresponds roughly to how quickly the slope is changing near
the top of the hill.

For all but the simplest models, the only way to find the maxirmum of the likelihood
function is by numerical methods. Numerical methods are the mathematical equivalent
of how you wonld find the top of a hill if you were blindfolded and knew only the slope of
the hill at the spot where you are standing and how the slope at that spot is changing,
which you could figure out by poking your foot in each direction. The search begins
with start values corresponding to your location as you start your climb. From the
start position, the slope of the likelihood function and the rate of change in the slope
determine the next gness for the parameters. The process continues to iterate until
the maximum of the likelihood function is found, called convergence, and the result-
ing estimates are reported. Advances in numerical methods and computing hardware
have made estimation by numerical methods routine. See Cameron and Trivedi (2005),
Eliason (1993), or Long (1997) for more technical discussions of ML estimation.

3.1.1 Stata’s output for ML estimation
The process of iteration is reflected in the initial lines of Stata’s output. Below are the

first lines of the output from the logit model of labor force participation that we use as
an example in chapters 5 and 6:

2. There are often convincing reasons for using Bayesian methods to fiv these models. However, these
methods are not generally available in Stata and hence are not considered here.
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. uss binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp kb k618 agecat wc hc lwg inc

Iteration 0: 1log likelihood = -514.8732
Iteration 1: log likelihood = -453.09301
Tteration 2: log likelihood = -452.72688
Iteration 3: log likelihood = -462.72649
Iteration 4: log likelihood = -452.72649

(output omitted )

The results begin with the iteration log, where the first line, iteration 0, reports the
-alue of the log likelihood at the start value. Whereas earlier we talked about maxi-
mizing the likelihood function, in practice, programs maximize the log of the likelihood,
which simplifies the computations and yields the same result. Here the log likelihood
at the start is —514.8732. The next four lines show the progress in maximizing the
log likelihood, converging to the value of —452.72649. The rest of the output, which is
omitted here, is discussed later in this section.

3.1.2 ML and sample size

Under the usual assumptions, the ML estimator is consistent. efficient, and asymp-
totically normal. These properties hold as the sample size approaches infinity (see
Cameron and Trivedi [2005]; Cramer [1986]; and Eliason [1993] for details). Although
ML estimators are not necessarily bad estimators in small samples, the small-sample
behavior of ML estimators for the models we consider is largely unknown. Except for
the logit and Poisson regression, which can be fit using exact permutation methods with
exlogistic or expoisson, alternative estimators with known small-sample properties
are generally not available. With this in mind, Long (1997, 54) proposed the following
guidelines for the use of ML in small samples:

It is risky to use ML with samples smaller than 100. while samples over
500 seem adequate. These values should be raised depending on charae-
teristics of the model and the data. First, if there are many parameters,
more observations are needed .... A rule of at least 10 observations per
parameter seems reasonable .... This does not imply that a minimum of
100 is not needed if you have only two parameters. Second, if the data are
ill-conditioned (for example, independent variables are highly collinear) or
if there is little variation in the dependent variable (for example, nearly all
the outcomes are 1), a larger sample is required. Third, some models seem
to require more observations (such as the ordinal regression model or the
zero-inflated count models).

3.1.3 Problems in obtaining ML estimates

Although the numerical methods used by Stata to fit models with ML are highly refined
and generally work extremely well, you can encounter problems. If your sample size
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is adequate, but you cannot get a solution or you get estimates that appear to not
make substantive sense, one common canse is that the data have not been properly
*eleaned”. In addition to mistakes in constructing variables and selecting observations.
the scaling of variables can cause problems. The larger the ratio between the largest
and smallest standard deviations among variables in the model, the more problems
you are likely to encounter with numerical methods due to rounding. For example.
if income is measured in units of $1, income is likely to have a very large standard
deviation relative to other variables, Recoding income to nnits of $1,000 can solve the
problem. For a detailed technical discussion of maximum likelihood estimation in Stata,
see Gould, Pitblado, and Poi (2010).

Overall, however, numerical methods for ML estimation work well when your model
is appropriate for vour data. Still, Cramer’s (1986, 10) advice about the need for care
in estimation should be taken seriously:

Check the data, check their transfer into the computer, check the actual
computations (preferably by repeating at least a sample by o rival program),
and always remain suspicious of the results, regardless of the appeal.

3.1.4 Syntax of estimation commands

All single-equation estimation commands that we consider in this hook have the same
syntax:?

command depvar |[indepvars] [if | [in] [weight] [, options|

Elements in square brackets, [ |, are optional. Here are a few examples for a logit
model with 1fp as the dependent variable:

logit 1fp kb k618 age wc lvg

logit 1fp k6 k618 age wec lug if hc == 1

logit 1fp k5 k618 age wc lug [pweight=ugtvar]
logit 1fp k5 k618 age wc lwg if hc == 1, level(90)}

You can review the output from the last estimation by typing the command name
again. For example, if the most recent model that you fit was a logit model, you could
have Stata replay the results by simply typing logit. The syntax diagram here uses
1) variable lists, 2) if and in conditions, 3) weights, and 4) options. We will discuss
aspects of each of these in turn in the following sections.

3. mlogit is & multiple-equation estimation command, but the syntax is the same as that for single-
equation commands because the independent variables are the same in all equations. The zero-
inflated count models zip and zinb are the only multiple-equation commands considered in our
book where different sets of independent varinbles can be used in each equation. Details on the
syntax for these models are given in chapter 9.
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3.1.5 \Variable lists

depvar is the dependent variable. indepvars is a list of the independent. variables. If no
independent variables are given, a model with only the intercept is fit.

Stata automatically corrects some mistakes you may make when specifying inde-
pendent variables. For example. if you include we as an independent variable when
the sample is restricted to a single value of wc, such as logit 1fp k5 age hc wc if
we==1, then Stata drops we from the model. Or suppose that you recode a k-category
variable into a set of k indicator variables. Recall that one of the indicator variables
must be excluded to avoid perfect collinearity. If you included all & indicator variables
in indeprars, Stata automatically excludes one of them.

Using factor-variable notation in the variable list

In Stata 11 and later, you can specify a k-category variable as a set of indicator variables
using Stata’s factor-variable notation. Prefixing a variable name with i. tells Stata to
do this. In our previous example. suppose that instead of age being measured in years,
it was measured using three age groups with the variable agecat:

. tabulate agecat, missing

Wife's age
group Freq. Percent Cum.
30-39 288 39.58 39.68
40-49 200 38.51 78.09
50+ 165 21.91 100.00
Total 763 100.00

Variable agecat equals 1 for ages 30-39, 2 for 4049, and 3 for 50 or older. If we were
not using factor variables, we could recode the three categories of agecat to generate
three dummy variables:

- generate age3039 = (agecat==1) if agecat < .,
. label var age3039 "Age 30 to 397"

. generate aged049 = (agecat==2) if agecat < .
. label var aged4049 “Age 40 to 497"

- geverate ageSOplus = (agecat==3) & agecat < .
. label var ageSOplus “Age 50 or older?*

Next. we fit a model using these variables, where age3039 is the exclnded base category:

- logit 1lfp kb k618 age4049 agebOplus wc hc lwg inc, nolog
(output omitted )

Using factor-variable notation, we can fit the exact same model but let Stata antomat-
ically create the indicator variables:

- logit 1fp kb k618 i.agecat wc hc lwg inc, nolog
(output omitted)
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Because factor-variable notation is used throughout later chapters, it is important
to understand what is going on “behind the scenes” when Stata encounters i.agecat.
Temporary variables (that is, variables that disappear after a command finishes) are
generated to indicate each value of the variable that is observed in the estimation sample.
These variables are named #.varname. For example, 1.agecat creates 1.agecat that
is equal to 1 if agecat is 1 and equal to 0 for any other nonmissing value. Thus 1.agecat
is equivalent to age3039 Lthat was generated above. 2.agecat is 1 il agecat is 2, and
3.agecat is 1 if agecat is 3. By default, Stata uses the lowest value of the source
variable as the base or omitted category in the model. Accordingly,

logit 1fp k5 k618 i.agecat wc hc lwg inc, nolog

uses 2.agecat and 3.agecat as regressors, excluding 1.agecat as the base category.
If yon want a different base category, specify the base with the prefix ib#., where #is
the value of the base category, In our example, to treat women ages 50 or older as our
base category instead of women ages 30-39, we would specify the model as follows:

logit 1fp k5 k618 ib3.agecat wc hc lwg inc, nolog

Binary, ordinal, and nominal independent variables can be treated as factor variables.
A count variable or interval-level variable can also be specified as a factor variable if
you do not want to impose assumptions about the form of the relationship between the
explanatory variable and the outcome. For example, i.age would generate an indicator
variable for each unique value of age in the sample. The values of factor variables must
all be integers, and no value can be negative.

By default, any variable not specified with i. is treated as a continuous variable.
For example, in the specification

logit 1fp k5 k618 agecat wc hc lwg inc, nolog

agecat is treated as continuous with values 1, 2, and 3. The prefix c¢. can be used to
explicitly indicate that a variable is continuous (for example, ¢.inc). In onr example,
the only variable where factor-variable notation is strictly necessary is agecat. The
estimates for inc will be the same whether we specify the variable as c.inc or simply
as inc. Coefficient estimates for binary variables will be the same whether they are
included in the variable list with i. or not. For example, wc is 1 if a respondent
attended college and is 0 otherwise. Whether we specify this variable us i.wc or simply
as we does not affect the estimates, although the labeling of output differs as shown
below. Even so, for some of the commands we use for interpretation (discussed in
chapter 4), the behavior of the commands will differ depending on whether the model
was originally fit using the i. prefix for binary variables. Because this can lead to errors
in interpretation, we suggest that you always add 1. as a prefix for binary variables.
There is no particular advantage in the above example to using ¢. for the continuous
variables, because this is how the variables will be treated by default. However, we
could have used factor-variable notation for all the variables in the model:

logit 1fp c.kb c.k618 i.agecat i.wc i.he c.lwg c.inc, nolog
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Specifying interaction and polynomials

Interaction terms are used to model how the coeflicient for one variable differs according
to values of another variable. In our example, one might hypothesize that the effect
of children under age 5 on a woman's labor foree participation varies depending on
whether the woman has gone to college. Interactions are created as the product of two
independent variables. One way to specify this is to generate a product varidble and
include it in the variable list, such as

generate weXkb = weekb
logit 1fp wc k& wcXk5 k618 age hc lwg inc, nolog

Alternatively, factor-variable notation allows us to put the interaction operator # be-
tween two variables in the variable list to indicate that the product of the two variables
is to be included in the model. For example, instead of creating weXk5, we could have
used the following syntax to obtain exactly the same results:

logit 1fp wc k5 wc#c.kS k618 age hc lwg inc, nolog

Rarely do we want to include a product term without including the components of
the interaction as well. The operator ## indicates that the individual variables along
with their product are to be included. Thus the specification

logit 1fp i.wc c.kb i.wc#c. kb k618 age hc lwg inc, nolog

is equivalent to
logit 1fp i.wc##c.kb k618 age hc lwg inc, nolog

In general, you should use the ## operator or be sure the individual variables are also
included when using the # operator.

Naotice in this example that we used factor-variable notation to make explicit that
wc was an indicator variable (that is, we nsed i.wc) and that k5 was continuous (that
is, we used c.k5). If vou do not indicate whether a variable is continuous or is a lactor
variable, Stata relies on its defaults, and these defaults depend on whether a variable is
part of an interaction.

If a variable appears in an interaction, it is assumed to be a factor variable
unless you use the c. prefix.

If a variable does not appear in an interaction term, it is considered contin-
uous unless you use the i. prefix.

Moreover, the specification of a variable in an interaction supersedes the specification
on the type of variable outside of the interaction. For example. if you specify a model
as logit y c.vari c.var2 vari#var2, then both vari and var2 are treated as factor
variables when creating interaction terms despite having been typed as c.varl and
¢.var2 outside of the interaction. The safest thing when using factor-variable notation
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to create interactions is to explicitly indicate how a variable is to be treated by inelnding
either the i. or the c. prefix.

The interaction notation can also be used to add polynomial terms to a model,
which is a standard way of modeling nonlinear relationships between an independent
variahle and the outcome. Although most of the models in this book are inherently
nonlinear, polynomial terms are useful for changing the way in which predictors affect
the outcome. For example, in a logit model that includes age but not age-squared as a
predictor, the probability of the outcome must either always incrense or always decrease
as age increases. But, as shown by an example in chapter 6, in some applications it
makes sense for the probability to increase initially with age before decreasing at older
ages. This can be done by including age, age-squared. and possibly age-cubed in the
model. For example, to include age and age-squared, you could type

logit 1fp c.age##ic.age k5 k618 wc hc lwg inc, nolog

Because we nsed ##, c.age is automatically included in the model. Similarly, we can
use the interaction notation to include a cubed or higher-order term:

logit 1fp k5 k618 c.age#iitc.agefc.age wc hc lwg inc, nolog

As a different, example, imagine that a researcher hypothesized that the coefficients
for all the other independent variables differed between women who went to college and
women who did not. This could be specified as

logit 1fp i.wcH##(c.kb c.k618 c.age i.hc c.lwg c.inc), nolog

where i.uc##(c.k5 ¢.k618 c.age i.hc c.1lug c.inc) is expanded to i.we i.wc#c. k5
i.wc#c.k618 i.wcHc.age i.we#i.he i.wc#c.lug 1i.wcHc.inc.

More on factor-variable notation

Factor-variable notation is extremely powerful and can save time and prevent errors in
complex applications. Not only do factor variables eliminate the need to create indicator
variables and polynomial terms, but when computing effects using commands such as
margins. marginsplot, mgen, mtable, and mchange, Stata keeps frack of how variables
are linked. For example, if your model includes age and age-squared and you want to
compute the effect of increasing age from 20 to 30 on labor force participation, with
factor variables, Stata automatically makes the corresponding change in age-squared

from 400 to 900. This important feature of factor-variable notation is considered more
closely in the next chapter.

Still, sometimes factor variables can be confusing. First, the name of the variables
automatically generated by Stata when fitting a model using factor variables might
not be obvious. This is important because some postestimation commands, such as
test and lincom, require the exact, symbolic name of the variable associated with a
coefficient. For example, suppose that you run logit 1fp k6 k618 i.agecat i.wc
i.hc lwg inc and then want to test whether the coefficient for we equals that for
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hc. The command test wc = he does not work because these are not the names of
the factor variables included in the model. Nor does test i.wc = i.hc work because
i.wc and i.hc tell Stata to create the indicators, but i.wc and i.hc are not the
names of the factor-generated variables used in the model. The correct command is
test 1.hc =1.wec. To obtain the names associated with each coefficient, referred to as
symbolic names, one can simply type the name of the last estimation command with
the option coeflegend, such as logit, coeflegend. The model is not fit again, but
the names associated with the estimates are listed. For example, fitting a model where
factor-variable notation creates indicator variables and interactions produces output like
this:

. logit 1fp i.agecat c.age##c.age, nolog
(output omitted )

1p Coef. Std. Err. z  Prlzl [95% Conf. Interval]

agecat
40-49 -.3667924  .3506722 -1.06 0.296 -1.064007 . 3205124
50+ -.5699792  .5615576 -1.00 0.319 -1.660612 .5406633
age . 2553935 144441 1.77 0.077 -.0277056 . 5384526
c.agefic.age | -.0028917 .0016631 -1.74 0.082  -.0061513  .0003678
~cons -4.901063  3.033286 -1.62 0.106 -10.84618 1.044078

Using the coeflegend option,

the symbolic

names are shown;

- logit, coeflegend

(output omitted )
1fp Coef., Legend
agecat
40-49 -.3667924 _bl2.agecat]
50+ -.5699792 _b[3.agecat]
age .2553936 _blagel
c.agedc.age -.0028917 _blc.age#c.age]
_cons -4.8010583 _bl_cons]

Sometimes you might not be sure if your specification of the model using factor-
variable notation produces the model you want. In some cases, the estimation output
makes it obvious that the model is not what you intended. For example, if you mis-
takenly type age##age and obtain estimates for hundreds of interactions, you quickly
realize that you meant to type c.age##ic.age. Other mistakes are harder to catch. For
example, specifying a binary predictor as i.wc or as we produces the same estimates of
parameters but leads to estimates of different quantities when using margins or the m=
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commands to compute marginal effects (see section 4.5). Accordingly, it is important
to check that Stata’s decoding of your factor terms leads to the specification you want.

One trick that we find useful —especially with large datasets, when fitting a model
can take a long tirme —is to nse summarize to decode yvour variable list. In this example.
summarize decodes the factor-variable notation i.agecat into two indicator variables
and c.age#fc.age into age and age-squared:

. summarize i.agecat c.age##c.age

Variable Obs Mean Std. Dev. Min Max
agecat

40-49 753 .3861262 .4869486 0 1

50+ 763 2191235 4139274 0 1

age 753 42.53785 B,072574 30 60

‘©.agefic.age 753 1B874,548 699 .5167 900 3600

In Stata 13 and later, value labels are used to label categories of an indicator vari-
able, such as 40-49 above. To see the values rather than the labels, you can add the
nofvlabel option:

. summarize i.agecat c.age#iic.age, nofvlabel

Variable Dbs Mean Std. Dev. Min Max
agecat

2 753 .3861262 4869486 0 1

3 753 .2191235 .4139274 0 1

age 753 42.53785 8.072574 30 60

c.age#c.aga 753 1874.648 €99.5167 900 3600

Output in regression models using factor variables was difficult to interpret prior to
Stata 13 because the categories of [actor variables were not labeled. For example, here
is the output from Stata 12:

- logit 1fp i.agecat i.wc i.hc k5 k618 lwg inc, noleg

Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 - 0.0000
Log likelihood = -452.72367 Pssudo R2 = 0.1207
fp Coef. Std. Err. z P>z [95% Conf. Interval]
agecat
2 -.6267601 .208723 -3.00 0.003 -1.03685 -,2176706
3 -1.279078  .2697827 -4.92 0.000 -1.788242 -.7699128
1.we 7977136 .2291814 3.48 0.001 .3485263 1.246901

(output omitted )
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And here is the much clearer output in Stata 13:

. logit 1fp i.agecat i.wc i.hc kb k618 lwg inc, nolog

Logistic regression Number of obs = 753
LR chi2(B) - 124.30
Prob > chi2 = 0.0000
Log likelihood = -452,72367 Pseudo R2 = 0.1207
1fp Coef. Std. Err. z P>|z| [95% Conf. Intervall

agecat
40-49 -.6267601 .208723 -3.00 0.002 -1.03586 -.2176705
50+ -1.279078  .2697827 -4.92 0.000 -1.788242 -.7699128

we
college LT977136 .2291814 3.48 0.001 .3486263 1.246901

(output omitted )
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To take advantage of the improved labeling of factor variables in Stata 13 and later,
you must assign value labels to your indicator variables, which we highly recommend.

3.1.6 Specifying the estimation sample

if and in restrictions can be used to define the sample of observations nsed to fit the
model, referred to as the estimation sample, where the syntax for if and in conditions
follows the guidelines in chapter 2, page 45. For example, if you want to fit a logit model
only for women who went to college, you could specify logit 1fp k5 k618 age hc lwg

if we==1.

Missing data

Estimation commands use listwise deletion to exclude cases in which there are missing
values for any of the variables in the model. Accordingly, il two models are fit using
the same dataset but have different sets of independent variables, it is possible to have
different samples. The easiest way to understand this is with a simple example. Suppose
that among the 753 cases in the sample, 23 have missing data for at least one variable.
If we fit a model using all variables, we would obtain

. use binlfpd-missing, clear
(binlfp4-missing.dta | Mroz data with artificial missing data | 2013-10-18)

. logit 1fp k6 k618 i.agecat i{.wc i.hc lwg inc, nolog
Number of obs =

Logistic regression
{output omitted )

730

Suppose that seven of the missing cases were missing only for k618 and that we fit a
second model excluding k618:

- logit 1fp k5 i.agecat i.wc i.hc lwg inc, nolog

Logistic regression
{output omitted )

Number of obs =

7371
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The estimation sample for the second model increased by seven cases bhecause the seven
cases with missing data for k618 were not dropped. Thus we cannot use a likelihood-
ratio test or information criteria to compare the two models (see sections 3.2 and 3.3 for
details), because changes in the estimates could be due either to changes in the model
specification or to the use of different samples to fit the models. When you compare
coefficients across models, you want the samples to be the same. (There are other issues.

with comparing the coefficients of nonlinear probability models, which we will discuss
in chapter 5.)

Although Stata uses listwise deletion when fitting models, this is rarely the best way
to handle missing data. We recommend that you make explicit decisions about which
cases to include in your analyses rather than let cases be dropped implicitly. Indeed,
we would prefer that Stata issue an error rather than automatically drop cases.

The mark and markout commands make it simple to explicitly exclide missing data.
mark markvar generates the new variable markvar that equals 1 for all cases. markout
markvar varlist changes the values of markvar to 0 for any cases in which values of any
of the variables in varlist are missing. The following example, where we have artificially
created the missing data, illustrates how this works:

. use binlfp4-missing, clear

(binlfp4-missing.dta | Mroz data with artificial missing data | 2013-10-18)
. mark nomiss

. markout nomiss 1fp k5 k618 agecat wc he lwg inc

. tabulate nomiss

nomiss Freq. Percent Cum.

0 23 3.06 3.06

1 730 96,95 100.00
Total 763 100.00

Because nomiss is 1 for cases where none of the variables in our models is missing, to
use the same sample when fitting both models, we add the condition if nomiss==1:

- logit 1fp k5 k618 i.agecat i.wc i,hc lwg inc if nomiss==1, nolog

Logistic regression Number of obs = 730
(output omitted )

. logit 1fp k5 i.agecat i.wc i.hc Ivg inc if nomiss==1, nolog

Logistic regression Number of obs = 730
(output omitted)

Instead of selecting cases in each model with if, we could have nsed drop if nomiss==0
to delete observations with missing values before fitting the models.
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Aside: Analysis with missing data. The complex issues related to how to appro-
priately estimate parameters in the presence of missing data are beyond the scope
of our discussion (see Little and Rubin [2002]; Enders [2010]; Allison [2001]; or
the Stata Multiple-Imputation Reference Manual). We do want to make two brief
points. First, a sophisticated but increasingly common approach to missing data
involves multiple imputations, and Stata has an excellent suite of commands to
make working with multiply imputed data simpler than it would be without it.
What Stata does not have, at this writing, is a way of using margins with its
multiple imputation suite. Because our primary methods of interpretation use the
margins command, these cannot be used with multiply imputed data. Second,
one way that data may be missing in a dataset is called missing at random (MAR).
The name can be misleading: it does not mean missing completely at random but
instead means that data are missing in a way that unbiased predictions of missing
values can be made from other variables in the dataset itself. Even in the situa-
tion where missing at random data does not bias estimates (a matter outside the
scope of our discussion), the techniques of interpretation that comprise much of
our book involve using either the mean of a variable or the mean of an estimated
effect size calculated over all observations. In either case, missing data can cause
problems for computation of these averages even in cases in which the estimation
of coefficients is unbiased.

Information about missing values

Although mark and markout work well for determining which observations have missing
values for a set of variables, these commands do not provide information on the patterns
of missing data among these variables. There are three types of questions that we might
ask:

1. How many observations have no missing values? How many have missing data for
one variable? For two variables? And so on.

2. What percentage of cases are missing for each variable?

3. What patterns of missing data are there among the variables? For example, do
missing values on one varisble tend to occur when there are missing values on
some other variable?

We will consider each of these questions in turn. First, to determine the number
of observations with a given number of missing values on a set of variables, the easiest
way is to use the egen command with the rowmiss(varlist) function.This creates a new
variable that contains the number of missing values for each observation, for which we
can use tabulate to view the frequency distribution. For example,



., use gsskidvalued,

(gsskidvalued.dta | GSS 1993 & 1994 on values for kids | 2014-03-02)

clear
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. egen missing = rowmiss(age anykids black degree female kidvalue othrrace

> year income81 income)

. tabulate missing

missing Freq. Percent Cum.,
0 2,684 58.37 68.37
1 1,708 37.17 96.64
2 195 4.24 99.78
3 7 0.15 99.93
4 3 0.07 100,00
Total 4,598 100.00

Next, we could generate a variable, nomiss, that equals 1 if an observation has no miss-
ing values and 0 if an observation has any missing values: gen nomiss = (missing==0).
This is an alternative to using mark and markout to create an indicator variable for
whether an observation has missing values for any variable in a list.

Second, if we want information on which variables have missing values, we can use

misstable summarize.

. misstable summarize age anykids black degree female kidvalue othrrace

Here is an example:

> year income91 inccme, all showzero
Obs<,
Unique
Variable Obs=, Dbs>. Obe<. values Min Max
age o0 1] 4,588 73 18 99
anykids 14 0 4,584 2 0 1
black 0 0 4,598 2 0 1
degres 14 0 4,584 5 0 4
female 0 4] 4,598 2 0 1
kidvalue 1,609 0 2,989 4 1 4
othrrace 0 o 4,598 2 0 1
year 0 (o} 4,698 2 1993 1994
income9l 0 0 4,598 24 1 99
income 495 v} 4,103 2 1000 75000

The all option prints information for all the variables in the variable list, Otherwise,
only those variables with at least one missing value are displayed. The showzero option
displays each () in the table as 0 rather than as a blank space. These options make the
output clearer for didactic purposes, although yon may prefer to omit them in practice.

The output for misstable summarize distinguishes between missing values that
are coded with the system missing value (.) and those coded with extended missing
values (.a through .z), Some datasets use extended missing values to distinguish why
different cases have missing values, like coding people who respond “don’t know™ to a

4. For readers of previous editions of this book, we now use the official Stata command misstable

instead of the misschk command ftom SPost9.
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survey question as .d and coding those for whom the question is inapplicable as .i. In
the misstable summarize output, the first column of numbers is the number of cases
with missing values coded as the system missing value (.). the second is the number
of cases with extended missing values, and the third is the number of cases with no
missing values.

To understand the labels for these columns. you need to know that Stata consid-
ers missing values to be numerically larger than nonmissing values and that extended
missing values are considered larger than the system missing value. Accordingly, Obs<.
indicates nonmissing values and Obs>. indicates extended missing values that are larger
than .. the system-missing value. In this example, we see that only four variables have
missing values: anykids (14 cases), degree (14), kidvalue (1,609), and income (495).

Third, to obtain information on the patterns of missing data, we use misstable
patterns:

. misstable patterns age anykids black degree female kidvalue othrrace
> year income91 income, freq

Migsing-value patterns
(1 means camplete)

Pattern

Frequency 1 2 3 4

2,684 1 4 1 A

1,410 1 11 0

294 1 1 0 1

185 1 100

6 01 0 0

5 1 000 1

4 1 o1 1

3 0O 0 0 O

3 01 1 0

1 01 0 1

1 01 1 1

1 1 00 0

1 1 01 0
4,598

Variables are (1) anykids (2) degree (3) income (4) kidvalue

The freq option displays results as frequencies rather than as percentages. Each row
of the output represents a unique pattern of missing values, where 0 indicates a missing
value and 1 indicates a nonmissing value. In the top row, the pattern is all 1s, showing
that 2,684 cases had no missing values for any variable. In the second row, we see the
most common pattern of missing values was where there were no missing values for
variables 1, 2, and 3, with missing values for variable 4. At the bottom of the table,
we see which number corresponds to which variable; for example, variable 1 is anykids.
Only 4 variables are included even though 10 variables were in the variable list. This is
because only variables with some missing values are included in the table.
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The misstable summarize command has a generate (stubnume) optmn to gener-
ate new variables that indicate whether observations are missing for a
able. For each variable that has missing data, a new variable is created whwnm
is stubname followed by the name of the variable with missing data. The new variable
is assigned a value of 1 if the variable is missing for an observation and 0 if it is not
missing.

These new variables could be used, for example, in a binary logit model of the
sort we describe in chapters 5 and 6 using basic demographics as predictors of whether
observations are missing. First, we create the indicator variables:

. misstable summarize age anykids black degree female kidvalue othrrace

> year income3l income, gen(m_.)
Obs<.
Unique
Variable Obs=. Obs>. Oba<, values Min Max
anykids 14 4,584 2 0 1
degree 14 q,684 5 0 4
kidvalue 1,609 2,989 W 1 4
income 495 4,103 21 1000 76000
Then, we fit a logit model:
. logit m_income female black othrrace age, nolog
Logistic regression Number of obs = 4598
LR chi2(4) - 100.88
Prob > chi2 = 0.0000
Log likelihood = -15620.1691 Pseudo R2 = 0.0321
n_income Coef. Std. Err. z  Prlzl [98% Conf. Intervall
fenmale -4TT7436 . 1023335 4.67 0.000 2771736 .6783136
black 5148666  .1308433 3.93 0,000 2684074 LT713035
othrrace .2618131 .2355404 1.07 0.285 -.2098377 . 7134638
age 0210619 . 0026597 7.92 0.000 .0158489 .0262748
-cons -3.521194 .1612844 -21.83 0.000 -3.837306 ~-3.206082

Although this is only an informal assessment of the missing data, it suggests that missing
values on income are associated with being female, black, and older.

Postestimation commands and the estimation sample

Excepting predict, postestimation commands for testing, assessing fit, and making pre-
dictions use the observations from the estimation sample, unless you specify otherwise.
Accordingly, with these commands you do not need to worry about dropping cases that
were deleted because of missing data during estimation. Stata automatically selects
cases from the estimation sample by using a special variable named e (sample) that is
created by every estimation command. This variable equals 1 for cases used to fit the
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model and equals 0 otherwise. You can use this variable to select cases with if condi-
tions, as in sum female if e(sample). But you cannot otherwise use this variable as
if it was an ordinary variable in your dataset. For example, you cannot use a command
like tabulate female e(sample). Instead, you need to generate an ordinary variable
equal to e(sample), which then allows you to tabulate the variable or do anything else
with it.

If we add a variable with missing data to the model we estimated immediately above,
we can see how this works:

. logit m_income female black othrrace age i.degree, nolog

Logistic regression Number of obs = 4584
(output omitted )

. generate included = e(sample)

. labal var included "Cases included in logit on'm_income®

. tabulate included

Cases
included in
logit on
o_income Freq. Percent Cum.
0 14 0.30 0.30
1 4,584 99.70 100.00
Total 4,588 100.00

The generated variable included has 4,584 cases equal to 1, which is the same as the
number of cases used to fit our model, The remaining 14 cases are (0, which corresponds
with the 14 cases missing on the degree variable that we showed in the output from
misstable above.

3.1.7 Weights and survey data

Weights indicate that some observations should be given more weight than others when
computing estimates. The syntax for specifying weights is [ type=varname ], where the
square brackets are part of the command, fype is the type of weight to be used, and
varname is the variable containing the weights. Stata recognizes four types of weights:

1. fweights (frequency weights) indicate that an observation represents multiple
observations with identical values. For example, if an observation has an fweight
of 5, this is equivalent to having five identical, duplicate observations. If you do
not include a weight modifier in your estimation command, this is equivalent to

specifying [fweight=1].

2. pweights (sampling weights) denote the inverse of the probability that the ob-
servation is included because of the sampling design. For example, if a case has
a pweight of 1,200, that case had a 1 in 1,200 chance of being selected into the
sample and in that sense represents 1,200 observations in the population.
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3. aweights (analytic weights) are inversely proportional to the variance of an obser-
vation. The variance of the jth observation is assumed to be o /wy, where wy; is
the analytic weight. Analytic weights are used most often when observations are
averages and the weights are the munber of elements that gave rise to the average.
For example, if each observation is the cell mean from a larger dataset, the data
are heteroskedastic because the variance of the means decreases as the number of
observations used to calculate them increases.

4. iveights (importance weights) have no formal statistical definition. They are
used by programmers to facilitate certain types of computations.

Frequency weights differ notably from the other types because a davaset that includes
an fweight variable can be nsed to create a new dataset that yields equivalent results
without frequency weights by simply repeating observations with duplicate values. Asa
result, frequency weights pose no issues for various techniques we consider in this book.

The use of weights is a complex topic, and it is easy to apply weights incorrectly. If
you need to use weights, we encourage you to read the discussions in (U] 11.1.6 weig_ht
and [U] 20.23 Weighted estimation. Winship and Radbill (1994) have an accessible
introduction to weights in the linear regression model. Heeringa, West, and Berglund
(2010) provide an in-depth treatment along with examples using Stata in their excellent
book on complex survey design, a topic we consider next.

Complex survey designs

Complex survey designs have three major features. First, samples can be divided into
strata within which observations are selected separately. For example, a sample might
be stratified by region of the country so that the researchers can achieve precisely the
number of respondents they want from each region.

Second, samples can use clustering in which higher levels of aggregation, called
primary sampling units, are selected first and then individuals are sampled from within
these clusters. A survey of adolescents might use schools as its primary sampling unit
and then sample students from within each school. Observations within clusters often
share similarities leading to violations of the assumption of independent observations.
Accordingly, when there is clustering, the usual standard errors will be incorrect because
they do not adjust for the lack of independence.

Third, individuals can have different probabilities of selection. For example, the
design might oversample minority populations. Such oversampling allows more precise

estimates of subgroup characteristics, but probability weights must be used to obtain
accurate estimates for the population as a whole,

Stata’s svy commands for samples with complex survey designs (see the Stata Survey
Data Manual for details) provide estimates where the standard errors are adjusted for
stratification, clustering, and weights. If the sample design involves weights or cluster-
ing, but not stratification, then models can be fit using standard regression commands
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with the [pweight=weight-variable] and vce(cluster clusier-variable) options. The
results will be identical to those from svy. If the sample design involves stratification,
then svy commands must be used to get the correct standard errors.

The first step in using commands for complex samples is to specify the key features of
the survey design by using the svyset command. To illustrate this, we use an example
from Heeringa, West, and Berglund (2010) based on the Health and Retirement Study,
a representative sample of American adults over age 50.% The primary sampling units
(Psus), another name for clusters, are defined by the variable secu, the strata by the
variable stratum, and the probability weights by the variable kwgtr. We use svyset
as follows:

. use svyhrs4, clear
(svyhrs4.dta| Health and Retirement Study 2006 | 2014-03-04)

. svyset secu [pweight=kwgtr], strata(stratum)

pweight: kwgtr
VCE: linearized
Single unit: missing
Strata 1: stratum
SU 1: secu
FPC 1: <zero>

Stata will use this information automatically when a subsequent command that
supports survey estimation is prefixed by svy:. In our example, the outcome is whether
the respondent has arthritis, and the independent variables are gender, education, and
age. To fit a logit model, discussed in detail in chapter 5, we begin the command with
the prefix svy: and afterward specify the logit command as we otherwise would.

. svy: logit arthritis male i.ed3cat age
(running logit on estimation sample)

Survey: Logistic regression

Humber of strata = 66 Number of obs = 18376
Number of PSUs = 112 Population size = T6085117
Design df = 56
F( 4, 63) = 204.28
Prob > F = 0.0000

Linearized
arthritis Coef. Std. Err. t P>t [95% Conf. Interval]
nale -.5771248 0442301 -13.06 0.000 -.B667284 -.4885212

ed3cat

12-15 years -,2135877  .0560052 -3.81 0.000 -.3257796  -.1013957
16+ years —-.6366568 0650174 -9.78 0.000 -.7658022 -.5053113
age .0478163 .0021773 21.96 0,000 . 043:4547 .0521779
-cons -2.324736 .1B46753 -15.03 0.000 -2.634588 -2.014884

5. We thank Steve Heeringa for allowing us to use these data.
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The results indicate that men are less likely than women with similar characteristics
to have arthritis, that those with more education are less likely to have arthritis, and
that the probability of having arthritis increases as people get older. More precise
interpretation of binary models is considered in chapter 6. Two ditferences merit noting
between the information provided in the above results and those provided when svy:
is not, used. First, the svy results indicate both the munber of strata and the number
of PSUs in the sample. Second, in addition to the sample size, the results present the
population size implied by the probability weights. In this example. the size of the
target population is over 76 million.

Models fit using complex survey methods pose two problems for the postestimation
techniques used in this book. First, measures of fit are often based on the model's
likelihood. With survey estimation, the “likelihood” on which maodel estimates are
based is not a true likelihood (Sribney 1997), so any technique that requires a value for
the likelihood is not available.” Second, some methods of interpretation that we use
require estimates of the standard deviation of one or more variables in the model, which
are not always available with survey estimmation,

Stata supports survey estimation for nearly all the models we discuss in this book.
If the model you are using does not work with the svy: prefix, remnember that nearly all
regression commands in Stata allow weights and clustering: although not ideal, this is

a reasonable way to proceed if the regression command you are nsing does not support
the svy: prefix.

3.1.8 Options for regression models

The following options apply to most regression models. Unique options for specific
models are considered in later chapters.

noconstant constrains the intercept to equal 0. For example, in a linear regression, the
command regress y x1 x2, noconstant would fit the model y = 31y + Baza + &

nolog suppresses the iteration history, which shortens the output. If you use this option,
which we often do, and have problems obtaining estimates, it is a good idea to refit
the model without this option and with the trace option.

trace lets you see the values of the parameters for each step of the iteration, This can

be nseful for determining which variables may be causing a problem if your model
has difficulty converging.

level(#) specifies the level of the confidence interval. By default, Stata provides 95%
confidence intervals for estimated coefficients, meaning that the interval around the
estimated 3 would capture the true value of 3 95% of the time if repeated samples
were drawn. level() allows you to specify other intervals. For example, level(90)

6. When rabust standard errors are used without svy adjustments, Stata returns a “pseudolikelihood”,
and we use this when computing some goodness-of-fit statistics. Because goodness-of-fit measures
might be considered merely heuristic anyway, we think this is reasonable.
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specifies a 90% interval. You can also change the defanlt level with the command
set level. For example, set level 90 specifies 90% confidence intervals.

vce(cluster cluster-variable) specifies that the observations are independent across the
clusters that are defined by unique values of cluster-variable but are not necessarily
independent within clusters. Specifying this option leads to robust standard errors,
as discussed below, with additional corrections for the effects of clustered data. See
Hosmer, Lemeshow, and Sturdivant (2013, chap. 9) for a detailed discussion of logit
models with clustered data. Using vce(cluster cluster-variable) does not affect
the coefficient estimates but can have a large impact on the standard errors.

vce (veetype) specifies the type of standard errors that are reported. vce(robust) re-
places traditional standard errors with robust standard errors, which are also known
as Huber, White, or sandwich standard errors. These are discussed further next, in
section 3.1.9. Gould, Pitblado, and Poi (2010) provide details on how robust stan-
dard errors are computed in Stata. Robust standard errors are automatically used
if the vce(cluster cluster-variable) option is specified, if probability weights are
used, or if a model is fit using svy. In earlier versions of Stata, this option was sim-
ply robust. Option vce(bootstrap) estimates the variance-covariance matrix by
bootstrap, which involves repeated reestimation on samples drawn with replacement
from the original estimation sample. Option vce(jackknife) uses the jackknife
method, which involves refitting the model N times, each time leaving out a single
observation, Type help vce option for further details.

vsquish eliminates the blank lines in output that are inserted when factor-variable
notation is used. We sometimes nse nolog and vsquish in this book to save space.

3.1.9 Robust standard errors

Robust standard errors, which are computed by Stata when the robust option is
specified, go by a variety of names, including Huber-Eicker-White, clustered, White,
heteroskedasticity-consistent, HOCM, and sandwich standard errors. In the last decade,
their use has become increasingly common. For example, King and Roberts (2014) con-
ducted a survey of articles in the American Political Science Review and found that
66% of the articles using regression models reported robust standard errors.

Robust standard errors are considered robust in the sense that they are correct in
the presence of some types of violations of the assumptions of the model. For example, if
the correct model is a binary logit model but a binary probit model is fit, the model has
been misspecified. The estimates obtained by fitting a logit model cannot be maximum
likelihood estimates because an incorrect likelihood function is being used (that is, a
logistic probability density is used instead of the correct normal density). When a model
iz misspecified in this way, the usual standard errors are incorrect (White 1982). For
this reason, Arminger (1995) argues that robust standard errors should be broadly used.
He writes: “If one keeps in mind that most researchers misspecify the model ..., it is
obvious that their estimated parameters can usually be interpreted only as minimim
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ignorance estimators and that the standard errors and test statistics may be far away
from the correct asymptotic values, depending on the diserepancy between the assumed
density and the actual density that generated the data.”

In some cases, robust standard errors are likely to work quite well. If violations
of the underlying model are minor, as we would argue is the case if the true model is
logit and vou fit a probit model, then the robust standard errors are preferred; but the
differences are likely to be quite small. In our informal simulations, they are trivially
different. On the other hand, if you fit a Poisson regression model (see chapter 9) in
the presence of overdispersion, Cameron and Trivedi (2013, 72 80) provide convincing
evidence that robust standard errors provide a more accurate assessment of statistical
significance. If there is clustering in the data, robust standard errors should be used,
ideally by specitying vce(cluster cluster-variable) or hy using svy estimation.

Arguments for robust standard errors are compelling. Some argue they should be
used nearly always in practice. At the same time, robust standard errors are not a
general solution to problems of misspecification, and they have important limitations,
Kauermann and Carroll (2001) show that even when the model is correct, robust stan-
dard errors have more sampling variability, and sometimes far more, than the usual
standard errors. This is “the price that one pays to obtain consistency”. These theoret-
ical results are consistent with simulations by Long and Ervin (2000), who found that
in the linear regression model robust standard errors often did worse than the nsual
standard errors in samples smaller than 500, They recommended using small-sample
versions that can be computed in Stata for regress with the options he2 or he3. Among
nonlinear models, Kauermann and Carroll (2001) consider the Poisson regression madel
and the logit model. They showed that the loss of efficiency when using robust standard
errors can be worse than that occurring in normal models. However, we are unaware of
small-sample versions of robust standard errors for nonlinear models.

There is a second and potentially very serious problem. If robust standard errors are
used because a model is misspecified, it is important to consider what other implications
misspecification may have. Freedman (2006) is dismissive of robust standard errors
for many of the models discussed in this book for this reason, writing pointedly: “It
remains unclear why applied workers should care about the variance of an estimator
for the wrong parameter,” Cameron and Trivedi (2010, 334) note that if a model is

misspecified, the inconsistency of the parameter estimate is a far more serious problem
than the consistency of the standard error.

King and Roberts (2014) argue that differences between robust and classical errors
are “like canaries in the coal mine, providing clear indications that your model is mis-
specified and your inferences are likely biased”. They suggest that a comparison of
robust and nonrobust standard errors should be used as an informal test of model mis-
specification. Researchers should try to address the specification problems that cause
robust and classical standard errors to differ, instead of considering robust standard
errors to have solved the problematic implications of misspecification.
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We agree with the advice that researchers should not simply opt for robust standard
errors without thought as to why the standard errors might differ. This is especially so
when misspecification has direct implications for estimates of quantities of interest, as it
often does for the models considered in this book. Recall that in models such as logit and
probit, unlike in the linear regression model, excluding au independent variable that is
uncorrelated with other independent variables will bias the estimates of all parameters.
Here we agree with White (1980, 828), one of the authors for whom robust standard
errors are sometimes named, who cautioned that robust variance estimation “does not
relieve the investigator of the burden of carefully specifying his models. Instead, it is
hoped that the statistics presented here will enable researchers to be even more careful
in specifying and estimating econometric models.”

In the end, what to do and advise about robust standard errors has proven one
of the most difficult issues for us in revising to the current edition of this book. We
received different advice when we discussed the matter with people. We could have, with
some justification, used robust standard errors every time we fit a model in this book.
One cost of doing so would include not being able to introduce methods that require
likelihoods instead of psendolikelihoods, including most measures of model fit that we
discuss and likelihood-ratio tests. These are presently widely used in practice and also
are didactically useful in understanding how the models we disciss work. Consequently,
we decided against eliminating these sections of the book. To avoid confusing readers by
switching back and forth between different specifications, we do not use robust standard
errors for most of the examples we show.

3.1.10 Reading the estimation output

Because we have already discussed the iteration log, in the following example we sup-
press it with the nolog option and consider other parts of the output from estimation
commands. Although the sample output is from logit, our discussion applies generally
to other regression models fit by maxinuun likelihood. We comment briefly below on
changes to the estimation output for svy estimation. The following output from logit
illustrates how Stata displays results from regression commands:
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. use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)
.« logit 1fp k5 k618 i.agecat i.uc i.hc lug inc, nolog

Logistic regression Humber of obs = 753
LR chi2(8) o 124.30
Prob > chi2 = 0.0000
Log likelihood = -452.72367 Psaudo R2 = 0.1207
fp Coef. 5Std. Err. z P>zl [95Y% Conf. Interval]
k5 -1.391667  .1919279 -7.25 0.000 -1.767739 -1.016395
k618 -.0666678 .068314 -0,96 0.336 -.1995607 -0682251
agecat

40-49 -.6267601 .208723 -3.00 0.003 -1.03585 -.2178706
B0+ -1.279078  .2597827 -4.92 0.000 -1.788242 -.7695128

we _

college 7977136 .22081814 3.48 0.001 . 3485263 1.246801
college .13688956  .2054484 0.66 0.508 -.266778 .538b568
lvg .6099096 15607975 4.04 0.000 3143562 . 9054672
inc ~.0360642 .0082718 -4.24 0.000 -.0612666 -.0188418
-cons 1.013999 -2860488 3.54 0.000 46533538 1.574645

1. Log likelihood = -452.72367 is the value of the log likelihood at convergeénce.

. Number of obs is the number of observations, excluding those with missing values

and those excluded with if and in conditions.

. LR chi2(8) is the value of a likelihood-ratio chi-squared for the test of the null

hypothesis that all the coefficients associated with independent variables are si-
multaneously equal to 0 (see page 119 for details). The number in parentheses is
the degrees of freedom for the test. When robust standard errors or probability

weights are used, results from a Wald test of the same null hypothesis are shown
instead.

. Prob > chi2 indicates the p-value.

. Pseudo R2 is the measure of fit also known as McFadden's (1974) R?. Details on

how this measure is computed are given on page 126.

Estimates and standard errors

1. The leftmost column lists the variables in the model, with the dependent variable

at the top. The independent variables are in the same order as they were typed on
the command line., The constant, labeled _cons, is last. With Stata 13 and later,
factor variables are labeled with their value labels. For example, the indicator
variable for agecat==2 is labeled as agecat followed by 40-49, which is the value
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label for category 2. In Stata 11 and 12, or with the nofvlabel option in Stata
13 and later, the indicator variable for agecat==2 is labeled as agecat followed
on the next line by 2. Retyping the estimation command followed by coeflegend
will list the symbolic names of each regression parameter.

2. Column Coef. contains estimates of the regression coefficients.

3. Column Std. Err. contains the standard errors of the estimates. With the
vce(robust) option, these are labeled Robust Std. Err.

4. Column z contains the z test equal to the estimate divided by its standard error.

. Column P>|z| is the two-tailed significance level. A significance level listed as
0.000 means that p < 0.001. For example, p = 0.00049 is rounded to 0.000.

6. Column [95% Conf. Interval] contains the confidence interval for each esti-
mate. Instead of testing a specific hypothesis (for example, Hy: 8 = 0), we can
use a confidence interval that contains the true parameter with a chosen proba-
bility, known as the confidence level. For a given confidence level, the estimated
upper and lower bounds define the confidence interval.

Differences in output for svy estimation

With svy estimation, the output differs, reflecting that the estimates are no longer ML
estimates,

1. In addition to the sample size, an estimate of the population size is shown.
2. The likelihood-ratio test that all coefficients are 0 is replaced by an F test.
3. The psendo-R? is not shown because it is based on the log likelihood.

4. t-values are shown instead of z-values.

3.1.11 Storing estimation results

Stata considers the results of a model that has just been fit to be the active estimates.
After fitting a model, you can type ereturn list to see a summary of the information
that Stata stores about the active estimates. Postestimation cominands are based on
the active estimates. When a new model is fit, its results become the active estimates,
replacing the previous model’s estimates,

The estimates store and estimates save commands preserve the active esti-
mation results so that they can be retrieved and used even after a new model is fit.
estimates store saves the active estimates to memory, while estimates save saves
them to a file. Storing estimation results is extremely useful for several reasons. For one,
commands like 1rtest and estimates table use results from more than one model.
Because only one set of estimates can be active at a time, stored estimates are the way
we can refer to multiple sets of estimates. Additionally. the margins command, used
extensively in later chapters, makes predictions based on estimates from a model that
has already been fit, meaning the active estimates. For some applications, however, we
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will need to overwrite the active estimates from our regression model with estimates
from margins by using the post option. Onee this is done, the estimates from the
regression model are no longer active and need to be restored (discussed below) as the
active estimates if you want to do additional postestimation analysis of the model.

After running any estimation command, the syntax is

estimates store name

For example, to store the estimation results with the name logitl, type

. use binlfp4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-16)

. logit 1fp k& k618 i.agecat i.wec i.hc lwg inc, nolog
{output omitted )

. @stimates store logitl

estimates restore restores the stored estimates to memory without fitting the model
again:

estimates restore name

After running estimates restore, the estimation results in memory are the same as
if we had just fit the model, even though we may have fit other models in the inferim.
Of course. we need to be careful about changes made to the data after fitting the
model, but the same caveat about not changing the data between fitting a model and

postestimation analysis applies even when estimates store and estimates restore
are not used.

(Advanced) Saving estimates to a file

We mark this section as advanced because most of the time we find
that storing estimation results in memory is sufficient. This section
can be skipped unless yon have a need to store estimates to disk. The
most likely case would be if you are fitting a model that takes hours to
estimate; you may want to save the result to a file so you can use them
later without refitting the model.
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Because estimates store holds the estimates in memory, estimates stored in one Stata
session are not available in the next. Even within a Stata session, the command clear
all erases stored estimates. To use estimates in a later session or after clearing memory,
you can use estimates save to save results to a disk file:

estimates save filename, replace

For example, estimates save modell, replace will create the file modell.ster.

We can load previously saved estimation results with estimates use:
estimates use filename

estimates use restores the estimates almost as if we had just fit the model, and the
“almost” here is very important. As described earlier, when we fit a model, Stata
creates the variable e(sample) to indicate which observations were used when fitting
the model. Some postestimation commands need e(sample) to produce proper results.
However, estimates use does not require that the data in memory are the data used to
estimate the saved results. You can even run estimates use without data in memory.
Accordingly, estimates use does not restore the e(sample) variable. Although this
prevents some postestimation commands from working, this is better than having them
give wrong answers because the wrong dataset is in memory.

To deal with this issue. you can reset e(sample). When doing this, you are respon-
sible for making sure that the data loaded to memory are the same as the data when
the model was originally fit. Assuming the proper data are in memory, you use the
estimates esample command to respecify the outcome and independent variables, the
if and in conditions, and the weights that were used when the model was originally
fit. e(sample) is then set accordingly. The syntax is

estimates esample wvarlist [tf] [in] [meight]

To show how this works, we present an example that uses a command we have not
vet introduced, estat summarize, which provides summary statistics on the estimation
sample that was used to compute the active estimates. First, we fit a model and show the
summary statistics for the estimation sample, Then, we save the estimates as model1:
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(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp k5 if wc==1, nolog

Logistic regression Number of obs = 212
LR chi2(1) - 17.61
Prob > chi2 - 0.0000
Log likelihood = -124.06386 Paeudo A2 = 0.0673
ifp Coef. Sid. Err. z P>|z| [95% Conf. Intervall
kb -.9348133  ,2347982 -3.98 0.000  -1.395009 ~-.4746173
.cons 1.092971 17656364 6.19 0.000 .T469683 1.438074
. @astat summarize
Estimation sample logit Number of obs = 212
Variable Maan Std. Dev. Min Hax
1fp 6792453 LA4678714 0 1
k5 .3301887 6634921 0 3

. estimates save modell, replace

(note: file modell.ster not found)

file modell.ster saved

(Because of the if we==1 condition specified with logit. the estimates are based on
212 cases, not the 753 cases in the entire sample.) Next, we simulate restarting Stata
with the clear all command. We then bring the estimates we saved to a file back as
the active estimates with estimates use, and we replay the estimates:

. clear all
. estimates use modell
. estimates replay

active results

Logistic regression Number of ¢bs = 212
LR chi2(1) = 17.91

Prob > chi?2 = 0.0000

Log likelihood = -124.06386 Pseudo R2 = 0.0673
1fp Coef. Std. Err. z P>lzl [95% Conf. Intervall

k6 -.9348133 2347982 =3.98 0.000 -1.395009 -.4746173

-cons 1.092971 1766354 6.19 0.000 . T469683 1.438974

. estimates describe

Estimation results produced by

- logit 1fp k6 1if wc==1, nolog

We can see that the old estimates are now active because the estimates replay
command displayed the same results for our model that we had before, We also ran



3.1.12 Reformatting output with estimates table 111

estimates describe, which displays the command used to fit the model. All of this
works even though we do not have any data in memory.”

Even if there are data in memory when estimates use is run, Stata is cautious
and does not presume they are the same data used to fit the model: if you load the
data with use and type estat summarize, you get an error. To avoid this error, after
loading the same data, we run the estimates esample command:

. uss binlfp4, clear

(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-1B)
. estimates esample: 1fp k5 if we==1

. estat summarize

Estimation sample logit Number of obs = 212
Variable Mean Std. Dev. Min Max
1fp 6792453 4678714 1) 1

k5 . 3301887 .6634921 [¢] 3

With estimates esample, we must specify the same variables and conditions as when
we fit the model. Then estat summarize will produce the same results it did after we
fit the model initially.

3.1.12 Reformatting output with estimates table

estimates table reformats the results from an estimation command to look more like
the tables that are seen in articles and books. estimates table also makes it easier
to move estimation results into a word processor or spreadsheet to make presentation-
quality tables. We strongly recommend using this command or some other automated
procedure rather than retyping results to make tables. Not only is this less tedious,
but it diminishes the possibility of errors. Also, if you revise your model and used
estimates table in your do-file, then you automatically have the corrected tables.

The syntax is

estimates table [modef-namel [mmh:f—name.? ] ] [, option.s']

where model-name# is the name of & model whose results were stored using estimates
store. If model-name# is not specified, the estimation results in memory are used.

Here is a simple example that lets us compare estimates from similarly specified logit
and probit models, a topic considered in detail in chapter 5. We start by fitting the two
models and using estimates store to save the estimates:

7. Of course, postestimation commands that require the data, such as margins. will not work.
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. use biplfp4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp kb i.agecat i.wc, nolog
(output omitted )

. estimates store logit_model

. probit 1fp k5 i.agecat 1.wc, nolog
(output omitted )

. estimates store probit_model
We combine the estimates by using estimates table:

. estimates table logit_model probit_model, b(¥%12.3f) t varlabel

Variable legit_model probit_model
# kids < 6 =1.351 -0.820
-7.27 -T7.566

agecat
40-49 -0.624 -0.374
-3.18 -3.17
650+ -1.190 -0.723
-6.27 -56,20

vec
college 0,832 0,500
4.53 4.67
Constant 0.889 0.540
5.40 5.60

legend: b/t

estimates table provides great flexibility for what you include in your table. Although
you should check the Stata Base Reference Manual or type help estimates table for
complete information, here are some of the most basie and helpful options:

b(format) specifies the format used to print the coefficients. For example, b(%9.3f)
indicates the estimates are to be in a column nine characters wide with three decimal
places. For more information on formats, see help format or the Stata User’s Guide.

varwidth(#) specifies the width of the column that includes variable names and labels
on the left side of the table. This is often needed when variable labels are used.

keep(varlist) or drop(varlist) specify which of the independent variables to include in
or exclude from the table.

se[(format)|, t[(format)|, and p[(format)] request standard errors, ¢ or z statistics,
and p-values, respectively. By specifying the format, vou can have a different number
of decimal places for each statistic, for example, b(%9.3f) and t(%9.2£) .8

8. estimates table always uses t for the test statistic, even though, as we will see in later chapters,
in most of the cases considered in the book the test statistic is a = statistic and not a ¢ statistic.
The test statistic is correctly labeled in the output for the estimation command itsell, and you
should edit any £'s that should be ='s in tables that you present.
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star tells Stata to print one star by a coefficient if the p-value is less than 0.05, two
stars if less than 0.01. and three stars if less than 0.001. The star option cannot, be
used in conjunction with the se, t, or p options.

varlabel requests that variable labels be used instead of variable names in the rows of
the table. Prior to Stata 13, this option was named label.

stats(statlist) indicates that the scalar statistics in statlist should be included in the
base of the table. In statlist, N requests the sample size, aic requests Akaike’s infor-
mation criterion, and bic requests the Bayesian information criterion. To determine
which other statistics can be included, after you fit a model, run ereturn list, for
example,

. ereturn list

scalars:

e(r2_p) = .0830969594435268

e{N_cds) = 0

e(N_cdf) = 0
o(p) = 1.14892453941e-17
e(chi2) = B85.56879559694858

e(df m) = 4
e(11_0) = -514.87320465671461

e(k_eq_model) = 1
o(1l) = -472.0888067686718

{output omitted )

The names of any of the scalars shown by ereturn list can be included in statlist.
To determine what each scalar contains, use the command help estimation-command
(for example, help logit) and check the section Stored results.

Although estimates table works well for basic tables, it is not as flexible as some
programs that Stata users have written. The estout command written by Jann (2005)
and the newer outreg by Gallup (2012) are very powerful and flexible. To install these
programs, type search estout or search outreg and follow the links. Both programs
allow you to export tables in several formats that can be imported into other programs
(for example, a plain-text file, a tab-delimited text file, an HTML table, or a ETEX
file). At this writing, however, neither of these programs uses value labels to annotate
variables specified with i. syntax.



—?ﬂ

114 Chapter 3 Estimation, testing, and fit

Tip: Copy Table and Copy Table as HTML. Here is a quick way to move tables
into a word processor, spreadsheet, or email. Highlight the results in the Command
window, right-click on (or Command+click in Mac OS X) the highlighted area, and
select Copy Table. This copies the results in a unique way: it uses tabs instead of
spaces to separate columns and it removes blank lines. If yon paste the results into
a spreadsheet, the columns are preserved, and most word processors make it easy
to convert tab-delimited text into a table. If you select Copy Table as HTML,
the results can be pasted as a table into most word processors, spreadsheets, or
email clients. In Stata 13, the command putexcel was added to allow you to easily
export matrices, expressions, and stored results to an Excel file, which allows you
to pass information from your commands into an Excel file. For details, type help
putexcel or see Crow (2013, 2014).

3.2 Testing

If the assumptions of the model hold., ML estimators are distributed asymptotically

normally:
B 2 ( 2 )
Bk ~ N\ B, o 3\
The hypothesis Hy : 8 = 3* can be tested with the z statistic:
fg‘ e
z= k,..—ﬂ
N

If Hy is true, then z is distributed approximately normally with a mean of 0 and a
variance of 1 for large samples. The sampling distribution is shown in the following
figure, where the shading shows the rejection region for a two-tailed test at the 0.05
level:

-1.96 0 1.96
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For some estimators, such as linear regression implemented by regress and with survey
estimation, the estimators have a t distribution rather than a normal distribution. The
general principles of testing are, however, the same.

3.2.1 One-tailed and two-tailed tests

The probability levels in the Stata output for estimation commands are for two-tailed
tests. Consider the linear regression example above for the independent variable female.
The t statistic is —0.54 with the probability level in column P>|t| listed as 0.59. This
corresponds to the area of the curve that is either greater than |t| or less than —|t],
shown by the shaded region in the tails of the sampling distribution shown in the figure
above. When past research or theory suggests the sign of the coefficient, a one-tailed
test might be used. and Hy is rejected only when ¢ or = is in the expected tail. For
example, assume that my theory proposes that being a female scientist can only have
a negative effect on job prestige. If we wanted a one-tailed test and the coefficient is
in the expected direction (as in this example), then we want only the proportion of the
distribution that is less than —0.54, which is balf of the shaded region: 0.59/2 = 0.30.
We conclude that being a female scientist does not significantly affect the prestige of
the job (t = —0.54, p = 0.30 for a one-tailed test).

You should divide P>|t| (or P>|z|) by 2 only when the estimated coefficient is in
the expected direction. Suppose for the effect of being female that ¢ = 0.54 instead of
t = —0.54. It would still be the case that P>|t| is 0.59. The one-tailed significance
level, however, would be the percentage of the distribution less than 0.54 (not less than
—0.54), which is equal to 1 — (0.59/2) = 0.71, not 0.59/2 = 0.30. We conclude that
being a female scientist does not significantly affect the prestige of the job (f = 0.54,
p = 0.71 for a one-tailed test).

Disciplines vary in their preferences for using one-tailed or two-tailed tests. Con-
sequently, it is important to be explicit about whether p-values are for one-tailed or
two-tailed tests. Unless stated otherwise, all the p-values we report in this book are for
two-tailed tests.

3.2.2 Wald and likelihood-ratio tests

For models fit by ML, hypotheses can be tested with Wald tests by using test and with
likelihood-ratio (LR) tests by using 1rtest. Only Wald tests are available for coefficients
estimated using survey estimation. For both types of tests, there is a null hypothesis
Hy that implies constraints on the model's parameters. For example. Ho: Gy = e =0
hypothesizes that two of the parameters are () in the population.

The Wald test assesses Hy by considering two pieces of information. First, all else
being equal, the greater the distance between the estimated coefficients and the hypoth-
esized values, the less support we have for Hy. Second, the greater the curvature of the
log-likelihood function, the more certainty we have about our estimates. This means

that smaller differences between the estimates and hypothesized values are required to
reject Hg,
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The LR test assesses Hy by comparing the log likelihood from the full model that
does not include the constraints implied by Hy with a restricted model that does impose
those constraints. If the constraints significantly reduce the log likelihood, then Hy s
rejected. Thus the LR test requires fitting two models.

Althongh the LR and Wald tests are asymptotically equivalent, they have different
valties in finite samples, particularly in small samples. In general, it is unclear which test
is to be preferred. Cameron and Trivedi (2005, 238) review the literature and conclude
that neither test is uniformly superior. Nonetheless, many statisticians prefer the LR
when both are suitable. We do recommend computing only one test or the other; that
is, we see no reason why you would want to compute or report both tests for a given
hvpothesis.

3.2.3 Wald tests with test and testparm

test computes Wald tests for linear hypotheses about, parameters from the last model
that was fit. Here we consider the most useful features of this powerful command.
Features for multiple-equation models, such as mlogit, zip, and zinb, are discussed in
chapters 8 and 9. Use help test for more features and help testnl for Wald tests of
nonlinear hypotheses.

The first syntax for test allows you to test that one or more coefficients from the
last model are simultaneously equal to 0

test varlist |, accumulate |

where varlist contains names of independent variables from the last estimation. The
accumulate option will be discussed shortly. Some examples of test after fitting the
model logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc should make this first syn-
tax clear. With one variable listed —here. k65— we are testing Hy: Fes = 0.

. test kb
(1) [fplks = 0

chi2( 1) = 52.57
Prob > chi2 = 0.0000

The resulting chi-squared test with 1 degree of freedom equals the square of the z test
statistic in the Logit output. The results indicate that we can reject the null hypothesis.

If we list two variables after test, we can test Hy: s = Fygra = O

. test kb k618

(1) [1fplk5 =0
(2) [fplk618 = 0

chi2( 2) = 52.64
Prob > chi2 = 0.0000



3.2.3  Wald tests with test and testparm 117

We can .réject the hypothesis that the effects of young and older children are simulta-
neously 0.

If we list all the regressors in the model, we can test that all the coefficients except the
constant are simultaneously equal to 0. When factor-variable notation is used, variables
must be specified with the value. variable-name syntax such as 2.agecat. Recall that if

you are not sure what name to use, you can replay the results by using the coeflegend
option (for example, logit, coeflegend).

. test k5 k618 2.agecat 3.agecat l.wc l.hc lwg inc
( 1) [1fplks = 0
(2 [1fplk6i8 = 0
( 3) [1fpl2.agecat =0
( 4) [fpl3.agecat =0
( 6) [ifpll.wc =0
(6 [1fpli.hc =0
(7)) [fplivg =0
( 8) [ifplinc =0

chi2( 8) = 95.90
Prob > chi2 = 0.0000

As noted above, an LR test of the same hypothesis is part of the standard output of
estimation commands, labeled as LR chi?2 in the header of the estimation output.

To test all the coeflicients associated with a factor variable with more than two

categories, you can use testparm. For example, to test that all the coefficients for
agecat are (), we can use test:

. test 2.agecat 3.agecat

( 1) [1fpl2.agecat =0
(2) [1fpl3.agecat =0

chi2( 2) = 24.27
Prob > chi2 = 0.0000

The same results are obtained with testparm:

. testparm i.agecat

(1) [1fpl2.agecat = 0
( 2) [fpl3.agecat =0
chi2( 2) = 24.27

Prob > chi2 = 0.0000

Because agecat has only two categories, the advantage of testparm is not great. But
when there are many categories, it is much simpler to use.

The second syntax for test allows you to test hypotheses about linear combinations
of coefficients:

test [ezp=czp] [, accumulate]
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For example. to test that two coefficients are equal —sav. Ho: Oy = Feerat

. test kb=kG618
(1) [fp]ks - [1fp]k618 = 0

chi2( 1) = 45.07
Prob > chi2 = 0.0000

The line labeled (1) indicates that the hypothesis s = Hie1s has been translated to
the hypothesis s — Besiz = 0. Because the test statistic is significant, we reject the
null hypothesis that the effect of having voung children on labor force participation is
equal to the effect of having older children.

As before, testing hypotheses involving indicator variables requires us to specify
both the value and the variable. For example, to test that the coefficients for ages 40~
49 versus 30-39 and for ages 504 versus 30--39 are equal, we would use the following:

. test 2.agecat=3.agecat
(1) T[ifpl2.agecat - [1fpl3.agecat = O

chi2( 1) = 8.86
Prob > chi2 = 0.0029

The accumulate option

The accumulate option allows you to build more complex hypotheses based on the prior

test command. For example, we begin with a test of Hy: fes = Fesis:

. test kb=k618
(1) [eplks - [1fplk618 = O

chi2{ 1) = 45.07
Prob > chi2 = 0,0000

Next, add the constraint that F,. = Sy:

. test l.wc=1.hc, accumulats

(1) (1fplks - (1fplk618 = 0
(2) [fpli.wc - [1fplil.hc =0

chi2( 2) = 47 .63
Prob > chi2 = 0.0000
This results in a test of Hy: Bis = Besias Bue = Pue. Inustead of using the accumulate

option, we could have used a single test command with multiple restrictions; test
(k5=k618) (1.wec=1.hc).

3.2.4 LR tests with Irtest

1rtest compares nested models by using an LR test. The syntax is

1rtest model-one [nmrfr-f—.’nml
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where model-one and model-two are the names of estimation results stored by estimates
store. When meodel-two is not specified, the most recent, estimation results are used in

its place. Typically, we begin by fitting the full or unconstrained model, and then we
store the results. For example,

. logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
Logistic regression Number of obs

= 753

LR chi2(8) = 124.30

Prob > chi2 - 0.0000

Log likelihood = -452.72367 Pseudo R2 - 0.1207

(output omitted )
. estimates store full

where full is the name we chose for the estimation results from the full model.” After
we store the results, we fit a model that is nested in the full model. A nested model is
one that can be created by imposing constraints on the coefficients in the prior model.
Most commonly, some of the variables from the full model are excluded, which in effect

constrains the coefficients for these variables to be 0. For example, if we drop k5 and
k618 from the last model, this produces

. logit 1fp i.agecat i.wc i.hc lwg inc, nolog
(output omitted )

. estimates store nokidvars

We stored the results for the nested models as nokidvars. Next, we compute the test:

. Irtest full nokidvars

Likelihood-ratio test LR chi2(2) = 62.70
(Assumption: nokidvars nested in full) Prob > chi2 = 0.0000

The output indicates that 1rtest assumes that nokidvars is nested in full. It isup to
the user to ensure that the models are nested. Because our models are nested, the result
is an LR test of the hypothesis Hy: Bis = Sreis = 0. The significant chi-squared statistic
means that we reject the null hypothesis that these two coefficients are simultaneously
equal to 0. Although we fit the full model first followed by the constrained model,
1rtest allows the constrained model to be fit first followed by the full model.

The output for all models fit by maximum likelihood includes an LR test that all
the coefficients except the intercept(s) are 0. For our full model above, this is listed as
LR chi2(8) = 124.30. The results can be computed with 1rtest as follows:

. logit 1fp, nolog
(output omitted )
- Irtest full .

Likelihood-ratio test

LR chi2(8) = 124.30
(Assumption: . nested in full)

Prob » chi2 = 0.0000

9. Although any name up to 27 characters can be used, we recommend keeping the names shart but
informative,
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Avoiding invalid LR tests

1rtest does not always prevent you from computing an invalid test. There are two
things that von mnst check: that the two models are nested and that the two models
were fit using the same sample. In general, if either of these conditions is violated, the
results of 1rtest are meaningless. Although 1rtest exits with an error message if the
number of observations differs in the two models, this check does not cateh those cases
in which the number of observations is the same but the samples are different. One
exception to the requirement of equal sample sizes is when perfect prediction removes
some observations. In such case, the apparent sample sizes for nested models differ,
but an LR test is still appropriate (see section 5.2.3 for details). When this oceurs, the
force option can be used to force 1rtest to compute the seemingly invalid test. For

details on ensuring the same sample size, see onr discussion of mark and markout in
section 3.1.6.

3.3 Measures of fit

Assessing fit involves both the analysis of the it of individual observations and the
evaluation of scalar measures of fit for the model as a whole. Regarding the former,
Pregibon (1981) extended methods of residual and outlier analysis from the linear re-
gression model to the ease of binary logit and probit (see also Cook and Weisberg 1999,
part 1V). These measures are considered in chapter 5. Measures for count models are
also available (Cameron and Trivedi 2013). Although Stata does not compute residuals

and outliers for ordinal and nominal models, in some cases the tools for binary models
can be used.

Many scalar measures have been developed to summarize the overall goodness of fit of
regression models. A scalar measure can in some cases be useful in comparing competing
models and, ultimately, in selecting a final model. Within a substantive area, measures
of fit might provide a rough index of whether a model is adeguate. However, there is no
convincing evidence that selecting a model that maximizes the value of a given measure
results in a model that is optimal in any sense other than the model's having a larger
(or, in some instances, smaller) value of that measure. Measures of fit provide some
information, but it is partial information that must be assessed within the context of

the theory motivating the analysis, past research, and the estimated parameters of the
model being considered.

3.3.1 Syntax of fitstat

The SPost fitstat command caleulates many fit statistics for the estimation commands
in this book. We should mention again that we often find these measures of limited
utility in our own research, with the exception of the information criteria BIC and
AIC. When we do use these measures, we find it helpful to compare multiple measures.
fitstat makes this simple. The options diff, saving(), and using() facilitate the
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comparison of measures across two models. Although fitstat duplicates some measures
computed by other Stata commands (for example, the pseudo-R* in standard Stata
output and the information eriteria from estat ic), fitstat adds many more measures
and makes it convenient to compare measures across models.

The syntax is

fitstat [, saving(name) using(name) ic force giff]

fitstat terminates with an error if the last estimation command does not return a value
for the log-likelihood function for a model with only an intercept (that is, if e(11.0)
is missing). This occurs, for example, if the noconstant option is used to fit a model.
Although fitstat can be used when models are fit with weighted data, there are two
limitations. First, some mesasures cannot be computed with some types of weights and
none can be computed after svy estimation. Second, when pweights or robust standard
errors are used to fit the model, fitstat uses the “psendolikelihood” rather than the
likelihood to compute measures of fit. Given the heuristic nature of the various measures
of fit, we see no reason why the resulting measures would be inappropriate.

Options

saving(name) saves the computed measures in a matrix. fitstat_name, for later
comperisons. When the saving() option is not used, fitstat saves results to the
matrix fitstat_ 0.

using(name) compares the measures for the model in memory, referred to in the output
as the current model, with those of the model saved as name.

diff compares the current model to the prior model.

ic presents only the Bayesian information criterion (BIC) and Akaike’s information crite-
rion (AIC). When comparing two models, fitstat reports Raftery’s (1995) guidelines
for assessing the strength of one model over another with BIC.

force is required to compare information criteria when the number of observations or
the estimation method varies between the two models, or to conduct a likelihood-

ratio test under circumstances in which Stata’s lrtest command would require the
force option.
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['he following table shows which measures fit are computed for which models. W indi-
cates that the measure is ('n||||ntj'l|-ni, and Ul indicates that it is not '-I'Il.'j}lil-f"(].

logit ologit
regress probit cloglog oprobit mlogit zip

Log likelihood & =) 5 =] L] | & L |

Doviance and L 1] ] | n |
LR y*

Deviance and L } H
Wil \‘!

Information | | | | | m u ] |

MmMeRsures

H?% and ]

neljusted IH*

Efron’s B and &} m
Ijur's D

MeFadden's, ML,
Cragg and
Uhler's R?

Count and adjusted O | | | | #

)
count R-

Var(«), Var{y™®) [ [ | ] | ]
MceKelvey and
Zavoina's B2

1 the iterations
|

zinb or zip depvar, inf(_cons)

ztnb
mprobit ztp

glog, the log likelihood for the intercept-only model does not correspond to the first

y and zip, the log likelihood for the intercept-only model is caleulated by Rtting
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3.3.2 Methods and formulas used by fitstat

In this section, we provide brief descriptions of each measure computed by fitstat.
Full details for most measures along with citations to original sources are in Long (1997).
We begin with formulas for several quantities that are used in the computation of other
measures. We then consider the information eriteria BIC and AIC. Again, these are
the measures that we find most useful in practice. We then review the coefficient of
determination R? for the linear regression model followed by numerous pseudo-R%’s.

Quantities used in other measures

Log-likelihood based measures. Stata begins maximum likelihood iterations by com-
puting the log likelihood of the model with all parameters but the intercept constrained
10 0, referred to as In L ( Myyercept ). The log likelihood upon convergence, referred to as
In L{ Mgyy), is also listed. This information is presented in the iteration log and in the
header for the estimation results.’®

LR chi-square test of all coefficients. An LRt test of the hypothesis that all coefficients
except the intercepts are () can be computed by comparing the log likelihoods: LR =
2In L{Mpuy) — 2In L( Migeercipt ). LR is reported by Stata as LR chi2(df) = #, where
the degrees of freedom in parentheses are the number of constrained parameters. For
the zip and zinb models discussed in chapter 9, LR tests that the coefficients in the
count portion (not the binary portion) of the model are 0.

Deviance. The deviance compares the given model with a model that has one parameter
for each observation so that the model reproduces the observed data perfectly. The
deviance is defined as D = —2In L(Myy), where the degrees of freedom equals N
minus the number of parameters. D does not have a chi-squared distribution.

Information criteria

Information measures can be used to compare both nested and nonnested models.

AIC. The formula for Akaike's information criterion (1973) used by fitstat and Stata’s
estat ic command is

AIC = —21In L(Mg) + 2P (3.1)

10. There are a few exceptions. For cloglog that we mention briefly in chapter 5, the value at iteration
0) is not the log likelihood with only the intercept. For the zip and zinb models discussed in chapter
8, the “intercept-only” model can be defined in different ways. These commands return as e(11.0)
the value of the log likelihood with the binary portion of the model unrestricted, whereas only the
intercept is free for the Poisson or negative binomial portion of the model, fitstat reports the
value of the log likelihood from the model with only an intercept in both the binary and the count
portions of the model.
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where L(Mj) is the likelihood of model My and Py is the number of para
the model (for example, K + 1 in the binary regression model, where K is
of regressors). All else being equal, the model with the smaller AIC is consid '
better-fitting model. Another definition of AIC is equal to the value in (3.1) divided by
N. We include this quantity in the fitstat output as AIC divided by N.

BIC. The Bayesian information criterion (BIC) was proposed by Raftery (1995) and
others as a means to compare nested and nonnested models. Because BIC imposes &
greater penalty for the mumber of parameters in a model, it favors a simpler mode!
compared with the AIC measure. :

The BIC statistic is defined in at least three ways. Although this can be con
the choice of which version to use is not important, as we show after pmhngthe
various definitions. Stata defines the BIC for model M, as

BICk = —2 In L(M;) + dfx In N

where dfy is the number of parameters in M. including auxiliary parameters such as o
in the negative binomial regression model. As with A1C, the smaller or more negative
the BIC. the better the fit. A second definition of BIC is computed using the deviance

BICP = D(My) - df? In N

where dfy. is the degrees of freedom associated with the deviance. fitstat hbdsth‘mm
BIC (based on deviance). The third version, sometimes denoted as BIC', uses the LR
chi-squared with df} equal to the number of regressors (not parameters) in the model.

BIC, = —~G2(My) + df}, In N

The difference in the BICs from two models indicates which model is preferred.
Because BIC, — BICy = BIC] — BIC, = BIC! — BICP, the choice of which version of
BIC to use is a matter of convenience. When BIC; < BICy, the first model is preferred.
and accordingly, when BIC; > BICs, the second model is preferred. Raftery (1995
suggested these guidelines for the strength of evidence favoring M, against M; based
on a difference in BIC:

Absolute
difference Evidence
0to?2 Weak
2t06 Positive
6 to 10 Strong
> 10 Very strong

By default, fitstat shows you BICy, which is also computed by Stata’s estat ic. If
you specify fitstat, ic, then all versions of AIC and BIC are reported but non-iC

measures of fit are not shown.
‘
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Example of information criteria. To compute information criteria for a single model,
we fit the model and then run fitstat, saving our results with the name basemodel:

. use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
{output omitted )
. fitstat, ic saving(basemodel)

logit

AIC
AIC 923,447
(divided by N) 1.226

BIC
BIC (df=39) 965.064
81C {(based on deviance) -4022.857
BIC® (based on LRX2) -71.307

Information criteria for a single model are not very useful. Their value comes when
comparing models. Suppose we generate the variable kids, which is the sum of k5 and
k618. Our new model drops k5 and k618 and adds kids. In other words, instead of
a model in which the effect of an additional child age 5 or under is allowed to differ
from the effect of an additional child age 6 to 18, we fit a model in which the effect of
each additional child regardless of age is presumed equal. After fitting the new model,
fitstat compares it with the saved model:

. Eenerate kids = kb + k618

- label var kids "Number of kids 18 or younger"

. logit 1fp kids i.agecat i.wc i.hc lwg inc, nolog
{output omitted )

. fitstat, ic using(basemodel)

Current Saved Difference

AIC
AIC 973.368 923.447 49,921
{(divided by N) 1.293 1.226 0.066

BIC
BIC (df=8/9/-1) 1010.361 965.064 45.297
BIC (based on deviance) -3977.661 -4022.857 45.297
BIC" (based on LRX2) -26.010 =71.307 45,297

Bifference of 45,297 in BIC provides very strong support for saved model.

All AIC and BIC measures are smaller for the base model (listed as Saved). At the
hottom of the table. it indicates that based on Raftery’s eriterion. there is very strong
support for the saved model over the current model.



126 Chapter 3 Estimation, testing, and fit

R? in the linear regression model

For regress, fitstat reports the coeflicient of determination, which can be defined
variously as

N g | — ) N
Z:\:s (v — W) Var(y) . {L_[M}H 52

R =1- &= - = — =
SN (w-7)°  Var(§) + Var(d) L(Mgun)

The adjusted R?* is defined as

.——2_ 2_ h‘ N—]
I H(R N—I)(N*!\'—l)

where K is the number of independent variables.

