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Preface

As with previous editions, our goal in writing this book is to  make it routine to carry out 
the complex calculations necessary to  fully interpret regression models for categorical 
outcomes. Interpreting these models is complex because the models are nonlinear. 
Software packages th a t fit these models often do not provide options that make it simple 
to compute the quantities that are useful for interpretation; when they do provide these 
options, there is usually little guidance as to how to use them . In this book, we briefly 
describe the statistical issues involved in interpretation and then show how you can use 
Stata to make these computations.

While our purpose remains the same, this third edition is an almost complete rewrite 
of the second edition almost every line of code in our SPost commands has been rewrit­
ten. Advances in computing and the addition of new features to Stata has expanded 
the possibilities for routinely applying more sophisticated methods of interpretation. 
As a result, ideas we noted in previous editions as good in principle are now much 
more straightforward to implement in practice. For example, while you could compute 
average marginal effects using commands discussed in previous editions, it was difficult 
and few people did so (ourselves included). Likewise, in previous editions, we relegated 
methods for dealing with nonlinearities and interactions on the right-hand side of the 
model to the last chapter, and our impression was that few readers took advantage of 
these ideas because they were comparatively difficult and error-prone to use.1

These limitations changed w ith the addition of factor variables and the m argins 
command in S tata 11. It took us personally quite a while to fully absorb the potential 
of these powerful enhancements and decide how best to take advantage of them. Plus, 
Stata 13 added several features th a t were essential for w hat we wanted to do.

This th ird  edition considers the same models as the second edition of the book. We 
still find these to be the most valuable models for categorical outcomes. And, as in 
previous editions, our discussion is limited to models for cross-sectional data. While 
we would like to consider models for panel data and other hierarchical data structures, 
doing so would at least double the size of an already long book.

1. Those who have read previous editions will note that this last chapter has been dropped entirely. In 
addition to  covering linked variables o f the right-hand side, that chapter also discussed adapting our 
commands to other estimation commands; however, this is now obsolete because margins works 
with m ost estim ation commands. We also dropped the section on working effectively in Stata  
because Long’s (2009) Workflow of Data Analysis Using Stata covers these topics in detail.
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We note, however, th a t  many of our SPost com m ands—such as m table. mgen, and 
mchange (hereafter referred to as the m* commands) are based on m argins and can 
be used w ith any m odel th a t  is supported by m arg ins. This is a substantial change 
from our earlier p rchange. prgen. p rtab , and p rv a lu e  commands, which only worked 
w ith  the models discussed in the book. A second m ajor improvement is th a t our m* 
com m ands work with weights and survey estimation, because these are supported by 
m arg ins.

SPost was originally developed using S tata 4 and S ta ta  5. Since then, our commands 
have often been enhanced to  use new features in S tata. Sometimes these enhancements 
have led to  code that was not as efficient, robust, or elegant as we would have liked. In 
SPostl3 . we rewrote m uch of the code, incorporated better returns, improved output, 
and  removed obscure or obsolete features.

How to cite

Our commands are no t officially part of S ta ta. We have written them  in an effort 
to  contribute to the community of researchers whose work involves extensive use of the 
models we cover. If you use our commands or other materials in published work, we 
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Part I

General information

Our book is about using Stata to fit and interpret regression models with categorical 
outcomes, with an emphasis 011 interpretation. The book is divided into two parts. 
Part I contains general information th a t applies to all the regression models that are 
then considered in detail in part II.

• C h a p te r  1 is a brief orienting discussion that also includes critical information 
about installing a collection of S ta ta  commands, known collectively as SPostl3, 
that we have written to facilitate the interpretation of regression models. W ithout 
these commands, you cannot do many of the things we suggest in later chapters.

• C h a p te r  2 includes an introduction to Stata for those who have not used the 
program or are just beginning to use it. I11 addition to this basic information on 
the S ta ta  interface, the chapter includes an introduction to using macros, returns, 
and loops. Because these tools arc used extensively in later chapters, we encourage 
more advanced Stata users to a t least skim these sections.

• C h a p te r  3 considers issues of estimation, testing, and assessing fit that are com­
mon to all the models considered in later chapters. We discuss both the statistical 
issues involved and the S tata commands that carry out these operations. Readers 
already using S tata may be familiar with much of this material. Still, we think 
the chapter is worth at least a quick read through, paying particular attention to 
factor-variable notation, which is used extensively in later chapters.

• C h a p te r  4 considers commands and approaches to interpretation that are used 
with all the regression models in part II of the book. Most importantly, we discuss 
the m argins command along with the mtable. mgen. and mchange commands we 
have w ritten th a t use m argins. You do not need to  m aster this material 011 first 
reading, but you should at least skim each section so th a t you can return  to 
relevant sections as you read later chapters.

Part II encompasses chapters 5-9 and is organized by the type of outcome being mod­
eled. These chapters apply the methods introduced in chapters 3 and 4 using the package 
of commands we show you how to install in chapter 1.



We m ust add some words of caution: First, we have not be able to test our commands 
w ith  every m argins-com patible estimation command. We have been encouraged that 
o u r com m ands have worked with other models we have used in our research. Nonethe­
less. if you use our m* commands with other models, you should include the d e ta i ls  
opt ion so th a t  you can compare the output from m argins with the summaries provided 
by our commands.

Second, m argins is an  extremely powerful command that has features for applica­
tions th a t we have not considered, such as experimental design. Our philosophy in 
designing our commands is to allow them to allow these options, which are passed along 
to  m arg in s  to do the computation. Everything should work, but we have not been 
ab le to tes t every option. While we could have designed our commands to intercept all 
m arg in s  options that we have not tested, this seemed less useful than allowing you to 
try  them . If you use options that are not discussed in the book, please let us know if 
you encounter problems.

Third, just because m argins can compute a particular statistic does not mean that 
it is reasonable to interpret that statistic. It can estim ate statistics th a t  are valuable 
and  appropriate for a given model, and it will also compute the same statistics for 
another model for which those statistics are inappropriate. The burden of what to 
compute is left with the user. This is more broadly true of margins: its great power 
and flexibility also put an extra burden of responsibility on the user for making sure 
results are interpreted correctly.

Another cost of the remarkable generality (if m argins is that very general routines 
are used to make computations. These routines are slower sometimes much slower— 
than  routines that are optimized for a specific model. As a consequence, our earlier 
SPost commands (which we now refer to as SPost9), are actually much faster than the 
corresponding commands in SPostl3. Interestingly, our m* commands take about as 
long to run today as our earlier commands took a  decade ago. While those moving from 
SPost9 to  SPostl3 might be put off by how much slower the commands are, we think the 
advantages are overwhelming. W ith each new release of Stata, m argins is faster, and 
your computer is likely to be more powerful. For now, however, in our own research, 
we take advantage of S ta ta  13 where margins is noticeably faster and use Stata/M P to 
take advantage of multiple computing cores.

The new methods of interpretation that are possible using m argins and our m* 
commands sometimes require using loops and macros. They also require you to think 
carefully about how you want to compute predictions to interpret your model. We 
have marked some sections as Advanced to indicate th a t they involve more advanced 
methods of interpretation or require more sophisticated Stata programming. The box at 
the beginning of each of these sections explains what is being done in th a t section, why it 
is important, and when new users might want read the entire section. “Advanced” does 
not mean that the content of these sections is less valuable to some readers; indeed, we 
believe these sections include some of the most im portant contributions of this edition. 
Nor does it mean the commands are too difficult for substantive researchers. Rather, we 
think some readers might benefit from finishing the other sections in a chapter before 
reading the advanced sections.



We strongly encourage you to be a t your computer so th a t you can experiment with 
the commands as you read. Initially, we suggest you replicate what is done in the book 
and then experiment with the commands. The spostl3_do packages (see section 1.6.1) 
will download to  your working directory the datasets we use and do-files to reproduce 
most of the results in the book. In the examples shown throughout the book, we assume 
the commands are being run in a working directory in which the sp o s t 13_do package has 
been installed. We have written the spex command (standing for ;‘S ta ta  postestimation 
examples”), which makes it simple to use the datasets and run the baseline estimation 
commands we use in the book. For example, the command spex l o g i t  downloads the 
data and fits the model we use as the baseline example for the binary logit model. After 
you type it, you are immediately ready to explore postestimation commands.

For each type of outcome that we consider in later chapters, we rely primarily 011 a 
single running example throughout. We have found this works best in teaching these 
materials. However, it does make selecting examples very challenging. We wanted 
examples to be interesting, accessible to diverse audiences, simple enough to follow 
easily without being trivial, representative of what you might find in other data, and 
illustrative of key points. In trying to balance these sometimes conflicting goals, we 
use examples that do not always make a compelling case for a particular method of 
interpretation. For example, an effect might be small or a plot rather uninteresting. 
We hope you will not decide 011 this basis that the method being illustrated will be 
ineffective with your data. A given method might not be effective in your application, 
but the nature of interpretation in nonlinear models is that you often need to try multiple 
approaches to  interpretation until you find the one that is most effective. Of course, 
in some cases, the relationship you were expecting simply is not in the data you are 
analyzing. While we have tried dozens of variations and approaches to interpretation 
for each model, we cannot show them  all. Just because we do not show a particular 
approach to interpretation for a given model does not imply th a t you should not consider 
that approach.

Conventions

We use several conventions throughout the book. S tata commands, variable names, 
filenames, and output are presented in a typewriter-style font l i k e  th is .  Italics are 
used to indicate th a t something should be substituted for the word in italics. For 
example, l o g i t  variablelist indicates th a t the command l o g i t  is to  be followed by a 
list of variables.

When output from Stata is shown, the command you would type into S ta ta  is 
preceded by a  period (which is the S ta ta  prompt). For example,

. logit lfp age wc he k5, nolog 
Logistic regression

(output om itted )

Number of obs 753



To rep roduce the  output, do not type the period before the command. If following 
along, only type  those commands with a dot prom pt. Commands w ithout the dot 
p rom pt are ju s t  shown as examples. Also, as just illustrated, when we have deleted part 
of th e  o u tp u t, we indicate th is with output omitted. Keystrokes are set in this font. For 
exam ple, Alt-f means th a t you are to hold down the Alt key while pressing the f key. 
The headings for sections th a t discuss advanced topics are indicated as Advanced.

W e refer to  entries in the S tata manuals by using the Stata convention in which 
the abbrev iation  for the manual is presented in brackets and the topic in boldface (for 
exam ple, [r ] log it). Typing h e lp  manuals in Stata will provide more information about 
these abbreviations.

T h e  screenshots that we present are from S tata 13 for Windows. If you are using 
a different operating system or version, your screen might not look the same. See the 
S ta taC orp  publication Getting Started with Stata for your operating system for further 
details.

The SPost commands

Many of the commands th a t we discuss are commands that we have written, and 
as such, they are not part of official Stata. To follow examples, you must install these 
commands as described in section 1.5. Although we assume you are using S ta ta  12 or 
later, most commands should work in Stata 11 (though we cannot support problems 
you might encounter in S ta ta  11).

S ta ta  13 added two features that we find extremely valuable. First, ou tpu t for factor 
variables is much clearer. Second, it is possible to  use m argins to compute average 
discrete changes for variables th a t are not binary (full details are given in chapter 3).

The s p o s t  13_ado package cannot be installed along with the older spost9_ado. 
While the SPost9 commands asprvalue. c a s e 2 a lt ,  m isschk. m logplot, mlogview, 
praccum. prchange. p rco u n ts , prgen, p rtab , and p rv a lu e  have been dropped from 
SPostl3, their functionality remains in other commands. The pr* commands are re­
placed by the  m* commands, m logplot and mlogview. written using S ta ta  7 graphics 
and dialog boxes, have been replaced by m lo g itp lo t and the related m changeplot com­
mands. m isschk is no longer needed because of the introduction of S ta ta’s m iss ta b le  
command. The asprvalue and c a se 2 a lt commands have been mostly superseded by 
changes S ta ta  has made to fitting models with alternative-specific variables.

Still, if you have used SPost9, you might want to  use some of the old commands. 
W ith this in mind, we created the spost9_legacy package th a t includes commands that 
have been dropped. The versions of the commands in this package are not exactly the 
same as those in the spost9_ado package, but they have the same syntax as the earlier 
commands. We cannot, however, provide technical support for this package. If you 
need to run the SPost9 commands as described in the second edition—for example, to 
continue work on a project using these commands you should uninstall sp o s t 13_ado 
and then install spost9_ado.



Getting help

We are gratified that many people have bought our book, bu t as a consequence, we 
receive many emails with questions. While we try  to respond to everyone who contacts 
us, this is not always possible. Please read section 2.3 for information on the best way 
to  resolve questions or problems as quickly as possible. We appreciate it.





1 Introduction

1.1 What is this book about?
Our book shows you effective and efficient ways to use regression models for categorical 
and count outcomes. It is a book about data  analysis and is not a formal treatment 
of statistical models. To be effective in analyzing data, you want to spend your time 
thinking about substantive issues and not laboring to get your software to generate the 
results of interest. Accordingly, good d a ta  analysis requires good software and good 
technique.

Although we believe th a t these points apply to  all data analyses, they are particularly 
important for the regression models th a t we examine. These models are nonlinear; 
consequently, the simple interpretations th a t are possible in linear models are no longer 
appropriate. In nonlinear models, the effect of each variable on the outcome depends 
on the level of all variables in the model. Because of this nonlinearity, which we discuss 
in detail in chapter 3, no method of interpretation can fully describe the relationships 
among the independent variables and the outcome. Rather, a series of postestimation 
explorations are needed to uncover the most important aspects of these relationships. 
If you limit your interpretations to the standard output of estimated slope coefficients, 
your interpretation will usually be incomplete and sometimes even misleading.

In the linear regression model (LRM), most of the work of interpretation is com­
plete once the estim ates are obtained. You simply read off the coefficients, which can 
1)0 interpreted as follows: “For a unit increase in x y  is expected to increase by ¡3̂  
units, holding all other variables constant.” In nonlinear models, such as logit or neg­
ative binomial regression, additional computations are necessary after the estimates 
are obtained. Indeed, when interpreting nonlinear models, most of the work involves 
sometimes complex postestimation analyses, which are the focus of our book.

To make these computations, we use S ta ta’s postestimation commands along with 
commands that we have written. W ithout these commands, the computations are time 
consuming and error-prone. All in all, it is not fun work, and it is tem pting to limit your 
analyses to an uninformative table of param eter estimates. Fortunately, the commands 
we discuss in this book make sophisticated postestimation analysis routine and even 
enjoyable. Although these analyses can take a lot of work, our commands reduce the 
tedium so that you can focus on substantive issues.

7
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1.2 Which models are considered?
Regression models analyze th e  relationship between an explanatory variable and an 
outcom e variable while controlling for the effects of other variables. The LRM is probably 
the m ost commonly used regression model in the social sciences. A key advantage of 
the  LRM  is the ease of interpreting results. Unfortunately, this model applies only 
to  cases in which the dependent variable is unbounded. Using the LRM when it is 
not appropriate may produce coefficients that are biased and inconsistent, and there 
is no thing advantageous about the simple interpretation of results that are incorrect. 
Fortunately, many appropriate models exist for categorical outcomes, and these models 
are th e  focus of our book. We cover models for four kinds of dependent variables: binary 
outcomes, ordinal outcomes, nominal outcomes, and count variables.

Binary outcomes have two values, such as whether a citizen voted in the last election, 
whether a patient was cured after receiving some medical treatment, or whether a 
respondent attended college. The regression models and commands we consider include 
binary logit ( lo g it)  and binary probit (probit).

Ordinal outcomes have more than two categories that are assumed to be ordered on 
a single, underlying dimension. For example, a survey might ask if you would be “very 
likely” , “somewhat likely”, or “not at all likely” to take a new subway to work, or if you 
agree with the president on “all issues”, “most issues” , “some issues” , or “almost no 
issues” . We focus on the ordered logit (o lo g it) and ordered probit (o p ro b it)  models, 
but we also consider the sequential logit model (s e q lo g it) ,  stereotype logistic regression 
( s lo g i t ) ,  and the generalized ordered logit (g o lo g it2 ), which is also appropriate for 
nominal outcomes.

Nominal outcomes also have more than two categories, but the categories are not, 
ordered. Examples include the mode of transportation a person takes to work (for ex­
ample, bus, car, train) or an  individual’s employment status (for example, employed, 
unemployed, out of the labor force). The primary model we consider is the multino­
mial logit model (mlogit) along with its counterpart, the multinomial probit model 
with uncorrelated errors (m probit). We also review the related conditional logit model 
( c lo g i t  and a sc lo g it) , the alternative-specific multinomial probit with correlated er­
rors (asm probit), and the rank-ordered logit model ( ro lo g it) .

Finally, count variables count the number of times something has happened, such as 
the number of articles w ritten by a scientist or the number of patents a biotechnology 
company has obtained. We begin with the Poisson regression model (po isson), followed 
by the negative binomial regression model (nbreg), the zero-truncated Poisson and 
negative binomial models ( tp o is so n  and tnbreg), the hurdle regression model, and 
lastly, the zero-inflated Poisson and negative binomial models (zip  and z in b ).

Although this book covers many models for different types of outcomes, they are all 
models for cross-sectional data. We do not consider models for survival or event-history 
data, even though Stata has a powerful set of commands for dealing with these data. 
We recommend Cleves et al. (2010) and the Stata Survival Analysis Reference Man-
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ual for more information on these types of models. Likewise, we do not consider any 
models for panel or other multilevel data, even though Stata contains commands for fit­
ting these models. For additional information, see Rabe-Hesketh and Skrondal (2012), 
Cameron and Trivedi (2010), and the Stata  Longitudinal-Data/Panel-Data Reference 
Manual.

3 Whom is this book for?
We expect that readers of this book will vary considerably in their knowledge of both 
statistics and S tata. W ith this in mind, we have tried to structure the book to accom­
modate the diversity of our audience. Minimally, however, we assiune that you have a 
solid familiarity with the linear regression model and that you are comfortable using the 
basic features of the operating system of your computer. Although we have provided 
sufficient information about each model so that you can read each chapter without prior 
exposure to the models discussed, we strongly recommend that you do not use this book 
as your sole source of information on the models (see section 1.8 for reading recommen­
dations). Our book will be most useful if you have already studied or are studying the 
models considered herein in conjunction with reading our book.

Ideally, you are running Stata 13 or later. Most of our examples will, however, run 
in Stata 11 and 12. If you are using a version of Stata earlier than  S tata 11, we suggest 
th a t you instead use the second edition of our book (Long and Freese 2006). However, 
w ith the powerful new features in S tata 13 and the new m ethods of interpretation in 
this third edition, we hope you decide instead to upgrade your software. To make the 
most out of the book, you will need access to the Internet to download our commands, 
datasets, and sample programs (see section 1.5 for details). For information about 
obtaining Stata, sec the StataCorp website at http://w w w .stata.com .

4 How is the book organized?
Chapters 2 4 introduce materials that are essential for working with the models we 
present in the later chapters:

C h a p te r  2 : In tro d u c tio n  to  S ta ta  reviews the basic features of Stata that are 
necessary to get new or inexperienced users up and running with the program. 
New users should work through the brief tutorial that we provide in section 2.18. 
This introduction is by no means comprehensive, so we include information on 
how to learn more about using S tata. Those who are familiar with Stata can ski]) 
this chapter, although even these readers might benefit from scanning it.

C h a p te r  3: E s t im a tio n , te s tin g , a n d  fit reviews Stata commands for fitting mod­
els. testing hypotheses, and computing measures of model fit. Those who regularly 
use Stata for regression modeling might be familiar with much of this material; 
however, we suggest at least a quick review of the material. Most importantly,

http://www.stata.com
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you should read our detailed discussion of factor-variable notation, which was in- 
tro d u ced  in S ta ta  11. Understanding how to use factor variables is essential for 
tin 1 m ethods of interpretation presented in the later chapters.

C h a p t e r  4: M e th o d s  o f  in te rp re ta t io n  is an overview of various approaches to 
in terp re ting  regression models. We introduce the m argins command th a t is part 
of official S tata and th e  m table, mgen, and mchange commands th a t are part of 
S P ostl3 . This chapter is essential background before proceeding to p a r t II. Study 
th is  chapter carefully, even if you arc an advanced user. Readers new to  S ta ta  are 
likely to  find that this chapter has more detail than initially needed; therefore, 
th roughou t the chapter, we suggest which sections you may wish to only skim on 
first reading.

P a r t  II covers regression models for different types of outcomes.

C h a p te r s  5 an d  6: M o d els  for b in ary  o u tco m es begin with an overview of how 
the binary logit and probit models are derived and how they can be fit. After 
the  model has been fit, we show how to test hypotheses, compute residuals and 
influence statistics, and calculate scalar measures of model fit. C hapter 6 uses 
postestimation commands that assist in interpretation using predicted probabili­
ties, discrete and marginal change in the predicted probabilities, and for the logit 
model, odds ratios. Because binary models provide a foundation on which many 
models for other kinds of outcomes are derived, and because these two chapters 
provide more detailed explanations of common tasks than later chapters do, we 
recommend reading these chapters carefully even if you are interested mainly in 
another type of outcome.

C h a p te r  7: M odels for o rd in a l ou tcom es presents the ordered logit and ordered 
probit models. Wc show how these models are fit and how to test hypotheses 
about coefficients. We also consider tests of a key assumption of bo th  models, 
known as the parallel regression assumption. For interpreting results, we discuss 
m ethods similar to those described in chapter G, and we also discuss interpretation 
in term s of a latent dependent variable. Methods of interpretation using predicted 
probabilities apply directly to models for nominal outcomes, so it is useful to fa­
miliarize yourself with these methods before proceeding to chapter 8. T his chapter 
also details the implications of assuming that an ordinal model is appropriate for 
your outcome and recommends that you use models for nominal outcomes as part 
of your evaluation of ordinal models.

C h a p te r  8: M odels for n o m in a l ou tcom es focuses oil the multinomial logit model. 
We show how to test hypotheses that involve multiple coefficients and discuss tests 
of a key assumption known as the independence of irrelevant alternatives assump­
tion. Methods of interpretation using predictions are identical to those for ordinal 
models. Interpretation using odds ratios is a simple extension of th e  methods 
introduced in chapter 6, although the multinomial logit model’s m any parame­
ters make the process of interpretation much more complicated. To deal with
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this complexity, we present a graphical method for summarizing the parameters. 
The multinomial probit model without correlated errors is discussed briefly, and 
then the multinomial logit model is used to explain the stereotype logit model. 
This model, which is often used with ordinal outcomes, also has applications with 
nominal outcomes. These models assume case-specific independent variables (each 
independent variable has one value for each observation). We end the chapter with 
a short review of models that also include alternative-specific data, in which some 
variables vary over the alternatives for each individual, such as an individual’s sim­
ilarity to each candidate in an election. We consider the conditional logit model 
and the alternative-specific multinomial probit model, the latter of which allows 
correlations between alternative-specific error terms. Lastly, we present the rank- 
ordered logistic regression model, which can be used when you have information 
about the ranking of outcomes as opposed to information about only the selected 
or most preferred outcome.

C h a p te r  9: M o d e ls  for coun t o u tc o m e s  begins with the Poisson and negative 
binomial regression models, including a test to determine which model is appro­
priate for your data. We also show how to incorporate differences in exposure 
time into param eter estimation. Next, we consider interpretation for changes in 
the predicted rate and changes in the predicted probability of observing a given 
count. The rest of the chapter deals with models that address problems associated 
with having too many zeros relative to what the model predicts or having no zeros 
at all. We s ta rt with zero-truncated models for which zeros are missing from the 
outcome variable, perhaps because of the way the data were collected. We then 
merge a binary model and a zero-truncated model to create the hurdle model. 
We also consider fitting anti interpreting zero-inflated count models, which are 
designed to account for the many zero counts often found in count outcomes.

.5 The SPost software
From our point of view, one of the best things about Stata is how easy it is to add your 
own commands. If S tata does not have a command you need or some command does not 
work the way you like, you can program a new command yourself, and it will work as if it 
were part of official Stata. We have created a suite of programs, referred to collectively 
as SPostl3 (S tata postestimation commands for version 13), for the postestimation 
interpretation of regression models. These commands must be installed before you can 
try  the examples in later chapters.

I f  you have u se d  S P o s t before, re a d  th is ! For this book, we completely rewrote 
our earlier SPost commands, which we will refer to as SPost9. If you have the 
spost9_ado package installed on yoiu computer, you should uninstall it (details 
below) before you install the sp o s t 13_ado package.
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To got th e  most out of th is  book, yon need to try each method using both the 
official S ta ta  commands and our SPostl3 commands. Ideally, you are running S ta ta  13 
or la te r . If you are running S ta ta  11 or Stata 12, most of our examples will work, but 
a few valuable features new in S tata 13 will not be available. Before we discuss how 
to insta ll our commands and update your software, we have suggestions for new Stata 
users, those w ith earlier versions of Stata, and those who used SPost9:

If you are new to Stata. If you have never used Stata, you might find the instructions in 
this section to  be confusing. It might be easier if you skim the material now and return 
to  it afte r you have read the introduction to Stata in chapter 2.

If you are using Stata 10 or earlier. The SPostl3 commands used in this book will not 
w ith run  w ith Stata 10 and earlier. You can use SPost9 contained in the spost9_ado 
package, which is described in the second edition of our book (Long and Freese 200G). 
However, if you are investing the time to learn these methods, we think you are much 
b e tte r off upgrading your software so that you can use spostl3_ado.

If you are using an earlier version of SPost. Before using the spostl3_ado package, you 
m ust uninstall any earlier versions of SPost, such as the spostado package or the 
spost9_ado package. SPostl3 replaces our earlier p rv a lu e , p rtab , prgen, prchange, 
and praccum commands with the more powerful m table, mgen, rachange, and m l is ta t  
commands based on S tata’s remarkable margins command, which did not exist when 
the previous edition of this book was written. If you want to use our new commands but 
also want access to the SPost9 commands, you can install the spost9_legacy package. 
Details are given below.

1.5.1 Updating Stata

Before you install SPostl3. we strongly recommend that you update your version of 
S tata. This does not mean to upgrade to Stata 13, but rather to make sure you have 
the latest updates for whatever version of S tata you are running. You should do this 
even if you have just installed S tata because the DV D or download that you received 
might not have the latest changes to the program. W hen you arc online and in Stata, you 
can update S tata by selecting C heck  for U p d a te s  from the H elp menu; equivalently, 
you can type the command update query, as we did here:
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Stata/MP 111 • (Results]
fie Edit Oki Graphic* Slalntics User Window

This screen shows the update status and recommends an action. Our installation is up 
to date. If it was not, S ta ta  would recommend an update and would provide instructions 
on how to do that.

.5.2 Installing SPostl3

We begin with some background of what happens when you install user-written com­
mands in Stata. The good news is that once they arc installed, these commands behave 
just like official S ta ta  commands. Programs th a t add commands to S ta ta  are contained 
in files that end in the extension .ado, which stands for autom atic do-file. For exam­
ple, l i s t c o e f . ado is the file that contains the command l i s t c o e f . When you type the 
command l i s t c o e f ,  S ta ta  automatically runs l i s tc o e f  .ado. The ado-files, along with 
supplementary files that might have other suffixes, are included as part of a package. 
In Stata, a package comprises a list of included files along with instructions on how to 
install them on your computer.

To install SPostl3, you install the spostl3_ado  package. We consider two methods 
for installation, bu t first we explain how to uninstall the spost9_ado package.
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1<> d e term in e  it you have th is  package installed, type the command ado. If spost9_ado 
is listed , you can  uninstall it, by typing

. ado uninstall spost9_ado
package spost9_ado from http://www.indiana.edu/~jslsoc/stata 

Distribution-date: 25Jul2012
(package uninstalled)

Uninstalling S P o s t9

Installing S P o stl3  using search

'The s e a rc h  word command searches an online database wherein StataCorp keeps track 
ol user-w ritten  additions to S ta ta . Typing search spostl3_ado  opens a Viewer window 
th a t looks like this:

d  Viewer - search spostl 3_ado

File Edit History Help

search spostl 3_ado /D,

search spostl3 *do X

Dialog * I Also ->ee~ Jump To ■*
. .  . . 1 . _

search for spostl3_ado (manual: [R] search)

Search of official help files, FAQs, Examples, S J3 , and STBs 

Web resources from Stata and other users

(contacting http://www.stata.com)

2 packages found (Stata Journal and STB listed first)

spostl3_ado from http://www.indiana.edu/-jslsoc/stata
Distribution-date: 13May2014 / spostl3_ado | SPostl3 commands from Long 
and Freese (under preparation) / Regression Models for Categorical 
Outcomes using Stata, 3rd Edition. / Support
www.indiana.edu/~jslsoc/spost.htm / Scott Long (jslong@indiana.edu) &

spost9_legacy from http://www.indiana.edu/-jslsoc/stata
Distribution-date: 18Feb2014 / spost9_legacy | SPost9 commands not 
included in spostl3_ado. / From Long and Freese, 2014, Regression Models 
for Categorical Outcomes / using Stata, 3rd Edition. / Support 
www.indiana.edu/~jslsoc/spost.htm / Scott Long (jslong@indiana.edu) &

(click here to return to the previous screen)

(end of search)
_ _ _ _ _ _ _ _ _ _ _ _ _____ v

Rea<ty CAP - NUM :OVRl

http://www.indiana.edu/~jslsoc/stata
http://www.stata.com
http://www.indiana.edu/-jslsoc/stata
http://www.indiana.edu/~jslsoc/spost.htm
mailto:jslong@indiana.edu
http://www.indiana.edu/-jslsoc/stata
http://www.indiana.edu/~jslsoc/spost.htm
mailto:jslong@indiana.edu
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W hen you click on sp o stl3 _ a d o  from h t t p : / /w w w .in d ia n a .e d u /~ j s l s o c /s t a t a ,
which is a blue link, a new Viewer window opens:

2l Viewer - net describe spost13_ado, from(http://www.indiana.edu/~jslsoc/stata) -  n  

File Edit History Help

J5 * l fv net describe spost13_ado, from(http://www.indiana.edu/~jslsoc/s Q 
net describe spostl 3_ado. from(— X

package spostl3_ado from http://www.indiana.edu/~jslsoc/scata

TITLE
Discribucion-dace: 13May2014

DESCRIPTI0N/ADTHOR (S)
sposcl3_ado | SPostl3 commands from Long and Freese (under preparation) 
Regression Models for Categorical Outcomes using Stata, 3rd Edition. 
Support www. indiana. edu/~j slsoc/apost. htm
Scott Long (jslong@indiana.edu) & Jeremy Freese (jfreese@northwestern.edu)

INSTALLATION FILES (click here to install)
3postl3_ado/mlogitplot .ado 
spostl3_ado/mlogitplot. sthlp 
spostl3_ado/_orme_data.ado 
spostl3_ado/_orme_data_getmatrix. ado 
spostl3_ado/_orme_data_getme. ado 
spostl3_ado/_orme_data_getor. ado 
spo3tl3_ado/_orme_data_plotpairs. ado 
spostl3_ado/_orme_data_plotvariables. ado 
spost 13_ado/_orme_graph. ado 
spo3tl3_ado/_orme_3yntax. ado 
spostl3_ado/orplot.ado 
3postl3_ado/orplot.8thlp 
spostl3_ado/meplot.ado 
spostl3 ado/meplot.sthlp

Ready [CAP ||NUM |QVR|

Click on the linked text that says ( c l ic k  h e r e  to  i n s t a l l ) .  After a  delay during 
which files are downloaded, Stata will respond with one of the following messages:

i n s t a l l a t i o n  co m p le te  means that the package has been successfully installed and 
that you can now use the commands. Ju s t above the i n s t a l l a t i o n  com p lete  
message, S ta ta  tells you the directory where the files were installed.

a l l  f i l e s  a lr e a d y  e x i s t  and are up t o  d a te  means that your system already has 
the latest version of the package. You can now use the commands.

http://www.indiana.edu/~jslsoc/stata
http://www.indiana.edu/~jslsoc/stata
http://www.indiana.edu/~jslsoc/s
http://www.indiana.edu/~jslsoc/scata
mailto:jslong@indiana.edu
mailto:jfreese@northwestern.edu


th e  fo l lo w in g  f i l e s  e x i s t  and a re  d i f f e re n t  indicates that your system already 
lias files w ith the same nam es as those in the package being installed and th a t the 
ex isting  files differ from those in the package. T he names of the differing files are 
listed , an d  you are given several options. Most likely, the files listed are earlier 
versions of our program s, so you should select the option Force i n s t a l l a t i o n  
r e p la c in g  a l r e a d y - in s ta l l e d  f i l e s .  This is not as ominous as it sounds. Be­
cause th e  files 011 our website are the latest versions, you want S ta ta  to replace 
your current files with these new files.

c a n n o t w r i te  in  d ire c to ry  directoryname means th a t  you do not have write privileges 
to  the directory where S ta ta  is trying to install the files. This usually occurs only 
w hen you are using S ta ta  011 a network. We recommend that you contact your 
network administrator and ask whether our commands can be installed using the 
instructions given above. If you cannot wait for a  network adm inistrator to install 
th e  commands or to give you the needed write access, you can install the programs 
to  any directory where you do have write permission, including a flash drive or 
your personal directory 011 a network. For example, suppose that you want to 
install SPostl3 to your directory called d :\usernam e (which can be any directory 
where you have write access). You should use the following commands:

. cd d:\username 
d :\username
. mkdir ado
. sysdir set PERSONAL "d:\username\ado"
. net set ado PERSONAL
. net search spost
(contacting http ://www.stata.com)

Then follow the installation instructions provided above for installing SPostl3. 
If you get the error “could not create directory” after typing m kdir ado, you 
probably do not have write privileges to the directory.

If you install ado-files to your own directory, then each time you begin a  new Stata 
session you must tell S ta ta  where these files are located. You do th is by typing  
s y s d ir  s e t  PERSONAL directory?larne, where directoryname is the location of the 
ado-files. For example,

. sysdir set PERSONAL d:\username\ado

Installing SPostl3 using net install

You can also install the sp o s t 13_ado package entirely from the Command window. If 
the method listed above does not work, the following steps might. While online, type

. net from http://www.indiana.edu/-jslsoc/stata/

'*> Chapter 1 Introduction

Available packages will be listed in the Results window. You can click on s p o s t 13_ado 
and follow the instructions, or you can type

http://www.stata.com
http://www.indiana.edu/-jslsoc/stata/
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. net install spostl3_ado

n e t get can be used to download supplementary files (for example, datasets and sample 
do-files) from our website. For example, to  download the package spostl3_do  (discussed 
below), type

. net get spostl3_do

These files are downloaded to the current working directory (see chapter 2 for a full 
discussion of the working directory).

1.5.3 Uninstalling SPostl3

If you want to uninstall our commands, simply type ado u n in s ta l l  spostl3_ado. When 
things do not seem to work right, our first suggestion is to uninstall spostl3_ado and 
then reinstall it.

1.6 Sample do-files and datasets
Although we hope you will soon be using the methods in the book with your own 
data, we think it is valuable to first reproduce our examples and then modify them 
to try new things. To facilitate this, we have written the spex command (included in 
spostl3_ado), which makes it easy to load our data and run our baseline models. We 
also created the spostl3_do  package, which lets you download the  data and do-files for 
each chapter.

1.6.1 Installing the spostl3_do package

The spostl3_do package contains the datasets used in the book along with do-files 
th a t reproduce m ost of the analyses. The do-files have names like rm3ch9-count .do 
and contain comments th a t link the commands to sections of the book. To down­
load these files to your working directory, while in Stata and online, type search  
spostl3_do. In the Viewer window that opens, click on the blue link spostl3_do from 
h t tp : / /w w w .in d ia n a .e d u /- js ls o c /s ta ta . A new Viewer window will open, and you 
can follow the instructions to download the files.

In the examples shown throughout the book, we assume the commands are being run 
from within a working directory in which the spostl3_do package has been installed. 
These do-files assume that you are using S ta ta  13.1. If you are using S ta ta  12, install 
the spostl3_dol3  package instead.

1.6.2 Using spex to load data and run examples

Experimenting w ith the postestimation commands that we discuss requires that you 
have first fit, the appropriate model. In our examples, we show you how to open a dataset 
and fit models as you would if you were working with your own data. Accordingly, we

http://www.indiana.edu/-jslsoc/stata


18 Chapter 1 Introduction

begin w ith  a u s e  command to  load the data and then use an estimation command, such 
as l o g i t ,  to  fit the model.

To m ake it simpler for you to experiment with the methods in later chapters, we 
have w ritten  th e  command spex  (S tata postestimation examples). Typing spex com- 
m andnam e  will produce our primary example for th a t estimation command. If you 
type sp ex  l o g i t ,  for example, S tata will automatically load the data and fit the model 
th a t serves as our main logit example. Alternatively, you can specify the name of any 
d a tase t th a t we use (spex datasetname) , and spex will load those data but not fit any 
model. By default, spex looks for the dataset on our website. If it does not find the 
d a tase t there, it will look in the current working directory and all the directories where 
S ta ta  searches for ado-files. For more information, type h e lp  spex.

T h e  running examples in this edition of the book are different from those used in 
the second edition. If you want to run the earlier examples, use the spex9 command. 
For example. spex9 lo g i t  runs the logit example th a t was used with spost9_ado.

1.7 Getting help with SPost
Because things do not always work as intended and commands that we say will work 
might not, we have some troubleshooting recommendations for you. We ask you to 
please read th is section carefully to try to resolve any problems you may be experiencing 
with SPostl3. If none of these suggestions fixes the issue, you can then contact us.

1.7.1 What if an SPost command does not work?

We assume here that you have installed SPostl3 but th a t some of or all the commands 
do not work. Here are some things to consider:

1. Make sure Stata is properly installed and up to date. Typing v e r in s t  will verify 
th a t S ta ta  has been properly installed. Typing update  query will tell you whether 
the version you are running is up to date and what you should do next. If you are 
running Stata over a network, your network adm inistrator may need to do this 
for you. See [u] 28 U sin g  th e  In te rn e t to  k eep  up  to  d a te  and [Ft] u p d a te .

2. Make sure SPostl3 is up to  date. Type adoupdate , update to check, or uninstall 
sp o s t 13_ado and then reinstall it.

3. If you get the error message unrecognized command, there are several possibilities.

a. If the command used to work, consider whether you are working on a different 
computer or station in a computer lab. User-written programs must be 
installed on each machine that you use.

b. If you sent a do-file using SPostl3 commands to another person who cannot 
get the commands to  work, that person should verify he or she has SPostl3 
installed. Your do-file will not work with SPost9.
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c. If you get the error message u n r e c o g n iz e d  command: strangename after typ­
ing one of our commands, where strangename is not the name of the command 
that you typed, it means that S ta ta  cannot find an ancillary ado-file that the 
command needs. We recommend that you uninstall the sp o stl3 _ a d o  package 
and then reinstall it.

4. If you get an error message that you do not understand, click on the blue return 
code beneath the error message for more information about the error.

5. Often, what appears to be a problem with one of our commands is actually a 
mistake the user has made. We know this because we make these mistakes, too. 
For example, make sure that you are not using = when you should be using ==.

6 . Because our commands are for use after you have fit a model, they will not have 
the information needed to operate properly if Stata was not successful in fitting 
your model. Our commands should trap  such errors but sometimes do not, so 
make sure there were no problems with the last model fit.

7. Irregular value labels can cause commands to fail. Where possible, we recom­
mend using labels th a t have fewer than  eight characters and contain no spaces 
or special characters other than underscores (_). If you are having problems and 
your variables do not meet this standard (especially the labels for your dependent 
variable), then try changing your value labels with the la b e l  command (details 
are given in section 2.15).

8 . Unusual values of the outcome categories can also cause problems. For ordinal 
or nominal outcomes, some of our commands require that all the outcome values 
be integers between 0 and 99. The behavior of some official S tata commands can 
also be confusing when unusual values are used. For these types of outcomes, we 
strongly recommend using consecutive integers starting with 1.

.7.2 Getting help from the authors

If you have tried everything we recommended in section 1.7.1 and you are still encoun­
tering an error, the next step is to contact us. We hear from hundreds of readers and 
do our best to help. To make this easier for us, please carefully follow the suggestions 
in this section.

We encourage you to s ta rt by reviewing William Gould’s blog entry “How to suc­
cessfully ask a question on Statalist” (2010 ). His advice will increase your chances of 
getting your question answered, either from the Statalist, from us, or elsewhere. In 
addition, we have found th a t in the process of carefully preparing a question, we often 
find the solution ourselves.

Here are other suggestions to make it easier for us to answer your question, which 
will also increase your chances of getting a prom pt answer:
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1. Check h ttp ://w w w .indiana.edu/-jslsoc/spost.h tra and 
h ttp ://w w w .iiid iana.edu/-jslsoc/spostJielp .litm  for advice on what to  try before 
contacting  us. There m ight be recent information that solves your problem.

2. M ake sure that both S ta ta  and spostl3_ado are up to  date. We keep repeating 
th is  because it is the m ost common solution to problems our readers bring to us.

3. Look a t the sample hies in the spostl3_do package. It is sometimes easiest to 
figure out how to use a  command by seeing how others use it. Try w hat you are 
doing on one of our datasets and see if you can reproduce it.

4. If you still have a problem, send us the information described in the next section.

W hat we need to help you

To solve your problem, we need to be able to reproduce it. Simply describing the 
problem  rarely is sufficient. Please send us the following:

1. A do-file that reproduces the problem (see a sample do-file at the end of this 
section).

a. Include your name, email address, and a description of the problem.
b. Begin with the commands about and spostl3w hich , which displays the ver­

sions of software you are using.
c. Include the results of summarize used in the analysis (not all variables in the 

dataset) and the results of ta b u la te  for categorical variables.
d. Include only the commands needed to reproduce or explain the problem. 

Remove all unrelated commands.
e. Remove all references to specific directories, such as log  u s in g  

c : \d a ta \p ro je c t3 \p ro b le m , te x t  or use  c : \d a ta \p ro je c t3 \s a m p le .d ta .  
Our computer will not. have your directory structure, so your do-file will not 
run on our computer. The do-file should read the data from the working 
directory and save the log file to the working directory.

2. The dataset used by the  do-file. This should be a small dataset extracted from 
the full dataset you arc using. Only send the variables used in your do-file and 
create a dataset with only a subset of your observations (assuming, of course, that 
the error is reproduced with the smaller sample).

3. A plain text log file showing the error. Do not send the log in SMCL format. To 
avoid this, add the t e x t  option to your log command, for example, lo g  u sin g  
myproblem.log, t e x t  rep la ce .

Send this information to jslong@indiana.edu or jfreese@northwestern.edu.

http://www.indiana.edu/-jslsoc/spost.htra
http://www.iiidiana.edu/-jslsoc/spostJielp.litm
mailto:jslong@indiana.edu
mailto:jfreese@northwestern.edu
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Here is an example of what a do-filc m ight look like:

capture log close
log using yourname.log, text replace
* mtable generates a variable not found error.
* scott long - jslong®indiana.edu - 2014-05-09
about
spostl3which
use jslong-error.dta 
logit y xl x2
* the following command causes the error 
mtable xl, at(x2=(l(l)3))
log close

.8 Where can I learn more about the models?
If you want to learn more about the regression models that are covered in this book, we 
recommend the following valuable sources:

Cameron, A. C., and P. K. Trivedi. 2005. Microeconometrics: M ethods and Applica­
tions. New York: Cambridge University Press. This is an excellent introduction 
to  the methods and models discussed in this book, as well as models for panel 
data.

Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics Using Stata. Rev. ed. 
College Station, TX: Stata Press. This companion to Microeconometrics: Methods 
and Applications (Cameron and Trivedi 2005) shows how to  use S ta ta  for cross- 
section and panel models.

Cameron, A. C., and P. K. Trivedi. 2013. Regression Analysis o f Count Data. 2nd 
ed. Cambridge: Cambridge University Press. This is a definitive reference about 
count models.

Hardin, .1. W.. and J. M. Hilbe. 2012. Generalized Linear Models and Extensions. 3rd 
ed. College Station, TX: Stata Press. This is a thorough review of the generalized 
linear model (or GLM) approach to modeling and includes detailed information 
about using these models with Stata.

Hosmer, D. W., Jr., S. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic 
Regression. 3rd ed. New York: Wiley. This book, written primarily for biostatis­
ticians and medical researchers, considers logit models for binary, ordinal, and 
nominal outcomes. The authors often discuss how their recommendations can be 
executed using Stata.

Long, J. Scott. 1997. Regression Models for Categorical and Lim ited Dependent 
Variables. Thousand Oaks, CA: Sage. This book provides more details about the 
models discussed in our book.
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l'ra in , K. 2009. Discrete Choice Methods with Simulation. 2nd ed. New York: Cam­
bridge University Press. This is a thorough review of a wide range of models for 
d iscre te  choice and includes details on new methods of estimation using simulation.

W ooldridge, J . M. 2010. Econometric Analysis o f Cross Section and Panel Data. 2nd 
<‘d. Cambridge, MA: M IT Press. This is a  comprehensive review of e c o n o m e tr ic  
m ethods for cross-section and panel data.



2 Introduction to Stata

This book is about fitting and interpreting regression models using Stata; to earn our 
pay, we must get to these tasks quickly. W ith th a t in mind, this chapter is a relatively 
c oncise introduction to S ta ta  13 for those with little or no familiarity with the software. 
Experienced Stata users can skip this chapter, although a quick reading might be useful. 
We focus on teaching the reader what is necessary to work through the examples later 
in the book and to develop good working techniques when using S ta ta  for data  analysis. 
These discussions are not exhaustive; often, we show you either our favorite approach 
or the approach th a t we think is simplest. One of the great things about Stata is that 
there are usually several ways to accomplish the same thing—so if you find a better way 
than what we have shown you, use it!

You cannot learn how to use Stata simply by reading. We strongly encourage you to 
try the commands as we introduce them. We have also included a tutorial in section 2.18 
that covers the basics of using Stata. Indeed, you might want to  try  the tutorial first 
and then read our detailed discussions of the commands.

The screenshots in this chapter were created in Stata 13.1 running under Windows 
using the default windowing preferences. If you have changed the defaults or are running 
S ta ta  under Unix or Mac OS, your screen might look slightly different. Those of you 
new to Stata, regardless of the operating system you are using, should examine the 
appropriate Getting Started  manual, available in PDF format with your copy of Stata, 
for further details: Getting Started with Stata for Mac, Getting Started with Stata 
for Unix, or Getting Started with Stata for Windows. How to access this and other 
documentation from within Stata is discussed in section 2.3.2.

For further instruction beyond what is provided in this chapter, look at the resources 
listed in section 2.3. We assume that you know how to load S tata on the computer you 
are using and that you are familiar with your computer’s operating system. By this, 
we mean that you should be comfortable copying and renaming files, working with 
subdirectories, closing and resizing windows, selecting options w ith menus and dialog 
boxes, and so on.

2.1 The Stata interface
Figure 2.1 shows w hat S ta ta  looks like after several commands have been entered and 
data have been loaded into memory. The five main windows th a t you will use most 
often are the Review, Results, Command. Variables, and Properties windows. Except

23
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lor th e  large Results window, each lias its name listed in its title bar. There are also 
o th e r, more specialized windows, such as the Viewer, D ata Editor, Variables Manager, 
Do-file E ditor, Graph, and Graph Editor windows.

Past commands Results are Variable list Data properties

appears here typed here appears here appears here

Figure 2.1. The Stata user interface

T h e  C o m m an d  w indow  is where you type commands that are executed when you 
press Enter. As you type commands, you can edit them  at any time before pressing 
Enter. Pressing Page Up brings the most recently used command into the Com­
mand window, where you can edit it and then press Enter to run the modified 
command.

T h e  R e su lts  window echoes the command typed in the Command window (the com­
mands are preceded by a called the dot prom pt, as shown in figure 2.1) and 
then displays the ou tpu t from that command. W ithin the window, you can high­
light text and right-click on th a t text to see options for copying the highlighted 
text. H ie Copy T a b le  option copies the selected lines to the Clipboard, and 
C opy Table as H T M L  allows you to copy the selected text as an H T M L  table 
(see page 114 for more information). You also have the option to print the con­
tents of the window. Only the most recent output is available this way; earlier
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lines are lost unless yon have saved them  to a log file (discussed below). Details 
on setting the size of the scrollback buffer are given below.

T h e  R eview  w indow  lists the commands th a t have been typed in the Command 
window. If you click on a command in this window, it is pasted into the Command 
window, where you can edit it and then press Enter to run the modified command. 
If you double-click on a command in this window, the command is immediately 
executed.

T h e  V ariables w indow  lists the names and labels of all the variables for the dataset 
in memory. If you click on a variable in this window, information about it is shown 
in the Properties window. If you double-click on a variable in this window, its 
name is pasted into the Command window.

T h e  P ro p e rtie s  w indow  lists attributes of the most recently selected variable and of 
the dataset as a whole. For example, under the Data tab, you can see at a glance 
how many variables and observations are in your dataset.

The Command and Results windows illustrate Stata’s origins in a command-based 
system. That is, you tell S ta ta  what to do by typing commands th a t consist of one line of 
text and then pressing Enter. At the same time, there is a graphical user interface (GUI) 
for accessing virtually all commands. At the risk of seeming old-fashioned, however, 
wc greatly prefer the command-based interface. Although it can take longer to learn, 
you will find it much faster to use once you do learn it. If you currently prefer using 
pull-down menus, stick with us, and you will likely change your mind. Also, although 
we first consider entering only one command at a time, in section 2.9, we show you how 
to run a series of commands at once, which is vital to doing serious work in Stata and 
requires moving beyond the GUI to do-files.

This is not to say that we never use the mouse when using Stata. For example, 
some important tasks can be performed by clicking on icons on the toolbar at the top of 
the screen. For example, if you click on the D a ta  E d ito r (B row se) button, Ci, Stata 
opens a spreadsheet for examining your data. Instead of clicking on the icon, you could 
have done the same thing by typing browse in the Command window.

You can also use menus and dialogs to create commands. At the top of figure 2.1 are 
a series of menus, beginning with File, then E d it, and so on. The D a ta , G raph ics, and 
S ta tis tic s  menus provide point-and-click access to almost every command in Stata. For 
example, instead of typing the poisson command for the Poisson regression model that 
is discussed in chapter 9, you could select S ta t is t ic s  > C oun t o u tc o m e s  > Poisson 
regression , which displays this dialog:
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T his dialog box gives you access to all the options for the po isson  command and allows 
you to  select variables. After you construct your command in the dialog box, you 
click on S u b m it to send the command to the Command window and execute it. We 
find this feature especially useful for making graphs, because the options for making 
graphs are many and can be hard to remember. If we use dialog boxes to  make a  good 
approxim ation of the graph we want, Stata will pu t the syntax in the Results window. 
We can then  copy and tweak the syntax to get our graph ju s t right. We illustrate doing 
this below.

We urge you to get used to working in S tata by entering commands. It is ultimately 
much faster. It also makes things much easier to autom ate later, which is key to doing 
work that you can reproduce and modify in the future because you have a complete 
record of the commands used to create your results. Consequently, we describe things 
below mainly in terms of commands.

T h at said, we also encourage you to explore the tasks available through menus and 
the toolbar and to figure out what combination of dialogs and commands works most 
easily and efficiently for you.

Changing the scrollback buffer size

How far back you can scroll in the Results window is controlled by the  command

s e t  s c r o l l b u f s i z e  #

where 10,000 < #  < 2,000,000. By default, the buffer size is 200.000 bytes. When you 
change the size of the buffer using s e t  sc ro llb u f  s iz e ,  the change will take effect the 
next time you launch Stata. This means that if you are trying to look at earlier results 
and realize your scroll buffer setting is too small, you will have to relaunch S ta ta  and 
rerun your analyses. Unless computer memory is a problem, we recommend you set the 
buffer to its maximum.
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T ip : C hanging  d e fa u lts . If you type h e lp  s e t ,  you can get an idea of the range of 
different parameters th a t users may set in Stata. Many of these can be switched 
permanently by adding the perm anently  option. For preferences th a t cannot be 
set permanently in this way, you could enter the command to  reset the parameter 
at the start, of each S ta ta  session, but it is easier to add all the commands to reset 
parameters to p r o f i l e . do, a file that is automatically run each time Stata begins. 
See [GS] B.3 E x e c u tin g  com m ands e v e ry  tim e S ta ta  is s ta r te d  for details.

.2 Abbreviations
Commands and variable names often can be abbreviated. For variable names, the rule 
is easy: Any variable name can be abbreviated to the shortest string th a t uniquely 
identifies it. For example, if there are no other variables in memory that begin with a, 
the variable age can be abbreviated as a or ag. If you have the variables income and 
incom e2 in your data , neither of these variable names can be abbreviated.

There is no general rule for abbreviating commands, but as you might expect, typ­
ically the most common and general command names can be abbreviated. For exam­
ple, four of the most often used commands are summarize, t a b u la t e ,  g e n er a te , and 
r e g r e s s ,  and these can be abbreviated as su , t a ,  g, and reg , respectively. Although 
very short abbreviations are easy to type, they can be confusing when you are getting 
started. Accordingly, when we use abbreviations, we stick with a t least tliree-letter 
abbreviations.

.3 Getting help
We briefly review here the many ways to get help as you use S tata. If you need more 
information about getting help, type the command help help, read the information 
that appears in a Viewer window, and click on anything shown in blue type that sounds 
interesting. (Text shown in blue in the Viewer or Results window is a link to additional 
information.)

.3.1 Online help

If you find our description of a command incomplete, or if we use a command that is not 
explained, you can use S tata to  find more information. Use the h e lp  command when you 
know the name of the command you want more information about. For example, h e lp  
re g re s s  pulls up information about the r e g r e s s  command. The s e a r c h  command is 
more general: you are given a list of references related to your search. For example, 
sea rch  reg ress  lists over 100 references with information about “regress” in Stata 
manuals, the Stata website (including frequently asked questions, or FAQs), and articles
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from th e  S ta ta  .Journal (often abbreviated SJ). sea rch  even provides information about 
re la ted  user-w ritten com m ands th a t are not part of official Stata. The se a rc h  command 
is so useful for tracking down information that we encourage you to type h e lp  search  
and read  m ore about how it works. Alternatively, see [g s ] 4 G e ttin g  h e lp  in the Stata 
docum entation .

.3.2 P D F  manuals

T he S ta ta  manuals are extensive, and it is worth taking an hour to browse them to 
get an  idea of the many features available in Stata. The manuals come as PDF files 
th a t  you can access from within S ta ta  through the menu system. Select the menu 
item  H e lp —»PD F D o c u m e n ta tio n  to open a list of all the Stata manuals, which you 
can then  browse individually by clicking on the one you want to open. You can also 
easily access a specific manual entry from its help file. Suppose you type th e  command 
h e lp  re g re s s .  In the Viewer window that opens, you will see in blue [R] re g re ss  
— L in ea r reg ress io n . If you click on this link, a  PDF of the Stata Base Reference 
Manual will open to the entry for the re g ress  command. Within the manuals, you will 
find many cross-references in the form of clickable links th a t allow you to browse easily 
among related topics. See [GS] 4 G e ttin g  help and [u] 1.2 T he U se r’s G u id e  and 
th e  R e fe ren c e  m anuals for further details.

In general, we find that learning how to read the manuals and use the help system 
is more efficient than asking someone, and it allows you to save your questions for the 
really hard stuff. For those new to S tata, we recommend S ta ta ’s Getting Started  manual 
(which is specific to your platform) and the first part of the Stata User’s Guide. As 
you become more acquainted with Stata, the manuals will become increasingly valuable 
for detailed information about each command, including a discussion of th e  statistical 
theory related to the command and references for further reading.

2.3.3 Error messages

If you type an incorrect command, an error message appears in the Results window. 
The message is printed in red, along with a return code (for example, r (1 9 9 ))  listed 
in blue. Clicking on the return code provides a more detailed description of the error. 
Although error messages often can be helpful in resolving a problem, sometimes they 
are terse and even misleading. S tata knows how to understand a correct command but 
does not necessarily know w hat an incorrect command is trying to do. For additional 
information on debugging S ta ta  programs, see Long (2009).

2.3.4 Asking for help

Sometimes, despite your best efforts, your program still will not work. Before you ask 
someone for help, take a few minutes to review William Gould’s blog en try  “How to 
successfully ask a question on Statalist” (2010). His advice will increase your chances
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of getting your question answered, either from the Statalist, from us, or elsewhere. In 
addition, we have found th a t in the process of carefully preparing a question, we often 
find the solution ourselves. With this in mind, if you have questions about this book or 
the SPost commands, we suggest that you carefully read section 1.7 before contacting 
us. Thank you.

.3.5 Other resources

The Stata website (http://w w w .stata.com ) contains useful resources, including links 
to tutorials, an extrusive FAQ section that discusses both introductory and advanced 
topics, and information about NetCourses and short courses. S tataCorp has free tutorial 
videos on their YouTube channel (h ttp://w w w .youtube.com /user/statacorp) that cover 
a variety of topics of interest. Another excellent resource is UCLA’s Institute for Digital 
Research and Education at h ttp ://w w w .ats.ucla .edu/sta t/stata /.

A Stata forum known as Statalist is not run by StataCorp, but many programmers 
and statisticians from StataCorp participate. This forum (http://w w w .statalist.org/) 
is a wonderful resource for information on S ta ta  and statistics. You will often find that 
your questions have already been asked and answered by someone in the past, but you 
can submit your questions and often receive answers quickly. Monitoring the forum is 
also a  good way to pick up insights from S ta ta  veterans.

We also recommend Long’s (2009) book on managing the workflow of data  analysis 
projects. Chapter 3 of that book has a detailed discussion of how to use do-files ef­
fectively to efficiently produce results that can be reproduced. C hapter 4 extends the 
discussion of Stata autom ation that we only touch upon in our book.

.4 The working directory
The working directory is the default directory for any file operations, such as using data, 
saving data, or logging output. If you type cd or pwd in the Command window, Stata 
displays the name of the current working directory (see h e lp  cd or [d ] cd). To load a 
data  file stored in the working directory, you simply type u se  filename (for example, 
u se  b in lfp 4 ) . If a file is not in the working directory, you must specify the full path 
(for example, u se d : \s p o s t d a t a \e x a m p le s \b in lf p 4 ) .  At the beginning of each Stata 
session, we like to change our working directory to the directory where we plan to work, 
because this is easier than repeatedly entering the path name for the directory. For 
example, typing cd d : \ s p o s t d a t a  changes the working directory to  d :\s p o s t d a t a .  If 
the directory name includes spaces, you must pu t the path in quotation marks (for 
example, cd "d:\my work\").

S ta ta’s menu system  allows you to change the working directory from the F ile 
menu. As always, when you use the menus to do this, the Stata command will appear 
in the Results window. You can then copy and paste this command into your do-files 
(described below) to autom ate the process. S ta ta  also allows you to  select a file from

http://www.stata.com
http://www.youtube.com/user/statacorp
http://www.ats.ucla.edu/stat/stata/
http://www.statalist.org/
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your co m p u te r via F ile —» F ilen am e ...; selecting a file this way simply pastes the full 
d irec to ry  p a th  and filename into the Command window for you so that you can easily
copy it.

You can  list the files in your working directory by typing d i r  or I s .  W ith these 
com m ands, you can use the * wildcard. For example, d i r  * .d ta  lists all files with the 
ex tension  . d t a  and so is a quick way to obtain a list of all the Stata d a ta  files in your 
w orking directory.

As we mentioned in chapter 1, the commands used in the examples in this book are 
available in th e  package spostl3_do, which you can find and download by typing search  
s p o s t l3 .  W hen working through our examples, we do not specify a path when opening 
d a ta  files, because we assume those d ata  files are already in your working directory.

2.5 Stata file types
S ta ta  uses and creates many types of files, which are distinguished by extensions a t the 
end of the filename. A full list of hie extensions used in S tata is available by typing 
h e lp  ex te n s io n s . The extensions you are likely to encounter are the following:

. ado Programs that add commands to  Stata, such as the SPost commands, 

.do Script or batch files th a t contain S tata commands.

. d ta  Data files in S ta ta ’s format.

.gph Graphs saved in S ta ta’s proprietary format.

. lo g  Output saved as plain text by the log  u s in g  command.

. smcl Output saved in the SMCL format by the log  using  command.

The m ost im portant of these for a new user are the .sm cl, .log. .d ta , and .do files,
all of which we will cover in the sections that follow.

2.6 Saving output to log files
S ta ta  does not automatically save the output from your commands, it only shows the 
o u tpu t in th e  Results window. To save your output to  print or examine later, you must 
open a log file. Once a log file is opened, both the commands and the output they 
generate are saved in that log file. Because the commands are recorded, you can tell 
exactly how the results were obtained. The syntax for the lo g  command is

lo g  u s in g  filename [ ,  append re p la c e  [ smcl | t e x t '

By default, the log file is saved to your working directory. You can save it to a dif­
ferent directory by typing the full path  (for example, log  using d :\p ro je c t\m y lo g , 
re p la c e ) .
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append specifies th a t if the file exists, new output should be added to the end of the 
existing file.

r e p la c e  indicates th a t  you want to replace the log file if it already exists. For exam­
ple, log using  mylog creates the file m y lo g .sm c l. If this file already exists, Stata 
generates an error message. So, you could use lo g  u sin g  m ylog , r e p la c e ,  and the 
existing file would be overwritten by the new output.

smcl and te x t  specify the format in which the log is to be recorded.

sm cl, the default option, requests that the log be written using the  S tata Markup and 
Control Language (SMCL) with the file suffix . smcl. SMCL files contain special 
codes that add solid horizontal and vertical lines, bold and italic typefaces, and 
hyperlinks to the Results window. The disadvantage of SMCL is th a t the special 
features can be viewed only within S tata. If you open a SMCL file in a text editor, 
your results will appear amidst a jum ble of special codes.

t e x t  specifies th a t the log be saved as plain text (ASCII), which is the preferred 
format for loading the log into a text editor for printing. Instead of adding the 
te x t  option (for example, lo g  u s in g  mywork, tex t), you can specify plain text 
by including the . l o g  extension (for example, lo g  u s in g  m yw ork .log).

O ptions

T ip : P la in  te x t logs by d efau lt. We prefer plain text for output rather than SMCL. 
Typing s e t  lo g ty p e  t e x t  at the beginning of a Stata session makes plain text 
the default for log files for the current session. Typing s e t  log type t e x t ,  
permanently makes plain text the default for the current and future sessions. 
In practice, we always use plain text log files; we do not find the advantages of 
SMCL to be enough to offset the disadvantage of only being able to read the files 
within Stata. If you have a question and would like to send us a log file, please 
send it in text format rather than in SMCL!

Closing a log file

To close a log file, type

. log close

When you exit Stata, the log file closes automatically.

Viewing a log file

Regardless of whether a log file is open or closed, a  log file can be viewed in the Viewer 
by selecting F ile—>Log-»V iew ... from the menu. When in the Viewer, you can print 
the log by selecting F ile —»Print.
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II' you w ant to  convert a log file from SMCL format into plain text, you can use the 
t r a n s l a t e  command. For example,

. translate mylog.smcl mylog.log, replace 
(file mylog.log written in .log format)

converts the SMCL file m y lo g .sm c l into the plain-text file m y lo g .lo g . Or, you can  
convert a SMCL file into a PostScript file, which is useful if you are using T^X or I^T^X. 
For example,

. translate mylog.smcl mylog.ps, replace 
(file mylog.ps written in .ps format)

You can also convert a SMCL file into a PDF file:

. translate mylog.smcl mylog.pdf, replace 
(file mylog.pdf written in PDF format)

Conversions can also be done through the menus by selecting F ile -> L og-> T ransla te .

2.7 Using and saving datasets

2.7.1 Data in Stata format

Stata  uses its own data form at with the extension .d ta . The u se command loads 
such data into memory. P retend that we are working with the file b in l f p 4 .d t a  in the 
directory d : \s p o s td a ta .  Wo can load the data by typing

. use d:\spostdata\binlfp4, clear

where the . d ta  extension is assumed by Stata. The c l e a r  option erases all data cur­
rently in memory and proceeds with loading the new data. (Stata does not give an 
error if you include c le a r  when there are no data in memory.) If d : \s p o s t d a t a  was 
our working directory, we could use the simpler command

. use binlfp4, clear

In practice, we almost always keep data  in our working directory.

If you have changed the d a ta  by deleting cases, merging in another file, or creating 
new variables, you can save the  file with the save command. For example,

. save d:\spostdata\binlfp4_V2, replace

where we did not need to include the .d ta  extension. We saved the file with a different 
name so that we can use the original data later. The re p la c e  option indicates that if 
binlfp4_V 2. d ta  already exists, S tata should overwrite it. (If the file does not already 
exist, re p la c e  is ignored.) If d : \s p o s td a ta  was our working directory, we could save 
the file with

C onvert ing  from SMCL to  plain tex t  or PostScript
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. save binlfp4_V2, replace

sa v e  stores the data in S ta ta’s current format, which sometimes changes with a new 
version of Stata, including with Stata 13. This means that a dataset saved in Stata 13 
cannot be opened in S ta ta  12, but a dataset saved in Stata 11 or 12 can be opened in 
S ta ta  13. The sa v e o ld  command writes the dataset in a format th a t is compatible with 
the prior format of d a ta  in Stata. If you save a dataset using s a v e o ld  in S ta ta  13, you 
can use it in Stata 11 or 12 but not in S tata 10.

2.7.2 Data in other formats

To load data from another statistical package, such as SAS or SPSS, you need to con­
vert it into S tata’s format. The easiest way to  do this is with a conversion program 
such as Stat/Transfer (http://w w w .stattransfer.com ). We recommend obtaining one 
of these programs if you are using more than  one statistical package or if you often 
share data with others who use different packages. The free statistics package R also 
has utilities that allow reading and writing d a ta  in different formats, including Stata 
format, although value labels and notes cannot be transferred this way. S ta ta  has a set 
of im port and export commands that allow you to deal with data th a t is in Microsoft 
Excel format, various ASCII formats, OBDC format, SAS export files, and XML. For de­
tails, type help im port or h e lp  export, which include links to videos th a t illustrate 
these commands (see also [d ] i m p o r t  and [d ] e x p o r t ) .

2.7.3 Entering data by hand

Data can also be entered by hand with a spreadsheet-style editor. Although we do 
not recommend using S ta ta’s Data Editor to  change existing data, because it is too 
easy to  make a mistake, we find t he Editor useful for entering small datasets. To open 
the Editor, type e d i t  on the command line. S ta ta ’s Getting Started  manual has a 
tutorial for the Data Editor, but most people who have used a spreadsheet before will 
be immediately comfortable. It is also easy to  import data from Microsoft Excel into 
Stata. So, you could enter d a ta  in Excel or another spreadsheet program with which 
you are comfortable and which allows saving in Excel format (or .xml), and then you 
could import the data.

As you use S ta ta’s D ata Editor, every change th a t you make to the data is reported 
in the Results window and is captured by the log file (if it is open). For example, if 
you change age for the fifth observation to 32, S ta ta  reports r e p la c e  age = 32 in  5. 
This tells you that instead of using the Editor, you could have changed the data with 
a r e p la c e  command. When you close the Editor, Stata asks if you want to  keep the 
changes or revert to the unaltered data.

http://www.stattransfer.com
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8 Size limitations on datasets
Ii you receive the error message no room to  add more v a r ia b le s ,  r (9 0 0 )  or sy stem  
l i m i t  e x c e e d e d — s e e  m an u a l, r  (1000) when you try  to load a dataset or add a vari­
able, your datase t might have too many variables or be too large. These limits depend  
on th e  version of Stata th a t you are using: 32,767 variables in Stata/SE and S tata/M P, 
2.047 in S ta ta /IC , and 99 variables in Small Stata. For details on other size limits, type  
the com m and h e lp  l im i t s .  If a dataset is too large for your version of S ta ta , you can  
use transfer programs such as S tat/T ransfer to drop specified variables and optimize 
variable storage.

.9 Do-files
You can execute commands in S ta ta  by typing one command at a time into the Com­
m and window and pressing Enter, as we have been doing. This interactive mode is 
useful when you are learning S ta ta, exploring your data , or experimenting with alter­
native specifications of your regression model.

You can also create a tex t file containing a series of commands and then tell S tata 
to execute all the commands in that file, one after the other. These files, which are 
known as do-files because they use the extension .do, have the same function as syntax 
files in SPSS or batch files in o ther statistics packages. For serious work, we always use 
do-files because they make it easier to redo the analysis later with small modifications 
and because they provide an exact record of what has been done.

To get an idea of how do-files work, consider the file exam ple .do saved in the working 
directory:

log using example, replace text 
use binlfp4, clear 
tabulate he wc, row nolabel 
log close

To execute a do-file, you type the command 

do dofilename

in the Command window. For example, do exam ple tells Stata to run each of the 
commands in exam ple.do, one after the other. If the do-file is not in the  working 
directory, you need to specify the directory path, such as do d : \s p o s td a ta \e x a m p le .  
W hen S ta ta  executes ex a m p le . do it begins by opening the log exam ple. lo g ,  then loads 
b in l f p 4 .d t a ,  and finally constructs a  table with he and wc. Here is what the log file 
looks like:
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name : <unnamed>
log: d:\spostdata\example.log

log type: text
opened on: 01 Mar 2014, 05:04:21
. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15) 
. tabulate he wc, row nolabel

Key

frequency 
row percentage

Husband
attended
college?

Wife attended 
college?
0 1 Total

0 417 41 458
91.05 8.95 100.00

1 124 171 295
42.03 57.97 100.00

Total 541 212 753
71.85 28.15 100.00

. log close

9.1 Adding comments

Comments provide documentation within programs. Comments are simply reprinted as 
output; they are not treated  as commands. S ta ta  has four methods for adding comments 
to your do-file, and we use them all.

1. Any line that begins with * is a comment. Because * is also used as the  multipli­
cation operator for expressions and as a  wildcard operator for variable names and 
filenames, * must appear at the beginning of a line to denote a  comment.

2. Text following / /  is a comment, but / /  can appear anywhere within the line, not 
just at the beginning.

3. Text following / / /  is also a comment except Stata will trea t the next line as a 
continuation of the current line before the I I I .  As we will discuss shortly, this is 
our preferred way of handling long command lines.

4. Everything between /*  and */ is treated as a comment, no m atte r how many lines 
this spans.
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I Ik* following do-file executes the same commands as the one above bu t includes 
com m ents:

/  *
==> short simple do-file 
==> for didactic purposes

*/

log using example, replace // this comment is ignored

// next we load the data
use binlfp4, clear

// tabulate husband's and wife's education
tabulate he wc, /// the next line is treated as a continuation of this one 

row nolabel

// close the log file
log close

It you look at the do-files in the spostl3_do  package th a t reproduce the examples in this 
book, you will see that we use many comments. For serious work, we cannot emphasize 
enough the importance of including them. Comments are indispensable if others will 
be using your do-files or examining the log files, or if there is a  chance that you will use 
them again later.

2.9.2 Long lines

Sometimes you need to execute a command that is longer than the text th a t  fits on 
the screen. If you are typing the command interactively, the Command window simply 
pushes the left part of the command off the screen as space is needed. In general, we 
recommend th a t none of your lines in a  do-file extend beyond column 80. If the lines 
are too long, they will either wrap in the output, which makes it harder to read, or be 
truncated.

You can deal with long commands in two ways. Specifying I I I  at the end of a line 
in a do-file tells Stata to ignore the line break. Accordingly, the current line and next 
line(s) are be treated as one command. For example,

recode income91 1=500 2=1500 3=3500 4=4500 5=5500 6=6500 7=7500 8=9000 ///
9=11250 10=13750 11=16250 12=18750 13=21250 14=23750 15=27500 16=32500 /// 
17=37500 18=45000 19=55000 20=67500 21=75000 *=.

You can also use the # d e lim it ; command. This tells S ta ta  to interpret ; as the 
end of the command instead of interpreting a carriage return  as the end of the command. 
(A carriage return is the character created when you press the Enter key.) After the 
long command is complete, you can run # delim it c r  to  return to using the carriage 
return as the end-of-line delimiter. For example,
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»delimit ;
recode income91 1=500 2=1500 3=3500 4=4500 5=5500 6=6500 7=7500 8=9000 

9=11250 10=13750 11=16250 12=18750 13=21250 14=23750 15=27500 16=32500 
17=37500 18=45000 19=55000 20=67500 21=75000 *=. ;

»delimit cr

Some other programs use ; as the line term inator and users familiar with those 
programs may be more comfortable using # d e lim it. Most often we use I I I  for long 
commands. The one tim e in which we use # d e lim it ; is when typing a  very long graph 
command.

2.9.3 Stopping a do-file while it is running

If you are running a command or a do-file th a t you want to stop before it completes 
execution, click on © or press Ctrl-Break. Sometimes you will have to  do this multiple 
times. This is because some commands ignore the breaks when making computations 
th a t should not be interrupted.

2.9.4 Creating do-files

Using Stata’s Do-file Editor

Do-files can be created with S ta ta ’s built-in Do-file Editor. To use the Editor, type the 
command doedit to create a file to be named later or type doed it filename to  create or 
edit a file named filename, do. You can also click on &. The Do-file Editor is easy to use 
and works like most tex t editors except that it has several features designed specifically 
to  support writing do-files for Stata.

• Syntax highlighting assigns colors to different keywords in Stata; the color of 
the text changes automatically as you type. For example, if you are typing the 
poisson command, the letters po isso  will appear in black until you add the last 
n, at which point the entire word becomes blue. If you mistakenly type poison, 
the command remains black to indicate th a t you have the name of the command 
wrong. Syntax highlighting may sound merely decorative if you do not have much 
experience with coding, but it is actually extremely helpful for detecting and 
preventing simple errors.

• You can highlight a section of the do-file, and Stata will execute only the com­
mands that you have highlighted. You can also execute only the commands start­
ing wherever the cursor is located to the end of the file.

• A gray vertical line in the Editor indicates where column 80 is, to nudge you to 
try to keep individual lines shorter than this.

• Auto-indenting and line folding are features th a t will become very useful as you 
write more complicated programs that use loops.
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II you have not used the Do-file Editor since earlier versions of Stata, we encourage 
you to  try  it again with the m any new features added in recent years. Spending some 
tim e up-front reading [g s ] 13 U sin g  th e  Do-file E d i to r  can save you a lot of time in 
th e  long run.

Using other editors to create do-files

B ecause do-files are plain tex t files, you can create do-files with any program that 
creates tex t files. Specialized tex t editors work much better than  word processors such 
as M icrosoft Word. We put th is  emphatically: If you are writing do-files using a word 
processor, you are making life far more difficult than it needs to  be. Among other things, 
w ith word processors it is easy to  forget to save the file as plain text. While one of the 
au tho rs prefers to use S ta ta’s built-in Do-file Editor, the other prefers a stand-alone 
editor th a t  has many features, making it faster to create do-files. For example, you can 
create tem plates that quickly insert commonly used commands.

If you use an  editor other than  S ta ta’s built-in Do-file Editor, you might not be able 
to run the do-file by clicking on an icon or selecting from a menu.1 Instead, you will 
need to  switch from your editor and then type the command do filename.

W a rn in g . S ta ta  executes commands when it encounters a line break (also called a 
carriage return, created when you press the Enter key). If you do not include a 
line break after the last line in a do-file, that last line will not be executed. S ta ta’s 
Do-file Editor handles this automatically by default.

2.9.5 Recommended structure for do-files

This is the basic structure that we recommend for do-files:

1] capture log close
2] log using <filename>, replace text
3] version 13.1
4] set linesize 80
5] set scheme s2color
6] clear all
7] macro drop _all
8] // task:
9] // #1
10] // #2
U] log close
12] exit

1. Friedrich Huebler’s blog (2013) has information on how to integrate Stata  with some external text 
editors. We have not, however, tried this.
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Because we hope you will use do-files a lot, le t’s briefly review these commands.

L ines 1 -2 . The command cap tu re  log c lo s e  is very useful. Suppose you have a do- 
file that starts with log using  mylog, re p la c e . You run the file and it “crashes” 
before reaching lo g  c lo se , which means th a t the log file remains open. If you 
revise the do-file and run it again, an error is generated when S ta ta  tries to open 
the log file because the file is already open. The prefix cap tu re  tells S ta ta  not to 
stop the do-file if the command that follows produces an error (see [p] cap tu re ). 
Accordingly, c a p tu re  lo g  close closes the log file if it is open. If it is not open, 
the error generated by trying to close an already-closed file is ignored. Because of 
line 1, line 2 will never generate the error th a t the log is already open.

L ine  3. The v e rs io n  13.1 command indicates th a t the program was written for use 
in Stata 13.1. This command tells any future version of Stata th a t you want the 
commands that follow to work just as they did in Stata 13. This prevents the 
problem of old do-files not running correctly in newer releases of the program. If 
you place the v e rs io n  command after the lo g  command, you can confirm the 
version that was used to generate the ou tput in the log.

L ines 4 -5 .  By setting the line size within the do-file, you can be sure that the output 
will look the same if you later run the do-file with the line size set to some other 
value. The s e t  scheme command controls how graphs will look. By including 
this line in the do-file, graphs should look the same when you run the do-file later.

L ines 6 -7 .  These lines remove everything from memory. Although it seems th a t c le a r  
a l l  would do this by itself, c le a r  a l l  does not remove macros. Accordingly, we 
drop them in line 7. We prefer a do-file to  be self contained, meaning th a t it does 
not depend on anything in memory from interactive commands or other do-files 
th a t were run in the same session. This way, the do-file will run  the same way 
later.

L ines 8 —10. The comment / /  ta sk : is where we explain what the do-file is doing. 
This might require multiple lines. We generally like to include what is being done, 
what project it is ¿ussociated with, who did it, and when. This information proves 
very useful when you return to the do-file later. For long do-files, we find it is 
also useful to add numbered comments th a t explain what each major step of the 
program is doing. This is particularly handy when you are working collaboratively 
and discussing the output over the phone or by email.

L ines 11-12 . Line 11 closes the log file, but this command will only run if line 11 ends 
with a carriage re tu rn  (obtained when you press the Enter key on your keyboard). 
Including e x i t  in line 12 is not required, but it is helpful in two ways: First, 
you know that lino 11 will execute, because it is followed by another line, which 
required a carriage return at the end of line 11. Second, because e x i t  tells Stata 
to  exit the do-file, you can use the end of your do-file for recording notes.
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.10 Using Stata for serious data analysis
V oltaire is said to have w ritten  Candide in three days. Creative work often rewards 
such inspired, seat-of-the-pants, get-the-details-later activity— data management does 
not. Instead , effective data  m anagement rewards forethought, carefulness, double- and 
triple-checking of details, and meticulous, albeit tedious, documentation. Errors in data 
m anagem ent are astonishingly (and painfully) easy to make. Moreover, tiny errors can 
have disastrous implications th a t  can cost hours and even days of work. The ex tra  time 
it takes to  conduct data management carefully is rewarded many times over by the 
reduced  risk of errors. That is, it helps prevent you from getting incorrect results that 
you do not know are incorrect.

W ith  this in mind, we begin with some broad, perhaps irritatingly practical, sug­
gestions for doing data analysis efficiently and effectively.

1. Ensure replicability by using do-files and log files for everything. For d a ta  analysis 
to  be credible, you must be able to reproduce entirely and exactly the trail from 
th e  original data to the tables and graphs in your paper. Thus any permanent 
changes you make to the d a ta  should be made by running do-files rather than by 
using the interactive mode. If you work interactively, be sure that the first thing 
you do is to open a l o g  file. Then when you are done, you can use these files 
to  create a do-file to reproduce your interactive results. S tata’s d a t a s i g n a t u r e  
command (see [d ] d a t a s i g n a t u r e )  also provides a way to  ensure that the  values 
in a dataset you are using are exactly the same as those used earlier.

2. Document your do-files. Reasoning that is obvious today can be baffling in 
six months. We use comments extensively in our do-files- they are invaluable 
for remembering what we did and why we did it (or for sharing our code with 
others). If you use intuitive names for variables and for files, that will also make 
it easier to  figure out or remember what a do-file is doing.

3. Keep a research diary. For serious work, you should keep a diary that includes a 
description of every program you run, the research decisions that are being made 
(for example, the reasons for recoding a variable in a particular way), and the 
files that are created. A good research diary allows you to  reproduce everything 
you have done starting w ith the original data. We cannot emphasize enough how 
helpful such notes are when you return to a project that was put on hold, when 
you are responding to reviewers, or when you are moving on to the next stage of 
your research.

4. Develop a system for naming files. Usually, it makes the most sense to have each 
do-file generate one log file with the same prefix (for example, c le a n _ d a ta .d o ,  
c le a n _ d a ta .lo g ) . Names are easiest to organize when brief, but they should 
be long enough and logically related enough to make sense of the task the file 
does. One author prefers short names, organized by major task (for exam­
ple, recod eO l.d o ), whereas the other author likes longer names (for example, 
M akelncom eVars.do). Use whatever works best for you.
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5. Use new names for new variables and files. Never change a dataset and save it 
with the original name. If you drop three variables from p com sl .d ta  and create 
two new variables, call the new file p coras2 .d ta . When you transform a variable, 
give it a new name rather than simply replacing or recoding the old variable. For 
example, if you have a variable called workmom with a five-point a ttitude scale, and 
you want to create a binary variable indicating positive and negative attitudes, 
create a new variable called workmom2.

6. Use labels and notes. When you create a  new variable, give it a variable label. If 
it is a categorical variable, assign value labels. You can add a note about the new 
variable by using the n o te s  command (described below). When you create a new 
dataset, you can also use n o te s  to document what it is.

7. Double-check every new variable. Cross-tabulating or graphing the old variable 
and the new variable are often effective strategies for verifying new variables. As 
we describe below, using l i s t  with a subset of cases is similarly effective for 
checking transformations. Be sure to look carefully at the frequency distributions 
and summary statistics of variables in your analysis. You would not believe how 
many times puzzling regression results tu rn  out to involve miscodings of variables 
t hat would have been immediately apparent by looking at the descriptive statistics.

8. Practice good archiving. If you want to  retain hard copies of all your analyses, 
develop a system of binders for doing so rather than a set of intermingling piles on 
your desk. Otherwise, maintain an orderly set of directories and filenames rather 
than  creating files haphazardly. Back up everything, preferably with a system 
th a t works automatically and saves older versions of files as well. Make off-site 
or Cloud-based backups or keep any on-site backups in a fireproof box. Should 
cataclysm strike, you will have enough other things to worry about without also 
having lost months or years of work.

Long’s (2009) The Workflow of Data Analysis Using Stata considers all of these 
issues in detail. Long presents methods for planning, organizing, and documenting 
your research to make your work efficient but also, most importantly, to increase the 
reliability and replicability of your research.

.11 Syntax of Stata commands
Think about the syntax of commands in everyday, spoken English. They usually begin 
with a verb telling the other person what to  do. Sometimes the verb is the entire 
command: “Help!” or “Stop!” Sometimes the verb needs to be followed by an object 
th a t indicates whom or what the verb is to be performed on: “Help Dave!” or “Stop the 
car!” Sometimes the verb is followed by a qualifier th a t gives specific conditions under 
which the command should or should not be performed: “Give me a piece of pizza if it 
docs not have mushrooms''1 or “Call me in 10 m inutes” . Verbs can also be followed by 
adverbs that specify a particular way the action should be performed, such as when a 
teacher commands her students to “Talk clearly'n or “Walk single file” .
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S ta ta  follows an analogous logic, albeit with some wrinkles that we will introduce 
later. I he basic syntax of a com m and has four parts:

1. C om m and: W hat action do you want performed?

2. N am es o f  variables, files, or other objects: On w hat things is the command to be 
perform ed?

3. Qualifier on observations: On which observations should the command be per­
formed?

4. Options: What special things should be done when executing the command?

All commands in S tata require the first of these parts, ju st as a spoken command 
requires a verb. Each of the o ther three parts can be required, optional, or not allowed, 
depending on the particular command and circumstances. To illustrate how commands 
work before we get into the details, we use the ta b u la te  command to make a  two-way 
table of the frequencies of variables he by wc:

. use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women I 2013-07-15)
. tabulate he wc if age>40, row

Key

frequency 
row percentage

Husband Wife attended
attended college?
college? no college Total

no 263 23 286
91.96 8.04 100.00

college 58 91 149
38.93 61.07 100.00

Total 321 114 435
73.79 26.21 100.00

By putting he before wc, we make he the row variable and wc the column variable. 
The condition i f  age>40 specifies that the frequencies should include observations only 
for those older than 40. The option row indicates that row percentages should be printed 
as well as frequencies. These percentages allow us to see that in 61% of the cases in 
which the husband had attended college, the wife had also done so, whereas wives had 
attended college in only 8% of cases in which the husbands had not. Notice the comma 
preceding row: whenever options are specified, they are a t the end of the command with 
a single comma to indicate the beginning of the list of options. The precise ordering of 
multiple options after the comma is never important.

Next, we provide more information on each of the four components of syntax.
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2.11.1 Commands

Commands define the tasks th a t Stata is to  perform. A great thing about Stata is 
th a t the set of commands is completely open ended. It expands not just with new 
releases of Stata but also when users add their own commands, such as our added SPost 
commands. Each new command is stored in its own file, ending with the extension 
.ado. Whenever S ta ta  encounters a command th a t is not in its built-in library, it 
searches various directories for the appropriate ado-file. A list of the directories it 
searches and the order in which it searches them  can be obtained by typing adopath. 
This list includes all the places Stata intends for storage of official and user-written 
commands.

2.11.2 Variable lists

Variable names are case sensitive. For example, you could have three different variables 
named income. Income, and inCome. Of course, this is not a good idea because it leads 
to  confusion. To keep life simple, we typically stick to lowercase names. S ta ta  allows 
variable names up to 32 characters long, compared with the 8 character maximum im­
posed by earlier versions of S ta ta  and by some other statistics packages. We recommend 
using shorter names because longer variable names become unwieldy to  type. We also 
recommend using variable names that have some mnemonic value because completely 
arbitrary names (for example, var00031) invariably lead to confusion. Although vari­
able names can be abbreviated to the initial set of characters that identifies the variable 
uniquely, wc worry th a t too much reliance on this feature might cause mistakes to be 
made.

Many commands assume th a t if you have not listed any variables as arguments, then 
you want to perform the operation on every variable in the dataset. For example, the 
summarize command provides summary statistics on the listed variables:

. summarize inc k5 wc
Variable Obs Mean Std. Dev. Min Max

inc 753 20.12897 11.6348 -.0290001 96
k5 753 .2377158 .523959 0 3
wc 753 .2815405 .4500494 0 1
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We cou ld  also get summary statistics 011 every variable in our dataset by ju s t typing 
sum m arize w ithout any variables listed:

. summarize
Variable Obs Mean Std. Dev. Min Max

caseid 753 377 217.5167 1 753
lfp 753 .5683931 .4956295 0 1
k5 753 .2377158 .523959 0 3

k618 753 1.353254 1.319874 0 8
age 753 42.53785 8.072574 30 60

wc 753 .2815405 .4500494 0 1
he 753 .3917663 .4884694 0 1

lwg 753 1.097115 .5875564 -2.054124 3.218876
inc 753 20.12897 11.6348 -.0290001 96

age3039 753 .3957503 .4893363 0 1

age4049 753 .3851262 .4869486 0 1
age50plus 753 .2191235 .4139274 0 1

agecat 753 1.823373 .7644952 1
k5_0 753 .8047809 .3966327 0 1
k5_l 753 .1567065 .3637655 0 1

k5_2 753 .0345286 .1827038 0 1
k5_2plus 753 .0385126 .1925581 0 1

k5_3 753 .0039841 .0630354 0 1
k5cat 753 .2337317 .5064257 0

k618_0 753 .3426295 .4749042 0 1

k618_l 753 .2456839 .4307781 0 1
k618_23 753 .3519256 .4778883 0 1

k618_4plus 753 .059761 .237201 0 1
k618cat 753 1.128818 .9582402 0 3

wages 753 3.566993 2.644393 .1282051 25

You can also select all variables that begin or end with the same letters by using the 
wildcard operator *. For example, to summarize all variables th a t begin with 1, type

. summarize 1*
Variable Obs Mean Std. Dev. Min Max

lfp 753 .5683931 .4956295 0 1
lwg 753 1.097115 .5875564 -2.054124 3.218876

T ip : R em o v in g  the  s e p a ra to r .  If you do not like the horizontal separator th a t ap­
pears after every five variables in the output for summarize, you can remove it 
with the option sep(O), such as summarize, sep(O).
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2.11.3 if and in qualifiers

S ta ta  has two qualifiers th a t restrict the sample being analyzed: i f  and in . The in  
qualifier performs operations on a range of consecutive observations. Typing summarize 
in  20/100 gives summary statistics for only the  20th through the 100th observations, 
in  restrictions depend on the current sort order of the data, meaning th a t if you re-sort 
your data, the 81 observations selected by the restriction summarize in  20/100 might 
be different.2

In practice, i f  conditions are used much more often than in  conditions. The i f  
qualifier restricts the observations to those th a t fulfill a  specified condition. For example, 
summarize i f  age<50 provides summary statistics for only those observations where 
age is less than 50. Here is a list of operators th a t can be used to construct logical i f  
statem ents:

O p e ra to r D efin itio n E x a m p le

== Equal to i f  female==l
! = Not equal to i f  female!=1
> Greater than i f  age>20
>= G reater than or equal to i f  age>=21
< Less than i f  age<66
<= Less than  or equal to i f  age<=65
& And i f  age==21 & female==l
1 Or i f  age==21 1 educ>16

Two notes about the i f  qualifier:

1. Use a double equal sign (for example, summarize i f  fem ale==l) to specify a 
condition to test. When assigning a value to something, such as when creating 
a new variable, use a single equal sign (for example, gen newvar = 1). Putting 
these examples together results in gen newvar = 1 i f  female==l.

2. A missing-value code is treated as the largest positive number when evaluated 
with an i f  condition. In other words, S ta ta  treats missing cases as positive in­
finity when evaluating i f  expressions. If you type summarize ed i f  age>50, the 
summary statistics for ed are calculated on all observations where age is greater 
than  50, including cases where the value of age is missing. You must be care­
ful of this when using i f  with > or >= operators. If you type summarize ed i f  
age< ., Stata gives summary statistics for cases where age is not missing. En­
tering summarize ed i f  age>50 & age< . provides summary statistics for those

2. No Stata command should change the sort order of the data—unless that is the purpose of the 
command but readers should beware that user-written programs may not always follow proper 
Stata programming practice.
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cases where age is greater than 50 and is not missing. See section 2.12.3 for more 
details on missing values.

Examples of if qualifier

If we wanted summary statistics on income for only those respondents who were between 
the ages of 25 and 65, we would type

. summarize income if age>=25 & age<=65

If we wanted summary statistics on income for only female respondents who were be­
tween the ages of 25 and 65, we would type

. summarize income if age>=25 & age<=65 & female==l

If we wanted summary statistics on income for the remaining female respondents— that 
is, those who are younger than  25 or older than 65 we would type

. summarize income if (age<25 I age>65) & age<. & female==l

We need to include & age<. because otherwise, the condition (age<25 I age>65) 
would include those cases for which age is missing.

2.11.4 Options

Options are set off from the rest of the command by a comma. Options can often be ab­
breviated, although whether and  how they can be abbreviated varies across commands. 
In this book, we rarely cover all the options available for any given command, but you 
can use help  to  see them all.

2.12 Managing data

2.12.1 Looking at your data

Two easy ways to look at your d a ta  are browse and l i s t .  The browse command opens 
a spreadsheet (in the Browser) in which you can scroll to  view the data but you cannot 
change the data. You can view and change data with the e d i t  command (in the Data 
Editor), but this is risky. We much prefer making changes to our data using do-files, 
even when we are changing the value of only one variable for one observation. The 
Browser is also available by clicking on Ci, and the D ata Editor is also available by 
clicking on 3 .

The l i s t  command creates a  list of values of specified variables and observations, 
i f  and in  qualifiers can be used to look at just a portion of the data, which is sometimes 
useful for checking that transformations of variables are correct. For example, if you 
want to confirm that the variable ln in c  has been correctly constructed as the natural
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log of inc , you could type l i s t  inc ln in c  in  1/20 to the values of in c  and ln in c  for 
the first 20 observations.

2.12.2 Getting information about variables

You can obtain basic information about your variables in several ways. Here are the 
commands that we find useful. Which one you use will depend mostly on the kind and 
level of detail you need.

codebook, compact. This command gives you basic descriptive statistics along with 
variable labels:

. codebook lfp k5 k618 agecat wc he lwg inc,, compact
Variable Obs Unique Mean Min Max Label

lfp 753 2 .5683931 0 1 In paid labor force?
k5 753 4 .2377158 0 3 # kids < 6
k618 753 9 1.353254 0 8 # kids 6-18
agecat 753 3 1.823373 1 3 Wife's age group
wc 753 2 .2815405 0 1 Wife attended college?
he 753 2 .3917663 0 1 Husband attended college?
lwg 753 676 1.097115 -2.054124 3.218876 Log of wife's estimated...
inc 753 621 20.12897 -.0290001 96 Family income excluding...

We often use this command at the start of do-iiles to provide a summary of the variables 
being analyzed. While codebook, compact does include the variable label, it does not 
include the standard deviation.

summarize. To get descriptive statistics including the standard deviation, we use the 
summarize command, which does not include the variable label. By default, summarize 
presents the number of nonmissing observations, the mean, the standard deviation, the 
minimum values, and the  maximum values. Adding the d e ta i l  option includes more 
information. For example,

. summarize inc, detail
Family income excluding wife's

Percentiles Smallest
n 3.777 -.0290001
5*/. 7.044 1.2
10’/. 9.02 1.5 Obs 753
25*/. 13.025 2.134 Sum of Wgt. 753
50’/. 17.7 Mean 20.12897

Largest Std. Dev. 11.6348
75*/. 24.466 79.8
90’/. 32.7 88 Variance 135.3685
95*/. 41.1 91 Skewness 2.210531
997. 68.035 96 Kurtosis 11.38358



tabulate and ta b l. The t a b u la te  command creates the frequency distribution for a
variable. For example,

. tabulate he
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Husband
attended
college? Freq. Percent Cum.

no 458 60.82 60.82
college 295 39.18 100.00

Total 753 100.00

If you do not want the value labels included, add the n o la b e l option:

. tabulate he, nolabel
Husband
attended
college? Freq. Percent Cum.

0 458 60.82 60.82
1 295 39.18 100.00

Total 753 100.00

If you want a two-way table, type

. tabulate he we
Husband Wife attended
attended college?
college? no college Total

no 417 41 458
college 124 171 295

Total 541 212 753

By default, ta b u la te  does not tell you the number of missing values for either variable. 
You can specify the m issing option to include missing values. We recommend this 
option whenever you are generating a frequency distribution to check that some trans­
formation was done correctly. The options row. co l. and c e l l  request row, column, 
and cell percentages, respectively, along with the frequency counts. The option chi2 
reports the \ 2 for a test that the rows and columns are independent.

Ill
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Although you need a  separate ta b u la te  command for each variable, t a b l  computes 
univariate frequency distributions for each variable listed. For example,

. tabl he wc 
-> tabulation of he

Husband
attended
college? Freq. Percent Cum.

no 458 60.82 60.82
college 295 39.18 100.00

Total 753 100.00

-> tabulation of wc
Wife

attended
college? Freq. Percent Cum.

no 541 71.85 71.85
college 212 28.15 100.00

Total 753 100.00

dotplot. This command provides a quick graphical summary of a variable, which is 
useful for checking your data. For example, d o tp lo t  inc leads to the following graph:

Frequency

Details on saving, printing, and enhancing graphs are given in section 2.17.
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codebook and describe. If you click on a variable in the Variables window, information 
on th a t  variable will be displayed in the Properties window. You will see the  name of 
the variable, the  labels associated with it, and its storage and display formats. If you 
have saved notes about the variable with the n o tes  command (see 2.14.3 below and 
[d ] n o te s ) ,  these are also displayed in this window. The same information (except for 
the notes) is available using the d e sc rib e  command, and d e sc rib e  can be used to list 
this inform ation for multiple variables at once. For example,

. describe lfp k5 k618 agecat wc he lwg inc 
storage display value

variable name type format label variable label

lfp byte 7.9. Og lfp In paid labor force?
k5 byte 7.9. Og # kids < 6
k618 byte 7.9.0g # kids 6-18
agecat byte 7.9. Og agecat * Wife's age group
wc byte 7.9. Og Lcol Wife attended college?
he byte 7.9. Og Lcol Husband attended college?
lwg float 7.9.0g Log of wife's estimated wages
inc float 7.9.0g Family income excluding wife's

he codebook command also provides more detailed information in a format de-
signed for printing a codebook. For example,

codebook inc

Family income excluding wife's

type:
range: 

unique values:
mean: 

std. dev:
percentiles:

numeric (float)
[-.02900009,96]
621

20.129
11.6348

107.
9.02

257.
13.025

units: 1.000e-09
missing .: 0/753

507. 757. 907.
17.7 24.466 32.7

2.12.3 Missing values

Although numeric missing values are automatically excluded when Stata fits models, 
they are stored as the largest positive values. Twenty-seven missing values are available, 
with the following ordering:

all numbers <  . <  .a < .b < • • • < .z

This way of handling missing values can have unexpected consequences when deter­
mining samples. For instance, the expression i f  age>65 is true when age has a  value 
greater than 65 and when age is missing. Similarly, the expression i f  o ccupation  !=1 
is true if occupation is not equal to 1 or if occupation is missing. When expressions 
such as these are required, be sure to explicitly exclude any unwanted missing values.
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For instance, i f  age>65 & age< . would be true only for those people whose age is not 
missing and who are over 65. Similarly, i f  occupation!=1  & o c c u p a tio n s  would be 
true only when the o ccu p a tio n  is not missing and is not equal to 1.

The different missing values can be used to record the distinct reasons why a vari­
able is missing. For instance, consider a survey th a t asked people about their driving 
records and contains a variable to record whether the respondent received a ticket after 
being involved in an accident. Any missing variables could be denoted .a  to indicate 
the respondent had not been involved in any accidents or denoted .b  to indicate the 
respondent refused to answer the question.

2.12.4 Selecting observations

As previously mentioned, you can select specific sets of observations w ith the i f  and in  
qualifiers; for example, summarize age i f  wc==l provides summary statistics on age for 
only those observations where wc equals 1. Sometimes it is simpler to remove the obser­
vations with either the drop or the keep command. These commands remove or keep 
observations from memory (not from the .d ta  file) based on an i f  or in  specification. 
The syntax is

drop [ in } W  

or

keep [in] [if]

W ith drop, only observations that do not meet the specified conditions are left in 
memory. For example, drop i f  wc==l keeps only those cases where wc is not equal to 
1, including observations with missing values on wc.

W ith keep, only observations that meet the specified conditions are left in memory. 
For example, keep i f  wc==l keeps only those cases where wc is equal to 1; all other 
observations, including those with missing values for wc, are dropped from memory.

After selecting the observations that you want, you can save the remaining variables 
to a new dataset with the save command.

2.12.5 Selecting variables

You can also simply select which variables you want to  drop or keep. The syntax is

drop variableJist 

or

keep vanable.list
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W ith drop, all variables are kept except those th a t are explicitly listed, which are 
dropped. W ith keep , only those variables that are explicitly listed are kept. After 
selecting the variables th a t you want, you can save the remaining variables to a new 
datase t with the sa v e  command.

2.13 Creating new variables
Th(' variables th a t you analyze are often constructed differently from the variables in 
the original dataset. Here we consider basic methods for creating new variables. Our 
examples always create a new variable from an old variable rather than  transforming an 
existing variable. Even though you can simply transform an existing variable, we find 
th a t this can lead to  mistakes.

In addition to the  commands discussed in this section, you can use S ta ta ’s factor- 
variable notation, which tells Stata how to create new variables “011 the fly” from existing 
variables during the analysis. For example, specifying re g ress  y c .ag e  c.age#c.age 
tells Stata to 11111 a regression with the independent variable age and age-squared. Only 
the variable age is in the dataset, but c .a g e # c .a g e  tells S tata th a t age is a continuous 
variable and that a term  for the square of age should be added to the regression. Factor- 
variable notation allows you to create powers of variables, interactions between variables, 
and indicator variables. This valuable tool, which is used throughout the book, is 
discussed in detail in section 3.1.5.

2.13.1 The generate command

The generate  command creates new variables. For example, to create age2 as an exact 
copy of age, type

. generate age2 = age 

. summarize age2 age
Variable Obs Mean Std. Dev. Min Max

age2 753 42.53785 8.072574 30 60
age 753 42.53785 8.072574 30 60

The results of summarize show that the two variables are identical. We used a single 
equal sign because we are making a variable equal to  some value.

Observations excluded by i f  or in  qualifiers in the g enerate  command are coded 
as missing. For example, to  generate age3 that equals age for those over 40 but is 
otherwise missing, type
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. gen age3 = age if age>40 
(318 missing values generated)
. summarize age3 age

Variable Obs Mean Std. Dev. Min Max

age 3 435 48.3977 4.936509 41 60
age 753 42.53785 8.072574 30 60

Whenever generate  (or gen, as it can be abbreviated) produces missing values, it tells 
you how many cases are missing.

generate can also create variables that are mathematical functions of existing vari­
ables. For example, we can create agesq th a t is the square of age and create lnage 
that is the natural log of age:

. gen agesq = age"2 

. gen lnage = In(age)

For quick reference, here is a list of the standard  mathematical operators:

O perato r D efin itio n  E x a m p le

+ Add gen y = a+b
- Subtract gen y = a-b
/ Divide gen d e n s i ty  = pop/area
* Multiply gen y = a*b

Take to a power gen y = a "3

Here are some particularly useful functions:

Function D efin ition  E x am p le

ln() Natural log gen lnwage = In  (wage)
exp() Exponential gen y = exp (a)
s q r t () Square root gen a g e s q r t  = s q r t  (age)

For a complete list of functions, type h e lp  fu n c tio n s . The functions we list above are 
listed under Mathematical functions. For working with probability distributions, the 
functions in the Probability distributions and density functions category can be very 
helpful. For working with string (text) variables, the functions in the  String functions 
category are valuable.
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1 ip : U sing  c lo n e v a r  in s te a d  o f  g e n e ra te .  Although g e n e ra te  newvar = oldvar is
t ht* most intuitive way of creating a copy of the values of oldvar as newvar, some­
times c lo n e v a r  newvar = oldvar is a better alternative, c lo n ev ar copies not 
only the values of oldvar but also the variable label, value label, and other a t­
tributes. N ote that if you usually give value labels the same name as the variables 
they apply to, c lo n ev a r does not re-create or rename value labels. Instead, the 
label names for oldvar also will be attached to newvar.

Using the g e n e ra te  command with various functions is only one way to create new 
variables. A second approach is to use the egen command, which includes some powerful 
tools for creating variables. For example, the egen s td ( )  function standardizes variables 
by subtracting the  mean and dividing by the standard deviation. The egen rowmeanO 
function will compute a new variable th a t is the mean of a set of variables (although 
be sure to check the  help file for how missing-variable values are handled). Many egen 
functions also support the by varlist: prefix that allows you to compute functions based 
on group-specific values. For example, by fem ale: egen s t d (vam arne) standardizes 
a variable within sex, so the mean for both men and women is 0. The best way to 
familiarize yourself with the functionality available through egen is to read help egen 
or [d ] egen.

2.13.2 The replace command

re p la c e  has the same syntax as g e n e ra te  but is used to change values of a variable 
th a t already exists. For example, say we want to make a new variable, age4, that equals 
age if age is over 40 but equals 40 for all persons aged 40 and under. F irst, we create 
age4 equal to age. Then we replace those values we want to change:

. gen age4 = age

. replace age4 = 40 if age<40
(298 real changes made)
. summarize age4 age

Variable Obs Mean Std. Dev. Min Max
age4 753 44.85126 5.593896 40 60
age 753 42.53785 8.072574 30 60

re p la ce  reports how many values were changed. This is useful in verifying that the 
command did what you intended, summarize confirms that the minimum value of age 
is 30 and that age4 now has a minimum of 40 as intended.
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W arning . We could have simply changed the original variable: r e p la c e  age = 40 i f  
age<40. But if we did this and saved the data, there would be no way to return 
to the original values for age if we later needed them. As a general rule, never 
change an existing variable. Instead, create a copy and make changes to the copy.

2.13.3 The recode command

The values of existing variables can also be changed using the recode  command. With 
recode, you specify a set of correspondences between old values and new ones. For 
example, you might want old values of 1 and 2 to correspond to new values of 1, old 
values of 3 and 4 to correspond to new values of 2, and so on. This is particularly useful 
for combining categories.

Like before, we recommend that you start by making a copy of the  existing variable 
and then recode the copy. Or, to be more efficient, you can use the recode command 
with the generate  (newvam am e) option. W ith this option, S tata creates a new variable 
instead of overwriting the old one. We include several examples of recode below; for 
more, type help  recode.

To change 1 to 2 and 3 to 4 but leave all other values unchanged, type

. recode origvar (1=2) (3=4), generate(myvarl)
(23 differences between origvar and myvarl)

To change 2 to 1 and change all other values, including missing, to 0, type

. recode origvar (2=1) (*=0), generate(myvar2)
(100 differences between origvar and myvar2)

The asterisk (*) indicates all values, including missing values, th a t have not been ex­
plicitly recoded.

To change 2 to 1 and change all other values except missing to 0, type

. recode origvar (2=1) (nonmissing=0), generate (myvar3)
(89 differences between origvar and myvar3)

To change values from 1 to 4, inclusive, to 2 and keep other values unchanged, type

. recode origvar (1/4=2), generate(myvar4)
(40 differences between origvar and myvar4)

To change values 1, 3, 4, and 5 to 7 and keep other values unchanged, type

. recode origvar (13 4 5=7), generate(myvar5) 
(55 differences between origvar and myvar5)
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[o  change all values from the minimum through 5 to the minimum, type

. recode origvar (min/5=min), generate(myvar6)
(56 differences between origvar and myvar6)

To change missing values to  9, type

. recode origvar (missing=9), generate(myvar7)
(11 differences between origvar and myvar7)

recode can be used to recode several variables at once if they are all to be recoded 
th e  same way. Ju s t include all the variable names before the instructions on how they 
art' to  be recoded and, within the parentheses of the generate  () option, include all the 
names for new variables if you do not want the old variables to be overwritten.

2.14 Labeling variables and values
Variable labels provide descriptive information about what a variable measures. For 
example, the variable agesq might be given the variable label “age-squared”, or warm 
could have the label “M other has a warm relationship”. Value labels provide labels for 
the different values of a categorical variable. For example, value labels might indicate 
th a t the values 1 4  correspond to survey responses of strongly agree, agree, disagree, 
and strongly disagree. Adding labels to variables and values is no t much fun, but in the 
long run, it can save much time and prevent misunderstandings. We believe all variables 
should have variable labels, and value labels should be used for a t least all ordinal and 
nominal variables, as well as any variables that use multiple missing value codes. Also, 
some of the commands in SPost produce output th a t is more easily understood if the 
dependent variable has value labels.

2.14.1 Variable labels

The lab e l v a r ia b le  command attaches a label of up to 80 characters long to a variable. 
For example,

. use gsskidvalue4, clear
(1993 and 1994 General Social Survey)
. gen agesq = age*age
. label variable agesq "age-squared of respondent"
. codebook age agesq, compact
Variable Obs Unique Mean Min Max Label

age 4598 73 46.12375 18 99 age of respondent
agesq 4598 73 2427.72 324 9801 age-squared of respondent
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If no label is specified, any existing variable label is removed. For example,

. label variable agesq 

. codebook agesq, compact
Variable Obs Unique Mean Min Max Label

agesq 4598 73 2427.72 324 9801

T ip : Use sh o rt lab e ls . Although variable labels can be up to 80 characters long, we 
recommend th a t you strive to be concise. Output often does not show all 80 
characters and truncates the label instead. For the same reason, we also find it 
useful to put the most important information a t the beginning of the label. That 
way, if the label is truncated, you will still see the critical information.

T ip : Searching v a r ia b le  labels. Typing lo o k fo r  string will search the dataset in 
memory and list all variables in which string appears in either the variable name 
or the variable label.

2.14.2 Value labels

Beginners often find value labels in Stata confusing. What may be most nonintuitive is 
th a t Stata splits the process of labeling values into two steps: creating labels and then 
attaching the labels to variables.

Step 1 defines a set of labels without reference to a specific variable. Here are some 
examples of value labels:

. label define Lyesno 1 yes 0 no

. label define Lposneg4 1 veryN 2 negative 3 positive 4 veryP

. label define Lagree4 1 StrongA 2 Agree 3 Disagree 4 StrongD

. label define Lagree5 1 StrongA 2 Agree 3 Neutral 4 Disagree 5 StrongD

Several features of the labels demonstrated above are worth noting:

1. Each set of value labels is given a unique name (for example, Lyesno, Lagree4). 
We often use the convention of starting  a label name with L if it is used with 
multiple variables. If a label will be used with only one variable, we give the label 
the name of the variable, as illustrated below. This way, if we change a label that 
starts with L, we know to make sure th a t the change is appropriate for all the 
variables that use that label.

2. Periods, colons, and curly brackets in value labels produce errors in some com­
mands and should be avoided. Although we commonly use spaces in labels (for 
example, S tro n g  A), in rare instances these can also cause problems.
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•i. ( )ur labels are generally 10 characters or shorter because some programs have trou­
ble with long value labels. We might use longer labels if we know the commands 
we are using can handle them.

Step 2 assigns th e  value label definitions to variables. Let’s say th a t variables female, 
b la c k , and an y k id s  all imply “yes and no’’ categories with 1 as yes and 0 as no. To 
assign labels t o the  values, we would use th e  following commands:

. label values female Lyesno

. label values black Lyesno

. label values anykids Lyesno

. describe female black anykids
storage display value

variable name type format label variable label

female byte */.9.0g Lyesno Female
black byte °/,9.0g Lyesno Black
anykids byte '/,9.0g Lyesno R have any children?