Pseudo-R*'s

Although each definition of B* in (3.2) gives the same nnmeric value in the linear
regression model, each gives different values and thus provides different measures of
fit when applied to other models. There are also other ways of computing measures
that have some resemblance to the B? in the LR model. These are known as pseudo-
R*s. Because different psendo-R? measures can yield substantially different results
and different software packages use different measnres as their default pseudo-R*, when
presenting results it is important to report exactly which measure is being used rather
than simply saying “Pseudo-R?".

McFadden's R%. McFadden’s (1974) B2, also known as the LR index, compares a model
with just the intercept to a model with all parameters. It is defined as
__InL(Mgu)
In L':J"Ihll.mct-p'l]

If model Myyercopt = My, then Ry = 0, but R¥, ¢ can never exactly equal 1. This
measure is reported by Stata in the header of estimation results as Pseudo R2 and
is listed in the fitstat output as R2 McFadden. Because R}, . always increases as
variables are added to a model, an adjusted version is also available:
In L(Mpuy) — K°

In L( -H'flntt-rmpl}

where K* is the number of parameters, not independent variables.

2 _
Rygep = 1

—2 .
Ryor = 1 -

Maximum likelihood R?. Another analogy to B? was suggested by Maddala (1983):

R‘Z =1= { L(‘""[Imbrccpt} }2”\l
o L( ﬂ'fl'-'ull )

This R? is also called the Cox-Snell (1989) R?.
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Cragg and Uhler's R®. Because R}, reaches a maximum of 1 — L[Mlm,:mm)zf %
Cragg and Uhler (1970) suggested a normed measure:

Ry _ 1—{ L(Minsorcen) /L(Mpn) }*™
T Ri‘ L 1-L ( ‘141 ntercept }2!, "

2
Regu =

This R? is also known as Nagelkerke's (1991) R?.

Efron’s R%. For binary outcomes, Efron’s (1978) psendo-R? defines 7 = Priy=1]x)

and equals g
B E:L (s — 7))
Y (-9’

RFfron

Tjur's coefficient of discrimination. For binary outcomes, Tjur (2009) motivates a
goodness-of-fit measure ranging from 0 to 1 that he calls the coefficient of diserimination.
D simply compares the average predicted probability when the outcome is observed as
1 to the average when the outcome is observed as (:

D = mean ﬁ(y = lly = 1) — mean f’—f'(y =1ly=0)

The measure is a simple expression of the principle that as binary models fit better,
the predicted probability of a positive outcome will increase for cases with a positive
outcome and decrease for cases with a negative outcome.

V(y®), V(g), and McKelvey and Zavoina's R%. Some models can be defined in
terms of a latent variable y*. These include the models for binary or ordinal outcomes,
such as logit, probit, ologit, and oprobit, as well as some niodels with censoring,
such as tobit and intreg. Each model is defined in terms of a regression on a latent
variable y*:

y=x3+c

Using Var(§*) = B Var(x) B, McKelvey and Zavoina (1975) proposed

WﬂyJ Var(7")
Var(y* ) Var(i}") + Var(s)

Rirez =
In models for categorical outcomes, Var(e) is assumed to identify the model.

Count and adjusted count R%. Observed and predicted values can be used in models
with categorical outcomes to compute what is known as the count R?. Cousider the
binary case where the observed 5 is 0 or | and 7; = Pr(y =1 | x;). Define the expected
outcome as

~ [0 ifm <05

v “{ 1 if 7 >05
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This allows us to construct a table of observed and predicted values, such as that
produced for the logit model by the command estat classification:

. #stat classification
Logistic model for lfp

True
Classified D -D Total
+ 334 182 516
- 94 143 237
Total 428 325 753

Classified + if predicted Pr(D) >= .b
True D defined as 1fp != 0

Sensitivity Pr( +1 D}  78.04%4
Specificity Pr( -1-D)  44.00}%
Positive predictive value Pr( Dl 4) 64.73)
Negative predictive valus Pr(-pDl =)  60.34%

False + rate for true -D Pr( +|-D)  66.00%
False - rate for true D Pr( =1 D)  21.96Y%
False + rate for classified + Pr(-D| +) 36.2T)
False - rate for classified - Pr( D| -) 39.66Y%

Correctly classified 63.35%

We see that positive responses were predicted for 516 observations, of which 334 were
correctly classified because the observed response was positive (y = 1), whereas the
other 182 were incorrectly classified because the observed response was negative (y = 0).
Likewise, of the 237 observations for which a negative response was predicted, 143 were
correctly classified and 94 were incorrectly classified.

A seemingly appealing measure is the proportion of correct predictions, referred to
as the count K2,

g |
R:"mmt - ‘E Z"‘JJ
b

where the n;;’s are the number of correct predictions for outcome j. The count R?
can give a faulty impression that the madel is predicting very well. In a binary model,
without knowledge about the independent variables, it is possible to correctly predict
at least 50% of the cases by choosing the outcome category with the largest percentage
of observed cases. To adjust for the largest row marginal,

(ZJ nj_,-) - 1!::1x(r1r+)

N —max (n;4)
r

2
R.Ar[j Count —

where 1, is the marginal for row . The adjusted count R? is the proportion of correct
guesses beyond the number that would be correctly guessed by choosing the largest
marginal.
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33.3 Example of fitstat

To exaniine all the measures of fit, we repeat our example for information criteria, but
this time we use fitstat without the ic option. We fit our hase model and save the
fitstat results with the name basemodel:

. use binlfp4, clear
{binlfp4.dta | Mroz data on labor force participation of women | 2013-07-18)

. logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted )

. fitstat, saving(basemodel)
(output omitted )

Next, we fit a model that includes the variable kids, which is the sum of k5 and k618,
and drops k6 and k618. fitstat compares this model with the saved model:

. gen kids = k5 + k618

. label var kids "Number of kids 1B or younger"

. logit 1fp kids i.agecat i.wc i.hc lwg inc, nolog
(output omitted )

. fitstat, using(basemodel)

Current Saved Difference
Log-1ikelihood
Model -476.684 -452.724 -25.960
Intercept~only -614.873 ~514.873 0.000
Chi-square
D (df=T45/744/1) 957.368 905.447 51.921
LR (df=7/8/-1) 72.378 124,299 -51.921
p-value 0.000 0.000 0.000
Rr2
McFadden 0.070 0.121 -0.050
McFadden (adjusted) 0.085 0.103 -0.048
McKelvey & Zavoina 0.1285 0.215 -0.080
Cox-Snell/ML 0.092 0,152 -0.061
Cragg-Uhler/Nagelkerke 0.123 0.204 -0.081
Efron 0.080 0.153 -0.063
Tjur’s D 0.0891 0.153 -0.063
Count 0.633 0.676 -0.042
Count (adjusted) 0.161 0.249 -0.088
Ic
AIC 973.368 923.447 49.921
AIC divided by N 1.293 1.226 0.066
BIC (df=8/9/-1) 1010.361 865.064 45.297
Variance of
a 3.280 3.290 0.000
y-star 3.761 4.192 -0.431

Note: Likelihood-ratio test assumes current model nested in saved model.
Diffarence of 45.297 in BIC provides very strong support for saved model.
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In this example, the two models are nested because the second model is in effect imposing
the constraint Js = [egie on the first model.

3.4 estat postestimation commands

estat is a set of subcommands that provide different statistics about the model whose
estimates are active. FEach is invoked using estat subcommand. Here we provide an
overview of some of the most useful subcommands, which we use in later chapters,

estat summarize

estat summarize provides descriptive statistics for the variables in the model by using
the estimation sample. For example,

. use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted )
. estat summarize

Estimation sample logit Number of obs = 753
Variable Mean Std. Dav. Min Max
1fp .5683931 . 4956295 0 1
k5 .28771568 .523959 Q 3
k618 1.353264 1.319874 a 8
agecat
40-49 3851262 -4869486 0 1
50+ -2191235 4139274 0 1
wC
college -2815406 -4500494 0 1
he
college .3917663 -4BB4694 0 1
lwg 1.097115 5875564 -2.06412 3.21888
inc 20.12897 11.6348 -.029 96

The output is equivalent to the results from summarize modelvars if e(sample) ==
1, where modelvars is the list of variables in your model. Several options are useful:

labels displays variable labels rather than the names of the variables.
noheader suppresses the header.

noweights ignores the weights if they have been used in estimation.
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estat ic

estat ic lists the information criteria AIC and BIC for the last model. See page 123
for details.

estat vce

estat vce lists the variance—covariance matrix for the coefficient estimates. For further
details, see help estat vce.

3.5 Conclusion

This concludes our discussion of the basic commands and options that are used for
fitting, testing, and assessing fit. In part Il of the book, we show how these commands
can be applied with models for different types of outcomes. Before turning to those

| models, we review the methods of interpretation that are the primary focus of our
book.






4 Methods of interpretation

In this chapter, we introduce methods of interpretation that will be used throughout the
rest of the book. Models for categorical outcomes are nonlinear, and this nonlinearity
is the fundamental challenge that must be addressed for effective interpretation. Most
simply, this means that you cannot effectively interpret your model by presenting a
list of the estimated parameters. Instead, we believe that the most effective way to
interpret these models is by first fitting the model and then computing and examining
postestimation predictions of the outcomes. Most of this chapter is a first pass at
showing you how to do this.

To understand the fundamentally important point about why interpreting results
from nonlinear models is more difficult, we begin with a heuristic discussion of the idea
of nonlinearity before introducing commands that facilitate interpretation. Afterward,
we will provide an overview of the different approaches to interpretation that will be
presented in the chapter, followed by detailed discussions. We discuss at length Stata’s
margins command, which is vital to these techniques of interpretation, as well as the
m* commands we have written for this book, which make using margins easier.

4.1 Comparing linear and nonlinear models
Linear models

Consider a linear regression model where y is the dependent variable, @ is a contin-
uous independent variable, and d is a binary independent variable. The model is

y=o+ fr+dd+e
Given the usual assumption that E(z|z,d) = 0, it follows that
E(y|x,d) = a+ Sz -+ dd
which is graphed in figure 4.1. The solid line plots E(y | z.d) as & changes, holding d = 0;

that is, E(y|z.d) = a + fz. The dashed line plots £(y|z.d) as x changes when d = 1,
which has the effect of changing the intercept: E(y|x.d) = o+ gz + 61 = (a + 48) + 5.

133
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Figure 4.1. A simple linear model

The effect of # on y can be computed as the partial derivative of E(y|x,d) with
respect to . This is sometimes called the marginal change:

OB(y|z.d) 9(a+ Bxr+dd)
i - dr B

The marginal change is the ratio of the change in the expected value of y to the change
in z, when the change in z is infinitely small, holding d constant. In linear models,
the marginal change equals the discrete change in IJ(y | z.d) as » changes by one unit,
holding other variables constant. In our notation, we indicate that » is changing by a
discrete amonunt with Ax using (x — x + 1) to indicate that x changes from its current
value to be 1 larger (for example. from 10 to 11 or from 9.3 to 10.3):

B

AE(y|z,d)

m={a+3{r+l)+ﬁd}—(n+.fi.1:+§d)=ﬂ

When 2 increases by 1, E(y|x,d) increases by @ regardless of the values for x and d
at the point where change is measured. This is shown by the four small triangles in
figure 4.1 with bases of length 1 and heights of 3.
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The effect of d cannot be computed as a partial derivative because d is discrete.
Tnstead, we measure the change in E(y |z, d) with a diserete change from 0 to 1 indicated
as Ad(0— 1):

ABE(y|z.d)
Ad(0 — 1)
When d changes from 0 to 1, E(y|x,d) changes by 4 units regardless of the level of .

This is shown by the two arrows labeled 4 in figure 4.1 marking the distance belween
the solid and dashed lines.

=(a+Pr+d1)—(a+fr4d0)=4§

The distinguishing feature for interpretation in linear models is that the effect of
a given change in an independent variable is the same regardless of the value of that
variable at the start of its change and regardless of the level of the other variables in the
model. Interpretation only needs to specify which variable is changing, by how much,
and that other variables are being held constant. Given the simple structure of linear
models, such as regress, most interpretations require only reporting the estimates.
There are, however, important exceptions. In our discussion, we assumed that the
model does not include polynomial terms such as #? or interactions such as xd. When
such terms are included, the linear model becomes nonlinear in the sense we consider
in the next section.

Nonlinear models

We use a logit model to illustrate the idea of nonlinearity. Let y = 1 if the outcome
occurs, say, if a person is in the labor foree, and otherwise y = 0. The curves are from
the logit equation

exp (a + fx +dd)
1 + exp (o + Bz + dd)

where the a, 3, and § parameters in this equation are unrelated to those for the linear
model. Once again, x is continuous and d is binary. The model is shown in figure 4.2,

Pr(y=1|a.d)= (4.1)
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Prob(y | x.d)

Figure 4.2. A simple nonlinear model

The nonlinearity of the model makes it more difficult to interpret the effects of x
and d on the probability of y occurring. For example, neither the marginal change
dPr(y=1|z.d) /Or nor the discrete change A Pr(y=1|xz.d) /Ad{(0 — 1) are con-
stant, but instead depend on the values of 2 and d. Cousider the effect of changing d
from 0 to 1 for a given value of z. This effect is the distance between the solid curve
for d = 0 and the dashed curve for d = 1. Because the curves are not parallel, the
magnitude of the difference in the predicted probability at d = 1 compared with d =0
depends on the value of & where the difference is computed. Accordingly, Agr # Ago.
Similarly, the magnitude of the effect of & depends on the values of x and d where the
effect is evaluated so that Ay # Ass # Arg # Auy. Innonlinear models, the effect of a
change in a variable depends on the values of all variables in the model and is no longer
simply equal to a parameter of the model. Accordingly, the methods of interpretation
that we recommend for nonlinear models are largely based on the use of predictions,
which we consider in the next section.

4.2 Approaches to interpretation

The primary methods of interpretation presented in this book are based on predictions
from the model. The model is fit and the estimated parameters are used to make
predictions at values of the independent variables that are (hopefully) useful for under-
standing the substantive implications of the nonlinear model. These methods depend
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critically on Stata's predict and margins commands, which are the foundation for
the SPost commands mtable, mchange, and mgen (referred to collectively as the m*
commands). Although the basic use of these commands is straightforward, they have
many—sometimes subtle —features that are valuable for fully interpreting your model.
This chapter provides an overview of general principles and syntax for these commands.
Details on why you would use each feature are explained fully when the commands are
used in later chapters to interpret specific models.

When reading this section the first time, you might not fully understand all the
details. Indeed, our examples necessarily use models that are explained in later chapters.
Be assured, however, that these will become clearer as you see the commands applied
later in the book. You might even find it most effective to initially skim this chapter,
returning to it as you read later chapters. These commands take time to master, but
the effort pays off.

42.1 Method of interpretation based on predictions

We use predictions in four basic ways.

Predictions for each observation. Most fundamentally, predictions can be com-
puted for each observation by using predict. Predictions include the proba-
bilities of outcomes as well as rates for count models. We often start our analysis
by examining the distribution of predictions in the estimation sample.

Predictions at specified values. Predicted values at specific values of the indepen-
dent variables can be computed using the commands margins and mtable, These
commands can compute predictions at substantively interesting combinations of
values of the independent variables, which we refer to as profiles or ideal types. In
some cases, tables of predictions are arranged by the level of one or more explana-
tory variables and can succinetly summarize processes affecting the outcomes.

Marginal effects. An important way to examine the effects of a variable is to compute
how changes in the variable are associated with changes in the outcornes, holding
other variables constant. These changes, known as marginal effects, can be com-
puted as a marginal change when a regressor changes by an infinitely small amount
or as a discrete change when a regressor changes by a fixed amount. Marginal ef-
fects are computed by margins, mtable, and mchange. which can easily compute
average marginal effects and marginal effects at the mean.

Graphs of predictions. For continuous independent variables, graphs often effectively
summarize effects. Stata’s marginsplot elegantly plots a single outcome category
based on predictions from margins. Just as margins can only compute predictions
for one outcome at a time, marginsplot does not allow you to plot multiple out-
comes. Because this is essential for models with nominal and ordinal outcomes,
we wrote mgen to generate variables with predictions for all outcomes, These
variables containing predictions can be plotted using Stata’s graph command.
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4.2.2 Method of interpretation using parameters

Although the predictions used for each of these methods are computed using the
model’s estimated parameters, in some cases the parameters themselves ean be used for
interpretation. Examples include odds ratios for binary models, standardized coefficients
for latent outcomes, and factor changes in rates for count models. These are considered
in detail in later chapters.

4.2.3 Stata and SPost commands for interpretation

The most fundamentally important command for sophisticated interpretation using pre-
dictions is Stata’s margins command. This command is incredibly powerful, flexible,
and general. As a consequence, it can be rather intimidating to use. To make margins
simpler to use, we wrote a series of “wrappers” that use margins for their computa-
tions; they simplify the process of specifying the predictions you want and produce
output that is easier to interpret. Nonetheless, there are times when yon might need to
use margins. either becanse our commands did not anticipate something you want to
do or because we encountered technical issues that made using margins the only option.
Accordingly, even if our m* commands seem to do everything you want, you should have
some familiarity with what margins does and how it works. This will also give you a
better understanding of what our commands are doing,

4.3 Predictions for each observation

‘I'he predict command computes predicted values for each observation in the current
dataset. predict has many options that depend on the model that was fit. Here we
consider only the options that provide information we use regularly in later chapters.
If you type help estimation-command (for example, help logit). you can click on the
Also See tab in the upper-right corner of the window and then select the postestimation
entry for the command (for example, [R] logit postestimation): the postestimation
entry includes details on how predict works for that estimation command.

The simplest syntax for predict is

predict newvarlist

where newvarlist contains the name or names of the variables that are generated to hold
the predictions. How many variables and what is predicted depends on the model. The
defaults for estimation commands used in this book are listed in the following table.
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Estimation command Default prediction
r_ayass Expected value: E(y|x) = x3
logistic, logit, probit Probability: Pr(y=1|x)

mlogit, mprobit, ologit, oprobit, slogit Probabilities: Pr (y = k[x)
nbreg, poisson, tnbreg, tpoisson, zinb, zip Expected rate: E(y|x)
Probabilities: Pr(y = k|x)

As an example, we compute predicted probabilities for a logit model of women'’s
labor force participation. Below, predict generates the variable prob (a name we
chose) containing the probabilities of a woman being in the labor foree:

'« use binlfpd4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted )

. predict prob
{option pr assumed; Pr(lfp))

. summarize prob
Variable | Oba Mean Std. Dev. Min Max

prob l 763 .5683931 19456282 .0135618  .9512301

The summary statistics show that in the sample of 753, the probabilities range from
0.014 to 0.951 with an average of 0.568. A detailed discussion of predicted probabilities
for binary models is provided in chapter 6.

For models with ordinal or nominal outecornes (chapters 7 and 8). predict computes
the predicted probability of an observation falling into each of the outcome categories.
So, instead of providing a single variable name for predictions, you specify as many
names as there are cafegories. For example, after fitting & model for a nominal dependent
variable with four categories, you can use predict probl prob2 prob3 prob4. The new
variables contain the predicted probabilities of being in the first, second, third, and
fourth categories.

For count models, by default predict computes the rate or expected count, Or,
predict newvarname, pr(#) computes the predicted probabilities of the specified
counts. For example, predict prob0, pr(0) generates the variable prob0 containing
estimates of Pr(y =0 | x). And, predict pr(#iow,#nign) computes probabilities of
contiguous counts. For example, predict probito3, pr(1,3) generates the variable
problto3 containing estimates of Pr(1 < y < 3|x). Details are given in chapter 9.

4.4 Predictions at specified values

Interpreting predictions at substantively interesting values of the regressors is an essen-
tial method of interpretation. Such predictions can be made with margins and with
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the m* commands we have written that are based upon margins. We [ocus on several
aspects of these commands:

1. Specifving values of the independent variables.

b

Explaining how factor variables are handled.
3. Using a numlist for predictions at multiple values.
4, Making predictions by the levels of a variable defining groups.

5. Predicting quantities that are not the default for margins.

We will explain how to use the margins command to make predictions, and then we will
show how the same things (and more) can be done using the m* command mtable. This
section includes a lot of details on the mechanics of using these commands, many of
which will be directly applicable to the mchange and mgen commands in later sections.
Chapters 5 through 9 illustrate their use for interpreting models for binary, ordinal,
nominal, and count models.

4.4.1 Why use the m* commands instead of margins?

Our m* commands mtable, mchange, and mgen are “wrappers” for margins. By wrap-
per. we mean that the m* commands translate your specification into a series of margins
commands that actually do the computations. If all the SPost commands do is run
margins, why would you use them instead of margins? Conversely, if you are con-
vinced that it is more effective to use the m* commands, why do you need to learn more
about margins?

Although we think margins is an extraordinary command. it can be difficult to use,
and the output can be difficult to interpret. It does difficult things with amazing ease
and also makes you work hard to do some simple things. In some ways, frankly, margins
is more suited for a programmer than for a data analyst. For example, if you are fitting
models with ordinal, nominal, or count outcomes, you have to run margins once for
each outcome. Then, you face the tedious and error-prone task of combining the output
from several margins commands. The learning curve for margins can also be steep.
Our commands make it easier—sometimes much easier. The output is more compact.
and if you want to plot the predictions, variables are automatically generated.

If this is so, why learn to use margins? First, many of the options for our commands
are identical to those for margins. Indeed, onr commands simply run margins and
collect the results. Accordingly, what you learn about margins will apply exactly to
our commands. Second, we only discuss the features of margins that we find most
useful for the models in this book. You might want to use other options, and many
should work with our commands.! This allows you to use those features while taking
advantage of the convenience of the m#* commands. Knowing something about margins

1. Given the many features in margins, there are options we have not tried, I a nargins option does
not work with one of our commands, let us know and we will consider adding it to our commands.
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makes this easier. Third, if one of our commands does not work the way you expect,
you should examine the results from margins. Each of our commands has the option
commands fo list the margins commands used to get onr results. The details option
will display the full output from margins, which can sometimes be thousands of lines of
output. To understand this output. you need to know something about margins. And
finally, margins can do some things that cannot be done with our commands. In such
cases, as illustrated in later chapters, we rely on margins.

44.2 Using margins for predictions

The margins command allows you to predict many quantities and compute summary
measures of your predictions. To begin, it is helpful to see how margins is related to
predict. Consider the example in section 4.3, where predict computed the probability
of labor force participation for each observation in the sample. Using summarize to
analyze the variable generated by predict, we found that the mean probability was
0.568. We can obtain exactly the same mean prediction with margins:

. use binlfpd4, clear
{binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)

- logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

(output omitted )
Predictive margins Number of obs = 753
Model VCE : DIM
Expression : Pr(lfp), predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Interval]
-cons . 5683931 0166014 34.24 0.000 .535855 .6009312

When no options are specified, margins caleulates the mean of the default quantity com-
puted by predict for the estimation command. Earlier, we used predict o generate
a variable with the probabilities of y = 1 for each observation, and we used summarize
to compute the mean probability. Behind the scenes, this is what margins does.”

An advantage of using margins to compute the average predicted probability is that
it provides the 95% confidence interval along with a test of the null hypothesis that the
average prediction is 0. Stata does this using the delta method to compute standard
errors (see [R] margins or Agresti [2013, 72]). In this example, testing that the mean
prediction is 0 is not useful; but, when we later use margins to compute marginal effects,
vesting whether estimates differ from 0 is very useful.

2. Unfortunately, the variables generated by margins disappear when the command ends. We hope
that in the future an option will be added to margins that allows the user to retain these variables.
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In addition to computing average predictions over the sample, margins allows us
to compute predictions at specified values of the independent variables, whether those
values occur in the sample or not. The most common example of this is computing the
prediction with all variables at their mean by using the atmeans option:

. margins, atmeans

Adjusted predictions Number of obs = 753
Model VCE : OIM
Expression : Pr(lip), predict()
at : k5 - .2377158 (mean)
k618 = 1.3563254 (mean)
1.agecat = .3957503 (mean)
2.agecat = .3861262 (mean)
3.agecat B .2191235 (mean)
0.wc g .7184595 (mean)
1.wc = .2816405 (mean)
G.hc = .6082337 (mean)
1.hc = .3917663 (mean)
lwg = 1.097116 (mean)
ine - 20.12897 (mean)
Delta-method
Margin Std. Err. z P>zl [96Y% Conf. Intervall
_cons 6778714  .0197066 29.33 0.000 .538249 6164937

The ontput begins by listing the values of the independent variables at which the predic-
tion was calculated, called the atlegend, where (mean) lets you know that these values
are the means.

The at() option for specifying values

The at() option allows us to set specific values of the independent variables at which
predictions are calculated. Stata refers to the specification of values within at() as the
atspec. As an example, we can compute the probability of labor force participation for
a voung woman with one young child, one older child, and so on:
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. margins, at(k5=1 k618=1 agecat=1 wc=0 hc=0 lwg=1 inc=20)

‘Adjusted predictions Number of obs = 753
Model VCE  : OIM

Pr(1fp), predict()
k5

at

.

k618
agecat
we

he

lug
inc

[= ==~ A

Delta-method
Margin Std. Err. z P>zl {95% Conf. Interval]

.cons .3694891 . 0466304 7.92 0.000 .2780951 .460883

In this example, we are computing predictions for a hypothetical observation that has
the values of the independent variables specified with at(). The output shows these
values in the atlegend before displaving the prediction.

If we want some of the variables to be held at their means, say, inc and 1lwg, we
could remove them from the atspec and include the atmeans aption:

. margins, at(k5=1 k618=1 agecat=1 wc=0 hc=0) atmeans

Adjusted predictions Humber of obs = 753
Model VCE i OIM

Expression : Pr(lfp), predict()
..t -

] = 1
k618 = 1
agecat = 1
we = 0
he = 0
lwg = 1.097116 (mean)
inc = 20.12897 (mean)
Delta-method
Margin  Std. Err. z P>zl [95Y% Conf. Interwval]
-cons .3823232 0475022 8.06 0.000 28922086 LAT54268

With atmeans, all variables not in the atspec are set equal to their means.

There are two other ways we could have done the same thing. (With margins, most
things can be done multiple ways!) First, we could enter the values for the means in

the atspee:
margins, at(kb=1 k618=1 agecat=l wc=0 hc=0 lwg=1.097 inc=20.13)

This is not exactly the same because the specified values of means were rounded. Second,
we can use the (atstat) suboption within at():

marging, at{kb=1 k618=1 agecat=1 wc=0 hc=0 (mean) lwg inc)
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We can also specify other statistics. For example, we can caleulate the predicted prob-
ability with 1wg held at its mean by using (mean) and inc held at its median by using
(median).

. margins, at(k5=1 k618=1 agecat=1 wc=0 hc=0 (mean) lug (median) inc)

Adjusted predictioms Number of obs = 783
Model VCE : OIM

Expression  : Pr(lfp), predict()

at i k5 = 1
k618 = i
agecat = 1
we = 0
he = 0
lug = 1.097115 (mean)
inc = 17.7 (median)
Delta-method
Margin Std. Err. 2 P>|z| [95% Conf. Intervall
_cons 4026216 .0472423 8.52 0.000 .3100284 .4852148

For continuous predictors, atstaf can be mean, median, p# for percentiles from 1 to 99,
min for the minimum. and max for the maximum. If you fry to use these options for
variables specified as factor variables using 1., an error is generated.

asobserved for average predictions

When we do not specify values for the independent variables, either using atmeans or
at (), the margins command computes the mean of the predictions across observations.
Average predictions, which are sometimes called as-observed predictions, are the de-
fault. You can make the default explicit with the commuand margins, asobserved.
In linear models, atmeans and asobserved predictions are identical, but because they
differ in nonlinear models, it is important to nnderstand why they differ. The substan-
tive implications of this difference are particularly important when computing marginal
effects. discussed briefly in section 4.5 and in detail in section 6.2,

If you do not set the value for an independent variable in the afspec or with atmeans.
the variable is treated as-observed. For example. in the command

margins, at(kb6=1 k618=1 agecat=1 wc=0 hc=0 lwg=1,087)

the variable inc is treated as-observed because it is not included in the atspee. We can
make this explicit by nsing (asobserved) inc:

margins, at(kb=1 k618=1 agecat=1 wc=0 hc=0 lwg=1.097 (ascbserved) inc)

Values for as-observed variables are not listed in the output because they vary across
observations. For example, here inc is an as-observed variable, so it is not shown in the
atlegend:
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. margins, at(kb=1 k618=1 agecat=1 wc=0 hc=0 lwg=1)

Pradictive margins Number of obs = 753
Model VCE : DIM
Expression : Pr(lfp), predict()
at ;X5 - 1
k618 = 1
agecat = 1
we = 0
he - [+]
1wg = 1
Delta-method
Margin  Std. Err. z P>zl [95% Conf. Intervall
_cons .37T4379 .044939 8.33 0.000 .2863001 .4624579

To understand what happens with the as-observed variable inc, we show how to use
a series of Stata commands to compute the same prediction. First, for each variable
specified in at (), we replace the observed value with the specified value:

- Teplace k5 = 1
(636 real changes made)

+ replace k618 = 1
(668 real changes made)

. replace agecat = 1
(455 real changes mads)

. replace wc =0
(212 real changes made)

. Teplace hc = 0
(295 real changes made)

- replace lug = 1

(753 real changes made)
The observed values of all variables except inc have been replaced. For every observation
in the dataset, k5 is 1, k618 is 1, and so on. Variable inc has been left “as observed”.
Next, we make predictions with the observed values of inc and the changed values of
other variables:

. predict prob

{option pr assumed; Pr(1fp))

- label var prob "predict with fixing values of all but inc"

Computing the mean of the predictions,

. sum prob
Variable | Obs Mean Std. Dev. Min Max
prob | 753 374379 .0804292 .0392212 .5418246

we obtain the same value as margins when inc was treated as-observed. Nontrivially,
although the mean prediction is the same, we have not computed the standard error of
the prediction, which margins provides.
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Predictions using interaction and polynomial terms

In section 3.1.5, we showed how factor-variable notation allows you to specify interaction
terms (for example, i.wc##c.age) and quadratic terms (for example, c.age##c.age).
When factor-variable notation is used in the afspec, margins handles these terms prop-
erly. For example. let’s say your specification includes i.wc##ic.age. In this case, when
margins, at(age=30 wc=1) makes predictions, it automatically computes the value
of the interaction wcxage to equal 30. as it should. Likewise, il your model includes
the term c.age##c.age, specifying margins, at(age=30) makes predictions with age
held at 30 and age-squared held at 900. This powerful feature of factor-variable no-
tation greatly simplifies the way in which you can specify and interpret models with
interactions and polynomials.

Making multiple predictions

Making multiple predictions with a single margins command is eritical if you want
to test hypotheses about those predictions, such as whether the probability of voting
Republican is the same for men and for women. In this section, we consider a variety
of ways to make multiple predictions.

margine allows you to compute multiple predictions with a single at () specification.
For example, here we make predictions at two values of we, with other variables held at
their means:

. use binlfpd, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp k5 k618 age i.wc i.hc luwg inc, nolog
(mutput omitted )
. margins, at(wc=0 wc=1) atmeans

Adjusted predictions Number of obs = 753

Hodel VCE : DIM

Expression : Pr{lfp), predict()

1.-ab : kb = .2377158 (mean)
k618 = 1.353254 (mean)
age B 42.53785 (mean)
we = o
0.he = .6082337 (mean)
1.he = .3917663 (mean)
lug = 1.097115 (mean)
ine = 20.12897 (mean)

2._at : kB =  .2377158 (mean)
k618 - 1.353264 (mean)
age = 42.53785 (mean)
we = 1
0.he = .6082337 (mean)
1.he = .3917663 (mean)
lug = 1.097115 (mean)
ine = 20.12897 (mean)
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Delta-method
Margin  Std. Err. z P>lz| [95% Conf. Interval]
-at
| .B216977 .0247391 21.08 0.000 .4T731009 .5T00866
B 2 . TD96569 .0391445 18.13 0.000 6329352 .TB63786

The legend labeled 1. _at is for we=0 with other variables held at the mean. The second
legend, labeled 2. _at, is for we=1.

There are two other ways to specify these two predictions with at() in a single
margins command. We could include two at () options in the same margins command:

margins, at(wc=0) at(wc=1) atmeans
Or we could use a numlist, Stata’s name for a list of numerical valnes:
margins, at(we=(0 1)) atmeans

In this specification, (0 1) is the numlist, which must be enclosed in parentheses. For
example. at(we=0 1) will generate an error.

The atspec can use any Stata numlist to specify multiple predictions (see help
numlist for more details). One of the most useful forms allows us to specify every
#th value over a range of values of an independent variable. For instance, say that we
want predictions at every 10 years of age from 30 to 60:

. margins, at(age=(320(10)60)) atmeans

Adjusted predictions Number of obs = 753
Model VCE : DIM

Expression : Pr(lfp), predict()

1. at : kB .2377158 (mean)

k618 = 1.353254 (mean)
age = 30
0.wc = .7184595 (mean)
(output omitted )
4. _at : kb = .2377158 (mean)
k618 = 1.353254 (mean)
‘age = 60
0.we = .71B4595 (mean)
{output omitted )
Delta-method
Margin  Std. Err. z P>zl [956% Conf. Intervall
-at
1 . 7606321 .0345282 21.74 0.000 ,6829582 .818306
2 .616186 .0210803 29.23 0.000 .574B8434 6674766
3 .4612219 0299687 15.39 0.000 4024843 .5199594
4 .3134304 . 04992563 6.28 0.000 .2165786 .4112823
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If we specify numlists for multiple independent variables, we get predictions for all
combinations of those variables. For example, to make predictions at every 10 years of
age when we = 0 and when we = 1, holding other variables to their means, type

. logit 1fp k5 k618 age i.wc i.hc lwg inc, nolog
(outpur omitted )
. margins, at(age=(30(10)60) wc={0 1)) atmeans

Adjusted predictions Number of obs = 753

Model VCE : DIM

Expression  : Pr{ifp), predict()

1._at : kS = .2377168 (mean)
k618 = 1.353254 (mean)
age = 30
we = 0
0.hc = .6082337 (mean)
1.he s .3917663 (mean)
1vg = 1.097115 (msan)
inc - 20.12897 (mean)

{output omitted)

8._at ; kb - .2377168 (mean)
k618 = 1.353254 (mean)
age = 60
we = 1
0.hc - .6082337 (mean)
1.he = .3917663 (mean)
1vg = 1.097115 (mean)
inc = 20.12897 (mean)
Delta-method
Margin S5td. Err. z P> |zl [96% Conf. Interval]
_at
1 .TO5724 .0396383 17.80 0.000 .6280344 .TB34136
2 .8431665 .0339447 24 .84 0.000 L TT7T66361 . 908697
3 .5611819 0269062 21.66 0.000 .5104186 .6119651
4 7414032 .0373631 19.84 0.000 6681729 .8146334
5 4054747 .0326861 12.41 0.000 .341411 . 4695383
6 604576 .0494255 12.23 0.000 5077038 .T014483
7 2667039 0472562 5.64 0.000 1740835 .3593243
8 .4491423 0700628 6.41 0.000 3118217 .5B6463

Eight predictions are made for the four values of age by two values of he. In the atlegend,
the values of the independent variables for each prediction are labeled as #._at, which
correspond to the prediction numbers listed under _at.

When many predictions are calculated, the atlegend can take hundreds of lines. The
noatlegend option suppresses the listing; however, although the output is shorter, it is
easy to lose track of which prediction corresponds to which values of the independent
variables. To address this issue, our mlistat command lists the atlegend in a more
compact form:



44.2 Using margins for predictions 149

. logit 1fp k5 k618 age i.wc i.hc lwg inc, nolog

{eutput omitted )
- margins, at(age=(30(10)60) wc=(0 1)) atmeans noatlegend
Adjusted predictions Number of obs = 753
Model VCE  : OIM
Expression : Pr(1fp), predict()
Delta-wethod
Margin Std. Err. z P>lz| [95% Conf. Interval]
-at
i .705724  .0396383 17.80 0.000 6280344 7834136
2 « 8431665 .033944T7 24.84 0.000 .TT66361 +O096687
3 .5611919 0268062 21.66 0.000 .5104186 .6119651
4 .7414032  .0373631 19.84 0.000 6681729 .8146334
5 .4054747  .0326861 12.41 0.000 341411 .4695383
6 604576 . 04542565 12.23 0.000 .5077T038 .T014483
7 .2667039 . 0472562 65.64 0.000 .1740835 .3693243
8 4491423  .0QT00628 6.41 0.000 .3118217 .5864563
. mlistat
at() values held constant
1.
k5 k618 he lug inc
.238 1.35 .392 1.1 20.1
at() values vary
-at | age we
1 30 0
2 30 1
3 40 0
4 40 1
5 50 0
6 50 1
7 60 0
8 60 1

mlistat divides the independent variables into those that are constant, which are listed
only once, and those that vary across predictions. If values of a variable vary, mlistat
lists their values along with the prediction number in the _at column. If you do not
want the output to be divided in this way, you can specify the nosplit option to list
all values for all variables. The noconstant option prints only variables whose values
vary.

Notice the order in which the values of age and wc vary: starting at age=30, the
values of we change from 0 to 1; then age changes to 40 and the values of wc vary; and so
on. It is useful to understand what determines this order, because you might find it more
useful or effective to examine the predictions arranged by age for a given level of we.
rather than the changes in wc for a given value of age. The order is determined by the
order in which the independent variables appear in the variable list for the fitted model,
and not by the order of variables within at (). Because our model was specified as logit
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1fp k5 k618 age i.wc i.hc lwg inc, the variable we varies first in the predictions
because we appears later in the model. If we reran the model as logit 1fp kb k618
i.wc age i.hc lwg inc, predictions would be in the order of we=0 for ages 30, 40, 50,
and 60, followed by predictions for we=1 by age.

If you do not want to respecify your model to change the order of predictions (which
we rarely want to do), you can use multiple at() specifications in the same margins
command to control the order in which predictions are made. For example,

. logit 1fp kB k618 age i.wc i.hc lwg inc, nolog
{output omitted )

. margins, at(wc=0 age=(30(10)60)) at(wc=1 age=(30(10)60)) atmeans noatlegend
(output omitted )

. mlistat, noconstant

at() values vary

L
©

_at age

W~ W
W o
oo

o DO OO

We mention this because it is important to produce predictions that make it as easy
as possible to interpret results, This is considered further when we discuss the mtable
command below.

Predictions for groups defined by levels of categorical variables

In the data we have been using. we is a binary factor variable. Earlier, we showed how
to get predictions for both values of we by specifying a numlist with the at () option:

. logit 1fp k6 age i.wc 1.hc, nolog
(output omitted )

. margins, at(wc=(0 1)) atmeans

Adjusted predictions Number of obs = 753
Model VCE : OIM

Expression  : Pr(1fp), predict()

1. _at : k5 .2377158 (mean)

42.53785 (mean)

age
vc 0
O.hc = .60B2337 (mean)
1.hc = .3917663 (mean)
2._at : kb = .2377158 (mean)
age o 42.53785 (mean)
we = 1
0.hec = .6082337 (mean)
1.he = .3917663 (mean)
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Delta-method
Margin  Std. Err. z P>|z] [95% Conf. Intervall
~at
1 .511831  .0237801 21.51  0.000 .464923 .5681391
2 .7214299 . 0359569 20.06 0.000 .6509557 . 7919041

When factor-variable notation is used for a categorical variable, the same result can be
obtained by including the variables in the varlist for margins:

- margins wc, atmeans
Adjusted predictions Number of obs = 753
Model VCE : OIM

Exprassion : Pr(1fp), predict()
at : kB .2377158 (mean)

age =  42.53785 (mean)

0.we = .7184595 (mean)

1.ve = .28154056 (mean)

0.hc = .6082337 (mean)

1.hec = .3917663 (mean)

Delta-nethod
Margin  Std. Err. z P> |zl [95% Conf. Interval]
ve

- no .511531 .0237801 21.561 0.000 .464923 .5581391
college L T214209 0359669 20.06 0.000 .6609657 .7915041

If multiple factor variables are specified in varlisi, then margins computes all combina-
tions, just as it does when a numlist specifies multiple variables within at ().

With the at() specification, we can use combinations of coutinnous variables and
factor variables, whereas only factor variables can be included in the varlist. For in-
stance, earlier we computed predictions over age by using at(age=30(10)60), but typ-
ing margins age produces an error because age is not a factor variable. The atlegend
is also more compact, and perhaps more confusing, when a varlist is used because it
shows the means for the factor variables 0.wc and 1.wc even though the predictions are
made with we=0 and we=1, not at their means.

We can also make predictions at different levels of a categorical variable with the
over() option. Like many Stata commands, margins supports the over() option to
obtain separate estimates for different groups, where the variable defining the groups
does not need to be in the model. There is a subtle but important difference in how
over() makes group predictions compared with the methods considered earlier. An
example is the easiest way to understand how over () works. For the logit model fit
earlier, we make predictions over the binary variable we:
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. margins, over(wc) atmeans

Adjusted predictions Number of obs = 763
Model VCE : DIM
Expression : Pr(lfp), predict()
ovar T we
at : D.owe
k5 .2014787 (mean)

42.85952 (mean)

age =

we = 0

0.hec = 7707948 (mean)

1.he = 2292052 (mean)

1.wc

k5 = .3301887 (mean)

age = 41.71698 (mean)

° [ - 1

0.he = ,1933962 (mean)

1.he = .B066038 (mean)

Delta-method

Margin Std. Err. z P>|z| [95Y% Conf. Intervall
we
no .5246101 .0224108 23.41 0.000 .4B0GB5B .5685343

college .6937858 .0336666 20,61 0.000 .B278004 LT597712

These results are not the same as those from margins wc, atmeans or margins,
at(we=(0 1)) atmeans shown above. When over() is used with the atmeans op-
tion, margins caleulates the mean of variables within each group. You can see this in
the different means listed above in the atlegends for 0.we and 1.wc. Predictions for
we = 0 are computed with other variables held at the mean for the subsample defined
by if we==0. Similarly, means for we = 1 are compnted with if wc==1.

To see this. we run margins using an if condition. When an if or in condition
is nsed with margins, the sample is restricted to those cases when computing means.
medians, and other values for the at() varinbles. Accordingly, we can obtain identical
results to those obtained using over (wc) by restricting the sample with an if condition.
First, we use if we==0 to select observations:

. margins if wec==0, atmeans

Adjusted predictions Number of obs = 541
Model VCE + OIM
Expression : Pr(lfp), predict()
at : kB - .2014787 (mean)
age = 472.86952 (mean)
we = 0
O.he = .T707948 (mean)
1.he = .2292052 (mean)

Delta-method
Margin Std. Err. z P>zl [96% Conf. Interval]

-cons .6246101  .0224108 23.41 0,000 4806858 5685343




4.4.3 (Advanced) Nondefault predictions using margins 153

The results match those for we = 0 when over (we) was used. Similarly with if we==1:

- margins if we==1, atmeans

Adjusted predictions Number of oba = 212
Model VCE : OIM

Expression : Pr(lfp), predict()
at : k6 - .3301887 (mean)

age = 41,71698 (mean)
we = 1
0.hc = .1933962 (mean)
1.hc = .8066038 (mean)
Delta-method
Margin  Std, Err. z P>lzl [95% Conf. Intervall
-cons .6937858 .0336666 20.61 0.000 .6278004 LT597712

These results match those for 1.we when over (wec) was used.

443 (Advanced) Nondefault predictions using margins

Although the section heading seems esoteric, this is.an ilmportant topic.
The default predictions computed by margins or the m* commands
are often the predictions you want, which is why they are the default.
But you might want to predict some other quantity. Using the options
deseribed in this section, you can predict arbitrarily complex functions
of any quantity computed by predict. Several useful applications of
this powerful feature of margins are illustrated in later chapters.

By default, margins predicts whatever predict would predict by default for the
last estimatiou;_f___u_tlunanrl. For instance, the defanlt prediction for regress is the pre-
dicted value E(y|x), whereas for logit the default prediction is Pr(y = 1|x). For
most estimation commands, you can predict other guantities by adding an option
to predict. For example, after logit, the command predict myxb, xb generates
the variable myxb with the linear combination of the z's. To determine the default
prediction and what other types of predictions are available for a given estimation
command, type help estimation-command postestimation (for example, help logit
postestimation). The margins command can estimate any of the guantities com-
puted by predict, as well as arbitrarily complex functions of these quantities with the
predict() and expression() options.

The predict() option

With the predict (statistic) option, the margins command makes predictions for any
statistic that can be computed by predict. For example, in the ordered logit model
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considered in chapter 7, the default prediction is the probability of the first outcome.
Suppese that our outcome categories are numbered 1, 2, 3, and 4. Running margins
without predict() computes the average of ﬁ(_y, = 1|x;). Because predict prob2,
outcome(2) generates the variable prob2 containing ﬁ'(y, = 2|x;), to estimate the
average probability that y = 2, we use margins, predict(outcome(2)):

. use gssclass4, clear
(gssclassd.dta | GSS Subjective Class Identification | 2013-11-20)

. ologit class i.fem i.vhite i.year i.ed age inc, nolog
(output omitted)
. margins, predict(outcome(2))

Predictive margins Number of obs = 5620
Model VCE : OIM
Expression  : Pr(class==2), predict(outcome(2))
Delta-method
Margin Std. Err. z P>iz| [95% Conf. Intervall
_cons .4598112 .0062198 73.93 0,000 44762086 LA4720018

I the output, Expression: Pr(class==2), predict(outcome(2)) indicates the quan-
tity being estimated. Because margins can only predict one outcome at a time, we must
cither run margins once for each outcome or use mtable to automate this process, as
we describe shortly.

The expression() option

The expression() option lets you estimate transformations of what is computed by
predict (). To show how this works, imagine that after fitting an ordered logit model
on an ontcome with four categories, we want the predicted probability that y is 2, 3,
or 4. That is, we want to compute Pr(y # 1|x) = 1 = Pr(y = 1|x). The option is
expression(1-predict (outcome(1)):

. margins, expression(i-predict(outcome(1)))

Predictive margins Nusber of obs = 5620
Model VCE : OIM
Expression  : i-predict(outcome(1))
Delta-method
Margin Std. Err. z P>zl [98% Conf. Interval]
-cons . 9287596 .0033787 274.89 0.000 .9221375 .9363817

A similar application is computing the probability of a 0 after fitting a binary model. We
cannot obtain this prediction with the predict () option because the predict command
does not have an option to compute the probability of a 0. The default option pr
computes the probability of a 1. To compute the probability of a 0, type
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. use binlfpd, clear
(ﬁtﬂ.fpt.m | Mroz data on labor force participation of women | 2013-07-18)

. logit Lfp kb k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted )
- margins, expression(1-predict(pr))

Predictive margins Humber of obs = 753
Model VCE < 0OIM

Expression : 1-predict(pr)

Delta-method
Margin  Std. Err. z P>zl [96% Conf. Intervall
-cons +4316069 .0166014 26.00 0.000 .3990688 .464145

The expression() option is incredibly powerful. allowing you to routinely test
things that would otherwise be difficult. To test whether the expected probability
is 0.5 after logit, use margins, expression(predict(pr)-.5). In this expression,
predict(pr) comptites the probability that y = 1. By subtracting 0.5, we are comput-
ing deviations from 0.5. We can uge the : statistic from margins to test whether the
average deviation is 0, which is equivalent to testing whether the average probability is
0.5. As another example, after ologit we can test whether the probability of a respon-
dent identifying as lower class (y = 1) equals the probability of identifying as upper
class (y = 4) by using

margins, expression( predict(outcome(1)) - predict(outcome(4)) )

In chapter 6, we show how this feature can be particularly handy when working with
independent, varinbles that have power terms or interactions with other independent
variables in the model.

4.4.4 Tables of predictions using mtable

mtable makes tables from the predictions computed by margins. You do not need to
run margins because mtable does this for you, using most of the options for margins
that we just considered. In addition, mtable has options to customize how the results
appear by adding labels, selecting statistics, and combining results from multiple mtable
commands. There are, however, some features in margins that will not work with
zmtable. Most notably, perhaps, margins allows a wvarlist with factor variables, but
mtable does not. But as we showed on page 151, results that can be computed with a
varlist can be computed using at (), so this does not limit what you can do with mtable.

To explain how mtable works, we start by creating a table of predicted probabilities
that vary by we and he from a logit model. We will talk at length about how to interpret
these predictions in chapter 6.
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(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)
. logit 1fp kb k618 i.agecat i.wc i.hc lwg inc, nolog

(output omitted )
. mtable, at(wc=(0 1) he={0 1)) atmeans
Expression: Pr(lfp), predict()

we he Pr(y)
1 0 0 0.508
2 o] 1 0.643
3 1 0 0.697
4 1 1 0.7256
Specified values of covariates
2. 3.
k5 k618 agecat agecat lug inc
Current .238 1.35 .385 .219 1.1 20.1

In the header. Expression echoes the description that margins nses to describe the
predictions it is making. The column Pr(y) contains predicted probabilities that 1fp
is 1. The first row of the prediction table, numbered 1. shows that the probability of
being in the labor force is 0.509 for a woman who did not go to college (we=0) and whose
husband did not go to college (he=0), holding other variables at their means as specified
with the atmeans option. Rows 2, 3, and 4 show predictions for other combinations
of he and we. Values of the independent variables that are held constant are displayed

below the predictions.

To convince you (we hope) of the advantages of mtable, let's look at the correspond-
ing output from margins. We show all the output because if you use noatlegend, you
risk not knowing which predictions correspond to which values of the variables that

vary.

. margins, at(we=(0 1) hc=(0 1)) atmeans
Adjusted predictions

Model VCE : OIM

Expression  : Pr{(lfp), predict()

1. _at : kB = .2377158
k818 - 1.353254
1.agecat = . 3957503
2.agecat = .3851262
J.agecat = .2191235
we = o
he = 0
lug = 1.097115
inc = 20.12897

2. _at : k6 - . 2377158
k618 = 1.353254
1.agecat - . 3957503
2.agecat = . 3861262
3.agecat - .21912356
ve = 4]

he = 1

Number of obs = 753

(mean)
(mean)
(mean)
(mean)
(mean)

(mean)
(mean)

(mean)
(mean)
(mean)
(mean)
(mean)
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lug = 1.097115 (mean)

inc = 20.12897 (mean)
3..at : kb = .2377158 (mean)

k618 =  1.353264 (mean)

1.agecat =  ,3957503 (mean)

2.agecat = .3851262 (mean)

3.agecat = .2191236 (mean)

we = 1

hc = ]

lug = 1.097115 (mean)

inc = 20.12897 (mean)
4. st : k6 = .23771458 (mean)

k618 = 1.353254 (mean)

1.agecat = .3957503 (mean)

2.agecat = .3851262 (mean)

3.agecat = .2191236 (mean)

we = 1

he = 1

lug = 1,087116 (mean)

inc = 20.12897 (mean)

Delta-method
Margin  Std. Err. z P> |zl [96% Conf. Interval]

W -
- (-]

.6090628  .0274599 18.54
. 5429204 0444615 12.21
.6971851 .0489817 14.23
- 7260834 0364066 19,92

0.000
0.000
0.000
0.000

.4562326
.4BBTTTH
.6011828
6537287

.5628733
.6300633
.7931874

. 796437

157

The margins output has additional information about the predictions, such as the
confidence interval, that was missing from the mtable output.

We can include the confidence interval in the mtable output by adding the option
statistics(ci). At the same time, we show how to customize the label for predictions
by using estname():

. mtable, at(we=(0 1) he=(0 1)) atmeans estname(Pr_LFP) statistics(ci)
Expression: Pr(1fp), predict()

we he Pr_LFP 11 ul
1 0 0 0.509 0.455 0.563
2 0 1 0.543 0.458 0.630
3 1 0 0.697 0.601 0.793
4 1 1 0.725 0.654 0.796
Specified values of covariates
2. 3.
k5 k618 agecat agecat 1lwg inc
Current .238 1.35 .385 .219 1.1 20.1
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The statistics (statlist) option allows you to add other stalistics as well. The poten-
tial elements of statlist are shown in the following table.

Statistics  Description

est Estimate

ci Confidence intervals along with the estimate
11, ul Lower, upper limit of confidence interval

se Standard error of the estimate

z > statistic for test that estimate is 0

pvalue p-value for test that estimate is 0

all All the above statistics

By default, mtable includes colnmns with the values of the at () variables that are
changing. If vou do not want, these columns displayed, specify atvars(_none). You can
use the atvars (wvarlist) option to select which variables will appear, even if their values
are not changing. This is useful when building tables (discussed soon) or when you want
your table to show the level of a variable that is not varying across the predictions. In
our example, we varies but k6 and k618 do not. To include them in the table, we add
the option atvars(k5 k618 wc). We also use the brief option so that the table of
values for covariates is not shown:

. mtable, at(k5=0 k618=0 wc=(0 1)) atmeans atvars{k5 k618 wc) brief
Expression: Pr(lfp), predict()

1.
[ k5 k618 vc Pry)
1 4] 0 1] 0.625
2 o] 0 1 0.787

mtable with categorical and count outcomes

With categorical and count outcomes, a separate margins command must be run for
each value of the outcome variable. For example, to compite predictions for each out-
come category in an ordinal logit, you would need a series of commands such as margins,
predict(outcome(1)) atmeans, thenmargins, predict(outcome(2)) atmeans, and
so on. In contrast, mtable automatically caleulates predicted probabilities for all cat-
egories. Indeed, automatically computing predictions for multiple ontcomes and com-
bining the predictions into a single table is what initially motivated the creation of
mtable.

In one of our running examples in chapter 7, the ontcome is subjective class identi-
fication, with categories ranging from 1 for lower class to 4 for upper class. To éxamine
how attitudes are related to a respondent’s race and gender, we compute the following
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table, where the dec(2) option indicates that 2 decimal places shonld be used to display
the estimates:

. use gssclass4, raplace
tgm:ﬂaﬂ dta | GSS Subjective Class Identification | 2013-11-20)

- ologit class i.fem i.white i.year i.ed age inc, nolog
(output omitted )
. mtable, at(fem=(0 1) white=(0 1)) atmeans stat(ci) dec(2)
Expression: Pr(class), predict(outcome())

female white lover working middle upper

Pr(y) 0 0 0.06 0.52 0.41 0.01

11 0 0 0.05 0.49 0.38 0.01

ul 0 0 0.07 0.54 0.44 0.02

Priy) 0 1 0.06 0.46 0.47 0.02

1 0 1 0.04 0.44 0.45 0.01

ul 0 1 0.05 0.48 0.49 0.02

Prly) 1 0 0.06 0.51 0.42 0.01

1 1 0 0.05 0.48 0.38 0.01

ul 1 0 0.07 0.54 0.45 0.02

Pr(y) 1 1 0.05 0.48 0.48 0.02

1 1 1 0.04 0.44 0.46 0.01

ul i 1 0.05 0.48 0,50 0.02

Specified values of covariates

b 3. 2. 3.

year year educ educ age income

Current .46 .31 .68 .24 45 68

Holding other variables at their means, the predicted probability of identifying as work-
ing class is 0.52 for nonwhite men (fem=0, white=0). With categorical outcomes, ad-
ditional statistics are placed below the estimates, in this case showing the lower and
upper bounds for the confidence interval.

By default, all outcome categories are included in the table. The options pr (numlist)
and outcome (numlist) let you select which ontcomes to include in the table. For estima-
tion commands that support the outcome() option in predict (for example, ologit),
mtable uses the outcome () option to select which predictions to present. For commands
such as logit and poisson that support the pr option with predict, mtable uses pr()
to select which outcomes to present. For example, if we want to display only results for
the 1=lower class and 4=upper class categories, we type

. mtable, at(fem=(0 1) white=(0 1)) outcome(l 4) atmeans brief
Expresajon: Pr(class), predict(outcome())
| female white lower upper

0. 0.014
0.048 0.018
0.060 0.014
0.047 0.018

R e
OO
-~

where we suppress the values of the covariates with brief.
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For connt models discussed in chapter 9, the default prediction for mtable is the rate
because it is the default for predict in count models. To display predicted probabilities
for a specific count—say, 0—we would use the option pr(0). To compute predicted
probabilities for counts from 0 to 5, we would use pr(0/5).

(Advanced) Combining and formatting tables using mtable

We mark this section as advanced because it does not consider new
ways of making predictions nusing mtable, but instead considers how to
create tables that combine predictions from running multiple mtable
commands. If you are only making a few predictions, the time it takes
to learn these features might not be worth it. But if you often create
tables of predictions, these features will save you time, make it easier
to see key results, and prevent the inevitable errors that occur when
constructing tables by hand.

mtable allows you to combine results from multiple mtable commands. The best way
to understand how this works is with an example. Suppose that we want to compare the
average predicted probability of labor force participation with the predicted probability
holding all variables at their mean. We begin by fitting the model:

. use binlfp4, clear
{(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp k5 k618 i.agecat i.wc i.hc 1lwg inc, nolog
(output omitted )

Using the results from this model, we next estimate the average probability of labor force
participation for values of k5 from 0 to 3. Becanse our lable is going to include multiple
predictions, we add labels to identify each set of predictions. The option coleqnm()
adds a header row to our predictions, The name for this option might seem odd, but it
reflects that mtable saves results as matrices that refer to this header as the “column
equation name”. We use the colegnm(1st) option to label our first set of predictions:

. mtable, at(k5=(0 1 2 3)) colegna{ist)
Expression: Pr(lfp), predict()

1st
k& Pry)
1 0 0.637
2 1 0.342
3 2 0.129
“ 3 0.038
Specified values whers .n indicates no values specified with at()
No at()
Current -n
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Next, we compute predictions at the means by adding the atmeans option, using the
Tight option to append the new predictions to the right of those above. To simplify
our example, we exclude the atlegend with the brief option:

. mtable, at(k5=(0 1 2 3)) atmeans right brief colegni(2nd)
Expression: Pr(lfp), predict()

1st 2nd
&5 Pr(y) k6 Pr(y)
1 0 0.637 0 0.656
2 1 0.342 1 0.322
3 2 0.129 2 0.105
4 3 0.038 3 0.028

The results on the left labeled 1st are from the first time we ran mtable to compute

the average predicted probability. The next two columns, labeled 2nd, are predictions
at the mean.

Soon we will show how to make the output more effective by removing the repetition
of the k5 column and using better labels. First, however, we need to explain how the
levels of covariates are displayed when combining tables. Here is the output we would
obtain if we had not used the brief option:

. mtable, at(k5=(0 1 2 3)) atmeans right colequm(2nd)
Expression: Pr(lfp), predict()

lst 2nd
k5 Pr(y) kS Priy)
1 0 0.637 0 0.656
2 1 0.342 1 0.322
3 2 0.129 2 0.1056
4 3 0.038 3 0.028
Specified values where .n indicates no values specified with at()
2. 3. 1. : I8
No at() ®618 agecat agacat we hc
Set L .n - - . . E
Current . 1.35 .386 .219 L3282 .392
lug ine
Set 1 : .
Current [ § 20.1

The row labeled Set 1 contains values from the first use of mtable whose predictions are
labeled 1st. The .n in the column labeled No at () indicates that the predictions were
made without an at () specification; .n stands for “no covariates specified”. The second
row, labeled Current, lists the mean values of each variable from the most recent (that

is. current) use of mtable; these correspond to the predictions in the colurmns labeled
2nd.
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We can make the same table more clear by using additional options. First, there
is no reason for the values of k56 to appear twice. Specifving atvars(_none) in the
second call of mtable removes this redundancy. Second, the two columns of predicted
probabilities should have different labels, which is accomplished with the estname()
option. We will call them asobserved and atmeans:

. quietly mtable, at(k5=(0 1 2 3)) estname(asobserved)
. mtable, at(k5=(0 1 2 3)) atmeans atvars(_none) estname(atmeans) right brief
Expression: Pr(lfp), predict()

kb asobserved atmeans

0.637 0.656
0.342 0.322
0.129 0.106
0.038 0.028

N e
[A R ]

Next, we add a title to the table with the option title(Predicted probability of
labor force participation). Finally, the numbers in the left column are not needed
because the content of the rows is clear from the levels of k5. We can remove these with
the norownum option. Combining these, we get a table that is close to what we might
include in a paper:

Pradicted probability of labor force participation
Expreseion: Pr{1fp), predict()
kE asobserved atmeans

0.637 0.6566
0.342 0.322
0.129 0.105
0.038 0.028

WO

We use mtable often in the later chapters, where we take advantage of its many
formatting features. Type help mtable to see them all.

4.5 Marginal effects: Changes in predictions

Marginal effects are estimates of the change in an ontcome for a change in one indepen-
dent variable, holding all other variables constant. Here we provide an overview of the
commands and basic concepts for computing marginal effects. A detailed discussion of
marginal effects, along with substantive applications of alternative measures of change,
is given in later chapters, especially chapter 6, We begin by discussing margins, which
computes marginal effects with the dydx() option, and we then show how mtable can
do the same thing. Because marginal effects are such a useful summary of effects in
nonlinear models, we created mchange to easily compute many types of changes and
present them in a compact table.
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4.5.1 Marginal effects using margins

margins can calculate the change in a predicted quantity as an independent variable
changes, holding other variables constant. The prediction can be anything that margins
can estimate. The variables for which changes are caleulated are specified using the
dydx (variist) option, where dydx(#) indicates that changes for all independent variables
are to be computed. For example,

. use binlfp4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-185)

« logit 1fp k5 i.agecat i.wc inc, nolog

{output omitted )
~ margins, dydx(«)
Average marginal effects Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp), predict()
dy/dx w.r.t. : kb 2.agecat 3.agecat 1.wc inc
Delta-method
dy/dx  Std. Err. z P> |zl [956% Conf. Intervall
k5 -.28B86234 034555 -8.35 0.000 -.366356 -.2208968
Bgecat
40-49 -.1081118 .0397652 -2.72 0.007 -.1860501 -.0301736
B0+ —.2424494 0467377 -5.30 0.000 -.3320937 -.162805
we
college .2217304 .0359796 6.16 0.000 .1612116 +2922492
inc =.006773 00165749 -4.30 0.000 -.0098597 -.0036863

Note: dy/dx for factor levels is the discrete change from the base level.

The amount of change in a regressor that is used to caleulate the change in the
prediction depends on whether the variable is a continuous or a factor variable, where
Stata assumes variables are continuous unless specified as factor variables with the
i. notation. In our example, k5 and inc are continuous while agecat and wc are
factor variables. For a continuous variable, margins estimates the marginal change,
which is the partial derivative or instantaneous rate of change in the estimated quantity
with respect to a given variable, holding other variables constant. For [actor variables,
margins calculates the discrete change, which is the difference in the prediction when
the factor variable is 1 compared with the prediction when the variable is 0. For the
binary variable we, this is the change in the probability of being in the labor force if
the wife attended college compared with if she did not attend college. For multiple-
category factor variables, the change is from the base category to the value listed in
column dy/dx. For i.agecat in this example, the row labeled 40-49 is the change in
the probability for a change in agecat from the excluded base category 30-39 to the
category 40-49.

It bears repeating that margins only calculates the diserete change for variables
specified with the i. factor-variable notation. For example (using underlining to high-
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light the differences between the two commands), although logit 1fp kb i.agecat
we inc and logit 1fp k5 i.agecat i.wc inc yield the same estimates of the regres-
sion coefficients, the values of dydx() computed by margins will differ. In the first
specification, we is not a factor variable, so margins computes the partial derivative
with respect to we; in the second specification, i.wc is a factor variable, so margins
computes the discrete change. Almost certainly in this context, you want the discrete
change, and so factor-variable notation must be used when fitting the model.

4.5.2 Marginal effects using mtable

Showing how mtable can compute the same results as margins provides an opportunity
to illustrate the mechanics of how discrete changes are computed and to extend our
discussion of how mtable can display different estimates in a single table. We use a
pair of mtable commands to compute predicted probabilities, first. when we is 1 and
then when we is 0. Using two mtable commands rather than a single command with
at(we=(0 1)) allows us to have dilferent row labels for each prediction by adding the
rowname () option. The option below indicates that the results from the second mtable
command should be stacked below those from the first mtable:

. quistly mtable, at(wc=1) rowname(wc=1) statistics(ci) estname(Pr_LFP)
. mtable, at(we=0) rowname({wc=0) statistica(ci) estname(Pr_LFP) below
Expression: Pr(lfp), predict()

Pr_LFP 11 ul
we=1 0.728 0.671 0.784
wc=0 0.606 0.466 0.546
Specified values of covariates
we
Set 1 p 3
Current 0

The first row contains the average predicted probability of labor force participation
under the assumption that all women went to college, while the second row contains
predictions assuming that none of the women went to college. Next, we compute the
discrete change by using the dydx(wc) option:

. mtable, dydx(wc) rowname(wc=1 - wc=0) statistics(ci) estname(Pr_LFP)
> below brief

Expression: Pr(1lfp), predict()

Pr LFP 11 ul

we=1 0.728 0.671 0,784

we=0 0.506 0.466 0.546

wve=1l - we=0 0.222 0.151 0.202

The results match those for we from margins on page 163.
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45.3 Posting predictions and using mlincom

Computing change is also an ideal venue for introducing the idea of posting estimates.
To explain this powerful feature of margins, we need to review how estitnation com-
mands work. After a regression model is fit, Stata saves the results in memory as what
are called ereturns. The coefficient estimates are saved in the matrix e(b) and the
variance —covariance of the estimates in e(V). Commands may subsequently use ere-
turns to compute additional quantities. For example, the test command uses e (b) and
e(V) to compute Wald tests of linear hypotheses, and lincom uses these matrices to
estimate linear combinations of the estimates. We could also test nonlinear hypotheses
with testnl or compute nonlinear functions of estimates with nlcom.

Just like regression estimation commands, margins computes estimates and their
variance—covariance matrix. By default, these are saved in the return matrices r(b)
and r (V) so that margins does not overwrite e (b) and e(V) from the regression model.
Because the results of the regression model are not disturbed, we can run multiple
margins commands without refitting the regression model. The post option for margins
replaces the matrices e(b) and e(V) from the regression model with the estimates from
margins. Once this is done, test can be used to test linear hypotheses about the
predictions from margins, and lincom can be used to estimate linear combinations of
the predictions. Adding the post option to mtable does the same thing.®

To illustrate posting, we compute the discrete change for we from the last example.
We start by saving the estimation results from logit so that we can restore them after
we finish analyzing the estimates with mtable.

. use binlfp4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-185)
| log_it 1fp kb i.agecat i.wc inc, nolog
{output omitted )
. astimates store modell

With mtable, we compute predicted probabilities at two levels of we and use the post
option to save the estimated predictions and their covariance matrix to e(b) aud e(V):

. mtable, at(wc=(1 0)) post
Expression: Pr(1lfp), predict()

we Pr(y)
1 1 0.728
2 0 0.506
Specified values where .n indicates no values specified with at()
Ho at()
Current .n

3. If you are using mtable with a model with multiple outcomes (such as mlogit), then mtable runs

margins once for each outcome. In this case, mtable, post posts the margins estimates for the
last outcome.
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To see the posted predictions, we list e(b):

. matlist e(b)

1. - 48
=Bt -at

yi I . 7276954 .505965

Next, we estimate the differences between these predictions by using lincom. The
lincom command requires us to specify the difference with the symbolic names of the
estimates, which are shown as the column names of e(b):

. lincom _bi1._at] - _b[2._at]
(1) 1ibn._at - 2._at =0

Coef. Std. Err. z P>zl [95% Conf. Interval]

(1) .2217304  .03689796 6.16 0.000 .1612116 <2022492

The estimated discrete change of 0.2217 matches the earlier results from dydx(we).

Personally, we find names like b[1._at] and such to be cnmbersome, so we cre-
ated the mlincom command, which allows you to refer to an estimate by its position
rather than by its name. Here we compute the difference between the first and second
predictions:

. mlincom 1 - 2
| lincom pvalue 11 ul

1 ‘ 0.222 0.000 0.151 0.292

Options for mlincom (type help mlincom for details) allow you to select which statistics
you want to see, add labels, and combine results from multiple mlincom commands.

Regardless of whether we used mlincom or lincom, the estimation results from logit
are no longer active. To run additional margins or m* commands, or to use test or
1rtest on the regression estimates, we must restore the logit estimates:

. estimates restore modell
(results modell are active now)

In this simple example, there is no advantage to using post and mlincom because
mtable, dydx(wc) is much simpler. In later chapters, though, we use mlincom to test
a variety of more complex and useful hypotheses about marginal effects.

4.5.4 Marginal effects using mchange

Marginal effects are so fundamental for interpreting nonlinear models that we created
mchange to make it simple to create compact tables containing many types of marginal
effects. By default, changes are computed asobserved. That is, the change is computed
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for each observation in the estimation sample and then averaged. These are sometimes
referred to as average marginal effects. If we want the marginal effects at the mean
instead, we can use the atmeans option, or we can set specific values of the independent
variables at which changes are computed by using the at () option.

To see how this command differs from margins, dydx(#), let’s first consider what
mchange provides by defauit:

- use mlipl; clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-185)

. logit 1fp k5 k618 i.agecat i.wc i.hc lug inc, nolog
(output omitted )

logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(1fp), predict(pr)

Change p-value
kS
+1 -0.281 0.000
+8D ~0.163 0.000
Marginal -0.289 0.000
k618
+1 -0.014 0.337
+8D -0.018 0.337
Marginal -0.014 0.335
agecat
40-40 ve 30-39 -0.124 0.002
50+ vs 30-39 -0.262 0.000
650+ va 40-49 -0.138 0.002
we
cellege vs no 0.162 0.000
he
college ve no 0.028 0.508
1wg '
+1 0.120 0.000
+8D 0.072 0,000
Harginal 0.127 0.000
inc
+1 -0.007 0.000
+8D -0.086 0.000
Marginal -0.007 0.000
Average predictions
| not in LF in LF
Prly|base) | 0.432 0.568

For continuous variables (that is, those not specified as i.vername), the rows labeled
Marginal contain the average marginal changes and are identical to what is computed
using margins, dydx(*). For binary factor variables, such as i.wc, mchange computes
the average discrete change as the variable changes from 0 to 1. In Stata 13 and later,
value labels are used to label the change if available (for example, college vs no);
otherwise, values are used (1 vs 0). For categorical factor variables. such as i.agecat,
mchange computes differences between all pairs of categories (referred to as contrasts).
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In Stata 13 and later, these contrasts are labeled with the value labels associated with the
categories. The contrasts 40-49 vs 30-39 and 50+ vs 30-39 are the same as shown
in the output from margins, dydx(*). The comparison 50+ vs 40-48 was computed
by mchange with margins, pwcompare.

By default, for continuous variables, mchange also computes two types of discrete
changes. The unit change, labeled +1, is the change in the prediction as a variable
changes from its observed value to its observed value plus 1. The standard deviation
change, labeled +8D, is the change in the prediction as a variable changes one standard
deviation from its observed value,

mchange has many options, a few of which we discuss here. A full deseription
of mchange'’s functionality is provided with help mchange, and many examples are
provided in later chapters.

The amount (amount-types) option specifies the amount of change for continuous
variables. The following are available:

amount-type  Amount of change

one One unit. change

sd Standard deviation change

marginal Marginal change

binary Change from 0 to 1

range Change from the minimum to maximum
all All the above

The default amounts are amount (one sd marginal), which were described above. In
Stata 11 and 12, changes of | or 1 standard deviation cannot be computed and will
appear as .m in the results. By default, changes of 1 and 1 standard deviation are
uncentered. The centered option requests changes that are centered: a centered unit
change is the change from x — (1/2) to @ + (1/2) rather than from z to 2 + 1.

The amount (range) option computes the discrete changes as x changes from its
winimum to maximum, but it can also be used with the trim(#) option to compute
the change between other percentiles. For example. we could estimate the average
change in the probability of labor force participation if family income changes from the
25th percentile of income to the 75th percentile by using trim(25) with amount (range):
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. mchange inc, amount(range) trim(25)
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(1fp), predict(pr)

Change p-value

25% to 754 -0.084 0.000
Average predictions

not in LF in LF

Pr(y|base) 0.432 0.588

The delta(#) option computes a change of # units instead of a standard deviation
change. For example, inc is measured in thousands of dollars. To estimate the average
change in labor force participation if income increased by $5.000, we use delta(5):

. mchange inc, amount(sd) delta(5)
logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(lfp), predict(pr)

Change p-value
ine
+delta -0.037 0.000
Average predictions
not in LF in LF
Pr(ylbase) 0.432 0.568

1: Delta equals 5.

The statistics (statistics-types) option allows vou to select which statistics relafed
to the marginal effect to display. By default, mchange provides the estimated change
and the p-value from a test of the hypothesis that the effect is 0. The following statistics
are available:

statistics-type  Statistic

change Estimated change

ci Estimated change and confidence interval

11, ul Lower, upper limit of confidence interval

se Standard error of the estimate

z z statistic for test that estimated change is 0
pvalue p-value for test that estimated change is 0
start Prediction at starting value of discrete change
end Prediction at ending value of discrete change

all All the above statistics
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We can use mchange, amount(all) statistics(all) to compute all the statistics for
all types of changes, which is a lot of information. For just one variable, here is what
we get:

. mchange inc, amount(all) statistics(all)
logit: Changes in Pr(y) | Number of obs = 763
Expression: Pr(lfp), predict(pr)

Change p-value LL UL z-valus Std Err
inc
0to 1 -0.006 0.000 ~0.009 -0.004 -5.454 0.001
+1 -0.007 0.000 -0.011 -0.004 -4.419 0.002
+SD -0.086 0.000 -0.124 -0.048 -4.404 0.019
Range -0.593 0.000 ~0.761 -0.424 -6.883 0.086
Marginal -0.007 0.000 -0.010 -0.004 -4.,427 0.002
From To
inc
0to1l 0.7086 0.700
+1 0.568 0.5661
+3D 0.568 0.483
Range 0.706 0.114
Marginal 2 .z
Average predictions
not in LF in LF
Pr(ylbase) 0.432 0.568

By selecting which statistics we want to show, mchange can easily replicate what took
several steps with mtable earlier. We use a varlist 1o select variable we and option
statistics(start end est pvalue) to display the start and end values leading to
the change that is shown along with its p-value:

. mchange wc, statistics(start end est pvalue)
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(1lfp), predict(pr)

I From To Change p-value
ve
college vs no 0.525 0.688 0.162 0.000
Average predictions
| not in LF in LF
Pr(ylbase) | 0.432 0.568

By default, mchange computes average marginal effects (see section 6.2 for a detailed
discussion). You can compute marginal effects at the mean by adding the atmeans
option. Or you can use at() to compute changes at specific values of the indepen-
dent variables. Finally. if you use factor-variable notation to specify interactions or
polynomial terms, mchange will compute marginal effects by making the appropriate
changes among, linked variables. For example, if your model includes c.age##c.age,
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then mchange age will change both age and age-squared. The mchange command does
a lot of work behind the scenes and can take a long time to run in models such as
ologit or mlogit when there are many outcome categories. For example, after run-
ning our baseline model for ologit with four categories and eight variables, mchange,
amount(all) runs 40 margins commands, 32 1incom commands, and surnmarizes 1,123
lines of output in a 46-line table.

4.6 Plotting predictions

For continuous variables, graphs can effectively summarize effects. The Stata command
marginsplot plots the predictions from the most recently ruin margins. Our mgen
command can also be used to plot results from margins. The major difference between
the commands is that marginsplot creates plots, while mgen generates variables that
can be used with Stata’s graphing commands. The former approach is convenient, but
ultimately limited because it allows yon to plot only a single outcome category from a
single model in a graph.

4.6.1 Plotting predictions with marginsplot

Stata’s decumentation has an especially detailed discussion of what can be done with
marginsplot. Mitchell (2012a) also provides many examples of using marginsplot
for both linear and categorical outcome models. marginsplot uses results from the
preceding margins command. For example, here we plot the predicted probabilities of
labor force participation over the ages 20 to 80 for women who attended college and
those who did not:

. nse binlfpd, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-18)
. logit 1fp kb k618 age i.wc i.hc lug inc, nolog

(output omitted )

. margins, at(age=(20(10)80) wc=(0 1)) atmeans

Adjusted predictions Number of obs = 7683
Model VCE : DIM
Expression : Pr(lfp), predict()
1. at : kb = .2377158 (mean)
k618 1.353254 (mean)
age 20
we 0
0.he .6082337 (mean)

1.he .3917663 (mean)
1lug 1.097115 (mean)
inc 20.12897 (mean)

(output amitted )
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14._at : kb .2377158 (mean)

k618 = 1.353254 (mean)
age = 80
we = 1
0.hc = .6082337 (mean)
1.hc = .3917663 (mean)
lug = 1.097115 (mean)
inc = 20.12897 (mean)
Delta-method
Margin S5td. Err. z P>zl {96% Conf. Intervall
_at
1 .8180827 0467432 17.88 0.000 L T284277 9077378
2 .9097581 .0291986 31.16 0.000 .8525299 . 9669863
3 .TOBT24 .0396383 17.80 0.000 .6280344 . 7834136
4 .84316656 .0339447 24.84 0.000 ,TT66361 . 909697
5 .5611919 0259052 21.66 0.000 .5104186 .6119651
6 .T414032 .0373631 19.84 0.000 6681729 .8146334
T 4054747 0326861 12.41 0.000 .341411 4695383
8 .B04576 . 0494255 12.23 0.000 .6077038 . 7014483
g 2667039 0472662 5.64 0.000 , 1740835 .3683243
10 .4491423 .OT00628 6.41 0.000 .311B217 586463
11 . 1624493 . 04925877 3.30 0.001 .0659069 . 2689927
12 .3030444 ,0818881 3.70 0,000 . 1425467 .4635422
13 0937383 0413068 227 0.023 Q1277856 . 1746981
14 . 1882307 Q768769 2.45 0.014 0376647 . 3389067

Typing marginsplot without any options produces the following graph:

. marginsplot
Variables that uniquely identify margins: age wc

Adjusted Predictions with 95% Cis

T T T T T T T

20 30 40 50 60 70 BO
Wile's ago i years

[—.—no —1—-00!11199]

Impressively, marginsplot infers that because the margins predictions differ over age
and we, we want to plot predictions as these variables vary. Moreover, because age is
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estimated as a continuous variable and we as a factor variable, it assumes that we want
to make a plot in which our » axis is age and different lines represent different values
of we. marginsplot has dozens of its own options and allows you to include options for
twoway graphs, such as those for axes and title. For details, type help marginsplot.

With marginsplot, you can quickly create graphs of the predictions from the last
margins command. You often do not have to specify any options for it to create the
graph vou might want. Using its many options, you can customize the defaults to create
publication-quality graphs. There is, however, a major limitation in what marginsplot
can do. Graphs created by marginsplot can include multiple lines, such as the two
lines in our example for those who went to college and those who did not. However,
these plot lines must be for predictions of the same quantity computed from the same
model. Among other implications, this means that marginsplot does not allow you to
plot multiple outcomes in a single graph, which you would commonly do with ordinal
or nominal outcomes. Nor can you compare predictions from two maodels. For example,
vou could not compare the predictions from a model that included age with one that

included age and age-squared. To facilitate making such graphs. we created the mgen
command.

46.2 Plotting predictions using mgen

The mgen command generates variables that can be plotted using Stata’s graph com-
mands, Like mtable and mchange, mgen runs margins for you and accepts most of the
options that can be used with margins. The most important options for graphing are
at (), which is used to specify the range of the variable on the z axis and the levels of
other variables, and atmeans, if yon want to hold other variables at the mean.

Here is a simple example that uses mgen to create a variable containing predictions
as income increases from $0 to $100,000 in increments of $10,000:

. use binlfp4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp kb k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted )
. mgen, at(inc=(0(10)100)) stub(A) atmeans
Predictions from: margins, at{inc=(0(10)100)) atmeans predict(pr)

Variable Obs Unique Mean Min Max Label

Apri 1 11 .3608011 .0768617 .7349035 pr(y=in LF) from margins
Al11 11 11 .2708139 =-.0156624 .6641427 95} lower limit

Aull 11 11 .4507883 .1693869 .B056643 95% upper limit

Afnc 11 11 50 0 100 Family income excluding...

Specified values of covariates

2. 3. 1. -
kS k618 agecat agecat we he 1wg

.2377T168 1.353254  .3851262  .2191235  .2815405 .3917663 1.087115
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The option stub(stubname) provides the first letters to be used in the names of the
variables that are generated. We recommend a stub that differs from the starting letters
of variables in the dataset; then, afterward, the variables can he easily deleted by typing
drop stubname*. If the variable names in your dataset are all lowercase, an uppercase
stub works well for this purpose. If you do not use the stub() option, the default stub is
an underscore, leading to variable names such as _pr1. If yon want to overwrite existing
variables, perhaps while debugging the command, you can include the option replace.

In our example, mgen generated four variables: Apr1 with the predicted probabilities,
A111 and Aull with the lower and upper bounds of the confidence interval for the
prediction, and Ainc with values of inc for each prediction. The values of Ainc are
determined by the at() option. The summary statistics for generated variables show
that inc ranges from 0 to 100, with predicted probabilities ranging from 0,08 to 0.73.
We can list these values:

. list Apr Ainc in 1/12, clean

Aprl  Ainc
1. .7349035 0
24 6613024 10
3. .5789738 20
4. 4920058 30
5. 4055189 40
6. .324523 50
7. .2528245 60
8. .1924535 70
9. .14372563 80

10. .1057196 e0
11. -0768617 100
12.

Because the predictions are saved as variables, they can be plotted with graph:

. graph twoway connected Apr Ainc

T T 7 T

20 40 80 80 100
Family income excluding wile's
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‘We can run mgen multiple times to generate variables with predictions at different
levels of variables that are not varying. Here we nse quietly to suppress the output
from mgen, and we create variables with predictions at each level of agecat. The results
are then plotted using a single graph command:

. quietly mgen, at(inc=(0(10)100) agecat=1) atmeans stub(A30) predlabel(Age 30-39)
- guietly mgen, at(inc=(0(10)100) agecat=2) atmeans stub(A40) predlabel(40-48)
. quistly mgen, at(inc=(0(10)100) agecat=3) atmeans stub(A50) predlabel (50+)

. graph twoway comnected A30pr A40pr AS0pr AS0inc,
> ytitle("Pr(In Labor Force)") xtitle("Income"}
> legend(cols(3))

I 0 20 40 60 80 100
Income
[—— Ag30-39 —s— 4049 —=— 504 |

Our example uses graph options to label the axes and improve the appearance of the
legend. A brief discussion of graph's options is included in chapter 2. For a more
detailed discussion of the graph command, see the Stata Graphics Reference Mannal or
Mitchell (2012b).

Predictions over multiple outcome values

The greatest advantage of mgen over marginsplot occurs when you want to plot pre-
dictions for multiple outcomes (not multiple lines for the same outcome, but different
outcomes) or to combine predictions from different models (for example, plot the pre-
dicted probabilities with different sets of control variables). Because a single margins
command computes predictions for a single outcome category, predictions for multi-
ple outeomes require running margins multiple times. marginsplot can only do plots
based on running margins once. mgen does this automatically and produces variables
named in a consistent fashion that makes plotting simple. As an example, we use a
model from our chapter on ordinal outcomes:
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. use gssclassd, clear
(gssclass4.dta | GSS Subjective Class Identificavion | 2013-11-20)

. ologit class i.fem i.white i.year i.ed age inc, nolog

(output omitted)
. mgen, at(age=(20(10)80)) stub(B) atmeans
Predictions from: margins, at(age=(20(10)80)) atmeans predict(outcozse(})

Chapter 4 Methods of interpretation

Variable (Obs Unique Mean Min Max Label
Bpri 7 7 .04817T17 .0247463 ,0799486 pr(y=lower) from margins
Bll1 T 7 .0425263 .0206772 .0705618 95% lower limit
Bull T 7 .063817 .02881656 .0893454 95% upper limit
Bage 7 4 50 20 80 age of respondent
BCpri 7 7 .0481T17 .0247463 .0799486 pr(y<=lower)
Bpr2 T 7 .44T1604 .321645 .5647999 pr(y=working) from margins
B112 7 T .4283944 .2964391 .544966 95), lower limit
Bul2 7 7 .4659264 .3478608 .5846338 95 upper limit
BCpr2 7 7 .4963321 .3463913 .6447485 priy<=working)
Bpr3 7 7 .484427 .3450458 6195026 pr(y=middle) from margins
B113 7 7 4645732 .3226423 .5927632 95) lower limit
Bul3 7 7 .5042807 .3675494 646242 95% upper limit
BCpr3 7 7 .9797591 .9658939 9897944 pr(y<=middle)
Bpr4 7 7 .020241 .0102057 .0341061 pr(y=upper) from margins
Bll4 7 7 .0166162 .00B2046 .0276169 95) lower limit
Bul4d T 7 .0238667 .0122068 .04059563 95} upper limit
BCpr4 7 1 1 1 i prly<=upper)
Specified values of covariates
1, 1. P 3. 2. 3.
female wvhite year year educ aduc income
.5491103 .8140669 4510876 . 3099644 . 5818506 .2414681  68.07737

To understand what mgen has done, we list some of the variables that were generated:

. 1ist Bage Bprl Bpr2 Bpr3 Bpr4 in 1/8, clean

Bage
20
30
40
50
60
70
80

00~ O O s R e

Bpri
0799486
0660995
0645074
0448605
0368379
.0302114
0247463

Bpr2
.5647998
.5303931
4917871
-4502864
4072433

.363868
.321645

B

. 3450
.3910
. 4384
-4861
.533
5778
.6185

pr3 Bpr4
458 0102067
067 .0125007
017 0153039
394 J018723T
029 0228809
638 0279568
026 0341061

Variables BPr1 through BPr4 contain predicted probabilities for the four categories of
class as they change by age. Most simply, we could graph these with twoway line
Bprl Bpr2 Bpr3 Bprd Bage. Interpreting such graphs and making them more effective
are topies discussed in subsequent chapters.

mgen's defaults for handling multiple outcome values depend on model type. The
my mgen distinguishes model types is by what options predict supports for a model.
The following table summarizes the major types of models,
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ilodel type predict supports Examples of models

pr logit, probit (chapters 5 and 6)
Gaﬁegoncal outcome (#) ologit, mlogit (chapters 7 and 8)
( pr#) poisson, nbreg (chapter 9)
Other None of the above regress

For categorical models, mgen automatically computes predictions for all outcores. The
predicted probabilities for outcome # are named stubpr#. The cumulative probabilities
Prly < #[x) are also computed and named stubCpr #.

As with mtable, the mgen options outcome () and pr() can be used to select the
outeomes for which predictions should be computed. For categorical models in which
predict supports outcome(), outcome(1 2) will compuie outcomes for categories 1
and 2. Cumulative probabilities will be calculated only if the set of specified values is
the lowest observed values of y. For example, if the values of the outcome are 1, 2
and 3, outcome (1 2) will produce cumulative probabilities but outcome(1 3) will not.
For binary models, outcome(0 1) computes predictions for both outcomes y = 1 and
y # 0, whereas by default mgen only computes predictions for outcome y = 1. For count
models, pr() can include a numlist. You can specify pr(0/9) to obtain predictions for
values of y from 0 to 9. Cumulative probabilities are produced only if pr() specifies
consecutive integers starting with the lowest abserved value of y.

Observed and average predicted proportion using mgen, meanpred

By default, mgen generates variables where each row is a prediction from margins based
on specified values of the independent variables. When option meanpred is used. mgen
also generates variables in which the rows correspond to values of the outeome. These
variables allow you to compare observed proportions versus average predicted probabil-
ities, an important tool for count models in chapter 9. Variables generated by ngen,
meanpred are as follows:

Variable name  Content

stubval Value of category k

stubobeq Observed proportion y = k

stuboble Observed proportion y < k

stubpreq Predicted proportion y = &

stubprle Predicted proportion y < k

stubobpr Difference between observed and predicted y = &
stubcpreq Predicted probability y = k given y > 0

stubcprle Predicted probability y = k given y > 0
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Other mgen options

atvars(varlist) specifies the independent variables for which variables should be gen-
erated. _none indicates no variables. The default is to generate variables for all
independent variables whose values vary over at().

noci and allstats modify which variables are generated. When noci is used. no
variables for confidence intervals are generated. When allstats is used, variables
for the p-value (stubpval), z statistic (stubz), and standard error (stubse) are
generated along with the prediction and confidence interval.

level (#) sets the level of the confidence interval from 10 to 99.99.

predname (predname) specifies the name of the variable (plus the stub) used for predic-
tions generated by margins. By default, this is pr for probabilities and is margins
otherwise,

predlabel (siring) is used in the variable label for the prediction. This option can be
useful for labeling variables that are being plotted,

nolabel indicates that value labels are not to be used in labeling generated variables.
valuelength() changes the length at which labels are truncated.

conditional is used to compute conditional rather than unconditional predictions for
count models. This will be discussed in chapter 9.

4.7 Interpretation of parameters

Although the primary methods of interpretation in this book are based on predictions
from the model, some methods of interpretation involve simple transformations of the
model’s parameters. For some estimation commands, there are options to list transfor-
mations of the estimates, such as the or option to list odds ratios for logit or the beta
option to list standardized coefficients for regress. Although Stata is commendably
clear in explaining the meaning of the estimated parameters, in some models it is easy
to be confused about proper interpretations. For example, the zip model (discussed in
chapter 9) simultaneously fits a binary and a count model, and it is easy to be confused
regarding the direction of the effects.

For the estimation commands considered in this book. plus some not considered here,
our listcoef command lists estimated coeflicients in ways that facilitate interpretation.
You can list coefficients selected by name or by significance level, list transformations
of the coefficients, and request help on interpretation. In fact. often you will not need
the normal output from the estimation. You could suppress this output with the pre-
fix quietly (for example, quietly logit 1fp k5 wc hc) and then use the listcoef
command.
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4.7.-1; The listcoef command

d syntax is

Listcoef [warlist] [, [factor |percent|std] adjacent gt 1t negative
positive P-_'.due(#) nolabel constantoff gelp]

where varlist indicates that coefficients for only these variables are to be listed. 1f no
varlist is given, then coefficients for all variables are listed. The varlist should not use
factor-variable notation. For example, for the model logit 1fp i.agecat i.wc lwg,
the command listcoef agecat will show the coefficients for 2.agecat and 3.agecat.

If agecat##c.1lwz was in the model, estimates for all coefficients that include agecat
ould be listed

Options for types of coefficients

Depending on the model and the specified options, listcoef computes standardized
coefiicients, factor changes in the odds or expected counts, or percentage changes in the
odds or expected counts. More information on these types of coefficients is provided
below, as well as in the chapters that deal with specific types of ontcomes.

factor requests factor change coefficients indicating how many times larger or smaller
the outcome is. In some cases, these coefficients are adds ratios.

percent requests percentage change coefficients indicating the percentage change in the
outcome.

std requests that coefficients be standardized to a unit variance for the independent
variables or the dependent variable. For models that can be derived from a latent-
dependent variable (for example, the binary logit model), the variance of the latent
outcome is estimated.

The following options (details on these options are given below) are available for each
estimation command. If an option is the default, it does not need to be specified.

std factor percent
Type I: mprobit, oprobit, probit, regress Default No No
Type 2: logistic, logit, ologit Yes Default  Yes

Type 3: mlogit, nbreg. poisson, slogit,
tnbreg, tpoissen, zinb, zip No Default  Yes
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Options for mlogit, mprobit, and slogit

For the mlogit, mprobit, and slogit commands discussed in chapter 8, listcoef
can show the coefficients for each pair of outcome categories. When these models are
used with ordered outcomes, it is helpful to look at a subset of these coefficients. The
following options are for this purpose:

adjacent specifies that only the coefficients from comparisons in which the two category
values are adjacent will be printed (for example, comparing ontcome 1 versus 2, and
2 versus 1, but not 1 versus 3). This option can be combined with gt or 1t.

gt specifies that only the coefficients from comparisons in which the first category has
a larger value than the second will be printed (for exmmnple, comparing outcome 2
versus 1, but not 1 versus 2).

1t specifies that only the coefficients from comparisons in which the first category has
a smaller value than the second will be printed (for examnple, comparing outcome 1
versus 2. but not 2 versus 1).

negative specifies that only negative coefficients be shown. This option cannot be
combined with adjacent, gt, or 1t,

positive specifies that only positive coeflicients be shown. This option cannot be
combined with adjacent, gt, or 1t.

Other options

pvalue(#) specifies that only coefficients significant at the # significance level or
smaller will be printed. For example, pvalue(.05) specifies that only coefficients
significant at the 0,05 level should be listed. If pvalue() is not given, all coefficients
are listed.

nolabel requests that category numbers rather than value labels be nsed in the output.

constantoff specifies to not include the constant(s) in the ontput. By default, they
are listed. In Stata 10 and earlier, the default is constantoff, and you must use
the option constant to list the constants.

help gives details for interpreting each coefficient.

4.7.2 Standardized coefficients

std requests coefficients after variables have been standardized to a unit variance. Stan-
dardized coefficients are computed as follows,

x-standardized coefficients. The linear regression model can be expressed as

y=fy+ Bz + PBora+ € (4.2)
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Let o be the standard deviation of @), Then dividing each zy by o and multiplying
the corresponding i by o becomes

&£ R o
¥ =B+ (0181) = + (a282) = +¢
o a2

Bf‘ = apf is an z-standardized coefficient. For a continuous variable, d;’" can be
e e )

For a standard deviation increase in xy, y is expected to change by ,fif’
units, holding other variables constant.

The same method of z-standardization can be used in all the other models we consider
in this book.

y- and y*-standardized coefficients. To standardize the dependent variable, let o, be
the standard deviation of y. We standardize y by dividing (4.2) by a:

Then ﬁf" = Bk /o, is a y-standardized coefficient that can be interpreted as follows:

For a unit increase in . ¥ is expected to change by ,'if" standard deviations,
holding other variables constant.

For a binary independent variable,

Having characteristic z; as opposed to not having the characteristic results

in an expected change in y of Bf“ standard deviations, holding other vari-
ables constant.

Or more simply,

Having characteristic z; results in an expected change in y of ﬁf“ standard
deviations, holding other variables constant.

In models with a latent dependent variable, the equation y* = By + Bi 21 + a2 + £ can
be divided by 7,.. To estimate the variance of the latent variable, the guadratic form
is used: - S

Var(y') = B Var(x) B + Var(s)
where B is a vector of estimated coefficients and @(x) is the covariance matrix for the

r’s computed from the observed data. By assumption. Var(z) = 1 in probit models and
Var(e) = 7%/3 in logit models.
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Fully standardized coefficients. In the linear regression model, it is possible to stan-
dardize both y and the =’'s:

i s ; ; aafia\ @ 5
i=ﬁ+(”vfl)ﬂ+( u)_-'_,L_
ay. Oy ay /.o ay /or Gy

Then 37 = (owBk)/foy, is a fully standardized coefficient that caun be interpreted as
follows:

For a standard deviation increase in zy, y is expected to change by g7
standard deviations, holding other variables constant.

The same approach can be used in models with a latent-dependent variable y*.

Example of listcoef for standardized coefficients

Here we illustrate the computation of standardized coeflicients for the regression
model, Examples for other models are given in later chapters. The standard output
from regress is

. use scienced, clear
(scienced.dta | Long”s scientific career data | 2014-03-02)

. regress job i.female i.phdclass mentcit3yr fellow publ citl

Source ss df MS Humber of obs = 161
F( 8, 162) = 6.18
Model 30.5973982 B 3.B24674T7 Prob > F = (.0000
Residual 94.0515545 162 .618760227 R-squared = (.2455
Adj R-squared = (.2068
Total 124 .648953 160 .779055954 Roor MSE = 78661
job Coef. Std. Err. t P>t [95% Conf. Interval)
female
yes -.08B6385 .1655774 -0.54 0.593 -. 4157688 .2384918
phdclass
good 4003174 .220298 1.82 0.071 -.0349241 .8355589
strong .8B089664 . 2297963 3.62 0.001 . 3549592 1.262974
elite .B871308 .236539 3.75 0.000 .4198021 1.354486
mentcit3yr .0023B16 .0023724 1.00 0.317 - . 0023066 0070688
fellow . 1947417 .1328996 1.47 0.145 -,0678272 .4573106
publ 0004072 0256824 0.02 0.987 -.06503334 0611477
citl ,0076907 .0041223 1.87 0.064 -.0004538 .0158351
-cons 2.062959 . 2140085 9.64 0.000 1.640144 2.485775
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If we use listcoef, we get
- ldstceef, help
regress (N=161): Unstandardized and standardized estimates
‘Observed SD: 0.8826
8D of error: 0.7866
B b T Pt bStdX  bStdY bStdXY SDofX
female
yee -0.0886 -0.535  0.593 -0.038 -0.100 ~-0.043 0.430
good 0.4003 1.817  0.071 0.181  0.454 0.206 0.453
strong 0.8090 3.520 0.001 0.362  0.917 0.410 0.447
elite 0.8871 3.760  0.000 0.418  1.008 0.474 0.471
mentcit3yr 0.0024 1.004  0.317 0.076  0.003 0.085 31.544
follow 0.1947 1.465  0.148 0.098  0.221 0.111 0.501
publ 0.0004 0.016  0.987 0.001  0.000 0.001 3.228
citl 0.0077 1.866  0.064 0.163  0.009 0.185 21.242
constant 2.0630 9.640 0.000 : Z

b = raw coefficient

't = t-score for test of b=0
P>lt] = p-value for t-test
b8tdX = x-standardized coefficient
bStdY = y-standardized coefficient
bStdXY = fully standardized coefficient
SbofX = standard deviation of X

By default for regress, listcoef lists standardized cocfficients for all variables. If we
are interested in listing coefficients for a subset of variables, we can specify a varlist
after 1listcoef. For factor variables, you should specify only the source name. not the
factor-varigble notation (for example, i.female) or the name of the variable that is

constructed (for example, 2.phdclass). Here is an example:

. listcoef female phdclass publ
regress (N=161): Unstandardized and standardized estimates

Observed SD: 0.8826
SD of error: O0.7866
b G P>t bStdX bStdY bStdXY SDofX
female
yes -0.0886 -0.535 0.593 -0.038 -0.100 -0.043 0.430
M
good 0.4003 1.817 0.071 0.181 0.464 0.206 0,453
strong 0.8090 3.520 0.001 0.362 0.917 0.410 0.447
elite 0.8871 3.750 0.000 0.418 1.005 0.474 0.471
publ 0.0004 0.016 0.987 0.001 0.000 0.001 3.228
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4.7.3 Factor and percentage change coefficients
In logit models and count models, coefficients can be expressed in two ways:
1. Coefficients can indicate the factor or multiplicative change in the odds, relative

risks, or expected count. These are the default for some models or can be requested
with the facter option with listcoef.

2. Percent changes in these quantitics can be requested with the percent option.

Details on these coefficients are given in later chapters for each specific model.

4.8 Next steps

This conclndes our disenssion of the basic commands and options that are used for fit-
ting, testing, assessing fit, and interpreting regression models. In the next five chapters,
we show how these commands can be applied for models for different types of outcomes.
Although chapters 5 and 6 have more detail than later chapters, you should be able to
proceed from here to any of the chapters that follow.
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Part Il

Models for specific kinds of outcomes

In part II, we provide information on the models appropriate for different kinds of

dependent outcomes.

e Chapters 5 and 6 consider models for binary outcomes. These models provide
the foundation for the models for other types of outcomes in the rest of the book.
For this reason, we provide more detailed explanations than in later chapters. We
divide the material into two chapters. Chapter 5 shows how to fit the binary
regression model, how to test hypotheses, how to compute residuals and influence
statistics, and how to calculate scalar measures of model fit. Chapter 6 focuses
entirely on how these models can be interpreted using predicted probabilities,
marginal effects, and odds ratios. We recommend that all readers review these
chapters, even if you are interested mainly in other types of outcomes.

In contrast, chapters 7, 8, and 9 can be read in any combination or order, depending on
vour interests. Each chapter provides information on fitting the relevant models, testing
hypotheses about the coefficients, and interpretation in terms of predicted probabilities.
In addition,

e Chapter 7 on ordinal outcomes deseribes the parallel regression assumption that
made by the ordered logit and probit models and shows how this assumption
can be tested. We also discuss interpretation in terms of the underlying latent
variable and odds ratios. Most of the methods and commands for interprefation
for ordinal models can be applied to models for nominal outcomes, so those readers
primarily interested in nominal outcomes should at least review this chapter.

e Chapter 8 on nominal outcomes introduces the multinomial logit model. We
discuss the assumption of the independence of irrelevant alternatives and present
two graphical methods of interpretation. Methods of interpretation from chap-
ter 7 are extended, and some new methods are introduced. We also briefly discuss
and then consider the multinomial probit model without correlated errors and the
stereotype logistic regression model. We briefly consider models for nominal out-
comes with alternative-specific data, such as the conditional logit and multinomial

probit models.



e Chapter 9 on count outcomes begins with the Poisson and negative binomial re-
gression models. We show how to test the Poisson model’s assumption of equidis-
persion and how to incorporate differences in exposure time into the models. The
next two models, the zero-truncated Poisson and negative binomial models, deal
with the common problem of having no zeros in your data. We combine these
models with the logit model to construct the hurdle model for counts. We con-
clude by considering two zero-inflated models that are designed for data with an
“excess” of zero counts.



5 Models for binary outcomes:
Estimation, testing, and fit

Binary outcomes are ubiquitous and examples come easily to mind. Did a person vote?
Is a mamufacturing firm unionized? Does someone consider themselves a feminist or
not? Did a startup company go bankrupt? Does a person have arthritis? This chapter
focuses on the two most often used models for binary outcomes, the binary logit and
binary probit models, referred to jointly as the binary regression model (BRM). The BRM
allows a researcher to explore how each explanatory variable affects the probability of
the event occurring.

The BRM is also the foundation from which more complex models for ordinal, nom-
inal, and count models are derived. Ordinal and nominal regression models are equiv-
alent to simultaneously fitting a set of BRMs. Although the link is less direct in count
models, the Poisson distribution can be derived as the outcome of many binary trials.
Consequently, the principles of fitting, testing, and interpreting binary models provide
essential tools that are used in later chapters. Although each chapter of the hook is
largely self-contained, the two chapters on binary outcomes provide more detailed ex-
planations than later chapters. As a result, even if your interests are in models for
ordinal, nominal, or count outcomes, you will benefit from reading this chapter and the
next one.

We begin the chapter by reviewing the mathematical structure of the binary regres-
sion model. We then examine statistical testing and fit. These discussions are brief,
and much of it is intended either as a simple overview or as a review for those who
are familiar with the models. For a complete discussion, see Agresti (2013), Hosmer,
Lemeshow, and Sturdivant (2013), or Long (1997). Although the material in this chap-
ter is fundamental to working with these models, we anticipate that the more important
contribution of this book will be in helping you interpret and present results. The issues
involved in effective interpretation are extensive enough that we devote a chapter of its
own to the topic, to which this chapter might be considered the prelude.

5.1 The statistical model

There are three ways to derive the BRM, with each method leading to the same statistical
model. First, a latent variable can be hypothesized along with a measurement model
relating the latent variable to the observed binary outcome. Second, the model can be
constructed as a probability model. Third, the model can be generated as a random
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utility or discrete choice model. This last approach is not considered in our review; see
Long (1997, 155-156) for an introduction and Train (2009) for a detailed discussion.

5.1.1 A latent-variable model

Assume a latent or unobserved variable y* ranging from —oc to oo that is related to
the observed independent variables by the structural model

yi = X0 + €

where i indicates the observation and £ is a random error. For a single independent
variable, we can simplify the notation to

¥ =a+ Bri+g

These equations are identical to those for the linear regression model except—and this
is a big exception—that the dependent variable is unobserved.

The observed binary dependent variable has two values, typically coded as (0 for a
negative outcome (that is, the event did not oceur) and 1 for a positive outcome (that
is, the event did oceur). A measurement equation defines the link between the binary
observed variable y and the continuous latent variable y*:

Y iy >0
=10 ify; <0

Cases with positive values of y* are observed as y = 1. while cases with negative or 0
values of y* are observed as y = 0.

To give a concrete example, imagine a survey item that asks respondents if they agree
or disagree with the proposition that “a working mother can establish just as warm and
secure a relationship with her children as a mother who does not work™. Obviously.
respondents will vary greatly in their opinions. Some people adamantly agree with
the proposition, some adamantly disagree, and still others have weak opinions one way
or the other. Imagine an underlying continummn y* of feelings about this item, with
each respondent having a specific value on the contimium. Those respondents with
positive values for y* will answer “agree” to the survey question (y = 1) and those with
negative values will “disagree” (y = 0). A shift in a respondent’s opinion might move
her from agreeing strongly with the position to agreeing weakly with the position, which
wonld not change the response we observe. Or, the respondent might move from weakly
agreeing to weakly disagreeing, in which case. we wounld observe a change from y = 1
toy=I.

Consider a second example, which we use throughont this chapter. Let y = 1 if a
woman is in the paid labor force and let y = 0 if she is not. The independent variables
include age, number of children, education, family income, and expected wages. Not all
women in the labor force (y = 1) are there with the same certainty. One woman might
be close to leaving the labor force, whereas another woman could be firm in her decision
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rk. In both cases, we observe y = 1. The idea of a latent y* is that an underlying
mﬁu work generates the observed state. Although we cannot directly observe
the propensity , at some point a change in y resu}tﬁ in a change in what we observe,

Figure 5.1. Relationship between latent variable y* and Pr(y = 1) for the BRM
The latent-variable model for a binary outcome with a single independent variable
is shown in figure 5.1. For a given value of z,
Prip=1|2)=Pr(y" >0|x)
Substituting the structural model and rearranging terms,
Pr(y=1|2)=Pr(e > — [a + Bz] | x) (5.1)
which shows how the probability depends on the distribution of the error =.

Two distributions of £ are commonly used, both with an assumed mean of 0. First,
¢ is assumed to be normal with Var(s) = 1. This leads to the binary probit model in
which (5.1) becomes

o4 B

Priy=1|2)= . ‘/_oxp( )dt

Alternatively, ¢ is assumed to be distributed logistically with Var(s) = 7?/3, leading to
the binary logit model with the simpler equation
B _ expla+ Ax)
Erfye=ii| gy 1 + exp (o + 8r)

(5.2)
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The peculiar value assumed for Var(s) in the logit model illustrates a basic point
about the identification of models with latent outcomes. In the linear regression model,
Var(e) can be estimated because y is observed. In the BRM, Var(s) cannot be estimated
because the dependent variable is unobserved. Accordingly, the model is unidentified
unless an assumption is made about the variance of the errors. For probit, we assume
Var(e) = 1 because this leads to a simple form of the model, If a different value was
assumed, this would simply change the values of the structural coeflicients uniformly.
In the logit model, the variance is set to 7/3 because this leads to the simple form in
(5.2). Although the value assumed for Var(e) is arbitrary, the value chosen does not
affect the computed value of the probability (see Long [1997, 49-50] for a simple proof).
Changing the assumed variance affects the spread of the distribution and the magnitude
of the regression coefficients, but it does not affect the proportion of the distribution
above or below the threshold.
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LT e

T =3 T

ip between the linear model y* = a + fx + € and the nonlinear
y=1|z) = F(a+ Bz)

; (UDF) of £ evaluated at x.B,
Pr(y=1|x) = F(x3)
.GDE & for the prubit model and the logistic CDF A for t.he:logit

model is shown in ﬁgure 5.2 for a model with one independent
the error distribution for nine values of 2. The area where
y =1 | x) and has been shaded. Panel B plots Pr(y =1 x)
regions in panel A. As we move from 1 to 2, only a portion of
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over the threshold, and the increase in Pr(y = 1| z) becomes larger. The resulting
curve is the well-known S-curve associated with the BRM.

5.1.2 A nonlinear probability model

Can all binary dependent variables be conceptualized as observed manifestations of
some underlying latent propensity? Although philosophically inferesting, perhaps, the
question is of little practical importance, because the BRM can also be derived without
appealing to a latent variable. This is done by specifying a nonlinear model relating
the 2's to the prabability of an event. Following Theil (1970). the logit model can be
derived by constructing a model in which the predicted Pr(y = 1| x) is forced to be
within the range 0 to 1. For example, in the linear probability model,

Priy=1|x)=x08+¢

the predicted probabilities can be greater than 1 and less than 0. To constrain the
predictions to the range () to 1, we first transform the probability into the odds,

_Pr(y=1 |x)  Prip=1]x)

Xy = Priy=0]x) 1-Pr(y=1]x)

which indicate how often something happens (y = 1) relative to how often it does
not happen (y = 0). The odds range from 0 when Pr(y=1]x) = 0 to oc when
Pr(y=1]|x) = 1. The log of the odds, often referred to as the logit, ranges from —oc
to oc. This range sugeests a model that is linear in the logit:

InQ(x)=x3

This equation is equivalent to the logit model (5.2). Interpretation of this form of the
model often focuses on factor changes in the odds, which are discussed below.

Other binary regression models are ereated by choosing functions of xA that range
from 0 to 1. ¢DFs have this property and readily provide several examples. For example.
the CDF for the standard normal distribution results in the probit model.

5.2 Estimation using logit and probit commands

Logit and probit models can be fit with the following commands and their basic
options:

logit depvar [:’mfrpuur.-;] ]rfJ [fn] [ r.'re'r.'yhr] ], noconstant asis or

vee (wveetype) ]

probit depvar Iiru!f!pv'n'rs] l :f] [-m] [unrigh{] [, noconstant asis

vee(ucetype) |
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depuvar is the dependent variable. indepvars is a list of independent variables. If indep-
vars is not included, Stata fits a model with only an intercept.

Warning about dependent variable. In binary models, all nonmissing, nonzero val-
ues of depvar are classified as positive outcomes, traditionally referred to as sue-
cesses. Only zero values are considered negative outcomes, which are referred to
as failures. Because negative values are nonzero, they are considered to be positive
outecomes. To avoid possible confusion, we recommend that you explicitly create
a 0/1 variable for use as depvar.

Specifying the estimation sample

if and in qualifiers. if and in qualifiers can be used to restrict the estimation sample.
For example, if you want to fit a logit model for only women who went to college,
as indicated by the variable we, you could specify logit 1fp k5 k618 age hc lwg
if we==1,

Listwise deletion. Stata excludes cases in which there are missing values for any of the
variables in the model. Accordingly, if two models are fit using the same dataset
but have different independent variables, the models may have different samples.
We recommend that you use mark and markout (discussed in section 3.1.6) to
explicitly remove cases with missing data.

Weights and complex samples

Both logit and probit can be used with fweight, pweight, and iweight. Survey
estimation can be done using svy: logit or svy: probit. See section 3.1.7 for details.

Options

noconstant specifies that the model not have a constant term.

asis specifies that estimates for variables that have perfect prediction should be in-
cluded in the results table. For details, see page 197.

or (for logit only) reports the odds ratios defined as exp[g). Standard errors and con-
fidence intervals are similarly transformed. Alternatively, our listcoef command
can be used,

vece (veetype) specifies the type of standard errors to be computed. See section 3.1.9 for
details.
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5.2.1 Example of logit model

Our example is from Mroz’s (1987) study of the labor force participation of women,
using data from the 1976 Panel Study of Income Dynamics.! The sample consists of
753 white. married women between the ages of 30 and 60 years. The dependent variable
1fp equals 1 if a woman is in the labor force and equals 0 otherwise. We use codebook,
compact to list information about the variables we plan to include in our model:

. use binlfpd, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013~07-~15)

. codebook 1fp k5 k618 agecat wc hc lwg inc, compact

Variable Obs Unique Mean Min Max Label

1fp 753 2 56830931 0 1 In paid labor force?

k5 763 4 .2377168 o 3 #kids <8

k618 763 9 1.353254 0 8 # kids 6-18

agecat 763 3 1,823373 1 3 Wife's age group

v 763 2 .2815406 0 1 Wife attended collegae?

he 783 2 .3917663 0 1 Husband attended college?
lug 763 876 1.087115 -2.054124 3.218876 Log of wife's estimated...
inc 783 621 20.12897 -.0290001 96 Family income excluding...

Although the meaning of most of the variables is clear from the label, 1wg is the log
of an estimate of what the wife’s wages would be if she was employed, given her other
characteristics. Because the onteome is labor force participation, it is important to
inc¢lude what the wife might be expected to earn if she was employed. Following the same
reasoning, inc is family income excluding whatever the wife earns; this is, therefore, a
measure of what the family income would be il the wife was not employed. We consider
interpretation later, but it may also help bearing in mind that the data are from 1976.
In the United States, prices have risen by just over a factor of 4 between 1976 and 2014,
so a change in income of $5,000 in 1974 is similar to a change in income of $20,000 in

2014.
Because agecat is ordinal, we use tabulate to examine the distribution among the
age gronps:
. tabulate agecat, missing
Wife's age
group Freq. Percent Cum.
30-39 298 39.58 39.58
40-49 290 38.51 78.09
50+ 166 21.91 100.00
Total 753 100.00

1, These data were generously made available by Thomas Mroz,
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N&xt, we want to fit the logit model. To be consistent with the naming practice

St-m will use, we use 2.agecat and 3.agecat to refer to dummy variables indicating
whether agecat==2 and whether agecat==3, respectively. By fitting the logit model,

Pr(1fp=1) = F(By + Ousk5 + Pre18k618 + F5. agecar2.agecat
+ 33.agecar 3. agecat + fycwe + Fyche + Figglvg + Bigcinc)

we obtain the following results:

- logit 1fp kb k618 i.agecat i.uc i.hc lwg inc

Iteration 0: log likelihood = -514.8732
Iteration 1: 1log likelihood = -453.10287
Iteration 2: log likelihood = -452.72408
Iteration 3: log likelihood = -452.72367
Iteration 4: log likelihood = -452.72367
Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 - 0.0000
Log likelihood = -452.72367 Pseudo R2 = 0.1207
1fp Coef. Std. Err. z  P>lzl [95% Conf. Intervall
k5 =1.3915667 .1919279 -7.25 0,000 -1.767739 -1.0153%5
k618 -.0656678 .068314 -0.96 0.336 -. 1995607 .0682251
agecat
40-49 -.6267601 . 208723 -3.00 0.003 -1.03585 -.2176705
50+ =1.279078 . 2697827 -4.92 0.000 -1.788242 -.7699128
L. W
college 7977136 .2201814 3.48 0.001 .3485263 1.246901
ke
collage .1368896  .2054464 0.66 0.508 -.266778 .5386669
lug .B099096 . 1507975 4.04 0.000 .314352 . 9054672
inc ~.03560642 .00B2718 -4.24 0.000 -.0512666 -.0188418
~cons 1.013999 . 2860488 3.64 0.000 .4533639 1.574645

The information in the header and table of coefficients is in the same form as discussed
in chapter 3. The iteration log begins with Iteration 0: log likelihood = -514.8732
and ends with Iteration 4: log likelihood = -452.72367, with the intermediate it-
erations showing the steps taken in the numerical maximization of the log-likelihood
function. Although this information can provide insights when the model does not con-
verge, in our experience it is of little use in logit and probit, where we have never seen
problems with convergence. Accordingly, when fitting further models, we use the nolog
option to suppress the log. If a model does not converge or the estimates seem “off”,
we would rerun the model without the nolog option.

We use factor-variable notation for the categorical variable agecat, as well as for
the binary variables wc and he. We discussed factor-variable notation in detail in chap-
ter 3. Using factor-variable notation for binary variables in this case may seem unneces-
sary. because we get the same coeflicients regardless; but for some of the interpretation
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techniques we demonstrate later, specifying i.wc instead of just we in the estimation
command is essential to obtain proper results (see section 6.2). As a result, we find #
good practice to always enter binary variables into our models with the i. syntax.

In the output above, estimates for these variables are labeled on two lines with the
first line indicating the name of the variable (for example, we) and the second line listing
the value label for category 1 (in this case, college). If you are using Stata 12 or earlier
the category value is printed instead of the value label. This requires you to ensure tha:
vou know the meanings of the category values. For users with Stata 13 and later. we
recommend always using value labels with factor variables to avoid confusion.

Also, by default, the reference or base category of a factor variable is not listed
Adding the allbase option to an estimation command will display the base reference
category. For agecat in the above example, the value 1 is the base category becass
this is the first value; specifying ib3.agecat would have used agecat==3 as the has
category instead.

5.2.2 Comparing logit and probit

Above, we fit the model with logit, but we could have used probit instead. An easy
way to show how the results would differ is to put them side by side in a sitigle table
We can do this by using estimates table (see [R] estimates table), which is mor
generally useful for combining results from multiple models into one table. After fitting
the logit model; we use estimates store esiname to save the estimates with the name
Mlogit:

. logit 1fp kb k618 i.agecat i.wc i.hc lwg inc, noloeg
(output omitted )
. @stimates store Mlogit

We then fit a probit model and store the results:

- probit 1fp kb %618 i.agecat i.wc i.hc lwg inc, molog
(output omitted )
. estimates stors Mprobit

Next, we combine the results with estimates table. Option b() sets the format for
displaying the coefficients, b(%9.3) lists the estimates in nine columns with five decimal
places. Option t requests test statistics for individual coefficients—either = tests or !
tests depending on the model that was fit.? varlabel uses variable labels rather than
variable names to label coefficients (the option was named 1label before Stata 13), with
varwidth() indicating how many columns should be used for the labels. Variable names
and value labels are used with factor variables.

2. The estimates table output labels the test statistic as t regardless of whether = tests or f test=
are used.

Y
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. estimates table Mlogit Mprobit, b(%9.3f) t varlabel varwidth(30)

Variable Mlogit Mprobit
# kids < 6 -1.382 -0.840
~-7.26 -7.50
# kids 6-18 -0.066 =0.041
~-0.96 -1.01

agecat
40-49 -0.627 -0.382
~3.00 -3.06
50+ -1.279 -0.780
-4.92 =5.00

we
college 0.798 0.482
3.48 3.585

he
college 0.136 0.074
0.66 0.60
Log of wife s estimated vages 0.610 0.371
4.04 4.21
Family income excluding wife's -0.035 -0.021
-4.24 -4.37
Constant 1.014 0.622
3.54 3.69

legend: b/t

Comparing results, the estimated logit coeflicients are about 1.7 times larger than
the probit estimates. For example, the ratios for k5 and inc are 1.66. This illustrates
how the magnitudes of the coefficients are affected by the assumed Var(e). The ratio
of estimates for he is larger because of the large standard errors for these estimates.
Values of the = tests for logit and probit are quite similar because they are not affected
by the assumed Var(z), but they are not exactly the same because the models assume
different distributions of the errors.

52.3 (Advanced) Observations predicted perfectly

We mark this section as advanced because if you work with large sam-
ples where your outcome variable is not rare, you may never encounter
perfect prediction. If you have smaller samples with binary predictors,
vou may encounter it regularly. We suggest vou read enough of this see-
tion to understand what perfect prediction is so that you will recognize
it if it oceurs in your analysis.

Maximum likelihood estimation is not possible when the dependent variable does not
vary within gne of the categories of an independent variable. This is referred to as perfect
prediction or quasicomplete separation. To illustrate this, suppose that we are treating
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k5 as categorical rather than continuous in our model of labor force participation. To
do this, we regress 1fp on indicator variables for the number of children.® Variable k5.1
equals 1 if a person had one young child and equals 0 otherwise, and so on for k5.2 and
k5_3. Only three respondents had three young children, and none of these women were
in the paid labor force:

. tabulate 1fp kb

In paid
labor ® kids < 6
force? 0 1 2 3 Total
not in LF 231 72 19 3 326
in LF 3756 46 4 0 428
Total 606 118 26 3 753

We find that 1fp is 0 every time k5.3 is 0. A logit model predicting 1fp with the
binary variables k6.1, k6.2, and k5.3 (with no children being the excluded category)
cannot be estimated because the observed coeflicient for k5.3 is effectively infinite.
Think of it this way: The observed odds of being in the labor force for those with no
children is 375/231 = 1.62, while the observed odds for those with three young children
is 0/3 = 0. The odds ratio is 0/1.62 = 0. For the odds ratios to be 0, fes.s must be
negative infinity. As the likelihood is maximized, estimates of s 3 get more and more
negative until Stata realizes that the parameter cannot be estimated and reports the
following:

. logit 1fp k5.1 k5_2 k5.3, or nolog

note: k5_3 != 0 predicts failure perfectly
¥65_3 dropped and 3 obas not used

Logistic regression Nupber of obs = 750
LR chi2(2) - 31.06
Prob > chi2 = 0.0000
Log likelihood = -496.82164 Pseudo R2 = 0.0303
1fp | Ddds Ratic Std. Err. z Pzl [95Y% Conf. Imtervall
k5_1 .3936556  .0812615 -4.62  0.000 . 2626858 .5808491
k5_2 . 2269474 1021224 -3.30 0.001 . 0939505 .54821563
k5_3 1t (omitted)
_cons 1.623377  .1357794 5.79  0.000 1.377922 1.812665

The message

note: k5_3 != 0 predicts failure perfectly
k5_3 dropped and 3 obs not used

can be interpreted as follows. If someone in the sample has three young children (that
is, if k5.31=0), then she is never in the labor force (that is, 1£p==0), which is a “failure”

4. We could do this with the factor variable 1.k5, but because we want to illustrate the use of
exlogistic, which does not allow factor variables, we created our own indicator variables.
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v of the model. At this point. Stata drops the three cases where k5_3
is 0 nnd»ain (itnps k5.3 from the model. In the output, the coefficient for k5.3 is shown
as 1 ﬁ:ﬂmﬂhﬁ by (omitted). If you use the asis option, Stata keeps k5.3 and the
vations in the model and shows the estimate at convergence:

.m _itpk‘ﬁ..l kb6_2 k5_3, or asis nolog

Logistic regression Number of obs = 753
LR chi2(2) L 36.10

1 ek, ! Prob > chi2 = 0.0000
Log 1ikelihood = -496.82164 Pseudo A2 = 0.0351
1fp | Ddds Ratio Std. Err. z p>lz| [95% Conf. Intervall

k5.1 . 3036556 .0B12515 -4.562 0.000 . 2626858 .5888481

k5.2 +2269091 .102109 -3.30 0.001 0939316 .548141

5.3 4.43e~-10 . v . f i

_cons. 1.623377 . 1367794 5.79 0.000 1.377922 1.912665

Note: 3 failures and 0 successes complstely determined.

The estimated odds ratio of 4.43e-10 (that is, 0.000000000443) is Stata’s attempt to
estimate an odds ratio that is 0. With perfect prediction, the estimates for the other
variables can be used, but you do not learn anything useful about the variable that is

Just, because, in our sample, the three women with children under age 5 were not in
the labor force does not imply the probability is 0 in the population. With any nonzero
probability in the population, there is some chance that every observation with a given
value of an Indﬂpendent variable will have the same outcome. This is especially so when
the sample is small.

Exact methods of estimation provide more accurate inference in small samples than
standard maximum likelihood estimation. In Stata, exlogistic provides exact method
estimation for the logit model. Mehta and Patel (1995) provide an accessible review of
these methods. Exact estimation computes p-values by enumerating all possible out-
comes, which can provide estimates and significance levels in small samples with perfect
prediction. However, computing all emumerations takes a long time. For example, fitting
the logit model above with exlogistic took 750 times longer than fitting the model
with logit. The results are
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. exlogistic 1fp k6_1 kb.2 k5_3, memory(2gb)

Enumerating sample-space combinations:
obgservation 1: enumerations = 2

(output omitted )
observation 430: enumerations = 2101996
(output omitted )

observation 753: enumerations = 12852
note: CMLE estimate for k5_3 is -inf; computing MUE
Exact logistic regression Number of obs = 753
Model score =  35.00641
Pr >= score = 0.0000
1fp | Odds Ratio Suff. 2¢Pr(Suff.) [95% Conf. Intervall
k5_1 .3940829 a5 0.0000 . 2664596 .600809
k5_2 .2274839 T 0.0009 0795388 . 5759369
k6_3 .1610363» ] 0.1126 o 1.504537

(*) median unbiased esvimates (MUE)

By default, exlogistic provides the conditional maximum likelihood estimates of
parameters. When those estimates are infinite, as is the case with perfect prediction,
median unbiased estimates are given, Cytel Software Corporation (2005, 512) suggests
that the median unbiased estimates should be interpreted with eaution by using the
confidence interval. Although one bound of the confidence interval for the odds ratio
will be 0 or positive infinity, the other bound is informative, and we can be 95% confident
that the estimate is larger (or smaller) than this bound. This allows us to speak precisely
about how much uncertainty we have. For examiple, in the output above, the confidence
interval includes 1, so our data do not even permit us to reject the null hypothesis that
women with three children are less likely to be in the labor force than are women with
no children.

5.3 Hypothesis testing

Hypothesis tests of regression coeflicients can be conducted with the = statistics from
the estimation output, with the test command for Wald tests of simple and complex
hypotheses, and with the lrtest command for the corresponding likelihood-ratio (LR)
tests. We discuss using each to test hypotheses involving a single coefficient and then
show how test and lrtest can be used for hypotheses involving multiple coefficients.
See section 3.2 for general information on hypothesis testing nsing Stata. While often
in this book, we show how to conduct both Wald and LR tests of the same hypothesis,
in practice vou would want to test a hypothesis with only one type of test.

5.3.1 Testing individual coefficients

Most often, we are interested in testing Hg: 3; = 0, which corresponds to results in
column z in the output from logit and probit. For example, consider the results for
variables k5 and we from the logit output generated in section 5.2.1:
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. logit 1fp k56 i.wc i.hc k618 i.agecat lwg inc, noleg

Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000
Log likelihood = -452.72367 Pseudo R2 = 0.1207
1fp Coef. Std. Err. z P>zl [95% Conf. Interval]
kb -1.391667 .1919279 -7.256 0,000 -1.767739 -1,015395
ve
college 7977136 2291814 3.48 0,001 .3486263 1.246901
{output omitted )

We conclude the following:

Having young children has a significant effect on the probability of being in
the labor force (2 = —7.25, p < 0.01 for a two-tailed test).

The effect of the wife attending college is significant at the 0.01 level.

Testing single coefficients using test

The =z test included in the output of estimation commands is a Wald test, which can
also be computed as a chi-squared test by using test. For example, to test Hp: Ses = 0,

. test kb
(1) [1fplks =0

chi2( 1) = B2.57
Prob > chi2 = 0.0000

Stata refers to the coefficient for k5 as [1fp]lk5 because the dependent variable is 1£p.
We conclude the following:

The effect of having young children on entering the labor force is significant
at the 0.01 level (y* = 52.57, df = 1, p < 0.01).

The value of the z test is identical to the square root of the corresponding chi-squared
test with 1 degree of freedom. For example, using display as a calculator,

. display sqrt(52.57)
7.2505172

This corresponds to —7.25 from the logit output shown above.
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Aside: Using returns. Using returned results is a better way to show this. When
vou use the test command, the chi-squared statistic is returned as the scalar
r(chi2). The command display sqrt(r(chi2)) then provides the same result
more elegantly and with slightly more accuracy.

When using factor variables, such as i.we in our specification of the model, test
requires that you specify the symbolic name of the coefficient being tested, which for
factor variables is not the name used to label the estimate in the output. Specifying
either i.wc or we in our example will not work with test. Instead, the correct command
is test 1.wc, which indicates that our test is for the coefficient for the indicator variable
that we equals 1. Recall that you can list the symbolic names for each coefficient by
retyping the name of the estimation command along with the option coeflegend, such
as logit, coeflegend.

Testing single coefficients using Irtest

An LR test is computed by comparing the log likelihood from a full model with that of
a restricted model. To test a single coefficient, we begin by fitting the full model and
storing the results:

. logit lfp kB k618 i.agecat i.wc i.hc lwg inc, nolog
(eutput omitted )
- estimates store Mfull

Then, we fit the model without k5 and store the results:

- logit 1fp k618 i.agecat i.wc 1.hc lwg inc, nolog
(output omitted )
. estimates store Mnok5

Next, we run lrtest:

+ lrtest Mfull MnokS

Likelihood-ratio test LR chi2(1) = 62.55
(Assumption: MnokE nested in Mfull) Prob > chi2 = 0.0000

The LR test shows the following:

The effect of having young children is significant at the 0.01 level (LR * =
62.55, df = 1, p < 0.01).

If you want to run an LR test comparing a model stored by using estimates store
with the last model fit, you can use a single period to represent the last model. For
example, instead of lrtest Mfull Mnok5. you could use lrtest Mfull ., where .
represents the last model,
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5.3 multiple coefficients

You might want to test complex hypotheses that involve more than one coefficient.
For example, we have two variables that reflect education in the family: hec and we.
The conclusion that education has (or does not have) a significant effect on labor force
participation cannot be based on separate tests of single coefficients. A joint hypothesis
can also be tested using either test or lrtest. Similarly, to test the effect of agecat
requires testing the coefficients of all indicator variables.

Testing multiple coefficients using test

To test that the effect of the wife attending college and of the husband attending college
on labor force participation are simultaneously equal to 0 (that is, Hy: e = G = 0),
we fit the full model and test the two coefficients. We must use 1.hc and 1.wc, not he
and wc:

. estimates restore Mfull
- tast 1.hc 1.wc

(1) [ifpli.hc =0
(2) [pli.wc =0

chi2( 2) = 17.83
Prob > chi2 = 0.0001

‘We conclude the following:

We reject the hypothesis that the effects of the husband’s and the wife's
edication are simultaneously equal to 0 (x? = 17.83, df = 2, p < 0.01).

test can also be used to test the equality of coefficients. For example, to test that
the effect of the wife attending college on labor force participation is equal to the effect
of the hushand attending college (that is. Hy: Buc = Ghe), we type

. test 1.hec = 1.wc
(1) - [fpli.wc + [1fpli.he = 0

chi2( 1) = 3.24
Prob > chi2 = 0.0719

Here test translated 8,. = Bue into the equivalent expression —Fue + fac = 0. The null
hypothesis that the effects of husband’s and wife's education are equal is marginally
significant. We might conclude the following:

There is weak evidence that the effects of husband’s and wife's education
are equal (y? = 3.24, df = 1, p = 0.072).

We can test that the effect of agecat is 0 by specifying the two indicator variables
that were created from the factor variable i.agecat:
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. test 2.agecat 3.agecat

(1) [1fp)2.agecat = 0
( 2) [1fpl3.agecat = 0

chid( 2) = 24.27
Prob > chi2 = 0.0000

To avoid having to specify each of the automatically created indicators, we can use
testparm:

. testparm i.agecat

( 1) [fpl2.agecat = 0
( 2) [1fpl3.agecat =0
chi2( 2) = 24.27
Prob > chi2 = 0.0000

The advantage of testparm is that it works no matter how many indicator variables
have been created by 1. catvar.

Testing multiple coefficients using Irtest

To compute an LR test of multiple coefficients, we start by fitting the full model and
suving the results with estimates store estname. To test the hypothesis that the
effect of the wife attending college and of the husband attending college on labor force
participation are both equal to 0 (that is, Hy: By = Oye = 0), we fit the model that
excludes these two variables and then run lrtest:

. logit 1fp k5 k618 i.agecat lwg inc, nolog
{output omitted )
. estimates store Mnowchc

. lrtest Mfull Mnowchc

Likelihood-ratio test LR chi2(2) = 18.68
(Assumption: Mmowchc nested in Mfull) Prob > chi2 = 0.0001

We conclude the following:

The hypothesis that the effects of the husband’s and the wife's education are
simultaneously equal to 0 can be rejected at the 0.01 level (LR x* = 18.68,
df =2, p < 0.01).

This logic can be extended to exclude other variables. Say that we wish to test the
hypothesis that the effects of all the independent variables are simultaneously 0. We do
not need to fit the full model again because the resiults are still saved from our use of
estimates store Mfull above. We fit the model with no independent variables and
then run 1rtest:
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- logit 1fp, nolog

Loglstic regression Number of obs = 753
LR chi2(0) = 0,00
Prob > chi2 = :
Log likelihood = -514.8732 Pseudo R2 = 0.0000
1fp Coef. Std. Err. z P>zl [85% Conf. Intervall
_cons .275298 .0735766 3.74 0.000 .1310926 -4195036

. estimates store Mconstant

. Irtast Miull Mconstant

Likelihood-ratio test LR chi2(8) = 124.30
(Assumption: Mconstant nested in Mfull) Prob > chi2 = 0.0000

We coneclude the following:

We reject the hypothesis that all coeflicients except the intercept are )
(LR x* = 124.30, df = 8, p < 0.01).

This test is identical to the test in the header of the logit output from the full model:
LR chi2(8) = 124.30.
5.3.3 Comparing LR and Wald tests

Although the LR and Wald tests are asymptotically equivalent, their values differ in
finite samples. In our example,

LR test ‘Wald test

Hypothesis  df G? P w P

Bes =0 1 6255 <0.01 52.57 < 0.01

Buc =Pac =0 2 18.68 < 0.01 17.83 < 0.01

Baiagecat = Paagecar =0 2 2542 <0.01 2427 < 0.01
All slopes =0 8 12430 < 0.01 95.90 < 0.01

Statistical theory is unclear on whether the LR or Wald test is to be preferred in models
for categorical outcomes, although many statisticians, ourselves included, prefer the
LR test. The choice of which test to use is often determined by convenience, personal
preference, and convention within an area of research. Recall from chapter 3 that if
robust standard errors or svy estimation is used, only Wald tests are available. For
Wald tests of a single coefficient, some disciplines prefer to use chi-squared tests. while
others prefer the corresponding z test.
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5.4 Predicted probabilities, residuals, and influential obser-
vations

For a given set of values of the independent variables, the predicted probability can be
computed from the estimated coeflicients:

Logit: f;l:(y =1]x)=A (xa) Probit: ﬁ[y =1|x)=® (xfi)

where A is the CDF for the logistic distribution with variance 7?/3 and @ is the CDF
for the normal distribution with variance 1. For any set of values of the independent
variables, whether occeurring in the sample or not, the predicted probability can be com-
puted. In this seetion, we consider predictions for each observation in the dataset along
with residuals and measures of influence based on these predictions. In sections 6.2-6.6,
we use predicted probabilities for interpretation.

5.4.1 Predicted probabilities using predict

After running logit or probit,

predict mewvar [ if | [in]

computes the predicted probability of a poesitive outecome for each observation, given
the observed values on the independent variables. and saves them in the new variable
newvar.

Predictions are computed for all cases in memory that do not have missing values
for any variables in the model, regardless of whether if and in were used to restrict
the estimation sample. For example, if you fit logit 1fp k5 i.agecat if we==1, ounly
212 cases are used when fitting the model. But predict newvar computes predictions
for all 753 cases in the dataset. If you want predictions only for the estimation sample,
you can use the command predict newwvar if e(sample)==1. where e(sample) is the
variable created by logit or probit to indicate whether a case was used when fitting
the model.

We can use predict to examine the range of predicted probabilities from our model.
For example, we start by computing the predictions:

. predict prlogit
(option pr assumed; Pr{lfp))

Because we did not specify which quantity to predict, the default option pr for the
probability of a positive outcome was assumed, and the new variable prlogit was given
the default variable label Pr (1£p). In general, and especially when multiple models are
being fit, we suggest adding your own variable label to the prediction to avoid having
multiple variables with the same label. Here we add a variable label and compute
summary statistics:
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. label var prlogit "Logit: Pr(ifp | X)"
. codebook prlogit, compact
Varisble Obs Unique Mean Min Max Label

priogit 753 753 .5683931 .0136618 9512301 Pr(1fp)

The predicted probabilities range from 0.014 to 0.951 with a mean of 0.568. We use
dotplot (o examine the distribution of predictions:*

- dotplot prlogit, ylabel(0(.2)1, grid gmin gmax)
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Examining the distribution of predictions is a valuable first step after fitting your
model to get a general sense of your data and possibly detect problems. Our plot shows
that there are individuals with predicted probabilities that span almost the entire range
from 0 to 1, with roughly two-thirds of the observations between 0.40 and 0.80. The
large range reflects that our sample contains individuals with both very large and very
small probabilities of labor force participation. Examining the characteristics of these
individuals could be useful for guiding later analysis. If the distribution was bimodal,
it wonld suggest the importance of a binary independent variable or the possibility of
two types of individuals, perhaps with shared characteristics on many variables.

Comparing logit to probit predictions

predict can also be used to show that the predictions from logit and probit models
are nearly identical. Although the two models make different assumnptions sbout the

4. In this example of dotplot, the option ylabel(0(.2)1, grid gmin gmax) sets the range of the axis
from 0 to 1 with grid lines in increments of 0.2, where the gain and gmax suboptions add lines at
the migimum and maximum values. Even if the actual range of the predictions is smaller than 0
to 1, we find it useful to see the distribution relative to the entire potential range of probabilities,
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distribution of £, these differences are absorbed in the relative magnitudes of the esti-
mated coefficients. To see this, we begin by fitting comparable logit and probit models
and computing their predicted probabilities. First, we fit the logit model, store the
‘ estimates, and compute predictions:

. use binlfp4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp kb k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted )

. estimates store logit

. predict prlogit
(option pr assumed; Pr(lfp))

. label var prlogit "Logit: Pr(lfp | X)"
Next, we fit the probit model:

. probit 1fp kB k618 i.agecat i.wc i.hc lwg inc, nolog
{output omitted )
. estimates store probit

. predict prprobit
(option pr assumed; Pr(lfp))

. label var prprobit “Probit: Pr(lfp | X)*

Even though we showed earlier that logit coeflicients are about 1.7 times larger than
probit coefficients, the predicted probabilities are almost perfectly correlated:

. pwcorr prlogit prprobit
[ prlogit prprobit

prlogit 1.0000
prprebit 0.9998 1.0000
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Tii&r'naarly identical magnitudes can be shown by plotting the predictions from the
two models against one another:

- scatter prlogit prprobit, xlabel(0(.25)1, grid) ylabel(0(.26)1, grid)
> msymbol (Oh) aspect(1l)

Ll

In terms of predictions, there is little reason to prefer either logit or probit. If
your substantive findings rely on whether you used logit or probit, we would not place
much confidence in either result unless you have a strong theoretical justification for
why one model is preferable to the other. In our own research, we tend to use logit,
primarily because we use the multinomial logit model for nominal outcomes. Logit
models also allow interpretation in terms of odds ratios, while probit models do not.
Given limitations of what can be learned from odds ratios (see section 6.1.1), this alone
is not & compelling reason to use the logit model.

5.4.2 Residuals and influential observations using predict

After you have fit your baseline model, we suggest that you examine residnals and look
for influential observations before beginning postestimation analyses for interpretation.
Residuals and influential observations can help you discover problems with your data and
sometimes suggest problems in your model specification. Residuals are the dilference
between a model’s predicted and observed outcomes for each observation in the sample.
Cases that have large residuals are known as ontliers. When an observation has a large
effect on the estimated parameters, it is said to be influential. We illustrate these ideas
with the linear regression model in figure 5.3.
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Figure 5.3. The distinction between an outlier and an influential observation

Not all outliers are influential, as the figure shows by using simmlated data for the linear
regression of y on x. The residual for an observation is its vertical distance from the
regression line. In the top panel. the observation highlighted with a solid circle has a
large residual and is considered an outlier. Even so, it is not very influential on the
slope of the regression line. That is, the slope of the regression line is very close to what
it would be if the highlighted observation was dropped from the sample and the md“]
was fit again. In the bottom panel, the only observation whose value hssdmsndlﬂ
the highlighted observation marked with a square. The residual for this observation is
small, but the observation is very influential; its presence is entirely responsible for the
slope of the new regression line being positive instead of negative.

Building on the analysis of residuals and influence in the linear l'egfmm"dd (see
Fox [2008] and Weisherg (2005, chap. 5]), Pregibon (1981) extended these ideas to the
BRM.
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Residuals
The predicted probability for a given set of independent variables is
m = Pry=1]|x)

The deviations y; — m; are heteroskedastic because the variance depends on the proba-
bility m; of a positive outcome:

Var (y; —mi | x3) = 7 (1 =)

The variance is greatest when 7; = 0.5 and decreases as w; approaches 0 or 1. That
is, a fair coin is the most unpredictable, with a variance of 0.5 (1 — 0.5) = 0.25. A coin
that has a very small probability of landing head up (or tail up) has a small variance,
for example, 0.01(1 — 0.01) = 0.0099. The Pearson residual divides the residual y — 7
by its standard deviation:

Yi — T
Vi (1 =)

Large values of r suggest a failure of the model to fit a given observation.

Ty =

Pregibon (1981) showed that the variance of r is not 1 because Var(y; — ;) is not
exactly equal to the estimate 7; (1 — 7). He proposed the standardized Pearson residual

I_!-'I.ti — r'

y v 1 - h,‘,‘
where

by =7 (1 =7 % \}EJ}(B) X, (5.3)

Although ¢ is preferred over r because of its constant variance, we find that the two
residuals are often similar in practice. However, because r**9 is simple to compute’in
Stata, you should use this measure,

Example

An index plot is an easy way to examine residuals by plotting them against the
observation number. Standardized residuals are computed by specifying the rstandard
option with predict. For example,

. logit 1fp kb k618 i.agecat i.wc i.hc 1lwg inc. nolog
(output omittod )

. predict rstd, rstandard

. label var rstd "Standardized Residual”

. sort inc

. generate index = _n

. label var index “"Observation Number"
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After computing the standardized residuals that are saved in the new variable rstd.
we sorted the cases by inc so that observations are ordered from lowest to highest
income in the plot that follows. The next line creates the variable index equal to the
observation’s row number in the dataset, where _n on the right side of generate inserts
the observation number.

All that remains is to plot the residuals against the index with the following com-
mand:

. graph twoway scatter rstd index, msymbol(Oh) mcolor(black)
> x1abel (0(200)800) ylabel(-4(2)4, grid gmin gmax) yline(0, lcolor(black))

There is no absolute standard that defines a “large” residual. In their discussion
of residuals and outliers in the oM, Hosmer, Lemeshow, and Sturdivant (2013, 193)
sagely cantion that “in practice, an assessment of ‘large’ is, of necessity, a judgment call
based on experience and the particular set of data being analyzed”.

One way to search for problematic residuals is to sort the residuals by the value of a
variable that you think may be a problem for the model. Here we sorted on inc before
plotting. If this variable had been responsible for the lack of fit of some observations,
the plot might show a disproportionate number of cases with large residuals among
either the low-income or the high-income observations. However, this does not appear
to be the case for these data.

Still, several residuals stand out as being large relative to the others. In such cases, it
is important to identify those specific observations for further inspection. We can do this
by labeling the points with their index number from the variable index. We make the
marker invisible with msymbol (none), use mlabel (index) to specify that we want to
label each point with the value contained in variable index, and use mlabposition(0)
to place the label where the marker would have appeared:
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. graph twowvay scatter rstd index,
> msymbol (none) mlabel(index) mlabposition(0) xlabel(0(200)800)
> ylabel(-4(2)4, grid gmin gmax) yline(0, lcolor(black))

-

Although the labels are unreadable when there are many points close together, the plot
very effectively identifies the isolated cases that we are interested in. We can then list
these specific cases, such as observation 142:

. list 1fp k6 k618 2.agecat 3.agecat wc hc 1lug inc in 142, clean

2b. 3.
1fp k56 k618 agecat agecat wc hc lwg inc
142, in LF 1 2 0 0 no mno -2.054124 11.2

We can sort the residuals and then list the cases that have residuals greater than
1.7 or smaller than —1.7, along with the values of the indéependent variables that were
significant in the regression (recall that | means “or”):
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. sort rstd
. list rstd index kB agecat wc lug inc if rstd>1.7 | rstd<-1.7, clean
rstd dindex k5 agecat we lug inc
1. -2.75197 565 0 30-39 college 1.493441 24
2. -2.606707 297 0 30-39 college 1.065162 15.9
3. -2.483793 511 0 30-39 college 1.150608 22
4. -2.258183 637 0 30-39 collegs 1.432793 28.63
5. -2.168106 622 0 30-39 college 1.156383 28
6. -2.129239 396 0 30-39 college .9602645 18.214
7. -2.102978 507 Q 30-39 collegs 1.013849 21.85
8. -2.032079 701 0  30-39 college  1.472049  37.25
9. -2.025422 522 0 40-49 college 1.526319 22.3

(output omitted)

T40. 1.766624 108 2 30-39 no 2.107018 10.2
741. 1.781235 561 1 40-49 no 1.241269 23.709
742. 1.8124 686 1 30~39 no .9681486 33.97
743. 1.813677 638 o 40-49 no —.6831472 28.7
744, 1.834293 480 i 40-49 no .BT83384  20.989
745. 1.879891 309 1 30-39 college -1.543298 16.12
746. 1.988289 653 | 30-39 no .114816 30.235
T4T. 2.014942 722 1 30-39 no 9162908 43
748. 2.084739 214 2 30-39 college 0 13.865
T49. 2.138727 401 1 50+ no 1.200984  18.27%
750. 2.186398 721 0 50+ no .69314T72 42.91
751. 2.81468 345 2 30-39 no .5108268 17.09
752. 2.821258 762 1 30-39 college 1.209283 91
753. 2.968983 142 1 30-39 ne -2.064124 11.2

All the cases with the most negative residuals have k5 equal to 0, and cases with positive
residuals often have young children. We can also look at this information by modifying
the index plot to show only large residnals and to use the option mlabel (k§) to label
each point with the value of k5:

. graph twoway scatter rstd index if (rstd>1.7) | (rstd<-1.7),
> msymbol(none) mlabel(kS) mlabposition(0) xlabel(0(200)800)
> ylabel(-4(2)4, grid gmin gmax) yline(0, lcolor(black))

> caption("Values indicate # of young children")
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Further analyses of the highlighted cases might reveal either incorrectly coded data
or some inadequacy in the specification of the model. If data problems were found, we
would correct them. However, cases with large positive or negative residuals should
not simply be discarded, because with a correctly specified model you would expect
some observations to have large residuals. Instead, you should examine cases with
large residuals to see if they suggest a problem with the model (for example, problems
associated with the specification of one of the regressors) or errors in the data (for
example, a value of 9999 that shonld have been coded as missing). In our cases above,
we found no problems, and coding k5 as a set of indicator variables did not improve the
fit,

Influential cases

As shown in figure 5.3, large residuals do not necessarily have a strong influence on
the estimated parameters, and cases with small residuals can have a strong influence.
Influential observations. sometimes called high-leverage points, are determined by ex-
amining the changes in the estimated #’s that ocenr when the ith observation is deleted.
Although fitting a new logit after eliminating each case is often impractical, Pregibon
(1981) derived an approximation that requires fitting the model only once. His delta-
beta influence statistic summarizes the effect of removing the ith observation on the
entire vector 8. which is the counterpart to Cook’s distance for the linear regression
model. The measure is .
%~ _  Tihg

AR =—4F
T (- k)

where hy; was defined in (5.3). Stata refers to Ag,— as dbeta, which we compute as
follows:
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. predict deltabeta, dbeta
. label var deltabeta "Pregibon’s influence statistic"

. graph twoway scatter deltabeta index,

> msymbol (none) mlabel(index) mlabposition(0)

> xlabel (0(200)800) xtitle("Observation Number")
> ylabel(0(.1).3, grid gmin gmax)

These commands produce the following plot, which shows that cases 142, 309, and 752
merit further examination:

s

A00
Observation Number

Methods for plotting residuals and outliers can be extended in many ways, includ-
ing plots of different diagnostics against one another. Details of these plots can be
found in Cook and Weisberg (1999), Hosmer, Lemeshow, and Sturdivant (2013), and
Landwehr. Pregibon, and Shoemaker (1984).

5.4.3 Least likely observations

A common motivation for examining residuals in the linear regression model is to un-
cover the largest residuals and check whether there is a reason why the model fits
these observations so poorly. Observations with large residuals are those for which the
ohserved values of the dependent variable are most “surprising”, given the regression
coefficients and the values of the independent variables, In this context, we can think
of the most surprising outcomes as those that have the smallest predicted probabilities
of observing that outcome. These cases may warrant closer inspection, precisely as
observations with large residuals do.
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The command leastlikely (Freese 2002) will list the least likely observations. For
example, for a binary model, leastlikely will list both the observations with the
smallest Pr(y = 0| x) when y = () and the observations with smallest Pr(y=1]|x)
when y = 1.5

Syntax

The syntax for leastlikely is as follows:

leastlikely [varlist| [if | [in] [, n(#) generate(vamame)
[nodisplay | display| nolabel noobs |

where wvarlist contains any variables whose values are to be listed in addition to the
observation numbers and probabilities.

Options

n(#) specifies the number of observations to be listed for each level of the outcome
variable. The defanlt is n(5). For multiple observations with identical predicted
probabilities, all observations will be listed.

generate(varname) specifies that the probabilities of observing the outcome that was
observed be stored in varname.

Options controlling the list of values

leastlikely can also include any of the options available after 1ist. These include
the following:

[no|display forces the format into display or tabular (nodisplay) format. If you
do not specify one of these options, Stata chooses the one it decides will be most
readable,

nolabel causes numeric values rather than labels to be displayed.

noobs suppresses printing of the observation numbers.

(1]

. In addition to being used after logit and probit, leastlikely can be used after most binary models
in which the option pr for predict generates the predicted probabilities of a positive outcome (for
example, cloglog, scobit, and hetprobit) and after many models for ordinal or nominal outcomes
in which the option outcome(#) for pradict generates the predicted probability of cutcome #
(for example, ologit, oprobit, mlogit, mprobit, and slogit), leastlikely is not appropriate for
models in which the probabilities produced by predict are probabilities within groups or panels
(for example, such as elogit, nlogit, and asmprobit}.
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Example

We can use leastlikely to identify the least likely observations from our model of
labor force participation and to list the values of the variables k5, k618, and we for
these observations. Based on our model logit 1fp k5 k618 i.agecat i.wc i.hc
lwg inc,

. use binlfpd, clear
(binlfp4.dta | Mroz data on labor force participation of vemen | 2013-07-15)

. logit 1fp kb k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted )

. leastlikely k& k618 wc agecat

Outcome: O (not in LF)

Prob k5 k618 ¥e  agecat
60. .1403361 0 1 college 30-38
172. | .1291429 (¢] 2 college 30-39
221. | .1766296 0 2 college 30~-39
262. | .1174123 0 0 college 30-39
262. | .1650845 0 3 college 30-39
Outcome: 1 (in LF)

Prob kb k618 we  agecat
427. | .1766887 0 5 no 60+
496. | .1809571 1 0 no 50+
534. | .1039264 1 2 no 30-39
635. | .1152245 1 3 college 30-39
662. | .1133818 2 0 no 30-39

Among women not in the labor force, we find that the lowest predicted probability of
not being in the labor foree oceurs for those who have young children, attended college,
and are younger. For women in the labor force with the lowest probabilities of being in
the labor force, all but one individual have voung children, most have more than one
older child, and one attends college. This suggests further consideration of how labor
force participation is affected by having children in the family,

5.5 Measures of fit

As discussed in chapter 3, a scalar measure of fit can be useful when comparing compet-
ing models. Information criteria such as the Bayesian information criterion (BIC) and
Akaike’s information criterion (AIC) can be used to select among models and are often
very useful. There are many pseudo-R® statistics that are inspired by the coefficient
of determination R? in the linear regression model. but we find them less informative,
even though they are often used. Finally, the Hosmer - Lemeshow statistic i8 a popular
way to assess the overall fit of the model, but we do not recommend it for reasons we
explain below,
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To illustrate scalar measures of fit and information eriteria, we consider two models.
M; contains our original specification of independent variables k5, k618, agecat, wc,
he, lwg, and inc. Mj drops variables k618, he, and 1wg, and adds income-squared with

c.inc##c.inc. The models are fit and estimates are stored:

. quietly logit 1fp k6 k618 i.agecat i.wc i.hc lug inc, nolog

. estimates store mudell

. quietly logit 1fp kb6 i.agecat i.we c.inc##c.inc, nolog

. @stimates store model?

. estimates table modell model2, b(}9.3f) p(%9.3f) stats(N bic aic r2.p)

Variable modell model2
kS -1.392 -1.369
0.000 0.000
k618 -0.066
0.336
agecat
40-48 -0.627 -0.612
0.003 0.011
50+ -1.279 -1.137
0.000 0.000
we
college 0.798 1.119
0.001 0.000
hc
1 0.136
0.508
lug 0.610
0.000
inc -0.035 -0.060
0.000 0.001
c.inchc.inc 0.000
0.083
_cons 1.014 1.7T43
0.000 0.000
N 783 753
bic 965.064 968.5674
aic 923.447 936.206
r2_p 0.121 0.104

legend: b/p

We can list the estimates by using the option stats(N bic aic r2.p) to include the
sample size, BIC, AIC, and pseudo-R? that is normally included in models fit with max-
imum likelihood. Recall that the formulas for these statistics are given in section 3.3.2.
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M, modifies M, by deleting a statistically significant variable and two nonsignificant
varigbles from My while adding a variable that is significant at the 0.10 level. Because
the models are not nested, they cannot be compared with an LR test, but we can use
the BIC and AIC statistics. In this example, both the BIC and AIC statistics are smaller
for M;, which provides support for that model. Following Raftery’s (1995) guidelines,
we can say that there is positive (neither weak nor strong) support for M.

You can obtain information criteria in two other ways. You can use the ic option
to fitstat, which shows multiple versions of the AIC and BIC measnures (see section 3.3
for the formula for these measures):

. estimates restore modell
(results modell are active now)

. quietly fitstat, save ic

. estimates restore model2
(results model2 are active now)

. fitstat, diff ic

Current Saved Difference

AIC
AIC 936.206 923.447 12.7569
(divided by N) 1.243 1.226 0.017

BIC
BIC (df=7/9/-2) 968.574 965.064 3.511
BIC (based on deviance) -4019.347 -4022.867 3.511
BIC® (based on LRX2) -67.796 =T1.307 3.511

Difference of 3.511 in BIC provides positive support for saved model.

The results match those from the estimates table output and even tell you the
strength of support for the preferred model. You can also use the estat ic command:

- logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
{output omitted )
. estat ic

Akaike’s information criterion and Bayesian information criterion

Model Obs 11(null) 11(model) df AIC BIC

753 -514.8732 -452.7237 9 923.4473 965.0639

Note: N=Obs used in calculating BIC; see [R] BIC note

. logit 1fp k5 i.agecat i.wc c.inc##c.inc, nolog
(output omitted )
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. estat ic

Akaike s information criterion and Bayesian information criteriomn

Model Obs 11(null) 11(model) df AIC BIC

763 -514.8732 -461.103 T 836,206 968.5746

Note: N=0bs used in calculating BIC; see [R] BIC note

These results match those from fitstat.

55.2 Pseudo-R?*'s

Within a substantive area, pseudo-R*’s might provide a rough index of whether a model
is adequate. For example, if prior models of labor force participation routinely have
values of 0.4 for a particular pseudo-R?, you would expect that new analyses with a
different sample or with revised measures of the variables would result in a similar
value for that measure, But there is no convincing evidence that selecting a model that
maximizes the value of a pseudo-R? results in a model that is optimal in any sense other
than the model has a larger value of that measure.

We use the same models estimated in the last section and use fitstat to compute
the scalar measures of fit (see section 3.3 for the formula for these measures):

. logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted )
. quietly fitstat, save
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. logit 1fp k5 i.agecat i.wc c.inc##c.inc, nolog
(output omitted )
. fitstat, diff

Current Saved Difference
Log-likelihood
Model -461.103 -452.724 -8.379
Intercept-only ~-514_.873 -514.873 0.000
Chi-square
D (df=746/744/2) 822.206 805.447 16.769
LR (df=6/8/-2) 107.540 124.289 -16.789
p-value 0.000 0.000 0.000
R2
McFadden 0.104 0.121 -0.016
McFadden (adjusted) 0.091 0.103 -0.012
McKelvey & Zavoina 0.183 0,215 -0.032
Cox-Snell/ML 0.133 0.152 -0.019
Cragg-Uhler/Nagelkerke 0.179 0.204 -0.026
Efron 0.135 0.153 ~=0.018
Tjur"s D 0.135 0.153 -0.018
Count 0.672 0.676 -0.004
Count (adjusted) 0.240 0.249 -0.009
ic
AIC 936.206 923.447 12.769
AIC divided by N 1.243 1.226 0.017
BIC (df=7/9/-2) 968.574 965.064 3.511
Variance of
e 3.290 3.290 0.000
y-star 4.026 4.192 -0.1686

Note: Likelihood-ratio test assumes current model nested in saved model.
Difference of 3.511 in BIC provides positive support for saved model.

After fitting our first model with logit, we nsed quietly to suppress the output
from fitstat with the save option to retain the results in memory. After fitting the sec-
ond model, fitstat, diff displays the it statistics for both models. fitstat, diff
computes differences between all measures, shown in the column labeled Difference.
even if the models are not nested. As with the lrtest command, you must determine
if it makes sense to interpret the computed difference.

What do the fit statistics show? The values of the pseudo- R*'s are slightly larger for
M, which is labeled Saved logit in the table. If you take the pseudo-R?'s as evidence
for the best model, which we do not, there is some evidence preferring M;.
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55.3 (Advanced) Hosmer—Lemeshow statistic

We only recommend reading this section if you are considering using
the Hosmer-Lemeshow statistic. After reviewing how the measure is
computed, we illustrate that the statistic is highly dependent upon an
arbitrary decision on the munber of groups used. As a result, we do not
recommend this measure.

The idea of the Hosmer- Lemeshow (HL) test is to compare predicted probabilities
with the observed data (Hosmer and Lemeshow 1980; Lemeshow and Hosmer 1982).
This popular test can be computed using the estat gof command after fitting a logit
or probit model. Unlike the measures presented above, this command also works with
models fit by using complex survey data with the svy prefix.

To explain how the test works, we review the steps that are used to compute it.

N

(=4

Fit the regression model.
Compute the predicted probabilities ;.
Sort the data from the smallest 7; to the largest.

Divide the observations into GG groups, where 10 groups are often used. Each

group will have n, =~ 7'! cases. The first group will have the ny smallest values

of 7, and so on. If & does not divide equally into N, the group sizes will differ
slightly.

. Within each group, compute the mean prediction:

— E
g = E - T / g
Lin group g

Also compute the mean number of observed cases where y = 1:

5 = E I
Ya i in group g y’/ 9

. The test statistic is

HL = Z (ﬂgllg "y“y)

n, Ty (1 —7,)

Hosmer, Lemeshow, and Sturdivant (2013) ran simulations that suggest that HL is dis-
tributed approximately as x* with G — 2 degrees of freedom if the model is correctly
specified. If the p-value is large, the model is considered to fit the data.

To give an example, we fit the model we have used as a running example, and we
use estat gof to compute the HL statistic:
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. logit 1fp k5 k618 i.agecat i.wc i.hc lwg c.inc, nolog
(output omitted )

. estat gof, group(10)

Logistic model for 1fp, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 753
number of groups = 10
Hosmer-Lemeshow chi2(8) = 13.76
Prob > chi2 = 0.0881

The p-value is greater than 0.03, indicating that the model fits based on the criterion
provided for the HL.