T he output for d e s c r ib e  shows which value labels were assigned to which variables. 
T he new value labels are reflected in the ou tpu t from tab u la te :

. tabulate anykids
R have any 
children? Freq. Percent Cum.

no 1,267 27.64 27.64
yes 3,317 72.36 100.00

Total 4,584 100.00

For the degree variable, we assign labels that will be used only with that variable. 
Accordingly, the nam e of the variable and the label arc the same:

. label define degree 0 "no.hs" 1 "hs" 2 "jun_col" 3 "bachelor" 4 "graduate"

. label values degree degree 

. tabulate degree
rs highest 

degree Freq. Percent Cum.

no_hs 801 17.47 17.47
hs 2,426 52.92 70.40

jun_col 273 5.96 76.35
bachelor 750 16.36 92.71
graduate 334 7.29 100.00

Total 4,584 100.00

If you want a list of the value labels being used in your current dataset, use the 
command labelbook, which provides a detailed list of all value labels, including which 
labels are assigned to  which variables. This can be useful both in setting up a complex 
dataset and for documenting your data.
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2.14.3 The notes command

The no tes command allows you to add notes to the dataset as a whole or to specific 
variables. This is often referred to as adding m etadata. Because the notes are saved in 
the  dataset, the information is always available when you use the data. Here we add 
one note describing the dataset and two describing the income variable:

. notes: General Social Survey extract for Stata book I J Freese I 2014-01-23 

. notes income: self-reported family income, measured in dollars 

. notes income: refusals coded as missing

These notes can be viewed in the Properties window. We can also review the notes by 
typing

. notes 
_dta:
1. General Social Survey extract for Stata book I J Freese I 2014-01-23 

income:
1. self-reported family income, measured in dollars
2. refusals coded as missing

If wre save the dataset after adding notes, the notes become a perm anent part of the 
dataset.

2.15 Global and local macros
Good programming and data  analysis practice involves repeating oneself as little as 
possible. Among the  most powerful and flexible tools toward th is end in Stata are 
macros. Because later in the book we use macros extensively, we introduce them briefly 
here. Readers who have less familiarity with S ta ta  might want to skim this section and 
the next for now and read them later when macros and loops are used in later chapters.

The term “m acro” can be confusing for people familiar with its use in some other 
software packages, notably, Microsoft Word. We have found it is easier for people to 
get the hang of macros in S tata if they simply set aside any sense of the term  they have 
acquired using other software. In Stata, a macro is a name associated with a string of 
characters or a number. Once a macro is created, whenever Stata encounters the macro 
name, it autom atically substitutes the contents of the macro.

To give an example, pretend that you want to generate a series of two-by-two tables 
where you want cell percentages, requiring the c e l l  option; missing values, requiring 
the m issing option; values printed instead of value labels, requiring the n o lab e l option; 
the table to be printed without a key, requiring the nokey option; and the chi-squared 
test statistic, requiring the ch i2  option. Even if you use the shortest abbreviations, this 
would require typing c e l l  miss no label ch i2  nokey at the end of each ta b u la te  
command. Instead, you could use the following command to define a global macro 
called my opt ions:
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■ global myoptions ", cell miss nolabel chi2 nokey"

\ \  henever you type $my op t ions (the $ tells S ta ta  that m yoptions is a global macro). 
S ta ta  substitutes , c e l l  m iss n o lab e l ch i2  nokey; that is, if you type

. tabulate lfp wc Smyoptions

St a ta  interprets th is  as if you had typed

. tabulate lfp wc, cell miss nolabel chi2 nokey

Global macros are “global” because, once they are set, they can be accessed by any 
do-lile or command until you either exit S ta ta  or drop the macro from memory. The 
tlij) side is th a t global macros can be reset by any of the do-files or commands that you 
use along the way. By contrast, a local macro can be accessed only within the do-file in 
which it is defined. When the do-file terminates, the local macro disappears. We prefer 
using local macros whenever possible because you do not have to worry about conflicts 
w ith other do-files or commands th a t try  to  use the same macro name for a different 
purpose.

Local macros are defined using the lo c a l  command, and they are referenced by 
placing the name of the local macro in single quotes, for example, 'm y o p tio n s '. The 
two single quote m arks use different symbols. On many keyboards, the left single quote 

is in the upper left-hand corner, whereas the right single quote '  is next to the Enter 
key. If the operations wc ju st performed were in a  do-file, we could have produced the 
same output with the following lines:

. local myoptions ", cell miss nolabel chi2 nokey"

. tabulate lfp wc 'myoptions'
(output omitted)

Macros can also be used as a shorthand way to refer to lists of variables. For example, 
you could use these commands to create lists of variables:

. local demogvars "age white female"

. local edvars "highsch college graddeg"

Then when you run  regression models, you could use the command 

. regress y 'demogvars' 'edvars'

which Stata would translate into

. regress y age white female highsch college graddeg

Or you could use the command

. regress y 'demogvars' 'edvars' xl x2 x3

which Stata would translate into

regress y age white female highsch college graddeg xl x2 x3
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This technique has several advantages. First, it is easier to write the commands because 
you do not have to retype a long list of variables. Second, if you change the set of 
demographic variables that you want to use, you have to do it in only one place, which 
reduces the chance of errors.

Often, when you use a local macro name for a  list of variables, the list becomes 
longer than one line. As with other Stata commands that extend over one line, you can 
use / / / ,  as in

local vars age age squared income education female occupation dadeduc /// 
dadocc momeduc momocc

You can also define macros to equal the result of computations. After typing lo ca l 
fo u r = 2+2, the value 4 will be substituted for ' f o u r ' .  S tata contains many macro 
functions in which items retrieved from memory are assigned to macros (see [p ] m a c r o ) .  
For example, to display the variable label th a t you have assigned to  the variable wc, 
you can type

. local wclabel : variable label wc

. display "'wclabel'"
Wife College: l=yes 0=no

We have only scratched the surface of the potential of macros. Macros are immensely 
flexible and are indispensable for a variety of advanced tasks in d a ta  analysis. By the 
time you finish this book, you will have m astered their use. For users interested in 
advanced applications, read [p] m a c r o .

2.16 Loops using foreach and forvalues
Loops let you execute a set of commands multiple times. Suppose we have a four- 
category ordinal variable y with values from 1 to 4. We want to  create the binary 
variables y_lt2, y _ lt3 , and y_lt4  th a t equal 1 if y is less than the indicated value or 
equal 0 otherwise. We could create the variables with three g e n e ra te  commands:

generate y_lt2 = y<2 if y<.
generate y_lt3 = y<3 if y<.
generate y_lt4 = y<4 if y<.

The i f  condition selects cases where y is not missing. The same thing can be done with 
a foreach loop:

1] foreach cutpt in 2 3 4 {
2] generate y_lt*cutpt' = y<*cutpt' if y<.
3] >

Line 1 starts the loop with the foreach  command, cu tp t is the nam e of a local macro 
that will hold the cutpoint used to dichotomize y. Each time through the loop, the value 
of cu tp t changes, where in  signals the s ta rt of a list of values th a t will be assigned in
sequence to the local macro cu tp t. The numbers 2 3 4 are the values to be assigned
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to c u tp t .  I lie curly  brace { indicates th a t  the list has ended. Line 2 is the command 
we want to execute multiple times. Notice how the generate  command is constructed 
using the macro c u tp t  created in line 1. Line 3 ends the fo reac h  loop with }.

Here is what happens when the loop is executed. The first tim e through foreach. 
th e  local macro c u tp t  is assigned the first value in the list. This is equivalent to the 
command lo c a l  c u tp t  = 2. Next, the g e n e ra te  command is run, where 'c u tp t '  is 
replaced by the value assigned to c u tp t. Thus line 2 is evaluated as

generate y_lt2 = y<2 if y<.

Next,, the closing brace > is encountered, which sends us back to the fo reach  command
in line 1. In the second pass, fo reach  assigns c u tp t to the second value in the list,
which means th a t the g en e ra te  command is evaluated as

generate y_lt3 = y<3 if y<.

T his continues once more, assigning c u tp t  to 4. When the fo re a c h  loop ends, three 
variables have been generated.

Next, we want to  estimate binary logits on y_lt2 , y_lt3, and y _ lt4 .3 We assign 
th e  independent variables to the local rh s  (which stands for “right-hand side” of the 
model):

local rhs "yr89 male white age ed prst"

To run the logits, type

logit y_lt2 'rhs' 
logit y_lt3 'rhs' 
logit y_lt4 *rhs'

Or we could do the same thing with a loop:

foreach lhs in y_lt2 y_lt3 y_lt4 { 
logit 'lhs' 'rhs'

>

Using fo reach  to fit three models is probably more trouble than  it is worth. But 
suppose that we also want to compute th e  frequency distribution of the dependent 
variable and fit a probit model. We need to  add only two lines to  the loop:

foreach lhs in y_lt2 y_lt3 y_lt4 { 
tabulate *lhs' 
logit 'lhs * 'rhs'
probit 'lhs' *rhs'

>

If we want to add the m issing  option to ta b u la te ,  we have to make the change in only 
one place to apply it to all three outcomes.

.i. Essentially, we are making an informal assessment of the parallel regression assumption that is 
considered in chapter 7.
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The f  o rva lues command loops through numbers. The syntax is

where range can be specified as 

Syntax Meaning Example Generates

#1  ( # d ) # 2  From #1  to #2  in steps of # d
# l / # 2  From #1  to #2  in steps of 1

1(2)10 1, 3, 5, 7, 9
1/10 1 ,2 , 3, . . . ,1 0

#1 # t  to  # 2 From #1  to #2  in steps of ( # t — #1)  1 4 to  15 1, 4, 7, 10, 13 

For example, to loop through ages 40 to 80 by 5s:

forvalues i = 40(5)80 {

Or to loop from 0 to  100 by 0.1:

forvalues i = 0(.1)100 {

Loops are easy to  use, and they make your workflow faster and more accurate. In 
later chapters, we use them regularly to  make our work more efficient. For further infor­
mation, type help  fo reach  or help f  o rv a lu e s , or see [p] fo reach  or [p] forvalues.

.17 Graphics
Stata  lias an extensive and powerful graphics system. Not only can you create many 
different kinds of graphs, bu t you have control over almost all aspects of a graph's 
appearance. The cost of this is that the syntax for making a graph can get complicated. 
Here we provide a brief introduction to graphics in Stata, focusing on the types of graphs 
th a t we use in later chapters. Our hope is to  provide a basic understanding of how the 
graphics system works so th a t you can start using it.

For more information, we suggest the following. The Stata Graphics Reference 
Manual is an invaluable reference when you already have a good understanding of what 
you want to do, but we find it less helpful when you want to be reminded of what 
an option is called or get ideas about what kinds of graph to use. For this, we find 
Mitchell’s (2012b) A Visual Guide to Stata Graphics to be useful. This book shows 
hundreds of graphs along with the S tata commands used to generate them. The book 
is organized in a way that makes it easy to scan the pictures until you see a graph that 
does what you want. You can then look a t the text to find out which options to use.

The way we use S ta ta  to make graphs differs from how we use S ta ta  to fit models (or 
to do virtually anything else). Namely, when making graphs, we extensively use dialog 
boxes. If you pull down the G rap h ics menu (or press Alt-g), you will see a list of the 
plot types and families of plot types available in Stata:
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Me ft* 
J d Ä  
Rrview

Siaia/MP 13.1 - C:\data\bmlfp4.dta - [Results]
Uaph.cs S taM xs IKer Window Help
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Selecting any of these graph types opens a dialog box. Here we select Twoway 
g ra p h  and then the X  ax is  tab, which displays the following:

¡HI twoway - Twoway graphs

BD 
j 

i

Plots I f/n |  Yaxis Xans THes j  Legend 1 Overall 1 By

Tile

L  \l Properties

Major bek/label properties M*ior tick/label properties

Axis hne properties ~ ]  [ Ara properties

Reference lines

1 1 HWe axis

□  Place axis on opposite side of graph

€> O  [ o k  1 Ca>cel Subrril
--------

You can make selections from each tab and then click on S u b m it or O K . S ubm it 
leaves the dialog box open in case you need to make additional changes, whereas OK 
c loses it before generating the graph. The dialog box translates your options into the 
commands needed to  draw the graph. These commands are echoed to the Results 
window, while the graph appears in a Graph window. Next, we tweak the options until

http://www
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we have the graph we want. PageUp brings the graph command into the Command 
window, where you can edit it. Then, we copy the command and paste it into a do-file 
so that we can reproduce the graph later.

In the rest of this section, we describe th e  basic syntax for S tata graphics, because it 
is helpful to understand how this syntax works even if you ultimately use dialog boxes 
to do the bulk of the work. We focus 011 plots of one or more outcomes against a single 
explanatory variable, and we use the com m and graph twoway, which has the syntax

graph twoway plottype . . .

(The underlined letters represent the minimum abbreviation you can type for Stata 
to recognize the command.) The Stata  Graphics Reference Manual lists over 40 plot 
types for the graph twoway command. Because we discuss only the types s c a t te r  
and connected here, interested readers are encouraged to consult the Stata  Graphics 
Reference Manual or to type help  graph for more information.

Graphs that you create are drawn 111 the ir own window, which should appear in 
front of the other S tata windows. You can resize the Graph window by clicking on and 
dragging the borders. If the Graph window is hidden, you can bring it to the front by 
clicking on ^ .

2.17.1 The graph command

The type of graph that we use most often in this book shows how the predicted prob­
ability of observing a given outcome changes as a continuous variable changes over a 
specified range. For example, in chapter 6, we examine how the probability of a woman 
being in the labor force depends on her age and her family’s income. In th a t chapter, 
we show you how to compute these predictions, but for now you can simply load them 
into memory with the command use lfp g ra p h 4 , c lea r. The variable income is fam­
ily income measured in thousands of dollars, excluding any contribution made by the 
woman of the household. The next three variables contain the predicted probabilities 
of being in the labor force for women between ages 30 and 39 (a g e c a tlp r l) ,  40 and 49 
(ageca t2prl), or 50 and older (ag eca t3 p rl) :

. use lfpgraph4, clear
(lfpgrah4.dta | Sample predictions to plot I 2014-01-23)
. codebook income agecatlprl agecat2prl agecat3prl, compact 
Variable Obs Unique Mean Min Max Label

income 11 11 50 0 100 Family income excluding...
agecatlprl 11 11 .4591184 .1230226 .8236541 ages 30 to 39
agecat2prl 11 11 .3418133 .0697281 .7139289 ages 40 to 49
agecat3prl 11 11 .234009 .0375723 .5651833 ages 50 and older
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Because there are  only 11 values, we can easily list them:

. list income agecatlprl agecat2prl agecat3prl

income age-lprl age~2prl age-3prl

1. 0 .8236541 .7139289 .5651833
2. 10 .7668772 .6373779 .4779353
3. 20 .6985115 .5531632 .3920132
4. 30 .6200306 .4657831 .3122976
5. 40 .5347281 .3804536 .2423312

6. 50 .4473447 .3019213 .1838493
7. 60 .3630971 .2334903 .1369302
8. 70 .2864909 .1766445 .1005104
9. 80 .2204527 .1312684 .0729585
10. 90 . 1660933 .0961867 .0525181

11. 100 . 1230226 .0697281 .0375723

We see that as annual income increases, the predicted probability of being in the labor 
force decreases. Looking across rows, we see th a t for a given level of income, the 
probability of being in the labor force decreases with ago. We want to display these 
patterns graphically.

The command graph twoway s c a t t e r  will draw a scatterplot in which the values 
of one or more y  variables are plotted against the values of a single x  variable. Here, 
income is the x  variable, and the predicted probabilities a g e c a t lp r l ,  ag ecat2 p rl, and 
ag eca t3 p rl are the  y variables. Thus for each value of x, we have three values of y. 
When making scatterplots with graph twoway s c a t te r ,  the y variables are listed first, 
and the x  variable is listed last. If we type

. graph twoway scatter agecatlprl agecat2prl agecat3prl income,
> ytitle(Probability)
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we obtain the following graph:
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Family income excluding wife's

•  ages 30 to 39 

■ ages 50 and older

♦  ag es 40 to 49

The scatterplot shows the pattern of decreasing probabilities as income or age increases.

Although our simple command produces a  reasonable first graph, we can make a 
m ore effective graph by adding options. We focus below on adding lines, adding titles, 
and improving the labels for the axes, but m any other options are available. A slightly 
more detailed syntax for graph twoway is

graph twoway plot i [plot2  ] •. • [plotjv ] [i f ]  [in]  [> twoway.options] 

where ploti is defined to be

f ( ] plottype varlist, [ t i t l e ( 11 string") subt i t l e ( " string") y t i t l e C 'string") 

x t i t l e O  'string") c a p tio n  ("siring") x la b e l  (values) y lab e l(m /u es) 

other-options] [ ) ]

This syntax highlights th a t it is possible to  put multiple plots in the same graph, 
where the parentheses at the beginning and the end are used to separate the different 
plots when there are multiple plots. When there is only one plot, those parentheses are 
not required. The combined plots can be of different plot types. For instance, suppose 
th a t we want the symbols in the plot corresponding to  “ages 30 to 39v to be connected. 
This plot type is called connected. For example,

. graph twoway (connected agecatlprl income)
> (scatter agecat2prl agecat3prl income), ytitle(Probability)
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produces the following graph:

ages 30 to 39 

ages 50 and older

♦  ages 40 to 49

The default choices for the symbols, line styles, etc., are all quite nice. Stata made 
these choices w ithin the context of an overall look, or what S ta ta  calls a scheme. For 
example, because our book is published in monochrome, we want our graphs to be 
drawn in monochrome. Accordingly, we place

. set scheme s2manual

a t the top of our do-files. This scheme makes the graph monochrome. For color graphs, 
we often use the s2 c o lo r  scheme. Type h e lp  schemes in S ta ta  for the latest informa­
tion about available schemes.

Adding titles

Next, we show how to add an overall title, a  subtitle, .r-axis and y-axis titles, and a 
caption. The following command adds titles to our graph and also replaces the scatter 
plot type with the connected type.

• graph twoway connected agecatlprl agecat2prl agecat3prl income,
> titleC'Predicted Probability of Female LFP")
> subtitleC(as predicted by logit model)")
> ytitleC'Probability") xtitle("Family income, excluding wife's")
> caption("Data from 1976 PSID compiled by T Mroz")
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Predicted Probability of F e m a le  LFP
(a s  predicted by logit m odel)

---- • ----  ages 30 to 39 -----♦—  ages 40 to 49

— ■—  ages 50 and older 

Data from 1976 PSID compiled by T  Mroz

This graph is much more effective in illustrating how the probability of a woman being 
in the labor force declines as family income increases and with age, with the caption 
documenting the source of the data.

Labeling tick marks on the axes

Even though the default labels for the tick marks on our graph are reasonable, it is 
common to want to change them. The y la b e lO  and x lab e lO  options allow users to 
specify either a rule or a set of values for the tick marks. A rule in this case is simply 
a  compact way to specify a list of values. Let’s first consider specifying a list of values. 
Suppose that we want to restrict the range on the x  axis to be from 10 to 90. We make 
this change by listing the values of the tick marks with x la b e lO :

. graph twoway connected agecatlprl agecat2prl agecat3prl income,
> titleC'Predicted Probability of Female LFP")
> subtitle("(as predicted by logit model)")
> ytitle("Probability") xtitle("Family income, excluding wife's")
> caption("Data from 1976 PSID compiled by T Mroz")
> xlabel(10 20 30 40 50 60 70 80 90)
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Predicted Probability of Female LFP
(a s  p red icted  by logit model)

— •—  ages 30 to 39 -----• ----  ages 40 to 49

— ■—  ages 50 and older 

Data from 1976 PSID  compiled by T  Mroz

We could have obtained the same graph by specifying a  rule for a new set of 
.zr-axis values. Although there are several ways to specify a rule, we find the form 
#m in(#gaP)#max niost useful. Iii this form, the user specifies # min for the beginning of 
the sequence of values, # gap for the increment between each value, and # mSLX for the 
maximum value. For instance,

xlabel(10(10) 90) 

specifies the same tick marks as the more cumbersome

xlabel(10 20 30 40 50 60 70 80 90)

Type help a x is_ la b e l.o p tio n s  for other ways to  specify a rule.

Saving graphs in memory by naming them

When you create a graph, it is displayed in a Graph window and is also saved in 
memory. If you close the Graph window, you can redisplay the graph with the command 
graph d isp lay . By default, a graph is stored in memory with the name Graph, and 
this graph is overwritten whenever you generate a new graph. If you want to  store more 
than one graph in memory, you need to use the name() option. For example,

scatter y x, name(examplel, replace)

stores the scatterplot for y against x in memory with the name example 1, where the 
re p la c e  option indicates that you want to  replace the graph named examplel if it 
already exists. Then

scatter z x, name(example2, replace) 

will save the scatterplot for z against x w ith the name example2.
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Because S tata displays each named graph in its own window, multiple Graph win­
dows can be displayed simultaneously. For example,

graph display examplel 
graph display example2

When multiple graphs have been saved, you can combine them into a  single graph as 
discussed below.

Saving graphs to a file in .gph format

When a graph is stored in memory, it remains there until you exit S tata or erase 
the graph from memory. Accordingly, you are likely to want to save your graphs in a 
file. Specifying sav in g  (filename, re p la ce ) saves the graph to a file in the working 
directory using S ta ta’s proprietary format with the suffix .gph. Including re p la c e  tells 
S ta ta  to overwrite a  file with that name if it already exists.

Export graphs to a file in other formats

You will probably also want to export graphs to other formats th a t can be displayed 
by other programs or included in documents. This is done with the graph export 
command:

graph export newfilename. suffix [ , re p la c e  options]

suffix determines the graph format. With the r e p la c e  option, graph ex p o rt will over­
write a graph of the same name if it already exists, which is useful in do-files. For 
example,

graph export filename, emf , rep lace

saves the graph as a Windows Enhanced Metafile (EMF), which works well with most 
word processors. The command

graph export filenam e.ep s , rep lace

saves the graph as an Encapsulated Postscript (EPS) file, which is commonly used with 
LMJjjX or See [G-2] g rap h  ex p o rt for a  list of all the formats to which you can
export graphs.

If a graph is already saved in . gph format and is no longer in memory, you can export 
it to other formats in two steps. First, redisplay the graph with the command graph use 
filename. Second, export the graph with the com m and graph export filenam e. suffix.

Displaying previously drawn graphs

Several commands can manipulate graphs th a t have been previously drawn and 
saved to memory or disk, graph d ir  lists graphs saved in memory or in a .gph file
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in the working directory, graph use copies into memory a graph stored in a file and 
displays it. g rap h  d is p la y  redisplays a graph stored in memory.

Printing graphs

It is easiest to  print a graph once it is in the Graph window. When a graph is in the 
G raph  window, you can print it by selecting F ile —»P rin t—>Graph(graphname) from 
th e  menus or by clicking on ^ . You can also print a graph in the Graph window with 
th e  command g rap h  p r in t .  To print a graph saved to memory or a file, first use graph 
u se  or graph d is p la y  to redisplay it, and then print it with the command graph p rin t.

Combining graphs

Multiple graphs that are in memory can be combined. This is useful, for example, 
when you want to  place two graphs side by side or stack them. To illustrate this, we 
combine two graphs from chapter 7 (see section 7.14 for details). When we created these 
graphs, wre saved them  in memory under the  names panelA and panelB. We use graph 
combine to put th e  two graphs side by side.

- 6raPh combine panelA panelB, xsize(8) ysize(4)
> caption("Example of combining horizontally.")

The resulting graph looks like this:

P a n e l A : P red icted  Probabilities

Lower ♦ Working
Middle — * —  Upper

Example of combining horizontally.

Panel B : C u m u la tive  Probabilities

♦  Lower — ♦ " LowerWorking

— m Lower/Working'Middle

We used the options x s ize (8 ) and y s iz e (4 )  to set the aspect ratio th a t we wanted. 
When combining graphs, you will likely need to experiment with these options to get 
things to look the way you want. We also used the cap tionO  option to illustrate that 
graph options can be used with graph combine to customize the look of the new graph.
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We could stack the graphs vertically with the c o ls ( l )  option, which specifies that 
we w'ant a single column of graphs. We also change the aspect ratio:

. graph combine panelA panelB, col(l) xsize(4) ysize(6)
> captionC"Example of combining vertically.")

Xowr our graph looks like this:

Panel A: Predicted Probabilities

Lower ---------------*—  Working
Middle — —  Upper

Panel B: Cumulative Probabilities

Lower — ♦—  Lower/Working
Lower/Working/Middle

Example of combining vertically.

The Stata Graphics Reference Manual describes how almost any part of the com­
bined graph can be changed.

.18 A brief tutorial
This tutorial uses the  s c ie n c e 4 .d ta  dataset th a t is available from the book’s website. 
You can use your own dataset as you work through this tutorial, b u t you will need to 
change some of the commands to correspond to the variables in your data. In addition 
to  our tutorial, the Stata  User’s Guide provides a wealth of information for new users.
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I he first step is to  open a log file for recording your results. Remember that all 
com m ands are case sensitive. The commands you should type into S tata are listed with 
a period in front, b u t you do not type the period:

. capture log close 

. log using tutorial, text

log: d:\spostdata\tutorial.log
log type: text

opened on: 24 Jan 2014, 10:12:50

Loading and examining the dataset

We assume th a t s c ie n c e 4 .d ta  is in your working directory, c le a r  tells Stata to
delete any existing d ata  from memory before loading the new dataset:

. use science4, clear
(Long's scientific career data | 2013-10-25)

Next, we get descriptive statistics and variable labels for all the variables:

Opening a log

. codebook, compact
Variable Obs Unique Mean Min Max Label

citl 308 50 11.60714 0 137 Citations in PhD yrs -1 to 1
cit3 308 57 14.97078 0 196 Citations in PhD yrs 1 to 3
cit6 308 65 18.37013 0 143 Citations in PhD yrs 4 to 6
cit9 308 74 21.07143 0 214 Citations in PhD yrs 7 to 9
enrol 278 9 5.564748 3 14 Years from BA to PhD
faculty 302 2 .5298013 0 1 Is a faculty member?
(output omitted)

totpub 308 46 11.86364 0 84 Total publications in 9 yrs s—
work 302 5 2.062914 1 5 Type of first job
workadmn 302 2 .089404 0 1 Job is in administration?
worktch 302 2 .615894 0 1 Job is teaching?
workuniv 302 2 .705298 0 1 Job is in a university?

Examining individual variables

A series of commands gives us information about individual variables. You can use 
whichever command you prefer or use all of them.
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Variable Obs Mean Std. Dev. Min Max

work 302 2.062914 1.37829 1 5
. tabulate work, missing
Type of first 

job Freq. Percent Cum.

university fac 160 51.95 51.95
research univ 53 17.21 69.16

college fac 26 8.44 77.60
industry 36 11.69 89.29

administration 27 8.77 98.05
6 1.95 100.00

Total 308 100.00

Graphing variables

Graphs are also useful for examining data. The command

. dotplot publ

creates the following distribution of publications:

To save the above graph as a Windows Enhanced Metafile, type

. graph export tutorial_dotplot.emf, replace
(file d:\spostdata\tutorial_dotplot.emf written in Enhanced Metafile
> format)



Creating a binary variable

Now let’s make a  binary variable with faculty in universities coded 1 and all others 
coded 0. The com m and gen is f a c  = (work==l) i f  workc. generates is fa c  as a 
b iliary variable w here i s f a c  equals 1 if work is 1 and equals 0 otherwise. The statement 
i f  work<. ensures th a t missing values are kept as missing in the new variable.

. generate isfac = (work==l) if work<.
(6 missing values generated)

Six missing values were generated because work contained six missing observations.

Checking transformations

One way to check transformations is with a table. In general, it is best to look at 
th e  missing values, which requires the m issin g  option:

. tabulate isfac work, missing

i() Chapter 2 Introduction to Stata

isfac universit
Type

research
of first 

college f
job

industry administr Total

0 0 53 26 36 27 142
1 160 0 0 0 0 160

0 0 0 0 0 6

Total 160 53 26 36 27 308
Type of

first job
isfac Total

0 0 142
1 0 160

6 6

Total 6 308

Labeling variables and values

For many of the regression commands, value labels for the dependent variable are
essential. We s ta rt by creating a variable label, then create i s f a c  to store the value
labels, and finally assign the value labels to  the variable is fa c :

. label variable isfac "Scientist is faculty member in university"

. label define isfac 0 "NotFac" 1 "Faculty"

. label values isfac isfac



2.18 A brief tutorial 77

Then we can get labeled output:

. tabulate isfac
Scientist 
is faculty 
member in 
university Freq. Percent Cum.

NotFac 142 47.02 47.02
Faculty 160 52.98 100.00

Total 302 100.00

Creating an ordinal variable

The prestige of graduate programs is often referred to with the categories of ad­
equate, good, strong, and elite. Here we create such an ordinal variable from the 
continuous variable for the prestige of the first job. m issing tells S ta ta  to show cases 
with missing values.

. tabulate job, missing
Prestige of 

1st
university

job Freq. Percent Cum.

1.01 1 0.32 0.32
1.2 1 0.32 0.65

1.22 1 0.32 0.97
1.32 1 0.32 1.30

(output omitted)
4.18 2 0.65 49.03
4.42 1 0.32 49.35
4.5 6 1.95 51.30

4.69 5 1.62 52.92
145 47.08 100.00

Total 308 100.00

The recode command makes it easy to group the categories from job. Of course, 
we then label the variable:

. generate jobprst = job 
(145 missing values generated)
. recode jobprst .=. 1/1.99=1 2/2.99=2 3/3.99=3 4/5=4 
(jobprst: 162 changes made)
. label variable jobprst "Ranking of university job"
. label define prstlbl 1 "Adeq" 2 "Good" 3 "Strong" 4 "Elite"
. label values jobprst prstlbl

Here is the new variable (we use the m issing  option so that missing values are included 
in the tabulation):
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. tabulate jobprst, missing
Ranking of 
university 

job Freq. Percent Cum.

Adeq 31 10.06 10.06
Good 47 15.26 25.32

Strong 71 23.05 48.38
Elite 14 4.55 52.92

145 47.08 100.00

Total 308 100.00

Combining variables

Now we create a  new variable by summing existing variables. If we add pub3, pub6, 
an d  pub9, we can obtain the scientist’s to tal number of publications over the 9 years 
since receiving a PhD.

. generate pubsum = pub3 + pub6 + pub9

. label variable pubsum "Total publications in 9 years since PhD" 

. summarize pub3 pub6 pub9 pubsum
Variable Obs Mean Std. Dev. Min Max

pub3 308 3.185065 3.908752 0 31
pub6 308 4.165584 4.780714 0 29
pub9 308 4.512987 5.315134 0 33

pubsum 308 11.86364 12.77623 0 84

A scatterplot m atrix graph can be used to plot all pairs of variables simultaneously:

. graph matrix pub3 pub6 pub9 pubsum, half msymbol(smcircle_hollow)

Publications 
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yrs 1 to 

3
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Total 
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in 9 years 
since PhD
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Saving the new data

After you make changes to your dataset, save the data with a new filename. Before 
doing this, we add a  label to the dataset and add a note that documents how the dataset 
was created:

. label data "sciwork.dta | revised science4 data I 2014-01-27"

. note _dta: "Revised by Scott Long I tutorial.do I 2014-01-27"

. save sciwork, replace 
file sciwork.dta saved

Closing the log file

Last, we need to close the log file so th a t we can refer to it in the  future.

. log close 
log: d:\spostdata\tutorial.log
log type: text
closed on: 24 Jan 2014, 10:12:51

.19 A do-file template
If you have read section 2.9, you know that a  better idea is to create a do-file. If you 
download materials for this book, you can download a do-file for each chapter that 
repeats all the commands. The file t u t o r i a l .d o  contains the commands from this 
tutorial. In the do-file, we insert the v e rs io n  command after opening the log file so 
th a t our do-file will be robust to any future changes in Stata that may affect how the 
commands work. We also add the e x i t  command to  the end, which simply allows us 
to  add additional notes if we wish to the end of the do-file without generating errors.

capture log close
log using tutorial, replace text
version 13.1
clear all
set linesize 80
macro drop _all
set scheme s2manual

// loading and examining the data

use science4, clear 
codebook, compact

// examining individual variables

summarize work 
tabulate work, missing
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// graphing variables 

dotplot publ
graph export tutorial_dotplot.emf, replace 

// creating a dummy variable 

generate isfac = (work==l) if work<.

// checking transformations 

tabulate isfac work, missing 

// labeling variables and values

label variable isfac "Scientist is faculty member in university"
label define isfac 0 "NotFac" 1 "Faculty"
label values isfac isfac

tabulate isfac

// creating an ordinal variable 

tabulate job, missing 

generate jobprst = job
recode jobprst .=. 1/1.99=1 2/2.99=2 3/3.99=3 4/5=4 
label variable jobprst "Ranking of university job"
label define prstlbl 1 "Adeq" 2 "Good" 3 "Strong" 4 "Elite"
label values jobprst prstlbl

tabulate jobprst, missing

// combining variables

generate pubsum = pub3 + pub6 + pub9
label variable pubsum "Total publications in 9 years since PhD" 
summarize pub3 pub6 pub9 pubsum

graph matrix pub3 pub6 pub9 pubsum, /// 
half msymbol(smcircle_hollow) 

graph export tutorial_graph_matrix.emf, replace

// saving the new data

label data "sciwork.dta | revised science4 data I 2014-01-24" 
note _dta: "Revised by Scott Long I tutorial.do I 2014-01-24" 
save sciwork, replace

// closing the log

log close 
exit

To execute the do-file, type do tu t o r i a l  in  the Command window or select F ile—>Do.. 
from the menu.



2.20 Conclusion 81

.20 Conclusion
This chapter has provided a selective introduction to  Stata that has focused on what 
is needed to begin work with the chapters th a t follow. If you are new to Stata, we 
obviously hope the chapter has been useful in helping you get started. In closing, we 
want to re-emphasize that many resources are available to help you improve your skills 
with Stata. As we noted, there are introductory books, websites, YouTube videos, and 
web forums devoted to helping you. The great payoff of Stata’s elegance is that as you 
become comfortable with the logic of the syntax and options of the S ta ta  commands 
you are using now, you will master other commands more quickly.

Data analysis is a  craft, and a skilled craftspcrson recognizes the value of investing 
in the right tools. S ta ta  is a remarkable tool for the work we present in this book, and it 
is worthy of the time you invest in gaining proficiency with it. Our next step in helping 
you in this investment will be to provide a general introduction to  using Stata to fit, 
evaluate, and interpret regression models. After that, we will proceed to the chapters 
on models for different types of categorical outcomes that comprise the heart of this 
book.





3 Estimation, testing, and fit

Our book deals w ith what we think are the most fundamental and useful cross-sectional 
regression models for categorical and count outcomes: binary logit and probit, ordinal 
logit and probit, multinomial logit, Poisson regression, and negative binomial regression. 
We also explore several less common models, such as the stereotype logistic regression 
model and the zero-inflated and zero-truncated count models. Although these models 
differ in many respects, they generally share common features:1

1. Each model is fit by maximum likelihood, and many can be fit when data is
collected using a complex sample survey design.

2. Hypotheses about the parameters can be tested with Wald and likelihood-ratio
tests.

3. Measures of fit can be computed.

4. The models can be interpreted by examining predicted values of the outcomes, a
topic that is considered in chapter 4.

Because of these similarities, the same principles and many of the same commands 
can be applied to each model. In this chapter, we consider the first three topics, and 
then we turn  to issues of interpretation in chapter 4. First, we examine estimation 
commands, discussing how to specify models, read the results, save estimates, and 
create tables. We then consider statistical testing th a t goes beyond the routine tests 
of a single coefficient that are included in the ou tpu t from estimation commands. This 
is done with the t e s t  and l r t e s t  commands for Wald and likelihood-ratio tests. In 
later chapters, we present other tests of interest for a given model, such as tests of the 
parallel regression assumption for the ordered regression model. Finally, we consider 
assessing the fit of a model with scalar measures computed by our f  i t s t a t  command 
and Stata’s e s t a t  command. Later chapters focus on the application of these principles 
and commands to exploit the unique features of each model. This chapter and the next 
also serve as a reference for the syntax and options for the SPost commands that we 
introduce here and use throughout the rest of the book.

1. Many of the principles and procedures discussed in our book apply to panel models, such as those 
fit by Stata's x t and me commands, or models w ith m ultiple equations, such as those fit by b ip rob it 
or e treg ress . However, these models are not considered here.

83
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1 Estimation

Each of the models we consider is fit using maximum likelihood (M L ).2 ML estimates 
are the values of the parameters that have the greatest likelihood of generating the 
observed sample of data if the assumptions of the model are true. To obtain the ML 
estimates, a likelihood function calculates how likely it is that w e would observe the set 
of outcome values we actually observed if a  given set of param eter estimates were the 
true parameters. For example, in linear regression with one independent variable, we 
need to estimate bo th  the intercept a  and the slope /3. For simplicity, we are ignoring 
the parameter a 1. For any combination of possible values for a  and  /3, the likelihood 
function tells us how likely it is th a t we would have observed the data that we did 
observe if these values were the population parameters. If we imagine a surface in 
which the range of possible values of a  makes up one axis and the range of /3 makes up 
another axis, the resulting graph of the likelihood function would look like a hill; the 
ML estimates would be the parameter values corresponding to the top of this hill. The 
variance of the estim ates corresponds roughly to how quickly the slope is changing near 
the top of the hill.

For all but the simplest models, the only way to find the maximum of the likelihood 
function is by numerical methods. Numerical methods are the m athem atical equivalent 
of how you would find the top of a hill if you were blindfolded and knew only the slope of 
the hill at the spot where you are standing and how the slope at th a t spot is changing, 
which you could figure out by poking your foot in each direction. The search begins 
with start values corresponding to your location as you start your climb. From the 
s ta rt position, the slope of the likelihood function and the rate of change in the slope 
determine the next guess for the parameters. The process continues to iterate until 
the maximum of the likelihood function is found, called convergence, and the result­
ing estimates are reported. Advances in numerical methods and computing hardware 
have made estim ation by numerical methods routine. See Cameron and Trivedi (2005), 
Eliason (1993), or Long (1997) for more technical discussions of ML estimation.

1.1 Stata’s output for ML estimation

The process of iteration is reflected in the initial lines of S tata’s ou tput. Below are the 
first lines of the ou tput from the logit model of labor force participation th a t we use as 
an example in chapters 5 and 6:

2. There are often convincing reasons for using Bayesian methods to fit these models. However, these 
methods are not generally available in Stata and hence are not considered here.
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. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women | 2013-07-15)
. logit lfp k5 k618 agecat wc he lwg inc
Iteration 0: log likelihood = -514.8732
Iteration 1: log likelihood = -453.09301
Iteration 2: log likelihood = -452.72688
Iteration 3: log likelihood = -452.72649
Iteration 4: log likelihood = -452.72649

(output o m it te d )

The results begin with the iteration log, where the first, line, iteration 0, reports the 
value of the log likelihood a t the start value. Whereas earlier we talked about maxi­
mizing the likelihood function, in practice, programs maximize the log of the likelihood, 
which simplifies the computations and yields the same result. Here the log likelihood 
a t the start is —514.8732. The next four lines show the progress in maximizing the 
log likelihood, converging to the value of —452.72649. The rest of the output, which is 
omitted here, is discussed later in this section.

1.2 ML and sample size

Under the usual assumptions, the ML estimator is consistent, efficient, and asymp­
totically normal. These properties hold as the sample size approaches infinity (see 
Cameron and Trivedi [2005]; Cramer [1986]; and Eliason [1993] for details). Although 
ML estimators are not necessarily bad estimators in small samples, the small-sample 
behavior of ML estim ators for the models we consider is largely unknown. Except for 
the logit and Poisson regression, which can be fit using exact perm utation methods with 
e x lo g is t ic  or expoisson , alternative estimators with known small-sample properties 
are generally not available. With this in mind, Long (1997, 54) proposed the following 
guidelines for the use of ML in small samples:

It is risky to use ML with samples smaller than  100, while samples over 
500 seem adequate. These values should be raised depending on charac­
teristics of the model and the data. First, if there are many parameters,
more observations are needed__  A rule of a t least 10 observations per
parameter seems reasonable----  This does not imply that a minimum of
100 is not needed if you have only two parameters. Second, if the data  are 
ill-conditioned (for example, independent variables are highly collinear) or 
if there is little variation in the dependent variable (for example, nearly all 
the outcomes are 1), a  larger sample is required. Third, some models seem 
to require more observations (such as the ordinal regression model or the 
zero-inflated count models).

,1.3 Problems in obtaining ML estimates

Although the numerical methods used by S ta ta  to fit models with ML are highly refined 
and generally work extremely well, you can encounter problems. If your sample size
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is adequate, but you cannot get a solution or you get estimates th a t appear to not 
make substantive sense, one common cause is th a t the data have not been properly 
“cleaned”. In addition to mistakes in constructing variables and selecting observations, 
the scaling of variables can cause problems. The larger the ratio between the largest 
and smallest standard deviations among variables in the model, the more problems 
you are likely to encounter with numerical m ethods due to rounding. For example, 
if income is measured in units of $1, income is likely to have a very large standard 
deviation relative to  other variables. Recoding income to units of $1,000 can solve the 
problem. For a detailed technical discussion of maximum likelihood estim ation in Stata, 
see Gould, Pitblado, and Poi (2010).

Overall, however, numerical methods for ML estimation work well when your model 
is appropriate for your data. Still, Cramer’s (1986, 10) advice about the need for care 
in estimation should be taken seriously:

Check the data , check their transfer into the computer, check the actual 
computations (preferably by repeating a t least a sample by a rival program), 
and always remain suspicious of the results, regardless of the appeal.

.1.4 Syntax of estimation commands

All single-equation estimation commands th a t we consider in this book have the same 
syntax:3

command depvar [ indepvars ] [i f ] [ in ] [ weight ] [ , options ]

Elements in square brackets, [ ], are optional. Here are a few examples for a lo g it 
model with l f p  as the dependent variable:

lo g it  l f p  k5 k618 age wc lwg
lo g it  l fp  k5 k618 age wc lwg i f  he == 1
lo g it  l fp  k5 k618 age wc lwg [pweight=wgtvar]
lo g it  l fp  k5 k618 age wc lwg i f  he == 1 , le v e l  (90)

You can review the output from the last estimation by typing the command name 
again. For example, if the most recent model that you fit was a logit model, you could 
have Stata replay the results by simply typing lo g i t .  The syntax diagram here uses 
1) variable lists, 2) i f  and in  conditions, 3) weights, and 4) options. We will discuss 
aspects of each of these in tu rn  in the following sections.

3. m logit is a multiple-equation estimation command, but the syntax is the sam e as that for single­
equation commands because the independent variables are the same in all equations. The zero- 
inflated count m odels z ip  and zinb are the only multiple-equation commands considered in our 
book where different sets of independent variables can be used in each equation. Details on the 
syntax for these m odels are given in chapter 9.
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3.1.5 Variable lists

depvar is the dependent variable, indepvars is a  list of the independent variables. If no 
independent variables are given, a model with only the intercept is fit.

S tata automatically corrects some mistakes you may make when specifying inde­
pendent variables. For example, if you include wc as an independent variable when 
th e  sample is restricted to a single value of wc, such as lo g i t  l f p  k5 age he wc i f  
wc==l. then Stata drops wc from the model. Or suppose that you recode a k -category 
variable into a set of k indicator variables. Recall th a t one of the indicator variables 
m ust be excluded to  avoid perfect collinearity. If you included all k indicator variables 
in  indepvars, S tata autom atically excludes one of them.

Using factor-variable notation in the variable list

In S tata 11 and later, you can specify a /¿-category variable as a set of indicator variables 
using Stata’s factor-variable notation. Prefixing a variable name w ith i . tells Stata to 
do this. In our previous example, suppose th a t instead of age being measured in years, 
it wras measured using three age groups with the variable agecat:

. tabulate agecat, missing
Wife's age 

group Freq. Percent Cum.

30-39 298 39.58 39.58
40-49 290 38.51 78.09
50+ 165 21.91 100.00

Total 753 100.00

Variable agecat equals 1 for ages 30- 39, 2 for 40 49, and 3 for 50 or older. If we were 
not using factor variables, we could recode the three categories of ag eca t to generate 
three dummy variables:

. generate age3039 = (agecat==l) if agecat < .

. label var age3039 "Age 30 to 39?"

. generate age4049 = (agecat==2) if agecat < .

. label var age4049 "Age 40 to 49?"

. generate age50plus = (agecat==3) & agecat < .

. label var age50plus "Age 50 or older?"

Next, we fit a model using these variables, where age3039 is the excluded base category:

. logit lfp k5 k618 age4049 age50plus wc he lwg inc, nolog 
(output o m itted)

Using factor-variable notation, we can fit the exact same model bu t let S ta ta  automat­
ically create the indicator variables:

. logit lfp k5 k618 i.agecat wc he lwg inc, nolog 
[output om itted)
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Because factor-variable notation is used throughout, later chapters, it is important 
to understand what is going on “behind the scenes” when S tata encounters i.ageca t. 
Temporary variables (that is, variables th a t disappear after a command finishes) are 
generated to indicate each value of the variable that is observed in the estimation sample. 
These variables are named #.varnam e. For example, i .a g e c a t  creates I .a g e c a t that 
is equal to 1 if ag e c a t is 1 and equal to 0 for any other nonmissing value. Thus 1 .agecat 
is equivalent to age3039 that was generated above. 2 . agecat is 1 if ag eca t is 2, and
3 . agecat is 1 if ag e ca t is 3. By default, S ta ta  uses the lowest value of the source 
variable as the base or omitted category in the model. Accordingly,

logit lfp k5 k618 i.agecat wc he lwg inc, nolog

uses 2 .agecat and 3 . agecat as regressors, excluding I .a g e c a t a.s the base category. 
If you want a different base category, specify the base with the prefix i b # . , where #  is 
the value of the base category. In our example, to trea t women ages 50 or older as our 
base category instead of women ages 30 -39, we would specify the model as follows:

logit lfp k5 k618 ib3.agecat wc he lwg inc, nolog

Binary, ordinal, and nominal independent variables can be treated as factor variables. 
A count variable or interval-level variable can also be specified as a  factor variable if 
you do not want to  impose assumptions about the form of the relationship between the 
explanatory variable and the outcome. For example, i . age would generate an indicator 
variable for each unique value of age in the sample. The values of factor variables must 
all be integers, and no value can be negative.

By default, any variable not specified with i .  is treated as a continuous variable. 
For example, in the specification

logit lfp k5 k618 agecat wc he lwg inc, nolog

ageca t is treated as continuous with values 1, 2, and 3. The prefix c . can be used to 
explicitly indicate th a t a variable is continuous (for example, c . in c ) .  In our example, 
the only variable where factor-variable notation is strictly necessary is agecat. The 
estimates for inc  will be the same whether we specify the variable as c . in c  or simply 
as inc. Coefficient estimates for binary variables will be the same whether they are 
included in the variable list with i . or not. For example, wc is 1 if a respondent 
attended college and is 0 otherwise. W hether we specify this variable as i . wc or simply 
as wc does not affect the estimates, although the labeling of ou tput differs as shown 
below. Even so, for some of the commands we use for interpretation (discussed in 
chapter 4), the behavior of the commands will differ depending on whether the model 
was originally fit using the i . prefix for binary variables. Because th is can lead to errors 
in interpretation, we suggest that you always add i . as a prefix for binary variables. 
There is no particular advantage in the above example to using c . for the continuous 
variables, because this is how the variables will be treated by default. However, we 
could have used factor-variable notation for all the variables in the model:

logit lfp c.k5 c.k618 i.agecat i.wc i.hc c.lwg c.inc, nolog



3.1.5 Variable lists 89

Interaction terms are used to model how the coefficient for one variable differs according 
to values of another variable. In our example, one might hypothesize th a t the effect 
of children under age 5 on a woman’s labor force participation varies depending on 
whether the woman has gone to  college. Interactions are created as the product of two 
independent variables. One way to specify th is is to  generate a product variable and 
include it in the variable list, such as

generate wcXk5 = wc*k5
logit lfp wc k5 wcXk5 k618 age he lwg inc, nolog

Alternatively, factor-variable notation allows us to put the interaction operator # be­
tween two variables in the variable list to indicate th a t the product of the two variables 
is to be included in the model. For example, instead of creating wcXk5. we could have 
used the following syntax to obtain exactly the same results:

logit lfp wc k5 wc#c.k5 k618 age he lwg inc, nolog

Rarely do we want to include a product term  without including the components of
the interaction as well. The operator ## indicates th a t the individual variables along 
with their product are to be included. Thus the specification

logit lfp i.wc c.k5 i.wc#c.k5 k618 age he lwg inc, nolog
is equivalent to

logit lfp i.wc##c.k5 k618 age he lwg inc, nolog

In general, you should use the ## operator or be sure the individual variables are also
included when using the # operator.

Notice in this example that we used factor-variable notation to make explicit that 
wc was an indicator variable (that is, we used i.w c) and that k5 was continuous (that 
is, we used c.k5). If you do not indicate whether a variable is continuous or is a factor 
variable, Stata relies on its defaults, and these defaults depend on whether a variable is 
part of an interaction.

If a variable appears in an interaction, it is assumed to be a factor variable 
unless you use the c . prefix.

If a variable does not appear in an interaction term, it is considered contin­
uous unless you use the i . prefix.

Moreover, the specification of a variable in an interaction supersedes the specification 
on the type of variable outside of the interaction. For example, if you specify a model 
as lo g it  y c .v a r l  c .v a r2  varl#var2 . then both v a r l  and var2 are treated as factor 
variables when creating interaction terms despite having been typed as c .v a r l  and 
c . var2 outside of the interaction. The safest thing when using factor-variable notation

Specifying interaction and polynomials
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to create interactions is to explicitly indicate how a variable is to be treated by including 
either the i . or the c . prefix.

The interaction notation can also be used to add polynomial terms to a model, 
which is a standard way of modeling nonlinear relationships between an independent 
variable and the outcome. Although most of the models in this book are inherently 
nonlinear, polynomial terms are useful for changing the way in which predictors affect 
the outcome. For example, in a logit model th a t includes age but not age-squared as a 
predictor, the probability of the outcome m ust either always increase or always decrease 
as age increases. But, as shown by an example in chapter 6, in some applications it 
makes sense for the probability to increase initially with age before decreasing at older 
ages. This can be done by including age, age-squared, and possibly age-cubed in the 
model. For example, to  include age and age-squared, you could type

logit lfp c.age##c.age k5 k618 wc he lwg inc, nolog

Because we used ##, c .ag e  is automatically included in the model. Similarly, we can 
use the interaction notation to include a cubed or higher-order term:

logit lfp k5 k618 c.age##c.age##c.age wc he lwg inc, nolog

As a different example, imagine th a t a researcher hypothesized th a t  the coefficients 
for all the other independent variables differed between women who went to college and 
women who did not. This could be specified as

logit lfp i.wc##(c.k5 c.k618 c.age i.hc c.lwg c.inc), nolog

where i.w c##(c.k5  c.k618 c.age i .h c  c .lw g  c . in c )  is expanded to  i.w c i.w c#c.k5 
i.w c#c.k618 i.w c# c .ag e  i.w c# i.h c  i.w c#c.lw g  i.w c# c .in c .

More on factor-variable notation

Factor-variable notation is extremely powerful and can save time and prevent errors in 
complex applications. Not only do factor variables eliminate the need to create indicator 
variables and polynomial terms, but when computing effects using commands such as 
m argins, m arg in sp lo t, mgen, mtable. and mchange, Stata keeps track of how variables 
are linked. For example, if your model includes age and age-squared and you want to 
compute the effect of increasing age from 20 to 30 on labor force participation, with 
factor variables, S ta ta  automatically makes the corresponding change in age-squared 
from 400 to 900. This important feature of factor-variable notation is considered more 
closely in the next chapter.

Still, sometimes factor variables can be confusing. First, the nam e of the variables 
automatically generated by Stata when fitting a model using factor variables might 
not be obvious. This is important because some postestimation commands, such as 
t e s t  and lincom, require the exact, symbolic name of the variable associated with a 
coefficient. For example, suppose that you run lo g i t  lfp  k5 k618 i .a g e c a t  i.w c 
i .h c  lwg inc and then want to test whether the coefficient for wc equals that for
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he. The command t e s t  wc = he does not work because these are not the names of 
the  factor variables included in the model. Nor does t e s t  i.w c = i .h c  work because
i.w c  and i .h c  tell S ta ta  to create the indicators, but i.w c and i .h c  are not the 
names of the factor-generated variables used in the model. The correct command is 
t e s t  1 .he = 1. wc. To obtain the names associated with each coefficient, referred to as 
symbolic names, one can simply type the name of the last estimation command with 
the  option coeflegend , such as lo g i t ,  co efleg en d . The model is not fit again, but 
th e  names associated with the estimates are listed. For example, fitting a model where 
factor-variable notation creates indicator variables and interactions produces output like 
this:

. logit lfp i.agecat c.age##c.age, nolog
(output omitted )

lfp Coef. Std. Err. z P> 1 z 1 [95*/. Conf. Interval]

agecat
40-49 -.3667924 .3506722 -1.05 0.296 -1.054097 .3205124

50+ -.5599792 .5615575 -1.00 0.319 -1.660612 .5406533

age .2553935 .144441 1.77 0.077 -.0277056 .5384926

c.age#c.age -.0028917 .0016631 -1.74 0.082 -.0061513 .0003678

_cons -4.901053 3.033286 -1.62 0.106 -10.84618 1.044078

Using the coef legend  option, the symbolic names are shown:

. logit, coeflegend 
(output omitted )

lfp Coef. Legend

agecat
40-49 -.3667924 _b[2.agecat]

50+ -.5599792 _b[3.agecat]

age .2553935 _b[age]

c.age#c.age -.0028917 _b[c.age#c.age]

_cons -4.901053 _b[_cons]

Sometimes you might not be sure if your specification of the model using factor- 
variable notation produces the model you want. In some cases, the estimation output 
makes it obvious th a t the model is not what you intended. For example, if you mis­
takenly type age##age and obtain estimates for hundreds of interactions, you quickly 
realize that you meant to type c.age##c.age. O ther mistakes are harder to  catch. For 
example, specifying a binary predictor as i . wc or as wc produces the same estimates of 
parameters but leads to estimates of different quantities when using m argins or the m*
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commands to compute marginal effects (see section 4.5). Accordingly, it is important 
to check that S ta ta’s decoding of your factor term s leads to the specification you want.

One trick that we find useful especially with large datasets, when fitting a model 
can take a long tim e— is to use summarize to  decode your variable list. In this example, 
summarize decodes the factor-variable notation i .a g e c a t  into two indicator variables 
and c.age##c.age into age and age-squared:

. summarize i.agecat c.age##c.age
Variable Obs Mean Std. Dev. Min Max

agecat
40-49 753 .3851262 .4869486 0 1
50+ 753 .2191235 .4139274 0 1

age 753 42.53785 8.072574 30 60

c.age#c.age 753 1874.548 699.5167 900 3600

In Stata 13 and later, value labels are used to label categories of an indicator vari­
able, such as 40-49 above. To see the values rather than the labels, you can add the 
n o fv lab e l option:

. summarize i.agecat c.age##c.age, nofvlabel
Variable Obs Mean Std. Dev. Min Max

agecat
2 753 .3851262 .4869486 0 1
3 753 .2191235 .4139274 0 1

age 753 42.53785 8.072574 30 60

c.age#c.age 753 1874.548 699.5167 900 3600

Output in regression models using factor variables was difficult to  interpret prior to 
S ta ta  13 because the categories of factor variables were not labeled. For example, here 
is the output from Stata 12:

• logit lfp i.agecat i.wc i.hc k5 k618 lwg inc, nolog 
Logistic regression Number of obs

LR chi2(8) 
Prob > chi2

Log likelihood = -452.72367 Pseudo R2

753 
124.30 
0.0000 
0.1207

lfp Coef. Std. Err. z P> 1 z I [95*/. Conf. Interval]

agecat
2 -.6267601 .208723 -3.00 0.003 -1.03585 -.2176705
3 -1.279078 .2597827 -4.92 0.000 -1.788242 -.7699128

l.wc .7977136 .2291814 3.48 0.001 .3485263 1.246901
(output om itted)



3.1.6 Specifying the estimation sample 93

A nd here is the much clearer output in S tata 13:

. logit lfp i.agecat i.wc i.hc k5 k618 lwg inc, nolog 
Logistic regression Number of obs

Log likelihood = -452.72367

LR chi2(8) 
Prob > chi2 
Pseudo R2

753 
124.30 
0.0000 
0.1207

lfp Coef. Std. Err. z P> 1 z I [95'/, Conf. Interval]

agecat
40-49
50+

-.6267601
-1.279078

.208723
.2597827

-3.00
-4.92

0.003
0.000

-1.03585
-1.788242

-.2176705
-.7699128

wc
college .7977136 .2291814 3.48 0.001 .3485263 1.246901

(output om itted)

To take advantage of the improved labeling of factor variables in S ta ta  13 and later, 
you must assign value labels to your indicator variables, which we highly recommend.

3.1.6 Specifying the estimation sample

i f  and in  restrictions can be used to define the sample of observations used to fit the 
model, referred to as the estimation sample, where the syntax for i f  and in  conditions 
follows the guidelines in chapter 2, page 45. For example, if you want to  fit a logit model 
only for women who went to college, you could specify lo g i t  l f p  k5 k618 age he lwg 
i f  wc==l.

Missing data

Estimation commands use listwise deletion to  exclude cases in which there are missing 
values for any of the variables in the model. Accordingly, if two models are fit using 
the same dataset but have different sets of independent variables, it is possible to have 
different samples. The easiest way to understand this is with a simple example. Suppose 
th a t among the 753 cases in the sample, 23 have missing data for a t least one variable. 
If we fit a model using all variables, we would obtain

. use binlfp4-missing, clear
(binlfp4-missing.dta I Mroz data with artificial missing data I 2013-10-18)

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
Logistic regression Number of obs = 730

(output om itted )

Suppose that seven of the missing cases were missing only for k618 and th a t we fit a 
second model excluding k618:

. logit lfp k5 i.agecat i.wc i.hc lwg inc, nolog 
Logistic regression Number of obs
(output om itted)

737
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The estimation sample for the second model increased by seven cases because the seven 
cases with missing data  for k618 were not dropped. Thus we cannot, use a likelihood- 
ratio test or information criteria to compare the two models (see sections 3.2 and 3.3 for 
details), because changes in the estimates could be due either to changes in the model 
specification or to the use of different samples to fit the models. When you compare 
coefficients across models, you want the samples to be the saine. (There are other issues 
with comparing the coefficients of nonlinear probability models, which we will discuss 
in chapter 5.)

Although S tata uses listwise deletion when fitting models, this is rarely the best way 
to handle missing data. We recommend th a t you make explicit decisions about which 
cases to include in your analyses rather than  let cases be dropped implicitly. Indeed, 
we would prefer th a t S tata issue an error ra ther than automatically drop cases.

The mark and markout commands make it simple to explicitly exclude missing data, 
mark markvar generates the new variable markvar that equals 1 for all cases, markout 
mnrkvar varlist changes the values of markvar to 0 for any cases in which values of any 
of the variables in varlist are missing. The following example, where we have artificially 
created the missing data, illustrates how this works:

. use binlfp4-missing, clear
(binlfp4-missing.dta I Mroz data with artificial missing data I 2013-10-18)
. mark nomiss
. markout nomiss lfp k5 k618 agecat wc he lwg inc 
. tabulate nomiss

nomiss Freq. Percent Cum.

0 23 3.05 3.05
1 730 96.95 100.00

Total 753 100.00

Because nomiss is 1 for cases where none of the variables in our models is missing, to 
use the same sample when fitting both models, we add the condition i f  nomiss==l:

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc if nomiss==l, nolog
Logistic regression Number of obs = 730

(output om itted)

• logit lfp k5 i.agecat i.wc i.hc lwg inc if nomiss==l, nolog 
Logistic regression Number of obs = 730

(output om itted )

Instead of selecting cases in each model with if, we could have used drop  if nomiss==0 
to delete observations with missing values before fitting the models.
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A sid e : A nalysis w ith  m issing  d a ta . The complex issues related to  how to appro­
priately estimate parameters in the presence of missing data are beyond the scope 
of our discussion (see Little and Rubin [2002]; Enders [2010]; Allison [2001]; or 
the Stata Multiple-Imputation Reference Manual). We do want to  make two brief 
points. First, a sophisticated but increasingly common approach to missing data 
involves multiple imputations, and S ta ta  has an excellent suite of commands to 
make working with multiply imputed d a ta  simpler than it would be without it. 
W hat Stata does not have, at this writing, is a way of using m argins with its 
multiple im putation suite. Because our prim ary methods of interpretation use the 
margins command, these cannot be used with multiply imputed data. Second, 
one way that d a ta  may be missing in a dataset is called missing a t random (MAR.). 
The name can be misleading: it does not mean missing completely at random but 
instead means th a t data are missing in a  way th a t unbiased predictions of missing 
values can be made from other variables in the dataset itself. Even in the situa­
tion where missing at random data does not bias estimates (a m atter outside the 
scope of our discussion), the techniques of interpretation that comprise much of 
our book involve using either the mean of a variable or the m ean of an estimated 
effect size calculated over all observations. In either case, missing data  can cause 
problems for computation of these averages even in cases in which the estimation 
of coefficients is unbiased.

Information about missing values

Although mark and markout work well for determ ining which observations have missing 
values for a set of variables, these commands do not provide information on the patterns 
of missing data among these variables. There are three types of questions th a t we might 
ask:

1. How many observations have no missing values? How many have missing data for 
one variable? For two variables? And so on.

2. What percentage of cases are missing for each variable?
3. What patterns of missing data are there among the variables? For example, do 

missing values on one variable tend to  occur when there are missing values on 
some other variable?

We will consider each of these questions in turn. First, to determine the number 
of observations with a given number of missing values on a set of variables, the easiest 
way is to use the egen command with the row m iss(varlist) function.This creates a new 
variable that contains the number of missing values for each observation, for which we 
can use ta b u la te  to view the frequency distribution. For example,
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. use gsskidvalue4, clear
(gsskidvalue4.dta I GSS 1993 & 1994 on values for kids I 2014-03-02)
. egen missing = rowmiss(age anykids black degree female kidvalue othrrace 
> year income91 income)
. tabulate missing

missing Freq. Percent Cum.

0 2,684 58.37 58.37
1 1,709 37.17 95.54
2 195 4.24 99.78
3 7 0.15 99.93
4 3 0.07 100.00

Total 4,598 100.00

Next, we could generate a variable, nomiss, th a t equals 1 if an observation has no miss­
ing values and 0 if an observation lias any missing values: gen nom iss = (missing==0). 
This is an alternative to using mark and m arkout to create an indicator variable for 
whether an observation has missing values for any variable in a list.

Second, if we w ant information on which variables have missing values, we can use 
m isstab le  sum m arize.1 Here is an example:

. misstable summarize age anykids black degree female kidvalue othrrace 
> year income91 income, all showzero

0bs<.

Variable 0bs=. 0bs>. 0bs<.
Unique
values Min Max

age 0 0 4,598 73 18 99
anykids 14 0 4,584 2 0 1
black 0 0 4,598 2 0 1
degree 14 0 4,584 5 0 4
female 0 0 4,598 2 0 1

kidvalue 1,609 0 2,989 4 1 4
othrrace 0 0 4,598 2 0 1

year 0 0 4,598 2 1993 1994
income91 0 0 4,598 24 1 99
income 495 0 4,103 21 1000 75000

The a l l  option prints information for all the variables in the variable list. Otherwise, 
only those variables with at least one missing value are displayed. The showzero option 
displays each 0 in the table as 0 rather th an  as a blank space. These options make the 
output clearer for didactic purposes, although you may prefer to om it them in practice.

The output for m isstab le  summarize distinguishes between missing values that 
are coded with the system missing value ( .)  and those coded w ith extended missing 
values ( .a  through .z). Some datasets use extended missing values to distinguish why 
different cases have missing values, like coding people who respond “don’t know” to a

4. For readers of previous editions of this book, we now use the official Stata command misstable 
instead of the misschk command from SPost9.
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survey question as .d  and coding those for whom the question is inapplicable as . i .  In 
th e  m iss ta b le  summarize output, the first column of numbers is the number of cases 
w ith  missing values coded as the system missing value (.), the second is the number 
of cases with extended missing values, and the third is the number of cases with no 
missing values.

To understand the labels for these columns, you need to know th a t S ta ta  consid­
ers missing values to be numerically larger than nonmissing values and th a t extended 
m issing values are considered larger than the system missing value. Accordingly, Obs<. 
indicates nonmissing values and Obs>. indicates extended missing values th a t are larger 
th a n  ., the system-missing value. In this example, we see that only four variables have 
missing values: anykids (14 cases), degree (14), k id v alu e  (1.G09), and income (495).

Third, to obtain information on the patterns of missing data, we use m isstab le  
p a t te rn s :

. misstable patterns age anykids black degree female kidvalue othrrace
> year income91 income, freq

Missing-value patterns 
(1 means complete)

Frequency
Pattern 
1 2  3 4

2,684 1 1 1 1

1,410 1 1 1 0
294 1 1 0 1
185 1 1 0 0
6 0 1 0 0
5 1 0 0 1
4 1 0 1 1
3 0 0 0 0
3 0 1 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0

4,598
Variables are (1) anykids (2) degree (3) income (4) kidvalue

The freq  option displays results as frequencies rather than as percentages. Each row 
of the output represents a unique pattern of missing values, where 0 indicates a missing 
value and 1 indicates a nonmissing value. In the top row, the pattern  is all Is, showing 
th a t 2,684 cases had no missing values for any variable. In the second row, we see the 
most common pattern of missing values was where there were no missing values for 
variables 1, 2, and 3, with missing values for variable 4. At the bottom  of the table, 
we see which number corresponds to which variable; for example, variable 1 is anykids. 
Only 4 variables are included even though 10 variables were in the variable list. This is 
because only variables with some missing values are included in the table.
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The m isstab le  summarize command has a g enera te  (stubname) option to gener­
ate new variables th a t indicate whether observations are missing for a particular vari­
able. For each variable that has missing da ta , a new variable is created whose name 
is stubname followed by the name of the variable with missing data. The new variable 
is assigned a value of 1 if the variable is missing for an observation and 0 if it is not 
missing.

These new variables could be used, for example, in a binary logit model of the 
sort we describe in chapters 5 and 6 using basic demographics as predictors of whether 
observations are missing. F irst, we create the indicator variables:

. misstable summarize age anykids black degree female kidvalue othrrace 
> year income91 income, gen(m_)

Obs<.

Variable 0bs=. 0bs>. 0bs<.
Unique
values Min Max

anykids 14 4,584 2 0 1
degree 14 4,584 5 0 4

kidvalue 1,609 2,989 4 1 4
income 495 4,103 21 1000 75000

Then, we fit a logit model:

. logit m_income female black othrrace age, nolog
Logistic regression Number of obs

LR chi2(4) 
Prob > chi2

Log likelihood = -1520.1691 Pseudo R2

4598 
100.88 
0.0000 
0.0321

m_ income Coef. Std. Err. z P>lz| [957, Conf. Interval]

female .4777436 .1023335 4.67 0.000 .2771736 .6783135
black .5148555 .1308433 3.93 0.000 .2584074 .7713035

othrrace .2518131 .2355404 1.07 0.285 -.2098377 .7134639
age .0210619 .0026597 7.92 0.000 .0158489 .0262748

_cons -3.521194 .1612844 -21.83 0.000 -3.837306 -3.205082

Although this is only an informal assessment of the missing data, it suggests th a t missing 
values on income are associated with being female, black, and older.

Postestimation commands and the estimation sample

Excepting p re d ic t ,  postestimation commands for testing, assessing fit, and making pre­
dictions use the observations from the estimation sample, unless you specify otherwise. 
Accordingly, with these commands you do not need to worry about dropping cases that 
were deleted because of missing data during estimation. Stata autom atically selects 
cases from the estimation sample by using a  special variable named e (sam ple) that is 
created by every estimation command. This variable equals 1 for cases used to fit the
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model and equals 0 otherwise. You can use this variable to select cases with i f  condi­
tions, as in sum fem ale i f  e(sam ple). But you cannot otherwise use this variable as 
if it was an ordinary variable in your dataset. For example, you cannot use a command 
like ta b u la te  fem ale e(sam ple). Instead, you need to generate an ordinary variable 
equal to e(sam ple), which then allows you to tabu la te  the variable or do anything else 
w ith it.

If we add a variable with missing data to the model we estimated immediately above, 
we can see how this works:

. logit m_income female black othrrace age i.degree, nolog
Logistic regression Number of obs = 4584

(output omitted )
. generate included = e(sample)
. label var included "Cases included in logit on m_income"
. tabulate included

Cases 
included in 

logit on 
m_income Freq. Percent Cum.

0 14 0.30 0.30
1 4,584 99.70 100.00

Total 4,598 100.00

The generated variable inc luded  has 4,584 cases equal to 1, which is the same as the 
number of cases used to fit our model. The remaining 14 cases are 0, which corresponds 
with the 14 cases missing on the degree variable th a t we showed in the output from 
m isstab le  above.

3.1.7 Weights and survey data

Weights indicate that some observations should be given more weight than  others when 
computing estimates. The syntax for specifying weights is [ type=vamame ] , where the 
square brackets are part of the command, type is the type of weight to be used, and 
vamame is the variable containing the weights. S ta ta  recognizes four types of weights:

1. fweights (frequency weights) indicate th a t an observation represents multiple 
observations with identical values. For example, if an observation has an fweight 
of 5, this is equivalent to having five identical, duplicate observations. If you do 
not include a weight modifier in your estim ation command, this is equivalent to 
specifying [fw e ig h t= l] .

2. pweights (sampling weights) denote the inverse of the probability th a t the ob­
servation is included because of the sampling design. For example, if a  case has 
a pweight of 1,200, that case had a 1 in 1,200 chance of being selected into the 
sample and in th a t sense represents 1,200 observations in the population.
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3. aweights (analytic weights) are inversely proportional to the variance of an obser­
vation. The variance of the j th  observation is assumed to be o 2/wj ,  where Wj is 
the analytic weight. Analytic weights are used most often when observations are 
averages and the weights are the num ber of elements that gave rise to the average. 
For example, if each observation is the cell mean from a larger dataset, the data 
are heteroskedastic because the variance of the means decreases as the number of 
observations used to calculate them increases.

4. iw eights (importance weights) have no formal statistical definition. They are 
used by programmers to facilitate certain  types of computations.

Frequency weights differ notably from the other types because a dataset th a t includes 
an fw eight variable can be used to create a  new dataset that yields equivalent results 
without frequency weights by simply repeating observations wit h duplicate values. As a 
result, frequency weights pose no issues for various techniques w<> consider in this book.

The use of weights is a complex topic, and it is easy to apply weights incorrectly. If 
you need to use weights, we encourage you to  read the discussions in [u] 11.1.6 weight 
and [u] 20.23 W e ig h ted  e s tim a tio n . W inship and Radbill (1994) have an accessible 
introduction to weights in the linear regression model. Heeringa, West, and Berglund 
(2010) provide an in-depth treatment along with examples using S ta ta  in their excellent 
book on complex survey design, a topic we consider next.

Complex survey designs

Complex survey designs have three major features. First, samples can be divided into 
s tra ta  within which observations are selected separately. For example, a sample might 
be stratified by region of the country so th a t the researchers can achieve precisely the 
number of respondents they want from each region.

Second, samples can use clustering in which higher levels of aggregation, called 
primary sampling units, are selected first and then individuals are sampled from within 
these clusters. A survey of adolescents might use schools as its prim ary sampling unit 
and then sample students from within each school. Observations within clusters often 
share similarities leading to violations of the assumption of independent observations. 
Accordingly, when there is clustering, the usual standard errors will be incorrect because 
they do not adjust for the lack of independence.

Third, individuals can have different probabilities of selection. For example, the 
design might oversample minority populations. Such oversampling allows more precise 
estimates of subgroup characteristics, but probability weights m ust be used to obtain 
accurate estimates for the population as a whole.

Stata’s svy commands for samples with complex survey designs (see the Stata Survey 
Data Manual for details) provide estimates where the standard errors are adjusted for 
stratification, clustering, and weights. If the sample design involves weights or cluster­
ing, but not stratification, then models can be fit using standard regression commands
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w ith  the ip\ie±ght=weight-variable'\ and v c e ( c lu s te r  cluster-variable) options. The 
resu lts  will be identical to those from svy. If the  sample design involves stratification, 
th en  svy commands m ust be used to get the correct standard errors.

T he first step in using commands for complex samples is to specify the key features of 
th e  survey design by using the svyset command. To illustrate this, we use an example 
from  Heeringa, West, and Berglund (2010) based on the Health and Retirem ent Study, 
a representative sample of American adults over age 50.5 The primary sampling units 
(PSUs). another name for clusters, are defined by the variable secu, the s tra ta  by the 
variable stratum , and the probability weights by the variable kwgtr. We use svyset 
as follows:

. use svyhrs4, clear
(svyhrs4.dtal Health and Retirement Study 2006 I 2014-03-04)
. svyset secu [pweight=kwgtr], strata(stratum)

pweight: kwgtr
VCE: linearized 

Single unit: missing 
Strata 1: stratum 

SU 1: secu 
FPC 1: <zero>

Stata will use this information automatically when a subsequent command that 
supports survey estimation is prefixed by sv y :. In our example, the outcome is whether 
th e  respondent has arthritis, and the independent variables are gender, education, and 
age. To fit a logit model, discussed in detail in chapter 5, we begin the command with 
the  prefix svy: and afterward specify the l o g i t  command as we otherwise would.

. svy: logit arthritis male i.ed3cat age 
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 56 Number of obs = 18375
Number of PSUs = 112 Population size = 76085117

Design df = 56
F ( 4, 
Prob > F

53) 204.28 
0.0000

arthritis Coef.
Linearized 
Std. Err. t P> 111 [95*/, Conf. Interval]

male -.5771248 .0442301 -13.05 0.000 -. 6657284 -.4885212

ed3cat 
12-15 years 
16+ years

-.2135877
-.6355568

.0560052

.0650174
-3.81
-9.78

0.000
0.000

-.3257796
-.7658022

-.1013957
-.5053113

age
_cons

.0478163
-2.324736

.0021773

.1546753
21.96

-15.03
0.000
0.000

. 0434547 
-2.634588

.0521779
-2.014884

5. We thank Steve Heeringa for allowing us to use these data.
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The results indicate that men are less likely than women with similar characteristics 
to  have arthritis, th a t those with more education are less likely to  have arthritis, and 
th a t the probability of having arthritis increases as people get older. More precise 
interpretation of binary models is considered in chapter 6. Two differences merit noting 
between the information provided in the above results and those provided when svy: 
is not used. First, the svy results indicate both the  number of s tra ta  and the number 
of PSUs in the sample. Second, in addition to the sample size, the results present the 
population size implied by the probability weights. In this example, the size of the 
target population is over 76 million.

Models fit using complex survey methods pose two problems for the postestimation 
techniques used in this book. First, measures of fit are often based on the model’s 
likelihood. W ith survey estimation, the “likelihood” on which model estimates are 
based is not a true likelihood (Sribney 1997), so any technique th a t requires a value for 
the likelihood is not available.6 Second, some methods of interpretation that we use 
require estimates of the standard deviation of one or more variables in the model, which 
are not always available with survey estimation.

Stata supports survey estimation for nearly all the models we discuss in this book. 
If the model you are using does not work w ith the svy: prefix, remember th a t nearly all 
regression commands in S tata allow weights and clustering; although not ideal, this is 
a reasonable way to  proceed if the regression command you are using does not support 
the svy: prefix.

3.1.8 Options for regression models

The following options apply to most regression models. Unique options for specific 
models are considered in later chapters.

noconstan t constrains the intercept to equal 0. For example, in a linear regression, the 
command r e g re s s  y x l x2, noconstan t would fit the model y = 0\X\ +  P2 X2  +  £•

nolog suppresses the  iteration history, which shortens the output. If you use this option, 
which we often do, and have problems obtaining estimates, it is a good idea to refit 
the model w ithout this option and with the t r a c e  option.

t r a c e  lets you see the values of the parameters for each step of th e  iteration. This can 
be useful for determining which variables may be causing a problem if your model 
has difficulty converging.

le v e l  (# )  specifies the level of the confidence interval. By default, S tata provides 95% 
confidence intervals for estimated coefficients, meaning that the interval around the 
estimated /3 would capture the true value of 0  95% of the time if repeated samples 
were drawn, l e v e l  () allows you to specify other intervals. For example, le v e l (90)

6. When robust standard errors are used without svy adjustments, Stata returns a “pseudolikelihood”, 
and we use this when computing some goodness-of-fit statistics. Because goodness-of-fit measures 
might be considered merely heuristic anyway, we think this is reasonable.
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specifies a 90% interval. You can also change the default level w ith the command 
s e t  le v e l. For example, s e t  le v e l 90 specifies 90% confidence intervals.

vce ( c lu s t e r  cluster-variable') specifies th a t the observations are independent across the 
clusters th a t are defined by unique values of cluster-variable but are not necessar ily 
independent within clusters. Specifying this option leads to robust standard errors, 
as discussed below, with additional corrections for the effects of clustered data. See 
Hosmer, Lemeshow, and Sturdivant (2013, chap. 9) for a detailed discussion of logit 
models with clustered data. Using vce ( c lu s t e r  cluster-variable) does not affect 
the  coefficient estim ates but can have a large impact on the standard errors.

v ce(vcetype)  specifies the type of standard errors th a t are reported, vce (ro b u st) re­
places traditional standard errors with robust standard errors, which are also known 
as Huber, W hite, or sandwich standard errors. These are discussed further next, in 
section 3.1.9. Gould, Pitblado, and Poi (2010) provide details on how robust stan­
dard errors are computed in Stata. Robust standard errors are automatically used 
if the vce ( c lu s t e r  cluster-variable) option is specified, if probability weights are 
used, or if a model is fit using svy. In earlier versions of Stata, this option was sim­
ply ro b u st. Option vce (b o o ts tra p )  estim ates the variance-covariance matrix by 
bootstrap, which involves repeated reestimation on samples drawn with replacement 
from the original estimation sample. Option v ce (jack k n ife ) uses the jackknife 
method, which involves refitting the model N  times, each time leaving out a single 
observation. Type h e lp  vce o p tio n  for further details.

v sq u ish  eliminates the blank lines in output that are inserted when factor-variable 
notation is used. We sometimes use nolog and vsqu ish  in this book to save space.

.1.9 Robust standard errors

Robust standard errors, which are computed by S tata when the ro b u s t option is 
specified, go by a variety of names, including Huber-Eicker-W hite, clustered, White, 
heteroskedasticity-consistent, HCCM, and sandwich standard errors. In  the last decade, 
their use has become increasingly common. For example, King and Roberts (2014) con­
ducted a survey of articles in the American Political Science Review  and found that 
66% of the articles using regression models reported robust standard errors.

Robust standard errors are considered robust in the sense that they are correct in 
the presence of some types of violations of the assumptions of the model. For example, if 
the correct model is a binary logit model but a binary probit model is fit, the model has 
been misspecified. The estimates obtained by fitting a logit model cannot be maximum 
likelihood estimates because an incorrect likelihood function is being used (that is, a 
logistic probability density is used instead of the correct normal density). W hen a model 
is misspecified in this way, the usual standard errors are incorrect (W hite 1982). For 
this reason, Arminger (1995) argues that robust standard errors should be broadly used. 
He writes: “If one keeps in mind that most researchers misspecify the model . . . ,  it is 
obvious that their estimated parameters can usually be interpreted only as minimum
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ignorance estim ators and th a t the standard errors and test statistics may be far away 
from the correct asymptotic values, depending on the discrepancy between the assumed 
density and the actual density that generated the data .”

In some cases, robust standard errors are likely to work quite well. If violations 
of the underlying model are minor, as we would argue is the case if the true model is 
logit and you fit a probit model, then the robust standard errors are preferred, but the 
differences are likely to be quite small. In our informal simulations, they are trivially 
different. On the other hand, if you fit a Poisson regression model (see chapter 9) in 
the presence of overdispersion, Cameron and Trivedi (2013, 72 80) provide convincing 
evidence that robust standard errors provide a more accurate assessment of statistical 
significance. If there is clustering in the data , robust standard errors should be used, 
ideally by specifying v c e (c lu s te r  cluster-variablc) or by using svy estimation.

Arguments for robust standard errors are compelling. Some argue they should be 
used nearly always in practice. At the same time, robust standard  errors are not a 
general solution to problems of misspecification, and they have im portant limitations. 
Kauermann and Carroll (2001) show that even when the model is correct, robust stan­
dard errors have more sampling variability, and sometimes far more, than  the usual 
standard errors. This is “the price that one pays to  obtain consistency” . These theoret­
ical results are consistent with simulations by Long and Ervin (2000), who found that 
in the linear regression model robust standard errors often did worse than  the usual 
standard errors in samples smaller than 500. They recommended using small-sample 
versions that can be computed in S tata for r e g re s s  with the options hc2 or hc3. Among 
nonlinear models, Kauermann and Carroll (2001) consider the Poisson re g re s s io n  model 
and the logit model. They showed that the loss of efficiency when using robust standard 
errors can be worse than th a t occurring in normal models. However, we are unaware of 
small-sample versions of robust standard errors for nonlinear models.

There is a second and potentially very serious problem. If robust standard errors are 
used because a model is misspecified, it is im portant to consider w hat other implications 
misspecification may have. Freedman (2006) is dismissive of robust standard errors 
for many of the models discussed in this book for this reason, writing pointedly: "It 
remains unclear why applied workers should care about the variance of an e s t i m a t o r  
for the wrong param eter.” Cameron and Trivedi (2010, 334) note that i f  a model i s  
misspecified, the inconsistency of the param eter estimate is a far more serious problem 
than the consistency of the standard error.

King and Roberts (2014) argue that differences between robust and classical errors 
are “like canaries in the coal mine, providing clear indications th a t your model is mis­
specified and your inferences are likely biased” . They suggest th a t a comparison of 
robust and nonrobust standard errors should be used as an informal test of model mis­
specification. Researchers should try to address the specification problems that cause 
robust and classical standard errors to differ, instead of considering robust s t a n d a r d  
errors to have solved the problematic implications of misspecification.
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We agree with the advice th a t researchers should not simply opt for robust standard 
errors without thought as to why the standard errors might differ. This is especially so 
w hen misspecification has direct implications for estimates of quantities of interest, as it 
often  does for the models considered in this book. Recall that in models such as logit and 
p ro b it, unlike in the linear regression model, excluding an independent variable that is 
uncorrelated with other independent variables will bias the estimates of all parameters. 
Here we agree with W'hite (1980, 828), one of the authors for whom robust standard 
erro rs are sometimes named, who cautioned th a t robust variance estim ation “does not 
relieve the investigator of the burden of carefully specifying his models. Instead, it is 
hoped that the statistics presented here will enable researchers to be even more careful 
in specifying and estim ating econometric models.”

In  the end, what to  do and advise about robust standard errors has proven one 
of the most difficult issues for us in revising to the current edition of this book. We 
received different advice when we discussed the m atter with people. We could have, with 
some justification, used robust standard errors every time we fit a model in this book. 
One cost of doing so would include not being able to  introduce methods th a t require 
likelihoods instead of pseudolikelihoods, including most measures of model fit that we 
discuss and likelihood-ratio tests. These are presently widely used in practice and also 
are didactically useful in understanding how the models we discuss work. Consequently, 
we decided against eliminating these sections of the book. To avoid confusing readers by 
switching back and forth between different specifications, we do not use robust standard 
errors for most of the examples we show.

3.1.10 Reading the estimation output

Because we have already discussed the iteration log, in the following example we sup­
press it with the no log  option and consider other parts of the ou tput from estimation 
commands. Although the sample output is from lo g i t ,  our discussion applies generally 
to  other regression models fit by maximum likelihood. We comment briefly below on 
changes to the estimation output for svy estim ation. The following output from lo g i t  
illustrates how Stata displays results from regression commands:
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. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
Logistic regression Number of obs =* 753

LR chi2(8) = 124.30
Prob > chi2 = 0.0000

Log likelihood = -452.72367 Pseudo R2 = 0.1207

lfp Coef. Std. Err. z P>lz| [95*/. Conf. Interval]

k5
k618

-1.391567
-.0656678

.1919279
.068314

-7.25
-0.96

0.000
0.336

-1.767739
-.1995607

-1.015395
.0682251

agecat
40-49
50+

-.6267601
-1.279078

.208723
.2597827

-3.00
-4.92

0.003
0.000

-1.03585
-1.788242

-.2176705
-.7699128

wc
college .7977136 .2291814 3.48 0.001 .3485263 1.246901

he
college

lwg
inc

_cons

.1358895

.6099096
-.0350542
1.013999

.2054464 

. 1507975 

.0082718 

.2860488

0.66
4.04
-4.24
3.54

0.508
0.000
0.000
0.000

-.266778
.314352

-.0512666
.4533539

.5385569 

.9054672 
-.0188418 
1.574645

Header

1. Log l ik e l ih o o d  = -452.72367 is the  value of the log likelihood at convergence.

2. Number of obs is the number of observations, excluding those with missing values 
and those excluded with i f  and in  conditions.

3. LR ch i2 (8) is the value of a likelihood-ratio chi-squared for the test of the null 
hypothesis th a t  all the coefficients associated with independent variables are si­
multaneously equal to 0 (see page 119 for details). The num ber in parentheses is 
the degrees of freedom for the test. When robust standard errors or probability 
weights are used, results from a Wald test of the same null hypothesis are shown 
instead.

4. Prob > ch i2  indicates the p-value.

5. Pseudo R2 is the measure of fit also known as McFadden’s (1974) R 2. Details on 
how this measure is computed are given on page 126.

Estimates and standard errors

1. The leftmost column lists the variables in the model, with the dependent variable 
at the top. The independent variables are in the same order as they were typed on 
the command line. The constant, labeled _cons, is last. W ith S tata 13 and later, 
factor variables are labeled with their value labels. For example, the indicator 
variable for agecat==2 is labeled as ag ecat followed by 40-49, which is the value
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label for category 2. In S ta ta  11 and 12, or with the n o fv la b e l option in Stata 
13 and later, the indicator variable for agecat==2 is labeled as ag eca t followed 
on the next line by 2. Retyping the estim ation command followed by coef legend 
will list the symbolic names of each regression parameter.

2. Column Coef . contains estimates of the regression coefficients.

3. Column S td . E r r .  contains the standard  errors of the estim ates. With the 
v ce (ro b u st) option, these are labeled Robust S td . E rr .

4. Column z contains the £ test equal to the estim ate divided by its standard error.

5. Column P> I z I is the two-tailed significance level. A significance level listed as 
0.000 means th a t p < 0.001. For example, p =  0.00049 is rounded to 0.000.

6. Column [95% C onf. In te rv a l]  contains the confidence interval for each esti­
mate. Instead of testing a  specific hypothesis (for example, H q: (3 = 0), we can 
use a confidence interval that contains the true parameter w ith a chosen proba­
bility, known as the confidence level. For a given confidence level, the estimated 
upper and lower bounds define the confidence interval.

Differences in output for svy estimation

W ith  svy estimation, the output differs, reflecting th a t the estimates are no longer ML 
estim ates.

1. In addition to the sample size, an estim ate of the population size is shown.
2. The likelihood-ratio test that all coefficients are 0 is replaced by an F  test.

3. The pseudo-/?2 is not shown because it is based on the log likelihood.

4. ¿-values are shown instead of 2-values.

3.1.11 Storing estimation results

S ta ta  considers the results of a model that has just been fit to be the active estimates. 
After fitting a model, you can type e re tu rn  l i s t  to  see a summary of the information 
th a t  Stata stores about the active estimates. Postestimation commands are based on 
th e  active estimates. When a new model is fit, its results become the active estimates, 
replacing the previous model’s estimates.

The estim ates s to r e  and estim ates  save commands preserve the active esti­
m ation results so that they can be retrieved and used even after a new model is fit. 
e s tim a te s  s to re  saves the active estimates to memory, while e s t im a te s  save saves 
them  to a file. Storing estimation results is extremely useful for several reasons. For one, 
commands like l r t e s t  and es tim a tes  t a b le  use results from more than one model. 
Because only one set of estimates can be active at a time, stored estim ates are the way 
we can refer to multiple sets of estimates. Additionally, the m argins command, used 
extensively in later chapters, makes predictions based on estimates from a model that 
has already been fit, meaning the active estimates. For some applications, however, we
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will need to overwrite the active estimates from our regression model with estimates 
from margins by using the p o st option. Once th is is done, the estimates from the 
regression model are no longer active and need to be restored (discussed below) as the 
active estimates if you want to do additional postestimation analysis of the model.

After running any estimation command, the syntax is 

e s t imates s to re  name

For example, to store the estimation results with the name lo g i t  1. type

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

( output om it ted )

. estimates store logitl

estim ates  r e s to r e  restores the stored estim ates to  memory w ithout fitting the model 
again:

e s t imates re s to r e  name

After running e s tim a te s  re s to re ,  the estim ation results in memory are the same as 
if we had just fit th e  model, even though we may have fit other models in the interim. 
Of course, we need to be careful about changes made to the d a ta  after fitting the 
model, but the same caveat about not changing the data between fitting a model and 
postestimation analysis applies even when e s tim a te s  s to re  and e s tim a te s  re s to re  
are not used.

(Advanced) Saving estimates to a file

We mark this section as advanced because most of the tim e we find 
that storing estimation results in memory is sufficient. This section 
can be skipped unless you have a need to store estimates to  disk. The 
most likely case would be if you are fitting a model that takes hours to 
estimate, you may want to save the result to a file so you can use them 
later w ithout refitting the model. 

_______________________________________________________________
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Because e s tim a te s  s to r e  holds the estimates in memory, estimates stored in one Stata 
session are not available in the next. Even within a S ta ta  session, the command c le a r  
a l l  erases stored estimates. To use estimates in a  later session or after clearing memory, 
you can use e s t im a te s  save to save results to a  disk file:

e s t im a tes  save filename, rep la ce

For example, e s t im a te s  save m odell, r e p la c e  will create the file m o d e ll .s te r .

We can load previously saved estimation results with e s tim ates  use:

e s t im ates  use filename

e s t im a te s  use restores the estimates almost as if we had just fit the model, and the 
“alm ost” here is very important. As described earlier, when we fit a model, Stata 
creates the variable e(sam ple) to indicate which observations were used when fitting 
the  model. Some postestimation commands need e (sample) to produce proper results. 
However, e s tim a te s  use does not require th a t the d a ta  in memory are the d a ta  used to 
estim ate the saved results. You can even run e s t im a te s  use without data  in memory. 
Accordingly, e s tim a te s  use does not restore the e(sam ple) variable. Although this 
prevents some postestimation commands from working, this is better than having them 
give wrong answers because the wrong dataset is in memory.

To deal with this issue, you can reset e (sam p le). When doing this, you are respon­
sible for making sure that the data loaded to  memory are the same as the data when 
the  model was originally fit. Assuming the proper data are in memory, you use the 
e s tim a te s  esample command to respecify the outcome and independent variables, the 
i f  and in  conditions, and the weights that were used when the model was originally 
fit. e(sam ple) is then set accordingly. The syntax is

e s t im ates esample varlist [i f ] [ in ] [ weight ]

To show how this works, we present an example that uses a command we have not 
yet introduced, e s t a t  summarize, which provides summary statistics 011 the estimation 
sample that was used to compute the active estim ates. First, we fit a model and show the 
summary statistics for the estimation sample. Then, we save the estim ates as modell:
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. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women | 2013-07-15) 
. logit lfp k5 if wc==l, nolog
Logistic regression Number of obs 

LR chi2(l)
212

17.91

Log likelihood = -124.06386
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.0673

lfp Coef. Std. Err. z P> 1 z 1 [95*/. Conf. Interval]

k5 -.9348133 .2347982 -3.98 0.000 -1.395009 -.4746173
_cons 1.092971 .1765354 6.19 0.000 .7469683 1.438974

. estât summarize 
Estimation sample logit Number of obs = 212

Variable Mean Std. Dev. Min Max

lfp .6792453 .4678714 0 1
k5 .3301887 .6634921 0 3

. estimates save modell, replace 
(note: file modell.ster not found) 
file modell.ster saved

(Because of the i f  wc==l condition specified with lo g i t ,  the estim ates are based on 
212 cases, not the 753 cases in the entire sample.) Next, we simulate restarting Stata 
with the c le a r  a l l  command. We then bring the estimates we saved to a file back as 
the active estimates with e s tim a tes  use, and we replay the estimates:

clear all
estimates use modell 
estimates replay

active results

Logistic regression

Log likelihood = -124.06386

Number of obs 
LR chi2(l) 
Prob > chi2 
Pseudo R2

212 
17.91 

0.0000 
0.0673

lfp Coef. Std. Err. z P> 1 z 1 [957, Conf. Interval]

k5 -.9348133 .2347982 -3.98 0.000 -1.395009 -.4746173
_cons 1.092971 . 1765354 6.19 0.000 .7469683 1.438974

estimates describe 
Estimation results produced by 

. logit lfp k5 if wc==l, nolog

We can see th a t the old estimates are now active because the e s tim a te s  rep lay  
command displayed the same results for our model that we had before. We also ran
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e s t i m a t e s  d e sc r ib e , which displays the command used to fit the model. All of this 
w orks even though we do not have any data in memory.7

E ven  if there are d a ta  in memory when e s t im a te s  use is run, S ta ta  is cautious 
a n d  does not presume they are the same d a ta  used to  fit the model: if you load the 
d a ta  w ith use and type e s t a t  summarize, yon get an error. To avoid this error, after 
lo ad in g  the same data, we run the e s tim a te s  esam ple command:

. use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women I 2013-07-15)
. estimates esample: lfp k5 if wc==l 
. estat summarize
Estimation sample logit Number of obs = 212

Variable Mean Std. Dev. Min Max

lfp .6792453 .4678714 0 1
k5 .3301887 .6634921 0 3

W ith  e s tim a te s  esam ple, we must specify the same variables and conditions as when 
we fit the model. Then e s t a t  summarize will produce the same results it did after we 
fit th e  model initially.

3.1.12 Reformatting output with estimates table

e s t im a te s  ta b le  reformats the results from an estimation command to look more like 
th e  tables that are seen in articles and books, e s tim a te s  ta b le  also makes it easier 
to  move estimation results into a word processor or spreadsheet to make presentation- 
quality  tables. We strongly recommend using this command or some other automated 
procedure rather than  retyping results to make tables. Not only is this less tedious, 
b u t  it diminishes the possibility of errors. Also, if you revise your model and used 
e s t im a te s  ta b le  in your do-file, then you autom atically have the corrected tables.

The syntax is

e s t im ates ta b le  [ model-namel [ model-name2 . . .  ] ] [ , options ]

where model-name# is the name of a model whose results were stored using es tim ates  
s to r e .  If model-name# is not specified, the estim ation results in memory are used.

Here is a simple example th a t lets us compare estimates from similarly specified logit 
and  probit models, a  topic considered in detail in chapter 5. We s ta rt by fitting the two 
models and using e s tim a te s  s to re  to save the estimates:

7. Of course, postestimation commands that require the data, such as margins, will not work.
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. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15) 
. logit lfp k5 i.agecat i.wc, nolog 

(output om itted )
. estimates store logit_model

. probit lfp k5 i.agecat i.wc, nolog 
(output o m itted)

. estimates store probit_model

We combine the estim ates by using e s tim a te s  ta b le :

. estimates table logit_model probit_model, b(%12.3f) t varlabel

Variable logit_model probit_model

# kids < 6 -1.351 -0.820
-7.27 -7.56

agecat
40-49 -0.624 -0.374

-3.18 -3.17
50+ -1.190 -0.723

-5.27 -5.29

wc
college 0.832 0.500

4.53 4.57
Constant 0.889 0.540

5.40 5.50

legend: b/t

e s tim a te s  ta b le  provides great flexibility for what you include in your table. Although 
you should check the Stata Base Reference Manual or type help  e s t im a te s  ta b le  for 
complete information, here are some of the most basic and helpful options:

b(form at) specifies the format used to print the coefficients. For example, b(°/,9.3f) 
indicates the estim ates are to be in a column nine characters wide with three decimal 
places. For more information 011 formats, see h e lp  format or the Stata User's Guide.

v a rw id th (# )  specifies the width of the column th a t includes variable names and labels 
on the left side of the table. This is often needed when variable labels are used.

k eep (varlist) or d ro p (varlist) specify which of the independent variables to include in 
or exclude from the table.

se[(/o m af)] , t[ (  form at)], and p[C.format)] request standard errors, t or z statistics, 
and p-values, respectively. By specifying the format, you can have a different number 
of decimal places for each statistic, for example, b(°/09 .3 f) and t(% 9 .2 f) .8

8. estimates table always uses t for the test statistic, even though, as we will see in later chapters, 
in most of the cases considered in the book the test statistic is a 2 statistic and not a t statistic. 
The test statistic is correctly labeled in the output for the estimation command itself, and you 
should edit any Vs that should be z’s in tables that you present.
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s t a x  tells S ta ta  to p rin t one sta r by a coefficient if the /> value is less than 0.05, two 
s ta rs  if less th an  0.01, and three stars if less than  0.001. The s t a r  option cannot be 
used  in conjunction with the se. t ,  or p options.

v a r l a b e l  requests th a t  variable labels be used instead of variable names in the rows of 
th e  table. Prior to  S ta ta  13, this option was nam ed lab e l.

s t a t s  (statlist) indicates that the scalar statistics in statlist should be included in the 
base of the table. In  statlist, N requests the sample size, a ic  requests Akaike s infor­
m ation criterion, and  b ic  requests the Bayesian information criterion. To determine 
which other statistics can be included, after you fit a model, run e r e tu rn  l i s t ,  for 
example,

. ereturn list 
scalars:

e(r2_p) = .0830969594435258
e(N_cds) = 0
e (N_cdf) = 0

e(p) = 1.14892453941e-17
e(chi2) = 85.56879559694858
e(df_m) = 4
e(ll_0) = -514.8732045671461

e(k_eq_model) = 1
e(ll) = -472.0888067686718

(output om itted)

The names of any of the scalars shown by e r e tu rn  l i s t  can be included in statlist. 
To determine w hat each scalar contains, use the command help  estimation-command 
(for example, h e lp  lo g i t )  and check the section Stored results.

Although e s t im a te s  ta b le  works well for basic tables, it is not as flexible as some 
programs that S ta ta  users have written. The e s to u t  command w ritten by Jann (2005) 
and  the newer o u tre g  by Gallup (2012) are very powerful and flexible. To install these 
programs, type se a rc h  e s to u t  or search  o u tre g  and follow the links. Both programs 
allow you to export tables in several formats th a t can be imported into other programs 
(for example, a plain-text. file, a tab-delimited text file, an HTML table, or a 
file). At this writing, however, neither of these programs uses value labels to  annotate 
variables specified with i . syntax.
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T ip : Copy Table a n d  C opy Table as H T M L . Here is a quick way to move tables
into a word processor, spreadsheet, or email. Highlight the results in the Command 
window, right-click on (or Command-l-click in Mac OS X) the highlighted area, and 
select Copy T ab le . This copies the results in a unique way: it uses tabs instead of 
spaces to separate columns and it removes blank lines. If you paste the results into 
a spreadsheet, the columns are preserved, and most word processors make it easy 
to convert tab-delimited text into a table. If you select C opy T a b le  as HTML, 
the results can be pasted as a table into most word processors, spreadsheets, or 
email clients. In S ta ta  13, the command p u te x c e l was added to allow you to easily 
export matrices, expressions, and stored results to an Excel file, which allows you 
to pass information from your commands into an  Excel file. For details, type help 
putexcel or see Crow (2013, 2014).

3.2 Testing

If the assumptions of the model hold, ML estim ators are distributed asymptotically 
normally:

fa ~ JV(a,<t|J
The hypothesis Ho : 0k = P* can be tested with the z  statistic:

P k ~ P *z =  —^-----
a i3k

If Ho is true, then 2: is distributed approximately normally with a  mean of 0 and a 
variance of 1 for large samples. The sampling distribution is shown in the following 
figure, where the shading shows the rejection region for a two-tailed test a t the 0.05 
level:
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For som e estimators, such as linear regression implemented by re g re s s  and with survey 
e stim ation , the estim ators have a  t distribution ra ther than a normal distribution. The 
gen era l principles of testing  are, however, the same.

.2.1 One-tailed and two-tailed tests

T h e  probability levels in the S ta ta  output for estim ation commands are for two-tailed 
te s ts . Consider the linear regression example above for the independent variable female. 
T h e  t  statistic is —0.54 with the probability level in column P> | t |  listed as 0.59. This 
corresponds to the a rea  of the curve that is either greater than |£| or less than — |i|, 
show n by the shaded region in the tails of the sampling distribution shown in the figure 
above. When past research or theory suggests the sign of the coefficient, a one-tailed 
te s t  might be used, and  Ho is rejected only when t or z is in the expected tail. For 
exam ple, assume th a t my theory proposes th a t being a female scientist can only have 
a negative effect on job  prestige. If we wanted a one-tailed test and the coefficient is 
in th e  expected direction (as in this example), then we want only the proportion of the 
d istribu tion  that is less than  —0.54, which is half of the shaded region: 0.59/2 =  0.30. 
W e conclude that being a female scientist does not significantly affect the prestige of 
th e  job (t = —0.54, p =  0.30 for a one-tailed test).

You should divide P > | t |  (or P>IzI ) by 2 only when the estim ated coefficient is in 
th e  expected direction. Suppose for the effect of being female that t =  0.54 instead of 
t =  -0 .54. It would still be the case that P> 11 1 is 0.59. The one-tailed significance 
level, however, would be the percentage of the distribution less than 0.54 (not less than 
—0.54), which is equal to 1 — (0.59/2) =  0.71, not 0.59/2 =  0.30. We conclude that 
being a female scientist does not significantly affect the prestige of the job (t =  0.54, 
p =  0.71 for a one-tailed test).

Disciplines vary in their preferences for using one-tailed or two-tailed tests. Con­
sequently, it is im portant to be explicit about whether p-values are for one-tailed or 
two-tailed tests. Unless stated otherwise, all the p-values we report in this book are for 
two-tailed tests.

3.2.2 Wald and likelihood-ratio tests

For models fit by ML, hypotheses can be tested with Wald tests by using t e s t  and with 
likelihood-ratio (LR) tests by using l r t e s t .  Only Wald tests are available for coefficients 
estimated using survey estimation. For both types of tests, there is a null hypothesis 
Ho that implies constraints on the model’s param eters. For example, Ho- (3vc — Phc =  0 
hypothesizes that two of the parameters are 0 in the population.

The Wald test assesses H0 by considering two pieces of information. First, all else 
being equal, the greater the distance between the estimated coefficients and the hypoth­
esized values, the less support we have for Ho- Second, the greater the  curvature of the 
log-likelihood function, the more certainty we have about our estimates. This means 
that smaller differences between the estimates and hypothesized values are required to 
reject H0.
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The LR test assesses Ho by comparing the log likelihood from th e  full model that 
does not include the constraints implied by Ho w ith a restricted model th a t does impose 
those constraints. If the  constraints significantly reduce the log likelihood, then Hq is 
rejected. Thus the LR test requires fitting two models.

Although the LR and Wald tests are asym ptotically equivalent, they have different 
values in finite samples, particularly in small samples. In general, it is unclear which test 
is to be preferred. Cameron and Trivedi (2005, 238) review the literature and conclude 
that neither test is uniformly superior. Nonetheless, many statisticians prefer the LR 
when both are suitable. We do recommend com puting only one test or the other; that 
is, we see no reason why you would want to com pute or report both  tests for a given 
hypothesis.

3.2.3 Wald tests with test and testparm

t e s t  computes Wald tests for linear hypotheses about parameters from the last model 
that was fit. Here we consider the most useful features of this powerful command. 
Features for multiple-equat,ion models, such as m lo g it, zip, and z in b , are discussed in 
chapters 8 and 9. Use h e lp  t e s t  for more features and help t e s t n l  for Wald tests of 
nonlinear hypotheses.

The first syntax for t e s t  allows you to test th a t one or more coefficients from the 
last model are simultaneously equal to 0:

t e s t  varlist [ , accum ulate ]

where varlist contains names of independent variables from the last estimation. The 
accumulate option will be discussed shortly. Some examples of t e s t  after fitting the 
model lo g i t  l f p  k5 k618 i .a g e c a t  i.w c i .h c  lwg inc should make this first syn­
tax  clear. With one variable listed—here, k5 we are testing Ho'- Acs =  0.

. test k5
( 1) [lfp]k5 = 0

chi2( 1) = 52.57
Prob > chi2 = 0.0000

The resulting chi-squared test with 1 degree of freedom equals the square of the 2 test 
statistic in the l o g i t  output. The results indicate th a t we can reject the null hypothesis.

If we list two variables after t e s t ,  we can test Ho'- (3*5 = Ac6i8 =  0:

. test k5 k618
( 1) [lfp]k5 = 0 
( 2) [lfp]k618 = 0

chi2( 2) = 52.64
Prob > chi2 = 0.0000
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We c a n  reject the hypothesis th a t the effects of young and older children are simulta­
neously  0.

If  w e list all the regressors in the model, we can test th a t all the coefficients except the 
c o n s ta n t are sim ultaneously equal to 0. When factor-variable notation is used, variables 
m ust b e  specified with th e  value. variable-name syntax such as 2 .a g e c a t. Recall that if 
you a re  not sure w hat nam e to use, you can replay the results by using the coef legend 
o p tio n  (for example, l o g i t ,  coef legend).

. test k5 k618 2.agecat 3.agecat l.wc l.hc lwg inc
( 1) [lfp]k5 = 0
( 2) [lfp]k618 = 0
( 3) [lfp]2.agecat = 0 
( 4) [lfp]3.agecat = 0 
( 5) [lfp]l.wc = 0
( 6) [lfp]l.hc = 0
( 7) [lfp]lwg = 0
( 8) [lfp]inc = 0

chi2( 8) = 95.90
Prob > chi2 = 0.0000

As noted  above, an LR test of the same hypothesis is part of the standard  output ol 
estim ation  commands, labeled as LR chi2  in the  header ot the estimation output.

T o test all the coefficients associated w ith a factor variable w ith more than two 
categories, you can use testparm . For example, to test that all the  coefficients for 
a g e c a t  are 0, we can use t e s t :

. test 2.agecat 3.agecat
( 1) [lfp]2.agecat = 0
( 2) [lfp]3.agecat = 0

chi2( 2) = 24.27
Prob > chi2 = 0.0000

T h e same results are obtained with testparm :

. testparm i.agecat
(1) [lfp] 2.agecat = 0 
( 2) [lfp]3.agecat = 0

chi2( 2) = 24.27
Prob > chi2 = 0.0000

Because agecat has only two categories, the advantage of testpaxm  is not great. But 
when there are many categories, it is much simpler to  use.

The second syntax for t e s t  allows you to test hypotheses about linear combinations 
of coefficients:

t e s t  i exp = exp j [ , accumulate ]



1 1 8 Chapter 3 Estimation, testing, and fit

For example, to test th a t two coefficients are equal— say, Ho'- fas = /^k6is:

. test k5=k618
( 1) [lfp]k5 - [lfp]k618 = 0

chi2( 1) = 45.07
Prob > chi2 = 0.0000

The line labeled (1) indicates that the hypothesis fas = fa6i8 has been translated to 
the hypothesis fas — /3k6i8 =  0. Because the test statistic is significant, we reject the 
null hypothesis that the effect of having young children on labor force participation is 
equal to the effect of having older children.

As before, testing hypotheses involving indicator variables requires us to specify 
both the value and the variable. For example, to test that the coefficients for ages 40- 
49 versus 30-39 and for ages 50+ versus 30 39 are equal, we would use the following:

. test 2.agecat=3.agecat
( 1) [lfp]2.agecat - [lfp]3.agecat = 0

chi2( 1) = 8.86
Prob > chi2 = 0.0029

The accumulate option

The accum ulate option allows you to build more complex hypotheses based 011 the prior 
t e s t  command. For example, we begin with a test of Ho’- fas = faeis'-

. test k5=k618
( 1) [lfp]k5 - [lfp]k618 = 0

chi2( 1) = 45.07
Prob > chi2 = 0.0000

Next, add the constraint th a t fac =  fa c:

. test l.wc=l.hc, accumulate
( 1) [lfp]k5 - [lfp]k618 = 0 
( 2) [lfp]l.wc - [lfp] 1.he = 0

chi2( 2) =■ 47.63
Prob > chi2 = 0.0000

This results in a test of Ho: fas =  ffaeis, fac =  fac- Instead of using the accumulate 
option, we could have used a single t e s t  command with multiple restrictions: t e s t  
(k5=k618) ( l .w c = l .h c ) .

3.2.4 LR tests with Irtest

l r t e s t  compares nested models by using an LR test. The syntax is 

I r t e s t  model-one [ model-two]
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w here model-one and model-two are the names of estim ation results stored by e s tim a te s  
s t o r e .  W hen model-two is not specified, the most recent estimation results are used in 
its  p lace . Typically, we begin by fitting the full or unconstrained model, and then we 
s to re  th e  results. For example,

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
Logistic regression Number of obs

LR chi2(8)
Prob > chi2

Log likelihood = -452.72367 Pseudo R2
(output om itted)

. estimates store full

w here  f u l l  is the name we chose for the estimation results from the full model.9 After 
we s to re  the results, we fit a model that is nested in the full model. A nested model is 
one th a t  can be created by imposing constraints on the coefficients in the prior model. 
M ost commonly, some of the variables from the full model are excluded, which in effect 
constra ins the coefficients for these variables to  be 0. For example, if we drop k5 and 
k618 from the last model, this produces

. logit lfp i.agecat i.wc i.hc lwg inc, nolog 
(output omitted )

. estimates store nokidvars

We stored the results for the nested models as no k id v ars . Next, we com pute the test: 

. lrtest full nokidvars
Likelihood-ratio test LR chi2(2) = 62.70
(Assumption: nokidvars nested in full) Prob > chi2 = 0.0000

T h e  output indicates th a t l r t e s t  assumes th a t no k id v ars is nested in f u l l .  It is up to
th e  user to ensure th a t the models are nested. Because our models are nested, the result
is an  LR test of the hypothesis Ho: (3̂ $ = /3k6i8 =  0. The significant chi-squared statistic 
m eans that we reject the  null hypothesis th a t these two coefficients are simultaneously 
equal to 0. Although we fit the full model first followed by the constrained model, 
l r t e s t  allows the constrained model to be fit first followed by the full model.

The output for all models fit by maximum likelihood includes an LR test that all 
the  coefficients except the intercept(s) are 0. For our full model above, this is listed as 
LR chi2(8) = 124.30. The results can be computed with l r t e s t  as follows:

. logit lfp, nolog 
(output omitted )

. lrtest full .
Likelihood-ratio test 
(Assumption: . nested in full)

LR chi2(8) = 124.30
Prob > chi2 = 0.0000

753 
124.30 
0.0000 
0.1207

9. Although any name up to 27 characters can be used, we recommend keeping the names short but 
informative.
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l r t e s t  does not always prevent you from com puting an invalid test. There are two 
things that you must check: that the two models are nested and th a t the two models 
were fit using the sam e sample. In general, if either of these conditions is violated, the 
results of l r t e s t  arc meaningless. Although l r t e s t  exits with an error message if the 
number of observations differs in the two models, this check does not catch those cases 
in which the number of observations is the same b u t the samples are different. One 
exception to the requirement of equal sample sizes is when perfect prediction removes 
some observations. In  such case, the apparent sample sizes for nested models differ, 
but an LR test is still appropriate (see section 5 .2 .3  for details). W hen this occurs, the 
fo rc e  option can be used to force l r t e s t  to compute the seemingly invalid test. For 
details on ensuring the  same sample size, see our discussion of mark and markout in 
section 3.I.G.

3.3 Measures of fit
Assessing fit involves both the analysis of the fit of individual observations and the 
evaluation of scalar measures of fit for the model as a whole. Regarding the former, 
Pregibon (1981) extended methods of residual and outlier analysis from the linear re­
gression model to the  case of binary logit and probit (see also Cook and Weisberg 1999, 
part IV). These measures are considered in chapter 5. Measures for count models are 
also available (Cameron and Trivedi 2013). Although Stata does not compute residuals 
and outliers for ordinal and nominal models, in some cases the tools for binary models 
can be used.

Many scalar measures have been developed to summarize the overall goodness of fit of 
regression models. A scalar measure can in some cases be useful in comparing competing 
models and. ultimately, in selecting a final model. W ithin a substantive area, measures 
of fit might provide a rough index of whether a model is adequate. However, there is no 
convincing evidence that selecting a model th a t maximizes the value of a given measure 
results in a model th a t is optimal in any sense other than the m odel’s having a larger 
(or, in some instances, smaller) value of th a t  measure. Measures of fit provide some 
information, but it is partial information th a t must be assessed within the context of 
the theory motivating the analysis, past research, and the estim ated parameters of the 
model being considered.

3.3.1 Syntax of fitstat

The SPost f i t s t a t  command calculates many fit statistics for the estim ation commands 
in this book. We should mention again th a t we often find these measures of limited 
utility in our own research, with the exception of the information criteria BIC and 
AIC. When we do use these measures, we find it helpful to compare multiple measures, 
f i t s t a t  makes this simple. The options d i f f ,  sav in g O , and u s in g O  facilitate the

Avoiding invalid LR tests
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c o m p a r i s o n  of measures across two models. Although f i t s t a t  duplicates some measures 
c o m p u t e d  by other S ta ta  com m ands (for example, the pseudo-/?2 in standard Stata 
o u t p u t  a n d  the inform ation criteria from e s t a t  i c ) ,  f i t s t a t  adds many more measures 
a n d  m a k e s  it convenient to  compare measures across models.

T h e  syntax is

f i t s t a t  [ ,  sav in g  (n a m e)  u s in g  (name) ic  fo rc e  d i f f j

f i t s t a t  term inates with an  error if the last estim ation command does not return a value 
for th e  log-likelihood function for a model with only an intercept (th a t is, if e (ll_ 0 ) 
is m issing). This occurs, for example, if the n o c o n s ta n t  option is used to fit a model. 
A lthough  f i t s t a t  can be used when models are fit with weighted data, there are two 
lim itations. First, some measures cannot be computed with some types of weights and 
none can  be computed afte r sv y  estimation. Second, when pweights or robust standard 
erro rs are used to fit the  model, f i t s t a t  uses the  “pseudolikelihood rather than the 
likelihood to compute measures of fit. Given the heuristic nature of the various measures 
of fit, we see no reason why the resulting measures would be inappropriate.

Options

s a v in g  (name)  saves th e  computed measures in a m atrix, _f its ta t_ r ia r a e , for later 
comparisons. W hen the s a v in g () option is not used, f i t s t a t  saves results to the 
m atrix _ f its ta t_ 0 .

u s in g  (name) compares the measures for the model in memory, referred to in the output 
as the current model, with those of the model saved as name.

d i f  f  compares the current model to the prior model.

i c  presents only the Bayesian information criterion (B IC ) and Akaike’s information crite­
rion (AlC). When comparing two models, f i t s t a t  reports Raftery’s (1995) guidelines 
for assessing the strength of one model over another with BIC.

fo r c e  is required to compare information criteria when the number of observations or 
the estimation m ethod varies between the two models, or to conduct a likelihood- 
ratio test under circumstances in which S ta ta ’s l r t e s t  command would require the 
fo rce  option.
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Models and measures

The following table shows which measures fit are computed for which models. ■ indi­
cates that the measure is computed, and □  indicates th a t it is not computed.

nbreg
poisson

l o g i t o l o g i t zinb ztnb
r e g r e s s  p ro b it  c lo g lo g  o p r o b it  m lo g it  zip s l o g i t  mprobit ztp

Log likelihood m ■ ■ ■ ■ 2 ■ ■ ■

Deviance and 
LR x 2

■ ■ m ■ ■ ■ □ □ ■

Deviance and 
Wald x2

□ □ □ □ □ □ ■ ■ □

Information
measures

■ ■ ■ ■ ■ ■ ■ ■ ■

R 2 and
adjusted R 2

■ □ □ □ □ □ □ □ □

Efron’s R2 and 
Tjur’s D

□ ■ ■ □ □ □ □ □ □

McFadden’s, ML, 
Cragg and 
Uhler’s R2

□ ■ ■ ■ ■ ■ □ □ ■

Count and adjusted 
count R2

□ ■ ■ ■ ■ □ □ ■ □

Var(e), Var(t/*), 
McKelvey and 
Zavoina’s R2

□ ■ □ ■ □ □ □ □ □

1: For c log log , the log likelihood for the intercept-only model does not correspond to the first 
step in the iterations.

2: For zinb and z ip , th e  log likelihood for the intercept-only model is calculated by fitting 
zinb or z ip  depvar, in f (_cons).
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3 3.2 M ethods and formulas used by fitstat

In th is  section, we provide brief descriptions of each measure computed by f i t s t a t .  
Full d e ta i ls  for m ost m easures along with citations to original sources are in Long (1997). 
We b e g in  w ith formulas for several quantities th a t are used in the com putation of other 
m easures. We then consider the information criteria BIC and AIC. Again, these are 
the m easu res  th a t we find most useful in practice. We then review the coefficient of 
d e te rm in a tio n  R 2 for th e  linear regression model followed by numerous pseudo-/?2 s.

Quantities used in other measures

Log-likelihood based measures. Stata begins maximum likelihood iterations by com­
p u tin g  th e  log likelihood of the model with all param eters but the intercept constrained 
to 0, referred to as InL  (Mintercept)- The log likelihood upon convergence, referred to as 
In L ( A/puii), is also listed. This information is presented in the iteration log and in the 
head er for the estim ation results.10

LR chi-square test of all coefficients. An LR tes t of the hypothesis th a t all coefficients 
except the intercepts are 0 can be computed by comparing the log likelihoods: LR =  
2 In L(Mpuii) -  2 InL (M intercept)- LR is reported by S ta ta  as LR c h i2 (d f)  = # ,  where 
the degrees of freedom in parentheses are the num ber of constrained parameters. For 
the z i p  and z in b  models discussed in chapter 9, LR tests that the coefficients in the 
count portion (not the binary portion) of the model are 0.

Deviance. The deviance compares the given model w ith a model that has one parameter 
for each observation so th a t the model reproduces the observed d a ta  perfectly. The 
deviance is defined as D  =  — 2 In L(Mpu\\), where the degrees of freedom equals N  
m inus the number of param eters. D does not have a. chi-squared distribution.

Information criteria

Information measures can be used to compare both nested and nonnested models.

A IC. The formula for Akaike’s information criterion (1973) used by f i t s t a t  and S tata’s 
e s t â t  ic  command is

AIC = - 2  In L(Mfc) +  2 Pk (3.1)

10. There are a few exceptions. For c log log  that we m ention briefly in chapter 5, the value at iteration
0 is not the log likelihood with only the intercept. For the z ip  and zinb models discussed in chapter
8, the “intercept-only” model can be defined in different ways. These commands return as e(11.0)
the value of the log likelihood with the binary portion of the model unrestricted, whereas only the
intercept is free for the Poisson or negative binomial portion of the model, f i t s t a t  reports the 
value of the log likelihood from the model with only an intercept in both the binary and the count 
portions of the model.
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where L (M k) is the likelihood of model Mk and Pk is the number of parameters ll 
the model (for example, K  + 1 in the binary regression model, where K  is the number 
of regressors). All else being equal, the model with the  smaller AIC is considered t':> 
better-fitting model. Another definition of AIC is equal to  the value in (3.1) divided by 
N . We include this quantity in the f i t s t a t  output as AIC d iv id e d  by N.

BIC. The Bayesian information criterion (BIC) was proposed by Raftery (1995) and 
others as a means to compare nested and nonnested models. Because BIC imposes a 
greater penalty for the number of parameters in a model, it favors a simpler mode, 
compared with the AIC measure.

The BIC statistic is defined in at least three ways. Although this can be confusing 
the choice of which version to use is not important, as we show after presenting th- 
various definitions. Stata defines the BIC for model M k as

BICa: =  - 2  In L(M k) +  dffc In TV

where dffc is the number of param eters in Mk, including auxiliary parameters such as a 
in the negative binomial regression model. As with AIC, the smaller or more negativ 
the BIC, the better the fit. A second definition of BIC is computed using the deviance

B ic f  =  D (M k) -  df£ In N

where dffc is the degrees of freedom associated with the deviance, f i t s t a t  labels this a? 
BIC (b a se d  on d e v ia n c e ) . The third version, sometimes denoted as BIC', uses the LP. 
chi-squared with df^ equal to the number of regressors (not parameters) in the model.

BlCfc =  —G 2(Mk) +  dfi In AT

The difference in the BICs from two models indicates which model is preferred. 
Because BICi — BIC2 =  BIC  ̂ — BIC2 =  Bic{; — BIC-P, the choice of which version of 
BIC to use is a m atter of convenience. When BICi < BIC2 , the first, model is preferred, 
and accordingly, when BICi > BIC2 , the second model is preferred. Raftery (199-5 
suggested these guidelines for the strength of evidence favoring M 2 against M\ base - 
on a difference in BIC:

A b so lu te
d iffe ren ce E vidence

0 to 2 Weak
2 to 6 Positive

6 to 10 Strong
>  10 Very strong

By default, f i t s t a t  shows you BICfc, which is also computed by Stata’s e s ta t  ic .  Ir 
you specify f i t s t a t ,  ic , then all versions of AIC and BIC are reported but non-1'
measures of fit are not shown.
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Example of information criteria. To compute information criteria for a single model, 
we fit the model and then run f i t s t a t ,  saving our results with the name basem odel:

. use binlfp4, cleax
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

( output o m itte d )

. fitstat, ic saving(basemodel)
logit

AIC
AIC 923.447

(divided by N) 1.226

BIC
BIC (df=9) 965.064

BIC (based on deviance) -4022.857
BIC' (based on LRX2) -71.307

Information criteria for a  single model are not very useful. Their value comes when 
comparing models. Suppose we generate the variable k id s, which is the sum of k5 and 
k618. Our new model drops k5 and k618 and adds k id s. In o ther words, instead of 
a model in which the effect of an additional child age 5 or under is allowed to differ 
from the effect of an additional child age 6 to 18, we fit a model in w'hich the effect of 
each additional child regardless of age is presumed equal. After fitting the new model, 
f i t s t a t  compares it with the saved model:

. generate kids = k5 + k618

. label var kids "Number of kids 18 or younger"

. logit lfp kids i.agecat i.wc i.hc lwg inc, nolog 
(output omitted)

. fitstat, ic using(basemodel)
Current Saved Difference

AIC
AIC 973.368 923.447 49.921

(divided by N) 1.293 1.226 0.066

BIC
BIC (df=8/9/-l) 1010.361 965.064 45.297

BIC (based on deviance) -3977.561 -4022.857 45.297
BIC' (based on LRX2) -26.010 -71.307 45.297

Bifference of 45.297 in BIC provides very strong support for saved model.

All AIC and Bic measures are smaller for the base model (listed as Saved). At the 
bottom of the table, it indicates that based on Raftery’s criterion, there is very strong 
support for the saved model over the current model.
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For re g re ss , f i t s t a t  reports the coefficient of determination, which can be defined 
variously as

„2 l  Z Z l  (Vi -  V i f  . _  ... , f  ¿ ( M „ t o r c , . )  ] 2/W ( 3 2 )

JLiLi (v> ~ ÿ)2 Var(ÿ) + Var(f) I ¿(^Full) j
The adjusted R 2 is defined as

,2 (  2 K  \  (  N - l

R2 in the linear regression model

R  = [ R z -
N -  \ )  \ N - K - \  

where K  is the number of independent variables.

Pseudo-R2,s

Although each definition of R 2 in (3.2) gives the same numeric value in the linear 
regression model, each gives different values and thus provides different measures of 
fit when applied to  other models. There are also other ways of computing measures 
th a t have some resemblance to the R? in the LR model. These are known as pseudo- 
R 2's. Because different pseudo-R!2 measures can yield substantially different results 
and different software packages use different measures as their default pseudo-/?2, when 
presenting results it is important to report exactly which measure is being used rather 
than simply saying “Pseudo-/?2”.

McFadden’s R2. McFadden’s (1974) R 2, also known as the LR index, compares a model 
with just the intercept to a model with all parameters. It is defined as

r>2 _  i h l L ( M F u l l )
“ McF —  1 —

In Z/(A/int,ercept)

If model A/intercept =  A/puii, then R 2IcF =  0, but /?2lcF can never exactly equal 1. This 
measure is reported by S ta ta  in the header of estimation results as Pseudo R2 and 
is listed in the f i t s t a t  output as R2 McFadden. Because R 2U.F always increases as 
variables are added to a model, an adjusted version is also available:

—2 _ n In L(Mfuii) — K*
• f iM c F  —  1 ------------ -- --------------------------

hiL (M Intcrcept)

where K* is the number of parameters, not independent variables.

Maximum likelihood R2. Another analogy to R 2 was suggested by Maddala (1983):

f  ¿ '(M n terccp t) ) 2^

I -^(-^Full) J

This R2 is also called the Cox-Snell (1989) R 2.
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Cragg and Uhler’s R2. Because R readies a maximum of 1 — L (Mintcrcept,)2̂ ,  
Cragg and Uhler (1970) suggested a normed measure:

„2 =  K l =
c&u m axflJn, 1 -  L(M ,„terc<!pt)2/N

This Rr is also known as Nagelkerke’s (1991) R 2.

Efron’s R2. For binary outcomes, Efron’s (1978) pseudo-/?2 defines n = P r (y =  1 | x) 
and equals

d2 =  , _  S . ' I . f a - g i ) 2
“ Efron 1 , -2

E i= i  (yi -  y )

Tjur’s coefficient of discrimination. For binary outcomes, Tjur (2009) motivates a 
goodness-of-fit measure ranging from 0 to 1 th a t he calls the coefficient of discrimination. 
D  simply compares the  average predicted probability when the outcome is observed as 
1 to  the average when the outcome is observed as 0:

D  =  mean P r (y = 1 \y = 1) — mean P r(y — l\y  =  0)

The measure is a simple expression of the principle that as binary models fit better, 
the predicted probability of a positive outcome will increase for cases with a positive 
outcome and decrease for cases with a negative outcome.

V(y*) ,  V (e), and McKelvey and Zavoina's R2. Some models can be defined in 
terms of a latent variable y*. These include the models for binary or ordinal outcomes, 
such as lo g i t ,  p ro b i t ,  o lo g it,  and o p ro b it,  as well as some models with censoring, 
such as t o b i t  and in tre g . Each model is defined in terms of a regression on a latent 
variable y*\

y* =  x/3 +  e

Using Var(y*) =  (3 Var(x)/3, McKelvey and Zavoina (1975) proposed

r2  =  g r ( y )  =  v S o n
Var(y*) Var(y*) +  Var(e:)

In models for categorical outcomes, Var(e:) is assumed to identify the model.

Count and adjusted count R2. Observed and predicted values can be used in models
with categorical outcomes to compute what is known as the count R 2. Consider the
binary case where the observed y is 0 or 1 and 7?* =  Pr(y =  1 | x*). Define the expected 
outcome as

0 if 7Tj <  0.5
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This allows us to construct a table of observed and predicted values, such as that 
produced for the logit model by the command e s t a t  c la s s i f ic a t io n :

. estat classification 
Logistic model for lfp

True
Classified D -D Total

+ 334 182 516
- 94 143 237

Total 428 325 753
Classified if predicted Pr(D) >= .5
True D defined as lfp != 0

Sensitivity Pr ( +1 D) 78.047,
Specificity Pr( -1--D) 44.00'/.
Positive predictive value Pr ( D 1 +) 64.737,
Negative predictive value Pr(~D1 -) 60.347,

False + rate for true ~D Pr( +I-D) 56.00'/,
False - rate for true D Pr( -| D) 21.967,
False + rate for classified + Pr(~D| +) 35.27'/,
False - rate for classified - Pr( D| -) 39.66'/,

Correctly classified 63.35%

We see that positive responses were predicted for 516 observations, of which 334 were 
correctly classified because the observed response was positive (y =  1), whereas the 
other 182 were incorrectly classified because the observed response was negative (y =  0). 
Likewise, of the 237 observations for which a  negative response was predicted, 143 were 
correctly classified and 94 were incorrectly classified.

A seemingly appealing measure is the proportion of correct predictions, referred to 
as the count R 2,

•^Count yy ^  
j

where the n j j ’s are the number of correct predictions for outcome j .  The count R 2 
can give a faulty impression that the model is predicting very well. In a binary model, 
without knowledge about the independent variables, it is possible to  correctly predict 
a t least 50% of the cases by choosing the outcome category with the largest percentage 
of observed cases. To adjust for the largest row marginal,

2 - m a x ( n r+ )
^AdjCount -  N _ m a x  ( „ | + )

r

where nr+ is the marginal for row r. The adjusted count R2 is the proportion of correct 
guesses beyond the number that would be correctly guessed by choosing the largest 
marginal.
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.3 Example of fitstat

To examine all the measures of fit, we repeat our example for information criteria, but 
th is time we use f i t s t a t  without the ic  option. We fit our base model and save the 
f i t s t a t  results with th e  name basemodel:

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

(output omitted )
. fitstat, saving(basemodel)
(output omitted )

Next, we fit a model th a t  includes the variable k id s , which is the sum  of k5 and k618.
and drops k5 and k618. f i t s t a t  compares this model with the saved model:

. gen kids = k5 + k618

. label var kids "Number of kids 18 or younger"

. logit lfp kids i.agecat i.wc i.hc lwg inc, nolog 
(output omitted )

. fitstat, using (basemodel)
Current Saved Difference

Log-likelihood
Model -478.684 -452.724 -25.960

Intercept-only -514.873 -514.873 0.000

Chi-square
D (df=745/744/1) 957.368 905.447 51.921
LR (df=7/8/-l) 72.378 124.299 -51.921

p-value 0.000 0.000 0.000

R2
McFadden 0.070 0.121 -0.050

McFadden (adjusted) 0.055 0.103 -0.048
McKelvey & Zavoina 0.125 0.215 -0.090

Cox-Snell/ML 0.092 0.152 -0.061
Cragg-Uhler/Nagelkerke 0.123 0.204 -0.081

Efron 0.090 0.153 -0.063
Tjur's D 0.091 0.153 -0.063

Count 0.633 0.676 -0.042
Count (adjusted) 0.151 0.249 -0.098

IC
AIC 973.368 923.447 49.921

AIC divided by N 1.293 1.226 0.066
BIC (df=8/9/-l) 1010.361 965.064 45.297

Variance of
e 3.290 3.290 0.000

y-star 3.761 4.192 -0.431
Note: Likelihood-ratio test assumes current model nested in saved model. 
Difference of 45.297 in BIC provides very strong support for saved model.
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In this example, the two models are nested because the second model is in effect imposing 
the constraint fas =  fa&\8 on the first model.

.4 estat postestimation commands
e s t a t  is a set of subcommands that provide different statistics about the model whose 
estimates are active. Each is invoked using e s t a t  subcommand. Here we provide an 
overview of some of the most useful subcommands, which we use in later chapters.

estat summarize

e s t a t  summarize provides descriptive statistics for the variables in the model by using 
the estimation sample. For example,

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

(output om itted)
. estat summarize 
Estimation sample logit Number of obs = 753

Variable Mean Std. Dev. Min Max

lfp .5683931 .4956295 0 1
k5 .2377158 .523959 0 3

k618 1.353254 1.319874 0 8

agecat
40-49 .3851262 .4869486 0 1
50+ .2191235 .4139274 0 1

wc
college .2815405 .4500494 0 1

he
college .3917663 . 4884694 0 1

lwg 1.097115 .5875564 -2.05412 3.21888
inc 20.12897 11.6348 -.029 96

The output is equivalent to the results from summarize modelvars i f  e(sam ple) ==
1, where modelvars is the list of variables in your model. Several options are useful:

la b e ls  displays variable labels rather than the names of the variables.

noheader suppresses the header.

noweights ignores the weights if they have been used in estimation.
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estât ic

e s t â t  i c  lists the inform ation criteria AIC and BIC for the last model. See page 123 
for details.

estât vce

e s t â t  vce lists the variance-covariance matrix for the coefficient estimates. For further 
details, see help  e s t â t  v ce .

.5 Conclusion
T his concludes our discussion of the basic commands and options th a t are used for 
fitting, testing, and assessing fit. In part II of the book, we show how these commands 
can be applied with models for different types of outcomes. Before turning to those 
models, we review the methods of interpretation th a t are the prim ary focus of our 
book.
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In  th is  chapter, we introduce methods of interpretation that will be used throughout the 
rest of the book. Models for categorical outcomes are nonlinear, and this nonlinearity 
is th e  fundamental challenge th a t must be addressed for effective interpretation. Most 
simply, this means th a t you cannot effectively interpret your model by presenting a 
list of the estimated parameters. Instead, we believe that the most effective way to 
in terp re t these models is by first fitting the model and then computing and examining 
postestim ation predictions of the outcomes. Most of this chapter is a first pass at 
showing you how to do this.

To understand the fundamentally im portant point about why interpreting results 
from nonlinear models is more difficult, we begin with a heuristic discussion of the idea 
of nonlinearity before introducing commands th a t facilitate interpretation. Afterward, 
we will provide an overview of the different approaches to interpretation th a t will be 
presented in the chapter, followed by detailed discussions. We discuss a t length Stata's 
m arg in s  command, which is vital to these techniques of interpretation, as well as the 
m* commands we have written for this book, which make using m argins easier.

4.1 Comparing linear and nonlinear models
Linear models

Consider a linear regression model where y is the dependent variable, x  is a contin­
uous independent variable, and d is a binary independent variable. The model is

y =  a  +  0 x  +  5d +  £

Given the usual assumption th a t E(e \ x ,(1) =  0, it follows that

E (y  | x ,d ) = a  + f3x + 8d

which is graphed in figure 4.1. The solid line plots E (y  \ x, d) as x  changes, holding d = 0; 
th a t is, E (y \ x, d) = a  +  fix. The dashed line plots E (y  \ x. d) as x  changes when d =  1, 
which has the effect of changing the intercept: E (y  \x ,d )  = a  + (3x + S1 =  (a  +  ¿) +  0x.
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x

Figure 4.1. A simple linear model

The effect of x  on y can be computed as the partial derivative of E (y \x,d) with 
respect to x. This is sometimes called the marginal change:

d E (y \x , d) _  d  (a  + (3x + fid) _  
dx dx

The marginal change is the ratio of the change in the expected value of y to the change 
in x , when the change in x  is infinitely small, holding d constant. In linear models, 
the marginal change equals the discrete change in E (y \x ,d )  as x  changes by one unit, 
holding other variables constant. In our notation, we indicate th a t x  is changing by a 
discrete amount w ith A x  using (x —> x  +  1) to indicate that x  changes from its current 
value to be 1 larger (for example, from 10 to  11 or from 9.3 to 10.3):

A E ( y \x ,d )  . + 0 { x + l )  + M ] _ { a  + px  + s d )  = l3
/\2 iy x —y X 1)

When x  increases by 1, E (y \ x,d) increases by (3 regardless of the values for x and d 
a t the point where change is measured. This is shown by the four small triangles in 
figure 4.1 with bases of length 1 and heights of ft.
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The effect of d cannot be computed as a  partial derivative because d, is discrete. 
Instead, we measure the change in E(y \ x, d) w ith a discrete change from 0 to 1 indicated 
as Ad(0 —► 1):

= ( a + /fa + <51 ) - ( a  +  Px +  6 0 )  =  6

When d changes from 0 to 1, E (y  \x,d) changes by S units regardless of the level of x. 
This is shown by the two arrows labeled S in figure 4.1 marking the distance between 
the solid and dashed lines.

The distinguishing feature for interpretation in linear models is th a t the effect of 
a  given change in an independent variable is the same regardless of the value of that 
variable at the start of its change and regardless of the level of the o ther variables in the 
model. Interpretation only needs to specify which variable is changing, by how much, 
and that other variables are being held constant. Given the simple structure of linear 
models, such as re g re s s ,  most interpretations require only reporting the estimates. 
There are, however, im portant exceptions. In our discussion, we assumed that the 
model does not include polynomial terms such as x 2 or interactions such as xd. When 
such terms are included, the linear model becomes nonlinear in the sense we consider 
in the next section.

Nonlinear models

We use a logit model to illustrate the idea of nonlinearity. Let y =  1 if the outcome 
occurs, say, if a person is in the labor force, and otherwise y =  0. T he curves are from 
the logit equation

P r(! . =  1 | x d ) =  «XP (a  + 0 x + 6d)_
1 +  exp (a  +  fix + Sd)

where the a , 0, and 6 parameters in this equation are unrelated to those for the linear 
model. Once again, x  is continuous and d is binary. The model is shown in figure 4.2.
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Figure 4.2. A simple nonlinear model

The nonlinearity of the model makes it more difficult to interpret the effects of x 
and d on the probability of y occurring. For example, neither the marginal change 
d P r  (y =  1 1 x.d)  / d x  nor the discrete change A P r (y =  1 1 x,d)  / A d ( 0  —» 1) are con­
stant, but instead depend on the values of x  and d. Consider the effect of changing d 
from 0 to 1 for a given value of x. This effect is the distance between the solid curve 
for d = 0 and the dashed curve for d = 1. Because the curves are not parallel, the 
magnitude of the difference in the predicted probability at d =  1 compared with d =  0 
depends on the value of x  where the difference is computed. Accordingly, Adi i 1 Ad2 - 
Similarly, the magnitude of the effect of x  depends on the values of x  and d where the 
effect is evaluated so that A.t i ^  A x2 ^  A x3 ^  A X4 . In nonlinear models, the effect of a 
change in a variable depends on the values of all variables in the model and is no longer 
simply equal to a param eter of the model. Accordingly, the methods of interpretation 
that we recommend for nonlinear models are largely based on th e  use of predictions, 
which we consider in the next section.

.2 Approaches to interpretation
The primary m ethods of interpretation presented in this book are based on predictions 
from the model. The model is fit and the  estimated parameters are used to make 
predictions at values of the independent variables that are (hopefully) useful for under­
standing the substantive implications of the nonlinear model. These methods depend
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critically on S tata’s p r e d ic t  and margins commands, which are the  foundation for 
th e  SPost commands m table, mchange, and mgen (referred to collectively as the m* 
commands). Although the basic use of these commands is straightforward, they have 
m any—sometimes subtle—features that are valuable for fully interpreting your model. 
T his chapter provides an overview of general principles and syntax for these commands. 
D etails on why you would use each feature are explained fully when the commands are 
used in later chapters to  interpret specific models.

When reading this section the first time, you might not fully understand all the 
details. Indeed, our examples necessarily use models th a t are explained in later chapters. 
Be assured, however, th a t these will become clearer as you see the commands applied 
la ter in the book. You might even find it most effective to initially skim this chapter, 
returning to it as you read later chapters. These commands take tim e to master, but 
th e  effort pays off.

.2.1 Method of interpretation based on predictions

We use predictions in four basic ways.

P re d ic tio n s  for ea ch  observation . Most fundamentally, predictions can be com­
puted for each observation by using p r e d ic t .  Predictions include the proba­
bilities of outcomes as well as rates for count models. We often start our analysis 
by examining the distribution of predictions in the estimation sample.

P re d ic tio n s  a t  spec ified  values. Predicted values at specific values of the indepen­
dent variables can be computed using the commands margins and m table. These 
commands can compute predictions at substantively interesting combinations of 
values of the independent variables, which we refer to as profiles or ideal types. In 
some cases, tables of predictions are arranged by the level of one or more explana­
tory variables and can succinctly summarize processes affecting the outcomes.

M arg in a l effects. An important way to examine the effects of a variable is to  compute 
how changes in the variable are associated with changes in the outcomes, holding 
other variables constant. These changes, known as marginal effects, can be com­
puted as a marginal change when a regressor changes by an infinitely small amount 
or as a discrete change when a regressor changes by a fixed amount. Marginal ef­
fects are computed by margins, m table. and mchange. which can easily compute 
average marginal effects and marginal effects a t the mean.

G ra p h s  of p red ic tio n s . For continuous independent variables, graphs often effectively 
summarize effects. S ta ta’s m arg insp lo t elegantly plots a single outcome category 
based on predictions from margins. Just as m argins can only compute predictions 
for one outcome at a time, m arginsplo t does not allow you to  plot multiple out­
comes. Because this is essential for models with nominal and ordinal outcomes, 
we wrote mgen to generate variables with predictions for all outcomes. These 
variables containing predictions can be plotted using S tata’s g raph command.
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4.2.2 Method of interpretation using parameters

Although the predictions used for each of these methods are computed using the 
model’s estimated param eters, in some cases the parameters themselves can be used for 
interpretation. Examples include odds ratios for binary models, standardized coefficients 
for latent outcomes, and factor changes in rates for count models. These are considered 
in detail in later chapters.

4.2.3 Stata and SPost commands for interpretation

The most fundamentally important command for sophisticated interpretation using pre­
dictions is S tata’s m argins command. This command is incredibly powerful, flexible, 
and general. As a consequence, it can be ra ther intimidating to use. To make margins 
simpler to use, we wrote a series of “wrappers” th a t use m argins for their computa­
tions; they simplify the process of specifying the predictions you want and produce 
output that is easier to interpret. Nonetheless, there are times when you might need to 
use margins, either because our commands did not anticipate something you want to 
do or because we encountered technical issues that made using m argins the only option. 
Accordingly, even if our m* commands seem to do everything you want, you should have 
some familiarity w ith what margins does and how it works. This will also give you a 
better understanding of what our commands are doing.

4.3 Predictions for each observation
The p re d ic t command computes predicted values for each observation in the current 
dataset, p re d ic t  has many options that depend on the model th a t  was fit. Here we 
consider only the options th a t provide information we use regularly in later chapters. 
If you type he lp  estimation-command (for example, help lo g i t) ,  you can click on the 
A lso See tab in the upper-right, corner of the window and then select the postestimation 
entry for the command (for example, [R] lo g it p o s te s tim a tio n ); the postestimation 
entry includes details on how p re d ic t  works for th a t estimation command.

The simplest syntax for p re d ic t  is 

p re d ic t  newvarlist

where newvarlist contains the name or names of the variables that are generated to hold 
the predictions. How many variables and w hat is predicted depends on the model. The 
defaults for estimation commands used in this book are listed in the following table.
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Estimation command Default prediction

re g re s s Expected value: E (y \x )  =  x/3
lo g is t ic ,  lo g i t ,  p ro b i t Probability: P r (y =  1 | x)
m logit. m probit, o lo g i t ,  op ro b it, s l o g i t Probabilities: P r  (y =  k \ x)
nbreg, poisson. tn b reg . tp o isso n , zinb , z ip Expected rate: E (y |x)

Probabilities: P r (y =  k  | x)

As an example, we compute predicted probabilities for a logit model of women’s
lab o r force participation. Below, p re d ic t  generates the variable prob (a name we
chose) containing the probabilities of a woman being in the labor force:

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

(output om itted)
. predict prob
(option pr assumed; Pr(lfp))
. summarize prob

Variable Obs Mean Std. Dev. Min Max

prob 753 .5683931 .1945282 .0135618 .9512301

T h e  summary statistics show that in the sample of 753, the probabilities range from
0.014 to 0.951 with an average of 0.568. A detailed discussion of predicted probabilities 
for binary models is provided in chapter 6.

For models with ordinal or nominal outcomes (chapters 7 and 8). p r c d ic t  computes 
th e  predicted probability of an observation falling into each of the outcome categories. 
So, instead of providing a single variable name for predictions, you specify as many 
nam es as there are categories. For example, after fitting a model for a nominal dependent 
variable with four categories, you can use p r e d ic t  p ro b l prob2 prob3 prob4. The new 
variables contain the predicted probabilities of being in the first, second, third, and 
fourth  categories.

For count models, by default p re d ic t computes the rate or expected count. Or, 
p r e d ic t  newvamame, p r ( # )  computes the predicted probabilities of the specified 
counts. For example, p re d ic t  probO, p r(0 ) generates the variable probO containing 
estim ates of Pr(y =  0 | x). And, p re d ic t p r  ( # iow > #high) computes probabilities of 
contiguous counts. For example, p re d ic t p ro b l to 3 ,  p r ( l ,3 )  generates the variable 
p ro b lto 3  containing estimates of Pr (1 < y <  3 | x). Details are given in chapter 9.

.4 Predictions at specified values
Interpreting predictions at substantively interesting values of the regressors is an essen­
tial method of interpretation. Such predictions can be made with m argins and with
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the m* commands we have written that are based upon margins. We focus on several 
aspects of these commands:

1. Specifying values of the independent variables.
2. Explaining how factor variables are handled.

3. Using a numlist for predictions at multiple values.
4. Making predictions by the levels of a variable defining groups.

5. Predicting quantities th a t are not the default for margins.

We will explain how to  use the margins command to make predictions, and then we will 
show how the same things (and more) can be done using the m* command m table. This 
section includes a lot of details on the mechanics of using these commands, many of 
which will be directly applicable to the mchange and mgen commands in later sections. 
Chapters 5 through 9 illustrate their use for interpreting models for binary, ordinal, 
nominal, and count models.

.4.1 Why use the m* commands instead of margins?

Our m* commands m table, mchange, and mgen are “wrappers” for m argins. By wrap­
per, we mean that the  m* commands translate your specification into a  series of margins 
commands that actually do the computations. If all the SPost commands do is run 
margins, why would you use them instead of margins? Conversely, if you are con­
vinced that it is more effective to use the m* commands, why do you need to learn more 
about margins?

Although we th ink  m argins is an extraordinary command, it can be difficult to use, 
and the output can be difficult to interpret. It does difficult things with amazing ease 
and also makes you work hard to do some simple things. In some ways, frankly, margins 
is more suited for a programmer than for a  data  analyst. For example, if you are fitting 
models with ordinal, nominal, or count outcomes, you have to run  m argins once for 
each outcome. Then, you face the tedious and error-prone task of combining the output 
from several m argins commands. The learning curve for m argins can also be steep. 
Our commands make it easier—sometimes much easier. The ou tpu t is more compact, 
and if you want to  plot the predictions, variables are automatically generated.

If this is so, why learn to use m argins? First, many of the options for our commands 
are identical to those for margins. Indeed, our commands simply run margins and 
collect the results. Accordingly, what you learn about margins will apply exactly to 
our commands. Second, we only discuss the features of m argins that we find most 
useful for the models in this book. You might want to use other options, and many 
should work with our commands.1 This allows you to use those features while taking 
advantage of the convenience of the m* commands. Knowing something about margins

1. Given the many features in margins, there are options we have not tried. If a margins option does 
not work with one of our commands, let us know and we will consider adding it to our commands.
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m akes this easier. Third, if one of our commands does not work the way you expect, 
you should examine the results from margins. Each of our commands has the option 
commands to list the m argins commands used to  get our results. The d e t a i l s  option 
will display the full ou tpu t from margins, which can sometimes be thousands of lines of 
o u tp u t. To understand this output, you need to  know something about m argins. And 
finally, m argins can do some things that cannot be done with our commands. In such 
cases, as illustrated in later chapters, we rely 011 m argins.

.4.2 Using margins for predictions

T h e  m a r g in s  command allows you to predict m any quantities and compute summary 
m easures of your predictions. To begin, it is helpful to  see how m argins is related to 
p r e d i c t .  Consider the example in section 4.3, where p re d ic t  computed the probability 
of labor force participation for each observation in the sample. Using summarize to 
analyze the variable generated by p re d ic t, we found that the mean probability was 
0.568. We can obtain exactly the same mean prediction with margins:

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

(output om itted)
. margins
Predictive margins Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp), predictO

Margin
Delta-method

Std. Err. z P> I z [95% Conf. Interval]

_cons .5683931 .0166014 34.24 0.000 .535855 .6009312

W hen 110 options are specified, margins calculates the mean of the default quantity com­
puted  by p re d ic t  for the estimation command. Earlier, we used p r e d ic t  to  generate 
a variable with the probabilities of y = 1 for each observation, and we used summarize 
to  compute the mean probability. Behind the scenes, this is what m argins does.2

An advantage of using m argins to compute the average predicted probability is that 
it provides the 95% confidence interval along with a test of the null hypothesis that the 
average prediction is 0. S tata does this using the delta method to compute standard 
errors (see [r] m arg in s  or Agresti [2013, 72]). In this example, testing th a t the mean 
prediction is 0 is not useful; but, when we later use m argins to compute marginal effects, 
testing whether estimates differ from 0 is very useful.

2. Unfortunately, the variables generated by margins disappear when the command ends. We hope 
that in the future an option will be added to margins that allows the user to retain these variables.
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In addition to computing average predictions over the sample, m argins allows us 
to compute predictions at specified values of the independent variables, whether those 
values occur in the sample or not. The most common example of this is computing the 
prediction with all variables a t their mean by using the atmeans option:

. margins, atmeans
Adjusted predictions 
Model VCE : OIM
Expression 
at

Number of obs 753

Pr(lfp), predict()
k5 = .2377158 (mean)
k618 = 1.353254 (mean)
1.agecat = .3957503 (mean)
2.agecat = .3851262 (mean)
3.agecat = .2191235 (mean)
O.wc = .7184595 (mean)
1 .wc = .2815405 (mean)
0 .he = .6082337 (mean)
1 .he = .3917663 (mean)
lwg = 1.097115 (mean)
inc = 20.12897 (mean)

Delta-method 
Margin Std. Err. z P> 1 z [957, Conf. Interval]

_cons .5778714 .0197056 29.33 0.000 .539249 .6164937

The output, begins by listing the values of the independent variables a t which the predic­
tion was calculated, called the atlegend, where (mean) lets you know that these values 
are the means.

The at() option for specifying values

The a tO  option allows us to set specific values of the independent variables at which 
predictions are calculated. Stata refers to the specification of values within a tO  as the 
atspec. As an example, we can compute the probability of labor force participation for 
a  young woman w ith one young child, one older child, and so on:
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. margins, at(k5=l k618=l agecat=l wc=0 hc=0 lwg=l inc=20)
Adjusted predictions Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp), predictO
at : k5 =

k618
agecat =
wc =
he =
lwg
inc =

Delta-method 
Margin Std. Err. z P>IzI [95’/. Conf. Interval]

_cons .3694891 .0466304 7.92 0.000 .2780951 .460883

In  th is  example, we are computing predictions for a hypothetical observation that has 
th e  values of the independent variables specified with a t ( ) .  The ou tpu t shows these 
values in the atlegend before displaying the prediction.

I f  we want some of the variables to be held at their means, say, in c  and lwg, we 
cou ld  remove them from the atspec and include the atmeans option:

. margins, at(k5=l k618=l agecat=l wc=0 hc=0) atmeans
Adjusted predictions Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp), predictO
at : k5 = 1

k618 - 1
agecat = 1
wc = 0
he = 0
lwg = 1.097115 (mean)
inc = 20.12897 (mean)

Delta-method 
Margin Std. Err. z P>IzI [95% Conf. Interval]

_cons .3823232 .0475022 8.05 0.000 .2892206 .4754259

W ith  atmeans. all variables not in the atspec are set equal to their means.

T here are two other ways we could have done the same thing. (W ith m argins, most 
th in g s  can be done multiple ways!) First, we could enter the values for the means in 
th e  atspec:

margins, at(k5=l k618=l agecat=l wc=0 hc=0 lwg=1.097 inc=20.13)

T h is  is not exactly the same because the specified values of means were rounded. Second, 
we can use the (atstat) suboption within a t ( ) :

margins, at(k5=l k618=l agecat=l wc=0 hc=0 (mean) lwg inc)

1
1
1
0
0
1

20
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We can also specify other statistics. For example, we can calculate the predicted prob­
ability with lwg held at its mean by using (mean) and inc held at its median by using 
(median).

margins, at(k5=l k618=l agecat=l wc=0 hc=0 (mean) lwg (median) inc)
Adjusted predictions Number of obs 753
Model VCE
Expression
at

□ IM
Pr(lfp), predictO
k5
k618
agecat =
wc =
he =
lwg

1
1
1
0
0

1.097115 (mean)
inc = 17.7 (median)

Margin
Delta-method 
Std. Err. z P> Iz 1 [95*/. Conf. Interval]

_cons .4026216 .0472423 8.52 0.000 .3100284 .4952148

For continuous predictors, atstat, can be mean, median, p #  for percentiles from 1 to 99, 
min for the minimum, and max for the maximum. If you try to use these options for 
variables specified as factor variables using i . ,  an error is generated.

asobserved for average predictions

When we do not specify values for the independent variables, either using atmeans or 
a t  (), the m argins command computes the mean of the predictions across observations. 
Average predictions, which are sometimes called as-observed predictions, are the de­
fault. You can make the default explicit with the  command m arg ins, asobserved. 
In linear models, atmeans and asobserved predictions are identical, but because they 
differ in nonlinear models, it is important to  understand why they differ. The substan­
tive implications of this difference are particularly important when computing marginal 
effects, discussed briefly in section 4.5 and in detail in section G.2.

If you do not set the value for an independent variable in the atspec or with atmeans, 
the variable is treated  as-observed. For example, in the command

margins, at(k5=l k618=l agecat=l wc=0 hc=0 lwg=1.097)

the variable in c  is treated as-observed because it is not included in the atspec. We can 
make this explicit by using (asobserved) inc:

margins, at(k5=l k618=l agecat=l wc=0 hc=0 lwg=1.097 (asobserved) inc)

Values for as-observed variables are not listed in the output because they vary across 
observations. For example, here inc is an as-observed variable, so it is not shown in the
atlegend:
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margins, at(k5=l k618=l agecat=l wc=0 hc=0 lwg=l)
Predictive margins
Model VCE
Expression
at

OIM
Pr(lfp), predictO 
k5 
k618
agecat =
wc =
he =
lwg

Number of obs 753

Margin
Delta-method 

Std. Err. 2 P>|Z1 [95*/, Conf. Intervall]

_cons .374379 .044939 8.33 0.000 .2863001 .4624579

To understand what happens with the as-observed variable inc, we show how to use 
a  series of Stata commands to compute the same prediction. First, for each variable 
specified in a t ( ) ,  we replace the observed value with the specified value:

. replace k5 = 1 
(635 real changes made)
. replace k618 = 1 
(568 real changes made)
. replace agecat = 1 
(455 real changes made)
. replace wc = 0 
(212 real changes made)
. replace he = 0 
(295 real changes made)
. replace lwg = 1 
(753 real changes made)

T he observed values of all variables except inc have been replaced. For every observation 
in the  dataset, k5 is 1, k618 is 1, and so on. Variable inc has been left “as observed” . 
Next, we make predictions with the observed values of inc and the changed values of 
o ther variables:

. predict prob
(option pr assumed; Pr(lfp))
. label var prob "predict with fixing values of all but inc"

Computing the mean of the predictions,

. sum prob
Variable Obs Mean Std. Dev. Min Max

prob 753 .374379 .0804292 .0392212 .5418246

we obtain the same value as m argins when in c  was treated as-observed. Nontrivially, 
although the mean prediction is the same, we have not computed the standard error of 
th e  prediction, which m argins provides.
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In section 3.1.5, we showed how factor-variable notation allows you to  specify interaction 
term s (for example, i.w c##c.age) and quadratic terms (for example, c.age##c.age). 
When factor-variable notation is used in the atspec, margins handles these terms prop­
erly. For example, le t’s say your specification includes i.w c##c.age. In this case, when 
m argins, a t(age= 30  wc=l) makes predictions, it automatically computes the value 
of the interaction wcxage to  equal 30. as it should. Likewise, if your model includes 
the term c . age##c. age. specifying m arg ins, at(age=30) makes predictions with age 
held at 30 and age-squared held at 900. This powerful feature of factor-variable no­
tation greatly simplifies the way in which you can specify and interpret models with 
interactions and polynomials.

Predictions using in teraction and polynomial term s

Making multiple predictions

Making multiple predictions with a single m argins command is critical if you want 
to test hypotheses about those predictions, such as whether the probability of voting 
Republican is the same for men and for women. In this section, we consider a variety 
of ways to make multiple predictions.

margins allows you to compute multiple predictions with a single a t  () specification. 
For example, here we make predictions a t two values of wc, with other variables held at 
their means:

. use binlfp4, clear 
(binlfp4.dta I Mroz data on labor
. logit lfp k5 k618 age i.wc i.hc

(output om itted )
. margins, at(wc=0 wc=l) atmeans
Adjusted predictions 
Model VCE : OIM
Expression
l.at

force participation of women 
lwg inc, nolog

Number of obs

2013-07-15)

753

2._at

PrClfp),
k5

predict()
.2377158 (mean)

k618 = 1.353254 (mean)
age = 42.53785 (mean)
wc = 0
O.hc = .6082337 (mean)
1 .he = .3917663 (mean)
lwg = 1.097115 (mean)
inc = 20.12897 (mean)
k5 * .2377158 (mean)
k618 = 1.353254 (mean)
age = 42.53785 (mean)
wc = 1
O.hc = .6082337 (mean)
1 .he = .3917663 (mean)
lwg = 1.097115 (mean)
inc = 20.12897 (mean)
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Delta-method 
Margin Std. Err. z P> |z| [95*/. Conf. Interval]

_at
1 .5215977 .0247391 21.08 0.000 .4731099 .5700855
2 .7096569 .0391445 18.13 0.000 .6329352 .7863786

T h e  legend labeled 1. _at is for wc=0 with other variables held at the mean. The second 
legend, labeled 2 ._at, is for wc=l.

There are two other w’ays to  specify these two predictions with a tO  in a single 
m a rg in s  command. We could include two a t  () options in the same m arg ins command:

margins, at(wc=0) at(vc=l) atmeans

O r we could use a numlist, S ta ta ’s name for a list of numerical values:

margins, at(wc=(0 1)) atmeans

In  th is  specification, (0 1) is the numlist, which must be enclosed in parentheses. For 
exam ple, at(wc=0 1) will generate an error.

T he atspec can use any S ta ta  numlist to specify multiple predictions (see help  
n u m lis t  for more details). One of the most useful forms allows us to specify every 
# t h  value over a range of values of an independent variable. For instance, say that we 
w ant predictions at every 10 years of age from 30 to 60:

. margins, at(age=(30(10)60)) atmeans
Adjusted predictions Number of obs = 753
Model VCE : 0IM
Expression : Pr(lfp), predictQ
1 ._at : k5 = .2377158 (mean)

k618 = 1.353254 (mean)
age = 30
O.wc = .7184595 (mean)

(output om itted)
4._at : k5 = .2377158 (mean)

k618 = 1.353254 (mean)
age = 60
O.wc = .7184595 (mean)

(output om itted)

Margin
Delta-method 

Std. Err. z P>lz| [95*/. Conf. Interval]

_at
1 .7506321 .0345282 21.74 0.000 .6829582 .818306
2 .61616 .0210803 29.23 0.000 .5748434 .6574766
3 .4612219 .0299687 15.39 0.000 .4024843 .5199594
4 .3134304 .0499253 6.28 0.000 .2155786 .4112823
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If we specify numlists for multiple independent variables, we get predictions for all 
combinations of those variables. For example, to make predictions a t every 10 years of 
age when wc =  0 and when wc = 1, holding other variables to their means, type

. logit lfp k5 k618 age i.wc i.hc Iwg inc, nolog 
(output o m itte d)

. margins, at(age=(30(10)60) wc=(0 1)) atmeans
Adjusted predictions Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp) , predictO
l._at k5 = .2377158 (mean)

k618 = 1.353254 (mean)
age = 30
wc = 0
0 .he = .6082337 (mean)
1 .he = .3917663 (mean)
lwg = 1.097115 (mean)
inc = 20.12897 (mean)

(output om itted )

00 1 c+ k5 = .2377158 (mean)
k618 = 1.353254 (mean)
age = 60
wc = 1
O.hc = .6082337 (mean)
1 .he = .3917663 (mean)
lwg = 1.097115 (mean)
inc 20.12897 (mean)

Delta-method
Margin Std. Err z P>lz| [95% Conf. Interval]

_at
1 .705724 .0396383 17.80 0.000 .6280344 .7834136
2 .8431665 .0339447 24.84 0.000 .7766361 .909697
3 .5611919 .0259052 21.66 0.000 .5104186 .6119651
4 .7414032 .0373631 19.84 0.000 .6681729 .8146334
5 .4054747 .0326861 12.41 0.000 .341411 .4695383
6 .604576 .0494255 12.23 0.000 .5077038 .7014483
7 .2667039 .0472562 5.64 0.000 .1740835 .3593243
8 .4491423 .0700628 6.41 0.000 .3118217 .586463

Eight predictions are made for the four values of a g e  by two values of h e . In the atlegend. 
the values of the independent variables for each prediction are labeled as # . _ a t .  which 
correspond to the prediction numbers listed under _at.

When many predictions are calculated, the atlegend can take hundreds of lines. The 
n o a t l e g e n d  option suppresses the listing; however, although the output is shorter, it is 
easy to lose track of which prediction corresponds to which values of the independent 
variables. To address this issue, our m l i s t a t  command lists the  atlegend in a more 
compact form:
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. logit lfp k5 k618 age i.wc i.hc lwg inc, nolog 
(output o m itte d)

. margins, at(age=(30(10)60) wc=(0 1)) atmeans noatlegend
Adjusted predictions Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp), predictO

Margin
Delta-method 

Std. Err. z P> lz| [957, Conf. Interval]

_at
1 .705724 .0396383 17.80 0.000 .6280344 .7834136
2 .8431665 .0339447 24.84 0.000 .7766361 .909697
3 .5611919 .0259052 21.66 0.000 .5104186 .6119651
4 .7414032 .0373631 19.84 0.000 .6681729 .8146334
5 .4054747 .0326861 12.41 0.000 .341411 .4695383
6 .604576 .0494255 12.23 0.000 . 5077038 .7014483
7 .2667039 .0472562 5.64 0.000 . 1740835 .3593243
8 .4491423 .0700628 6.41 0.000 .3118217 .586463

. mlistat
atO values held constant

1.
k5 k618 he lug inc

.238 1.35 .392 1.1 20.1
atO values vary

_at age wc

1 30 0
2 30 1
3 40 0
4 40 1
5 50 0
6 50 1
7 60 0
8 60 1

m lis ta t  divides the independent variables into those th a t are constant, which are listed 
only once, and those th a t  vary across predictions. If values of a variable vary, m lis ta t  
lists their values along with the prediction number in the _at column. If you do not 
want the output to be divided in this way, you can specify the n o s p l i t  option to list 
all values for all variables. The noconstant option prints only variables whose values 
vary.

Notice the order in which the values of age and wc vary: starting at age=30, the 
values of wc change from 0 to 1; then age changes to 40 and the values of wc vary; and so 
on. It is useful to understand what determines this order, because you might find it more 
useful or effective to  examine the predictions arranged by age for a given level of wc, 
rather than the changes in wc for a given value of age. The order is determined by the 
order in which the independent variables appear in the variable list for the fitted model, 
and not by the order of variables within a t  (). Because our model was specified as lo g i t
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l f p  k5 k618 age i.w c i .h c  lwg inc, the variable wc varies first in the predictions 
because wc appears later in the model. If we reran the model as l o g i t  l f p  k5 k618 
i  . wc age i  .he lwg inc, predictions would be in the order of wc=0 for ages 30, 40, 50, 
and GO, followed by predictions for wc=l by age.

If you do not want to respecify your model to change the order of predictions (which 
we rarely want to  do), you can use multiple a t ( )  specifications in the same margins 
command to control the order in which predictions are made. For example,

. logit lfp k5 k618 age i.wc i.hc lwg inc, nolog
(output om itted )

. margins, at(wc=0 age=(30(10)60)) at(wc=l age=(30(10)60)) atmeans noatlegend 
(output o m itted )

. mlistat, noconstant 
atC) values vary

_at age wc

1 30 0
2 40 0
3 50 0
4 60 0
5 30 1
6 40 1
7 50 1
8 60 1

We mention this because it is important to  produce predictions th a t make it as easy 
as possible to interpret results. This is considered further when we discuss the mtable 
command below.

Predictions for groups defined by levels of categorical variables

In the data we have been using, wc is a binary factor variable. Earlier, we showed how 
to get predictions for both values of wc by specifying a numlist w ith the a t ( )  option:

. logit lfp k5 age i.wc i.hc, nolog
(output om itted)

atmeans. margins, at(wc=(0 1))
Adjusted predictions 

OIM
Pr(lfp) , predictO
k5 
age
wc =
O.hc
1 .he =

Model VCE
Expression
l._at

2._at k5
age
wc
O.hc 
1 .he

Number of obs 753

.2377158
42.53785 

0
.6082337 
.3917663
.2377158
42.53785 

1
.6082337 
.3917663

(mean)
(mean)

(mean)
(mean)
(mean)
(mean)

(mean)
(mean)
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Margin
Delta-method 

Std. Err. z P> 1 z [95‘/, Conf. Interval]

_at
1 .511531 .0237801 21.51 0.000 .464923 .5581391
2 .7214299 .0359569 20.06 0.000 .6509557 .7919041

W h en  factor-variable notation is used for a categorical variable, the same result can be 
o b ta in ed  by including the  variables in the varlist for margins:

. margins wc, atmeans
Adjusted predictions 
Model VCE : OIM
Expression
at

: Pr(lfp), predictQ 
: k5 
age
0. wc =
1. wc =
O.hc =
1 .he =

Number of obs 753

.2377158 (mean) 
42.53785 (mean) 
.7184595 (mean) 
.2815405 (mean) 
.6082337 (mean) 
.3917663 (mean)

Margin
Delta-method 

Std. Err. z P>lz| [95*/. Conf. Interval]

wc
no

college
.511531

.7214299
.0237801
.0359569

21.51
20.06

0.000
0.000

.464923
.6509557

.5581391

.7919041

If  m ultiple factor variables are specified in varlist, then margins computes all combina­
tions, just as it does when a num.list specifies multiple variables within a t ( ) .

W ith  the a tO  specification, we can use combinations of continuous variables and 
fac to r variables, whereas only factor variables can be included in the varlist. For in­
s tan ce , earlier we computed predictions over age by using at(age= 30(10)60 ), but typ­
ing m argins age produces an error because age is not a factor variable. The atlegend 
is also more compact, and perhaps more confusing, when a varlist is used because it 
show s the means for the factor variables 0. wc and 1. wc even though the predictions are 
m ad e  with wc=0 and wc=l, not at their means.

W e can also make predictions at different levels of a categorical variable with the 
o v e r O  option. Like many S ta ta  commands, m argins supports the o v e r()  option to 
o b ta in  separate estimates for different groups, where the variable defining the groups 
does not need to be in the model. There is a  subtle but important difference in how 
o v e r O  makes group predictions compared with the methods considered earlier. An 
exam ple is the easiest way to understand how o v erO  works. For the  logit model fit 
earlier, we make predictions over the binary variable wc:
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over(vc) atmeans. margins
Adjusted predictions 
Model VCE
Expression
over
at

OIM
Pr(lfp), predictO 
wc
O.wc

1. wc

Number of obs 753

k5 = .2014787 (mean)
age = 42.85952 (mean)
wc = 0
O.hc = .7707948 (mean)
1 .he = .2292052 (mean)

k5 = .3301887 (mean)
age = 41.71698 (mean)
wc = 1
O.hc = . 1933962 (mean)
1 .he = .8066038 (mean)

Margin
Delta-method 
Std. Err. z P> 1 z [95*/. Conf. Interval]

wc
no

college
.5246101
.6937858

.0224108

.0336666
23.41
20.61

0.000
0.000

.4806858

.6278004
.5685343 
.7597712

These results are not the same as those from margins wc, atm eans or margins, 
at(wc=(0 1)) atmeans shown above. When o v er() is used with the atmeans op­
tion, margins calculates the mean of variables within each group. You can see this in 
the different means listed above in the atlegends for O.wc and l.w c. Predictions for 
wc = 0 are computed with other variables held a t the mean for the subsample defined 
by i f  wc==0. Similarly, means for wc =  1 are computed with i f  wc==l.

To see this, we run m argins using an i f  condition. When an i f  or in  condition 
is used with m argins, the sample is restricted to  those cases when computing means, 
medians, and other values for the a t ( )  variables. Accordingly, we can obtain identical 
results to those obtained using over (wc) by restricting the sample with an i f  condition. 
First, we use i f  wc==0 to select observations:

. margins if wc==0, atmeans
Adjusted predictions Number of obs = 541
Model VCE : OIM
Expression : Pr(lfp), predictO
at : k5 = .2014787 (mean)

age = 42.85952 (mean)
wc = 0
O.hc = .7707948 (mean)
1 .he = .2292052 (mean)

Delta-method
Margin Std. Err. z P> I z I [95'/, Conf. Interval]

_cons .5246101 .0224108 23.41 0.000 .4806858 .5685343
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T h e results match those for wc =  0 when over(wc) was used. Similarly with i f  wc==l: 

. margins if wc==l, atmeans
Adjusted predictions Number of obs = 212
Model VCE : OIM
Expression : Pr(lfp), predictO
at : k5 = .3301887 (mean)

age
wc
O.hc 
1 .he

41.71698
1

. 1933962 

.8066038

(mean)

(mean)
(mean)

Margin
Delta-method

Std. Err. z P>|zl [95*/. Conf. Interval]

_cons .6937858 .0336666 20.61 0.000 .6278004 .7597712

T hese results match those for 1. wc when over (wc) was used.

4.4.3 (Advanced) Nondefault predictions using margins

Although the section heading seems esoteric, this is an im portant topic. 
The default predictions computed by m argins or the m* commands 
are often the predictions you want, which is why they are the default. 
But you might want to  predict some other quantity. Using the  options 
described in this section, you can predict arbitrarily complex functions 
of any quantity computed by p re d ic t .  Several useful applications of 
this powerful feature of margins are illustrated in later chapters.

By default, m argins predicts whatever p r e d ic t  would predict by default for the 
last estimation command. For instance, the default prediction for re g re s s  is the pre­
dicted  value E (y |x), whereas for lo g i t  the default prediction is P r (y =  l|x). For 
m ost estimation commands, you can predict other quantities by adding an option 
to  p re d ic t.  For example, after lo g it ,  the command p re d ic t myxb, xb generates 
th e  variable myxb with the linear combination of the rr’s. To determine the default 
prediction and what other types of predictions are available for a given estimation 
command, type help  estimation-command p o s te s tim a tio n  (for example, he lp  lo g i t  
p o s te s tim a tio n ). The m argins command can estimate any of the quantities com­
pu ted  by p red ic t, as well as arbitrarily complex functions of these quantities with the 
p re d ic tO  and e x p re ss io n () options.

The predict() option

W ith  the p red ic t (.statistic) option, the m argins command makes predictions for any 
statistic that can be computed by p re d ic t.  For example, in the ordered logit model
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considered in chapter 7, the default prediction is the probability of the first outcome. 
Suppose that our outcome categories are numbered 1, 2, 3, and 4. Running margins 
without p re d ic t  () computes the average of P r(yi = 1 |x ,). Because p re d ic t  prob2, 
outcome (2) generates the variable prob2 containing Pr(t/* =  2 |x , ) ,  to estimate the 
average probability that y — 2, we use m arg ins, p re d ic t  (outcome (2 )):

. use gssclass4, clear
(gssclass4.dta I GSS Subjective Class Identification I 2013-11-20)
. ologit class i.fem i.white i.year i.ed age inc, nolog 

(output om itted)
. margins, predict(outcome(2))
Predictive margins Number of obs = 5620
Model VCE : OIM
Expression : Pr(class==2), predict(outcome(2))

Margin
Delta-method
Std. Err. z P> 1 z [95*/. Conf. Interval]

_cons .4598112 .0062198 73.93 0.000 .4476206 .4720018

In the output. E x p ressio n : P r(c lass= =2) , p re d ic t  (outcome (2) ) indicates the quan­
tity being estim ated. Because margins can only predict one outcome at a time, we must 
either run m argins once for each outcome or use mtable to autom ate this process, as 
we describe shortly.

The expression() option

The e x p re s s io n () option lets you estim ate transformations of what is computed by 
p re d ic t (). To show how this works, imagine th a t after fitting an  ordered logit model 
on an outcome with four categories, we want the predicted probability that y is 2, 3, 
or 4. That is, we want to  compute P r(y  ^  l |x )  =  1 -  Pr(;</ =  l|x ). The option is 
e x p re ss io n (l-p re d ic t(o u tc o m e (1)):

. margins, expression(l-predict(outcome(l)))
Predictive margins Number of obs = 5620
Model VCE : OIM
Expression : 1-predict(outcome(1) )

Margin
Delta-method
Std. Err. z P> 1 z j [95*/, Conf. Interval]

.cons .9287596 .0033787 274.89 0.000 .9221375 .9353817

A similar application is computing the probability of a 0 after fitting a binary model. We 
cannot obtain this prediction with the p r e d ic t  () option because the p re d ic t  command 
does not have an  option to compute the probability of a 0. The default option pr 
computes the probability of a 1. To compute the probability of a 0, type
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. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

(output om itted )
. margins, expression(l-predict(pr))
Predictive margins Number of obs = 753
Model VCE : OIM
Expression : l-predict(pr)

Margin
Delta-method

Std. Err. z P>|zl [957, Conf. Interval]

_cons .4316069 .0166014 26.00 0.000 .3990688 .464145

The e x p re s s io n () option is incredibly powerful, allowing you to  routinely test 
things that would otherwise be difficult. To test whether the expected probability 
is 0.5 after lo g i t ,  use m arg in s , exp ression  (p r e d ic t  (p r ) - .  5). In  this expression, 
p re d ic t  (pr) computes the probability that y — 1. By subtracting 0.5, we are comput­
ing deviations from 0.5. We can use the z statistic from margins to  test whether the 
average deviation is 0, which is equivalent to testing whether the average probability is
0.5. As another example, after o lo g it  we can test whether the probability of a respon­
dent identifying as lower class (y = 1) equals the probability of identifying as upper 
class (y =  4) by using

margins, expression( predict (outcome (1)) - predict (outcome (4)) )

In chapter 6, we show how this feature can be particularly handy when working with 
independent variables th a t have power terms or interactions with other independent 
variables in the model.

4.4.4 Tables of predictions using mtable

m table makes tables from the predictions com puted by margins. You do not need to 
run margins because m table does this for you, using most of the options for margins 
that we just considered. In addition, m table has options to customize how the results 
appear by adding labels, selecting statistics, and combining results from multiple mtable 
commands. There are, however, some features in margins that will not work with 
m table. Most notably, perhaps, margins allows a  varlist with factor variables, but 
m table does not. B ut as we showed on page 151, results that can be computed with a 
varlist can be computed using a t  (), so this does not limit what you can do with mtable.

To explain how m table works, we start by creating a table of predicted probabilities 
that vary by wc and he from a logit model. We will talk  at length about how to interpret 
these predictions in chapter 6.
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. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15) 
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

(output o m itted )
. mtable, at(wc=(0 1) hc=(0 1)) atmeans 
Expression: Pr(lfp), predictO

wc he Pr (y)

1 0 0 0.509
2 0 1 0.543
3 1 0 0.697
4 1 1 0.725

Specified values of covariates

k5 k618
2.

agecat
3.

agecat lwg inc

Current .238 1.35 .385 .219 1.1 20.1

In the header, E x p ressio n  echoes the description that m argins uses to describe the 
predictions it is making. The column P r(y ) contains predicted probabilities that lfp  
is 1. The first row of the prediction table, numbered 1, shows th a t the probability of 
being in the labor force is 0.509 for a woman who did not go to college (wc=0) and whose 
husband did not go to college (hc=0), holding other variables at their means as specified 
with the atmeans option. Rows 2, 3, and 4 show predictions for other combinations 
of he and wc. Values of the independent variables that are held constant are displayed 
below the predictions.

To convince you (we hope) of the advantages of mtable. let’s look at the correspond­
ing output from m argins. We show all the  output because if you use noatlegend, you 
risk not knowing which predictions correspond to which values of the variables that 
vary.

. margins
Adjusted predictions 
Model VCE
Expression
l._at

at(wc=(0 1) hc=(0 1)) atmeans
Number of obs 753

2._at

0IM
Pr(lfp), predictO 
k5 .2377158 (mean)
k618 = 1.353254 (mean)
1.agecat = .3957503 (mean)
2.agecat = .3851262 (mean)
3.agecat = .2191235 (mean)
wc = 0
he = 0
lwg = 1.097115 (mean)
inc = 20.12897 (mean)
k5 = .2377158 (mean)
k618 = 1.353254 (mean)
1.agecat = .3957503 (mean)
2.agecat = .3851262 (mean)
3.agecat = .2191235 (mean)
wc = 0
he = 1
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lwg = 1.097115 (mean)
inc = 20.12897 (mean)
k5 = .2377158 (mean)
k618 = 1.353254 (mean)
1.agecat = .3957503 (mean)
2.agecat = .3851262 (mean)
3.agecat = .2191235 (mean)
wc = 1
he = 0
lwg = 1.097115 (mean)
inc = 20.12897 (mean)
k5 = .2377158 (mean)
k618 = 1.353254 (mean)
1.agecat = .3957503 (mean)
2.agecat = .3851262 (mean)
3.agecat = .2191235 (mean)
wc = 1
he = 1
lwg = 1.097115 (mean)
inc = 20.12897 (mean)

Margin
Delta-method 

Std. Err. z P> 1 z [957. Conf. Interval]

_at
1 .5090529 .0274599 18.54 0.000 .4552326 .5628733
2 .5429204 .0444615 12.21 0.000 .4557775 .6300633
3 .6971851 .0489817 14.23 0.000 .6011828 .7931874
4 .7250834 .0364056 19.92 0.000 .6537297 .796437

The margins output has additional information about the predictions, such as the 
confidence interval, th a t  was missing from the m table output.

We can include the confidence interval in the m table output by adding the option 
s t a t i s t i c s  (c i) .  At the same time, we show how to customize the label for predictions 
by using estname ( ) :

. mtable, at(wc=(0 1) hc=(0 1)) atmeans estname(Pr_LFP) statistics(ci)
Expression: Pr(lfp) , predictQ

wc he Pr_LFP 11 ul

1 0 0 0.509 0.455 0.563
2 0 1 0.543 0.456 0.630
3 1 0 0.697 0.601 0.793
4 1 1 0.725 0.654 0.796

Specified values of covariates
2. 3.

k5 k618 agecat agecat lwg inc

Current .238 1.35 .385 .219 1.1 20.1
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The s t a t i s t i c s  (statlist) option allows you to add other statistics as well. The poten­
tial elements of statlist are shown in the following table.

Statistics Description

e s t Estimate
c i Confidence intervals along with the estim ate
11, u l Lower, upper limit of confidence interval
se Standard error of the estimate
z 2 statistic for test that estimate is 0
pvalue p-value for test th a t estimate is 0
a l l All the above statistics

By default, m table includes columns with the values of the a t ( )  variables that are 
changing. If you do not want these columns displayed, specify a tv ars(_ n o n e). You can 
use the atvarsivarlist') option to select which variables will appear, even if their values 
are not changing. This is useful when building tables (discussed soon) or when you want 
your table to show the level of a variable th a t is not varying across the predictions. In 
our example, wc varies bu t k5 and k618 do not. To include them in the table, we add 
the option a tv a rs (k 5  k618 wc). We also use the b r ie f  option so that the table of 
values for covariates is not shown:

. mtable, at(k5=0 k618=0 wc=(0 1)) atmeans atvars(k5 k618 wc) brief 
Expression: Pr(lfp), predictO

k5 k618
1.

wc Pr(y)

l 0 0 0 0.625
2 0 0 1 0.787

mtable with categorical and count outcomes

With categorical and count outcomes, a separate margins command must be run for 
each value of the outcome variable. For example, to compute predictions for each out­
come category in an ordinal logit, you would need a  series of commands such as m argins, 
p re d ic t (outcome (1)) atmeans. then m arg in s , p re d ic t  (outcome (2 )) atmeans. and 
so on. In contrast, m table automatically calculates predicted probabilities for all cat­
egories. Indeed, automatically computing predictions for multiple outcomes and com­
bining the predictions into a single table is what initially motivated the creation of 
mtable.

In one of our running examples in chapter 7, the outcome is subjective class identi­
fication, with categories ranging from 1 for lower class to 4 for upper class. To examine 
how attitudes are related to a respondent’s race and gender, we compute the following
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table, where the dec (2) option indicates that 2 decimal places should be used to display 
the estimates:

. use gssclass4, replace
(gssclass4.dta I GSS Subjective Class Identification I 2013-11-20)
. ologit class i.fem i.white i.year i.ed age inc, nolog 

(output om itted)
. mtable, at(fem=(0 1) white=(0 1)) atmeans stat(ci) dec(2)
Expression: Pr(class), predict(outcome())

female white lower working middle upper

Pr(y) 0 0 0.06 0.52 0.41 0.01
11 0 0 0.05 0.49 0.38 0.01
ul 0 0 0.07 0.54 0.44 0.02

Pr(y) 0 1 0.05 0.46 0.47 0.02
11 0 1 0.04 0.44 0.45 0.01
ul 0 1 0.05 0.48 0.49 0.02

Pr(y) 1 0 0.06 0.51 0.42 0.01
11 1 0 0.05 0.48 0.38 0.01
ul 1 0 0.07 0.54 0.45 0.02

Pr(y) 1 1 0.05 0.46 0.48 0.02
11 1 1 0.04 0.44 0.46 0.01
ul 1 1 0.05 0.48 0.50 0.02

Specified values of covariates
2. 3. 2. 3.

year year educ educ age income

Current .45 .31 .58 .24 45 68

Holding other variables at their means, the predicted probability of identifying as work­
ing class is 0.52 for nonwhite men (fem=0, w hite=0). With categorical outcomes, ad­
ditional statistics are placed below the estimates, in this case showing the lower and 
upper bounds for the confidence interval.

By default, all outcome categories are included in the table. The options p r  (numlist) 
and outcome (numlist') let you select which outcomes to  include in the table. For estima­
tion commands that support the outcome() option in p re d ic t (for example, o lo g it) , 
m table uses the outcom e() option to select which predictions to present. For commands 
such as lo g i t  and p o isso n  th a t support the p r  option with p re d ic t ,  m table uses p r( )  
to select which outcomes to present. For example, if we want to display only results for 
the l=lower class and 4=upper class categories, we type

. mtable, at(fem=(0 1) white=(0 1)) outcome(1 4) atmeans brief
Expression: Pr(class), predict(outcome())

female white lower upper

1 0 0 0.061 0.014
2 0 1 0.048 0.018
3 1 0 0.060 0.014
4 1 1 0.047 0.018

where we suppress the values of the covariates with b r ie f .
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For count models discussed in chapter 9, the default prediction for m table is the rate 
because it is the default for p re d ic t  in count models. To display predicted probabilities 
for a specific count—say, 0— we would use the option p r(0 ). To compute predicted 
probabilities for counts from 0 to 5, we would use p r(0 /5 ) .

(Advanced) Combining and formatting tables using mtable

We mark this section as advanced because it does not consider new 
ways of making predictions using m table, but instead considers how to 
create tables that combine predictions from running multiple m table 
commands. If you are only making a few predictions, the time it takes 
to learn these features might not be worth it. But if you often create 
tables of predictions, these features will save you time, make it easier 
to see key results, and prevent the inevitable errors th a t occur when 
constructing tables by hand.

mtable allows you to combine results from multiple mtable commands. The best way 
to understand how this works is with an example. Suppose that we want to compare the 
average predicted probability of labor force participation with the predicted probability 
holding all variables at their mean. We begin by fitting the model:

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

(output o m itted)

Using the results from this model, we next estim ate the average probability of labor force 
participation for values of k5 from 0 to 3. Because our table is going to include multiple 
predictions, we add labels to identify each set of predictions. T he option coleqnmO 
adds a header row to our predictions. The name for this option might seem odd, but it 
reflects that m table saves results as m atrices th a t refer to this header as the “column 
equation name” . We use the co leq n m (lst) option to label our first set of predictions:

. mtable, at(k5=(0 1 2 3)) coleqnm(lst)
Expression: Pr(lfp), predictO

1st
k5 Pr(y)

1 0 0.637
2 1 0.342
3 2 0.129
4 3 0.038

Specified values where .n indicates no values specified with at()
No atO

Current .n
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N ex t, we compute predictions a t the means by adding the atraeans option, using the 
r i g h t  option to append the new predictions to  the right of those above. To simplify 
o u r  example, we exclude the atlegend with the b r i e f  option:

. mtable, at(k5=(0 1 2  3)) atmeans right brief coleqnm(2nd)
Expression: Pr(lfp), predict()

1st
k5

2nd
Pr (y) k5 Pr(y)

1 0 0.637 0 0.656
2 1 0.342 1 0.322
3 2 0.129 2 0.105
4 3 0.038 3 0.028

T h e  results on the left labeled 1 s t are from the first time we ran m table to  compute 
th e  average predicted probability. The next two columns, labeled 2nd, are predictions 
a t  th e  mean.

Soon wre will show how to make the output more effective by removing the repetition 
o f th e  k5 column and using better labels. F irst, however, we need to  explain how the 
levels of covariates are displayed when combining tables. Here is the output we would 
o b ta in  if we had not used the b r ie f  option:

. mtable, at(k5=(0 1 2  3)) atmeans right coleqnm(2nd)
Expression: Pr(lfp) , predictQ

1st
k5

2nd
Pr (y) k5 Pr (y)

1 0 0.637 0 0.656
2 1 0.342 1 0.322
3 2 0.129 2 0.105
4 3 0.038 3 0.028

Specified values where .n indicates no values specified with at()

No atO k618
2.

agecat
3.

agecat
1.

wc
1.

he

Set 1 .n
Current 1.35 .385 .219 .282 .392

lwg inc

Set 1
Current 1.1 20.1

T h e  row labeled Set 1 contains values from th e  first use of mtable whose predictions are 
labeled 1st. The .n in the column labeled No a t ( )  indicates that the predictions were 
m ade without an a t  () specification; .n  stands for “no covariates specified5' . The second 
row. labeled Current, lists the mean values of each variable from the  most recent (that 
is, current) use of m table; these correspond to  the predictions in the columns labeled 
2nd.
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We can make the same table more clear by using additional options. First, there 
is no reason for the  values of k5 to appear twice. Specifying atvars(_none) in the 
second call of m tab le  removes this redundancy. Second, the two columns of predicted 
probabilities should have different labels, which is accomplished with the estnameO 
option. We will call them asobserved and atmeans:

. quietly mtable, at(k5=(0 1 2  3)) estname(asobserved)

. mtable, at(k5=(0 1 2  3)) atmeans atvars(_none) estname(atmeans) right brief
Expression: Pr(lfp), predictO

k5 asobserved atmeans

1 0 0.637 0.656
2 1 0.342 0.322
3 2 0.129 0.105
4 3 0.038 0.028

Next, we add a title  to the table with the option t i t l e  (P re d ic te d  p ro b a b il i ty  of 
lab o r fo rce  p a r t ic ip a t io n ) .  Finally, the numbers in the left column are not needed 
because the content of the rows is clear from the levels of k5. We can remove these with 
the norownum option. Combining these, we get a table that is close to what we might 
include in a paper:

Predicted probability of labor force participation 
Expression: Pr(lfp), predictO

k5 asobserved atmeans

0 0.637 0.656
1 0.342 0.322
2 0.129 0.105
3 0.038 0.028

We use m table often in the later chapters, where we take advantage of its many 
formatting features. Type help  m table to see them  all.

.5 Marginal effects: Changes in predictions
Marginal effects are estimates of the change in an outcome for a change in one indepen­
dent variable, holding all other variables constant. Here we provide an overview of the 
commands and basic concepts for computing marginal effects. A detailed discussion of 
marginal effects, along with substantive applications of alternative measures of change, 
is given in later chapters, especially chapter 6. We begin by discussing margins, which 
computes marginal effects with the dydxO option, and we then show how mtable can 
do the same thing. Because marginal effects are such a useful summary of effects in 
nonlinear models, we created mchange to easily compute many types of changes and 
present them in a compact table.
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4.5.1 Marginal effects using margins

m arg in s  can calculate the change in a predicted quantity as an independent variable 
changes, holding other variables constant. The prediction can be anything th a t margins 
can estim ate. The variables for which changes are calculated are specified using the 
dydx (varlist) option, where dydx(*) indicates th a t changes for all independent variables 
are to  be computed. For example,

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 i.agecat i.wc inc, nolog 

(output om itted)
. margins, dydx(*)
Average marginal effects Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp), predictO
dy/dx w.r.t. : k5 2.agecat 3.agecat l.wc inc

dy/dx
Delta-method 

Std. Err. z P> lz| [95*/. Conf. Interval]

k5 -.2886234 .034555 -8.35 0.000 -.35635 -.2208968

agecat
40-49

50+
-.1081118 
-.2424494

.0397652

.0457377
-2.72
-5.30

0.007
0.000

-.1860501
-.3320937

-.0301735
-.152805

wc
college

inc
.2217304 
-.006773

.0359796

.0015749
6.16
-4.30

0.000
0.000

.1512116
-.0098597

.2922492
-.0036863

Note: dy/dx for factor levels is the discrete change from the base level.

The amount of change in a regressor th a t is used to calculate the change in the 
prediction depends on whether the variable is a  continuous or a factor variable, where 
S ta ta  assumes variables are continuous unless specified as factor variables with the
i .  notation. In our example, k5 and inc  are continuous while ag e ca t and wc are 
factor variables. For a  continuous variable, m arg ins estimates the marginal change, 
which is the partial derivative or instantaneous rate of change in the estim ated quantity 
with respect to a given variable, holding other variables constant. For factor variables, 
m argins calculates the discrete change, which is the difference in the  prediction when 
the factor variable is 1 compared with the prediction when the variable is 0. For the 
binary variable wc, this is the change in the probability of being in the labor force if 
the wife attended college compared with if she did not attend college. For multiple- 
category factor variables, the change is from the base category to the value listed in 
column dy/dx. For i . agecat in this example, the row labeled 40-49 is the change in 
the probability for a  change in agecat from the excluded base category 30-39 to the 
category 40-49.

It bears repeating that margins only calculates the discrete change for variables 
specified with the i . factor-variable notation. For example (using underlining to high­
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light the differences between the two commands), although lo g i t  l f p  k5 i .a g e c a t 
wc inc and lo g i t  l f p  k5 i . agecat i.w c in c  yield the same estimates of the regres­
sion coefficients, the  values of dydxO computed by margins will differ. In the first 
specification, wc is not a factor variable, so m argins computes the partial derivative 
with respect to wc; in the second specification, i.w c  is a factor variable, so margins 
computes the discrete change. Almost certainly in this context, you want the discrete 
change, and so factor-variable notation m ust be used when fitting the model.

.5.2 Marginal effects using mtable

Showing how m table can compute the same results as margins provides an opportunity 
to illustrate the mechanics of how discrete changes are computed and to extend our 
discussion of how m table can display different estimates in a single table. We use a 
pair of mtable commands to compute predicted probabilities, first, when wc is 1 and 
then when wc is 0. Using two mtable commands rather than a single command with 
at(wc=(0 1)) allows us to have different row labels for each prediction by adding the 
rownameO option. The option below indicates th a t the results from the second mtable 
command should be stacked below those from the first mtable:

. quietly mtable, at(wc=l) rowname(wc=l) statistics(ci) estname(Pr_LFP)

. mtable, at(wc=0) rowname(wc=0) statistics(ci) estname(Pr_LFP) below 
Expression: Pr(lfp), predictQ

Pr_LFP 11 ul

wc=l 0.728 0.671 0.784
wc=0 0.506 0.466 0.546

Specified values of covariates
wc

Set 1 1
Current 0

The first row contains the average predicted probability of labor force participation 
under the assumption that all women went to college, while the second row contains 
predictions assuming that none of the women went to college. Next, we compute the 
discrete change by using the dydx(wc) option:

. mtable, dydx(wc) rowname(wc=l - wc=0) statistics(ci) estname(Pr_LFP)
> below brief 
Expression: Pr(lfp), predictQ

Pr LFP 11 ul

wc=l 0.728 0.671 0.784
wc=0 0.506 0.466 0.546

wc=l - wc=0 0.222 0.151 0.292

The results match those for wc from m argins on page 163.
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5.3 Posting predictions and using mlincom

C o m puting  change is also an ideal venue for introducing the idea of posting estimates. 
To ex p la in  th is powerful feature of margins, we need to review how estim ation com­
m ands work. After a regression model is fit, S ta ta  saves the results in memory as what 
are ca lled  ereturns. T he coefficient estimates are saved in the m atrix e (b ) and the 
variance-covariance of the estimates in e(V). Commands may subsequently use ere­
tu rn s  to  com pute additional quantities. For example, the t e s t  command uses e(b) and 
e(V ) to  com pute Wald tests of linear hypotheses, and lincom uses these matrices to 
e s tim a te  linear combinations of the estimates. We could also test nonlinear hypotheses 
w ith  t e s t n l  or compute nonlinear functions of estim ates with nlcom.

J u s t  like regression estimation commands, m argins computes estim ates and their 
variance-covariance m atrix. By default, these are saved in the return  matrices r(b )  
and  r  (V) so th a t m argins does not overwrite e (b )  and e(V) from the regression model. 
B ecause the  results of the regression model are not disturbed, we can run multiple 
m a rg in s  commands without refitting the regression model. The p o st option for margins 
rep laces the matrices e (b )  and e(V) from the regression model with the estimates from 
m a rg in s . Once this is done, t e s t  can be used to test linear hypotheses about the 
pred ic tions from m argins, and lincom can be used to estimate linear combinations of 
th e  predictions. Adding the p o s t option to m tab le does the same th ing.3

T o illustrate posting, we compute the discrete change for wc from the last example. 
W e s ta r t  by saving the estimation results from l o g i t  so that we can restore them after
we finish analyzing the estimates with m table.

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 i.agecat i.wc inc, nolog 

(output om itted)
. estimates store modell

W ith  m tab le , we compute predicted probabilities a t two levels of wc and use the post 
op tion  to save the estimated predictions and their covariance matrix to  e(b ) and e(V):

. mtable, at(wc=(l 0)) post 
Expression: Pr(lfp), predictO

wc Pr(y)

1 1 0.728
2 0 0.506

Specified values where .n indicates no values specified with at()
No at()

Current .n

3. If you are using mtable with a model with multiple outcom es (such as mlogit), then mtable runs 
margins once for each outcome. In this case, mtable, post posts the margins estim ates for the 
last outcome.
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. matlist e(b)

To see the posted predictions, we list e ( b ) :

i . 2.
_at _at

yi .7276954 .505965

Next, we estim ate the differences between these predictions by using lincom. The 
lincom command requires us to specify the difference with the symbolic names of the 
estimates, which are shown as the column names of e(b):

. lincom _b[l._at] - _b[2._at] 
( 1) lbn._at - 2._at = 0

Coef. Std. Err. z P>1zI [95*/. Conf. Interval]

(1) .2217304 .0359796 6.16 0.000 .1512116 .2922492

The estimated discrete change of 0.2217 matches the earlier results from dydx(wc).

Personally, we find names like _ b [l._ a t]  and such to be cumbersome, so we cre­
ated the mlincom command, which allows you to  refer to an estim ate by its position 
rather than by its name. Here we compute the difference between the first and second 
predictions:

. mlincom 1 - 2
lincom pvalue 11 ul

1 0.222 0.000 0.151 0.292

Options for mlincom (type help  mlincom for details) allow you to select which statistics 
you want to see, add labels, and combine results from multiple mlincom commands.

Regardless of whether we used mlincom or lincom, the estim ation results from lo g i t  
are no longer active. To run additional m argins or m* commands, or to  use t e s t  or 
l r t e s t  on the regression estimates, we must restore the logit estimates:

. estimates restore modell 
(results modell are active now)

In this simple example, there is no advantage to using p o s t and mlincom because 
m table, dydx(wc) is much simpler. In later chapters, though, we use mlincom to test 
a variety of more complex and useful hypotheses about marginal effects.

4.5.4 Marginal effects using mchange

Marginal effects are so fundamental for interpreting nonlinear models th a t we created 
mchange to make it simple to create compact tables containing many types of marginal 
effects. By default, changes are computed asobserved. That is, the change is computed
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for each observation in the estimation sample and then averaged. These are sometimes 
re ferred  to as average marginal effects. If we want the marginal effccts a t the mean 
in s tead , we can use the atm eans option, or we can set specific values of the independent 
variab les at which changes are computed by using the a t ( )  option.

To see how this command differs from m arg ins, dydx(*), let’s first consider what 
m change provides by default:

. use binlfp4, cleax
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

(output omitted )
. mchange
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change p-value

k5
+1 -0.281 0.000
+SD -0.153 0.000

Marginal -0.289 0.000
k618

+1 -0.014 0.337
+SD -0.018 0.337

Marginal -0.014 0.335
agecat
40-49 vs 30-39 -0.124 0.002

50+ vs 30-39 -0.262 0.000
50+ vs 40-49 -0.138 0.002

wc
college vs no 0.162 0.000

he
college vs no 0.028 0.508

lwg
+1 0.120 0.000
+SD 0.072 0.000

Marginal 0.127 0.000
inc

+1 -0.007 0.000
+SD -0.086 0.000

Marginal -0.007 0.000
Average predictions

not in LF in LF

Pr(yIbase) 0.432 0.568

For continuous variables (that is, those not specified as i.vam am e), the rows labeled 
M arginal contain the average marginal changes and are identical to what is computed 
using m argins, dydx(*). For binary factor variables, such as i.w c, mchange computes 
th e  average discrete change as the variable changes from 0 to 1. In S ta ta  13 and later, 
value labels are used to label the change if available (for example, c o lle g e  vs no); 
otherwise, values are used (1 vs 0). For categorical factor variables, such as i .a g e c a t, 
mchange computes differences between all pairs of categories (referred to as contrasts).
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In Stata 13 and later, these contrasts are labeled with the value labels associated with the 
categories. The contrasts 40-49 vs 30-39 and 50+ vs 30-39 are the same as shown 
in the output from m arg ins, dydx(*). The comparison 50+ vs 40-49 was computed 
by mchange with m arg ins, pwcompare.

By default, for continuous variables, mchange also computes two types of discrete 
changes. The unit change, labeled +1, is the change in the prediction as a variable 
changes from its observed value to its observed value plus 1. T he standard deviation 
change, labeled +SD, is the change in the prediction as a variable changes one standard 
deviation from its observed value.

mchange has many options, a few of which we discuss here. A full description 
of mchange’s functionality is provided with h e lp  mchange, and many examples are 
provided in later chapters.

The amount (amount-types) option specifies the amount of change for continuous 
variables. The following are available:

amount-type Amount of change

one One unit change
sd Standard déviation change
m arg ina l Marginal change
b in a ry Change from 0 to 1
range Change from the minimum to maximum
a l l Ail the above

The default am ounts are amount (one sd m arg ina l), which were described above. In 
Stata 11 and 12, changes of 1 or 1 standard deviation cannot be computed and will 
appear as .m in the results. By default, changes of 1 and 1 standard deviation are 
uncentered. The cen te red  option requests changes that are centered; a centered unit 
change is the change from x  -  (1/2) to x  +  (1/2) rather than from x  to x  +  1.

The amount (range) option computes the discrete changes as x  changes from its 
minimum to maximum, but it can also be used with the t r i m ( # )  option to compute 
the change between other percentiles. For example, we could estimate the average 
change in the probability of labor force participation if family income changes from the 
25th percentile of income to the 75th percentile by using trim  (25) with amount (range):
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. mchange inc, amount(range) trim(25) 
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change p-value

inc
25*/. to 75*/. -0.084 0.000

Average predictions
not in LF in LF

Pr(ylbase) 0.432 0.568

The d e l ta  (# )  option computes a change of #  units instead of a standard  deviation 
change. For example, in c  is measured in thousands of dollars. To estim ate the average 
change in labor force participation if income increased by $5,000, we use d e l ta (5 ) :

. mchange inc, amount(sd) delta(5)
logit: Changes in Pr(y) I Number of obs = 753
Expression: Pr(lfp) , predict(pr)

Change p-value

inc
+delta -0.037 0.000

Average predictions
not in LF in LF

Pr(yIbase) 0.432 0.568
1: Delta equals 5.

The s t a t i s t i c s  (statistics-types) option allows you to select which statistics related 
to the marginal effect to display. By default, mchange provides the estimated change 
and the p-value from a test of the  hypothesis th a t the cffect is 0. The following statistics 
are available:

statistics-type Statistic

change Estimated change
c i Estimated change and confidence interval
11, u l Lower, upper limit of confidence interval
se Standard error of the estimate
z 2 statistic for test th a t estimated change is 0
pvalue p-value for test th a t estimated change is 0
s ta r t Prediction at starting value of discrete change
end Prediction at ending value of discrete change
a l l All the above statistics
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We can use mchange, amount ( a l l )  s t a t i s t i c s ( a l l )  to compute all the statistics for 
all types of changes, which is a lot of information. For just one variable, here is what
we get:

. mchange inc, amount(all) statistics(all) 
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change p-value LL UL z-value Std Err

inc
0 to 1 -0.006 0.000 -0.009 -0.004 -5.454 0.001

+1 -0.007 0.000 -0.011 -0.004 -4.419 0.002
+SD -0.086 0.000 -0.124 -0.048 -4.404 0.019

Range -0.593 0.000 -0.761 -0.424 -6.883 0.086
Marginal -0.007 0.000 -0.010 -0.004 -4.427 0.002

From To

inc
0 to 1 0.706 0.700

+ 1 0.568 0.561
+SD 0.568 0.483

Range 0.706 0.114
Marginal .z .z

Average predictions
not in LF in LF

Pr(yIbase) 0.432 0.568

By selecting which statistics we want to show, mchange can easily replicate what took 
several steps w ith m table earlier. We use a varlist to select variable wc and option 
s t a t i s t i c s  ( s t a r t  end e s t  pvalue) to display the start and end values leading to 
the change that is shown along with its ¿rvalue:

. mchange wc, statistics(start end est pvalue) 
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

From To Change p-value

wc
college vs no 0.525 0.688 0.162 0.000

Average predictions
not in LF in LF

Pr(yIbase) 0.432 0.568

By default, mchange computes average marginal effects (see section 6.2 for a detailed 
discussion). You can compute marginal effects at the mean by adding the atmeans 
option. Or you can use a t ( )  to compute changes at specific values of the indepen­
dent variables. Finally, if you use factor-variable notation to specify interactions or 
polynomial terms, mchange will compute marginal effects by making the appropriate 
changes among linked variables. For example, if your model includes c.age##c.age.
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then  mchange age will change both age and age-squared. The mchange command does 
a  lot of work behind the  scenes and can take a long time to run in models such as 
o l o g i t  or m lo g it when there are many outcome categories. For example, after run­
ning our baseline model for o lo g i t  with four categories and eight variables, mchange, 
amount ( a l l )  runs 40 m argins commands, 32 lincom  commands, and summarizes 1,123 
lines of output in a 46-line table.

4.6 Plotting predictions
For continuous variables, graphs can effectively summarize effects. The S ta ta  command 
m a rg in sp lo t plots the predictions from the most recently run m argins. Our mgen 
command can also be used to plot results from m argins. The major difference between 
the commands is th a t m arg in sp lo t creates plots, while mgen generates variables that 
can be used with S ta ta ’s graphing commands. The former approach is convenient, but 
ultim ately limited because it allows you to plot only a  single outcome category from a 
single model in a graph.

4.6.1 Plotting predictions with marginsplot

S ta ta ’s documentation has an especially detailed discussion of what can be done with 
m arg in sp lo t. Mitchell (2012a) also provides many examples of using m arg insp lo t 
for bo th  linear and categorical outcome models, m arg insp lo t uses results from the 
preceding m argins command. For example, here we plot the predicted probabilities of 
labor force participation over the ages 20 to 80 for women who attended college and 
those who did not:

. use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 age i.wc i.hc lwg inc, nolog

(output om itted)
. margins, at(age=(20(10)80) wc=(0 1)) atmeans
Adjusted predictions Number of obs = 753
Model VCE : 0IM
Expression : Pr(lfp), predictO

k5 = .2377158 (mean)
k618 = 1.353254 (mean)
age 20
wc = 0
O.hc = .6082337 (mean)
1 .he = .3917663 (mean)
lwg = 1.097115 (mean)
inc = 20.12897 (mean)

(output om itted)
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k5 = .2377158 (mean)
k618 = 1.353254 (mean)
age = 80
wc = 1
O.hc = .6082337 (mean)
1 .he = .3917663 (mean)
lwg = 1.097115 (mean)
inc = 20.12897 (mean)

Margin
Delta-method 
Std. Err. z P>lz| [95V. Conf. Interval]

_at
1 .8180827 .0457432 17.88 0.000 .7284277 .9077378
2 .9097581 .0291986 31.16 0.000 .8525299 .9669863
3 .705724 .0396383 17.80 0.000 .6280344 .7834136
4 .8431665 .0339447 24.84 0.000 .7766361 .909697
5 .5611919 .0259052 21.66 0.000 .5104186 .6119651
6 .7414032 .0373631 19.84 0.000 .6681729 .8146334
7 .4054747 .0326861 12.41 0.000 .341411 .4695383
8 .604576 .0494255 12.23 0.000 .5077038 .7014483
9 .2667039 .0472562 5.64 0.000 .1740835 .3593243
10 .4491423 .0700628 6.41 0.000 .3118217 .586463
11 .1624493 .0492577 3.30 0.001 .0659059 .2589927
12 .3030444 .0818881 3.70 0.000 .1425467 .4635422
13 .0937383 .0413068 2.27 0.023 .0127785 .1746981
14 .1882307 .0768769 2.45 0.014 .0375547 .3389067

Typing m arg in sp lo t without any options produces the following graph:

. marginsplot 
Variables that uniquely identify margins: age wc

Adjusted Predictions with 95% CIs

no — ♦----  college

Impressively, m arg in sp lo t infers that because the margins predictions diifer over age 
and wc, we want to plot predictions as these variables vary. Moreover, because age is
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estim ated as a continuous variable and wc as a factor variable, it assumes th a t we want 
to m ake a plot in which our x  axis is age and different lines represent different values 
of wc. m arg in sp lo t has dozens of its own options and allows you to include options for 
twoway graphs, such as those for axes and title. For details, type h e lp  m arg insp lo t.

W ith  m arg in sp lo t, you can quickly create graphs of the predictions from the last 
m arg ins command. You often do not have to specify any options for it to  create the 
g raph  you might want. Using its many options, you can customize the defaults to create 
publication-quality graphs. T here is, however, a  m ajor limitation in w hat m arg insp lo t 
can do. Graphs created by m arg in sp lo t can include multiple lines, such as the two 
lines in our example for those who went to college and those who did not. However, 
these plot lines must be for predictions of the same quantity computed from the same 
model. Among other implications, this means th a t m arg insp lo t does not allow you to 
plot multiple outcomes in a single graph, which you would commonly do with ordinal 
or nominal outcomes. Nor can you compare predictions from two models. For example, 
you could not compare the predictions from a model that included age with one that 
included age and age-squared. To facilitate making such graphs, we created the mgen 
command.

4.6.2 Plotting predictions using mgen

T he mgen command generates variables that can be plotted using S ta ta ’s graph com­
m ands. Like m table and mchange, mgen runs m argins for you and accepts most of the 
options that can be used with margins. The most important options for graphing are 
a t ( ) ,  which is used to  specify the range of the variable on the x  axis and the levels of 
other variables, and atm eans, if you want to hold other variables at the mean.

Here is a simple example th a t uses mgen to create a variable containing predictions 
as income increases from $0 to  $100,000 in increments of 810,000:

. use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

( output omitted )
. mgen, at(inc=(0(10)100)) stub(A) atmeans
Predictions from: margins, at(inc=(0(10)100)) atmeans predict(pr)
Variable Obs Unique Mean Min Max Label

Aprl 11 
Alll 11 
Aull 11 
Ainc 11

11
11
11
11

.3608011

.2708139

.4507883
50

.0768617
-.0156624
.1693859

0

.7349035

.6641427

.8056643
100

pr(y=in LF) from margins 
95’/, lower limit 
95'/, upper limit 
Family income excluding...

Specified values of covariates
2. 3. 1 1.

k5 k618 agecat agecat wc he lwg

.2377158 1.353254 .3851262 .2191235 .2815405 .3917663 1.097115
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The option s tu b (stubname) provides the first letters to be used in the names of the 
variables that are generated. We recommend a stub that differs from the starting letters 
of variables in the dataset; then, afterward, the variables can be easily deleted by typing 
drop stubname*. If the variable names in your dataset are all lowercase, an uppercase 
stub works well for this purpose. If you do not use the stubO  option, the default stub is 
an underscore, leading to variable names such as _prl. If you want to overwrite existing 
variables, perhaps while debugging the command, you can include the option replace.

In our example, mgen generated four variables: Aprl with the predicted probabilities, 
A lll  and Aull with the lower and upper bounds of the confidence interval for the 
prediction, and Ainc with values of in c  for each prediction. T he values of Ainc are 
determined by the  a t ( )  option. The summary statistics for generated variables show 
that inc ranges from 0 to 100, with predicted probabilities ranging from 0.08 to 0.73. 
We can list these values:

. list Apr Ainc in 1/12, clean
Aprl Ainc

1. .7349035 0
2. .6613024 10
3. .5789738 20
4. .4920058 30
5. .4055189 40
6. .324523 50
7. .2528245 60
8. .1924535 70
9. .1437253 80
10. .1057196 90
11. .0768617 100
12.

Because the predictions are saved as variables, they can be plotted with graph:

. graph twoway connected Apr Ainc
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We can run mgen multiple times to generate variables with predictions a t different 
levels of variables that are not varying. Here we use q u ie t ly  to suppress the output 
from mgen, and we create variables with predictions a t each level of ag eca t. The results 
are then  plotted using a single graph command:

. quietly mgen, at(inc=(0(10)100) agecat=l) atmeans stub(A30) predlabel(Age 30-39)

. quietly mgen, at(inc=(0(10)100) agecat=2) atmeans stub(A40) predlabel(40-49)

. quietly mgen, at(inc=(0(10)100) agecat=3) atmeans stub(A50) predlabel(50+)

. graph twoway connected A30pr A40pr A50pr A50inc,
> ytitle("Pr(In Labor Force)’1) xtitleC'Income")
> legend(cols(3))

Age 30-39 40-49 -- ■—  50+

Our example uses graph options to label the axes and improve the appearance of the 
legend. A brief discussion of graph’s options is included in chapter 2. For a more 
detailed discussion of the graph command, see the S ta ta  Graphics Reference Manual or 
Mitchell (2012b).

Predictions over multiple outcome values

The greatest advantage of mgen over m arg in sp lo t occurs when you want to plot pre­
dictions for multiple outcomes (not multiple lines for the same outcome, bu t different 
outcomes) or to combine predictions from different models (for example, plot the pre­
dicted probabilities with different sets of control variables). Because a single margins 
command computes predictions for a single outcom e category, predictions for multi­
ple outcomes require running margins multiple times, m arg insp lo t can only do plots 
based on running m argins once, mgen does this automatically and produces variables 
named in a consistent fashion that makes plotting simple. As an example, we use a 
model from our chapter on ordinal outcomes:
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. use gssclass4, clear
(gssclass4 .dta I GSS Subjective Class Identification I 2013-11-20)
. ologit class i.fem i.white i.year i.ed age inc, nolog 

( output om itted )
. mgen, at(age=(20(10)80)) stub(B) atmeans
Predictions from: margins, at(age=(20(10)80)) atmeans predict(outcome())
Variable □bs Unique Mean Min Max Label

Bprl 7 7 .0481717 .0247463 .0799486 pr(y=lower) from margins
Bill 7 7 .0425263 .0206772 .0705518 95*/. lower limit
Bull 7 7 .053817 .0288155 .0893454 95'/, upper limit
Bage 7 7 50 20 80 age of respondent
BCprl 7 7 .0481717 .0247463 .0799486 pr(y<=lower)
Bpr2 7 7 .4471604 .321645 .5647999 pr(y=working) from margins
B112 7 7 .4283944 .2954391 .544966 95'/, lower limit
Bul2 7 7 .4659264 .3478508 .5846338 95'/, upper limit
BCpr2 7 7 .4953321 .3463913 .6447485 pr(y<=working)
Bpr3 7 7 .484427 .3450458 .6195026 pr(y=middle) from margins
B113 7 7 .4645732 .3225423 .5927632 95'/, lower limit
Bul3 7 7 .5042807 .3675494 .646242 95'/, upper limit
BCpr3 7 7 .9797591 .9658939 .9897944 pr(y<=middle)
Bpr4 7 7 .020241 .0102057 .0341061 pr(y=upper) from margins
B114 7 7 .0166152 .0082046 .0276169 95'/, lower limit
Bul4 7 7 .0238667 .0122068 .0405953 95'/, upper limit
BCpr4 7 1 1 1 1 pr(y<=upper)

Specified values of covariates
1. 1. 2. 3. 2. 3.

female white year year educ educ income

.5491103 .8140569 .4510676 .3099644 .5818505 .2414591 68.07737

To understand what mgen has done, we list some of the variables that were generated:

list Bage Bprl Bpr2 Bpr3 Bpr4 in 1/8, clean
Bage Bprl Bpr2 Bpr3 Bpr4

1. 20 .0799486 .5647999 .3450458 .0102057
2. 30 .0660995 .5303931 .3910067 .0125007
3. 40 .0545074 .4917871 .4384017 .0153039
4. 50 .0448505 .4502864 .4861394 .0187237
5. 60 .0368379 .4072433 .533029 .0228899
6. 70 .0302114 .363968 .5778638 .0279568
7.
8.

80 .0247463 .321645 .6195026 .0341061

Variables BPrl through BPr4 contain predicted probabilities for the four categories of 
c la s s  as they change by age. Most simply, we could graph these with twoway l i n e  
Bprl Bpr2 Bpr3 Bpr4 Bage. Interpreting such graphs and making them more effective 
are topics discussed in subsequent chapters.

mgen’s defaults for handling multiple outcome values depend on model type. The 
way mgen distinguishes model types is by what options p r e d ic t  supports for a model. 
The following table summarizes the m ajor types of models.
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Model type p r e d ic t  supports Examples of models

Binary p r l o g i t ,  p ro b i t  (chapters 5 and 6)
Categorical outcome ( # ) o lo g i t ,  m log it (chapters 7 and 8)
Count p r ( # ) p o isso n , nbreg (chapter 9)
Other None of the above re g re s s

For categorical models, mgen automatically com putes predictions for all outcomes. The 
predicted probabilities for outcome #  are named stubpr#.  The cumulative probabilities 
P r (y < #lx) are also com puted and named st.ubCpr#.

As with m table. the mgen options outcom e() and p r() can be used to select the 
outcomes for which predictions should be computed. For categorical models in which 
p re d ic t  supports outcom e(), outcome(1 2) will compute outcomes for categories 1 
and 2. Cumulative probabilities will be calculated only if the set of specified values is 
the lowest observed values of y. For example, if the values of the outcome are 1, 2, 
and 3. outcome (1 2) will produce cumulative probabilities but outcom e(1 3) will not. 
For binary models, outcome (0 1) computes predictions for both outcomes y =  1 and 
y /: 0, whereas by default mgen only computes predictions for outcome y — 1. For count 
models, p r( )  can include a nurnlist. You can specify p r(0 /9 ) to obtain predictions for 
values of y from 0 to 9. Cumulative probabilities are produced only if p r ( )  specifies 
consecutive integers starting  with the lowest observed value of y.

Observed and average predicted proportion using mgen, meanpred

By default, mgen generates variables where each row is a prediction from m argins based 
on specified values of the independent variables. When option meanpred is used, mgen 
also generates variables in which the rows correspond to values of th e  outcome. These 
variables allow you to compare observed proportions versus average predicted probabil­
ities, an important tool for count models in chapter 9. Variables generated by mgen, 
meanpred are as follows:

Variable name Content

stubval Value of category k
stubobeq Observed proportion y = k
stuboble Observed proportion y <  k
stubpreq Predicted proportion y = k
stubprle Predicted proportion y < k
stubobpr Difference between observed and predicted y = k
stubcpreq Predicted probability y =  k given y > 0
stubcprle Predicted probability y =  k given y > 0
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atvars(varlis t)  specifies the independent variables for which variables should be gen­
erated. _none indicates no variables. The default is to generate variables for all 
independent variables whose values vary over a t ( ) .

noci and a l l s t a t s  modify which variables are generated. W hen noci is used, no 
variables for confidence intervals are generated. When a l l s t a t s  is used, variables 
for the p-value (stubpval), z statistic (stubz), and standard error (stubse) are 
generated along with the prediction and confidence interval.

l e v e l ( # )  sets the level of the confidence interval from 10 to 99.99.

predname(predname) specifies the name of the variable (plus the stub) used for predic­
tions generated by margins. By default, this is pr for probabilities and is margins 
otherwise.

p re d la b e l(s irin g ) is used in the variable label for the prediction. This option can be 
useful for labeling variables that are being plotted.

no label indicates that value labels are not to be used in labeling generated variables.

v a lu e len g th O  changes the length at which labels are truncated.

co n d itio n a l is used to compute conditional rather than unconditional predictions for 
count models. This will be discussed in chapter 9.

4.7 Interpretation of parameters
Although the prim ary methods of interpretation in this book are based on predictions 
from the model, some methods of interpretation involve simple transformations of the 
model's parameters. For some estimation commands, there are options to list transfor­
mations of the estimates, such as the o r option to list odds ratios for l o g i t  or the b e ta  
option to list standardized coefficients for re g re s s . Although S ta ta  is commendably 
clear in explaining the meaning of the estim ated parameters, in some models it is easy 
to be confused about proper interpretations. For example, the z ip  model (discussed in 
chapter 9) simultaneously fits a binary and a count model, and it is easy to be confused 
regarding the direction of the effects.

For the estimation commands considered in this book, plus some not considered here, 
our l i s tc o e f  command lists estimated coefficients in ways that facilitate interpretation. 
You can list coefficients selected by name or by significance level, list transformations 
of the coefficients, and request help on interpretation. In fact, often you will not need 
the normal o u tpu t from the estimation. You could suppress this output with the pre­
fix q u ie tly  (for example, q u ie tly  l o g i t  l f p  k5 wc he) and then use the l i s tc o e f  
command.

O ther mgen options
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4.7.1 The listcoef command

T he abbreviated syntax is

l i s t c o e f  \ varlist] [ ,  [ f a c t o r |p e r c e n t |s t d  | ad jac en t g t I t  n e g a tiv e  

p o s i t iv e  p v a lu e (# )  n o la b e l c o n s ta n to f f  h e lp

where varlist indicates th a t coefficients for only these variables are to  be listed. If no 
varlist is given, then coefficients for all variables are listed. The varlist should not use 
factor-variable notation. For example, for the model lo g i t  l f p  i .a g e c a t  i.w c lwg, 
th e  command l i s tc o e f  ag eca t will show the coefficients for 2 .a g e c a t and 3 .ag eca t. 
If agecat##c.lw g was in the model, estim ates for all coefficients th a t include agecat 
would be listed.

Options for types of coefficients

Depending on the model and the specified options, l i s tc o e f  computes standardized 
coefficients, factor changes in the odds or expected counts, or percentage changes in the 
odds or expected counts. More information on these types of coefficients is provided 
below, as well as in the chapters that deal with specific types of outcomes.

f a c t o r  requests factor change coefficients indicating how many times larger or smaller 
the outcome is. In some cases, these coefficients are odds ratios.

p e rc e n t requests percentage change coefficients indicating the percentage change in the 
outcome.

s t d  requests that coefficients be standardized to a unit variance for the independent 
variables or the dependent variable. For models th a t can be derived from a latent- 
dependent variable (for example, the binary logit model), the variance of the latent 
outcome is estimated.

The following options (details on these options are given below) are available for each 
estimation command. If an option is the default, it does not need to  be specified.

s td f a c to r percen t

Type 1: m p ro b it,o p ro b it. p ro b it,  r e g re s s Default No No
Type 2: lo g is t ic ,  l o g i t ,  o lo g it Yes Default Yes
Type 3: m logit, nbreg. poisson, s l o g i t ,  

tnbreg, tp o isso n , zinb, z ip No Default Yes
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For the m log it, m probit, and s lo g i t  commands discussed in chapter 8, l i s tc o e f  
can show the coefficients for each pair of outcome categories. W hen these models are 
used with ordered outcomes, it is helpful to  look at a subset of these coefficients. The 
following options are for this purpose:

ad jacen t specifies that only the coefficients from comparisons in which the two category 
values are adjacent will be printed (for example, comparing outcome 1 versus 2, and 
2 versus 1, bu t not 1 versus 3). This option can be combined with g t  or I t .

g t  specifies th a t only the coefficients from comparisons in which the first category has 
a larger value than the second will be printed (for example, comparing outcome 2 
versus 1, but not 1 versus 2).

I t  specifies th a t only the coefficients from comparisons in which the first category has 
a smaller value than the second will be printed (for example, comparing outcome 1 
versus 2, but not 2 versus 1).

nega tive  specifies that only negative coefficients be shown. This option cannot be 
combined w ith ad jac en t, gt, or I t .

p o s it iv e  specifies that only positive coefficients be shown. This option cannot be 
combined w ith ad jac en t, gt, or I t .