Unfortunately. we do not find conclusions from the HL test to be convincing, First, as
Hosmer and Lemeshow point out, the HL test is not a substitute for examining individual
predictions and residuals as discussed in the last section. Second, Allison (2012b, 67)
raised concerns that the test is not very powerful. In a simple simulation with 500
cases, the HL test failed to reject an incorrect model 75% of the time. Third, and most
critically, the choice of the number of groups is arbitrary, even though 10 is most often
used. The results of the Hosmer- Lemeshow test are sensitive to the arbitrary choice of
the number of groups. In our experience, this is often the case and for this reason we
do not recommend the test.

We can illustrate the seuvsitivity of the Hosmer Lemeshow test by varying the num-
ber of groups used to compute the test from 5 to 15 in the model fit above:

chi2 df prob
§ groups 4.043 3.000 0.257
6 groups 8.762 4.000 0.067
7 groups 10.424 6.000 0.064
B groups 13.831 6.000 0.032
9 groups 15.503 7.000 0.030
10 groups 13.763 8.000 0.088
11 groups 17.980 9.000 0.035
12 groups 24.055 10.000 0.007
13 groups 15.230 11.000 0.172
14 groups 19.360 12.000 0.080
15 groups 24.722 13.000 0.025

The row labeled 10 groups corresponds to the result shown earlier. It is disconcerting
that when 10 groups are used, the result is not significant, but if 9 or 11 groups had been
used, the result would have heen significant. Over the 11 groups. listed, the p-values
range from p = 0.007 to p = 0.257. Although the idea of the HL test is appealing, we
are skeptical that it is an effective way to assess a model.
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5.6  Other commands for binary outcomes

Logit and probit models are the most commonly used models for binary outcomes and
are the only ones that we consider in this book, but other models exist that can be fit
in Stata. Among them are the following:

e cloglog assumes a complementary log-log distribution for the errors instead of a
logistic or normal distribution.

® scobit fits a logit model that relaxes the assumption that the marginal change in
the probability is greatest when Pr(y = 1) = 0.5.

® hetprobit allows the assumed variance of the errors in the probit model to vary
as a function of the independent variables, which is one approach to comparing
logit and probit coefficients across groups (Williams 2009).

e ivprobit fits a probit model where one or more of the regressors are endogenously
determined.

® biprobit simultaneously fits two binary probits and can be used when errors are
correlated with each other as in the estimation of seemingly unrelated regression
models for continuous dependent variables. mvprobit (Cappellari and Jenkins
2003) extends this idea to more than two binary probits.

Binary outcomes that reflect an event that is expected to happen eventually for
all cases are often handled using survival analysis, which is not covered in this book.
Cleves et al. (2010) provides a detailed introduction to survival analysis in Stata fo-
cusing on the st* commands. Likewise, we do not consider Stata’s extensive com-
mands for working with panel and multilevel data, including Stata’s xt+ and me* com-
mands. but these are discussed extensively in Rabe-Hesketh and Skrondal (2012) and
Cameron and Trivedi (2010).

5.7 Conclusion

Binary outcomes are at least as common as continuous outcomes in many fields, and the
logic for how binary outcomes are handled provides the basis for ordinal, nominal, and
count outcomes in later chapters. We focus here on the logit and probit models that
are the most common models used for binary outcomes. In this chapter, we considered
estimating parameters for these models, testing basic hypotheses about estimates, and
evaluating the fit of individual observations and the model as a whole.

We have said nothing so far about how to think and talk about what the estimates
produced by these models actuslly mean. Instead, this serves as the topic of the next
chapter. As you will see, the next chapter is longer than this chapter, because there are
many issues to think about to ficure out the clearest and most effective way to convey
results from models for binary outcomes.
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Models for binary outcomes:
Interpretation

In this chapter, we discuss methods for interpreting results from models for binary
outcomes. Because the binary regression model (BRM) that we introduced in the last
chapter is nonlinear, the magnitude of the change in the outcome probability associated
with a given change in an independent variable depends on the levels of all the inde-
pendent variables. The challenge of interpreting results, then, is to find a summary of
how changes in the independent variables are associated with changes in the outcome
that best reflects critical substantive processes without overwhelming yourself or your
readers with distracting detail.

Two basic approaches to interpretation are considered: interpretation using regres-
sion coefficients and interpretation using predicted probabilities. With respect to the
former, we begin the chapter by considering how estimated parameters or simple func-
tions of these parameters can be used to predict changes in the odds ratios for the logit
model or the latent variable y* for logit or probit models. Using odds ratios to inter-
pret the logit model is very common, but rarely is it sufficient for understanding the
results of the model. Nonetheless. it is important fo understand what odds ratios mean
for several reasons, For one, odds ratios are used a lot, and you need to understand
what they can and cannot tell you. Also, odds ratios are useful for understanding the
structure of the ordinal regression model in chapter 7 and the multinomial logit model
in chapter 8. Interpretation based on y* parallels interpretation in the linear regression
model, but it is not often used for binary outcomes. 1t is, however, sometimes useful
for models for ordinal outcomes, considered in chapter 7.

We strongly prefer methods of interpretation that are based on predicted probabil-
ities, and most of the chapter focuses on these. We begin in section 6.2 with marginal
effects. which we find more informative than the more commonly used odds ratios as
scalar measures to assess the magnitude of a variable’s effect. In section 6.3, we con-
sider computing predictions based on substantively motivated profiles of values for the
independent variables, also referred to as ideal types. Thinking about the types of indi-
viduals represented in your sample is a valuable way to gain an intuitive sense of which
configurations of variables are substantively important. Tables of predictions, which are
discussed in section 6.4, can effectively highlight the impact of categorical independent
variables. We end our discussion of interpretation in section 6.6 by considering graph-
ical methods to show how probabilities change as a continuous independent variable
changes,
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When using logit or probit, or any nonlinear model. we suggest that you try a variety
of methods of interpretation with the goal of finding an elegant way to present the
results that does justice to the complexities of the nonlinear model and the substantive
application. No one method works in all situations, and often the only way to determine
which method is most effective is to try them all. Fortunately, the methods we consider
in this chapter can be readily extended to models for ordinal, nominal, and count
outcomes, which are considered in chapters 7-9.

6.1 Interpretation using regression coefficients

Interpretation of regression models involves examining how a change in an independent
variable is associated with a change in the outcome. In linear models, this is easily
accomplished using estimates of the regression coeflicients. For example, the coefficient
for years of education on anticipated earnings tells you how one more year of education
is expected to affect earnings. Unless vou add interaction terms, the estimated effect is
the same for men and women, whites and nonwhites, and all combinations of values of
the independent variables. Consequently, in linear regression, a diseussion of the slope
coefficients is often where a researcher begins and ends his or her interpretation of the
model. The presentation of results might simply be a table of regression coefficients.

In the nonlinear BRM, a regression coeflicient indicates the direction of a variable’s
effect. In our model of labor force participation, the coefficients for k5 and k618 arc
both negative, which implies that higher numbers of children are associated with a lower
probability of being in the labor foree. What is harder to interpret from the coeflicient
is the magnitude of the effect. The logit model, for example, can be written as

InQ2(x) =x0

The 4 coefficients indicate the effect of the independent variable on the log odds of the
outcome, where the log odds is also known as the logit. We can interpret the §'s as
follows:

For a unit change in zy, we expect the log of the odds of the outcome to
change by A units, holding all other variables constant.

This interpretation does not depend on the level of 2. or the levels of the other variables
in the model. In this regard, it is just like the linear regression model. The problem
is that a change of 8 in the log odds has little substantive meaning for most people.
Consequently, tables of logit coefficients typically have little value for conveying the
magnitude of effects. As an alternative, odds ratios can be used to explain the effects
of independent variables on the odds, which we consider in the next section.

6.1.1 Interpretation using odds ratios

Effects for the logit model (but not the probit model) can be interpreted in terms of
changes in the odds. For binary outcomes, we typically consider the odds of observing
a positive outcome, coded 1, versus a negative outcome, coded 0:
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_ Priy=1|x)  Pr(y=1|x
Q(x) = = =L
() Priy=0]x) 1- pr(y__
In the logit model, the log odds are a lincar combination of the

consider a model with three independent variables:
[Prly=1[x)) _, ooi
ln{ Pr(y=0| x_).} =InQx) = fo + fray +,

| . 1
The problem with interpreting these #'s directly is that cha
substantively meaningful to most audiences.
To make the interpretation more meaningful, we can

odds by taking the exponential of both sides of the eq
that is multiplicative instead of linear but in which the o

Q (x,23) = efoeher gfaza gz

Our notation emphasizes the value of x4, which we want to

=eﬂ"eﬁ°é5'“"'eﬂ“’g £a

This leads to the odds ratio
Q(x,z3)  cPoefrnglaraehn

Accordingly, we can interpret the exponential of the logit e

For a unit change in xy, the odds are expected to e
exp(f), holding other variables constant.

For exp(8) > 1, you could say that the odds are
exp(8¢) < 1, you could say that the odds are “exp(/)
then z; docs not affect the odds. We can evaluate the
change in zy instead of a unit change:

For a standard deviation change in xy. the odds are
a factor of exp(3 x s, ), holding all other variables

The odds ratio is computed by changing one variable, %
constant. This means that the formula in (6.1) cannot be
changed is mathematically linked to another variable. Fo
is age-squared, you cannot increase by 1 while hold
the odds ratio computed as exp(ﬂk) should not be inte
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Although odds ratios are a common method of interpretation for logit models, it is
essential to understand their limitations. Most importantly, they do not indicate the
magnitude of the change in the probability of the outcome. We begin with an example
from our model of labor force participation, followed by a few words of caution.

The output from logit with the or option shows the odds ratios instead of the

estimated 3's:

. logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, or nolog

Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000
Log likelihood = -452,72387 Pseudo R2 = 0.1207
1fp | Odds Ratio Std. Err. z P>zl [95% Conf. Intervall
k5 .2486853  .0477297 ~7.26 0.000 .1707185 3622692
k618 .9364419  .0639721 -0.96 0.336 . 8180905 1.070606
agecat
40-49 .5343201  .1115249 -3.00 0.003 . 3549247 8043904
50+ .2782939  .0722059 -4.92  0.000 .1672639 4630534
we
cellege 2.220458  .508B877 3.48 0.001 1.416978 3.479543
hec
cellege 1.145666  .2353502 0.66 0.508 .T658431 1.713532
lug 1.840265  .2775073 4,04 0.000 1.368372 2.473087
inc .9656631  .0079868 ~-4.24 0.000 . 95002654 9813346
_cons 2.756602 .7885231 3.64 0.000 1.573681 4.829025

Here are some exarmples of interpretations:

For each additional young child, the odds of being in the labor force decrease
by a factor of 0.25, holding all other variables constant (p < 0.01).

If a woman attended college, her odds of labor foree participation are 2.22
times larger than a woman who did not attend college, holding all other
variables constant (p < 0.01).

Notice that these interpretations contain no information about the magnitude of the
implied change in the probability. This will be important to our discussion below of
the limitations of odds ratios, but first, several other issues about the interpretation of
odds ratios merit attention.

Qdds ratios for categorical variables, Multiple odds ratios are associated with a multiple-
category independent variable. For example, the two coefficients for agecat are relative
to the base category of being 30 to 39. Accordingly, we can interpret the coefficient
labeled 40-49 as follows:
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Being age 40 to 49 compared with being 30 to 39 decreases the odds of being

in the labor force by a factor of 0.53, holding all other variables constant
(p <0.01),

And similarly for the coefficient for 50+. If you are interested in the coefficient for the
effects of being 40 to 49 compared with being 50 or older, you can use the pwcompare
command, where option eform requests the exponential of the coefficients, which are
the odds ratios. The option effects requests p-values and confidence intervals.

. pwcompare agecat, effects eform
Pairvise comparisons of marginal linear predictions

Margins : asbalanced
Unadjusted Unadjusted
exp(b) Std. Err. z P>zl [95% Conf. Interval]
1fp
agecat
40-39
vs
30-39 .5343201  .1115249 -3.00 0.003 .3549247 8043004
50+ va 30-39 .2782939 .0722869 -4.92 0.000 .1672639 4630534
50+ ws 40-49 .5208373 . 1141603 -2.98 0,003 . 338946 .8003385

We conclude the following:

Being 50 or older compared with being 40 to 49 decreases the odds of being
in the labor force by a factor of 0.52, holding all other variables constant
(p < 0.01).

Although any two of the pairwise coefficients imply the third (for example, 0.521 x
0.534 = 0.278), it is often useful to see all the coefficients and report those that are
most useful for the substantive application.

Confidence intervals for odds ratios. If you report the odds ratios instead of the un-
transformed 3 coefficients, then the 95% confidence interval of the odds ratio is often
reported instead of the standard error. The reason is that the odds ratio is a nonlinear
transformation of the logit coefficient, so the confidence interval is asymmetric. For
example, if the logit coefficient is 0.75 with a standard error of 0.25, the 95% interval
around the logit coefficient is approximately [0.26,1.24], but the confidence interval
around the odds ratio exp(0.75) = 2.12 is [exp(0.26), exp(1.24)] = [1.30.3.46|. The or
option for the logit command reports odds ratios and includes confidence intervals.



I EEEEEE——————

232 Chapter 6 Models for binary outcomes: Interpretation

Odds ratios for changes other than one. You can compute the odds ratio for changes in
&y other than 1 with the formula

Q(x, 2 +6)
Q(x,xx)

w7 =5 (:l“ x

For example,

Increasing income by $10,000 decreases the odds by a factor of 0.70 (= e~ 0.98510)
holding all other variables constant.

Accordingly, the odds ratio for a standard deviation change of an independent variable
equals exp (Fese ), where s;. is the standard deviation of xzgx. The odds ratios for both
a unit and a standard deviation change of the independent variables can be obtained
with listcoef:

- listcoef, help
logit (N=753): Factor change in odds
Odds of: in LF va not in LF

b z P>lzl 2’b e bStdX SDofX
k6 -1.3816 -7.280 0.000 0.249 0.482 0.524
k618 -0.06567 -0.961 0.336 0.836 0.917 1.320
agecat
40-49 -0.6268 -3.003 0.003 0.5634 0.737 0.487
B0+ -1.2791 -4.924 0.000 0.278 0,589 0.414
wC
college 0.7977 3.481 0.001 2.220 1.432 0.450
hc
college 0.1359 D.681 0.508 1.146 1.069 0.488
lwg 0.6099 4.045 0.000 1.840 1.431 0.588
inc -0.0351 -4.238 0.000 0.966 0.665 11.635
constant 1,0140 3.545 0.000
b = raw coefficient
2z = z-score for test of b=0
P>|z| = p-value for z-test
e"b = exp(b) = factor change in odds for unit increase in X
e b8tdX = exp(beSD of X) = change in odds for SD increase in X
SDofX = standard deviation of X

By using the coefficients for lug in the column e bStdX, we can say

For a standard deviation increase in the log of the wife's expected wages,
the odds of being in the labor force are 1.43 times greater, holding all other
variables constant.
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Odds ratios as multiplicative coefficients, When interpreting odds ratios, remember that
they are multiplicative. This means that 1 indicates no effect, positive effects are greater
than 1, and negative effects are between 0 and 1. Magnitudes of positive and negative
effects should be compared by taking the inverse of the negative effect, or vice versa. For
example, an odds ratio of 2 has the same magnitude as an odds ratio of 0.5 = 1/2. Thus
an odds ratio of 0.1 = 1/10 is much “larger” than the odds ratio 2 = 1/0.5. Another
consequence of the multiplicative scale is that to determine the effect on the odds of the
event not oceurring, you simply take the inverse of the effect on the odds of the event
occurring. listcoef will automatically calculate this for you if you specify the reverse
option:

. listcoef, reverse
logit (N=753): Factor change in odds
Odds of: not in LF vs in LF

b = Pzl e’h e bStdX SDofX
kb -1.3816 -7.250 0.000 4.021 2.073 0.524
k618 -0.0657 -0.961 0.336 1.068 1.081 1.320
agecat
40-49 -0,6268 -3.003 0,003 1.872 1.367 0.487
50+ -1.2781 -4.924 0.000 3.583 1.698 0.414
ve
college 0.7977 3.481 0,001 0.450 0.698 0.450
he
college 0.1369 0.661  0.508 0.873 0.936 0.488
1vg 0.6099 4.045 0.000 0.543 0.699 0.588
ine -0.0351 ~4.238 0.000 1.036 1.504 11.835
congtant 1.0140 3.546 0.000 .

The header indicates that columns e™b and e”bStdX now contain the factor changes
in the odds of the outcome not in LF versus the outcome in LF, whereas before we
computed the factor change in the odds of in LF versus not in LF. We can interpret
the result for k6 as follows:

For each additional child, the odds of not being in the labor force are in-
creased by a factor of 4.02 (=1/0.48), holding all other variables constant.

Percentage change in the odds. Instead of a multiplicative or factor change in the out-
come, some people prefer the percentage change:

percentage change in odds = 100 {exp (68) — 1}

This is shown by listcoef with the percent option.
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. listcoef, help percent
logit (N=753): Percentage changs in odds
Odds of: in LF vs not in LF

b z P>zl % %StdX SDofX
k5 -1.3916 ~7.250 0.000 -756.1 -51.8 0.524
k618 -0.0657 -0.961 0.338 -6.4 -8.3 1.320
agecat
40-49 -0.6268 ~3.003 0.003 -46.6 -26.3 0.487
50+ -1.2791 -4.924 0.000 -72.2 -41.1 0.414
we
college 0.7977 3.481 0.001 122.0 43.2 0.450
he
collage 0.1359 0.661 0.508 14.8 6.9 0.488
lwg 0.6092 4.045 0.000 84.0 43.1 0.588
ine ~0.0351 ~4,238 0.000 -3.4 -33.6 11.636
constant 1.0140 3.545 0.000

b = raw coefficient

z = z-gcore for test of b=0
P>|z] = p-value for z-test

% = percent change in odds for umit incresse in X
#StdX = percent change in odds for SD increase in X
SDofX = standard deviation of X

Some interpretations are as follows:

For each additional young child, the odds of being in the labor force decrease
by 75%. holding all other variables constant,

A standard deviation increase in the log of a wife's expected wages increases
the odds of being in the labor force by 43%, holding all other variables
constant.

Percentage and factor change provide the same information. so which you use is a matter
of preference. Although we tend to prefer percentage change, methods for the graphical
interpretation of the multinomial logit model (chapter 8) work only with factor change
coeflicients.

Limitations of the odds ratio

The interpretation of the odds ratio assiumes that the other variables are held constant,
but it does not require that they be held at specific values, This might seem to resolve
the problem of nonlinearity, but in practice it does not. A constant factor change in
the odds does not imply a constant change in the probability, and probabilities provide
a more meaningful metric for interpretation than do odds. For example, if the odds
are 1/50, the corresponding probability is 0.020 becanse p = /(1 + ). H the odds
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double to 2/50, the probability increases to 0.038 for a change of 0.019. Depending on
your substantive purposes, this small change may be trivial or may be quite important
(such as when you identify a risk factor that makes it twice as likely that a subject
will contract a fatal disease). Meanwhile, if the odds are 1/1 and donble to 2/1, the
probability increases 0.500 to 0.667 for a change of 0.167. The odds ratio is the same,
but the change in the probability is much larger.

The substantive meaning of a given odds ratio depends on the specific value of the
odds before they change. Those odds in turn depend on the predicted probability, which
in turn depends on the specific values of all independent variables in the model. For

describing results in terms of probabilities, there is no way around the nonlinearity of
the maodel.

Odds ratios in case-control studies

Odds ratios may provide the best alternative for contexts in which the probabilities
are determined by the sample design and accordingly are not obviously of substantive
interest. The key example is case control studies, which are especially common in
epidemiology. Case—control studies recruit cases with a disease separately from the
controls without the disease, and commonly studies will recruit equal proportions of
cases and controls even though cases are relatively rare in the population and controls
are abundant. In other words, the proportion of people with a disease in a case-
control study has nothing to do with the proportion who actually have the disease in a
population.

Logit models are typically used in such studies because, if assumptions are satisfied,
odds ratios estimated from a case control study can be extrapolated to a population
{Hosmer, Lemeshow, and Sturdivant 2013). However, because the baseline probability
in the population is much lower than the proportion in the sample (and might not even
be known), interpreting the effects of independent variables in terms of the effects on
the probability of being a case versus being a control in one’s sample typically has no
substantive pertinence.

6.1.2 (Advanced) Interpretation using y*

Binary logit and probit models are rarely interpreted in terms of the la-
tent variable y*. Accordingly, this section is primarily useful to provide
a deeper understanding of identification and why logit coefficients are
generally larger than probit coeflicients.

As discussed in section 5.1.1, the logit and probit models can be derived from re-
gression of a latent variable y°:

Yy =xB+¢
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where £ is a random error. For the probit model, we assume £ is normal with Var(z) = 1.
For logit, we assume ¢ is distributed logistically with Var(s) = 7* /3. As with the linear
regression model, the marginal change in 3* with respect to xj is

oyt
o = Pk

{)J‘;‘-
However. because y* is latent. its true metric is unknown and depends on the identifi-
cation assumption we make about the variance of the errors.

As we saw in section 5.2.2, the coefficients produced by logit and probit cannot
be directly compared with one another. The logit coefficients will typically be about 1.7
times larger than the probit coeflicients, simply as a result of the arbitrary assumption
about the variance of the error. Consequently, the marginal change in y* cannot be
interpreted without standardizing by the estimated standard deviation of y*; which is
computed as

2. = B'Var (x) B + Var ()

where Var (x) is the covariance matrix for the observed x's, 8 contains maximum likeli-
hood estimates, and Var(e) = 1 for probit and 7 /3 for logit. Then the y*-standardized
coeflicient for @, 18
" s
oy k
B

a

v*

which can be interpreted as follows:

— ~ . - ’ ) aSy” < H
For a unit increase in ay, y* is expected to increase by 8.Y standard devi-
ations, holding all other variables constant.

The fully standardized coefficient is

T} ai k

o

M

which can be interpreted as follows:

For each standard deviation increase in 2y, y* is expected to increase by 3¢
standard deviations, holding all other variables constant.
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These coefficients are computed by listcoef with the std option:

- logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
(cutput omitted )

. listcoef, std

logit (N=753): Unstandardized and standardized estimates

Observed SD: 0.4956
Latent SD: 2.0474

Qdds of: in LF vs not in LF

b z P>zl bStdX bStdY  bStdXy SDofX
kb -1.3816 -7.250 0.000 -0.728 -0.680 -0.3566 0.524
k618 -0.0667 -0.961 0.336 -0.087 =-0.032 -0.042 1.320
agecat
40-49 -0.6268 -3.003 0.003 -0.305 ~-0.306 ~0.149 0.487
50+ -1,2791 -4.924 0.000 -0.529 -0.625 -0.269 0.414
ve
college 0.7977 3.481 0.001 0.3569 0.390 0.1756 0.450
he
college 0.1359 0.661 0.508 0.066 0.066 0.032 0.488
lug 0.6099 4.045 0.000 0.368 0.298 0.175 0.588
inc -0.0351 -4.238 0.000 ~0.408 -0.017 -0.199 11.635
constant 1.0140 3.546 0.000 ¥ " . i

The y*-standardized coefficients are in the column labeled bStdY, and the fully stan-
dardized coefficients are in the column bStdXY. We could interpret these coefficients as
follows:

For each additional young child, the propensity of a women to join the
labor force decreases by (.68 standard deviations, holding all other variables
constant,

For every standard deviation increase in family income, a woman’s propen-
sity to join the labor force is expected to decrease by 0.199 standard devia-
tions, holding all other variables constant.

Next, we compute the y*-standardized coefficients for probit:
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- probit 1fp kb k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted )

. listcoef, std

probit (N=753): Unstandardized and standardized estimates

Observed SD: (.49566
Latent SD: 1.1530

b z P>zl bStdX bStdY  bStdXy SDofX
k5 -0.8396 -7.503 0.000 -0.440 -0.728 ~-0.382 0.524
k618 -0.0412 -1.011 0.312 -0.054 -0.036 -0.047 1.320
agecat
40-49 -0.3816 -3.068 0.002 -0.186 -0.331 -0.161 0.487
50+ ~-0.7801 ~5.000 0.000 -0.323 -0.677 =0.280 0.414
wo
college 0.4821 3.658 0.000 0.217 0.418 0.188 0.450
he
college 0.0738 0.596 0.561 0.036 0.064 0.081 0.488
lug 0.3710 4,211 0.000 0.218 0.322 0.189 0.588
inc -0.0211  -4.368 0.000 -0.246 -0.018 -0.212  11.63%
constant 0.6222 3.602 0.000

Although the estimates of 4 in column b are uniformly smaller than those from logit,
the y -standardized and fully standardized coefficients in columns bStdY and bStdXy
are very similar, which demonstrates that the differences in the magnitude of coefficients
in logit and probit are due to differences in seale.

An issue related to y*-standardized coefficients arises when researchers compare
coefficients across models. In the linear regression model, mediating variables are often
added to a model. and the change in coefficients is interpreted as indicating how much
of the effect of an independent variable on the dependent variable is due to the indirect
effect of the mediating variable (see, for example, Breen. Karlson, and Holm [2013, 166
167]). For example, if the coefficient estimating the effect of childhood socioeconomic
status (SES) on adult earnings is reduced when educational attainment is added to the
model, one might say that half the effect of SES on earnings is explained by educational
attainment.,

This interpretation of a change in unstandardized logit or probit coefficients is prob-
lematic (Winship and Mare 1984). In linear regression. when independent variables are
added to a model, @f[xﬁ) increases and \JnnL ) decreases accordingly, because the
observed variance of y must remain the same. In the logit and probit models, when
independent variables are added to a model, Var(x3) increases but Var(z) does not
change because its value is assumed. Consequently, Var(y®) must increase. For the
BRM, the indirect effects interpretation across models with different independent vari-
ables no longer holds because as the model specification changes, the scale of the latent
dependent variable changes.
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One can think about y*-standardized coefficients as the coefficients we would observe
if Var(y®) was rescaled to be fixed to 1. If so, then in terms of y*-standardized coeffi-
cients, adding new independent variables to the model does not increase this rescaled
Var(y*). For indirect effects, interpreting changes in y"-standardized logit and probit
coefficients seems clearly preferable to doing so for unstandardized coefficients. Alter-
natives to y*-standardization have also been proposed (Karlson, Holm, and Breen 2012;
Breen and Karlson 2013).

6.2 Marginal effects: Changes in probabilities

A marginal effect measures the change in the probability of an outcome for a change
in 2, holding all other independent variables constant at specific values. The critical
idea is that one variable is changing while the other variables are not. There are two
varieties of marginal effects, A marginal change computes the effect of an instantaneous
or infinitely small change in x;. A discrete change computes the effect of a discrete or
finite change in zx. (See section 4.5 for an introductory discussion of marginal effects.)

Pr(y=1)

Figure 6.1. Marginal change and discrete change in the BRM
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A marginal change, shown by the tangent to the probability curve at r = 1 in
figure 6.1, is the rate of change in the probability for a infinitely small change in ;.
holding other variables at specific values:

dPriy=1|x=x")
D-'I'L-

Because the effect is computed with a partial derivative, some authors refer to this as
the partial change or partial effect. In this formula, x* contains specific values of the
independent variables. For example, x* could equal x, with the observed values for
the ith observation, it could equal the means X of all variables, or it could equal any
other values. When the meaning is clear, we will refer to x without specifying x*. The
important thing is that the value of the marginal effect depends on the specific values
of the x;’s where the change is computed.

In the BRM. the marginal change has the simple formula

OPr(y;,=1|x .
OPrlw=11x) _ ovg)p,
iy

where f is the normal probability distribution function (PDF) for probit and the logistic
PDF for logit. In logit models, the marginal change has a particularly convenient form:

AOPr(y; = 1| x)
OPrwi = 11%) _ pr (g =11 %) [1 - Pr (s = 1| x)) B
iy

From this formula, we see that the change must be greatest when Pr(y =1 |x) = 0.5,
where the marginal change is (0.5)(0.5)8; = 8k /4. Accordingly, dividing a binary logit
coefficient by 4 indieates the maximum marginal change in the probability (Cramer
1991, 8).

As long as the model does not include power or interaction terms, the marginal
change for xx has the same sign as G for all values of x because the PDF is always
positive. (Computing marginal effects when powers and interactions are in the model is
discussed in section 6.2.1.) The formula also shows that marginal changes for different
independent variables differ by a scale factor. For example, the ratio of the marginal
effect of x; to the effect of xy is

APr(y
A Pr(y

1|x)/0z;  f(xB)B;  B;

1[x) /0~ f(xB)Brx  Bx

for all values of x. Consequently, while 3i does not tell you the magnitude of z's effect,
it can tell you how much larger or smaller it is than the effects of other variables.

A discrete change. sometimes called a first difference, is the actual change in the
predicted probability for a given change in g, holding other variables at specific values.
For example, the discrete change for an increase in age from 30 to 40 is the change in
the probability of being in the labor force as age increases from 30 to 40, holding other
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wariables at specified values. Defining 2§ as the starting value of xy and 2§™ as the
ending value, the discrete change equals
APr(y=1|x)
Axzy (a0t — 23ed)

=Pr(y=1|xz =2™) = Pr(yp=1|x, 2 = 25*")

For binary variables, such as having attended college; the obvious choice is a change
from O to 1:

APr(y;=1|x)
Axp (00— 1)

=Pr(p=1]2" =1,%) - Pry=1] 2" =0.%)

We often are interested in the discrete changes when a variable increases by some
amount & from its observed value. Defining Pr(y = 1| x.#¢) as the probability at x,
noting in particular the value of z;, the discrete change for a change of 4 in z;. equals

APr(y=1|x)
Axy (T — 8 + 0)

=Pr(y=1|x2x+3)—Pr(y=1|x )

We might want to examine a discrete change of one unit, a standard deviation, 15 points
for 1Q, 4 years for education, the range of income, or 10 years for age.

The discrete change tells you how much the probability actually changes for a given
change in a variable. To the degree that the probability curve is linear in the region
where the change occurs, the marginal change for zy approximates the discrete change
for a unit increase in 5. The maore nonlinear the curve in the region where ;. increases,
the greater the difference between the marginal change and the discrete change. Be-
cause in general dPr(y = 1 | x)/dzy does not equal APr(y =1 | x)/Axzy, we prefer the
discrete change that indicates the actual amount of change in the probability for a spe-
cific change in zx. For example, we find it more meaningful to say that “for a standard
deviation increase in income, about $11,000, the probability of labor force participation
decreases on average by 0.09" than to say that “the average rate of change in the prob-
ability of labor force participation with respect to income is —0.007". However, some
fields, such as economiecs, have a strong preference for marginal change over disorete
change for contimious independent variables.

6.2.1 Linked variables

Fundamental to the concept of a marginal effect is the idea that only one variable
changes while holding all other variables at specified values. An exception must be
made for variables that are linked mathematically. For example, if .4 is age and
Tagesq = Lage X Lage: YOU cannot change .. while holding zagesq constant. The change
in Zage must be matched by a corresponding change in Zagesq. This is easy to illustrate
with a discrete change in age from 20 to 30:

APr(y=1|x%)

= P = s Lage = Vs Ly = 30°
Aage (20 — 30) (U =1 Tage = 30, Zagesg = 30°)

_Pr(yzllx,a:ut,:Q{]Tr =202‘)
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Linked variables must also be considered for the variables being held constant.
For example, if we are computing the marginal effect of xx while holding age at its
mean, we need to h‘(:lld. Tage at mean(Zyge) and ryg. ot [mean(Tyg,) X mean(z,.,)| not
at mean(Zygesq). Similarly, if your model includes Tonales Tage, and the interaction
Tfemalexage = Llemale X Tage. YOU cannot change z,,, while holding Frematexage constant.

Categorical regressors that enter a model as a set of indicators are also linked.
Suppose that education has three categories: no high school degree, high school diploma
as the highest degree, and college diploma as the highest degree. Let ay, = 1 if high
school is the highest degree and equal 0 otherwise: and let Teoiege = 1 if college is the
highest degree and equal 0 otherwise. If iy, = 1, then 2jege = 0. You cannot increase
Leollege from 0 to 1 while holding zy, at 1. Computing the effect of having college as the
highest degree (zps = 0, Zegiepe = 1) compared with high school as the highest degree
(zhs = 1, Teollege = 0) involves changing two variables:

APriy=1]|x)
Arps (0 = 1) & Zeopege (1 = 0)

= Pr(y=1|x2n =0,Zcollege = 1)

= PI‘[]‘J =hl l X, Thy = Lmt‘u]lcgn .~ u)

When discussing marginal effects with linked variables, we will say “holding other
variables constant™ with the implicit understanding that appropriate adjustments for
linked variables are being made. A major benefit of using factor-variable notation when
specifying a regression model is that margins, mchange, mtable, and mgen keep track
of which variables are linked, and compute predictions and marginal effects correctly.

6.2.2 Summary measures of change

The marginal effect of a variable depends on the specific values of all independent
variables. Because the effect of zy differs for each observation (unless, of course, multiple
observations have identical values), there is a distribution of marginal effects in the
sample. For interpretation, we seck a simple, informative summary of this distribution
of effects. There are three basic approaches:

Marginal effect at the mean (MEM). Compute the marginal effect of z; with all
variables held at their menns.

Marginal effect at representative values (MER). Compute the marginal effect of
x5 with variables held at specific values that are selected for bheing especially
instructive for the substantive questions being considered. The MEM is a special
case of the MER.

Average marginal effect (AME). Compute the marginal effect of xy for each ob-
servation at its observed values x;, and then compute the average of these effects.

We consider each measure before discussing how to decide which measure is appropriate
for your application.
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MEMs and MERs

The MEM is computed with all variables held at their means. For a marginal change,
this is
APr(y=1|X%X, 2, =Ty)
8-"-'&

which can be interpreted as follows:

For someone who is average on all characteristics, the marginal change of z
38

The discrete change equals

APr(y=1|X,z5 =Tp)
Az

and can be interpreted as follows:

For someone who is average on all characteristics, increasing zx by d changes
the probability by ...

The MER would replace “who is average” with a description of the values of the
covariates.

AMEs

The AME is the mean of the marginal effect computed at the observed values for all
observations in the estimation sample. For a marginal change, this is

N
COPr(yp=1[x) 1 OPr(y;=1|x=x;)
mean = N E—E_l

Oy i
which can be interpreted as follows:
The average marginal effect of 2y is ...

The average discrete change equals

APr(yi=1]x;) 1 i APr(yi=1|x=x;)
mean -_ﬁ.'r,‘. = :’v— Z A.‘.’Ck

i=l1

which is interpreted as follows:

On average, increasing x; by 8 increases the probability by ...
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For factor variables or changes from one fixed value to another (for example, the maxi-
mum to the maximum), we say

On average, increasing x; from start-value to end-value increases the prob-
ability by ...

Standard errors of marginal effects

For each of these measures of change. standard errors can be computed using the delta
method (Agresti 2013, 72-75: Wooldridge 2010, 576-577; Xu and Long 2005; [R] mar-
gins). The standard errors allow you to test whether a marginal effect is 0, to add a
confidence interval to the estimated effect, and to test such things as whether marginal
effects are equal at different values of the independent variables.

6.2.3 Should you use the AME, the MEM, or the MER?

No summary measure of effects is ideal for all sitnations, but how do you decide which
measure to use? Since the 1980s, the literature has provided weak recommendations
for AMEs, but our reading suggests that AMEs were rarely used. In his classic book on
limited and qualitative dependent variables, Maddala (1983, 24) expressed reservations
abont MEMs because marginal effects vary by the level of the variables. He suggested
that “we need to calculate [marginal effects| at different levels of the explanatory vari-
ables to get an idea of the range of variation of the resulting changes in probabilities”.
Essentially, he is recommending computing multiple MERs at substantively informative
locations in the data. Because the effect of a variable differs at different places in the
data, multiple MERs provide insights into the magnitude and variation of the effects.
Long (1997, 74) wrote that “since X might not correspond to any observed values in
the population. averaging over observations might be preferred”. Cameron and Trivedi
(2005, 467) suggest that “it is best to use AME over MEM”. Hanmer and Kalkan (2013)
argue that “the observed-value approach [(AME)| is preferable to the more common
average-case approach [(MEM)| on theoretical grounds”.

The popularity of the MEM is probably because of ease of computation. Comput-
ing an AME in principle involves N times more computation than the corresponding
MEM. With the rapid growth in computing power. this is a trivial issue compared with
having readily available software that easily computes the AME. For example, with our
prchange command in SPost9, computing MEMs was trivially easy. Although you could
compute the AME with prchange. you needed to write your own program to collect
and summarize the computations for each observation. Few people, ourselves included.
bothered to do that. With Stata’s margins and our mchange, it is as easy to compute
AMEs as MEMs.! These computational advances do not, however, imply that the AME

1. Surprisingly, margins actually computes the AME faster than the MEM because it always computes
the AME before computing an MEM or MER. To compute the MEM for a dataset with 50,000

observations, margins will compute 50,000 marginal changes you do not need before it computes
the one you do.
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is always the best way to assess the effect of a variable. There are several issues to
consider when deciding which measure of change to use.

Does the marginal effect computed at the mean of all variables provide useful infor-
mation abont the overall effect of that variable? This is relevant not only in deciding
what to do in current analyses, but when evaluating past research that used the MEM.
A common criticism of the MEM is that typically there is no actual case in the dataset
for which all variables equal the mean. Most obviously, with binary independent vari-
ables, the mean does not correspond to a possible value of an observation. For example,
a variable like pregnant is measured as 0 and 1 without it being possible to observe
someone with a value equal to a sample mean of intermediate value. This issue alone
leads some to disfavor the MEM (Hanmer and Kalkan 2013). We are not ourselves as
concerned about this point because holding a binary variable at its mean is, roughly
speaking, taking a weighted mean of effects for each group. If the groups are a focus
of the analysis, you can compute MERs for each group by using group-specific means.
Alternatively, effects can be computed at the modal values of the binary variables, but
this ignores everyone who is in a less well-represented group.

Sometimes, it is argued that the MEM is a reasonable approximation to the AME.
Although Greene and Hensher (2010, 36) correctly observed that the AME and MEM
are often similar, they incorrectly suggest that this is especially true in large samples.
Although the two measures will often be similar, they can differ in substantively mean-
ingful ways, and whether this is the case has little to do with whether a sample is bigger
or smaller.

Bartus (2005) and Verlinda (2006) explain more precisely when MEM and AME differ
and which is larger. For the binary logit and probit models, the difference between the
AME and MEM for 24 depends on three things: the probability that y = 1 when all
2’s are held to their means, the variance of x3, and the size of ¢ (Bartus 2005;
Hanmer and Kalkan 2013, S1). The sign of the difference between the AME and MEM
depends on Pr(y = 1 | X), with the AME being larger at lower and higher probabilities.
In the middle, the MEM is larger, with the largest difference occurring when Pr(y =
1| X) = 0.5. The AME and MEM will be equal when the probability is about 0.21 and
0.79 for the binary logit model. and about (.15 and 0.85 for the binary probit model.

The AME, MEM, and MER are each summary measures, and no single summary of
effects is ideal for all situations. Broadly speaking, we believe that the AME is the best
summary of the effect of a variable. Because it averages the effects across all cases in the
sample, it can be interpreted as the average size of the effect in the sample. The MEM
is computed at values of the independent variables that might not be representative of
anyone in the sample.

However, both AME and MEM are limited because they are based on averages. If the
average value of each regressor is a substantively interesting location in the data, the
MEM is useful because it tells you the magnitude of the effect for someone with those or
similar characteristics. If the average of the independent variables is not an interesting
location, it is not useful. If you are interested in the average effect in the sample, the
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AME is appropriate. However, it is possible that nobody in the sample has a4 marginal
effect that is close to the AME. If, for example, vou are interested in the effect of a
treatment for young minority women, knowing the effect for someone who is average
is not helpful. Similarly. the average effect of the treatment for the entire sample does
not tell vou the effect for the group of young minority women you are interested in.
In general, the AME is not necessarily more informative than a set of MERs computed
at substantively interesting places. Or, as shown in section 6.2.5, you can examine the
distribution of effects for all observations.

No single number is a substitute for understanding how predictions vary over the
range of one’s data and for conveying the fact of that variation when it is substantively
meaningful. Thus the best measure is the one that addresses the goals of your research.
Although exaanining AMEs of your independent variables is an important step in data
analysis, this should be followed by a more detailed analysis of predictions in tables or
graphs.

6.2.4 Examples of marginal effects

In this section, we use our model of labor foree participation to illustrate the compu-
tation and interpretation of marginal effects with mchange. The mchange command
makes it simple to compute marginal effects for different amounts of changes, either
averaging effects over the sample or computing them at fixed values. mchange uses
margins to compute the effects. which are then collected into a compact table. For
example, running mchange after fitting our baseline model creates a 30-line table that
summarize 500 lines of output from a dozen margins commands. If you want to learn
more about margins, you can add the option details to mchange to see how to use
margins output. Information on using margins to compute marginal effects is given in
section 6.2.6.
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We begin by fitting our model and storing the estimates so that they can be restored

later:

. use binlfpd, clear

(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)
. logit 1fp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

Logistic regression Number of obs = 753
LR chi2(8) - 124.30
Prob > chi2 = 0.0000
Log likelihood = -452.72367 Pseudo R2 = 0.1207
1fp Coef. Std. Err. z P>lzl [95% Conf. Interval]
k5 -1.391667  .1919278 -7.26 0.000 -1.767738 -1.015396
k618 ~.0656678 068314 -0.96 0.336 -, 1995607 .0682251
agecat
40-49 -.6267601 .208723 -3.00 0.003 -1.03686 -.2176705
50+ -1.,279078 2597827 -4.92 0.000 -1.788242 -.7699128
we
college .T977136 .2201814 3.48 0.001 .3485263 1.246901
he
college . 1358895 .2054464 0.66 0.508 -.266778 .5385569
lug .6099096 .1507976 4.04 0,000 .314352 -9064672
inc -.0350642 .00B82718 -4.24 0.000 -.0512666 -.0188418
-cong 1.013999 2860488 3.564 0.000 .4533639 1.574645
. estimate atora base
The descriptive statistics for the estimation sample are
. estat summarize, labels
Estimation sample logit Number of obs = 7563
Variable Mean Std. Dav. Min Max Label
ifp . 5683931 LA4956295 1] 1 In paid labor force?
kb .2377158 .523969 0 3 #kids <6
k618 1.363254 1.319874 L} 8 # kids 6-18
agecat Wife"s age group
40-49 .3851262 4869486 0 1
5O+ .21912356 4139274 0 1
wec Wife attended college?
college .2815405  .4500494 0 1
he Husband attended
college?
college .3917663  .4864694 o 1
lvg 1.097115 (5876664 ~2.05412 3.21888 Log of wife's estimated
wages
inc 20.12897 11.6348 -.029 96 Family income excluding
wife's
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We will next show how to compute and interpret AMEs for continuous and factor
variables, before examining the corresponding MEMs. Marginal effects in models with
powers and interactions are then considered. Finally. we show how to compute the
distribution of effects for observations in the estimation sample.

AMEs for continuous variables

For continuous independent variables, mchange computes the average marginal change
and average discrete change of 1 and a standard deviation. To assess the effects of
income and wages, type®

. mchange inc lwg
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change p-value
inc
+1 -0.007 0.000
+SD -0.086 0.000
Marginal =0.007 0.000
lwg
+1 0.120 0.000
+SD 0.072 0.000
Marginal 0.127 0.000
Average predictions
not in LF in LF
Pr(yibasa) 0.432 0.668

The average predictions, listed below the table of changes, show that in the sample
the average predicted probability of being in the labor force is 0.432. This is the same
value you would obtain by first running predict and then computing the mean of the
predictions. In later examples, we often suppress this result by adding the brief option.
Summarizing the AMEs for a standard deviation change, we can say

Holding other variables at their observed values, increasing income by one
standard deviation, roughly $12.000. decreases the probability of labor force
participation on average by 0.09. An increase of one standard deviation in
the log of anticipated wages, about (1.6, increases the probability by 0.07.
Both effects are significant at the 0.001 level.

There are two points of interest here. First, the marginal and unit discrete changes
are similar, which reflects that the probability curve is nearly linear for a change of 1

2. In Stata 12 and earlier, standard errors are not available for average discrete changes of a fixed
amount of change (for example, 1 or a standard deviation) from the ohserved value. Based on our
experience with Stata 13, which can compute standarid ereors for these effects, we believe that the
significance level for the marginal change is a good approximation, especially when the values of
the marginal change and diserete ¢hange are similar
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in either variable. Second, for lwg, the marginal change and unit discrete change are
potentially misleading because a unit change in lwg corresponds to a change of nearly
two standard deviations.

The delta(#) option allows us to compute the effect of a change of any amount #
to replace the default change of one standard deviation. For example, to compute the
effect of a $5,000 change in income, we use delta(5):

. mchange inc, delta(b) brisf
logit: Changes in Pr(y) | Number of obs = 783
Expression: Pr(lfp), predict(pr)

Change p-value

inc
+1 -0.007 0.000
+delta -0.037 0.000
Marginal -0.007 0.000

This can be interpreted as follows:

On average, an increase of $5,000 in income decreases the probability of
labor force participation by 0.04 (p < 0.001).

Note that our reporting of results has become shorter by no longer making explicit that
other variables are kept at their observed values.

For the number of young children, k8, the most reasonable effect is for an increase
of one child, so we specify amount (one):

. mchange k5, amount(one) brief
logit: Changes in Pr{y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

| Change p-value

k5
+1 -0.281 0.000

We conclude the following:

On average, holding other variables at their observed values, increasing the
number of young children in a family by one is expected to decrease the
probability of labor force participation by 0.28 (p < 0.001, two-tailed),

A quick way to assess the maximum potential impact of continuons variables (that
is. nonfactor variables) is to compute the AME over the range. Changes over the range
tell us how much you would expect the outcome probability to change in the unlikely
event of massive changes in a variable, holding other variables constant. For example,
what would happen if a person increased her family income from 50 to $104.000, without
other variables changing? Although this type of massive change is not likely to oceur in
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the real world, it provides a bound for the largest effect you could find. If the change is
small and nonsignificant. the lack of effect might be substantively interesting, but you
are unlikely to learn anything more about the variable by analyzing it further.

Consider the effects of changing from 0 to the maximum number of young or older
children in the sample:

. mchange k5 k618, amount(range) brief
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

| Change p-value

k5

Range -0.599 0.000
k618
Range -0.110 0.336

Using information on the range from the summary statistics shown above, we see that
changing from 0 to 3 young children has a very large and significant AME of —0.60.
Changing from 0 to 8 older children, on the other hand, has a nonsignificant effect.
Accordingly, k618 will not be considered further in our examples of interpretation.

Because a variable's range can be influenced by even a single extreme observation
(for example, one person with an unusnally high income), we suggest using a trinmed
range for some variables. For example, mchange inc lwg, amount(range) trim(5)
computes the AME for a change in income and anticipated wages from the 5th percentile
to the 95th percentile:

. mchange inc lwg, amount(range) trim(5) brief
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

| Change p-value

ine

5% to 95% -0.249 0.000
1vg

5% to 95% 0.239 0.000

We can interpret the discrete change for inc as follows:
On average the probability of labor force participation will decrease by 0.25 if

respondents changed from the 5th percentile of income to the 95th percentile
(p < 0.001, two-tailed).

We could interpret lwg similarly.
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To fully understand the meaning of a discrete change over the range, we need to know
the range over which a variable varies, We obtain this information by using centile
varlist, centile(0 5 95 100) to request the 5th and 95th percentiles along with the
minimum and maximum. Here we request information for inc and lwg:

. centile inc lwg, centile(0 &5 85 100)
= Binom. Interp. —

Variable Obs Percentile Centile [95% Conf. Intervall
inc 763 0 -.0280001 -.0290001 ~-.0290001«
5 7.0428 6.334469 7.789306
88 41.19 37.50825 45.02423
100 26 26 96+
leg 763 0 ~-2.054124 ~2.054124 -2.054124=
5 . 2065675 .1047049 .3321936
85 2.084021 1.963168 2.153738
100 3.218876 3.218876 3.218876+

= Lower (upper) confidence limit held at minimum (maximum) of sample

Comparing the 95th with the 100th percentile shows that for both variables, the trimmed
range excludes extreme observations.

We can obtain more information about the discrete changes by using the option
statistics() to request the starting and ending probabilities. To show this, we com-
pute the changes for income and log of wages:

. mchange inc lwg, amount(range) trim(5)
> statistics(change from to pvalue) brief

logit: Changes in Priy) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

| Change From To p-value
inc
5% to 95) ~0.249 0.660 0.411 0.000
lvg
5% to 5% 0.238 0.464 0.693 0.000

Using the new information, we can elaborate our interpretation of the effect of income:

Changing family income from its 5th percentile of $7,000 to the 95th per-
centile of $41,000 on avernge decreases the probability of a woman being in
the labor force from 0.66 to 0.41, a decrease of 0.25 (p < 0.001, two-tailed).

The effect for 1wg could be interpreted similarly.

AMESs for factor variables

For binary independent variables, the only reasounable change is from 0 to 1, which is
the default when factor-variable notation is used. Because he and we were included in
the logit specification as i.hc and i.wc, mchange automatically computes a discrete
change from 0 to 1:



252 Chapter 6 Models for binary outcomes: Interpretation

. mchange he wc, stat(change from to pvalue) brief
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change From To p-value
he
college vs mo 0,028 0.568 0.586 0.508
e
college vs no 0.162 0.525 0.888 0.000

We interpret these results as follows:

On average, having attended college increases a woman's probability of labor
force participation from (.53 to 0.69, a change of 0.16 (p < 0.001), while the
effect of the husband having attended college is not significant.

The mchange command also works with factor variables that have more than two
categories, DBecause agecat has three categories and was entered into our model as
i.agecat, mchange computes effects of changes between all categories, referred to as
contrasts:

. mchange agecat, stat(change from to pvalue) brief
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change From To p-valus

agecat
40-49 vs 30-39 -0.124 0.676 0.552 0.002
50+ vs 30-39 -0.262 0.676 0.414 0.000
50+ vs 40-49 -0.138 0.552 0.414 0.002

Each contrast ean be interpreted exactly as the interpretation of a binary independent
variable, The discrete change labeled 40-49 vs 30-39 is the effect of being in the
age group 40-49 compared with being in the age group 30-39, and so on for other
COMPArisons.

On average, being 40 to 49 compared with being 30 to 39 decreases the
probability of labor force participation by 0.12 (p < 0.01). Being 50 or older
compared with being 30 to 39 decreases the probability by 0.26 (p < 0.001).
Being 50 or older compared with being 40 to 49 decreases the probability
by 0.14 (p < 0.01).

Notice that knowing two of the contrasts implies the third: 0.124 4+ 0.138 = 0.262.

Summary table of AMEs

Computing AMESs is often the next step after examining predictions with predict. AMEs
quickly provide a general sense of the effects of each variable, much like regression
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coefficients in linear regression. After fitting your model, mchange with the default

options provides a quick summary:

- mchange
logit: Changes in Pr(y) | Number of obs = 763
Expression: Pr(1fp), predict(pr)
Change p-value
kb
+1 -0.281 0.000
+5D ~-0.153 0.000
Marginal -0.289 0.000
k618
+1 -0.014 0.337
+8D -0.018 0.337
Marginal -0.014 0.336
agecat
40-49 vs 30-39 -0.124 0.002
50+ vs 30-39 -0.262 0.000
§0+ vs 40-49 -0.138 0.002
we
college vs no 0.162 0.000
he
college vs no 0.028 0.508
lug
+1 0.120 0.000
+8D 0.072 0.000
Marginal 0.127 0.000
inc
+1 -0.007 0.000
+8D -0.086 0.000
Marginal -0.007 0.000
Average predictions
| not in LF in LF
Pr(ylbase) l 0.432 0.568
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If you are not using marginal changes, you can specify the amount of change and decimal
places:

. mchange, amount(one sd) decimals(2) brief
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change p-value
&5
+1 -0.28 0.00
+SD -0.15 0.00
k618
+1 -0.01 0.34
+5D -0.02 0.34
agecat
40-49 vs 30-39 -0.12 0.00
50+ vs 30-38 -0.26 .00
50+ vs 40-49 -0.14 0.00
we
college vs no 0.16 0.00
he
college vs no 0.03 0.51
lvg
+1 0.12 0.00
+5D 0.07 0.00
inc
+1 =0.01 0.00
+8Dh -0.09 0.00

If you prefer marginal changes instead of discrete changes, you could use mchange,
amount (marginal) instead. With marginal changes. you will probably need at least
three decimal places. If you prefer discrete changes that are centered, use the centered
option.

We find AMEs so much more nseful than the estimated 3’s or odds ratios that we
wish the standard output from logit or probit would present AMES along with estimated
coefficients, perhaps as an option (like the or option to logit presents odds ratios
instead of untransformed coefficients).

Marginal effects for subgroups

We might be interested in comparing marginal effects for subgroups in our sample.
For example, we might be interested in the effect of an additional child on labor force
participation for women who have attended college. In this case, all the same arguments
that we made earlier for why we broadly prefer AMES to MEMs apply, only now we are
applying these arguments to a subgroup of our sample instead of to the whole sample,
As a result, we want the average change only over members of this subgroup. We can
obtain this by using an if condition:
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- mchange k6 if wc==1, amount(ona)
logit: Changes in Pr(y) | Number of obs = 212
Expression: Pr{lfp), predict{pr)

Change p-value
5
+1 -0.276 0.000
Average predictions
not in LF in LF
Pr(ylbase) 0.321 0.679

1: Sample selection: if wc==1 & a(sample)==1

We can interpret this as follows:

For women who have attended college, an additional child decreases the
probability of being in the labor force by an average of 0.28.

In section 6.5, after we learn more about mtable, we show how to compute AMEs for
different groups and how to test whether the marginal effects are equal across groups.

MEMs and MERs

Although we tend to prefer AMEs as a summary measure of change, marginal effects
are often computed at the mean or at other values. With the atmeans option, mchange
computes the MEMs. We will use atmeans extensively in section 6.3, when we discuss
generating predictions based upon the hypothetical observations we call ideal types. A
hypothetical observation implies specific values for all values of the independent vari-
ables, each of which we can either specify directly with at () or specify by using atmeans.
Talking about a hypothetical observation can be contrasted with the example of sub-
group analysis immediately above, in which we were making statements about a group
of observations and wanted to compute the average effect over that group.

Here we compute marginal effects by using atmeans, adding the statistics(ci)
option to request the confidence intervals rather than the p-values.
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. mchange, statistics(ci) atmeans
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change LL UL
k5
+1 -0.324 -0.396 -0.262
+SD -0.180 -0.227 =0.133
Marginal -0.339 -0.431 -0.247
k618
+1 -0.016 ~-0.049 0.017
+3D =0.021 -0.0865 0.022
Marginal -0,016 -0.049 G.o17
agecat
40-49 vs 30-39 -0.146 -0.238 -0.053
50+ vs 30-39 -0.307 -0.422 =-0.191
50+ vs 40-49 -0.161 -0.2656 ~0.068
we
college vs no 0.186 0.088 0.284
he
college vs no 0,033 -0.0656 0.131
lvg
+1 0.138 0.078 0.198
+5D 0.084 0.045 0.123
Marginal 0.148 0.077 0.221
inc
+1 -0.009 -0.013 -0.005
+5D -0. 101 ~0.148 -0 . 054
Marginal | ~0.009 -0.013 =0.0056
Predictions at base value
not in LF in LF
Priy|base) 0.422 0.578
Base values of regressors
2. 3. 15 1.
kb k618 agecat agecat we he
at .238 1.36 .385 -219 . 282 .382
lvg inc
at 1.1 20.1

1: Estimates with margine option atmeans.

The values at which variables are being held constant are listed in the table Base values
of regressors.

Here are examples of interpreting each type of effect:
Change of 1 at the mean. For a woman who is average on all characteristics, an

additional young child deereases the probability of being in the labor force by 0.32
(95% c1: [0.25, 0.40]).
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Change of standard deviation at the mean. A standard deviation increase in in-
come, roughly $11,000, decreases the probability of being in the labor force by
0.10 (95% ct: [0.05, 0.15]), holding other variables at their means.

Change from 0 to 1 at the mean. If a woman attended college, her probability of
being in the labor force is 0.19 greater than a woman who did not aftend college,
holding other variables at their means (95% c1: [0.09, 0.28]).

Change of categorical variables at the mean. For an average woman, being 40 to
49 compared with being 30 to 39 decreases the probability of being in the labor
force by 0.15 (95% cr: [0.05, 0.24]). Being 50 or older compared with being 30
to 39 decreases the probability by 0.31 (95% cr: [0.19, 0.42]). Being 50 or older
compared with being 40 to 49 decreases the probability by 0.16 (95% c1: [0.06,
0.27)).

Marginal effects can be computed at other values by using the at() option. For
example, to compute the marginal effect of k5 for a hypothetical family in which the
husband and wife both attended college, holding other variables at their means:

. mchange k6, at(ve=1 he=1) amount(1) atmeans
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change p-value

kb
+1 -0.329 0.000
Predictions at base value
not in LF in LF
Pr(y|base) 0.275 0.7256
Base values of regressors
2, 3.
k5 k618 agecat agecat we he
at .238 1.35 .38% .219 1 1
lug inc
at 1.1 20.1

1: Estimates with margins option atmeans.

Notice that he and we are listed as 1 in the table of base values. We conclude the
following:

For an otherwise average family in which the husband and wife both attended
college, an additional voung child decreases the probability of being in the
labor force by 0.33 (p < 0.001).

Or, we might want to estimate the effect of changing income from $0 to $5,000 for a
family with two young children and in which neither parent went to college, holding
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other variables at their means. We set the values of the variables by using at(inc=0
k5=2 we=0 hc=0) atmeans, and we indicate that we want a change of five by using
delta(B).

. mchange inc, delta(5) amount(delta) at(inc=0 k5=2 wuc=0 hc=0) atmeans
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict{pr)

Change p-value
inc
+dalta -0.021 0.012
Pradictions at base value
not in LF in LF
Pr(y|base) 0.847 0.163
Base values of regressors
2, 8
kS k618 agecat agecat wc he
at 2 1,36 . 385 .219 0 0
lug inc
at Lvid o

1: Estimates with margins option atmeans.
2: Delta equals 5.

We conclude the following:

For an otherwise average family with two young children and parents who
did not attend college, increasing income from $0 to $5,000 is expected
to decrease the probability of labor force participation by 0.02, which is
significant at the 0.05 level but not at the 0.01 level
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If you prefer discrete changes that are centered around the mean, you can add the
centered option to mchange:

. mchange inc lwg, atmeans centered
logit: Changes in Pr(y) | Number of obs = 7563
Expression: Pr(1lfp), predict(pr)

Change p-value
inc
+1 centered -0.009 0.000
+8D centered ~0.099 0.000
Marginal -0.009 0.000
lvg
+1 centered 0.148 0.000
+5SD centered 0.087 0.000
Marginal 0.149 0.000
Predictions at base value
not in LF in LF
Pr(y|base) 0.422 0.678
Base values of regressors
25 3. r 5 45
k& k618 agecat agecat Ve hc
at .238 1.36 .385 .219 4282 .392
lug inec
at 1.4 20.1

1: Estimates with margins option atmeans.

This can be interpreted as follows:

For an average family, a standard deviation change in income, roughly
$12,000, centered around the mean is expected to decrease the probability
of labor force participation by 0.10 (p < 0.001).

Because the change is centered, we are computing the effect of changing income from
1/2 standard deviation below the mean of $20,100 to 1/2 standard deviation above the
mean, that is, a change from roughly $14,300 to $25,900. In this example, the centered
change is nearly identical to the uncentered change with a value of —0.101. Centered
and uncentered changes are similar when the change in the independent variable occurs
in a region where the probability curve is approximately linear. When the probability
curve is changing shape over the region of change, centered and uncentered changes can
differ noticeably.

Marginal effects with powers and interactions

As discussed in section 6.2.1, when computing marginal effects for a variable that is
linked with other variables. you must ensure that all linked variables change appropri-
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ately. You cannot simply change one of the linked variables and assume you can hold the
others constant. Fortunately, this is taken care of automatically when linked variables
are specified to your model with factor-variable notation.

To show how linked variables are properly handled by mchange, we compute MEMs
for a standard deviation increase in inc and lwg. Although we are using MEMs because
they make the levels of other variables explicit, which is didactically useful. things
work the same way with AMEs. We include income and income-squared in the model
by including ¢.inc c.inec#c.inc in the command (equivalently, we could have used
c.inc#iic.inc).

. logit 1fp c.inc c.inc#c.inc lwg k5 k618 4.agecat i.wc i.hc, nolog

Logistic regression lumber of obs = 753

LR chi2(9) = 128.00

Prob > chi2 - 0.0000

Log likelihood = -450.87545 Pseudo R2 = 0,1243

1fp Coef. Std. Err. z Prlzl [96% Conf. Interval]

inc -.0692521  ,0195383 -3.54 0.000 -.1075465  -.0309577

c.inc#c.inc 0005123 0002572 1.99 0,046 B.28e-06 0010163
(output omitted )

-cons l 1.381411 .3461711 3.99 0.000 . 7029285 2.069894

Estitnates of the coefficient for income and income-squared, labeled c.inc#c.inc, are
shown. Using mchange, we compute MEMs for inc and lwg:

. mchange inc lwg, atmeans amount(sd)
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change p-value
inc
+5D -0.123 0.000
lvg
+5D 0.087 0.000
Predictions at base value
not in LF in LF
Priylbase) 0.438 0.562
Base values of regressors
2. 3.
inc 1lwg kb k618 agecat agecat
at 20.1 1.1 .238 1.86 .385 .219
1. 1.
wc be
at .282 .392

1: Estimates with margins option atmeans.




6.2.5 The distribution of marginal effects 261

The base values include the mean of inc but do not mention c.inc#c.inc. This is
because the mean of the variable income-squared is not computed, but instead the
mean of income is squared. This is what we want. If we had added income-sgnared to
our model by creating a new variable (for example, gen incsq = inc*inc) instead of
using c.inc#c.inc, the atmeans option would have incorrectly held incsq at its mean.
Again, one of the great advantages of using factor-variable notation is that Stata will
automatically handle this correctly.

The discrete change for income in the model is —0.123. We can interpret the discrete
change just as we would in a model that did not include income-squared:

For someone who is average on all characteristies, an increase of one standard
deviation in family income is predicted to decrease the probability of being
in the labor force by 0.12,

Although we do not provide an example here with interaction terms, the same prin-
ciple applies. If factor-variable notation is used, margins and onr m* commands will
handle the computations of marginal and discrete changes correctly. If you do not use
factor-variable notation, you can still get margins to produce the right answers, but it
requires you to do work that Stata can handle automatically.

6.2.5 The distribution of marginal effects

The value of a marginal effect depends on the level of all variables in the model. Be-
cause each observation can have different values of the independent variables, there is
a distribution of marginal effects within the sample where the AME is the mean of this
distribution. Although the mean tells you where the center of the distribution is, it
does not reflect variation within the distribution. Just as the means of the independent
variables used to compute the MEM might not correspond even approximately to anyone
in the sample, the AME might not correspond to the magnitude of the marginal effect
for anyone in the sample. For this reason, we believe that examining the distribution
of marginal effects provides valuable substantive insights.

We consider two approaches for learning about the distribution of marginal effects.”
First, we compute effects for cach observation and create a histogram of the effects.
Although there is no Stata connnand for this, we provide simple programs that you can
adapt to your needs. Second, we compute marginal effects at strategic locations in the
data space by using MERs. This approach is presented in section 6.3.

3. A third approach that we do not consider here estimates the quantiles of the effects
in the population; see Firpo (2007) and Cattaneo (2010) for seminal papers, and see
Cattaneo, Drukker, and Holland (2013) and Drukker (2014) for intuition, Stata commands, and
extensions to survival data. For example, a training program that boosts the income of low-income
participants and has no effect on higher-income participants could have the 0.25 quantile effect
be significant and the 0,75 gquantile effect be insignificant. These quantiles of effects provide the
researcher with a more nuanced picture of the effect of a treatment than the one provided by the
mean effect.
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The marginal change for the BRM, assuming no interactions or power terms, equals

OPr(yi=1]x;) :
Dy = f[xaﬂ}ﬁk

The shape of the distribution of marginal changes for each observation is determined
by f(x:8), where §; simply rescales f(x;3) to create the distribution of effects for
xg. The distribution is more spread out if #; is larger in absolute value and is more
condensed if 8 is smaller. Although the shape of the distribution of discrete changes
will be similar for different variables, they are not a simple rescaling of each other.

There are several ways to compute the marginal changes for each observation. For
the logit model, the simplest approach is to use the formula

IPr (y; = ; o
S L) =11 x) (1~ Peu =1 | ) }6a

where Pr(y; = 1| x;){ 1 = Pr(yg: = 1| x;) } is the PDF for the logistic distribution. Af-
ter predict computes Pr(y; = 1 | x;) for each observation, it is easy to create a variable
containing the marginal effects:

. predict double prhat if e(sample)
(option pr assumed; Pr(lfp))

. gen double mcinc = prhat = (i-prhat) + _b[inc]
. label var mcinc "Marginal change of inc on Pr(LFP)"

where _blinc] is the estimated regression coefficient for inc. For a probit model, we
compute the PDF by using the normalden() function:

. probit 1fp k5 k61B i.agecat i.wc i.hc lwg inc, nolog

. pradict double pbtxb, xb

. label var pbtxb "xb"

. gen double pbtpdf = normalden(pbtxb)

. label var pbtpdf "normal pdf at xb"

. gen double pbtmcinc = pbtpdf = _blinc]

. label var pbtmcinc "Marginal change of inc from probit"

Next, we plot the distribution of marginal changes with the histogram command.
To annotate the graph with the values of the AME, we use local macros to hold estimates
from mchange. After running mchange inc, the AME is saved in the third row and first
column of the return matrix r(table). To see this, yon can enter the command matlist
r(table) after mchange. We place the estimate in the local macro named ame by using
the e1() function, which retrieves the value of a single element from a matrix. We do
the same thing for the MEM.

. quietly mchange inc

. local ame = el(r(table),3,1)
. quietly mchange inc, atmeans
. local mem = el(r{table),3,1)
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The histogram of marginal changes is created with the following command, using
text() to add the AME and MEM: '

. histogram mcinc, xlab(-.008(.002)0) ylab(0(.1).4,grid)
fraction bin(25) col(gs10) fcaul(gsi2)

text(.016 “ame” “AME", place(center))

text(.000 “ame” "|", place(center))

text(.015 "mem” "MEM", place(center))

text(.000 “mem” *[", placs(center))

(bin=25, start=-,00876351, width=,00033178)
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The distribution of marginal changes for income is highly skewed, ranging from —0.10
to less than —0.005. Because of the skew, the MEM is a better indicator of what we
would expect for most respondents than is the AME. The graph shows that over 30%
of the sample have effects similar to that of an “average™ person. On the other hand,
37% of the sample have effects that are smaller (to the right in the histogram) than the
AME.

To compute the distribution of diserete changes for we, we use connterfactual pre-
dictions. The same approach could also be used to compute discrete changes for a
contimious variable. Before proceeding, a word of caution: This approach to computing
effects involves changing the original data that were used to fit the model. It is essential
that you do not save the changed data.

Step 1: The original variable we is copied to variable we_orig so that we can be changed.

Step 2: All cases are assigned we=0 to create the counterfactual condition that no
women went to college.

Step 3: Predicted probabilities are computed assuming that no women went to college.

Step 4: All cases are assigned we=1 to create the counterfactual condition that all
women went to college.
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Step 5: Predicted probabilities are computed assuming that all women went to college.

Step 6: The variable wc is restored to the original values that were saved in we.orig
in Step 1.

Step 7: The difference between the predictions from Step 5 where we=1 and Step 3
where we=0 is the discrete change for each case; the average of the differences is
the average discrete change.

The Stata commands that make these computations are as follows:

. gen wc_orig = wc /! step 1

. replace wec = 0 // step 2
(212 real changes made)

. pradict double prhat_wc0 // step 3
(option pr assumed; Pr(lip))

. replace wc = 1 // step 4
(753 real changes made)

. pradict double prhat_wcl // step &
(option pr assumed; Pr(lfp))

. replace wec = wo_orig // step 6
(541 real changes made)

. gen double dc_wc = prhat_wci - prhat_wcO // step 7
. label var dc_wc "Discrete change of wc on Pr{LFP)"

The command to draw the histogram is nearly identical to that above, so we do not
repeat it. The following graph for the discrete change for we is produced:

05 el 15
Distrete change of we on Pr(LFP)

After plotting the distribution of effects, a useful next step is to determine the
marginal effects for ideal types that represent distinct characteristics in the sample.
This topic is considered in section 6.3.
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62.6 (Advanced) Algorithm for computing the distribution of effects

In this section, we use margins and slightly more advanced program-
ming techniques to create a general algorithm for plotting the distri-
bution of effects. Although the programming is more wmplicauad, the
code works with any model that is compatible with margins, even if
your model includes interactions and product terms. We suggest you
read this section after you have mastered other materials in this chapter.

Instead of using generate to compute marginal effects based on the formula for o
specific model. this algorithm uses margins to compute the effect for each observation.
Although this is computationally slow. it works very generally for creating a histogram
of any marginal effect that can be computed by margins or by predictions made by
margins. We begin with a review of nsing margins to compute marginal effects (see
section 4.5 for related information).

Using margins to compute marginal effects

The option dydx (varname) tells margins to compute marginal effects. If varname is &
factor variable, such as i.wc in our example, nargins computes the discrete chunge as
varname changes from 0 to 1. If varname is not a factor variable, margins computes
the marginal change (that is, partial derivative) for vername.

We begin by fitting the model and storing (he resnlts. We must store them becanse
we will use the post option with margins, which replaces the regression estimates in
memory with the results from margins.

. use binlfpd, clear :
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp kS k618 i.agecat i.wc i.hc lwg inc, nolog
(output omitted)
., estimates stors mymodel

Next, we compute the marginal change with margins, dydx(-inc), leaving the o
in the return r(b).
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. margins, dydx{wc)

Average marginal effects Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp), predict()
dy/dx w.r.t. : l.wc
Delta-method
dy/dx Std. Err. z Pzl [95% Conf. Interval]
we
college .1624037 .0440211 3.69 0.000 .076124 .2486834

Note: dy/dx for factor levels is the discrete change from the base level.

. matlist r(b)

Ob. - I
we we
yi l 0 .1624037

We can also use margins to compute discrete changes for continuous variables, but
this takes two steps, First, we make two predictions and post the results. Second, we
use lincom or mlincom to compute the discrete change. For example, suppose that we
want to compute the change in the probability of labor force participation as the number
of voung children increases from 0 to 3. We compute predictions with two atspecs, one
for k5=0 and the other for k5=3:

. margins, at(k6=0) at(kb=3) post

Predictive margins Number of obs = 763
Model VCE : OIM
Expression : Pr(lfp), predict()
1._at : kb = 0
2. _at : kB = 3
Delta-method
Margin Std. Err. z Pzl [95% Conf. Interval]
_at
1 6370361 .0182192 34.97 0.000 .6013271 6727452
2 .0382865 0182767 2.09 0.036 .0024669 .0741061
. matlist e(b)
1. 2
-at _at
yi .6370361 .0382865

Because we used the post option. the predictions are saved to e(b), which allows us to
use mlincom (or lincom) to compute the average discrete change:
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. mlincom 2 - 1
I lincom pvalue 11 ul

1 | -0.599 0.000 -0.656  -0.541
The linear combination in the column lincom is returned to r(est).

We can also compute a change of a fixed amount from the observed values, for
example, the average change as inc increases by 1 from its observed values. To do this,
we will want to use a single margins command to produce two different predictions:
one in which predictions are compited at the observed values and one in which inc is
increased by 1. To get predictions at the observed values, we simply want to specify
at () with an empty atspec. To get predictions in which inc is increased by 1, we must
use the gen() option, added in Stata 13, when specifying the atspec. The specification
at(inc=gen(inc+1)) tells margins to increase inc by 1 from its observed values before
computing the prediction. We use these two atspecs after we restore the logit results
from our base model.

. estimates restore mymodel
(results mymodel are active now)

. marging, at() at(inc=gen(inc+1)) post

Predictive margins Number of obs = 753
Model VCE : DIM
Expression : Pr(lfp), predict()
1..at : (asobserved)
2. _at : dnc = inc+1
Delta-method
Margin Std. Err. % P>zl [95% Conf. Intervall
_at
1 .5683931 0166014 34.24 0.000 -535856 .6009312
2 .5611046 0167439 33.51 0.000 .5282871 .5939221

Because we used the post option, we can use mlincom to compute the change:

. mlincom 2 - 1
| lincom  pvalue 11 ul

1| -0.007  0.000 -0.011  -0.004

The results are identical to those produced by mchange inc, amount(one).
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Algorithm for computing the distribution of marginal effects

In this section, we explain how to write a do-file that computes marginal effects for each
observation in the estimation sample. The effects are saved in a variable that is plotted.
We begin with an overview of the steps involved.

Prepare to compute effects:

Step 1: Fit the regression model.

Step 2: Create the temporary variable ~insample” [rom e(sample), indicating which
cases are in the estimation sample. (Temporary variables are variables that will
antomatically be erased when your do-file ends. For more information, type help
tempvar or see [P| macro.)

Step 3: Create the temporary variable “effect” to hold marginal effects. This variable
is graphed with histogram to show the distribution of marginal effects.

Loop through observations and compute effects:
Step 4: Determine whether a case is in the estimation sample by using the temporary
variable ~insample”.

Step 5: Use margins fo compute the marginal effect for the current case. Any of the
methods of computing effects from the prior section can be nsed.

Step 6: Save the effect for the current case in the corresponding row of the variable
“effect”.

Verify results and plot effects:

Step 7: Compute the mean of “effect” and compare it with the AME computed by
margins. If these are not the same, there is an error in your program.

Step 8: Plot the distribution of effects by creating a histogram of ~effect”.

Step 9: If you want to save the elfects for each observation, generate a variable equal
to the temporary variable ~effect”.

Using these steps. we compute the marginal effects for we.

. // step 1: estimate the model
. use binlfp4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)
. logit 1fp kb k618 i.agecat i.wc i.hc lwg inc, nolog
(output amitted )
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. // step 2: create a variable containing e(sample)
. tempvar insanp]'.e

. gen ‘iusmpla"' = e(sample)

. label var "“insample” ' "In estimation sample?"

. // step 3: create a variable to hold effects
- tempvar effect

. gen ~affoct*!= .
(753 missing values generated)

]
. label var "effect” "Marginal effect for each observation"

. // loop through all observations
. local nobs = _N

\
. forvalues 1 = 1/ nobs” {

2. i
if “insample”["i”]==1 { // step 4: only cases in estimation sample

3.

// step 5: use pargins to compute effect for current case

qui margins in "i°, dydx(wc) nose
4.

// step 6: save marginal effect in variable

qui replace “effect” = el(r(b),1,2) in ~i*
5. }
6.)

. [/ step T: compare average of effect variable to AME from margins
. sum “effect® |
Variable | Dbs Hean Std. Dev. Min Max

--000001 | 763 . 1624037 .0344572  .0074083 .19682569

. margins, dydx(wc)

Average marginal effects Number of obs = 753
Model VCE : OIM

Expression : Pr(lfp), predict()
dy/dx w.r.t. : l.wc

Delta-method
dy/dx Std. Err. z P>zl [95% Conf. Intervall
we
college . 1624037 . 0440211 3.69 0.000 .076124 . 2486834

Note: dy/dx for factor levels is the discrete change from the base level.

. // step 8: plot the distribution of effects

. histogram “effect, title(Distribution of marginal effects for wc)
(bin=27, start=.00740829, width=.00701547)

In this example, margins computed the marginal effect by using dydx(). The code can
be modified so that margins computes two predictions (for example, with we=0 and with
we=1) and the discrete change can be computed with mlincom or lincom. For models
with multiple outcomes, such as mlogit or oprobit, the option predict(outcome())
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can be used. Although this algorithm is very general, it is also slow because margins is
run once for each observation: every time margins is run, it computes effects for every
observation.

6.3 Ideal types

An ideal type is a hypothetical observation with substantively illustrative values, A
table of probabilities for ideal types of people. countries, cows, or whatever you are
studying can quickly summarize the effects of key variables. In our example of labor
force participation, we want to examine four ideal types of respondents;

e A young family with lower income, no college education, and young children,
¢ A young family with college education and young children.
e A middle-aged family with college education and teenage children:

e An older family with college education and aduolt children.

We find ideal types to be particularly illustrative for interpretation when indepen-
dent variables are substantially correlated. In the above example, we first consider the
contrast between lower income and no college education and higher income and col-
lege education, because these indicators of SES covary strongly enough that it is easy
to envision them as low- and high-SES prototypes. Across the latter three examples,
we construct ideal types reflecting that the age of parents and their children change
together.

We use mtable to estimate the probabilities for each of these ideal types. To intro-
duce the command and explain some options, we begin with an example that combines
two sets of predictions. (See section 4.4 for an introduction to mtable.) We then
illustrate two approaches for creating a table of ideal types.

For our first ideal type, we define a young. lower-class family as having the values
specified as at (agecat=1 k5=2 k618=0 inc=10 lwg=.75 hc=0 wc=0). lug equals the
log of the federal minimum wage for 1975, the vear the data were collected. We use
mtable to make predictions, using the rowname() option to label the results. The
option ci, a synonym for statistics(ci). requests confidence intervals along with the
predicted probability. Because this is the first step in constructing a table of predictions.
we use the clear option to remove from memory any prior predictions saved by mtable.
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~ use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp k5 k618 i.agecat i.wc i.hc 1lwg inc, nolog
(output omitted )

. mtable, rowname(l Young low SES young kids) ci clear
> at{agecat=1 k6=2 k618=0 inc=10 lwg=.76 hc=0 wc=0)

Expression: Pr(1lfp), predict()

I Pr(y) 1 ul
1 Young low SES young kids ‘ 0.159 0.068 0.251
Specified values of covariates
k5 k618 agecat we he lwg
Current 2 0 1 0 0 .75
inc
Current 10

We conclude the following:

For a young, lower SES family with two young children, the estimated prob-
ability of being in the labor force is 0.16 with a 95% confidence interval from
0.07 to 0.25.

For our next ideal type. we define a young, college-educated family with young
children by using at(agecat==1 k5==2 k618==0 we==1 hc==1), which specifies the
values for all the independent variables except lwg and inc. Because we used the
atmeans option, these variables are set to the means in the estimation sample. To place
the new prediction below the prediction from the last mtable command, we use the
below option.

. mtable, rowname(2 Young college young kids) ci below
> at(agecat==1 kG6==2 k618==0 wc==1 hc==1) atmeans

Expression: Pr(lfp), predict()

] Pr(y) 11 ul
1 Young low SES young kids 0.169 0.068 0.251
2 Young college young kids 0.295 0.156 0.433
Specified values of covariates
kb k618 agecat we he lug
Set 1 2 0 1 0 0 .76
Current 2 0 1 1 1 1.1
inc
Setr 1 10
Current 20.1
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Below the table of predictions is a table showing the levels of the covariates when the
predictions were made. Although you can suppress its display with the brief option,
we find it useful for knowing exactly how the ideal types were defined. Set 1 refers to
the first predictions in the table, which we numbered as 1. The row Current contains
values of the at () variables from the current or most recent mtable command.