Other options

p v a lu e (# )  specifies that only coefficients significant at the #  significance level or 
smaller will be printed. For example, p v a lu e ( .0 5 ) specifies th a t only coefficients 
significant a t the 0.05 level should be listed. If pvalueO  is not given, all coefficients 
are listed.

no label requests th a t category numbers ra ther than value labels be used in the output.

co n stan to ff specifies to not include the constant(s) in the output. By default, they 
are listed. In S tata 10 and earlier, the  default is c o n s ta n to ff , and you must use 
the option c o n s ta n t to list the constants.

he lp  gives details for interpreting each coefficient.

4.7.2 Standardized coefficients

s td  requests coefficients after variables have been standardized to a  unit variance. Stan­
dardized coefficients are computed as follows.

x-standardized coefficients. The linear regression model can be expressed as

Options for mlogit, m probit, and slogit

y -  /30 +  0 ix i  +  P2X2 + £ (4.2)
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Let. <jk be the standard deviation of x^■ Then dividing each x^ by Gk and multiplying 
the corresponding 0 k by Gk becomes

y =  0o +  {°\0\ ) — +  (<t2/32) — + eo i (72

3k x =  okPk is an x-standardized coefficient. For a continuous variable, 0 k x can be 
interpreted as follows:

For a standard deviation increase in Xk, y is expected to change by 0kx 
units, holding other variables constant.

T he same method of x-standardization can be used in all the other models we consider 
in th is  book.

y- and y*-standardized coefficients. To standardize the dependent variable, let ay be 
the standard deviation of y. We standardize y by dividing (4.2) by a y :

y 00 fii 02— ------- 1---- X\ H-----x2 H-----
( T y  C T y  G y  G y  G y

T hen  0ky =  0kjoy is a ^/-standardized coefficient th a t can be interpreted as follows:

For a unit increase in Xfc, y is expected to change by (3ku standard deviations, 
holding other variables constant.

For a binary independent variable,

Having characteristic Xk as opposed to not having the characteristic results 
in an expected change in y of 0 k v standard deviations, holding other vari­
ables constant.

O r more simply,

Having characteristic Xk results in an expected change in y of 0 k y standard 
deviations, holding other variables constant.

In models with a latent dependent variable, the equation y* = 0o +  0\%\ +  0 2 % 2  + £  can 
be divided by Sy- . To estimate the variance of the latent variable, the quadratic form 
is used:

Var(y*) = 0  Var(x) (3 +  Var(e)

where (3 is a vector of estimated coefficients and Var(x) is the covariance matrix for the 
x Ts computed from the observed data. By assumption, Var(e) =  1 in probit models and 
Var(e) =  7r2/3  in logit models.
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Fully standardized coefficients. In the linear regression model, it is possible to stan­
dardize both y and the ars:

y_ =  fa  f  v iP A  x i + ( <72l h \  X2 +
\  &y )  ® l \

Then /3f =  (crk/3k)/°y is a fully standardized coefficient that can be interpreted as 
follows:

For a standard deviation increase in x k, y  is expected to change by /3£' 
standard deviations, holding other variables constant.

The same approach can be used in models with a  latent-dependent variable y*.

Example of listcoef for standardized coefficients

Here we illustrate the computation of standardized coefficients for the regression 
model. Examples for other models are given in later chapters. The standard output 
from reg ress  is

. use science4, clear
(science4.dta | Long's scientific career data I 2014-03-02)
. regress job i.female i.phdclass mentcit3yr fellow publ citl

Source SS df MS Number of obs 
F( 8, 152) 
Prob > F 
R-squared 
Adj R-squared 
Root MSE

161 
6.18 

= 0.0000 
= 0.2455 
= 0.2058 
= .78661

Model
Residual

30.5973982
94.0515545

8 3.82467477 
152 .618760227

Total 124.648953 160 .779055954

job Coef. Std. Err t P>lt| [95*/, Conf. Interval]

female
yes -.0886385 .1655774 -0.54 0.593 -.4157688 .2384918

phdclass
good

strong
elite

.4003174

.8089664

.8871308

.220298 
.2297963 
.236539

1.82
3.52
3.75

0.071
0.001
0.000

-.0349241
.3549592
.4198021

.8355589
1.262974
1.35446

mentcit3yr
fellow

publ
citl

_cons

.0023816

.1947417

.0004072

.0076907
2.062959

.0023724 

.1328996 

.0256824 

.0041223 

.2140085

1.00
1.47
0.02
1.87
9.64

0.317
0.145
0.987
0.064
0.000

-.0023056 
-.0678272 
-.0503334 
-.0004538 
1.640144

.0070688

.4573106

.0511477

.0158351
2.485775



4.7.2 Standardized coefficients 183

If we use l i s t c o e f , we get 

. listcoef, help
regress (N=161): Unstandardized and standardized estimates

Observed SD: 0.8826
SD of error: 0.7866

b t P> 11 1 bStdX bStdY bStdXY SDofX

female
yes -0.0886 -0.535 0.593 -0.038 -0.100 -0.043 0.430

phdclass
good 0.4003 1.817 0.071 0.181 0.454 0.206 0.453

strong 0.8090 3.520 0.001 0.362 0.917 0.410 0.447
elite 0.8871 3.750 0.000 0.418 1.005 0.474 0.471

mentcit3yr 0.0024 1.004 0.317 0.075 0.003 0.085 31.644
fellow 0.1947 1.465 0.145 0.098 0.221 0.111 0.501

publ 0.0004 0.016 0.987 0.001 0.000 0.001 3.228
citl 0.0077 1.866 0.064 0.163 0.009 0.185 21.242

constant 2.0630 9.640 0.000

b = raw coefficient 
t = t-score for test of b=0 

P> 111 = p-value for t-test 
bStdX = x-standardized coefficient 
bStdY = y-standardized coefficient 

bStdXY = fully standardized coefficient 
SDofX = standard deviation of X

Bv default for r e g re s s ,  l i s t c o e f  lists standardized coefficients for all variables. If we 
are interested in listing coefficients for a subset of variables, we can specify a varlist 
after l i s tc o e f .  For factor variables, you should specify only the source name, not the 
factor-variable notation (for example, i .fe m a le )  or the name of the  variable that is 
constructed (for example, 2 .phdclass). Here is an example:

. listcoef female phdclass publ
regress (N=161): Unstandardized and standardized estimates

Observed SD: 0.8826
SD of error: 0.7866

b t P> 11 1 bStdX bStdY bStdXY SDofX

female
yes -0.0886 -0.535 0.593 -0.038 -0.100 -0.043 0.430

phdclass
good

strong
elite

0.4003
0.8090
0.8871

1.817
3.520
3.750

0.071
0.001
0.000

0.181
0.362
0.418

0.454
0.917
1.005

0.206
0.410
0.474

0.453
0.447
0.471

publ 0.0004 0.016 0.987 0.001 0.000 0.001 3.228
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7.3 Factor and percentage change coefficients

In logit models and count models, coefficients can be expressed in two ways:

1. Coefficients can indicate the factor or multiplicative change in the odds, relative 
risks, or expected count. These are the default for some models or can be requested 
with the f a c t o r  option with l i s t c o e f .

2. Percent changes in these quantities can be requested with the  p e r c e n t  option. 

Details on these coefficients are given in later chapters for each specific model.

.8 Next steps
This concludes our discussion of the basic commands and options th a t are used for fit­
ting, testing, assessing fit, and interpreting regression models. In the  next five chapters, 
we show how these commands can be applied for models for different types of outcomes. 
Although chapters 5 and 6 have more detail than later chapters, you should be able to 
proceed from here to any of the chapters th a t follow.



Part II

Models for specific kinds of outcomes

In  p a r t  II. we provide information on the models appropriate for different kinds of 
dependen t outcomes.

•  C h a p te rs  5 a n d  6 consider models for binary outcomes. These models provide 
the foundation for the models for other types of outcomes in the rest of the book. 
For this reason, we provide more detailed explanations than in later chapters. We 
divide the material into two chapters. C hapter 5 shows how to fit the binary 
regression model, how to test hypotheses, how to compute residuals and influence 
statistics, and how to calculate scalar measures of model fit. Chapter 6 focuses 
entirely on how these models can be interpreted using predicted probabilities, 
marginal effects, and odds ratios. We recommend that all readers review these 
chapters, even if you are interested mainly in other types of outcomes.

In  contrast, chapters 7, 8, and 9 can be read in any combination or order, depending on 
your interests. Each chapter provides information on fitting the relevant models, testing 
hypotheses about the coefficients, and interpretation in terms of predicted probabilities. 
In  addition,

•  C h a p te r  7 on ordinal outcomes describes the parallel regression assumption that 
is made by the ordered logit and probit models and shows how this assumption 
can be tested. We also discuss interpretation in terms of the underlying latent 
variable and odds ratios. Most of the m ethods and commands for interpretation 
for ordinal models can be applied to models for nominal outcomes, so those readers 
primarily interested in nominal outcomes should at least review this chapter.

•  C h a p te r  8 on nominal outcomes introduces the multinomial logit model. We 
discuss the assumption of the independence of irrelevant alternatives and present 
two graphical m ethods of interpretation. Methods of interpretation from chap­
ter 7 are extended, and some new methods are introduced. We also briefly discuss 
and then consider the multinomial probit model without correlated errors and the 
stereotype logistic regression model. We briefly consider models for nominal out­
comes with alternative-specific data, such as the conditional logit and multinomial 
probit models.



• C h a p te r  9 on count outcomes begins with the Poisson and negative binomial re­
gression models. We show how to test the Poisson model’s assumption of equidis- 
persion and how to incorporate differences in exposure time into the models. The 
next two models, the zero-truncated Poisson and negative binomial models, deal 
with the common problem of having 110 zeros in your data. We combine these 
models w ith the logit model to construct the hurdle model for counts. We con­
clude by considering two zero-inflated models that are designed for data with an 
“excess” of zero counts.



5 Models for binary outcomes: 
Estimation, testing, and fit

B inary  outcomes are ubiquitous and examples come easily to mind. Did a person vote? 
Is a  manufacturing firm unionized? Does someone consider themselves a feminist or 
n o t?  Did a startup company go bankrupt? Does a person have arthritis? This chapter 
focuses on the two most often used models for binary outcomes, the binary logit and 
b in ary  probit models, referred to  jointly as the binary regression model (BRM). The BRM 
allows a researcher to explore how each explanatory variable affects the probability of 
th e  event occurring.

T he  BRM is also the foundation from which more complex models for ordinal, nom­
inal. and count models are derived. Ordinal and nominal regression models are equiv­
a len t to  simultaneously fitting a  set of BRMs. Although the link is less direct in count 
m odels, the Poisson distribution can be derived as the outcome of many binary trials. 
Consequently, the principles of fitting, testing, and interpreting binary models provide 
essential tools that are used in later chapters. Although each chapter of the book is 
largely self-contained, the two chapters on binary outcomes provide more detailed ex­
planations than later chapters. As a result, even if your interests are in models for 
ordinal, nominal, or count outcomes, you will benefit from reading this chapter and the 
next one.

We begin the chapter by reviewing the m athem atical structure of the binary regres­
sion model. We then examine statistical testing and fit. These discussions are brief, 
and  much of it is intended either as a simple overview or as a review for those who 
are familiar with the models. For a complete discussion, see Agresti (2013), Hosmer, 
Lemeshow, and Sturdivant (2013), or Long (1997). Although the m aterial in this chap­
te r is fundamental to working with these models, we anticipate that the more important 
contribution of this book will be in helping you interpret and present results. The issues 
involved in effective interpretation are extensive enough that we devote a chapter of its 
own to the topic, to which this chapter might be considered the prelude.

5.1 The statistical model
There are three ways to derive the BRM, with each method leading to the same statistical 
model. First, a latent variable can be hypothesized along with a measurement model 
relating the latent variable to the observed binary outcome. Second, the model can be 
constructed as a probability model. Third, the model can be generated as a random

187
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utility or discrete choice model. This last approach is not considered in our review; see 
Long (1997, 155-156) for an introduction and Train (2009) for a detailed discussion.

.1.1 A latent-variable model

Assume a latent or unobserved variable y* ranging from — oc to oo that is related to 
the observed independent variables by the structural model

where i indicates the observation and e is a  random error. For a single independent 
variable, we can simplify the notation to

These equations are identical to those for the linear regression model except- and this 
is a big exception— that the dependent variable is unobserved.

The observed binary dependent variable has two values, typically coded as 0 for a 
negative outcome (that is, the event did not occur) and 1 for a positive outcome (that 
is, the event did occur). A measurement equation defines the link between the binary 
observed variable y  and the continuous laten t variable ;</*:

Cases with positive values of y* are observed as y  = 1, while cases with negative or 0 
values of y* are observed as y = 0.

To give a concrete example, imagine a survey item that asks respondents if they agree 
or disagree with the proposition that “a working mother can establish just as warm and 
secure a relationship with her children as a m other who does not work” . Obviously, 
respondents will vary greatly in their opinions. Some people adam antly agree with 
the proposition, some adamantly disagree, and still others have weak opinions one way 
or the other. Imagine an underlying continuum y* of feelings about this item, with 
each respondent having a specific value on the continuum. Those respondents with 
positive values for y * will answer “agree” to  the survey question (y  =  1) and those with 
negative values will “disagree” (y = 0). A shift in a respondent’s opinion might move 
her from agreeing strongly with the position to agreeing weakly w ith the position, which 
would not change the response we observe. Or, the respondent might move from weakly 
agreeing to weakly disagreeing, in which case, we would observe a  change from y =  1 
to y  =  0.

Consider a second example, which we use throughout this chapter. Let y =  1 if a 
woman is in the paid labor force and let y  =  0 if she is not. The independent variables 
include age, number of children, education, family income, and expected wages. Not all 
women in the labor force (y =  1) are there with the same certainty. One woman might 
be close to leaving the labor force, whereas another woman could be firm in her decision

y* = x.i/3 + £i

y* = a  + (3xi +  £i

1 if y* > 0
0 if y* < 0



5.1.1 A  latent-variable model 189

to  work. In both cases, we observe y = 1. The idea of a  latent y* is th a t  an underlying 
propensity to work generates the observed state. Although we cannot directly observe 
:h e  propensity, at some point a change in y* results in a change in what we observe, 
namely, whether the woman is in the labor force.

Figure 5.1. Relationship between latent variable y* and P r(y =  1) for the BRM

The latent-variable model for a binary outcome with a single independent variable 
is shown in figure 5.1. For a given value of x ,

Pr(y =  1 | x) =  Pr(y* > 0 | x)

Substituting the structural model and rearranging terms,

P r(y =  1 | x) = Pr(e >  — [a -1- /3x\ \ x) (5.1)

which shows how the probability depends on the distribution of the error e.

Two distributions of £ are commonly used, both with an assumed mean of 0. First, 
c is assumed to be normal with Var(e:) =  1. This leads to the binary probit model in 
which (5.1) becomes

/ (X+PX J /  t2\

-oo V ^ eXP\ V dt
Alternatively, e is assumed to be distributed logistically with Var(£) =  7r2/3 , leading to 
the binary logit model with the simpler equation

exp (a  -I- 0 x)
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The peculiar value assumed for Var(e) in the logit model illustrates a basic point 
about the identification of models with latent outcomes. In the linear regression model, 
Var(e) can be estim ated because y is observed. In the BRM, Var(£) cannot be estimated 
because the dependent variable is unobserved. Accordingly, the model is unidentified 
unless an assumption is made about the variance of the errors. For probit, we assume 
Var(e) =  1 because this leads to a simple form of the model. If a  different value was 
assumed, this would simply change the values of the structural coefficients uniformly. 
In  the logit model, the variance is set to 7r2/3  because this leads to  the simple form in 
(5.2). Although the value assumed for Var(e) is arbitrary, the value chosen does not 
affect the computed value of the probability (see Long [1997, 49 50] for a simple proof). 
Changing the assumed variance affects the spread of the distribution and the magnitude 
of the regression coefficients, but it does not affect the proportion of the distribution 
above or below the threshold.
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Panel A: Plot of y*

Panel B: Plot of P r (y= 1 lx )

x

Figure 5.2. Relationship between the linear model y* =  a  + (3x + £ and the nonlinear 
probability model P r(y =  1 | x)  =  F(a  +  (3x)

For both logit and probit, the probability of the event conditional on x  is the cumu­
lative density function (C D F) of e evaluated at x/3,

P r (y =  1 | x) == F  (x/3)

where F  is the normal CDF $  for the probit model and the logistic C D F A for the logit 
model. The relationship between the linear latent-variable model and the resulting 
nonlinear probability model is shown in figure 5.2 for a model with one independent 
variable. Panel A shows the error distribution for nine values of x.  The area where 
•/* >  0 corresponds to Pr(y =  1 | x) and has been shaded. Panel B plots P r (y =  1 | x) 
corresponding to the shaded regions in panel A. As we move from 1 to 2, only a portion of 
r he th in  tail crosses the threshold in panel A, resulting in a small change in P r (y = 1 | x) 
in panel B. As we move from 2 to  3 to 4, thicker regions of the error distribution slide
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over the threshold, and the increase in P r (y =  1 | x) becomes larger. The resulting 
curve is the well-known S-curve associated with the BRM.

1.2 A nonlinear probability model

Can all binary dependent variables be conceptualized as observed manifestations of 
some underlying latent propensity? Although philosophically interesting, perhaps, the 
question is of little  practical importance, because the BRM can also be derived without 
appealing to a latent variable. This is done by specifying a nonlinear model relating 
the x's to the probability of an event. Following Theil (1970), the logit model can be 
derived by constructing a model in which the predicted Pr (y =  1 | x) is forced to be 
within the range 0 to 1. For example, in the linear probability model,

Pr (y = 1 | x) =  x/3 +  £

the predicted probabilities can be greater than 1 and less th an  0. To constrain the 
predictions to the  range 0 to 1, we first transform  the probability into the odds,

o  ( \ -  Pr (y = 1 1x ) =  Fr (y =  1 I x )
X Pr (y =  0 | x) 1 — Pr (y =  1 | x)

which indicate how often something happens (y =  1) relative to how often it does 
not happen (y =  0). The odds range from 0 when Pr (y =  1 | x) =  0 to oc when
Pr(y = 1 | x) =  1. The log of the odds, often referred to as the logit, ranges from -o o
to oo. This range suggests a model that is linear in the logit:

In il (x) =  x/3

This equation is equivalent to the logit model (5.2). Interpretation of this form of the 
model often focuses on factor changes in the odds, which arc discussed below.

Other binary regression models are created by choosing functions of x/3 that range 
from 0 to 1. CDFs have this property and readily provide several examples. For example, 
the CDF for the standard normal distribution results in the probit model.

.2 Estimation using logit and probit commands
Logit and probit models can be fit with the following commands and their basic 

options:

lo g i t  depvar [ indepvars] [i f] [in] [weight] [ , nocons t a n t  a s i s  or 

vce(vcetype) ]

p ro b it depvar [ indepvars ] [i f ] [ in ] [weight] [ , nocons t a n t  a s i s  

vce(vcetype) ]



Variable lists

depvar is the dependent variable, indepvars is a  list of independent variables. If indep- 
vars is not included, S ta ta  fits a  model with only an intercept.
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W a rn in g  a b o u t d e p e n d e n t v a riab le . In binary models, all nonmissing, nonzero val­
ues of depvar are classified as positive outcomes, traditionally referred to  as suc­
cesses. Only zero values are considered negative outcomes, which are referred to 
as failures. Because negative values are nonzero, they are considered to  be positive 
outcomes. To avoid possible confusion, we recommend that you explicitly create 
a  0/1 variable for use as depvar.

Specifying the estimation sample

i f  a n d  in  qualifiers, i f  and in  qualifiers can be used to restrict the estim ation sample. 
For example, if you want to fit a logit model for only women who went to  college, 
as indicated by the variable wc, you could specify lo g i t  l f p  k5 k618 age he lwg 
i f  wc==l.

L is tw ise  deletion. S ta ta  excludes cases in which there are missing values for any of the 
variables in the model. Accordingly, if two models are fit using the same dataset 
but have different independent variables, the models may have different samples. 
We recommend th a t you use mark and m arkout (discussed in section 3.1.6) to 
explicitly remove cases with missing data.

Weights and complex samples

Both lo g i t  and p ro b it  can be used with fw e ig h t, pweight, and iw eig h t. Survey
estim ation can be done using svy: lo g i t  or s v y : p ro b it .  Sec section 3.1.7 for details.

Options

n o co n stan t specifies th a t the model not have a  constant term.

as  i s  specifies that estimates for variables th a t have perfect prediction should be in­
cluded in the results table. For details, see page 197.

o r  for lo g i t  only) reports the odds ratios defined as exp(/3). Standard errors and con­
fidence intervals are similarly transformed. Alternatively, our l i s t c o e f  command 
can be used.

vce(vcetype) specifies the type of standard errors to be computed. See section 3.1.9 for 
details.
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.2.1 Example of logit model

Our example is from Mroz’s (1987) study of the labor force participation of women, 
using data from the 1976 Panel Study of Income Dynamics.1 The sample consists of 
753 white, m arried women between the ages of 30 and 60 years. I he dependent variable 
l f p  equals 1 if a  woman is in the labor force and equals 0 otherwise. We use codebook, 
compact to list information about the variables we plan to include in our model:

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. codebook lfp k5 k618 agecat wc he lwg inc, compact 
Variable Obs Unique Mean Min Max Label

lfp 753 2 .5683931 0 1 In paid labor force?
k5 753 4 .2377158 0 3 # kids < 6
k618 753 9 1.353254 0 8 # kids 6-18
agecat 753 3 1.823373 1 3 Wife's age group
wc 753 2 .2815405 0 1 Wife attended college?
he 753 2 .3917663 0 1 Husband attended college?
lwg 753 676 1.097115 -2.054124 3.218876 Log of wife's estimated...
inc 753 621 20.12897 -.0290001 96 Family income excluding...

Although the meaning of most of the variables is clear from the  label, lwg is the log 
of an estimate of what the wife’s wages would be if she was employed, given her other 
characteristics. Because the outcome is labor force participation, it is important to 
include what the wife might be expected to  earn if she was employed. Following the same 
reasoning, in c  is family income excluding whatever the wife earns; this is, therefore, a 
measure of what the family income would be if the wife was not employed. We consider 
interpretation later, but it may also help bearing in mind that the data  are from 1976. 
In the United States, prices have risen by just over a factor of 4 between 1976 and 2014, 
so a change in income of $5,000 in 1974 is similar to a change in income of $20,000 in 
2014.

Because a g e c a t is ordinal, we use t a b u la te  to examine the distribution among the 
age groups:

. tabulate agecat, missing
Wife's age 

group Freq. Percent Cum.

30-39 298 39.58 39.58
40-49 290 38.51 78.09

50+ 165 21.91 100.00

Total 753 100.00

1. These data were generously made available by Thomas Mroz.
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N ext, we want to fit the logit model. To be consistent with the naming practice 
S ta ta  will use, we use 2 .a g e c a t and 3 .ag eca t to  refer to dummy variables indicating 
w hether agecat==2 and whether agecat==3, respectively. By fitting the logit model,

P r  ( l fp  =  1) =  F(/3q +  /3ksk5 + /3k618k618 +  /^.agecat 2. age ca t
+  /?3.agecat3. agecat +  /3VC wc +  Æhchc +  Æiwglwg +  /3incinc)

we ob ta in  the following results:

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc
Iteration 0: log likelihood
Iteration 1: log likelihood
Iteration 2: log likelihood
Iteration 3: log likelihood
Iteration 4: log likelihood
Logistic regression

Log likelihood = -452.72367

-514.8732
-453.10297
-452.72408
-452.72367
-452.72367

Number of obs 
LR chi2(8) 
Prob > chi2 
Pseudo R2

753 
124.30 
0.0000 
0.1207

lfp Coef. Std. Err. z P> 1 z I [95*/. Conf. Interval]

k5 -1.391567 .1919279 -7.25 0.000 -1.767739 -1.015395
k618 -.0656678 .068314 -0.96 0.336 -.1995607 .0682251

agecat
40-49 -.6267601 .208723 -3.00 0.003 -1.03585 -.2176705
50+ -1.279078 .2597827 -4.92 0.000 -1.788242 -.7699128

wc
college .7977136 .2291814 3.48 0.001 .3485263 1.246901

he
college .1358895 .2054464 0.66 0.508 -.266778 .5385569

lwg .6099096 .1507975 4.04 0.000 .314352 .9054672
inc -.0350542 .0082718 -4.24 0.000 -.0512666 -.0188418

_cons 1.013999 .2860488 3.54 0.000 .4533539 1.574645

The information in the header and table of coefficients is in the same form as discussed 
in chapter 3. The iteration log begins with I t e r a t i o n  0: log l ik e l ih o o d  = -514.8732 
and ends with I te r a t io n  4: lo g  lik e lih o o d  = -452.72367, with the intermediate it­
erations showing the steps taken in the numerical maximization of the log-likelihood 
function. Although this information can provide insights when the model does not con­
verge, in our experience it is of little use in logit and probit, where we have never seen 
problems with convergence. Accordingly, when fitting further models, we use the nolog 
option to suppress the log. If a  model does not converge or the estimates seem “off” , 
we would rerun the model w ithout the nolog option.

We use factor-variable notation for the categorical variable ag eca t, as well as for 
the binary variables wc and he. We discussed factor-variable notation in detail in chap­
ter 3. Using factor-variable notation for binary variables in this case may seem unneces­
sary, because we get the same coefficients regardless; but for some of the interpretation
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techniques we demonstrate later, specifying i.w c instead of just wc in the estimation 
command is essential to obtain proper results (see section 6.2). As a result, we find ir 
good practice to always enter binary variables into our models with the i . syntax.

In the output above, estimates for these variables are labeled on two lines with the 
first line indicating the name of the variable (for example, wc) and the second line listing 
the value label for category 1 (in this case, co lleg e ). If you are using Stata 12 or earlier 
the category value is printed instead of the value label. This requires you to ensure tha~ 
you know the meanings of the category values. For users with Stata 13 and later, we 
recommend always using value labels with factor variables to  avoid confusion.

Also, by default, the reference or base category of a factor variable is not list«:. 
Adding the a llb a se  option to  an estimation command will display the base referen 
category. For agecat in the above example, the value 1 is the base category because 
this is the first value; specifying ib 3 . agecat would have used agecat==3 as the ba- 
category instead.

5.2.2 Comparing logit and probit

Above, we fit the model with lo g i t ,  but we could have used p ro b it instead. An easy 
way to  show how the results would differ is to put them  side by side in a single table 
We can do this by using e s tim a te s  ta b le  (see [r] e s tim a te s  table), which is more 
generally useful for combining results from multiple models into one table. After fitting 
the logit model, we use e s tim a te s  s to r e  estname to  save the estimates with the name 
M logit:

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 
(output omitted)

. estimates store Mlogit

We then fit a probit model and store the results:

. probit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 
(output omitted)

. estimates store Mprobit

Next, we combine the results with e s tim ates  t a b le .  Option b() sets the format for 
displaying the coefficients. b(°/09 .3) lists the estimates in nine columns with five decim:.. 
places. Option t  requests test statistics for individual coefficients—either z tests or f 
tests depending on the model th a t was fit.2 v a r la b e l  uses variable labels rather than 
variable names to label coefficients (the option was named la b e l  before Stata 13), with 
v arw id th O  indicating how many columns should be used for the labels. Variable nam- > 
and value labels are used with factor variables.

2. T he estimates table output labels the test statistic as t regardless of whether z tests or t 
are used.
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Variable Mlogit Mprobit

# kids < 6 -1.392 -0.840
-7.25 -7.50

# kids 6-18 -0.066 -0.041
-0.96 -1.01

agecat
40-49 -0.627 -0.382

-3.00 -3.06
50+ -1.279 -0.780

-4.92 -5.00

wc
college 0.798 0.482

3.48 3.55

he
college 0.136 0.074

0.66 0.60
Log of wife's estimated wages 0.610 0.371

4.04 4.21
Family income excluding wife's -0.035 -0.021

-4.24 -4.37
Constant 1.014 0.622

3.54 3.69

legend: b/t

Comparing results, the estimated logit coefficients are about 1.7 times larger than 
the probit estimates. For example, the ratios for k5 and inc are 1.66. This illustrates 
how the magnitudes of the coefficients are affected by the assumed Var(e:). The ratio 
of estimates for he is larger because of the large standard errors for these estimates. 
Values of the 2 tests for logit and probit are quite similar because they are not affected 
by rhe assumed Var(£), but, they are not exactly the same because the models assume 
different distributions of the errors.

.2.3 (Advanced) Observations predicted perfectly

We mark this section as advanced because if you work with large sam­
ples where your outcome variable is not rare, you may never encounter 
perfect prediction. If you have smaller samples with binary predictors, 
you may encounter it regularly. We suggest you read enough of this sec­
tion to understand what perfect prediction is so that you will recognize 
it if it occurs in your analysis.

Maximum likelihood estimation is not possible when the dependent variable does not 
vary within one of the categories of an independent variable. This is referred to as perfect 
prediction or quasicoinplete separation. To illustrate this, suppose that we are treating
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k5 as categorical rather than continuous in our model of labor force participation. To 
do this, we regress l f p  on indicator variables for the number of children.'* Variable k5_l 
equals 1 if a person had one young child and equals 0 otherwise, and so on for k5_2 and 
k5_3. Only three respondents had three young children, and none of these women were 
in the paid labor force:

. tabulate lfp k5
In paid 

labor 
force? 0

# kids < 6 
1 2 3 Total

not in LF 231 72 19 3 325
in LF 375 46 7 0 428

Total 606 118 26 3 753

We find th a t l f p  is 0 every time k5_3 is 0. A logit model predicting lfp  with the 
binary variables k5_l, k5_2, and k5_3 (with no children being the excluded category) 
cannot be estimated because the observed coefficient for k5_3 is effectively infinite. 
Think of it this way: The observed odds of being in the labor force for those with no 
children is 375/231 =  1.62, while the observed odds for those w ith three young children 
is 0/3 =  0. The odds ratio is 0/1.62 =  0. For the odds ratios to be 0, ^kB.3 must be 
negative infinity. As the likelihood is maximized, estimates of ftks. 3  get more and more 
negative until S ta ta  realizes that the param eter cannot be estim ated and reports the 
following:

. logit lfp k5_l k5_2 k5_3, or nolog
note: k5_3 != 0 predicts failure perfectly 

k5_3 dropped and 3 obs not used
Logistic regression

Log likelihood = -496.82164

Number of obs 
LR chi2(2) 
Prob > chi2 
Pseudo R2

750
31.05

0.0000
0.0303

lfp Odds Ratio Std. Err. z P> 1 z 1 [957. Conf. Interval]

k5_l .3935556 .0812515 -4.52 0.000 .2625858 .5898491
k5_2 .2269474 .1021224 -3.30 0.001 .0939505 .5482153
k5_3 1 (omitted)

_cons 1.623377 . 1357794 5.79 0.000 1.377922 1.912555

The message

note: k5_3 != 0 predicts failure perfectly 
k5_3 dropped and 3 obs not used

can be interpreted as follows. If someone in the sample has three young children (that 
is, if k5_3! =0), then she is never in the labor force (that is, lfp==0), which is a “failure”

3. W e  could do this with the factor variable i.k5, but because we want to illustrate the use of 
exlogistic, which does not allow factor variables, we created our own indicator variables.
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in th e  terminology of the  model. At this point, S ta ta  drops the three cases where k5_3 
is 0 and also drops k5_3 from the model. In the output, the coefficient for k5_3 is shown 
as 1 followed by (o m itte d ). If you use the a s i s  option, Stata keeps k5_3 and the 
observations in the model and shows the estim ate at convergence:

. logit lfp k5_l k5_2 k5_3, or asis nolog 
Logistic regression

Log likelihood = -496.82164

Number of obs 
LR chi2(2) 
Prob > chi2 
Pseudo R2

753 
36.10 

0.0000 
0.0351

lfp Odds Ratio Std. Err. z P> 1 z [957, Conf. Interval]

k5_l .3935556 .0812515 -4.52 0.000 .2625858 .5898491
k5_2 .2269091 .102109 -3.30 0.001 .0939316 .548141
k5_3 4.43e-10

_cons 1.623377 .1357794 5.79 0.000 1.377922 1.912555

Mote: 3 failures and 0 successes completely determined.

T he estimated odds ratio  of 4.43e-10 (that is, 0.000000000443) is S ta ta ’s attem pt to 
estim ate an odds ratio th a t is 0. With perfect prediction, the estim ates for the other 
variables can be used, bu t you do not learn anything useful about the variable that is 
dropped.

Ju st because, in our sample, the three women with children under age 5 were not in 
th e  labor force does not imply the probability is 0 in the population. W ith any nonzero 
probability in the population, there is some chance th a t every observation with a given 
value of an independent variable will have the same outcome. This is especially so when 
th e  sample is small.

Exact methods of estim ation provide more accurate inference in small samples than 
standard  maximum likelihood estimation. In S ta ta, e x lo g is t ic  provides exact method 
estim ation for the logit model. Mehta and Patel (1995) provide an accessible review of 
these methods. Exact estimation computes p-values by enumerating all possible out­
comes. which can provide estimates and significance levels in small samples with perfect 
prediction. However, computing all enumerations takes a long time. For example, fitting 
th e  logit model above with e x lo g is t ic  took 750 times longer than fitting the model 
w ith lo g i t .  The results are



. exlogistic lfp k5_l k5_2 k5_3, memory(2gb)
Enumerating sample-space combinations: 
observation 1: enumerations = 2

(output om itted)
observation 430: enumerations = 2101996

(output om itted)
observation 753: enumerations = 12852
note: CMLE estimate for k5_3 is -inf; computing MUE
Exact logistic regression Number of obs = 753

Model score = 35.00541
Pr >= score = 0.0000
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lfp Odds Ratio Suff. 2*Pr(Suff. ) [95*/. Conf. Interval]

k5_l .3940829 46 0.0000 .2564596 .600809
k5_2 .2274839 7 0.0009 .0795388 .5759369
k5_3 .1610353* 0 0.1126 0 1.504537

(*) median unbiased estimates (MUE)

By default, e x l o g i s t i c  provides the  conditional maximum likelihood estimates of 
parameters. W hen those estimates are infinite, as is the case with perfect prediction, 
median unbiased estimates are given. Cytel Software Corporation (2005, 512) suggests 
that the median unbiased estimates should be interpreted w ith caution by using the 
confidence interval. Although one bound of the confidence interval for the odds ratio 
will be 0 or positive infinity, the other bound is informative, and we can be 95% confident 
that the estim ate is larger (or smaller) than  this bound. This allows us to speak precisely 
about how much uncertainty we have. For example, in the ou tpu t above, the confidence 
interval includes 1, so our data do not even permit us to reject the null hypothesis that 
women with three children are less likely to be in the labor force than are women with 
no children.

.3 Hypothesis testing
Hypothesis tests of regression coefficients can be conducted with the z  statistics from 
the estimation output, with the t e s t  command for Wald tests of simple and complex 
hypotheses, and with the l r t e s t  command for the corresponding likelihood-ratio (LR) 
tests. We discuss using each to test hypotheses involving a single coefficient and then 
show how t e s t  and l r t e s t  can be used for hypotheses involving multiple coefficients. 
See section 3.2 for general information on hypothesis testing using Stata. While often 
in this book, we show how to conduct both Wald and LR tests of the same hypothesis, 
in practice you would want to test a hypothesis with only one type of test.

.3.1 Testing individual coefficients

Most often, we are interested in testing Hq: /3k =  0. which corresponds to results in 
column z in the output from lo g i t  and p ro b it .  For example, consider the results for 
variables k5 and wc from the lo g i t  ou tpu t generated in section 5.2.1:
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. logit lfp k5 i.wc i.hc k618 i.agecat lwg inc, nolog
Logistic regression Number of obs = 753

LR chi2(8) = 124.30
Prob > chi2 = 0.0000

Log likelihood = -452.72367 Pseudo R2 = 0.1207

lfp Coef. Std. Err. z P> lz| [95*/, Conf. Interval]

k5 -1.391567 .1919279 -7.25 0.000 -1.767739 -1.015395

VC

college .7977136 .2291814 3.48 0.001 .3485263 1.246901
(output om itted )

We conclude the following:

Having young children has a significant effect on the probability of being in 
the labor force (z  =  —7.25, p < 0.01 for a  two-tailed test).

The effect of the wife attending college is significant at the 0.01 level.

Testing single coefficients using test

The z  test included in the output of estimation commands is a Wald test, which can 
also be computed as a  chi-squared test by using t e s t .  For example, to  test Ho: fits = 0,

. test k5
( 1) [lfp]k5 = 0

chi2( 1) = 52.57
Prob > chi2 = 0.0000

Stata refers to the coefficient for k5 as [ lfp ]k 5  because the dependent variable is lfp . 
We conclude the following:

The effect of having young children on entering the labor force is significant 
at the 0.01 level (x2 =  52.57, df =  1, p < 0.01).

The value of the z  test is identical to the square root of the corresponding chi-squared 
test with 1 degree of freedom. For example, using d isp lay  as a calculator,

. display sqrt(52.57)
7.2505172

This corresponds to —7.25 from the lo g i t  ou tput shown above.
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Aside: U sing  re tu rn s .  Using returned results is a better way to show this. When 
you use the t e s t  command, the chi-squared statistic is returned as the scalar 
r (c h i2 ) . The command d isp lay  s q r t ( r ( c h i2 ) )  then provides the same result 
more elegantly and with slightly more accuracy.

When using factor variables, such as i.w c in our specification of the model, t e s t  
requires that you specify the symbolic name of the coefficient being tested, which for 
factor variables is not the name used to label the estimate in th e  output. Specifying 
either i  .wc or wc in our example will not work with te s t .  Instead, the correct command 
is t e s t  1. wc, which indicates that our test is for the coefficient for the indicator variable 
that wc equals 1. Recall that you can list the symbolic names for each coefficient by 
retyping the name of the estimation command along with the option coef legend, such 
as lo g i t ,  coeflegend.

Testing single coefficients using Irtest

An LR test is computed by comparing the log likelihood from a full model with that of 
a restricted model. To test a single coefficient, we begin by fitting the full model and 
storing the results:

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 
(output om itted)

. estimates store Mfull

Then, we fit the model without k5 and store the results:

. logit lfp k618 i.agecat i.wc i.hc lwg inc, nolog 
(output om itted)

. estimates store Mnok5

Next, we run I r t e s t :

. Irtest Mfull Mnok5
Likelihood-ratio test LR chi2(l) = 62.55
(Assumption: Mnok5 nested in Mfull) Prob > chi2 = 0.0000

The LR test shows the following:

The effect of having young children is significant at the 0.01 level (LR x 2 —
62.55, df =  1, p <  0.01).

If you want to run an LR test comparing a model stored by using e s tim ates  s to re  
with the last model fit, you can use a single period to represent the last model. For 
example, instead of I r t e s t  Mfull Mnok5, you could use I r t e s t  M full ., where . 
represents the last model.
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5.3.2  Testing multiple coefficients

You might want to tes t complex hypotheses th a t involve more than  one coefficient. 
For example, we have two variables that reflect education in the family: he and wc. 
T he conclusion that education has (or does not have) a significant effect on labor force 
participation cannot be based on separate tests of single coefficients. A joint hypothesis 
can  also be tested using either t e s t  or l r t e s t .  Similarly, to test the effect of agecat 
requires testing the coefficients of all indicator variables.

Testing multiple coefficients using test

To test that the effect of the wife attending college and of the husband attending college 
on labor force participation arc simultaneously equal to 0 (that is, H o : =  Aic =  0),
we fit the full model and test the  two coefficients. We must use 1. he and 1. wc, not he 
an d  wc:

. estimates restore Mfull 

. test l.hc l.wc 
( 1) [lfp]1.he = 0
( 2) [lfp]l.wc = 0

chi2( 2) = 17.83
Prob > chi2 = 0.0001

We conclude the following:

We reject the hypothesis that the effects of the husband’s and the wife’s 
education are simultaneously equal to 0 ( \ 2 = 17.83, df =  2, p  <  0.01).

t e s t  can also be used to test the equality of coefficients. For example, to test that 
the  effect of the wife attending college on labor force participation is equal to the effect 
of the husband attending college (that is, Ha: (3VC — Aic)> we type

. test l.hc = l.wc
(1) - [lfp] l.wc + [lfp] l.hc = 0

chi2( 1) = 3.24
Prob > chi2 = 0.0719

Here t e s t  translated /3WC =  into the equivalent expression — /3VC +  /3hc =  0. The null 
hypothesis that the effects of husband’s and wife’s education are equal is marginally 
significant. We might conclude the following:

There is weak evidence that the effects of husband’s and wife’s education 
are equal (x 2  =  3.24, d f =  1, p = 0.072).

We can test that the effect of agecat is 0 by specifying the two indicator variables 
th a t were created from the factor variable i  .ag eca t:
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. test 2.agecat 3.agecat
( 1) [lfp]2.agecat = 0
( 2) [lfp]3.agecat = 0

chi2( 2) = 24.27
Prob > chi2 = 0.0000

To avoid having to  specify each of the automatically created indicators, we can use 
testparm :

. testparm i.agecat
( 1) [lfp]2.agecat = 0
( 2) [lfp]3.agecat = 0

chi2( 2) = 24.27
Prob > chi2 = 0.0000

The advantage of te s tp arm  is that it works no matter how m any indicator variables 
have been created by i . catvar.

Testing multiple coefficients using Irtest

To compute an LR test of multiple coefficients, we start by fitting the full model and 
saving the results with e s tim a tes  s to r e  estname. To test the hypothesis that the 
effect of the wife attending college and of the husband attending college on labor force 
participation are both equal to 0 (that is, //q: (3vc — Phc =  0), we fit the model that 
excludes these two variables and then run I r t e s t :

. logit lfp k5 k618 i.agecat lwg inc, nolog 
(output om itted)

. estimates store Mnowchc

. Irtest Mfull Mnowchc
Likelihood-ratio test 
(Assumption: Mnowchc nested in Mfull)

We conclude the following:

The hypothesis th a t the effects of the husband’s and the wife’s education are 
simultaneously equal to 0 can be rejected a t the 0.01 level (LR \ 2  =  18.68, 
d f = 2 ,  p <  0.01).

This logic can be extended to exclude other variables. Say th a t we wish to test the 
hypothesis th a t the effects of all the independent variables are simultaneously 0. We do 
not need to fit the full model again because the results are still saved from our use of 
estim ates s to r e  M full above. We fit the model with no independent variables and 
then run I r t e s t :

LR chi2(2) = 18.68
Prob > chi2 = 0.0001
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. logit lfp, nolog
Logistic regression Number of obs = 753

LR chi2(0) = 0.00
Prob > chi2 =

Log likelihood = -514.8732 Pseudo R2 = 0.0000

lfp Coef. Std. Err. z P>|z| [95*/. Conf. Interval]

_cons .275298 .0735756 3.74 0.000 .1310925 .4195036

. estimates store Mconstant

. lrtest Mfull Mconstant 
Likelihood-ratio test
(Assumption: Mconstant nested in Mfull)

We conclude the following:

We reject the hypothesis that all coefficients except the intercept are 0 
(LR x 2 =  124.30, df =  8,  p < 0.01).

This test is identical to  the test in the header of the lo g i t  output from the full model: 
LR ch i2 (8 ) = 124.30.

.3.3 Comparing LR and Wald tests

Although the LR and Wald tests are asymptotically equivalent, their values differ in 
finite samples. In our example,

Hypothesis df
L R  te s t W a ld  te s t

G 2 V IV V
Ac5 =  0 1 G2.55 < 0.01 52.57 < 0.01

A ,c  = Phc = o 2 18.68 <  0.01 17.83 < 0.01
*̂ 2.agecat =  /^3.agecat =  0 2 25.42 <  0.01 24.27 < 0.01

All slopes =  0 8 124.30 <  0.01 95.90 < 0.01

Statistical theory is unclear on whether the LR or Wald test is to be preferred in models 
for categorical outcomes, although many statisticians, ourselves included, prefer the 
LR test. The choice of which test to use is often determined by convenience, personal 
preference, and convention within an area of research. Recall from chapter 3 that if 
robust standard errors or svy estimation is used, only Wald tests are available. For 
Wald tests of a single coefficient, some disciplines prefer to use chi-squared tests, while 
others prefer the corresponding 2 test.

LR chi2(8) = 124.30
Prob > chi2 = 0.0000
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4 Predicted probabilities, residuals, and influential obser­
vations

For a given set of values of the independent variables, the predicted probability can be 
computed from the estimated coefficients:

Logit: P r (y =  1 | x) = A (x(3j  Probit: Pr (y =  1 | x) =  4> (x 3 )

where A is the C D F for the logistic distribution with variance 7t2/3  and $  is the CDF 
for the normal distribution with variance 1. For any set of values of the independent 
variables, whether occurring in the sample or not, the predicted probability can be com­
puted. In this section, we consider predictions for each observation in the dataset along 
with residuals and measures of influence based on these predictions. In sections 6.2-6.6, 
we use predicted probabilities for interpretation.

4.1 Predicted probabilities using predict

After running l o g i t  or p ro b it,  

p re d ic t newvar [ i f ]  [ in  ]

computes the predicted probability of a positive outcome for each observation, given 
the observed values on the independent variables, and saves them  in the new variable 
newvar.

Predictions are computed for all cases in memory that do not have missing values 
for any variables in the model, regardless of whether i f  and in  were used to restrict 
the estimation sample. For example, if you fit l o g i t  lfp  k5 i .a g e c a t  i f  wc==l, only 
212 cases are used when fitting the model. But p re d ic t  newvar computes predictions 
for all 753 cases in the dataset. If you want predictions only for the estimation sample, 
you can use the command p re d ic t newvar i f  e ( sample)==1, where e(sam ple) is the 
variable created by lo g i t  or p ro b it to indicate whether a case was used when fitting 
the model.

We can use p r e d ic t  to  examine the range of predicted probabilities from our model. 
For example, we start by computing the predictions:

. predict prlogit
(option pr assumed; Pr(lfp))

Because we did not specify which quantity to predict, the default option pr for the 
probability of a positive outcome was assumed, and the new variable p r lo g i t  was given 
the default variable label P r ( lfp ) .  In general, and especially when multiple models are 
being fit, we suggest adding your own variable label to the prediction to  avoid having 
multiple variables with the same label. Here we add a variable label and compute 
summary statistics:
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. label var prlogit "Logit: Pr(lfp I X)"

. codebook prlogit, compact
Variable Obs Unique Mean Min Max Label

prlogit 753 753 .5683931 .0135618 .9512301 Pr(lfp)

The predicted probabilities range from 0.014 to 0.951 with a mean of 0.568. We use 
d o tp lo t to examine th e  distribution of predictions:4

. dotplot prlogit, ylabel(0(.2)l, grid gmin gmax)

0 10 20 30 40
Frequency

Examining the distribution of predictions is a valuable first step after fitting your 
model to get a general sense of your data and possibly detect problems. Our plot shows 
that there are individuals with predicted probabilities that span almost the entire range 
from 0 to 1, with roughly two-thirds of the observations between 0.40 and 0.80. The 
large range reflects th a t  our sample contains individuals with both very large and very 
small probabilities of labor force participation. Examining the characteristics of these 
individuals could be useful for guiding later analysis. If the distribution was bimodal, 
it would suggest the im portance of a binary independent variable or the possibility of 
two types of individuals, perhaps with shared characteristics on many variables.

Comparing logit to probit predictions

p red ic t can also be used to show that the predictions from logit and probit models 
are nearly identical. Although the two models make different assumptions about the

4. In this example of d o tp lo t , the option y la b e l(0 (  . 2) 1, g r id  gmin gmax) sets the range of the axis 
from 0 to 1 with grid lines in increments of 0.2, where the gmin and gmax suboptions add lines at 
the minimum and m aximum values. Even if the actual range of the predictions is smaller than 0 
to 1, we find it useful to see the distribution relative to  the entire potential range of probabilities.
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distribution of e, these differences are absorbed in the relative magnitudes of the esti­
mated coefficients. To see this, we begin by fitting comparable logit and probit models 
and computing their predicted probabilities. First, we fit the logit model, store the 
estimates, and com pute predictions:

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

(output om itted )
. estimates store logit
. predict prlogit
(option pr assumed; Pr(lfp))
. label var prlogit "Logit: Pr(lfp | X)"

Next, we fit the probit model:

. probit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
(output om itted)

. estimates store probit

. predict prprobit 
(option pr assumed; Pr(lfp))
. label var prprobit "Probit: Pr(lfp | X)"

Even though we showed earlier that logit coefficients are about 1.7 times larger than 
probit coefficients, the predicted probabilities are almost perfectly correlated:

. pwcorr prlogit prprobit
prlogit prprobit

prlogit 1.0000
prprobit 0.9998 1.0000
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Their nearly identical magnitudes can be shown by plotting the predictions from the 
two models against one another:

. scatter prlogit prprobit, xlabel(0(.25)1, grid) ylabel(0(.25)1, grid)
> msymbol(Oh) aspect(1)

In terms of predictions, there is little reason to  prefer either logit or probit. If 
your substantive findings rely on whether you used logit or probit, we would not place 
much confidence in either result unless you have a  strong theoretical justification for 
why one model is preferable to the other. In  our own research, we tend to use logit, 
primarily because we use the multinomial logit model for nominal outcomes. Logit 
models also allow interpretation in terms of odds ratios, while probit models do not. 
Given limitations of what can be learned from odds ratios (see section 6.1.1), this alone 
is not a compelling reason to use the logit model.

5.4.2 Residuals and influential observations using predict

After you have fit your baseline model, we suggest that you examine residuals and look 
for influential observations before beginning postestimation analyses for interpretation. 
Residuals and influential observations can help you discover problems with your data and 
sometimes suggest problems in your model specification. Residuals are the difference 
between a model’s predicted and observed outcomes for each observation in the sample. 
Cases th a t have large residuals are known as outliers. When an observation has a large 
effect on the estim ated parameters, it is said to be influential. We illustrate these ideas 
with the linear regression model in figure 5.3.
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Regression line with outlier included

Small residual with high influence

With outlier dropped ---------- Regression with outlier included

Figure 5.3. The distinction between an outlier and an influential observation

Not all outliers are influential, as the figure shows by using simulated data  for the linear 
regression of y  on x. The residual for an  observation is its vertical distance from the 
regression line. In the top panel, the observation highlighted with a solid circle has a 
large residual and  is considered an outlier. Even so, it is not very influential on the 
slope of the regression line. That is, the slope o f the regression line is very close to what 
it would be if th e  highlighted observation was dropped from the sample and the model 
was fit again. In the bottom  panel, th e  only observation whose value has changed is 
the highlighted observation marked wit h a  square. The residual for this observation is 
small, but the observation is very influential; its presence is entirely responsible for the 
slope of the new regression line being positive instead of negative.

Building on the analysis of residuals an d  influence in the linear regression model (see 
Fox [2008] and Weisberg [2005, chap. 5]), Pregibon (1981) extended these ideas to the 
B R M .
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Residuals

T he predicted probability for a given set of independent variables is

7Ti =  P r (yi =  1 | Xi)

T he deviations yi — 7Tj are heteroskedastic because the variance depends on the proba­
bility  7r* of a positive outcome:

Var (yt -  m  | x,;) =  tt* (1 -  7r*)

T he variance is greatest when 7r* =  0.5 and decreases as 7r* approaches 0 or 1. That 
is, a fair coin is the most unpredictable, with a variance of 0.5 (1 -  0.5) = 0.25. A coin 
th a t  has a very small probability of landing head up (or tail up) has a small variance, 
for example, 0.01(1 — 0.01) =  0.0099. The Pearson residual divides the residual y — n  
by its standard  deviation:

, _  Vi - * i  

y/l?* (1 -  7ft)

Large values of r  suggest a failure of the model to fit a given observation.

Pregibon (1981) showed that the variance of r  is not 1 because Var(y* -  nl) is not 
exactly equal to the estimate 7f* (1 -  ni). He proposed the standardized Pearson residual

r std = _____r_ j _

V I  ~  hn

where
h u  =  7U (1  -  7Ti) X i Var (3 )  A  (5 -3 )

Although r std is preferred over r  because of its constant variance, we find that the two 
residuals are often similar in practice. However, because r st(i is simple to compute in 
S ta ta, you should use this measure.

Example

An index plot is an easy way to examine residuals by plotting them against the 
observation number. Standardized residuals are computed by specifying the rstandard  
option with p re d ic t .  For example,

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 
(output om itted )

. predict rstd, rstandard 

. label var rstd "Standardized Residual"

. sort inc

. generate index = _n 

. label var index "Observation Number"
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After computing the standardized residuals th a t are saved in the new variable rstd, 
we sorted the cases by in c  so that observations are ordered from lowest to highest 
income in the plot that follows. The next line creates the variable index equal to the 
observation’s row number in the dataset, where _n on the right side of generate inserts 
the observation number.

All that remains is to plot the residuals against the index with the following com­
mand:

. graph twoway scatter rstd index, msymbol(Oh) mcolor(black)
> xlabel(0(200)800) ylabel(-4(2)4, grid gmin gmax) yline(0, lcolor(black))

0 200 400 600 800
Observation Number

There is no absolute standard that defines a  “large” residual. In their discussion 
of residuals and outliers in the BRM, Hosmcr, Lenieshow, and Sturdivant (2013, 193) 
sagely caution th a t “in practice, an assessment of ‘large’ is, of necessity, a judgment call 
based on experience and the particular set of data  being analyzed”.

One way to search for problematic residuals is to sort the residuals by the value of a 
variable that you think may be a problem for the model. Here we sorted on inc before 
plotting. If this variable had been responsible for the lack of fit of some observations, 
the plot might show a disproportionate number of cases with large residuals among 
either the low-income or the high-income observations. However, this does not appear 
to be the case for these data.

Still, several residuals stand out as being large relative to the others. In such cases, it 
is important to identify those specific observations for further inspection. We can do this 
by labeling the points with their index number from the variable index. We make the 
marker invisible with msymbol(none), use mlabelCindex) to specify that we want to 
label each point with the value contained in variable index, and use m labposition(O) 
to place the label where the marker would have appeared:
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. graph twoway scatter rstd index,
> msymbol(none) mlabel(index) mlabposition(O) xlabel(0(200)800)
> ylabel(-4(2)4, grid gmin gmax) yline(0, lcolor(black))

Although the labels are unreadable when there are many points close together, the plot 
very effectively identifies the isolated cases that we are interested in. We can then list 
these specific cases, such as observation 142:

. list lfp k5 k618 2.agecat 3.agecat wc he lwg inc in 142, clean
2b. 3.

lfp k5 k618 agecat agecat wc he lwg inc
142. in LF 1 2 0 0 no no -2.054124 11.2

We can sort the  residuals and then list the cases that have residuals greater than
1.7 or smaller than -1 .7 , along with the values of the independent variables that were
significant in the regression (recall that I means “or”):
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. sort 

. list
rstd
rstd index k5 agecat wc lwg inc if rstd>1.7 1 rstd<-l. 7 , clean

rstd index k5 agecat wc lwg inc
1. -2.75197 555 0 30-39 college 1.493441 24
2. -2.605707 297 0 30-39 college 1.065162 15.9
3. -2.483793 511 0 30-39 college 1.150608 22
4. -2.258183 637 0 30-39 college 1.432793 28.63
5. -2.168196 622 0 30-39 college 1.156383 28
6. -2.129239 396 0 30-39 college .9602645 18.214
7. -2.102978 507 0 30-39 college 1.013849 21.85
8. -2.032079 701 0 30-39 college 1.472049 37.25
9. -2.025422 522 0 40-49 college 1.526319 22.3
(output om itted ) 

740. 1.765624 108 2 30-39 no 2.107018 10.2
741. 1.781235 551 1 40-49 no 1.241269 23.709
742. 1.8124 686 1 30-39 no .9681486 33.97
743. 1.813577 638 0 40-49 no -.6931472 28.7
744. 1.834293 480 1 40-49 no .8783384 20.989
745. 1.879891 309 1 30-39 college -1.543298 16.12
746. 1.988289 653 1 30-39 no .114816 30.235
747. 2.014942 722 1 30-39 no .9162908 43
748. 2.084739 214 2 30-39 college 0 13.665
749. 2.138727 401 1 50+ no 1.290984 18.275
750. 2.186398 721 0 50+ no .6931472 42.91
751. 2.81468 345 2 30-39 no .5108258 17.09
752. 2.821258 752 1 30-39 college 1.299283 91
753. 2.968983 142 1 30-39 no -2.054124 11.2

All the cases with the most negative residuals have k5 equal to 0, and cases with positive 
residuals often have young children. We can also look at this information by modifying 
the index plot to show only large residuals and to  use the option m label(k5) to label 
each point with the  value of k5:

. graph twoway scatter rstd index if (rstd>1.7) I (rstd<-1.7),
> msymbol(none) mlabel(k5) mlabposition(O) xlabel(0(200)800)
> ylabel(-4(2)4, grid gmin gmax) yline(0, lcolor(black))
> caption("Values indicate # of young children")
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Observation Number 

Values indicate # ol young children

Further analyses of the highlighted cases might reveal either incorrectly coded data 
or some inadequacy in the specification of the model. If data problems were found, we 
would correct them. However, cases with large positive or negative residuals should 
not simply be discarded, because with a correctly specified model you would expect 
some observations to  have large residuals. Instead, you should examine cases with 
large residuals to see if they suggest a problem with the model (for example, problems 
associated with the specification of one of the regressors) or errors in the data (for 
example, a value of 9999 th a t should have been coded as missing). In our cases above, 
we found no problems, and coding k5 as a set of indicator variables did not improve the 
fit.

Influential cases

As shown in figure 5.3, large residuals do not necessarily have a strong influence on 
the estimated parameters, and cases with small residuals can have a strong influence. 
Influential observations, sometimes called high-leverage points, are determined by ex­
amining the changes in the estimated 0 ’s th a t occur when the i th  observation is deleted. 
Although fitting a new logit after eliminating each case is often impractical, Pregibon 
(1981) derived an approximation that requires fitting the model only once. His delta- 
beta  influence statistic summarizes the effect of removing the i th  observation on the 
entire vector /3, which is the counterpart to Cook’s distance for the linear regression 
model. The measure is

/ s  T*?/l
A « “  -■

(1 -  M

where hu was defined in (5.3). S tata refers to  A/3, as dbeta, which we compute as 
follows:



*
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. predict deltabeta, dbeta

. label var deltabeta "Pregibon's influence statistic"

. graph twoway scatter deltabeta index,
> msymbol(none) mlabel(index) mlabposition(O)
> xlabel(0(200)800) xtitle("Observation Number")
> ylabel(0(.l).3, grid gmin gmax)

These commands produce the following plot, which shows that cases 142, 309, and 752 
merit further examination:

oa

0 200 40cT 600 800
O bservation Number

Methods for plotting residuals and outliers can be extended in many ways, includ­
ing plots of different diagnostics against one another. Details of these plots can be 
found in Cook and YYcisberg (1999), Hosmer, Lemeshow, and Sturdivant (2013), and 
Landwehr, Pregibon, and Shoemaker (1984).

5.4.3 Least likely observations

A common motivation for examining residuals in the linear regression model is to un­
cover the largest residuals and check whether there is a reason why the model fits 
these observations so poorly. Observations with large residuals are those for which the 
observed values of the dependent variable are most “surprising” , given the regression 
coefficients and the values of the independent variables. In th is context, we can think 
of the most surprising outcomes as those that have the smallest predicted probabilities 
of observing th a t outcome. These cases may warrant closer inspection, precisely as 
observations with large residuals do.
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T h e  command l e a s t l i k e l y  (Freese 2002) will list the least likely observations. For 
exam ple, for a binary model, l e a s t l i k e ly  will list both the observations with the 
sm allest Pr (y = 0 | x) when y — 0 and the observations with smallest P r (y =  1 | x) 
w hen  y  =  l .5

Syntax

T h e  syntax for l e a s t l i k e l y  is as follows:

l e a s t l i k e l y  [ varlist] [i f ]  [ in] [ ,  n ( # )  g e n e ra te (vamame) 

nodisp la y  I d is p la y ]  no l abe l noobs ]

w here varlist contains any variables whose values are to be listed in addition to the 
observation numbers and probabilities.

Options

n ( # )  specifies the number of observations to be listed for each level of the outcome 
variable. The default is n(5). For multiple observations with identical predicted 
probabilities, all observations will be listed.

g e n e ra te  (vai'name) specifies that the probabilities of observing the outcome that was 
observed be stored in vamame.

Options controlling the list of values

l e a s t l i k e l y  can also include any of the options available after l i s t .  These include 
th e  following:

[no1 d isp lay  forces the format into display or tabular (nodisp lay) format. If you 
do not specify one of these options, S ta ta  chooses the one it decides will be most 
readable.

n o lab e l causes numeric values rather than labels to be displayed, 

noobs suppresses printing of the observation numbers.

5. In addition to being used after lo g it  and p r o b it , l e a s t l ik e ly  can be used after m ost binary models 
in which the option pr for pred ict generates the predicted probabilities of a positive outcome (for 
example, c lo g lo g , sc o b it , and hetprobit) and after many models for ordinal or nominal outcomes 
in which the option outcome( # )  for p r e d ic t  generates the predicted probability of outcome #  
(for example, o lo g it ,  oprobit. m logit. mprobit, and s lo g it ) .  l e a s t l ik e ly  is not appropriate for 
models in which the probabilities produced by p r e d ic t are probabilities within groups or panels 
(for example, such as c lo g i t ,  n lo g it , and asm probit).
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Example

We can use l e a s t l i k e l y  to identify the  least likely observations from our model of 
labor force participation and to list the values of the variables k5, k618, and wc for 
these observations. Based 011 our model l o g i t  lfp  k5 k618 i .a g e c a t  i.wc i.hc 
lwg inc,

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

(output om itted )
. leastlikely k5 k618 wc agecat 
Outcome: 0 (not in LF)

Prob k5 k618 wc agecat

60. . 1403351 0 1 college 30-39
172. .1291429 0 2 college 30-39
221. . 1765296 0 2 college 30-39
252. .1174123 0 0 college 30-39
262. .1650845 0 3 college 30-39

Outcome: 1 (in LF)

Prob k5 k618 wc agecat

427. .1766887 0 5 no 50+
496. .1809571 1 0 no 50+
534. .1039264 1 2 no 30-39
635. .1152245 1 3 college 30-39
662. .1133818 2 0 no 30-39

Among women not in the labor force, we find that the lowest predicted probability of 
not being in the labor force occurs for those who have young children, attended college, 
and are younger. For women in the labor force with the lowest probabilities of being in 
the labor force, all but one individual have young children, most have more than one 
older child, and one attends college. This suggests further consideration of how labor 
force participation is affected by having children in the family.

5.5 Measures of fit
As discussed in chapter 3, a scalar measure of fit can be useful when comparing compet­
ing models. Information criteria such as the Bayesian information criterion (BIC) and 
Akaike’s information criterion (AIC) can be used to select among models and are often 
very useful. There are many pseudo-/?2 statistics that are inspired by the coefficient 
of determination R 2  in the linear regression model, but we find them less informative, 
even though they are often used. Finally, the Hosmer Lemeshow statistic is a popular 
way to assess the overall fit of the model, but we do not recommend it for reasons we 
explain below.
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5.5.1 Information criteria

To illustrate scalar measures of fit and information criteria, we consider two models. 
M i  contains our original specification of independent variables k5, k618, agecat, wc, 
he , lwg, and inc. M 2  drops variables k618, he, and lwg, and adds income-squared with 
c . in c # # c .in c . The models are fit and estim ates are stored:

. quietly logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

. estimates store model1

. quietly logit lfp k5 i.agecat i.wc c .inc##c.inc, nolog 

. estimates store model2

W e can list the estim ates by using the option s t a t s  (N b ic  a ie  r2_p) to include the 
sam ple size, BIC, AIC, and pseudo-/?2 that is normally included in models fit with max­
im um  likelihood. Recall th a t the formulas for these statistics are given in section 3.3.2.

. estimates table modell model2, bC/,9.3f) p(*/.9.3f) stats(N bic aie r2_p)

Variable modell model2

k5 -1.392 -1.369
0.000 0.000

k618 -0.066
0.336

agecat
40-49 -0.627 -0.512

0.003 0.011
50+ -1.279 -1.137

0.000 0.000

wc
college 0.798 1.119

0.001 0.000

be
1 0.136

0.508

lwg 0.610
0.000

inc -0.035 -0.060
0.000 0.001

c.inc#c.inc 0.000
0.083

_cons 1.014 1.743
0.000 0.000

N 753 753
bic 965.064 968.574
aie 923.447 936.206
r2_p 0.121 0.104

legend: b/p
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M2 modifies M\  by deleting a statistically significant variable and two nonsignificant 
variables from M \  while adding a variable that is significant at the 0.10 level. Because 
the models are not nested, they cannot be compared with an LR test, but we can use 
the BIC and AIC statistics. In this example, both the BIC and AIC statistics are smaller 
for Mi, which provides support for that model. Following Raftery’s (1995) guidelines, 
we can say that there is positive (neither weak nor strong) support for M\.

You can obtain information criteria in two other ways. You can use the ic  option 
to f  i t s t a t .  which shows multiple versions of the AIC and BIC measures (see section 3.3 
for the formula for these measures):

. estimates restore modell 
(results modell are active now)
. quietly fitstat, save ic
. estimates restore model2 
(results model2 are active now)
. fitstat, diff ic

Current Saved Difference

AIC
AIC 936.206 923.447 12.759

(divided by N) 1.243 1.226 0.017

BIC
BIC (df=7/9/-2) 968.574 965.064 3.511

BIC (based on deviance) -4019.347 -4022.857 3.511
BIC' (based on LRX2) -67.796 -71.307 3.511

Difference of 3.511 in BIC provides positive support for saved model.

The results m atch those from the e s t im a t e s  ta b le  output and even tell you the 
strength of support for the preferred model. You can also use th e  e s t a t  ic  command:

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 
(output o m itte d )

. estat ic
Akaike's information criterion and Bayesian information criterion

Model Obs ll(null) 11(model) df AIC BIC

753 -514.8732 -452.7237 9 923.4473 965.0639

Note: N=0bs used in calculating BIC; see [R] BIC note

. logit lfp k5 i.agecat i.wc c.inc##c.inc, nolog 
(output om itted)



5.5.2 Pseudo-R2 ’s 221

. estât ic
Akaike's information criterion and Bayesian information criterion

Model Obs 11(null) 11(model) df AIC BIC

753 -514.8732 -461.103 7 936.206 968.5745

Note: N=Obs used in calculating BIC; see [R] BIC note

These results match those from f i t s t a t .

5.5.2 Pseudo-R2’s

W ith in  a substantive area, pseudo-R 2,s might provide a rough index of whether a model 
is adequate. For example, if prior models of labor force participation routinely have 
values of 0.4 for a particular pseudo-R 2, you would expect that new analyses with a 
different sample or with revised measures of the variables would result in a similar 
value for that measure. But there is no convincing evidence that selecting a model that 
maximizes the value of a pseudo R 1 results in a model that is optimal in any sense other 
th an  the model has a  larger value of that measure.

We use the same models estimated in the last section and use f i t s t a t  to compute 
the scalar measures of fit (see section 3.3 for the formula for these measures):

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 
(output o m itte d)

. quietly fitstat, save
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. logit lfp k5 i.agecat i.wc c.inc##c.inc, nolog 
(output o m itte d)

. fitstat, diff
Current Saved Difference

Log-likelihood
Model -461.103 -452.724 -8.379

Intercept-only -514.873 -514.873 0.000

Chi-square
D (df=746/744/2) 922.206 905.447 16.759

LR (df=6/8/-2) 107.540 124.299 -16.759
p-value 0.000 0.000 0.000

R2
McFadden 0.104 0.121 -0.016

McFadden (adjusted) 0.091 0.103 -0.012
McKelvey & Zavoina 0.183 0.215 -0.032

Cox-Snell/ML 0.133 0.152 -0.019
Cragg-Uhler/Nagelkerke 0.179 0.204 -0.026

Efron 0.135 0.153 -0.018
Tjur's D 0.135 0.153 -0.018

Count 0.672 0.676 -0.004
Count (adjusted) 0.240 0.249 -0.009

IC
AIC 936.206 923.447 12.759

AIC divided by N 1.243 1.226 0.017
BIC (df=7/9/-2) 968.574 965.064 3.511

Variance of
e 3.290 3.290 0.000

y-star 4.026 4.192 -0.165
Note: Likelihood-ratio test assumes current model nested in saved model.
Difference of 3.511 in BIC provides positive support for saved model.

After fitting our first model with l o g i t ,  we used q u ie t ly  to  suppress the output 
from f i t s t a t  with the s a v e  option to retain the results in memory. After fitting the sec­
ond model, f i t s t a t ,  d i f f  displays the fit statistics for both models, f i t s t a t ,  d i f f  
computes differences between all measures, shown in the column labeled D iffe re n c e , 
even if the models are not nested. As with the l r t e s t  command, you must determine 
if it makes sense to  interpret the computed difference.

What do the fit statistics show? The values of the pseudo-R 2,s are slightly larger for 
M i, which is labeled Saved  lo g i t  in the table. If you take the pseudo-/?2 s as evidence 
for the best model, which we do not, there is some evidence preferring M\.



5.5.3 (Advanced) Hosmer-Lemeshow statistic

5.5.3 (Advanced) Hosmer-Lemeshow statistic

223

We only recommend reading this section if you are considering using 
the Hosmer-Lemeshow statistic. After reviewing how the measure is 
computed, we illustrate that the statistic is highly dependent upon an 
arbitrary decision on the number of groups used. As a result, we do not 
recommend th is measure.

T he idea of the Hosmer-Lemeshow ( h l ) test is to compare predicted probabilities 
with the observed d a ta  (Hosmer and Lemeshow 1980; Lemeshow and Hosmer 1982). 
This popular test can be computed using the e s t a t  gof command after fitting a logit 
or probit model. Unlike the measures presented above, this command also works with 
models fit by using complex survey data with the svy prefix.

To explain how the test works, we review the steps that are used to compute it.

1. Fit the regression model.

2. Compute the predicted probabilities 7?*.

3. Sort the data from the smallest n, to the largest.

4. Divide the observations into G groups, where 10 groups are often used. Each 
group will have n g ~  jr cases. The first group will have the n\  smallest values 
of 7Ti, and so oil. If G does not divide equally into N,  the group sizes will differ 
slightly.

5. WTithin each group, compute the mean prediction:

Hosmer, Lemeshow, and Sturdivant (2013) ran simulations that suggest th a t HL is dis­
tributed approximately as \ 2  with G — 2 degrees of freedom if the  model is correctly 
specified. If the p-value is large, the model is considered to fit the data.

To give an example, we fit the model we have used as a running example, and we 
use e s t a t  gof to compute the HL statistic:

Also compute th e  mean number of observed cases where y  — 1:

Ug — • • y i/n9J  * ----' I  111 C r O U D  Ki in group g

6. The test statistic is
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. logit lfp k5 k618 i.agecat i.wc i.hc lwg c.inc, nolog 
(output om itted )

. estat gof, group(10)
Logistic model for lfp. goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)
number of observations = 753

number of groups = 10
Hosmer-Lemeshow chi2(8) = 13.76

Prob > chi2 = 0.0881

The /rvalue is greater than  0.05, indicating th a t the model fits based on the criterion 
provided for the HL.

Unfortunately, we do not find conclusions from the HL test to be convincing. First, as 
Hosmer and Lemeshow point out, the HL test is not a substitute for examining individual 
predictions and residuals as discussed in the last section. Second, Allison (2012b. 67) 
raised concerns th a t the test is not very powerful. In a simple simulation with 500 
cases, the HL te s t failed to  reject an incorrect model 75% of the time. Third, and most 
critically, the choice of the number of groups is arbitrary, even though 10 is most often 
used. The results of the Hosmer Lemeshow test are sensitive to  the arbitrary choice of 
the number of groups. In our experience, this is often the case and for this reason we 
do not recommend the test.

We can illustrate the sensitivity of the Hosmer Lemeshow test by varying the num­
ber of groups used to compute the test from 5 to  15 in the model fit above:

chi2 df prob

5 groups 4.043 3.000 0.257
6 groups 8.762 4.000 0.067
7 groups 10.424 5.000 0.064
8 groups 13.831 6.000 0.032
9 groups 15.503 7.000 0.030
10 groups 13.763 8.000 0.088
11 groups 17.980 9.000 0.035
12 groups 24.055 10.000 0.007
13 groups 15.230 11.000 0.172
14 groups 19.360 12.000 0.080
15 groups 24.722 13.000 0.025

The row labeled 10 groups corresponds to the result shown earlier. It is disconcerting 
that when 10 groups are used, the result is not significant, but if 9 or 11 groups had been 
used, the result would have been significant. Over the 11 groups listed, the p-values 
range from p =  0.007 to p = 0.257. Although the idea of the HL test is appealing, we 
are skeptical th a t it is an effective way to  assess a model.
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6 Other commands for binary outcomes
Logit and  probit models are the most commonly used models for binary outcomes and 
are th e  only ones that we consider in this book, bu t other models exist that can be fit 
in S ta ta .  Among them  are the following:

•  c l o g lo g  assumes a complementary log-log distribution for the errors instead of a 
logistic or normal distribution.

•  s c o b i t  fits a logit model that relaxes the assumption that the marginal change in 
th e  probability is greatest when Pr(?/ =  1) =  0.5.

•  h e t p r o b it  allows the assumed variance of the errors in the probit model to vary 
as a function of the independent variables, which is one approach to comparing 
logit and probit coefficients across groups (Williams 2009).

•  iv p r o b it  fits a probit model where one or more of the regressors are endogenously 
determined.

•  b ip r o b it  simultaneously fits two binary probits and can be used when errors are 
correlated with each other as in the estim ation of seemingly unrelated regression 
models for continuous dependent variables, mvprobit (Cappellari and Jenkins 
2003) extends this idea to more than two binary probits.

Binary outcomes th a t reflect an event that is expected to happen eventually for 
all cases are often handled using survival analysis, which is not covered in this book. 
C leves et al. (2010) provides a detailed introduction to survival analysis in Stata fo­
cusing on the s t*  commands. Likewise, we do not consider S ta ta ’s extensive com­
m ands for working with panel and multilevel data, including S ta ta’s x t*  and me* com­
m ands, but these are discussed extensively in Rabe-Hesketh and Skrondal (2012) and 
Cam eron and Trivedi (2010).

.7 Conclusion
B inary  outcomes are a t least as common as continuous outcomes in many fields, and the 
logic for how binary outcomes are handled provides the basis for ordinal, nominal, and 
coun t outcomes in later chapters. We focus here on the logit and probit models that 
are  the most common models used for binary outcomes. In this chapter, we considered 
estim ating parameters for these models, testing basic hypotheses about estimates, and 
evaluating the fit of individual observations and the model as a whole.

We have said nothing so far about how to think and talk about what the estimates 
produced by these models actually mean. Instead, this serves as the topic of the next 
chapter. As you will see, the next chapter is longer than this chapter, because there are 
m any issues to think about to figure out the  clearest and most effective way to convey 
results from models for binary outcomes.





Models for binary outcomes: 
Interpretation

In th is  chapter, we discuss methods for interpreting results from models for binary 
outcom es. Because the  binary regression model (BRM) that we introduced in the last 
c h a p te r is nonlinear, the magnitude of the change in the outcome probability associated 
w ith  a  given change in an independent variable depends on the levels of all the inde­
p en d en t variables. The challenge of interpreting results, then, is to  find a summary of 
how changes in the independent variables are associated with changes in the outcome 
th a t  best reflects critical substantive processes without overwhelming yourself or your 
read ers  with distracting detail.

Tw o basic approaches to interpretation are considered: interpretation using regres­
sion coefficients and interpretation using predicted probabilities. W ith respect to the 
form er, we begin the chapter by considering how estimated param eters or simple func­
tio n s  of these parameters can be used to predict changes in the odds ratios for the logit 
m odel or the latent variable y* for logit or probit models. Using odds ratios to inter­
p re t the logit model is very common, but rarely is it sufficient for understanding the 
re su lts  of the model. Nonetheless, it is im portant to  understand w hat odds ratios mean 
for several reasons. For one, odds ratios are used a lot, and you need to understand 
w h a t they can and cannot tell you. Also, odds ratios are useful for understanding the 
s tru c tu re  of the ordinal regression model in chapter 7 and the multinomial logit model 
in  chapter 8 . Interpretation based 011 y* parallels interpretation in the linear regression 
m odel, but it is not often used for binary outcomes. It is, however, sometimes useful 
for models for ordinal outcomes, considered in chapter 7.

We strongly prefer methods of interpretation that are based on predicted probabil­
ities, and most of the chapter focuses 011 these. We begin in section 6.2 with marginal 
effects, which we find more informative than  the more commonly used odds ratios as 
scalar measures to assess the magnitude of a variable’s effect. In  section 6.3, we con­
sider computing predictions based 011 substantively motivated profiles of values for the 
independent variables, also referred to as ideal types. Thinking about the types of indi­
viduals represented in your sample is a valuable way to gain an intuitive sense of which 
configurations of variables arc substantively important. Tables of predictions, which are 
discussed in section 6.4, can effectively highlight the impact of categorical independent 
variables. We end our discussion of interpretation in section 6.6 by considering graph­
ical methods to show how probabilities change as a continuous independent variable 
changes.
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When using logit or probit, or any nonlinear model, we suggest that you try a variety 
of methods of interpretation with the goal of finding an elegant way to present the 
results that does justice to the complexities of the nonlinear model and the substantive 
application. No one method works in all situations, and often the only way to determine 
which method is most effective is to try them  all. Fortunately, th e  methods we consider 
in this chapter can be readily extended to models for ordinal, nominal, and count 
outcomes, which are considered in chapters 7 9.

1 Interpretation using regression coefficients
Interpretation of regression models involves examining how a change in an independent 
variable is associated with a change in the outcome. In linear models, this is easily 
accomplished using estimates of the regression coefficients. For example, the coefficient 
for years of education on anticipated earnings tells you how one more year of education 
is expected to affect earnings. Unless you add interaction terms, the estimated effect is 
the same for men and women, whites and nonwhites, and all combinations of values of 
the independent variables. Consequently, in linear regression, a  discussion of the slope 
coefficients is often where a researcher begins and ends his or her interpretation of the 
model. The presentation of results might simply be a table of regression coefficients.

In the nonlinear BRM , a regression coefficient indicates the direction of a variable’s 
effect. In our model of labor force participation, the coefficients for k5 and k618 are 
both negative, which implies that higher numbers of children are associated with a lower 
probability of being in the labor force. W hat is harder to interpret from the coefficient 
is the magnitude of the effect. The logit model, for example, can be written as

In fi (x) =  x/3

The p coefficients indicate the effect of the independent variable on the log odds of the 
outcome, where th e  log odds is also known as the logit. We can interpret the P's as 
follows:

For a unit change in x k, we expect the log of the odds of the outcome to 
change by 0  k units, holding all other variables constant.

This interpretation does not depend on the level of Xk or the levels of the other variables 
in the model. In this regard, it is just like the linear regression model. The problem 
is that a change of 0 k in the log odds has little substantive meaning for most people. 
Consequently, tables of logit coefficients typically have little value for conveying the 
magnitude of effects. As an alternative, odds ratios can be used to explain the effects 
of independent variables on the odds, which we consider in the next section.

1.1 Interpretation using odds ratios

Effects for the logit model (but not the probit model) can be interpreted in terms of 
changes in the odds. For binary outcomes, we typically consider the odds of observing 
a positive outcome, coded 1, versus a negative outcome, coded 0:
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r » ^ _ Pr(y= 1 l x) _  Pr(y = l |x)
U  Pr(y = 0|x) ~rrp7(^ T j^

In th e  logit model, the log odds are a linear combination of the x’s and 0 ’s. For ex- 
consider a model with three independent variables:

f Pr(i/ =  1 I x) 1
ln( P r (j/ =  0 I x) J = I l l ^ (x) = P° + PlXl + 02X2 + 03X3

The problem with interpreting these f i s  directly is that changes in log odds are not 
substantively meaningful to most audiences.

To make the interpretation more meaningful, we can transform the log odds to the
odds by taking the exponential of both sides of the equation. This leads to a model
th a t is multiplicative instead of linear but in which the outcome is the odds:

(x, X3 ) =  e^°e/i|Xl e^2 X2 e^ 3X 3

O ur notation emphasizes the value of X 3 , which we want to increase by 1:

(X,X 3 +  1) =  000 001*1 e02x2e03(*3 + l)
_  e/3og/3()fi/0iXi £,02X2pfoxze03

T his leads to the odds ratio

CI(X,X3 +  1 ) _  000 0 0 1* 1 002*2003*3008 ^  ^
J2 (X,X 3 ) 0/3o0/?lXl 0 0 2X2 003^3

Accordingly, we can interpret the exponential of the logit coefficient as follows:

For a unit change in x k , the odds are expected to change by a factor of 
exp(fa), holding other variables constant.

For exp (fa) > 1, you could say th a t the odds are '‘exp(fa) times larger , f<>i 
exp(/3fc) <  1, you could say that the odds arc uexp(fa) times smaller”. If exp(/^) 1.
then  Xk does not affect the odds. We can evaluate the effect of a standard deviation 
change in x k instead of a unit change:

For a standard deviation change in Xk, the odds are expected to change h> 
a factor of exp(fa  x s k), holding all other variables constant.

The odds ratio is computed by changing one variable, while holding all other v a r '^ ^  
constant. This means that the formula in (6.1) cannot be used when _
changed is mathematically linked to another variable. For exam ple, i J 1 ‘s **8® cas<5i 
is age-squared, you cannot increase x\  by 1 while holding x2 constant, 

the odds ratio computed as exp(Pk) should not be interpreted.
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Although odds ratios are a common method of interpretation for logit models, it is 
essential to understand their limitations. Most importantly, they do not indicate the 
magnitude of the change in the probability of the outcome. We begin with an example 
from our model of labor force participation, followed by a few words of caution.

The output from l o g i t  with the o r  option shows the odds ratios instead of the 
estimated /3’s:

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, or nolog
Logistic regression Number of obs = 753

LR chi2(8) =* 124.30

Log likelihood = -452.72367
Prob > 
Pseudo

chi2
R2

0.0000
0.1207

lfp Odds Ratio Std. Err. z P>!z| [95*/. Conf. Interval]

k5
k618

.2486853

.9364419
.0477297
.0639721

-7.25
-0.96

0.000
0.336

.1707185

.8190905
.3622592
1.070606

agecat
40-49

50+
.5343201 
.2782939

.1115249

.0722959
-3.00
-4.92

0.003
0.000

.3549247 

.1672539
.8043904
.4630534

wc
college 2.220458 .5088877 3.48 0.001 1.416978 3.479543

he
college

lwg
inc

_cons

1.145555
1.840265
.9655531
2.756603

.2353502

.2775073

.0079868

.7885231

0.66
4.04
-4.24
3.54

0.508
0.000
0.000
0.000

.7658431
1.369372
.9500254
1.573581

1.713532
2.473087
.9813346
4.829025

Here are some examples of interpretations:

For each additional young child, the odds of being in the labor force decrease 
by a factor of 0.25, holding all other variables constant (p < 0.01).

If a woman attended college, her odds of labor force participation are 2.22 
times larger than a woman who did not attend college, holding all other 
variables constant (p < 0.01).

Notice that these interpretations contain no information about the magnitude of the 
implied change in the probability. This will be important to our discussion below of 
the limitations of odds ratios, but first, several other issues about the interpretation of 
odds ratios m erit attention.

Odds ratios for categorical variables. Multiple odds ratios are associated with a multiple- 
category independent variable. For example, the two coefficients for agecat are relative 
to the base category of being 30 to 39. Accordingly, we can interpret the coefficient 
labeled 40-49 as follows:
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Being age 40 to  49 compared with being 30 to 39 decreases the odds of being 
in  the labor force by a factor of 0.53, holding all other variables constant 
( p <  0.01).

A nd similarly for the coefficient for 50+. If you are interested in the  coefficient for the 
effects of being 40 to 49 compared with being 50 or older, you can use the pwcompare 
com m and, where option eform  requests the exponential of the coefficients, which are 
th e  odds ratios. The option e f f e c t s  requests p-values and confidence intervals.

. pwcompare agecat, effects eform
Pairwise comparisons of marginal linear predictions 
Margins : asbalanced

exp(b) Std. Err.
Unadjusted 
z P>1zI

Unadjusted 
[95*/, Conf. Interval]

lfp
agecat
40-49

vs
30-39 .5343201 .1115249 -3.00 0.003 .3549247 .8043904

50+ vs 30-39 .2782939 .0722959 -4.92 0.000 .1672539 .4630534
50+ vs 40-49 .5208373 .1141603 -2.98 0.003 .338946 .8003385

W e conclude the following:

Being 50 or older compared with being 40 to 49 decreases the  odds of being 
in the labor force by a factor of 0.52, holding all other variables constant 
(p < 0.01).

A lthough any two of the pairwise coefficients imply the third (for example, 0.521 x 
0.534 =  0.278), it is often useful to see all the coefficients and report those that are 
m ost useful for the substantive application.

Confidence intervals for odds ratios. If you report the odds ratios instead of the un­
transformed /3 coefficients, then the 95% confidence interval of the  odds ratio is often 
reported instead of the standard error. The reason is that the odds ratio is a nonlinear 
transformation of the logit coefficient, so the confidence interval is asymmetric. For 
example, if the logit coefficient is 0.75 with a standard error of 0.25, the 95% interval 
around the logit coefficient is approximately [0.26,1.24], but the  confidence interval 
around the odds ratio  exp(0.75) = 2.12 is [exp(0.26), exp(1.24)] =  [1.30,3.46]. The or 
option for the l o g i t  command reports odds ratios and includes confidence intervals.
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Odds ratios for changes other than one. You can compute the odds ratio for changes in 
Xk other than 1 with the formula

ft (x, Xk +  S) 
f i (x ,x fe)

=  eSf3h = esePk

For example,

Increasing income by $10,000 decreases the odds by a factor of 0.70 (= e_0 035xl0)) 
holding all other variables constant.

Accordingly, the odds ratio for a standard deviation change of an independent variable 
equals exp (fask),  where Sk is the standard  deviation of x k. The odds ratios for both 
a unit and a standard deviation change of the independent variables can be obtained 
with l i s t c o e f :

. listcoef, help
logit (N=753): Factor change in odds 
Odds of: in LF vs not in LF

b z P>lz| e~b e'bStdX SDofX

k5
k618

-1.3916
-0.0657

-7.250
-0.961

0.000
0.336

0.249
0.936

0.482
0.917

0.524
1.320

agecat
40-49

50+
-0.6268
-1.2791

-3.003
-4.924

0.003
0.000

0.534
0.278

0.737
0.589

0.487
0.414

wc
college 0.7977 3.481 0.001 2.220 1.432 0.450

he
college

lwg
inc

constant

0.1359 
0.6099 
-0.0351 
1.0140

0.661
4.045
-4.238
3.545

0.508
0.000
0.000
0.000

1.146
1.840
0.966

1.069
1.431
0.665

0.488
0.588
11.635

b = raw coefficient 
z = z-score for test of b=0 

P>IzI = p-value for z-test
e‘b = exp(b) = factor change in odds for unit increase in X 

e“bStdX = exp(b*SD of X) = change in odds for SD increase in X 
SDofX = standard deviation of X

By using the coefficients for lwg in the column e'bStdX. we can say

For a standard deviation increase in the log of the wife’s expected wages, 
the odds of being in the labor force are 1.43 times greater, holding all other 
variables constant.
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Odds ratios as multiplicative coefficients. When interpreting odds ratios, remember that 
th ey  are  multiplicative. This means that 1 indicates no effect, positive effects are greater 
th a n  1. and negative effects are between 0 and 1. Magnitudes of positive and negative 
effects should be compared by taking the inverse of the negative effect, or vice versa. For 
exam ple , an odds ratio  of 2 has the same m agnitude as an odds ratio of 0.5 =  1/2. Thus 
an  o d d s ratio of 0.1 =  1/10 is much “larger” than the odds ratio 2 =  1/0.5. Another 
consequence of the multiplicative scale is th a t to determine the effect on the odds of the 
even t not occurring, you simply take the inverse of the effect on the odds of the event 
occurring, l i s tc o e f  will automatically calculate this for you if you specify the reverse  
o p tio n :

. listcoef, reverse 
logit (N=753): Factor change in odds 

Odds of: not in LF vs in LF

b z P>lz| e“b e~bStdX SDofX

k5
k618

-1.3916
-0.0657

-7.250
-0.961

0.000
0.336

4.021
1.068

2.073
1.091

0.524
1.320

agecat
40-49

50+
-0.6268
-1.2791

-3.003
-4.924

0.003
0.000

1.872
3.593

1.357
1.698

0.487
0.414

wc
college 0.7977 3.481 0.001 0.450 0.698 0.450

he
college

lwg
inc

constant

0.1359
0.6099
-0.0351
1.0140

0.661
4.045
-4.238
3.545

0.508
0.000
0.000
0.000

0.873
0.543
1.036

0.936
0.699
1.504

0.488
0.588
11.635

T h e header indicates that columns e"b and e~bStdX now contain the factor changes 
in th e  odds of the outcome not in  LF versus the outcome in  LF, whereas before we 
com puted the factor change in the odds of in  LF versus n ot in  LF. We can interpret 
th e  result for k5 as follows:

For each additional child, the odds of not being in the labor force are in­
creased by a factor of 4.02 (=1/0.48), holding all other variables constant.

Percentage change in the odds. Instead of a multiplicative or factor change in the out­
come, some people prefer the percentage change:

percentage change in odds =  100 {exp (¿/3fc) — 1}

This is shown by l i s t c o e f  with the p e rc e n t option.
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. listcoef, help percent 
logit (N=753) : Percentage change in odds 
Odds of: in LF vs not in LF

b z P> 1 z 7. ’/.StdX SDofX

k5
k618

-1.3916
-0.0657

-7.250
-0.961

0.000
0.336

-75.1
-6.4

-51.8
-8.3

0.524
1.320

agecat 
40-49 
50+

-0.6268
-1.2791

-3.003
-4.924

0.003
0.000

-46.6
-72.2

-26.3
-41.1

0.487
0.414

wc
college 0.7977 3.481 0.001 122.0 43.2 0.450

he
college

lwg
inc

constant

0.1359
0.6099

-0.0351
1.0140

0.661
4.045
-4.238
3.545

0.508
0.000
0.000
0.000

14.6
84.0
-3.4

6.9
43.1

-33.5

0.488
0.588
11.635

b = raw coefficient 
z = z-score for test of b=0 

P>IzI = p-value for z-test
*/, = percent change in odds for unit increase in X

'/.StdX = percent change in odds for SD increase in X
SDofX = standard deviation of X

Some interpretations are as follows:

For each additional young child, the odds of being in the labor force decrease 
by 75%, holding all other variables constant.

A standard deviation increase in the log of a wife’s expected wages increases
the odds of being in the labor force by 43%, holding all other variables
constant.

Percentage and factor change provide the same information, so which you use is a matter 
of preference. Although we tend to prefer percentage change, methods for the graphical 
interpretation of the multinomial logit model (chapter 8) work only with factor change 
coefficients.

Limitations of the odds ratio

The interpretation of the odds ratio assumes th a t the other variables are held constant, 
but it does not require th a t they be held a t specific values. This might seem to resolve 
the problem of nonlinearity, but in practice it does not. A constant factor change in 
the odds does not imply a constant change in the probability, and probabilities provide 
a more meaningful metric for interpretation than do odds. For example, if the odds 
are 1/50, the corresponding probability is 0.020 because p =  12/(1 +  ii). If the odds
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double to  2/50, the probability increases to 0.038 for a change of 0.019. Depending on 
your substantive purposes, this small change may be trivial or may be quite important 
(such as when you identify a risk factor th a t makes it twice as likely th a t a subject 
will contract a fatal disease). Meanwhile, if the odds are 1/1 and double to 2/1, the 
probability  increases 0.500 to 0.667 for a change of 0.167. The odds ratio is the same, 
b u t th e  change in the probability is much larger.

T h e  substantive meaning of a given odds ratio depends on the specific value of the 
odds before they change. Those odds in turn depend on the predicted probability, which 
in tu rn  depends on the  specific values of all independent variables in the model. For 
describing results in term s of probabilities, there is no way around the nonlinearity of 
th e  model.

Odds ratios in case-control studies

O dds ratios may provide the best alternative for contexts in which the probabilities 
are  determined by the sample design and accordingly are not obviously of substantive 
in terest. The key example is case control studies, which are especially common in 
epidemiology. Case-control studies recruit cases with a disease separately from the 
controls without the disease, and commonly studies will recruit equal proportions of 
cases and controls even though cases are relatively rare in the population and controls 
are  abundant. In other words, the proportion of people with a  disease in a case- 
control study has nothing to do wit h the proportion who actually have the disease in a 
population.

Logit models are typically used in such studies because, if assumptions are satisfied, 
odds ratios estim ated from a case control study can be extrapolated to a  population 
(Hosmer, Lemeshow, and Sturdivant 2013). However, because the baseline probability 
in the  population is much lower than the proportion in the sample (and might not even 
be known), interpreting the effects of independent variables in term s of the effects on 
the probability of being a case versus being a control in one’s sample typically has no 
substantive pertinence.

6.1.2 (Advanced) Interpretation using y*

Binary logit and probit models are rarely interpreted in term s of the la­
tent variable y*. Accordingly, this section is primarily useful to provide 
a deeper understanding of identification and why logit coefficients are 
generally larger than probit coefficients.

As discussed in section 5.1.1, the logit and probit models can be derived from re­
gression of a latent variable u*\

y* =  x/3 +  e
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where e is a random  error. For the probit model, we assume e is normal with Var(e) = 1. 
For logit, we assume e is distributed logistically with Var(£) =  7t2/3. A s with the linear 
regression model, the marginal change in y* with respect to x k is

r\ Pkd x k

However, because y* is latent, its true m etric is unknown and depends on the identifi­
cation assumption we make about the variance of the errors.

As we saw in section 5.2.2, the coefficients produced by l o g i t  and p ro b it cannot 
be directly compared w ith one another. The logit coefficients will typically be about 1.7 
times larger than the probit coefficients, simply as a result of the arbitrary assumption 
about the variance of the error. Consequently, the marginal change in y* cannot be 
interpreted w ithout standardizing by the estim ated standard deviation of y*, which is 
computed as

a** =  3  Var (x) 3  +  Var (e)

where Var (x) is the covariance matrix for the observed re’s, (3 contains maximum likeli­
hood estimates, and Var(er) =  1 for probit and 7r2/3  for logit. Then the y *■-standardized 
coefficient for x k is

oSy* _ fik

l k
which can be interpreted as follows:

For a unit increase in x k, y* is expected to increase by /3k y standard devi­
ations, holding all other variables constant.

The fully standardized coefficient is

/3f = —
Gy*

which can be interpreted as follows:

For each standard deviation increase in x k , y* is expected to increase by /3k 
standard deviations, holding all other variables constant.
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T h ese  coefficients are computed by l i s t c o e f  with the s t d  option:

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 
(output omitted )

. listcoef, std
logit (N=753): Unstandardized and standardized estimates

Observed SD: 0.4956
Latent SD: 2.0474

Odds of : in LF vs not in LF

b z P> Izl bStdX bStdY bStdXY SDofX

k5 -1.3916 -7.250 0.000 -0.729 -0.680 -0.356 0.524
k618 -0.0657 -0.961 0.336 -0.087 -0.032 -0.042 1.320

agecat
40-49 -0.6268 -3.003 0.003 -0.305 -0.306 -0.149 0.487
50+ -1.2791 -4.924 0.000 -0.529 -0.625 -0.259 0.414

wc
college 0.7977 3.481 0.001 0.359 0.390 0.175 0.450

he
college 0.1359 0.661 0.508 0.066 0.066 0.032 0.488

lwg 0.6099 4.045 0.000 0.358 0.298 0.175 0.588
inc -0.0351 -4.238 0.000 -0.408 -0.017 -0.199 11.635

constant 1.0140 3.545 0.000

T h e  y *-standardized coefficients are in the column labeled bStdY, and the fully stan­
d ard ized  coefficients are in the column bStdXY. We could interpret these coefficients as 
follows:

For each additional young child, the propensity of a women to join the 
labor force decreases by 0.68 standard deviations, holding all other variables 
constant.

For every standard deviation increase in family income, a woman’s propen­
sity to join the labor force is expected to decrease by 0.199 standard  devia­
tions, holding all other variables constant.

N ext, we compute the y*-standardized coefficients for probit:
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. probit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 
(output o m it te d )

. listcoef, std
probit (N=753) : Unstandardized and standardized estimates 
Observed SD: 0.4956
Latent SD: 1.1530

b z P> 1 z | bStdX bStdY bStdXY SDofX
k5

k618
-0.8396
-0.0412

-7.503
-1.0 11

0.000
0.312

-0.440
-0.054

-0.728
-0.036

-0.382
-0.047

0.524
1.320

agecat 
40-49 

50+
-0.3816
-0.7801

-3.058
-5.000

0.002
0.000

-0.186
-0.323

-0.331
-0.677

-0.161
-0.280

0.487
0.414

wc
college 0.4821 3.555 0.000 0.217 0.418 0.188 0.450

he
college

lwg
inc

constant

0.0738 
0.3710 
-0.0211 
0.6222

0.596
4.211
-4.368
3.692

0.551
0.000
0.000
0.000

0.036
0.218
-0.245

0.064
0.322
-0.018

0.031
0.189
-0.212

0.488
0.588
11.635

Although the estim ates of /? in column b are uniformly smaller than those from lo g it,  
the ^-standardized and fully standardized coefficients in columns bStdY and bStdXY 
are very similar, which demonstrates th a t the differences in the magnitude of coefficients 
in logit and probit are due to differences in scale.

An issue related to ^-standard ized  coefficients arises when researchers compare 
coefficients across models, in the linear regression model, mediating variables are often 
added to a model, and the change in coefficients is interpreted as indicating how much 
of the effect of an independent variable on the dependent variable is due to the indirect 
effect of the mediating variable (see, for example, Breen, Karlson, and Holm [2013, 166— 
167]). For example, if the coefficient estim ating the effect of childhood socioeconomic 
status (SES) on adult earnings is reduced when educational attainm ent is added to the 
model, one might say th a t half the effect of SES on earnings is explained by educational 
attainment.

This interpretation of a change in unstandardized logit or probit coefficients is prob­
lematic (Winship and Mare 1984). In linear regression, when independent variables are 
added to a model, Var(x/3) increases and Var(e-) decreases accordingly, because the 
observed variance of y must remain the same. In the logit and probit models, when 
independent variables are added to a model, Var(x/3) increases but Var(e) does not 
change because its value is assumed. Consequently, Var(y*) must increase. For the 
BRM, the indirect effects interpretation across models with different independent vari­
ables no longer holds because as the model specification changes, the scale of the latent 
dependent variable changes.
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O ne can think about y*-standardized coefficients as the coefficients we would observe 
if V ar(y*) was rescaled to be fixed to 1. If so, then in terms of ^-standard ized  coeffi­
cients, adding new independent variables to the model does not increase this rescaled 
Var{y*). For indirect effects, interpreting changes in ^-standardized logit and probit 
coefficients seems clearly preferable to doing so for unstandardized coefficients. Alter­
natives to ^ -standard ization  have also been proposed (Karlson, Holm, and Breen 2012; 
Breen and Karlson 2013).

.2 Marginal effects: Changes in probabilities
A marginal effect measures the change in the probability of an outcome for a change 
in Xfc. holding all o ther independent variables constant at specific values. The critical 
idea is that one variable is changing while the other variables are not. There are two 
varieties of marginal effects. A marginal change computes the effect of an instantaneous 
or infinitely small change in Xk- A discrete change computes the effect of a discrete or 
finite change in Xk• (See section 4.5 for an introductory discussion of marginal effects.)

Figure 6.1. Marginal change and discrete change in the BRM
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A marginal change, shown by the tangent to the probability curve at x = 1 in 
figure 6.1, is the  ra te of change in the probability for a infinitely small change in x 
holding other variables a t specific values:

d P r  [y =  1 1 x  =  x*)
d x k

Because the effect is computed with a partial derivative, some authors refer to this as 
the partial change or partial effect. In th is formula, x* contains specific values of the 
independent variables. For example, x* could equal x7 with the observed values for 
the ith observation, it could equal the means x  of all variables, or it could equal any 
other values. W hen the meaning is clear, we will refer to x without specifying x*. The 
important thing is th a t the value of the marginal effect depends on the specific values 
of the xk s where the change is computed.

In the B R M , the marginal change has the simple formula

0 P r { yi =  1 | x)
dxk

=  f  (x/3) /3k

where /  is the norm al probability distribution function (PD F) for probit and the logistic 
PDF for logit. In logit models, the marginal change has a particularly convenient form:

<9Pr(//, -  1 l_x )  _  p r ^  =  i  | x ) [ i _  p r (y . =  i  | x )] fa  
o x k

From this formula, we see that the change must be greatest when Pr (y =  1 | x) = 0.5, 
where the marginal change is (0.5)(0.5)/?*; =  f a / 4. Accordingly, dividing a binary logit 
coefficient by 4 indicates the maximum marginal change in the probability (Cramer 
1991, 8).

As long as the model does not include power or interaction terms, the marginal 
change for xk has the same sign as (3k for all values of x  because the PDF is always 
positive. (Computing marginal effects when powers and interactions are in the model is 
discussed in section 6.2.1.) The formula also shows that marginal changes for different 
independent variables differ by a scale factor. For example, the ratio of the marginal 
effect of Xj to  the  effect of x k is

<9 Pr {yj = 1 | x) /d x j  _  f  (x/3) fy  =  / ^  
d  P r (yi =  1 | x) / d x k f  (x/3) fa /3k

for all values of x. Consequently, while does not tell you the magnitude of x k's effect, 
it can tell you how much larger or smaller it is than the effects of other variables.

A discrete change, sometimes called a first difference, is the actual change in the 
predicted probability for a given change in x k , holding other variables a t specific values. 
For example, the  discrete change for an increase in age from 30 to 40 is the change in 
the probability of being in the labor force as age increases from 30 to 40, holding other
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variab les a t specified values. Defining 2^tart as the starting value of xk  and x | nd as the 
end ing  value, the discrete change equals

= Pr (» “  1 1*•** = *‘"d) - Pr( » = i l x -x* = 4 “ )

For b in a ry  variables, such as having attended college, the obvious choice is a change 
from  0 to  1:

Ar(ii f  ’ir-=pr(»=11 ̂nd=̂  - pr(»‘=11 x?srt=°'x)(U 1J

W e often are interested in the discrete changes when a variable increases by some 
am o u n t 6 from its observed value. Defining P r(y  =  1 | x, x k) as the probability at x. 
n o tin g  in particular the value of . 7 the discrete change for a change of 5 in Xk equals

A  Pr (y =  1 I x ) =  p f =  1 | x , ̂  +  _  pr (y =  i  | x, Zt)

A Xk (Xk -» Xk +  fl)
W e m ight want to examine a discrete change of one unit, a standard deviation, 15 points 
for IQ, 4 years for education, the range of income, or 10 years for age.

T h e  discrete change tells you how much the probability actually changes for a given 
ch an g e  in a variable. To the degree that the probability curve is linear in the region 
w h ere  the change occurs, the  marginal change for Xk approximates the discrete change 
for a  un it increase in X k • The more nonlinear the curve in the region where Xk increases, 
th e  greater the difference between the marginal change and the discrete change. Be­
cau se  in general 0 P r(y  = 1 | x.)/dxk does not equal A Pr (y = 1 | x ) /A  Xk, we prefer the 
d isc re te  change that indicates the actual amount of change in the probability for a spe­
cific change in xk- For example, we find it more meaningful to say th a t “for a standard 
dev ia tion  increase in income, about $11,000, the probability of labor force participation 
decreases on average by 0.09” than to say th a t “the average rate of change in the prob­
ab ility  of labor force participation with respect to incoinc is —0.007’. However, some 
fields, such as economics, have a strong preference for marginal change over discrete 
change for continuous independent variables.

6.2.1 Linked variables

Fundam ental to the concept of a marginal effect is the idea th a t only one variable 
changes while holding all other variables a t specified values. An exception must be 
m ade  for variables th a t are linked mathematically. For example, if x age is age and 
Xagesq =  xage x £age, you cannot change x &ge while holding x agcs(l constant. The change 
in x age must be matched by a corresponding change in xagesq- This is easy to illustrate 
w ith  a discrete change in age from 20 to 30:

— Pr (y  — 1 I X ,  Xage — 20, Xagesq — 20 )
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Linked variables m ust also be considered for the variables being held constant. 
For example, if we are computing the marginal effect of x k while holding age at its 
mean, we need to  hold x age at mean(xage) and x agesq at [mean(xage) x mean(xage)] not 
at niean(xagesq)- Similarly, if your model includes Xfemaie, x age, and the interaction 

female X age — female x age? you cannot change rrage while holding Xfemaiexage constant.

Categorical regressors that enter a model as a set of indicators are also linked. 
Suppose that education has three categories: no high school degree, high school diploma 
as the highest degree, and  college diploma as the highest degree. Let a?hs = 1 if high 
school is the highest degree and equal 0 otherwise; and let x Coiiege =  1 if college is the 
highest degree and  equal 0 otherwise. If x‘hs =  1, then ¿Ccoiiege =  0. You cannot increase 
ĉollege from 0 to  1 while holding Xhs a t 1. Computing the effect of having college as the 

highest degree (xhs =  0, Xcoiiege =  1) compared with high school as the highest degree 
(zhs = 1? ^college =  0) involves changing two variables:

---------- 1 X ) =  P r ( ?; =  i  | X , X hs =  0 , Z college =  1)
A x hs ( 0  -*• 1) &  ^co llege (1 0 )

Pr (y — 1 | X, i'hs =  1, ̂ college =  0)

When discussing marginal effects w ith linked variables, we will say “holding other 
variables constant” with the implicit understanding that appropriate adjustments for 
linked variables are being made. A m ajor benefit of using factor-variable notation when 
specifying a regression model is that m argins, mchange, m table, and mgen keep track 
of which variables are linked, and compute predictions and marginal effects correctly.

6.2.2 Summary measures of change

The marginal effect of a  variable depends on the specific values of all independent 
variables. Because the effect of xk differs for each observation (unless, of course, multiple 
observations have identical values), there is a  distribution of marginal effects in the 
sample. For in terpretation, we seek a simple, informative summary of this distribution 
of effects. There are three basic approaches:

M arginal e ffec t a t  th e  m ean (M E M ). Compute the marginal effect of xk with all 
variables held at their means.

M arginal e ffec t a t  re p re se n ta tiv e  v a lu es  (M E R ). Compute the marginal effect of 
Xk with variables held at specific values that are selected for being especially 
instructive for the substantive questions being considered. The MEM is a  special 
case of the  MER.

Average m a rg in a l effec t (A M E ). Com pute the marginal effect of Xk for each ob­
servation a t its observed values x ,, and then compute the average of these effects.

We consider each measure before discussing how to decide which measure is appropriate 
for your application.
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MEMs a n d  M ERs

The M E M  is computed with all variables held at their means. For a  marginal change, 
this is

which can be interpreted as follows:

For someone who is average on all characteristics, the marginal change of x k 
is . . .

The discrete change equals

and can  be interpreted as follows:

For someone who is average on all characteristics, increasing x k by 8 changes 
the probability by . . .

T h e  MER would replace “who is average” with a description of the values of the 
covariates.

AMEs

The AM E is the mean of the marginal effect computed at the observed values for all 
observations in the estim ation sample. For a  marginal change, this is

d P r (y =  1 | x,xfc =  x k) 
d x k

A Pr(y  =  1 | x ,x fc =  x k) 
Axfc

mean

which can be interpreted as follows:

The average marginal effect of x k is

The average discrete change equals

mean
A P r  {yj = 1 | Xj ) 

A x k
A Pr (yj — 1 | x  — x ?) 

r-f Ax*;

which is interpreted as follows:

On average, increasing x k by <5 increases the probability by . . .
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For factor variables or changes from one fixed value to another (for example, the maxi­
mum to the maximum), we say

On average, increasing Xk from start-value to end-value increases the prob­
ability by . . .

Standard errors of marginal effects

For each of these measures of change, standard  errors can be computed using the delta 
method (Agresti 2013, 72 75; Wooldridge 2010, 576 -577; Xu and Long 2005; [r] mar­
gins). The standard  errors allow you to  test whether a marginal effect is 0, to add a 
confidence interval to the estimated effect, and to test such things as whether marginal 
effects are equal a t different values of the independent variables.

6.2.3 Should you use the AM E, the M EM , or the M ER?

No summary measure of effects is ideal for all situations, but how do you decide which 
measure to use? Since the 1980s, the literature has provided weak recommendations 
for AMEs, but our reading suggests th a t AM Es were rarely used. In his classic book on 
limited and qualitative dependent variables, Maddala (1983, 24) expressed reservations 
about MEMs because marginal effects vary by the level of the variables. He suggested 
that “we need to  calculate [marginal effects] a t different levels of the explanatory vari­
ables to get an idea of the range of variation of the resulting changes in probabilities”. 
Essentially, he is recommending computing multiple MERs at substantively informative 
locations in the data. Because the effect of a variable differs a t different places in the 
data, multiple M ERs provide insights into the magnitude and variation of the effects.
Long (1997, 74) wrote that “since x  might not correspond to  any observed values in
the population, averaging over observations might be preferred” . Cameron and Trivedi 
(2005, 467) suggest th a t “it is best to use AME over MEM” . Hanmer and Ivalkan (2013) 
argue that “the  observed-value approach [(AM E)] is preferable to the more common 
average-case approach [(MEM)] on theoretical grounds” .

The popularity of the MEM is probably because of ease of computation. Comput­
ing an AME in principle involves N  times more computation than the corresponding 
MEM. With the rapid growth in computing power, this is a trivial issue compared with 
having readily available software that easily computes the AM E. For example, with our 
prchange command in SPost9, computing M EM s was trivially easy. Although you could 
compute the AM E with prchange. you needed to write your own program to collect 
and summarize the computations for each observation. Few people, ourselves included, 
bothered to do that. W ith S tata’s m argins and our mchange, it is as easy to compute 
AMEs as M E M s.1 These computational advances do not, however, imply that the AME

1. Surprisingly, margins actually computes the AME faster than the MEM because it always computes 
the AME before computing an MEM or MER. To compute the MEM for a dataset with 50.000 
observations, margins will compute 50,000 marginal changes you do not need before it computes 
the one you do.
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is a lw ays the best way to assess the effect of a variable. There are several issues to 
consider when deciding which measure of change to use.

D oes the marginal effect computed at the mean of all variables provide useful infor­
m atio n  about the overall effect of that variable? This is relevant no t only in deciding 
w ha t to  do in current analyses, but when evaluating past research th a t used the MEM. 
A com m on criticism of the MEM is that typically there is no actual case in the dataset 
for w hich  all variables equal the mean. Most obviously, with binary independent vari­
ables. th e  mean does not correspond to a possible value of an observation. For example, 
a variab le  like p regnant is measured as 0 and 1 without it being possible to observe 
som eone with a value equal to  a sample mean of intermediate value. This issue alone 
leads some to disfavor the MEM (Hanmer and Kalkan 2013). We are not ourselves as 
concerned about this point because holding a binary variable a t its mean is, roughly 
speak ing , taking a weighted mean of effects for each group. If the groups are a focus 
of th e  analysis, you can compute MERs for each group by using group-specific means. 
A lternatively, effects can be computed at the modal values of the binary variables, but 
th is  ignores everyone who is in a less well-represented group.

Sometimes, it is argued th a t the MEM is a reasonable approximation to  the AME. 
A lthough  Greene and Hensher (2010, 36) correctly observed th a t the AM E and MEM 
are  o ften  similar, they incorrectly suggest th a t this is especially tru e  in large samples. 
A lthough  the two measures will often be similar, they can differ in substantively mean­
ingful ways, and whether this is the case has little to  do with whether a sample is bigger 
or sm aller.

B artus (2005) and Verlinda (2006) explain more precisely when MEM and AME differ 
an d  which is larger. For the binary logit and probit models, the difference between the 
A M E  and MEM for depends on three things: the probability th a t y  =  1 when all 
a-fc’s are held to their means, the variance of x/3, and the size of fik (Bartus 2005; 
H anm er and Kalkan 2013, S I). The sign of the difference between the AM E and MEM 
depends on Pr(y =  1 | x), with the AME being larger at lower and higher probabilities. 
In th e  middle, the MEM is larger, with the largest difference occurring when Pr(?y = 
1 x ) =  0.5. The AM E and MEM will be equal when the probability is about 0.21 and
0.79 for the binary logit model, and about 0.15 and 0.85 for the binary probit model.

T h e  AME, MEM, and MER are each summary measures, and no single summary of 
effects is ideal for all situations. Broadly speaking, we believe th a t the AM E is the best 
sum m ary of the effect of a variable. Because it averages the effects across all cases in the 
sam ple, it can be interpreted as the average size of the effect in th e  sample. The MEM 
is computed at values of the independent variables that might not be representative of 
anyone in the sample.

However, both AME and MEM are limited because they are based on averages. If the 
average value of each regressor is a substantively interesting location in the data, the 
M EM  is useful because it tells you the magnitude of the effect for someone with those or 
sim ilar characteristics. If the average of the independent variables is not an interesting 
location, it is not useful. If you are interested in the average effect in the sample, the
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AME is appropriate. However, it is possible th a t nobody in the sample has a marginal 
effect that is close to the AME. If. for example, you are interested in the effect of a 
treatment for young minority women, knowing the effect for someone who is average 
is not helpful. Similarly, the average effect of the treatment for the entire sample does 
not tell you th e  effect for the group of young minority women you are interested in. 
In general, the AM E is not necessarily more informative than a  set of MERs computed 
at substantively interesting places. Or, as shown in section 6.2.5, you can examine the 
distribution of effects for all observations.

No single num ber is a  substitute for understanding how predictions vary over the 
range of one’s d a ta  and for conveying the fact of that variation when it is substantively 
meaningful. T hus the best measure is the one that addresses the goals of your research. 
Although examining AMEs of your independent variables is an important step in data 
analysis, this should be followed by a more detailed analysis of predictions in tables or 
graphs.

.2.4 Examples of marginal effects

In this section, we use our model of labor force participation to illustrate the compu­
tation and interpretation of marginal effects with mchange. The mchange command 
makes it simple to compute marginal effects for different amounts of changes, either 
averaging effects over the sample or com puting them at fixed values, mchange uses 
margins to com pute the effects, which are then collected into a compact table. For 
example, running mchange after fitting our baseline model creates a 30-line table that 
summarize 500 lines of output from a dozen m argins commands. If you want to learn 
more about m arg ins, you can add the option d e ta i l s  to mchange to  see how to use 
margins output. Information on using m argins to compute marginal effects is given in 
section 6.2.6.
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W e begin by fitting our model and storing the estimates so that they can be restored 
later:

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
Logistic regression Number of obs = 753

LR chi2(8) = 124.30
Prob > chi2 = 0.0000

Log likelihood = -452.72367 Pseudo R2 = 0.1207

lfp Coef. Std. Err. z P>lz| [95*/. Conf. Interval]

k5 -1.391567 .1919279 -7.25 0.000 -1.767739 -1.015395
k618 -.0656678 .068314 -0.96 0.336 -.1995607 .0682251

agecat
40-49 -.6267601 .208723 -3.00 0.003 -1.03585 -.2176705

50+ -1.279078 .2597827 -4.92 0.000 -1.788242 -.7699128

wc
college .7977136 .2291814 3.48 0.001 .3485263 1.246901

he
college . 1358895 . 2054464 0.66 0.508 -.266778 .5385569

lwg .6099096 . 1507975 4.04 0.000 .314352 .9054672
inc -.0350542 .0082718 -4.24 0.000 -.0512666 -.0188418

_cons 1.013999 .2860488 3.54 0.000 .4533539 1.574645

. estimate store base

The descriptive statistics for the estimation sample are

. estat summarize, labels
Estimation sample logit Number of obs = 753

Variable Mean Std. Dev. Min Max Label

lfp .5683931 .4956295 0 1 In paid labor force?
k5 .2377158 .523959 0 3 # kids < 6

k618 1.353254 1.319874 0 8 # kids 6-18
agecat Wife's age group
40-49 .3851262 .4869486 0 1

50+ .2191235 .4139274 0 1
wc Wife attended college?

college .2815405 .4500494 0 1
he Husband attended 

college?
college .3917663 .4884694 0 1

lwg 1.097115 .5875564 -2 05412 3.21888 Log of wife's estimated 
wages

inc 20.12897 11.6348 -.029 96 Family income excluding 
wife's
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We will next show how to compute and interpret AMEs for continuous and factor 
variables, before examining the corresponding MEMs. Marginal effects in models with 
powers and interactions are then considered. Finally, we show how to compute the 
distribution of effects for observations in the estimation sample.

AMEs for continuous variables

For continuous independent variables, mchange computes the average marginal change 
and average discrete change of 1 and a  standard deviation. To assess the effects of 
income and wages, type2

. mchange inc lwg
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp) , predict(pr)

Change p-value

inc
+ 1 -0.007 0.000

+SD -0.086 0 .0 0 0
Marginal -0.007 0 .0 0 0

lwg
+ 1 0.120 0 .0 0 0

+SD 0.072 0 .0 0 0
Marginal 0.127 0 .0 0 0

Average predictions
not in LF in LF

Pr(yIbase) 0.432 0.568

The average predictions, listed below the table of changes, show that in the sample 
the average predicted probability of being in the labor force is 0.432. This is the same 
value you would obtain by first running p r e d ic t  and then computing the mean of the 
predictions. In later examples, we often suppress this result by adding the b rie f  option. 
Summarizing th e  AM Es for a standard deviation change, we can sa y

Holding other variables at their observed values, increasing income by one 
standard deviation, roughly $12,000. decreases the probability of labor force 
participation on average by 0.09. An increase of one standard deviation in 
the log of anticipated wages, abou t O.G. increases the probability by 0.07.
Both effects are significant at the 0.001 level.

There are two points of interest here. First, the marginal and unit discrete changes 
are similar, which reflects that the probability curve is nearly linear for a change of 1

2. In Stata 12 and earlier, standard errors are not available for average discrete changes of a fixed 
amount of change (for example, 1 or a standard deviation) from the observed value. Based on our 
experience w ith Stata 13, which can com pute standard errors for these  effects, we believe that the 
significance level for the marginal change is a good approximation, especially when the values of 
the marginal change and discrete change are similar.
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in e ith er variable. Second, for lwg, the marginal change and unit discrete change are 
po ten tially  misleading because a unit change in lwg corresponds to  a change of nearly 
two standard  deviations.

T h e  d e l t a ( # )  option allows us to compute the effect of a change of any amount #  
to  replace the default change of one standard deviation. For example, to compute the 
effect of a $5,000 change in income, we use d e l t a (5):

. mchange inc, delta(5) brief
logit: Changes in Pr(y) I Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change p-value

inc
+1 -0.007 0.000

+delta -0.037 0.000
Marginal -0.007 0.000

T his can be interpreted as follows:

On average, an increase of $5,000 in income decreases the probability of 
labor force participation by 0.04 (p <  0.001).

N ote th a t our reporting of results has become shorter by no longer making explicit that 
o ther variables are kept at their observed values.

For the number of young children, k5, the most reasonable effect is for an increase 
of one child, so we specify amount (one):

. mchange k5, amount(one) brief
logit: Changes in Pr(y) I Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change p-value

k5
+ 1 -0.281 0.000

We conclude the following:

On average, holding other variables a t their observed values, increasing the 
number of young children in a family by one is expected to decrease the 
probability of labor force participation by 0.28 (p < 0.001, two-tailed).

A quick way to assess the maximum potential impact of continuous variables (that 
is, nonfactor variables) is to compute the AME over the range. Changes over the range 
tell us how much you would expect the outcome probability to change in the unlikely 
event of massive changes in a variable, holding other variables constant. For example, 
what would happen if a person increased her family income from $0 to $104,000, without 
other variables changing? Although this type of massive change is not likely to occui in
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the real world, it provides a  bound for the largest effect you could find. If the change is 
small and nonsignificant, the lack of effect might be substantively interesting, but you 
are unlikely to learn anything more about the variable by analyzing it further.

Consider the effects of changing from 0 to the maximum number of young or older 
children in the sample:

. mchange k5 k618, amount(range) brief 
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change p-value

k5
Range -0.599 0.000

k618
Range -0 . 1 1 0 0.336

Using information on th e  range from the  summary st atistics shown above, we see that 
changing from 0 to 3 young children lias a very large and significant AME of -0.60. 
Changing from 0 to 8 older children, on the other hand, has a nonsignificant effect. 
Accordingly, k618 will not be considered further in our examples of interpretation.

Because a variable’s range can be influenced by even a single extreme observation 
(for example, one person with an unusually high income), we suggest using a trimmed 
range for some variables. For example, mchange inc lwg, amount (range) trim(5) 
computes the AM E for a change in income and anticipated wages from the 5th percentile 
to the 95th percentile:

. mchange inc lwg, amount(range) trim(5) brief 
logit: Changes in Pr(y) | Number of obs = 753 
Expression: Pr(lfp) , predict(pr)

Change p-value

inc
5*/. to 95’/. -0.249 0.000

lwg
5V. to 95*/. 0.239 0.000

We can interpret the discrete change for inc  as follows:

On average the probability of labor force participation will decrease by 0.25 if 
respondents changed from the 5th percentile of income to  the 95th percentile 
(p < 0.001, two-tailed).

We could interpret lwg similarly.
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To fully understand the meaning of a discrete change over the range, we need to know 
th e  range over which a variable varies. We obtain this information by using c e n tile  
varl is t ,  c e n t i l e (0 5 95 100) to request the 5th and 95th percentiles along with the 
m inim um  and maximum. Here we request information for inc and lwg:

. centile inc lwg, centile(0 5 95 100)
—  Binom. Interp. —

Variable Obs Percentile Centile [95*/, Conf. Interval]

inc 753 0 -.0290001 -.0290001 -.0290001*
5 7.0428 6.334469 7.789306
95 41.19 37.50825 45.02423

100 96 96 96*
lwg 753 0 -2.054124 -2.054124 -2.054124*

5 .2065675 . 1047049 .3321936
95 2.084091 1.953158 2.153738

100 3.218876 3.218876 3.218876*
* Lower (upper) confidence limit held at minimum (maximum) of sample

Com paring the 95th with the 100th percentile shows that for both variables, the trimmed 
range  excludes extreme observations.

W e can obtain more information about the discrete changes by using the option 
s t a t i s t i c s 0  to request the starting and ending probabilities. To show this, we com­
p u te  the changes for income and log of wages:

. mchange inc lwg, amount(range) trim(5)
> statistics(change from to pvalue) brief
logit: Changes in Pr(y) I Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change From To p-value

inc
5'/, to 95V, -0.249 0.660 0.411 0.000

lwg
5*/. to 957, 0.239 0.454 0.693 0.000

Using the new information, wre can elaborate our interpretation of the effect of income:

Changing family income from its 5th percentile of $7,000 to  the 95th per­
centile of $41,000 on average decreases the probability of a woman being in 
the labor force from 0.GG to 0.41, a decrease of 0.25 (p < 0.001, two-tailed).

The effect for lwg could be interpreted similarly.

AMEs for factor variables

For binary independent, variables, the only reasonable change is from 0 to 1, which is 
the default when factor-variable notation is used. Because he and wc were included in 
the logit specification as i .h c  and i.w c, mchange automatically computes a discrete 
change from 0 to 1:
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. mchange he wc, stat(change from to pvalue) brief 
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change From To p-value

he
college vs no 0.028 0.558 0.586 0.508

wc
college vs no 0.162 0.525 0.688 0.000

We interpret these results as follows:

On average, having attended college increases a woman’s probability of labor 
force participation from 0.53 to 0.69, a change of 0.16 (p <  0.001), while the 
effect of th e  husband having attended college is not significant.

The mchange command also works with factor variables th a t have more than two 
categories. Because ag eca t has three categories and was entered into our model as
i .a g e c a t, mchange computes effects of changes between all categories, referred to as 
contrasts:

. mchange agecat, stat (change from to pvalue) brief 
logit: Changes in Pr(y) | Number of obs = 753 
Expression: Pr(lfp) , predict(pr)

Change From To p-value

agecat
40-49 vs 30-39 -0.124 0.676 0.552 0 .0 0 2
50+ vs 30-39 -0.262 0.676 0.414 0 . 0 0 0
50+ vs 40-49 -0.138 0.552 0.414 0 . 0 0 2

Each contrast can be interpreted exactly as the interpretation of a binary independent 
variable. The discrete change labeled 40-49 vs 30-39 is the  effect of being in the 
age group 40 -49 compared with being in the age group 30-39, and so on for other 
comparisons.

On average, being 40 to 49 compared with being 30 to  39 decreases the 
probability of labor force participation by 0.12 (p < 0.01). Being 50 or older 
compared with being 30 to 39 decreases the probability by 0.26 (p < 0.001).
Being 50 or older compared with being 40 to 49 decreases the probability 
by 0.14 (p <  0.01).

Notice that knowing two of the contrasts implies the third: 0.124 +  0.138 = 0.262.

Summary table of AMEs

Computing A M E s is often the next step after examining predictions with p red ic t. AMEs 
quickly provide a general sense of the effects of each variable, much like regression
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coefficients in linear regression. After fitting your model, mchange with the default 
o p tio n s  provides a quick summary:

. mchange
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change p-value

k5
+1 -0.281 0.000
+SD -0.153 0.000

Marginal -0.289 0.000
k618

+1 -0.014 0.337
+SD -0.018 0.337

Marginal -0.014 0.335
agecat
40-49 vs 30-39 -0.124 0.002
50+ vs 30-39 -0.262 0.000
50+ vs 40-49 -0.138 0.002

VC
college vs no 0.162 0.000

he
college vs no 0.028 0.508

lug
+1 0.120 0.000
+SD 0.072 0.000

Marginal 0.127 0.000
inc

+1 -0.007 0 .000
+SD -0.086 0.000

Marginal -0.007 0.000

Average predictions
not in LF in LF

Pr(ylbase) 0.432 0.568
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If you are not using marginal changes, you can specify the amount of change and decimal 
places:

. mchange, amount(one sd) decimals(2) brief 
logit: Changes in Pr(y) | Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change p-value

k5
+1 -0.28 0 . 0 0

+SD -0.15 0.00
k618

+1 -0.01 0.34
+SD -0.02 0.34

agecat
40-49 vs 30-39 -0.12 0 . 0 0
50+ vs 30-39 -0.26 0 . 0 0
50+ vs 40-49 -0.14 0.00

wc
college vs no 0.16 0 . 0 0

he
college vs no 0.03 0.51

lug
+1 0.12 0 . 0 0

+SD 0.07 0.00
inc

+1 -0.01 0 .0 0
+SD -0.09 0.00

If you prefer marginal changes instead of discrete changes, you could use mchange, 
amount (m arg ina l) instead. W ith marginal changes, you will probably need at least 
three decimal places. If you prefer discrete changes that are centered, use the centered 
option.

We find AMEs so m uch more useful than th e estim ated ft's or odds ratios that we 
wish the standard ou tp ut from logit or probit would present AMEs along with estimated 
coefficients, perhaps as an option (like the o r  option to l o g i t  presents odds ratios 
instead of untransform ed coefficients).

Marginal effects for subgroups

We might be interested in comparing marginal effects for subgroups in our sample. 
For example, we might be interested in the effect of an additional child on labor force 
participation for women who have attended college. In this case, all the same arguments 
that we made earlier for why we broadly prefer AMEs to MEMs apply, only now we are 
applying these arguments to a subgroup of our sample instead of to the whole sample. 
As a result, we want the average change only over members of this subgroup. We can 
obtain this by using an i f  condition:
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. mchange k5 if wc==l, amount(one)
logit: Changes in Pr(y) | Number of obs = 212
Expression: Pr(lfp), predict(pr)

Change p-value

k5
+1 -0.276 0.000

Average predictions
not in LF in LF

Pr(yIbase) 0.321 0.679
1: Sample selection: if wc==l & e(sample)==1

W e can interpret this as follows:

For women who have attended college, an additional child decreases the 
probability of being in the labor force by an average of 0.28.

In  section 6.5, after we learn more about m table, we show how to  com pute AMEs for 
d ifferen t groups and how to  tost whether th e marginal effects are equal across groups.

MEM s and MERs

A lthough we tend to  prefer AMEs as a sum m ary measure of change, marginal effects 
a re  often computed a t the mean or at other values. With the atm eans option, mchange 
com putes the MEMs. We will use atmeans extensively in section 6.3, when we discuss 
generating predictions based upon the hypothetical observations we call ideal types. A 
hypothetical observation implies specific values for all values ol the independent vari­
ables, each of which we can either specify directly with a t () or specify by using atmeans. 
Talking about a hypothetical observation can be contrasted with the example of sub­
group  analysis immediately above, in which we were making statem ents about a group 
of observations and wanted to compute the average effect over th a t group.

Here we compute marginal effects by using atmeans, adding the s t a t i s t i c s ( c i )  
op tion  to request the confidence intervals rather than the p-values.
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. m c h a n g e ,  s t a t i s t i c s ( c i )  a t m e a n s

logit: Changes in Pr(y) | Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change LL UL

k5
+1 -0.324 -0.396 -0.252

+SD -0.180 -0.227 -0.133
Marginal -0.339 -0.431 -0.247

k618
+1 -0.016 -0.049 0.017

+SD -0.021 -0.065 0.022
Marginal -0.016 -0.049 0.017

agecat
40-49 vs 30-39 -0.146 -0.238 -0.053
50+ vs 30-39 -0.307 -0.422 -0.191
50+ vs 40-49 -0.161 -0.265 -0.058

wc
college vs no 0.186 0.088 0.284

he
college vs no 0.033 -0.065 0.131

lwg
+1 0.138 0.078 0.198

+SD 0.084 0.045 0.123
Marginal 0.149 0.077 0.221

inc
+1 -0.009 -0.013 -0.005

+SD -0.101 -0.148 -0.054
Marginal -0.009 -0.013 -0.005

Predictions at base value
not in LF in LF

Pr(yIbase) 0.422 0.578
Base values of regressors

k5 k618
2 .

agecat
3.

agecat
1 .

wc
1.

he

at .238 1.35 .385 .219 .282 .392

lwg inc

at 1.1 2 0 .1

1: Estimates with margins option atmeans.

The values at which variables are being held constant are listed in the table Base values 
of re g re sso rs .

Here are examples of interpreting each type of effect:

C hange of 1 a t  th e  m ean . For a woman who is average on all characteristics, an 
additional young child decreases the probability of being in the labor force by 0.32 
(95% Cl: [0.25, 0.40]).
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C h a n g e  o f s ta n d a rd  d ev ia tio n  a t  th e  m ean . A standard deviation increase in in­
come, roughly $11,000, decreases the probability of being in the labor force by 
0.10 (95% Cl: [0.05, 0.15]), holding other variables at their means.

C h a n g e  from  0 to  1 a t  th e  m ean. If a  woman attended college, her probability of 
being in the labor force is 0.19 greater than  a woman who did not attend college, 
holding other variables at their means (95% Cl: [0.09, 0.28]).

C h a n g e  o f c a teg o rica l variab les a t  th e  m ean . For an average woman, being 40 to 
49 compared with being 30 to 39 decreases the probability of being in the labor 
force by 0.15 (95% Cl: [0.05, 0.24]). Being 50 or older compared with being 30 
to 39 decreases the probability by 0.31 (95% Cl: [0.19, 0.42]). Being 50 or older 
compared with being 40 to 49 decreases the probability by 0.16 (95% Cl: [0.06, 
0.27]).

Marginal effects can be computed at other values by using the a tO  option. For 
example, to compute the marginal effect of k5 for a hypothetical family in which the 
husband and wife both attended college, holding other variables at their means:

. mchange k5, at(wc=l hc=l) amount(l) atmeans 
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change p-value

k5
+1 -0.329 0.000

Predictions at base value
not in LF in LF

Pr(yIbase) 0.275 0.725
Base values of regressors

k5 k618
2 .

agecat
3.

agecat wc he

at .238 1.35 .385 .219 1 1

lwg inc

at 1.1 2 0 .1

1: Estimates with margins option atmeans.

Notice that he and we are listed as 1 in the table of base values. We conclude the 
following:

For an otherwise average family in which the husband and wife both attended 
college, an additional young child decreases the probability of being in the 
labor force by 0.33 (p < 0.001).

Or, we might want to estimate the effect of changing income from $0 to $5,000 for a 
family with two young children and in which neither parent went to college, holding
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other variables a t  their means. We set the  values of the variables by using at(inc=0
k5=2 wc=0 hc=0) atm eans. and we indicate th a t we want a  change of five by using
d e lta (5 ) .

. mchange inc, delta(5) amount(delta) at(inc=0 k5=2 wc=0 hc=0) atmeans
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp) , predict(pr)

Change p-value

inc
+delta -0 .0 2 1 0 .012

Predictions at base value
not in LF in LF

Pr(yIbase) 0.847 0.153
Base values of regressors

k5 k618
2 .

agecat
3.

agecat wc he

at 2 1.35 .385 .219 0 0

lwg inc

at 1 . 1 0

1: Estimates with margins option atmeans. 
2: Delta equals 5.

We conclude the following:

For an otherwise average family w ith two young children and parents who 
did not a tten d  college, increasing income from $0 to $5,000 is expected 
to decrease the probability of labor force participation by 0.02, which is 
significant a t the 0.05 level but not a t the 0.01 level.
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If you prefer discrete changes that are centered around the mean, you can add the 
c e n te r e d  option to mchange:

. mchange inc lwg, atmeans centered
logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(lfp), predict(pr)

Change p-value

inc
+1 centered -0.009 0.000

+SD centered -0.099 0.000
Marginal -0.009 0.000

lwg
+1 centered 0.148 0.000

+SD centered 0.087 0.000
Marginal 0.149 0.000

Predictions at base value
not in LF in LF

Pr(yIbase) 0.422 0.578
Base values of regressors

k5 k618
2 .

agecat
3.

agecat
1.

wc
1.

he

at .238 1.35 .385 .219 .282 .392

lwg inc

at 1 . 1 20.1

1: Estimates with margins option atmeans.

T his can be interpreted as follows:

For an average family, a standard deviation change in income, roughly 
$12,000, centered around the mean is expected to decrease the probability 
of labor force participation by 0.10 (p <  0.001).

Because the change is centered, we are computing the effect of changing income from 
1/2 standard deviation below the mean of $20,100 to 1/2 standard  deviation above the 
mean, that is, a change from roughly $14,300 to  $25,900. In this example, the centered 
change is nearly identical to the uncentered change with a value of —0.101. Centered 
and uncentered changes are similar when the change in the independent variable occurs 
in a region where the probability curve is approximately linear. When the probability 
curve is changing shape over the region of change, centered and uncentered changes can 
differ noticeably.

Marginal effects with powers and interactions

As discussed in section 6.2.1. when com puting marginal effects for a variable that is 
linked with other variables, you must ensure th a t all linked variables change appropri-
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ately. You cannot simply change one of the  linked variables and assume you can hold the 
others constant. Fortunately, this is taken care of automatically when linked variables 
are specified to  your model with factor-variable notation.

To show how linked variables are properly handled by mchange, we compute MEMs 
for a standard deviation increase in inc  and lwg. Although we are using MEMs because 
they make the levels of other variables explicit, which is didactically useful, things 
work the same way w ith AMEs. We include income and income-squared in the model 
by including c . in c  c . in c # c . inc in the command (equivalently, we could have used 
c .in c# # c .in c ).

. logit lfp c . inc c.inc#c.inc lwg k5 k618 i.agecat i.wc i.hc, nolog
Logistic regression Number of obs = 753

LR chi2(9) = 128.00

Log likelihood = -450.87545
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.1243

lfp Coef. Std. Err. z P> 1 z I [95*/. Conf. Interval]

inc -.0692521 .0195383 -3.54 0.000 -.1075465 -.0309577

c.inc#c.inc .0005123 .0002572 1.99 0.046 8.28e-06 .0010163
(output o m itte d)

.cons 1.381411 .3461711 3.99 0.000 .7029285 2.059894

Estimates of the coefficient for income and income-squared, labeled c . i n c t c . i n c ,  are 
shown. Using m c h a n g e , we compute M EM s for i n c  and lwg:

. mchange inc lwg, atmeans amount(sd) 
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change p-value

inc
+SD -0.123 0.000

lwg
+SD 0.087 0.000

Predictions at base value
not in LF in LF

Pr(yIbase) 0.438 0.562
Base values of regressors

inc lwg k5 k618
2 .

agecat
3.

agecat

at 20.1 1 . 1 .238 1.35 .385 .219
1 . 1 .

wc he

at .282 .392
1: Estimates with margins option atmeans.
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I he base values include the mean of inc  but do not mention c . in c # c .in c .  This is 
because the mean of the variable income-squared is not computed, but instead the 
m ean of income is squared. This is what we want. If we had added income-squared to 
our m odel by creating a new variable (for example, gen incsq = inc* inc) instead of 
using c . in c # c .in c , the atmeans option would have incorrectly held in csq  at its mean. 
Again, one of the great advantages of using factor-variable notation is th a t Stata will 
autom atically handle this correctly.

T he  discrete change for income in the model is —0.123. We can interpret the discrete 
change just as we would in a model that did not include income-squared:

For someone who is average on all characteristics, an increase of one standard 
deviation in family income is predicted to decrease the probability of being 
in the labor force by 0.12.

Although we do not provide an example here with interaction terms, the same prin­
ciple applies. If factor-variable notation is used, margins and our m* commands wall 
handle the computations of marginal and discrete changes correctly. If you do not use 
factor-variable notation, you can still get m argins to produce the right answers, but it 
requires you to do work th a t Stata can handle automatically.

.2.5 The distribution of marginal effects

T he value of a marginal effect depends on the level of all variables in the model. Be­
cause each observation can have different values of the independent variables, there is 
a distribution of marginal effects within the sample where the AM E is the mean of this 
distribution. Although the mean tells you where the center of the distribution is, it 
does not reflect variation within the distribution. Just as the means of the independent 
variables used to compute the MEM might not correspond even approximately to anyone 
in the sample, the AME might not correspond to the magnitude of the marginal effect 
for anyone in the sample. For this reason, we believe that examining the distribution 
of marginal effects provides valuable substantive insights.

We consider two approaches for learning about the distribution of marginal effects.'5 
F irst, we compute e ffe c ts  for each observation and create a histogram of the effects. 
Although there is no S ta ta  command for this, we provide simple programs that you can 
adapt to your needs. Second, we compute marginal effects at strategic locations in the 
d a ta  space by using MERs. This approach is presented in section 6.3.

3. A third approach that we do not consider here estimates the quantiles of the effects
in the population; see Firpo (2007) and Cattaneo (2010) for seminal papers, and see 
Cattaneo, Drukker, and Holland (2013) and Drukker (2014) for intuition, Stata commands, and
extensions to survival data. For example, a training program that boosts the income of low-income 
participants and has no effect on higher-income participants could have the 0.25 quantile effect 
be significant and the 0.75 quantile effect be insignificant. These quantiles of effects provide the 
researcher with a more nuanced picture of the effect of a treatment than the one provided by the 
mean effect.
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H ie m a r g in a l  c h a n g e  fo r  th e  BRM, a s s u m in g  n o  in te r a c tio n s  or power terms, equals

by /  (x,/3), where fa  simply rescales /  (xj/3) to  create the distribution of effects for 
Xfc. The d istribu tion  is more spread ou t if fa  is larger in absolute value and is more 
condensed if f a  is smaller. Although the shape of the distribution of discrete changes 
will be similar for different variables, they are not a simple rescaling of each other.

There are several ways to compute the  marginal changes for each observation. For 
the logit model, the simplest approach is to use the formula

where P r (yi =  1 | x*) { 1 — Pr (yi = 1 | x ;) } is the PDF for the logistic distribution. Af­
ter p re d ic t  com putes P r (//, =  1 | x.j) for each observation, it is easy to create a variable 
containing the marginal effects:

. predict double prhat if e(sample)
(option pr assumed; Pr(lfp))
. gen double mcinc = prhat * (1-prhat) * _b[inc]
. label var mcinc "Marginal change of inc on Pr(LFP)"

where _b[inc] is the estimated regression coefficient for inc. For a probit model, we 
compute the PDF by using the norm aldenO  function:

. probit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

. predict double pbtxb, xb 

. label var pbtxb "xb"

. gen double pbtpdf = normalden(pbtxb)

. label var pbtpdf "normal pdf at xb"

. gen double pbtmcinc = pbtpdf * _b[inc]

. label var pbtmcinc "Marginal change of inc from probit"

Next, we plot the distribution of marginal changes with the h istogram  command. 
To annotate the graph with the values of the AMI*], we use local macros to hold estimates
from mchange. After running mchange in c , the AME is saved in the third row and first
column of the re tu rn  m atrix r  ( t a b le ) . To see this, you can enter the command m a tlis t  
r ( ta b le )  after mchange. We place the estim ate in the local macro named ame by using 
the e lO  function, which retrieves the value of a single element from a matrix. We do 
the same thing for the MEM.

. quietly mchange inc 

. local ame = el(r(table) ,3,1)

. quietly mchange inc, atmeans 

. local mem = el(r(table) ,3,1)

The shape of th e  distribution of marginal changes for each observation is determined

d P v { yi =  1 1 x,:) 
d x k

=  Pr (yi =  1 | Xi) { 1 -  Pr(y< =  1 | x*) } fa
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The histogram of marginal changes is created with the following command, using 
t e x t ( )  to add the AM E and MEM:

. histogram mcinc, xlab(-.008(.002)0) ylab(0 (.1).4,grid)
> fraction bin(25) col(gslO) fcol(gsl2)
> text(.015 ~ame' "AME", place(center))
> text( . 0 0 0 'ame' "|", place(center))
> text(.015 'mem' "MEM", place(center))
> text( . 0 0 0 'mem' "I", place(center))
(bin=25, start=-.00876351, width=.00033178)

The distribution of marginal changes for income is highly skewed, ranging from —0.10 
to less than —0.005. Because of the skew, the MEM is a better indicator of what we 
would expect for most respondents than is the AME. The graph shows that over 30% 
of the sample have effects similar to th a t of an “average” person. On the other hand, 
37% of the sample have effects that are smaller (to the right in the histogram) than the 
AME.

To compute the distribution of discrete changes for wc, we use counterfactual pre­
dictions. The same approach could also be used to compute discrete changes for a 
continuous variable. Before proceeding, a word of caution: This approach to computing 
effects involves changing the original data  th a t were used to fit the model. It is essential 
that you do not save the changed data.

Step 1: The original variable wc is copied to variable wc.orig so that wc can be changed.

Step 2: All cases are assigned wc=0 to  create the counterfactual condition that no 
women went to college.

Step 3: Predicted probabilities are computed assuming that no women went to college.

Step 4: All cases are assigned wc=l to  create the counterfactual condition th a t all 
women went to college.
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Step 5: Predicted probabilities are computed assuming that all women went to college.

Step 6: The variable wc is restored to  the original values th a t were saved in wc_orig 
in Step 1.

Step 7: The difference between the predictions from Step 5 where wc=l and Step 3 
where wc=0 is the discrete change for each case; the average of the differences is 
the average discrete change.

The Stata commands th a t make these computations are as follows:

. gen wc_orig = wc // step 1

. replace wc = 0 II step 2
(212 real changes made)
. predict double prhat_wcO II step 3
(option pr assumed; Pr(lfp))
. replace wc = 1 II step 4
(753 real changes made)
. predict double prhat_wcl II step 5
(option pr assumed; Pr(lfp))
. replace wc = wc_orig II step 6
(541 real changes made)
. gen double dc_wc = prhat_wcl - prhat_wcO // step 7 
. label var dc_wc "Discrete change of wc on Pr(LFP)"

The command to  draw the histogram is nearly identical to th a t above, so we do not 
repeat it. The following graph for the discrete change for wc is produced:

After plotting the distribution of effects, a useful next step is to  determine the 
marginal effects for ideal types that represent distinct characteristics in the sample. 
This topic is considered in section 6.3.
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6.2.6 (Advanced) Algorithm for computing the distribution of effects

In this section, we use margins and slightly more advanced program­
ming techniques to  create a general algorithm for plotting the distri­
bution of effects. Although the programming is more complicated, the 
code works with any model th a t is compatible with margins, even if 
your model includes interactions and product terms. We suggest you 
read this section after you have mastered other materials in this chapter.

In stead  of using g e n e ra te  to compute marginal effects based on the formula for a 
specific model, this algorithm uses m argins to compute the effect for each observation. 
A lthough this is computationally slow, it works very generally for creating a histogram 
of any marginal effect th a t can be computed by margins or by predictions made by 
m arg in s . We begin with a review of using m argins to compute marginal effects (see 
section 4.5 for related information).

Using margins to compute marginal effects

T h e  option dydx (vam am e)  tells m argins to compute marginal effects. If vamame is a 
factor variable, such as i  . wc in our example, margins computes the discrete cluing« as
varname  changes from 0 to 1. If vamame  is not a factor variable, margins computes
th e  marginal change (that is, partial derivative) for vamame.

We begin by fitting the model and storing the results. We must store them because 
we will use the p o s t option with m argins, which replaces the regression estimates in 
m emory with the results from margins.

. use binlfp4, clear . onio_n7-i5}
(binlfp4 .dta I Mroz data on labor force participation of women
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

(output om itted )

. estimates store mymodel

Next, we compute the marginal change with m argins, dydx (in c), leaving 
in the return r ( b ) .
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. margins, dydx(wc) 
Average marginal effects Number of obs 753
Model VCE
Expression 
dy/dx w.r.t.

OIM
Pr(lfp), predict() 
1. wc

dy/dx
Delta-method 

Std. Err. z P>1zI [95*/, Conf. Interval]

wc
college .1624037 .0440211 3.69 0.000 .076124 .2486834

Note: dy/dx for factor levels is the discrete change from the base level. 

. matlist r(b)
0b. 1 .
wc wc

y i 0 . 1624037

We can also use m argins to compute discrete changes for continuous variables, but 
this takes two steps. F irst, we make two predictions and post the results. Second, we 
use lincom or mlincom to  compute the discrete change. For example, suppose that we 
want to compute the change in the probability of labor force participation as the number 
of young children increases from 0 to 3. We compute predictions with two atspecs, one 
for k5=0 and th e  other for k5=3:

. margins, at(k5=0) at(k5=3) post 
Predictive margins
Model VCE 
Expression
1. _at
2 ._at

OIM
Pr(lfp), predict()
k5
k5

Number of obs 753

Margin
Delta-method 

Std. Err. z P> 1 z I [95% Conf. Interval]

_at
1 .6370361 .0182192 34.97 0.000 .6013271 .6727452
2 .0382865 .0182757 2.09 0.036 .0024669 .0741061

. matlist e(b)

CM

_at _at

yi .6370361 .0382865

Because we used the p o s t option, the predictions are saved to  e (b ), which allows us to 
use mlincom (or lincom) to compute the average discrete change:
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mlincom 2 - 1

lincom pvalue 11 ul

1 -0.599 0.000 -0.656 -0.541

The linear combination in the column lincom  is returned to r ( e s t ) .

We can also compute a  change of a fixed amount from the observed values, for 
example, the average change as inc increases by 1 from its observed values. To do this, 
we will want to use a single margins command to produce two different predictions: 
one in which predictions are computed at the observed values and one in which inc is 
increased by 1. To get predictions at the observed values, we simply want to specify 
a t ( )  with an empty atspec. To get predictions in which inc is increased by 1, we must 
use the gen() option, added in Stata 13, when specifying the atspec. The specification 
a t  (in c= g en (in c+ l) ) tells margins to increase in c  by 1 from its observed values before 
computing the prediction. We use these two atspecs after we restore the logit results 
from our base model.

. estimates restore mymodel 
(results mymodel are active now)
. margins, at() at(inc=gen(inc+l)) post
Predictive margins Number of obs = 753
Model VCE 0IM
Expression Pr(lfp) , predictO
l._at (asobserved)
2 ._at inc = inc+1

Delta-method
Margin Std. Err. z P>Izl [95% Conf . Interval]

_at
1 .5683931 .0166014 34.24 0.000 .535855 .6009312
2 .5611046 .0167439 33.51 0.000 .5282871 .5939221

mse we used the p o st option, we can use mlincom to compute the change:

. mlincom 2 - 1

lincom pvalue 11 ul

1 -0.007 0.000 -0 011 -0.004

The results are identical to  those produced by mchange in c , amount (one).
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Algorithm for computing the distribution of marginal effects

In this section, we explain how to write a  do-file that computes marginal effects for each
observation in the  estimation sample. T he effects are saved in a  variable that is plotted.
We begin with an overview of the steps involved.

Prepare to compute effects:

Step 1: Fit the regression model.

Step 2: Create the temporary variable 'in s a m p le ' from e(sam ple), indicating which 
cases are in  the estimation sample. (Temporary variables are variables that will 
automatically be erased when your do-file ends. For more information, type help 
tempvar or see [p ] m acro.)

Step 3: Create the temporary variable ' e f f e c t '  to hold marginal effects. This variable 
is graphed with h istogram  to show the distribution of marginal effects.

Loop through observations and compute effects:

Step 4: Determine whether a case is in the estimation sample by using the temporary 
variable 'in s a m p le '.

Step 5: Use m argins to  compute the marginal effect for the current case. Any of the 
methods of computing effects from the prior section can be used.

Step 6: Save the effect for the current case in the corresponding row of the variable 
'  e f f e c t

Verify results and plot effects:

Step 7: Compute the mean of 'e f f e c t '  and compare it w ith the AME computed by 
m argins. If these are not the same, there is an error in your program.

Step 8: Plot the distribution of effects by creating a histogram of 'e f f e c t ' .

Step 9: If you want to  save the effects for each observation, generate a variable equal 
to the tem porary variable 'e f f e c t ' .

Using these steps, we compute the marginal effects for wc.

. // step 1 : estimate the model 

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

(output om itted)



. // step 2 : create a variable containing e(sample)

. tempvar insample

. gen 'insample' = e(sample)

. label var ' insample1'- ‘ "In estimation sample?"

. // step 3: create a variable to hold effects

. tempvar effect

. gen 'effect* = .
(753 missing values generated)
. label var 'effect "Marginal effect for each observation"

. // loop through all observations 

. local nobs = _N

. forvalues i = l/'nobs' {
2. ,

if * insample' [' iv]==l { // step 4: only cases in estimation sample
3.

// step 5: use margins to compute effect for current case 
qui margins in 'i*, dydx(wc) nose

4.
// step 6 : save marginal effect in variable 
qui replace 'effect' = el(r(b),l,2) in 'i*

5. >
6. >

. // step 7: compare average of effect variable to AME from margins 

. sum ' effect **
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Variable Obs Mean Std. Dev. Min Max

„0 0 0 0 0 1 753 .1624037 .0344572 .0074083 . 1968259

. margins, dydx(wc)
Average marginal effects Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp) , predictQ
dy/dx w.r.t. 1 .wc

Delta-method 
dy/dx Std. Err. z P>1z1 [95*/. Conf. Interval]

wc
college .1624037 .0440211 3.69 0.000 .076124 .2486834

Note: dy/dx for factor levels is the discrete change from the base level.

. // step 8 : plot the distribution of effects

. histogram 'effect', title(Distribution of marginal effects for wc)
(bin=27, start=.00740829, width=.00701547)

In this example, m argins computed the marginal effect by using dydx(). The code can 
be modified so that m argins computes two predictions (for example, with wc=0 and with 
wc=l) and the discrete change can be com puted with mlincom or lincom. For models 
with multiple outcomes, such as m log it or o p ro b it, the option p r e d ic t  (outcome () )
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can be used. A lthough this algorithm is very general, it is also slow because margins is 
run once for each observation; every tim e m argins is run, it computes effects for even- 
observation.

.3 Ideal types
An ideal type is a hypothetical observation with substantively illustrative values. A 
table of probabilities for ideal types of people, countries, cows, or whatever you are 
studying can quickly summarize the effects of key variables. In our example of labor 
force participation, we want to examine four ideal types of respondents:

• A young family with lower income, no college education, and young children.

• A young family with college education and young children.

• A middle-aged family with college education and teenage children.

• An older family with college education and adult children.

We find ideal types to be particularly illustrative for interpretation when indepen­
dent variables are substantially correlated. In the above example, we first consider the 
contrast between lower income and no college education and higher income and col­
lege education, because these indicators of SES covary strongly enough that it is easy 
to envision them  as low- and high-SES prototypes. Across the latter three examples, 
we construct ideal types reflecting th a t the age of parents and their children change 
together.

We use m tab le to estimate the probabilities for each of these ideal types. To intro­
duce the command and explain some options, we begin with an example that combines 
two sets of predictions. (See section 4.4 for an introduction to mtable.) We then 
illustrate two approaches for creating a  table of ideal types.

For our first ideal type, we define a  young, lower-class family as having the values 
specified as a t  (age c a t=1 k5=2 k618=0 inc=10 lwg=.75 hc=0 wc=0). lwg equals the 
log of the federal minimum wage for 1975, the year the d a ta  were collected. We use 
mtable to make predictions, using the rownameO option to  label the results. The 
option c i, a synonym for s t a t i s t i c s  ( c i ) , requests confidence intervals along with the 
predicted probability. Because this is the first step in constructing a table of predictions, 
we use the c le a r  option to remove from memory any prior predictions saved by mtable.
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. use binlfp4, clear
(binlfp4.dta | Mroz data on labor force participation of women | 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

(output o m itted)
. mtable, rowname(l Young low SES young kids) ci clear
> at(agecat=l k5=2 k618=0 inc=10 lwg=.75 hc=0 wc=0)
Expression: Pr(lfp), predictO

Pr(y) 11 ul

1 Young low SES young kids 0.159 0.068 0.251
Specified values of covariates

k5 k618 agecat wc he lwg

Current 2

inc
0 1 0 0 .75

Current 10

We conclude the following:

For a young, lower SES family with two young children, the estimated prob­
ability of being in the labor force is 0.16 with a 95% confidence interval from
0.07 to 0.25.

For our next ideal type, we define a  young, college-educated family with young 
children by using a t(a g eca t= = l k5==2 k618==0 wc==l hc==l), which specifies the 
values for all the independent variables except lwg and inc. Because we used the 
atm eans option, these variables are set to  the means in the estimation sample. To place 
the new prediction below the prediction from the last m table command, we use the 
below option.

. mtable, rowname(2 Young college young kids) ci below
> at(agecat==l k5==2 k618==0 wc==l hc==l) atmeans
Expression: Pr(lfp), predictO

Pr (y) 11 ul

1 Young low SES young kids 0.159 0.068 0.251
2 Young college young kids 0.295 0.156 0.433

Specified values of covariates
k5 k618 agecat wc he lwg

Set 1 2 0 1 0 0 .75
Current 2 0 1 1 1 1 . 1

inc

Set 1 10
Current 2 0 .1
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Below the table of predictions is a table showing the levels of the covariates when the 
predictions were made. Although you can suppress its display with the b rie f option, 
we find it useful for knowing exactly how the ideal types were defined. Set 1 refers to 
the first predictions in the table, which we numbered as 1. The row Current contains 
values of the a t ( )  variables from the current or most recent m table command.

VVe add two more ideal types that show what happens to the probability of being in 
the labor force as women and children get older. We use q u ie t ly  to suppress output 
until the last m tab le  command, which displays the complete table.

. quietly mtable, rowname(3 Midage college with teens) ci below
> at(agecat==2 k5==0 k618==2 wc==l hc==l) atmeans
. mtable, rowname(4 Older college with adult kids) ci below
> at(agecat==3 k5==0 k618==0 wc==l hc==l) atmeans
Expression: Pr(lfp), predictO

Pr (y) 11 ul

1 Young low SES young kids 0.159 0.068 0.251
2 Young college young kids 0.295 0.156 0.433
3 Midage college with teen 0.760 0.680 0.840
4 Older college with adult 0.653 0.548 0.758

Specified values of covariates
k5 k618 agecat wc he lwg

Set 1 2 0 1 0 0 .75
Set 2 2 0 1 1 1 1.1
Set 3 0 2 2 1 1 1.1

Current 0 0 3 1 1 1.1

inc

Set 1 10
Set 2 2 0 .1
Set 3 2 0 .1

Current 2 0 .1

The first two rows allow us to see the big difference in the labor force between the 
lower and higher SES families that have young children. The mother from the higher 
SES family has about twice the probability of being in the labor force. The probability 
for the higher SES mother increases dram atically as her children are no longer young: 
the chance of labor force participation goes from about 30% to  76%.

It is important to emphasize that predictions we make about ideal types are pre­
dictions about a hypothetical observation, not predictions about a subgroup. When we 
use ideal types, we will specify a particular value for each of the independent variables, 
either directly or by using atmeans to  compute global or, as we will show7 next, local 
means. This keeps our understanding of what is meant by an ideal type simpler and the 
interpretations that use them clearer. W hat we want to avoid in particular is defining 
an ideal type by specifying values for some independent variables, but then computing 
average predictions over a set of observations with asobserved. T hat mixes together 
the concepts of MERs and AMEs and makes interpreting results very confusing. Again, 
you can think of an ideal type as a hypothetical observation with one prediction and
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th in k  o f a  subgroup as a set of observations with a distribution of predictions that may 
be averaged or plotted.

6.3.1 Using local means with ideal types

T h e  las t three rows of the table were constructed using the atm eans option to specify 
th e  values of inc and lwg to  the sample means. We refer to means based on the entire 
es tim atio n  sample as global means. Although using global means for each ideal type is 
s im ple , it often is not realistic. For example, it is reasonable to assume that levels of 
incom e and wages would be higher for college-educated respondents than for those who 
have not attended college and that they would change with age, which is not reflected 
in th e  global means.

T o  address this problem, we can use local means that are defined based on the 
characteristics specified in the a t () statem ents. To do this, we create a selection variable 
th a t  equals 1 if an observation is part of the group defined by the conditions of an 
atspec  and equals 0 otherwise. In other words, a selection variable indicates whether an 
observation is part of the group defined for the ideal type. To create these variables, we 
use th e  g en e ra te  command with i f  conditions that correspond to  the atspecs used for 
an  ideal type:

• gen _selYC = agecat==l & k5==2 & k618==0 & wc==l & hc==l
. label var _selYC "Select Young college young kids"
. gen _selMC = agecat==2 & k5==0 & k618==2 & wc==l & hc==l
. label var _selMC "Select Midage college with teens"
• gen _selOC = agecat==3 & k5==0 & k618==0 & wc==l & hc==l
. label var _selOC "Select Older college with adult kids"

Once these variables are created, we can make a table of predictions containing 
local means for variables not explicitly set by the atspec. The first row of the table is 
unchanged from before because all variables for that ideal type were explicitly specified 
in th e  a tO  option:

. quietly mtable, rowname(l Young low SES young kids) ci clear
> at(agecat=l k5=2 k618=0 inc=10 lwg=.75 hc=0 wc=0)

In  the  next command, we add i f  _selYC==l to the mtable command so th a t predictions
are  based only on observations defined by _selYC:

. quietly mtable if _selYC==l, rowname(2 Young college young kids)
> atmeans ci below

T he i f  condition selects observations where agecat==l & k5==2 & k618==0 & wc==l
& hc==l. which define our ideal type. The means of these variables will equal their 
specified values (for example, agecat will equal 1 and k5 will equal 2), while those 
variables not used to define the selection variable will equal the local mean defined by 
selection variables. For example, lwg will equal the average log of wages for young 
families with college education. Accordingly, the i f  condition makes it easy to specify
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the values we wanted to  define our ideal type. In the same way, we add the last two 
ideal types to  th e  table:

. quietly mtable if _selMC==l, rowname(3 Midage college with teens)
> atmeans ci below
. mtable if _selOC==l, rowname(4 Older college with adult kids)
> atmeans ci below
Expression: Pr(lfp) , predictQ

Pr(y) 11 ul

1 Young low SES young kids 0.159 0.068 0.251
2 Young college young kids 0.394 0.234 0.554
3 Midage college with teen 0.739 0.659 0.820
4 Older college with adult 0.631 0.528 0.734

Specified values of covariates
k5 k618 agecat wc he lwg

Set 1 2 0 1 0 0 .75
Set 2 2 0 1 1 1 1.62
Set 3 0 2 2 1 1 1.16

Current 0 0 3 1 1 1.38
inc

Set 1 10
Set 2 16.6
Set 3 24.4

Current 27.9

An advantage of using local means with ideal types is th a t the values of variables not 
specified in the type are held to values more consistent with what is actually observed, 
so the ideal type more accurately resembles the actual cases in our dataset that share 
the key features of the ideal type.

.3.2 Comparing ideal types with statistical tests

The predicted probabilities of labor force participation vary among the four ideal types. 
Before concluding, for example, that the probability of being in the labor force is greater 
for a young, college-educated family with children than for a family with no college 
education, we need to test whether the predictions are significantly different. Essentially, 
this involves testing whether a discrete change is 0 when the starting values and ending 
values vary on multiple variables. To show how this is done, we compute two ideal types 
in the same m table command and post the results so that we can evaluate them with 
mlincom. Because we are posting the results, we begin with e s tim a te s  s to re  so that 
we can later restore the estimation results from lo g it  after they have been replaced by 
the posted predictions.
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. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
• logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog 

(output om itted )
. estimates store base
. mtable, atmeans post
> at(agecat=l k5=2 k618=0 wc=0 hc=0 lwg=.75 inc=10) // ideal type 1
> at(agecat=l k5=2 k618=0 wc=l hc=l lwg=1.62 inc=16.64) // ideal type 2
Expression: Pr(lfp), predictO

wc he lwg inc Pr(y)

1 0 0 .75 10 0.159
2 1 1 1.62 16.6 0.394

Specified values of covariates
k5 k618 agecat

Current 2 0 1

Now, we estimate the difference in the predictions and end by restoring the  estimation 
results from lo g i t :

. mlincom 1 - 2

lincom pvalue 11 ul

1 -0.234 0.000 -0.340 -0.129
. estimates restore base 
(results base are active now)

We conclude the following:

A wife from a  young, lower SES family with young children is significantly 
less likely to be in the labor force than a wife from a young family with 
college education (p <  0.001).

.3.3 (Advanced) Using macros to test differences between ideal types

In this section, we discuss using local macros and returns to automate 
the process of computing predictions a t multiple fixed values of the a t( )  
variables. If you rarely test the equality of predictions, the methods 
from the last section should meet your needs. If you often test the 
equality of predictions, this section can save you time.

It is tedious and error-prone to specify the atspecs for multiple ideal types to test the 
equality of predictions. To automate this process, we can use the returned results from 
m table. When m table is run with a single a t ( ) ,  it returns the  local r (a ts p e c )  as a 
string that contains the specified values of the covariates. This is easiest to understand 
with an example:
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. mtable, atmeans at(agecat=l k5=2 k618=0 wc=0 hc=0 lwg=.75 inc=10) 
Expression: Pr(lfp), predictO 

Pr(y)

0.159
Specified values of covariates

k5 k618 agecat wc he lwg

Current 2

inc
0 1 0 0 .75

Current 10

Tlie values shown in the S p ec ifie d  v a lu e s  of c o v a r ia te s  table are saved in the 
return r (  a t  s p e c ) :

. display "'r(atspec)
k5-=2 k618=0 lb.agecat=l 2.agecat-0 3.agccat=0 0b.wc=l l.wc=0 0b.hc=l l.hc=0 lwg=
> .75 inc=10

We create a local macro that is used to  specify the atspec for m table:

. local myatspec ~r(atspec)'

. mtable, atmeans at ('myatspec')
Expression: Pr(lfp) , predictO 

Pr(y)

0.159
Specified values of covariates

k5 k618 agecat wc he lwg

Current 2

inc
0 1 0 0 .75

Current 10

The results m atch those we obtained earlier.

Using this strategy and the selection variables created before (see page 273). we 
create local macros with the atspecs for our four ideal types:

. quietly mtable, atmeans at(agecat=l k5=2 k618=0 inc=10 lwg=.75 hc=0 wc=0)

. local YngLow 'r(atspec)'

. quietly mtable if _selYC == 1, atmeans 

. local YngCol *r(atspec)'

. quietly mtable if _selMC == 1, atmeans 

. local MidCol *r(atspec)'

. quietly mtable if _selOC == 1, atmeans 

. local OldCol *r(atspec)'



We use these locals to  compute four predictions with a single m table:

. mtable, at('YngLow') at('YngCol') at('MidCol') at('OldCol') post 
Expression: Pr(lfp), predictO
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k5 k618 agecat wc he lwg

1 2 0 1 0 0 .75
2 2 0 1 1 1 1.62
3 0 2 2 1 1 1.16
4 0 0 3 1 1 1.38

inc Pr(y)

1 10 0.159
2 16.6 0.394
3 24.4 0.739
4 27.9 0.631

Specified values where .n indicates no values specified with at()
No atO

Current .n

Because the values of all independent variables were specified for each prediction, their 
values appear in the  table of predictions ra ther than in a table of values of covariates 
below the predictions. Because there are no values to place in the table, .n is shown. 
Because the predictions were posted, we can use mlincom for each comparison:

. mlincom 1 - 2

lincom pvalue 11 ul

1

. mlincom 1 -
-0.235

3
0.000 -0.340 -0.129

lincom pvalue 11 ul

1 -0.580 0.000 -0.720 -0.440
. mlincom 1 - 4

(output om itted)

Alternatively, we can take advantage of the pwcompareO option in margins, which 
is not available with the m table command. We specify the values at which we want to 
make predictions, just like we did with m table. We suppress the lengthy listing of the 
titlegend and request pairwise comparisons of the estimates:
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. estimates restore base 
(results base are active now)
. margins, at('YngLow') at('YngCol') at('MidCol') at('OldCol')
> noatlegend pwcompare(effects)
Pairwise comparisons of adjusted predictions 
Model VCE : OIM
Expression : Pr(lfp), predictO

Contrast
Delta-method 

Std. Err.
Unadjusted 
z P>|z|

Unadjusted 
[95*/, Conf. Interval]

at
2 vs 1 .2346236 .0536979 4.37 0.000 . 1293776 .3398696
3 vs 1 .5798713 .0715922 8 . 1 0 0.000 .4395531 .7201895
4 vs 1 .4713628 .0771112 6 .1 1 0.000 .3202276 .6224979
3 vs 2 .3452477 .0875971 3.94 0.000 .1735606 .5169349
4 vs 2 .2367392 .0874085 2.71 0.007 .0654216 .4080568
4 vs 3 -.1085085 .0487212 -2.23 0.026 -.2040002 -.0130168

Row 2 vs 1 shows th a t the increase in predicted probability for the young, college- 
educated family versus the young, low SES family is significant. Indeed, all differences 
are significant a t the 0.001 level, except for the differences between an older family with 
adult children and a middle-aged family, which is significant a t the 0.05 level.

.3.4 Marginal effects for ideal types

Given our cautions about relying on a single value to summarize marginal effects, ideal 
types are an excellent way to examine variation in the size of effects at different locations 
in the data space. Here we are taking different hypothetical observations and describing 
howr the predicted probability changes as the value of one of the independent variables 
for that observation changes. To do this, we use local macros to specify the values at 
which the change is to  be computed, ju s t as we did with m table.
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F irst, we com pute discrete changes for wc and k5 for a young, low SES family:

. mchange wc k5, atmeans amount(one) at ('YngLow') 
logit: Changes in Pr(y) I Number of obs = 753 
Expression: Pr(lfp), predict(pr)

Change p-value

wc
college vs no 0.137 0.008

k5
+ 1 -0.114 0.000

Predictions at base value
not in LF in LF

Pr(yIbase) 0.841 0.159
Base values of regressors

k5 k618 agecat wc he lwg

at 2

inc
0 1 0 0 .75

at 10

1: Estimates with margins option atmeans.

. matrix YngLow = r(table)

mchange leaves th e  marginal effects in the r  ( ta b le )  matrix, which we copy to the 
m atrix YngLow so th a t wc can combine it with estimates of effects for other ideal types:

. mchange wc k5, atmeans amount(one) at( YngCol )
(output o m itte d)

. matrix YngCol = r(table)

. mchange wc k5, atmeans amount(one) at( MidCol )
(output o m itte d)

. matrix MidCol = r(table)

. mchange wc k5, atmeans amount(one) at( OldCol )
(output o m itted )

. matrix OldCol = r(table)

Next, we select the  first column of each m atrix, which contains the effects, and concate­
nate them into a single matrix we name me:
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. matrix me = YngLow[l...,1] , YngCol[1...,1], MidCol[1.. . ,1], 01dCol[l... ,1] 

. matrix colnames me = YngLow YngCol MidCol OldCol 

. matlist me, format0/.9.2f) twidth(15)
YngLow YngCol MidCol OldCol

wc
college vs no 0.14 0.17 0.18 0 . 2 0

k5
+1 -0 .1 1 -0.25 -0.33 -0.33

The effects of the  wife going to college are within 0.06 across the four ideal types. The 
effects of having one more young child in the family, however, increase in magnitude 
from -0.11 for young families without college education to —0.33 for older families that 
attended college. The differences in discrete changes for k5 reflect the variation in the 
size of effects within the  sample.

.4 Tables of predicted probabilities
When you are interested in the effects of one or more categorical independent variables, 
a table of predictions can be very effective. For example, our analysis thus far high­
lights the importance of attending college and having young children. To see how these 
variables jointly affect the probability of being in the labor force, we can use a simple 
mtable command:

. mtable, at(wc=(0 1) k5=(0 1 2  3)) atmeans 
Expression: Pr(lfp) , predictQ

k5 wc Pr (y)

1 0 0 0.604
2 0 1 0.772
3 1 0 0.275
4 1 1 0.457
5 2 0 0.086
6 2 1 0.173
7 3 0 0.023
8 3 1 0.049

Specified values of covariates

k618
2 .

agecat
3.

agecat
1 .

he lwg inc

Current 1.35 .385 .219 .392 1 . 1 20.1

Although this is the information we want, it is not an effective table. We can improve 
it by using two a t  ( ) ’s along with a tv ars(w c  k5) to list values of wc in the first column 
followed by values of k5. The option names (columns) removes the row numbers (see 
help m a t l is t  for details on the names() option).
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. mtable, at(wc=0 k5=(0 1 2  3)) at(wc=l k5=(0 123)) atmeans
> atvars(wc k5) names(columns)
Expression: Pr(lfp), predictO

1.
wc k5 Pr(y)

0 0 0.604
0 1 0.275
0 2 0.086
0 3 0.023
1 0 0.772
1 1 0.457
1 2 0.173
1 3 0.049

Specified values of covariates

k618
2 .

agecat
3.

agecat
1.

he lwg inc

Current 1.35 .385 .219 .392 1 . 1 20.1

T h e  table shows the  strong effect of education and how the size of the effects differ by 
th e  num ber of young children, but the information still is not presented well.

O ur next step is to compute the discrete change for college education conditional on 
th e  number of young children:

A Pr (y =  1 | x, k5)
Awe (0 —> 1)

Because wc was entered into the model as a factor variable, we can compute the discrete 
change by using dydx(w c). In the process, let’s create an even more effective table that 
ge ts  close to what we might include in a  paper. First, we compute the predictions for 
wc=0:

. quietly mtable, estname(NoCol) at(wc=0 k5=(0 12 3)) atmeans brief

N ext, we make predictions for wc=l. We use the r ig h t  option to  place the predictions to 
th e  right of those from the prior m table command, and we use a tv a r s  (_none) because 
we do not want the column with k5 included again:

. quietly mtable, estname(College) at(wc=l k5=(0 1 2 3)) atmeans
> atvars(_none) right

Now, we use the dydx(wc) option to com pute discrete changes. We place these along 
w ith the 7>value for testing whether the change is 0 to the right:
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. mtable, estname(Change) dydx(wc) at(k5=(0 1 2  3)) atmeans 
> atvars(_none) right stats (estimate p) names (columns) brief 
Expression: Pr(lfp) , predictO

k5 NoCol College Change p

0 0.604 0.772 0.168 0.000
1 0.275 0.457 0.182 0.001
2 0.086 0.173 0.087 0.013
3 0.023 0.049 0.027 0.085

We can summarize these findings:

For someone who is average on all characteristics and has no young children, 
having attended  college significantly increases the predicted probability of 
being in the labor force by 0.17. The size of the effect decreases with the 
number of young children. For example, for someone with two young chil­
dren, the increase is only 0.09, which is significant at the 0.01 level.

Although th is table shows clearly how education and children affect labor force 
participation, it assumes that it is reasonable to change wc and k5 while holding other 
variables at their global means. This is unrealistic. For example, it is likely that women 
with three young children will be in the youngest age group, while few people with 
three young children will be over 50. Each cell in the table represents a different ideal 
type, but some of the ideal types are substantively unusual, limiting their usefulness as 
a point of comparison.

We could approach the problem in a t least a  couple of different ways that we regard as 
preferable to using global means. Here we consider two approaches. First, wc define ideal 
types in term s of someone from the youngest age category, ages 30-39, for whom having 
three young children is not substantively unrealistic. Means of the control variables are 
based on sample members in the youngest age group. Second, we use local means defined 
by levels of k5 when making predictions. Thus the means for those with no children 
differ from those with one child.

Our first approach is to focus on those in the youngest age category. We could do 
this by adding ag e c a t= l to the atspecs used above, but, substantively, we think it makes 
more sense to  use the mean values of the other independent variables for someone in 
this age group. To do this, we specify if agecat==l when we use atmeans to make our 
predictions:
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. mtable if agecat==l, estname(Change) dydx(wc) at(k5=(0 1 2  3)) atmeans
> atvars(k5) stats (estimate p) names(columns)
Expression: Pr(lfp), predictO

k5 Change p

0 0.131 0.000
1 0.197 0.000
2 0.124 0.005
3 0.043 0.058

Specified values of covariates
1 . 1.

k618 agecat wc he lwg inc

Current 1.85 1 .312 .463 1.06 18.8

Notice th a t ag ecat is 1 in the table of specified values because we are restricting the 
analyses to those in this age group. Adapting the commands used above, we create a 
new table illustrating the effects of children and education on labor force participation:

. quietly mtable if agecat==l, estname(NoCol) at(wc=0 k5=(0 1 2 3)) atmeans

. quietly mtable if agecat==l, estname (College) at(wc=l k5=(0 1 2  3)) atmeans
> atvars(_none) right
. mtable if agecat==l, estname(Change) dydx(wc) at(k5=(0 1 2 3)) atmeans
> atvars(_none) right stats (estimate p) names (columns) brief
Expression: Pr(lfp) , predictO

k5 NoCol College Change p

0 0.720 0.851 0.131 0.000
1 0.390 0.586 0.197 0.000
2 0.137 0.261 0.124 0.005
3 0.038 0.081 0.043 0.058

The predicted probabilities and discrete changes using local means for the youngest 
members of the sample are different from when we used global means for the sample 
as a whole. Using global means, having a college education increased the predicted 
probability for a woman with no children by 0.168, while using means conditional on 
the woman being age 30 39, the increase is 0.131.

Our second approach uses local means defined by levels of k5 when making predic­
tions. That is, when making predictions for women with no young children, we will hold 
other variables a t the mean for those with no young children, which would be equivalent 
to computing the means by using summarize . . .  i f  k5==0. We can do this with the 
o v e r (overvar) option, which makes predictions at each value of overvar, where this 
variable must have nonnegative integer values. For each value of k5, predictions are 
made based only on cases with the given value of k5. That is, predictions are made first 
with cases that meet the condition k5==0, then with cases that meet k5==l, and so on. 
Accordingly, the atm eans option will hold other variables at the means conditional on 
the value of k5. The output shows how the means vary:
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. mtable, at(wc= ( 0 1)) atmeans over(k5) brief
Expression: Pr(lfp) , predictO

k5 k618
2 .

agecat
3.

agecat wc
1.

he
1 0 1.28 .436 .269 0 .358
2 1 1.75 .212 .0169 0 .517
3 2 1.31 .0385 0 0 .538
4 3 1.33 0 0 0 1
5 0 1.28 .436 .269 1 .358
6 1 1.75 .212 .0169 1 .517
7 2 1.31 .0385 0 1 .538
8 3 1.33 0 0 1 1

lwg inc Pr(y)

1 1 . 1 1 20 0.583
2 1.03 20.8 0.337
3 1.18 17.6 0.154
4 1.08 46.1 0.017
5 1 . 1 1 20 0.757
6 1.03 20.8 0.530
7 1.18 17.6 0.288
8 1.08 46.1 0.037

In row 1 where wc==0 and row 5 where wc==l, the values for k618, agecat, wc, he, lwg, 
and inc are th e  means in the subsample defined by k5==0. And so on for other values 
of k5. Using o v erO  here is equivalent to running a series of m table commands of the 
form m table i f  k5==0, at(wc=(0 1 )) atmeans.

Does using local means affect the results? In this example, the results using global 
means do differ somewhat from those using local means, especially a t k5==2.

k5
Global
NoCol Col Chng

Local
NoCol Col Chug

Global
NoCol

- Local 
Col Chng

0.00 0.60 0.77 0.17 0.58 0.76 0.17 -0 . 0 2 -0.02 0.01
1.00 0.27 0.46 0.18 0.34 0.53 0.19 0.06 0.07 0.01
2.00 0.09 0.17 0.09 0.15 0.29 0.13 0.07 0 .1 1 0.05
3.00 0.02 0.05 0.03 0 . 0 2 0.04 0.02 -0 . 0 1 -0.01 -0.01

Tables of predictions allow readers to see how predictions vary over values of sub­
stantively im portant independent variables. Wc do not want a  change in an independent 
variable to result in our presenting as illustrative some ideal types th a t are actually un­
likely or even impossible. As we have shown above, one way to  do this is to restrict our 
sample or otherwise choose representative values so that the changes presented in the 
table remain substantively realistic. Another is to use local means that change as the 
key independent variable(s) of the table changes.
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.5 Second differences comparing marginal effects
We can  compute AMEs based on a subset of observations. For example, suppose that 
we a re  interested in ways in which the wife’s and the husband’s educations interact to 
affect labor force participation. Because we are focusing on the joint effects of these two 
variables, we fit a new model that includes the interaction between wc and he:

. logit lfp k5 k618 i.agecat wc##hc lwg inc, nolog
Logistic regression Number of obs = 753

LR chi2(9) = 125.57

Log likelihood = -452.08908
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.1219

lfp Coef. Std. Err. z P> 1 z I [95*/. Conf. Interval]

(output omit ted )
wc

college 1.194263 .4344336 2.75 0.006 .3427885 2.045737

he
college .2467267 .2287125 1.08 0.281 -.2015415 .6949949

wc#hc 
college # 
college -.5586704 .5051034 -1 . 1 1 0.269 -1.548655 .431314

(output om itted)

We want to know whether the effect of a women going to college is the same for a 
women whose husband did go to college as for a woman whose husband did not go to 
college:

A P r (y = 1 | x, he =  0) A Pr (y = 1 | x, he =  1)
0 Awe Awe

To test this hypothesis, we compute the AM E of wc averaging over only those cases where 
he is 0 and compare it w ith the AME for those cases where he is 1. Although we could 
com pute these discrete changes by using mchange wc i f  hc==l and mchange wc i f  
hc==0, this will not allow us to test whether the effects are equal because the estimates 
cannot be posted for testing with mlincom. To test the hypothesis, we use mtable with 
th e  dydx(wc) option to compute the discrete change for wc and the over (he) option 
to  request the changes be computed with the subgroups defined by he:
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. mtable, dydx(wc) over(hc) stat(ci) post 
Expression: Pr(lfp) , predictQ

d Pr(y) 11 ul

no 0.233 0.094 0.373
college 0.128 0.022 0.234

Specified values where .n indicates no values specified with at()
No atO

Current .n

The row labeled no contains the discrete change of wc for those women whose husbands 
did not attend college (no is the value label for hc=  0), and the row co llege contains the 
change for those whose husbands attended college. The p o s t option saves the estimates 
to e(b), which allows us to use mlincom to test whether the marginal effects are equal:

. mlincom 1 - 2

lincom pvalue 11 ul

1 0.105 0.233 -0.068 0.279

We conclude the following:

Although the average effect of the wife going to college is 0.10 larger when 
the husband did not go to college than  when he did, this difference is not 
significant (p >  0.10).

.6 Graphing predicted probabilities
With a continuous independent variable, you can plot the predicted probabilities over 
the range of the variable. For example, to examine the effects of inc, we might plot 
the predicted probability of labor force participation as in c  changes, holding other 
variables at fixed values. We offer two approaches for making such graphs. First, Stata s 
m arginsplot command uses predictions from margins to create plots. As you will see, 
it quickly produces effective graphs. The second approach uses our mgen command to 
generate variables with the values to be plotted, which are then plotted with graph. 
This is essentially what m arg insp lo t does behind the scenes. Although m arginsplot 
is simpler, mgen is more flexible in ways th a t often justify the greater effort that it 
requires. The advantage will be particularly apparent in subsequent chapters when we 
create plots for multiple outcomes th a t cannot be created with m arginsplot.

We begin by showing you how to create plots where one variable changes while all 
other variables are held constant, such as this one:
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Adjusted Predictions with 95% CIs

N ext, we show how to introduce the effects of other variables by plotting multiple lines 
th a t  correspond to  different levels of one or more of the variables in the model. For 
exam ple, the following graph shows the effect of income for respondents with different
ages:

Adjusted Predictions of agecat

30-39 -->-- 40-49 ■ 50+]

6.6.1 Using marginsplot

T he first step is to  use m argins to compute predicted probabilities as income increases 
from 0 to 100, while holding other variables a t their means:
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. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

(output om itted )
. estimates store base
. margins, at(inc=(0 (10)100)) atmeans
Adjusted predictions 
Model VCE

Number of obs 753

Expression 
1 . _at

OIM
Pr(lfp), predictO
k5
k618
1 .agecat =
2 .agecat =
3.agecat =
0 . wc =
1 . wc =
O.hc
1 .he 
lwg

(output om itted )
11 .at k5

k618
1 .agecat
2 .agecat
3.agecat
0.wc
1 . wc
0.hc
1.hc 
lwg

.2377158
1.353254
.3957503
.3851262
.2191235
.7184595
.2815405
.6082337
.3917663
1.097115

0

.2377158
1.353254
.3957503
.3851262
.2191235
.7184595
.2815405
.6082337
.3917663
1.097115

100

(mean)
(mean)
(mean)
(mean)
(mean)
(mean)
(mean)
(mean)
(mean)
(mean)

(mean)
(mean)
(mean)
(mean)
(mean)
(mean)
(mean)
(mean)
(mean)
(mean)

Margin
Delta-method 
Std. Err. z P> 1 z I [95’/. Conf. Interval]

_at
1 .7349035 .0361031 20.36 0.000 .6641427 .8056643
2 .6613024 .0261131 25.32 0.000 .6101217 .7124832
3 .5789738 .0196943 29.40 0.000 .5403737 .6175739
4 .4920058 .0286579 17.17 0.000 .4358374 .5481742
5 .405519 .0440915 9.20 0.000 .3191012 .4919367
6 .324523 .0569264 5.70 0.000 .2129492 .4360968
7 .2528245 .064092 3.94 0.000 .1272066 .3784425
8 .1924535 .0652874 2.95 0.003 .0644926 .3204144
9 .1437253 .06172 2.33 0.020 .0227563 .2646942

10 .1057196 .0551469 1.92 0.055 -.0023663 .2138055
11 .0768617 .0472071 1.63 0.103 -.0156624 .1693858

The atlegend shows the values of the independent variables for each of the 11 predictions 
in the table, which are automatically saved in the matrix r ( b ) .  Because the atlegend 
can be quite long, we often use n o a tleg en d  to suppress it. Then, we use m lis ta t for a 
more compact summary.
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. margins, at(inc=(0 (1 0)100)) atmeans noatlegend
Adjusted predictions Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp), predictO

Margin
Delta-method 
Std. Err. z P>lzl [95*/. Conf. Interval]

_at
1 .7349035 .0361031 20.36 0.000 .6641427 .8056643
2 .6613024 .0261131 25.32 0.000 .6101217 .7124832
3 .5789738 .0196943 29.40 0.000 .5403737 .6175739
4 .4920058 .0286579 17.17 0.000 .4358374 .5481742
5 .405519 .0440915 9.20 0.000 .3191012 .4919367
6 .324523 .0569264 5.70 0.000 .2129492 .4360968
7 .2528245 .064092 3.94 0.000 .1272066 .3784425
8 .1924535 .0652874 2.95 0.003 .0644926 .3204144
9 . 1437253 .06172 2.33 0.020 .0227563 .2646942

10 .1057196 .0551469 1.92 0.055 -.0023663 .2138055
11 .0768617 .0472071 1.63 0.103 -.0156624 .1693858

. mlistat
at() values held constant

2. 3. 1 . 1 .
k5 k618 agecat agecat wc he lwg

.238 1.35 385 .219 282 .392 1.1
at() values vary

_at inc

1 0
2 10
3 20
4 30
5 40
6 50
7 60
8 70
9 80

10 90
11 100

Either way, m arg in sp lo t uses the predictions in r(b ) along with other returns fiom 
m argins, and it graphs the predictions including the 95% confidence intervals:
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Adjusted Predictions with 95% CIs

The graph shows how the probability of being in the labor force decreases with family 
income. It also shows that the confidence intervals are smaller near the center of the 
data (the m ean of in c  is 20.1) and increase as we move to the extremes.

Although m arg in sp lo t does an excellent job of creating the graph without requiring 
options, you can fully customize the graph. Use help m arg in sp lo t for full details. For 
example, to suppress the  confidence interval, type m a rg in sp lo t, noci. To use shading 
to show the confidence interval (illustrated below), type m a rg in sp lo t, re cas t (line) 
r e c a s t c i ( r a r e a ) .

If you are only interested in plotting a single type of prediction from one model, 
there is little reason to use anything bu t m arg insp lo t. But, if you want to plot multiple 
outcomes, such as for multinomial logit, or predictions for a single outcome from multiple 
models, it is worth learning about mgen.

.6.2 Using mgen with the graph command

To create the same graph as above by using mgen, our first step is to  generate variables 
for plotting:
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. mgen, atmeans at(inc=(0(10) 100)) stub(PLT) predlabel(Pr(LFP)) 
Predictions from: margins, atmeans at(inc=(0(10)100)) predict(pr)
Variable Obs Unique Mean Min Max Label

PLTprl 
PLT111 
PLTul1 
PLTinc

11 11 
11 11 
11 11 
11 11

.3608011

.2708139

.4507883
50

.0768617 
-.0156624 
.1693859 

0

.7349035

.6641427

.8056643
100

Pr(LFP)
95'/, lower limit 
95*/, upper limit 
Family income excluding...

Specified values of covariates
2 . 3. 1 1 .

k5 k618 agecat agecat VC he lwg

.2377158 1.353254 .3851262 .2191235 .2815405 .3917663 1.097115

T he option stu b O  specifies the prefix for variables that are generated. If s tubO  is not 
specified, the default s tu b (_ ) is used. If you want to replace existing plot variables (per­
haps while debugging your do-file), add the option replace. The option p re d la b e lO  
customizes the variable label for PLTprl, which is handy because by default graph uses 
this label for the y axis.

If we list the values for the first 13 observations, we see the variables created by 
mgen:

. list PLTinc PLTpr PLT11 PLTul lfp in 1/13, clean
PLTinc PLTprl PLT111 PLTul1 lfp

1 . 0 .7349035 .6641427 .8056643 not in LF
2 . 10 .6613024 .6101217 .7124832 not in LF
3. 20 .5789738 .5403737 .6175739 not in LF
4. 30 .4920058 .4358374 .5481742 not in LF
5. 40 .4055189 .3191012 .4919367 not in LF
6 . 50 .324523 .2129492 .4360968 not in LF
7. 60 .2528245 .1272066 .3784425 not in LF
8 . 70 . 1924535 .0644926 .3204144 not in LF
9. 80 . 1437253 .0227563 .2646942 not in LF

1 0. 90 .1057196 -.0023663 .2138055 not in LF
1 1. 100 .0768617 -.0156624 .1693859 not in LF
1 2. not in LF
13. not in LF

Column 1 contains the 11 values of income from variable PLTinc that will define the x  
coordinates. The next column contains predicted probabilities computed at the values 
of income with other variables held a t their means. The negative effect of income 
is shown by the increasingly small probabilities. The next two columns contain the 
upper and lower bounds of the confidence intervals for the predictions. The first four 
variables have missing values beginning in rows 12 and 13 because our atspec requested 
only 11 predictions. The last column shows the observed variable l f p ,  which does not 
have missing values. This is being shown to remind you that the variables created for 
graphing are added to the dataset used for estimation.



You can also create a  basic graph w ithout confidence intervals:

. scatter PLTpr PLTinc
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20 40 60 80
Fam ily income excluding wife's

100

Next, we want to  add the 95% confidence interval around the predictions. This 
requires more complicated graph options. To explain these, le t’s start by looking at the 
graph we want to create:

Adjusted Predictions

Other variables held at their m eans

Here is the twoway command that we will explain:

twoway
(rarea PLTul PLT11 PLTinc, color(gs12))
(connected PLTpr PLTinc, msymbol(i))
, titleO'Adjusted Predictions")
caption("0ther variables held at their means") 
ytitle(Pr(LFP)) ylabel(0(.25)1, grid gmin gmax) legend(off)
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T he first thing to  realize is that the twoway command includes two plots 
plot and a connected  plot. These are overlaid to make a single graph. First° the l ^ *  
confidence intervals are created with a  r a r e a  plot where the area on the y axis is si 
between the values of PLTul for the upper level or bound and PLT11 for the lower Lmnd 
We chose co lo r(g s  12) to make the shading gray scale level 12, a matter of penooal 
preference. Second, the line with predicted probabilities is created with a connected 
plot, where msymbol(i) specifies that the symbols (shown as solid circles in our prior 
graph) th a t are connected should be invisible—that is, draw the line without symbols 
We defined the r a re a  plot before the connected plot because Stata draws overlaid plots 
in the  order specified; we want the line indicating the predicted probabilities to apprar 
on top of the shading.

After the in the fourth line of the command are options that apply to the overall 
graph rather than the individual plots. y la b e lQ  defines the y-axis labels, with grid 
requesting grid lines. Suboptions gmin and gmax place grid lines at the maximum and 
minimum values of the axis. By default, when you are plotting multiple outcomes in 
this case PLTul, PLT11, and PLTpr -  g raph  adds a legend describing each outcome I.» 
tu rn  this off, we use le g en d (o ff) . See section 2.17 for more information on graphing.

6.6.3 Graphing multiple predictions

An effective way to  show the effects of two variables is to graph predictions at various 
levels of one variable as the other variable changes. I his can be done with either 
m arg in sp lo t or mgen.

Using marginsplot

We can plot the effects of income for each of the age groups. First, we compute the 
predictions with m argins, where m argins agecat indicates that wo want predictions 
for each level of the factor variable ag eca t. a t ( i n c = ( 0 ( 1 0 ) 1 0 0 ) )  atmeans speci es 
predictions as inc increases from 0 to 100 by 10s, with all variables e x n  pt a g ecat i< 

at their means:
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. margins agecat, at(inc=(0 (10)1 0 0)) atmeans noatlegend
Adjusted predictions Number of obs = 753
Model VCE : OIM
Expression : Pr(lfp), predictO

Margin
Delta-method 

Std. Err. z P> 1 z [957. Conf. Interval]

_at#agecat
l#30-39 .8236541 .031251 26.36 0.000 .7624033 .8849049
l#40-49 .7139289 .0452033 15.79 0.000 .6253321 .8025256

1#50+ .5651833 .0614528 9.20 0.000 .4447381 .6856285
2#30-39 .7668772 .0298035 25.73 0.000 .7084634 .825291
2#40-49 .6373779 .0374018 17.04 0.000 .5640716 .7106841

2#50+ .4779353 .050722 9.42 0.000 .3785219 .5773487
3#30-39 .6985115 .0319211 21.88 0.000 .6359474 .7610756
3#40-49 .5531632 .0322948 17.13 0.000 .4898665 .6164599

3#50+ .3920132 .0438199 8.95 0.000 .3061277 .4778986
4#30-39 .6200306 .0420412 14.75 0.000 .5376313 .7024299
4#40-49 .4657831 .0366039 12.72 0.000 .3940407 .5375255

4#50+ .3122976 .0429351 7.27 0.000 .2281463 .396449
5#30-39 .5347281 .0580266 9.22 0.000 .4209981 .6484581
5#40-49 .3804535 .0470786 8.08 0.000 .2881812 .4727259

5#50+ .2423312 .0449042 5.40 0.000 .1543206 .3303417
6#30-39 .4473447 .0744291 6.01 0.000 .3014663 .593223
6#40-49 .3019213 .0564876 5.34 0.000 .1912078 .4126349

6#50+ .1838493 .0458435 4.01 0.000 .0939977 .2737008
7#30-39 .3630971 .0867003 4.19 0.000 .1931676 .5330267
7#40-49 .2334903 .0613363 3.81 0.000 .1132733 .3537073

7#50+ .1369302 .0443075 3.09 0.002 .050089 .2237714
8#30-39 .2864909 .092363 3.10 0.002 .1054627 .4675191
8#40-49 .1766445 .0611475 2.89 0.004 .0567977 .2964914

8#50+ .1005104 .0405792 2.48 0.013 .0209766 .1800442
9#30-39 .2204527 .0911719 2.42 0.016 .0417591 .3991463
9#40-49 .1312684 .05699 2.30 0.021 .01957 .2429668

9#50+ .0729585 .0355358 2.05 0.040 .0033095 .1426075
10#30-39 .1660933 .0845261 1.96 0.049 .0004252 .3317615
10#40-49 .0961867 .0504241 1.91 0.056 -.0026428 .1950161

10#50+ .0525181 .0300345 1.75 0.080 -.0063483 .1113846
ll#30-39 .1230226 .0745199 1.65 0.099 -.0230338 .269079
ll#40-49 .0697281 .0428698 1.63 0.104 -.0142953 .1537515

11#50+ .0375723 .0246919 1.52 0.128 -.010823 .0859677
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. mlistat
at() values held constant

2. 3. 1. 1.
k5 k618 agecat agecat wc he lwg

.238 1.35 .385 .219 .282 .392 1.1
at() values vary

_at inc

1 0
2 10
3 20
4 30
5 40
6 50
7 60
8 70
9 80

10 90
11 100

T he labeling of the predictions from m argins can be confusing. The left column of 
th e  prediction table is labeled _at#agecat, which indicates that the information in this 
colum n begins with a number corresponding to the 11 values of inc used for making 
predictions; these are referred to as the _at values. For example, 1 is the prediction with 
in c= 0  while 11 is the prediction with inc=100. After the the value or value label 
for a g e c a t is listed. For example, the row labeled l#30-39 contains the predictions 
when all variables except agecat are held a t the first _at value, with ageca t=  1 as 
indicated by the value label 30-39. The command m arg insp lo t, noci automatically 
understands what these predictions are and creates the plot we want:

. marginsplot, noci legend(cols(3))
Variables that uniquely identify margins: inc agecat

Adjusted Predictions of agecat

30-39 -- •-- 40-49 — ■-- 50+
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This example shows that m arg in sp lo t can plot multiple curves for the same outcome 
from the same model. Unfortunately, it cannot plot curves for multiple outcomes (for 
example, the probability of categories 1, 2, and 3 in an ordinal model) or predictions from 
different models (for example, showing how the predictions differ from two specifications 
of the model). For this, you need to use mgen.

Using mgen with graph

We can create the same graph as in the  previous section by running mgen once for each 
level of age c a t:

. mgen, atmeans at(inc=(0(10)100) agecat=l) stub(PLTl) predlab(30 to 39) 
Predictions from: margins, atmeans at(inc=(0(10) 100) agecat=l) predict(pr)
Variable Obs Unique Mean Min Max Label

PLTlprl 11 11 .4591184 .1230226 .8236541 30 to 39
PLT1111 11 11 .3349719 -.0230338 .7624032 95*/, lower limit
PLTlull 11 11 .583265 .269079 .8849049 95*/. upper limit
PLTlinc 11 11 50 0 100 Family income excluding...

Specified values of covariates
1 . 1 .

k5 k618 agecat wc he lwg

.2377158 1.353254 1 .2815405 .3917663 1.097115

. mgen, atmeans at(inc=(0(10)100) agecat=2) stub(PLT2) predlab(40 to 49) 
Predictions from: margins, atmeans at(inc=(0(10) 100) agecat=2) predict(pr) 

(ou tpu t om itted)
Specified values of covariates

1 . 1 .
k5 k618 agecat wc he lwg

.2377158 1.353254 2 .2815405 .3917663 1.097115

. mgen, atmeans at(inc=(0(10)100) agecat=3) stub(PLT3) predlab(50 plus) 
Predictions from: margins, atmeans at(inc=(0(10)100) agecat=3) predict(pr) 

(outpu t o m itted)
Specified values of covariates

1 . 1 .
k5 k618 agecat wc he lwg

.2377158 1.353254 3 .2815405 .3917663 1.097115
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T h en , we use a more complex graph command to  obtain the following graph:

. graph twoway connected PLTlpr PLT2pr PLT3pr PLTlinc,
> title("Adjusted predictions by age group")
> captionO'Other variables at their means")
> msym(0h Dh Sh) msiz(*1.4 *1.1 *1.2) mcol(black black black)
> lpat(solid solid solid)
> ytitle("Pr(In Labor Force)") ylab(0(.25)1, grid gmin gmax)
> legend(cols(3))

Adjusted predictions by age group

I - — e —  30 to 39 ---- 0----  40  to 49 — B—  50 plus

Other variables at their m eans

W hen there are multiple sets of lines and symbols to be drawn—in this case, three 
se ts  you need to provide options for each set. The option msym(0h Dh Sh) indicates 
that, we want large, hollow circles, diamonds, and squares for the symbols. We find that 
Oh by default is a smaller symbol than Dh or Sh. The m size O  option lets you specify 
th e  size for each symbol. Although you can use names for the sizes, such as m siz ( la r g e  
medium m ed sm all), we find relative sizing to be easier. Our option m s iz (* 1 .4  * 1 .1  
* 1 . 2 ) tells graph to make the first symbol 1.4 times larger than  normal, and so on.

.6.4 Overlapping confidence intervals

We find that researchers sometimes conclude that estimates are significantly different 
only if confidence intervals for two estim ates do not overlap. T hat is, if the confidence 
intervals overlap, the hypothesis that the estimates are equal is accepted. Although this 
might have been a useful approximation when computation was very expensive, it often 
leads to incorrect conclusions because it ignores the covariances of the estimators that 
need to be taken into account when testing equality.4

4. Schenker and Gentleman (2001) show that inference is conservative if the estimators are indepen­
dent.



298 Chapter 6 Models for binary outcomes: Interpretation

To illustrate the problem, as well as show how discrete changes and marginal changes 
can be graphed, we use the techniques above to plot the probability of labor force 
participation by income for women who attended college and those who did not. We 
start with the graph before showing how we created it:

College ---------- NoCollege

We use one mgen command for each level of wc:

. mgen, atmeans at(inc=(0(5)100) wc=0) stub(PLTWCO) predlab(NoCollege) 
Predictions from: margins, atmeans at(inc=(0(5)100) wc=0) predict(pr)
Variable Obs Unique Mean Min Max Label

PLTWCOpr1 
PLTWC0111 
PLTWCOul1 
PLTWCOinc

21 21 
21 21 
21 21 
21 21

.3177494

.2309727
.404526

50

.0623648
-.0151898
.1399194

0

.6889161

.6107004

.7671317
100

NoCollege
95'/, lower limit
95’/, upper limit
Family income excluding...

Specified values of covariates

k5 k618
2 .

agecat
3.

agecat wc
1 .

he lwg

.2377158 1.353254 .3851262 .2191235 0 .3917663 1.097115

. mgen, atmeans at(inc=(0(5)100) wc=l) stub(PLTWCl) predlab(College)
(ou tpu t o m itte d )

We then combine two ra re a  graphs with a connected graph:

. twoway
> (rarea PLTWCOul PLTWC011 PLTWCOinc, col(gsl2))
> (rarea PLTWClul PLTWCU1 PLTWCOinc, col(gsl2))
> (connected PLTWCOpr PLTWClpr PLTWClinc, msym(i i) lpat(dash solid))
> , ytitle(Pr(In Labor Force)) legend(order(4 3))
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Judging by the overlap of confidence intervals, we might mistakenly conclude that the 
probability of labor force participation was significantly higher for women who attended 
college when family income was between $5,000 and $40,000 but not at other incomes.

To see how poorly this “approximation” works, we compute the discrete change 
conditional on income with mgen. The option dydx(wc) specifies th a t we want to predict 
the  marginal effect of wc. Because wc was entered into the model as the factor variables 
i . wc, mgen computes a discrete change.

. mgen, dydx(wc) atmeans at(inc=(0(5)100)) stub(PLTWCDC)
> predlab(Discrete change in LFP by attending college)
Predictions from: margins, dydx(wc) atmeans at(inc=(0(5)100)) predict(pr)
Variable Obs Unique Mean Min Max Label

PLTWCDCd_prl
PLTWCDC111
PLTWCDCull
PLTWCDCinc

21 21 
21 21 
21 21 
21 21

.1507267 

.0556941 

.2457593 
50

.066319
-.0111785
.1438166

0

. 1967745 

.0895455 

. 3049388 
100

Discrete change in L... 
95’/, lower limit 
95'/, upper limit 
Family income exclud...

Specified values of covariates
2 .

k5 k618 agecat
3.

agecat
1 .

wc
1 .

he lwg

.2377158 1 .353254 .3851262 .2191235 .2815405 .3917663 1.097115

Plotting the results along with those for the probabilities leads to  figure 6.2, which shows 
th a t women who attended college have significantly higher probabilities of labor force 
participation over almost the entire income distribution, excepting only incomes above 
$95,000 (where there are very few cases). W hat is remarkable about m argins is that it 
allows you to test just about anything you might want to say about your predictions!
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College ----------NoCollege

Figure 6 .2 . Overlapping confidence intervals compared with discrete change



6.6.5 Adding power terms and plotting predictions 301

.5 Adding power terms and plotting predictions

As shown in section 6.2.1, squared terms can be included in models by using factor- 
variable notation. For example, income and income-squared can be included in the 
model by adding the term c . inc##c. inc. Although you can obtain the same parameter 
estim ates by generating a new variable for income-squared, m argins or our m* commands 
will not compute predictions correctly. W ith factor-variable notation, however, power 
term s and interaction term s do not pose any special problems.5 When mgen makes 
predictions, it autom atically increases income-squared appropriately as income changes.

To illustrate how this works, we compare predictions from a model th a t is linear in 
in c  with a model that adds the squared term  c . in c # c . in c . First, we fit the model 
th a t includes income (but not income-squared) and make predictions:

. logit lfp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
( ou tpu t o m itte d )

. mgen, predlabel(linear) atmeans at(inc=(0 (10)100)) stub(_lin)
Predictions from: margins, atmeans at(inc=(0(10)100)) predict(pr)
Variable Obs Unique Mean Min Max Label

_linprl
_linlll
_linull
_lininc

11 11 
11 11 
11 11 
11 11

.3608011

.2708139

.4507883
50

.0768617 
-.0156624 
.1693859 

0

.7349035 

.6641427 

.8056643 
100

linear
95'/. lower limit 
95’/, upper limit 
Family income excluding...

Specified values of covariates

k5 k618
2.

agecat
3.

agecat
1

wc
1 .

he lwg

.2377158 1.353254 .3851262 .2191235 .2815405 .3917663 1.097115

5. With prgen. our earlier command for graphing predictions, you could not generate correct predic­
tions when your model included, for exam ple, income and income-squared. W ith minor program­
ming, our command praccum allowed you to  generate the correct predictions. Our impression is 
that it was not used often.
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Next, we fit th e  model that adds income-squared and make predictions:

. logit lfp k5 k618 i.agecat i.wc i.hc lwg c.inc##c.inc, nolog 
(o u tp u t o m it te d )

. mgen, predlabel(quadratic) atmeans at(inc=(0(10) 100)) stub(_quad) 
Predictions from: margins, atmeans at(inc=(0(10)100)) predict(pr)
Variable Obs Unique Mean Min Max Label

_quadprl 11 11 .4410442 .2887324 .8078035 quadratic
_quadlll 11 11 .2613508 -.1501808 .7207593 95*/, lower limit
_quadull 11 11 .6207375 .4265932 .9690264 95*/. upper limit
_quadinc 11 11 50 0 100 Family income excluding...

Specified values of covariates
2 . 3. 1 1 .

k5 k618 agecat agecat wc he lwg

.2377158 1 .;353254 .3851262 .2191235 .2815405 .3917663 1.097115

Then, we plot the predictions:

Com paring  incom e specifications

— ©—  linear — 0 - -  quadratic

Other variables at their m eans

Although the differences at higher incomes are suggestive and dramatic, the evidence 
for preferring the quadratic model is mixed. BIC provides positive support for the linear 
model, while AIC supports the quadratic model. The coefficient for income-squared is 
significant a t  the 0.046 level. The confidence intervals around the predictions at high 
income levels (not shown) are wide. Based 011 these results, we are not convinced to 
abandon our baseline model.
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W hen plotting predictions over the range of a variable, you must decide 
where to hold the values of other variables. With the atm eans option 
in mgen, as the plotted variable changes, the other variables stay at the 
same global means. Following our previous discussion of local means, in 
this section we show you how to allow the values of the other variables 
to change as the variable being plotted changes. This requires using 
m tab le  with the o v er O  option and moving predictions from the matrix 
th a t m tab le  returns. These steps require more data management than 
other parts of the book, but they can provide valuable insights into how 
robust your plot and conclusions are to  assumptions about the levels of 
other variables.

W hen demonstrating tables of predictions, we suggested caution before holding other 
variables at their global means because changing one variable while holding all other 
variables at the same values might not be realistic. For example, suppose that we 
included age in our model as a continuous variable ranging from 20 to 90. Plotting 
predictions as age changes while holding the number of young children constant is 
unrealistic because older respondents are unlikely to have any young children in the 
family. Note that we have the same problem if we used a so b se r v e d  instead of atmeans 
here; in that case, we would 1»' including in our average predictions those cases for which 
the  hypothetical value of age is implausible given the observed numbers of children. One 
alternative approach, which we will not explore further here, is to forgo using global 
m eans in favor of a set of representative values that are substantively plausible for all 
values of age (that is, a family with no children).

In any event, if you are plotting predictions in regions of your data  where it is impos­
sible or very unlikely th a t observations will exist, the predictions might be misleading. 
You can determine whether global means are reasonable by exploring how other values 
affect the results. We will consider what happens when we use local means instead of 
global in generating the plot. To illustrate how this is done, we sta rt with the example 
used above, where we plotted labor force participation by income:
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. mgen, at(inc=(0(10)100)) atmeans stub(GLOBAL) predlabel(Global means) 
Predictions from: margins, at(inc=(0(10)100)) atmeans predict(pr) 
Variable Obs Unique Mean Min Max Label

GLOBALprl
GL0BAL111
GLOBALull
GLOBALinc

11 11 
11 11 
11 11 
11 11

.3608011

.2708139

.4507883
50

.0768617 
-.0156624 
.1693859 

0

.7349035

.6641427

.8056643
100

Global means
95*/, lower limit
95'/, upper limit
Family income excluding...

Specified values of covariates

k5 k618
2 . 

agecat
3.

agecat
1 ,

wc
1 .

he lwg

.2377158 1.353254 .3851262 .2191235 .2815405 .3917663 1.097115

Plotting the predictions produces th e  following plot:

Predictions using global m eans

These predictions were made by increasing family incomes from $0 to $100,000, holding 
wc, he, lwg, and other variables at their global means. This implies that those with no 
income have the same education and wages as those with $100,000. As noted, before 
accepting this graph as a reasonable summary of the effect of family income on labor 
force participation, we want to determine how sensitive the predictions are to the values 
at which we held the other variables. In particular, what would happen if we held the 
other variables at levels more typical of those with a given income?

Because in c  is continuous, we cannot compute means for the nonincome variables 
conditional on a single value of income, because these means might be based on very 
few observations. Instead, we begin by generating the variable in c  10k, which divides 
inc into groups of $10,000:
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. gen inclOk = trunc(inc/10)

. label var inclOk "income in 10K categories"

. tabulate inclOk, miss
income in 

10K
categories Freq. Percent Cum.

0 99 13.15 13.15
1 353 46.88 60.03
2 198 26.29 86.32
3 61 8.10 94.42
4 22 2.92 97.34
5 10 1.33 98.67
6 3 0.40 99.07
7 4 0.53 99.60
8 1 0.13 99.73
9 2 0.27 100.00

Total 753 100.00

Because there are very few cases in some of the higher income groupings, we might want 
to use larger groups. But for the experiment we have in mind, this is a  reasonable place 
to begin. Next, we use m tab le , over (inclO k) atmeans c i  to  compute predictions by 
selecting observations at each value of inclOk. I his is equivalent to  running m table 
repeatedly for subsamples defined by inclO k.

mtable if incl0k==0, atmeans ci 
mtable if inclOk==l, atmeans ci 

(output om itted) 
mtable if incl0k==9, atmeans ci



The results show how the values of o ther variables vary as income changes:

. mtable, over(inc10k) atmeans ci
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Expression: Pr(lfp), predict()

k5 k618
2.

agecat
3.

agecat
1.

wc
1.

he

1 .202 1.43 .303 .222 .121 .0808
2 .261 1.29 .363 .215 .212 .312
3 .192 1.37 .455 .192 .369 .52
4 .213 1.54 .361 .311 .443 .689
5 .318 1.55 .409 .273 .5 .727
6 .4 .6 .6 .2 .8 .8
7 0 1 .333 .667 .333 .667
8 .75 1.25 .75 0 .75 1
9 0 2 1 0 0 0

10 1 2.5 0 0 1 1

lwg inc Pr(y) 11 ul

1 .922 7.25 0.641 0.584 0.698
2 1.08 15.1 0.600 0.559 0.642
3 1.17 24.1 0.588 0.546 0.630
4 1.16 33.7 0.492 0.426 0.557
5 1.05 43.4 0.373 0.283 0.463
6 1.48 53.8 0.389 0.261 0.517
7 1.07 64.9 0.201 0.085 0.318
8 1.41 75.3 0.164 0.046 0.282
9 1.07 88 0.102 -0.005 0.208

10 1.33 93.5 0.112 -0.006 0.229
Specified values where .n indicates no values specified with at()

No at()

Current . n

To plot these predictions, we need to move them into variables, something that is 
ordinarily done automatically by mgen. Unfortunately, mgen does not allow local means 
when making predictions. So we must manually move the predictions that mtable saves 
in the return m atrix r ( ta b le ) .

To do this, we first create a matrix, lo c a lp re d . equal to r  ( t a b l e ) . This is necessary 
because some of the commands we want to use will not work on an r ( )  matrix.
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matrix localpred = r(table) 
matlist localpred, format(*/,8.2g)

k5 k618
2.

agecat
3.

agecat
1.

wc
1.

he

1 .2 1.4 .3 .22 .12 .081
2 .26 1.3 .36 .22 .21 .31
3 .19 1.4 .45 .19 .37 .52
4 .21 1.5 .36 .31 .44 .69
5 .32 1.5 .41 .27 .5 .73
6 .4 .6 .6 .2 .8 .8
7 0 1 .33 .67 .33 .67
8 .75 1.3 .75 0 .75 1
9 0 2 1 0 0 0

10 1 2.5 0 0 1 1

lwg inc Pr (y) 11 ul

1 .92 7.2 .64 .58 .7
2 1.1 15 .6 .56 .64
3 1.2 24 .59 .55 .63
4 1.2 34 .49 .43 .56
5 1 43 .37 .28 .46
6 1.5 54 .39 .26 .52
7 1.1 65 .2 .085 .32
8 1.4 75 .16 .046 .28
9 1.1 88 .1 -.0048 .21
10 1.3 94 .11 -.0058 .23

Next, we select all rows of the matrix (designated as 1 . . . )  and the set of columns 
starting with column in c  and ending with column ul. We use m atrix  colnames to  
give the columns the names we want to  use for the new variables created in the next 
step.

. matrix localpred = r(table)

. matrix localpred = localpred[1...,"inc" .. "ul"]

. matrix colnames localpred = LOCALinc LOCALpr L0CAL11 LOCALul

The command svmat generates variables from the columns of a  matrix. The names (c o l)  
option specifies that the new variables should have names corresponding to the columns 
of the matrix.

. svmat localpred, names(col)

. label var LOCALpr "Local means"

We gave variable LOCALpr a label th a t will be used in the graph we now create:

. twoway
> (connected GLOBALpr GLOBALinc,
> clcol(black) clpat(solid) msym(i))
> (connected LOCALpr LOCALinc,
> clcol(black) clpat(dash) msym(i))
> , ytitleC'Pr(In Labor Force)") ylab(0(.25)l, grid gmin gmax)
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Global m eans ---------- Local m eans

In this example, there are no m ajor discrepancies, suggesting th a t using the global 
means is appropriate for making the predictions.

.7 Conclusion
As we have discussed, the models for binary outcomes discussed in this chapter are 
not just widely used, they also provide a conceptual foundation for the models that we 
discuss in subsequent chapters. The coefficients for these models cannot be effectively 
interpreted directly, and even though the exponentiated coefficients for the logit model— 
the odds ra tio — are widely used, we think these often do not convey the substance of 
one’s findings very well either.

Instead, wc spent most of the chapter describing interpretations based on predicted 
probabilities, and here Stata’s m argins command and our m* commands based on 
margins are extremely useful, m argins is so flexible that it allows the estimation of 
quantities th a t have quite subtle conceptual differences, which may or may not have 
much consequence in any particular application. Regardless, though, a prerequisite on 
being able to  clearly present findings to your audience is to  understand them clearly 
yourself—and so understanding precisely the differences between, for example, AMEs 
and MEMs, is im portant for coherently and accurately recounting results. We also 
showed how to  very broadly conduct hypothesis tests about different predictions that 
margins generates, and how to use m argins with local means instead of relying simply 
on global means. In doing so, wc hope not only to provide a strong set of tools for 
interpreting the results of models for binary outcomes, but also to provide a foundation 
for what we will do in the chapters th a t follow.



Models for ordinal outcomes

Although the categories for an ordinal variable can be ordered, the distances between 
th e  categories are unknown. For example, in survey research, questions often provide 
th e  response categories of strongly agree, agree, disagree, and strongly disagree, but an 
ana lyst would probably not assume th a t the distance between strongly agreeing and 
agreeing is the same as the distance between agreeing and disagreeing. Educational a t­
tainm ents can be ordered as elementary education, high school diploma, college diploma, 
and  graduate or professional degree. Ordinal variables also commonly result from limi­
ta tio n s  of data availability that require a  coarse categorization of a variable that could, 
in principle, have been measured on an interval scale. For example, we might have a 
m easure of income that is simply low, medium, or high.

Ordinal variables are often coded as consecutive integers from 1 to the number of cat­
egories. Perhaps because of this coding, it is tempting to analyze ordinal outcomes with 
the  linear regression model (LRM). However, an ordinal dependent variable violates the 
assumptions of the LRM, which can lead to incorrect conclusions, as demonstrated strik­
ingly by McKelvey and Zavoina (1975, 117) and Winship and Mare (1984, 521-523). 
W ith  ordinal outcomes, it is much better to use models that avoid the assumption that 
the distances between categories are equal. Although many models have been designed 
for ordinal outcomes, in this chapter we focus on the logit and probit versions of the 
ordinal regression model (ORM). The model was introduced by McKelvey and Zavoina 
(1975) in terms of an underlying latent variable, and in biostatistics by McCullagh 
(1980), who referred to the logit version as the proportional-odds model. In section 7.16, 
we review several less commonly used models for ordinal outcomes.

As with the binary regression model (B R M ), the ORM is nonlinear, and the magnitude 
of the  change in the outcome probability for a given change in one of the independent 
variables depends on the levels of all the independent variables. As with the BRM, the 
challenge is to summarize the effects of the independent variables in a way that fully 
reflects key substantive processes without overwhelming and distracting detail. For 
ordinal outcomes, as well as for the models for nominal outcomes in chapter 8 , the 
difficulty of this task is increased by having more than two outcomes to explain.

Before proceeding, we caution th a t researchers should think carefully before con­
cluding that their outcome is indeed ordinal. Do not assume th a t a  variable should 
be analyzed as ordinal simply because the values of the variable can be ordered. A 
variable that can be ordered when considered for one purpose could be unordered or 
ordered differently when used for another purpose. Miller and Volker (1985) show how 
different assumptions about the ordering of occupations result in different conclusions.

309
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A variable might also reflect ordering on more than one dimension, such as attitude 
scales that reflect both the intensity and the direction of opinion. Moreover, surveys 
commonly include the category “don’t  know” , which probably does not correspond to 
the middle category in a scale, even though analysts might be tempted to treat it this 
way. In general, ORMs restrict the nature of the relationship between the independent 
variables and the probabilities of outcome categories, as discussed in section 7.15. Even 
when an outcome seems clearly to be ordinal, such restrictions can be unrealistic, as 
illustrated in chapter 8 . Indeed, we suggest that you always compare the results from 
ordinal models with those from a model th a t does not assume ordinality.

We begin by reviewing the statistical model, followed by an examination of testing, 
fit, and m ethods of interpretation. These discussions are intended as a review for those 
who are familiar with the models. For a complete discussion, see Agresti (2010), Long 
(1997), or Hosmer, Lemeshow, and Sturdivant (2013). As explained in chapter 1, you 
can obtain sample do-files and data files by installing the spostl3_do  package.

,1 The statistical model
The ORM can be developed in different ways, each of which leads to the same form of 
the model. These approaches to the model parallel those for the BRM. Indeed, the BRM 
can be viewed as a special case of the ordinal model in which the ordinal outcome has 
only two categories.

1.1 A latent-variable model

The ORM is commonly presented as a  latent-variable model. Defining y* as a latent 
variable ranging from — oo to oo, the structural model is

Vi =  x ,/3  +  £i

where i is the observation and £ is a random  error, as discussed further below. For the 
case of one independent variable,

y* = oc + fixi + £t

The measurement model for binary outcomes from chapter 5 is expanded to divide y' 
into J  ordinal categories,

yi — m  if rm_ i <  y* <Tm  for m  =  1 to J

where the cutpoints T\ through t j - \  are estimated. (Some authors refer to these as
thresholds.) We assume tq =  — oo and tj =  oo for reasons th a t will be clear shortly.

To illustrate the measurement model, consider the example used in this chapter.
People are asked to respond to the following statement:
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If you were asked to use one of four names for your social class, which would 
you say you belong in: th e  lower class, the working class, the middle class, 
or the upper class?

The underlying, continuous latent variable can be thought of as the propensity to iden­
tify oneself as having higher socioeconomic standing. The observed response categories 
are tied to  the latent variable by the measurement model

> Lower if tq =  —oo < y* < T\
> Working if T\ <  y* < t2
> Middle if r 2 <  y* < r3
> Upper if 73 < y* < T4 =  00

Thus when the latent y* c ro sses a  cutpoint, the observed category changes. Anderson 
(1984) referred to  ordinal var ia b les created in this fashion as grouped continuous vari­
ables and referred to the ORM a s the grouped continuous model.

V i  =

Figure 7.1 . Relationship between observed y and latent y* in ORM with one independent 
variable

For a single independent variable, the structural model is y* — a  -I- f3x + £, which is 
plotted in figure 7.1 along with the cutpoints for the measurement model. This figure is 
similar to that for the BRM , except th a t there are now three horizontal lines representing 
the cutpoints n ,  r 2, and r3. The three cutpoints lead to four levels of y  that are labeled 
on the right-hand side of the graph.

The probability of an observed outcome y  for a given value of x , represented by the 
three vertical lines in the figure, is the area under the curve between a pair of cutpoints.
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For example, the probability of observing y = m. for given values of the x’s corresponds 
to the region of the distribution where y* falls between rm_ i and r m:

P r (y = m  | x) =  P r (rm_i < y* < r m | x)

Substituting x/3 +  £ for y* and using some algebra leads to the standard formula for the 
predicted probability in the ORM,

P r (y = m  | x) =  F  (rm -  x/3) -  F  (rm_ i -  x/3) (7.1)

where F  is th e  cumulative distribution function for £. In the  ordinal probit model, F  
is normal w ith Var(e) =  1; in the ordinal logit model, F  is logistic with Var(e) = 7r2/ 3 . 
For y = 1, th e  second term on the right drops out because F (  —oo — x/3) =  0, and for 
y =  J , the first term  equals F  (oo — x./3) = 1.