We add two more ideal types that show what happens to the probability of being in
the labor force as women and children get older. We use quietly to suppress output
until the last mtable command, which displays the complete table.

. quietly mtable, rowname(3 Midage college with teens) ci below
> at(agecat==2 kE==0 k618==2 wc==1 hc==1) atmeans

. mtable, rowname(4 Older college with adult xids) ci below
> at(agecat==3 kB==0 k618==0 wc==1 hew==1) atmeans

Expression: Pr(1fp), predict()

Pr(y) 1n ul
1 Young low SES young kids 0.169 0.068 0.261
2 Young college young kids 0,295 0.166 0.433
3 Midage college with teen 0.760 0.680 0.840
4 Older college with adult 0.663 0.548 0.768
Specified values of covariates
k5 k618 agecat we he 1vg
Set 1 2 0 1 0 0 78
Set 2 2 0 1 1 b ) 1P ¢
Set 3 Q 2 2 1 1 1.1
Current 0 0 3 1 1 p i §
inc
Set 1 10
Set 2 20.1
Set 3 20.1
Current 20.1

The first two rows allow us to see the big difference in the labor force between the
lower and higher SES families that have young children. The mother from the higher
SES family has about twice the probability of being in the labor force. The probability
for the higher SES mother increases dramatically as her children are no longer young:
the chance of labor force participation goes from about 30% to 76%.

It is important to emphasize that predictions we make about ideal types are pre-
dictions about a hypothetical observation, not predictions about a subgroup. When we
use ideal types, we will specify a particular value for each of the independent variables,
either directly or by using atmeans to compute global or, as we will show next, local
means. This keeps our understanding of what is meant by an ideal type simpler and the
interpretations that use them clearer. What we want to avoid in particular is defining
an ideal type by specifving values for some independent variables, but then computing
average predictions over a set of observations with asobserved. That mixes together
the concepts of MERs and AMEs and makes interpreting results very confusing. Again,
you can think of an ideal type as a hypothetical observation with one prediction and
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think of a subgroup as a set of observations with a distribution of predictions that may
be averaged or plotted.

6.3.1  Using local means with ideal types

The last three rows of the table were constructed using the atmeans option to specify
the values of inc and 1wg to the sample means. We refer to means based on the entire
estimation sample as global means. Although using global means for each ideal type is
simple, it often is not realistic. For example, if is reasonable to assume that levels of
income and wages would be higher for college-educated respondents than for those who
have not attended college and that they would change with age, which is not reflected
in the global means.

To address this problem. we can use local means that are defined based on the
characteristics specified in the at () statements. To do this, we create a selection variable
that equals 1 if an observation is part of the group defined by the conditions of an
atspec and equals () otherwise. In other words, a selection variable indicates whether an
observation is part of the group defined for the ideal type. To create these variables, we
use the generate command with if conditions that correspond to the atspecs used for
an ideal type:

. gen _selYC = agecat==1 k k5==2 & k618==0 & wc==1 &k hc==1
. label var _selYC "Select Young college young kids"

. gen _selMC = agecat==2 k k6==0 &k k618==2 & wc==1 k hc==1
. label var _selMC "Select Midage college with teens"

. gen _sellC = agecat==3 & k6==0 & k618==0 & wc==1 & hc==1
. label var _selOC "Selact Older college with adult kids"

Once these variables are croated. we can make a table of predictions containing
local means for variables not explicitly set by the atspec. The first row of the table is
unchanged from before because all variables for that ideal type were explicitly specified
in the at() option:

. quietly mtable, rowname(! Young low SES young kids) ci clear
> at(agecat=1 k5=2 k618=0 inc=10 lug=.75 he=0 wc=0)

In the next command, we add if _selYC==1 to the mtable command so that predictions
are based only on observations defined by -selYC:

. quietly mtable if _selY(==1, rowname(2 Young college young kids)
> atmeans ci below

The if condition selects observations where agecat==1 & k5==2 & k618==0 & wc==1
& hc==1, which define our ideal type. The means of these variables will equal their
specified values (for example, agecat will equal 1 and k5 will equal 2), while those
variables not used to define the selection variable will equal the local mean defined by
selection variables. For example, lwg will equal the average log of wages for young
families with college education. Accordingly, the if condition makes it easy to specify
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the values we wanted to define our ideal type. In the same way, we add the last two
ideal types to the table:

. quietly mtable if _selMC==1, rowname(3 Midage college with teens)

-] atmeans ci below
. mtable if _sel0C==1, rowname(4 Older college with adult kids)
> atmeans ci below
Expression: Pr(lfp), pradict()
| Pr(y) 11 ul
1 Young low SES young kids 0.159 0.068 0.251
2 Young college young kids 0.394 0.234 0.564
3 Midage college with teen 0.739 0.659 0.820
4 Dlder college with adult 0.631 0.528 0.734
Specified values of covariates
k5 k618 agecat we he lvg
Set 1 2 0 1 0 0 .75
Set 2 2 0 1 1 1 1.62
Set 3 0 2 2 1 1 1.18
Current [+] (1] 3 1 i 1.38
inc
Set 1 10
Set 2 16.6
Set 3 24.4
Current 27.9

An advantage of using local means with ideal types is that the values of variables not
specified in the type are held to values more consistent with what is actually observed,
so the ideal type more accurately resembles the actual cases in our dataset that share
the key features of the ideal type.

6.3.2 Comparing ideal types with statistical tests

The predicted probabilities of labor force participation vary among the four ideal types.
Before concluding, for example, that the probability of being in the labor force is greater
for a young, college-educated family with children than for a family with no college
education, we need to test whether the predictions are significantly different. Essentially,
this involves testing whether a discrete change is () when the starting values and ending
valies vary on multiple variables. To show how this is done, we compute two ideal types
in the same mtable command and post the results so that we can evaluate them with
mlincom. Because we are posting the results, we begin with estimates store so that
we can later restore the estimation results from logit after they have been replaced by
the posted predictions.



6.3.3 (Advanced) Using macros to test differences between ideal types 275

- use binlip4, clear
(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-18)
- logit 1fp k5 k618 i.agecat i.we i.he lwg ine, nolog
(output omitted )
- estimates store base
- mtable, atmeans post

> at(agecat=1 k6=2 k618=0 wc=0 hc=0 lwg=.76 inc=10) // ideal type 1
> at(agecat=1 k6=2 k618=0 wec=1 he=1 lug=1.62 inc=16.64) // ideal type 2

Expression: Pr{lfp), predict()

wec he 1vg ine Pr(y)
1 0 0 .75 10 0.1689
2 1 1 1.82 16.6 0.394
Specified values of covariates
ks k618 agecat
Current 2 0 1

Now, we estimate the difference in the predictions and end by restoring the estimation
results from logit:

. mlincom 1 - 2
I lincom pvalue 11 ul

1 | -0.234 0.000 ~0.340 -0.128

. estimates restore base
(results base are active now)

We conclude the following:
A wife from a young, lower SES family with young children is significantly

less likely to be in the labor force than a wife from a young family with
college education (p < 0.001).

6.3.3 (Advanced) Using macros to test differences between ideal types

In this section, we discuss using local macros and returns to automate
the process of computing predictions at multiple fixed values of the at ()
variables. If you rarely test the equality of predictions, the methods
from the last section should meet your needs. If you often test the
equality of predictions, this section can save you time.

It is tedious and error-prone to specify the atspees for multiple ideal types to test the
equality of predictions. To automate this process, we can use the returned results from
mtable. When mtable is run with a single at (), it returns the local r(atspec) as a
string that contains the specified values of the covariates. This is easiest to understand
with an example:
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- mtable, atmeans at(agecat=1 k5=2 k618=0 wc=0 hc=0 lwg=.75 inc=10)
Expression: Pr(lfp), predict()

Pr(y)
0.159
Specified values of covariates
k5 k618 agecat we he lug
Current 2 0 1 0 0 .75
inc
Current 10

The values shown in the Specified values of covariates table are saved in the
return r (atspec):

. display "“r(atspec) "
k5=2 k618=0 1b.agecat=1 2.agecat~0 3.agecat=0 Ob.we=1 1.we=0 Ob.hc=1 1.hc=0 lug=
> .76 inc=10

We create a local macro that is used to specify the afspee for mtable:

. local myatspec ~r(atspec)”
. mtable, atmeans at( myatspec’)
Expression: Pr(lfp), predict()

Pr(y)
0.159
Specified values of covariates
k5 k618 agecat we he 1vg
Current 2 0 1 0 0 .75
inc
Current 10

The results match those we obtained earlier.

Using this strategy and the selection variables created before (see page 273), we
create local macros with the atspecs for our four ideal types:

. quietly mtable, atmeans at(agecat=1 k5=2 k618=0 inc=10 1lwg=.75 hc=0 wc=0)
. local Ynglow “r{atspec)”

. quietly mtable if _selYC == 1, atmeans
local YngCol “r(atspec)”

.

. quietly mtable if _selMC == 1, atmeans
. local MidCol “r(atspec)”

. quietly mtable if _selQC == 1, atmeans
. local 01dCol “r(atspec)”
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We use these locals to compute four predictions with a single mtable:

. mtable, at( Ynglow™) at( ¥YngCol") at( MidCol~") at( 0ldCol") post
Expression: Pr(1fp), predict()

kb k618 agecat we he lug
1 2 0 1 0 0 .76
2 2 0 1 1 1 1.62
3 0 2 2 1 1 1.16
4 o 0 3 1 1 1.38
inc Pr(y)
1 10 0.159
2 16.6 0.394
-] 24.4 0,738
4 27.9 0.631
Specified values whera .n indicates no values specified with at()
No at()
Current .0

Because the values of all independent variables were specified for each prediction, their
values appear in the table of predictions rather than in a table of values of covariates
below the predictions. Because there are no values to place in the table, .n is shown.
Because the predictions were posted, we can use mlincom for each comparison:

. mlincom 1 - 2

lincom pvalue 11 ul
1 -0.235 0.000 -0.340 -0.129
. mlincom 1 - 3
lincom pvalue 11 ul
1 -0.680 0.000 -0.720 -0.440

. mlincom 1 - 4
(output omitted )

Alternatively, we ean take advantage of the pwcompare() option in margins, which
is not available with the mtable command. We specify the values at which we want to
make predictions, just like we did with mtable. We suppress the lengthy listing of the
atlegend and request pairwise comparisons of the estimates:
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. estimates restore base
(results base are active now)

. margins, at( Ynglow™) at( YngCol~) at( MidCol") at( 01dCol")

> noatlegend pwcompare(effects)

Pairwvise comparisons of adjusted predictions

Model VCE : OIM

Expression : Pr(lfp), predict()

Delta-method Unadjnsted Unadjusted
Contrast Std. Err. z P>lzl [95% Conf. Intervall
_at

2vs 1 . 2346236 .0636979 4.37  0.000 . 1293776 .3398696
3vs 1 .5798713 .0715922 B.10 0.000 .4396531 . 7201895
4vs 1 .4713628 0771112 €.11 0.000 .3202276 6224973
3 vs 2 .3452477 LQBTBIT1 3.84 0.000 . 1735606 .5169348
4 vs 2 .2367392 .0B74085 2.71  0.007 .055_4_218 ;Wm
4 vs 3 -.1085086  ,0487212 -2.23 0,026 -.2040002 -.0130168

Row 2 vs 1 shows that the increase in predicted probability for the young, college-
educated family versus the young, low SES family is significant. Indeed, all differences
are significant at the 0.001 level, except for the differences between an older family with
adult children and a middle-aged family, which is significant at the 0.05 level.

6.3.4 Marginal effects for ideal types

Given our cautions about relying on a single value to summarize marginal effects, ideal
types are an excellent way to examine variation in the size of effects at different locations
in the data space. Here we are taking different hypothetical observations and deseribing
how the predicted probability changes as the value of one of the independent variables
for that observation changes. To do this, we use local maeros to specify the values at
which the change is to be computed. just as we did with mtable.
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First, we compute discrete changes for we and k5 for a young, low SES family:

. mchange wc k5, atmeans amount(one) at( YngLow~)
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(l1fp), predict(pr)

| Change p-value

wC
college vs no 0.137 0.008
kS
+1 -0.114 0.000
Predictions at base value
not in LF in LF
Pr(y|base) 0.B41 0.169
Base values of regressors
k& k618 agecat we he lug
at 2 0 1 0 0 .76
inec
at 10

1: Estimates with margins option atmeans.

. matrix YnglLow = r(table)

mchange leaves the marginal effects in the r(table) matrix, which we copy to the
matrix YngLow so that we can combine it with estimates of effects for other ideal types:

. mchange we k5, atmeans amount(one) at(’Y¥ngCol®)
(output omitted)

. matrix YngCol = r(table)

. mchange wc k5, atmeans amount(one) at( MidCol’)
(output omitted )

. matrix MidCol = r(table)

. mchange wc kb5, atmeans amount(one) at( 01dCol’)
(output omitted)

. matrix 0ldCol = r(table)

Next. we select the first column of each matrix, which contains the effects, and concate-
nate them into a single matrix we nnme me:
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. matrix me = Ynglow[l...,1], ¥ngCol(1...,1], MidCol[1...,1), 0ldCol{i...,1]
. matrix colnames me = Ynglow YngCol MidCol 01dCol
- matlist me, format(}%9.2f) twidth(15)

Ynglow ¥YngCol MidCol 01dCol
we
college vs no 0.14 0.17 0.18 0.20
kS
+1 -0.11 -0.26 -0.33 -0.33

The effects of the wife going to college are within 0.06 across the four ideal types. The
effects of having one more young child in the family, however, increase in magnitude
from —0.11 for young families without college education to —0.33 for older families that
attended college. The differences in discrete changes for k6 reflect the variation in the
size of effects within the sample.

6.4 Tables of predicted probabilities

When youn are interested in the effects of one or more categorical independent variables,
a table of predictions can be very effective. For example, our analysis thus far high-
lights the importance of attending college and having young children. To see how these
variables jointly affect the probability of being in the labor force, we can use a simple
mtable command:

. mtable, at{wc=(0 1) k5=(0 1 2 3)) atmeans
Expression: Pr(lfp), predict()

k5 we Pr(y)
1 0 o 0.604
2 0 1 0.772
3 1 0 0.275
4 1 1 0.457
5 2 0 0.086
6 2 1 0.173
T 3 ] 0.023
8 3 1 0.049
Spacified values of covariates
2. 3. I
618 agecat agecat he 1vg inc
Current 1.35 . 385 <219 .392 1.1 20.1

Although this is the information we want, it is not an effective table. We can improve
it by using two at()'s along with atvars(we %5) to list values of wc in the first colimn
followed by values of k5. The option names (columns) removes the row numbers (see
help matlist for details on the names () option).
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. mtable, at(we=0 k6=(0 1 2 3)) at(wc=1 k6=(0 1 2 3)) atmeans

> atvars(we kB) names(columns)
Expression: Pr(1fp), predict()
1.
wC k5 Pr(y)
] 0 0.604
0 1 0.275
0 2 0.086
o 3 0.023
1 0 0.772
1 1 0.457
1 2 0.173
1 3 0.049
Specified values of covariates
2. 3. 1.
k618 agecat agecat he lug inc
Current I 1.35 -386 -219 .392 1+ 20.1

The table shows the strong effect of education and how the size of the effects differ by
the number of young children, hut the information still is not presented well

Our next step is to compute the discrete change for college education conditional on
the number of young children:
APr(y=1| x,k5)
Awc (0 - 1)

Because we was entered into the model as a factor variable, we can compute the discrete
change by using dydx(wc). In the process, let’s create an even more effective table that
gets close to what we might include in a paper. First, we compute the predictions for
we=0:

. quietly mtable, estnama(NoCol) at(wc=0 k6=(0 1 2 3)) atmeans brief

Next, we make predictions for we=1. We use the right option to place the predictions to
the right of those from the prior mtable command, and we use atvars(.none) because
we do not want the column with k5 included again:

. quietly mtable, estname(College) at(wc=1 k5=(0 1 2 3)) atmeans
> atvars(_none) right

Now, we use the dydx(we) option to compute discrete changes. We place these along
with the p-value for testing whether the change is 0 to the right:
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. mtable, estname(Change) dydx(wc) at(k6=(0 1 2 3)) atmeans

> atvars(_none) right stats(estimate p) names{columns) brief
Expression: Pr(1fp), predict()

k& NoCol College Change p

) 0.604 0.772 0.168 0.000

1 0.275 0.457 0.182 0.001

2 0.086 0.173 0.087 0.013

3 0.023 0.048 0.027 0.085

We can summarize these findings:

For someone who is ayverage on all characteristics and has no young children,
having attended college significantly increases the predicted probability of
being in the labor force by 0.17. The size of the effect decreases with the
number of young children. For example, for someone with two young chil-
dren, the increase is only 0.09, which is significant at the 0.01 level.

Although this table shows clearly how education and children affect labor force
participation, it assumes that it is reasonable to change we and k6 while holding other
variables at their global means. This is unrealistic. For example, it is likely that women
with three young children will be in the youngest age group, while few people with
three young children will be over 50. Each cell in the table represents a different ideal
type, but some of the ideal types are substantively unusual, limiting their usefulness as
a point of comparison.

We could approach the problem in at Jeast a couple of different ways that we regard as
preferable to using global means. Here we consider fwo approaches. First, we define ideal
types in terms of someone from the youngest age category, ages 30-39, for whom having
three young children is not substantively unrealistic. Means of the control variables are
based on sample members in the youngest age group. Second, we use local means defined
by levels of k5 when making predictions. Thus the means for those with no children
differ from those with one child.

Our first approach is to focus on those in the youngest age category. We could do
this by adding agecat=1 to the atspecs used above. but, substantively, we think it makes
more sense to use the mean values of the other independent variables for someone in
this age group. To do this, we specify if agecat==1 when we use atmeans to make our
predictions:
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. mtable if agecat==1, estname(Change) dydx(wc) at(k5=(0 1 2 3)) atmeans

> atvars(k5) stats(estimate p) names(columns)
Expression: Pr(lfp), predict(}
&5 Change P
(] 0.131 0.000
1 0.197 0.000
2 0.124 0.005
3 0.043 0.0B8
Specified values of covariates
1. 15
k618 agecat we he lvg inc
Current | 1.856 1 .312 .463 1.06 i8.8

Notice that agecat is 1 in the table of specified values because we are restricting the
analyses to those in this age group. Adapting the commands used above, we create a
new table illustrating the effects of children and education on labor force participation:

. quietly mtable if agecat==1, estname{NoCol) at(wc=0 kS=(C 1 2 3)) atmeans
. quietly mtable if agecat==1, estname(College) at(wc=1 k5=(0 1 2 3)) atmeans

> atvars(_none) right
. mtable if agecat==1, sstname(Change) dydx(wc) at(k5=(0 1 2 3)) atmeans
> atvars(_none) right stats{estimate p) names(columns) brief
Expression: Pr(lfp), predict()

kb NoCol  College Change p

0 0.720 0.851 0.131 0.000

1 0.390 0.586 0.197 0.000

2 0.137 0.261 0.124 0.006

3 0.038 0.081 0.043 0.058

The predicted probabilities and discrete changes using local means for the youngest
members of the sample are different from when we used global means for the sample
as a whole. Using global means, having a college education increased the predicted
probability for a woman with no children by 0.168, while using means conditional on
the woman being age 30-39. the increase is 0.131.

Ouir second approach uses local means defined by levels of k6 when making predic-
tions. That is, when making predictions for women with no young children, we will hold
other variables at the mean for those with no young children, which would be equivalent
to computing the means by using summarize ... if k5==0. We can do this with the
over(overvar) option, which makes predictions at each value of overvar, where this
variable must have nonnegative integer values. For each value of kB, predictions are
made based only on cases with the given value of k5. That is, predictions are made first
with cases that meet the condition k5==0, then with cases that meet k5==1, and so on.
Accordingly, the atmeans option will hold other variables at the means conditional on
the value of k8. The output shows how the means vary:
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. mtable, at(wc=(0 1)) atmeans over(kb) brief
Expression: Pr(lfp), predict()

2. 3. d:
k5 k618 agecat agecat we he
1 0 1.28 -436 .269 0 -358
2 1 1.75 212 .0169 0 51T
3 2 1.31 .03886 0 0 .538
4 3 1.33 [+] 0 0 1
5 0 1.28 .436 <269 1 .358
& 1 1.76 212 .0169 1 517
7 2 1.31 -0385 0 1 .538
8 3 1.33 (1] 0 1 1
lug inc Pr(y)
1 1.11 20 0.583
2 1.03 20.8 0.337
3 1.18 17.6 0.154
4 1.08 46.1 0.017
5 1.11 20 0.757
[ 1.03 20.8 0.530
7 1.18 17.6 0.288
B 1.08 46.1 0.037

In row 1 where we==0 and row 5 where we==1, the values for k618, agecat, wc, he, lvg,
and inc are the means in the subsample defined by ¥5==0. And so on for other values
of ¥5. Using over() here is equivalent to running a series of mtable commands of the
form mtable if k5==0, at(wc=(0 1)) atmeans.

Does using local means affect the results? In this example, the results using global
means do differ somewhat from those using local means, especially at k5==2.

Global Local Global - Lecal
NoCol Col Chng | NoCol Col Chng

&
3
£

0.00 0.60 0.77 0.17 0.58 0.76 0.17 | -0.02 -0.02 0.01
1.00 0.27 0.46 0.18 0.34 0.63 0.18 0.06 0.07 0.01
2.00 0.09 0.17 0.09 0.15 0.29 0.13 0.07 0.11 0.05
3.00 0.02 0.06 0.03 0.02 0.04 0.02 ]| -0.01 -0.01 -0.01

Tables of predictions allow readers to see how predictions vary over values of sub-
stantively important independent variables. We do not want a change in an independent
variable to result in our presenting as illustrative some ideal types that are actually un-
likely or even impossible. As we have shown above, one way to do this is to restrict our
sample or otherwise choose representative values so that the changes presented in the
table remain substantively realistic. Another is to use local means that change as the
key independent variable(s) of the table changes.
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6.5 Second differences comparing marginal effects

We can compute AMEs based on a subset of observations. For example, suppose that
we are interested in ways in which the wife’s and the hushand’s educations interact to
affect labor force participation. Because we are focusing on the joint effects of these two
variables, we fit a new model that includes the interaction between we and he:

. logit 1fp kb k618 i.agecat wc#¥hc lug inc, nolog

Logistic regression Number of obs = 753
LR chi2(8) - 125.57
Prob > chi2 = 0.0000
Log likelihood = -452.08908 Pseudo R2 = 0.1219
1fp Coef. Std. Err. z P>zl [95% Conf. Interval]
(output omitted )
we
college 1.194263  .4344336 2.76 0.006 .3427885 2.045737
he
collage .246726T7  .2287126 1.08 0.281 =.20154156 -6949949
wec#he
college #
college -.6686704 .5051034 -1,11 0.269 -1.5486656 .431314

{output omitted )

We want to know whether the effect of a women going to college is the same for a
women whose husband did go to college as for a woman whose husband did not go to
college:

CAPr(y=1[xhc=0) APr(y=1[xhc= 1)

’ Avc h Avc

To test this hypothesis, we compute the AME of we averaging over only those cases where
hc is 0 and compare it with the AME for those cases where he is 1. Although we could
compute these discrete changes by using mchange we if hec==1 and mchange wc if
he==0, this will not allow us to test whether the effects are equal because the estimates
cannot be posted for testing with mlincom. To test the hypothesis, we use mtable with
the dydx(wc) option to compute the discrete change for we and the over(he) option
to request the changes be computed with the subgroups defined by hc:

Hy
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. mtable, dydx(wc) over(hc) stat(ci) post
Expression: Pr(lfp), predict()

d Priy) 11 ul
no 0.233 0.094 0.373
college 0.128 0.022 0.234
Specified values where .n indicates no values specified with at()
No at()
Current .0

The row labeled no contains the discrete change of we for those women whose husbands
did not attend college (no is the value label for he= 0), and the row college contains the
change for those whose husbands attended college. The post option saves the estimates
to e(b), which allows us to use mlincom to test whether the marginal effects are equal:

. mlincom 1 - 2
l lincom pvalue 11 ul

1 ‘ 0.106 0.233 -0.068 0.279

We conclude the following:

Although the average effect of the wife going to college is 0.10 larger when
the husband did not go to college than when he did, this difference is not
significant (p > 0.10).

6.6 Graphing predicted probabilities

With a continuous independent variable, you can plot the predicted probabilities over
the range of the variable. For example, to examine the effects of inc, we might plot
the predicted probability of labor force participation as inc changes, holding other
variables at fixed values. We offer two approaches for making such graphs. First, Stata’s
marginsplot command uses predictions from margins to create plots, As you will see,
it quickly produces effective graphs. The second approach uses our mgen command to
generate variables with the values to be plotted, which are then plotted with graph.
This is essentially what marginsplot does behind the scenes. Although marginsplot
is simpler, mgen is more flexible in ways that often justify the greater effort that it
requires. The advantage will be particularly apparent in subsequent chapters when we
create plots for multiple outcomes that cannot be created with marginsplot.

We begin by showing you how to create plots where one variable changes while all
other variables are held constant, such as this one:
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Adjusted Predictions with 95% Cls
q-
o
o
o 40 50 80 70 80 90 100

Next, we show how to introduce the effects of other variables by plotting multiple lines
that correspond to different levels of one or more of the variables in the model. For
example, the following graph shows the effect of income for respondents with different

ages:
Adjusted Predictions of agecat
o
w
o
o -
pd j
S 5 % &% % 0

6.6.1 Using marginsplot

The first step is to use margins to compute predicted probabilities as income increases

from 0 to 100, while holding other variables at their means:
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. use binlfp4,

clear

Chapter 6 Models for binary outcomes: Interpretation

(binlfpd.dta | Mroz data on labor force participation of women | 2013-07-15)

- logit 1fp kb k618 i.agecat i.wc i.hc lwg inc, nolog

{output omitted )
. estimates store base
. margins, at(inc=(0(10)100)) atmeans

Adjusted predictions Number of obs = 753
Model VCE : OIM
Expression : Pr{(lfp), predict()
1._at : kB = .2377168 (mean)
k618 B 1.3532564 (mean)
1.agecat - .3957503 (mean)
2.agecat = .3851262 (mean)
3.agecat - .21912356 (mean)
0.wc - .7184595 (mean)
1.wc = 2815406 (mean)
0.he = .6082337 (mean)
1.he - .3917663 (mean)
lug = 1.097115 (mean)
inc = 0
(output omitted )
11._at : k5 = .2377T168 (mean)
k618 = 1.353254 (mean)
1.agecat = .3957503 (mean)
2.agecat B .3851262 (mean)
3.agecat = .2191236 (mean)
0.wec = .T1B4596 (mean)
1.vc = .2815405 (mean)
0.hc = .6082337 (mean)
1.he = .3917663 (mean)
lug - 1.097116 (mean)
inc = 100
Delta-method
Margin Std. Err. z Priz| [95% Conf. Interval]
_at
1 . 7349035 .0361031 20.36 0.000 . 6641427 .8056643
2 .6613024 .0261131 25.32 0.000 .6101217 7124832
3 6789738  .0196943 29.40 0.000 .5403737  .6175739
4 4920058 .0286579 17.17  0.000 .4358374 5481742
5 406519 .0440915 9.20 0.000 .3191012 .4919367
6 .324523 .0569264 §.T0 0.000 .2129492 .4360968
T . 2528245 . 064092 3.84 0.000 . 1272066 .3784425
B8 . 1924535 .0652874 2.95 0.003 .0644926 .3204144
9 . 1437283 .06172 2.33 0.020 .0227563 . 2646942
10 . 1057196 .0651469 1.92 0.085 -.0023663 .2138055
11 ,0768617 0472071 1.63 0.103 -.0156624 .1693858

The ailegend shows the values of the independent variables for each of the 11 predictions
in the table, which are automatically saved in the matrix r(b). Because the atlegend
can be quite long, we often nse noatlegend to suppress it. Then, we use mlistat for a
HOTe compact summary.
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. margins, at(inc=(0(10)100)) atmeans noatlegend

Adjusted predictions Number of obs = 763
Model VCE : OIM
Expression : Pr(lip), predict()
Delta-method
Margin Std. Err. z Prizl [95% Conf. Intervall
-at
1 .7349035 .0361031 20.36 0.000 6641427 . 8056643
2 .6613024 .0261131 25.32 0.000 .8101217 .7124832
3 .5789738  .0196943 29.40 0.000 .5403737 6175739
B .4920068  .0286579 17.17  0.000 4358374 .5481742
5 .405519 .0440915 9.20 0.000 .3181012 .4919367
6 .324523 .0669264 5.70 0.000 .2129492 .4360968
7 2528245 .064092 3.84 0.000 .1272066 .3784425
8 .1924636  .0652874 2.95 0.003 0644926 .3204144
g .1437263 06172 2.33 0.020 .0227563 . 2646942
10 L1067196 .0551469 1.92 0.085 -.0023663 2138055
11 0768617 0472071 1.63 0.103 -.0156624 .1693858
. mlistat
at() walues held constant
2. 3. 1. 1.
kb k618 agecat agecat we he lvg
.238 1.36 . 386 .218 .282 .392 1.1
at() values vary
_at inc
1 0
2 10
3 20
4 30
5 40
6 50
T 60
8 70
a 80
10 80
11 100

Either way, marginsplot uses the predictions in r(b) along with other returns from
margins, and it graphs the predictions including the 95% confidence intervals:



290 Chapter 6 Maodels for binary outcomes: Interpretation

. marginsplot
Variables that uniquely identify margins: ine

Adjusted Predictions with 95% Cls i

§ 10 20 30 40 50 g0 70 @9 80 100
Family income excluding wile's

The graph shows how the probability of being in the labor force deereases with family
income. It also shows that the confidence intervals are smaller near the center of the
data (the mean of inc is 20.1) and increase as we move to the extremes.

Although marginsplot does an excellent job of creating the graph without requiring
options, you can fully customize the graph. Use help marginsplot for full details. For
example, to suppress the confidence interval, type marginsplot, noci. To use shading
to show the confidence interval (illustrated below), type marginsplot, recast(line)
recastci(rarea).

If you are only interested in plotting a single type of prediction from one model.
there is little reason to use auything but marginsplot. But, if you want to plot multiple
outcomes, such as for multinomial logit, or predictions for a single outcome from multiple
models, it is worth learning about mgen.

6.6.2 Using mgen with the graph command

To create the same graph as above by using mgen, our first step is to generate variables
for plotting:
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. mgen, atmeans at(inc=(0(10)100)) stub(PLT) predlabel(Pr(LFP))
Predictions from: margins, atmeans at(inc=(0(10)100)) predict(pr)

Variable (Obs Unique Mean Min Max Label

PLTpri 11 11 .360B011 LO768617 .7349036 Pr(LFP)

PLT111 11 11 .2708139 -.0156624 .6641427 951 lower limit

PLTull 11 11 .4507883 .1693869 .BOH6643 95) upper limit

PLTinc 11 11 50 0 100 Family income excluding...

Specified values of covariates

2. 3. 1. 1.
L4 k618 agecat agecat we he ivg

.2377158 1.3532564 .3851262  .2191235  .2815405 .3917663 1.097115

The option stub() specifies the prefix for variables that are generated. If stub() is not
specified, the default stub(_) is used. If you want to replace existing plot variables (per-
haps while debugging your do-file), add the option replace. The option predlabel()
customizes the variable label for PLTpr1, which is handy because by defanlt graph nses
this label for the y axis.

If we list the values for the first 13 observations, we see the variables created by
mgen:

. list PLTinc PLTpr PLT1l PLTul 1fp in 1/13, clean

PLTinc PLTpr1 PLT1I1 PLTull lfp
1. 0  .73490356 6641427 ,8056643 not in LF
2. 10  .6613024 6101217  .7124832 ot in LF
3. 20 5789738 5403737 .61756739. not in LF
4. 30  .49200658 4358374 .5481742 not in LF
5. 40 .4065189 .3191012 .4919367 not in LF
6. 50 .324523 2128492 4360968 nmot in LF
7. 60  .2628245 1272066  .3784425 not in LF
8. 70  .18924B636 0644926 .3204144 not in LF
9. 80  .1437253 0227563  .2646942 not in LF
10. 90 1057196 -.0023663  .2138065 not in LF
11. 100 .0768617 -.0166624  .1693858 not in LF
12. = : : . not inm LF
13. . - . . not in LF

Column 1 contains the 11 values of income from variable PLTinc that will define the x
coordinates. The next column contains predicted probabilities computed at the values
of income with other variables held at their means. The negative effect of income
is shown by the increasingly small probabilities. The next two columns contain the
upper and lower bounds of the confidence intervals for the predictions. The first four
variables have missing values beginning in rows 12 and 13 because our atspec requested
only 11 predictions. The last column shows the observed variable 1£p, which does not
have missing values. This is being shown to remind you that the variables created for
eraphing are added to the dataset used for estimation.
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You can also create a basie graph without confidence intervals:

. scatter PLTpr PLTinc

.,.. Iﬂl
- . ]
"3 : R

40 0
Family Income excluding wie's

Next, we want to add the 95% confidence interval around the predictions. This
requires more complicated graph options. To explain these, let’s start by looking at the
graph we want to create:

Adjusted Predictions

Here is the twoway command that we will explain:

twoway
(rarea PLTul PLT1l PLTinc, color(gsi2))
(connected PLTpr PLTinc, msymbol(i))
, title(“Adjusted Predictions")
captir.m("m:her variables held at their means")
ytitle(Pr(LFP)) ylabel(0(.25)1, grid gmin gmax) legend(off)

WO W W W e
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The first thing to realize is that the twoway comm; i
! & v - ¥ imand includes two plots
S tWo plots, a rarea

a single g i

confidence intervals are created with a rarea plot where hr‘im:rzﬁl:_.hf:?;i;hi :iw::“!
between the values of PLTal for the upper level or bound and PLT11 for l.lw'lnm‘}:: :i
We chose color(gs12) to make the shading gray scale level 12, a lnatlér of IH'r&l:'nj
preference. Second. the line with predicted probabilities is created with a Clm;act,:d
plot, where msymbol (i) specifies that the symbols (shown as solid eireles in our prioe
graph) that are connected should be invisible —that is, draw the line withont symbaols.
We defined the rarea plot before the connected plot hecause Stata draws overlaid plots
in the order specified; we want the line indicating the predicted probabilities to appens
on top of the shading.

plot and a connected plot. These are overlaid (o make

After the “,” in the fourth line of the command are options that apply to the overall
graph rather than the individual plots. ylabel() defines the y-axis labels, with grid
requesting grid lines. Suboptions gmin and gmax place grid lines at the muaximum and
minimum values of the axis. By default, when you are plotting multiple oliteomes—in
this case PLTul, PLT11, and PLTpr —graph adds a legend describing each outeame. To
turn this off, we use legend(off). See section 2.17 for more information on graphing.

6.6.3 Graphing multiple predictions

An effective way to show the effects of two variables is to graph predictions at various
levels of one variable as the other variable changes. This can be done with either
marginsplot or mgen.

Using marginsplot

We can plot the effects of income for cach of the age groups. First, we compite =
predictions with margins, where margins agecat indicates that we want prrdlﬂ.i:mw
for each level of the factor variable agecat. at (inc=(0(10)100)) atmeans specifies
I"r“‘Ii'"! ions a8 ine increases from 0 to 100) by 10s. with all variables except aﬁ‘cg‘: Hield
at their means:
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. margins agecat, at{inc=(0(10)100)) atmeans noatlegend

Adjusted predictions Number of obs = 753
Model VCE : DIM
Expression : Pr(lfp), predict()
Delta-method
Margin Std. Err. z P>lz| [95% Conf. Intervall
_at#agecat

1#30-39 . 8236541 .0312561 26.36 0.000 . 7624033 .8B49049
1#40-49 . 7139289 .0452033 15.79 0.000 .6253321 .B0256266
1#50+ .5661833 .0614528 9.20 0.000 .4447381 .6856285
2#30-39 . 7668772 .02980356 25.73 0.000 . 7084634 .B25291
2#40-49 6373779 0374018 17.04 0.000 .6640716 ~ 7106841
2#50+ .4779353 .060722 9.42 0.000 .3T86219 -6773487
3#30-39 .6985115 .0319211 21.88 0.000 .8369474 7610756
3#40-49 5531632 .0322948 17.13 0.000 . 4898665 .6164599
3#50+ .3820132 0438199 8.95 0.000 3061277 4778986
44#30-39 . 6200306 .0420412 14.76  0.000 .5376313 .7024299
4#40-49 .4657831  .0366039 12.72  0.000 .3840407  .5375255
4860+ .3122976  .0429361 7.27 0.000 2281463 .396440
5#30-39 .5347281 0580266 9.22 0.000 . 4209981 6484581
5#40-49 . 38045356 0470786 8.08 0.000 .2881812 .AT27269
B#HEO+ . 2423312 0449042 5.40 0.000 . 1643206 .3303417
6#30-38 . 4473447 0744291 6.01 0.000 3014663 .593223
6#a0-49 3019213  .0664876 65.3¢ 0.000 .1812078 +4126349
G#50+ .1838493 0458435 4.01 0.000 0939977 2737008
T#30-39 . 3630971 .0BB7003 4.19  0.000 . 1931676 -5330267
T#a0-42 .2334903  .0613363 3.81 0.000 +1132733 3637073
T850+ -1369302 0443075 3.09 0.002 . 060089 .2237714
8830-39 . 2864909 092363 3.10 0.002 . 1064627 .4675181
8#40-49 . 1766445 0611475 2.89 0.004 L0B6TITT ,2964914
BREO+ -1005104 0406792 2.48 0.013 .0209766 1800442
9830-39 . 2204527 .0811719 2.42 0.016 .0417591 .3891463
o#40-49 .1312684 06699 2.30 0.021 01967 . 2429668
9450+ .0729685 0356368 2.05 0.040 .00330956 1426075
10#3C-39 . 1660933 .0B45261 1.96 0.049 .0004252 . 3317615
108#40-49 .0961867 .0504241 1.91 0.056 -.0026428 +1950161
10860+ .0625181 .0300345 1.76 0.080 -.0063483 .1113846
11#30-39 .1230226 0745199 1.658 0.089 -.0230338 . 269079
11840-49 0697281 .0428698 1.63 0.104 -.0142963 .1637515
11850+ .0376723 ,0246919 1.52 0.128 -.010823 .0BBS6TT
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. mlistat
at() values held constant

2. 3. 1. 1.
k5 k618 agecat agecat we he g

.238 1.35 .385 219 .282 .392 1.1
at() values vary
at inc

0
10
20
30
40
50
60
70
80
Q0

100

= OoOWoO~OodsDN=
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The labeling of the predictions from margins can be confusing. The left column of
the prediction table is labeled at#agecat, which indicates that the information in this
column begins with a number corresponding to the 11 values of inc used for making
predictions; these are referred to as the _at values. For example, 1 is the prediction with
inc=0 while 11 is the prediction with inc=100. After the “#”, the value or value label
for agecat is listed. For example, the row labeled 1#30~-39 contains the predictions
when all variables except agecat are held at the first _at value, with agecat= 1 as
indicated by the value label 30-39. The command marginsplot, noci automatically
understands what these predictions are and creates the plot we want:

. marginsplot, noci legend(cols(3))
Variables that uniquely identify margins: inc agecat

Adjusted Predictions of agecal

B 1o 2 30 40 50 6 70 80 90 100
Family incoma excluding wiles :
—e— 30-33 —— 40-49 —=— 504 |
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This example shows that marginsplot can plot multiple curves for the same outcome
from the same model. Unfortunately, it cannot plot curves for multiple outcomes (for
example, the probability of categories 1, 2, and 3 in an ordinal model) or predictions from
different models (for example, showing how the predictions differ from two specifications
of the model). For this, you need to use mgen.

Using mgen with graph

We can create the same graph as in the previonus section by running mgen once for each
level of agecat:

. mgen, atmeans at(inc=(0(10)100) agecat=1) etub(PLT1) predlab(30 to 39)
Predictions from: margins, atmeans at(inc=(0(10)100) agecat=1) pradict(pr)

Variable Obs Unique Hean Min Max Label

PLTipri 11 11 .4591184  ,1230226 .8236541 30 to 39

PLT1111 11 11 .3349719 -.0230338 .7624032 95% lower limit

PLTiull 11 11 .583265 .269079 .BB49049 95Y% upper limit

PLT1inc 11 1 50 0 100 Family income excluding..,

Specified values of covariates

1. 1.
kb k618 agecat wc he lwg
.2377168  1.36325% 1 .2815405  .3917663  1.09711b6

. mgen, atmeans at(inc=(0(10)100) agecat=2) stub(PLT2) predlab(40 to 49)
Predictions from: margins, atmeans at(inc=(0(10)100) agecat=2) predict(pr)
(output omitted )

Specified values of covariates

1. s 18
kb k618 agecat we he 1lvg
.2377168 1.3632564 2 .2B815405  .3917663 1.097116

. mgen, atmeans at(inc={0(10)100) agecat=3) stub(PLT3) predlab(50 plus)

Predictions from: margins, atmeans at(inc=(0(10)100) agecat=3) predict(pr)
(output omitted )

Specified values of covariates

1. 1.
k5 k618 agecat wC hc lug

.2377158  1.353264 3 .2815405 .3917663 1.097116
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Then, we use a more complex graph command to obtain the following graph:

. graph twoway connected PLTipr PLT2pr PLT3pr PLTlinc,
title("Adjusted predictions by age group")

caption("Other variables at their means")

msym(Oh Dh Sh) msiz(+1.4 #1.1 #1.2) mcol(black black black)
lpat(solid solid solid)

ytitle("Pr(In Laber Force)") ylab(0(.26)1, grid gmin gmax)
legend(cols(3))

vVVVVYVY

Adjusted predictions by age group

=

"y 00

40 60 G0 100
Family Income excluding wile’s ¥

[—e— 0039 —o— 401048 —e— S0puus |
Other variables at thait means i

When there are multiple sets of lines and symbols to be drawn—in this case, three
sets—yon need to provide options for each set. The option msym(Oh Dh Sh) indicates
that we want large, hollow circles, diamonds, and squares for the symbols. We find that
Oh by default is a smaller symbol than Dh or Sh. The msize () option lets you specify
the size for each symbol. Although you can use names for the sizes, such as msiz(large
medium medsmall), we find relative sizing to be easier. Our option msiz(*1.4 *1.1
+1.2) tells graph to make the first symbol 1.4 times larger than normal, and so on.

6.6.4 Overlapping confidence intervals

We find that researchers sometimes conclude that estimates are significantly different
only if confidence intervals for two estimates do not overlap, That is, if the confidence
intervals overlap, the hiypothesis that the estimates are equal is accepted. Although this
might have been a useful approximation when computation was very expensive, it often
leads to incorrect conclusions because it ignores the covariances of the estimators that
need to be taken into acconnt when testing equality.*

4. Schenker and Gentleman (2001) show that inference is conservative if the estiators are indepen-
tlent.
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To illustrate the problem, as well as show how discrete changes and mn-ginn,lchangeg
can be graphed, we use the techmiques above to plot the probability of laber force
participation by income for women who attended college and those who did not. We
start with the graph before showing how we created it:

We use one mgen command for each level of we:

. mgen, atmeans at(inc=(0(5)100) we=0) stub(PLTWCO) ptadlah‘.ﬂbﬁollm}l
Predictions from: margins, atmsans at(inc=(0(5)100) we=0) pradict(pr)
Variable Obs Unique Mean Min Max Label

PLTWCOPr1 21 21 .3177494  .0623648 .6889161 NoCollage

PLTWCO111 21 21 .2308727 -.0151898 6107004 95% lower limit

PLTWCOull 21 21  .404526  .1399194 .7671317 95% upper limit
PLTWCOine 21 21 50 o 100 Family income excluding...

Specified values of covariates

2 3. 1.
k5 k618 agecat agecat we he lvg
.2377158 1.353264  .3851262  .2191235 0 .3917663 1.097115

. mgen, atmeans at(inc={0(5)100) wc=1) stub(PLTWC1) predlab(College)
(output omitted )

We then combine two rarea graphs with a connected graph:

. twoway

> (rarea PLTWCOul PLTWCO1l PLTWCOinc, collgs12))

> (rarea PLTWClul PLTWC11l PLTWCOinc, collgsi2))

>  (connected PLTWCOpr PLTWCipr PLTWClinc, msym(i i) lpat(dash solid))
> , ytitle(Pr(In Labor Force)) legend(order(4 3))
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Judging by the overlap of confidence intervals, we might mistakenly conclude that the
probability of labor force participation was significantly higher for women who attended
college when family income was between $5,000 and $40,000 but not at other incomes.

To see how poorly this “approximation” works., we compute the discrete change
conditional on income with mgen. The option dydx(wc) specifies that we want to predict
the marginal effect of we. Because we was entered into the model as the factor variables
i.wc, mgen computes a discrete change.

. mgen, dydx(wc) atmeans at(inc=(0(5)100)) stub{PLTWCDC)
> predlab(Discrete change in LFP by attending college)

Predictions from: margins, dydx(vc) atmeans at(inc=(0(5)100)) predict(pr)

Variable Obs Unique Mean Min Max Label

PLTWCDCd_pr1 21 21 .1507267 .066319 1967745 Discrete change in L...
PLTWCDC111 21 21 .0556941 -.0111785 .08954556 95% lower limit
PLTWCDCull 21 21 .24567683 .1438166 .3049388 85X upper limit
PLTWCDCinc 21 21 50 0 100 Family income exclud...

Specified values of covariates

2. 3. 1. 1.
k5 k618 agecat agecat v he lvg

.2377168  1.353264 .3851262  .2191236 2816406 .3917663 1.087116

Plotting the results along with those for the probabilities leads to figure 6.2, which shows
that women who attended college have significantly higher probabilities of labor force
participation over almost the entire income distribution, excepting only incomes above
$95.000 (where there are very few cases). What is remarkable about margins is that it
allows yon to test just about anything you might want to say about your predictions!



Figure 6.2. Overlapping confidence intervals compared with discrete change




6.6.5 Adding power terms and plotting predictions 301

6.6.5 Adding power terms and plotting predictions

As shown in section 6.2.1, squared terms can be included in models by using factor-
variable notation. For example, income and income-squared can be included in the
model by adding the term c.inc##c.inc. Although you can obtain the same parameter
estimates by generating a new variable for income-squared, margins or our m* commands
will not compute predictions correctly. With factor-variable notation, however, power
terms and interaction terms do not pose any special problems.® When mgen makes
predictions, it automatically increases income-squared appropriately as income changes.

To illustrate how this works, we compare predictions from a model that is linear in
inc with a model that adds the squared term c.inc#ic.inc. First, we fit the model
that includes income (but not income-squared) and make predictions:

. logit ltp.ks k618 1i.agecat i.wc i.hc lvg inc, nolog

(output omitted )
. mgen, predlabel(linear) atmeans at(inc=(0(10)100)) stub(_lin)
Predictions from: margins, atmeans at{inc=(0(10)100)) predict(pr)

Variable (0Obs Unique Mean Min Max Label

_linpri 11 11 .3608011 .0768617 .73400356 linear

_linlli 11 11 2708139 ~-.0156624 .6641427 957 lower limit

~linull 11 11 .4507883 .1693859 .8056643 95 upper limit

~lininc 11 11 50 0 100 Family income excluding...

Specified values of covariates

2, 3. 1. 1.
kb k618 agecat agecat we he lug

.2377168  1.363264 (3861262  .2191235 .2815405  .3917663  1.097115

5. With prgen, our earlier command for graphing predictions, you could not generate correct predic-
tions when your model included, for example, income and income-squared. With minor program-
ming, our command pracecus allowed you to generate the correct predictions. Our impression is
that it wis not used often.
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Next, we fit the model that adds income-squared and make predictions:

. logit 1fp kb k618 i.agecat i.wc i.hc lwg c.inc##c.inc, nolog
(output omitted )

. mgen, predlabel(quadratic) atmeans at(inc=(0(10)100)) stub(_quad)

Predictions from: margins, atmeans at(inc={0(10)100)) predict(pr)

Variable 0Obs Unique Mean Min Max Label

_quadpri 11 11 .4410442 .28B7324 .8078B035 quadratic

_quadlll 11 11 .2613508 ~-.1501808 .7207593 95% lower limit

_quadulil 11 11 .6207375 .4265932 .9620264 095% upper limit

-quadinc 11 11 50 0 100 Family income excluding...

Specified values of covariates

2. 3. 1. X,
kB k618 agecat agecat ve he lwg

.2377168  1.353254  .3861262  .2191235 .2815406  .3917663 1.097116

Then, we plot the predictions:

Comparing income specifications

[—o— Wnear  —~0 - quadac |

Other variables af their means

Although the differences at higher incomes are suggestive and dramatic, the evidence
for preferring the quadratic model is mixed. BIC provides positive support for the linear
model, while AIC supports the quadratic model. The coefficient for income-squared is
significant at the 0.046 level. The confidence intervals around the predictions at high
income levels (not shown) are wide. Based on these results, we are not convinced to
abandon our baseline model.




6.6.6 (Advanced) Graphs with local means 303

6.6.6 (Advanced) Graphs with local means

When plotting predictions over the range of a variable, yon must decide
where to hold the values of other variables. With the atmeans option
in mgen, as the plotted variable changes, the other variables stay at the
same global means. Following our previous discussion of local means, in
this section we show you how to allow the values of the other variables
to change as the variable being plotted changes. This requires using
mtable with the over () option and moving predictions from the matrix
that mtable returns. These steps require more data management than
other parts of the book, but they can provide valuable insights into how
robust your plot and conclusions are to assumptions about the levels of
other variables.

When demonstrating tables of predictions, we suggested caution before holding other
variables at their global means because changing one variable while holding all other
variables at the same values might not be realistic. For example, suppose that we
included age in our model as a continuous variable ranging from 20 to 90. Plotting
predictions as age changes while holding the number of young children constant is
unrealistic because older respondents are unlikely to have any young children in the
familv. Note that we have the same problem if we used asobserved instead of atmeans
here; in that case, we would be including in our average predictions those cases for which
the hypothetical value of age is implausible given the abserved numbers of children. One
alternative approach, which we will not explore further here, is to forgo using global
means in favor of a set of representative values that are substantively plausible for all
values of age (that is, a family with no children),

In any event, if you are plotting predictions in regions of your data where it is impos-
sible or very unlikely that observations will exist, the predictions might be misleading.
You ean determine whether global means are reasonable by exploring how other values
affect the results. We will consider what happens when we use local means instead of
global in generating the plot. To illustrate how this is done, we start with the example
used above, where we plotted labor force participation by income:
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. mgen, at(inc=(0{10)100)) atmeans stub(GLOBAL) predlabel(Global means)
Predictions from: margins, at(inc=(0(10)100)) atmeans predict{pr)

Variable Obs Unique Mean Min Max Label

GLOBALpri 11 11 .3608011  .0768617 .7349035 Global means

GLOBAL111 11 11 .2708139 -.0156624 .6641427 95% lover limit
GLOBALul1 11 11 .4507883 .1693859 .8056643 95), upper limit

GLOBALinc 11 11 50 0 100 Family income excluding...

Specified values of covariates

2. 3. 1. L,
k& k618 agecat agecat we he lug

.2377168  1.353254  .3851262 .2191235 .2815406  .3917663 1.097115

Plotting the predictions produces the following plot:

Predictions using global means
2]
i
&
84
& . —
0 2 40 50 B0 100

Faimily incame excluding wily's

These predictions were made by increasing family incomes from $0 to $100,000, holding
wc, he, 1ug, and other variables at their global means. This implies that those with no
income have the same education and wages as those with $100,000. As noted, before
accepting this graph as a reasonable summary of the effect of family income on labor
force participation, we want to determine how sensitive the predictions are to the values
at which we held the other variables, In particular, what would happen if we held the
other variables at levels more typical of those with a given income?

Because inc is continuous, we cannot compute means for the nonincome variables
conditional on a single value of income, because these means might be based on very
few observations. Instead, we begin by generating the variable inc10k, which divides
inc into groups of $10,000:
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. gen inclOk = trunc(inc/10)

. label var inclOk "income in 10K categories”

. tabulate inclOk, miss

income in
10K

categories Freq. Percent Cum.

0 99 13.16 13.15

1 353 46.88 60.03

2 198 26.29 B6.32

3 61 8.10 94.42

4 22 2.92 97.34

5 10 1.33 98.67

6 3 0.40 99.07

T 4 0.53 89.60

8 1 0.13 99.73

9 2 0.27 100.00

Total 753 100.00
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Because there are very few cases in some of the higher income groupings, we might want
to use larger groups. But for the experiment we have in mind, this is a reasonable place
to begin. Next, we use mtable, over(inc10k) atmeans ci to compute predictions by
selecting observations at each value of inc1Ok. This is equivalent to running mtable

repeatedly for subsamples defined by inc10k.

mtable if incl0k==0, atmeans ci
mtable if inciOk==1, atmeans ci

{output omitted )

mtable if inci0k==9, atmeans ci
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The results show how the values of other variables vary as income changes:

. mtable, over(inciOk) atmeans ci
Expression: Pr(lfp), predict()

2, 3. 1. 1.
k5 k618 agecat agecat we he
1 -202 1.43 303 222 A21 -0808
2 .261 1.29 .363 216 .212 .312
3 .192 1.37 .456 -192 .369 .52
4 .213 1.54 .361 311 .443 689
5 .318 1.56 409 273 .b Jq27
6 .4 .6 6 .2 .8 .8
7 0 1 .333 667 .333 +667
8 .76 1.26 75 0 76 1
9 0 2 1 0 0 0
10 1 2.6 0 0 1 1
lwg ine Pr(y) 11 ul
1 .922 7.26 0.641 0.5684 0.698
2 1.08 16.1 0.600 0.569 0.642
3 1.17 24.1 0.588 0.546 0.630
4 1.16 33.7 0.492 0.426 0.567
5 1.08 43.4 0.373 0.283 0.463
6 1.48 53.8 0.389 0.261 0.517
7 1.07 64.9 0.201 0.085 0.318
8 1.41 78.3 0.164 0.048 0.282
9 1.07 88 0.102 -0.005 0.208
10 1.33 93.5 0.112 -0.006 0.229
Specified values whers .n indicates no values specified with at()
No at()
Current .n

To plot these predictions. we need to move them into variables, something that is
ordinarily done antomatically by mgen. Unfortunately, mgen does not allow local means
when making predictions. So we must manually move the predictions that mtable saves
in the return matrix r(table).

To do this, we first create a matrix, localpred, equal to r(table). Thisis necessary
becanse some of the commands we want to use will not work on an r() matrix.
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. matrix localpred = r(table)

. matlist localpred, format(%8.2g)
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2. 3. 1. g
kS k618 agecat agecat we he
1 2 1.4 .3 .22 .12 .081
2 .26 1.3 .36 .22 21 .31
3 .18 1.4 .45 .19 ar .52
4 .2 1.5 .36 .31 .44 .69
5 .az2 1.5 .41 .27 .5 .73
6 4 .6 .6 2 .8 .8
7 0 1 .33 .87 .33 .67
8 .78 1.3 .75 0 75 1
9 0 2 1 0 0 0
10 1 2.5 0 0 1 1
lug inc Pr(y) 11 ul
1 .92 7.2 .64 .58 T
2 1.1 16 .6 .56 .64
3 1.2 24 .59 .56 .63
4 1.2 34 .49 .43 .66
5 1 43 .37 .28 .46
6 1.5 54 .39 .26 .52
7 1.4 66 2 085 .32
8 1.4 75 .16 046 .28
9 1.1 88 A -.0048 .21
10 1.3 94 A1 -.0058 .23

Next, we select all rows of the matrix (designated as 1...) and the set of columns
starting with columm inc and ending with column ul. We use matrix colnames to
give the columns the names we want to use for the new variables created in the next

step.

. matrix localpred = r(table)

. matrix localpred = localpred[l...,"inc".."ul"]
. matrix colnames localpred = LOCALinc LOCALpr LOCAL1l LOCALul

The command svmat generates variables from the columns of a matrix. The names(col)
option specifies that the new variables should have names corresponding to the columns

of the matrix.

. svmat localpred, names(col)

. label var LOCALpr "lLocal means"

We gave variable LOCALpr a label that will be used in the graph we now create:

twovay

L L

(connected GLUBALpr GLOBALinc,
clcol(black) clpat(solid) msym(i))

(connected LOCALpr LOCALinc,
clcol(black) clpat(dash) msym(i))

, ytitle("Pr(In Labor Force)") ylab{0(.25)1, grid gmin gmax)
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In this example, there are no major discrepancies, suggesting thaf using the global
means is appropriate for making the predictions.

6.7 Conclusion

As we have discussed, the models for binary outcomes discussed in this chapter are
not just widely used, they also provide a conceptual foundation for the models that we
discuss in subsequent chapters. The coefficients for these models cannot be effectively
interpreted directly, and even though the exponentiated coefficients for the logit model —
the odds ratio—are widely used, we think these often do not convey the substance of
one’s findings very well either.

Instead, we spent most of the chapter describing interpretations based on predicted
probabilities, and here Stata’s margins command and our m* commands based on
margins are extremely useful. margins is so flexible that it allows the estimation of
quantities that have quite subtle conceptual differences, which may or may not have
much consequence in any particular application. Regardless, though, a prerequisite on
being able to clearly present findings to vour audience is to understand them clearly
vourself —and so understanding precisely the differences between, for example, AMEs
and MEMs, is important [or coherently and accurately recounting results. We also
showed how to very broadly conduet hypothesis tests about different predictions that
margins generates, and how to use margins with local means instead of relying simply
on global means. In doing so, we hope not only to provide a strong set of tools for
interpreting the results of models for binary outcomes, but also to provide a foundation
for what we will do in the chapters that follow.
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Models for ordinal outcomes

Although the categories for an ordinal variable can be ordered, the distances between
the categories are unknown. For example, in survey research, questions often provide
the response categories of strongly agree, agree, disagree, and strongly disagree, but an
analyst would probably not assime that the distance between strongly agreeing and
agreeing is the same as the distance between agreeing and disagreeing. Educational at-
tainments can be ordered as elementary education, high school diploma, college diploma,
and graduate or professional degree. Ordinal variables also commonly result from limi-
tations of data availability that require a coarse categorization of a variable that could,
in prineiple, have been measured on an interval scale. For example, we might have a
measure of income that is simply low, medium, or high.

Ordinal variables are often coded as consecutive integers from 1 to the number of cat-
egories. Perhaps because of this coding, it is tempting to analyze ordinal outcomes with
the linear regression model (LiM). However, an ordinal dependent variable violates the
assumptions of the LRM, which can lead to incorrect conclusions, as demonstrated strik-
ingly by McKelvey and Zavoina (1975, 117) and Winship and Mare (1984, 521-523).
With ordinal outcomes, it is much better to use models that avoid the assumption that
the distances between categories are equal. Although many models have been designed
for ordinal outeomes, in this chapter we focus on the logit and probit versions of the
ordinal regression model (ORM). The model was introduced by McKelvey and Zavoina
(1975) in terms of an underlying latent variable, and in biostatistics by McCullagh
(1980). who referred to the Jogit version as the proportional-odds model. In section 7.16,
we review several less commonly used models for ordinal outcomes.

As with the binary regression model (BRM), the ORM is nonlinear, and the magnitude
of the change in the outcome probability for a given change in one of the independent
variables depends on the levels of all the independent variables. As with the BRM, the
challenge is to summarize the effects of the independent variables in a way that fully
reflects key substantive processes without overwhelming and distracting detail. For
ordinal outcomes, as well as for the models for nominal outcomes in chapter 8, the
difficulty of this task is increased by having more than two outcomes to explain.

Before proceeding, we caution that researchers should think carefully before con-
cluding that their outcome is indeed ordinal. Do not assume that a variable should
be analyzed as ordinal simply because the values of the variable can be ordered. A
variable that can be ordered when considered for one purpose could be unordered or
ordered differently when used for another purpose. Miller and Volker (1985) show how
different assumptions about the ordering of occupations result in different conclusions.
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A variable might also reflect ordering on more than one dimension, such as attitude
scales that reflect both the intensity and the direction of opinion. Moreover, surveys
commonly include the category “don’t know”, which probably does not correspond to
the middle category in a scale, even though analysis might be tempted to treat it this
way. In general, ORMs restrict the nature of the relationship between the independent
variables and the probabilities of outcome categories, as discussed in section 7.15. Even
when an outcome seems clearly to be ordinal, such restrictions can be unrealistic, as
illustrated in chapter 8. Indeed, we suggest that you always compare the results from
ordinal models with those from a model that does not assume ordinality.

We begin by reviewing the statistical model, followed by an examination of testing,
fit, and methods of interpretation. These discussions are intended as a review for those
who are familiar with the models. For a complete discussion, see Agresti (2010), Long
(1997), or Hosmer, Lemeshow, and Sturdivant (2013). As explained in chapter 1, yon
can obtain sample do-files and data files by installing the sposti13.do package.

7.1 The statistical model

The OBRM can be developed in different ways, each of which leads to the same form of
the model. These approaches to the model parallel those for the BRM. Indeed, the BRM
can be viewed as a special case of the ordinal model in which the ordinal outeome has
only two categories.

7.1.1 A latent-variable model

The ORM is commonly presented as a latent-varinble model. Defining 3* as a latent
variable ranging from —oo to oo, the structural model is

Yi =xifB+ei

where i is the observation and = is a random error, as discussed further below. For the
case of one independent variable,

yr =+ By + 5

The measurement model for binary outcomes from chapter 5 is expanded to divide y°
into J ordinal categories,

vi=m frmpu <y <t form=1toJ

where the cutpoints 7y through 7, ave estimated. (Some authors refer to these as
thresholds.) We assume 1y = —oc and 7 = oo for reasons that will be clear shortly.

To illustrate the measurement model, consider the example used in this chapter.
People are asked to respond to the following statement:
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If vou were asked to use one of four names for your social class, which would
you say you belong in: the lower class, the working class, the middle class,
or the upper class?

The underlying, continuous latent variable can be thought of as the propensity to iden-
tify oneself as having higher socioeconomic standing. The observed response categories
are tied to the latent variable by the measurement model

1 = Lower if m=—cc<y <m
) 2= Working if n<y <mn
B=Y 3o Middle i m<yi<m
4 = Upper if <yl <7y=o00

Thus when the latent y* crosses a cutpoint, the observed category changes. Anderson
(1984) referred to ordinal variables created in this fashion as grouped continuous vari-
ables and referred to the ORM as the grouped continuous model.
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Figure 7.1. Relationship between observed y and latent * in ORM with one independent
variable

For a single independent variable, the structural model is y* = o + fz + £, which is
plotted in figure 7.1 along with the cutpoints for the measurement model. This figure is
similar to that for the BRM, except that there are now three horizontal lines representing
the cutpoints 7, 72, and 7. The three cutpoints lead to four levels of y that are labeled
on the right-hand side of the graph.

The probability of an observed outcome y for a given value of x, represented by the
three vertical lines in the figure, is the area under the curve between a pair of cutpoints.
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For example, the probability of observing y = m for given values of the x's corresponds
to the region of the distribution where y* falls between 7,1 and 7

Priy=m|x) =Pr(rm-1<¥y" <7m | %)

Substituting x/3 + ¢ for y* and using some algebra leads to the standard formula for the
predicted probability in the ORM,

Pr(y=m|x)= F (14 — x8) = F (Tin—1 = x8) (7.1)

where F is the cumulative distribution function for . In the ordinal probit model, F
is normal with Var(g) = 1; in the ordinal logit model, F is logistic with Var(z) = 7%/3.
For y = 1, the second term on the right drops out because F' (—oc —x8) = 0, and for
y =J, the first term equals F' (oo — x3) = 1.

Comparing these equations with those for the BRM shows that the ORM is identical
to the BRM with one exception. To demonstrate this, we fit chapter 5's binary model for
labor force participation with both logit and ologit (the command for ordinal logit):

. use binlfpd, clear
{binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)

. logit 1fp c.k5 c.k6i8 i.agecat i,wc i.hc c.lvg c.inc, nolog
(output omitted )
. estimates store logit

. ologit lfp c.kb c.k618 i.agecat i.wc i.hc c.lvg c.inc, nolog
(output amitted )
. estimates store ologit

4
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To compare the coefficients, we use estimates table:!

. estimates table logit ologit, b(%9.3f) t varlabel varwidth(30) equations(1:1)

Variable logit ologit
21
# kids < 6 -1.392 -1.392
-7.26 -7.26
# kids 6-18 -0.066 -0.066
-0.96 -0.96
agal:at
40-49 -0.627 -0.627
~3.00 -3.00
50+ -1.279 -1.279
-4.92 -4.92
wC
college 0.798 0.798
3.48 3.48
he
college 0.136 0.136
0.66 0.66
Log of wife“s estimated wages 0.610 0.610
4.04 4.04
Family income excluding wife’'s -0.036 ~0.03%
-4.24 -4.24
Constant 1.014
3.54
cutl
Constant -1.014
-3.54
legend: b/t

The slope coefficients and their z-values are identical. For logit, though, an in-
tercept or constant is reported, whereas for ologit, the intercept is replaced by the
cutpoint labeled cuti. The cutpoint has the same magnitude but opposite sign as the
intercept from logit. This difference is due to how the two models are identified. As
the ORM has been presented. there are “too many” free parameters; that is, you cannot
estimate J — 1 thresholds and the constant too. For a unique set of maximum likeli-
hood estimates to exist, an identifying assumption needs to be made about either the
intercept or one of the cutpoints. Stata’s ologit and oprobit commands identify the
ORM by assuming that the intercept is 0 and then estimating all cutpoints.

Some other software packages that fit the ORM instead fix one of the cutpoints to 0
and estimate the intercept. Although the different parameterizations can be confusing,
keep in mind that the slope coefficients and predicted probabilities are the same under

|. Because logit has a constant ind ologit has a cutpoint, by default estimates table will not
line up the coefficients from the two models. Rather, each of the independent variables will be
listed twice. equations(1:1) tells estimates table to line up the coefficients. This is easiest to
understand if yvou try our command without the equations(1:1) option.
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either parameterization (see Long [1997, 122-123| for details). Section 7.5 shows how
to fit the ORM using alternative parameterizations.

7.1.2 A nonlinear probability model

The ORM can also be developed as a nonlinear probability model withont appealing to
an underlying latent continuous variable. Here we show how this is done for the ordinal
logit model. First, we define the odds that an outcome is less than or equal to m versus
greater than m given x:

Pr(y<m|x)

Remiom (%) = Pr(y >m|x)

form=1,J-1

For example, we could compute the odds of lower- or working-class identification (that
is, m < 2) versus middle- or upper-class identification (m > 2). The log of the odds is
assumed to equal

].ll széﬂl])ﬂ'l (x) =Ty = Xﬁ (?'2)
Critically, the @’s are the same for all values of m.

For a single independent variable and three categories, where we are fixing the
intercept to equal () and estimating the v's, the model is

Priy<l|x) o
l’l.'(_gf::vl]:ir)_rl Bz
Priy<2|x) __ .
Prs2x) 2

Although it may seem confusing that we subtract Jr rather than adding it, this is a
consequence of computing the logit of y < m versus y > m. We agree that it would be
simpler to stick with 7, + 8, but this is not the way the model is normally presented.

7.2 Estimation using ologit and oprobit

The ordered logit and probit models can be fit with the following commands and their
basic options:

ologit depvar [indepvars] [if | [in] [weight| [, vce(ucetype) or]

oprobit depvar [indepvars| [if | [in] [weight] [, vee(ucetype) |

In our experience, these models take more steps to converge than either models for

binary outcomes fit using logit or probit or models for nominal outcomes fit using
mlogit.



7.2.1 Example of ordinal logit model 315

Variable lists

depvar 18 the dependent variable. The values assigned to the outeome categories are
irrelevant, except that larger values are assumed to correspond to “higher” out-
comes. For example, if you had three outcomes, you could use the values 1, 2, and
3, or —1.23, 2.3, and 999. To avoid confusion, however, we recommend coding
your dependent variable as consecutive integers beginning with 1.

indepvars is a list of independent variables. If indepvars is not included, Stata fits a
model with only cutpoints.

Specifying the estimation sample

if and in qualifiers. These can be used to restrict the estimation sample. For exam-
ple, if you want to fit an ordered logit model for only those surveyed in 1980 (year
= 1), you could specify ologit class i.female i.white i.educ age inc if
year==1.

Listwise deletion. Stata excludes cases in which there are missing values for any of
the variables in the model. Accordingly, if two models are fit using the same
dataset but have different sets of independent variables, it is possible to have
different samples. We recommend that you use mark and markout (discussed in
section 3.1.6) to explicitly remove cases with missing data.

Weights and complex samples

Both ologit and oprobit can be used with fweights, pweights, and iweights. Survey
estimation can be done using the svy prefix, See section 3.1.7 for details.

Options
vee(ueetype) specifies the type of standard errors to be computed. See section 3.1.9 for
details.
or reports odds ratios for the ordered logit model.

Additional options and information can be found in the Stata manual entries [R] ologit
and [R] oprobit.

7.2.1 Example of ordinal logit model

Our example is based on a question asked in the 1980, 1996, and 2012 General Social
Surveys. These are repeated cross-sectional data, not panel data. That is, in each wave
the survey was administered to new respondents from a new nationally representative
sample. The following variables are in the model:
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. use gssclass4, clear
(gssclass4.dta | GSS Subjective Class Identification | 2013-11-20)

. codebook class female white year ed age income, compact

Variable Obs Unique Mean Min Max Label

class 5620 4 2.437644 1 4 subjective class id
female 5620 2 .5491103 0 1 respondent is female
white 5620 2 .B140569 ] 1 resondent is whte
year 5620 3 2.070996 1 3 year of GSS survey
educ 5620 3 2.064769 1 3 educational attainment
age 5620 72 45.15712 18 89 age of respondent
income 5620 62 68.07737 .51205 324.2425 household incoma

Respondents were asked to indicate the social class to which they think they most
belong. using categories coded 1 = lower, 2 = working, 3 = middle, and 4 = upper.
The resulting variable class has the distribution:

. tabulate class

subjective
class id Freq. Percent Cum.
lower 304 T.01 T.01
working 2,567 45.68 52.69
middle 2,465 43.86 96.58
upper 194 3.45 100.00
Total 5,620 100.00

The variable educ is a categorical variable in which the categories are less than a high
school diploma, high school diploma, and college diploma. The variable income is
measured in 2012 dollars for all years of the survey.

Using these data, we use ologit to fit the model
Pr(class =m | x;) = F(r, — x8) — F(tm=1 —x08)

where
X3 = Bremarefemale + Hunirewhite
+ Byear t1996) (year==1996) + Byeara012) (year==2012)
+ Boduc s only) (€dUC==2) + Faguc(cor1age) (€duc==3)
+ Be.ageC .28 + [c.agate.ageC . agef#c.age + Fincameincome

To specify the model, we use the factor-variable notation i.year to create indicators
for the year of the survey, i.educ for education, and c.age##c.age to include age and
age-squared. estimates store is used so that we can later make a table containing
these results.
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. ologit class i.female i.white i.year i.educ c.age#fic.age income, molog

Ordered logistic regression liumber of obs = 5620
LR chi2(9) = 1453.95
Prob > chi2 = 0.0000
Log likelihood = -5016.2107 Pseudo R2 - 0.1266
class Coef. Std. Err. z Pzl [95% Conf. Intervall
female
female .0162383 054419 0.30 0.765 -.0904211 . 1228976
white
white .2363442 0721307 3.28 0.001 - 0949707 S3TTTATT
year
1996 -.0799484 0890368 -1.16 0.247 -.215256 0553632
2012 -.5038717  .0764131 -6.59 0.000 -.6636386  -.3541048
educ
hs only .3704854  .Q783188 4.73 0.000 .2169832 -5239876
college 1.565563  .0878B63 15.99 0.000 1.373699 1.757406
age -.0488039 .009194 -5.31 0.000 -.0668239 -.0307839
c.age#ic.age .0007093 . 0000928 7.65 0.000 . 0005275 0008811
income .0116206  .0006234 22.20 0.000 .0105948 .0126464
[eutl -2.140323  .2279743 -2.587144  -1.693501
feut2 .9162707 .2251007 4740813 1.36646
/cut3 4,934708 .243606 4.457249 5.412167

. estimates stors ologit

The information in the header and the table of coefficients is in the same form as
discussed in chapters 3 and 5, with the addition of estimates for the cutpoints at the
end.

Next, we fit the ordered probit model:

. oprobit class i.female i.white i.year i.educ c.age#¥#c.age income, nolog
(output omitted )
. estimates store oprobit
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Because we stored the results for both models, we can compare the results with the
command estimates table:
- estimates table ologit oprobit, b(}%8.3f) t varlabel varwidth(30)
Variable ologit oprobit
class
female )
female 0.016 0.002
0.30 0.05
white
white 0,236 0.106
3.28 2.66
year
1996 -0.080 -0.062
-1.16 -1.67
2012 -0.504 -0.302
-6.59 ~-6.98
educ
hs only 0.370 0.195
4.73 4.48
college 1,568 0.852
15.99 15.74
age of respondent -0.049 -0.0286
-5.31 -4.91
c.agefic.age 0.001 0.000
7.65 7.03
household income 0.012 0.008
22.20 22.90
cutl
Constant -2.140 -1.2886
-9.39 -10.08
cut2
Constant 0.915 0.471
4.07 3.72
cut3
Constant 4.935 2.599
20.26 19.58
legend: b/t

As with the BRM, the estimated coefficients ditfer from logit to probit by a factor of
about 1.7, reflecting the different scaling of the ordered logit and ordered probit models
that results from different assumptions about the variance of the errors. We also see
scaling differences in the cutpoints, which are also larger in the ordered logit model.
Values of the z tests are similar because they are not affected by the scaling. but they
are not identical because of slight differences in the shape of the assumed distribution
of the errors.
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12.2 Predicting perfectly

If either the highest or the lowest category of the dependent variable does not vary
within one of the categories of an independent variable, there will be a problem with
estimation. To see what happens, we created an artificial example with a dummy
variable for whether respondents have a college degree. Tabulating college against
class shows that in all cases where college is 1, respondents have values of class
equal to 4, indieating upper-class identification:

. tabulate class college

subjective Has college degree?
class id no yes Total
lower 394 Q 394
working 2,667 Q 2,567
middle 2,465 0 2,466
upper 81 113 194
Total 5,507 113 5,620

Accordingly, if you know college is 1, you can predict perfectly that class is 4. Al-
though we purposely constructed college so this would happen, perfect prediction
oceurs in real data, especially when samples are small or one of the outcome values is
infrequent.

When we fit the ordered logit model with college as a regressor, the perfectly
predicted observations are retained in the estimation sample with a warning message
appearing below the table of estimates:
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. ologit class i.female i.white i.year i.college c.age##c.age income, Mlng

Ordered logistic regression Rumber of obs = 5620
LR chi2(8) - 1692.08
Prob > chi2 = 0.0000
Log likelihood = -4897.1452 Pseudo R2 - 0.1473
class Coef. Std. Err. z Pz [95% Conf. Interval]
female
female .0533943  .0545116 0.98 0.327 -.0534465 . 160235
white
white . 2431002 0710321 3.42 0,001 . 1038797 3823206
year
1996 .0313275  .0680653 0.46 0.645 -.1020781 .1647331
2012 -.28093 0746029 -3.77  0.000 -, 427149 -. 134711
college |
yes 35.48776 731118.3 0.00 1.000 -1432830 1433001
age =.0396543 .0092189 -4.30 0.000 -.067723 ~-.0215867
c.age#c.age .00D6788  .DO0O0929 6.23  0.000 .0003966  .0007609
income .0133626  .0005602 23.84 0.000 .0122546 .0144505
fecutl =2.2176543 , 2237908 -2.656185 =-1,778921
feut2 .7238815  .2204396 .2918281 1.166936
/eut3 5.342231 2640771 4.844249 5.840213

Note: 113 observations completely determined. Standard errors questionable.

The note reflects that the standard error for college is enormous, indicating the prob-
lem that oceurs when trying to estimate a coefficient that is effectively infinite. Another
way of thinking about the large standard error is that the lack of variation in the out-
come when college equals 1 means we do not have any information that would permit
us to estimate the coefficient with precision. When this happens, our next step is to
drop the 113 cases for which college equals | (you could use the command drop if
college==1 to do this) and refit the maodel without college. This is done automatically
for binary models fit by logit and probit (see section 5.2.3).

There is no problem if an independent varizble perfectly predicts one of the middle
categories. For example, if all observations for which college is 1 reported being middle
class. this would not cause problems for estimation.

7.3 Hypothesis testing

Hypothesis tests of regression coefficients can be evaluated with the 2 statistics in the
estimation output, with test and testparm for Wald tests of simple and complex
hypotheses, and with 1rtest for likelihood-ratio tests. We briefly review each. See
section 3.2 for additional information on these commands.
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7.3.1 Testing individual coefficients

If the assumptions of the model hold, the maximum likelihood estimators from ologit
and oprobit are distributed asymptotically normally. The hypothesis Hy: 5 = 3*
can be tested with z = (3 - :i'],-'ﬁ;t_. Under the assumptions justifving maximmm
likelihood, if Hy is true, then = is distributed approximately normally with a mean of 0
and a variance of 1 for large samples. For example, consider the results for the variable
white from the ologit output above. We are using the sformat option to show mare
decimal places for the z statistic:®

. ologit class i.female i.vhite i.year i.educ c.age#fc.age income,
> nolog sformat(%48.3f)

Orderad logistic regression Number of obs = 5620

LR chi2(9) - 1463.95

Prob > chi2 - 0.0000

Log likelihood = -5016.2107 Pseudo R2 = 0.1266

class Coef, Std. Err. z Pzl [95% Conf. Intervall
female

female -0162383 .054419 0.208 0.766 -.0904211 1228976
vhite

white .2363442 0721307 3.277 0.001 . 0949707 BT

{output omitted )
We conclude the following:

Whites and nonwhites significantly differ in their subjective social class iden-
tification (z = 3.28, p < 0.01, two-tailed).

Either a one-tailed or a two-tailed test can be used, as discussed in chapter 5.

The z test in the output of estimation commands is a Wald test, which can also be
computed using test, For example, to test Hy: Base = 0. type

. test 1.white
( 1) [class]l.white =0
chi2( 1) = 10.74

Prob > chi2 = 0.0011

We conclude the following:

= i - . : - TP LA
Whites and nonwhites signiticantly differ in their class identification (x* =
10.74, df = 1, p < 0.01)

2. We are displaying more decimal places to later demonstrate the L"«l“i"“l‘-'r_'“ of the = test and
the corresponding chi-squared test. With any estimation command, the option f’“m‘(f"“) u:';
be used to format the display of cocfficients and standard ermors. Likm!-'f-‘f'-‘- opsicn pfornt(fm
formats the display of p-values and option sformat(fmt) formats the display of test MT'E-
Alternatively, the set command can also be used to change these formats either permanently Of
for the rest of the current Stata session, Sce [R] set cformat in the Stata many

ale for details
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The value of a chi-squared test with 1 degree of freedom is identical to the square of
the corresponding 2 test, which can be demonstrated with the display command:

. display "zsz=" 3.277+3.277
z¢z=10.738729

A likelihood-ratio LR test is computed by comparing the log likelihood from a full
model with that from a restricted model. To test a single coefficient, we begin by fitting
the full model and storing the estimates:

. ologit class i.female i.white i.year i.educ c.age#®c.age income, nolog
{output omitted )
. estimates store fullmodel

Then, we fit a model that excludes the variable white that we want to test.