Comparing these equations with those for the BRM shows that the ORM is identical 
to the BRM w ith one exception. To dem onstrate this, we fit chapter 5’s binary model for 
labor force participation with both l o g i t  and o lo g it (the command for ordinal logit):

. use binlfp4, clear
(binlfp4. dta I Mroz data on labor force participation of women I 2013-07-15)
. logit lfp c.k5 c.k618 i.agecat i.wc i.hc c.lwg c.inc, nolog 

(ou tpu t om itted )

. estimates store logit

. ologit lfp c.k5 c.k618 i.agecat i.wc i.hc c.lwg c.inc, nolog 
(ou tpu t omitted )

. estimates store ologit



To com pare the coefficients, wc use e s t im a t e s  t a b le : 1

. estimates table logit ologit, b('/,9.3f) t variabel varwidth(30) equations(1:1)
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Variable logit ologit

#1
# kids < 6 -1.392 -1.392

-7.25 -7.25
# kids 6-18 -0.066 -0.066

-0.96 -0.96
agecat
40-49 -0.627 -0.627

-3.00 -3.00
50+ -1.279 -1.279

-4.92 -4.92

wc
college 0.798 0.798

3.48 3.48

he
college 0.136 0.136

0 .6 6 0.66
Log of wife's estimated wages 0.610 0.610

4.04 4.04
Family income excluding wife's -0.035 -0.035

-4.24 -4.24
Constant 1.014

3.54

cutl
Constant -1.014

-3.54

legend: b/t

The slope coefficients and their 2-values are identical. For lo g i t ,  though, an in­
tercept or constant is reported, whereas for o lo g it,  the intercept is replaced by the 
cut point labeled c u tl .  The cut point has the same magnitude bu t opposite sign as the 
intercept from lo g i t .  This difference is due to how the two models are identified. As 
the ORM has been presented, there are “too many” free parameters; th a t is, you cannot 
estimate J  — 1 thresholds and the constant too. For a unique set of maximum likeli­
hood estimates to  exist, an identifying assumption needs to be made about either the 
intercept or one of the cutpoints. S ta ta ’s o lo g i t  and o p ro b it commands identify the 
ORM by assuming that the intercept is 0 and then estimating all cutpoints.

Some other software packages that fit the ORM instead fix one of the cutpoints to 0  
and estimate the intercept. Although the different parameterizations can be confusing, 
keep in mind th a t the slope coefficients and predicted probabilities are the same under

1. Because l o g i t  has a constant and o lo g i t  has a cutpoint, by default e stim a te s  ta b le  will not 
line up the coefficients from the two m odels. Rather, each of the independent variables will be 
listed twice, eq u a tio n s(1:1) tells estim a te s  ta b le  to line up the coefficients. This is easiest to  
understand if you try our command without the equations (1:1) option.
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either param eterization (see Long [1997, 122-123] for details). Section 7.5 shows how 
to fit the ORM using alternative parameterizations.

1.2 A nonlinear probability model

The ORM can also be developed as a  nonlinear probability model without appealing to 
an underlying latent continuous variable. Here we show how this is done for the ordinal 
logit model. F irst, we define the odds that an outcome is less than or equal to m versus 
greater than  m  given x:

O l \ -  P r (2/ ^ 7X1 I X) f _  1 T 1^<m |>m  (^) — d  / | \ for ^  1-  1 P r  (y  > m  \ x)

For example, we could compute the odds of lower- or working-class identification (that
is, rn < 2) versus middle- or upper-class identification (rn > 2). The log of the odds is
assumed to  equal

In i2<m|>m (x) =  rm -  x/3 (7.2)

Critically, the  /3’s are the same for all values of m.

For a single independent variable and three categories, where we are fixing the 
intercept to  equal 0 and estimating the r ’s, the model is

P r (y < 1 | x)
Pr (;/ >  l~~j~x) =  Tl ~  ^

In
Pr (y > 2 | x)

Although it may seem confusing th a t we subtract ¡3x ra ther than adding it, this is a 
consequence of computing the logit of y < rn versus y > rn. We agree that it would be 
simpler to stick with r m +  f ix , but this is not the way the model is normally presented.

.2 Estimation using ologit and oprobit
The ordered logit and probit models can be fit with the following commands and their 
basic options:

o lo g it depvar [indepvars] [i f ] [m ] [ weight , v ce ( vcetype) o r]

oprob it depvar [ indepvars ] [i f ]  [ in] [ weight ] [ ,  vc e(. vcetype)]

In our experience, these models take more steps to converge than  either models for 
binary outcomes fit using lo g i t  or p ro b i t  or models for nominal outcomes fit using 
mlogit.
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Variable lists

depvar is the dependent variable. The values assigned to the outcome categories are 
irrelevant, except th a t larger values are assumed to correspond to “higher” out­
comes. For example, if you had three outcomes, you could use the values 1, 2, and 
3, or —1.23, 2.3, and 999. To avoid confusion, however, we recommend coding 
your dependent variable as consecutive integers beginning with 1.

mdepvars is a list of independent variables. If indepvars is not included, Stata fits a 
model with only cutpoints.

Specifying the estimation sample

if and in  q u a lif ie rs . These can be used to restrict the estimation sample. For exam­
ple, if you want to fit an ordered logit model for only those surveyed in 1980 (year 
=  1), you could specify o lo g it  c la s s  i.fem a le  i .w h ite  i.e d u c  age inc i f  
year==l.

Listwise d e le tio n . S ta ta  excludes cases in which there are missing values for any of 
the variables in the model. Accordingly, if two models are fit using the same 
dataset bu t have different sets of independent variables, it is possible to have 
different samples. We recommend th a t you use mark and markout (discussed in 
section 3.1.G) to explicitly remove cases with missing data.

Weights and complex samples

Both o lo g i t  and o p ro b it  can be used with f  weights, pweights, and iweights. Survey 
estimation can be done using the svy prefix. See section 3.1.7 for details.

Options

vce(vcetijpc) specifies the type of standard errors to be computed. See section 3.1.9 for 
details.

or reports odds ratios for the ordered logit model.

Additional options and information can be found in the Stata manual entries [R] o log it 
and [r ] o p ro b it.

7.2.1 Example of ordinal logit model

Our example is based on a question asked in the 1980, 1996, and 2012 General Social 
Surveys. These are repeated cross-sectional data, not panel data. T hat is, in each wave 
the survey was administered to new respondents from a new nationally representative 
sample. The following variables are in the model:
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. use gssclass4, clear
(gssclass4.dta | GSS Subjective Class Identification | 2013-11-20) 
. codebook class female white year ed age income, compact 
Variable Obs Unique Mean Min Max Label

class 5620 4 2.437544 1 4 subjective class id
female 5620 2 .5491103 0 1 respondent is female
white 5620 2 .8140569 0 1 resondent is whte
year 5620 3 2.070996 1 3 year of GSS survey
educ 5620 3 2.064769 1 3 educational attainment
age 5620 72 45.15712 18 89 age of respondent
income 5620 62 68.07737 .51205 324.2425 household income

Respondents were asked to indicate the social class to which they think they most 
belong, using categories coded 1 =  lower, 2 =  working, 3 =  m iddle, and 4 = upper. 
The resulting variable c la s s  has the  distribution:

. tabulate class
subjective 
class id Freq. Percent Cum.

lower 394 7.01 7.01
working 2,567 45.68 52.69
middle 2,465 43.86 96.55
upper 194 3.45 100.00

Total 5,620 100.00

The variable educ is a categorical variable in which the categories are less than a high 
school diploma, high school diploma, and college diploma. The variable income is 
measured in 2012 dollars for all years of the survey.

Using these data, we use o lo g i t  to fit the model

P r(c la s s  = m  \ x i)  = F (rTn -  x/3) -  F ( r m_i -  x/3)

where

x/3 =  /3£emalef  emale + /3whitew hite

“I- /3year[i996] (year 1996) -)■ /^year[2oi2] (year 2012)

“f- ;̂ educ[hs only] (educ 2) + . êduc[college] (educ 3)

+  /?c.agec .ag e  +  / 3 c . a g e # c . a g e C . a g e # c . a g e  + / 3 i n C om e income

To specify the model, we use the factor-variable notation i . y ea r to create indicators 
for the year of the survey, i . educ for education, and c . age##c . age to include age and 
age-squared, e s tim a te s  s to re  is used so that we can later make a table containing 
these results.
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ologit class i.female i.white i.year i.educ c.age##c.age income, nolog
Ordered logistic regression 

Log likelihood = -5016.2107

Number of obs 
LR chi2(9) 
Prob > chi2 
Pseudo R2

5620
1453.95
0.0000
0.1266

class Coef. Std. Err. z P> 1 z [95*/. Conf. Interval]

female
female .0162383 .054419 0.30 0.765 -.0904211 .1228976

white
white .2363442 .0721307 3.28 0.001 .0949707 .3777177

year
1996
2012

-.0799464
-.5038717

.0690368

.0764131
-1.16
-6.59

0.247
0.000

-.215256
-.6536386

.0553632 
-.3541048

educ 
hs only 
college

.3704854 
1.565553

.0783189 

.0978863
4.73
15.99

0.000
0.000

.2169832
1.373699

.5239876
1.757406

age -.0488039 .009194 -5.31 0.000 -.0668239 -.0307839

c.age#c.age .0007093 .0000928 7.65 0.000 .0005275 .0008911

income .0116206 .0005234 2 2 .2 0 0.000 .0105948 .0126464

/cutl 
/cut 2 
/cut 3

-2.140323 
.9152707 
4.934708

.2279743 

.2251007 
.243606

-2.587144
.4740813
4.457249

-1.693501
1.35646

5.412167

. estimates store ologit

The information in the header and the table of coefficients is in the same form as 
discussed in chapters 3 and 5, with the addition of estimates for the cutpoints at the 
end.

Next, we fit the ordered probit, model:

oprobit class i.female i.white i.year i.educ c.age##c.age income, nolog 
(output om itted ) 
estimates store oprobit



Because we stored the  results for both  models, we can compare the results with the 
command e s t im a te s  ta b le :

. estimates table ologit oprobit, b('/,9.3f) t varlabel varwidth(30)
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Variable ologit oprobit

class
female

female 0.016
0.30

0.002
0.05

white
white 0.236

3.28
0.106
2.65

year
1996

2012

-0.080 
-1.16 

-0.504 
-6.59

-0.062
-1.57
-0.302
-6.98

educ 
hs only

college

age of respondent

0.370 
4.73 
1.566 
15.99 

-0.049 
-5.31

0.195
4.49
0.852
15.74

-0.025
-4.91

c.age#c.age 

household income

0 .0 0 1
7.65

0 .0 1 2
22 .2 0

0.000
7.03
0.006
22.90

cutl
Constant -2.140

-9.39
-1.285
-10.05

cut2
Constant 0.915

4.07
0.471
3.72

cut 3
Constant 4.935

20.26
2.599
19.58

legend: b/t

As with the BRM, the estimated coefficients differ from logit to probit by a factor of 
about 1.7 , reflecting the different scaling of the ordered logit and ordered probit models 
that results from different assumptions about the variance of the errors. We also see 
scaling differences in the cutpoints, which are also larger in the ordered logit model. 
Values of the  z tests are similar because they are not affected by the scaling, but they 
are not identical because of slight differences in the shape of the assumed distribution 
of the errors.
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7.2.2 Predicting perfectly

If either the highest or the lowest category of the dependent variable does not vary 
within one of the categories of an independent variable, there will be a problem with 
estimation. To see what happens, we created an artificial example with a dummy 
variable for whether respondents have a  college degree. Tabulating co lleg e  against 
c la s s  shows th a t in all cases where c o lle g e  is 1, respondents have values of c la s s  
equal to 4, indicating upper-class identification:

. tabulate class college
subjective 

class id
Has college degree? 

no yes Total

lower 394 0 394
working 2,567 0 2,567
middle 2,465 0 2,465
upper 81 113 194

Total 5,507 113 5,620

Accordingly, if you know co lleg e  is 1, you can predict perfectly that c la ss  is 4. Al­
though we purposely constructed c o lle g e  so this would happen, perfect prediction 
occurs in real data, especially when samples are small or one of the outcome values is 
infrequent.

When we fit the ordered logit model w ith co llege  as a  regressor, the perfectly 
predicted observations are retained in the estimation sample with a warning message 
appearing below the table of estimates:
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. ologit class i.female i.white i.year i.college c.age##c.age income, nolog 
Ordered logistic regression Number of obs = 5620

LR chi2(8) = 1692.08
Prob > chi2 = 0.0000

Log likelihood = -4897.1452 Pseudo R2 = 0.1473

class Coef. Std. Err. z P> 1 z [957. Conf. Interval]

female
female .0533943 .0545116 0.98 0.327 -.0534465 .160235

white
white .2431002 .0710321 3.42 0.001 .1038797 .3823206

year
1996
2012

.0313275
-.28093

.0680653

.0746029
0.46
-3.77

0.645
0.000

-.1020781
-.427149

.1647331 
-.134711

college
yes
age

35.48775
-.0396543

731118.3
.0092189

0.00
-4.30

1.000
0.000

-1432930
-.057723

1433001
-.0215857

c.age#c.age .0005788 .0000929 6.23 0.000 .0003966 .0007609

income .0133525 .0005602 23.84 0.000 .0122546 .0144505

/cutl 
/cut 2 
/cut 3

-2.217543
.7238815
5.342231

.2237908

.2204395

.2540771

-2.656165
.2918281
4.844249

-1.778921
1.155935
5.840213

Note: 113 observations completely determined. Standard errors questionable.

The note reflects th a t the standard error for co llege is enormous, indicating the prob­
lem that occurs when trying to estim ate a coefficient that is effectively infinite. Another 
way of thinking about the large standard  error is that the lack of variation in the out­
come when c o lle g e  equals 1 means we do not have any information that would permit 
us to estim ate the coefficient with precision. When this happens, our next step is to 
drop the 113 cases for which c o lle g e  equals 1 (you could use the command drop i f  
co llege==l to do this) and refit the model without c o lle g e . This is done automatically 
for binary models fit by lo g i t  and p ro b i t  (see section 5.2.3).

There is no problem if an independent variable perfectly predicts one of the middle 
categories. For example, if all observations for which c o lle g e  is 1 reported being middle 
class, this would not cause problems for estimation.

.3 Hypothesis testing
Hypothesis tests of regression coefficients can be evaluated with the z statistics in the 
estimation output, with t e s t  and te s tp a rm  for Wald tests of simple and complex 
hypotheses, and with l r t e s t  for likelihood-ratio tests. We briefly review each. See 
section 3.2 for additional information on these commands.
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7.3.1 Testing individual coefficients

If the assumptions of the model hold, the maximum likelihood estimators from ologit 
and o p ro b it are distributed asymptotically normally. The hypothesis Hü: = p*
can be tested with z = (0k ~ 0*)/^$k- Under the assumptions justifying maximum 
likelihood, if H0 is true, then 2 is distributed approximately normally with a mean of 0 
and a  variance of 1 for large samples. For example, consider the results for the variable 
w h ite  from the o lo g i t  output above. We are using the sform at option to show more 
decimal places for the 2 statistic :2

. ologit class i.female i.white i.year i.educ c.age##c.age income,
> nolog sformat(*/,8.3f)
Ordered logistic regression Number of obs = 5620

LR chi2(9) = 1453.95

Log likelihood = -5016.2107
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.1266

class Coef. Std. Err. z P> 1 z 1 [95*/, Conf. Interval]

female
female .0162383 .054419 0.298 0.765 -.0904211 .1228976

white
white .2363442 .0721307 3.277 0.001 .0949707 .3777177

(output om itted)

We conclude the following:

Whites and nonwhites significantly differ in their subjective social class iden­
tification (z = 3.28, p < 0.01, two-tailed).

Either a one-tailed or a two-tailed test can be used, as discussed in chapter 5.

The 2 test in the output of estimation commands is a Wald test, which can also be 
computed using t e s t .  For example, to  test H q\ /3White =  0, type

. t e s t  1 .w hite
( 1) [ c la s s ] 1 .w h ite  = 0

ch i2 ( 1) = 10.74
Prob > ch i2  = 0.0011

We conclude the following:
/ 2

Whites and nonwhites significantly differ in their class identification (x 
10.74, df =  1, p < 0.01).

2. We are displaying more decimal places to  later demonstrate the equivalence of the z test 
the corresponding chi-squared test. W ith any estimation command, the option cfonnat fm 
be used to format the display of coefficients and standard errors. Likewise, option pformat 
formats the display of p-values and option sform at (/mi) formats the displa> o test is 
Alternatively, the s e t  command can also be used to change these formats e i t h e r  permanen y 
for the rest of the current Stata session. See [R] s e t  cform at in the Stata manua * or f
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The value of a chi-squared test w ith 1 degree of freedom is identical to the square of 
the corresponding z  test, which can he demonstrated with the d isp lay  command:

. display "z*z=" 3.277*3.277 
z*z=10.738729

A likelihood-ratio LR test is com puted by comparing the log likelihood from a full 
model with th a t from a restricted model. To test a single coefficient, we begin by fitting 
the full model and storing the estimates:

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog 
(output o m itted)

. estimates store fullmodel

Then, we fit a model that excludes the variable white th a t we want to test.

. ologit class i.female i.year i.educ c.age##c.age income, nolog 
(ou tput om itted)

. estimates store dropwhite

The l r t e s t  command computes the test:

. lrtest fullmodel dropwhite 
Likelihood-ratio test
(Assumption: dropwhite nested in fullmodel)

The resulting LR test can be interpreted as follow s:

The effect of being white on class identification is significant (LR \'2 =  10.75, 
df =  1 , p < 0 .01).

.3.2 Testing multiple coefficients

We can also test complex hypotheses th a t involve more th an  one coefficient. For exam­
ple, our model has the demographic variables white, fem ale, and age. To test that the 
effects of these variables are simultaneously equal to 0—th a t is, Ho: /3„hite =  /̂ female = 
$age =  /3age#age =  0—we can use either a Wald or an LR test. For the Wald test, we fit 
the full model and then use the t e s t  command:

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog 
(output om itted )
test 1 .white 1 .female age age#age
( 1) [class]1 .white = 0
( 2) [class]1 .female = 0
( 3) [class]age = 0
( 4) [class]c.age#c.age = 0

chi2( 4) - 226.75
Prob > chi2 = 0.0000

LR chi2(l) = 10.75
Prob > chi2 = 0.0010
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Before we interpret the results of the test, we want to clarify how coefficients are specified 
in th e  t e s t  command when factor-variable notation is used. The specification i .  white 
added th e  variable 1 . w hite  to the model as shown in the ou tpu t to o lo g it  above. 
Accordingly, we are testing the coefficient associated with the variable 1 . white, not 
i  .w h i te  or w hite. The same rule applies for female. Age was entered into the model as 
c . a g e # # c . age, which was expanded to estim ate coefficients for c . age and c . age#c. age. 
W hen entering these coefficients into t e s t ,  we do not need to  include the c. prefix 
(although  we could do so). Regardless of how we specify the t e s t  command, we conclude 
the  following:

T he hypothesis th a t the demographic effects of age, race, and sex are simul­
taneously equal to 0 can be rejected a t the 0.01 level ( x2 = 226.8, df =  4, 
p  <  0 .01).

To compute an LR test o f  m u ltip le  coefficients, we first fit the full model and store 
the results with e s tim a te s  s to re . Suppose we are interested in whether demographic 
characteristics m atter a t all for subjective class identification or whether identification 
is only a  function of socioeconomic status and changes over time. To test Ho'. .¿Wte =  
.^female =  fage = ftagetage = 0, we fit th e  model that excludes these four coefficients and 
r im  l r t e s t :

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog 
(output omitted)

. estimates store fullmodel 

. ologit class i.year i.educ income, nolog 
(output omitted)

. estimates store dropdemog 

. lrtest fullmodel dropdemog
Likelihood-ratio test LR chi2(4) = 236.53
(Assumption: dropdemog nested in fullmodel) Prob > chi2 = 0.0000

We conclude the following:

The hypothesis th a t the demographic effects of age, race, and sex are simul­
taneously equal to 0 can be rejected at the 0.01 level (LR x 2 — 236.5, df =  4, 
p < 0 .01).

We find that the Wald and LR tests usually lead to the same decisions, and there 
is no reason why you would typically want to compute bo th  tests. \ \  hen there are 
differences, they generally occur when the tests are near the cutoff for statistical sig­
nificance. Because the LR test is invariant to  reparameterization, we prefer the LR test 
when both are available. However, only the Wald test can be used if robust standard 
errors, probability weights, or survey estim ation are used.

W hen a factor variable has more than  two categories, such as y ea r and educ in our 
model, you can specify each of the coefficients with t e s t  (for example, t e s t  2 . educ 
3 . educ) or you can use testparm :
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. testparm i.educ
( 1) [class]2 .educ = 0 
( 2) [class]3.educ = 0

chi2( 2) = 329.48
Prob > chi2 = 0.0000

t e s t  can also be used to test the equality of coefficients, as shown in section 5.3.2.

.4 Measures of fit using fitstat
As we discussed in greater detail in chapter 3, scalar measures of fit can be used when 
comparing competing models (also see Long [1997, 85 113]). Several measures can be 
computed after either o lo g it  or o p ro b it  by using the SPost command f i t s t a t .  In 
this example, we compare a model for class identification that includes age but not 
age-squared with the model we have been using that includes age-squared:

. ologit class i.female i.white i.year i.educ age income, nolog 
(ou tpu t o m itted)

. quietly fitstat, save

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog 
(ou tpu t om itted )

. fitstat, diff
Current Saved Difference

Log-likelihood
Model -5016.211 -5045.903 29.692

Intercept-only -5743.186 -5743.186 0.000

Chi-square
D (df=5608/5609/-1) 10032.421 10091.806 -59.385

LR (df=9/8/l) 1453.951 1394.566 59.385
p-value 0.000 0.000 0.000

R2
McFadden 0.127 0 .12 1 0.005

McFadden (adjusted) 0.124 0.119 0.005
McKelvey & Zavoina 0.284 0.274 0 .0 1 1

Cox-Snell/ML 0.228 0.220 0.008
Cragg-Uhler/Nagelkerke 0.262 0.252 0.009

Count 0.605 0.600 0.005
Count (adjusted) 0.273 0.264 0.009

IC
AIC 10056.421 10113.806 -57.385

AIC divided by N 1.789 1.800 -0 .0 10
BIC (df=12/11/1) 10136.030 10186.781 -50.751

Variance of
e 3.290 3.290 0.000

y-star 4.596 4.528 0.067
Note: Likelihood-ratio test assumes saved model nested in current model. 
Difference of 50.751 in BIC provides very strong support for current model.
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The Bayesian information criterion (B IC ), Akaike’s information criterion (A ie ), and the 
LR te s t each provide evidence supporting the inclusion of age-squared in the model.

Using simulations, Hagle and Mitchell (1992) and Windmeijer (1995) found that 
w ith  ordinal outcomes, McKelvey and Zavoina’s pseudo-/?2 most closely approximates 
th e  R 2 obtained by fitting the LRM on the underlying latent variable. If you are using 
y *-standardized coefficients to interpret the ORM (see section 7.8.1), McKelvey and 
Zavoina’s R? could be used as a counterpart to the R 2 from the LRM.

.5 (Advanced) Converting to a different parameterization

We mark this section as advanced because the conversion we show is 
likely only pertinent to readers who also work with other statistics pack­
ages that fit the model by using the alternative parameterization. The 
section may still be useful to strengthen your understanding of how the 
intercept and thresholds of these models are related, as well as how the 
lincom command works.

Earlier, we noted th a t the model can be identified by fixing either the intercept or one 
of the  thresholds to equal 0. S tata sets Po =  0 and estimates r i , whereas some programs 
fix n  =  0 and estimate p0. Although all quantities of interest for interpretation (for 
example, predicted probabilities) are the same under both parameterizations, it is useful 
to see how Stata can fit the model with either parameterization. We can understand 
how this is done with the following equation, where we are simply adding 0 =  5 — 5 and 
rearranging terms:

P r (y =  m  \ x) =  F  {rm -  -  x/3 -f- (6 -  6)} -  F  {rm_i -  Po -  x/3 +  (5 -  5)}
= F {{T m - S ) -  (A) -  6) -  x/3} -  F { ( rm_! -  8) -  (Po - 5 ) -  x/3}

W ithout further constraints, it is possible to estimate the differences r m — 5 and Po — 8 
but not the parameters rm and Po- To identify the model, S tata assumes 8 = Po, 
which forces the estimate of Po to be 0. Some programs assume <5 =  Ti, which forces the 
estim ate of T\ to be 0. The following table shows the differences in the parameterizations:

M odel
p a ra m e te r

S ta t a ’s
p a ra m e te r iz a tio n

A lte rn a tiv e
p a ra m e te r iz a tio n

A) Po — 0 o  =  0 Po -  n
T\ T\ -  Po

oIIh1

r 2 T2 -  Po T2 -  T \

T3 T3 ~  Po T3 ~  T i

Although you would only need to  estim ate the alternative parameterization if you 
wanted to compare your results with those produced by another statistics package,
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seeing how th is is done illustrates why the intercept and thresholds are arbitrary. To 
estimate the alternative parameterization, we use lincom  to compute the difference 
between S ta ta ’s estimates and the estim ated value of the first cutpoint. We begin with 
the alternative parameterization of the intercept:

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog 
(ou tpu t om itted)

. lincom 0 - _b[/cutl] // intercept 
( 1) - [cutl]_cons = 0

class Coef. Std. Err. z P>|zI [95'/. Conf. Interval]

(1) 2.140323 .2279743 9.39 0.000 1.693501 2.587144

To understand the lincom  command, you need to know th a t _ b [/c u tl]  is how Stata 
refers to the estim ate of the first cutpoint. Accordingly, 0 -  _ b [ /c u tl]  is the difference 
between 0 and the estimate of the first cutpoint, which simply reverses the sign of the 
first estim ated cutpoint,.

For the other cutpoints, we are estim ating t 2 — T\ and r;j — T\ , which correspond to 
_b[/cu t2] -  _ b [ /c u t l]  and _ b [/cu t3 ] -  _ b [/cu tl] :

. lincom _b[/cut2] - _b[/cutl] // cutpoint 2 

( 1) - [cutl]_cons + [cut2]_cons = 0

class Coef. Std. Err. z P>1zI [95*/, Conf. Interval]

(1) 3.055594 .0573347 53.29 0.000 2.94322 3.167968

. lincom _b[/cut3] - _b[/cutl] // cutpoint 3 
(1) - [cutl]_cons + [cut3]_cons = 0

class Coef. Std. Err. z P>lz| [957, Conf. Interval]

(1) 7.075031 .1097937 64.44 0.000 6.859839 7.290223

The estim ate of T\ — t\ is, of course, 0. These estimates would match those from a 
program using the alternative parameterization.

.6 The parallel regression assumption
Before discussing interpretation, it is important to understand an assumption that is 
implicit in the ORM, known both as the parallel regression assumption and, for the 
ordinal logit model, the proportional-odds assumption. Using (7 .1 ), the ORM with 
J  outcome categories can be written as
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Pr (y =  1 | x) =  F  (n  -  x/3)
Pr (3/ =  m  | x) =  F  (rm -  x/3) -  F  (rm_i -  x/3) for m  =  2 to J  -  1
P r (y =  J  | x) =  1 -  F  (t j _ i -  x/3)

Using these equations, the  cumulative probabilities have the simple form

Pr (y <  m | x) =  F ( rm -x /3 )  for m =  1 to J  -  1 (7.3)

Notice that /3 does not have a subscript m.  Accordingly, this equation shows that the
ORM is equivalent to .7 — 1 binary regressions with the critical assumption that the slope 
coefficients are identical in each binary regression.

For example, with four outcomes and one independent variable, the cumulative 
probability equations are

Pr (y < 1 | x) =  F  (ri -  fix)
Pr (y < 2 | x) =  F  (r2 -  fix)
Pr (y < 3 | x) =  F  (r3 -  fix)

Recall that the intercept a  is not in the equation because it was assumed to equal 0 to
identify the model. These equations lead to the following figure:

Pr(y<=1 | x) ---------- Pr(y<=2 | x)

Pr(y<=3 | x)

Each probability curve differs only in being shifted to the left or right. The curves are 
parallel as a consequence of the assumption that the /3 s are equal for each equation.

This figure suggests that the parallel regression assumption can be tested by com­
paring the estimates from .7— 1 binary regressions,

Pr(y <  m | x) =  F ( r m —x/3m) for m  =  1 to  J  -  1 (7.4)
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where the /3’s are allowed to differ across the equations. The model in (7.4), called 
the generalized ORM, is discussed further in section 7.16.2. The parallel regression 
assumption implies th a t j31 =  /32 =  ••■ =  j3J _ 1. To the degree that the parallel 
regression assum ption holds, the estim ates /31, ¡32, . . . ,  3 j _ i  should be close.

There are several ways of testing the parallel regression assumption, although none of 
them can be done using commands in official Stata. Instead, the user-written command 
o p a ra l le l  (Buis 2013), g o lo g it2 (Williams 2005), or b ra n t (part of our SPost package) 
is required. To install any of these, while in Stata and connected to the Internet, type 
net sea rch  command-name and follow the instructions for installation .3 We begin by 
briefly describing the tests, and then we show how to compute them in Stata.

Under maximum likelihood theory, there are three types of tests: Wald tests, LR 
tests, and score tests (also called Lagrange multiplier tests). To understand how these 
tests are used to  test the parallel regression assumption, let the generalized ORM in 
(7.4) be the unconstrained model and the ORM in (7.3) be the constrained model. 
We want to  test the hypothesis Hq: /3l = (32 =  • • • =  That is, we want to
test the restrictions on the unconstrained model that lead to the constrained model. 
A Wald test estim ates the unconstrained model and tests the restrictions in the null 
hypothesis. T he LR test estimates bo th  the unconstrained and the constrained models 
and examines the change of the log likelihood. The score test estimates the constrained 
model and (oversimplifying some) estim ates how much the log likelihood would change 
if the constraints were relaxed.

The command o p a r a l le l  computes each type of test for the ordered logit model but 
not for the ordered probit model. The Wald test is computed by fitting a generalized 
ordered logit model with g o lo g it2 and then testing the constraints implied by parallel 
regressions with the t e s t  command. The LR test is computed by fitting a general­
ized ordered logit model with g o lo g i t2 and the ordered logit model with o lo g it and 
comparing the  log likelihoods, o p a r a l l e l  can also compute approximations of the LR 
and Wald tests. The approximate LR test is computed by comparing the log likelihood 
from o lo g i t  or o p ro b it  with the likelihoods obtained by pooling J  — 1 binary models 
fit w'itli l o g i t  or p ro b i t  and making an adjustment for the correlation between the 
binary outcomes defined by y  <  m  (Wolfe and Gould 1998). The approximate Wald 
test, known as the Brant test, compares the estimates from binary logit models. Details 
on how this test is computed are found in Brant (1990) and Long (1997, 143-144). The 
o p a ra l le l  command does not test for violations of parallel regressions for individual 
variables, so below we discuss the b ra n t  command, which does.

While th e  null hypothesis might be rejected because the /3m’s differ by m, Brant 
(1990) notes that the null hypothesis could be rejected because of other departures 
from the specified model. Reiterating this point, Greene and Hensher (2010) suggest 
that tests of the parallel assumption are only useful for “supporting or casting doubt 
on the basic model” , but the tests do not indicate what the appropriate model might 
be. This issue is considered further in chapter 8 .

3. brant is installed as part of the spost13_ado package.
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.6.1 Testing the parallel regression assumption using oparallel

o p a r a l l e l  c a n  b e  u se d  after o l o g i t  t o  c o m p u te  the o m n ib u s  t e s t s  d escr ib ed  ab ove . 
T he i c  o p t io n  p r o v id e s  th e  sta t is t ic s  AIC a n d  BIC c o m p a r in g  t h e  g en era lized  ordered  

l o g i t  m o d e l  w ith  th e  o rd ered  lo g it m o d e l .

. use gssclass4, clear
(gssclass4.dta I GSS Subjective Class Identification I 2013-11-20)
. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog 

(output om itted)
. oparallel, ic
Tests of the parallel regression assumption

Chi2 df P>Chi2

Wolfe Gould 328 18 0 .000
Brant 243.4 18 0.000
score 257.8 18 0 .000

likelihood ratio 328.4 18 0 .000
Wald 258.1 18 0 .000

Information criteria
ologit gologit difference

AIC 10056.42 9764.03 292.39
BIC 10136.03 9963.05 172.98

The results labeled l ik e lih o o d  r a t i o  and W ald are the LR and Wald tests based on 
the generalized ordered logit model. The line W olfe  G o u ld  contains the approximate 
LR test, B r a n t refers to the Brant test, and s c o r e  is the score test. All tests reject the 
null hypothesis with p <  0.001. The score and Wald tests have similar values, while the 
two LR tests are larger. We find that these tests are often, perhaps usually, significant.

The AIC and BIC statistics can be used to  evaluate the trade-off between the better 
fit of the generalized model and the loss of parsimony from having J  — 1 coefficients for 
each independent variable instead of ju st one. In this example, the smaller values of both 
the AIC and BIC statistics for g o lo g it  compared with o l o g i t  provide evidence against 
the o l o g i t  model compared with the model in which the parallel regression assumption 
is relaxed. It is common for t he BIC statistic  to prefer the o l o g i t  model even when the 
significance tests reject the parallel regression assumption, and this sometimes happens 
w ith AIC as well.

Although o p a r a l l e l  can be used with o l o g i t  but not w ith o p r o b i t ,  the approx­
im ate LR test presented as W o lfe  G o u ld  can be performed w ith o p r o b i t  by using the 
user-written command omodel. omodel, however, does not support factor-variable no­
tation.
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.6.2 Testing the parallel regression assumption using brant

The SPost command b ra n t also computes the Brant test for the ORM. The advantage of 
our command, which is used by o p a r a l l e l  to  make its computations, is that it provides 
separate tests for each of the independent variables in the model. After running o lo g it. 
you run b ra n t,  which has the following syntax:

brant [ ,  d e t a i l ]

The d e t a i l  option provides a table of coefficients from each of the binary models. For 
example,

. brant, detail
Estimated coefficients from binary logits

Variable y-gt-i y-gt. 2 y-gt-3
female

female -0.103 0.075 0.036
-0.88 1.24 0.23

white
white -0.025 0.245 -0.155

-0.19 3.04 -0.71

year
1996 -0.170 -0.090 0.002

-1.05 -1 .2 0 0.01
2012 -0.749 -0.356 -0.686

-4.64 -4.21 -2.97

educ
hs only 0.259 0.277 -0.409

2.00 3.22 -1.55
college 1.259 1.542 0.620

4.67 14.50 2.33

age -0.070 -0.050 -0.011
-3.84 -4.86 -0.40

c.age#c.age 0.001 0 .0 0 1 0.000
4.01 7.24 1.15

income 0.050 0 .0 1 1 0.011
14.44 16.93 12.10

_cons 2.407 -0.932 -4.413
5.34 -3.76 -6.19

legend: b/t
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Brant test of parallel regression assumption
chi2 p>chi2 df

All 243.39 0 .0 0 0 18

1 .female 2.16 0.339 2
1 .white 6.52 0.038 2

2 .year 0.47 0.789 2
3.year 7.03 0.030 2
2 . educ 6.80 0.033 2
3.educ 12.42 0 .0 0 2 2

age 3.28 0.194 2
c .age#c.age 2.69 0.261 2

income 125.59 0 .0 0 0 2

A significant test statistic provides evidence that the parallel 
regression assumption has been violated.

The largest violation is for income, which may indicate particular problems with the 
parallel regression assumption for this variable. Looking at the coefficients from the 
binary logits, we see th a t for income the estimates from the binary logit of lower class 
versus working/middle/upper class differ from the other two binary logits. This suggests 
that income differences m atter more for whether people report themselves as lower class 
than it does for either of the other thresholds. If the focus of our project was the 
relationship between income and subjective class identification, this would serve as a 
substantively interesting finding that we would have missed had we not used b ran t.

6.3 Caveat regarding the parallel regression assumption

In th e  m a jo r ity  o f  th e  rea l-w o r ld  a p p l ic a t io n s  o f  th e  ORM th a t  w e  h a v e  seen , th e  h y p o th ­
e s is  o f  p a ra lle l r e g r e s s io n s  is r e jec ted . K e e p  in  m ind , h o w ev er , th e  t e s t s  o f th e  p a ra lle l  
r eg ress io n  a ss u m p tio n  a re  se n s it iv e  to  o th e r  ty p e s  o f  m issp e c if ic a t io n . F urther, w e h a v e  
se e n  e x a m p le s  w h ere  t h e  para lle l r e g r e s s io n  a ssu m p tio n  is v io la te d  b u t  th e  p r e d ic t io n s  
from  o l o g i t  a re  v ery  s im ila r  to  th o s e  fro m  th e  g en era lized  o r d e re d  lo g it  m o d e l or t h e  
m u ltin o m ia l lo g it  m o d e l. W h en  th e  h y p o t h e s is  is rejected , c o n s id e r  a lter n a tiv e  m o d e ls  
t h a t  d o  n o t im p o se  t h e  c o n str a in t o f  p a r a lle l  regressions. A s  i llu s tr a te d  in ch a p ter  8 , 
f i t t in g  th e  m u lt in o m ia l  lo g it m o d e l o n  a  se e m in g ly  ord ina l o u tc o m e  ca n  lead  to  q u ite  
d ifferen t c o n c lu s io n s . T h e  g e n e ra lize d  o r d e r e d  lo g it m o d e l is  a n o th e r  a lter n a tiv e  to  c o n ­
s id er . V io la t io n  o f  t h e  para lle l r e g r e s s io n  a ssu m p tio n  is n o t ,  h o w ev er , a  r a tio n a le  fo r  
u s in g  th e  LRM. T h e  a ss u m p tio n s  im p lie d  b y  th e  a p p lica tio n  o f  th e  LRM to  ord in a l d a t a  

are e v e n  stro n g er .

.7 Overview of interpretation
Most of the rest of the chapter focuses on interpreting results from the ORM. First, we 
consider methods of interpretation th a t are based on transforming the coefficients. If 
the idea of a latent variable makes substantive sense, or if you are tempted to run a lin-
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ear regression oil an ordinal outcome, interpretations based on rescaling y* to compute 
standardized coefficients can be used ju st like coefficients for the LRM. Coefficients can 
also be exponentiated and interpreted as odds ratios in the ordered logit model. We ex­
amine these strategies of interpretation first because they follow most straightforwardly 
from the m ethods of interpretation many readers are already familiar with from linear 
regression, b u t we regard them also as having important limitations that we discuss.

We then consider approaches to interpretation that use predicted probabilities, ex­
tending each of the methods for the 13RM to multiple outcomes. We typically find these 
approaches far more informative. Because the ORM is nonlinear in the outcome prob­
abilities, no approach can fully describe the relationship between a variable and the 
outcome probabilities. Consequently, you should consider each of these methods before 
deciding which approach is most effective in your application. As with models for bi­
nary outcomes, the basic command for interpretations based on predictions is margins, 
although our m table, mchange, and mgen commands make things much simpler. Not 
only do these commands have the advantages illustrated for binary models in chapter 6 , 
but when there are multiple outcome categories, margins can only compute predictions 
for one outcome at a time. Our commands will compute predictions for all categories 
and combine the results.

7.8 Interpreting transformed coefficients
As with the BRM, coefficients for the  ordered logit model are about 1.7 times larger 
than those for the ordered probit model because of the arbitrary assumption about the 
variance of the  error term. For this reason, neither ordered logit nor ordered probit co­
efficients offer a direct interpretation that is readily meaningful. There are two ways we 
can transform the coefficients into more meaningful quantities: standardization and odds 
ratios. In bo th  cases, these interpretations are permissible only when the independent 
variable is not specified using polynomial or interaction terms.

7.8.1 Marginal change in y*

In th e  ORM, y* =  x /3  +  £, a n d  th e  m a r g in a l  ch a n g e  in y* w ith  r e sp e c t  to  Xk is

Because y* is latent, its true metric is unknown. The value of y* depends on the 
identification assumption we make about the variance of the errors. As a result, the 
marginal change in y* cannot be interpreted without standardizing by the estimated 
standard deviation of y*, which is com puted as

dy. =  3 Var ( x )  3 + Vax (e)
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where Var (x) is the covariance matrix for the observed x ’s, (3 contains maximum like­
lihood estimates, and Var(ff) =  1 for ordered probit and 7T2/3  for ordered logit. Then 
the y*-standardized coefficient for x k is

oSy* _  Pk 
Pk ~  a  - °y

which can be interpreted as follows:

For a unit increase in xk, y* is expected to increase by 3kv standard devi­
ations, holding all other variables constant.

The fully standardized coefficient is

« ?  =  —(Ty-
which can be interpreted as follows:

For a standard deviation increase in x k, y* is expected to inciease b> 3k 
standard deviations, holding all other variables constant.
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These coefficients are computed using l i s tc o e f  with the s td  option. For example, 
after fitting the  ordered logit model,

. ologit class i.female i.white i.yeax i.educ c.age##c.age income, nolog 
(o u tpu t om itted )

. listcoef, std help
ologit (N=5620): Unstandardized and standardized estimates 

Observed SD: 0.6749
Latent SD: 2.1437

b z P>lz| bStdX bStdY bStdXY SDofX

female
female 0.0162 0.298 0.765 0.008 0.008 0.004 0.498

white
white 0.2363 3.277 0.001 0.092 0 .1 1 0 0.043 0.389

year
1996
2012

-0.0799
-0.5039

-1.158
-6.594

0.247
0.000

-0.040
-0.233

-0.037
-0.235

-0.019
-0.109

0.498
0.463

educ 
hs only 
college

0.3705
1.5656

4.730
15.994

0.000
0.000

0.183
0.670

0.173
0.730

0.085
0.313

0.493
0.428

age -0.0488 -5.308 0.000 -0.825 -0.023 -0.385 16.897

c.age#c.age 0.0007 7.646 0.000 1.202 0.000 0.561 1695.148

income 0.0116 22.203 0.000 0.770 0.005 0.359 66.258

b = raw coefficient 
z = z-score for test of b=0 

P> I z I = p-value for z-test 
bStdX = x-standardized coefficient 
bStdY = y-standardized coefficient 
bStdXY = fully standardized coefficient 
SDofX = standard deviation of X

In our example, we can think of the dependent variable as measuring subjective social 
standing. Consequently, examples of interpretation are as follows:

The subjective social standing of those with a high school degree as their 
highest degree is 0.17 standard deviations higher th an  that of those who do 
not have a high school diploma, holding all other variables constant.

Each standard deviation increase in household income increases support by 
0.36 standard deviations, holding all other variables constant.
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Because the coefficients in the columns b and bStdX are not based on standardizing y*, 
they should not be interpreted. And while l i s t c o e f  presents coefficients for age, these 
should not be interpreted because you cannot change age while holding age-squared 
constant. An advantage of the methods of interpretation using probabilities that we 
discuss later in the chapter is that they can be used more simply when polynomials or 
interactions are in the model.

Although we do not often use coefficients for the marginal change in y* to interpret 
the ORM, we believe th a t this is a much better approach than fitting the LRM with an 
ordinal dependent variable and interpreting the LRM coefficients.

7.8.2 Odds ratios

The ordinal logit model (but not the ordinal probit model) can also be interpreted using 
odds ratios. Equation (7.2) defined the ordered logit model as

(x) =  exp (rm -  x/3)

For example, with four outcomes we would simultaneously estimate the three equations

^ < i|> i (x) =  exp (ri -  x/3) 

ft<2|>2 (x) =  exp ( t2 -  x/3) 

ft<3|>3 (x) =  exp (73 -  x/3)

Using the same approach as shown for binary logit, the effect of a unit change in x k 
equals

^<m|>m (x, X k +  1) _1

ft<m|>m (x,Xfc) eP>*

The value of the odds ratio does not depend on the value of m, which is why the 
parallel regression assumption is also known as the proportional-odds assumption. We 
could interpret the odds ratio as follows:

For a unit increase in x k, the odds of a lower outcome compared with a higher 
outcome are changed by the factor ex p (—/3k), holding all other variables 
constant.

For a change in x k of (5,

^<m|>rn (x, Xk )

which we interpret as follows:

For an increase of 6 in x k, the odds of a lower outcome compared with 
a higher outcome change by a  factor of exp (—6 x f3k), holding all other 
variables constant.

=  exp ( - 8  x 0k) =
exp (<5 x /3k)
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Notice that the odds ratio is derived by changing one variable, xk, while holding all 
other variables constant. Accordingly, you do not want to  compute the odds ratio for 
a variable th a t is included as a polynomial (for example, age and age-squared) or is 
included in an  interaction term.

The odds ratios for a unit and a standard deviation change of the independent 
variables can be computed with l i s t c o e f , which lists the factor changes in the odds of 
higher versus lower outcomes. You could also obtain odds ratios by using the or option 
with the o lo g i t  command. Here we request odds ratios for only white, year, income, 
and age:

. listcoef white year income age, help 
ologit (N=5620): Factor change in odds 
Odds of: >m vs <=m

b z P>lz| e~b e~bStdX SDofX

white
white 0.2363 3.277 0 .001 1.267 1.096 0.389

year
1996
2012

-0.0799
-0.5039

-1.158 
-6.594

0.247
0.000

0.923
0.604

0.961
0.792

0.498
0.463

age -0.0488 -5.308 0.000 0.952 0.438 16.897

c.age#c.age 0.0007 7.646 0.000 1.001 3.328 1695.148

income 0.0116 22.203 0.000 1.0 12 2.160 66.258

b = raw coefficient 
z = z-score for test of b=0 

P>|z| = p-value for z-test
e~b = exp(b) = factor change in odds for unit increase in X 

e~bStdX = exp(b*SD of X) = change in odds for SD increase in X 
SDofX = standard deviation of X

Here are some interpretations:

The odds of reporting higher subjective class standing are 0.60 times smaller 
in 2012  than they were in 1980, holding all other variables constant.

For a  standard deviation increase in income, the odds of indicating higher 
social standing increase by a factor of 2.16, holding all other variables con­
stant.

Although odds ratios for age arc shown, these should not be interpreted because you 
cannot change age while holding age-squared constant. If you prefer, you can compute 
coefficients for the percentage change in the odds by adding the percen t option:

______
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. listcoef white year income, percent 
ologit (N=5620): Percentage change in odds 

Odds of: >m vs <=m

b z P> 1 z 1 */. y.stdx SDofX
white
white 0.2363 3.277 0 .0 0 1 26.7 9.6 0.389

year
1996
2012

-0.0799 
-0.5039

-1.158
-6.594

0.247
0 .000

-7.7
-39.6

-3.9
-20.8

0.498
0.463

income 0.0116 22.203 0 .000 1.2 116.0 66.258

These results can be interpreted as follows:

The odds of reporting higher subjective class standing are 40% smaller in 
2012 than they were in 1980, holding all other variables constant.

For a standard deviation increase in income, the odds of indicating higher 
social standing increase by 116%, holding all other variables constant.

So far, we interpreted the factor changes in the odds of lower outcomes compared 
with higher outcomes. This is done because the model is traditionally written in terms 
of the odds of lower versus higher outcomes, Q<m\>m (x), leading to the factor change 
coefficient of e x p (—fa ) .  We could ju st as well consider the factor change in the odds 
of higher versus lower values; that is, changes in the odds ii> m|<m (x), which equals 
exp (/?fc). These odds ratios can be obtained by adding the option reverse:

. listcoef year, reverse 
ologit (N=5620): Factor change in odds 

Odds of: <=m vs >m

b z P> 1 z I e"b e~bStdX SDofX

year
1996 -0.0799 -1.158 0.247 1.083 1.041 0.498
2012 -0.5039 -6.594 0 .000 1.655 1.262 0.463

Notice that the output, now says Odds o f: <=m vs >m instead of Odds of: >m vs <-m, 
as it did earlier. This factor change of 1.66 for 2012 is the inverse of the earlier value 
0.60. Our interpretation is the following:

The odds of reporting lower social standing are about 1.66 times larger in 
2012 than they were in 1980. holding all other variables constant.

When presenting odds ratios, some people find it easier to understand the results if 
you talk about increases in the odds rather than decreases. That is, it is clearer to sa\,
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“The odds increased by a factor of 2” than to say, “The odds decreased by a factor of 
0.5”. If you agree, then you can reverse the order when presenting odds.

When interpreting odds ratios, remember three ¡joints th a t were discussed in detail 
in chapter 6 . First, because odds ratios are multiplicative coefficients, positive and 
negative effects should be compared by taking the inverse of the negative effect (or 
vice versa). For example, a negative factor change of 0.5 has the same magnitude as a 
positive factor change of 2 =  1/0.5. Second, interpretation assumes only that the other 
variables have been held constant, not held at specific values. Third, a constant factor 
change in the  odds does not correspond to a constant change or constant factor change 
in the probability.

As with binary outcomes, we discuss odds ratios because they are commonly used 
with these models and provide a compact means of interpretation. Yet we think they are 
overused, especially in data based on population samples instead of case-control studies. 
The meaning of the magnitude of multiplicative changes in odds is often unclear to 
audiences, perhaps even more so when thinking about transitions across thresholds that 
divide sets of categories. We are perhaps inclined to favor //-standardized coefficients 
over odds ratios for ordinal outcomes; the idea of a standard deviation change in the 
latent variable allows results to be understood more clearly because of the analogue to 
linear regression. B etter still, however, are methods of interpretation that are based on 
predicted probabilities, which we discuss next.

.9 Interpretations based on predicted probabilities
As noted, we usually prefer interpretations based on predicted probabilities. We find 
these interpretations to be both clearer for our own thinking and more effective with 
audiences. Probabilities can be estim ated with the formula

P r (y = m  | x) =  F  (?Tn -  x/3) -  F ( r m_i -  x 3 )

Cumulative probabilities are computed as

P r (y < m  | x) =  ^  P r (y = k | x) =  F  ( r m -  x 3 )k<m
The values of x can be based on observations in the sample or can be hypothetical 
values of interest.

The following sections use predicted probabilities in a variety of ways. We begin by 
examining the distribution of predictions for each observation in the estimation sample 
as a first step in evaluating your model. Next, we show how marginal effects provide 
an overall assessment of the impact of each variable. To focus on particular types of 
respondents, we compute predictions for ideal types defined by substantively motivated 
characteristics for all independent variables. Extending methods from chapter 6 . we 
show how to statistically test differences in the predictions between ideal types. For 
categorical predictors, tables of predictions computed as these variables change is an
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effective way to demonstrate the effects of these variables. An i . . „ 
to decide where to hold the values of other variables when making predk'tioap1*«’’' 
we plot predictions as a continuous independent variable changes fuially,

7.10 Predicted probabilities with predict

After fitting a model with o lo g it  or o p ro b it, a useful first step for assessing vour 
model is to compute the in-sample predictions with the command

p re d ic t  newvarl [ newvar2 [ newvarS • • • ] ] [i f ] [m]

where you specify one new variable name for each category of the dependent variable 
For instance, in the following example, p re d ic t  specifies that the variables prlover. 
prw orking. prm iddle, and prupper be created with predicted values for the four out­
come categories:

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog
(output om itted)

. predict prlower prworking prmiddle prupper 
(option pr assumed; predicted probabilities)

The message (o p tio n  p r  assumed; p re d ic te d  p ro b a b ilitie s )  reflects that predict 
can compute many different quantities. Bccause we did not specify an option indicating 
which quantity to predict, the default option p r for predicted probabilities was assumed

Predictions in the sample are useful for getting a general sense of what is uoin  ̂<»n 
in your model and can be useful for uncovering problems in your data. For example, 
if there are observations where the predicted probability of being in prlower (or am 
other outcome) are noticeably larger or smaller than the other predictions, you might 
check whether there are data problems for those observations. The range of prediction® 
can also give you a rough idea of how large marginal effects can be for a given «»ut»om« 
If the range of probabilities is small within the estimation sample, the effects of tl. 
independent variables will a l s o  be s m a l l .  II the distribution of predictions i.<> 
modes—let’s say, two—it suggests there could be a binary predictor t lat is 
Although sometimes the distribution of predictions leads to addition ata 
model revision, often it only assures you the that predictions art rtasona» 
you are ready for the methods of interpretation that we consider in e vQBJp 
this chapter.

339
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An easy way to see the distribution of the predictions is with dotplot, one of our 
favorite commands for quickly checking data:

. label var prlower "Pr(Lower)"

. label var prworking "Pr(Working)"

. label var prmiddle "Pr(Middle)"

. label var prupper "Pr(Upper)"

. dotplot prlower prworking prmiddle prupper,
> ylabel(0( . 25) 1, grid gmin gmax) ytitleO'Probability")

The predicted probabilities for the extrem e categories of lower and upper tend to be less 
than 0.20, with most predictions for the middle categories falling between 0.25 and 0.75. 
The probabilities for the middle two categories are generally larger than the probabilities 
of the extrem e categories, reflecting the higher observed proportions of observations for 
these categories. The long tail for the probabilities for “U pper” lead us to examine the 
data further, but no problems were found. If you look at the probabilities of identifying 
as working class, you will notice a spike in the number of cases near its highest predicted 
probability, around 0.G5. This is common for middle categories when plotting predicted 
probabilities for the ORM and should not be cause for concern. For extreme categories, 
the predicted probabilities of individual observations in the ORM are bound only by 0 
and 1. For middle categories, however, the distance between estimated cutpoints implies 
a maximum predicted probability, where a greater distance between cutpoints implies 
a higher maximum (see section 7.15 for more about why this is so).

In this example, with p re d ic t  we specified separate variables for each outcome 
category. Because of this, p re d ic t  understood that we wanted predicted probabilities 
for each category. Had we specified only one variable, p r e d ic t  would generate predicted 
values of y* , not probabilities. To com pute the predicted probability for a single outcome 
category, you need the outcome ( # )  option, such as p r e d ic t  prm iddle, outcome(3 ). 
The #  specified with outcome( # )  is the rank position of the category from lowest to



7.11 Marginal effects 341

highest. If the outcoinc variable is numbered with consecutive integers starting with 1, 
as in our example, then #  corresponds to the outcome value. However, if our outcome 
values were numbered 0, 1, 2, and 3, then outcom e(l) would provide the predicted 
probability that y  =  0, not that y = 1. We find this extremely confusing in practice. To 
avoid it, we strongly recommend numbering outcome values with consecutive integers 
starting  with 1 whenever working with ordinal or nominal outcomes.

Examining predicted probabilities within the sample provides a first, quick check 
of the model. To understand and present the substantive findings, however, you will 
usually want to compute predictions a t specific, substantively informative values.

.11 Marginal effects
The marginal change in the probability of outcome m  is computed as 

<9Pr(y =  m | x) dF(Tm -  x/3) _  d F (rm_i -  x{3)
d x k d xk  d xk

which is the slope of the curve relating x k to  Pr(y =  m |x ), holding all other variables 
constant. The value of the marginal change depends on the value of x k where the change 
is evaluated, as well as the values of all other x ’s. Because the marginal change can 
be misleading when the probability curve is changing rapidly, we usually prefer using 
discrete change. The discrete change is the change in the probability of m  for a change 
in x k from the start value x ^ &Tt to the end value x |nd (for example, a change from 
xk =  0 to Xk =  1), holding all other x ’s constant. Formally,

Z m l x ) =  p r (y = m  I X ,  Xk = x lnd) - P r  (y = m \ x , x k = x |tart)
A x k ( 4 tart -> x%nd) V V ’

where Pr (y = m  \ x , x k )  is the probability th a t y =  m  given x, noting a specific value 
for Xk- The change indicates that when x k changes from x |tart to x |nd, the probability of 
outcome m  changes by A Pr (y = m  | x) /  A x  k, holding all other variables at the specific 
values in x. The magnitude of the discrete change depends on the value at which Xk
starts, the amount of change in x k, and the values of all other variables.

For both marginal and discrete change, we can compute average marginal effects 
(A M E s), marginal effects at. the mean (M E M s), or marginal effects at representative 
values other than the means. As with the BRM, we find AM Es to be the most useful 
summary of the effects, thus we consider AM Es for the ORM in this section. MEMs are 
considered briefly in section 7.15. Examining the distribution of effects over observations 
is also valuable. To save space, we do not illustrate this in the current chapter, but this 
can be done using the commands presented in section 8 .8 .1.

To illustrate the use of marginal effects in ordinal models, we begin by examining
the average marginal change for income. The marginal change can be computed with 
m ch an ge. where we select the variable in c o m e  and use a m o u n t ( m a r g in a l )  to request 
only marginal changes without any discrete changes. Because we have not included the 
a tm e a n s  option, m ch a n g e  computes the AM E over all observations:



342 Chapter 7 Models for ordinal outcomes

. mchange income, amount(marginal)
ologit: Changes in Pr(y) | Number of obs = 5620
Expression: Pr(class), predict(outcome())

lower working middle upper

income
Marginal -0.001 -0 .0 0 2 0.002 0 .0 0 0
p-value 0.000 0 .0 0 0 0.000 0 .0 0 0

Average predictions
lower working middle upper

Pr(yIbase) 0.071 0.460 0.434 0.034

The marginal changes are in the row labeled Marginal, with the significance level for the 
test of the hypothesis that the change is 0 listed in the row p -v a lu e . In this example, the 
marginal changes are all less than 0.003 in magnitude, but the p-values are nevertheless 
significant.4 We see that on average higher income decreases identification with lower 
and working class, while increasing identification with middle and upper class. Across 
all categories, the AM Es must sum to  0, because any increase in the probability of one 
category m ust be offset by a decrease in another category. The results in the output 
might not sum exactly to 0, however, because of rounding. The average predicted 
probabilities of each outcome are listed below the table of marginal changes. The 
average predicted probability of someone identifying as lower class is 0.07, as working 
class is 0.4G, and so on. These probabilities must, of course, sum to 1.

In this example, the marginal changes with respect to income are small, and it 
is difficult to grasp how large the effects of income are in terms of changes in the 
probabilities of class identification. A marginal change is the instantaneous rate of 
change th a t does not correspond exactly to  the amount of change in the probability for a 
change of one unit in the independent variable. If the probability curve is approximately 
linear where the change is evaluated, the marginal change will approximate the effect 
of a unit change in the variable on the probability of an outcome. The best way to 
determine how well the marginal change approximates the discrete change is to compute 
the discrete change, which we do next.

The variable income is measured in thousands of dollars. Looking at the descriptive 
statistics for this variable,

. sum income
Variable Obs Mean Std. Dev. Min Max

income 5620 68.07737 66.25833 .51205 324.2425

we see th a t the range is over $300,000, so a unit change is too small for describing 
an effect of income on class identification. Another way of thinking about this is that 
a $1,000 difference in income is substantively small compared with what we might

4. If you wanted more decimal places shown for the changes, you could add the option dec (6), for 
example.
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anticipate would have an appreciable effect on whether people view themselves as, for 
example, working class rather than middle class. By default, mchange computes discrete 
changes for both  a 1-unit change and a  standard deviation change, where we use b r ie f  
to suppress showing the average probabilities:

. mchange income, brief
ologit: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

income
+1 -0.001 -0 .0 0 2 0.002 0.000

p-value 0.000 0 .0 0 0 0.000 0.000
+SD -0.036 -0.119 0.126 0.030

p-value 0.000 0 .0 0 0 0.000 0.000
Marginal -0.001 -0 .0 0 2 0.002 0.000
p-value 0.000 0 .0 0 0 0.000 0.000

We can interpret the results for a change of a  standard deviation in income as follows:

On average, a standard deviation increase in income (about $66,000) is as­
sociated with a 0.036 decrease in the probability of identifying as lower class 
and a 0.119 decrease in identifying as working class. This is offset by an 
increase of 0.126 in the probability of identifying as middle class and a 0.030 
increase in upper-class identification. All effects are significant a t the 0.001 
level.

Instead of a  standard deviation change, we might be interested in a change of a 
specific am ount, like a $25,000 increase. It might be tempting to (incorrectly) compute 
the discrete change for a 25-unit change in income by simply multiplying the 1-unit 
discrete change by 25. Although this will give you approximately the right answer if 
the probability curve is nearly linear over the range of the change, in some cases it can 
give misleading results and even the wrong sign. To be safe, do not do it! Instead, the 
d e l t a ( # )  option for mchange computes the discrete change as an independent value 
changes from the base value to #  units above the base value. Here we use d e lta (2 5 ):

. mchange income, delta(25) amount(delta) brief 
ologit: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

income
♦delta -0.016 -0.042 0.049 0.009

p-value 0.000 0 .0 0 0 0.000 0 .0 0 0
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On average, a  $25,000 change in income is associated with a 0.049 increase 
in the probability of identifying as middle class and a 0.042 decrease in the 
probability of identifying as working class.

We can also compute changes in the predicted probability as a continuous variable 
changes from its minimum to the maximum by specifying the option amount (range):

We can interpret the results as follows:

. mchange income, amount (range) brief 
ologit: Changes in Pr(y) | Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

income
Reuige -0.112 -0.514 0.371 0.255

p-value 0.000 0 .0 0 0 0.000 0 .0 0 0

With a variable like income where there might be a few respondents with very high 
incomes, a trimmed range might be more informative. Here, by specifying trim (5), w-e 
examine the  effect of a change from the 5th percentile of income to  the 95th percentile:0

. mchange income, amount(range) trim(5) brief 
ologit: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

income
5*/, to 957. -0.094 -0.365 0.385 0.074

p-value 0.000 0 .000 0.000 0 .0 0 0

The effects are substantially smaller, most noticeably for those identifying as upper 
class. If you look carefully, you will notice that as a result of decreasing the amount of 
change in income, the change in the probability of middle-class affiliation is increasing. 
The reason for this apparent anomaly is explained in section 7.15.

The mchange command uses m argins to compute the changes. If you want the 
convenience of mchange but also want to see how m argins is being used, you can 
specify the option commands to see the m argins commands used by mchange or specify 
the d e t a i l  option to obtain the full m argins output.

7.11.1 Plotting marginal effects

As we suggested for the BRM, the AME is a valuable tool for examining the effects of 
your variables, and we often compute these effects for an initial review of the results of a 
model. W ithout doubt, AMEs are far more informative than  the parameter estimates or

5. mchange does not present the values of income at the 5th and 95th percentiles, but these can be 
easily computed using the summarize command with the d e t a i l  option.
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odds ratios. There is, however, a lot of information to be absorbed. By default, for each 
continuous variable, mchange computes the marginal change and discrete changes for 
a 1-un it and a standard deviation change in continuous variables; for factor variables, 
mchange computes a discrete change from 0 to 1. One way to limit the amount of 
inform ation is to only look at discrete changes of a standard deviation for continuous 
variables. For example,

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog 
( output om itted)

. mchange, amount(sd) brief
ologit: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

female
female vs male -0 .0 0 1 -0.002 0.003 0.000

p-value 0.766 0.765 0.765 0.765
white

white vs nonwhite -0.016 -0.031 0.041 0.006
p-value 0 .0 0 2 0.001 0.001 0.001

year
1996 vs 1980 0.004 0.012 -0.014 -0.003

p-value 0.243 0.249 0.246 0.253
2012 vs 1980 0.033 0.067 -0.086 -0.014

p-value 0 .0 0 0 0.000 0.000 0.000
2012 vs 1996 0.029 0.055 -0.073 -0.011

p-value 0 .0 0 0 0.000 0.000 0.000
educ
hs only vs not hs grad -0.029 -0.047 0.070 0.006

p-value 0 .0 0 0 0.000 0.000 0.000
college vs not hs grad -0.079 -0.252 0.286 0.046

p-value 0 .0 0 0 0.000 0.000 0.000
college vs hs only -0.050 -0.205 0.216 0.039

p-value 0 .0 0 0 0.000 0.000 0.000
age

+SD -0.018 -0.071 0.067 0.022
p-value 0 .0 0 0 0.000 0.000 0.000

income
+SD -0.036 -0.119 0.126 0.030

p-value 0 .0 0 0 0.000 0.000 0.000

Even so, there are a lot of coefficients. Fortunately, they can be quickly understood 
b y  plotting them. To explain how to  do this, we begin by examining the AMEs for a 
standard  deviation change in income and age. Because the model includes age and age- 
squared, when age is increased b y  a standard  deviation, we need to increase age-squared 
by the  appropriate amount. This is done automatically by S tata because we entered 
age into the model with the factor-variable notation c .age##c .age. To compute the 
average discrete changes for a standard deviation increase, type
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. mchange age income, amount(sd) brief 
ologit: Changes in Pr(y) | Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

age
+SD -0.018 -0.071 0.067 0 .0 2 2

p-value 0.000 0 .0 0 0 0.000 0 .0 0 0
income

+SD -0.036 -0.119 0.126 0.030
p-value 0.000 0 .0 0 0 0.000 0 .0 0 0

mchange leaves these results in memory, and they are used by our mchangeplot com­
mand to create the plot.

Social class: L=lower W=working M =m iddle U = upper

ag e

SO increase
w L U M

in co m e

SO increase w L U M

L i-------------- 1---------------1------- -------- 1---------------1-------------- r-.15 -.1 -.05 0 .05 .1 .15
Marginal Effect on Outcome Probability

The horizontal axis indicates the m agnitude of the effect, with the letters within the 
graph marking the discrete change for each outcome. For example, the M in the row for 
income shows that, on average for a standard deviation change in income, the probability 
of identifying with the middle class increases by 0.126. Overall, it is apparent that the 
effects of income are larger than those for a standard deviation change in age. For 
both variables, the effects are in the same directions with the same relative magnitudes. 
(Before proceeding, you should make sure you see how the graph corresponds to the 
output from mchange above.)

The plot was produced with the following command:

mchangeplot age income, symbols(L W M U) min(-.15) max(.15) gap(.05) I I I  
title("Social class: L=lower W=working M=middle U=upper", I I I  
size(medsmall)) ysize(1.3) scale(2 .1)

After the variables are selected, symbols () specifies the letters to  use for each outcome. 
By default, the first letters in the value labels are used, bu t here we chose to use capital 
letters instead of the lowercase letters used by c la s s ’s value labels. The options min(). 
maxO, and gapO define the tick marks and labels on the x  axis. The y s izeO  and 
sca le  () options affect the size of the graph and the scaled font size. Details on all 
options for mchangeplot can be found by typing help  m changeplot.

Next, we consider the discrete change for a change from 0 to 1 for the binary variables 
female and white:
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. mchange female white, brief
ologit: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

female
female vs male -0.001 -0 .002 0.003 0 .0 0 0

p-value 0.766 0.765 0.765 0.765
white
white vs nonwhite -0.016 -0.031 0.041 0.006

p-value 0.002 0 .0 0 1 0.001 0 .0 0 1

When producing the graph, we use the option s ig (  .05) to add an asterisk (*) to effects 
that are significant at the 0.05 level:

S o c ia l c la s s :  L=lower W=working M=middle U=upper

-------------------------- i------------------------ -
W*L* U* M*

r------ r---------1---------1--------1—------ 1 r--.15 -.1 -.05 0 .05 .1 -15
Marginal Effect on Outcome Probability

The effects of being female arc* small and nonsignificant, which is expected given that the 
coefficient for fem ale is not significant. For the contrast between whites and nonwhites, 
on the other hand, we see significant differences, which we interpret as follows:

The predicted probability of identifying as middle class is on average 0.04 
higher for a white person than for an otherwise similar nonwhite person, 
wrhile the predicted probability of identifying as working class is 0.03 lower.

female
tomato vs mate

white
while V9 nonwhrto
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For factor variables that have more than two categories, we want to examine the 
contrasts between all categories. Consider variables year and educ, each of which have 
three categories:

. mchange educ year, brief
ologit: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper
educ
hs only vs not hs grad -0.029 -0.047 0.070 0.006

p-value 0 .0 0 0 0.000 0 .0 0 0 0.000
college vs not hs grad -0.079 -0.252 0.286 0.046

p-value 0 .0 0 0 0.000 0 .0 0 0 0.000
college vs hs only -0.050 -0.205 0.216 0.039

p-value 0 .000 0.000 0 .0 0 0 0.000
year

1996 vs 1980 0.004 0.012 -0.014 -0.003
p-value 0.243 0.249 0.246 0.253

2012 vs 1980 0.033 0.067 -0.086 -0.014
p-value 0 .000 0.000 0 .0 0 0 0.000

2012 vs 1996 0.029 0.055 -0.073 -0.011
p-value 0 .000 0.000 0 .0 0 0 0.000

mchange computes all the pairwise contrasts. For example, with year the output com­
pares those answering the survey in 1990 with those in 1980, in 2012 with 1980, and in 
2012 with 199G. One of the contrasts is redundant in the sense th a t it can be computed 
from the o ther two. For example, looking at lower-class identity, the change in proba­
bility of 0.004 from 1980 to 1990 plus the change of 0.029 from 199G to 2012 equals the 
change of 0.033 from 1980 to 2012. Still, it is often useful to examine all contrasts to 
find patterns. For this, we find th a t plotting the effects works well:

mchangeplot year, III
symbols(L W M U) min(-.15) max(.15) gap(.05) III  
sig(.05) leftmargin(5) III
title("Social class: L=lower W=working M=middle U=upper", III 
size(medsmall)) ysize(1.3) scale(2 .1)

The s ig n i f ic a n c e () option specifiers th a t *’s should be added to the plot symbols if 
the effect is significant at the given level in this case, 0.05. The leftm arginO  option 
increases the left margin of the graph to accommodate the value labels used with factor 
variables. The argument 5 is the percentage of the graph size to be added to the left. 
The resulting graph looks like this:
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Social class: L=lower W=working M=middle U=upper
year

1996 vs 1980 M U LW

year
2012 vs 1980 M* U* L* W*

year
2012 vs 1996 M* u* L* W*

■------------ 1-------------1--------------- 1------------ 1—  i-------- 1--------- 1--------- 1--------1---------1 r-
- .1 5  -.1  - .0 5  0 .05 .1 .15

Marginal Effect on Outcome Probability

It is immediately apparent that there was little change from 1980 to 1996, while much 
larger and statistically significant changes occurred in 2012 compared with either of the 
earlier survey years.

Next, we plot the effects for educ without the s ig ()  option because all the effects 
are significant:

Social class: L=lower W=working M=middle U=upper
educ

ha only vs not ha grad WL U M
educ

college vs not hs grad w L u M
educ

coUoge vs hs only w L U M

■,<L - . 1  U . 1

Marginal Effect on Outcome Probability

These effects are larger than those for the year of the survey (notice that the x  scale is 
not the same in the two graphs). Even though effects are statistically significant, the 
largest effects arc comparing those who have a college degree with others, regardless of 
whether they have a high school diploma or did not graduate. W ith the overall pattern 
in mind, we can interpret multiple contrasts for a single category as follows:

On average, having graduated from college increases a  person’s probability 
of identifying as middle class by 0.22  compared with having graduated only 
from higii school, and by 0.29 compared with not having graduated from 
high school.

Alternatively, we could interpret multiple categories for the same contrast:

Compared with those who have graduated only from high school, we find that 
graduating from college on average increases the probability of identifying 
as upper class by 0.04 and of identifying as middle class by 0 .22 , while the 
probability of identifying as working class decreases by 0.21 and of identifying 
as lower class by 0.05.
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AMEs are a  much better way to obtain a quick overview of the magnitudes of effects 
than are the estim ated coefficients. After fitting your model, you can obtain a table of 
all effects by simply typing mchange, perhaps restricting effects to discrete changes of a 
standard deviation:

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog 
(ou tpu t o m itted)

. mchange, amount(sd) brief

7.11.2 Marginal effects for a quick overview

ologit: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

female
female vs male -0 .0 0 1 -0.002 0.003 0.000

p-value 0.766 0.765 0.765 0.765
white

white vs nonwhite -0.016 -0.031 0.041 0.006
p-value 0 .0 0 2 0.001 0 .0 0 1 0.001

year
1996 vs 1980 0.004 0.012 -0.014 -0.003

p-value 0.243 0.249 0.246 0.253
2012 vs 1980 0.033 0.067 -0.086 -0.014

p-value 0.000 0.000 0 .000 0.000
2012 vs 1996 0.029 0.055 -0.073 -0.011

p-value 0.000 0.000 0 .000 0.000
educ
hs only vs not hs grad -0.029 -0.047 0.070 0.006

p-value 0 .000 0.000 0 .0 0 0 0.000
college vs not hs grad -0.079 -0.252 0.286 0.046

p-value 0 .000 0.000 0 .000 0.000
college vs hs only -0.050 -0.205 0.216 0.039

p-value 0 .0 0 0 0.000 0 .0 0 0 0.000
age

+SD -0.018 -0.071 0.067 0.022
p-value 0.000 0.000 0 .0 0 0 0.000

income
+SD -0.036 -0.119 0.126 0.030

p-value 0.000 0.000 0 .0 0 0 0.000
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W ith a  simple command, you can plot the effects:

. mchangeplot, symbols(L W M 11) sig(.05) leftmargin(5)

female
female vs male *

white
while vs nonwhite WL*I J* M*

year
1996 vs 1980 MJW

year
2012 vs 1980 M* U* L* W*

year
2012 VS 1996 M* U* L* W*

educ
hs only vs not hs grad w r iLI* M*

educ
college vs not hs grad w* L* u- M*

educ
college vs hs only w* L* U* M*

age
SD  increase W* L* U* M*

income
SD  increase W* L* U* M*

-.26 — r i i
- .1 2  .01 .15 

Marginal Effect on Outcome Probability
.29

A quick review highlights which variables we might, want to examine more closely.

7.12 Predicted probabilities for ideal types
Ideal types define substantively interesting cases in the d ata  by specifying values of the 
independent variables. Predicted probabilities for these types of individuals (or whatever 
the unit of analysis may be) can be computed with mtable or m arg ins. Unlike marginal 
effects, by comparing two or more ideal types, you can compare probabilities as a whole 
set of independent variables vary, not just a change in a single variable.

In our example, ideal types can be used to examine w hat more and less advantaged 
individuals looks like and how they differ in their class identification. For instance, we 
might want to compare the following hypothetical individuals surveyed in 2012:

• A 25-year-old, nonwhite man w ithout a high school diploma and with a household 
income of $30,000 per year.

• A GO-year-old, white woman with a college degree and with a  household income 
of $150,000 per year.

To compute the predictions, we begin by using margins before showing how m table 
can simplify the work. We use a t ( )  to  specify values of the  independent variables. If
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there are variables whose values are not specified with a t ( ) ,  we can use the option
atmeans to  assign them  to their means. Otherwise, by default, margins and mtable
would compute the average predicted probability over the sample for the unspecified 
independent variables. We do not want to do this because ideal types should be thought 
of as hypothetical observations, so averaging predictions over observations for some 
independent variables muddles the interpretation.

Using values we specified for our first ideal type, we run margins:

. margins, at(female=0 white=0 year=3 educ=l age=25 income=30)
Adjusted predictions Number of obs = 5620
Model VCE : OIM
Expression : Pr(class==l), predictQ
at : female = 0

white = 0
year = 3
educ = 1
age = 25
income = 30

Margin
Delta-method

Std. Err. z P>lz| [957, Conf. Interval]

_cons .2300032 .0202718 11.35 0.000 .1902712 .2697352

margins can only compute a prediction for a single outcome. Because we did not 
specify which outcome, m argins used the default prediction, which is described as 
P r (c la s s = = l) , p re d ic t  () . This is the predicted probability for the first outcome. 
Hence, we find th a t the predicted probability of identifying as lower class for our first 
ideal type is 0.23.

To compute probabilities for other outcomes, we use the p re d ic t  (outcome (# ) )  
option, where #  is the value of the outcome for which we want a prediction. To compute 
the probabilities for all values of c la s s ,  we must run four m argins commands that vary 
the outcome value:

margins, at(female=0 white=0 
predi ct(out come(1))

year=3 educ=l age=25 income=30) I I I

margins, at(female=0 white=0 
predict(outcome(2) )

year=3 educ=l age=25 income=30) I I I

margins, at(female=0 white=0 
predi ct(out c ome(3))

year=3 educ=l age=25 income=30) I I I

margins, at(female=0 white=0 
predict(outcome(4))

year=3 educ=l age=25 income=30) I I I

It is easier, however, to use m table, which computes predictions for all outcome cate­
gories and combines them into a single table. The option c i  indicates that we wrant the 
output to show the confidence interval.
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. mtable, at(female=0 white=0 year=3 educ=l age=25 income=30) ci 
Expression: Pr(class), predict(outcome())

lower working middle upper

Pr(y) 0.230 0.634 0.133 0.003
11 0.190 0.613 0.108 0.002
ul 0.270 0.655 0.159 0.004

Specified values of covariates
female white year educ age income

Current 0 0 3 1 25 30

The results for category lower match those from margins above, plus we have predic­
tions for the other outcomes.

We could also compute predicted probabilities for both ideal types at the same time:

. mtable, atright norownum width(7)
> at(female=0 white=0 year=3 ed=l age=25 income=30)
> at(female=l white=l year=3 ed=3 age=60 income=150)
Expression: Pr(class), predict(outcome())

lower working middle upper female white educ age income

0.230 0.634 0.133 0.003 0 0 1 25 30
0.008 0.138 0.759 0.095 1 1 3 60 150

Specified values of covariates
year

Current 3

The differences between the ideal types are striking: While our first type has a predicted 
probability of only 0.13 of identifying as middle class, our second has a probability of 
0.7G. The second type has a probability of less than 0.01 of identifying as lower class, 
while the first type has a probability of 0.23. The example makes plain the large effect 
th a t these variables together have on class identification.

Although having the results in a  single table is much more convenient than having 
to combine results from four m argins commands, we also did several things to make 
the output clearer. First, we used value labels for the dependent variable c la ss  to label 
the columns with predictions. Because it is easy to be confused about the outcome 
categories when using these models, we advise always assigning clear value labels to 
your dependent variable (sec chapter 2). Option a t r i g h t  places the values of the 
covariates to the right of the predictions. Because the values of the covariates clearly 
identify the rows, we turned off the row numbers in the table of predictions by using 
norownum. And to fit the results more compactly, we specified the column widths with 
w id th (7 ).



7.12.1 (Advanced) Testing differences between ideal types

354 Chapter 7 Models for ordinal outcomes

Although we regard this section as extremely useful, we mark it as 
advanced because it requires a firm grasp of using loops and local macros 
in S tata. If you are still getting used to these, you might want to skip 
this section until you are comfortable with both.

We may want to  know whether a  difference between ideal types is statistically signif­
icant for the same reason that we may perform a significance test for a set of coefficients: 
we are considering a change th a t involves multiple variables, and we want to evaluate 
how likely it is that we would observe a difference this large just by chance. Although the 
differences between predictions for our two ideal types are almost certainly significant, 
we can test this by extending m ethods used for binary outcomes.

To test differences in predictions, we need to overwrite the estimation results from 
o lo g it w ith the predictions generated by margins. An inherent limitation in margins 
is that posting can only be done for a single outcome. That is, we cannot post the 
predictions for our four outcomes a t one time. (We hope this will be addressed in future 
versions of m argins.) To deal w ith this inconvenience, we will use a forvalues loop 
to repeat the  tests for each outcome. First, we lit the model and store the estimates, 
because we will have to restore the model results after we post the predictions for a 
particular outcome:

. ologit class i.female i.white i.year i.educ c.age##c.age income, nolog 
(o u tpu t o m itte d)

. estimates store olm

Next, we compute tests for each of the four outcome categories by using the following 
commands:

. mlincom, clear

. forvalues iout = 1/4 { // start loop
2 . quietly {
3. mtable, out('iout') post

> at(female=0 white=0 year=3 ed=l age=25 income=30)
> at(female=l white=l year=3 ed=3 age=60 income=150)
4. mlincom 1 - 2 ,  stats(est pvalue) rowname(outcome 'iout') add
5. estimates restore olm
6 . }
7. } // end loop

We sta rt with mlincom, c le a r  to erase previous results from mlincom before we 
accumulate the new results that we will use to make our table. The forvalues { . . .}  
loop runs the code between braces once for each outcome. We use q u ie tly  { . . .  > so 
that the ou tput from mtable and mlincom is not displayed. Instead, we will list results 
after the loop is completed. W ithin the loop, the mtable option p o s t saves the estimates
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for outcom e ' i o u t '  to the matrix e(b ) so th a t mlincom can test the difference between 
the predictions for the first and second ideal types. The mlincom command uses option 
add to  collect the results to display later.

A fter the loop, running mlincom without options displays the results we just com­
puted. The column named lincom has the linear combination of the estimates—in this 
case, th e  difference in predictions —while column pvalue is the  p-value for testing that 
the difference is 0 :

. mlincom
lincom pvalue

outcome 1 0.222 0.000
outcome 2 0.496 0.000
outcome 3 -0.626 0.000
outcome 4 -0.092 0.000

As we anticipated, the predicted probabilities are significantly different for the two ideal 
types for each of the four outcomes.

7.13 Tables of predicted probabilities
W hen there are substantively im portant categorical predictors in the model, examining 
tables of predicted probabilities over values of these variables can be an effective way 
to interpret the results. In this example, we use mtable to look at predictions over the 
values of the year of the survey, which correspond to 1980, 1996, and 2012:

. mtable, at(year=(l 2 3)) atmeans norownum 
Expression: Pr(class), predict(outcome())

year lower working middle upper

1 0.049 0.473 0.462 0.016
2 0.053 0.489 0.443 0.015
3 0.078 0.565 0.347 0.010

Specified values of covariates
1.

female
1 .

white
2 .

educ
3.

educ age income

Current .549 .814 .582 .241 45.2 68.1

The atmeans option holds other variables a t their means in the estimation sample. We 
conclude the following:

Changing only the year of the survey, and with income measured in 2012 
dollars for all survey years, the probability of a respondent identifying as 
working class increased from 0.47 in 1980 to 0.57 in 2012, while the proba­
bility of identifying as middle class declined from 0.46 to 0.35.
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To obtain confidence intervals for the predictions, we use the option s ta t  (c i), which 
could be abbreviated simply as c i:

. mtable, at(year=(l 2 3)) atmeans stat(ci)
Expression: Pr(class), predict(outcome())

year lower working middle upper

Pr (y) 1 0.049 0.473 0.462 0.016
11 1 0.042 0.447 0.433 0.013
ul 1 0.056 0.499 0.491 0.020

Pr(y) 2 0.053 0.489 0.443 0.015
11 2 0.046 0.468 0.421 0 .0 12
ul 2 0.059 0.510 0.466 0.018

Pr(y) 3 0.078 0.565 0.347 0 .0 10
11 3 0.068 0.543 0.321 0.008
ul 3 0.088 0.587 0.372 0.0 12

Specified values of covariates
1 . 1 . 2 . 3.

female white educ educ age income

Current .549 .814 .582 .241 45.2 68.1

The lower and upper bounds of the  intervals print on separate rows beneath each pre­
diction. For example:

Holding independent variables a t their sample means, respondents in 2012 
had a 0.078 probability of identifying as lower class (95% CI: [0.068, 0.088]).

We m ight also want to generate tables for a combination of categorical independent 
variables. For example, how does class affiliation vary by race for the three years of our 
survey?6

. mtable, at(year=(l 2 3) white=(0 1)) atmeans norownum 
Expression: Pr(class), predict(outcome())

white year lower working middle upper

0 1 0.059 0.511 0.417 0.013
0 2 0.063 0.526 0.399 0 .0 1 2
0 3 0.093 0.593 0.306 0.008
1 1 0.047 0.464 0.472 0.017
1 2 0.051 0.480 0.454 0.016
1 3 0.075 0.558 0.356 0 .0 1 0

Specified values of covariates
1 . 2 3

female educ educ age income

Current .549 .582 .241 45.2 6 8 .1

6. While we are considering the probabilities implied by having year and white in the model as sepa­
rate independent variables, we could also fit a model in which the interaction term i.year#i.white 
is included.



7.13 Tables o f predicted probabilities 357

T h e  predictions vary by year within a given value of w h ite . The way in which 
variables vary is determined by the order in which the variables are specified with 
o l o g i t ,  not by the order of variables within the a t ( )  statement. The table might be 
clearer if predictions were arranged to vary by w hite within each value of year (in 
practice, we often have to try it both ways before deciding which is clearer for the 
purpose at hand). We can refit the o l o g i t  model with year listed before w hite, or we 
can specify the values of year within three separate a t ( )  statements:

. mtable, atmeans norounum
> at(year=l white=(0 1)) // 1980
> at(year=2 white=(0 1)) // 1996
> at(year=3 white=(0 1)) // 2012
Expression: Pr(class), predict(outcome())

white year lower working middle upper

0 1 0.059 0.511 0.417 0.013
1 1 0.047 0.464 0.472 0.017
0 2 0.063 0.526 0.399 0.012
1 2 0.051 0.480 0.454 0.016
0 3 0.093 0.593 0.306 0.008
1 3 0.075 0.558 0.356 0.010

Specified values of covariates
1.

female
2.

educ
3.

educ age income

Current .549 .582 .241 45.2 68.1

The results are exactly the same as before with only the rows rearranged.

In these results, the specified values of the covariates are the same for all predictions, 
namely, their global means. A different possibility is that we want the values of other 
variables to vary depending on a person’s race and the year of the survey. For example, 
suppose that we want t,o compare whites and nonwhites for different survey years, 
holding all other variables constant a t their local means within each race-year group. 
In other words, instead of looking a t predictions when all independent variables except 
race and year are held to the same values, we compute predictions when the values of 
the other independent variables vary according to the means for whites and for blacks 
in different years. To do this, we specify the overO  option:
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. mtable, over(year white) atmeans 
Expression: Pr(class), predict(outcomeQ)

1.
female white year

2.
educ

3.
educ age

1 .659 0 1 .447 .136 42.6
2 .539 1 1 .553 .166 44.5
3 .617 0 2 .597 .199 40.1
4 .534 1 2 .609 .261 44.7
5 .576 0 3 .56 .234 44.1
6 .538 1 3 .581 .31 48.9

income lower working middle upper

1 46.5 0.093 0.592 0.307 0.008
2 67.7 0.054 0.493 0.439 0.015
3 50.5 0.085 0.579 0.327 0.009
4 70.5 0.048 0.467 0.468 0.017
5 54.3 0.111 0.615 0.266 0.007
6 77.8 0.058 0.507 0.422 0.014

Specified values where .n indicates no values specified with at()
No at()

Current .n

The means of the independent variables are included in the table and are different for 
each row. For example, the values of fem ale, white, y e a r , educ, age, and income in 
row 1 are the means for the subsample th a t is black and responded to the survey in 
1980:

. sum female i.educ age income if white==0 & year==l, sep(9)
Variable Obs Mean Std. Dev. Min Max

female 132 .6590909 .4758206 0 1

educ
hs only 132 .4469697 .4990739 0 1
college 132 .1363636 .3444816 0 1

age 132 42.55303 16.8257 18 83
income 132 46.48708 55.15685 1.57795 267.8147

Returning to the output from m table, if we look at variable 3 . educ, for example, the 
difference between row 1 and row 2 shows that a higher proportion of white respondents 
had college degrees in 1980 (0.166) than did black respondents (0.136). The differences 
between rows 1 and 3 and between rows 2 and 4, on the  other hand, reflect that the 
proportion of respondents with a college degree increased between 1980 and 1996.

When there are many regressors in the table, it might be easier to see the changing 
predictions by listing the value of the regressors (that is, the a t ( )  variables) on the 
right by using the a t r ig h t  option:
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. mtable, over(year white) atmeans atright 
Expression: Pr(class), predict(outcome())

lower working middle upper
1.

female white

1 0.093 0.592 0.307 0.008 .659 0
2 0.054 0.493 0.439 0.015 .539 1
3 0.085 0.579 0.327 0.009 .617 0
4 0.048 0.467 0.468 0.017 .534 1
5 0.111 0.615 0.266 0.007 .576 0
6 0.058 0.507 0.422 0.014 .538 1

2. 3.
year educ educ age income

1 1 .447 .136 42.6 46.5
2 1 .553 .166 44.5 67.7
3 2 .597 .199 40.1 50.5
4 2 .609 .261 44.7 70.5
5 3 .56 .234 44.1 54.3
6 3 .581 .31 48.9 77.8

Specified values where .n indicates no values specified with at()
No at()

Current .n

Using over () in this way yields predictions th a t reflect the effects of both race and year 
and also compositional differences over race and year in the means of the other variables. 
In this respect, the predictions are not as simple to interpret as the examples above in 
which the values of other characteristics were the same regardless of year and race. 
Comparing the predictions we just made with those we made holding the independent 
variables to the same values for everyone, we can see the probabilities vary more when 
the means vary over groups. Substantively, this indicates th a t the differences in the 
population composition by race and year result in differences in predictions that are 
larger than they would be if we assumed th a t population characteristics were constant 
across race and time.

7.14 Plotting predicted probabilities
Plotting predicted p r o b a b ilit ie s  for each outcome can also be useful for the ORM. These 
plots illustrate how p r e d ic te d  probabilities change as a continuous,independent variable 
changes. W ith the BRM, w e sh o w e d  two approaches for making plots: directly with 
m arg in sp lo t or in two ste p s  w ith  mgen and graph. Plotting multiple outcomes, however, 
c a n  only be done using th e  la tter  technique because m a r g in sp lo t  is limited to plotting 
a  single outcome.

To illustrate graphing predictions, we consider how the probability of class affiliation 
changes as household income changes, holding all other variables at their sample means. 
Of course, the plot could also be constructed for other sets of characteristics. The option 
a t  (inc=0(25)250) tells mgen to generate predictions as incom e changes from 0 to 250
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in increments of 25, leading to 11 sets of predictions. The option atmeans holds other 
variables to their means. We use stub(C L _) to add CL_ (indicating predictions for class) 
to the names of variables generated by mgen:

. mgen, at(income=(0(25)250)) stub(CL_) atmeans
Predictions from: margins, at(income=(0(25)250)) atmeans predict(outcomeQ)
Variable Obs Unique Mean Min Max Label

CL_prl 11 11 .0439624 .0074601 .1207294 pr(y=lower) from margins
CL_111 11 11 .0385464 .0057745 .1067216 95'/. lower limit
CL_ull 11 11 .0493784 .0091458 .1347373 95'/. upper limit
CL_income 11 11 125 0 250 household income
CL_Cprl 11 11 .0439624 .0074601 .1207294 pr(y<=lower)
CL_pr2 11 11 .377087 .1301718 .6238775 pr(y=working) from margins
CL_112 11 11 .3565982 .1081524 .6070259 95'/, lower limit
CL_ul2 11 11 .3975758 .1521912 .6407292 95'/, upper limit
CL_Cpr2 11 11 .4210494 .137632 .744607 pr(y<=working)
CL_pr3 11 11 .5424338 .2492696 .7612023 pr(y=middle) from margins
CL_113 11 11 .5212693 .2296227 .7417022 95'/, lower limit
CL_ul3 11 11 .5635983 .2689165 .7807024 95'/, upper limit
CL_Cpr3 11 11 .9634833 .8988342 .9938766 pr(y<=middle)
CL_pr4 11 11 .0365167 .0061234 .1011657 pr(y=upper) from margins
CL_114 11 11 .030147 .0047639 .0828273 95'/, lower limit
CL_ul4 11 11 .0428865 .0074829 .1195042 95'/, upper limit
CL_Cpr4 11 1 1 1 1 pr(y<=upper)

Specified values of covariates
1 1. 2. 3. 2. 3.

female white year year educ educ age

.5491103 .8140569 .4510676 .3099644 .5818505 .2414591 45.15712

Each variable has 11 observations corresponding to different values of income. Variables 
containing predicted probabilities are stored in variables named CL_pr#. For example, 
CL_pr2 is the  predicted probability of identifying as working class, the second category 
of our outcome. Variables containing cumulative probabilities— that is, the probability 
of observing a given category or lower—are stored as variables CL_Cpr#. For example, 
CL_Cpr2 is the predicted probability of a respondent identifying as either lower class or 
working class.

Although mgen assigns variable labels to the variables it generates, we can change 
these to improve the look of the plot th a t we are creating. Specifically, we use

. label var CL_prl "Lower"

. label var CL_pr2 "Working"

. label var CL_pr3 "Middle"

. label var CL_pr4 "Upper"

. label var CL_Cprl "Lower"

. label var CL_Cpr2 "Lower/Working"

. label var CL_Cpr3 "Lower/Working/Middle"
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Next, we plot the probabilities of individual outcomes by using g r a p h .  Here we plot the 
four probabilities against values of income.

. graph twoway connected CL_prl CL_pr2 CL_pr3 CL_pr4 CL_income,
> titleCPanel A: Predicted Probabilities")
> xtitleC"Household income (2012 dollars)")
> xlabel(0(50)250) ylabel(0(.25)1, grid gmin gmax)
> ytitleC") name(tmpprob, replace)

Panel A : P redicted Probabilities

- • —  Lower — ♦—  Working

-«—  Middle — A—  Upper

Standard options for graph are used to  specify the axes and labels. The name(tmpprob, 
re p la c e )  option saves the graph with the name tmpprob so th a t we can combine it with 
our next graph, which plots the cumulative probabilities. The values on the y axis of 
each of the four lines indicate the predicted probabilities of each category when income
equals the value on the x  axis and other variables are held a t their means. At all values
of income, these probabilities sum to 1. We will wait to discuss what it is showing 
substantively until after we complete the graph with cumulative probabilities.

A graph of cumulative probabilities uses lines to indicate the probability that y < #  
ra ther than y = # . To create this graph, we use the command

. graph twoway connected CL_Cprl CL_Cpr2 CL_Cpr3 CL_income,
> title("Panel B: Cumulative Probabilities")
> xtitle("Household income (2012 dollars)")
> xlabel(0(50)250) ylabel(0(.25)1, grid gmin gmax)
> ytitleC") name(tmpcprob, replace)

which saves the resulting graph as tm pcprob. Next, we combine these two graphs (see 
chapter 2 for details on combining graphs):

. graph combine tmpprob tmpcprob, col(l) iscale(*.9) imargin(small)
> ysize(4.6) xsize(3.287) caption("Other variables held at their means")
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This leads to  figure 7.2. Panel A plots the predicted probabilities for each outcome 
and shows th a t the probabilities of working class and middle class are larger than the 
probabilities of lower class and upper class. As income increases, the probability of a 
respondent identifying as lower class or working class decreases, while the probability 
of identifying as middle class or upper class increases. Panel B plots the cumulative 
probabilities. Both panels present the same information. In applications, you should 
use the graph that you find most effective.

Panel A: Predicted Probabilities

0  Lower — ♦—  Working

-■—  Middle — A—  Upper

Panel B: Cumulative Probabilities

— • — Lower — * — Lower/Working

Lower/Working/Middle

Other variables held at their m eans

Figure 7.2. Plot of predicted probabilities and cumulative probabilities for the ordered 
logit model
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A different way of plotting cumulative probabilities is to use shading instead of lines, 
which looks like this:

0 50 100 150 2100 250
Household income (2012 dollars)

1. ____1 Upper ■ ■ i  Middle

■ ■ ■  Working ^ ■ ■ 1  Lower

To create this graph, we use a twoway a r e a  plot type (see [G-2] tw oway area). In 
our prior graph, CL_Cpr^ designated the height on the y axis at which a line should be 
drawn. In a twoway a r e a  plot, the value of CL_Cpr# indicates that the graph should be  
shaded from that value to the bottom of the graph. We used the following commands:

. capture drop one 

. gen one = 1

. label variable one "Upper"

. label variable CL_Cpr3 "Middle"

. label variable CL_Cpr2 "Working"

. label variable CL_Cprl "Lower"

. graph twoway
> (area one CL.income, fcolor(gsl5))
> (area CL_Cpr3 CL_income, fcolor(gsll))
> (area CL_Cpr2 CL_income, fcolor(gs7))
> (area CL_Cprl CL_income, fcolor(gs3)),
> xtitle("Household income (2012 dollars)") ytitle("Probability")
> xlabel(0(50)250) ylabel(0(.25)1, grid gmin gmax)

First,, we generate the variable one, whose values are all 1. An a r e a  plot using this 
variable is simply a solid block from the top of the graph to  the bottom, which we use 
to depict the probability of the highest category (“Upper” ). Accordingly, we label this 
variable with the name of highest category. Next, we label the variables for the other 
cumulative probabilities according to  the highest category each represents. Then, using
the graph twoway command, we draw four a rea  plots, each on top of the other to make
a single graph. The first plot covers the entire plot region (everything below the value 
of variable one. which is always equal to 1 ), which we shade using f  c o l o r ( g s l5 ) . ‘ The

7. The fcolorO option uses gs# as names of grayscale colors, and gsl5 is the lightest.
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other area plots use the three cumulative probability variables and are shaded using 
progressively darker grays. The shading allows us to easily see how identification as 
middle class expands as household income increases. We can also quickly see how large 
the probabilities for the middle categories are relative to  the extremes.

.15 Probability plots and marginal effects
Having considered various m ethods of interpretation, we now show the link between 
marginal effects and plots of predicted probabilities to hopefully provide you with new 
insights on the nature of ordinal models. The following graph, based on section 7.14. 
shows how the probabilities of class affiliation change with income, holding all other 
variables a t their means. The mean of income is indicated with a dashed, vertical line:

Other va ria b les are held at their m ean

♦  Low er — ♦—  Working

-■—  Middle — A —  Upper

The slope of each probability curve evaluated at the mean of income, indicated by 
where the probability curves intersect the vertical line, is the marginal change in the 
probability of a given class affiliation with respect to income, with all variables held at 
their means. We can compute these changes by using m change, atmeans to estimate 
MEMs:
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. mchange income, atmeans amount(marginal) dec(4) 
ologit: Changes in Pr(y) | Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

income
Marginal -0.0006 -0.0022 0.0027 0.0002
p-value 0.0000 0.0000 0.0000 0.0000

Predictions at base value
lower working middle upper

Pr(y|base) 0.0586 0.5107 0.4173 0.0134
Base values of regressors

1 . 1 . 2. 3. 2. 3.
female white year year educ educ

at .5491 .8141 .4511 .31 .5819 .2415

age income

at 45.16 68.08
1: Estimates with margins option atmeans.

the test that 
slopes of the 
example, the

The marginal changes are in row M argin a l, with the significance level for 
the change is 0 listed in row p -v a lu e . These changes correspond to the 
probability curves at the point of intersection with the vertical line. For 
slope for middle class, shown with squares, is 0.0027.

The m agnitude of the marginal changes would differ if we computed the marginal 
effects at different values of the independent variables. For example, we can compute 
the effects w ith income equal to $250,000, with all other variables still kept at their
means:
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. mchange income, at(income=250) atmeans amount (marginal) dec(4) 
ologit: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

income
Marginal -0.0001 -0.0013 0.0003 0.0011
p-value 0.0000 0.0000 0.0378 0.0000

Predictions at base value
lower working middle upper

Pr(yIbase) 0.0075 0.1302 0.7612 0.1012
Base values of regressors

1 .
female

1 .
white

2.
year

3.
year

2.
educ

3.
educ

at .5491 .8141 .4511 .31 .5819 .2415

age income

at 45.16 250
1: Estimates with margins option atmeans.

The marginal change for the probability of identifying with the middle class is much 
smaller, corresponding to the leveling off of the curve (shown with B ’s) on the right side 
of the graph.

In this example, the signs of the  marginal effects for each outcome are the same 
throughout the range of income. This, however, does not need to be true. In the 
ORM. not only does the magnitude of the effect change as the values of the independent 
variables change, bu t even the sign can change. That is to say, the effect of a variable 
can be positive a t one point and can be negative at other points, even if we have not 
included polynomial terms or interactions in the model. In a model without interaction 
or polynomials for a given independent variable, the sign of th a t variable’s regression 
coefficient will always be the same as the direction of changes in the probability of the 
highest outcome category as the independent variable increases.

In our example of subjective social class, because the coefficient for income is positive, 
increases in income will always increase the probability of identifying as upper class.' 
Conversely, the change in the probability of the lowest category will be in the opposite 
direction as the regression coefficient. Thus increases in income always decrease the 
probability of identifying as lower class. The' middle categories are more complicated. 
In terms of the latent variable model described in section 7.1.1, as income increases, some 
people shift from lower class to working class, while other people shift from working class 
to middle class. The specific implication for the probability of identifying as working

8. Of course, there is no reason this m ust be true substantively. For example, one might hypothesize 
that income increases the predicted probability of identifying as upper class only up to a point, 
after which there is no effect. M odeling this would involve adding additional terms for the effect 
of incom e to the model, for example, by using splines or polynomials.
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class depends on whether the proportion entering the category from below is bigger or 
sm aller than the proportion exiting from above. As a result, the sign of the predicted 
change in middle categories can change when computed at different values of income. 
O ur running example does not provide a good illustration of this (for reasons explained 
below), so we use an example from chapter 8 . Party affiliation is coded as strong 
D em ocrat; Democrat, Independent, or Republican; and strong Republican. We fit an 
OLM using age, income, race, gender, and education as predictors:

. use partyid4, clear
(partyid4.dta I 1992 American National Election Study I 2014-03-12)
. ologit partystrong age income i.black i.female i.educ, nolog
Ordered logistic regression Number of obs = 1382

LR chi2(6) = 173.85

Log likelihood = -1064.4742
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.0755

partystrong Coef. Std. Err. z P> 1 z I [957. Conf. Interval]

age
income

-.0081028 .0036953 
.0090361 .002415

-2.19
3.74

0.028
0.000

-.0153456 
.0043028

-.0008601
.0137694

(output omitted )

N otice th a t the coefficient for income is positive. Next, we compute predictions as 
incom e increases from $0 to $200,000 :

. mgen, atmeans at(income=(0(20)200)) stub(olm) replace
Predictions from: margins, atmeans at (income=(0(20)200) ) predict (outcome ())
Variable Obs Unique Mean Min Max Label

olmprl 11 11 .1148384 .0444239 .2207461 pr(y=StrDem) from margins
olmlll 11 11 .0838875 .0106582 . 1826952 95'/, lower limit
olmull 11 11 .1457892 .0781895 .258797 95% upper limit
olmincome 11 11 100 0 200 Income in $l,000s

(output om itted )

Specified values of covariates
1. 1. 2. 3.

age black female educ educ

45.94645 .1374819 .4934877 .5803184 .2590449

. label var olmprl "Strong Democrat"

. label var olmpr2 "Middle"

. label var olmpr3 "Strong Republican"
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- • —  Strong Democrat - - O ’ -  Middle - - -  Strong Republican

As income increases, the probability of being a strong Republican increases steadily, 
while the probability of being a strong Democrat decreases. The changes in the prob­
ability of being “in the middle” are more complex. As income increases from $0 to 
about $50,000, the probability increases, and then it decreases till $200,000. That is, 
the marginal effect of income on being politically in the middle is both positive and neg­
ative depending on where it is evaluated. We can see this by using mchange evaluated 
at the levels of income:

. * discrete change at income of $0

. mchange income, at(income=0) atmeans amount(sd) stat(change) brief 
ologit: Changes in Pr(y) I Number of obs = 1382 
Expression: Pr(partystrong), predict(outcome())

StrDem Middle StrRep

income
+SD -0.040 0.021 0.019

. * discrete change at income of $60,000

. mchange income, at(income=68) atmeans amount(sd) stat(change) brief 
ologit: Changes in Pr(y) I Number of obs = 1382 
Expression: Pr(partystrong), predict(outcome())

StrDem Middle StrRep

income
+SD -0.026 -0.005 0.031
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. * discrete change at income of $200,000

. mchange income, at(income=200) atmeans amount(sd) stat(change) brief 
ologit: Changes in Pr(y) I Number of obs = 1382 
Expression: Pr(partystrong), predict(outcome())

StrDem Middle StrRep

income
+SD -0.010 -0.048 0.058

The changes in the probability of outcome 1, being a strong Democrat, are always 
negative and get smaller as the probability approaches 0. Changes in the probability 
of outcome 3, being a strong Republican, steadily increase as income increases. For the 
middle category, the change is positive, then 0 , and then negative.

This p a tte rn  of change in probabilities must hold for any ORM. Indeed, Anderson 
(1984) made this a defining characteristic of an ordinal model; see Long (Forthcoming) 
for further discussion of this property.

W hen an independent variable changes over an extended range (technically, from 
negative infinity to positive infinity) the plot of probabilities m ust have a pattern similar 
to the following graph that extends the range of income from our example above:

Strong D e m o cra t---------- Middle ------ -- • Strong Republican

The height of the bell-shaped curve for the middle category depends on the distance 
between thresholds, which in turn depends on the relative size of the outcome categories. 
The observed range for the independent variable—income, in this case—might fall 
anywhere within this graph. For example, if our sample included only those cases with 
an income about $6 8 ,000. corresponding to the peak of th e  probability curve for the 
middle category, our graph would show th a t the probability of being politically in the 
middle always decreases as income increases. Indeed, we had to change our example for 
this section because the upper- and lower-class categories in our example of subjective 
social class were so small.
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If you have more categories, the  probability curves will be ordered from left to right 
as illustrated in this graph:

................  Pr(Strongly agree) ---------- Pr(Disagree)

--------- • Pr(Agree) ----------  Pr(Strongly disagree)

-----------Pr(Neutral)

This pattern  of curves will also occur in other ordinal models. As shown in chapter 8. 
if this pattern  does not correspond to the process being modeled, an ordinal model will 
force the d a ta  into this pattern and provide misleading results.

In sum, changes in the probability of extreme categories in the ORM are alw ays in 
the opposite direction from one another; the direction of the change for either category 
will remain the same regardless of the starting value or the magnitude of the change. 
Changes in the probability of middle categories, on the other hand, can change sign 
over the range of an independent variable.

7.16 Less common models for ordinal outcomes
Stata can also fit several less commonly used models for ordinal outcomes. In con­
cluding this chapter, we describe these models briefly and note their commands for 
estimation. Long (Forthcoming) provides further details. SPost commands do not work 
with all these models, but our m* commands do work with the estimation commands 
that support margins.

7.16.1 The stereotype logistic model

The stereotype logistic model, also referred to as the stereotype ORM, was proposed by 
Anderson (1984) in response to the restrictive assumption of parallel regressions in the 
ORM. The stereotype logistic model is a  compromise between allowing the coefficients 
for each independent variable to  vary by outcome category (as is the case with the 
multinomial logit model, considered in the next chapter) and restricting the coefficients
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to be identical across all outcomes (as was the case with the ordered logit model). 
The stereotype logistic model can be fit in S tata by using the s lo g i t  command (see 
[r ] s lo g it) . The one-dimensional version of the model is defined as

ln P r(y  =  < j|x ) =  _  _  _

Pr (y = r \ x)

where (3 is a vector of coefficients associated with the independent variables, the 0 ’s 
are intercepts, and the 0 ’s are scale factors that mediate the effects of the x's. This 
one-dimensional model is ordinal as defined in section 7.15 and often produces very 
sim ilar predictions to the ORM. When additional dimensions are added, it is no longer 
an ordinal model. Indeed, with enough dimensions, it is equivalent to the multinomial 
logit model. Accordingly, we postpone further discussion until chapter 8 .

7.16.2 The generalized ordered logit model

The parallel regression assumption results from assuming the same coefficient vector (3 
in th e  J  -  1 logit equations

111 ^<m | >m (x) "̂m X/3

where 0 < m|>m (x) =  Pr (y < m  | x) /  P r (y > m  | x). The generalized ordered logit 
model allows (3 to differ for each of the J  — 1 comparisons. That is,

hi n<m\>m (x) =  Tm ~  *(3rn for j  =  1 to J  -  1

where predicted probabilities are computed as

Pr(v = 1 . x)= expfo^xftL
] 1 + ex p  ( n - x f r )

P r (y  =  J , x ) =  e x p f a - x f t )  exp {o r j = 2 t o J _ l
1 +  exp (tj -  x/3j) 1 -I- exp (tj_ i -  x(3j _ 1)

«  / t | \ i exp [t j -\ — ~x.fij _ i j
P r (y =  J  I x) =  1 -

1 + exp  ( t j_ !  - x (3j _ 1)

No formal constraint precludes negative predicted probabilities. Discussions of this 
model can be found in Clogg and Shihadeh (1994, 146-147), Fahrmeir and Tutz (1994, 
91), and McCullagh and Nelder (1989, 155). A critical view of the model can be found 
in Greene and Hensher (2010, 189-192), who highlight th a t the model can predict neg­
ative "probabilities” and that it cannot be formulated in term s of a continuous latent 
dependent variable. Further, as noted by Long (Forthcoming), the generalized ordered 
logit model is not an ordinal regression model because, like the multinomial logit model, 
it does not necessarily make predictions th a t maintain the ordinality of the outcome.
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The model can be fit in S ta ta  with the g o lo g it2 command (Williams 2005). The 
command does not work with factor variables, so categorical variables in the model 
need to be constructed as a series of binary variables. Also, because we can no longer 
use factor-variable notation to include age-squared in the model, we need to create an 
age-squared variable explicitly:

. use gssclass4, clear
(gssclass4.dta I GSS Subjective Class Identification I 2013-11-20)
. gen yearl996 = (year==2) if year < .
. gen year2012 = (year==3) if year < .
. gen educ_hs = (educ==2) if educ < .
. gen educ_col = (educ==3) if educ < .
. gen agesq = age*age if age < .

The specification of the dependent variable and independent variables is otherwise 
like the o ther estimation commands we consider. We estim ate the parameters of the 
model by specifying the or option to obtain odds ratios:
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. gologit2 class female white yearl996 year2012 educ_hs educ_col
> age agesq income, nolog or
Generalized Ordered Logit Estimates Number of obs = 5620

LR chi2(27) = 1782.34
Prob > chi2 = 0.0000

Log likelihood = -4852.0145 Pseudo R2 = 0.1552

class Odds Ratio Std. Err. z P> lz| [95*/. Conf. Interval]

lower
female .8709876 .0995261 -1.21 0.227 .6962205 1.089625
white 1.11671 .1404256 0.88 0.380 .8727749 1.428823

yearl996 .8572836 .1356375 -0.97 0.330 .6287085 1.16896
year2012 .4740378 .074985 -4.72 0.000 .3476697 .6463373
educ_hs 1.395278 .1800471 2.58 0.010 1.083482 1.796802

educ_col 4.315005 1.130562 5.58 0.000 2.582025 7.211111
age .9300842 .0159959 -4.21 0.000 .8992553 .96197

agesq 1.000774 .0001691 4.58 0.000 1.000443 1.001106
income 1.052365 .0036226 14.83 0.000 1.045289 1.059489
_cons 9.397178 4.093324 5.14 0.000 4.001492 22.06851

working
female 1.0751 .064515 1.21 0.228 .9558058 1.209283
white 1.30927 .1050703 3.36 0.001 1.118715 1.532284

yearl996 .9415489 .0704209 -0.81 0.421 .8131661 1.090201
year2012 .7055537 .0593443 -4.15 0.000 .5983224 .832003
educ_hs 1.329956 .1141584 3.32 0.001 1.124018 1.573625

educ_col 4.742383 .5034121 14.66 0.000 3.85159 5.839197
age .9538031 .0096077 -4.70 0.000 .9351571 .972821

agesq 1.000728 .0001015 7.18 0.000 1.000529 1.000927
income 1.011296 .000668 17.00 0.000 1.009987 1.012606
_cons .3530586 .0870504 -4.22 0.000 .2177579 .5724264

middle
female 1.015499 .1568278 0.10 0.921 .7502826 1.374467
white .7961042 .175904 -1.03 0.302 .5162878 1.227575

yearl996 .9762229 .1919355 -0.12 0.903 .6640396 1.435172
year2012 .4899366 .1130594 -3.09 0.002 .3116834 .7701334
educ_hs .6469348 .1694775 -1.66 0.096 .3871428 1.08106

educ.col 1.779687 .4778177 2.15 0.032 1.051501 3.012158
age .9865854 .0272608 -0.49 0.625 .9345763 1.041489

agesq 1.00033 .0002667 1.24 0.216 .9998074 1.000853
income 1.011058 .0009115 12.20 0.000 1.009273 1.012846
_cons .0139257 .0097749 -6.09 0.000 .0035183 .055119

We have three sets of odds ratios labeled lower, working, and middle, compared 
with one set when we used o lo g it.  The odds ratios indicate the factor change in odds 
of observing a value above the listed category versus observing values at or below the 
listed category. Accordingly, we can interpret the three coefficients for white as follows:
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Holding all other variables constant, white respondents have 1.12 times 
higher odds of identifying themselves as working, middle, or upper class 
than do nonwhite respondents. W hite respondents have 1.31 times higher 
odds of identifying themselves as middle or upper class than do nonwhite re­
spondents. And, white respondents have 0.80 times lower odds of identifying 
themselves as upper class than  do nonwhite respondents.

The key difference between the generalized and the ordered logit models is that in the 
ordered logit model, the odds ratios described in these three sentences are constrained 
to be equal. Based on the ordered logit model, we would replace 1.12, 1.31, and 0.80 in 
the paragraph above with the same value 1.27.

g o lo g i t2 allows users to fit the model with some of the coefficients constrained to be 
equal, as in o lo g i t ,  while others are allowed to vary. In addition to this, gologit2  can 
fit two special cases of the general model: the proport ional-odds model and the partial 
proportional-odds model (Lall, Walters, and Morgan 2002; Peterson and Harrell 1990). 
These models are less restrictive th an  the ordinal logit model fit by o lo g it, but they 
are more parsimonious than the multinomial logit model fit by mlogit.

7.16.3 (Advanced) Predictions without using factor-variable notation

Factor variables make it much simpler to make predictions when there 
are linked variables, such as age and age-squared. Because g o lo g it2 
does not support factor-variable notation, we use this model to illustrate 
how to make the correct predictions. The most im portant point for most 
readers is likely that you want to use factor variables whenever possible! 
If you use factor-variable notation in your models, you do not need to 
worry about the issues discussed in this section. However, you might 
still find the section useful to deepen your understanding of predictions 
in nonlinear models.

We can compute predicted probabilities for given values of observations as we did 
with the ordered logit model and use the same approach to interpretation. For example, 
here are results using the same ideal types that we used in section 7.12.

mtable, atright norownum width(7) ///
at(female=0 white=0 year1996=0 year2012=l educ_hs=0 educ_col=0 I I I

age=25 agesq=625 income=30) ///
at(female=l white=l yearl996=0 year2012=l educ_hs=0 educ_col=l I I I

age=60 agesq=3600 income=150)

Because g o lo g i t2 does not, support factor-variable notation, we must explicitly specify 
the values of indicator variables for educational degree and survey year. We also must 
specify th a t the value of agesq is the square of the value of age. As a consequence, the 
output is messier (though the predictions are correct):
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Expression: Pr(class), predict(outcome())
lower working middle upper female white educ_col age

0.155 0.701 0.136 0.008 0 0 0 25
0.000 0.122 0.809 0.069 1 1  1 60
agesq income

625 30
3600 150

Specified values of covariates
yearl996 year2012 educ_hs

Current 0 1 0

Comparing the results from o lo g it  th a t were computed earlier in the chapter,

Expression: Pr(class), predict(outcome())
lower working middle upper female white educ age income

0.230 0.634 0.133 0.003 0 0 1 25 30
0.008 0.138 0.759 0.095 1 1 3 60 150

Specified values of covariates
year

Current 3

the main difference between the generalized and the ordered logit models is that the 
predicted probabilities for I lie categories with the highest probabilities (working class 
for the first ideal type and middle class for the second) are about 0.06 higher in the 
generalized ordered logit model.

We can also use mchange to obtain changes in the predicted probability for particular 
values of the independent variables, which provides an opportunity to illustrate how 
to deal with polynomial terms, such as age-squared, when you are not using factor- 
variable notation. Suppose that we want the discrete change for white, which is a 
binary variable. If factor-variable notation had been used, mchange would know th a t 
it is a binary variable. Because we are not using factor-variable notation, we must tell 
mchange to compute the change from 0 to  1 with the option amount (binary). It is 
tempting, but incorrect, to compute the change like this:

. mchange white, amount (binary) atmeans // incorrect method! 
gologit2: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

white
0 to 1 -0.001 -0.066 0.072 -0.005

p-value 0.403 0.001 0.000 0.336
Predictions at base value

lower working middle upper

Pr(y|base) 0.011 0.503 0.466 0.020
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Base values of regressors
female white yearl996 year2012 educ_hs educ_col

at .549 .814 .451 .31 .582 .241
age agesq income

at 45.2 2325 68.1
1: Estimates with margins option atmeans.

Because the  mean of age is 45.16, agesq  should be held at 45.16 x 45.16 = 2039, not 
2325, which is the mean of agesq.

The correct way to  compute marginal effects is to specify the value of agesq in at():

. mchange white, amount(binary) at(agesq=2039) atmeans 
gologit2: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

white
0 to 1 -0.002 -0.064 0.070 -0.004

p-value 0.402 0.001 0.000 0.335
Predictions at base value

lower working middle upper

Pr(yIbase) 0.014 0.552 0.416 0.018
Base values of regressors

female white yearl996 year2012 educ_hs educ_col

at .549 .814 .451 .31 .582 .241
age agesq income

at 45.2 2039 68.1
1: Estimates with margins option atmeans.

In this example, the differences are slight. Depending on the magnitudes of the co­
efficients for the linked variables and the distribution of those variables, however, the 
differences can be substantial. Fortunately, some simple programming tools can auto­
mate the process:

summarize age
local mnagesq = r(mean)*r(mean)
mchange white, amount(binary) at(agesq='mnagesq') atmeans

summarize computes the mean of age. which is returned in r(mean). The local macro 
mnagesq is set equal to the mean times the mean. W ithin the a t ( )  specification, agesq 
is set equal to this local macro.

Another limitation caused by the lack of support for factor-variable notation in 
g o lo g it2 is that you cannot use mchange to compute marginal effects of age because 
margins has no way to know th a t age and agesq m ust change together. The only
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solution is to compute the appropriate predictions, specifying both the val 
age-squared a t two values of age and then subtracting the predictions * ^  ° ***

For categorical independent variables with more than two variables we t 
explicitly constrain the other indicator variables to 0 as we let one of th ' 'l'" 
change from 0  to 1. We can do this with a t ( ) .  First, we compute the c h a n g e U u ^  
1996 and 1980 (the base category), and then we compute the change between 2012 and

. * change from 1980 to 1996

. mchange yearl996, amount (binary) at (year2012=0 agesq=2039) atmeans brief 
gologit2: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcomeO)

lower working middle upper

yearl996
0 to 1 0.002 0.013 -0.014 -0.001

p-value 0.325 0.469 0.436 0.903
. * change from 1980 to 2012
. mchange year2012, amount (binary) at(yearl996=0 agesq=2039) atmeans brief 
gologit2: Changes in Pr(y) I Number of obs = 5620 
Expression: Pr(class), predict(outcome())

lower working middle upper

year2012
0 to 1 0.011 0.074 -0.073 -0 .012
p-value 0.000 0.000 0.000 0.004

To compute the change from 1996 to 2012, we cannot use mchange because we »ml to 
change the value of two variables at once, namely, yearl996 and year2012 I»> estiinat« 
the changes, we use a simple program:

. estimates store golm 

. mlincom, clear

. forvalues iout = 1/4 {
2. qui {
3. mtable, atmeans post outcome( iout )

> at(yearl996=l year2012=0 agesq=2039) // 1996
> at (year 1996=0 year2012=l agesq=2039) // 2012

mlincom 1 - 2 ,  add rowname(outcome='iout")
estimates restore golm

4.
5.
6 .
7. >
mlincom

}

lincom pvalue 11 ul

outcome=l
outcome=2
outcome=3
outcome=4

-0.009
-0.061
0.059
0.011

0.000
0.000
0.001
0.000

-0.014
-0.094
0.025
0.005

-0.004 
-0.028 
0.093 
0.017

For details on the commands used, see section 7.12.1.
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Some ordinal outcomes represent the progress of events or stages in some process through 
which an individual can advance. For example, the outcome could be faculty rank, 
where the stages are assistant professor, associate professor, and full professor. The key 
characteristic of the process is th a t an individual must pass through each stage. The 
outcome is thus the result of a sequence of potential transitions: an assistant professor 
may or may not make the transition to associate professor, and an associate professor 
may or may not make the transition to full professor.

The m ost straightforward way to  model an outcome like this is as a series of BRMs. 
Consider th e  binary logit model from chapter 5:

, P r  (y  =  1 I x) 
l n P r( ,y =  0 | x ) = °  + X/3

where we have m ade the intercept explicit rather than including it in ¡3. To extend this 
to multiple transitions, we estim ate for each transition the log odds of having made the 
transition (y > m )  versus not having made the transition (y = rri). For example, we
estimate th e  log odds of being an associate or a full professor (y > 1) versus being an
assistant professor (y =  1). We allow separate coefficients (3m for each transition from 
y = m :

In p 1 \l> > W | X| =  am  +  x/3 for m  =  1 to .7 -  1 (7.5)
Pr (y =  m | x)

where J  is the number of stages.

This is an example of a broader group of models called sequential logit models 
(for example. Liao [1994, 26-28]). This model differs im portantly from the generalized 
ordered logit model in that observations in which y < m  are not used in the estimation 
of /3m. For example, assistant professors are not used when modeling the transition 
from associate professor to full professor.

To dem onstrate how to fit th is model, we use the variable educ in the gssclass4 
dataset as our outcome. The three values of educ represent two transitions: students 
may or may not graduate from high school, and high school graduates may or may not 
graduate from college. To fit the model, we first use recode  to create dummy variables 
representing whether or not respondents a t each stage made the transition to the next. 
The variable educ has the distribution

7.16.4 The sequential logit model

. tabulate educ, miss
educational
attainment Freq. Percent Cum.

not hs grad 993 17.67 17.67
hs only 3,270 58.19 75.85
college 1,357 24.15 100.00

Total 5,620 100.00
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We create the variable g radco llege  to indicate if someone with a high school diploma 
graduated from college, where those who did not graduate from high school (educ=l) 
are recoded as missing, not as 0. Those who did not graduate from high school are not 
included in the analysis of the transition to college graduation.

. recode educ (1=0) (2 3=1), gen(gradhs)
(5620 differences between educ and gradhs)
. label var gradhs "Graduate high school?"
. recode educ (1=.) (2=0) (3=1), gen(gradcollege)
(5620 differences between educ and gradcollege)
. label var gradcollege "Graduate college?"

Next, we use l o g i t  to fit separate models for each transition, using race and sex as 
independent variables.

. * HS degree vs not

. logit gradhs i.white i.female, or nolog
Logistic regression Number of obs = 5620

LR chi2(2) = 25.40

Log likelihood = -2608.1189
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.0048

gradhs Odds Ratio Std. Err. z P> 1 z | [95'/, Conf. Interval]

white
white 1.531009 .1280333 5.09 0.000 1.299554 1.803686

female
female

_cons
.9665729
3.387367

.0683325

.2880726
-0.48
14.35

0.631
0.000

.8415082
2.867301

1.110225
4.001761

. * College degree vs HS degree 

. logit gradcollege i.white i.female, or nolog
Logistic regression Number of obs = 4627

LR chi2(2) = 8.81

Log likelihood = -2795.2139
Prob > 
Pseudo

chi2 = 
R2

0.0122
0.0016

gradcollege Odds Ratio Std. Err. z P> 1 z I [95'/, Conf. Interval]

white
white 1.154414 .1007857 1.64 0.100 .9728539 1.369857

female
female

_cons
.8564618
.4003614

.0555153

.0352609
-2.39
-10.39

0.017
0.000

.7542818

.3368873
.9724837
.4757949
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We can interpret odds ratios for each of the transitions the same as we did in chapter 6. 
For example,

Being white compared with being nonwliite increases the odds of graduating 
high school by a factor of 1.53, holding gender constant.

The s e q lo g i t  command (Buis 2007) fits equations for all transitions simultane­
ously and provides the likelihood for the full model. The se q lo g it command can 
also be used with p re d ic t  and m arg in s— and accordingly, with our m* commands 
to compute probabilities of membership in each category. The syntax of seqlogit 
is complicated because it can be used to  fit elaborate, branching sequences of tran­
sitions (see h e lp  s e q lo g it  if installed). The t r e e Q  option is required and is used
to specify how outcome values m ap onto different transitions. In our case, we specify 
t r e e ( l  : 2 3, 2 : 3) because our two transitions are educ==l or 2 versus educ==3 
and educ==2 versus educ==3:

. seqlogit educ i.white i.female, tree(l : 2 3, 2 : 3) or nolog
Transition tree:
Transition 1: 1 : 2 3 
Transition 2: 2 : 3
Computing starting values for:
Transition 1 
Transition 2

Number of obs = 5620
LR chi2(4) = 34.21

Log likelihood = -5403.3329 Prob > chi2 = 0.0000

educ Odds Ratio Std. Err. z P>lz| [95*/. Conf. Interval]

_2_3vl
white

white 1.531009 .1280333 5.09 0.000 1.299554 1.803686

female
female

_cons
.9665729
3.387367

.0683325

.2880726
-0.48
14.35

0.631
0.000

.8415082
2.867301

1.110225
4.001761

_3v2
white
white 1.154414 .1007857 1.64 0.100 .9728539 1.369857

female
female

_cons
.8564618
.4003614

.0555153

.0352609
-2.39
-10.39

0.017
0.000

.7542818

.3368873
.9724837
.4757949

estimates store seqlogit
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The coefficients here are precisely the same as when the equations were fit separately. 
The to p  equation presents coefficients for the transition to high school graduation (out­
comes 2 and 3 versus 1) and the bottom  for the transition to college graduate (outcome 3 
versus 2). The log likelihood of the combined model fit with s e q lo g it  is the sum of 
the log likelihoods of the separate binary logit models.

A more parsimonious model imposes the assumption th a t the coefficients for each 
independent variable are equal across all transitions. Instead of /3m in (7.5), we have 
the sam e /3 in all transition equations, while the intercepts differ:

, P r (y > m  | x) _ , - T i
In ——)---------- — - = a m + x/3 for m  =  1 to  J  -  1

P r (y =  m j x)

where J  is the number of stages. This model is sometimes called the continuation ratio 
model and was first proposed by Fienberg (1980. 110).

T h e  continuation ratio model can be fit using the user-written command o c ra tio  
(Wolfe 1998), although it uses a somewhat different parameterization than given here. 
Because o c r a t io  is an older command, it does not support factor-variable notation and 
does not work with p re d ic t , m argins, or our m* commands. The continuation ratio
model can be fit with se q lo g it if you impose the equality constraints on coefficients
by using the c o n s tr a in t  d efin e  command. This command defines constraints on a 
m odel’s parameters that are imposed during estimation. Although further detail on 
constrained estimation is outside the scope of this book, we provide the example code 
below to show the use of the c o n s t r a in t  define command and the c o n s tra in t() 
option with s e q lo g it :

. constraint define 1 [_2_3vl]1.female=[_3v2] 1.female 

. constraint define 2 [_2_3vl]1.white=[_3v2] 1 .white

T he key to  understanding the constraints is understanding how seq lo g it names the 
equations th a t it estimates. The equation comparing outcome 1 with outcomes 2 and 
3 is named _2 _3vl so that [_2 _3v l]  1 . fem ale indicates the coefficient for 1 . fem ale 
in th is equation. Accordingly, the constraint 1 defined above says that the coeffi­
cients for 1 .fem ale are equal in both transition equations. Constraint 2 does the same 
thing for 1 . white. To impose these constraints during estimation, we add the option 
c o n s t r a in t  (1 2 ) to the estimation command:



382 Chapter 7 Models for ordinal outcomes

. seqlogit educ i.white i.female, tree(l: 2 3, 2 : 3) constraint(l 2) or nolog 
Transition tree:
Transition 1: 1 : 2 3 
Transition 2: 2 : 3
Computing starting values for:
Transition 1 
Transition 2

Number of obs = 5620
Wald chi2(0)

Log likelihood = -5406.6832 Prob > chi2 =
( 1) [_2_3vl]1 .female - [_3v2]1.female = 0
( 2) [_2_3vl]1.white - [_3v2]1.white = 0

educ Odds Ratio Std. Err. z P>lz| [95’/. Conf. Interval]

_2_3vl
white

white 1.336865 .0824991 4.70 0.000 1.184566 1.508745

female
female

_cons
.9046686
3.906983

.0432715

.2600151
-2.09
20.48

0.036
0.000

.8237122
3.4292

.9935817
4.451333

_3v2
white
white 1.336865 .0824991 4.70 0.000 1.184566 1.508745

female
female

_cons
.9046686
.3437397

.0432715

.0231741
-2.09
-15.84

0.036
0.000

.8237122

.3011923
.9935817
.3922975

. estimates store contratio

The log likelihood is smaller than it was with the unconstrained, sequential logit model. 
Because the second model is nested within the first model, we can see whether the 
difference in fit is statistically significant with an LR test:

. lrtest contratio seqlogit
Likelihood-ratio test LR chi2(2) = 6.70
(Assumption: contratio nested in seqlogit) Prob > chi2 = 0.0351

The p-value is less than 0.05, so we reject the null hypothesis th a t the coefficients are 
equal across transitions. We could compare whether the coefficients for a particular 
independent variable are equal across transitions by constraining only those coefficients 
to be equal or by using t e s t  to compute a Wald test.

.17 Conclusion
Ordinal outcomes are common, especially in survey research where respondents are 
presented with a question and a fixed set of categories with which to respond. The 
models we present are motivated by the premise of a latent, unidimensional continuum
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that is divided by outpoints into the observed categories because of the way the variable 
is measured. The ordered logit and ordered probit models thus follow nicely from their 
binary counterparts introduced in chapter 5, because we can think of a binary outcome 
the sam e way except with only one threshold. A key difference, however, is that with 
ordinal outcomes it is easy to imagine more t han one dimension underlying respon.se> 
or th a t  independent variables differ in the magnitude of their influence over different 
thresholds. In our experience, users often come to ordinal models wondering when it 
is okay to treat ordinal categories as interval-level variables and use linear regression. 
One of the goals in this chapter is to  push you to think also in the other direction, 
about whether an ostensibly ordinal outcome actually has properties that deserve more 
complex specifications, including perhaps even thinking of it as a nominal outcome. 
How to model nominal outcomes provides the focus of the next chapter.





r

8 Models for nominal outcomes

An outcom e is nominal when the categories are assumed to be unordered. For example, 
m arital status can be grouped nominally into the categories of divorced, never married, 
m arried, or widowed. Occupations might be organized as professional, white collar, 
blue collar, craft, and menial. Other examples include reasons for leaving the parents' 
home, the organizational context of scientific work such as industry, government, and 
academia, and the choice of language in a multilingual society. Further, in some cases 
you might prefer to trea t an outcome as nominal even though it is ordered, ordered on 
m ultiple dimensions, or partially ordered. For example, if the response categories are 
strongly agree, agree, disagree, strongly disagree, and don’t  know, the category "don’t 
know” invalidates models for ordinal outcomes. Or, you might decide to use a nominal 
regression model when the assumption of parallel regressions is rejected. In general, 
if you have concerns about the ordinality of the dependent variable, the potential loss 
of efficiency in using models for nominal outcomes is outweighed by avoiding potential 
bias.

In this chapter, we focus on the multinomial logit model (M NLM ), which is the most 
frequently used nominal regression model. This model essentially fits separate binary 
logits for each pair of outcome categories. Next, we consider the stereotype logistic 
regression model. Although this model is often used for ordinal outcomes, it is closely 
related to the MNLM. These models assume that the d a ta  are case specific, meaning 
that each independent variable has one value for each individual. Examples of such 
variables are an individual’s race or education. After that, we consider several models 
th a t include alternative-specific data. Alternative-specific variables vary not only by 
individual but also by the alternative. For example, if a commuter is selecting one of 
three' modes of travel, an alternative-specific predictor might be her travel time using 
each alternative.

We use “alternative” to refer to a possible outcome. Sometimes we refer to an 
alternative as an outcome, a category, or a  comparison group to be consistent with the 
usual terminology for a model or the output generated by Stata. The term “choice ’ 
refers to the alternative that is actually observed, which can be thought of as the “most 
preferred” alternative. For example, if the dependent variable is the party voted for 
in the last presidential election, the alternatives might be Republican, Democrat, and 
Independent. If a person voted for the alternative of Democrat, we would say that the 
choice for this case is Democrat. B ut you should not infer from the term “choice” th a t 
the models we describe can be used only for data where the  outcome occurs through 
a process of choice. For example, if we were modeling the type of injuries that people

385
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entering the  emergency room of a  hospital have, we would use the term “choice” even 
though the injury sustained is unlikely to be a choice.

We begin by discussing the MNLM, where the biggest challenge is that the model 
includes m any parameters and so it is easy to be overwhelmed by the complexity of the 
results. This complexity is compounded by the nonlinearity of the model, which leads 
to the same difficulties of interpretation found for models in prior chapters. Although 
fitting the model is straightforward, interpretation involves challenges that are the focus 
of this chapter. We begin by reviewing the statistical model, followed by a discussion 
of testing, fit, and finally, methods of interpretation. For a  more technical discussion of 
the model, see Long (1997). As discussed in chapter 1, you can obtain sample do-files 
and data files by downloading the spostl3_do package.

The outcome for the prim ary example we have chosen for this chapter is political 
party affiliation, collected from a survey that used the categories strong Democrat; 
Democrat, Independent, Republican; and strong Republican. Although this variable 
may initially appear to be ordinal, our analysis suggests th a t it is ordered on two 
dimensions relative to the independent variables we consider. On the attribute of left 
right orientation, the categories increase from strong Democrat to strong Republican.
In terms of intensity of partisanship, the categories are ordered Independent to either
Republican or Democrat and then either strong Republican or strong Democrat. This 
violates Stevens’ (1946) definition of an ordinal scale as a  variable that uses numbers to 
indicate rank ordering on a single attribute. Indeed, when you use an ordinal model, 
we recommend also fitting the model using multinomial logit as a sensitivity analysis.

.1 The multinomial logit model
The MNLM can be thought of as simultaneously fitting binary logits for all comparisons 
among the alternatives. For example, let party3  be a  categorical variable with the 
outcomes D  for Democrat, I  for Independent, and R  for Republican.1 Assume that 
there is one independent variable measuring income in $ 1,000s. We can examine the 
effect of income on party3  by fitting three binary logits,

, Pr(£> | x) _
P r  ( i  j ^ j  =  /  o' D|1 +  ^ . D | i in c o m e

, P r(/? - |x )  .
In pi-( / ~x y =  A),rh + Pi,R|iincome

, Pr (D  | x) .
In p- =  A),d|r +  /^i,D|Rin c °me

where the subscripts to the /5’s indicate which comparison is being made. For example, 
¿9i,d|i is the coefficient for the first independent variable for the comparison of D  and I.

1. Variable party3 combines categories StrDem and Dem and the categories Rep and StrRep from the 
variable party used later in the chapter.
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The three binary logits include redundant information. Because In a /6  =  In a — In 6, 
the following equality must hold:

l n P r _ ( Q |, ) _  P , ( f l
Pr ( / Pr (I

= In
Pr (D I x) 
Pr (R  I x)

This implies th a t

(8.1)A).D |I — A ),R |I ~  A),D|R

A,D|I —  A,R|I =  $1,D|R
In general, with .7 alternatives, only J  — I binary logits need to be fit. These J  — 1 
logits are referred to as a minimal set. Estimates for the remaining coefficients can be 
computed using equalities of the sort shown in (8 .1).

F itting the MNLM by fitting a series of binary logits is not optimal because each 
binary logit is based on a different sample. For example, in the logit comparing D with 
/. those in R  are dropped. To see this, we begin by loading the data  and examining the 
distribution of party3 :

. use partyid4, clear
(partyid4.dta I 1992 American National Election Study I 2014-03-12)
. tabulate party3

Party ID Freq. Percent Cum.

Democrat 693 50.14 50.14
Independent 151 10.93 61.07
Republican 538 38.93 100.00

Total 1,382 100.00

Next, we fit a binary logit model comparing Democrats with Independents by using the 
dependent variable dem_ind:

. tabulate dem_ind, miss
Democrat or 
Independent Freq. Percent Cum.

Independent 151 10.93 10.93
Democrat 693 50.14 61.07

538 38.93 100.00

Total 1,382 100.00
. logit dem_ind income, nolog 
Logistic regression

Log likelihood = -396.21646

Number of obs 
LR chi2(l) 
Prob > chi2 
Pseudo R2

844 
0.48 

0.4873 
0.0006

dem_ind Coef. Std. Err. z P>|z| [95% Conf. Interval]

income
_cons

-.0024887
1.605464

.0035513 

.1485698
-0.70
10.81

0.483
0.000

-.009449
1.314273

.0044717
1.896656
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The logit includes only 844 cases out of the sample of 1,382 because those who are 
Republican are excluded as missing. Next, we fit a binary logit comparing Republicans 
and Independents, excluding Democrats from the sample:

. tabulate rep_ind, miss
Republican

or
Independent Freq. Percent Cum.

Independent 151 10.93 10.93
Republican 538 38.93 49.86

693 50.14 100.00

Total 1,382 100.00
. logit rep_ind income, nolog
Logistic regression Number of obs = 689

LR chi2(l) = 20.41

Log likelihood = -352.09947
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.0282

rep_ind Coef. Std. Err. z P>lz| [95% Conf. Interval]

income
_cons

.0156761

.6585897
.0037443 
.1624946

4.19
4.05

0.000
0.000

.0083374

.3401061
.0230148 
.9770732

And last, we exclude Independents:

. tabulate dem_rep, miss
Democrat or 
Republican Freq. Percent Cum.

Republican 538 38.93 38.93
Democrat 693 50.14 89.07

151 10.93 100.00

Total 1,382 100.00
. logit dem_rep income, nolog 
Logistic regression Number of obs 

LR chi2(l)
1231

71.89

Log likelihood = -807.53617
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.0426

dem_rep Coef. Std. Err. z P> 1 z 1 [95% Conf. Interval]

income
_cons

-.0183709
.9525295

.0022958 

.1046759
-8.00
9.10

0.000
0.000

-.0228706
.7473684

-.0138712
1.157691
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T he results from the binary logits can be compared with those obtained by fitting 
the M NLM  with m logit:

. mlogit party3 income, nolog base(2)
Multinomial logistic regression Number of obs = 1382

LR chi2(2) = 73.84
Prob > chi2 = 0.0000

Log likelihood = -1283.3075 Pseudo R2 = 0.0280

party3 Coef. Std. Err. z P> 1 z [95'/, Conf. Interval]
Democrat

income
_cons

-.002724
1.613193

.0037162

.1529897
-0.73
10.54

0.464
0.000

-.0100077
1.313338

.0045597
1.913047

Independent (base outcome)

Republican
income
_cons

.0151864

.6779478
.0036605 
.1597457

4.15
4.24

0.000
0.000

.0080119

.3648519
.022361
.9910437

The output is divided into three panels. The top panel is labeled Democrat, which is the 
value label for the first outcome category of the dependent variable; the second panel is 
labeled Independent, which is the base outcome that we discuss shortly; and the third 
panel corresponds to the  third outcome, Republican. The coefficients in the first and 
third panels arc for comparisons with the base outcome, Independent. Thus the panel 
Democrat shows estimates of coefficients from the comparison of D with the base /, 
while the panel Republican holds the estimates comparing R  with I. Accordingly, the 
top panel should be compared with the coefficients from the binary logit for D and I  
(outcome variable dem_ind). For example, the estimate for the comparison of D with 
I from m logit is /3i,d|i =  -0.002724 with 2 =  -0.73, whereas the lo g it  estimate is 
$i D|i =  -0.0024887 with z =  -0.70. Overall, the estimates from the binary model are 
close to  those from the MNLM but not exactly the same.

Although theoretically /3i,d|i — /^i,R|i =  ^i,d |r? the estimates from the binary logits 
are $i,D|i —#i,R|i = (-0.0024887)-(0.0156761) =  -0.0181648, w h i c h  do not quite equal 
the binary logit estimate /?i,d|r =  —0.0183709. This occurs because a series of binary 
logits fit with lo g i t  does not impose the constraints among coefficients that are implicit 
in the definition of the MNLM. When fitting the model with m logit, these constraints are 
imposed. Indeed, the output from m lo g it presents only two of the three comparisons 
from our example, namely, D  versus I  and R  versus I. The remaining comparison, D 
versus 7?, is exactly equal to the difference between the two sets of estimated coefficients. 
The critical point here is simple:

The MNLM may be understood as a set of binary logits among all pairs of
outcomes.
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8.1.1 Formal statement of the model

The MNLM can be written as

In n m]b (x) =  In = *Pm\b for m =  1 to J

where b is the  base outcome, sometimes called the reference category. As In i}b\b (x) = 
In 1 =  0, it follows th a t (3b\b =  0 . T h at is, the log odds of an outcome compared with 
itself is always 0 , and thus the effects of any independent variables must also be 0 .

These J  equations can be solved to compute the probabilities for each outcome:

exp
Pr (y = m  | x) =

Z U  eXP {*Pj\b)

The probabilities will be the same regardless of the base outcome b that is used. For 
example, suppose th a t you have three outcomes and fit the model with alternative 1 
as the base, where you would obtain estimates /32\\ and /?3|i, with =  0. The 
probability equation is

exp U(3m ll)
Pr (y = rri | x) =

If someone else set up the model with base outcome 2, they would obtain estimates /31 j2 

and 02\2 =  0- Their probability equation would be

exp (x/3m|2 )
Pr (y = rn | x) =

z U  cxp f a  12)

The estimated parameters are different because they are estim ating different things, but 
they produce exactly the same predictions. Confusion arises only if you are not clear 
about which parameterization you are using. We return to  this issue when we discuss 
how Stata’s m lo g it parameterizes the model in the next section.

8.2 Estimation using the mlogit command
The MNLM is fit with the following command and its basic options:

m logit depvar [ indepvars ] [i f ]  [ in ] [ weight ] [ , noco n s tan t 

baseou tcom e(#) vce(vcetype) r r r  ]

For other options, run help  m lo g it. In our experience, the model converges quickly, 
even when there are many outcome categories and independent variables.
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Variable lists

depvar is the dependent variable. The specific values taken on by the dependent 
variable are irrelevant as long as they are integers. For example, if you had three 
outcomes, you could use the values 1, 2 , and 3 or -1, 0 , and 999. Nevertheless 
to avoid confusion, we strongly recommend coding your outcome as consecutive 
integers beginning with 1.

indepvars is a  list of independent variables. If indepvars is not included, Stata fits a 
model w ith only constants.

Specifying the estimation sample

if a n d  in  q u a lifie rs , i f  and in  qualifiers can be used to restrict the estimation sample. 
For example, if you want to fit the model with only white respondents, use the 
command m log it party  i .e d u c  incomelO i f  black==0.

L istw ise d e le tio n . S tata excludes cases in which there are missing values for any of
the variables. Accordingly, if two models are fit using the same dataset but have 
different sets of independent variables, it is possible to have different samples. We 
recommend that you use mark and markout (discussed in chapter 3) to explicitly
remove cases with missing data.

Weights and complex samples

m lo g it  can be used with fweights, p w eigh ts, and iw eights. Survey estimation is
supported. See chapter 3 for details.

Options

noconstan t excludes the constant term s from the model.

baseou tcom e(#) specifies the value of depvar that is the base outcome (that is, ref 
erence group) for the coefficients th a t are listed. This determines how t k m e u 
parameterized. If baseoutcomeO is not specified, the most frequent outcomc in 
estimation sample is used a.s the base. The base is reported as (base outcom 
the table of estimates, 

vce(vcetype) specifies the type of standard errors to be computed. See section 
details.

r r r  reports the estimated coefficients transformed to relative-risk rat’os' ^  tjlcse 
exp (6) rather than 6, along with standard errors and c o n f i  ence in 
ratios. Relative risk ratios are also referred to as odds ratios.
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The 1992 American National Election Study asked respondents to indicate their political 
party using one of eight categories. We used these to create p a r ty  with five categories: 
strong Democrat (1 =  StrDem). Democrat (2 = Dem), independent (3 = Indep), Repub­
lican (4 =  Rep), and strong Republican (5 =  StrRep):

.2.1 Example of MNLM

. tabulate party, miss
Party ID Freq. Percent Cum.

StrDem 266 19.25 19.25
Dem 427 30.90 50.14

Indep 151 10.93 61.07
Rep 369 26.70 87.77

StrRep 169 12.23 100.00

Total 1,382 100.00

To simplify our notation, at times we abbreviate StrDem as SD, Dem as D, Indep as I. 
Rep as R, and StrR ep  as SR.

Five regressors are included in the model: age, income, race (indicated as black or 
not), gender, and education (measured as not completing high school, completing high 
school but not college, and completing college). Descriptive statistics for the continuous 
and binary variables are

. sum age income black female
Variable □bs Mean Std. Dev. Min Max

age 1382 45.94645 16.78311 18 91
income 1382 37.45767 27.78148 1.5 131.25
black 1382 .1374819 . 34448 0 1
female 1382 .4934877 .5001386 0 1

The distribution of educational attainm ent is

. tabulate educ, miss
Level of 

education Freq. Percent Cum.

not hs grad 222 16.06 16.06
hs only 802 58.03 74.10
college 358 25.90 100.00

Total 1,382 100.00

Using these variables, we fit the model

. mlogit party age income i.black i.female i.educ 
(output om itted)
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Because educ has three categories, i .e d u c  is expanded to 2 .educ and 3.educ, leading 
to the following minimal set of equations:

In i lsD |S R  (x t) =  A),SD|SR +  0 1 ,SD |SR a g e  +  /32,SD|SRin com e +  ^ 3 ,S D |S R b la c k  

+  A l,SD |SR f e m a l e  +  /?5,SD|SR2 -e d u c  +  /?6 ,SD |S r3  • ed uc 

ln ^ D jS R  (X i)  =  /3o,D|SR +  /̂ l,D|SRage +  /^2,D|SR^ncom e +  /33 ,D |SR b la c k 

+  / 4̂ ,D |SR f ©male +  /?5 ,d |S R 2 • e d u c  +  /^ 6 ,d |S r3  • educ 
ln i2 i|S R  ( x i )  =  /3o,i|SR +  /? i,i |S R a S e  +  /^2,i|SR incom e +  A i , l |S R b la ck  

+  /?4,I|SR fem aLle +  /35 ,i|SR 2 • e d u c  +  /̂ 6,i|SR3 • educ 
l n f i R | S R  (Xi) =  P otR\SR +  /̂ l,R|SRage +  02 ,R|SRincome +  /?3,R|SRblack 

+  /?4,R|SRf e m a l e  +  /^5,R|SR2 -e d u c  +  ^6,R|SR3 • e d u c

where the fifth outcome, StrRep, is the base. The (lengthy) results are

. mlogit party age income i.black i.female i.educ, base(5) vsquish
Iteration 0: log likelihood = -2116.5357
Iteration 1: log likelihood = -1973.8136
Iteration 2: log likelihood = -1961.2327
Iteration 3: log likelihood = -1960.9125
Iteration 4: log likelihood = -1960.9107
Iteration 5: log likelihood = -1960.9107
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Multinomial logistic regression Number O H» o cr w h 1382
LR chi2(24) 311.25
Prob > chi2 0.0000

Log likelihood = -1960.9107 Pseudo R2 0.0735

party Coef. Std. Err. z P>lz| [95*/, Conf. Interval]
StrDem

age .0028185 .00644 0.44 0.662 -.0098036 .0154407
income -.0174695 .0045777 -3.82 0.000 -.0264416 -.0084974
black
yes 3.075438 .604052 5.09 0.000 1.891518 4.259358

female
yes .2368373 .215026 1.10 0.271 -.1846059 .6582805
educ

hs only -.5548853 .3426066 -1.62 0.105 -1.226382 .1166113
college -1.374585 .3990504 -3.44 0.001 -2.156709 -.5924606

_cons 1.182225 .5132429 2.30 0.021 .1762875 2.188163

Dem
age -.0207981 .0059291 -3.51 0.000 -.032419 -.0091772

income -.0101908 .0035532 -2.87 0.004 -.0171549 -.0032267
black
yes 2.07911 .6030684 3.45 0.001 .8971176 3.261102

female
yes .4776808 .1915945 2.49 0.013 .1021624 .8531992
educ

hs only -.2097834 .3365993 -0.62 0.533 -.8695059 .4499392
college -.7459487 .3691435 -2.02 0.043 -1.469457 -.0224408

_cons 2.332098 .4744766 4.92 0.000 1.402141 3.262055

Indep
age -.0287992 .0074315 -3.88 0.000 -.0433648 -.0142337

income -.0089716 .0047821 -1.88 0.061 -.0183443 .0004012
black
yes 2.290928 .6262902 3.66 0.000 1.063422 3.518435

female
yes .0478994 .2361813 0.20 0.839 -.4150074 .5108062
educ

hs only -.6018342 .3788561 -1.59 0.112 -1.344379 .1407101
college -1.758295 .4510057 -3.90 0.000 -2.64225 -.8743398

_cons 2.225948 .553075 4.02 0.000 1.141941 3.309955

Rep
age -.0217144 .0060422 -3.59 0.000 -.0335569 -.0098718

income -.0012715 .0033629 -0.38 0.705 -.0078627 .0053196
black
yes .106285 .6861838 0.15 0.877 -1.238611 1.451181

female
yes .244697 .1929118 1.27 0.205 -.1334031 .6227971
educ

hs only -.1827121 .3502744 -0.52 0.602 -.8692374 .5038132
college -.6956311 .3804257 -1.83 0.067 -1.441252 .0499896

_cons 2.092855 .4846516 4.32 0.000 1.142955 3.042754

StrRep (base outcome)
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M ethods of testing coefficients and interpretation of the estim ates will be considered 
after w e discuss the effects of selecting different base outcomes.

.2.2 Selecting different base outcomes

By d efau lt, m lo g it sets the base outcome to the alternative w ith the most observations 
in th e  estim ation sample. Or, as illustrated in the last example, you can select the 
base w ith  the option baseoutcom eO, which can be abbreviated simply as b(). m logit 
rep o rts  the  coefficients for each independent variable on each outcome relative to the 
base outcom e.

A lthough m log it only shows coefficients comparing outcomes with the base outcome, 
it is im portan t to  examine the coefficients for other pairs of outcomes. For example, 
you m igh t be interested in the effect of being a female on being Dem compared with 
In d ep  (th a t is, /3femaie,D|i)> which was not estimated in the output above. Although 
this coefficient can be estimated by running m logit with a different base outcome (for 
exam ple, m lo g it p a r ty  . . .  , b ase (3 )) , it is easier to use l i s t c o e f ,  which presents 
estim ates for all pairs of outcome categories. Because l i s t c o e f  can generate lengthy 
o u tp u t, we illustrate several options th a t limit which coefficients are listed. First, if you 
specify a  list of variables, only coefficients for those variables are shown. For example,

. listcoef female, help
mlogit (N=1382) : Factor change in the odds of party
Variable: 1.female (sd=0.500)

b z P> 1 z 1 e~b e~bStdX

StrDem vs Dem -0.2408 -1.443 0.149 0.786 0.887
StrDem vs Indep 0.1889 0.889 0.374 1.208 1.099
StrDem vs Rep -0.0079 -0.044 0.965 0.992 0.996
StrDem vs StrRep 0.2368 1.101 0.271 1.267 1.126
Dem vs StrDem 0.2408 1.443 0.149 1.272 1.128
Dem vs Indep 0.4298 2.217 0.027 1.537 1.240
Dem vs Rep 0.2330 1.587 0.112 1.262 1.124
Dem vs StrRep 0.4777 2.493 0.013 1.612 1.270
Indep vs StrDem -0.1889 -0.889 0.374 0.828 0.910
Indep vs Dem -0.4298 -2.217 0.027 0.651 0.807
Indep vs Rep -0.1968 -0.983 0.326 0.821 0.906
Indep vs StrRep 0.0479 0.203 0.839 1.049 1.024
Rep vs StrDem 0.0079 0.044 0.965 1.008 1.004
Rep vs Dem -0.2330 -1.587 0.112 0.792 0.890
Rep vs Indep 0.1968 0.983 0.326 1.217 1.103
Rep vs StrRep 0.2447 1.268 0.205 1.277 1.130
StrRep vs StrDem -0.2368 -1.101 0.271 0.789 0.888
StrRep vs Dem -0.4777 -2.493 0.013 0.620 0.787
StrRep vs Indep -0.0479 -0.203 0.839 0.953 0.976
StrRep vs Rep -0.2447 -1.268 0.205 0.783 0.885

b = raw coefficient 
z = z-score for test of b=0 

P>IzI = p-value for z-test
e'b = exp(b) = factor change in odds for unit increase in X 

e~bStdX = exp(b*SD of X) = change in odds for SD increase in X
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Notice that none of the coefficients with the base outcome StrDem are statistically 
significant, even at the 0.10 level. Although these are the only coefficients that are 
shown in the output from m log it, two of the coefficients relative to outcome Dem are 
significant a t the 0.05 level and two more are almost significant at the 0.10 level. Before 
concluding th a t a variable has no effect, you should examine all the contrasts and 
compute an omnibus test for the effect of a  variable, as discussed in section 8 .3.2.

By default, l i s t c o e f  shows coefficients for all contrasts. For example, it even shows 
you the coefficient comparing StrRep with Rep, which equals -0.2447, and the coefficient 
comparing Rep with StrRep, which equals 0.2447. You can limit which contrasts are 
shown with the g t, I t ,  or a d ja c e n t options. With the g t  option, only coefficients in 
which the category number of the first alternative is greater than that of the second 
are shown; I t  shows comparisons when the first alternative is less than the second; and 
ad jacen t lim its coefficients to those from adjacent outcomes. For example,

. listcoef income age, It adjacent
mlogit (N=1382) : Factor change in the odds of party
Variable: age (sd=16.783)

b z P>lz| e"b e"bStdX

StrDem vs Dem 0.0236 4.761 0.000 1.024 1.486
Dem vs Indep 0.0080 1.287 0.198 1.008 1.144
Indep vs Rep -0.0071 -1.099 0.272 0.993 0.888
Rep vs StrRep -0.0217 -3.594 0.000 0.979 0.695

Variable : income (sd=27.781)

b z P> 1 z 1 e~b e~bStdX

StrDem vs Dem -0.0073 -1.777 0.075 0.993 0.817
Dem vs Indep -0.0012 -0.279 0.780 0.999 0.967
Indep vs Rep -0.0077 -1.778 0.075 0.992 0.807
Rep vs StrRep -0.0013 -0.378 0.705 0.999 0.965

We will return to the contrasting patterns of coefficients for these two variables when 
we present methods for plotting coefficients in section 8 .11 .2 .

You can also restrict the list of contrasts shown to only those with positive coefficients 
by using the p o s i t iv e  option. This means you will see all the contrasts that are not 
simply derived by reversing the sign of another contrasts. This can often allow you to see 
at a glance overall patterns in the direction of the relationships between an independent 
variable and the outcome, as in this example:
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. listcoef income, positive
mlogit (N=1382): Factor change in the odds of party 
Variable: income (sd=27.781)

b z P> 1 z 1 e~b e'bStdX

Dem vs StrDem 0.0073 1.777 0.075 1.007 1.224
Indep vs StrDem 0.0085 1.652 0.098 1.009 1.266
Indep vs Dem 0.0012 0.279 0.780 1.001 1.034
Rep vs StrDem 0.0162 3.916 0.000 1.016 1.568
Rep vs Dem 0.0089 3.026 0.002 1.009 1.281
Rep vs Indep 0.0077 1.778 0.075 1.008 1.239
StrRep vs StrDem 0.0175 3.816 0.000 1.018 1.625
StrRep vs Dem 0.0102 2.868 0.004 1.010 1.327
StrRep vs Indep 0.0090 1.876 0.061 1.009 1.283
StrRep vs Rep 0.0013 0.378 0.705 1.001 1.036

From the example, we can see that the positive coefficients for the income variable all 
correspond to contrasts of a further right outcome to a further left one. In other words, 
we can see th a t income is positive related to selecting a partisan identity further to the 
right. This corresponds to the conclusion th a t partisan identification behaves like an 
ordinal variable with respect to income (but, as we will show later, this is not the case 
for all the variables in our model.)

Finally, a last way to  restrict the list of coefficients is with the p v a lu e (# )  option 
th a t restricts coefficients to those that are significant at the specified level. For example,

. listcoef female, pvalue(.15)
mlogit (N=1382): Factor change in the odds of party (P<0.15)
Variable: 1.female (sd=0.500)

b z P> 1 z e~b e'bStdX

StrDem vs Dem -0.2408 -1.443 0.149 0.786 0.887
Dem vs StrDem 0.2408 1.443 0.149 1.272 1.128
Dem vs Indep 0.4298 2.217 0.027 1.537 1.240
Dem vs Rep 0.2330 1.587 0.112 1.262 1.124
Dem vs StrRep 0.4777 2.493 0.013 1.612 1.270
Indep vs Dem -0.4298 -2.217 0.027 0.651 0.807
Rep vs Dem -0.2330 -1.587 0.112 0.792 0.890
StrRep vs Dem -0.4777 -2.493 0.013 0.620 0.787

Using these options can reduce the amount of output from l i s t c o e f  and focus attention 
on the most im portant results.

8.2.3 Predicting perfectly

The m logit command handles perfect prediction in the same way as the o lo g it  and 
oprobit commands, but somewhat differently than estimation commands for binary 
models, l o g i t  and p ro b it  automatically remove the observations that imply perfect 
prediction and compute the estimates accordingly, m logit and o p ro b it keep these ob-
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servations in the model, set the 2 statistics for the problem variables to 0, warn that 
standard errors are questionable, and indicate that a given number of observations are 
completely determ ined. You should refit the model after excluding the problem vari­
able and deleting the observations th a t imply the perfect predictions. Using tabu la te  
to cross-tabulate the problem variable and the dependent variable should reveal the 
combination of values that results in  perfect prediction.2

8.3 Hypothesis testing
In the MNLM, you can test individual coefficients with the reported z statistics, with a 
Wald test by using t e s t ,  or with an LR test b y  using l r t e s t .  As the methods of testing 
a single coefficient th a t were discussed in chapters 3, 5, and 7 apply fully, they are 
not considered further here. However, in the MNLM, there are new reasons for testing 
sets of coefficients. First, testing th a t a variable has no effect requires a test that J  — 1 
coefficients in a minimal set are simultaneously equal to  0. Second, testing whether 
the independent variables as a group differentiate between two alternatives requires a 
test of K  coefficients, where K  is the  number of independent variables, including those 
created by expanding factor-variable notation. In this section, we focus on these two 
kinds of tests.

C au tion  re g a rd in g  spec ification  search es. Given the difficulties of interpretation
that are associated with the MNLM, it is tempting to  search for a more parsimo­
nious model by excluding variables or combining outcome categories based on a 
sequence of tests. Such a search requires great care. First, these tests involve 
multiple coefficients. Although the overall test might indicate that as a group the 
coefficients are not significantly different from 0, an individual coefficient could 
still be substantively and statistically significant. Accordingly, you should exam­
ine the individual coefficients involved in each test before deciding to revise your 
model. Second, as with all searches that use repeated, sequential tests, there is 
a danger of overfitting the model to the data. Whenever model specifications are 
determined based 011 prior testing using the same data , significance levels should 
be used only as rough guidelines.

8.3.1 mlogtest for tests of the MNLM

Although the tests in this section can be computed using t e s t  or l r t e s t ,  in practice this 
is tedious. The m lo g test command by Freese and Long (2000) makes the computation
of these tests easy. The syntax is

2. Before S ta ta  13.1, m logit produced the  same output but did not provide a warning.
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m lo g te s t  [ varlist] [ ,  l r  wald s e t  ( [setname =] varlist
\  [setname = ] varlist ] [\ . . . ] )  combin e  lrcombine i i a  hausman smhsiao 

d e t a i l  b ase  a l l ]

varlist indicates the variables for which tests of significance should be computed. If no 
varlist is given, tests are run for all independent variables.

Options

l r  requests a likeliliood-ratio (LR) test for each variable in varlist. If varlist is not 
specified, tests for all variables are computed.

wald requests a  Wald test for each variable in varlist. If varlist is not specified, tests 
for all variables are computed.

s e t  ( [setname 1 =} varlist 1 [\ [setnameZ =] varlist2 ] [\ ...]  ) specifies that a set of vari­
ables be considered together for the LR test or Wald test. \  is used to  indicate that a 
new set of variables is being specified. For example, m lo g te s t,  l r  s e t  (age income 
\  2 . educ 3 . educ) computes one LR test for the hypothesis th a t the effects of age 
and  income are jointly 0  and a second LR test that the effects of 2. educ and 3. educ 
are jointly 0. The option s e t ( )  is used to label the output.

combine requests Wald tests of whether dependent categories can be combined.

lrco m b in e  requests LR tests of whether dependent categories can be combined. These 
tes ts  use constrained estimation and overwrite constraint 999 if it is already defined.

For o ther options, type help m lo g test.

8.3.2 Testing the effects of the independent variables

W ith J  dependent categories, there are ,7—1 nonredundant coefficients associated with 
each independent variable x k • For example, in our model of party affiliation, there 
are four coefficients associated with fem ale: /3femaie,SD|SRî /3femaie,D|SR> Afemaie,i|SR: an<J 
5fe=aie.R[SR- The hypothesis that x k does not affect the dependent variable can be 
w ritten as

H0: 0k,i\b =  • • • =  Pk,j\b =  0

where 6 is the base outcome. Because 0k,b\b is necessarily 0, the hypothesis imposes 
constraints on .7 — 1 parameters. This hypothesis can be tested  writh  either a Wald or 
an LR test.

Likelihood-ratio test

The LR test involves 1) fitting the full model that includes all the variables, resulting 
in the LR statistic LR X f : 2) fitting the restricted model th a t excludes variable x k, 
resulting in LR x 2n\ and 3) computing the difference LR X rVs F =  l r  X f  ~ LR Xr* which
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is distributed as chi-squared with J  — 1 degrees of freedom if the null hypothesis is true. 
This can be done using l r t e s t  by first fitting the full model and storing the estimates:

. mlogit party age income i.black i.female i.educ, base(5) nolog 
(ou tput om itted)

. estimates store full_model

Next, we fit a  model that drops the variable age, again storing the estimates:

. mlogit party income i.black i.female i.educ, base(5) nolog 

. estimates store drop_age

Finally, w e c o m p u te  th e  LR te s t:

. lrtest full_model drop_age
Likelihood-ratio test LR chi2(4) = 45.16
(Assumption: drop_age nested in full_model) Prob > chi2 = 0.0000

Although using l r t e s t  is straightforward, the command m lo g te s t, l r  is even sim­
pler because it automatically fits the needed models and computes the tests for all 
variables by making repeated calls to l r t e s t :

. mlogit party age income i.black i.female i.educ, base(5) nolog 
(ou tpu t om itted )

. mlogtest, lr
LR tests for independent variables (N=1382)
Ho: All coefficients associated with given variable(s) are 0

chi2 df P>chi2

age 45.165 4 0.000
income 24.361 4 0.000
1.black 126.467 4 0.000

1 .female 9.143 4 0.058
2.educ 5.567 4 0.234
3.educ 21.582 4 0.000

The results of the LR test, regardless of how they are computed, can be interpreted as 
follows:

The effect of age on party affiliation is significant a t the 0.01 level (LR y2 =  
45.17, d f = 4 ,  p < 0.01).

The effect of being female is significant at the 0.10 level but not at the 0.05 
level ( l r  x 2 — 9.14, df =  4, p = 0.06).

This can also be stated more formally:

The hypothesis that all the coefficients associated with income are simulta­
neously equal to 0 can be rejected a t the 0.01 level (LR \ 2 =  24.36, df =  4, 
p< 0.01).
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Wald test

Although we consider the LR test superior, its computational costs can be prohibitive if 
the model is complex or the sample is very large. Also, LR tests cannot be used if robust 
standard errors or survey estimation is used. Wald tests are computed using t e s t  and
can be used w ith robust standard errors and survey estimation. As an example, to
compute a Wald test of the null hypothesis that the effect of being female is 0 , type

. mlogit party age income i.black i.female i.educ, base(5) nolog 
(output om itted )

. test 1.female
( 1) [StrDem]1.female ■ 0 
( 2) [Dem]1.female = 0
( 3) [Indep]1.female = 0
( 4) [Rep]1.female = 0
( 5) [StrRep]lo.female = 0

Constraint 5 dropped
chi2( 4) = 9.09

Prob > chi2 = 0.0590

The output from t e s t  makes explicit which coefficients are being tested and shows 
how S ta ta  labels parameters in models with multiple equations. For example, the first 
line, labeled [StrDem] 1 . female, refers to the coefficient for fem ale  in the equation 
comparing the outcome StrDem with the base outcome StrRep; [Dem] 1. fem ale is the 
coefficient for fem a le  in the equation comparing the outcome Dem with the base category 
StrRep; and so on. The fifth constraint, listed as [StrRep] lo  .fe m a le  = 0, refers to 
the coefficient comparing StrRep to StrR ep, which is automatically constrained to 0  
when the model is fit. The lo in l o . fe m a le  means that the coefficient for outcome 1 
was om itted in the model and so the parameter was not estimated. Accordingly, this 
constraint is dropped. The following command automates this process:

. mlogtest, wald
Wald tests for independent variables (N=1382)

Ho: All coefficients associated with given variable(s) are 0
chi2 df P>chi2

age 43.815 4 0.000
income 22.985 4 0.000
1.black 83.978 4 0.000

1.female 9.087 4 0.059
2.educ 5.569 4 0.234
3.educ 20.613 4 0.000

These tests can be interpreted in the same way as shown for the LR test above.
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The logic of the Wald or LR tests can be extended to test th a t the effects of two or more 
independent variables are simultaneously 0. For example, the hypothesis to test that 
Xk and X£ have no effects is

tfo: /3fc,i|b =  • • • =  0k,j\b =  Pe,i\b =  • • • =  Petj\b =  0

For example, to  test the hypothesis th a t the effects of age and income are simultaneously 
equal to 0 , we could use l r t e s t  as follows:

. mlogit party age income i.black i.female i.educ, base(5) nolog 
(output om itted)

. estimates store full_model

. mlogit party i.black i.female i.educ, base(5) nolog 
(output om itted)

. estimates store drop_ageinc 

. lrtest full_model drop_ageinc
Likelihood-ratio test LR chi2(8) = 71.58
(Assumption: drop_ageinc nested in full_model) Prob > chi2 = 0.0000

We can use the s e t  option in m lo g te s t to  do the same things. Suppose we use the 
command

mlogtest, lr set(age&inc=age income \ educ=2.educ 3.educ)

The argument age&inc=age income specifies a test that the coefficients for age and 
income are simultaneously 0, labeling the results with the tag  age&inc. Following the 
\, we specify a test th a t the coefficients for all the indicators of the factor variable educ 
are 0. Here are the results:

. mlogit party age income i.black i.female i.educ, base(5) nolog 
(output om itted )

. mlogtest, lr set(age&inc=age income \ educ=2.educ 3.educ)
LR tests for independent variables (N=1382)
Ho: All coefficients associated with given variable(s) sure 0

Testing multiple independent variables

chi2 df P>chi2

age 45.165 4 0.000
income 24.361 4 0.000

1.black 126.467 4 0.000
1.female 9.143 4 0.058
2.educ 5.567 4 0.234
3.educ 21.582 4 0.000

age&inc 71.585 8 0.000
educ 26.881 8 0.001

age&inc contains: age income 
educ contains: 2.educ 3.educ
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8 .3 .3  Tests for combining alternatives

If none of the independent variables significantly affects the odds of alternative m ver­
sus alternative n, we may say that m  and n  are indistinguishable with respect to the 
variables in the model (Anderson 1984). To say that alternatives m  and n  are indistin­
guishable corresponds to the hypothesis that

H o -  0 l , m \ n  =  0 K ,m \n 0

which can be tested with either a Wald or an LR test. If alternatives are indistinguishable 
w ith  respect to the variables in the model, then you can obtain more efficient estimates 
by combining them . Note, however, th a t while the m logtest command makes it easier to 
test the hypotheses th a t each pair of outcomes can be combined, we do not recommend 
combining categories simply because the null hypothesis is not rejected. This is likely 
to  lead to over-fitting your data and creating outcome variables th a t do not make 
substantive sense. Instead, these tests should be used to test a  substantively motivated 
hypothesis that two categories are indistinguishable.

Wald test for combining alternatives

T he command m lo g te s t , combine computes Wald tests of the null hypothesis that two 
alternatives can be combined for all pairs of alternatives. For example,

. mlogit party age income i.black i.female i.educ, base(5) nolog 
(output om itted)

. mlogtest, combine
Wald tests for combining alternatives (N=1382)

Ho: All coefficients except intercepts associated with a given pair 
of alternatives are 0 (i.e., alternatives can be combined)

chi2 df P>chi2

StrDem & Dem 72.854 6 0.000
StrDem & Indep 40.334 6 0.000
StrDem & Rep 126.561 6 0.000

StrDem & StrRep 83.272 6 0.000
Dem & Indep 15.141 6 0.019
Dem & Rep 44.862 6 0.000

Dem & StrRep 56.580 6 0.000
Indep & Rep 49.879 6 0.000

Indep & StrRep 60.203 6 0.000
Rep & StrRep 22.286 6 0.001

From these results, we can reject the hypothesis that categories StrDem and Dem are 
indistinguishable. Indeed, our results indicate that all the categories are distinguishable.
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The m l o g t e s t , combine command makes its computations by using 
the t e s t  command for multiple-equation models. Although most re­
searchers will find that m lo g te s t  is sufficient for their needs, there might 
be situations in  which you want to conduct tests th a t are unique to your 
application. If so, this section provides some insights into how to use 
the t e s t  command to test hypotheses involving combining outcomes.

To test th a t StrDem is indistinguishable from the base outcome StrRep. type

. test [StrDem]
( 1) [StrDem]age = 0
( 2) [StrDem]income = 0
( 3) [StrDem]Ob.black = 0 
( 4) [StrDem]1.black = 0
( 5) [StrDem]Ob.female = 0
( 6) [StrDem]1.female = 0 
( 7) [StrDem] lb.educ = 0
( 8) [StrDem]2.educ = 0
( 9) [StrDem]3.educ = 0

Constraint 3 dropped 
Constraint 5 dropped 
Constraint 7 dropped

chi2( 6) = 83.27
Prob > chi2 = 0.0000

The result matches the results from m lo g te s t  in row StrDem & StrRep. The command 
t e s t  [outcome] indicates which equation is being referenced in multiple-equation com­
mands. m lo g it  is a multiple-equation command with .7— 1 equations that are named 
by the value label for the outcome categories. In the output above, constraints 3. 5, 
and 7 were dropped. These constraints correspond to the base categories for factor vari­
ables. For example, 0 b .b la c k  is the coefficient for the excluded base outcome, which 
by definition is 0 .

The test is more complicated when neither outcome th a t is being considered is the 
base. For example, to test that m and n  are indistinguishable when the base outcome 
b is neither m  nor n, the hypothesis is

Ho- (/^l,m |6 01,n\b) ‘ K,m\b 0K,n\b)  0

That is, you want to test the difference between two sets of coefficients. This is done 
with t e s t  [outcome 1 =outcome2'\ . For example, to test whether StrDem and Dem can 
be combined, type
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. test [StrDem=Dem]
(1) [StrDem]age - [Dem]age = 0 
( 2) [StrDem]income - [Dem]income = 0
( 3) [StrDem]Ob.black - [Dem]Ob.black = 0

( 4) [StrDem]1.black - [Dem]1.black = 0
( 5) [StrDem]Ob.female - [Dem]Ob.female = 0
( 6) [StrDem]1.female - [Dem]1.female = 0
( 7) [StrDem]lb.educ - [Dem]lb.educ = 0
( 8) [StrDem]2.educ - [Dem]2.educ = 0
( 9) [StrDem]3.educ - [Dem]3.educ = 0

Constraint 3 dropped 
Constraint 5 dropped 
Constraint 7 dropped

chi2( 6) = 72.85
Prob > chi2 = 0.0000

The results are identical to those from m lo g te s t.

LR test for combining alternatives

An LR test of combining rn and n can be computed by first fitting the full model with 
no constraints, with the resulting LR statistic LR Xf- Then, fit a restricted model M r  
in which outcome m  is used as the base category and all the coefficients except the 
constant in the equation for outcome n  are constrained to 0 , with the resulting test 
statistic LR x 2r • The test statistic for the test of combining m  and n  is the difference 
LR X/?vsF =  LRXF_LRxf? ’ which distributed as chi-squared w ith K  degrees of freedom, 
w’here K  is the number of regressors. The command m lo g te s t , lrcom bine computes 
J  x (J  — 1) tests for all pairs of outcome categories. For example,

. mlogit party age income i.black i.female i.educ, base(5) nolog 
(output om itted)

. mlogtest, lrcombine
LR tests for combining alternatives (N=1382)
Ho: All coefficients except intercepts associated with a given pair 

of alternatives are 0 (i.e., alternatives can be collapsed)
chi2 df P>chi2

StrDem & Dem 80.893 6 0.000
StrDem & Indep 44.075 6 0.000

StrDem & Rep 198.758 6 0.000
StrDem & StrRep 141.446 6 0.000

Dem & Indep 15.753 6 0.015
Dem & Rep 61.899 6 0.000

Dem & StrRep 73.214 6 0.000
Indep & Rep 60.872 6 0.000

Indep & StrRep 78.673 6 0.000
Rep & StrRep 22.894 6 0.001
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(Advanced) Using constraints with Irtest

The m lo g te s t,  lrcom bine command computes LR tests by using the 
powerful c o n s tr a in t  command (see [r] c o n s tra in t) . Although most 
researchers are likely to find m lo g te s t sufficient for their needs, some 
might want to  learn more about how constraints are specified when 
fitting models.

An LR test that categories are indistinguishable can be computed using the command 
co n s tra in t. To test whether StrDem and StrRep are indistinguishable, we start by 
fitting the full model and storing the results:

. mlogit party age income i.black i.female i.educ, base(5) nolog 
(output om itted)

. estimates store full_model

Second, we define a constraint by using the command

. constraint define 999 [StrDem]

We arbitrarily chose number 999 to label the constraint. Any integer from 1 to 1,999 
inclusive can be used. The expression [StrDem] indicates that all coefficients should 
be estimated except for those fixed by the constraint. Third, we refit the model with 
this constraint. The base category m ust be StrRep (category 5) so that the coefficients 
indicated by [StrDem] are comparisons of StrDem and StrRep:

. mlogit party age income i.black i.female i.educ,
> constraint(999) base(5) nolog

(output om itted)
. estimates store constraint999

The model is fit with the constraint imposed, and results are stored using the name 
co n stra in t9 9 9 . Comparing the full model to the constrained model,

. Irtest full_model constraint999
Likelihood-ratio test LR chi2(6) = 141.45
(Assumption: constraint999 nested in full_model) Prob > chi2 = 0.0000

The result matches th a t from m lo g te s t, lrcombine.
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.4  Independence of irrelevant alternatives
T h e  M N LM , as well as the conditional logit and rank-ordered logit models discussed 
below , make the assumption known as the independence of irrelevant alternatives (IIA). 
H ere we describe the assumption in terms of the MNLM. In this model,

w here the odds do not depend on other alternatives that are available. In this sense, 
those alternatives are “irrelevant” . W hat this means is that adding or deleting alterna­
tives does not affect the odds among the remaining alternatives.

This point is often made with the red bus blue bus example. Suppose people in a 
city  have three ways of getting to work: by car, by taking a bus operated  by a company 
th a t  uses red buses, or by taking a bus operated by an identical company that uses 
blue buses. We might expect that many people have a clear preference between taking 
th e  car versus taking a bus but are indifferent about whether they take a red bus or 
a  blue bus. Suppose the odds of a person taking a red bus com pared with those of 
'ak ing  a car are 1:1. IIA implies the odds will remain 1:1 between these two alternatives 
even if the blue bus company were to go out of business. The assum ption is dubious 
because we would expect the vast m ajority of those who take the  blue bus to have the 
red bus as their next preference. Consequently, eliminating the blue bus will increase 
the probability of traveling by red bus much more than it will increase th e  probability of 
someone traveling by car, yielding odds more like 2:1 than 1:1. In o ther words, because 
the  blue bus and red bus are close substitutes, having the blue bus as an available 
alternative leads the MNLM to underestimate the preference for red bus versus car.

Tests of IIA involve comparing the estimated coefficients from the  full model to 
those from a restricted model that excludes at least one of th e  alternatives. If the 
test statistic is significant, the assumption of IIA is rejected, indicating that the MNLM 
is inappropriate. In this section, we consider the two most common tests of IIA: the 
Hausinan McFadden ( h m ) test (Hausman and McFadden 1984) and the Small-Hsiao 
; SH) test (Small and Hsiao 1985). For details on other tests, see Fry and Harris (1996, 
1998). For a model with .7 alternatives, we consider J  ways of com puting each test. If 
you remove the first alternative and refit the model, you get the  first restricted model 
leading to the first variation of the test. If you remove the second alternative, you 
get the second variation, and so on. Each restricted model will lead to  a  different test 
statistic, as we demonstrate below.

Both the HM test and the SH test are computed by m l o g t e s t ,  and for both tests 
we compute ./ variations. As many users of m lo g te s t  have told us, the HM and SH 
tests often provide conflict ing information on whether IIA has been violated, with some 
of the tests rejecting the null hypothesis, while others do not. To explore this further, 
Cheng and Long (2007) ran Monte Carlo experiments to examine the properties of these 
tests. Their results show that the HM test has poor size properties even with sample 
sizes of more than  1,000. For some d a ta  structures, the SH test has reasonable size 
properties for samples of 500 or more. B ut with other data structures, th e  size properties
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are extremely poor and do not get better as the sample size increases. Overall, they 
conclude th a t these tests are not useful for assessing violations of the IIA property.

It appears th a t the best advice regarding IIA goes back to an early statement by 
McFadden (1974), who wrote that the multinomial and conditional logit models should 
be used only in cases where the alternatives “can plausibly be assumed to be distinct 
and weighted independently in the eyes of each decision maker” . Similarly, Amemiya 
(1981) suggests that the MNLM works well when the alternatives are dissimilar. Care 
in specifying the model to involve distinct alternatives th a t are not substitutes for one 
another seems to be reasonable albeit unfortunately ambiguous— advice.

C au tio n  re g a rd in g  te s ts  o f IIA . We do not believe th a t tests of IIA are useful, but 
we have heard from readers about reviewers or editors who insist that they provide 
the results of an IIA test. In our experience, you can almost always obtain some 
tests th a t  accept the null and others that reject the  null when using the same 
model w ith the same data. We would try to convince those requesting the test 
that these tests do not provide useful information, perhaps citing our book, along 
with Fry and Harris (1996, 1998) and Cheng and Long (2007). If this does not 
wrork, you may still need to provide the test results. In this section, we tell you 
how to compute them and illustrate their limitations.

.4.1 Hausman-McFadden test of IIA

The HM test of IIA involves the following steps:

1. Fit the full model with all J  alternatives included, w ith estimates in (3F.

2. Fit a restricted model by eliminating one or more alternatives, with estimates in 
3  R-

3. Let (3f  be a subset of (3F after eliminating coefficients not fit in the restricted 
model. The test statistic is

HM =  (̂ 3r -  j v a r ^ / 3 / ^  -  V ar (Pf ') } [&r - 3 f )

where HM is asymptotically distributed as chi-squared with degrees of freedom 
equal to  the rows in (3R if IIA is true. Significant values of HM indicate that the 
IIA assumption has been violated.
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I h e  HM test o f  IIA can be computed with m logtest:

. mlogit party age income i.black i.female i.educ, base(5)
(output o m itte d )

. mlogtest, hausman
Hausman tests of IIA assumption (N=1382)
Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives

chi2 df P>chi2

StrDem 4.622 20 1.000
Dem 0.919 21 1.000

Indep -2.244 19
Rep 3.030 21 1.000

StrRep -0.580 21
Note: A significant test is evidence against Ho.
Note: If chi2<0, the estimated model does not meet asymptotic assumptions.

F iv e  tests of IIA are reported. The first four correspond to excluding one of the four non­
b a s e  categories. The fifth test, in row StrRep, is computed by refitting the model with 
t h e  largest remaining outcome as the base category.3 Three of the tests produce neg­
a t iv e  chi-squareds, something that is common with this test. Hausman and McFadden 
(1984, 1226) note this possibility and conclude that a negative result is evidence that 
IIA  has not been violated. Our simulations suggest that negative chi-squareds indicate 
problem s with the test, consistent with the warning that the m logtest output provides.

. 4 . 2  Small-Hsiao test of IIA

T o  compute an SH test, the sample is divided randomly into two subsamples of about
■̂Si

eq u a l size. The unrestricted MNLM is fit on both subsamples, where p u contains
i -S 2 .

estim ates from th e  unrestricted model on the first subsample and p u is its counterpart 
for the second subsample. A weighted average of the coefficients is computed as

=  ( 7 2 ) ^ “  + { 1 - ( v l ) } ^ *

N ext, a restricted sample is created from the second subsample by eliminating all cases 
w ith  a chosen value of the dependent variable. The MNLM is fit using the restricted 
sample, yielding the estimates and the likelihood L(/?^2). The SH statistic is

sh =  - 2 { l ( 3.SiA2)  ~ l (3?2)}

which is asymptotically distributed as chi-squared with degrees of freedom equal to the 
number of coefficients th a t arc fit in both the full model and the restricted model.

3. Even though m lo g test fits additional models to compute various tests, when the command en , 
it restores the estim ates from your original model. Consequently, commands that require resu s 
from your original m log it. such as p r e d ic t and m* commands, will work correctly.
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To compute the SH test, use the command m log test, smhsiao (our program uses 
code from sm hsiao by Nick W inter [2000] available at the Statistical Software Compo­
nents archive). Because the SH test requires randomly dividing the data  into subsamples, 
the results will differ w ith successive calls of the command, because the sample will be 
randomly divided differently. To obtain test results that can be replicated, you must 
explicitly set the  seed used by the random-number generator. For example,

. set seed 124386 

. mlogtest, smhsiao
Small-Hsiao tests of IIA assumption (N=1382)
Ho: Odds (Out come-J vs Outcome-K) are independent of other alternatives

lnL(full) lnL(omit) chi2 df P>chi2

StrDem -696.753 -690.654 12.198 21 0.934
Dem -565.571 -557.488 16.166 21 0.760

Indep -764.563 -758.290 12.547 21 0.924
Rep -621.562 -615.492 12.140 21 0.936

StrRep -761.598 -752.804 17.587 21 0.675
Note: A significant test is evidence against Ho.

These results are consistent with those from the HM test, w ith none of the tests being 
significant.

Before taking these results seriously, we tried three other seeds to produce a different 
random division of the sample. The results varied widely. For example,

. set seed 254331 

. mlogtest, smhsiao
Small-Hsiao tests of IIA assumption (N=1382)
Ho: Odds (Outcome-J vs Outcome-K) are independent of other alternatives

lnL(full) lnL(omit) chi2 df P>chi2

StrDem -727.367 -692.048 70.639 21 0.000
Dem -610.636 -573.268 74.736 21 0.000

Indep -783.456 -747.654 71.604 21 0.000
Rep -650.962 -615.434 71.057 21 0.000

StrRep -751.887 -740.193 23.388 21 0.324
Note: A significant test is evidence against Ho.

Using the new seed, we reject the null at the 0.001 level in four of the five tests, illus­
trating a common problem when using the SH test you often get very different results 
depending on how the sample is randomly divided.
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T ip : S e ttin g  th e  ra n d o m  seed. The random numbers that divide the sample for the 
SH test are based on the ru n if  orm() function, which uses a pseudorandom-number 
generator to  create a  sequence of numbers based on a seed number. Although these 
numbers appear to be random, the same sequence will be generated each time you 
start w'ith the same seed. In this sense (and some others), these numbers ¿ire 
pseudorandom rather than random. If you specify the seed with se t seed #, you 
ensure that you can replicate your results later. See [r] set seed for more details

5 Measures of fit
As with models for binary and ordinal outcomes, many scalar measures of fit for the 
MNLM model can be computed with the SPost command f i t s t a t ,  and information 
criteria can be computed with e s tâ t  ic .  The same caveats against overstating the im­
portance of these scalar measures apply here as to the other models we have considered 
(see also chapter 3). To examine th e  fit of individual observations, you can fit the series 
of binary logits implied by th e  MNLM and use the established methods of examining the 
fit of observations to binary logit estimates.

.6 Overview of interpretation
Although the MNLM is a  m a th e m a tic a lly  simple extension of the binary model, inter­
pretation is difficult b e c a u se  o f  th e  m a n y  possible comparisons. Even in our simple 
example with five o u tc o m e s , wc h a v e  10 comparisons: StrDem versus StrRep. Dem ver­
su s StrRep, Indep  versus StrRep, Rep versus StrRep, StrDem versus Rep. Dem versus 
Rep. Indep versus Rep, StrDem versu s Indep, Dem versus Indep, and StrDem versus Dem. 
It is tedious to write all o f  th em , le t  a lo n e  to interpret all of them for each independent 
variable. The k e y  to  e f fe c t iv e  in te r p r e ta t io n  is to  avoid overwhelming yourself or your 
audience with the m a n y  co m p a r iso n s.

As with models for binary and ordinal outcomes, we prefer methods of interpretation 
that are based on predicted probabilities. Fortunately, these methods are essentially 
unchanged from those used for ordinal models in the last chapter, where the predicted 
probability is now computed with the formula

exp | 1

V'-7 1E j= i exP 1(x /% )

where x can contain either hypothetical values or values based on cases in the samp«• 
Here w’e assume th a t the b a se  outcome is J. but any base could be used.

We follow a similar order of presentation to  that used in the last chapter. 
new variations in some c a se s  an d  excluding some topics. In all cases, however, me
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from chapter 7 could be used for nominal models, and new ideas shown in this chapter 
could be applied to  ordinal models. For example, while we do not consider ideal types 
in this chapter, they are ju s t as useful for nominal outcomes as they were for the ordinal 
regression model (O R M ).

We begin by examining the distribution of predictions for each observation in the 
estimation sample. Then, we consider how marginal effects can be used as an overall as­
sessment of the im pact of each variable, bu t we also show what can be learned by looking 
at the distribution of effects for each observation in the estimation sample. We extend 
earlier methods for examining tables of predictions and show how to test a difference 
of differences. Next, we plot predictions as a continuous independent variable changes, 
which we use to highlight how results from an ordinal model can be misleading when 
an outcome does not behave as if it were ordinal. Finally, we consider interpretation 
using odds ratios. Although odds ratios in the MNLM have all the limitations discussed 
in chapter 6 , they are im portant for understanding how independent variables affect the 
distribution of observations between pairs of outcomes, something th a t cannot be done 
using predicted probabilities alone.

Before beginning, we must also emphasize once again th a t, as with other models 
considered in th is book, the MNLM is nonlinear in the outcome probabilities, and no 
approach can fully describe the relationship between an independent variable and the 
outcome probabilities. You should experiment with each of these methods before de­
ciding which approach is most effective in your application.

.7 Predicted probabilities with predict
The most basic command for computing probabilities is p re d ic t .  After fitting the 
model with m lo g it, predicted probabilities for all outcomes within the sample can be 
calculated with

p re d ic t newvarlist, [i f ] [ in]

where you must provide one new variable name for each of the J  categories of the de­
pendent variable, ordered from the lowest to the highest numerical values. For example,

. mlogit paxty age income i.black i.female i.educ, base(5)
(output om itted)

. estimates store mlogit

. predict mnlmSD mnlmD mnlml mnlmR mnlmSR 
(option pr assumed; predicted probabilities)
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- l ie  variables created by p re d ic t  are

. codebook mnlmSD mnlmD mnlml mnlmR mnlmSR, compact
Variable Obs Unique Mean Min Max Label

mnlmSD 1382 1193 .1924747 .0212015 .7654322 Pr(party==StrDem)
mnlnD 1382 1193 .3089725 .130991 .5125323 Pr(party==Dem)
mnlml 1382 1193 .1092619 .0266534 .2838254 Pr(party==Indep)
mnlmR 1382 1193 .2670043 .0141873 .5036324 Pr(party==Rep)
mnlmSR 1382 1193 .1222865 .0047189 .4662779 Pr(party==StrRep)

\ s  w ith  the ordinal model, if you specify a  single variable name after predict, you will 
• ^ain predicted probabilities for one outcome category, which you can specify using 
' h e  outcome() option.

A s discussed in section 7.10, examining the distribution of the in-sample predictions 
. m  be used to get a  general sense of what is going on in your model and can sometimes 
: icover problems in your data. The distribution of predictions can also be used to 

in form ally  compare competing models, which we illustrate next.

W e could reasonably argue that the five categories of our dependent variable party
• an  ordinal scale of party affiliation. Accordingly, it seems reasonable to model these 

l a i a  with an ordinal logit model. First, we fit the model and compute predictions:

. ologit party age income i.black i.female i.educ
(output om itted)

. predict olmSD olmD olml olmR olmSR 
(option pr assumed; predicted probabilities)
. codebook 
Variable

olm*, compact 
Obs Unique Mean Min Max Label

olmSD 1382 1193 .1934016 .042849 .6546781 Pr(party==l)
olmD 1382 1193 .30611 .1393038 .3808963 Pr(party==2)
olml 1382 1193 .1091385 .0349378 .1221904 Pr(party==3)
olmR 1382 1193 .269342 .0484485 .3877065 Pr(party==4)
olmSR 1382 1193 .1220079 .0124719 .3484676 Pr(party==5)

N ext, we plot the predicted probability of being a strong Democrat (outcome 1) with 
th e  dotp lo t command:

. label var olmSD "ologit"

. label var mnlmSD "mlogit"

. dotplot olmSD mnlmSD, ylabel(0(.2) .8, grid) ytitle(Pr(Strong Democrat))
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The histograms are similar, and the correlation between the predictions for the ordered 
logit model (o l m ) and the MNLM is 0.94. This suggests that the conclusions from the 
two models m ight be similar.

If we look a t the middle category of Independent, however, things look quite different, 
reflecting the abrup t truncation of the distribution of predictions for middle categories 
that is often found with the OLM:

CO .

ologit mlogit

Not only are the distributions quite different in shape, but the correlation between 
the predicted probabilities is negative: —0.19! A scatterplot of the predictions shows 
striking differences between the two models:
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A low correlation between the predictions from the MNLM and the ORM could reflect 
i ; ick  of ordinality, but this is not necessarily so. For example, in simulations where 

i . i t a  were generated to meet the assumptions of the ORM, we found low correlations in 
re lic tio n s  between middle categories between the MNLM and the ORM when the size

• f t h e  assumed error variance in the ORM was large relative to the size of the regression 
•*fficients. Nonetheless, when predictions are very different between an ordinal and 
rn inal regression model, we recommend considering the appropriateness of the ordinal 

m o d e l. This is considered further in section 8.10, where we plot predictions from the 
IN'LM and the OLM.

.8  Marginal effects
A v erag e  marginal effects arc1 a quick and valuable way to assess the effects of all the 

i< impendent variables in your model. Because methods for using marginal effects to 
:ii«-rpret the MNLM are identical to  those used for the OLM in section 7.11, we only 

rev iew  key points here. We th en  extend materials from chapter 7 by examining the 
iis trib u tio n  of effects within th e  estimation sample. Marginal effects are also used in 

--ection 8 .11-2 when we plot odds ratios.

T he marginal change is the slope of the curve relating x k to  Pr(?/ =  m |x ), holding 
¡ill o ther variables constant, where Pr(y =  ra |x )  is defined by (8.2). For the MNLM, the 
m arg inal change is

 ̂ ~ = Pr (y =  m \ x) &kj\J Pr  ̂= •? I X)

B ecause this equation combines all the (3kj \  j ’s, the value of the marginal change depends 
o n  the levels of all variables in the model and can switch sign at different values of these 
variables. Also, because the marginal change is the instantaneous rate or change, it

. 1  . . V i
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can be misleading when the probability curve is changing rapidly. For this reason, 
generally prefer using a discrete change and do not discuss the marginal change fun! 
in this chapter.

The discrete change is the change in the probability of m  for a change in xy- in 
the start value x |tart to the end value x ekn(i (for example, a change from x f Art = 0 , 
z efcnd =  1), holding other re’s constant. Formally,

=  Pr (v =  m  I X , Xt  =  i f d)  -  P r (p =  m  | x , x k =  x f " )

where Pr (y  = m  | x,xfc) is the probability that y =  m  given x, noting a specific vain 
for Xk• The change indicates th a t when x,k changes from x f &n to x |n<1. the probabil:* 
of outcome m  changes by A P r (y = m, \ x)/A xjt, holding all other variables at x. T  
magnitude of the change depends on the levels of all variables, including Xk, and r.v 
size of the change in Xk that is being evaluated.

Marginal effects are computed by mchange as discussed in detail in sections 4.' 
and 7.11. After fitting the model used as our running example, we compute the avc-raû  
discrete changes for a standard deviation change in continuous variables and a char..' 
from 0 to 1 for other variables. The option amount (sd ) suppresses the default com­
putation of marginal changes and discrete changes of 1 unit, while w idth(8 ) prevent 
results wrapping due to the long value labels for educ:
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. estimates restore mlogit

. mchange, amount(sd) brief width(8)
mlogit: Changes in Pr(y) I Number of obs = 1382
Expression: Pr(party), predict(outcome())

StrDem Dem Indep Rep StrRep
age

+SD 0.054 -0.033 -0.024 -0.030 0.032p-value 0.000 0.006 0.001 0.009 0.003income
+SD -0.039 -0.022 -0.003 0.041 0.023p-value 0.001 0.122 0.752 0.002 0.019black

yes vs no 0.274 0.047 0.041 -0.248 -0.113p-value 0.000 0.220 0.142 0.000 0.000female
yes vs no -0.006 0.065 -0.024 -0.004 -0.031

p-value 0.768 0.010 0.153 0.856 0.078
educ
hs only vs not hs grad -0.045 0.031 -0.039 0.027 0.026

p-value 0.137 0.414 0.208 0.466 0.254
college vs not hs grad -0.083 0.041 -0.092 0.034 0.100

p-value 0.025 0.367 0.007 0.441 0.001
college vs hs only -0.037 0.010 -0.052 0.006 0.073

p-value 0.142 0.744 0.004 0.825 0.002

Even for this relatively simple model and looking only at a single amount of change for 
each variable, there is a lot of information to digest. To make it simpler to interpret these 
results, we plot the changes with mchangeplot (see help mchangeplot and section (j.2 
for additional information about mchangeplot). We begin by looking at the average 
discrete changes for standard deviation increases in age and income:

. mchangeplot age income,
> symbols(D d i r R) min(-.05) max(.05) gap(.02) sig(.05)
> xtitle(Average Discrete Change) ysize(1.3) scale(2.1)

By default, m changeplot represents each outcome category with the first letter of the 
value label for th a t  category. In this example, this would be confusing because the 
categories StrDem and StrRep both begin with S. The symbols () opt ion lets you spe< il\ 
one or more letters for each category. For example, we could use sym bol (SD D I R  SR). 
Or. as we prefer, we can use symbol (D d i r  R )  s o  t h a t  capitals indicate more strong 
held affiliations. The resulting graph looks like this, where the * s indicate that an < ff< < t 
is significant at the 0.05 level:
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can be misleading when the probability curve is changing rapidly. For this reason, we 
generally prefer using a discrete change and do not discuss the marginal change further 
in this chapter.

The discrete change is the change in the probability of m  for a change in Xk from 
the start value x |tart to  the end value ar|nd (for example, a change from x f &rt = 0 to 
xjr.nd = 1), holding other x ’s constant. Formally,

A P r(y  =  rn | x) , dx , t t .
An- -> 4 " d) =  <y =  m 1 x’Xh =  ) ~ Pr (w =  m I * , * *  = *k )

where Pr (y =  rn | x, x k ) is the probability th a t y = m  given x, noting a specific value 
for Xk- The change indicates that when x k changes from x'̂ t,art to x |nd, the probability 
of outcome m  changes by A P r(y  =  rn \ x) /  A xk ,  holding all other variables at x. The 
magnitude of th e  change depends on the levels of all variables, including Xk, and the 
size of the change in Xk that is being evaluated.

Marginal effects are computed by mchange ¿is discussed in detail in sections 4.5.4 
and 7.11. After fitting the model used as our running example, we compute the average 
discrete changes for a standard deviation change in continuous variables and a change 
from 0 to 1 for other variables. The option amount(sd) suppresses the default com­
putation of marginal changes and discrete changes of 1 unit, while w idth(8 ) prevents 
results wrapping due to the long value labels for educ:
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. estimates restore mlogit 

. mchange, amount(sd) brief width(8)
mlogit: Changes in Pr(y) I Number of obs = 1382 
Expression: Pr(party), predict(outcome())

StrDem Dem Indep Rep StrRep

age
+SD 0.054 -0.033 -0.024 -0.030 0.032

p-value 0.000 0.006 0.001 0.009 0.003
income

+SD -0.039 -0.022 -0.003 0.041 0.023
p-value 0.001 0.122 0.752 0.002 0.019

black
yes vs no 0.274 0.047 0.041 -0.248 -0.113

p-value 0.000 0.220 0.142 0.000 0.000
female

yes vs no -0.006 0.065 -0.024 -0.004 -0.031
p-value 0.768 0.010 0.153 0.856 0.078

educ
hs only vs not hs grad -0.045 0.031 -0.039 0.027 0.026

p-value 0.137 0.414 0.208 0.466 0.254
college vs not hs grad -0.083 0.041 -0.092 0.034 0.100

p-value 0.025 0.367 0.007 0.441 0.001
college vs hs only -0.037 0.010 -0.052 0.006 0.073

p-value 0.142 0.744 0.004 0.825 0.002

Even for this relatively simple model and looking only at a  single amount of change for 
each variable, there is a lot of information to digest. To make it simpler to interpret these 
results, we plot the changes with m ch an gep lot (see h elp  m ch angep lot and section 6.2 
for additional information about m ch angep lot). We begin by looking at the average 
discrete changes for standard deviation increases in age and income:

. mchangeplot age income,
> symbols(D d i r R) min(-.05) max(.05) gap(.02) sig(.05)
> xtitle(Average Discrete Change) ysize(1.3) scale(2.1)

B y default, m changeplot represents each outcome category with the first letter of the 
value label for th a t category. In  this example, this would be confusing because the 
categories StrDem and StrRep both begin with S. The sym bols () option lets you specify 
one or more letters for each category. For example, we could use sym bol (SD D I R  SR). 
Or, a.s we prefer, we can use sym bol (D d i  r R) so that capitals indicate more strongly 
held affiliations. The resulting graph looks like this, where the *’s indicate that an effect 
is significant at the 0.05 level:
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age
SO increase

dV i* FT D*

income
SO increase

D* d i R* r*

-.05 -.03 -.01 .02 .04 .06
Average Discrete Change

Before proceeding, you should verify th a t this graph corresponds to the output above 
from mchange. Although we probably would not include this graph in a paper, we use 
it to help describe the effects:

On average, a standard deviation increase in age, about 17 years, increases 
the probability of being a strong Republican by 0.03 and of being a strong 
Democrat by 0.05. The probabilities of other affiliations all decrease by 
roughly 0.03. All effects are significant a t the 0.01 level.

On average, a standard deviation increase in income, roughly $28,000, signif­
icantly increases the probability of being a Republican by 0.04 and a strong 
Republican by 0.02, while significantly decreasing the probability of being a 
strong Democrat by 0.04.

The greater effect of race compared with gender on party affiliation is shown with 
a plot of their average discrete changes. We use the following command to create the 
graph:

. mchangeplot black female,
> symbols(D d i r R) min(-.3) max(.3) gap(.l) sig(.05)
> xtitle(Average Discrete Change) ysize(1.3) scale(2.1)

black
yes vs no

r r* b D*

female
yes vs no

R B d*

i i i i i i--------- r--.3 -.2 -.1 0 .1 .2 .3
Average Discrete Change
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We conclude the following:

On average, for people similar on other characteristics, being black increases 
the probability of being a strong Democrat by nearly 0.30 compared with 
someone who is white. Conversely, being black decreases the probability of 
being a strong Republican by 0.11 and being a Republican by 0.25. Except 
for an increase of 0.07 in Democratic affiliation, the effects of gender are not 
significant.

For the factor variable educ with three categories, mchange provides all the pairwise 
contrasts, comparing those who have a high school diploma with those who do not, 
those who have a college degree with those who do not have a high school diploma, 
and those who have a college degree with those who have a  high school diploma. One 
contrast is redundant in the sense th a t it can be computed from the other two. Still, it 
is useful to examine all contrasts to  find patterns.

. mchangeplot educ,
> symbols(D d i r R) min(-.l) max(.l) gap(.02) sig(.05)
> xtitle(Average Discrete Change) ysize(1.3) scale(2.1)

We conclude the following:

Higher education increases the probability of identifying as a strong Republi­
can and decreases the probability of identifying as a strong Democrat. Based 
on the distribution of other characteristics in the population, if we compare 
those who do not have a high school diploma with those who have gradu­
ated from college, the probability of being a strong Republican increases by
0.10 on average and the probability of being a strong Democrat decreases 
by 0.08.

Although we do not illustrate these methods here, we could examine other amounts 
of change and customize the plots with the m changeplot options described in h e lp  
mchangeplot.
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Because the average marginal effect (AME) is an average, it does not 
indicate variation in the sample. We find examining the distribution of 
marginal effects is often very useful, but it requires using loops, macros, 
and returns and is computationally intensive. After you are familiar 
with marginal effects and S ta ta  tools for automation, we encourage you 
to study this section carefully. Initially, however, we hope you will at 
least skim it.

The value of a marginal effect depends on the level of all variables in the model (see 
section 6.2.5). Neither the AME nor the marginal effect at the mean provide information 
about how much variation there is within the sample in the size of the effects. In this 
section, we extend the methods from chapter G to the MNLM. The same techniques can 
also be used for the OLM.

The following commands generate the variable incoraedc containing the discrete 
change for a standard deviation increase in income, where we assume th a t the estimation 
results from m lo g it are in memory:

1] gen incomedc = .
2] label var incomedc ///

"Effect of a one standard deviation change in income on Pr(Dem)
3] sum income
4] local sd = r(sd)
5] local nobs = _N
6] forvalues i = 1/'nobs' {
7] quietly {
8] margins in 'i', nose predict (outcome (2)) I I I  Dem

at(income=gen(income)) at(income=gen(income+'sd'))
9] local prstart = el(r(b),l,l)
10] local prend = el(r(b),l,2)
11] local dc = 'prend' - 'prstart'
12] replace incomedc = 'dc' in *i'
13] >
14] >

Lines 1 and 2 create and label the variable th a t will hold the discrete change for each 
observation. Because we want to compute the effect of a standard  deviation change in 
income, lines 3 and 4 compute the standard deviation and create the local macro sd 
containing the standard deviation. This is used in the m argins command in line 8 . Line 
5 creates the macro nobs with the number of observations, which we use in line 6 to 
begin a fo rv a lu e s  loop through the 1,382 observations in the estimation sample.

The loop over observations is defined in lines 6 through 14. Because we do not want 
to see the output from margins, line 7 uses q u ie t ly  to suppress the output. Line 8 uses 
margins to compute predictions for observation ' i ' for the second outcome category.
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where n ose suppresses the computation of the standard error (this speeds up the compu­
tations). The first a t  () statement specifies the observed value of incom e, with all other 
variables held at their observed values; the second a t ( )  specifies the prediction at one 
standard deviation more than the observed value, m argins returns the predictions to 
the matrix r ( b ) ,  and lines 9 and 10 retrieve the starting and ending probabilities. Line 
11 computes the discrete change. Line 12 saves the effect for observation ' i '  of variable 
incom edc. The last two lines term inate the q u ie t ly  command and the fo rv a lu es  loop.

W h y  co m p u tin g  th e  d is tr ib u tio n  o f effec ts is slow. Computing effects for indi­
vidual observations is slow. Every time margins is run, it computes predictions 
for all observations in the sample before it computes predictions at values spec­
ified by a t () . In line 8 , we need the predictions for a single observation, but 
m argins computes predictions for all observations. You cannot turn off this be­
havior. Unfortunately, m argins does not save the predictions it computes for 
each observation. If it did, we would not need the loop! Accordingly, for each 
observation in our loop, m argins is computing 2N  -1- 2 predictions, for a total of 
2(N 2  + N )  predictions nearly 4 million in our example! Using Stata/MP for 
eight cores, our loop took 60 seconds to complete. But we believe it is worth the 
time.

Although these commands might seem complex at first, the good news is that you 
can easily modify our code to work for other variables (for example, change income 
to age), for different outcomes (for example, change o u tco m e(2) to outcome(5)), or 
for different amounts of change (for example, change ' s d '  to 1 for a discrete change 
of 1). Further, the same commands will work with models for binary, ordinal, and count 
outcomes or, indeed, for almost any model supported by the m argins command.

To plot the distribution of effects, we first compute the mean of incomedc and assign 
it to a local macro named ame:

. sum incomedc
Variable Obs Mean Std. Dev. Min Max

incomedc 1382 -.0217109 .0190934 -.0448823 .0305349
. local ame = r(mean)

The mean equals the AME of - 0 .0 2 2  computed by mchange on page 417. Next, we use 
h istogram  to plot the distribution of effects, with a vertical dashed line showing the 
value of the AME:

. histogram incomedc, xlabel(-.05(.01) .05) fraction
> width(.005) color(gslO) fcolor(gsl2) ylab(0(.1).2)
> xlineC'ame", lpat(dash))
(bin=16, start=-.04455748, width=.005)
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The histogram shows the distribution of discrete changes in the probability of being 
Democrat for a standard deviation change in income with the AME represented by a  
vertical, dashed line:

Even the sign of the AM E is potentially misleading. The distribution of effects is bi- 
modal with most of the sample having effects around —0.03 and a smaller group with 
positive effects near 0.025. Suppose the independent variable being considered is an 
intervention where the spikes corresponded to  two groups- say, whites and blacks— 
with negative effects for the larger group and positive effects for the smaller group. If 
substantive interest was on how the intervention would affect the smaller group, the 
AME is misleading because it is dominated by the negative effects for the larger group.

As a second example, we compute (w ithout showing the commands) the distribution 
of the effects of age on being a strong Republican:
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The AME of age on being a strong Republican is 0.030. The distribution of discrete 
changes ranges from 0.0004 to 0.082, with a spike near 0 followed by a gap until around
0.01. If age was a policy-relevant variable and the focus of the intervention was on 
individuals who had marginal effects near 0, the AME would be quite misleading.

.9 Tables of predicted probabilities
As with models for binary and ordinal outcomes, tables of predictions can provide useful 
insights into models when there are substantively im portant, categorical independent 
variables. Because exactly the same commands can be used with nominal models as with 
ordinal models, we do not repeat the types of examples shown before (see section 7.13 
for details). Instead, we focus on using tables of probabilities to compare and elaborate 
discrete changes across groups.

To show the effects of race and gender on party affiliation, we use m table to compute 
probabilities for each combination of race and gender, holding other variables at their 
means. Although wo could use the specification a t (b la c k = (0  1) fem ale=(0 1 ) ) ,  we 
instead use multiple a t ( )  options to arrange the output in the order we prefer:
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. mlogit party age income i.black i.female i.educ, base(5)
(output o m itte d )

. mtable, atmeans noci norownumbers
> at(black=0 female=0) at(black=l female=0) // white men, black men
> at(black=0 female=l) at(black=l female=l) // white women, black women 
Expression: Pr(party) , predict(outcomeO)

black female StrDem Dem Indep Rep StrRep

0 0 0.142 0.287 0.115 0.311 0.145
1 0 0.440 0.328 0.162 0.049 0.021
0 1 0.138 0.354 0.092 0.304 0.111
1 1 0.417 0.394 0.127 0.047 0.015

Specified v<ilues of covariates
2. 3

age income educ educ

Current 45.9 37.5 .58 .259

We can interpret this as follows:

For those who are average on all other characteristics, blacks are far more 
likely than whites to be strong Democrats and far less likely to be Repub­
licans or strong Republicans. Much smaller differences are found between 
men and women in party affiliation.

Supposing our substantive interest focuses on race and gender differences in party 
affiliation, we would want to test the differences in predictions between groups. The 
easiest way to do this is with mchange. using the option s t a t i s t i c s  ( s t a r t  end change 
pvalue) to list the  predicted probabilities for each group as well as the discrete changes. 
The effects of race for women (a t( fem a le = l) )  are
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. mchange black, at(female=l) atmeans brief
> statistics (start end change pvalue) title(Effect of race for women) 
Effect of race for women | Number of obs = 1382 
Expression: Pr(party), predict(outcome())

StrDem Dem Indep Rep StrRep

black
From 0.138 0.354 0.092 0.304 0.111

To 0.417 0.394 0.127 0.047 0.015
yes vs no 0.278 0.040 0.035 -0.257 -0.096
P--value 0.000 0.342 0.169 0.000 0.000

We interpret this as follows:

Compared with a white woman who is average on all characteristics, an 
otherwise similar black woman has a 0.28 higher probability of being a strong 
Democrat, a 0.26 lower probability of being a Republican, and a 0.10 lower 
probability of being a strong Republican. All differences are significant at 
the 0.001 level.

Similarly, we compute the effects for men:

. mchange black, at(female=0) atmeans brief
> statistics(start end change pvalue) title(Effect of race for men)
Effect of race for men I Number of obs = 1382 
Expression: Pr(party), predict(outcomeO)

StrDem Dem Indep Rep StrRep

black
From 0.142 0.287 0.115 0.311 0.145

To 0.440 0.328 0.162 0.049 0.021
yes vs no 0.298 0.041 0.047 -0.262 -0.125
P‘-value 0.000 0.293 0.126 0.000 0.000

Although the effects for race are of roughly the same size for men and women, we would 
like to test whether they are equal. For example, the discrete change for women is 0.278 
and for men is 0.298. Can we say these differences are significantly different from one 
another? We consider this question in the next section.

.9.1 (Advanced) Testing second differences

Computing and testing second differences is extremely useful, especially 
in group comparisons. To make these computations requires more ad­
vanced programming and a  deeper understanding of how margins and 
lincom  work. On first reading, you might want to  only skim this sec­
tion. However, we hope you return to it later.
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Earlier, we used mchange to compute the first difference for race holding fem ale at 
either 0 or 1 w ith other variables held a t their means. Now, we want to test the null 
hypothesis that the discrete change for men is equal to the discrete change for women:

A Pr (y = j  | x. fem ale =  0) A Pr (y =  j  \ x , fem ale =  1)
° ’ ~ A b lack  (0 —» 1) =  A black (0  -> 1)

We begin by fitting the model and storing the estimates so th a t we can restore them 
after posting estim ates from margins:

. mlogit party age income i.black i.female i.educ, base(5)
(output o m it te d )

. estimates store mymodel

Now, we use m argins to compute predictions for all combinations of gender and race for 
outcome 1. Later, we will use a loop to  make computations for all outcomes. Because 
the atlegend produced by margins is in this case quite long, we suppress it with the 
noatlegend option and use m lis ta t  to list the values at which the independent variables 
are held:

. margins, predict(outcome(1)) post atmeans noatlegend
> at(black=0 female=0) at(black=l female=0) // white men, black men
> at(black=0 female=l) at(black=l female=l) // white women, black women
Adjusted predictions Number of obs = 1382
Model VCE : OIM
Expression : Pr(party==StrDem), predict(outcome(l))

Delta-method 
Margin Std. Err. z P> 1 z I [95*/. Conf. Interval]

_at
1 .1423217 .0139387 10.21 0.000 .1150023 .1696411
2 .4404284 .0436357 10.09 0.000 .354904 .5259528
3 .1381515 .0141093 9.79 0.000 .1104977 .1658052
4 .4165218 .042888 9.71 0.000 .3324629 .5005807

. mlistat
at() values held constant

2. 3.
age income educ educ

45.9 37.5 .58 .259
at() values vary

_at black female

1 0 0
2 1 0
3 0 1
4 1 1

The post option saves the predictions so they can be used w ith lincom  or mlincom to 
compute second differences.
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Why are we using margins, which computes predictions for only one outcome, in­
stead of m table, which computes predictions for all outcomes? To test predictions, 
those predictions must be saved to the e(b ) and e(V) matrices. Because margins com­
putes predictions for only one outcome at a time, we can only post predictions for one 
outcome. Although m table can collect predictions for all the outcomes, it can only post 
predictions for a single outcome, ju st like margins. Accordingly, there is no advantage 
to using m table.

The second difference is computed by taking the difference between two differences: 
1) the difference between the probability for black men contained in _b[2._at] and for 
white men in _b [ 1 . _ a t ] ); and 2) the difference between the probability for black women 
in _b [4 . _at] and for white women in _b [3 . _ a t ] :

. lincom (_b[2._at] - _b[l._at]) - (_b[4._at] - _b[3._at])
( 1) - lbn._.at + 2._at + 3._at - 4._at = 0

Coef. Std. Err z P>|zl [95*/. Conf. Interval]

(1) .0197363 .0218253 0.90 0.366 -.0230405 .062513

. est restore mymodel 
(results mymodel sire active now)

The second difference for the first outcome, being a strong Democrat, is less than two 
points and not significantly different from 0 . estim ates r e s to r e  mymodel restores the 
m logit estimates to compute the second difference for other outcomes.

We can autom ate the process with a f  o rva lues loop over the values of the outcome:

1] forvalues iout = 1/5 {
2] margins, predict (outcome (' iout')) post atmeans

at(black=0 female=0) at(black=l female=0) // white men, black men ///
at(black=0 female=l) at(black=l female=l) // white women, black women

3] * ( black men - white men ) - (black women - white women)
lincom (_b[2._at] - _b[l._at]) - (_b[4._at] - _b[3._at])

4] est restore mymodel
5] >

Line 1 loops through outcome categories 1 through 5, assigning the value to the local 
io u t. Line 2 makes four predictions for outcome ' i o u t '  and posts the estimates so 
they can be used by lincom. Line 3 computes the second differences by using lincom, 
and line 4 restores the m logit estimation results. The output is 300 lines long. It could 
be shortened by adding the n o a tleg en d  option along with m l i s t a t  as shown above. 
Alternatively, we could use q u ie t ly  to suppress the output.

As an alternative, we use mlincom instead of lincom, which allows us to create a 
compact table of results.
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1] mlincom, clear
2] forvalues iout = 1/5 {
3] quietly {
4] margins, predict (outcome(' iout')) post atmeans ///

at(black=0 female=0) at(black=l female=0) // white men, black men /// 
at(black=0 female=l) at(black=l female=l) // white women, black women

5] mlincom (2-l)-(4-3), save label(Outcome 'iout')
6] est restore mymodel
7] >
8] >

Line 1 clears the m atrix where mlincom will accumulate results. W ithout this line, new 
results would be attached to results th a t might have been saved by mlincom run earlier. 
Lines 3 through 7 use q u ie t ly  to suppress the display of results from margins and 
mlincom. Line 5 replaces lincom with mlincom. which lets us refer to the predictions 
by their position in the output of m argins, rather than requiring the _b[] syntax. The 
save option adds the current results to the m atrix holding prior results, lab e l () adds 
labels to each set of results, in this case, indicating the outcome being tested. We run 
mlincom to list the  results:

. mlincom
lincom pvalue 11 ul

Outcome 1 0.020 0.366 -0.023 0.063
Outcome 2 0.001 0.967 -0.037 0.039
Outcome 3 0.013 0.238 -0.008 0.034
Outcome 4 -0.004 0.836 -0.046 0.037
Outcome 5 -0.029 0.082 -0.061 0.004

The second differences are all less than  0.03 in magnitude and none are statistically 
significant. We conclude the following:

For those that, are average on all characteristics, the marginal effect of race 
on party affiliation are the same for men and women.

.9.2 (Advanced) Predictions using local means and subsamples

Comparing groups by making predictions with local means or by average 
predictions within subsamples is im portant for nuanced interpretations 
of group differences. To do this requires Stata programming and using 
the o v e rO  option with m argins. Although you might want to skip 
this section on first reading, we encourage you to return  to this section 
when you are comfortable with the commands used in other sections on 
interpretation with predictions.
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To compute the predicted probabilities of party affiliation by race and gender, we 
used the atmeans option to hold all other variables at the means for the estimation sam­
ple. Accordingly, the predictions are comparing white men, black men, white women, 
and black women who have the same values for age, income, and education. Because 
the four race-gender groups are likely to differ on these variables, the predictions must 
be viewed as a “what if” experiment: what would happen if these groups had the same 
distributions of other characteristics?

We could compute predictions by using within-group means, which we refer to as 
local means. Using methods discussed on page 273, we use i f  conditions to select the 
sample for each m table command:

. mlogit party age income i.black i.female i.educ, base(5)
(output om itted )

. estimates store mymodel

. qui mtable if black==0 & female==0, atmeans noci rowname (White Men) clear 

. qui mtable if black==l & female==0, atmeans noci rowname (Black Men) below 

. qui mtable if black==0 & female==l, atmeans noci rowname (White Women) below 

. mtable if black==l & female==l, atmeans noci rowname(Black Women) below 
Expression: Pr(party), predict(outcome())

StrDem Dem Indep Rep StrRep

White Men 0.128 0.283 0.109 0.325 0.156
Black Men 0.461 0.310 0.168 0.044 0.017

White Women 0.145 0.354 0.093 0.298 0.109
Black Women 0.460 0.364 0.129 0.037 0.011

Specified values of covariates

age income black female
2.

educ
3

educ

Set 1 45.1 43.5 0 0 .546 .324
Set 2 45 29.8 1 0 .518 .188
Set 3 47.1 35.2 0 1 .624 .222

Current 45.4 20.4 1 1 .59 .143

The values of the covariates show substantial differences among the groups, especially 
with respect to income, where white men have more than twice the average income of 
black women. Consequently, the predicted probabilities with local means differ from 
those computed with global means. For example, for black women, the probability of 
being a strong Democrat is 0.417 when global means are used compared with 0.460 
when local means are used.

Although we can create the predictions we want by using m table with i f  conditions, 
this approach does not allow us to com pute first and second differences across the groups. 
Technically, the problem is that at the end of each mtable command (or margins, if we 
had used th a t command instead), only predictions for the current group can be posted to 
e(b) and e(V) for use by lincom or mlincom. A relatively efficient way to deal with this 
limitation is to use the over (over-variables) option. W ith the overO  option, margins 
computes predictions based on the subsample of cases defined by the over-variables.
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The over-variables can be any categorical variables in the dataset, even if they are not 
used in the regression model. For our purposes, we want to use over (female b lack ) 
to compute predictions based on subsamples defined by race and gender:

. margins, over(female black) atmeans post 
Adjusted predictions Number of obs 1382
Model VCE OIM
Expression : Pr(party==StrDem), predictO
over : female black
at : 0.female#0.black

age
income =
black =
female =
1.educ =
2.educ =
3.educ =

(output o m itted )
1.female#l.black 

age
income =
black =
female =
1.educ =
2.educ =
3.educ =

45.13171 (mean) 
43.54512 (mean) 

0 
0

. 1300813 (mean) 

.5463415 (mean) 

.3235772 (mean)

45.3619 (mean) 
20.42619 (mean) 

1 
1

.2666667 (mean) 

.5904762 (mean) 

.1428571 (mean)

Margin
Delta-method 

Std. Err. z P>lz| [957. Conf. Interval]

female#black
no#no .1278946 .013109 9.76 0.000 .1022014 .1535878
no#yes .4607531 .0430804 10.70 0.000 .376317 .5451892
yes#no .1454926 .0143397 10.15 0.000 .1173872 .1735979

yes#yes .4596925 .0411218 11.18 0.000 .3790952 .5402899

. estimates restore mymodel 
(results mymodel are active now)

This provides the same estimates as the commands

margins if black==0 & female==0, atmeans post 
estimates restore mymodel
margins if black==0 & female==l, atmeans post 
estimates restore mymodel
margins if black==l & female==0, atmeans post 
estimates restore mymodel
margins if black==l & female==l, atmeans post 
estimates restore mymodel

except that m arg in s , over () post posts the four predictions th a t allow us to compute 
and test second differences.

Now, we can use a f o r  values loop to test whether second differences are equal to 0 
for each outcome:
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mlincom, clear 
forvalues iout = 1/5 {
2. quietly {
3. margins, over(female black) predict (outcome ('iout')) post atmeans
4. mlincom (2-l)-(4-3), save label(Outcome 'iout')
5. est restore mymodel
6. > // end of quietly
7. > // end of forvalues

. mlincom
lincom pvalue 11 ul

Outcome 1 0.019 0.415 -0.026 0.064
Outcome 2 0.019 0.345 -0.020 0.057
Outcome 3 0.024 0.047 0.000 0.048
Outcome 4 -0.020 0.360 -0.064 0.023
Outcome 5 -0.041 0.019 -0.075 -0.007

Gender differences in the effect of race are larger when computed using group-specific 
means for the other variables. The effect of race on being Independent is significantly 
larger for men than women, and the effect of race on being strongly Republican is 
significantly larger for women than men.