. dlogit class i.female i.year i.educ c.age#iic.age income, nolog
(output omitted )
. estimates store dropwhite

| The 1rtest command computes the test:
. 1lrtest fullmedel dropwhite

Likelihood-ratio test LR chi2(1) = 10,75
(Assumption: dropwhite nested in fullmodel) Prob > chi2 =  0.0010

The resulting LR test can be interpreted as follows:

The effect of being white on class identification is significant (LR x* = 10.75,
df =1, p < 0.01).

7.3.2 Testing multiple coefficients

We can also test complex hypotheses that involve more than one coeflicient. For exam-
ple, onr model has the demographic variables white, female, and age. To test that the
effects of these variables are simultaneously equal to 0—that is, Hg: Busre = Htenate =
Bage = Hagesage = 0—we can use either a Wald or an LR test. For the Wald test. we fit
the full model and then use the test command:

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog
(output omitted )
. test 1l.vhite 1.female age age#age
(1) [class]i.white = 0
(2) [class]l.female = 0
( 3) [classlage = 0
( 4) [class]c.agedic.age = 0

chi2( 4) = 226.76
Prob > chi2 = 0.0000
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Before we interpret the results of the test, we want to clarify how coefficients are specified
in the test command when factor-variable notation is used. The specification i.white
added the variable 1.white to the model as shown in the output to ologit above.
Accordingly, we are testing the coefficient associated with the variable 1.white, not
i.white or white. The same rule applies for female. Age was entered into the model as
c.age##c.age, which was expanded to estimate coefficients for c. age and c.age#c.age.
When entering these coefficients into test, we do not need to include the c. prefix
(although we could do so). Regardless of how we specify the test command, we conclude
the following:

The hypothesis that the demographic effects of age, race, and sex are simul-
taneously equal to 0 can be rejected at the 0.01 level (x? = 226.8, df = 4,
p < 0.01).

To compute an LR test of multiple coefficients, we first fit the full model and store
the results with estimates store. Suppose we are interested in whether demographic
characteristics matter at all for subjective class identification or whether identification
is only a function of socioeconomic status and changes over time. To test Ho: Buniee =
Ftemare = Oage = Pagotnge = 0. we fit the model that excludes these four coefficients and
nin lrtest:

. ologit class i.female i.vhite i.year i.educ c.age##ic.age income, mnolog
(output omitted )

. astimates store fullmodel

. ologit class i.year i.educ income, nolog
(output omitted )

. estimates store dropdemog

. lrtest fullmodel dropdemcg

Likelihood-ratio test LR chi2(4) = 236.63
(Assumption: dropdemog nested in fullmodel) Prob > chi2 =  0.0000

We conclude the following:

The hypothesis that the demographic effects of age, race, and sex are simul-
taneously equal to 0 can be rejected at the 0.01 level (LR X2 = 236.5, df = 4,
p < 0.01).

We find that the Wald and LR tests usually lead to the same decisions, and there
is no reason why you would typically want to compute both tests. When there are
differences, they generally occnr when the tests are near the cutoff for statistical sig-
nificance. Because the LR test is invariant to reparameterization, we prefer the LR test
when both are available. However, only the Wald test can be used if robust standard
errors, probability weights, or survey estimation are used.

When a factor variable has more than two categories, such as year and educ in our
model, you can specify each of the coefficients with test (for example, test 2.educ
3.educ) or you can use testparm:
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. testparm i.educ

(1) [class]2.educ = 0
( 2) [class]3.educ =0
chi2{ 2) = 329.48
Prob > chi2 = 0.0000

test can also be used to test the equality of coefficients, as shown in section 5.3.2.

7.4 Measures of fit using fitstat

As we discussed in greater detail in chapter 3, scalar measures of fit ean be nsed when
comparing competing models (also see Long [1997, 85-113]). Several measures can be
computed after either ologit or oprobit by using the SPost command fitstat. In
this example, we compare a model for class identification that includes age but not
age-squared with the model we have been using that includes age-squared:

. ologit class i.female i.white i.year i.educ sge income, nolog
(output omitted )

. quietly fitstat, save

. ologit class i.female i.white i.year i.educ c.age##ic.age income, nolog
[outpul omitted)

. Titstat, diff

Current Saved Difference
Log-likelihood
Model -5016.211 -5045.903 29.692
Intercept-only -5743.186 -65743.186 0.000
Chi-square
D (df=5608/5609/-1) 10032.421 10081.806 -59.386
LR (df=9/8/1) 1453.961 1394.566 59.385
p-value 0.000 0.000 0.000
R2
McFadden 0.127 0.121 0.005
McFadden (adjusted) 0.124 0.119 0.005
McKelvey & Zaveina 0.284 0.274 0.011
Cox-Snell/ML 0.228 0.220 0.008
Cragg-Uhler/Nagelkerke 0.262 0.252 0.009
Count 0.608 0.600 0.005
Count (adjusted) £.273 0.264 0.009
Ic
AIC 10066.421 10113.8086 -57.386
AIC divided by N 1.789 1.800 -0.010
BIC (df=12/11/1) 10136.030 10186.781 -50.751
Variance of
& 3.280 3.290 0.000
y-star 4,596 4,528 0,087

Note: Likelihood-ratio test assumes saved model nested in current model.
Difference of 50.751 in BIC provides very strong support for current model.




7.5 (Advanced) Converting to a different parameterization 325

The Bayesian information criterion (BI1C), Akaike’s information criterion (AiC), and the
LH test each provide evidence supporting the inclusion of age-squared in the model.

Using simulations, Hagle and Mitchell (1992) and Windmeijer (1995) found that
with ordinal outecomes, McKelvey and Zavoina's psendo-R?* most closely approximates
the B? obtained by fitting the LRM on the underlying latent variable. If you are using
y*-standardized coefficients to interpret the ORM (see section 7.8.1), McKelvey and
Zavoina’s R? could be used as a counterpart to the R* from the LRM.

.5 (Advanced) Converting to a different parameterization

We mark this section as advanced because the conversion we show is
likely only pertinent to readers who also work with other statistics pack-
ages that fit the model by using the alternative parameterization. The
section may still be useful to strengthen your understanding of how the
intercept and thresholds of these models are related, as well as how the
lincom command works.

Earlier, we noted that the model can be identified by fixing either the intercept or one
of the thresholds to equal ). Stata sets Fy = 0 and estimates 71, whereas some programs
fix 73 = 0 and estimate fy. Although all quantities of interest for interpretation (for
example, predicted probabilities) are the same under both parameterizations, it is useful
to see how Stata can fit the model with either parameterization. We can understand
how this is done with the following equation, where we are simply adding 0 = 8 — 4 and
rearranging terms:

Priy=m|x)=F{r, — By —xB+ (6 —8)} = F{tm-1— Bo—xB+ (6 —9)}
= F{(1m — 8) — (Bo — §) — xB} = F {(tm—-1 — 8) — (Bo — 0) —xB}
Without further constraints, it is possible to estimate the differences 7,, — 8 and f — 8
but not the parameters 7, and Fy. To identify the model, Stata assumes 6 = f,

which forces the estimate of 3, to be 0. Some programs assume § = 7y, which forces the
estimate of 7y to be 0. The following table shows the differences in the parameterizations:

Model Stata’s Alternative
parameter parameterization parameterization
o By —Bp=0 o — 71
Ty 1 — o mn—7=0
T2 T2 — P T2 — T
73 73 — o T3 — T

Although you would only need to estimate the alternative parameterization if you
wanted to compare your results with those produced by another statistics package,
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seeing how this is done illustrates why the intercept and thresholds are arbitrary. To
estimate the alternative parameterization, we use lincom to compute the difference
between Stata’s estimates and the estimated value of the first cutpoint. We begin with
the alternative parameterization of the intercept:

. ologit class i.famale i.white i.year i.educ c.agef##c.age income, nolog
(output omitted )

. lincom 0 - _bi/cuti] // intercept

(1) - [cutl]l_cons =0

class Coef. Std. Err. z Prlz| [95% Conf, Intervall

(1) 2.140323  .2279743 8.3 0.000 1.6935801 2.587144

To understand the lincom command, you need to know that _b[/cutl] is how Stata
refers to the estimate of the first cutpoint. Accordingly, 0 = _b[/cut1] is the difference
between 0 and the estimate of the first cutpoint, which simply reverses the sign of the
first estimated cutpoint.

For the other cutpoints, we are estimating v — 71 and 73 — 71, which correspond to
bl/cut2] - bl/cutl] and b[/cut3]) - _b[/cutl]:

. lincom _b[/cut2] - _b[/cutl] // cutpoint 2

(1) - [cutl]_cons + [cut2]_cons = 0
class Coef. Std. Err, z Prlz| [95% Conf. Interval]
(1) 3.066584 0873347 53.29 0.000 2.94322 3.167968

. lincom _b[/cut3] - _b[/cutl] // cutpoint 3

(1) - [cuti]_cons # [cut3]_cons = 0
class Coef. Std. Err. z  Prlzl [95% Conf. Intervall
(1) 7.075031  .1097937 64.44 0.000 6.859839  7.290223

The estimate of 7y — 7y is, of course, (). These estimates would match these from a
program using the alternative parameterization.

7.6 The parallel regression assumption

Before discussing interpretation, it is important to understand an assumption that is
implicit in the ORM, known both as the parallel regression assumption and, for the
ordinal logit model, the proportionalodds assumption. Using (7.1), the ORM with
J outcome categories can be written as
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Pr(y=1|x) =F(n —xB)
Pr(y=m | x) = F (7 — XB) — F (Tm=-1—%8) form=2toJ-1
Pr(y=J|x)=1-F(r;-1 —xB)
Using these equations, the cumulative probabilities have the simple form
Priy <m|x)=F(tm—xB) form=1toJ -1 (7.3)

Notice that 3 does not have a subscript m. Accordingly, this equation shows that the
ORM is equivalent to J — 1 binary regressions with the eritical assumption that the slope
coefficients are identical in each binary regression.

For example, with four outcomes and one independent variable, the cumulative
probability equations are
Pr(y<1|x)=F(n—p2)
Pr(y < 2|x)=F(r—fBx)
Pr(y<3|x)=F(m—px)

Recall that the intercept a is not in the equation because it was assumed to equal 0 to
identify the model. These equations lead to the following figure:

1%

Each probability curve differs only in being shifted to the left or right. The curves are
parallel as a consequence of the assumption that the 8's are equal for each equation.

This figure suggests that the parallel regression assumption can be tested by com-
paring the estimates from J—1 binary regressions,

Pr(y < m|x) = F(t;n—%8,;) form=1toJ—1 (7.4)
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where the 5°s are allowed to differ across the equations. The model in (7.4), called
the generalized ORM, is discussed further in section 7.16.2. The parallel regression
assumption implies that 3, = 8, = --- = 8,_,. To the degree that the paralle!
regression assumption holds, the estimates ﬁ,. ,@3 B J—1 should be close,

There are several ways of testing the parallel regression assumption, although none of
them can be done using commands in official Stata. Instead, the user-written command
oparallel (Buis 2013), gologit2 (Williams 2005). or brant (part of our SPost package)
is required. To install any of these, while in Stata and connected to the Internet, type
net search command-name and follow the instructions for installation.* We begin by
briefly describing the tests, and then we show how to compute them in Stata.

Under maximum likelihood theory, there are three types of tests: Wald tests, Lr
tests, and score tests (also called Lagrange multiplier tests). To understand how these
tests are used to test the parallel regression assumption, let the generalized orM in
(7.4) be the wnconstrained model and the ORM in (7.3) be the constrained model.
We want to test the hypothesis Ho: 8, = B, = -+ = B;_4. That is, we want to
test the restrictions on the unconstrained model that lead to the constrained model.
A Wald test estimafes the unconstrained model and tests the restrictions in the null
hypothesis. The LR test estimates both the unconstrained and the constrained models
and examines the change of the log likelihood. The score test estimates the constrained
model and (oversimplifying some) estimates how much the log likelihood would change
if the constraints were relaxed.

The command oparallel computes each type of test for the ordered logit model but
not for the ordered probit model. The Wald test is computed by fitting a generalized
ordered logit model with gologit2 and then testing the constraints implied by parallel
regressions with the test command. The LR test is computed by fitting a general-
ized ordered logit model with gologit2 and the ordered logit model with ologit and
comparing the log likelihoods. oparallel can also compute approximations of the LR
and Wald tests. The approximate LR test is computed by comparing the log likelihood
from ologit or oprobit with the likelihoods obtained by pooling J — 1 binary models
fit with logit or probit and making an adjustment for the correlation between the
binary outcomes defined by y < m (Wolfe and Gould 1998). The approximate Wald
test, known as the Brant test, compares the estimates from binary logit models. Details
on how this test is computed are found in Brant (1990) and Long (1997, 143-144). The
oparallel command does not test for violations of parallel regressions for individual
variables, so below we discuss the brant command, which does,

While the null hypothesis might be rejected because the B,,'s differ by m, Brant
(1990) notes that the null hypothesis could be rejected because of other departures
from the specified model. Reiterating this point, Greene and Hensher (2010) suggest
that tests of the parallel assumption are only useful for “supporting or casting doubt
on the basic model”, but the tests do not indicate what the appropriate model might
be. This issue is considered further in chapter 8.

3. brant is installed as part of the sposti3.ado packnge
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7.6.1 Testing the parallel regression assumption using oparallel

oparallel can be used after ologit to compute the omnibus tests described above.
The ic option provides the statistics AIC and BIC comparing the generalized ordered
logit model with the ordered logit model,

. use gssclassd, clear
(gssclassd.dta | GSS Subjective Class Identification | 2013-11-20)

. ologit class i.femals i.white i.year i.educ c.age##c.age income, mnolog
(output omitted )
. oparallel, ic
Tests of the parallel regression assumption
| Chi2 df P>Chi2

Wolfe Gould 328 18 0.000
Brant 243.4 18 0.000

score 257.8 18 0.000

likelihood ratio 328.4 18 0.000

Wald 258.1 18 0.000

Information criteria

! ologit gologit difference
AIC 10066.42 9764.03 292.39
BIC 10136.03 9963.06 172,98

The results labeled 1ikelihood ratio and Wald are the LR and Wald tests based on
the generalized ordered logit model. The line Wolfe Gould contains the approximate
LR test, Brant refers to the Brant test, and score is the score test. All tests reject the
null hypothesis with p < 0.001. The score and Wald tests have similar values, while the
two LR tests are larger. We find that these tests are often, perhaps usually, significant.

The AIC and BIC statistics can be used to evaluate the trade-off between the better
fit of the generalized model and the loss of parsimony from having J — 1 coefficients for
each independent variable instead of just one. In this example, the smaller values of both
the AIC and BIC statistics for gologit compared with ologit provide evidence against
the ologit model compared with the model in which the parallel regression assumption
is relaxed. It is common for the BIC statistic to prefer the ologit model even when the
significance tests reject the parallel regression assumption, and this sometimes happens
with AIC as well.

Although oparallel can he used with ologit but not with oprobit, the approx-
imate LR test presented as Wolfe Gould can be performed with oprobit by using the
user-written command omodel. omodel, however, does not support factor-variable no-
tation.
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7.6.2 Testing the parallel regression assumption using brant

The SPost command brant also computes the Brant test for the ORM, Tﬁe-uﬂmge of
our command, which is used by oparallel to make its computations, is that it provides
separate tests for each of the independent variables in the model. After running ologit,
you run brant, which has the following syntax: '

brant [, detail]

The detail option provides a table of coefficients from each of the binary models. For
example,

. brant, detail
Estimated coefficients from binary logits

Variable | y_gt.1 y-gt_2 y-gt.3
female
female -0.103 0.078 0.036
-0.88 1.24 0.23
white
white -0.026 0.245 =0.155
-0.18 3.04 -0.71
year
1996 -0.170 -0,090 0.002
-1.05 -1.20 0.01
2012 -0.749 -0.366 =0).686
-4.64 -4.21 -2.97
educ
hs only 0.289 0.277 -0.,409
2.00 3.2 -1.55
college 1.260 1.542 0.620
4.67 14.50 2.33
age =-0.070 -0.080 =0.011
-3.84 -4.88 -0.40
c.agafic.age 0.001 0.001 0.000
4.01 7.24 1.15
income 0.050 0.011 0.011
14 .44 16.93 12.10
_cons 2.407 -0.932 -4.413
5.34 -3.76 -6.19
legend: b/t
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Brant test of parallel regression assumption

chi2 p>chi2 df

All 243.39 0.000 18
i.female 2.16 0.339 2
1.white 6.52 0.038 2
2.year 0.47 0.789 2
3.yaar 7.03 0.030 2
2.educ 6.80 0.033 2
3.educ 12.42 0.002 2
age 3.28 0.194 2
c.agefc.age 2.69 0.261 2
income 126.59 0.000 2

A significant test statistic provides evidence that the parallel
regression assumption has been violated.

The largest violation is for income, which may indicate particular problems with the
parallel regression assumption for this variable. Looking at the coefficients from the
binary logits, we see that for income the estimates from the binary logit of lower class
versus working/middle/upper class differ from the other two binary logits. This suggests
that income differences matter more for whether people report themselves as lower class
than it does for either of the other thresholds. If the focus of our project was the
relationship between income and subjective class identification, this wonld serve as a
substantively interesting finding that we would have missed had we not used brant.

7.6.3 Caveat regarding the parallel regression assumption

In the majority of the real-world applications of the ORM that we have seen, the hypoth-
esis of parallel regressions is rejected. Keep in mind, however, the tests of the parallel
regression assumption are sensitive to other types of misspecification. Further, we have
seen examples where the parallel regression assumption is violated but the predictions
from ologit are very similar to those from the generalized ordered logit model or the
multinomial logit model. When the hypothesis is rejected, consider alternative models
that do not impose the constraint of parallel regressions. As illustrated in chapter 8,
fitting the multinomial logit model on a seemingly ordinal outcome can lead fo quite
different conclusions. The generalized ordered logit model is another alternative to con-
sider. Violation of the parallel regression assumption is not, however, a rationale for
using the LRM. The assumptions implied by the application of the LRM to ordinal data
are even stronger.

7.7 Overview of interpretation

Most of the rest of the chapter focuses on interpreting results from the ORM. First, we
consider methods of interpretation that are based on transforming the coefficients. If
the idea of a latent variable makes substantive sense, or if you are tempted to run a lin-
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ear regression on an ordinal outcome, interpretations based on rescaling y* to compute
standardized coefficients can be used just like coefficients for the LRM. Coefficients can
also be exponentiated and interpreted as odds ratios in the ordered logit model. We ex-
amine these strategies of interpretation first because they follow most straightforwardly
from the methods of interpretation many readers are already familiar with from linear
regression, but we regard them also as having important limitations that we discuss.

We then consider approaches to interpretation that use predicted probabilities, ex-
tending each of the methods for the BRM to multiple outcomes. We typically find these
approaches far more informative. Beeause the ORM is nonlinear in the outcome prob-
abilities, no approach can fully describe the relationship between a variable and the
outcome probabilities. Consequently, you should consider each of these methods before
deciding which approach is most effective in your application. As with models for bi-
nary outcomes, the basic command for interpretations based on predictions is margins,
although our mtable, mchange, and mgen commands make things much simpler. Not
only do these commands have the advantages illustrated for binary maodels in ehapter 6,
but when there are mnltiple outcome categories. margins can only compiite predictions
for one outcome at a time. Our commands will compute predictions for all categories
and combine the results.

7.8 Interpreting transformed coefficients

As with the BRM, coeflicients for the ordered logit model are about 1.7 times larger
than those for the ordered probit model because of the arbitrary assumption about the
variance of the error term. For this reason, neither ordered logit nor ordered probit co-
efficients offer a direct interpretation that is readily meaningful. There are fwo ways we
can transform the coefficients into more meaningful quantities: standardization and odds
ratios. In both cases, these interpretations are permissible only when the independent
variable is not specified using polynomial or interaction terms.

7.8.1 Marginal change in y’

In the ORM, y* = x3 + =, and the marginal change in y* with respect to oy is

o

oy = B

Because 3* is latent. its true metric is unknown. The value of y* depends on the
identification assumption we make about the variance of the errors. As a result, the
marginal change in y* cannot be interpreted without standardizing by the estimated
standard deviation of y*, which is computed as

G = A ' Var (x) B+ Var (¢)
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where Var (x) is the covariance matrix for the observed a’s, B contains maximum like-
lihood estimates, and Var(s) = 1 for ordered probit and #?/3 for ordered logit. Then
the y*-standardized coefficient for «y is

BV = =
which can be interpreted as follows:

For a unit increase in zy, y* is expected to increase by ﬁks-"' standard devi-
ations, holding all other variables constant.

The fully standardized coefficient is

s TPk
oy

which can be interpreted as follows:

For a standard deviation increase in @y, y* is expected to increase by B
standard deviations, holding all other variables constant.
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These coefficients are computed using listcoef with the std option. For example,
after fitting the ordered logit model,

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog
(output omitted ) .

. listcoef, std help

ologit (N=5620): Unstandardized and standardized estimates

Dbserved SD: 0.6749
Latent SD: 2.1437

b z P>|z| bStdX bStdY  bStdXY SDofX
female
female 0.0162 0,298 0.765 0.008 0.008 0.004 0.498
vhite
white 0.2363 3.277 0.001 0.092 0.110 0.043 0.389
year
1996 -0.0799 -1.188 0.247 -0.040 -0.037 -0.019 0.498
2012 -0.5039 -6.594 0.000 -0.233 -0.2356 -0.109 0.463
educ ] ;
hs only 0.3706 4.730 0.000 0.183 0.173 0.085 0.493
college 1.6666 15.994 0.000 0,670 0.730 0.313 0.428
age -0.0488 -5.308 0.000 -0.826 -0,023 -0.386 16.897
c.age#tc.age 0.0007 7.646 0.000 1.202 0.000 0.661 1695.148
income 0.0116 22.203 0.000 0.770 0.005 0.359 66.258
b = raw coefficient
z = z-score for test of b=0
P>lz| = p-value for z-test
bStdX = x-standardized coefficiant
bStdY = y-standardized coefficient
bStdXY = fully standardized coefficient
SDofX = standard deviation of X

In our example, we can think of the dependent variable as measuring subjective social
standing. Consequently, examples of interpretation are as follows:

The subjective social standing of those with a high school degree as their
highest degree is 0.17 standard deviations higher than that of those who do
not have a high school diploma, holding all other variables constant.

Each standard deviation increase in honsehold income increases support by
0.36 standard deviations, holding all other variables constant.
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Because the coefficients in the columns b and bStdX are not based on standardizing y°,
they should not be interpreted. And while 1istcoef presents coefficients for age. these
should not be interpreted becanuse you cannot change age while holding age-squared
constant. An advantage of the methods of interpretation using probabilities that we
discuss later in the chapter is that they can be used more simply when polynomials or
interactions are in the model.

Although we do not often use coefficients for the marginal change in y* to interpret
the ORM, we believe that this is a much better approach than fitting the LRM with an
ordinal dependent variable and interpreting the LRM coefficients.

7.8.2 Odds ratios

The ordinal logit model (but not the ordinal probit model) can also be interpreted using
odds ratios. Equation (7.2) defined the ordered logit model as

.Q(:m! > (X) =exp (Tm — x,S}

For example, with four ontcomes we would simultaneously estimate the three equations

e yi5y (x) = exp (n —xB)
g2 (x) = exp (r2 — x8)
Qeyysa (x) = exp(r3 —x8)

Using the same approach as shown for binary logit, the effect of a unit change in g
equals
n'_-‘_.ml,‘--m (X. Ty + 1) = e'ﬂ" 1

Qj( m|>m (x! wk) eBk

The value of the odds ratio does not depend on the value of m, which is why the
parallel regression assumption is also known as the proportional-odds assumption. We
could interpret the odds ratio as follows:

For a unit increase in o, the odds of a lower outcome compared with a higher
outcome are changed by the factor exp (—fk), holding all other variables
constant.

For a change in xy of 4§,

ng[)m (x, Ty + 'SJ T — 1
Qi (X, 2x) = exp(=8x fi) = exp (d x B)

which we interpret as follows:

For an increase of 4 in xg, the odds of a lower outcome compared with
a higher outcome change by a factor of exp(—d x Bg), holding all other
variables constant.

-
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Notice that the odds ratio is derived by changing one variable, g, while holding all
other variables constant. Accordingly, you do not want to compute the odds ratio for
a variable that is included as a polynomial (for example, age and age-squnred) or is
included in an interaction term.

The odds ratios for a unit and a standard deviation change of the independent
variables can be computed with listcoef, which lists the factor changes in the odds of
higher versus lower outcomes. You could also obtain odds ratios by using the or option
with the ologit command. Here we request odds ratios for only white, year, income,
and age:

. listcoef white year income age, help
ologit (N=5620): Factor change in odds
Odds of: >m vs <=p

b z P>lz| e’b  e"bStdX SDofX
white
white 0.2363 3.277 0.001 1.267 1.086 0.389
year
1996 -0.0798 -1.168 0.247 0,923 0.961 0.488
2012 -0.5039 -6.594 0.000 0.604 0.792 0.463
age -0.0488 -5.308 0.000 0.952 0.438 16.887
c.age#c.age 0.0007 T.646 0.000 1.001 3.328 1695.148
income 0.0116 22.203 0.000 1.012 2.160 66.258

b = raw coefficient
z = z-score for test of b=0
P>|z| = p-value for z-test

e”b = exp(b) = factor change in odds for unit increase in X
e"bStdX = exp(beSD of X) = change in odds for 8D increase in X
SDofX = standard deviation of X

Here are some interpretations:

The odds of reporting higher subjective class standing are 0.60 times smaller
in 2012 than they were in 1980, holding all other variables constant.

For a standard deviation increase in income, the odds of indicating higher
social standing increase by a factor of 2.16. holding all other variables con-
stant.,

Althongh odds ratios for age are shown, these should not be interpreted because you
cannot change age while holding age-squared constant. If you prefer, you can compute
coefficients for the percentage change in the odds by adding the percent option:
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. listcoef white year income, percent
ologit (N=5620): Percentage change in odds
Odds of: >m vs <=m

b z P>lz| % %Stdx ShofX
white
white 0.2363 3.2T7 0.001 26.7 9.6 0.359
year
1996 -0.0799 -1.168 0.247 L I =3.9 0.498
2012 -0.56039 -6.594 0.000 ~39.6 ~20.8 0.463
income 0.0116 22.203 0,000 1.2 116.0  66.258

These results can be interpreted as follows:

The odds of reporting higher subjective class standing are 40% smaller in
2012 than they were in 1080, holding all other variables constant.

For a standard deviation increase in income, the odds of indicating higher
social standing increase by 116%, holding all other variables constant.

So far. we interpreted the factor changes in the odds of lower outcomes compared
with higher outcomes. This is done because the model is traditionally written in terms
of the odds of lower versus higher ontcomes, Q< ism (%), leading to the factor change
coefficient of exp (—/Ak). We could just as well consider the factor change in the odds
of higher versus lower values; that is, changes in the odds €5 q)<m (%), which equals
exp (3x). These odds ratios can be obtained by adding the option reverse:

. listcoef year, reverse
ologit (N=5620): Factor change in odds
Ddds of : <=m va >m

b z P>|z| ¢"b e bStdX ShofX
year
1996 -0.0799 -1.1B8 0.247 1.083 1.041 0.498
2012 -0.5039 -6.594 0.000 1.655 1.262 0.463

Notice that the output now says 0dds of : <=m vs >m instead of Odds of: >m vs <=m,
as it did earlier. This factor change of 1.66 for 2012 is the inverse of the earlier value
0.60. Our interpretation is the following:

The odds of reporting lower social standing are about 1.66 times larger in
2012 than they were in 1980, holding all other variables constant.

When presenting odds ratios. some people find it easier to understand the results if
vou talk about increases in the odds rather than decreases. That is, it is clearer to say,
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“The odds increased by a factor of 27 than to say, “The odds decreased by a factor of
0.5". If you agree, then you can reverse the order when presenting odds.

When interpreting odds ratios, remember three points that were discussed in detail
in chapter 6. First, because odds ratios are multiplicative coefficients, positive and
negative effects should be compared by taking the inverse of the negative effect (or
vice versa). For example, a negative factor change of (1.5 has the same magnitude as a
positive factor change of 2 = 1/0.5. Second. interpretation assumes only that the other
variables have been held constant, not held at specific values. Third, a constant factor
change in the odds does not correspond to a constant change or constant factor change
in the probability.

As with binary outcomes, we discuss odds ratios because they are commonly nsed
with these models and provide a compact means of interpretation. Yet we think they are
overused, especially in data based on population samples instead of case-control studies,
The meaning of the magnitude of multiplicative changes in odds is often unclear to
audiences, perhaps even more so when thinking about transitions across thresholds that
divide sets of categories. We are perhaps inclined to favor j-standardized coefficients
over odds ratios for ordinal outcomes; the idea of a standard deviation change in the
latent variable allows resulis to be understood more clearly because of the analogue to
linear regression. Better still, however, are methods of interpretation that are based on
predicted probabilities, which we discuss next.

7.9 Interpretations based on predicted probabilities

As noted, we usually prefer interpretations based on predicted probabilities. We find
these interpretations to be both clearer for onr own thinking and mare effective with
audiences. Probabilities can be estimated with the formula

—~

Priy=m|x)=F (?m = Xﬁ) — I (?m—l '-X.B)
Cumulative probabilities are computed as

ﬁ(y-gmlx)= Zf’_;'(y:klx):F(?m—xa)

k<m

The values of x can be based on observations in the sample or can be hypothetical
values of interest.

The following sections use predicted probabilities in a variety of ways. We begin by
examining the distribution of predictions for each observation in the estimation sample
as a first step in evaluating your model. Next. we show how marginal effects provide
an overall assessment of the impact of cach variable, To focus on particular types of
respondents, we compute predictions for ideal types defined by substantively motivated
characteristies for all independent variables. Extending methods from chapter 6, we
show how to statistically test differences in the predictions between ideal types. For
categorical predictors, tables of predictions computed as these variables change is an
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effective way to demonstrate the effects of these variables, An
to decide where to hold the values of other variables when m
we plot predictions as a continuous independent variable cha

710 Predicted probabilities with predict

After fitting a model with ologit or oprobit, a useful first
model is to compute the in-sample predictions with the comma

predict ngwuarf[newvarf[rwum_ar.?...]] [if] [m]

where you specify one new variable name for each category of
For instance, in the following example, predict specifies that
prworking, prmiddle. and prupper be created with predicted val
come categories:

. ologit class i.female i.white i.year i.educ c.age®fc.age
(output omitted )

. predict prlower prworking prmiddle prupper
(option pr assumed; predicted probabilities)

The message (option pr assumed; predicted probabiliti
can compute many different quantities. Becaunse we did not s
which quantity to predict, the defanlt option pr for predicted p

Predictions in the sample are useful for getting a general s
in your model and can be useful for uncovering problems in
if there are observations where the predicted probability of
other onteome) are noticeably larger or smaller than the ot
check whether there are data problems for those observations.
can also give you a rough idea of how large marginal effects can
If the range of probabilities is small within the estimation
independent variables will also be small. If the distribution of
modes—let’s say, two—it suggests there could be a hinary pre
Although sometimes the distribution of predictions leads to addy
model revision, often it only assures you the that predictio
you are ready for the methods of interpretation that we Consic
this chapter.
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An easy way to see the distribution of the predictions is with dotplot, ene of our
favorite commands for quickly checking data:

label var prlower "Pr(Lower)"

. label var prworking “Pr(Working)"
. label var prmiddle "Pr(Middle)"

. label var prupper "Pr(Upper)"

. dotplot prlower prworking prmiddle prupper,
> ylabel(0(.25)1, grid gmin gmax) ytitle("Probability")

: ‘ L

Pr(Lc'mn Pr(\m;mna: Pf{Midde]

The predicted probabilities for the extreme categories of lower and upper tend to be less
than 0.20, with most predictions for the middle categories falling between 0.25 and 0.75.
The probabilities for the middle two categories are generally larger than the probabilities
of the extreme categories, reflecting the higher observed proportions of observations for
these categories. The long tail for the probabilities for “Upper” lead us to examine the
data further, but no problems were found. If you look at the probabilities of identifying
as working class, you will notice a spike in the number of cases near its highest predicted
probability, around 0.65. This is common for middle categories when plotting predicted
probabilities for the ORM and should not be cause for concern. For extreme categories,
the predicted probabilities of individual observations in the ORM are bound only by 0
and 1. For middle categories, however, the distance between estimated cutpoints implies
a maximum predicted probability, where a greater distance between cutpoints implies

a higher maximum (see section 7.15 for more about why this is sa).

In this example, with predict we specified separate variables for each outcome
category. Because of this, predict understood that we wanted predicted probabilities
for each category. Had we specified only one variable, predict would generate predicted
values of y*, not probabilities. To compute the predicted probability for a single outcome
category, vou need the outcome (#) option, such as predict prmiddle, outcome(3).
The # specified with outcome(#) is the rank position of the category from lowest to
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highest. If the outcome variable is numbered with consecutive integers starting with 1
as in our example, then # corresponds to the outcome value. However, if our ontcome
values were numbered 0, 1, 2, and 3, then outcome(1) would provide the predicted
probability that y = 0, not that y = 1. We find this extremely confusing in practice. To
avoid it, we strongly recommend numbering outcome values with consecutive integers
starting with 1 whenever working with ordinal or nominal outcomes.

Examining predicted probabilities within the sample provides a first, quick check
of the model. To understand and present the substantive findings, however, you will
usually want to compute predictions at specifie, substantively informative values.

7.11 Marginal effects

The marginal change in the probability of outcome m is computed as

APr(y =m | x} ()F‘(‘r,.. x3) OF (-1 — xB)
g, Oy Oz

which is the slope of the curve relating x to Pr(y=m|x), holding all other variables
constant. The value of the marginal change depends on the value of z; where the change
is evaluated, as well as the values of all other x's. Because the marginal change can
he misleading when the probability curve is changing rapidly, we usually prefer using
discrete change. The discrete change is the change in the probability of m for a change
in g from the start value z1'*™ to the end value z:‘,;"" (for example, a change from
xr = 0 to o = 1), holding all other 2’s constant. Formally,

APr(y=m|x)
A'Ik (zar.nrl.. -3 It-‘mi)

=Pr(y=m | x,z% = 2f") — Pr(y =m|x,z} = 23"")

where Pr(y = m | x.x)) is the probability that y = m given x, not.mg a specific value
for 4. The change indicates that when xy, changes from 2§ to 2§, the probability of
outcome m changes by A Pr(y = m | x) /Azy, holding all other varmbles at the specific
values in x. The magnitude of the discrete change depends on the value at which
starts, the amount of change in xy, and the values of all other variables.

For both marginal and discrete change, we can compute average marginal effects
(AMEs), marginal effects at the mean (MEMs), or marginal effects at representative
values other than the means. As with the BRM, we find AMEs to be the most useful
summary of the effects, thus we consider AMEs for the ORM in this section. MEMs are
considered briefly in section 7.15. Examining the distribution of effects over observations
is also valuable. To save space. we do not illustrate this in the current chapter, but this
can be done using the commands presented in section 8.8.1.

To illustrate the use of marginal effects in ordinal models, we begin by examining
the average marginal change for income. The marginal change can be computed with
mchange, where we select the variable income and use amount (marginal) to request
only marginal changes without any discrete changes. Because we have not included the
atmeans option, mchange computes the AME over all observations:
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. mchange income, amount(marginal)
ologit: Changes in Pr(y) | Number of obs = 5620
Expression: Pr(class), predict(outcome())

lower working middle upper
income
Marginal -0.001 -0.002 0.002 0.000
p-value 0.000 0.000 0.000 0.000
Average predictions
lower working middle upper
Pr(y|base) 0.071 0.460 0.434 0.034

The marginal changes are in the row labeled Marginal, with the significance level for the
test of the hypothesis that the change is 0 listed in the row p-value. In this example, the
marginal changes are all less than 0.003 in magnitude, but the p-values are nevertheless
significant.” We see that on average higher income decreases identification with lower
and working class, while increasing identification with middle and upper class. Across
all categories, the AMEs must sum to 0, because any increase in the probability of one
category must be offset by a decrease in another category. The results in the output
might not sum exactly to 0, however, becanse of rounding. The average predicted
probabilities of each outcome are listed below the table of marginal changes. The
average predicted probability of someone identifying as lower class is 0.07, as working
class is 0.46. and so on. These probabilities must. of course, sum to 1.

In this example, the marginal changes with respect to income are small, and it
is difficult to grasp how large the effects of income are in terms of changes in the
probabilities of class identification. A marginal change is the instantaneous rate of
change that does not correspond exactly to the amount of change in the probability for a
change of one unit in the independent variable. If the probability curve is approximately
linear where the change is evaluated, the marginal change will approximate the effect
of a unit change in the variable on the probability of an outcome. The best way to
determine how well the marginal change approximates the discrete change is to compute
the discrete change, which we do next.

The variable income is measured in thousands of dollars. Looking at the descriptive
statistics for this variable,

. sum income
Variable | Obs Mean S5td. Dev. Min Max

income | 5620 68.07737 66.25833 .51206  324.2426

we see that the range is over $300,000, so a unit change is too small for describing
an effect of income on class identification. Another way of thinking about this is that
a $1,000 difference in income is substantively small compared with what we might

4. If you wanted more decimal places shown for the changes, you could add the option dec(6), for
example,
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anticipate would have an appreciable effect on whether people view themselves as, for
example, working class rather than middle class. By default, mchange computes discrete
changes for both a l-unit change and a standard deviation change, where we use brief
to suppress showing the average probabilities:

. mchange income, brief
ologit: Changes in Pr(y) | Number of obs = 5620
Expression: Pr(class), predict{outcome())

lower working middle upper

income
+1 =0.001 -0.002 0.002 0.000
p-value 0.000 0.000 0.000 0.000
+3D -0.036 -0.119 0.126 0.030
p-value 0.000 0.000 0.000 0.000
Margipal ~0.001 -0.002 0.002 0.000
p-value 0.000 0.000 0.000 0.000

We can interpret the results for a change of a standard deviation in income as follows:

On average, a standard deviation increase in income (about $66,000) is as-
sociated with a 0.036 decrease in the probability of identifying as lower class
and a 0.119 decrease in identifying as working class. This is offset by an
increase of 0.126 in the probability of identifying as middle class and a 0.030
increase in upper-class identification. All effects are significant at the 0.001
level.

Instead of a standard deviation change, we might be interested in a change of a
specific amount, like a $25.000 increase. It might be tempting to (incorrectly) compute
the discrete change for a 25-unit change in income by simply multiplying the 1-unit
discrete change by 25. Although this will give you approximately the right answer if
the probability curve is nearly linear over the range of the change, in some cases it can
give misleading results and even the wrong sign. To be safe, do not do it! Instead, the
delta(#) option for mchange computes the discrete change as an independent value
changes from the base value to # units above the base value. Here we use delta(25):

. mchange income, delta(25) amount(delta) brief
ologit: Changes in Priy) | Number of obs = 5620
Expression: Pr(class), predict(outcome())

| lower  working middle upper

income
+delta -0.016 -0.042 0.049 0.009
p-value 0.000 0.000 0.000 0.000
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We can interpret the results as follows:

On average, a §25,000 change in income is associated with a 0.049 increase
in the probability of identifying as middle class and a 0.042 decrease in the
probability of identifying as working class.

We can also compute changes in the predicted probability as a continnous variable
changes from its minimum to the maximumn by specifying the option amount (range):

. mchange income, amount(range) brief
ologit: Changes in Pr(y) | Number of obs = 5620
Expression: Pr(class), predict(outcome())

| lover working middle upper

income
Range -0.112 -0.514 0.371 0.255
p-value 0.000 0.000 0.000 0.000

With a variable like income where there might he a few respondents with very high
incomes, a trimmed range might be more informative, Here, by specifying trim(8), we
exarnine the effect of a change from the 5th percentile of income to the 95th percentile:

. mchange income, amount(range) trim(5) brief
ologit: Changes in Pr(y) | Number of obs = 5620
Expression: Pr(class), predict(outcome())

| lower working middie upper

income
S% to 95) -0.084 -0.3656 0.365 0.074
p-value 0.000 0.000 0.000 0.000

The effects are substantially smaller, most noticeably for those identifying as upper
clags. If you look carefully, yon will notice that as a result of decreasing the amount of
change in income, the change in the probability of middle-class affiliation is increasing.
The reason for this apparent anomaly is explained in section 7.15.

The mchange command uses margins to compute the changes. If you want the
convenience of mchange but also want to see how margins is being used, you can
specify the option commands to see the margins commands used by mchange or specify
the detail option to obtain the full margins ontput.

7.11.1 Plotting marginal effects

As we suggested for the BRM, the AME is a valuable tool for examining the effects of
your variables, and we often compute these effects for an initial review of the results of a
model, Without doubt, AMESs are far more informative than the parameter estimates or

5. mchange does not present the values of income at the Gth and 95th percentiles;, bub these can be
ensily computed using the sumparize command with the detail option.
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odds ratios. There is, however, a lot of information to be absorbed. By default, for each
continuous variable, mchange computes the marginal change and diserete changes for
a l-unit and a standard deviation change in continuous variables; for factor variables,
mchange computes a discrete change from 0 to 1. One way to limit the amount of
information is to only look at discrete changes of a standard deviation for continuons
variables. For example, '

. ologit class i.female i.vhite i.year i.educ c.age##c.age income, nolog
(output omitted }

. mchange, amount({sd) brief

ologit: Changes in Pr{y) | Number of obs = 5620

Expression: Pr(class), predict(outcome())

lower working middle upper
famale
female va male -0.001 -0.002 0.003 0.000
p-value 0.766 0.768 0.765 0.765
white
white vs nonwhite -0.0186 -0.031 0.041 0.006
p-value 0.002 0.001 0.001 0.001
year
1996 vs 1980 0.004 0.012 -0.014 -0.003
p-value 0.243 0.249 0.246 0.253
2012 vs 1980 0.033 0.067 -0.086 -0.014
p-value 0.000 0.000 0.000 0.000
2012 vs 1986 0.029 0.055 -0.073 -0.011
p-value 0.000 0.000 0.000 0.000
educ
hs only vs not hs grad -0.028 -0.047 0.070 0.006
p-value 0.000 0.000 0.000 0.000
college vs not hs grad -0.079 -0.262 0.286 0.046
p-value 0.000 0.000 0.000 0.000
college vs hs only -0, 0860 =0.205 0.216 0.039
p-value 0.000 0.000 0.000 0.000
age
+8D -0,018 =-0.071 0.067 0.022
p-value 0.000 0.000 0.000 0.000
income
+8D -0.036 ~0.118 0.126 0.030
prvalue 0.000 0.000 0.000 0.000

Even so, there are a lot of coefficients. Fortunately, they can be qui(:klv understood
by plotting them. To explain how to do this, we begin by examining the AMEs for a
standard deviation change in income and age. Because the model includes age and age-
squared, when age is increased by a standard deviation, we need to increase age-squared
by the appropriate amount. This is done automatically by Stata because we entered
age into the model with the factor-variable notation c.age##c.age. To compute the
average discrete changes for a standard deviation increase, type
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. mchange age income, amount(sd) brief
ologit: Changes in Pr(y) | Number of obs = 5620
Expression: Pr(class), predict(outcome())

lower working middle upper
Bge
+5D -0.018 -0.071 0.067 0.022
p-value 0.000 0.000 0.000 0.000
income
+8D -0.036 -0.119 0.126 0.030
p-value 0.000 0.000 0.000 0.000

mchange leaves these results in memory, and they are used by our mchangeplot con-
mand to create the plot.

Social class: Lalower Weworking. Msmiddle  |stip

age
- w L v M
Income|
A w L u M
. A N .
Marginal Effect on Owicome Probability 1

The horizontal axis indicates the magnitude of the effect, with the letters within the
graph marking the discrete change for each ontcome. For example, the M in the row for
income shows that, on average for a standard deviation change in income, the probability
of identifving with the middle class increases by 0.126. Overall, it is apparent that the
effects of income are larger than those for a standard deviation change in age. For
both variables, the effects are in the same directions with the same relative magnitudes.
(Before proceeding, you should make sure yon see how the graph corresponds to the
output from mchange above.)

The plot was produced with the following command:

michangeplot age income, symbols(L W M U) min(-,15) max(.18) gap(.08) ///
title("Social class: L=lower W=working M=middle U=upper", /1
aize(medswmall)) ysize(1.3) scale(2.1)

After the variables are selected. symbols() specifies the letters to use for each outcome.
By default, the first letters in the value labels are used, but here we chose to use capital
letters instead of the lowercase letters used by class's value labels. The options min(),
max(), and gap() define the tick marks and labels on the x axis. The ysize() and
scale() options affect the size of the graph and the scaled font size. Details on all
options for mchangeplot can be found by typing help mchangeplot.

Next, we consider the discrete change for a change from 0 to 1 for the binary variables
female and white:
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. mchange female white, brief
ologit: Changes in Pr(y) | Number of obs = 5620
Expression: Pr(class), predict(outcome())

lower working middle upper

female
female ve male -0,001 -0,002 0.003 0.000
p-valua 0.766 0.766 0.76 0.766

white
white vs nonvhite -0.016 -0.031 0.041 0.006
p-value 0.002 0.001 0.001 0.001

When producing the graph, we nse the option sig(.086) to add an asterisk (*) to effects
that are significant at the 0,05 level:

female/
e w
white i
Lo WL M

35 -4 05 0 05 . 15
Marginal Eftact on Outcome Prababiiity

The effects of being female are small and nonsignificant, which is expected given that the
coefficient for female is not significant. For the contrast between whites and nonwhites,
on the other hand, we see significant differences, which we interpret as follows:

The predicted probability of identifying as middle class is on average 0.04
higher for a white person than for an otherwise similar nonwhite person,
while the predicted probability of identifying as working class is 0.03 lower.
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For factor variables that have more than two categories, we want to examine the
contrasts between all categories. Consider variables year and educ, each of which have
three categories:

. mchange educ year, brief
ologit: Changes in Pr(y) | Number of obs = 5620
Expression: Pr(clase), predict(outcome())

lower working middle upper

educ
hs only vs not hs grad -0.029 -0.047 0.070 0.006
p-value 0,000 0,000 0,000 0:000
college vs mot hs grad -0.079 -0.252 0.286 0.046
p-value 0.000 0.000 0.000 0.000
college vs hs only -0.050 -0.205 0.216 0.039
p-value 0.000 0.000 0.000 0.000

year
1996 vs 1980 0.004 0.012 -0.014 -0.003
p-value 0.243 0.249 0.246 0.253
2012 vs 1980 0.033 0.067 -0.086 -0.014
p-value 0.000 0.000 0.000 0.000
2012 vs 1996 0.029 0.068 -0.073 =0.011
p-value 0.000 0.000 0.000 0.000

mchange cormputes all the pairwise contrasts. For example, with year the output com-
pares those answering the survey in 1996 with those in 1980, in 2012 with 1980, and in
2012 with 1996. One of the contrasts is redundant in the sense that it can be computed
from the other two. For example, looking at lower-class identity, the change in proba-
bility of 0.004 from 1980 to 1996 plus the change of 0.029 from 1996 to 2012 equals the
change of 0.033 from 1980 to 2012. Still, it is often useful to examine all contrasts to
find patterns. For this, we find that plotting the effects works well:

mchangeplot year, ///
symbols(L W M U) min(~.15) max(.15) gap(.05) ///
sig(.05) leftmargin(5) ///
title("Social class: L=lower W=working M=middle U=upper", ///
size(medsmall)) ysize(1.3) scale(2.1)

The significance() option specifies that *'s should be added to the plot symbals if
the effect is significant at the given level— in this case, 0.05. The leftmargin() option
increases the left margin of the graph to accommodate the value labels used with factor
variables, The argument 5 is the percentage of the graph size to be added to the left.
The resulting graph looks like this:



7.11.1 Plotting marginal effects 349

Social class: L=lowar Waworking Memiddle Usupper
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It is immediately apparent that there was little change from 1980 to 1996, while much
larger and statistically significant changes occurred in 2012 compared with either of the
earlier survey years.

Next, we plot the effects for educ without the sig() option because all the effects
are significant:

P o WL U M
u-um-u?du&?c w L | ‘U M
R S w L | u M
-3 -2 =T, 0 R 2 3

These effects are larger than those for the year of the survey (notice that the x scale is
not the same in the two graphs). Even though effects are statistically significant, the
largest effects are comparing those who have a college degree with others, regardless of
whether they have a high school diploma or did not graduate. With the overall pattern
in mind, we can interpret multiple contrasts for a single category as follows:

On average, having graduated from college increases a person's probability
of identilying as middle cluss by 0.22 compared with having graduated only
from high school, and by 0.29 compared with not having graduated from
high school.

Alternatively. we could interpret multiple categories for the same contrast:

Compared with those who have graduated only from high school, we find that
graduating from college on average increases the probability of identifying
as upper class by 0.04 and of identifying as middle class by 0.22, while the
probability of identifying as working class decreases by 0.21 and of identifying
as lower class by 0.05.



|

350 Chapter 7 Models for ordinal outeonies

7.11.2 Marginal effects for a quick overview

AMEs are a much better way to obtain a quick overview of the magnitudes of effects
than are the estimated coefficients. After fitting your model, you can obtain a table of
all effects by simply typing mchange, perhaps restricting effects to discrete changes of 5
standard deviation:

. ologit class i.female i.vhite i.year i.educ c.age##c.age income, nolog
(output omitted )

. mchange, amount(sd) brief

ologit: Changes in Pr(y) | Number of obs = 5620

Expression: Pr(class), predict(outcome())

lower working middle upper
female
female vs male =0.001 =0.002 0.003 0.000
p-value 0.766 0.765 0.765 0.785
white
white ve nonvhite -0.016 =0.031 0.041 0,006
p-value 0.002 0.001 0.001 0.001
year
1996 vs 1980 0.004 0.012 -0.014 -0.003
p-value 0.243 0.249 0.246 10.253
2012 vs 1980 0.033 0.067 -0.086 ~0,014
p-value 0.000 0.000 0.000 0.000
2012 vs 1996 0.029 0.055 -0.073 -0.011
p-value 0.000 0.000 0.000 0.000
educ
hs only vs not hs grad -0.029 -0.047 0.070 0.008
p-valua 0.000 0.000 0.000 0.000
college vs not hs grad -0.079 ~0.252 0.286 0.046
p-value 0.000 0.000 0.000 0.000
college ve hs only -0.050 -0.205 0.216 0.038
p-value 0.000 0.000 0.000 0.000
age 3
+8D -0.018 -0.071 0.067 0.022
p-value 0.000 0.000 0.000 0.000
income ;
+8D -0.036 -0.118 0.126 0.030
p-value 0.000 0.000 0.000 0.000
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With a simple command. you can plot the effects:

. mchangeplot, symbols(L W M U) sig(.05) leftmargin(5)

hpmn.- 'ﬂ
e WU M
- MW

o MU LW

i MU LW

WL U M
L Lo M
T o v
- “:E.B WL UM

Sicoms woooLo Ve

Hia ooy wm ft b i

E

colacn va ot he grad

-26 -2 o 45 2
Marginal Effect on Quicome Probability

A quick review highlights which variables we might want to examine more closely.

7.12  Predicted probabilities for ideal types

Ideal types definie substantively interesting cases in the data by specifying values of the
independent variables. Predicted probabilities for these types of individuals (or whatever
the unit of analysis may be) can be computed with mtable or margins. Unlike marginal
effects, by comparing two or more ideal types, you can compare probabilities as a whole
set of independent variables vary, not just a change in a single variable.

In our example, ideal types can be used to examine what more and less advantaged
individuals looks like and how they differ in their class identification. For instance, we
might want to compare the following hypothetical individuals surveyed in 2012:

e A 25-vear-old, nonwhite man without a high school diploma and with a household
income of $30,000 per year.

e A (0-year-old, white woman with a college degree and with a household income
of $150,000 per year.

To compute the predictions, we begin by using margins before showing how mtable
can simplify the work. We use at() to specify values of the independent variables, If
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there are variables whose values are not specified with at(), we can use the option
atmeans to assign them to their means. Otherwise, by default, margins and mtable
would compute the average predicted probability over the sample for the unspecified
independent variables. We do not want to do this because ideal types should be thought
of as hypothetical observations, so averaging predictions over observations for some
independent variables muddles the interpretation,

Using values we specified for our first ideal type, we run margins:

. margins, at(female=0 whites0 year=3 aduc=1 age=25 income=30)

Adjusted predictions Numbar of obs = 5620
Model VCE : DIM

Expression : Pr(class==1), predict()
at : female =

@

(=%

e

(2]
LI BB ]
E8rwoo

Delta-method
Margin Std, Err. z  Plzl [95% Conf. Intervall

—cons .2300032 0202718 11.36  0.000 -1902712 . 2697352

margins can only compute a prediction for a single outcome. Because we did not
specify which outcome, margins used the default prediction, which is described as
Pr(class==1), predict(). This is the predicted probability for the first outeome.
Hence, we find that the predicted probability of identifying as lower class for our first
ideal type is 0.23.

To compute probabilities for other outcomes, we use the predict(outcome(#))
option, where # is the value of the outeome for which we want a prediction. To compute
the probabilities for all values of class, we must run four margins commands that vary
the outcome value:

margins, at(female=0 white=0 year=3 educ=1 age=25 income=30) ///
predict(outcone(1))

margins, at(female=0 white=0 year=3 educ=1 age=25 income=30) ///
predict (outcome(2))

margins, at(female=0 white=0 year=3 educ=! age=25 income=30) ///
predict(outcome(3))

margins, at(female=0 white=0 year=3 educ=1 age=25 income=30) ///
predict{outcoma(4))

It is easier, however, to nse mtable, which computes predictions for all outcome cate-
gories and combines them into a single table. The option ¢i indicates that we want the
ontput to show the confidence interval.
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. mtable, at(female=0 white=0 year=3 educ=1 age=25 income=30) ci
Expression: Pr(class), predict(outcome())

lower vorking middle upper
Pr(y) 0.230 0.634 0.133 0.003
11 0.190 0.613 0.108 0.002
ul 0.270 0,658 0.159 0.004
Spacified values of covariates
fomale vhite year educ age incone
Current 0 0 3 1 25 30

The results for category lower match those from margins above, plus we have predic-
tions for the other outcomes.

We could also compute predicted probabilities for both ideal types at the same time:

. mtable, atright norownum width(7)
> at(female=0 white=0 year=3 ed=1 age=25 income=30)

> at(female=1 white=1 year=3 ed=3 age=60 income=150)
Expression: Pr(class), predict{outcome())
lower working middle upper female  white educ age income
0.230 0.634 0.133 0.003 o 0 1 25 30
0.o008 0.138 0.759 0.096 1 1 3 €0 180
Specified values of covariates
| year
Current ‘ 3

The differences between the ideal types are striking: While our first type has a predicted
probability of only 0.13 of identifving as middle class, our second has a probability of
0.76. The second type has a probability of less than 0.01 of identifying as lower class,
while the first type has a probability of 0.23. The example makes plain the large effect
that these variables together have on class identification.

Although having the results in a single table is much more convenient than having
to combine results from four margins commands, we also did several things to make
the output clearer. First, we used value labels for the dependent variable class to label
the columns with predictions. Because it is easy to be confused about the outcome
categories when using these models, we advise always assigning clear value labels to
vour dependent variable (see chapter 2). Option atright places the values of the
covariates to the right of the predictions. Because the values of the covariates clearly
identify the rows, we turned off the row numbers in the table of predictions by using
norownum. And to fit the resnlts more compactly, we specified the column widths with
width(7).
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7.12.1 (Advanced) Testing differences between ideal types

Although we regard this section as extremely useful, we mark it as
advanced because it requires a firm grasp of using loops and local macros
in Stata. If yon are still getting used to these, you might want to skip
this section until you are comfortable with both.

We may want to know whether a difference between ideal types is statistically signif-
icant for the same reason that we may perform a significance test for a set of coefficients:
we are considering a change that involves multiple variables, and we want to evaluate
how likely it is that we would observe a difference this large just by chance. Although the
differences between predictions for our two ideal types are almost certainly significant,
we can test this by extending methods used for hinary outcomes.

To test differences in predictions, we need to overwrite the estimation results from
ologit with the predictions generated by margins. An inherent limitation in margins
is that posting can only be done for a single ontcome. That is, we cannot post the
predictions for our four outcomes at one time. (We hope this will be addressed in future
versions of margins.) To deal with this inconvenience, we will use a forvalues loop
to repeat the tests for each outcome, First, we fit the model and store the estimates,
because we will have to restore the model results after we post the predictions for a
particular outcome:

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog
(output omitted )
. estimates store olm

Next, we compute tests for each of the four outcome categories by using the following
commands:

. mlincom, clear
. forvalues iout = 1/4 { // start loop

2. quietly {

3. mtable, out( iout”) post
> at(female=0 white=0 years=3 ed=1 age=25 income=30)
> at(female=1 white=1 year=3 ed=3 age=60 income=150)

4. mlincem 1 - 2, stats(est pvalue) rowname(outcome ~iout”) add
5. estimates restore olm
6.
7.

}
} // end loop

We start with mlincom, clear to erase previous results from mlincom before we
accnmulate the new results that we will use to make our table. The forvalues { ...}
loop runs the code between braces once for each outcome. We use quietly { ...} so
that the output from mtable and mlincom is not displayed. Instead, we will list results
after the loop is completed. Within the loop, the mtable option post saves the estimates
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for outcome " iout” to the matrix a(b) so that mlincom can test the difference between
the predictions for the first and second ideal types. The mlincom command uses option
add to collect the results to display later.

After the loop, running mlincom without options displays the results we just com-
puted. The column named lincom has the linear combination of the estimates—in this
case, the difference in predictions—while column pvalue is the p-value for testing that
the difference is 0:

. mlincom
| lincom pvalue
outcome 1 0.222 0.000
outcome 2 0.496 0.000
outcome 3 -0.626 0.000
outcome 4 -0.092 0.000

As we anticipated, the predicted probabilities are significantly different for the two ideal
types for each of the four ontcomes.

7.13 Tables of predicted probabilities

When there are substantively important categorical predictors in the model, examining
tables of predicted probabilities over values of these variables can be an effective way
to interpret the results. In this example, we use mtable to look at predictions over the
values of the year of the survey. which correspond to 1980, 1996, and 2012:

. mtable, at(year=(1 2 3)) atmeans norownum
Expression: Pr(class), predict(ocutcome())

year lower working middle upper
1 0.049 0.473 0.462 0.016
2 0.053 0.489 0.443 0.0156

3 0.078 0.565 0.347 0.010
Specified values of covariates

1. 1. 2. 3.
female vhite educ educ age income
Current | 548 .814 .682 241 45.2 68.1

The atmeans option holds other variables at their means in the estimation sample. We
conclude the following:

Changing only the year of the survey, and with income measured in 2012
dollars for all survey vears, the probability of a respondent identifying as
working class increased from 0.47 in 1980 to 0.57 in 2012, while the proba-
bility of identifying as middle class declined from 0.46 to 0.35.
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To obtain confidence intervals for the predictions, we use the option stat (i), which
could be abbreviated simply as ci:

. mtable, at(year=(1 2 3)) atmeans stat(ei)
Expression: Pr(class), predict(outcome())

year lower working middle upper
Pr(y) 1 0.049 0.473 0.452 0.016
11 1 0.042 0,447 0.433 0.013
ul 1 0.056 0.499 0.491 0.020
Pr(y) 2 0.053 0.489 0.443 0.016
11 2 0.046 0.468 0.421 0.012
ul 2 0.059 0.510 0.466 0.018
Pr(y) 3 0.078 0.566 0.347 0.010
11 3 0.068 0.543 0.321 0.008
ul 3 0.088 0.587 0.372 0.012
Specified values of covariates
bs 1. 2. 3.
female white educ adne age income
Current .549 .814 .H82 241 45.2 68.1

The lower and upper bounds of the intervals print on separate rows beneath each pre-
dietion. For example:

Holding independent variables at their sample means, respondents in 2012
had a 0.078 probability of identifying as lower class (95% ©1: [0.068, 0.088]).

We might also want to generate tables for a combination of categorical independent
variables. For example, how does class affiliation vary by race for the three years of our
survey?®

. mtable, at(year=(1 2 3) white=(0 1)) atmeans norownum
Expression: Pr{class), predict(outcome())

white year lower  working niddle upper
0 1 0.059 0.511 0.417 0.013
0 2 0.063 0.526 0.399 0.012
o 3 0.093 0.593 0.306 0.o08
1 1 0.047 0.464 0.472 0.017
1 2 0.051 0.480 0.454 0.016
1 3 0.075 0.558 0.356 0.010
Specified values of covariates
1. 2. 3.
female educ educ age income
Current | .549 .582 241 45.2 68.1

i, While we are considering the probabilities implied by having year and white in the model as sepa-
rate independent variables, we could also fit a model in which the interaction term i.year#i.white
is included.
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The predictions vary by year within a given value of white. The way in which
variables vary is determined by the order in which the variables are specified with
ologit, not by the order of variables within the at() statement. The table might be
clearer if predictions were arranged to vary by white within each value of year (in
practice, we often have to try it both ways before deciding which is clearer for the
purpose at hand). We can refit the ologit model with year listed before white, or we
can specify the values of year within three separate at () statements:

. mtable, atmeans norownum

> at(year=1 white=(0 1)) // 1980
> at(year=2 white=(0 1)) // 1996
> at(year=3 white=(0 1)) // 2012

Expression: Pr(class), predict{outcome())

white year lower working middle upper
0 1 0.059 0.511 0.417 0.013
1 1 0.047 0.464 0.472 0.047
0 2 0.063 0.526 0.389 0.012
1 2 0.061 0.480 0.454 0.016
0 3 0.083 0.593 0.306 0.008
1 3 0.075 0.558 0.366 0.010
Specified values of covariates
b8 2. 3.
female sduc educ age income
Current | .549 .582 .241 45,2 68.1

The results are exactly the same as before with only the rows rearranged.

In these results, the specified values of the covariates are the same for all predictions,
namely, their global means. A different possibility is that we want the values of other
variables to vary depending on a person’s race and the year of the survey. For example,
suppose that we want to compare whites and nonwhites for different survey years,
holding all other variables constant at their local means within each race-year group.
In other words, instead of looking at predictions when all independent variables except
race and year are held to the same values, we compute predictions when the values of
the other independent variables vary according to the means for whites and for blacks
in different years. To do this, we specify the over() option:
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. mtable, over(year white) atmeans
Expression: Pr(class), predict(outcome())

Chapter 7 Models for ardinal outeomes

1. 2. 3.
female white year educ educ age
1 .659 0 1 447 136 42.6
2 .539 1 1 .553 166 44.5
3 617 0 2 .697 .198 40.1
4 .634 1 2 609 .261 44.7
B .576 0 3 .68 234 44.1
6 .538 1 3 .581 .31 48.8
incoms lower working middle upper
1 46.5 0.093 0.592 0.307 0.008
2 67.7 0.054 0.493 0.439 0.015
3 50.5 0.085 0.579 0,327 0.009
4 70.5 0.048 0.467 0.468 0.017
b 54.3 0.111 0.616 0.266 0.007
6 77.8 0.058 0.507 0.422 0.014
Specified values whore .n indicates no values specified with at()
No at()
Current .m

The means of the independent variables are included in the table and are different for
each row. For example, the values of female, white, year, educ, age, and income in
row 1 are the means for the subsample that is black and responded to the survey in

1980:
. sum female i.educ age income if white==0 & year==1, sep(9)

Variable Obs Mean Std. Dev. Min Max
female 132 .6590809 4758206 4] 1

aduc
hs only 132 . 4469697 4990739 0 1
college 132 -1363636 .3444818 0 i
age 132 42.55303 16.8257 18 83
income 132 46.48708 65.15685 1.57796  267.8147

Returning to the output from mtable. if we look at variable 3. educ, for example, the
difference between row 1 and row 2 shows that a higher proportion of white respondents
had college degrees in 1980 (0.166) than did black respondents (0.136). The differences
between rows 1 and 3 and between rows 2 and 4, on the other hand, reflect that the
proportion of respondents with a college degree increased between 1980 and 1996.

When there are many regressors in the table, it might be easier to see the changing
predictions by listing the value of the regressors (that is, the at() variables) on the
right by using the atright option:
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. mtable, over(year white) atmeans atright

Expression: Pr(class), predict(outcoms())
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1.
lower working middle upper female white
1 0.093 0.5692 0.307 0.008 .6569 0
2 0.054 0.493 0.439 0.015 .539 1
3 0.085 0.579 0.327 0.009 -617 0
4 0.048 0.467 0.468 0.017 .634 1
5 0.111 0.815 0.2686 0.007 576 0
6 0.058 0,507 0.422 0.014 .538 1
2. 3.
year aduc educ age income
1 1 447 .136 42.6 46.5
2 1 .653 .166 44.5 67.7
3 2 .597 .199 40.1 50.5
4 2 .609 .261 44.7 70.5
5 3 .66 .284 4.1 54.3
6 3 .581 .31 45.9 77.8
Specified values where .n indicates no values specified with at()
No at()
Current .1

Using over () in this way yields predictions that reflect the effects of both race and year
and also compositional differences over race and year in the means of the other variables.
In this respect, the predictions are not as simple to interpret as the examples above in
which the values of other characteristics were the same regardless of year and race.
Comparing the predictions we just made with those we made holding the independent
variables to the same values for everyone, we can see the probabilities vary more when
the means vary over groups. Substantively, this indicates that the differences in the
population composition by race and year result in differences in predictions that are
larger than they would be if we assumed that population characteristics were constant
across race and time.

7.14 Plotting predicted probabilities

Plotting predicted probabilities for each outcome can also be useful for the ORM. These
plots illustrate how predicted probabilities change as a continuous,independent variable
changes. With the BRM, we showed two approaches for making plots: directly with
marginsplot or in two steps with mgen and graph. Plotting multiple outcomes, however,
can only be done using the latter technique because marginsplot is limited to plotting
a single outcome,

To illustrate graphing predictions, we consider how the probability of class affiliation
changes as household income changes, holding all other variables at their sample means.
Of course, the plot could ulso be constructed for other sets of characteristics. The option
at (inc=0(25)250) tells mgen to generate predictions as income changes from 0 to 250
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in increments of 25, leading to 11 sets of predictions. The option atmeans holds other
variables to their means. We use stub(CL_) to add CL. (indicating predictions for class)
to the names of variables generated by mgen:

. mgen, at(inceme=(0(26)250)) stub(CL_.) atmeans
Predictions from: margins, at(income=(0(25)250)) atmeans predict(outcome())

Variable (Ubs Unique Hean Min Max Label

CL_pri 11 11 .0439624 .0074601 .1207284 pr(y=lower) from margins
CL_111 11 11 .0385464 .0057745 .1067216 95}, lower limit

CL_ul1l 11 11 .0493784 .0091458 .1347373 ©O5Y% upper limit
CL_income 11 11 1286 0 250 housshold income

CL_Cpri 11 11 0439624 .0074601 .1207294 pr(y<=lower)

CL_pr2 11 11 377087 .1301718 .6238775 pr(y=working) from margins
CL_112 11 11 .3665882 1081524 6070259 95% lower limit

CL_ul2 11 11 .3975758 .1521912 .6407292 95% upper limit

CL_Cpr2 11 11 .4210494 .137632 .744607 pr(y<=working)

CL_pr3 11 11 .5424338 .2492696 7612023 pr(y=middle) from margins
CL.113 11 11 .5212693 .2296227 ,T417022 95Y% lower limit

CL_ul3d 11 11 .5635983 .2689166 .7807024 ©95% upper limit

CL_Cpr3 11 11 .9634833 .8988342 9838766 prly<=middle)

CL_pra 11 11 .0365167 .0061234 .1011667 pr(y=upper) from margins
CL_114 11 11 .030147 .004763% .0B2B8273 95Y% lower limit

CL_uléd 11 11 0428865 .0074829 1195042 95% upper limit

CL_Cpr4 11 1 1 1 1 priy<=upper)

Specified values of covariates

1. 1. 2. 3. 2. 3.
female white year year educ aduc age

.5491103  .8140569 4510676  .3089644 68186056  .2414591 45.15712

Each variable has 11 observations corresponding to different values of income. Variables
containing predicted probabilities are stored in variables named CL_pr#. For example,
CL.pr2 is the predicted probability of identifying as working class, the second category
of our outcome. Variables containing cumulative probabilities—that is, the probability
of observing a given category or lower— are stored as variables CL.Cpr#. For example,
CL_Cpr2 is the predicted probability of a respondent identifyving as either lower class or
working class.

Although mgen assigns varinble labels to the variables it generates, we can change
these to improve the look of the plot that we are creating. Specifically, we use

. label var CL_pri “Lower"

- label var CL_pr2 "Working"

. label var CL_pr3 "Middle"

. label var CL_pr4 "Upper"

. label var CL_Cprl “Lower"

- label var CL_Cpr2 "Lower/Working"

. label var CL_Cpr3d "Lower/Working/Middle"
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Next, we plot the probabilities of individual outcomes by using graph. Here we plot the
four probabilities against values of income.

graph twoway connected CL_prl CL_pr2 CL_pr3 CL_prd CL_income,
title("Panel A: Predicted Probabilities")
xtitle("Household income (2012 dollars)")
x1abel(0(50)250) ylabel(0(.25)1, grid gmin gmax)
ytitle{"") name(tmpprob, replace)

VvV VWV

Standard options for graph are used to specify the axes and labels. The name(tmpprob,
replace) option saves the graph with the name tmpprob so that we can combine it with
our next graph, which plots the cumulative probabilities. The values on the y axis of
each of the four lines indicate the predicted probabilities of each category when income
equals the value on the  axis and other variables are held at their means. At all values
of income, these probabilitics sum to 1. We will wait to discuss what it is showing
substantively until after we complete the graph with cumulative probabilities.

A graph of cumulative probabilities uses lines to indicate the probability that y < #
rather than y = # To create this graph, we use the command

. graph twoway connected CL_Cpri CL_Cpr2 CL_Cpr3d CL_income,
title("Panel B: Cumulative Probabilities")
xtitle("Household income (2012 dollars)")

xlabel (0(50)250) ylabel(0(.25)1, grid gmin gmax)
ytitle("") name(tmpcprob, replace)

v VY V¥

which saves the resulting graph as tmpcprob. Next, we combine these two graphs (see
chapter 2 for details on combining graphs):

. graph combine tmpprob tmpcprob, col(1) iscale(s.9) imargin(small)
> ysize(4.6) xsize(3.287) caption("Other variables held at their means")
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This leads to figure 7.2. Panel A plots the predicted probabilities for each outeome
and shows that the probabilities of working class and middle class are larger than the
probabilities of lower class and upper class. As income increases, the probability of a
respondent identifying as lower class or working class decreases, while the probability
of identifying as middle class or upper class increases, Panel B plots the cumulative
probabilities. Both panels present the same information. In applications, you should
use the graph that you find most effective.

Panel A: Predicted Probabillties

= ¥
Housahold Incoini (2012 dollan)

—8— Lowor —— Woriing
—=— Middle —A— Uppar

Panel B: Cumulative Probabilities

» — .
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._‘_."—'—.—._._._ & &
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Househald incame (2012 dallars) .
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o LowerWorking/Mids

Other variables held at their means

Figure 7.2. Plot of predicted probabilities and cumulative probabilities for the ordered
logit model
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A different way of plotting cumulative probabilities is to use shading instead of lines,
which looks like this:

a 50 Wwo w200
[l upper [N Meodis |
I working [ Lows:

To create this graph, we use a twoway area plot type (see [G-2] twoway area). In
our prior graph, CL.Cpr# designated the height on the y axis at which a line should be
drawn. In a twoway area plot, the value of CL_Cpr# indicates that the graph should be
shaded from that value to the bottom of the graph. We used the following commands:

. capture drop one

. gen one = 1

. label variable one "Upper"

. label variable CL_Cpr3 "Middle"

. label variable CL_Cpr2 "Working"

. label variable CL_Cprl "Lower"

graph twoway
(area one CL_income, fcolor(gsi5))
(area CL_Cpr3 CL_income, fcolor(gsil))
(area CL_Cpr2 CL_incoms, fcolor(gs7))
(area CL_Cpri CL_income, fcolor(gs3)),
xtitle("Household income (2012 dollars)") ytitle("Probability")
x1abel(0(50)250) ylabel(0(.25)1, grid gmin gmax)

VOV WY VY Y

First. we generate the variable one, whose values are all 1. An area plot using this
variable is simply a solid block from the top of the graph to the bottom, which we use
to depiet the probability of the highest category (“Upper”). Accordingly, we label this
variable with the name of highest category. Next, we label the variables for the other
cumnlative probabilities according to the highest category each represents. Then, using
the graph twoway command, we draw four area plots, each on top of the other to make
a single graph. The first plot covers the entire plot region (everything below the value
of variable one, which is always equal to 1), which we shade using fcolor(gs15).” The

7. The fcolor() aption uses gs# us numes of grayscale colors, and gs15 is the lightest.
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other area plots use the three cumulative probability variables and are shaded using
progressively darker grays. The shading allows us to easily see how identification as
middle class expands as household income increases. We can also quickly see how large
the probabilities for the middle categories are relative to the extremes.

7.15 Probability plots and marginal effects

Having considered various methods of interpretation, we now show the link between
marginal effects and plots of predicted probabilities to hopefully provide you with new
insights on the nature of ordinal models. The following graph, based on section 7,14,
shows how the probabilities of class affiliation change with income, holding all other
variables at their means, The mean of income is indicated with a dashed, vertical line:

Other variables are held al their mean

75
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1
|
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]

0 50 100 150 200, 250
Household income (2012 dallars) |
—&— Lower —&— Working

—a— Middle —a&— Upper

The slope of each probability curve evaluated at the mean of income, indicated by
where the probability curves intersect the vertical line, is the marginal change in the
probability of a given class affiliation with respect to income, with all variables held at
their means. We can compute these changes by using mchange, atmeans to estimate
MEMSs:
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. mchange income, atmeans amount(marginal) dec(4)
ologit: Changes in Pr(y) | Number of obs = 5620

Expression: Pr(class), predict(outcome())

lover working middle upper
income
Marginal -0.0006 -0.0022 0.0027 0.0002
p-value 0.0000 0.0000 0.0000 0.0000
Predictions at base valus
lower’  working middle upper
Pr(y|base) 0.0586 0.6107 0.4173 0.0134
Base values of regressors
1. 1. 2. 3. 2. 3.
female white year year aduc educ
at 549 .8141 .4511 -31 -5819 .2415
age income
at 45.16 68.08

1: Estimates with margins option atmeans.

The marginal changes are in row Marginal, with the significance level for the test that
the change is 0 listed in row p-value. These changes correspond to the slopes of the
probability curves at the point of intersection with the vertical line. For example, the

slope for middle class, shown with squares, is 0.0027.

The magnitude of the marginal changes would differ if we computed the marginal
effects at different values of the independent variables. For example, we can compute
the effects with income equal to $250,000, with all other variables still kept at their

means:



-
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. mchange income, at(income=250) atmeans amount(marginal) dec(4)
ologit: Changes in Pr{(y) | Number of obs = 5620
Expression: Pr(class), predict(outcoma())

lower working middle ‘upper
income
Marginal =0.0001 -0.0013 0.0003 0.0011
p-value 0.0000 0.0000 0.0378 0.0000
Predictions at base value
lower working middle upper
Pr(y|base) 0.0078 0.1302 0.7612 0.1012
Base values of regressors
p 18 1. 2, 8. 2. a.
female white year year aduc educ
at .5491 .B141 4611 .31 .5819 2415
age income
at 45.16 250

1: Estimates with margins option atmeans.

The marginal change for the probability of identifying with the middle class is much
smaller. corresponding to the leveling off of the curve (shown with l's) on the right side
of the graph.

In this example, the signs of the marginal cflects for each outcome are the same
throughout the range of income. This, however, does not need to be true. In the
ORM, not only does the magnitude of the effect change as the values of the independent
variables change, but even the sign can change. That is to say, the effect of a variable
can be positive at one point and can be negative at other points, even if we have not
inclided polynomial terms or interactions in the model. In a model without interaction
or polynomials for a given independent variable, the sign of that variable’s regression
coefficient will always be the same as the direction of changes in the probability of the
highest outcome category as the independent variable inereases.

In our example of subjective social class, because the coefficient for income is positive,
increases in income will always increase the probability of identifying as upper class®
Conversely, the change in the probability of the lowest category will be in the opposite
direction as the regression coefficient. Thus increases in income always decrease the
probability of identifying as lower class. The middle categories are more complicated.
In terms of the latent variable model deseribed in section 7.1.1, as income increases, some
people shift from lower class to working class, while other people shift from working class
to middle class. The specific implication for the probability of identifying as working

8. Of eourse, there is no reason this must be true substantively. For example, one might hypothesize
that income increases the predicted probability of identifying as upper class only up to a point,
after which there is no effect. Modeling this wouldl involve adding additional terms for the effect
of income to the model, for example, by using splines or polynomials.
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class depends on whether the proportion entering the category from below is bigger or
smaller than the proportion exiting from above. As a result, the sign of the predicted
change in middle categories can change when computed st different vahies of income.
Our running example does not provide a good illustration of this (for reasons explained
below), so we use an example from chapter 8. Party affiliation is coded as strong
Democrat; Demoerat, Independent, or Republican; and strong Republican. We fit an
OLM using age, income, race, gender, and education as predictors:

. use partyid4, clear

(partyidd.dta | 1992 American Natiomal Election Study | 2014-03-12)
. ologit partystrong age income i.black i.female i.educ, nolog

Ordered logistic regression Number of obs = 1382
LR chi2(6) = 173.85

Prob > chi2 = 0.0000

Log likelihood = -1064.4742 Pseudo R2 - 0.0766
partystrong Coef. Std. Err. z  Plzl [95% Conf. Interval]

age | -.0081028 .0036963  -2.19 0.028  -.0153456 -.0008601

income .0090361 .002415 3.74 0.000 .0043028 .0137694

(output omitted )

Notice that the coefficient for income is positive. Next, we compute predictio

income increases from $0 to $200.000:

. mgen, atmeans at(income=(0(20)200)) stub(olm) replace
Predictions from: margins, atmeans at{income=(0(20)200)) predict(outcome())

Max Label

ns as

Variable Obs Unique Maan Min
olmprl 11 11 .1148384 .0444238
olmlll 11 11 .0838876 .0106582
olmull 11 11 1457892 .0781895
olmincome 11 11 100 0

(output omitted )

.2207461 pr{y=StrDem) from margins
.1826962 95% lower limit
.258797 95% upper 1limit

200 Income in $1,000s

Specified values of covariates

1 1. 2.

age black female educ

3.

45.94645  .1374819  .4934877 .6803184

. 1label var olmprl "Strong Democrat"
. label var olmpr2 "Middle"
. label var olmpr3 "Strong Republican"

-2690449
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Plotting these predictions produces the following graph:
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As income inereases, the probability of being a strong Republican increases steadily.
while the probability of being a strong Democrat decreases. The changes in the prob-
ability of being “in the middle” are more complex. As income increases from $0 to
about $50,000, the probability increases, and then it decreases till $200,000. That is.
the marginal effect, of income on being politically in the middle is both positive and neg-
ative depending on where it is evaluated. We can see this by using mchange evaluated
at the levels of income:

. *» discrete change at income of $0
. mchangs income, at{income=0) atmeans amount(sd) stat(change) brief

ologit: Changes in Pr(y) | Number of obs = 1382
Expression: Pr(partystrong), predict(outcome())
| StrDem Middle StrRep

income

+3D -0.040 0.021 0,019

. » discrete change at income of $60,000
. mchange income, at(income=68) atmeans amount({sd) stat(change) brief

ologit: Changes in Pr(y) | Number of obs = 1382
Expression: Pr(partystrong), predict(cutcome())
| StrDem Middle Striep

income

+SD -0.026 -0.008 0.031
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. ® discrete change at income of $200,000
. mchange income, at(income=200) atmeauns amount(sd) stat(change) brief

ologit: Changes in Pr(y) | Number of obs = 1382
Expression: Pr{partystrong), predict(outcome())
| Strhem Middle Striep

income
+8D -0.010 -0.,048 0.068

The changes in the probability of outcome 1, being a strong Democrat, are always
negative and get smaller as the probability approaches 0. Changes in the probability
of outcome 3, being a strong Republican, steadily increase as income increases. For the
middle category, the change is positive, then 0, and then negative.

This pattern of change in probabilities must hold for any ORM. Indeed, Anderson
(1984) made this a defining characteristic of an ordinal model; see Long (Forthcoming)
for further discussion of this property.

When an independent variable changes over an extended range (technically, from
negative infinity to positive infinity) the plot of probabilities must have a pattern similar
to the following graph that extends the range of income from our example above:

The height of the bell-shaped curve for the middle category depends on the distance
between thresholds. which in turn depends on the relative size of the outcome categories.
The observed range for the independent variable—income, in this case—might fall
anvwhere within this graph. For example, if our sample included only those cases with
an income about $68.000. corresponding to the peak of the probability curve for the
middle category, our graph would show that the probability of being politically in the
middle always decreases as income increases. Indeed, we had to change our example for
this section because the upper- and lower-class categories in our example of subjective
social class were so small.
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If you have more categories, the probability curves will be ordered from left to right
as illustrated in this graph:

0 20 40 60 80 100
Incame in §1,000s .
-- PriStrongly agree) — —— Pr(Disagroe) i
"""" PriAgree) —— Pi(Strongly disagree)
----- PriNeutral)

This pattern of curves will also occur in other ordinal models. As shown in chapter §,
if this pattern does not correspond to the process heing modeled, an ordinal model will
force the data into this pattern and provide misleading results.

In sum, changes in the probability of extreme categories in the ORM are always in
the opposite direction from one another; the direction of the change for either category
will remain the same regardless of the starting value or the magnitude of the change.
Changes in the probability of middle categories, on the other hand, can change sign
over the range of an independent variable.

7.16 Less common models for ordinal outcomes

Stata can also fit several less commonly used models for ordinal outcomes. In con-
cluding this chapter, we describe these models briefly and note their commands for
estimation. Long (Forthcoming) provides further details. SPost commands do not work
with all these models, but our m* commands do work with the estimation commands
that support margins.

7.16.1 The stereotype logistic model

The stereotype logistic model, also referred to as the stereotype ORM, was proposed by
Anderson (1984) in response to the restrictive assumption of parallel regressions in the
ORM. The stereotype logistic model is a compromise between allowing the coefficients
for each independent variable to vary by outcome category (as is the case with the
multinomial logit model, considered in the next chapter) and restricting the coefficients
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to be identical across all outcomes (as was the case with the ordered logit model).
The stereotype logistic model can be fit in Stata by using the slogit command (see
[R] slogit). The one-dimensional version of the model is defined as

Priy=q|x) _

Priy=rx) _ o 0= (¢ =) (x0)

where 3 is a vector of coefficients associated with the independent variables, the 6's
are intercepts, and the ¢'s are scale factors that mediate the effects of the #'s. This
one-dimensional model is ordinal as defined in section 7.15 and often produces very
similar predictions to the orM. When additional dimensions are added, it is no longer
an ordinal model. Indeed, with cnough dimensions, it is equivalent, to the multinomial
logit model. Accordingly, we postpone further discussion until chapter 8.

7.16.2 The generalized ordered logit model

The parallel regression assumption results from assuming the same coefficient vector 8
in the J —1 logit equations

InQemism (X) = Tm — %8
where Qcyom(X) = Pr(y < m|x)/Pr(y >m|x). The generalized ordered logit
model allows 3 to differ for each of the J — 1 comparisons. That is,
In Qepmism (X) = Tm — XBy, for j=1toJ—-1

where predicted probabilities are computed as

exp(n —x3,)
1 +exp(n —x3,)

exp(rj—xB;)  exp (rj-1 —%By_1)
L+exp(r; —xB;) 1+exp(m— -xB;_1)

exp (1)1 —xB;_y)
1+exp (ry-1 = %xB,_;)

Pr(y=1]|x)=

forj=2toJ-1

Priy=j|%x)=

Priy=J|x)=1-

No formal constraint precludes negative predicted probabilities. Discussions of this
model can be found in Clogg and Shihadeh (1994, 146-147), Fahrmeir and Tutz (1994,
91). and McCullagh and Nelder (1989, 155). A critical view of the model can be found
in Greene and Hensher (2010, 189-192), who highlight that the model can predict neg-
ative “probabilities” and that it cannot be formulated in terms of a continuous latent
dependent variable. Further, as noted by Long (Forthcoming), the generalized ordered
logit model is not an ordinal regression model because, like the multinomial logit model,
it does not necessarily make predictions that maintain the ordinality of the outcome.
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The model can be fit in Stata with the gologit2 command (Williams 2005). The
command does not work with factor variables, so categorical variables in the model
need to be constructed as a series of binary variables. Also, because we can no longer
use factor-variable notation to include age-squared in the model, we need to create an
age-squared variable explicitly:

. use gssclassd, clear
(gssclass4.dta | (S5 Subjective Class Identification | 2013-11-20)

- gen year1996 = (year==2) if year < .
. gen year2012 = (year==3) if year < .
. gen educ_hs = (educ==2) if educ < .

. gen educ_col = (educ==3) if educ < .

. gen agesq = age*age if age < .

The specification of the dependent variable and independent variables is otherwise
like the other estimation commands we consider. We estimate the parameters of the
model by specifying the or option to obtain odds ratios:
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. gologit2 clasa female white year1996 year2012 educ_hs educ_col
> age agesq income, nolog or

Generalized Ordered Logit Estimates Number of cbs = 5620
LR chi2(27) - 1782.34
Prob > chi2 = 0.0000
Log likelihood = -4852.0145 Pseudo R2 - 0.1552
class | Odds Ratio Std. Err. z [95% Conf. Interval]
lower
female .B709876  .0995261 -1.21 0.227 .6962205 1.089625
white 1.11671 . 1404256 0.88 0.380 BT27748 1.428823
year1996 .B572836 . 1356376 -0.97 0,330 .6287085 1.16896
year2012 4740378 .0T4985 -4.72 0:.000 . 3476697 .6463373
educ_hs 1.395278 1800471 2.58 0.010 1.083482 1.796802
educ_col 4.3165005 1.130862 5.58 0,000 2.582025 7211111
age .9300842 .0159969 -4.21 0.000 .B8992583 .96187
agesq 1.000774 0001691 4.58 0.000 1.000443 1.001106
income 1.0523656 0036226 14.83 0,000 1.045289 1.059489
_cons 9.307178 4.093324 6.14 0.000 4.001492 22.06851
working )
famale 1.0751 .064616 1.21 0.228 . 9558068 1.209283
white 1.30927 .1050703 3.36 0.001 1.118715 1.532284
year1996 . 9415489 0704208 -0.81 0.421 .B131661 1.090201
year2012 . TOBEE37 0593443 -4.16 0.000 .5883224 .832003
educ_hs 1,3299586 .1141584 3.32 0.001 1.124018 1.573625
educ_col 4.742383 5034121 i4.66 0.000 3.85159 5.839197
age .8538031 .00960TT -4.70 0.000 .9361571 972821
agesq 1.000728 .DO010156 7.18 0.000 1.000629 1.000927
income 1.011296 .DO0G68 17.00 0.000 1.009987 1.0126086
_cons .3530686 0870604 -4.22 0.000 2177579 5724264
middle
female 1.015498 .1668278 0.10 0.921 .7T502826 1.374467
white . 7961042 . 176904 -1.03 0.302 .5162878 1.227575
year1996 .9762229 .19193556 -0.12 0.903 . 6640396 1.435172
year2012 .4B99366 .1130694 -3.09 0.002 .3116834 .7701334
educ_hs .6469348 . 1694775 -1.66 0.096 .3871428 1.08106
educ_col 1.779687 ATTBLTT 2.16 0.032 1.061501 3.012168
age .9B65864 0272608 -0.49 0.625 .9346763 1.041489
agesq 1.00033  .0002667 1.24 0.216 .8998074 1.000853
income 1.011068  .0009115 12.20 0.000 1.009273 1.012846
_cons .0139267 D0STT48 -6.08 0.000 0035183 .055119

We have three sets of odds ratios labeled lower, working, and middle, compared
with one set when we used ologit. The odds ratios indicate the factor change in odds
of observing a value above the listed category versus observing values at or below the
listed category. Accordingly, we can interpret the three coefficients for white as follows:
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Holding all other variables constant. white respondents have 1.12 times
higher odds of identifving themselves as working, middle; or upper class
than do nonwhite respondents. White respondents have 1.31 times higher
odds of identifying themselves as middle or upper class than do nonwhite re-
spondents. And, white respondents have 0.80 times lower odds of identifying
themselves as upper class than do nonwhite respondents.

The key difference between the generalized and the ordered logit models is that in the
ordered logit model, the odds ratios deseribed in these three sentences are constrained
to be equal. Based on the ordered logit model, we would replace 1.12, 1.31, and 0.80 in
the paragraph above with the same value 1.27.

gologit2 allows users to fit the model with some of the coefficients constrained to be
equal, as in ologit, while others are allowed to vary. In addition to this, gologit2 can
fit two special cases of the general model: the proportional-odds model and the partial
proportional-odds model (Lall, Walters, and Morgan 2002; Peterson and Harrell 1990),
These models are less restrictive than the ordinal logit model fit by ologit, but they
are more parsimonious than the multinomial logit model fit by mlogit.

7.16.3 (Advanced) Predictions without using factor-variable notation

Factor variables make it much simpler to make predictions when there
are linked variables, such as age and age-squared. Because gologit2
does not support factor-variable notation, we use this model to illustrate
how to make the correct predictions. The most important point for most
readers is likely that you want to use factor variables whenever possible!
If yvou use factor-variable notation in your models, you do not need to
worry about the issues discussed in this section. However, yon might
still find the seetion useful to deepen your understanding of predictions
in nonlinear models.

We can compute predicted probabilities for given values of observations as we did
with the ordered logit model and use the same approach to interpretation. For example,
here are results using the same ideal types that we used in section 7.12.

ztable, atright norownum width(7) ///
at(female=0 white=0 year1996=0 year2012=1 educ_hs=0 educ_col=0 ///
age=25 agesq=625 income=30) ///
at(female=1 white=1 year1996=0 year2012=1 educ_hs=0 educ_col=1 ///
age=60 agesq=3600 income=150)

Because gologit2 does not support factor-variable notation, we must explicitly specify
the values of indicator variables for educational degree and survey year. We also must
specify that the value of agesq is the square of the value of age. As a consequence, the
ontput is messier (though the predictions are correct):
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Expression: Priclass), predict(outcome())

lower working middle upper female white educ_col age
0.166 0.701 0.136 0.008 0 0 0 25
0.000 0.122 0.809 0.068 1 1 1 60

agesq income

625 3o
3600 150

Specified values of covariates
| year1996 year2012 educ_hs

Current | 0 1 0
Comparing the results from ologit that were computed earlier in the chapter,

Expression: Pr(class), predict(outcome())

lower working middle upper female white aduc age income
0.230  0.634 0.133 0.003 0 0 1 % 30
0.008 0.138 0.759 0.098 1 1 3 60 160
Specified values of covariates
| year
Current | 3

the main difference between the generalized and the ordered logit models is that the
predicted probabilities for the categories with the highest probabilities (working class
for the first ideal type and middle class for the second) are about 0.06 higher in the
generalized ordered logit model.

We can also use mchange (o obtain changes in the predicted probability for particular
values of the independent variables, which provides an opportunity to illustrate how
to deal with polynomial terts, such as age-squared, when you are not using factor-
variable notation. Suppose that we want the discrete change for white, which is a
binary variable. If factor-varinble notation had been used, mchange would know that
it is a binary variable. Because we are not using factor-variable notation, we must tell
mchange to compute the change from 0 to 1 with the option amount (binary). It is
tempting, but incorrect, to compute the change like this:

. mchange white, amount(binary) atmeans // incorrect method!
gologit2: Changes in Priy) | Number of obs = 5620
Expression: Pr(class), predict(outcome())

lover vorking middle upper
white
0 te 1 =0.001 -0.066 0.072 =-0.005
p-value 0.403 0.001 0.000 0.336
Predictions at base value
lower working middle upper
Pry|base) 0.011 0.503 0.466 0.020
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Base values of regressors

fenale white year1896 year2012 educ_hs  educ_col

at .549 .B14 461 .31 .582 241
age agesq income
at 45.2 2326 68.1

i: Estimates with margins option atmeans.

Because the mean of age is 45.16, agesq should be held at 45.16 x 45.16 = 2039, not
2325, which is the mean of agesq.

The correct way to compute marginal effects is to specify the value of agesq in at():

. mchange white, amount(binary) at(agesq=2039) atmeans
gologit2: Changes in Pr(y) | Number of obs = 5620
Expression: Pr(class), predict(outcome())

lower working middle upper
white )
0tol -0.002 -0.064 0.070 ~0.004
p-value 0.402 0.001 0.000 0.336
Predictions at base value
lower working middle upper
Pr(y|base) 0.014 0.562 0.416 0.018
Base values of regressors
female vwhite yearl996 year2012 educ_hs educ_col
at .649 .814 461 .31 .682 .24
age agesq income
at 45.2 2039 68.1

1: Estimates with margins option atmeans.

In this example, the differences are slight. Depending on the magnitudes of the co-
efficients for the linked variables and the distribution of those variables, however, the
differences can be substantial. Fortunately, some simple programming tools can auto-
mate the process:

summarize age
local mnagesq = r{mean)er(mean)
mchange white, amount(binary) at(agesq="mnegesq’) atmeans

summarize computes the mean of age. which is returned in r(mean). The local macro
mnagesq is set equal to the mean times the mean. Within the at () specification, agesq
is set equal to this local macro.

Another limitation caused by the lack of support for factor-variable notation in
gologit2 is that you cannot use mchange to compute marginal effects of age because
margins has no way to know that age and agesq must change together. The only



7.16.3 (Advanced) Predictions without using factor-va

e

solution is to compute the appropriate predictions,
age-squared at two values of age and then subtrag

For categorical independent variables with more
explicitly constrain the other indicator variables t
change from 0 to 1. We can do this with at (). First
1996 and 1980 (the base category), and then we co
1980:

. * change from 1980 to 1996
. mchange year1996, amount(binary) at(year2012=0 a
gologit2: Changes in Pr(y) | Number of obs = 56!
Expression: Pr(class), predict(outcome())
| lover  working middle

year1996
0tot 0.002 0.013 -0.014
p-value 0.325 0.469 0.436

. * change from 1980 to 2012 I
. mchange year2012, amount(binary) at(year1996
gologit2: Changes in Pr(y) | Number of obs =
Expression: Pr{class), predict(outcome())

I lower  working middla

year2012 hall
0 to 1 0.011 0.074 -0.073
p-value 0.000 0.000 0.000

To compute the change from 1996 1o 2012, we canne
change the value of two variables at once, namely, y
the changes, we use a simple program:

. estimates store golm
. mlincom, clear
. forvalues iout = 1/4 {

2. qui { )
B mtable, atmeans post cutcome( i
> atlyear1996=1 year2012=0
> at(year1996=0 year2012=1 age
4. mlincom 1 - 2, add rownams{outcome
5. estimates regtors golm
6. }
7 ¥
. mlincom
| lincom pralue n
outcome=1 -0.009 0.000 -0.014
outcomes=2 -0.061 0.000  -0.0%4
outcome=3 0.059 0.001 0.026
outcome=4 0.011 0.000 0.006 r
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7.16.4 The sequential logit model

Some ordinal outcomes represent the progress of events or stages in some process throug
which an individual can advance. For example, the outcome could be faculty rank.
where the stages are assistant professor, associate professor, and full professor. The key
characteristic of the process is that an individual must pass through each stage. The
outcome is thus the result of a sequence of potential transitions: an assistant professor
may or may not make the transition to associate professor, and an associate professor
may or may not make the transition to full professor.

The most straightforward way to model an outcome like this is as a series of BRAs,
Consider the binary logit model from chapter 5:

Priy=1|x) .
N =), ST
where we have made the intercept explicit rather than including it in 3. To extend this
to multiple transitions, we estimate for each transition the log odds of having made the
transition (y > m) versus not having made the transition (y = m). For example, we
estimate the log odds of being an associate or a full professor (y > 1) versus being an
assistant professor (y = 1). We allow separate coeflicients 3, for cach transition from
y=m:
Pr(y > m| x)

I Priy=m|x)

=t, +x8, form=1toJ -1 (7.5)

m

where .J is the number of stages.

This is an example of a broader group of models called sequential logit models
(for example, Liao [1994, 26-28]). This model differs importantly from the generalized
ordered logit model in that observations in which y < m are not used in the estimation
of 3,,. For example, assistant professors are not used when modeling the transition
from associate professor to full professor.

To demonstrate how to fit this model, we use the variable educ in the gssclass4
dataset as our outcome, The three values of educ represent two transitions: students
may or may not graduate from high school. and high school graduates may or may not
graduate from college. To fit the model, we first use recode to create dummy variables
representing whether or not respondents at each stage made the transition to the next.
The variable educ has the distribution

. tabulate educ, miss

educational
attainment Freq. Percent Cum.
not hs grad 893 17.67 17 .67
hs only 3,270 £8.19 75.85
college 1,367 24.15 100.00
Total 5,620 100.00
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We create the variable gradcollege to indicate if someone with a high school diploma
graduated from college, where those who did not graduate from high school (educ=1)
are recoded as missing, not as 0. Those who did not graduate from high school are not
included in the analysis of the transition to college graduation.

. recode educ (1=0) (2 3=1), gen(gradhs)
(5620 differences between sduc and gradhs)

. label var gradhs "Graduate high school?"

. racode educ (1=.) (2=0) (3=1), gen(gradcollege)
(5620 differences between educ and gradcollege)

. label var gradcollege "Graduate college?"

Next. we use logit to fit separate models for each transition, using race and sex as
independent variables.

. = HS degrea vs not
. logit gradhs i,white i.female, or nolog

Logistic regression Number of obs = 5620
LR chi2(2) = 25.40
Prob > chi?2 = 0.0000
Log likelihood = -2608.1180 Pseudo R2 = 0.0048
gradhs | Odds Ratio Std. Err. z Pz [95% Conf. Intervall
white
vhite 1.531009 .1280333 5.09 0,000 1.2995564 1.803686
female
female .9665729  .0683325 -0.48 0.831 .B415082 1.110226
—cons 3.387367 . 2880726 14.35 0.000 2.867301 4.001761
. % College degree vs HS degree
. logit gradcollege i.white i.female, or nolog
Logistic regression Number of obs = 4627
LR chi2(2) = 8.81
Prob > chi2 = 0.0122
Log likelihood = -2795.2138 Pseudo R2 = 0.0016
gradcollege | Odds Ratic Std. Err. z Prlz| [95% Conf. Intervall
white
vhite 1.164414 .1007857 1.64 0.100 .9728539 1,369857
female
female .B564618 .0565153 -2.39 0.017 .7542818 .9724837
_cons (4003614  .0352609 -10.3¢ 0.000 .3368873 4757949
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We can interpret odds ratios for each of the transitions the same as we did in chapter 6.
For example,

Being white compared with being nonwhite increases the odds of graduating
high school by a factor of 1.53, holding gender constant.

The seqlogit command (Buis 2007) fits equations for all transitions simultane-
ously and provides the likelihood for the full model. The seqlogit command can
also be used with predict and margins—and accordingly, with our m* commands—
to compute probabilities of membership in each category. The syntax of seqlogit
is complicated because it can be used to fit elaborate, branching sequences of tran-
sitions (see help seqlogit if installed). The tree() option is required and is used
to specify how ontcome values map onto different transitions. In our case, we specify
tree(1 : 2 3, 2 : 3) because our two transitions are educ==1 or 2 versus educ==3
and educ==2 versus educ==3:

. seqlogit educ i.vhite i.female, tree(l : 2 3, 2 : 3) or nolog
Transition tree:

Transition 1: 1 : 2 3
Transition 2: 2 : 3

Computing starting values for:

Transition 1
Transition 2

Number of obs = 5620
LR chi2(4) = 34.21
Log likelihood = -5403.3329 Prob > chi2 = 0.0000
educ | 0Odds Ratio Std. Err. z P>z [96% Conf. Interval]
~2_3vi1
vhite .
white 1.531009 .1280333 b.08 0.000 1.2995564 1.803686
female
female .96656729 .06833256 -0.48 0.631 .8416082 1.110225
_cons 3.387367 . 2880726 14.35 0.000 2.867301 4,001761
—3v2
vhite
white 1.154414 . 10078567 1.64 0.100 .9728539 1.369857
female
female .8664618 .0B551563 -2.39 0.017 . 7542818 .9724837
_cons .4003614 .0352609 -10.39 0.000 .3368873 4757949

. estimates store seqlogit
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The coefficients here are precisely the same as when the equations were fit separately.
The top equation presents coeflicients for the transition to high school graduation (out-
comes 2 and 3 versus 1) and the bottom for the transition to college graduate (outcome 3
versus 2). The log likelihood of the combined model fit with seqlogit is the sum of
the log likelihoods of the separate binary logit models.

A more parsimonious model imposes the assumption that the coefficients for each
independent variable are equal across all transitions. Instead of 3., in (7.5), we have
the same B in all transition equations, while the intercepts differ:

Priy>m|x)

o (y=m|x)

=y +xB form=1toJ -1

where .J is the number of stages. This model is sometimes called the continuation ratio
model and was first proposed by Fienberg (1980, 110).

The continuation ratio model can be fit using the user-written command ocratio
{Wolfe 1998), although it uses a somewhat different parameterization than given here.
Because ocratio is an older command, it does not support factor-variable notation and
does not work with predict, margins, or our m* commands. The continuation ratio
model can be fit with seqlogit if you impose the equality constraints on coefficients
by using the constraint define command. This command defines constraints on a
model’s parameters that are imposed during estimation. Although further detail on
constrained estimation is outside the scope of this book, we provide the example code
below to show the use of the constraint define command and the constraint()
option with seqlogit:

. constraint define 1 [_2_3v1]1.female=[_3v2]1.female
. constraint define 2 [_2 3vi]1.white=[_3v2]1.vhite

The key to understanding the constraints is understanding how seqlogit names the
equations that it estimates. The equation comparing outcome 1 with outcomes 2 and
3 is named _2.3vi so that [2.3v1]1.female indicates the coefficient for 1.female
in this equation. Accordingly. the constraint 1 defined above says that the coeffi-
cients for 1.female are equal in both transition equations. Constraint 2 does the same
thing for 1.white. To impose these constraints during estimation, we add the option
constraint (1 2) to the estimation command:
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- seqlogit educ i.white i.female, tree(i: 2 3, 2 : 3) constraint(1 2) or nolog
Transition tree:

Transitiom 1: 1 : 2 3
Transition 2: 2 : 3
Computing starting values for:

Transition 1
Transition 2

Number of obs = 5620
Wald chi2(0) = 2
Log likelihood = -5406.6832 Prob > chi2 = .
(1) [L2.3vi]1l.female - [_3v2]1.female = 0
(2) [.2_3vili.white - [_3v2]1.vhite = 0
educ | Ddds Ratic Std. Err. z P>zl [95} Conf, Interval]
_2_3w1
white
white 1.336865 . 0824991 4.70 0.000 1.184586 1.508745
female
female 9046686 0432715 -2.09 0.036 .8237122 9936817
_cons 3.906983 . 2600151 20.48  0.000 3.4292 4.451333
3v2
white
white 1.336865 . 0824991 4.70  0.000 1.184566 1.506745
female
female 9046686 04327156 -2,09  0.038 .8237122 .9935317
_cons .3437397  .0231741 -15.84 0,000 .3011923 .3922975

. estimates store contratio

The log likelihood is smaller than it was with the unconstrained, sequential logit model.
Because the second model is nested within the first model, we can see whether the
difference in fit is statistically significant with an LR test:

. lrtest contratio seqlogit

Likelihood-ratio test LR chi2(2) = 6.70
(Assumption: contratio nested in seqlogit) Prob > chi2 = 0.0351

The p-value is less than (.05, so we reject the null hypothesis that the coefficients are
equal across transitions. We could compare whether the coefficients for a particular
independent. variable are equal across transitions by constraining only those coefficients
to be equal or by using test to compute a Wald test,

7.17 Conclusion

Ordinal outcomes are common, especially in survey research where respondents are
presented with a question and a fixed set of categories with which to respond. The
models we present are motivated by the premise of a latent, unidimensional continuum
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8 Models for nominal outcomes

An outcome is nominal when thie categories are assumed to be unordered. For example,
marital status can be grouped nominally into the categories of divorced, never married,
married, or widowed. Occupations might be organized as professional, white collar,
blue collar, eraft, and menial, Other examples include reasons for leaving the parents’
home, the organizational context of scientific work such as industry, government, and
academia, and the choice of language in a multilingual society. Further, in some cases
vou rmight prefer to treat an outcome as nominal even though it is ordered, ordered on
multiple dimensions, or partially ordered. For example, if the response categories are
strongly agree, agree, disagree, strongly disagree, and don’t know, the category “don’t
know” invalidates models for ordinal outeomes. Or, you might decide to use a nominal
regression model when the assumption of parallel regressions is rejected. In general,
if vou have concerns about the ordinality of the dependent variable, the potential loss
of efficiency in using models for nominal outcomes is outweighed by avoiding potential
bias.

In this chapter, we focus on the multinomial logit model (MNLM), which is the most
frequently used nominal regression model. This model essentially fits separate binary
logits for each pair of outcome categories. Next, we consider the stereotype logistic
regression model. Althongh this model is often used for ordinal outcomes, it is closely
related to the MNLM. These models assume that the data are case specific, meaning
that each independent variable has one value for each individual. Examples of such
variables are an individual's race or education. After that, we consider several models
that include alternative-specific data. Alternative-specific variables vary not only by
individual but also by the alternative. For example, if a commuter is selecting one of
three modes of travel, an alternative-specific predictor might be her travel time using
ench alternative,

We use “alternative” to refer to a possible ontcome. Sometimes we refer to an
alternative as an ontcome, a category, or a comparison group to be consistent with the
usual terminology for a model or the output generated by Stata. The term “choice”
refers to the alternative that is actually observed, which can be thought of as the “most
preferred” alternative. For example, if the dependent variable is the party voted for
in the last presidential election, the alternatives might be Republican, Democrat, and
Independent. If a person voted for the alternative of Democrat, we would say that the
chioice for this case is Democrat. But you should not infer from the term “choice” that
the models we describe can be nsed only for data where the outcome occurs through
a process of choice. For example, if we were modeling the type of injuries that people

385
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entering the emergency room of a hospital have, we would use the term “clioice” even
though the injury sustained is unlikely to be a choice

We begin by discussing the MNLM, where the biggest challenge is that the model
includes many parameters and so it is easy to be overwhelmed by the complexity of the
results. This complexity is compounded by the nonlinearity of the model, which leads
to the same difficulties of interpretation found for models in prior chapters. Although
fitting the model is straightforward, interpretation involves challenges that are the focus
of this chapter. We begin by reviewing the statistical model, followed by a discussion
of testing, fit, and finally, methods of interpretation. For a more technical diseussion of
the model, see Long (1997). As discussed in chapter 1, you can obtain ssmpln do-files
and data files by downloading the spost13_do package.

The outcome for the primary example we have chosen for this chapter is political
party affiliation, collected from a survey that used the categories strong Democrat;
Democrat, Iudppemlent Republican; and strong Republican. Although this variable
may initially appear to be ordinal, our analysis suggests that it is ordered on two
dimensions relative to the uu!epemlenl variables we consider. On the attribute of left-
right orientation, the categories increase from strong Democrat to strong Republican.
In terms of intensity of partisanship. the categories are ordered Independent to either
Republican or Demoerat and then either strong Republican or strong Democrat. This
violates Stevens’ (1946) definition of an ordinal scale as a variable that uses numbers to
indicate rank ordering on a single attribute. Indeed, when you use an ordinal model.
we recommend also fitting the model using multinomial logit as a sensitivity analysis.

8.1 The multinomial logit model

The MNLM can be thought of as simultancously fitting binary logits for all comparisons
among the alternatives. For example, let party3 be a categorical variable with the
outcomes D for Democrat, I for Independent, and R for Republican.! Assume that
there is one independent variable measuring income in $1,000s. We can examine the
effect of income on party3 by fitting three binary logits,

l Pr{D I x) — ;5 3 i "
n m = Mo.pi + 4 ppincome
Pr(R|x)
rr——— +
In Pr(l]x) Fo.mir + Fy ppincome
] Pr(D |x) -8 g T
- Pr “!‘. | %) = Fo,p|p * 1, D) RIDCO

where the subscripts to the #'s indicate which comparison is being made. For example,
By pyr is the coefficient for the first independent variable for the comparison of D and [.

1. Variable party3 combines categories StrDem and Dem and the categories Rep and StrRep from the
viriable party used laver in the chapter.
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The three binary logits include redundant information. Because Ina/b=Ina —Inb,
the following equality must hold:
Pr(D|x) . Pr(R|x) _lnPr(D | x)
Pr(I | x) Pr(I|x) Pr(R|x)

This implies that

Ao.oit — Bo.rit = Bo.pir (8.1)
3 it = Biri = Bror

In general, with J alternatives, only J — 1 binary logits need to be fit. These J —1
logits are referred to as a minimal set. Estimates for the remaining coefficients can be
computed using equalities of the sort shown in (8.1).

Fitting the MNLM by fitting a series of binary logits is not optimal because each
binary logit is based on a different sample. For example, in the logit comparing D with
I. those in R are dropped. To see this, we begin by loading the data and examining the
distribution of party3:

. use partyidd, clear
(partyid4.dta | 1992 American National Election Study | 2014-03-12)

. tabulate party3

Party ID Freq. Percent Cum.

Democrat 693 50.14 50.14

Independant 151 10,93 61.07

HRepublican 538 38.93 100.00
Total 1,382 100,00

Next, we fit a binary logit model comparing Democrats with Independents by using the
dependent variable dem_ind:

. tabulate dem_ind, miss

Demoerat or
Independent Freq. Percent Cum,
Independent 151 10.93 10.93
Democrat 693 50.14 61.07
. 638 38.93 100.00
Total 1,382 100.00
. logit dem_ind income, noleg
Logistic regression Number of obs = 844
LR chi2(1) = 0.48
Prob > chi2 = 0.4873
Log likelihood = -386.21646 Pseudo R2 = 0.0006
dem_ind Coef. Std. Err. z Pzl [95% Conf. Interval]
income -.0024887 .00356513 -0.70 0.483 -.009449 0044717
_cons 1.605464  .1485698 10.81 0.000 1.314273 1.896656




388 Chapter 8 Models for nominal outcomes

The logit includes only 844 cases out of the sample of 1,382 becaunse those who are
Republican are excluded as missing. Next, we fit a binary logit comparing Republicans
and Independents, excluding Democrats from the sample:

. tabulate rep_ind, miss

Republican
or
Independent Freq. Percent Cum.
Independent 151 10.93 10.93
Republican 638 38.93 49,86
. 693 50.14 100.00
Total 1,382 100.00
. logit rep_ind income, nolog
Logistic regression Number of obs = ~ 689
LR chi2(1) = 20.41
Prob > chi2 - 0.0000
Log likelihood = -352.09947 Pseudo R2 = 0.0282
rep_ind Coef. Std. Err. z Prlz| [95%, Conf. Interval]
income .0156761 .0037443 4.19  0.000 .0083374 0230148
_cons .6585897  .1624946 4.06  0.000 .3401061 -9770732
And last, we exclude Independents:
. tabulate dem_rep, miss
Democrat or
Republican Freq. Percent Cuti.
Republican 538 38.93 38.93
Democrat 693 50.14 89.07
151 10.93 100.00
Total 1,382 100.00
. logit dem_rep income, nolog
logistic regression Number of obs = 1231
LR chi2(1) = 71.89
Prob > chi?2 = 0.0000
Log likelihood = -807.53617 Pseudo R2 = 0.0426
dem_rep Coef. Std. Err. z Pzl [95% Conf. Intervall
income -.0183709  .0022958 -8.00 0.000 -.0228706 -.0138712
_cons .95252856 . 1046769 9.10 0.000 .TAT3684 1.157691
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The results from the binary logits can be compared with those obtained by fitting
the MNLM with mlogit:

. mlogit party3 income, nolog base(2)

Multinomial logistic regression Number of obs = 1382
LR chi2(2) = 73.84
Prob > chi2 = 0.0000
Log likelihood = -1283.3075 Pseudo R2 - 0.0280
party3 Coef. 5td. Err. z P>lzl [95% Conf. Interval]
Democrat
income -.002724  .0037162  -0.73 0.464  -.0100077  .0045597
_cons 1.613193 1529897 10.54 0.000 1.313338 1.913047
Independent (base outcoma)
Republican
income .0161864  .0036605 4.15  0.000 0080119 022361
.cons 6779478 15974567 4.24  0.000 .3648519 .9910437

The output is divided into three panels. The top panel is labeled Democrat, which is the
value label for the first outcome category of the dependent variable; the second panel is
labeled Independent, which is the base outcome that we discuss shortly: and the third
panel corresponds to the third outcome, Republican. The coefficients in the first and
third panels are for comparisons with the base outcome, Independent. Thus the panel
Democrat shows estimates of coefficients from the comparison of D with the base I,
while the panel Republican holds the estimates comparing R with I. Accordingly, the
top panel should be (‘umpm:-:l with the coefficients from the binary logit for D and I
(outcome variable dem_ind). For example, the estimate for the comparison of D with
I from mlogit is .-‘?;.n” — —0.002724 with z = —0.73, whereas the logit estimate is
3y = —0.0024887 with z = —0.70. Overall, the estimates from the binary model are
close to those from the MNLM but not exactly the same.

\ltlmugh theoretically 4 1y — A1.r)1 = B1,pjr. the estimates from the binary logits
are 3'1 DIl —#1 ri1 = (—0.0024887) — (0.0156761) = —0.0181648, which do not quite equal
the binary logit estimate /i, pirk = —0.0183709. This occurs because a series of binary
logits fit with 1logit does not impose the constraints among coefficients that are implicit
in the definition of the MNLM. When fitting the model with mlogit, these constraints are
imposed. Indeed, the output from mlogit presents only two of the three comparisons
from our r-xamplv namely, D versus I and R versus I. The remaining comparison, D
versus R, is exactly equal to the difference between the two sets of estimated coefficients.
The eritical point here is simple:

The MNLM may be understood as a set of binary logits among all pairs of
outcomes,
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8.1.1 Formal statement of the model

The MNLM can be written as

Pr(y=m | x)
Pr(y="5b]|x)
where b is the base outcome, sometimes called the reference category. As In @y, (x) =

In1 = 0. it follows that By, = 0. That is, the log odds of an outcome compared with
itselfl is always 0, and thus the effects of any independent variables must also be 0.

In slru!b (X} =In = xﬁmlb form=1toJ

These J equations can be solved to compute the probabilities for each outecome:
exp (x,@m b
7

Zj:i exp (xﬁﬂb)

The probabilities will be the same regardless of the base outcome b that is used. For
example, suppose that you have three outcomes and fit the model with alternative 1
as the base, where you would obtain estimates /3. gy and 63“, with By; = 0. The
probability equation is

Priy=m|x)=

exp (Xﬁf"“)
ST ol

If someone else set up the model with base ontcome 2, they would obtain estimates Blm

Pr(y=m|x)=

and .6;;,2, with B4, = 0. Their probability equation would be

exp (xﬁ,,,|2)
Zj:z exXp (x .ﬂ'2)

The estimated parameters are different because they are estimating different things, but
they produce exactly the same predictions. Confusion arises only if you are not clear
about which parameterization you are using. We return to this issue when we. discuss
how Stata’s mlogit parameterizes the model in the next section.

Pr(y=m|x)=

8.2 Estimation using the mlogit command

The MNLM is fit with the following command and its basic options:

mlogit depvar [indepvars| [if ] [ in| [weight| [, noconstant
baseoutcome(#) vce(veeiype) rrr ]

For other options, run help mlogit. In our experience, the model converges quickly,
even when there are many outcome categories and independent variables.



8.2 Estimation using the mlogit command

Variable lists

depuar is the dependent vanﬂble The speciﬁe

to avoid confusion, we at.rnngly chm i "m- d
integers beginning with 1.

indepvars is a list of independent variables. If i j ;
model with only constants,

Specifying the estimation sample

if and in qualifiers. if and in qualifiers can be used
For example, if you want to fit the model with
command mlogit party i.educ incomelQ if b

Listwise deletion. Stata excludes cases in which th
the variables. Accordingly. if two models
different sets of independent variables, it is poss
recommend that you use mark and markout ( i
remove cases with missing data.

Weights and complex samples

mlogit can be used with fueights, pweights, and iv
supported. See chapter 3 for details.

Options
noconstant excludes the constant terms from the model.

baseoutcome ( #) specifies the value of depvar that is |
erence group) for the coefficients that are listed. Thi
parameterized. If baseoutcome () is not specified,
estimation sample is used as the base. The base is:
the table of estimates.

vece (veetype) specifies the type of standard mm iie &
details.

rrr reports the estimated coefficients transformed t

exp (b) rather than b, along with standard
ratios. Relative risk ratios are also referred to
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8.2.1 Example of MNLM

The 1992 American National Election Study asked respondents to indicate their political
party using one of eight categories. We used these to create party with five categories:
strong Democrat (1 = StrDem), Democrat (2 = Dem), Independent (3 = Indep), Repub-
lican (4 = Rep). and strong Republican (5 = StrRep):

. tabulate party, miss

Party ID Freq. Percent Cum.
StrDem 266 19.25 19.256
Dem 427 30.50 60.14
Indep 151 10.93 61.07
Rep 369 26.70 87.77
StrRep 169 12.23 100.00
Total 1,382 100.00

To simplify our notation, at times we abbreviate StrDem as SD, Dem as D, Indep as I,
Rep as R, and StrRep as SR.

Five regressors are included in the model: age. income, race (indicated as black or
not), gender, and education (measured as not completing high school, completing high
school but not college, and completing college). Deseriptive statistics for the continuons
and binary variables are

. sum age income black female

Variable | Obs Mean Std. Dev. Min Max
age 1382 45.04645 16.78311 18 a1
income 1382 37.45767 27.78148 1.6 131.25
black 1382 .1374819 .34448 0 1
female 1382 . 4934877 .5001386 0 i

The distribution of educational attaimmnent is

. tabulate educ, miss

Level of
education Freq. Percent Cum.
not hs grad 222 16.06 16.06
hs only 802 E8.03 74.10
college asa 25.90 100.00
Total 1,382 100.00

Using these variables, we fit the model

. mlogit party age income i.black i.female i.educ
(output omitted )
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Because educ has three categories, i.educ is expanded to 2. educ and 3.educ, leading
to the following minimal sef of equations:

In Qepsr (%) = Bospisr + Hispjsrage + fu spjispincome + B3 spispblack

+ Bispjsnfemale + A5 spjsr2- educ + G sp|sp3. educ

In Q-DtSR (x;) = Bo.pisr + .'fl‘msgage + ﬂg'msnincome -+ 53,|)|33black
+ By pispfemale + F5 pisp2. educ + [ pisp3- educ

In Q”g_n (x;) = Jrj[].nsﬂ + fﬂ_ngﬂﬂga + ﬁg'”sg_income + ﬂs‘nsgblack
+ B4 spfemale + 5 ysp2.educ + 5 1jsp 3. educ

InQrisr (%:) = B pisk + 51.risrage + farispincome + fy pispblack
+ By mispfemale + 35 pisp2. educ + 6 risn3. educ

where the fifth outcome, StrRep, is the base. The (lengthy) results are
. mlogit party age income i.black i.female i.educ, base(5) vsquish

Iteration 0: log likelihood = -2116.5357
Iteration 1: log likelihood = -1873.8136

Iteration 2 log likelihood = -1961.2327
Iteration 3: log likelihood = -1860.9126
Iteration 4: log likelihood = -1960.9107
Iteration 6 log likelihood = -1960.9107
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Multinomial logistic regression Number of obs = 1382
LR chi2(24) = 311.25
Prob > chi2 = 0.0000
Log likelihood = -1960.9107 Pseudo R2 = 0.0738
party Coef. Std. Err. z  Prlz| [96% Conf. Interval]
StrDem
age .0028185 . 00644 0.44 0.662 -.0098036  .0153407
income - . 0174695 0045777 -3.82 0.000 -.0264416 -.0084974
black ; '
yes 3.075438 604062 5.08 0.000 1.891518 4.269358
female
yes .2368373 .215026 1.10 0.271 -.1846069  .6582805
educ
hs only - .5b48853 3426066 -1.62 0.106 -1.226382 .1166113
college -1.374585  .3990604 -3.44 0.00% -2.156709 -.5924606
_cons 1.182235 5132429 2.30 0.021 . 1762875 2.188163
Dem
age | -.0207981  .0059291 -3.51  0.000 -.032418  -.0091772
income -.0101908 .0036632 -2,87 0.004 -.0171849  -,0032267
black
yes 2.07911 .B030684 3.46 0.001 .B9T1176 3.261102
female :
yes L4TTEBOB . 1915845 2.49  0.013 1021624 .B631992
educ
hs only -.2097834 . 3_365993 -0.62 0.533 -.B685069 . 4499302
college -. 7458487 . 3691436 =-2.02 0.043 -1.469467 -.0224408
_cons 2.332088 LATa4TEE 4.92 0.000 1.402141 3.262065
Indep
age -. 0287992 .00T4316 -3.88 0.000 -.0433648 ~-.0142337
income -.0089716 .0047821 -1,B8 0.061 -.0183443 .0004012
black
yes 2.290928  .6262902 3.86 0.000 1.063422  3.518435
female
yes .0478994 .2361813 0.20 0.839 -, 4150074 .5108062
edoc
hs only -.6018342 .3788561 -1,89 0.112 -1.344379 . 1407101
college -1.758295  .4510067 -3.90 0©.000 -2.64225 -.8743398
_cons 2.225948 .BB3075 4.02 0.000 1.141941 3.309966
Rep )
age -, 0217144 0060422 -3.59 0.000 -.0335669 -.0098718
income -.0012718  .0033629 -0.38 0.705 -.0078627 .0053196
black
yes 106288 .6861838 0.16 0.877 -1.238611 1.451181
female
yes .244697  .1929118 1.27  0.205 ~.1334031 .6227971
educ
hs only -.1827T121 .3502744 -0.52 0.802 -.B692374 .5038132
college -.6956311  .3804257 -1.83 0.067 -1.441252 . 0499896
_cons 2.,092856  .4B46516 4.32  0.000 1.1429566 042754
StrRep (base outcome)
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Methods of testing coefficients and interpretation of the estimates will be considered
after we discuss the effects of selecting different. base ontcomes.

8.2.2 Selecting different base outcomes

By default. mlogit sets the base outcome to the alternative with the most observations
in the estimation sample. Or. as illustrated in the last example, you can select the
base with the option baseocutcome (), which can be abbreviated simply as b(). mlogit
reports the coefficients for each independent variable on each outcome relative to the
base outcome,

Although mlogit only shows coefficients comparing outcomes with the base outcome,
it is important to examine the coeflicients for other pairs of outcomes. For example,
you might be interested in the effect of being a female on being Dem compared with
Indep (that is, Bremare,nj1), Which was not estimated in the output above. Although
this coefficient can be estimated by running mlogit with a different base outcome (for
example, mlogit party ..., base(3)), it is easier to use listcoef, which presents
estimates for all pairs of ontcome categories. Because 1istcoef can generate lengthy
output, we illustrate several options that limit which coefficients are listed. First, if you
specify a list of variables, only coefficients for those variables are shown. For example,

. listcoef female, help
mlogit (N=1382): Factor change in the odds of party
Variable: i.female (sd=(!.500)

b z P>zl e’b e bStdX
StrDem vs Denm -0.2408 -1.443 0.149 0.786 0.887
StrDem vs Indep 0.1889 0.889 0.374 1.208 1.098
StrDem vs Rep -0.0079 -0.044 0.965 0.992 0.996
StrDen vs StrRep 0.2368 1.101 0.271 1.267 1.126
Dem va StrDem 0.2408 1.443 0.149 1.272 1.128
Dem vs Indep 0.4298 .17 0.027 1.837 1.240
Dem vs Rep 0,2330 1.587 0.112 1.262 1.124
Dem va StrRep 0.4777 2.493 0.013 1.612 1.270
Indep vs Strhem -0.1889 -0.889 0.374 0.828 0.910
Indep vs Dem -0.4298 -2.217 0.027 0.651 0.807
Indep va Rep -0.1968 -0.983 0.326 0.821 0.906
Indep vs StrRep 0.0479 0.203 0.839 1.049 1,024
Rep ve StrDem 0.0079 0.044 0.965 1.008 1.004
Rep vs Dem -0.2330 -1.587 0.112 0.792 0.890
Rep vs Indep 0.1968 0.983 0.326 1.217 1.103
Rep vs StrRep 0.2447 1.268 0.208 1.277 1.130
StrRep vs StrDem -0.2368 -1.101 0.27% 0.789 0.888
StrRep vs Dem ~0.4777T -2.493 0.013 0.620 0.787
StrRep ve Indep -0.0479 -0.203 0.839 0.953 0.976
Striep vs Rep -0.2447 -1.268 0.2085 0.783 0.885

b = raw coefficient
z = z-gcore for vest of b=0
P>lz| = p-value for z-test
2°b = axp(b) = factor change in odds for unit increase in X
€ b8tdX = exp(beSD of X) = change in odds for SD increase in X
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Notice that none of the coefficients with the base outcome StrDem are statistically
significant, even at the 0.10 level. Although these are the only coefficients that are
shown in the output from mlogit, two of the coefficients relative to outcome Dem are
significant at the 0.05 level and two more are almost significant at the 0.10 level. Before
concluding that a variable has no effect, vou should examine all the contrasts and
compute an omnibus test for the effect of a variable, as discussed in section 8.3.2.

By default, listcoef shows coeflicients for all contrasts. For example, it even shows
you the coefficient comparing StrRep with Rep, which equals —0.2447, and the coefficient
comparing Rep with StrRep, which equals 0.2447. You can limit which contrasts are
shown with the gt, 1t, or adjacent options. With the gt option, only coefficients in
which the eategory number of the first alternative is greater than that of the second
are shown; 1t shows comparisons when the first alternative is less than the second: and
adjacent limits coefficients to those from adjacent outcomes. For example,

. listcoef income age, lt adjacent
mlogit (N=1382): Factor change in the odds of party
Variable: age (sd=16.783)

b z P>zl @’h e bStdX
StrDem vs Dem 0.0236 4.761 0.000 1.024 1.486
Dem vs Indep 0.0080 1.287 0.198 1.008 1.144
Indep vs Rep -0.0071 -1.098  0.272 0.933  0.888
Rep ve StrRep -0.0217 -3.594 0.000 0.979 0.695
Variable: income (sd=27.781)

b z B>lz] &b e bStdX
StrDem vs Dem -0.0073 -1.777 0.075 0.993 0.817
Dem vs Indep -0.0012 -0.279 0.780 0.999 0.967
Indep vs Rep. -0.0077 -1.778 0.075 0.892 0.807
Rep vs StrRep -0.0013 -0.378 0.705 0.989 0.965

We will return to the contrasting patterns of coefficients for these two variables when
we present methods for plotting coefficients in section 8.11.2.

You can also restrict the list of contrasts shown to only those with positive coefficients
by using the positive option. This means you will see all the contrasts that are not
simply derived by reversing the sign of another contrasts. This can often allow you to see
at a glance overall patterns in the direction of the relationships between an independent
variable and the outcome, as in this example:
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. listcoef income, positive
mlogit (N=1382): Factor change in the odds of party
Variable: income (sd=27.781)

b z P>lz| e’b e bStdX
Dex vs StrDem 0.0073 1.777  0.076 1.007 1.224
Indep vs StrDem 0.0085 1.662  0.098 1.008 1.266
Indep vs Dem 0.0012  0.279  0.780 1.001 1.034
Rep vs StrDem 0.0162  3.916  0.000 1.016 1.668
Rep vs Dem 0.0089 3.026  0.002 1.009 1.281
Rep vs Indep 0.0077 1.778  0.075 1.008 1,239
StrRep vs StrDem 0.0176  3.816 0.000 1.018 1.625
Stritep vs Dem 0.0102  2.868  0.004 1.010 1.327
StrRep vs Indep 0.0090 1.876 0.061 1.009 1.283
StrRep vs Rep 0,0013  0.378 0.705 1.001 1.036

From the example, we can see that the positive coefficients for the income variable all
correspond to contrasts of a further right outcome to a further left one. In other words,
we can see that income is positive related to selecting a partisan identity further to the
right. This corresponds to the conclusion that partisan identification behaves like an
ordinal variable with respect to income (but, as we will show later, this is not the case
for all the variables in our model.)

Finally, a last way to restrict the list of coefficients is with the pvalue(#) option
that restricts coefficients to those that are significant at the specified level. For example,

. listcoef female, pvalue(.15)
rlogit (N=1382): Factor change in the odds of party (P<0.15)
Variable: 1.female (ad=0.500)

b z  P>lzl e"b e bStdX
StrDem vs Dem -0.2408 -1.443  0.149 0.786 0.887
Dem vs StrDem 0.2408 1.443 0.149 1.272 1.128
Dem vs Indep 0.4298 2.217  0.027 1.837 1.240
Dem vs Rep 0.2330 1.587  0.112 1.262 1.124
Den vs StrRep 0.4777 2.493 0.013 1.612 1.270
Indep vs Dem -0.4298 -2.217 0.027 0.651 D.807
Rep ve Dem -0.2330 -1,687 0.112 ©.792 0.890
StrRep vs Dem -0.4777 -2.493  0.013 0.620 0.787

Using these options can reduce the amount of output from 1istcoef and focus attention
on the most important results.

8.2.3 Predicting perfectly

The nlogit command handles perfect prediction in the same way as the ologit and
oprobit commands, but somewhat differently than estimation commands for binary
models. logit and probit antomatically remove the observations that imply perfect
prediction and compute the estimates accordingly. mlogit and oprobit keep these ob-
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servations in the model, set the = statistics for the problem variables to 0. warn that
standard errors are questionable, and indicate that a given number of observations are
completely determined. You should refit the model after excluding the problem vari-
able and deleting the observations that imply the perfect predictions. Using tabulate
to cross-tabulate the problem variable and the dependent variable should reveal the
combination of values that results in perfect prediction.?

8.3 Hypothesis testing

In the MNLM, you can test individual coefficients with the reported z statistics, with a
Wald test by using test, or with an LR test by using lrtest. As the methods of testing
a single coefficient that were discussed in chapters 3. 5, and 7 apply fully, they are
not considered further here. However, in the MNLM, there are new reasons for testing
sets of coefficients. First, testing that a variable has no effect requires a test that J — 1
coeflicients in a minimal set are simultaneously equal to 0. Second, testing whether
the independent variables as a group differentiate between two alternatives requires a
test of K coefficients, where K is the number of independent variables, including those
created by expanding factor-variable notation. In this section, we focus on these two
kinds of tests.

Caution regarding specification searches. Given the difficulties of interpretation
that are associated with the MNLM, it is temipting to search for a more parsimo-
nious model by excluding variables or combining outcome categories based on a
sequence of tests. Such a search requires great care. First, these tests involve
multiple coefficients. Although the overall test might indicate that as a group the
coeflicients are not significantly different from 0, an individual coefficient could
still be substantively and statistically significant. Accordingly, youn should exam-
ine the individual coefficients involved in each test before deciding to revise vour
model. Second, as with all searches that use repeated, sequential tests, there is
a danger of overfitting the model to the data. Whenever model specifications are
determined based on prior testing nsing the same data, significance levels should
be used only as rough guidelines.

8.3.1 mlogtest for tests of the MNLM

Although the tests in this section ean be computed using test or 1rtest, in practice this
i8 tedious. The mlogtest command by Freese and Long (2000) makes the computation
of these tests easy. The syntax is

2. Before Stata 13.1, mlogit produced the sume outpnt but did not provide a warning.
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slogtest [warlist] [, 1r wald set([setname =|varlist
[\ [seIRa,m.e =1vm'£*isf ]I\ ]) combine lrcombine iia hausman smhsiao
detail base all |

varlist indicates the variables for which tests of significance should be computed. If no
varfist is given, tests are run for all independent variables.

Options

1r requests a likelihood-ratio (Lk) test for each variable in varfist. I varlist is not
specified, tests for all variables are computed.

wald requests a Wald test for each variable in varlist. If varlist is not specified, tests
for all variables are computed.

set( [set‘uame.{ =] varlist! l\ [setname2 =] var!i."st?] [\ : ..]) specifies that a set of vari-
ables be considered together for the LR test or Wald test. \ is used to indicate that a
new set of variables is being specified. For example, nlogtest, 1r set(age income
\ 2.educ 3.educ) computes one LR test for the hypothesis that the effects of age
and income are jointly () and n second LR test that the effects of 2. educ and 3. educ
are jointly 0. The option set() is used to label the output.

combine requests Wald tests of whether dependent categories can be combined.

lrcombine requests LR tests of whether dependent categories can be combined. These
tests use constrained estimation and overwrite constraint 998 if it is already defined.

For other options, fype help mlogtest.

8.3.2 Testing the effects of the independent variables

With J dependent categories, there are J — 1 nonredundant coefficients associated with
each independent variable . For example, in our model of party affiliation, there
are four coefficients associated with female: Begmie SDISR: Prensts,DSR: Srezare SR, a1
Bgemato sk~ The hypothesis that o) does not affect the dependent variable can be
written as
””‘. '"Ik,IIb == ﬁk..flb =10

where b is the base outcome. Because Gy is necessarily 0, the hypothesis imposes
constraints on J — 1 parameters. This hypothesis can be tested with either a Wald or
an LR test,

Likelihood-ratio test

The LR test involves 1) fitting the full model that includes all the variables, resulting
in the LR statistic LR y}: 2) fitting the restricted model that excludes variable zy,
resulting in LR x%: and 3) computing the difference LR Xhvsp= LR X} — LR x%. which
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is distributed as chi-squared with .J—1 degrees of freedom if the null hypothesis is true.
This can be done using lrtest by first fitting the full model and storing the estimates:

. mlogit party age income i.black i.female i.educ, base(5) nolog
(output omitted )
. estimates store full_model

Next, we fit a model that drops the variable age, again storing the estimates:

. mlogit party income i.black i.female i.educ, base(5) nolog
. estimates store drop_age

Finally, we compute the LR test:

. 1rtest full_model drop_age

Likelihood-ratio test LR chi2(4) = 45.16
(Assumption: drop_age nested in full_model) Prob > chil2 = 0.0000

Although using 1rtest is straightforward, the command mlogtest, 1r iseven sim-
pler because it automatically fits the needed models and computes the tests for all
variables by making repeated calls to lrtest:

- mlogit party age income i.black i.female {.educ, base{5) nolog
(output omitted )

. mlogtest, 1r

LR tests for independent variables (N=1382)
Ho: All coefficients associated with given variable(s) are 0

chi2 df P>chi2

age 45. 165 4 0.000
income 24.381 4 0.000
1.black 126.467 4 0.000
1i.fanale 9.143 4 0.0B6R
2.educ 5.567 4 0.234
3.educ 21.582 4 0.000

The results of the LR test, regardless of how they are computed, can be interpreted as
follows:

The effect of age on party affiliation is significant at the 0.01 level (LR x? =
4517, df = 4, p < 0.01).

The effect of being female is significant at the (.10 level but not at the 0.05
level (LR x? = 9.14, df = 4, p = 0.06).

This can also be stated more formally:
The hypothesis that all the coefficients associated with income are simulta-

neously equal to 0 can be rejected at the 0.01 level (LR x* = 24.36, df = 4,
p < 0.01).
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Waid test

Although we consider the LR test superior, its computational costs can be prohibitive if
the model is complex or the sample is very large. Algo, LR tests cannot be used if robust
standard errors or survey estimation is used. Wald tests are computed using test and
can be nsed with robust standard errors and survey estimation. As an example, to
compute a Wald test of the null hypothesis that the effect of being female is 0, type

. mlogit party age income i.black i.female i.educ, base(5) nolog
(output omitted )
. test 1.female

( 1) [StrDem]l.female = 0

( 2) [Demli.female = 0

( 3) [Indep]l.female = 0

( 4) [Replli.female =0

( 5) [StrReplio.female = 0
Constraint 5 dropped

chi2( 4) = 9.08
Prob > chi2 = 0.0580

The output from test makes explicit which coefficients are being tested and shows
how Stata labels parameters in models with multiple equations, For example, the first
line, labeled [StrDeml1.female, refers to the coefficient for female in the equation
comparing the outcome StrDem with the base outcome StrRep; [Dem]1.female is the
coefficient for female in the equation comparing the outcome Dem with the base category
StrRep; and so on. The fifth constraint, listed as [StrRep]lio.female = 0, refers to
the coefficient comparing StrRep to StrRep, which is automatically constrained to 0
when the model is fit. The o in 1o.female means that the coefficient for outcome 1
was omitted in the model and so the parameter was not estimated. Accordingly, this
constraint is dropped. The following command antomates this process:

. mlogteot, wald
wWald tests for independent variables (N=1382)
Ho: All coefficients associated with given variable(s) are 0
chi2 df P>chi2

age 43.815 4 0.000
incoma 22.985 & 0.000
1.black 83.978 4 0.000
i.female 9,087 q 0.0589
2.educ 5.568 4 0.234
3.educ 20.613 4 0.000

These tests can be interpreted in the same way as shown for the LR test above.
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Testing multiple independent variables

The logic of the Wald or LR tests can be extended to test that the effects of two or more
independent variables are simultancously 0. For example, the hypothesis to test that
r and x¢ have no effects is

Ho: Biap=--+= Brgp = Brap == Beap =0

For example, to test the hypothesis that the effects of age and income are simultaneously
equal to 0. we could use 1rtest as follows:

. mlogit party age income i.black i.female i.educ, base(5) nolog
(output omitted )

. estimates store full model

. mlogit party 4.black i.female i.educ, base(5) nolog
(output omitted )

. estimates store drop.ageinc

« lrtest full_model drop_ageinc

Likelihood-ratio test LR chi2(8) =  71.58
(Assumption: drop_ageinc nested in full_model) Prob > chi2 = 0.0000

We can use the set option in mlogtest to do the same things. Suppose we use the
command

mlogtest, lr set{agekinc=age income \ educ=2.educ 3.educ)

The argument agekinc=age income specifies a test that the coefficients for age and
income are simultaneously 0, labeling the results with the tag age&ine. Following the
\, we specify a test that the coefficients for all the indicators of the factor variable educ
are (. Here are the results:

. mlogit party age income i.black i.female i.educ, base(5) nolog
(output omitted )

. mlogtest, lr set(agekinc=age income \ educ=2.educ 3.educ)

LR tests for independent variables (N=1382)
Ho: All coefficients associated with given variable(s) are 0

chi?2 df P>chi2

age 45.1656 4 0.000
income 24.361 4 0.000
1.black 126.4867 4 0.000
1.female 9.143 4 0.058
2.educ 5.567 & 0.234
3.educ 21.582 4 0.000
agekine 71.585 B 0.000
educ 26.881 8 0.001

agekinc contains: age income
educ contains: 2.educ 3.educ
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| 8.3.3 Tests for combining alternatives

If none of the independent variables significantly affects the odds of alternative m ver-
sus alternative n, we may say that m and n are indistinguishable with respect to the
variables in the model (Anderson 1984). To say that alternatives m and n are indistin-
guishable corresponds to the hypothesis that

”r“: Bl.m|u = 'ﬂﬁ.mlﬂ =0

which can be tested with either a Wald or an LR test. If alternatives are indistinguishable
with respect to the variables in the model, then you can obtain more efficient estimates
by combining them. Note, however, that while the nlogtest command makes it easier to
test the hypotheses that each pair of outeomes can be combined, we do not recommend
combining categories simply because the null hypothesis is not rejected. This is likely
to lead to over-fitting your data and creating outcome variables that do not make
substantive sense. Instead, these tests should be used to test a substantively motivated
hypothesis that two categories are indistinguishable.

Wald test for combining alternatives

The command mlogtest, combine computes Wald tests of the null hypothesis that two
alternatives can be combined for all pairs of alternatives. For example,

. mlogit party age income i.black i.female i,educ, base(5) nolog
(output omitted )

. mlogtest, combine

Wald tests for combining alternatives (N=1382)

Ho: All coefficients except intercepts associated with a given pair
of alternatives are 0 (i,e., alternatives can be comb

chi2 df P>chi2

StrDem & Dem 72.854 (] 0.000
StrDem & Indep 40.334 8 0.000
StrDem & Rep 126.561 6 0.000
StrDem & StrRep 83.272 & 0.000
Dem & Indep 16.141 6 0.018
Dem & Rep 44.862 6  0.000

Dem & StrRep §6.580 6 0.000
Indep & Rep 49.878 6 0.000
Indep & StrRep 60.203 € 0.000
Rep & StrRep 22,286 6 0.001

From these results, we can reject the hypothesis that categories StrDem and Dem are
indistinguishable. Indeed, our results indicate that all the categories are distinguishable.
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(Advanced) Using test [outcome]

The mlogtest, combine command makes its computations by using
the test command for multiple-equation models. Although most re-
searchers will find that mlogtest is sufficient for their needs, there might
be situations in which yon want to conduct tests that are unique to your
application. If so. this section provides some insights into how to use
the test command to test hypotheses involving combining outcomes,

To test that StrDem is indistinguishable from the base outcome StrRep. type

. test [StrDem]

( 1) [StrDem]age = 0

( 2) [StrDem]income = 0

( 3) [StrDem]Ob.black = 0O

( 4) [StrDem]1.black = 0

( 5) [StrDem]Ob.female = 0

( 6) [StrDem]l.female = O

(7) [StrDem]lib.educ = 0

( 8) [StrDem]2.educ =0

(9) [StrDem]3.educ =0
Constraint 3 dropped
Constraint 6§ dropped
Constraint 7 dropped

chi2( 6) = 83.27
Prob > chi2 = 0.0000

The result matches the results from mlogtest in row StrDem & StrRep. The command
test [outcome] indicates which equation is being referenced in multiple-equation com-
mands. mlogit is a multiple-equation command with J — 1 equations that are named
by the value label for the outcome categories. In the output above, constraints 3, 5,
and 7 were dropped. These constraints correspond to the base categories for factor vari-
ables. For example, Ob.black is the coefficient for the excluded base outcome, which
by definition is 0.

The test is more complicated when neither outecome that is being considered is the
base. For example, to test that m and n are indistinguishable when the base outcome
b is neither m nor n, the hypothesis is

Hﬂ: (ﬁl‘m!b — .Hl.rlfb) = s = (.dh'.mfb - ﬂhf.nlb) =0

That is, you want to test the difference between two sets of coefficients. This is done
with test [outcomel=outcome2]. For example, to test whether StrDem and Dem can
be combined, type
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. test [StrDem=Dem]

( 1) [StrDemlage - [Demlage = 0
( 2) [StrDem]income - [Dem]income = 0
( 3) [Strbem]Ob.black - [Dem)Ob.black = O
( 4) [StrDem]l.black - [Dem]i.black = 0O
( 5) [StrDemlOb.female - [Dem]Ob.female = O
( 6) [StrDem]i.female - [Dem]i.female = 0
( 7) [StrDem]ib.educ - [Dem]ib.educ = O
( 8 [Strbeml2.educ - [Dem]2.educ = 0
( 9) [StrDem]3.educ - [Dem]3.educ = 0O
Constraint 3 droppad
Constraint & dropped
Constraint 7 dropped

chi2( 6) = 72.85
Prob > chi2 = 0.0000

The results are identical to those from mlogtest.

LR test for combining alternatives

An LR test of combining m and n can be computed by first fitting the full model with
no constraints, with the resulting LR statistic LR x%. Then, fit a restricted model Mg
in which outcome m is used as the base category and all the coefficients except the
constant in the equation for outcome n are constrained to 0, with the resulting test
statistic LR y%. The test statistic for the test of combining m and n is the difference
LR ki p= LRX%—LRXF, which is distributed as chi-squared with K degrees of freedom,
where K is the number of regressors. The command mlogtest, lrcombine computes
J % (J = 1) tests for all pairs of outcome categories. For example;

. mlogit party age income i.black i.female i.educ, base(5) nolog
(output omitted)

. mlogtest, lrcombine

LR tests for combining alternatives (N=1382)

Ho: All coefficients excopt intercepts associated with a given pair
of alternatives are 0 (i.e., alternatives can be collapsed)

chi2 df  P>chi2

StrDem & Dem 80.893 6 0.000
StrDem & Indep 44.075 6  0.000
StrDem & Rep 198.758 6 0.000
StrDem & StrRep 141.446 6 0.000
Dem & Indep 15.753 6 0.015
Dem & Rep 61.899 6  0.000

Dem & StrRep 73.214 6  0.000
Indep &k Rep 60.872 6 0.000
Indep & StrRep 78.873 6 0.000

' Rep & Strhep 22.894 6 0.001
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(Advanced) Using constraints with Irtest

The mlogtest, lrcombine command computes LR tests by using the
powerful constraint command (see [R| constraint). Although most
researchers are likely to find mlogtest sufficient for their needs, some
might want to learn more about how constraints are specified when
fitting models.

An LR test that categories are indistinguishable can be computed using the command
constraint. To test whether StrDem and StrRep are indistinguishable, we start by
fitting the full model and storing the results:

. mlogit party age income i.black i.female i.educ, base(5) nolog
{output omitted )
. estimates store full_model

Second, we define a constraint by using the command

. constraint define 999 [StrDen]

We arbitrarily chose number 999 to label the constraint. Any integer from 1 to 1,999
inclusive can be used. The expression [StrDem] indicates that all coefficients should
be estimated except for those fixed by the constraint. Third, we refit the model with
this constraint. The base category must be StrRep (category 5) so that the coefficients
indicated by [StrDem] are comparisons of StrDem and StrRep:

. mlogit party age income i.black i.female {.educ,
> constraint(998) base(5) nolog

(output omitted )
. estimates store constraint99%

The model is fit with the constraint imposed, and results are stored using the name
constraint9989. Comparing the full model to the constrained model,

« lrtest full_model constraint9s9s

Likelihood-ratio test LR chi2(6) = 141.45
(Assumption: constraint999 nested in full _model) Prob > chi2 =  0.0000

The result matches that from mlogtest, lrcombine.
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8.4 Independence of irrelevant alternatives

The MNLM, as well as the conditional logit and rank-ordered logit models discussed
below, make the assumption known as the independence of irrelevant alternatives (11A).
Here we describe the assumption in terms of the MNLM. In this model,

Pr(y=m]|x)
Prr (I:; = T. |] :) = P {" (ﬁmlﬁ - 5'*'*') }

where the odds do not depend on vther alternatives that are available. In this sense,
thase alternatives are “irrelevant”. What this means is that adding or deleting alterna-
tives does not affect the odds amaong the remaining alternatives.

This point is often made with the red bus-blue bus example. Suppose people in a
city have three ways of getting to work: by car, by taking a bus operated by a company
that uses red buses, or by taking a bus operated by an identical company that uses
blue buses. We might expect that many people have a clear preference between taking
the car versus taking a bus but are indifferent about whether they take a red bus or
a blue bus, Suppose the odds of a person taking a red bus compared with those of
taking a car are 1:1. 11A implies the odds will remain 1:1 between these two alternatives
even if the blue bus company were to go out of business. The assumption is dubions
because we would expect the vast majority of those who take the blue bus to have the
red bus as their next preference. Consequently, eliminating the blue bus will increase
the probability of traveling by red bus much more than it will increase the probability of
someone traveling by car, yielding odds more like 2:1 than 1:1. In other words, because
the blue bus and red bus are close substitutes, having the blue bus as an available
alternative leads the MNLM to underestimate the preference for red bus versus car,

Tests of A involve comparing the estimated coefficients from the full model to
those from a restricted model that excludes at least one of the alternatives. If the
test statistic is significant, the asswmption of 11A is rejected, indicating that the MNLM
is inappropriate. In this section, we consider the two most common tests of HA: the
Hausman-McFadden (HM) test (Hausman and McFadden 1984) and the Small-Hsiao
(SH) test (Small and Hsiao 1985). For details on other tests, see Fry and Harris (1996,
1998). For a model with .J alternatives, we consider J ways of computing each test. If
vou remove the first alternative and refit the model, you get the first restricted model
leading to the first variation of the test. If you remove the second alternative, you
get the second variation, and so on. Each restricted model will lead to a different test
statistic, as we demonstrate helow,

Both the HM test and the SH test are computed by mlogtest, and for both tests
we compute J variations. As many users of mlogtest have told us, the HM and SH
tests often provide conflicting information on whether 11A has been violated, with some
of the tests rejecting the null hypothesis, while others do not. To explore this further,
Cheng and Long (2007) ran Monte Carlo experiments fo examine the properties of these
tests. Their results show that the HM test has poor size properties even with sample
sizes of more than 1,000. For some data structures, the SH test has reasonable size
properties for samples of 500 or more. But with other data structures, the size properties
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are extremely poor and do not get better as the sample size increases. Overall, they
conclude that these tests are not useful for assessing violatious of the 11A property,

It appears that the best advice regarding 1A goes back to an early statement by
McFadden (1974), who wrote that the multinomial and conditional logit models should
be used only in cases where the alternatives “can plausibly be assumed to be distinct
and weighted independently in the eyes of each decision maker”. Similarly, Amemiya
(1981) suggests that the MNLM works well when the alternatives are dissimilar. Care
in specifying the model to involve distinet alternatives that are not substitutes for one
another seems to be reasonable—albeit unfortunately ambiguous— advice.

Caution regarding tests of ILA. We do not believe that tests of 1A are useful, but
we have heard from readers about reviewers or editors who insist that they provide
the results of an 11A test. In our experience, you can almost always obtain some
tests that accept the null and others that reject the null when using the same
model with the same data. We would try to convince those requesting the test
that these tests do not provide useful information, perhaps citing our hook, along
with Fry and Harris (1996, 1998) and Cheng and Long (2007). 1f this does not
work, you may still need to provide the test results. In this section, we tell you
how to compute them and illustrate their limitations.

8.4.1 Hausman—McFadden test of IIA

The HM test of 11A involves the following steps:

1. Fit the full model with all J alternatives included, with estimates in Br-

o

Fit a restricted model by eliminating one or more alternatives, with estimates in

By

3. Let B; be a subset of f'}p after eliminating coefficients not fit in the restricted
model. The test statistic is

v = (B - B}')’ {Var(Br) - Var (B85 ) }_I (Br - Br)

where HM is asymptotically distributed as chi-squared with degrees of freedom
equal to the rows in By if 1A is true. Significant values of HM indicate that the
1A assumption has been violated.
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The HM test of 1A can be computed with mlogtest:

. mlogit party age income i.black i.female i.educ, base(s)
(output cmitied)
. mlogtest, hausman
Hausman tests of ITA assumption (N=1382)
Ho: Ddds(Qutcome-J vs (utcome-K) are independent of other alternatives
chi?  df P>chi2 5

StrDen 4.622 20 1.000
Dem 0.919 21 1.000
Indep -2.244 18 i
Rep 3.030 21 1.000
StrRep -0.580 21

Nota: A significant test is evidence againat Ho.
Note: If chi2<0, the estimated model does not meet asymptotic assumptions.

Five tests of I1A are reported. The first four correspond to excluding one of the four non-
base categories. The fifth test, in row StrRep. is computed by refitting the model with
the largest remaining outcome as the base category? Three of the tests produce neg-
ative chi-squareds, something that is common with this test. Hausman and McFadden
(1984, 1226) note this possibility and conclude that a negative result is evidence that
1A has not been violated. Our simulations suggest that negative chi-squareds indicate
problems with the test, consistent with the warning that the mlogtest output provides.

8.4.2 Small-Hsiao test of IIA

To compute an SH test, the sample is divided randomly into two subsamples of about
equal size. The unrestricted MNLM is fit on both subsamples, where B, containg

2 : - e
estimates from the unrestricted model on the first subsample and 8, is its counterpart
for the second subsample. A weighted average of the coefficients is computed as

~ 5y 84 1 ~5) 1 ~8g
t = B i St = _)}gu
8= ()8 - (
Next, a restricted sample is created from the second subsample by elimihﬁtﬁls-&llm

with a chosen value of the dependent variable. The MNIM is fit using the restricted
sample, yielding the estimates 35 and the likelihood L(8%). The SH statistic is

SH = —E{L (3:‘”) _L(sz)}

which is asymptotically distributed as chi-squared with degrees of freedom equal to the
number of coefficients that are fit in both the full model and the restricted model.

3. Even though mlogtest fits additional models to compute various tests, Wh_-!?ﬂ the command ends,
it restores the estimates from your original model. Consequently, commands that require results
from your original mlogit, such #5 predict and m# commands, will work correctly.
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To compute the SH test, use the command mlogtest, smhsiao (our program uses
code from smhsiao by Nick Winter [2000] available at the Statistical Software Compo-
nents archive). Because the SH test requires randomly dividing the data into subsamples,
the results will differ with successive calls of the command, because the sample will be
randomly divided differently. To obtain test results that can be replicated, you must
explicitly set the seed used by the random-number generator. For example,

. set seed 124386
. mlogtest, smhsiao
Spall-Hsiao tests of IIA assumption (N=1382)
Ho: Odds{Outcome-] vs Outcome-K) are independent of other altermatives
| InL(full) 1nL(omit) chi2 df P>chi2

Strhem -696.763 -690.6564 12.198 21 0.934
Dam -565,671 -557.488 16.166 21 0.760

Indep -764.563 -758.290 12,547 21 0.924
Rep -621.662 -615.492 12.140 21 0.936
StrRep -761.598 -752.804 17 .687 21 0.875

Note: A significant test is evidence against Ho.

These results are consistent with those from the HM test, with none of the tests being
significant.

Before taking these results seriously, we tried three other seeds to produce a different
random division of the sample. The results varied widely. For example,

. set seed 254331
. mlogtest, smhsiac
Small-Hasiao tests of IIA assumption (N=1382)
Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives

InL(fu11) InL(omit) chi2 df P>chi2

StrDem -727.367 -692.048 70.639 21 0.000
Dam -610.636 -573.268 74,736 21 0.000
Indep -783.456 -747.654 71.604 21 0.000
Rep -660.962 -615.434 71.067 21 0.000
Striep -761.887 -740.193 23.388 21 0.324

Note: A significant test is evidence against Ho.

Using the new seed, we reject the null at the 0.001 level in four of the five tests, illus-
trating a common problem when using the SH test — you often get very different results
depending on how the sample is randomly divided,
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Tip: Setting the random seed. The random numbers that divide the sample for the
SH test are based on the runiform() function, which uses a pseudorandom-numbe
generator to create a sequence of numbers based on a'seed number. Alt.hought}m
numbers appear to be random, the same sequence will be generated each lﬂmeyon
start with the same seed. In this sense (and some others), these hnmbersm
pseudorandom rather than random. If you specify the seed with set seed # you
ensure that you can replicate your results later. See [R] set seed for more details.

8.5 Measures of fit

As with models for binary and ordinal outcomes, many scalar measures of fit for the
MNLM model can be computed with the SPost command fitstat, and information
eriteria can be computed with estat ic. The same caveats against ovcmtatmgtheun-
portance of these scalar measures apply here as to the other models we have considered
(see also chapter 3). To examine the fit of individual observations, you can fit the series
of binary logits implied by the MNLM and use the established methods of examining the
fit of observations to binary logit estimates.

8.6 Overview of interpretation

Although the MNLM is a mathematically simple extension of the binary model, mter-
pretation is difficult because of the many possible comparisons. Even in our simple
example with five outcomes, we have 10 comparisons: StrDem versus Stritep, Dem ver-
sus StrRep, Indep versus StrRep, Rep versus StrRep, StrDem versus Rep, Dem versus
Rep, Indep versus Rep, StrDem versus Indep, Dem versus Indep, and StrDem versus Dem.
It is tedious to write all of them, let alone to interpret all of them for each independent
variable. The key to effective interpretation is to avoid overwhelming yourself or your
audience with the many comparisons.

J As with models for binary and ordinal outcomes, we prefer methods of interprétation

that are based on predicted probabilities. Fortunately, these methods are essentially
| unchanged from those used for ordinal models in the last chapter, where the predicted
probability is now computed with the formula

exp (xﬁmu ) {&2)
Z}L; exp (xfij | J)

where X can contain either hypothetical values or values based on cases i the sample.
Here we assume that the base outcome is J, but any base could be used.

We follow a similar order of presentation to that nsed in the last chapter, providing
however, methods

' Priy=m|x) =

new variations in some cases and excluding some topics. Inall cases,
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from chapter 7 could be used for nominal models, and new ideas shown in this chapter
could be applied to ordinal models. For example, while we do not consider ideal types
in this chapter. they are just as useful for nominal outcomes as they were for the ordinal
regression model (ORM).

We begin by examining the distribution of predictions for each observation in the
estimation sample, Then, we consider how marginal effects can be used as an overall as-
sessment of the impact of each variable, but we also show what can be learned by looking
at the distribution of effects for each observation in the estimation sample. We extend
earlier methods for examining tables of predictions and show how to test a difference
of differences. Next, we plot predictions as a continuous independent variable changes.
which we use to highlight how results from an ordinal model can be misleading when
an outcome does not behave as if it were ordinal. Finally. we consider interpretation
using odds ratios. Although odds ratios in the MNLM have all the limitations discussed
in chapter 6, they are important for understanding how independent variables affect the
distribution of observations between pairs of outcomes, something that cannot be done
using predicted probabilities alone.

Before beginning, we must also emphasize once again that, as with other models
considered in this book, the MNLM is nonlinear in the onteome probabilities, and no
approach ean fully describe the relationship between an independent variable and the
outcome probabilities. You should experiment with each of these methods before de-
ciding which approach is most effective in your application.

8.7 Predicted probabilities with predict

The most basic command for computing probabilities is predict. After fitting the
model with mlogit, predicted probabilities for all outcomes within the sample can be
caleulated with

predict newvarlist [if | [in]

where vou must provide one new variable name for each of the J categories of the de-
pendent variable, ordered from the lowest to the highest numerical values. For example,

. mlogit party age income i.black 1i.female i.educ, base(5)
(output omitted )
. estimates store mlogit

. predict mnlmSD mnimD mnlml mnlmR mnimSR
(option pr assumed; predicted probabilities)
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T he wvariables created by predict are

. codebogk mnlmSD mnlmD mnlml mnlmR molmSR, compact

Variable Obs Unique Mean Min Max Label

mnl=SDH 1382 1193 .1924747 .0212015 .7664322 Pr(party==StrDen)
mnlsD 1382 1193 .3089726 .130881 .5125323! Pr(party==Dem)
mnlnl 1382 1193 .1082619 .0266534 .2838254 Pr(party==Indep)
mnlzR 1382 1193 .2670043 .0141873 .5036324 Pr(party==Rep)
=mnl=SR 1382 1193 .12228656 .0047189 .4662778 Pr(party==StrRap)

Ass with the ordinal model, if you specify a single variable name after predict, you will
obtain predicted probabilities for one outcome category, which you can specify using
t e outcome() option.

As discussed in section 7.10, examining the distribution of the in-sample predictions
c=an be used to get a general sense of what is going on in your model and can sometimes
uncover problems in your data. The distribution of predictions can also he used to
informally compare competing models, which we illustrate next.

We could reasonably argue that, the five categories of our dependent variable party
are an ordinal scale of party affiliation. Accordingly, it seems reasonable to model these
ddata with an ordinal logit model. First, we fit the model and compute predictions:

. ologit party age income i.black i.female i.educ
{output omitted )

. predict olmSD olmD olmI olmR olmSR
(option pr assumed; predicted probabilities)

« codebook olme, compact

Variable Obs Unique Mean Min Max Label

ol=SD 1382 1193 .1934016 .042849 .6646781 Pr(party==1)
olnD 1382 1193 .30611 .1393038 .3808963 Priparty==2)
olal 1382 1193 .1091385 .0349378 .1221904 Pr(party==3)
olzh 1382 11983  .269342 ,0484485 .3877065 Pr(party=—4)
olnSR 1382 1193 1220079 .0124719 .3484676 Pr(party==5)

Next, we plot the predicted probability of being a strong Demograt (outcome 1) with
the dotplot command:

. label var olmSD "oplogit"
. label var mnlmSD “"mlogit"
. dotplot olmSD mnlnSD, ylabel(0(.2).8, grid) ytitle(Pr(Strong Democrat))
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The histograms are similar, and the correlation between the predictions for the ordered
logit model (OLM) and the MNLM is 0.94. This suggests that the conclusions from the
two models might be similar.

If we look at the middle category of Independent, however, things look quite different,

reflecting the abrupt truncation of the distribution of predictions for middle categories
that is often found with the OLM:

™
.
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Not only are the distributions quite different in shape, but the correlation between
the predicted probabilities is negative: —0.19! A scatterplot of the predictions shows
striking differences between the two models:
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A low correlation between the predictions from the MNLM and the ORM could reflect
a lack of ordinality, but this is not necessarily so. For example, in simitlations where
data were generated to meet the assumptions of the ORM, we found low correlations in
predictions between middle categories between the MNLM and the ORM when the size
of the assumed error variance in the ORM was large relative fo the size of the regression
coefficients. Nonetheless, when predictions are very different between an ordinal and
nominal regression model, we recommend considering the appropriateness of the ordinal
model. This is considered further in section 8.10, where we plot predictions from the
MNLM and the oLMm,

8.8 Marginal effects

Average marginal effects are a quick and valuable way to assess the effects of all the
independent variables in your model. Because methods for using marginal effects to
interpret the MNLM are identical to those used for the OLM in section 7.11, we only
review key points here. We then extend materials from chapter 7 by examining the
distribution of effects within the estimation sample. Marginal effects are also used in
section 8.11.2 when we plot odds ratios.

The marginal change is the slope of the curve relating 2 to Pr(y=m|x), holding
all other variables constant, where Pr(y=1m|x) is defined by (8.2). For the MNLM, the
marginal change is

aPr(y=m|x _ J ‘
-_-._f_);r_k_i___] =Pr(y=m|x) < Bemis — Zﬁkdu Pr(y=j | x)
: -

Because this equation combines all the 3y j's. the value of the marginal change depends
on the levels of all variables in the model and can switch sign at different values of these
variables. Also, because the marginal change is the instantaneous rate or change, it
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can be misleading when the probability curve is cha

generally prefer using a discrete chnngeanddonat.diwmi
in this chapter,

The discrete change is the change in the probability of
the start value 3" to the end value 2§ (for example, a.
2™ =1); holding other 's constant. Formally,

APriy=milx) _ o0 = o s e
e (o oy =Pl = m s =) Rl

where Pr(y = m | x, i) is the pmba’bﬂltylhﬁy-:
for x. The change indicates that when x; changes
of outcome m changes by APr (y = m | x) [Axy, |
magnitude of the change depends on the levels of all v

size of the change in zx that is being eva]uated

Marginal effects are computed by mchange as disc
and 7.11. After fitting the model used as our running
discrete changes for a standard deviation change i
from 0 to 1 for other variables. The option amount
putation of marginal changes and discrete changes o
results wrapping due to the long value labels for educ:
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. estimates restore mlogit

. mchange, amount(sd) brief width(8)

mlogit: Changes in Pr(y) | Number of obe = 1382
Expression: Pr(party), predict(outcome())

StrDen Dem Indep Rep StrRep
age

+SD 0.084  -0.033  -0.024 -0.030  p.032
p-value 0.000 0.006 0.001 0.009 0.003

income
+5D -0.038 =0.022 ~0.003 0.041 0.023
p-value 0.001 0.122 0.762 0.002 0.019

black
yes vs no 0.274 0.047 0.041 -0.248 =-0.113
p-value 0.000 0.220 0.142 10.000 0.000

female
yes vs no -0.006 0.065 -0.024 -0.004 -0.031
p-value 0.768 0.010 0.153: 0.856 0.078

educ

hs only vs not hs grad -0.045 0.031 ~0.038 0.027 0.026
p-value 0.137 0.414 0.208  0.466  0.254
college va not hs grad -0.083 0.041 -0.082 0.034 0.100
p-value 0.025 0.367 0.007 0.441 0.001
college vs hs only -0.037 0.010  -0.052 0.006 0.073
p-value 0.142 0.744 0.004 0.825 0.002

Even for this relatively simple model and looking only at a single amount of change for
each variable, there is a lot of information to digest. Tomake it simpler to interpret these
results, we plot the changes with mchangeplot (see help mchangeplot and section fi.2
for additional information about mchangeplot). We begin by looking at the average
discrete changes for standard deviation increases in age and income;

. mchangeplot age income,
> symbols(D d i r R) min(-.05) max(.08) gap(.02) sig(.05)
> xtitle(Average Discrete Change) ysize(1.3) scale(2.1)

By default. mchangeplot represents each onteome category with the first letter of the
value label for that category. In this example, this would be confusing because the
categories StrDem and StrRep both begin with 8. The symbols() option lets you specify
oue or more letters for each category. For example, we conld use symbol(SD D I & SR).
Or. as we prefer, we can nse symbol(D d 1 r R) so that capitals indicate more strangly
hield affiliations. The resulting graph looks like this, where the *'s indicate that an effect
is significant at the 0.05 level:
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can be misleading when the probability curve is changing rapidly. For this reason, we
generally prefer using a discrete change and do not discuss the marginal change further
in this chapter.

The discrete change is the change in the probability of m for a change in zy from
the start value 23** to the end value ™ (for example, a change from a** = 0 to
a:i‘_“" = 1). holding other &'s constant. Formally,

APr(y=m|x)
M.L- (.‘Ei"“"’ - .T.'Eml)

=Pr(y=m|x,zx =2{") = Pr (y=m | x, 2 = 1%

where Pr(y = m | x, ) is the probability that y = given x, noting a specific value
for zx. The change indicates that when xy changes from 2§ to 23", the probability
of outcome m changes by APr (y = m | x) /Awy. holding all other variables at x. The
magunitude of the change depends on the levels of all variables, including zp. and the
size of the change in 2 that is being evaluated.

Marginal effects are computed by mchange as discussed in detail in sections 4.5.4
and 7.11. After fitting the model nsed as our running example, we compute the average
discrete changes for a standard deviation change in continnous variables and a change
from 0 to 1 for other variables. The option amount(sd) suppresses the default com-
putation of marginal changes and discrete changes of 1 unit, while width(8) prevents
results wrapping due to the long value labels for educ:
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. estimates restore mlogit

. mchange, amount(sd) brief width(8)

mlogit: Changes in Pr(y) | Number of obs = 1382
Expression: Priparty), predict(outcome())

StrDem Dem Indep Rep StrRep
age

+SD 0.054 -0.033 -0.024 -0.030 0.032
p-value 0.000 0.006 0.001 0.009 0.003

income
48D -0.039 -0.022 -0.003 0.041 0.023
p-value 0.001 0.122 0.752 0.002 0.019

black
yes vs no 0.274 0.047 0.041 -0.248 -0.113
p-valus 0.000 0.220 0.142 0.000 0.000

female
yes v no -0.006 0.065 ~-0.024 -0.004 -0.031
p-value 0.768 0.010 0.153 0.856 0.078

educ

hs only vs not hs grad ~0.045 0.031 ~0.039 0.027 0.026
p-value 0.137 0.414 0.208 0.466 0.254
college vs not hs grad ~-0.083 0.041 -0.092 0.034 0.100
p-value 0.025 0.367 0.007 0.441 0.001
cellege vs hs only -0.037 0.010 ~0.0562 0.006 0.073
p-value 0.142 0.744 0,004 0.825 0.002

Even for this relatively simple model and looking only at a single amount of change for
each variable, there is a lot of information to digest. To make it simpler to interpret these
results, we plot the changes with mchangeplot (see help mchangeplot and section 6.2
for additional information about mchangeplot). We begin by looking at the average
discrete changes for standard deviation increases in age and income:

. mchangeplot age income,
> symbols(D d 4 r R) min(-.05) max(.05) gap(.02) sig(.05)
> xtitle(Average Discrete Change) ysize(1.3) scale(2.1)

By default, mchangeplot represents each outcome category with the first letter of the
value label for that category. In this example, this would be confusing because the
categories StrDem and StrRep both begin with S. The symbols() option lets you specify
one or more letters for each eategory. For example, we could use symbol(SD D I R SR).
Or, as we prefer, we can use symbol(D d i r R) so that capitals indicate more strongly
held affiliations. The resulting graph looks like this, where the #’s indicate that an effect
is significant at the 0.05 level:
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Before proceeding, you should verify that this graph corresponds to the output above
from mchange. Although we probably would not include this graph in a paper, we use
it to help describe the effects:

On average, a standard deviation increase in age, about 17 years, increases
the probability of being a strong Republican by 0.03 and of being a strong
Democrat by 0.05. The probabilities of other affiliations all decrease by
ronghly 0.03. All effects are significant at the 0.01 level.

On average, a standard deviation increase in income, roughly $28,000, signif-
icantly increases the probability of being a Republican by 0.04 and a strong
Republican by 0.02, while significantly decreasing the probability of being a
strong Democrat by 0.04.

The greater effect of race compared with gender on party affiliation is shown with
a plot of their average discrete changes. We use the following command to ¢reate the
graph:
. mchangeplot black female,

> symbols(D d i r R) min(-.3) max(.3) gap(.1) sig(.05)
> xtitle(Average Discrete Change) ysiza(1.3) scale(2.1)

black
[§ R d D
e
famale
2] d*
.3 e
L} T T T L L £l
-3 -2 -1 0 A 2 3

Average Discrete Change
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We conclude the following;

On average. for people similar on other characteristics, being black increases
the probability of being a strong Democrat by nearly 0.30 compared with
someone who is white. Conversely, being black decreases the probability of
being a strong Republican by 0.11 and being a Republican by 0.25. Except
for an increase of 0,07 in Democratic affiliation, the effects of gender are not
significant.

For the factor variable educ with three categories, mchange provides all the pairwise
contrasts, comparing those who have a high school diploma with those who do not,
those who have a college degree with those who do not have a high school diploma,
and those who have a college degree with those who have a high school diploma. One
contrast is redundant in the sense that it can be computed from the other two. Still, it
is useful to examine all contrasts to find patterns.

. mchangeplot educ,
> symbols(D d i r R) min(-.1) max(.1) gap(.02) sig(.05)
> xtitle(Average Discrete Change) ysize(1.3) scale(2.1)

educ
mwp-wuui D i ad

educ ,
Wumﬁﬂ it rd A

st " D d R

-1 08 -0 -04 -02 0 G2 04 06 .08 .1

We conclude the following:

Higher education increases the probability of identifying as a strong Republi-
can and decreases the probability of identifying as a strong Democrat. Based
on the distribution of other characteristics in the population, if we compare
those who do not have a high school diploma with those who have gradu-
ated from college, the probability of being a strong Republican increases by
0.10 on average and the probability of being a strong Democrat decreases
by 0.08,

Although we do not illustrate these methods here, we could examine other amounts
of change and customize the plots with the mchangeplot options described in help
mchangeplot.
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8.8.1 (Advanced) The distribution of marginal effects

Because the average marginal effect (AME) is an average, it does not
indicate variation in the sample. We find examining the distribution of
marginal effects is often very useful, but it requires using loops, macros,
and returns and is computationally intensive. After you are familiar
with marginal effects and Stata tools for automation, we encourage you
fo study this section carefully. Initially, however, we hope you will at
least skim it.

The value of a marginal effect depends on the level of all variables in the model (see
section 6.2.5). Neither the AME nor the marginal effect at the mean provide information
about how much variation there is within the sample in the size of the effects. In this
section, we extend the methods from chapter 6 to the MNLM. The same techniques can
also be used for the OLM.

The following commands generate the variable incomedc containing the discrete
change for a standard deviation increase in income, where we assume that the estimation
results from mlogit are in memory:

1] gen incomedc = .
2] 1label var incomedc ///
"Effect of a one standard deviation change in income on Pr(Dem)"

3] sum income
4] local sd = r(sd)

5] local nobs = _N
6] forvalues i = 1/ nobs” {

7 quietly {

8] margins in “i”, nose predict(outcome(2)) /// Dem
at(income=gen(income)) at(income=gen(income+ sd”))

9] local prstart = el(r(b),1,1)

10] local prend = el(r(b),1,2)

11] local dc = “prend” - "prstart”

12] replace incomedc = “dc” im "4

13] }

14] }

Lines 1 and 2 ereate and label the variable that will hold the discrete change for each
observation, Because we want to compute the effect of a standard deviation change in
income, lines 3 and 4 compute the standard deviation and create the local macro sd
containing the standard deviation. This is used in the margins command in line 8. Line
5 creates the macro nobs with the number of observations, which we use in line 6 to
begin a forvalues loop through the 1,382 observations in the estimation sample.

The loop over observations is defined in lines 6 through 14. Because we do not want
to sec the output from margins, line 7 uses quietly to suppress the output. Line 8 uses
margins to compute predictions for observation "1~ for the second outcome category,
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where nose suppresses the computation of the standard error (this speeds up the compu-
tations). The first at () statement specifies the observed value of income, with all other
variables held at their observed values; the second at () specifies the prediction at one
standard deviation more than the observed value. margins returns the predictions to
the matrix r(b), and lines 9 and 10 retrieve the starting and ending probabilities. Line
11 computes the discrete change. Line 12 saves the effect for observation “i- of variable
incomedc. The last two lines terminate the quietly command and the forvalues loop.

Why computing the distribution of effects is slow. Computing effects for indi-
vidual observations is slow. Every time margins is run, it computes predictions
for all observations in the sample before it computes predictions at values spec-
ified by at(). In line 8, we need the predictions for a single observation, but
margins computes predictions for all observations. You cannot turn off this be-
havior. Unfortunately, margins does not save the predictions it computes for
each observation. If it did, we would not need the loop! Accordingly, for each
observation in our loop, margins is computing 2N + 2 predictions, for a total of
2(N? 4 N) predictions—nearly 4 million in our example! Using Stata/MP for
eight cores, our loop took 60 seconds to complete. But we believe it is worth the
time.

Although these commands might seem complex at first, the good news is that you
can easily modify our code to work for other variables (for example, change income
to age), for different outcomes (for example, change outcome(2) to outcome(5)), or
for different amounts of change (for example, change “sd” to 1 for a discrete change
of 1). Further, the same commands will work with models for binary, ordinal, and count
outcomes or, indeed, for almost any model supported by the margins command.

To plot the distribution of effects, we first compute the mean of incomede and assign
it to a local maecro named ame:

. sum incomedc
Variable | Obs Mean Std. Dev. Min Max

incomedc | 1382 -.0217109 .0190934 -.0448823 .0306349
. loeal ame = r(mean)

The mean eqials the AME of —0.022 computed by mchange on page 417. Next, we use
histogram to plot the distribution of effects, with a vertical dashed line showing the
alue of the AME:

. histogram incomedc, xlabel(-,08(.01).05) fraction

> width(.008) color(gsi0) fcolor(gsi2) ylab(0(.1).2)
> xline( ame”, lpat{(dash))

(bin=16, start=-,04455748, width=.005)
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The histogram shows the distribution of discrete changes in the probability of heing
Democrat for a standard deviation change in income with the AME represented by a
vertical, dashed line:

Even the sign of the AME is potentially misleading. The distribution of effects is bi-
modal with most of the sample having effects around —0.03 and a smaller group with
positive effects near 0.025. Suppose the independent variable being considered is an
intervention where the spikes corresponded to two groups—say, whites and blacks—
with negative effects for the larger group and positive effects for the smaller group. If
substantive interest was on how the intervention would affect the smaller group, the
AME is misleading because it is dominated by the negative effects for the larger group.

As a second example, we compute (without showing the cornmands) the distribution
of the effects of age on being a strong Republican:
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The AME of age on being a strong Republican is 0.030. The distribution of discrete
changes ranges from 0.0004 to 0.082. with a spike near 0 followed by a gap until around
0.01. If age was a policy-relevant variable and the focus of the intervention was on
individuals who had marginal effects near 0, the AME would be quite misleading,

8.9 Tables of predicted probabilities

As with models for binary and ordinal outcomes, tables of predictions can provide useful
insights into models when there are substantively important, categorical independent
variables. Becanse exactly the same commands can be used with nominal models as with
ordinal models, we do not repeat the types of examples shown before (see section 7.13
for details). Instead, we focus on using tables of probabilities to compare and elaborate
discrete changes across groups.

To show the effects of race and gender on party affiliation, we use mtable to compute
probabilities for each combination of race and gender, holding other variables at their
means. Although we could use the specification at (black=(0 1) female=(0 1)), we
instead use multiple at() options to arrange the output in the order we prefer:
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. mlogit party age income i.black i.female i.educ, base(5)
(output omitted )

. mtable, atmeans noci norownumbers
> at(black=0 female=0) at(black=1 female=0) // white men, black men
> at(black=0 female=1) at(black=1 female=1) // wvhite women, black women

Expression: Pr(party), predict(outcome())

black  fomale  StxDem Dem Indep Rep  StrRep

0 0 0.142 0.287 0.115 0.311 0.145

1 o 0.440 0.328 0.162 0.049 0.021

0 1 0.138 0.354 0.082 0.304 0.111

1 1 0.417 0.394 0.127 0.047 0.015

Specified values of covariates

2. 3.
age income aduc educ
Current I 45.9 37.5 .58 .259

We can interpret this as follows:

For those who are average on all other characteristics, blacks are far more
likely than whites to be strong Democrats and far less likely to be Repub-
licans or strong Republicans. Much smaller differences are found between
men and women in party affiliation.

Supposing our substantive interest focuses on race and gender differences in party
affiliation, we would want to fest the differences in predictions between groups. The
easiest way to do this is with mchange, using the option statistics(start end change
pvalue) to list the predicted probabilities for each group as well as the discrete changes.
The effects of race for women (at (female=1)) are
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., mchange black, at(female=1) atmeans brief
> statistics(start end change pvalue) title(Effect of race for women)

Effect of race for women | Number of obs = 1382
Expression: Pr(party), predict(outcome())

| Strlem Dem Indep Rep StrRep

black
From 0.188 0.354 0.092 0.304 0.111
To 0.417 0.394 0.127 0.047 0.018
yes vs no 0.278 0.040 0.035 -0.257 -0.096
p-value 0.000 0.342 0.169 0.000 0.000

We interpret this as follows:

Compared with a white woman who is average on all characteristics, an
otherwise similar black woman has a 0.28 higher probability of being a strong
Democrat, a (.26 lower probability of being a Republican, and a 0.10 lower
probability of being a strong Republican. All differences are significant at
the 0.001 level.

Similarly, we compute the effects for men:

. mchange black, at(female=0) atmeans brief
> statistics(start end change pvalue) title(Effect of race for men)

Effect of race for men | Humber of obs = 1382
Expression: Pr(party), predict(outcome())

I StrDem Dem Indep Rep StrRep

black
From 0.142 0.287 0115 0.311 0.145
To 0.440 0.328 0,162 0.049 0.021
yas vs no 0.298 0,041 0.047 -0.262 -0.125
p-valua 0.000 0.203 0.126 0.000 0.000

Although the effects for race are of roughly the same size for men and women, we would
like to test whether they are equal. For example, the discrete change for women is 0.278
and for men is 0.298. Can we say these differences are significantly different from one
another? We consider this question in the next section.

8.9.1 (Advanced) Testing second differences

Computing and testing second differences is extremely useful, especially
in group comparisons, To make these computations requires more ad-
vanced programming and a deeper understanding of how margins and
lincom work. On first reading, you might want to only skim this sec-
tion. However, we hope yon return to it later.
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Earlier, we used mchange to compute the first difference for race holding female at
either 0 or 1 with other variables held at their means. Now, we want to test the null
hypothesis that the discrete change for men is equal to the discrete change for women:

He: APr(y=j|X.female =0) APr(y=j|X, female =1)
v Ablack (0 — 1) - Ablack (0 — 1)

We begin by fitting the model and storing the estimates so that we can restore them
after posting estimates from margins:

. mlogit party age income i.black i.female i.educ, base(5)
(output omitted )
. estimates store mymodal

Now, we use margins to compute predictions for all combinations of gender and race for
outcome 1. Later, we will use a loop to make computations for all outcomes, Because
the atlegend produced by margins is in this case quite long, we suppress it with the
noatlegend option and use mlistat to list the values at which the independent variables
are held:

. margins, predict(outcome(i)) post atmeans noatlegend
> at(black=0 female=0) at(black=1 female=0) // white men, black men
> at(black=0 female=1) at(black=1 female=1) // white yomen, black women

Adjusted predictions Humber of obg = 1382
Model VCE : OIM
Expression : Pr(party==StrDem), predict(outcome(1))
Delta-method
Margin  Std. Err. z  Prlzl [96% Conf. Interval]
-at
1 .1423217 .0138387 10.21 0.000 . 1160023 1696411
2 .4404284 .0436357 10.09 0.000 .354804 .5259528
3 .1381615  .0141093 9.79 0.000 L 1104577 .1658062
4 4165218 042888 9.7t 0.000 .3324629 5005807
. mlistat
at() values held constant
2. 3.
age incame educ educ
45.9 37.5 .58 .259
at() values vary
-at | black female
1 0 0
2 1 0
3 0 1
4 1 1

The post option saves the predictions so they can be used with lincom or mlincom to
compute second differences.
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Why are we using margins, which computes predictions for only one outcome, in-
stead of mtable, which computes predictions for all outcomes? To test predictions,
those predictions must be saved to the e(b) and e(V) matrices. Because margins com-
putes predictions for only one outcome at a time, we can only post predictions for one
outcome. Although mtable can collect predictions for all the outcomes, it can only post
predictions for a single ontcome, just like margins. Accordingly, there is no advantage
to using mtable.

The second difference is computed by taking the difference between two differences:
1) the difference between the probability for black men contained in _b[2. at] and for
white men in _b[1. at]); and 2) the difference between the probability for black women
in b[4._at] and for white women in _b[3._at]:

. lincom (_bl2._at] - _bl1._at]l) - (.bl4._at] - _b[3._at])
(1) = 1bn._at + 2._at + 3._at - 4._at =0

Coef. Std. Err. z Pzl [95% Conf. Interval]

(1) .0197363 0218253 0.90 0.366 =.02304056 062513

. 88t restore mymodel
(results mymodel are active now)

The second difference for the first outcome, being a strong Democrat, is less than two
points and not significantly different from (. estimates restore mymodel restores the
mlogit estimates to compute the second difference for other outcomes.

We can automate the process with a forvalues loap over the values of the outcome:

1] forvalues iout = 1/5 {

2] margins, predict(outcome( iout”)) post atmeans
at(black=0 female=0) at(black=1 female=0) // white men, black men ///
at(black=0 female=1) at(black=1 female=1) // white women, black women

al # ( black men - white men ) - (black women - white women)
lincom (_b[2._at] - _bl1._at)) - (_bl4._at] - _b[3._at])

4] est restore mymodel

8] }

Line 1 loops through outcome categories 1 through 5. assigning the value to the local
iout. Line 2 makes four predictions for outcome “iout” and posts the estimates so
they can be used by lincom, Line 3 computes the second differences by using lincom,
and line 4 restores the mlogit estimation results. The output is 300 lines long. It could
be shortened by adding the noatlegend option along with mlistat as shown above.
Alternatively, we could use quietly to suppress the output.

As an alternative, we use mlincom instead of lincom, which allows us to create a
compact table of results,



428 Chapter 8 Models for nominal outcomes

1] mlincom, clear
2] forvalues iout = 1/5 {
3) quietly {

4] margins, predict(outcome( iout”)) post atmeans ///
at(black=0 female=0) at(black=1 female=0) // white men, black men ///
at(black=0 female=1) at(black=1 female=1) // white women, black women

5] mlincom (2-1)-(4-3), save label(Outcome “iout~)
6] est restore mymodel

7] }

8] }

Line 1 clears the matrix where mlincom will accumulate results. Without this line, new
results would be attached to results that might have been saved by mlincom run earlier.
Lines 3 through 7 use quietly to suppress the display of results from margins and
mlincom. Line 5 replaces lincom with mlincom, which lets us refer to the predictions
by their position in the output of margins, rather than requiring the _b[] syntax. The
save option adds the current results to the matrix holding prior results. label () adds
labels to each set of results, in this case, indicating the outcome being tested. We run
mlincom to list the results:

. mlincom
| lincom pvalue 11 ul
Outcome 1 0.020 0.366 -0.023 0.063
Outcome 2 0.001 0.967 -0.037 0.039
Outcome 3 0.013 0.238 -0.008 0.034
Dutcome 4 -0.004 0.836 -0.046 0.037
Outcome 5 -0.029 0.082 -0.061 0.004

The second differences are all less than 0.03 in magnitude and none are statistically
significant. We conclude the following:

For those that are average on all characteristics, the marginal effect of race
on party affiliation are the same for men and women.

8.9.2 (Advanced) Predictions using local means and subsamples

Comparing groups by making predictions with local means or by average
predictions within subsamples is important for nuanced interpretations
of group differences. To do this requires Stata programming and using
the over () option with margins. Although you might want to skip
this section on first reading, we encourage yon to return to this section
when you are comfortable with the commands used in other sections on
interpretation with predictions,
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To compute the predicted probabilities of party affiliation by race and gender, we
used the atmeans option to hold all other variables at the means for the estimation sam-
ple. Accordingly, the predictions are comparing white men, black men, white women,
and black women who have the same values for age, income, and education. Because
the four race-gender groups are likely to differ on these variables, the predictions must
be viewed as a “what if" experiment: what would happen if these groups had the same
distributions of other characteristies?

We could compute predictions by using within-group means, which we refer to as
local means. Using methods discussed on page 273, we use if conditions to select the
sample for each mtable command:

. nlogit party age income i.black i.female i.educ, base(5)
(output omitted)
, estimates store mymodel
. qui mtable if black==0 k female==0, atmeans noci rowname(White Men) clear
. qui mtable if black==1 k female==0, atmeans noci rowname(Black Men) below
. qui mtable {f black==0 & female==1, atmeans noci rowname({White Women) below
. mtable if black==1 & female==1, atmeans noci rowname(Black Women) below
Expression: Pr(party), predict(outcome())

StrDeam Dem Indep Rep StrRep
White Men 0.128 0.283 0.108 0.328 0.186
Black Men 0.461 0.310 0.168 0.044 0.017
White Women 0.145 0.354 0.093 0,298 0.109
Black Women 0,460 0.364 0.129 0.037 0.011
Specified values of covariates
2. 3.
age income black female educ educ
Set 1 46.1 43.6 0 0 .548 .324
Set 2 45 29.8 1 0 .518 -188
Set 3 47.1 35.2 0 1 .624 .222
Current 46.4 20.4 1 1 .B9 .143

The values of the covariates show substantial differences among the groups, especially
with respect to income, where white men have more than twice the average income of
black women. Consequently, the predicted probabilities with local means differ from
those computed with global means. For example, for black women, the probability of
being a strong Demoerat is 0.417 when global means are used compared with 0.460
when local means are used.

Although we can create the predictions we want by using mtable with if conditions,
this approach does not allow us to compute first and second differences across the groups.
Technically, the problem is that at the end of each mtable command (or margins. if we
had used that command instead), only predictions for the current group can be posted to
e(b) and e(V) for use by lincom or mlincom. A relatively efficient way to deal with this
limitation is to use the over (over-variables) option. With the over () option, margins
computes predictions based on the subsample of cases defined by the over-variables.



430 Chapter 8 Models for nominal outcomes

The over-variables can be any categorical variables in the dataset, even if they are not
used in the regression model. For our purposes, we want to use over(female black)
to compute predictions based on subsamples defined by race and gender:

. margins, over(female black) atmeans post

Adjusted predictions Number of obs = 1382

Model VCE : DIM

Expression  : Pr(party==StrDem), predict()

over : female black

at : 0.female#).black
age = 45.13171 (mean)
income = 43.54512 (wean)
black = 0
female = 0
1.educ = .1300813 (mean)
2.educ = .5463415 (mean)
3. educ = .3235772 (mean)

(output omitted )
i.femalefi.black

age = 46.3619 (mean)
income = 20.42619 (mean)
black = 1
female = 1
1.educ = L 2666667 (mean)
2.educ - .5904762 (mean)
3.educ = .1428571 (mean)
Delta-method
Margin  Std. Err. z Prlz| (96 Conf. Interval]
female#black \
no#no .1278%46 .013109 9.76 0.000 .1022014 .1635878
nokyes .4607531 .0a30804 10.70 0,000 . 376317 .5451892
yes#no .1454926  ,0143397 10.15 0.000 .1173872 1736979
yes#yes .4596926 0411218 11.18 0.000 3790862 .5402899

. estimates restore mymodel
(results mymodel are active now)

This provides the same estimates as the commands

margins if black==0 & female==0, atmeans post
estimates restore mymodel

marging if black==0 & female==1, atmeans post
estimates restore mymadel

margins if black==1 & fomale==0, atmeans post
#stimates restore mymodal

margins if black==1 & female==1, atmeans post
estimates restore mymodel

except that margins, over() post posts the four predictions that allow us to compute
and test second differences.

Now, we can use a forvalues loop to test whether second differences are equal to 0
for each outcome:
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. mlincom, clear
. forvalues iout = 1/56 {

2 quietly {
3. margins, over(female black) predict(outcome(~iocut’)) post atmeans
4. mlincos (2-1)-(4-3), save label(Dutcome “iout”)
5 est restore mymodel
6 } // end of quietly
7. } // end of forvalues
. mlincom

| lincom pvalue 11 ul
Dutcome 1 0.019 0.415 -0.026 0.064
Dutcome 2 0.018 0.348 -0.020 0.057
Dutcome 3 0.024 0.047 0.000 0.048
Outcome 4 =0.020 0.360 ~-0.064 0.023
Dutcome 5 -0.041 0.018 -0.075 =0.007

Gender differences in the effect of race are larger when computed using group-specific
means for the other variables. The effect of race on being Independent is significantly
larger for men than women, and the effect of race on being strongly Republican is
significantly larger for women than men.

A related approach for comparing groups is to compute the average predicted prob-
abilities within each of the subsamples defined by the groups being compared. For
example, we can compare the average probability of being Republican for white men
with the average probability for black men. To make these computations only requires
us to remove the option atmeans from the commands used above.

. mlincom, clear
. forvalues iout = 1/56 {

2. quietly {
a. margins, over(female black) predict(outcome( iout")) post
4. mlincom (2-1)-(4-3), save label(Outcome “iout”)
b. est restore mymodel
6. ¥ // end of quietly
7. } // end of forvalues
. mlincom

I lincom  pvalue 1 ul
Qutcome 1 0.021 0.204 -0.018 0.060
Outcome 2 0.016 0.357 =0.018 0.051
ODutcome 3 0.019  0.080 -0.002  0.041
Outcome 4 =0.016 0.476  -0.067 0.026
Outcome 5 -0.041 0.017 -0.075 -0.

The results in this example lead to the same substantive conclusions obtained using
local means.
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8.10 Graphing predicted probabilities

Graphing predicted probabilities for each outcome can also be useful for the MNLM
and is done exactly as it was for the ORM. To illustrate this, we create plots to show
the effects of age and income on party affiliation. After fitting the model, we compute
predictions as income increases from $0 to $100,000, holding other variables at their

means.

. mlogit party age income i.black i.female i.educ, basa(5) vsquish
(output omitted )

. mgen, at at(in (0(10)100)) stub(mnlnl) replace

Predictions from: margins, atmeans at(income=(0(10)100)) predict{outcome())
Variable Obs Unique Mean Min Max Label

pnlmlpri 11 11 1604032  .090648 .2445128 pr(y=StrDem) from margins
mnlmI111 11 11 .1253144 .0479288 .1908274 95% lower limit

mnlnTull 11 11 .1954919 .1333672 .2081981 95Y% upper limit
mnlmIincome 11 11 50 0 100, Income in $1,000s

(output omitted )

Specified wvalues of covariates

1. 1. 2. 3.
age black female educ educ
45.94645 -13748189 4934877 5803184 . 2690449

Using variable labels to assign labels to the lines, we can plot the predictions with these

commands:

- label var
. label var
. label var
. label var
. label var

VWV VY Y Y Y

mnlnlpril
mnlmipr2
mnlmIpr3
mnlmIprd
mnlsTprb

"Strong Dem"
"Democrat”
"Independent™
"Republican"
"Strong Rep"

graph twoway connected
molniprl malmIpr2 molmlpr3 mnlmlpr4d mnlmiprS mnlmlincome,
title("Multinomial logit model: other variables held at their means”,
pos(11) size(medium))
ytitle(Probability of party affiliation) ylab(0(.1).4, grid gmax gmin)
msym(0 Oh dh sh s) mcol(gsl gsS gs8 gab gsl)
lpat(golid dash shortdash dash solid) lcol(gsl gs5 gs8 gs5 gel)
legend(rows(2))
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Mullinomial fegit model: other vaniables held at their means:

o --

The probabilities of being a strong Democrat (@) or a Democrat (O) decrease with
income, while the probabilities of being a Republican (CJ) or a strong Republication ()
increase, with little change in the probability of being Independent (€). Using ologit
to fit the ordinal model, we obtain a nearly identical graph:

Ordsred logit madel: other variables held at their means

o

40 60
Income in $1,0008 |
—&— Svong Dem —-G—- Democrat  ---G-- Independent
==F - Republican ——&— Strong Aep

The results are quite different when we examine the effect of age on party affiliation.
For the MNLM, we plot predictions as age increases from 20 to 85, holding other variables
at their means (commands not shown):
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Multinomial logit model; other variables held &t their means
O-0-g

—&— Stong Dem  —~G -~ Damocral ---9~ Independent
=={F = Aepublican —@— Strong Rap

The probabilities for the two strong affiliations, shown with solid markers, both increase
with age. This pattern could not be obtained with an ORM that requires that changes in
the extreme categories be in opposite directions. To see this, consider the corresponding
graph based on predictions from the OLM:

Ordered logit model; other variables hald a) thair means.

g & -o-~e--e—-a--e--cr-eue;-ma--e—-o—o-—e

G- op g,
= "-LG—‘G'-‘E‘-B_"E"G .
G-

a

This example illustrates the risk of assuming an ORM is appropriate simply because
the dependent variables can be ordered. Although income affects affiliation as would be
expected with a unidimensional, ordinal outecome, age increases the strength of affiliation
but does not affect left- right orientation. When using an ordinal model, we believe it
is good practice to examine the sensitivity of the results to the constraints of ordinality
by comparing the results from the ordinal model with those from the MNLM or the
generalized OLM.
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8.11 0Odds ratios

Discrete change coefficients do not show the dynamics among the outcomes. For exam-
ple, being black increases the probability of being a Democrat or an Independent, but
how does it affect the probability of being Democrat relative to being Independent? To
deal with these questions, odds ratios. also referred to as relative-risk ratios and factor
change coefficients, can be used to explore how variables affect the choice of one out-
come compared with another outcome. Odds ratios do not provide a complete picture
of the effects of variables on the outcomes and have the same limitations discussed for
the binary logit model in chapter 6; however, in the MNLM, odds ratios complement the
information provided by marginal effects and other types of predictions.

The factor change in the odds of outcome m versus outcome n as ;. increases by 6,
holding other variables constant, equals

nmln (x, Tk + ‘s) B

r.*i’lt.mlu‘s
ﬂﬂll!‘l (x‘ Lge )

If the amount of change is § = 1, the odds ratio can be interpreted as follows:

For a unit increase in xy, the odds of m versus n are expected to change by
a factor of exp(F s ), holding all other variables constant.

If the amount of change is 4 = 8;,, then the odds ratio can be interpreted as follows:

For a standard deviation inerease in zj, the odds of m versus n are expected
to change by a factor of exp(3g min X 8k ), holding all other variables constant.

Other values of & can also be used, such as 6 = 4 for four years of education or 4 = 10
for $10,000 in income.

8.11.1 Listing odds ratios with listcoef

The difficulty in interpreting odds ratios for the MNLM is that to understand the ef-
fect of a variable, you need to examine the coefficients for comparisons among all pairs
of outcomes, The standard output from mlogit includes only a minimal set of J — 1
comparisons with the base outcome. Although you could estimate coefficients for all pos-
sible comparisons by rerunning mlogit with different bases (for example, mlogit party
female black..., base(1); mlogit party female black..., base(2); etc.), using
listcoef is simpler. For example, to examine the odds ratios for variable black. type
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. use partyid4, clear
(partyid4.dta | 1992 American National Election Study | 2014-03-12)

. mlogit party age income i.black i.female i.aduc, base(5)
(output omitted )

. listcoef black, help

mlogit (N=1382): Factor change in the odds of party

Variable: 1.black (sd=0.344)

b z P>zl e’b e bStdX
StrDem vs Dem 0.9963 5.022 0.000 2.708 1.409
StrDem vs Indep 0.7845 3.062 0.002 2,191 1.310
StrDem vs Rep 2.9692 7.666 0.000 19.476 2.781
StrDem vs StrRep 3.0764 5.091 0.000 21.659 2.885
Dem vs StrDem -0.9963 ~5.022 0.000 0,369 0.709
Dem vs Indep =0.2118  -0.830 0.407 0.809 0.930
Dem vs Rep 1.9728  5.132  0.000 7.191 1.973
Dem vs StrRep 2.0791 3.448 0.001 7.997 2.047
Indep vs StrDem -0.7846  -3.062 0.002 0.456 0.763
Indep vs Dem 0.2118 0.830 0.407 1.236 1.076
Indep vs Rep 2,1846 6.220 0,000 8.887 2.122
Indep vs StrRep 2.2809 3,658 0.000 9.884 2.202
Rep vs StrDem -2.9692 -7.666  0.000 0,051 0.360
Rep vs Dem -1.9728 -5.132 0.000 0.139 0.507
Rep vs Indep ~-2.18486 -5.220 0.000 0.113 0.471
Rep vs StrRep 0.1063 0,155 0.877 1.112 1.037
StrRep vs StrDem -3.0764 -65.09 0.000 0.046 0.347
StrRep va Dem -2.0791 -3.448 0.001 0.126 0.489
StrRep vs Indep -2,2909 -3.658 0.000 0.101 0.454
StrRep vs Rep -0,1063  -0.156 0.877 0,899 0.964

b = raw coefficient
z = z-score for test of b=0
P»{z| = p-value for z-test
e"b = exp(b) = factor change in odds for unit increase in X

e bStdX = exp(b*SD of X) = change in odds for SD increase in X

The odds ratios of interest are in the column labeled e”b. For example, the odds ratio
for black for the outcomes StrDem vs Dem is 2.708, which is significant at the 0.001
level. It can be interpreted as follows:

Being black increases the odds of having a strong Democratic affiliation
compared with a Democratic affiliation by a factor of 2.7, holding other
variables constant.

Even for a single variable, there are a lot of coelficients; we often hear people lament
that there are “too many” coefficients to interpret. Fortunately, a simple graph makes
this task manageable, even for complex maodels.

8.11.2 Plotting odds ratios

An odds-ratio plot lets you quickly see patterns in coefficients, even for complex models
with many outcomes. Methods for plotting odds ratios were developed by Long (1987)
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while using the MNLM to examine factors that determine the organizational contexts
in which scientists work (Long and McGinnis 1981). Although an odds-ratio plot was
included in that paper, this is generally not the most effective way to use these graphs.
Rather, the graphs provide a quick way to assess all the parameters in the maodel and
to get a general sense of what is going on to help plan further analyses. Experience
in teaching suggests that within an hour, students gain a “feel” for these graphs that
allows them to evaluate the results of an MNLM in only a few minutes. Building on these
insights, more detailed analyses can be planned using other methods of interpretation.

To explain how to interpret an odds-ratio plot, we begin with hypothetical results
from an MNLM with three outcomes and three independent variables:

Logit coefficients

Comparison T Za T3
B|A Bp1a —0.693  0.093 0.347
exp(Aga) 0.500  2.000 1.414
P 0.04 001 042
ClA Beia 0.347 —0.347  0.693
exp(Beia) 1414 0.707  2.000
P 0.21 0.04 037
C|B Bes 1.040  —1.040 0.346
exp(Bep) 2.828  0.354 1.414
P 0.02 0.03 021

These coefficients were constructed to have specific types of relationships among out-
comes and variables:

o The /A coefficients for 2y and 24 on B | A (which you can read as B versus A) are
equal but of opposite sign. The coeflicient for x4 is half as large.
e The 3 coefficients for ¢, and x4 on €' | A are half as large and in oppaosite directions

as the coefficients on B | A, whereas the coefficient for x4 is in the same direction
but is twice as large.

In an odds-ratio plot, each independent variable is presented on a separate row, with
the horizontal axis indicating the magnitude of the 8 coefficients associated with each
contrast of outcomes. Here is the plot, where the letters correspond to the outcome
categories:
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Factor Change Scale Relative to Category A

5 s 79 1 1 189 2

x1 B A C

x2 C A B

X3 A B c
68 48 -23 0 23 48 69

Logit Coefficient Scale Relative to Category A

We now explain how the graph conveys the information from the table of coefficients.

Sign of coefficients. If a letter is to the right of another letter, increases in the indepen-
dent variable make the outcome to the right more likely relative to outeomes located to
the left, holding all other variables constant. Thus relative to outcome A, an increase
in 2y increases the odds of €' and decreases the odds of B. This corresponds to the
positive sign of 3, ¢4 and the negative sign of 4, g4 The signs of these coefficients
are reversed for 2o, and accordingly, the plot for x, is a mirror image of that for ;.

Magnitude of coefficients. The distance between a pair of letters indicates the magnitude
of the coefficient. The additive scale on the bottom axis measures the value of the
B mjm's- The multiplicative scale on the top axis measures the odds ratios exp (ﬁhf_ﬂlﬂ)'
For both z; and wxq. the distance between A and B is twice the distance between A and
C, which reflects that 8, g, is twice as large as ) ¢4 and [, g4 is twice as large as
Aac1a. For xz, the distance between A and B is half the distance between A and C,
reflecting that 83 ¢4 is twice as large as 3y (4.

The additive relationship. The additive relationships among coefficients in (8.1) are
shown in the graph. For all the independent variables, By a4 = Bipja + Brcis-
Accordingly, the distance from letters A to ' in the graph is the sum of the distances
from A to B and B to . This is easiest to see in the row for variable x3, where all
the coefficients are positive. By plotting the J — 1 coefficients from a minimal set, it is
possible to visualize the relationships among all pairs of outcomes.

The base outcome. In the graph above, the As are aligned vertically beeause the plot
uses A as the base ontcome when graphing the coefficients. The choice of the base is
arbitrary. We could have used alternative B as the hase instead, which would shift the
rows of the graph to the left or right so that the Bs lined up. Doing this leads to the
following graph:
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Factor Change Scale Relative to Category B

35 5 71 1 1.41 2 2:83
X1 B A (3
x2 C A B
x3 A B C

104 ~.69 ~35 0 35 69 1.04

Logit Coefficient Scale Relative to Category B

Creating odds-ratio plots with mlogitplot

Odds-ratio plots can be easily constructed with the SPost command mlogitplot.*
In this section. we construct a series of odds-ratio plots that illustrate how this command
can be used to understand the factors affecting party affiliation. We assume that the
results from mlogit are in memory. Because mlogitplot does not change the estimation
results, there is no need to use estimates store and estimates restore. Full details
on the syntax for mlogitplot are given in help mlogitplot.

As a first step in examining results from an MNLM, it is useful to create an odds-ratio
plot for all variables. This is done by typing the command mlogitplot. To make our
graph more effective, we add a few options:

mlogitplot, symbols(D d i r R) base(3) linepvalue(1l) leftmargin(2)

The option symbols(D d i r R) labels the outcomes, and base (3) specifies to line up
the outcomes on base 3, which is Indep shown by i. The option linepvalue(1) removes
lines indicating statistical significance, an important feature that will be discussed soon.
Finally, leftmargin(2) adds space on the left for the labels associated with factor
variables; in practice, you will need to experiment to determine how large this margin
needs to be for your plot. The following graph is created:

4. The command mlogitplot in SPost13 replaces the commands mlogview and mlogplot in SPost9.
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Odds Ratio Scale Relative to Category Indep B
0.10 028 0.76 21 581

i i
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1.female R d
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2.educ d R
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3.educ d A
oage va ol b raa

23 128 _27 75 176
Logit Coefficient Scale Relative to Category Indep :

The independent variables are listed on the left, with the vertical distance for a
given variable used simply to prevent the symbols from overlapping, The defanlt vertical
distance does not always work (for example, notice how “r" is inside the “D” for variable
1.female), and later we consider options for refining these offsets.

From the plot. we immediately see that the odds ratios for black are the largest,
increasing the odds of being a strong Demaocrat (“D"), a Democrat (“d” ), or an Indepen-
dent (*i") compared with being Republican (“r™) or strong Republican (“R"). Having
a college education compared with not completing high school (3. educ) increases the
odds of being a strong Republican (“R™) relative to the other categories, Consistent
with our findings when plotting probabilities against age and income, age increases the
odds of strongly affiliating with either party relative to affiliations that are less strong,
while income increases the odds of more right-leaning affiliations relative to left-leaning.

The current graph has two limitations. First, while it shows the size of odds ratios,
it does not indicate whether they are statistically significant. While it is tempting to
assume that larger odds ratios imply smaller p-values for testing the hypothesis that
the odds ratio is 1, that should not be done! Instead, we need to add the significance
level to the graph. Second, because a large odds ratio does not necessarily correspond
to a large marginal effect. we will add information on marginal effects to the graph.

Adding significance levels

The distance between two outcomes indicates the magnitude of the coefficient. 1f
a coefficient is not significantly different from 0, we add a line connecting the two
outeomes, snggesting that those outcomes are “tied together”. By default, mlogitplot
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connects outcomes where the odds ratio has a p-value greater than 0,10, You can
choose other p-values with the linepvalue (#) option, and you can remove all lines by
specifying 1inepvalue(1).

To illustrate how statistical significance is added to the graph, we plot the odds
ratios for age and income:

. mlogitplot age income,
> symbols(D d 1 r R) base(8) ormin(.5) ormax(2) ntics(5)
> offsetlist(2 -202-2 2 -2 0 2 -2) ysize(2.4) scale(1.1)

Odds Ratio Scale Relative to Category Indep

0.50 0.71 1.00 141 2.00
age r D
| /
income D ;
% i ~
50 incronse d’ \ R

L] 1 I =

69 -35 0 35
Logit Coefficient Scale Relative to Category Indep.

Based on this graph, we conclude the following:

Age significantly increases the odds of affiliations that are strong relative
to those that are not strong, with no significant odds ratios differentiating
outcomes within these two groups.

For income, we conclude the following:

In terms of the conventional left-right continuum, income increases the odds
of affiliations to the right but does not significantly differentiate affiliations
that are adjacent, such as strong Democrat compared with Democrat or
Republican compared with strong Republican.

Sometimes the lines do not clearly show whether an odds ratio is significant. For
example, in the last plot, it is not clear whether there is a line connecting “i" and “d”
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for income because the symbols are so close to one another. There are several Wways to
resolve this. First. we can examine the odds ratio in the output from listcoef. where
we see that the effect is not significant. Second, we can reduce the size of the spacing
between symbols and the start of the lines by using the linegapfactor(#) option. If
we add linegapfactor(.5), we would see that there is a line connecting " and *d”.
Finally, we can revise the vertical offsets used for placing letters with the offsetlist ()
option. Offsets are determined by specifying one integer in the range from —5 to 5 for
each outcome for each variable in the graph. By default, the offsets are 2 -2 0 2 -2
0 2-20 ....Toadjustour prior graph for income, we use 2 -2 1 2 -2 to move "
up because its offset has been increased from 0 to 1. Remember that these adjustments
have no substantive meaning; they simply make the information clearer. Using these
offsets, the following command creates a graph that makes it clear that " and *D” are
linked:

. mlogitplot age income,
> symbols(D d 1 r R) base(3) ormin(.5) ormox(2) ntics(B)
>  offsetlist(2 -2 02 -2 2-2 2 2 -2) ysize(2.4) scale(1.1)

Odds Ratio Scale Relative lo Oaleg?ry\ (Indep

0.50 071 1.00
i i [}
age r D
./\ /
income |—r
.69 35 0 35

n
Logit Coefficient Scale Relative to ca:agory Indep

The plot for income illustrates why it is important to examine all contrasts (that
is. odds ratios), not just the minimal set, Suppose that we had fit the model with
base outcome 3, corresponding to “i” in the graph. At the 0.10 level, none of the odds
ratios relative to “i7 are significant, as indicated by the lines from “i" to each of the
other outcomes. It would be incorrect to assume that income did not significantly affect
party affiliation because the contrasts for outcomes “D" versus “r”; “D” versus “R";
“d” versus “r": and “d" versus “R" are significant. An odds-ratio plot is a quick way
to see all the contrasts.
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Adding discrete change

In chapter 6, we emphasized that whereas the factor change in the odds is constant
across the levels of all variables, the marginal effect gets larger or smaller at different
values of the variables. For example, if the odds increase by a factor of 10 but the current
odds are 1 in 10,000, the change in the probability is small. But if the current odds
are 1 in 5, the change in probability is large. Information on the change in probability
can be incorporated into the odds-ratio plot by making the area of a square drawn
around a letter proportional to the discrete change in the probability. Sign is indicated
by underlining the letter if the marginal effect is negative. To add this information, we
must first run mchange to calculate marginal effects for the amount of change we are
interested in (for example, 1 unit or a standard deviation). Second, we add the option
mchange to mlogitplot. To illustrate this, we plot the odds ratios and average discrete
changes for educ and black:

. mchange black educ, amount(sd)
(output omitted)
. mlogitplot black oduc,
> symbols(D d i r R) base(3) ormin(.1) ormax(10) ntics(5)

> mchange subtitle(Average discrete change, position(11))
> offsetlist(0 -22 3 -2 2-2-120 2-2-120) leftmargin(12)

Average discrete change
; Odds Ratio Scale Relative to Category Indep
0.10 0.32 1 00 3.16 1._0:-00_
1.black % i
e R H d‘./ D
I ‘8
L L] i -, ﬂ'
3,9dl.l\‘.‘.‘ D ¥
S | >R
codige v POl grad -I— d
23 115 0 145 23

wcwmmsmmmwcmwym

By far, the largest marginal effect is the increase in the probability of being a strong
Democrat (“D7) if you are black. In terms of the odds ratios, race divides affiliations
into three groups: 1) strong Republicans (“R”) and Republicans (“r"): 2) Democrats
(“d”) and Independents (“i"); and 3) strong Democrats (“D").
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By examining both the odds ratio and the discrete change, it is clear that a positive
odds ratio for outcome A compared with outcome B does not indicate the sign of the
discrete changes for the two outcomes. For example, with an odds ratio greater than
1, the discrete changes for both outcomes can both be positive, can both be negative.
or can differ in sign. An odds ratio indicates the ratio of the change of one category
relative to another, not the direction of the change. The graph also illustrates what is
found when a variable has no significant effects, as is the case for 2.educ. The discrete
changes are small and all letters are connected by lines, indicating that none of the odds
ratios are significant.

The size of symbols. When the mchange option is used, the size of the symbol reflects
the size of the effect. Because many letters are more or less square, the size of
the area of a square drawn around the symbol is proportional to the absolute
magnitude of the marginal effect. This can be misleading in some cases. For
example, the letters “r" and “R" both represent the same size effect, but “R” is
larger. As long as you keep this in mind, the size of the letters should give you a
rough idea of the magnitude of effects. If yon want to be certain, check the output
from mchange.

With a little practice. you can quickly see the overall pattern of relationships in
vour model by using odds-ratio plots. Once the pattern is determined, other methods
of interpretation can be effectively used to demonstrate the most important findings.

8.12 (Advanced) Additional models for nominal outcomes

This (long) section presents some additional models for nominal out-
comes. We mark the material as advanced because you may wish to
only skim the different subsections, especially because several require
types of data that most applications using nominal outeomes do not
have. For example, some models require alternative-specific variables,
where different alternatives have different values on the same variable
(section 8.12.4). Other models require that the alternatives are ranked
instead of a single alternative being chosen (section 8.12.5). We also
provide some details about models that we think are didactically useful
for understanding the overall logic of how modeling categorical out-
comes is done, such as showing how the conditional logit model can be
used to produce the same results as the MNLM (8.12.2), but we do not
advocate fitting the model this way because the MNLM is simpler.
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8.12.1 Stereotype logistic regression

In the last chapter, we postponed a detailed discussion of the stereotype logistic re-
gression model (SLM) even though the model can be considered a model for ordinal
outcomes. We did this because the SLM is easier to understand once you are familiar
with the MNLM. The SLM, proposed by Anderson (1984), is more flexible than the OLM
because it does not require the proportional-odds assumption, yet it can be more par-
simonious than the MNLM. Anderson developed the SLM in reaction to the limitations
of the oLM, which he referred to as the grouped continuous regression model. The
term “grouped continuous” reflected that the OLM can be motivated by a continuous,
latent variable that is divided (that is, grouped) by thresholds that lead to the ob-
served categories. In contrast, Anderson thought of the outcome categories in the SLM
as “assessed”. Each respondent is considered to have stereotypes that characterize the
outcome choices. The respondent assesses each outcome and then picks the alternative
whose stereotype most closely matches the respondent’s views on the question being
asked. Although this explains the name of the model, there is no reason to limit the
application of the model to outcomes that are generated in an assessed fashion.

Although the SLM is more parsimonious in the number of parameters than the MNLM,
we will show that the full interpretation of the SLM is as complicated as that of the
MNLAL If the full complexity of the model is not considered, valnable information can
be lost and incorrect conclusions can be made. There is also some confusion about
whether the SLM requires the dependent variable to be ordered. In its simplest form,
the SLM orders the dependent variable along one dimension, but the outcomes are not
necessarily ordered the way you think they are. For example, you might think that your
outcomes shonld be ordered 1 2 3 4, but the sLM might determine that the ordering
should be 2 1 3 4. In higher-dimensional SLMs, categories are ordered on more than one
dimension, and the idea of ordinality is lost as the SLM becomes identical to the MNLM.

We introduce the SLM by reviewing the results from our MNLM of party affiliation:

. Lo partyid4, clear
(partyid4.dta | 1992 American National Election Study | 2014-03-12)

. mlogit party age income i.black i.female i.educ, base(5) nolog vsquish

Multinemial logistic regression Number of obs = 1382

LR chi2(24) - 311.26

Prob > chi2 = 0.0000

Log likelihood = -1960,9107 Pseudo R2 - 0.0738

party Coef, Std. Err. z P>zl [95% Conf. Intervall
StrDem

aga .0028186 .00644 0.44 0.662 -.0098036 0154407

income -.0174695 .0045777 -3.82 0.000 -.0264416 -.0084974

(output omitted)

Dem
age | -,0207981 .0059291  -3.51 O.
income -.0101908 .0035532 -2.87 0.

{output omitted )

000 -.032419 -.0091772
004 -.0171549 -.0032267
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Indep
age | ~-.0287992  .0074315 -3.88 0.000 -.0433648  -.0142337
income -.0089716  .0047821 -1.88 0.061 -.0183443  .0004012

(output omitted )

Rep
age | -.0217144 ,0060422 -3.59
income | -.0012715 .0033629  -0.38

(output omitted )

.000  -.0336569 -.0098718
706 -.0078627  .0053196

StrRep (base outcome)

. predict mnlm_ ! mnlm_2 mnim 3 mnlm_4 molm. 5
(option pr assumed; predicted probabilities)

If party is ordinal with respect to the independent variables, what pattern would
we expect for the #'s in the four equations? The top panel, labeled StrDem, presents
coefficients for the equation comparing outcome StrDem with the base outcome StrRep:
the pauel Dem presents coeflicients comparing Dem with StrRep; and so on. If 4n increase
in an explanatory variable increases the odds of answering StrDem versus StrRep, we
would also expect the variable to increase the odds of Dem versus StrRep, as well as
increase the odds of Indep and Rep versus StrRep. That is, we would expect 8¢ spisg,
Bi visis Brasry and 3 gisg to have the same sign. More than this, we would expect
the coefficient to be largest when comparing categories StrDem and StrRep, which are
furthest apart on the ordinal ranking from StrDem to StrRep, and smallest for adjacent
categories, such as Rep and StrRep. In the mlogit output above, this means that if
party is ordinal, we would expect the coefficients in the panel labeled StrDem to be
the largest (either positive or negative), followed by those in thie Dem panel, with the
smallest found in the Rep panel. Although this pattern holds for income. the estimates
for age violate the pattern.

A further possibility is that the magnitudes of 5 spisr, Bk, pisr. B.1sr, and G risr
are not just consistently ordered for each independent variable but the relative magni-
tudes of these coefficients are the same for all independent variables. The implication
is that the distance or difficulty in moving from StrDem to Dem compared with moving
from Rep to StrRep is the same for each variable. For example, if B,ze spip i8 2.7 times
larger than Buge risr: then Biceme spip Would be 2.7 times larger than Sicose pisa. and
so on. This implies that there is a coeflicient 5¢ for each 71 and scaling parameters o;
for each outcome j such that for each @y

B spisr = Gspfk
Bk, pisr = Onik
Bk 11sr = 10

Bk risa = Oor
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If these constraints are applied to the MNLM, you have the one-dimensional SLAM. That
is, the SLM is an MNLM fit with constraints. If the constraints adequately characterize
the data-generating process, the more parsimonious SLM should fit the data nearly as
well as the MNLM.

Formal statement of the one-dimensional SLM

With these ideas in mind, we can present the model more formally. To simplify the
presentation, we assume that there are three outcomes and two independent variables.
For the MNLM with base outcome 3,

exp(Bo.mis + Brmjas + Bamiar2)
3
Y i=16xp (Bois + Brjjats + Bajiax2)

For the SLM, using similar notation,

Pr(y =m | x) = form=12  (83)

exp(émgo:cu + b T1 + G 52332)
E?:l exp (eﬁjﬁuﬂfo -+ d'jgll'] i dvjﬁgrg)
For hoth models, Pr(y =3 | x) =1—Pr(y =1 |x) - Pr(y =2 | x). The only difference

between (8.3) and (8.4) is that By 13 is replaced by ¢, 8. This replacement forces the
ratio of coefficients to be equal across variables. Specifically,

G _ 6By _ b

form=12  (84)

Priy=m|x)=

Om E 1 d’rmfb N Prm

By comparison, in the MNLM, the ratio ﬁl_ji;g,,’ﬂ.,,,,,‘-; might be similar to 3 Jlafﬂi.mlih
but the model does not require this,

Becanse some of the parameters in the SLM are not identified, we must add con-
straints before the parameters can be estimated. To understand the identification con-
straints used by Stata, we find it helpful to compare them with the identifying con-
straints used for the MNLM. In the MNLM, we assume that i g5 = 0, where 3 is the
base outcome. This constraint simply says that a change in 2y does not change the
odds of outcome 3 compared with outcome 3. The corresponding constraint in the sLM
is @33 = 0. We assume that o5 = 0 because we do not want to require g = 0, which
wonld eliminate the effect of 2 for all pairs of outcomes. This is our first identification
constraint. To understand the next constraint, we compare fy 113 and Jg a5 for zx in
the MNLM with the corresponding pairs of coefficients ¢4 B and qbgﬁk in the SLM. There
are two free parameters B 113 and fg aja in the MNLM, but three parameters ¢y, ¢z, and
5 in the SLM. To eliminate the “extra” parameter, we assume that ¢; = 1. With these
constraints, the SLM is identified. These constraints are the defaults used by slogit,
but slogit allows you to use other identifying constraints.

The notation we have used highlights the similarities between the MNLM and the SLM
but differs from the notation used by Stata. To switch notations, we define 0, = om0,
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where 83 = 0, and ¢,,5, = -@,,,5,, where ¢35 = 0 and ¢; = 1. Because the sign has
changed, a positive coefficient in the MNLM corresponds to a negative coefficient in the
SLM. With this new notation, we can write the model as

exp(f, — ¢miry — dmPazs)

Priy=m|x) = (8.5)
Ele exp (05 — ¢; 21 — ¢jBaxa) '
We can generalize this equation to J outcomes and K independent variables,
om — ¥m
Priy=m|x) = o mx8) (8.6)

=1 exp (0 — ¢;xB)

where 8y =0, ¢, =0, and ¢, = 1 are used to identify the model.

Fitting the SLM with slogit

The SLM is fit with the following command and its basic options:

slogit depvar [iﬂtde;mars] [t’f ] [rﬁﬂ.] [ﬂ.rrrf.gh!.] [. dimension(#)

baseoutcome(#) constraints(#) nocorner vce(vecetype) ]

Options

dimension(#) specifies the dimension of the wodel. The default is dimension(1). The
maximum is either one less than the number of categories in the dependent yariable
or the number of explanatory variables, whichever is fewest. The dimension of an
SLM is discussed below,

baseoutcome (#) specifies the outcome category whose associated € and ¢ estimates
will be constrained to 0. By default, this is the highest numbered category.

vee(vcetype) specifies the type of standard errors to be computed. See section 3.1.9 for
details.

For other options, see [R] slogit.

Example of SLM

For our example of party affiliation, we fit the one-dimensional SLM and compute pre-
dictions:
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slogit party age income i.black i.female i.educ, vsquish

Iteration 0:  log likelihood = -2233.9118 (not concave)
Iteration 1:  log likelihood = -2033.644 (not concave)
Iteration 2:  log likelihood = -2008.6318 (not concave)
Iteration 3:  log likelihood = -2003.3438
Iteration 4:  log likelihood = -1997.4062
Iteration 5: log likelihood = -1895.2213
Iteration 6: log likelihood = -1995.0957
Iteration 7:  log likelihood = -1995.0948
Iseration 8:  log likelihood = -1995.0948
Stereotype logistic regression Number of obs = 1382
Wald chi2(6) > 103.46
Log likelihood = -1995.0948 Prob > chi2 = 0.0000
(1) [phii_1]_cons = 1
party Coef. Std. Err. z Prlz| [95% Conf. Interval)
age =.007771 . 0069617 -1.30 0.192 -.0194556 0039137
income 0173648 003745 4.64 '0.000 .0100247 .0247049
black
yes -3.1054556  .4465568 -6.95 0.000 -3.98069 -2.230218
female s
yes -.1695416 177839 -0.95 0.340 -.5180996 -1790166
aduc
hs only 6146554 .2745719 2.24 0.028 .0765044 1._1528_0_8
college 1.276616  .3472982 3.68 0.000 .5969244  1.957308
/phii_i 1 {constrained)
/phi1_2 626637  .0676574 9.27 0.000 .4943309 . 7595431
/phil_3 7318878 0761227 89.74 0.000 . 5846499 8791256
/phit_4 .1636441 . 0952039 1.72  0.086 ~.0229521 -3502402
/phil_6 0 (base cutcome)
/thetal 9796152 4466317 2,19 0,028 . 1042332 1.854997
/thata2 1.458878  .3080763 4.74 0.000 .8550681  2,062696
/thetad .4512317  .3519666 1.28 0,200 -.2386102  1,141074
/thetad .9631935 ATTTT25 5,42 0.000 .6147659 1.311621
/thetab 0 (base outcome)

(party=Striep is the base outcome)

. predict slmi_1 slmi_2 siml_3 slmi_4 slmi 5
(option pr assumed; predicted probabilities)
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We show the iteration log to illustrate that the SLM often takes more steps to converge
than the corresponding MNLM. The top panel contains estimates of the 5%s. The next

panel contains estimates of the ¢’s, where the constraints are shown for ¢ =

1 and

o5 = . Notice that the ¢'s are not ordered from largest to smallest. This means that
the fit of the model is better if the outcomes are given a different ordering than that
implied by the way party is numbered with 1 = StrDem, 2 = Dem, 3 = Indep, 4 = Rep,
and 5 = StrRep. The intercepts @ are shown in the last panel, including the constraint

y; = "
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Interpretation using odds ratios

Because the SLM is a logit model, we can write the model as

. Prly=qx) . o o
lnﬂq;r(x)-ln—-——*r,r[y=rix}~(6’q br) — (9 — & )xB

Taking the exponential, we have a model that is multiplicative in the odds:
Qqtr (x) = exp { (8g = 0r) — (0 — ¢r)xﬁ}

This equation can be used to estimate the factor change in the odds for a unit change
in xy, holding all other variables constant. To do this, we take the ratio of the odds
after ) increases by 1 to the odds before the change. Using basic algebra,

Qe (X, 20+ 1)

Qur(x.x) exp{ (¢ — éa) Bic} (8.7)

This shows that the effect of 25 on the odds of outcome ¢ versus outcome r differs across
ontcome comparisons according to the difference of scaling coefficients ¢, — ¢.. As with
the MNLM, we can interpret the effect of @ on the odds as follows:

For a unit increase in @y, the odds of outcomes ¢ versus » change by a factor
of exp { (¢ — &) Ak }, holding all other variables constant.

Using (8.7), we can compute the odds ratios for all pairs of outcomes. Although this
formula uses three coefficients—a,, ¢, and [ to compute the odds ratio, the iden-
tification constraints simplify computation of the odds ratios for the highest numbered
category compared with the lowest numbered category (assuming that you are using the
default identification assumptions and let slogit determine the base category). Here
the base outcome is 5 so that ¢y = ¢sg = 0 and ¢ = dsp = 1. Then,

Qgrisp(x, @y + 1)
Qgprisn (X, 24)

= exp { (¢sp — dsr) Bx }

=(-:q){ (1 -ﬂ)ﬂk}

— !?3"
Accordingly, the s estimated by slogit can be interpreted directly in terms of the odds
ratio of the base outcome versus outcome 1. Although this makes it simple to examine
the odds ratio for one pair of outeomes, if you stop there you can easily overlook critical
aspects of your data.

The easiest way to examine the effects of each variable on the odds of all pairs of
oufcomes is to use listcoef, expand, where the expand option requests comparisons
for all pairs of outcomes. Here we show the odds ratios for income:



8.12.1 Stereotype logistic regression 451

. listcoef income, expand
slogit (N=1382): Factor change in odds
Odds of: StrRep vs StrDem

b z P>(z] e"b e bStdX 8DofX

income 0.0174 4.637 0.000 1.018 1.620 27.781
phi

phil_1 1.0000 . = i

phil_2 0.6268 0.266 0.000 q

phil 3 0.7318 9.743 0.000

phil_4 0.1636 1.719 0.086 . . -
theta

thetal 0.9796 2.193 0.028 v E

thetal 1.4588 4.738 0,000 z F .

thetald 0.4512 1.282 0,200 . - :

thetad 0.9632 b.418 0.000 = - 4

slogit (N=1382): Factor change in the odds of party
Variable: income (sd=27.781)

b z P>lz| e’b o bStdk
StrDem vs Dem -0.0066 -3.424 0.001 0.994 0.835
StrDem vs Indep -0.0047 -2.604 0.007 0.995 0.879
StrDem vs Rep ~0.01456 -4.356 0.000 0.986 0,868
StrDem vs StrRep ~-0.0174 -4.637 0.000 0.983 0.617
Dem vs StrDem 0.0065 3.424 0.001 1.006 1.197
Dem va Indep 0.0018 1.490 0.136 1.002 1.062
Dem va Rep -0.0080 -4.123 0.000 0.992 0.800
Dem vs StrRep ~-0.0109 -4.277 0.000 0.989 0.739
Indep vs StrDenm 0.0047 2.694 0.007 1.005 1.138
Indep ve Dem -0.0018 -1.490 0.136 0.988 0.961
Indep vs Rep -0.0099 -4.186 0.000 0.990 0.760
Indep vs StrRep -0.0127 -4.370 0.000 0.987 0.703
Rep vs StrDem 0.0145  4.356 0.000 1.016 1,497
Rep vs Dem 0.0080  4.123 0.000 1.008 1.280
Rep vs Indep 0.0099 4.186 0.000 1.010 1.315
Rep vs StrRep -0.0028 -1.544 0.123 0.997 0.924
StrRep vs StrDem 0.0174 4.637 0.000 1.018 1.620
StrRep vs Dem 0.0109  4.277 0.000 1.011 1.353
StrRep vs Indep 0.0127  4.370  0.000 1.013 1.423
StrRep ve Rep 0.0028 1.6544 0.123 1.003 1.082

The output is similar to that produced by slogit. The biggest difference is that the
exponentials of F¢’s and Gisy’s are shown, along with odds ratios for all comparisons.
The odds ratios for income can be interpreted as follows:

For a standard deviation increase in income, about $28,000, the odds of
being a strong Democrat versus a Democrat decrease by a factor of 0.84,
holding all other variables constant. The odds of being a strong Republican
versus a strong Democrat increase by a factor of 1.62.
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And so on for the other contrasts. Full interpretation of the odds ratios for this model
is just as complicated as the MNLM with its additional parameters.

None of the odds ratios for age are significant (output not shown), reflecting that the
imposed ordering of the dependent variable in the one-dimensional SLM is inconsistent
with the effect of age on party affiliation. This was expected given our earlier analysis
with the MNLM.

Ordinality in the one-dimensional SLM

The SLM assumes that the dependent categories can be ordered, but the ordering used in
fitting the model is not necessarily the same as the numbering of the outeome categories,
Looking at the formula for the odds ratios,

Qm{n (x! Ty + l)

Qm],.(x,.::k) =/eXp { w’ll =\ ff’m) ﬁk}

we see that the magnitude of the odds ratios will increase as category values m and n
are further apart only if ¢y > do > ... > dy_ > dy. Bulb slogit does not impose this
inequality when fitting the model. If you look at the estimates from the model of party
affiliation, yon will see that the ¢'s are ordered 1 = ¢y > ¢y > dh2 > @y > ¢ = 0, not
1 =6y > dy > @3 > py > &5 = 0. If the ordering of categories implied by estimates
of a one-dimensional SLM is not consistent with your expected ordering, this may itself
prompt consideration of whether any model that assumes ordinality is appropriate.

Interpretation with predictions

The model can be interpreted using the same m# commands used with ologit or mlogit.
For example, we can compute the average discrete changes for a standard deviation
change in income and age with the command mchange age income, amount(sd). Plot-
ting the effects, we obtain



8.12.1 Stereotype logistic regression
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Like the oLM in chapter 7, the one-dimensional SLM imposes ordinality in a way that
is inconsistent with how age increases the probability of both strong Democratic and

strong Republican affiliations.

Higher-dimensional SLM

The MNLM does not require ordering of the outcome variable; the one-dimensional SLM
orders the outcomes along one dimension, even if it is not the ordering that you expected.
Between ordinal and fully nominal variables are variables that can be ordered on more
than one dimension. For example, one dimension of party affiliation is ordered from left
to right. Affiliation can also be ordered by intensity of affiliation. Ordering on multiple
dimensions is possible with higher-dimensional SLMs, which we consider briefly here.

The log-linear model for a one-dimensional SLM is

M (B — 0,) — (dg — &r)xB

I Pr(y = rlx)

For a two-dimensional model, we add another set of ¢’s and 3’s:

Pry=eax) _ o oy oll)xal — (42l — o2y
In _——*pr(y=1'1x)—wq ;) (g )x3 ( )x3
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If only age and income were in the madel, we would have

Pr(y =qlx) - 1 _ il (al] L) - |
In Gy =) ~ O~ 0 — (64— ol (Blhage + Blicmaincams)

— (6} — oY) (Higkage + Blikonaincons)

With two dimensions, you can find that variables are significant in some, but not all,
of the equations. Because the pattern of ¢'s from the two dimensions can differ, the
ordering for the first dimension (the [1] parameters) can be different from those for the
second dimension (the [2] parameters). '

We can fit the two-dimensional model, compute marginal effects, and plot them.
The resulting graph is very similar to that from the MNLM.

. slogit party age income i.black i.female i.educ, dim(2)
(output omitted )

. mchange age income, amount (sd)
(output omitted )

. mchangeplot age incoma,

> symbols(D d i r R) min(-.06) max(.06) gap(.02)

> title("Stereotype logit model with two dimensions", position(i1))
> ysize(1.3) scale(2.1)

Stereotype logit model with two dimensions

age
= dr | R ]
income
- o] d i R r
-06 04 02 0 02 .04 06
Marginal Effect on Outcome Probability

Indeed, the SLM with .J — 1 dimensions is simply a different way to parameterize the
MNLM.

8.12.2 Conditional logit model

In the MNLM, we estimate how individual-specific variables affect the likelihood of ob-
serving a specific ontcome. In the conditional logit model (CLM), alternativesspecific
variables that vary over the possible ontcomes for each individual are used to predict
which outeome is chosen. In the example we will use, the outcome is the mode of trans-
portation that an individual uses to get to work, with the possibilities being bus, car,
or train, An important independent variable for transportation choice is time. Each
individual has his or her own values for the amount of time it would take to get to work
using each of the different modes of transportation.
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In the cLM, the probability of observing ontcome m is

exp (Zim7Y)

——— form=1toJ
2. j=1€XP (i577)

Pr(yi=m|z)=

where 2;,, contains values of the independent variables for alternative m for case i, In
our example, suppose we have a single independent variable z;, that is the amount of
time it would take respondent § to travel using a mode m of transportation, where m
is either bus, car. or train. Then v is a parameter indicating the effect of time on the
probability of choosing one mode over another. In general, for each variable z, there
are J values of the variable for each case but only the single parameter .

Data arrangement for the CLM

The CLM requires that each row of the dataset represents one alternative for one person.
If we have data on N individuals who each choose from among .J alternatives, then for
the CLM each individual's data will span .J rows, and the total dataset will have N x .J
rows. In our example, the variable mode distinguishes the modes of transportation (1 =
Train, 2 = Bus, 3 = Car), and the variable id distinguishes different individuals. For
the first two individuals,

. use traveld.dta, clear
(traveld.dta | Gresne & Hensher 1997 mode of travel | 2014-04-01)

. list id mode choice time in 1/6, nolabel sepby(id)

id mode cholce time
1. 1 1 0 406
2. 1 2 0 452
3 1 a 1 180
4. 2 1 0 398
5. 2 2 0 452
B. 2 3 1 265

The variable time indicates the amount of travel time for each mode of transporta-
tion for each individual. The first row is for mode 1. indicating travel by train, for
the first individual. Thus the value of time means that it would take this person 406
minutes to take the trip by train. The variable choice is 0 or 1, where 1 indicates the
mode that was chosen for the trip. Both individuals above chose to travel by car, so
choice is | in the rows where mode is 3.

Often, datasets will instead be arranged where each row represents a single individ-
ual, and each alternative-specific variable is represented as a series of variables, one for
each mode. Below is the same information on two individuals that we presented before,
only now arranged in this format:
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. use traveldcase.dta, clear
(travel4case.dta | Greene & Hensher 1997 I-rou-per-case | 2014-04-01)

. list id choice timel time2 time3 in 1/2, nolabel

id choice timel time2 time3

1. 1 3 406 452 180
2. 2 3 388 452 255

Instead of being a binary variable, choice now contains the value of the mode of trans-
portation that was chosen. Meanwhile, the variables timel, time2, and time3 represent
the amount of time for each of the three modes.

We can rearrange these data so that we can fit the CLM by using the reshape
long command (see [D] reshape). reshape requires us to list the stub names of the
alternative-specific variables, which is time in the above example. We must also specify
the variable that identifies unique observations with option i(varname) and specify
the name of the new variable that indicates the different alternatives with the option
j (newvarname) .

., reshape long time, i(id) j(mode)
(note: j = 1 2 3)

Data wide -> long
Number of obs. 162 = 456
Number of wvariables 2 = 21
j variable (3 values) -> mode

xij variables:
timel time2 time3 > time

. list id mode choice time in 1/6, nolabel sepby(id)

id mode choice time
1. i 1 3 406
2 1 2 3 452
3 1 3 3 180
4 2 1 3 398
) 2 2 3 462
6 2 3 3 255

The results of reshape match the data we presented earlier. except choice still
contains the value of the selected alternative instead of being a binary variable indicating
the row of the selected alternative. We can remedy this by using the replace command:
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. replace choice = (choice == mode) if choice < . & mode < .
(393 real changes made)
. list id mode choice time in 1/6, nolabel sepby(id)

id mode choice time
1. 1 1 0 4086
2. 1 2 0 4562
3 1 3 1 180
4. 2 1 0 398
5. 2 2 0 452
6. 2 3 1 265

Fitting the CLM with asclogit

We can estimate the parameters of CLM by using the asclogit command (see [i] as-
clogit). asclogit requires that we use the options case() to specify the variable that
identifies individuals and alternative () to specify the variable that identifies different
alternatives. In our example. the id variable distinguishes individuals from one another,
while the alternatives are distinguished by mode.

. usa traveld.dta, clear
(traveld.dta | Greene & Hensher 1997 mode of travel | 2014-04-01)

. asclogit choice time, alt(mode) case(id) nolog

Alternative-specific conditional logit Number of obs = 456
Case variable: id Number of cases = 152
Alternative variable: mode Alts per case: min = 3
avg = 3.0
max = 3
Wald chi2(1) = 71.54
Log likelihood = -80.548414 Prob > chi2 = 0.0000
choice Coef. Std. Exr. z P>|z| [95% Conf. Interval]

mode
time -.0200649  .0023711 -8.46 0.000 -.0247021 -.0154076

Train (base alternative)

Bus
_cons -.487722 . 296565 -1.64 0.100 ~1.068979 .0935347

Car
-cons -1,495147  .20863507 -5.05 0.000 -2,075984 -.9143106

The coeflicient for time indicates the effect of time on the log odds that an alternative
is selected. The coefficient is negative, indicating that the chances of an alternative
being selected decrease as the amount of time required to travel using that alternative
increases. The intercepts for Bus and Car are relative to the base alternative, which
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is Train. By defau