A related approach for comparing groups is to compute the average predicted prob­
abilities within each of the subsamples defined by the groups being compared. For 
example, we can compare the average probability of being Republican for white men 
with the average probability for black men. To make these com putations only requires 
us to remove the option atmeans from the commands used above.

. mlincom, clear 

. forvalues iout => 1/5 {
2. quietly {
3. margins, over(female black) predict (outcome ('iout')) post
4. mlincom (2-l)-(4-3), save label(Outcome 'iout')
5. est restore mymodel
6. > // end of quietly
7. > // end of forvalues

. mlincom
lincom pvalue 11 ul

Outcome 1 0.021 0.294 -0.018 0.060
Outcome 2 0.016 0.357 -0.018 0.051
Outcome 3 0.019 0.080 -0.002 0.041
Outcome 4 -0.015 0.476 -0.057 0.026
Outcome 5 -0.041 0.017 -0.075 -0.007

The results in this example lead to  the same substantive conclusions obtained using 
local means.
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.10 Graphing predicted probabilities
Graphing predicted probabilities for each outcome can also be useful for the MNLM 
and is done exactly as it w as for the ORM . To illustrate this, we create plots to show 
the effects of age and income on party affiliation. After fitting the model, we compute 
predictions as income increases from $0 to $ 100,000, holding other variables at their 
means.

. mlogit party age income i.black i.female i.educ, base(5) vsquish 
(output om itted)

. mgen, atmeans at(income=(0(10)100)) stub(mnlml) replace
Predictions from: margins,, atmeans at(income= (0(10)100)) predict(outcome())
Variable Obs Unique Mean Min Max Label

mnlmlprl 11 11 . 1604032 .090648 .2445128 pr(y=StrDem) from margins
mnlmllll 11 11 ..1253144 .0479288 . 1908274 95"/. lower limit
mnlmlull 11 11 ..1954919 .1333672 .2981981 95'/, upper limit
mnlmlincome 11 11 50 0 100 Income in $l,000s

(output om itted)

Specified values of <covariates
1 1. 2. 3.

age black female educ educ

45.94645 .1374819 .4934877 .5803184 .2590449

Using variable labels to assign labels to the lines, w(> can plot the  predictions with these 
commands:

. label var mnlmlprl "Strong Dem"

. label var mnlmlpr2 "Democrat"

. label var mnlmlpr3 "Independent"

. label var mnlmlpr4 "Republican"

. label var mnlmlpr5 "Strong Rep"

. graph twoway connected
> mnlmlprl mnlmlpr2 mnlmlpr3 mnlmlpr4 mnlmlpr5 mnlmlincome,
> title("Multinomial logit model: other variables held at their means",
> pos(ll) size(medium))
> ytitle(Probability of party affiliation) ylab(0(. 1) .4, grid gmax gmin)
> msym(0 Oh dh sh s) mcol(gsl gs5 gs8 gs5 gsl)
> lpat(solid dash shortdash dash solid) lcol(gsl gs5 gs8 gs5 gsl)
> legend(rows(2))
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Multinomial logit model: other variables held at their means

^ -----------------1------
0 20

------ 1--------------- ---T
40 60 

Incom e in $ 1 ,000s
80 100

_ _ i  _
Democrat 

Strong Rep

Independentw  olrony U6fTi 

— B  -  Republican

The probabilities of being a strong D em ocrat ( • )  or a Democrat (O) decrease with 
income, while the probabilities of being a Republican (□) or a  strong Republication (■) 
increase, with little change in the probability of being Independent (O). Using o lo g it 
to fit the ordinal model, we obtain a  nearly identical graph:

Ordered logit model: other variables held at their means

— • —  Strong Dem Democrat —  O — • Independent

Republican — • —  Strong Rep

The results are quite different when we examine the effect of age on party affiliation. 
For the MNLM, we plot predictions as age increases from 20 to 85, holding other variables 
at their means (commands not shown):
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Multinomial logit m odel: o ther va r ia b le s  held at their m e a n s
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The probabilities for the two strong affiliations, shown with so l id  m ark ers, bo th  in crease  
with age. This pa tte rn  could not be obtained with an ORM t h a t  req u ires  th a t ch an ges in  
the extreme categories be in opposite directions. To see this, c o n s id e r  t h e  corresp on d in g  
graph based on predictions from the OLM:
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O rd ere d  logit m odel: o ther v a r ia b le s  held at their m ean s
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This example illustrates the risk of assuming an ORM is a p p r o p r ia te  s im p ly  b eca u se  
the dependent variables can be ordered. Although income a f fe c ts  a ffilia tio n  as w ou ld  b e  
expected with a unidimensional, ordinal outcome, age increases the s tr e n g th  o f a ffilia tion  
but does not affect left right orientation. When using an o r d in a l  m o d e l, we b e liev e  it  
is good practice to examine the sensitivity of the results to the c o n s tr a in ts  o f  o r d in a lity  
by comparing the results from the ordinal model with those from  t h e  MNLM or th e  
generalized OLM.
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8.11 Odds ratios
Discrete change coefficients do not show the dynamics among the outcomes. For exam­
ple, being black increases the probability of being a Democrat or an Independent, but 
how does it affect the probability of being Democrat relative to being Independent? To 
deal with these questions, odds ratios, also referred to as relative-risk ratios and factor 
change coefficients, can be used to explore how variables affect the choice of one out­
come compared with another outcome. Odds ratios do not provide a complete picture 
of the effects of variables on the outcomes and have the same limitations discussed for 
the binary logit model in chapter 6 ; however, in the MNLM, odds ratios complement the 
information provided by marginal effects and other types of predictions.

The factor change in the odds of outcom e m  versus outcome n as Xk increases by 6 , 
holding other variables constant, equals

n m|„ (x ,a t  +  S) _  
i2m|n (x ,X k)

If the amount of change is S = 1, the odds ratio  can be interpreted as follows:

For a un it increase in x/c, the odds of m  versus n are expected to change by 
a factor of <'xp(/3fc m|n), holding all o ther variables constant.

If the amount of change is S = sXk, then the odds ratio can be interpreted as follows:

For a standard deviation increase in xk,  the odds of m  versus n are expected 
to change by a factor of exp(/?fc>m|n x s*), holding all other variables constant.

Other values of S can also be used, such as S = 4 for four years of education or <5 = 10 
for $10,000 in income.

8.11.1 Listing odds ratios with listcoef

The difficulty in interpreting odds ratios for the MNLM is th a t to understand the ef­
fect of a variable, you need to examine the coefficients for comparisons among all pairs 
of outcomes. The standard output from m lo g it includes only a minimal set of J  — 1 
comparisons with the base outcome. Although you could estim ate coefficients for all pos­
sible comparisons by rerunning m lo g it w ith different bases (for example, mlogit p a rty  
female b la c k . . . ,  b a se ( l) ;  m log it p a r ty  female b l a c k . . . ,  b a se (2 ); etc.), using 
l i s tc o e f  is simpler. For example, to  examine the odds ratios for variable black, type
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. use partyid4, clear
(partyid4.dta I 1992 American National Election Study | 2014-03-12) 
. mlogit party age income i.black i.female i.educ, base(5)

(output om itted)
. listcoef black, help
mlogit (N=1382): Factor change in the odds of party 
Variable: 1.black (sd=0.344)

b z P>|zl e'b e-bStdX

StrDem vs Dem 0.9963 5.022 0.000 2.708 1.409
StrDem vs Indep 0.7845 3.052 0.002 2.191 1.310
StrDem vs Rep 2.9692 7.666 0.000 19.475 2.781
StrDem vs StrRep 3.0754 5.091 0.000 21.659 2.885
Dem vs StrDem -0.9963 -5.022 0.000 0.369 0.709
Dem vs Indep -0.2118 -0.830 0.407 0.809 0.930
Dem vs Rep 1.9728 5.132 0.000 7.191 1.973
Dem vs StrRep 2.0791 3.448 0.001 7.997 2.047
Indep vs StrDem -0.7845 -3.052 0.002 0.456 0.763
Indep vs Dem 0.2118 0.830 0.407 1.236 1.076
Indep vs Rep 2.1846 5.220 0.000 8.887 2.122
Indep vs StrRep 2.2909 3.658 0.000 9.884 2.202
Rep vs StrDem -2.9692 -7.666 0.000 0.051 0.360
Rep vs Dem -1.9728 -5.132 0.000 0.139 0.507
Rep vs Indep -2.1846 -5.220 0.000 0.113 0.471
Rep vs StrRep 0.1063 0.155 0.877 1.112 1.037
StrRep vs StrDem -3.0754 -5.091 0.000 0.046 0.347
StrRep vs Dem -2.0791 -3.448 0.001 0.125 0.489
StrRep vs Indep -2.2909 -3.658 0.000 0.101 0.454
StrRep vs Rep -0.1063 -0.155 0.877 0.899 0.964

b = raw coefficient 
z = z-score for test of b=0 

P>|z I = p-value for z-test
e~b = exp(b) = factor change in odds for unit increase in X 

e~bStdX = exp(b*SD of X) = change in odds for SD increase in X

The odds ratios of interest are in the column labeled e~b. For example, the odds ratio 
for black for the outcomes StrDera vs Dera is 2.708, which is significant at the 0.001 
level. It can be interpreted as follows:

Being black increases the odds of having a strong Democratic affiliation 
compared with a Democratic affiliation by a factor of 2.7, holding other 
variables constant.

Even for a single variable, there are a lot of coefficients; we often hear people lament 
that there are “too many” coefficients to interpret. Fortunately, a simple graph makes 
this task manageable, even for complex models.

8.11.2 Plotting odds ratios

An odds-ratio plot lets you quickly see patterns in coefficients, even for complex models 
with many outcomes. Methods for plotting odds ratios were developed by Long (1987)
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while using the MNLM to examine factors th a t determine the organizational contexts 
in which scientists work (Long and McGinnis 1981). Although an odds-ratio plot was 
included in th a t paper, this is generally not the most effective way to use these graphs. 
Rather, the graphs provide a quick way to assess all the parameters in the model and 
to get a general sense of what is going on to help plan further analyses. Experience 
in teaching suggests that within an hour, students gain a “feel” for these graphs that 
allows them to  evaluate the results of an MNLM in only a few minutes. Building on these 
insights, more detailed analyses can be planned using other m ethods of interpretation.

To explain how to  interpret an odds-ratio plot, we begin with hypothetical results 
from an MNLM with three outcomes and three independent variables:

Logit coefficients

C om parison X i X2 X3

B  | A P b \a  
exp(/?B| a )  

V

-0 .693
0.500

0.04

0.693
2.000

0.01

0.347
1.414
0.42

C  \ A @C\A

exp (/?c |/i)
V

0.347
1.414

0.21

-0.347
0.707

0.04

0.693
2.000

0.37

C  | D 0 C \B
exp(/?c|/?)

V

1.040
2.828

0.02

-1.040
0.354
0.03

0.346
1.414

0.21

These coefficients were constructed to have specific types of relationships among out­
comes and variables:

• The (3 coefficients for xi and on B  | A  (which you can read as B  versus A) are 
equal but of opposite sign. The coefficient for X3  is half as large.

• The (3 coefficients for x\  and X2  on C  \ A  are half as large and in opposite directions 
as the coefficients on B \ A , whereas the coefficient for x$ is in the same direction 
but is twice as large.

In an odds-ratio plot, each independent variable is presented on a separate row, with 
the horizontal axis indicating the m agnitude of the coefficients associated with each 
contrast of outcomes. Here is the plot, where the letters correspond to the outcome
categories:
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Factor Change Scale Relative to Category A
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Logit Coefficient Scale Relative to Category A 

We now explain how the graph conveys the information from the table of coefficients.

Sign of coefficients. If a letter is to the right of another letter, increases in the indepen­
dent variable make the outcome to the right more likely relative to outcomes located to 
the left, holding all other variables constant. Thus relative to  outcome A, an increase 
in X \  increases the odds of C and decreases the odds of D. This corresponds to the 
positive sign of f i i}c\A and the negative sign of (3i,b\a- The signs of these coefficients 
are reversed for x 2, and accordingly, the plot for x 2 is a m irror image of that for xi.

Magnitude of coefficients. The distance between a pair of letters indicates the magnitude 
of the coefficient. The additive scalc on the bottom axis measures the value of the 
0k,m\ns- The multiplicative scale on the top axis measures the odds ratios exp (/^%m|n). 
For both xi and x 2, the distance between A and 13 is twice the distance between A arid 
C , which reflects that (3\,b\a ™ twice as large as /?i,o|^ an(l 02,b\a is twice as large as 
/32%c\a- F°r X3 , the distance between A  and 13 is half the distance between A and C, 
reflecting that /33 ^c\a twice as large as Pw^b\a-

The additive relationship. The additive relationships among coefficients in (8.1) are 
shown in the graph. For all the independent variables, Pk,c\A — Pk,B\A +  Pk,c\B- 
Accordingly, the  distance from letters A to C  in the graph is the sum of the distances 
from A to B  and B  to  C. This is easiest to see in the row for variable X3, where all 
the coefficients are positive. By plotting the ,/ — 1 coefficients from a minimal set, it is 
possible to visualize the relationships among all pairs of outcomes.

The base outcome. In the graph above, the An are aligned vertically because the plot 
uses A as the base outcome when graphing the coefficients. The choice of the base is 
arbitrary. We could have used alternative B  as the base instead, which would shift the 
rows of the graph to the left or right so that the Bs lined up. Doing this leads to the 
following graph:
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Creating odds-ratio plots with mlogitplot

Odds-ratio plots can be easily constructed with the SPost command m logitp lo t. 1 
In this section, we construct a series of odds-ratio plots that illustrate how this command 
can be used to  understand the factors affecting party affiliation. We assume that the 
results from m lo g it are in memory. Because m lo g itp lo t does not change the estimation 
results, there is no need to use e s t im a te s  s to r e  and e s t im a te s  re s to re . Full details 
on the syntax for m lo g itp lo t are given in h e lp  m lo g itp lo t.

As a first step in examining results from an MNLM, it is useful to create an odds-ratio 
plot for all variables. This is done by typing the command m lo g itp lo t. To make our 
graph more effective, we add a few options:

mlogitplot, symbols(D d i r R) base(3) linepvalue(l) leftmargin(2)

The option symbols (D d i  r  R) labels the  outcomes, and b ase  (3) specifies to line up 
the outcomes 011 base 3, which is Indep shown by i. The option lin e p v a lu e ( l)  removes 
lines indicating statistical significance, an im portant feature th a t will be discussed soon. 
Finally, le f tm a rg in ( 2 ) adds space on the left for the labels associated with factor 
variables; in practice, you will need to  experiment to determine how large this margin 
needs to be for your plot. The following graph is created:

4. The command m log itp lo t in SPostl3 replaces the commands m logview and mlogplot in SPost9.
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The independent, variables are listed on the left, with the  vertical distance for a 
given variable used simply to prevent the symbols from overlapping. The default vertical 
distance does not always work (for example, notice how “r” is inside the “D” for variable
1 . female), and later we consider options for refining these offsets.

From the plot, we immediately sec th a t the odds ratios for b lack  are the largest, 
increasing the odds of being a strong Democrat ( “D”), a Democrat ( “d” ), or an Indepen­
dent (“i” ) compared w ith being Republican ( “r”) or strong Republican (“R”). Having 
a college education compared with not completing high school (3. educ) increases the 
odds of being a  strong Republican ( “R” ) relative to the o ther categories. Consistent 
with our findings when plotting probabilities against age and income, age increases the 
odds of strongly affiliating with either party relat ive to affiliations th a t are less strong, 
while income increases the odds of more right-leaning affiliations relative to left-leaning.

The current graph has two limitations. First, while it shows the size of odds ratios, 
it does not indicate whether they are statistically significant. While it is tempting to 
assume that larger odds ratios imply smaller values for testing the hypothesis that 
the odds ratio is 1, that should not be done! Instead, we need to add the significance 
level to the graph. Second, because a large odds ratio does not necessarily correspond 
to a large marginal effect, we will add information on marginal effects to the graph.

Adding significance levels

The distance between two outcomes indicates the magnitude of the coefficient. If 
a coefficient is not significantly different from 0 . we add a  line connecting the two 
outcomes, suggesting th a t those outcomes are “tied together” . By default, m log itp lo t
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connects outcomes where the odds ratio has a p-value greater than 0.10. You can 
choose other p-values with the l in e p v a lu e ( # )  option, and you can remove all lines by 
specifying l in e p v a lu e ( l) .

To illustrate how statistical significance is added to the graph, we plot the odds 
ratios for age and income:

. mlogitplot age income,
> symbols(D d i r R) base(3) ormin(.5) ormax(2) ntics(5)
> offsetlist(2 -2 0 2 -2 2 -2 0 2 -2) ysize(2.4) scaled.1)

Odds Ratio Scale Relative to Category Indep

-i---------------- 1------------------1----------------- 1----------------- r
-.69 -.35  0 .35 .69

Logit Coefficient Scale Relative to Category Indep

Based on this graph, we conclude the following:

Age significantly increases the odds of affiliations th a t are strong relative 
to those th a t are not strong, with no significant odds ratios differentiating 
outcomes within these two groups.

For income, we conclude the following:

In term s of the conventional left-righ t continuum, income increases the odds 
of affiliations to the right but does not significantly differentiate affiliations 
that are adjacent, such as strong Democrat compared with Democrat or 
Republican compared with strong Republican.

Sometimes the lines do not clearly show whether an odds ratio is significant. For 
example, in the last plot, it is not clear whether there is a line connecting “i" and “d”
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for income because the symbols are so close to one another. There are several ways to 
resolve this. F irst, we can examine the odds ratio in the ou tpu t from l is tc o e f . where 
we see that the effect is not significant. Second, we can reduce the size of the spacing 
between symbols and the start of the lines by using the lin e g a p f  a c to r  (# ) option. If 
we add l in e g a p f  a c to r  ( .5 ) ,  we would see th a t there is a line connecting “i” and “d” . 
Finally, we can revise the vertical offsets used for placing letters with the o f f s e t l i s tO  
option. Offsets are determined by specifying one integer in the  range from - 5  to 5 for 
each outcome for each variable in the graph. By default, the offsets are 2 -2 0 2 -2
0 2 -2  0 . . . .  To adjust our prior graph for income, we use 2 -2 1 2 -2 to move “i”
up because its offset has been increased from 0 to 1. Remember that these adjustments 
have no substantive meaning; they simply make the information clearer. Using these 
offsets, the following command creates a graph that makes it clear that “i” and "D” are 
linked:

. mlogitplot age income,
> symbols(D d i r R) base(3) ormin(.5) ormax(2) ntics(5)
> offsetlist(2 -2 0 2 -2 2 -2 2 2 -2) ysize(2.4) scaled.1)

O dds Ratio S c a le  R elative to Category Indep  
0 .5 0  0.71 1 .00 1.41 2.00

Logit Coefficient S c a le  Relative to C atego ry  Indep

The plot for income illustrates why it is important to examine all contrasts (that 
is, odds ratios), not ju st the minimal set. Suppose that we had fit the model with 
base outcome 3, corresponding to “i” in the graph. At the 0.10 level, none of the odds 
ratios relative to  “i” are significant, as indicated by the lines from “i” to each of the 
other outcomes. It would be incorrect to assume that income did not significantly affect 
party affiliation because the contrasts for outcomes “D” versus “r” ; “D” versus "R"; 
“d” versus “r” ; and “d” versus “R” are significant. An odds-ratio plot is a  quick w a y  

to see all the contrasts.
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Adding discrete change

In chapter 6 , we emphasized th a t whereas the factor change in the odds is constant 
across the levels of all variables, the m arginal effect gets larger or smaller at different 
values of the variables. For example, if the odds increase by a factor of 10 but the current 
odds are 1 in 10,000, the change in the  probability is small. But if the current odds 
are 1 in 5, the change in probability is large. Information on the change in probability 
can be incorporated into the odds-ratio plot by making the area of a square drawn 
around a letter proportional to the discrete change in the probability. Sign is indicated 
by underlining the letter if the marginal effect is negative. To add this information, we 
must first run mchange to calculate m arginal effects for the amount of change we are 
interested in (for example, 1 unit or a  standard  deviation). Second, we add the option 
mchange to m lo g itp lo t. To illustrate this, we plot the odds ratios and average discrete 
changes for educ and black:

. mchange black educ, amount(sd)
(output om itted)

. mlogitplot black educ,
> symbols(D d i r R) base(3) ormin(.l) ormax(10) ntics(5)
> mchange subtitle (Average discrete change, position(ll))
> offsetlist(0 -2 2 3-2 2 - 2 - 1 2 0  2 - 2 - 1 2 0 )  leftmargin(12)

Average d iscre te  ch a n g e
Odds Ratio S ca le  Relative to Category Indep 

0 .10  0 . 3 2  1.00 3 . 1 6  10.00

By far, the largest marginal effect is the  increase in the probability of being a strong 
Democrat ("D” ) if you are black. In term s of the odds ratios, race divides affiliations 
into three groups: 1) strong Republicans ( “R”) and Republicans ( V ) ;  2) Democrats 
( “d'’) and Independents ( “i” ): and 3) strong Democrats ( “D ”).
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By examining both the odds ratio and the discrete change, it is clear that a positive 
odds ratio for outcome A  compared with outcome D does not indicate the sign of the 
discrete changes for the two outcomes. For example, with an odds ratio greater than
1, the discrete changes for both outcomes can both be positive, can both be negative, 
or can differ in sign. An odds ratio indicates the ratio of the change of one category 
relative to another, not the direction of the change. The graph also illustrates what is 
found when a variable has no significant effects, as is the case for 2 . educ. The discrete 
changes are small and all letters are connected by lines, indicating that none of the odds 
ratios are significant.

T he size o f sy m b o ls. When the mchange option is used, the size of the symbol reflects 
the size of the effect. Because many letters are more or less square, the size of 
the area of a square drawn around the symbol is proportional to the absolute 
magnitude of the marginal effect. This can be misleading in some cases. For 
example, the letters “r” and “R” both represent the sam e size effect, but “R” is 
larger. As long as you keep this in mind, the size of the letters should give you a 
rough idea of the magnitude of effects. If you want to be certain, check the output 
from mchange.

With a little practice, you can quickly see the overall pattern  of relationships in 
your model by using odds-ratio plots. Once the pattern is determined, other methods 
of interpretation can be effectively used to  demonstrate the most important findings.

.12 (Advanced) Additional models for nominal outcomes

This (long) section presents some additional models for nominal out­
comes. We mark the material as advanced because you may wish to 
only skim the different subsections, especially because several require 
types of data th a t most applications using nominal outcomes do not 
have. For example, some models require alternative-specific variables, 
where different alternatives have different values on the same variable 
(section 8.12.4). Other models require that the alternatives are ranked 
instead of a single alternative being chosen (section 8.12.5). We also 
provide some details about models th a t we think are didactically useful 
for understanding the overall logic of how modeling categorical out­
comes is done, such as showing how the conditional logit model can be  
used to produce the same results as the MNLM (8.12.2), but w e  do not 
advocate fitting the model this way because the MNLM is simpler.
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8.12.1 Stereotype logistic regression

In the last chapter, we postponed a  detailed discussion of the stereotype logistic re­
gression model (SLM) even though the model can be considered a model for ordinal 
outcomes. We did this because the SLM is easier to understand once you are familiar 
with the MNLM. The SLM, proposed by Anderson (1984), is more flexible than the OLM 
because it does not require the proportional-odds assumption, yet it can be more par­
simonious than  the MNLM. Anderson developed the SLM in reaction to the limitations 
of the OLM, which he referred to as the grouped continuous regression model. The 
term “grouped continuous” reflected that the OLM can be motivated by a continuous, 
latent variable that is divided (that is, grouped) by thresholds th a t lead to the ob­
served categories. In contrast, Anderson thought of the outcome categories in the SLM 
as “assessed” . Each respondent is considered to have stereotypes that characterize the 
outcome choices. The respondent assesses each outcome and then picks the alternative 
whose stereotype most closely matches the respondent’s views on the question being 
asked. Although this explains the name of the model, there is no reason to limit the 
application of the model to outcomes th a t are generated in an assessed fashion.

Although the SLM is more parsimonious in the number of param eters than the MNLM, 
we will show that the full interpretation of the SLM is as complicated as that of the 
MNLM. If the full complexity of the model is not considered, valuable information can 
be lost and incorrect conclusions can be made. There is also some confusion about 
whether the SLM requires the dependent variable to be ordered. In its simplest form, 
the SLM orders the dependent variable along one dimension, but the outcomes are not 
necessarily ordered the way you think they are. For example, you might think that your 
outcomes should be ordered 1 2 3 4, but the SLM might determine that the ordering 
should be 2 1 3 4. In higher-dimensional SLMs, categories are ordered on more than one 
dimension, and the idea of ordinality is lost as the SLM becomes identical to the MNLM.

We introduce the SLM by reviewing the results from our MNLM of party affiliation:

. use partyid4, clear
(partyid4.dta I 1992 American National Election Study | 2014-03-12)
. mlogit party age income i.black i.female i.educ, base(5) nolog vsquish
Multinomial logistic regression Number of obs = 1382

LR chi2(24) = 311.25

Log likelihood = -1960.9107
Prob > chi2 = 
Pseudo R2 =

0.0000
0.0735

party Coef. Std. Err. z P> 1 z 1 [95*/. Conf. Interval]

StrDem
age .0028185 .00644 0.44 0.662 -.0098036 .0154407

income -.0174695 .0045777 -3.82 0.000 -.0264416 -.0084974
(output omit ted )

Dem
age -.0207981 .0059291 -3.51 0.000 -.032419 -.0091772

income -.0101908 .0035532 -2.87 0.004 -.0171549 -.0032267
(output om itted)
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Indep
age -.0287992 .0074315 -3.88 0.000 -.0433648 -.0142337

income -.0089716 .0047821 -1.88 0.061 -.0183443 .0004012
(output om itted )

Rep
age

income
(output om it

-.0217144 .0060422 
-.0012715 .0033629

ted )

-3.59 0.000 
-0.38 0.705

-.0335569 
-.0078627

-.0098718
.0053196

StrRep (base outcome)

. predict mnlm_l mnlm_2 mnlm_3 mnlm_4 mnlm_5 
(option pr assumed; predicted probabilities)

If party is ordinal with respect to the independent variables, what pattern would 
we expect for the /9’s in the four equations? The top panel, labeled StrDem, presents 
coefficients for the equation comparing outcome StrDem with the base outcome StrRep: 
the panel Dem presents coefficients comparing Dem with StrRep; and so on. If an increase 
in an explanatory variable increases the odds of answering StrDem versus StrRep, we 
would also expect the variable to increase the odds of Dem versus StrRep, as well as 
increase the odds of Indep and Rep versus StrRep. That is, we would expect /3k,sd\sri 
0k.D|SRi 0k,l|SR i an(l 0k,r | s r  to have the same sign. More than this, we would expect 
the coefficient to  be largest when comparing categories StrDem and StrRep, which are 
furthest apart on the ordinal ranking from StrDem to StrRep, and smallest for adjacent 
categories, such as Rep anti StrRep. In the m log it output above, this means that if 
party is ordinal, we would expect the coefficients in the panel labeled StrDem to be 
the largest (either positive or negative), followed by those in the Dem panel, with the 
smallest found in the Rep panel. Although this pattern holds for income, the estimates 
for age violate the pattern.

A further possibility is that the magnitudes of 0k,SD\SR, 0k,D|SR, 0k,i|SR, and 0k,R\sR 
are not just consistently ordered for each independent variable but the relative magni­
tudes of these coefficients are the same for all independent variables. The implication 
is that the distance or difficulty in moving from StrDem to Dem compared with moving 
from Rep to StrRep is the same for each variable. For example, if 0 &ge.sD\D  is 2.7 times 
larger than (3age,R\SR, then /incom e,sd|d would be 2.7 times larger than D|SA> and
so on. This implies that there is a coefficient Pk for each Xk and scaling parameters (pj 
for each outcome j  such that for each Xk

0k, SD |SR  =  0SD  0k 

0k,D\SR ~  <Pd0k 

0k, 1|SR =  010k 

0k, R|SA =  <t>R 0k
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If these constraints are applied to the MNLM, you have the one-dimensional SLM. That 
is, the SLM is an MNLM fit with constraints. If the constraints adequately characterize 
the data-generating process, the more parsimonious SLM should fit the data nearly as 
well as the MNLM.

Formal statement of the one-dimensional SLM

With these ideas in mind, we can present the model more formally. To simplify the 
presentation, we assume that there are three outcomes and two independent variables. 
For the MNLM with base outcome 3,

„  , , x exp(/^o,m|3 +  P l,m \3 x \ +  02,m\3x 2 )  fP r(y =  m I x) = — ^ ------- —--------------- 1-----— -  for m  = 1,2 (8.3)
£ j = l  exp (0o,j\3 +  Pl,j\3x l +  02J\3X2)

For the SLM, using similar notation,

+  0  to  0 l X \  +  0  mfi2^2 )
fo rm  =  1,2 (8.4)

exp|^0m/^O^O “1“ 0m/^ l x l "1" 0m^2^2^1
m  1 x ) —  , 

£ j= i exp |[ffrjßoXo +  <f>jß\X\ +  0 j Ä ^ 2)

For both models, P r (y = 3 | x) =  1 -  Pr(y =  1 | x) -  Pr(y =  2 | x). The only difference 
between (8.3) and (8.4) is that 0 k,m\ 3  is replaced by (f)m/3k- This replacement forces the 
ratio of coefficients to be equal across variables. Specifically,

0 j f f l  _  <PjP2 _  0 j _

0 m Pi $  mfl2 (*)m

By comparison, in the MNLM, the ratio f3\¿\3 /,8 i , m \ 3  might be similar to /?2j | 3/ # 2,m|3) 
but the model does not require this.

Because some of the parameters in the SLM are not identified, we must add con­
straints before the parameters can be estimated. To understand the identification con­
straints used by Stata, we find it helpful to compare them  with the identifying con­
straints used for the MNLM. In the MNLM, we assume th a t 0 k,3 \ 3  = 0, where 3 is the 
base outcome. This constraint simply says that a change in Xk does not change the 
odds of outcome 3 compared with outcome 3. The corresponding constraint in the SLM 
is 03fik =  0. We assume that 03 =  0 because we do not want to require (3k =  0, which 
would eliminate the effect of Xk for all pairs of outcomes. This is our first identification 
constraint. To understand the next constraint, we compare Pk,i \ 3  and At,2|3 f°r x k m 
the MNLM with the corresponding pairs of coefficients 0i/3fc and faPk in the SLM. 1 here 
are two free parameters fik. \ \ 3  and f3k,2 \ 3  hi the MNLM, but three parameters 0 1 , 02 , and 
/3k in the SLM. To eliminate the “ex tra” parameter, we assume that 0 1 =  1. With these 
constraints, the SLM is identified. These constraints are the  defaults used by s lo g i t .  
but s lo g i t  allows you to use other identifying constraints.

The notation we have used highlights the similarities between the MNLM and the SLM 
but differs from the notation used by Stata. To switch notations, we define Ah
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where 6 3  =  0, and (frmPi = where 0 3 =  0 and 0i =  1. Because the sign has
changed , a  p o s it iv e  c o effic ien t in  th e  MNLM c o rr esp o n d s to  a  n e g a t iv e  coeffic ien t in th e
SLM. With this new notation, we can write the model as

P r{y = m  | x) =  - .exp(^  ~  -  0 m/?2a?2) (g
E j = i  CXP (0j ~ <f>jPiXi -  (frjfax2)

We can generalize this equation to J  outcomes and K  independent variables,

p r fa  =  m | x ) ,  v r P (V m f U  («•«)
E j = i  oxp (°j -  4>jxP)

where 9j =  0, 4>j = 0, and =  1 are used to identify the model.

Fitting the SLM with slogit

The SLM is fit w i t h  th e  fo llo w in g  c o m m a n d  a n d  its  b a sic  o p t io n s :

s lo g i t  depvar [ indepvars] [i f ] [ i n] [weight] [ ,  dime n s io n e d )  

baseoutcom e(#) c o n s t r a in t s ( # )  nocorne r vce(vcetype) ]

Options

dim ension(#) specifies the dimension of the model. The default is d im ension(l). The 
maximum is either one less than the number of categories in the dependent variable 
or the number of explanatory variables, whichever is fewest. The dimension of an 
SLM is discussed below.

baseoutcom e(#) specifies the outcome category whose associated 6  and 0  estimates 
will be constrained to 0. By default, this is the highest numbered category.

vce(vcetype) specifies the type of standard  errors to be computed. See section 3.1.9 for 
details.

For other options, see [r ] s l o g i t .

Example of SLM

For our example of party affiliation, we fit the one-dimensional SLM and compute pre­
dictions:
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slogit party age income i.black i.female i.educ, vsquish
(not concave) 
(not concave) 
(not concave)

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration 8

log likelihood = -2233.9118 
log likelihood = -2033.644
log likelihood = -2008.6318 
log likelihood = -2003.3438 
log likelihood = -1997.4062 
log likelihood = -1995.2213 
log likelihood = -1995.0957 
log likelihood = -1995.0948 
log likelihood = -1995.0948

Stereotype logistic regression

Log likelihood = -1995.0948 
( 1) [phil_l]_cons = 1

Number of obs 
Wald chi2(6) 
Prob > chi2

1382
103.46
0.0000

party Coef. Std. Err. z P> 1 z [95*/. Conf. Interval]

age -.007771 .0059617 -1.30 0.192 -.0194556 .0039137
income .0173648 .003745 4.64 0.000 .0100247 .0247049
black
yes -3.105455 .4465568 6.95 0.000 -3.98069 -2.230219

female
yes -.1695415 .177839 -0.95 0.340 -.5180996 .1790166
educ

hs only .6146554 .2745719 2.24 0.025 .0765044 1.152806
college 1.276616 .3472982 3.68 0.000 .5959244 1.957308

/phil_l 1 (constrained)
/phil_2 .626937 .0676574 9.27 0.000 .4943309 .7595431
/phil_3 .7318878 .0751227 9.74 0.000 .5846499 .8791256
/phil_4 .1636441 .0952039 1.72 0.086 -.0229521 .3502402
/phil_5 0 (base outcome)

/thetal .9796152 .4466317 2.19 0.028 .1042332 1.854997
/theta2 1.458878 .3080763 4.74 0.000 .8550591 2.062696
/theta3 .4512317 .3519666 1.28 0.200 -.2386102 1.141074
/theta4 .9631935 .1777725 5.42 0.000 .6147659 1.311621
/theta5 0 (base outcome)

(party=StrRep is the base outcome)
. predict slml_l slml_2 slml_3 slml_4 slml_5 
(option pr assumed; predicted probabilities)

We show the iteration log to illustrate th a t the SLM often takes more steps to converge 
than the corresponding MNLM. The top panel contains estim ates of the /5’s. The next 
panel contains estimates of the 0 ’s, where the constraints are shown for (j)i = 1 and 
05 =  0 . Notice th a t the 0 ’s are not ordered from largest to  smallest. This means that 
the fit of the model is better if the outcomes are given a different ordering than that 
implied by the way p arty  is numbered with 1 = StrDem. 2 =  Dem. 3 =  Indep. 4 = Rep. 
and 5 = StrRep. The intercepts 0 are shown in the last panel, including the constraint 
05 =  0 .
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Because the SLM is a logit model, we can write the model as

In n , | r  (x) = In "¡x j =  ( 0 ,  -  e r ) -  (<!>, -  4>r)x0
Pr [y =  r |x )

Taking the exponential, we have a model th a t is multiplicative in the odds:

Qq\r (x) =  exp { (0q -  9r ) -  (<f>q -  0r )x/3}

This equation can be used to estimate the factor change in the odds for a unit change
in Xk, holding all other variables constant. To do this, we take the ratio of the odds
after Xk increases by 1 to the odds before the change. Using basic algebra,

fL |r (x ,2:jfc +  1) , ,  v
() / 7, x = exP {(<l>r ~ (f>q) Pk} (8.7)iiq|r (X, X k )

This shows th a t the effect of Xk on the odds of outcome q versus outcome r differs across 
outcome comparisons according to the difference of scaling coefficients 4>r -  (j)r . As with 
the MNLM, we can interpret the effect of Xk on the odds as follows:

Interpretation using odds ratios

For a unit increase in Xk, the odds of outcomes q versus r  change by a factor 
of exp { ((f)r — (fiq) (3k}, holding all other variables constant.

Using (8.7), we can compute the odds ratios for all pairs of outcomes. Although this 
formula uses th ree coefficients -0r , (pq, and (3k to compute the odds ratio, the iden­
tification constraints simplify computation of the odds ratios for the highest numbered 
category compared with the lowest numbered category (assuming th a t you are using the 
default identification assumptions and let s l o g i t  determine the base category). Here 
the base outcome is 5 so that 0s =  0 s r  =  0 and =  0sd =  1- Then,

^SR|SC>(x,x* -I- 1) f
l W M - = e x p { f e - « A }

=  exp{ (1 - 0 )(3k }

Accordingly, the  /3’s estimated by s lo g i t  can be interpreted directly in terms of the odds 
ratio of the base outcome versus outcome 1. Although this makes it simple to examine 
the odds ratio for one pair of outcomes, if you stop there you can easily overlook critical 
aspects of your data.

The easiest way to examine the effects of each variable on the odds of all pairs of 
outcomes is to use l i s t c o e f , expand, where the expand option requests comparisons 
for all pairs of outcomes. Here we show the odds ratios for income:
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. listcoef income, expand 
slogit (N=1382): Factor change in odds 
Odds of: StrRep vs StrDem

b z P> Izl e“b e~bStdX SDofX

income 0.0174 4.637 0.000 1.018 1.620 27.781

phi
phil_l
phil_2
phil_3
phil_4

1.0000
0.6269
0.7319
0.1636

9.266
9.743
1.719

0.000
0.000
0.086

theta
thetal
theta2
theta3
theta4

0.9796
1.4589
0.4512
0.9632

2.193
4.735
1.282
5.418

0.028
0.000
0.200
0.000

slogit (N=1382) : Factor change in the odds of party
Variable: income (sd=27.781)

b z P>lz| e*b e'bStdX

StrDem vs Dem -0.0065 -3.424 0.001 0.994 0.835
StrDem vs Indep -0.0047 -2.694 0.007 0.995 0.879
StrDem vs Rep -0.0145 -4.356 0.000 0.986 0.668
StrDem vs StrRep -0.0174 -4.637 0.000 0.983 0.617
Dem vs StrDem 0.0065 3.424 0.001 1.006 1.197
Dem vs Indep 0.0018 1.490 0.136 1.002 1.052
Dem vs Rep -0.0080 -4.123 0.000 0.992 0.800
Dem vs StrRep -0.0109 -4.277 0.000 0.989 0.739
Indep vs StrDem 0.0047 2.694 0.007 1.005 1.138
Indep vs Dem -0.0018 -1.490 0.136 0.998 0.951
Indep vs Rep -0.0099 -4.186 0.000 0.990 0.760
Indep vs StrRep -0.0127 -4.370 0.000 0.987 0.703
Rep vs StrDem 0.0145 4.356 0.000 1.015 1.497
Rep vs Dem 0.0080 4.123 0.000 1.008 1.250
Rep vs Indep 0.0099 4.186 0.000 1.010 1.315
Rep vs StrRep -0.0028 -1.544 0.123 0.997 0.924
StrRep vs StrDem 0.0174 4.637 0.000 1.018 1.620
StrRep vs Dem 0.0109 4.277 0.000 1.011 1.353
StrRep vs Indep 0.0127 4.370 0.000 1.013 1.423
StrRep vs Rep 0.0028 1.544 0.123 1.003 1.082

The output is similar to that produced by s lo g it.  The biggest difference is that the 
exponentials of / ^ ’s and PkSk s are shown, along with odds ratios for all comparisons. 
The odds ratios for income can be interpreted as follows:

For a  standard deviation increase in income, about $28,000, the odds of 
being a strong Democrat versus a Democrat decrease by a factor of 0.84, 
holding all other variables constant. The odds of being a strong Republican 
versus a strong Democrat increase by a factor of 1.62.
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And so on for the other contrasts. Full interpretation of the odds ratios for this model 
is just as complicated as the MNLM with its additional parameters.

None of the odds ratios for age are significant (output not shown), reflecting that the 
imposed ordering of the dependent variable in the one-dimensional SLM is inconsistent 
with the effect of age on party affiliation. This was expected given our earlier analysis 
with the MNLM.

Ordinality in the one-dimensional SLM

The SLM assumes that the dependent categories can be ordered, but the ordering used in 
fitting the model is not necessarily the same as the numbering of the outcome categories. 
Looking at the formula for the odds ratios,

^m|n(x , xk +  1) (ll  x N Q 1—- ---- ------- —  =  exp { (0 n -  <pm) p k )
n m  |n(x,2*)

we see that the m agnitude of the odds ratios will increase as category values m and n  
are further ap art only if 0i > 0 2 > . . .  >  <f>j-\ > <pj- But s l o g i t  does not impose this 
inequality when fitting the model. If you look a t the estimates from the model of party 
affiliation, von will see th a t the 0 ’s are ordered 1 = (pi > 03 > 0 2 > 04 > 05 =  0, not
1 =  0 i > 02 >  03 > <Pa > 05 =  0 . If the ordering of categories implied by estimates 
of a one-dimensional SLM is not consistent w ith your expected ordering, this may itself 
prompt consideration of whether any model th a t assumes ordinality is appropriate.

Interpretation with predictions

The model can be interpreted using the same m* commands used with o lo g it or mlogit. 
For example, we can compute the average discrete changes for a standard deviation 
change in income and age with the command mchange age incom e, amount (sd ). Plot­
ting the effects, we obtain
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Stereotype logit model with one dimension
age

SO increase rR d D

income
SDrcreaw D d i R r

.06 -.04 1
-.02 .02 .04 .06

Marginal Effect on Outcome Probability

In c o n tr a st, t h e  co rr esp o n d in g  g r a p h  fro m  t h e  MNLM is

Multinomial logit model
age

SO IncreaM dr i R D

income
SOincrMM D d i R r

r - ....- I ----------------- T—  - --------- 1--------- 1--------- B
-.06 -.04 -.02 0 .02 .04 .06

Marginal Effect on Outcome Probability

Like the OLM in chapter 7, the one-dimensional SLM imposes ordinality in a way that 
is inconsistent with how age increases the probability of both strong Democratic and 
strong Republican affiliations.

Higher-dimensional SLM

The MNLM does not require ordering of the outcome variable; the one-dimensional SLM 
orders the outcomes along one dimension, even if it is not the ordering that you expected. 
Between ordinal and fully nominal variables are variables th a t can be ordered on more 
than one dimension. For example, one dimension of party affiliation is ordered from left 
to right. Affiliation can also be ordered by intensity of affiliation. Ordering on multiple 
dimensions is possible with higher-dimensional SLMs, which we consider briefly here.

The log-linear model for a one-dimensional SLM is

ln Pr(ÿ _ qjx) =  _  _  _
Pr(y =  r |x )

For a two-dimensional model, we add another set of 0 ’s and /3’s:

In ~ yj ~j =  V  -  (* ? ' -  ¿ i - W 1 -  (0 '2' -  4 2|)* 0 [21
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If only age and income were in the model, we would have

ln £ ( "  =  r|x) =  {6" ~  ^  ~  Wi" -  ^  K U ge +

-  (<t>q] -  <Pr]) (Ageage +  £ 2 come income)

With two dimensions, you can find th a t variables are significant in some, but not all. 
of the equations. Because the pattern  of 0 ’s from the two dimensions can differ, th e  
ordering for the  first dimension (the [1] parameters) can be different from those for th e  
second dimension (the [2] parameters).

We can fit the two-dimensional model, compute marginal effects, and plot them . 
The resulting graph is very similar to th a t from the MNLM.

. slogit party age income i.black i.female i.educ, dim(2)
( o u t p u t  o mi t t ed )

. mchange age income, amount(sd)
(output om itted)

. mchangeplot age income,
> symbols(D d i r R) min(-.06) max(.06) gap(.02)
> title ("Stereotype logit model with two dimensions", position(ll))
> ysize(1.3) scale(2.1)

Stereotype logit model with two dimensions
age

SO increase

income
SD morons«

d r i

d i

-.06 -.04 -.02 0 .02 .04
Marginal Effect on Outcome Probability

.06

Indeed, the SLM with J  — 1 dimensions is simply a different way to parameterize th e  
MNLM.

8.12.2 Conditional logit model

In the MNLM, we estimate how individual-specific variables affect the likelihood of ob­
serving a specific outcome. In the conditional logit model (CLM), alternative-specific 
variables that vary over the possible outcomes for each individual are used to predict 
which outcome is chosen. In the example we will use, the outcome is the mode of trans­
portation that an individual uses to get to work, with the possibilities being bus, car. 
or train. An im portant independent variable for transportation choice is time. Each 
individual has his or her own values for the amount of time it would take to get to work 
using each of th e  different modes of transportation.
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In the CLM , the probability of observing outcome m  is

o  t i \ exp (zim'y) e , , ,P r (yi = m  \ Zi) =  — j----------------- for m  =  1 to J
Y2j=i exp (zy7 )

where z*m contains values of the independent variables for alternative m for case i. In 
our example, suppose we have a single independent variable Zirn that is the amount of 
time it would take respondent i to  travel using a mode m  of transportation, where m  
is either bus, car, or train. Then 7  is a parameter indicating the effect of time on the 
probability of choosing one mode over another. I11 general, for each variable zk, there 
are J  values of the variable for each case but only the single parameter 7 .̂

Data arrangement for the CLM

The CLM requires th a t each row of the dataset represents one alternative for one person. 
If we have d a ta  011 N  individuals who each choose from among J  alternatives, then for 
the CLM each individual's data will span J  rows, and the to tal dataset will have N  x J
rows. I11 our example, the variable mode distinguishes the modes of transportation (1 =
T rain . 2 =  Bus, 3 =  Car), and the variable id  distinguishes different individuals. For 
the first two individuals,

. use travel4.dta, clear
(travel4.dta I Greene & Hensher 1997 mode of travel | 2014-04-01)
. list id mode choice time in 1/6, nolabel sepby(id)

id mode choice time

1. 1 1 0 406
2. 1 2 0 452
3. 1 3 1 180

4. 2 1 0 398
5. 2 2 0 452
6. 2 3 1 255

The variable tim e indicates the amount of travel time for each mode of transporta­
tion for each individual. The first row is for mode 1, indicating travel by train, for 
the first individual. Thus the value of tim e means that it would take this person 406 
minutes to take the trip by train. The variable choice is 0 or 1, where 1 indicates the 
mode that was chosen for the trip. Both individuals above chose to travel by car, so 
choice is 1 in the rows where mode is 3.

Often, datasets will instead be arranged where each row represents a single individ­
ual. and each alternative-specific variable is represented as a  series of variables, one for 
each mode. Below is the same information on two individuals that we presented before, 
only now arranged in this format:
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. use travel4case.dta, clear
(travel4case.dta I Greene & Hensher 1997 1-row-per-case I 2014-04-01) 
. list id choice timel time2 time3 in 1/2, nolabel

id choice timel time2 time3

1 3 406 452 180
2 3 398 452 255

Instead of being a binary variable, c h o ic e  now contains the value of the inode of trans­
portation th a t was chosen. Meanwhile, the variables t im e l,  t im e2 , and tim e3 represent 
the amount of time for each of the three modes.

We can rearrange these data so th a t we can fit the CLM by using the resh ap e  
long command (see [d ] reshape), re sh ap e  requires us to list the stub names of the 
alternative-specific variables, which is tim e in the above example. We must also specify 
the variable th a t identifies unique observations with option i (vam am e)  and specify 
the name of the  new variable that indicates the different alternatives with the option 
j (newvamame) .

. reshape long time, i(id) j(mode)
(note: j = 1 2 3)
Data wide -> long

Number of obs. 152 -> 456
Number of variables 22 -> 21
j variable (3 values) -> mode
xij variables:

timel time2 time3 -> time

. list id mode choice time in 1/6, nolabel sepby(id)

id mode choice time

1. 1 1 3 406
2. 1 2 3 452
3. 1 3 3 180

4. 2 1 3 398
5. 2 2 3 452
6. 2 3 3 255

The results of reshape match the d ata  we presented earlier, except choice still 
contains the value of the selected alternative instead of being a  binary variable indicating 
the row of the selected alternative. We can remedy this by using the rep lace  command:
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. replace choice = (choice == mode) if choice < . & mode < . 
(393 real changes made)
. list id mode choice time in 1/6, nolabel sepby(id)

id mode choice time

1. 1 1 0 406
2. 1 2 0 452
3. 1 3 1 180

4. 2 1 0 398
5. 2 2 0 452
6. 2 3 1 255

Fitting the CLM  with asclogit

We can estim ate the parameters of CLM by using the a s c l o g i t  command (see [r] a s ­
c lo g it). a s c lo g i t  requires that we use the options c a s e O  to  specify the variable that 
identifies individuals and a l t e r n a t i v e () to specify the variable th a t identifies different 
alternatives. In our example, the id  variable distinguishes individuals from one another, 
while the alternatives are distinguished by mode.

. use travel4.dta, clear
(travel4.dta I Greene & Hensher 1997 mode of travel I 2014-04-01)
. asclogit choice time, alt(mode) case(id) nolog
Alternative-specific conditional logit Number of obs = 456
Case variable: id Number of cases = 152
Alternative variable: mode Alts per case: min = 3

avg = 3.0
max = 3

Wald chi2(l) = 71.54
Log likelihood = -90.548414 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>lz| [95'/. Conf. Interval]

mode
time -.0200549 .0023711 -8.46 0.000 -.0247021 -.0154076

Train (base alternative)

Bus
_cons -.487722 .296565 -1.64 0.100 -1.068979 .0935347

Car
_cons -1.495147 .2963507 -5.05 0.000 -2.075984 -.9143105

The coefficient for time indicates the effect of time on the log odds that an alternative 
is selected. The coefficient is negative, indicating that the chances of an alternative 
being selected decrease as the am ount of time required to travel using that alternative 
increases. The intercepts for Bus and Car are relative to the base alternative, which
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is Train. By default, the base alternative is the most frequently chosen alternative; a 
different base alternative may be selected using the b a s e a l te rn a t iv e ( # )  option.

Interpreting results of the CLM

Odds ratios for the CLM can be obtained by specifying the o r  option:

. use travel4.dta, clear
(travel4.dta I Greene & Hensher 1997 mode of travel I 2014-04-01)
. asclogit choice time, alt(mode) case(id) nolog or
Alternative-specific conditional logit Number of obs = 456
Case variable: id Number of cases = 152
Alternative variable: mode Alts per case: min = 3

avg = 3.0
max = 3

Wald chi2(l) = 71.54
Log likelihood = -90.548414 Prob > chi2 = 0.0000

choice Odds Ratio Std. Err. z P> 1 z 1 [95'/, Conf. Interval]

mode
time .9801449 .002324 -8.46 0.000 .9756005 .9847105

Train (base alternative)

Bus
_cons .6140236 .1820979 -1.64 0.100 .343359 1.098049

Car
.cons .2242156 .0664464 -5.05 0.000 . 125433 .4007929

The odds ratio for tim e can be interpreted as follows:

Increasing the time of travel by 1 m inute for a given mode of transportation 
decreases the odds of using that mode by a factor of 0.98 (2%), holding the 
values for other alternatives constant.

Because the m argins command is not allowed after a s c lo g i t ,  our m* commands do 
not work either, m argins does not work because when p re d ic t  is used after a s c lo g it ,  
it computes predictions that sum to 1 within each individual. That is, the predicted 
probability of a person choosing to travel by bus depends not only on how long the bus 
trip would take but also on how long it would take to travel by car and by train.

In place of m argins, the command e s t a t  mfx can be used, e s t a t  mfx provides 
predicted probabilities and marginal effects, holding all variables a t specific values. By 
default, e s t a t  mfx holds variables to their alternative-specific means. This is clearer if 
we look at the output:
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. estat mfx
Pr(choice = Train 11 selected) = .46359244

variable dp/dx Std. Err. z P> 1 z I [ 95'/. C.I. ] X

time
Train -.004987 .000602 -8.29 0.000 -.006167 -.003808 643.44

Bus .001416 .000341 4.16 0.000 .000748 .002084 674.62
Car .003571 .000582 6.13 0.000 .00243 .004712 578.27

Pr(choice = Bus 11 selected) = .15232573

variable dp/dx Std. Err. z P> 1 z I [ 95’/. c .1 . ] X

time
Train .001416 .000341 4.16 0.000 .000748 .002084 643.44

Bus -.00259 .000537 -4.82 0.000 -.003643 -.001536 674.62
Car .001173 .000287 4.09 0.000 .00061 .001736 578.27

Pr(choice = Carll selected) = .38408183

variable dp/dx Std. Err. z P> 1 z I [ 95’/. C.I. ] X

time
Train .003571 .000582 6.13 0.000 .00243 .004712 643.44

Bus .001173 .000287 4.09 0.000 .00061 .001736 674.62
Car -.004744 .000633 -7.50 0.000 -.005984 -.003504 578.27

The column labeled X at the far right contains the values a t which the alternative- 
specific variables are held for making predictions. For alternative Train, X is 643.44, 
because this is the mean of tim e when mode is 1, indicating travel by train. The value of 
X is about a  half-hour longer for Bus, and more than an hour shorter for Car, reflecting 
the different average times for these alternatives. The results show separate predicted 
probabilities for each alternative. Beneath the predicted probability for each alternative 
are the corresponding marginal effects. Below the probability for T rain , for example, we 
have the marginal change in the probability of selecting each alternative for an increase 
in the time it takes to travel by T ra in . As the time it takes by train increases, the 
probability of traveling by train decreases, while the probabilities of traveling by bus 
and car increase. The marginal effects of tim e  are very small because tim e is measured 
in minutes, while the mean trip by train  takes more than 10 hours.

As with m argins, we can use a t  () to change the values of the independent variables. 
If we specify a t  (time=600), this would produce predictions and marginal effects with 
the time of the journey held to 600 minutes (10 hours) for each alternative, although the 
predictions when every alternative is held to the same value will be the same regardless 
of what value we use. We can also set the values to differ by alternative by specifying 
a.tialtei'nativcname: variable-name=value . . . ) .  To give a  concrete example, imagine 
we were interested in a particular journey that we know takes 7 hours by car, 11 by 
bus, and 10 by train. We can compute predicted probabilities and marginal effects as 
follows:
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. estat mfx, at(Car: time=420 Bus: time=660 Train: time=600) 
Pr(choice = Trainll selected) = .10557809

variable dp/dx Std. Err. z P> 1 z | [ 957. c. I . ] X
time

Train -.001894 .000408 -4.64 0.000 -.002694 -.001093 600
Bus .000041 .000027 1.54 0.123 -.000011 .000094 660
Car .001853 .000388 4.78 0.000 .001092 .002613 420

Pr(choice = Bus 11 selected) = .01946148

variable dp/dx Std. Err. z P> 1 z I [ 95*/. C.I. ] X

time
Train

Bus
Car

.000041 
-.000383 
.000341

.000027

.000144
.00012

1.54
-2.65
2.85

0.123
0.008
0.004

-.000011 .000094 
-.000665 -.0001 
.000106 .000577

600
660
420

Pr(choice = Car|l selected) = .87496043

variable dp/dx Std. Err. z P> 1 z I [ 957. C • I. ] X

time
Train .001853 .000388 4.78 0.000 .001092 .002613 600

Bus .000341 .00012 2.85 0.004 .000106 .000577 660
Car -.002194 .000452 -4.85 0.000 -.00308 -.001308 420

The predicted probability of traveling by car is now 0.87, compared with 0.11 for trav­
eling by train, and 0.02 for traveling by bus. If we had a specific change of interest, 
for example, if a  new railway reduced the time required to travel by train by 2 hours, 
we could run e s t a t  mfx again with the new a t ( )  values and compare the predicted 
probabilities.

Including case-specific variables in the CLM

For case-specific variables, such as an individual’s income, the  value of a variable does 
not differ across outcomes. In the MNLM with ./ outcomes, we estim ate .7-1 parameters 
for each case-specific variable. The CLM  has alternative-specific variables, such as the 
time it takes to  get to work with a given mode of transportation. For alternative-specific 
variables, values vary across alternatives, bu t we estimate one parameter for the effect 
of the variable.

An interesting possibility is combining the two in one model, referred to as a mixed 
model. For example, in explaining the  choice people make on mode of transportation, 
we might want to know if wealthier people are more likely to  drive than to take the 
bus. To create a mixed model, we combine the formulas for the MNLM and the CLM  
(see Long [1997, 178-182] and Cameron and TYivcdi [2005, 500-503]):

tw i \ exp(zim7+xi/3m)P r (yi = m | Xi,Zi) =  — -j---------  ---------------   where /3l = 0
J2j=i exp(z,;j7+x;/3jJ
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As in the CLM, z ?m contains values of the alternative-specific variables for alternative 
m and case z, and 7  contains the effects of the alternative-specific variables. As in 
the MNLM, Xj contains case-specific independent variables for case i, and (3m contains 
coefficients for the effects on alternative m  relative to the base alternative.

This mixed model can be fit using a s c l o g i t .  Case-specific variables are specified 
using the c a s e v a r s O  option. To apply this to our travel example, we will add case- 
specific variables for household income ( h i n c )  and the number of people who will be 
traveling together ( p s i z e ) .

. use travel4.dta, clear
(travel4.dta I Greene & Hensher 1997 mode of travel I 2014-04-01)
. asclogit choice time, alt(mode) case(id) casevars(hinc psize) or nolog
Alternative-specific conditional logit Number of obs = 456
Case variable: id Number of cases = 152
Alternative variable: mode Alts per case: min = 3

avg = 3.0
max = 3

Wald chi2(5) = 69.13
Log likelihood = -82.484583 Prob > chi2 = 0.0000

choice Odds Ratio Std. Err. z P> 1 z [95*/, Conf. Interval]

mode
time .9812336 .002423 -7.67 0.000 .976496 .9859941

Train (base alternative)

Bus
hinc

psize
_cons

1.040854
.6460673
.3771992

.0192858

.2304594

.2608153

2.16
-1.22
-1.41

0.031
0.221
0.159

1.003733
.3211032
.0972759

1.079348
1.299903
1.462635

Car
hinc

psize
_cons

1.048451
1.427525
.0299135

.0166457
.39482

.0226882

2.98
1.29

-4.63

0.003
0.198
0.000

1.016329
.8301587
.006765

1.081589 
2.454743 
.1322725

The odds ratio for time has the same interpretation as before. For hinc and psize , 
the odds ratios indicate the effect of an increase in the case-specific variable on the odds 
of selecting the alternative versus the base alternative. We could interpret as follows:

A unit increase in income increases the odds of traveling by car versus trav­
eling by train  by 4.8%, holding all else constant.

Each additional member of the traveling party decreases the odds of traveling 
by bus versus traveling by train  by 35.4%. holding all else constant.

We have considered the CLM in the context of McFadden’s choice model. In our 
example, the outcome is an unordered set of alternatives, where the alternatives are
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the same for each individual and only one outcome is selected. The possible uses of 
the CLM are much broader. Many of these uses require using the c lo g it  command 
instead of a s c lo g i t .  Models fit using a s c lo g i t  may be fit using c lo g i t ,  but the data 
arrangement and syntax involved is more complicated. See [fl] c log it for additional 
examples and references.

Fitting the MNLM using asclogit

If we have only case-specific variables, then the model fit b y  a s c lo g i t  is equ iva len t t o  
the MNLM. We think it is didactically useful for understanding th e  co n n e c tio n  b e tw e e n  
the CLM and the MNLM; however, in practice, if you have o n ly  ca se -sp e c ific  v a r ia b les , 
you would obviously just use m l o g i t  to fit the MNLM.

To fit the MNLM by using a s c lo g i t .  we need to change our data  in two ways. First, 
because a s c lo g i t  does not allow factor-variable notation, we must convert educ into 
a set of dummy variables. Second, we need to use reshape long to  arrange the data  
so that each row represents an alternative instead of a case, reshape long requires 
one alternative-specific variable; th a t is, it requires at least one set of variables whose 
names have the same stub followed by the numbers of the outcome categories. Because 
no such variable exists in our data, we generate _tmpl through _tmp5 that contains all 
missing values and will not be used in our analysis. The a s c lo g i t  command requires 
these variables even though it does not use them when fitting the MNLM.

. use partyid4.dta, clear
(partyid4.dta I 1992 American National Election Study I 2014-03-12)
. gen hsonly = (educ==2) if educ < .
. gen college = (educ==3) if educ < .
. gen _tmpl = .
(1382 missing values generated)
. gen _tmp2 = .
(1382 missing values generated)
. gen _tmp3 = .
(1382 missing values generated)
. gen _tmp4 = .
(1382 missing values generated)
. gen _tmp5 = .
(1382 missing values generated)
. reshape long _tmp, i(caseid) j(partyalt)
(note: j = 1 2 3 4 5)
Data wide -> long

Number of obs. 1382 -> 6910
Number of variables 22 -> 19
j variable (5 values) -> partyalt
xij variables:

_tmpl _tmp2 .. . _tmp5 -> _tmp

gen choice = (party==partyalt) if partyalt <
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In the re sh ap e  long  command above, the j ( p a r ty a l t )  option indicates that a new 
variable called p a r ty a l t  should be created that contains the values of the alternatives. 
As before, after we use reshape long, we need to generate a binary variable, here 
named cho ice , th a t will equal 1 for the row that represents the chosen alternative for 
each individual and will equal 0 otherwise. We list the first two observations to show 
how the d a ta  are now arranged:

. list caseid choice party partyalt age female hsonly college in 1/10, 
> nolabel sepby(caseid)

caseid choice party partyalt age female hsonly college

1. 3001 0 4 1 31 0 0 1
2. 3001 0 4 2 31 0 0 1
3. 3001 0 4 3 31 0 0 1
4. 3001 1 4 4 31 0 0 1
5. 3001 0 4 5 31 0 0 1

6. 3002 0 5 1 89 1 0 0
7. 3002 0 5 2 89 1 0 0
8. 3002 0 5 3 89 1 0 0
9. 3002 0 5 4 89 1 0 0
10. 3002 1 5 5 89 1 0 0

For ca se id  3001, the value of p a r ty  is 4, so choice is 1 in its fourth row; for caseid  
3002, the value of p a r ty  is 5, and ch o ice  is 1 in the last row.
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To fit the MNLM, we include all of our independent variables with the casevarsO  
option, while ca seO  identifies individuals and a l te r n a t iv e s  0  identifies alternatives.

. asclogit choice, case(caseid) alternatives(partyalt)
> casevars(age income black female hsonly college) nolog
Alternative-specific conditional logit Number of obs = 6910
Case variable caseid Number of cases = 1382
Alternative variable: partyalt Alts per case: min = 5

avg = 5.0
max = 5

Wald chi2(24) 226.06
Log likelihood = -1960.9107 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P> 1 z I [95*/. Conf. Interval]

1 (base alternative)

2
age -.0236166 .0049609 -4.76 0.000 -.0333398 -.0138934

income .0072787 .0040951 1.78 0.075 -.0007475 .015305
black -.9963281 .1983914 -5.02 0.000 -1.385168 -.6074881
female .2408435 .1668491 1.44 0.149 -.0861747 .5678617
hsonly .3451019 .2228717 1.55 0.122 -.0917187 .7819225
college .6286363 .2952132 2.13 0.033 .050029 1.207244
.cons 1.149873 .3706106 3.10 0.002 .423489 1.876256

3
age -.0316178 .0066137 -4.78 0.000 -.0445803 -.0186552

income .008498 .0051429 1.65 0.098 -.0015819 .0185779
black -.7845096 .2570288 -3.05 0.002 -1.288277 -.2807424
female -.1889379 .2125754 -0.89 0.374 -.6055781 .2277023
hsonly -.0469489 .2815916 -0.17 0.868 -.5988583 .5049604
college -.3837097 .3921017 -0.98 0.328 -1.152215 .3847955
_cons 1.043723 .4634007 2.25 0.024 .135474 1.951972

4
age -.0245329 .0053614 -4.58 0.000 -.0350411 -.0140247

income .016198 .0041368 3.92 0.000 .00809 .024306
black -2.969153 .3873236 -7.67 0.000 -3.728293 -2.210013

female .0078597 .1774071 0.04 0.965 -.3398518 .3555712
hsonly .3721732 .2552592 1.46 0.145 -.1281256 .872472
college .6789539 .3225212 2.11 0.035 .046824 1.311084
_cons .9106297 .4009588 2.27 0.023 .1247648 1.696494

5
age -.0028185 .00644 -0.44 0.662 -.0154407 .0098036

income .0174695 .0045777 3.82 0.000 .0084974 .0264416
black -3.075438 .604052 -5.09 0.000 -4.259358 -1.891518
female -.2368373 .215026 -1.10 0.271 -.6582805 .1846059
hsonly .5548853 .3426066 1.62 0.105 -.1166113 1.226382
college 1.374585 .3990504 3.44 0.001 .5924606 2.156709

_cons -1.182225 .5132429 -2.30 0.021 -2.188163 -.1762875

If you compare our earlier results from m lo g it, you will see that they are differently
arranged but otherwise identical.
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8.12.3 Multinomial probit model with IIA

The multinomial probit model with IIA fit by mprobit is the normal error counterpart 
to the MNLM lit by m logit, in the same way that p ro b it  is the normal counterpart 
to lo g i t .  However, mprobit uses a normalization that can obscure this fact. To 
understand this point, we need to consider how logit and probit models can be motivated 
as a random utility model, in which a person maximizes his or her utility.

Let uirn be the utility that person i receives from alternative m. The utility is 
assumed to  be determined by a linear combination of observed characteristics x, and 
random error £jm:

Him =
The utility associated with each alternative m  is partly determined by chance through 
e. A person chooses alternative j  if the utility associated w ith that alternative is larger 
than that for any other alternative. Accordingly, the probability of alternative m  being
chosen is

Pr(yj =  m) =  Pr(wim > Uij for all j  ±  m)

The choice th a t a person makes under these assumptions will not change if the utility 
associated with each alternative changes by some fixed am ount S. T hat is, if uim > utJ, 
then + S > Uij +  The choice is based on the difference in the utilities between 
alternatives. We can incorporate this idea into the model by taking the difference in the 
utilities for two alternatives. To illustrate this, assume that there are three alternatives. 
We consider the utility of each alternative relative to some base alternative. It does 
not m atter which alternative is chosen as the base, so we assume that each utility is 
compared with alternative 1. Accordingly, we have

lirjl Ui\ -- 0
Ui2 -  Un =  Xj {(32 -  /3j) +  (ei2 -  £¿1 )
Ui3 ~  Ui 1 =  Xi ( P 3 -  /3j) +  (ei3 -  e n )

If we define u*m = u im -  un ,  E*m = £iTn -  En and /3m)1 =  (3m -  /3lt the model can be
written as

u i2 =  'X-iP 2|1 +  £*i2

<3 =  Xi/53|1 + î3

The specific form of the model depends on the distribution of the errors. Assuming 
that the s ’s have an extreme value distribution with mean 0 and variance 7r2/6  leads 
to the MNLM th a t we discussed with respect to m logit. Assuming that the s's have 
a normal distribution leads to a probit-type model. To understand the model fit by 
mprobit and how it relates to the usual binary probit model, we need to pay careful 
attention to the assumed variance of the errors. The binary probit model fit by p ro b it 
assumes th a t Var (ej) = 1/2 so th a t Var (e^) = Var(£2) +  Var (ci) =  1. Because we 
assume th a t the errors are uncorrelated, C o v ^ , ^ )  =  0. Using our earlier example for 
labor force participation, we fit the binary probit model:

8.12.3 M ultinomial probit model with IIA  4 5 5
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. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. probit lfp k5 k618 age i.wc i.hc lwg inc, nolog
Probit regression Number of obs - 753

LR chi2(7) = 124.36
Prob > chi2 = 0.0000

Log likelihood = -452.69496 Pseudo R2 = 0.1208

lfp Coef. Std. Err. z P>lz| [95*/. Conf. Interval]
k5

k618
age

-.8747111 
-.0385945 
-.0378235

.1135584

.0404893

.0076093

-7.70
-0.95
-4.97

0.000
0.340
0.000

-1.097281
-.1179521
-.0527375

-.6521408
.0407631

-.0229095
wc

college .4883144 .1354873 3.60 0.000 .2227641 .7538647

he
college

lwg
inc

_cons

.0571703 

.3656287 
-.020525 
1.918422

.1240053 

.0877792 

.0047769 

.3806539

0.46
4.17

-4.30
5.04

0.645
0.000
0.000
0.000

-.1858755 
. 1935846 

-.0298875 
1.172354

.3002162

.5376727
-.0111625
2.66449

The coefficients are for the comparison of alternative 1 (being in the labor force) to 
alternative 0 (not being in the labor force), so we are estimating /3^Q. Using the same 
data with m probit, we obtain

. mprobit lfp k5 k618 age i.wc i.hc lwg inc, nolog baseoutcome(O)
Multinomial probit regression Number of obs = 753

Wald chi2(7) = 107.38
Log likelihood = -452.69496 Prob > chi2 = 0.0000

lfp Coef. Std. Err. z P> Izl [95*/, Conf. Interval]

not_in_LF (base outcome)

in_LF
k5

k618
age

-1.237028 
-.0545809 
-.0534905

.1605958

.0572605

.0107612

-7.70
-0.95
-4.97

0.000
0.340
0.000

-1.55179 
-.1668094 
-.0745821

-.9222664
.0576477

-.0323989

wc
college .6905808 .191608 3.60 0.000 .315036 1.066126

he
college

lwg
inc

_cons

.0808511

.5170771
-.0290268
2.713059

.1753699

.1241385

.0067555

.5383259

0.46
4.17
-4.30
5.04

0.645
0.000
0.000
0.000

-.2628677 
.2737701 

-.0422673 
1.65796

.4245699

.7603841
-.0157862
3.768158

The baseoutcome (0 ) option indicates th a t outcome 0, not being in the labor force, is the 
base category, so we are estimating the coefficients /3i|o- If we used the baseoutcome ( 1) 
option, we would be estimating /3Uj1.
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Comparing the mprobit and p ro b i t  output, we see th a t the  z 's are identical, but the 
coefficients for m probit are larger than those for p ro b it.  The reason is that m probit 
assumes th a t Var(e-j) = 1, so Var(£*) =  2. Or, in standard deviations, SD(ej) = 1 and 
SD (s* ) =  \/2  «  1.414. This leads to a change in scale so th a t the coefficients from 
mprobit will be larger by a factor of \/2. For example, com paring the coefficients for 
k5 for the two models, we see th a t —1.237028 =  \/2  x —0.8747112. Although this can 
be confusing, it does not really m atter as long as you understand what mprobit is 
doing. If you compare the coefficients from mprobit with other analyses based on the 
usual probit model, you will be incorrect if you do not take into account the difference 
in scales. T hat is, you will incorrectly conclude that the coefficients are substantively 
larger in the data  analyzed with m probit. To avoid hand calculations to convert the 
coefficients from m probit to the usual scale used with probit models, you can use the 
probitparam  option to m probit. For example, if we typed the  command

mprobit lfp k5 k618 age wc he lwg inc, nolog probitparam baseoutcome(O)

the estimated coefficients for m probit would match those from p ro b i t .

As shown by Long (1997), the scale of coefficients is based on an arbitrary identi­
fication assumption that does not affect the predicted probabilities. To illustrate this, 
we can compare predicted probabilities for p ro b it and m p ro b it. First, we compute 
predictions with p ro b it:

. use binlfp4, clear
(binlfp4.dta I Mroz data on labor force participation of women I 2013-07-15)
. probit lfp k5 k618 age i.wc i.hc lwg inc, nolog
Probit regression Number of obs = 753

LR chi2(7) = 124.36

Log likelihood = -452.69496
Prob > 
Pseudo

chi2 = 
R2

0.0000 
0.1208

lfp Coef. Std. Err. z P> 1 z I [95*/. Conf. Interval]

k5 -.8747111 .1135584 -7.70 0.000 -1.097281 -.6521408
k618 -.0385945 .0404893 -0.95 0.340 -.1179521 .0407631
age -.0378235 .0076093 -4.97 0.000 -.0527375 -.0229095

wc
college .4883144 .1354873 3.60 0.000 .2227641 .7538647

he
college .0571703 .1240053 0.46 0.645 -.1858755 .3002162

lwg .3656287 .0877792 4.17 0.000 .1935846 .5376727
inc -.020525 .0047769 -4.30 0.000 -.0298875 -.0111625

_cons 1.918422 .3806539 5.04 0.000 1.172354 2.66449

. predict bpm_l
(option pr assumed; Pr(lfp))

After fitting a model with the p ro b i t  command, p re d ic t  com putes the probability for 
outcome 1. Next, we use m probit, where we compute predictions for both outcomes:
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. mprobit lfp k5 k618 age i.wc i.hc lwg inc, nolog base(O)
Multinomial probit regression Number of obs = 753

Wald chi2(7) = 107.38
Log likelihood = -452.69496 Prob > chi2 = 0.0000

lfp Coef. Std. Err. z P> 1 z 1 [957. Conf. Interval]
not_in_LF (base outcome)

in_LF
k5

k618
age

-1.237028 
-.0545809 
-.0534905

.1605958 

.0572605 

.0107612

-7.70
-0.95
-4.97

0.000
0.340
0.000

-1.55179
-.1668094
-.0745821

-.9222664
.0576477

-.0323989

wc
college .6905808 .191608 3.60 0.000 .315036 1.066126

he
college

lwg
inc

_cons

.0808511

.5170771
-.0290268
2.713059

.1753699

.1241385

.0067555

.5383259

0.46
4.17

-4.30
5.04

0.645
0.000
0.000
0.000

-.2628677
.2737701

-.0422673
1.65796

.4245699

.7603841
-.0157862
3.768158

. predict mnpm_0 mnpm_l
(option pr assumed; predicted probabilities)

When we correlate the predictions, we find th a t p ro b it and m probit compute identical 
predicted probabilities:

. pwcorr bpm_l mnpm_0 mnpm_l
bpm_l mnpm_0 mnpm_l

bpm_l 1.0000
mnpm_0 -1.0000 1.0000
mnpm_l 1.0000 -1.0000 1.0000

The model fit by m probit assumes th a t the errors are normal. With normal er­
rors, it is possible for the errors to be correlated across alternatives, thus potentially 
removing the IIA assumption (see section 8.12.4). Indeed, researchers often discuss the 
multinomial probit model for the case when errors are correlated, because this is the 
only real advantage of the multinomial probit over multinomial logit. But mprobit as­
sumes that the  errors are uncorrelated. Accordingly, m probit fits an exact counterpart 
to the MNLM fit by m lo g it -  meaning th a t it also assumes IIA. If you use both mprobit 
and m logit with the same model and data, you will get nearly identical predictions. 
For example, we can compare predictions by fitting both m lo g it  and mprobit for our 
model and computing the predicted probabilities of observing each outcome category. 
Here are the commands we use, w ithout showing the output.
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. use partyid4, clear
(partyid4.dta I 1992 American National Election Study I 2014-03-12)
. mprobit party age income i.black i.female i.educ, base(l)

(output om itted )
. predict mnpm_l mnpm_2 mnpm_3 mnpm_4 mnpm_5 
(option pr assumed; predicted probabilities)
. mlogit party age income i.black i.female i.educ, base(l)

(ou tpu t om itted)
. predict mnlm_l mnlm_2 mnlm_3 mnlm_4 mnlm_5 
(option pr assumed; predicted probabilities)

We then correlate the predicted probabilities for the first and second outcomes:

. correlate mnpm_l mnlm.l mnpm_2 mnlm_2
(obs=1382)

mnpm_l mnlm_l mnpm_2 mnlm_2

mnpm_l
mnlm_l
mnpm_2
mnlm_2

1.0000
0.9988
-0.0736
-0.0768

1.0000
-0.0868
-0.0937

1.0000 
0.9939 1.0000

Clearly, there is not much difference. Train (2009, 35) points out that the thicker tails 
of the extreme value distribution used for the MNLM compared with the normal allow 
for “slightly more aberrant behavior” , bu t he also notes th a t it is unlikely this difference 
will be empirically distinguishable.

Finally, although the models fit by m probit and m lo g it produce nearly identical 
predictions, fitting models with m probit takes longer because it computes integrals 
by Gaussian quadrature that approximates the integral by using a function computed 
at a limited number of evaluation or quadrature points. For our example, estimation 
with m lo g it took 1 second, compared with 5.3 seconds using m probit. We have not 
seen enough empirical consequence to justify the extra computational time required by 
mprobit. Further, probit models cannot be interpreted using odds ratios. Nonetheless, 
the SPost commands l i s t c o e f , f  i t s t a t ,  mgen, mtable, and mchange (as well as S tata’s 
margins) can be used with m probit.

8.12.4 Alternative-specific multinomial probit

In section 8.12.3, we motivated the multinomial probit model for case-specific data in 
terms of a person choosing among alternatives to maximize utility. The person’s charac­
teristics, such as age or education, affect the utility provided by each alternative. Here 
we extend the model to incorporate alternative-specific data. The inclusion of such data  
allows us to relax the assumption th a t the errors are uncorrelated, which eliminates the 
IIA restriction of c lo g i t  for alternative-specific data (see McFadden [1989]; Train [2009, 
part II]; Cameron and Trivedi [2005, 393 398]). The prospect of allowing correlation 
among errors provides the main rationale why one might fit a multinomial probit model.



470 Chapter 8 Models for nominal outcomes

In Stata, this model is referred to  as the alter native-specific multinomial probit 
model (ASM N PM ) and can be fit using asm probit. The term  “alternative-specific” in 
the name alludes to the fact th a t alternative-specific variables are necessary to identify 
the error correlations. ’ If only case-based variables are available, the correlations are not 
identified. Accordingly, asm probit offers a possible means of addressing the IIA problem 
for CLMs with alternative-specific d a ta  but not for MNLMs with only case-specific data.

Formal statement of the ASMNPM

Assume that x*m contains alternative-specific information about alternative m for case i 
and that £jm is a random, normally distributed error. Let be the utility that case i 
receives from alternative rn where

=  X i m / 3  £i7n for TTl —  1 ,  J

A person chooses alternative j  when iiij > Uim for all m  ^  j .  Accordingly, with J  
choices, the probability of choice m  is

P r{yi = rn) = P r (uim > Uij for all j  ^  m)  (8 .8 )

Because the errors are normally distributed, we can allow them to be correlated across 
the equations for different alternatives. Suppose that there are four alternatives. The 
covariance m atrix for the e’s would be

_  (T21 g22
<7.31 ^32 <733
<T4 i  (T42  0 4 3  0 4 4

If this matrix is constrained so =  I, so th a t the errors have a unit variance and are 
uncorrelated, we have the normal error counterpart to the CLM, where the errors are 
assumed to have an extreme value distribution. And just like the CLM, the model has 
the IIA property.

Although allowing the errors to be correlated relaxes the IIA condition. Train (2009. 
103-114) shows th a t the parameters in S £ are not identified unless constraints are 
imposed. These constraints reflect th a t neither adding a constant to the utility for each 
alternative nor dividing each utility by a constant will affect the choice that is made 
according to (8 .8 ). Because > Uij implies that -I- S > Ujj -1- the choice of 
alternative m  over alternative j  is not affected by the base level of utility. Similarly, 
because >  Uij implies that uunr  > riijr for all r  > 0 , the choice is also unaffected 
by the scale used to measure utility. Accordingly, we must normalize the model to 
eliminate the effects of the base level and scale of utility.

To remove the effect of the base level, we use the difference between each alternative’s 
utility and the utility of the base alternative. Suppose that we select the first alternative

5. David Drukker at StataCorp was extrem ely helpful as we wrote this section and explored issues of 
identification.
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as the base. The new equations specify how much utility an alternative provides beyond 
that provided by the first alternative:

Un Un = 0

Ui2 -  Mil =  (x ,2 -  Xii )  (3 +  (e i2 -  £il)
Ui3 -  Un =  (x i3 -  Xii) (3 +  (ei3 -  £n)
Ui4 Un  =  ( x ,4  X j ] ) / 3 +  (£14 £ i l )

Defining e*m = £im ~ £u, u*im = u im -  u iU and x*m =  x 7m -  x a  leads to

=  o
< 2  =  X*20 + £*2 

U-3 = *i30 + ¿̂3 
U*4 = x * , / 3  +  4 ,

By subtracting u n  from each equation, we have reduced the number of errors by 1 
because £*} = En — £n = 0. The covariance matrix for the differenced errors is

£ !  =
'22 *
32

^42 a43 a44
<7 33

To set the scale, we fix the value of one of the variances <7*nm ■ Which variance we fix 
does not m atter, so we arbitrarily pick rr^ . Whereas some treatments of the ASMNPM 
fix the variance to 1, asm probit fixes the value to 2 (see our discussion above regarding 
m probit), which leads to

e : = '32
42

^33
°43 '44

Fixing a base alternative and the  variance of one of the differenced errors exactly iden­
tifies the regression coefficients and the covariance matrix for the differenced errors. By 
default, asm prob it imposes these restrictions and estimates the parameters of £*. We 
discuss this further below.

Fitting the ASM NPM  with uncorrelated errors

If we assume th a t the errors are uncorrelated, the ASMNPM is the normal counterpart to 
the CLM fit b y  a s c lo g it  or c lo g i t .  We will fit the model with the same independent 
variables and outcome as in our earlier model of transportation choice. We begin by 
assuming the errors are uncorrelated, so the CLM and ASMPRM  are equivalent except 
for their assumptions about the shape and variance of the error distributions.

The ASM NPM  requires the same d a ta  arrangement as the CLM, in which each ob­
servation is represented using a separate row for each alternative. The options ca seO ,
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a l t e r n a t iv e s ( ) , c a sev a rsO , and b a s e a l te rn a t iv e O  work with asmprobit as they 
did with a s c lo g i t .  The option c o r r e l a t i o n () is used to  specify assumptions about 
the correlation structure of the errors. Because we want to  assume the errors are un­
correlated, we specify the option c o r re la t io n ( in d e p e n d e n t) . The option stddevO  
specifies the variance structure of the  errors, stddev(hom oskedastic) is the counter­
part to the o ther probit models we have considered in th a t the standard deviations of 
all errors are constrained to be equal.

. use travel4.dta, clear
(travel4.dta I Greene & Hensher 1997 mode of travel I 2014-04-01)
. asmprobit choice time, case(id) alternatives (mode) casevars(hinc psize)
> correlation(independent) stddev(homoskedastic) nolog
Alternative-specific multinomial probit Number of obs = 456
Case variable: id Number of cases = 152
Alternative variable: mode Alts per case: min = 3

avg = 3.0
max = 3

Integration sequence: Hammersley
Integration points:
Log simulated-likelihood =

150
-94.042671

Wald
Prob

chi2(5)
> chi2 =

86.50
0.0000

choice Coef. Std. Err. z P> 1 z 1 [95*/. Conf. Interval]

mode
time -.0096267 .0011214 -8.58 0.000 -.0118247 -.0074288

Train (base alternative)

Bus
hinc

psize
.cons

.0302129
-.3849205
-.7118844

.0124161
.252648
.4921849

2.43
-1.52
-1.45

0.015
0.128
0.148

.0058778
-.8801015
-1.676549

.054548 
.1102605 
.2527803

Car
hinc

psize
_cons

.0406219

.3752166
-2.552285

.0109879

.1942277

.4978618

3.70
1.93

-5.13

0.000
0.053
0.000

.019086
-.0054627
-3.528076

.0621577

.7558958
-1.576494

(mode=Train is the alternative normalizing location) 
(mode=Bus is the alternative normalizing scale)

After fitting the model, we can list the covariance m atrix for the errors with the 
command e s t a t  covariance. This shows that the errors are uncorrelated with unit
variance:

. estat covariance

Train Bus Car

Train 1
Bus 0 1
Car 0 0 1
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Comparing the coefficients between the a sc lo g it and asm probit models, we note 
that the coefficients tend to be larger for the logit model, as we would expect given 
its larger assumed variance, b u t this is not uniformly so. The p-values of coefficients 
deviate more from one another than  we might expect.

Fitting the ASM NPM  with correlated errors

The main reason to use asm prob it rather than the CLM is to allow correlated er­
rors. asm prob it allows several ways of specifying the structure of the correlation of 
errors. The most general option is also the default, which can be explicitly specified as 
c o r re la t io n (u n s t ru c tu r e d ) .
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. use travel4.dta, clear
(travel4.dta I Greene & Hensher 1997 mode of travel | 2014-04-01)
. asmprobit choice time, case(id) alternatives (mode) casevars(hinc psize) nolog
Alternative-specific multinomial probit Number of obs = 456
Case variable: id Number of cases = 152
Alternative variable: mode Alts per case: min = 3

avg = 3.0
max = 3

Integration sequence: Hammersley
Integration points :
Log simulated-likelihood =

150
-79.902305

Wald
Prob

chi2(5)
> chi2 =

28.71
0.0000

choice Coef. Std. Err. z P>lz| [95*/. Conf. Interval]

mode
time -.0265398 .0052347 -5.07 0.000 -.0367996 -.0162799

Train (base alternative)

Bus
hinc

psize
_cons

.0530925
-.2313477
-1.516367

.0228535

.3735916

.8032308

2.32
-0.62
-1.89

0.020
0.536
0.059

.0083004
-.9635738
-3.09067

.0978846

.5008784

.0579363

Car
hinc

psize
_cons

.1273307 
1.394874 

-9.073678

.0474833

.6592755
2.591035

2.68
2.12

-3.50

0.007
0.034
0.000

.0342652

.1027177
-14.15201

.2203962
2.68703

-3.995342

/lnl2_2 1.468344 .3236224 4.54 0.000 .8340557 2.102632

/12_1 -1.465612 1.884657 -0.78 0.437 -5.159472 2.228248

(mode=Train is the alternative normalizing location) 
(mode=Bus is the alternative normalizing scale)

We can once again obtain the covariance among the errors with e s t â t  covariance:

. estât covariance

Bus Car

Bus 2
Car -2.072688 21.00132

Note: covariances are for alternatives differenced with Train

The note indicates that the covariance m atrix is for the differences in errors relative to 
alternative T ra in : ( ^ Bus -  £nrain) and (£iCar ~  £*Train)- The variance for (£îBus -fiTrain) 
is fixed at 2 to  identify the model, whereas the two remaining elements were estimated.
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8.12.5 Rank-ordered logit model 4 7 5

. estat correlation

Bus Car

Bus 1.0000
Car -0.3198 1.0000

Note: correlations are for alternatives differenced with Train

It is tem pting to use this information to  describe the correlations among errors for the 
utilities. For example, one might incorrectly interpret the -0 .32 in the output above 
as indicating that the errors for bus and car are inversely correlated. However, this is 
not the correlation of £iBus and ¿¿car; but, rather of (¿¿bus — ¿"¿Train) and (£iCar -  entrain), 
which is unlikely to be of substantive interest.

To estimate the correlation between errors, as opposed to the correlations of differ­
ences in errors, we need to use a different specification for the structure of the errors. 
There are different ways to do this, which are described in [r ] a s m p r o b it .  It is essential 
to understand that not all the param eters in a covariance matrix of the errors can be 
identified without, imposing additional assumptions. Regardless of how you specify the 
structure of £ e when using the s t r u c t u r a l  option, you must verify that all the param­
eters in the resulting model are identified. Indeed, Bunch and Kitamura (1990) have 
shown th a t several published articles have used probit models that were not identified. 
Train (2009, 100 106) illustrates how to verify identification. We do not recommend 
attem pting to estimate the correlations among errors unless you have a clear under­
standing of the model and the identifying assumptions th a t are being imposed.

Interpretation of the estimated effects of independent variables in the ASMNPM is 
analogous for those described above for case-specific and alternative-specific variables 
in the CLM. Because ASMNPM is a probit model instead of a logit model, interpretation 
using odds ratios is not available. As with CLM, because the model uses alternative- 
specific: variables, margins cannot be used either; instead, you can obtain predicted 
probabilit it's and marginal effects with e s t a t  m fx. See [r ] a s m p r o b i t  p o s t e s t im a t i o n  
for more details.

8.12.5 Rank-ordered logit model

Some datasets record how each individual ranks each alternative. This is much more in­
formation than simply knowing which alternative is most preferred. The rank-ordered 
logit model (ROLM) takes advantage of tliis added information and can be fit with 
r o lo g i t  (see [r ] rologit). The ROLM is a generalization of the CLM for ranked out­
comes (Punj and Staelin 1978: Beggs, Cardell, and Hausman 1981; Allison and Chris- 
takis 1994). As with the CLM, the ROLM can be used with case-specific explanatory 
variables, alternative-specific explanatory variables, or a  combination of both. The 
model can also be used when individuals provide tied ranks or when they rank only 
their most preferred alternatives and leave the remainder unranked.
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Perhaps the most straightforward way of understanding the ROLM is to imagine the 
task of ranking the alternatives as a  sequence of choices. Let yr = m  indicate that 
alternative m  has rank r, that is, that alternative m  is the r th  choice. The probability 
of our first choice is Pr (y\ = m\ | x). The probability of our second choice is conditional 
on our first choice because if y\ =  m i, then y2 ^  mi. Accordingly, the probability of the 
second choice is Pr(y2 =  m 2 | x, yi =  m i). Likewise, the probability of the third choice 
is Pr (y-s =  m 3 | x. yi =  m i, t/2 =  m2 ). If our model has only case-specific variables, then 
the probability of being selected first has a form that is familiar from the MNLM:

exp
Pr (yi =  mi I x) =

E jL icxp (x/3mj)6)

where x contains case-specific variables, b is the base alternative, Pk,ni\b is the effect of 
Xk on the log odds of choosing alternative m  over alternative b, and 0k,b\b — 0 for all 
variables k.

If alternative m i is ranked first, then the probability of a given outcome m2 being 
ranked second is computed using a choice set that excludes rn\. This requires that we 
subtract exp ^x/3mj|fĉ , the term corresponding to choice m i, from the summation in
the denominator:

exp
Pr (y2 =  m 2 | x,f/j =  m x) =

(X0 m2|fc)

{ Z U  exP (x^ | / > )  } -  exp ( x ß mi\b)

and so on.

The model is fit by maximizing the probability of observing the rank orders that 
were observed. We can easily extend this model to include alternative-specific variables 
if we expand the explanatory variables to equal x / 3 +  zj~y, where zj  are the values of 
alternative-specific variables for alternative j  and 7  is the vector of coefficients for the 
effects of the alternative-specific variables.

If you imagine rank ordering as a process of sequential choice, then talking about 
effects that increase the expected rank of an alternative is much the same as talking 
about effects th a t increase the risk of an alternative being selected earlier rather than 
later. Readers familiar with survival analysis or event history analysis might recall 
that certain semiparametric models notably, the Cox proportional-hazards model— 
derive estimates from the rank ordering of survival times among observations (Cox 
1972; Cleves et al. 2010). And, indeed, r o lo g i t  uses the s tc o x  command for survival 
analysis to fit the model, with individual cases in r o lo g i t  corresponding to s t r a t a ( )  
in stcox. This is particularly handy because methods for tied survival times are well 
established, and tied ranks can be handled using the same logic, as nicely described for 
survival times by Cleves et al. (2010). Briefly stated, for tied ranks, ro lo g it  assumes 
that an ordering between the tied items exists but is not known and that the different 
orderings are equally likely (see [st ] stco x  for details).
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Two im portant points must be made about the ROLM. First, the model imposes a 
form of the IIA assumption. Outcomes th a t are close substitutes may be given similar or 
tied ranks, so the implications are not as dramatic as in the red bus- blue bus example 
described for the CLM. Nevertheless, the model still assumes th a t the ranking of, say, 
red bus versus car remains the same whether or not the blue bus is available as an 
alternative. Second, coefficients from the ROLM are not reversible. For example, suppose 
that you create two versions of a person’s rank-ordering of alternatives, yLeast records 
ranks sequentially with 1 for the least preferred option, and //Most records ranks with 1 
for the most preferred option. The estimated coefficients of a model for j/Least are not 
the negatives of the estimates from a model of //Most- Accordingly, you may wish to 
fit the same model with both orderings to determine how much your coding affects the 
results. The re v e rse  option for r o l o g i t  makes this simple to do.

Fitting the ROLM

We fit the  ROLM using an example from the Wisconsin Longitudinal Study, a long- 
running survey of 1957 Wisconsin high school graduates (Sewell et al. 2003). In 1992, 
respondents were asked to rate their relative preference of a series of job characteristics, 
including esteem by others, variety of tasks, autonomy, and job security. The variable 
job ch ar indicates the row corresponding to each alternative. The variable rank contains 
a respondent’s ranks for alternatives, with 1 indicating the most preferred alternative,
2 the next most preferred, and so on. The default for r o l o g i t  is that higher values of 
the outcome variable indicate more preferred alternatives, so the reverse option must 
be used.

The case-specific variables we use indicate gender (fem ale =  1 for female respon­
dents) and respondent’s score on a cognitive test taken in high school (score is measured 
in standard deviations). The alternative-specific variables h ig h  and low are binary 
variables indicating whether respondents’ current jobs are relatively high (high =  1) 
or relatively low (low =  1) on the  attributes in question, with being moderate (neither 
high nor low) serving as the excluded category.

Unfortunately, ro lo g it  does not share the same syntax as a s c lo g it  and asm probit, 
which make the inclusion of case-specific variables straightforward. Instead, to specify 
the intercepts for each alternative, we must use a set of indicator variables. These 
indicators must also be used to create interaction terms with each of the case-specific 
variables so th a t each case-specific variable will have a  separate coefficient for each 
alternative versus the base alternative.

Fortunately, we can use factor-variable notation to create these indicator variables 
and interactions. In our example, we want to use security (jobchar =  4) as our base 
category, so we specify ib4. jo b ch ar. The factor-variable operator to construct interac­
tions is ##. and we include all case-specific variables in parentheses after this operator.
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. use wlsrank4, clear
(1992 Wisconsin Longitudinal Study data on job values)
. rologit rank high low ib4.jobchar##(c.score female),
> group(id) reverse noomitted nolog
score 1.female omitted because of no within-id variance
Rank-ordered logistic regression 
Group variable: id
Ties handled via the exactm method

Number of obs 
Number of groups
Obs per group: min 

avg

Log likelihood = -6127.559
LR chi2(ll) 
Prob > chi2

12904
3226

4
4.00

4
1947.39
0.0000

rank Coef. Std. Err. z P>lz| [95*/. Conf. Interval]

high
low

.1780449 
-.2064148

.0374744

.0425829
4.75
-4.85

0.000
0.000

.1045965 
-.2898758

.2514934
-.1229539

jobchar 
esteem 

variety 
autonomy

-1.017202 
.528224 

-.1516741

.054985
.0525894
.0510374

-18.50
10.04
-2.97

0.000
0.000
0.003

-1.12497
.4251506

-.2517055

-.9094331
.6312974

-.0516427

jobchar# 
c.score 
esteem 

variety 
autonomy

.1375338 

.2590404 

.2133866

.0394282

.0370942

.0361647

3.49
6.98
5.90

0.000
0.000
0.000

.060256 
.1863372 
.142505

.2148116

.3317437

.2842682

jobchar# 
female 

esteem#fem 
variety#fem 
autonomy#fem

-.1497926 
-.1640212 
-.1401769

.0783025

.0728306

.0718325

-1.91
-2.25
-1.95

0.056
0.024
0.051

-.3032626
-.3067666
-.280966

.0036774
-.0212759
.0006123

The message sco re  1 .female o m itted  because of no w ith in - id  variance means 
that no main effect for either the variable sco re  or the variable fem ale is estimated in 
this model. This is correct, because the model parameters are the interactions of these 
variables with the three alternatives (esteem , v a rie ty , and autonomy) versus the base 
outcome of s e c u r i ty .  By specifying the option noom itted in the ro lo g i t  command, 
the estimation output is cleaner because it does not include ex tra rows with coefficients 
of 0 to represent the omitted variables.

The exponentiated coefficients from this model can be interpreted as odds ratios, as 
with the MNLM. Because ro lo g i t  does not have an or option and our l i s tc o e f  does not 
support r o lo g i t  when factor-variable notation is used, you will need to exponentiate 
coefficients yourself. To give examples of interpretation, we exponentiate the coefficients 
for the interaction of esteem with both sco re  and female.

A standard deviation increase in test score increases the odds of ranking 
esteem ahead of security by 14.8% (=  100{exp(0.138) — 1}), holding other 
variables constant.
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All else being equal, women have 13.9% (=  100{exp(-0.150) -  1}) lower 
odds than  men of ranking the esteem provided by a job above its security.

W ith the alternative-specific variable high, we are estim ating the effect that cur­
rently having a job high on a characteristic has on a respondent reporting that he or she 
values th a t characteristic more than  alternatives. For example, we estimate the effect 
that currently employed in a job with high autonomy versus moderate autonomy has on 
a respondent saying that he or she prefers autonomy over security, variety, or esteem. 
Because we estimate only one coefficient for high, the estim ated effect of having a job 
that is high on an attribute is the same regardless of w hat attribu te we are considering. 
Accordingly, the coefficient for h ig h  can be interpreted as follows:

All else being equal, having a job with a high level of a characteristic com­
pared with a moderate level of a  characteristic increases the odds of prefer­
ring th a t characteristic over an alternative by 19.5% (=  100{exp(0.178)-l}).

ROLM results m ay also be interpreted in terms of predicted probabilities of being 
the top-ranked alternative. However, margins cannot be used to generate these proba­
bilities, nor is the e s ta t  mfx command available.

.13 Conclusion
In this chapter, we considered nominal outcomes. The interpretation of models for nom­
inal outcomes is complicated because you cannot use ordinality to simplify and organize 
the interpretation of results. At the same time, using a model th a t assumes ordinality 
can mask im portant relationships because ordinal models require that the results are 
consistent with an ordinal outcome, and depending on your area of application, this 
might not often be the case. Fortunately, estimating predictions for the MNLM is no 
more complicated than for the OLM; indeed, exactly the same commands can be used. 
In addition, of course, many outcomes that researchers study offer no pretense of being 
plausibly ordinal, and here the need for specific methods for treating nominal outcomes 
is plain.





9 Models for count outcomes

Count variables record how many times something has happened. Examples include 
the number of patients, hospitalizations, daily homicides, theater visits, international 
conflicts, beverages consumed, industrial injuries, soccer goals scored, new companies, 
and arrests by police. Although the linear regression model has often been applied to 
count outcomes, these estimates can be inconsistent or inefficient. In some cases, the 
linear regression model can provide reasonable results; however, it is much safer to use 
models specifically designed for count outcomes.

In th is chapter, we consider seven regression models for count outcomes, all based 
on the Poisson distribution. We begin with the Poisson regression model (PRM ), which 
is the foundation for other count models. We then consider the negative binomial re­
gression model (NBRM ), which adds unobserved, continuous heterogeneity to the PRM  
and often provides a much b e tte r fit to the data. To deal with outcomes where ob­
servations with zero counts are missing, we consider the zero-truncated Poisson and 
zero-truncated negative binomial models. By combining a zero-truncated model with a 
binary model, we develop the hurdle regression model, which models zero and nonzero 
counts in separate equations. Finally, we consider the zero-inflated Poisson and the 
zero-inflated negative binomial models, which assume th a t there are two sources of zero 
counts.

As with earlier chapters, we review the statistical models, consider issues of testing 
and fit, and then discuss methods of interpretation. These discussions are intended as a 
review for those who are familiar with the models. See Long (1997) for a more technical 
introduction to  count models and Cameron and Trivedi (2013) for a definitive review. 
You can obtain sample do-files and datasets as explained in chapter 2.

9.1 The Poisson distribution
Because the univariate Poisson distribution is fundamental to understanding regression 
models for counts, we start by exploring this distribution. Let fi be the rate of occurrence 
or the expected number of times an event will occur during a given period of time. Let 
y be a  random variable indicating the actual number of times an event did occur. 
Sometimes the event will occur fewer times than expected, even not at all, and other 
times it will occur more often.

481
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The relationship between the expected count and the probability of observing a 
given count y  is specified by the Poisson distribution

Pr(2/ | /z) =  -— for y = 0 ,1 ,2 , . . .
y!

where // > 0 is the sole parameter defining the distribution. y\ is the factorial operator: 
for example, 4! =  4 x 3 x 2 x l .  The easiest way to get a sense of the Poisson distribution 
is to compare plots of predicted probabilities for different values of the rate /i, as shown 
in figure 9.1.

— • —  n = 0.8 — ♦—  n = 1.5
— »—  n-2.9 — A—  n = 10.5

Figure 9.1. The Poisson probability density function (PDF) for different rates

The figure illustrates four characteristics of the Poisson distribution that are impor­
tant for understanding regression models for counts:

1. As the mean of the distribution //, increases, the mass of the distribution shifts to 
the right.

2. The m ean (i is also the variance. Thus Var(y) =  /i, which is known as equidisper- 
sion. In real data, count variables often have a variance greater than the mean, 
which is called overdispersion. It is possible for counts to be underdispersed, but 
this is rarer.

3. As n increases, the probability of a zero count decreases rapidly. For many count 
variables, there are more observed Os than predicted by the Poisson distribution.

4. As // increases, the Poisson distribution approximates a normal distribution. This 
is shown by the distribution for //, =  10.5.

These ideas are used as we develop regression models for count outcomes in the rest of 
the chapter.
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A side: P lo t t in g  th e  Poisson  P D F . The commands below were used to create fig­
ure 9.1. The first g en e ra te  creates variable k, which contains the values 0 to 
20 th a t are the counts for which we want to compute probabilities. This is done 
by subtracting 1 from _n, where _n is how Stata refers to the row number of an 
observation. The probability of outcome k from a Poisson distribution with mean 
mu  is computed with the function poissonp(m u, fc) for each of four values of 
mu.x

clear all 
set obs 21 
gen k = _n - 1
label var k "y = # of events" 
gen psnl = poissonp(0.8, k) 
label var psnl "&mu = 0.8" 
gen psn2 = poissonp(l.5, k) 
label var psn2 "&mu = 1.5" 
gen psn3 = poissonp(2.9, k) 
label var psn3 "&mu = 2.9" 
gen psn4 = poissonp(10.5, k) 
label var psn4 "&mu = 10.5"
graph twoway connected psnl psn2 psn3 psn4 k, ///

ytitleC'Probability") ylabel(0(.l) .5) xlabel(0(2)20) 
lwidth(thin thin thin thin) msymbol(0 D S T)

1.1 Fitting the Poisson distribution with the poisson command

To illustrate count models, we use d a ta  from Long (1990) on the number of articles 
written by biochemists in the 3 years prior to receiving their doctorate. The variables 
considered are

. use couart4, clear
(couart4.dta I Long data on Ph.D. biochemists I 2013-11-13)
. codebook art female married kid5 mentor phd, compact
Variable Obs Unique Mean Min Max Label

art 915 15 1.692896 0 19 Articles in last 3 yrs of PhD
female 915 2 .4601093 0 1 Gender: l=female 0=male
married 915 2 .6622951 0 1 Married: l=yes 0=no
kid5 915 4 .495082 0 3 # of kids < 6
mentor 915 49 8.767213 0 77 Mentor's # of articles
phd 915 83 3.103109 .755 4.62 PhD prestige

1. We use the Stata Markup and Control Language code tonu to  add the Greek letter /x to the labels.
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The count outcome is the number of articles a scientist has published, with a distribution 
that is highly skewed with 30% of the cases being 0:

. tabulate art, missing
Articles in 
last 3 yrs 

of PhD Freq. Percent Cum.

0 275 30.05 30.05
1 246 26.89 56.94
2 178 19.45 76.39
3 84 9.18 85.57
4 67 7.32 92.90
5 27 2.95 95.85
6 17 1.86 97.70
7 12 1.31 99.02
8 1 0.11 99.13
9 2 0.22 99.34
10 1 0.11 99.45
11 1 0.11 99.56
12 2 0.22 99.78
16 1 0.11 99.89
19 1 0.11 100.00

Total 915 100.00

Often, the first step in analyzing a count variable is to compare the mean with the 
variance to determine whether there is overdispersion. By default, summarize does not 
report the variance, so we use the d e t a i l  option:

. sum art, detail
Articles in last 3 yrs of PhD

Percentiles Smallest
1*/. 0 0
5*/. 0 0
10*/. 0 0 Obs 915
257. 0 0 Sum of Wgt. 915
507. 1 Mean 1.692896

Largest Std. Dev. 1.926069
757. 2 12
907. 4 12 Variance 3.709742
957. 5 16 Skewness 2.51892
997. 7 19 Kurtosis 15.66293

The variance is more than twice as large as the mean, providing clear evidence of 
overdispersion.

1.2 Comparing observed and predicted counts with mgen

We can visually inspect the overdispersion in a r t  by comparing the observed prob­
abilities with those predicted from the Poisson distribution. Later, we will use the 
same method as a first assessment of the specification of count regression models (sec­
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tion 9.2.5). We begin by using the p o isso n  command to fit, a model with a constant 
but no independent variables. W hen there are no independent variables, poisson fits 
a univariate Poisson distribution, where exp (/?o) equals the mean p. Using a r t  as the 
outcome,

. poisson art, nolog
Poisson regression Number of obs = 915

LR chi2(0) = 0.00
Prob > chi2 =

Log likelihood = -1742.5735 Pseudo R2 = 0.0000

art Coef. Std. Err. z P>1z 1 [95*/, Conf. Interval]

_cons .5264408 .0254082 20.72 0.000 .4766416 .57624

Because /3o =  0.526, the estimated rate is fi =  exp (0.526) =  1.693, which matches the 
mean of a r t  obtained with summarize earlier.

In earlier chapters, we used mgen to compute predictions as an independent variable 
changed, holding other variables constant. Although this can be done with count models, 
as illustrated below, the mgen option meanpred creates variables with observed and 
average predicted probabilities, where the rows correspond to values of the outcome.2 
The syntax for mgen used in this way is

mgen, meanpred stub(.stub) p r ( min/max)  [ options]

where option pr  (min/max)  specifies th a t we want to create variables with predictions 
for each of the counts from min to  max. The new variables are

Variable name Content
stubv a l

stuboheq

stuboble  
stubpreq 
s tubprle  
stub obpr

Value k of the dependent variable y  ranging from min 
to max. The first row contains min; the second row 
mm+1; etc.

Observed proportion or probability th a t y =  k. These 
values correspond to the percentages from tab u la te .

Observed cumulative probability th a t y < k.
Average predicted probability Pr (y =  k).
Average predicted probability Pr (y < k).
Difference between observed and predicted probabilities.

In a regression model with no independent variables, the predicted probability of 
y = k is the same for all observations. Accordingly, mgen is simply computing Pr (y = k.) 
from a Poisson distribution with a mean equal to the mean of the outcome. In our 
example,

2. SPost9 uses the prcounts command to do this.
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. poisson art, nolog 
(output om itted )

. mgen, pr(0/9) meanpred stub(psn) 
Predictions from:
Variable Obs Unique Mean Min Max Label

psnval 10 10 4.5 0 9 Articles in last 3 yrs...
psnobeq 10 10 .0993443 .0010929 .3005464 Observed proportion
psnoble 10 10 .8328962 .3005464 .9934427 Observed cum. proportion
psnpreq 10 10 .0999988 .0000579 .311469 Avg predicted Pr(y=#)
psnprle 10 10 .8307106 .1839859 .9999884 Avg predicted cum. Pr(...
psnob_pr 10 10 -.0006546 -.0691068 .1165605 Observed - Avg Pr(y=#)

mgen created six variables with 10 observations that correspond to the counts 0-9. In the 
list below, p sn v a l contains the count values, psnobeq contains observed proportions or 
probabilities, and psnpreq  has predicted probabilities from a Poisson distribution with 
mean 1.69:

. list psnval psnobeq psnpreq in 1/10

psnval psnobeq psnpreq

1. 0 .3005464 .1839859
2. 1 .2688525 .311469
3. 2 .1945355 .2636424
4. 3 .0918033 .148773
5. 4 .073224 .0629643

6. 5 .0295082 .0213184
7. 6 .0185792 .006015
8. 7 .0131148 .0014547
9. 8 .0010929 .0003078
10. 9 .0021858 .0000579

The values of psnobeq match those from ta b u la te  a r t  above, except that ta b u la te  
shows percentages while mgen generates probabilities, which equal the percentages di­
vided by 100. The first row shows th a t the observed probability of no publications is
0.301, while the predicted probability from the Poisson distribution is only 0.184.

Using these variables, we can create a graph that compares the observed probabilities 
with the predicted probabilities from the Poisson distribution:

. label var psnobeq "Observed"

. label var psnpreq "Poisson prediction"

. label var psnval "# of Articles"

. graph twoway connected psnobeq psnpreq psnval,
> ytitle("Probability") ylabel(0(.1).4, gmax) xlabel(0/9) msym(0 Th)
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- • —  Observed — A —  Poisson prediction

The graph clearly shows that the fitted Poisson distribution underpredicts Os; over­
predicts counts 1, 2, and 3; and has smaller underpredictions of larger counts. This 
pattern of overprediction and underprediction is characteristic of count models that do 
not adequately account for heterogeneity among observations in their rate fi. Because 
the univariate Poisson distribution assumes that all scientists have exactly the same 
rate of productivity, which is clearly unrealistic, our next step is to  allow heterogeneity 
in //, based on observed characteristics of the scientists.

.2 The Poisson regression model
The PRM extends the Poisson distribution by allowing each observation i to have a 
different rate //*. More formally, the PRM  assumes that the  observed count for observa­
tion i is drawn from a Poisson distribution with mean Hii where Hi is estimated from 
the independent variables in the model. This is sometimes referred to as incorporating 
observed heterogeneity and leads to the structural equation

Hi =  E { y i  | x t) =  e x p ( x i /3 )

Taking the exponential of x,/3  forces Hi to be positive, which is necessary because counts 
can be only 0 or positive.



To see  h o w  th is  w o rk s , co n sid er  t h e  PRM w ith  o n e  independent variable:
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lO

X

The mean p, — exP (a  +  Px ) shown by the solid, curved line that increases as x
increases. For each value of //, the Poisson distribution around the mean is shown 
by the dots, which should be thought, of as coming out of the page to represent the 
probability of each count. Interpretation of the model involves assessing how changes 
in the independent variables affect the conditional mean and the probabilities of each 
count. Details 011 interpretation are given after we consider estimation.

9.2.1 Estimation using poisson

The PRM is fit with the command

poisson depvar [ indepvars ] [i f ]  [ m  ] [ weight ] i , nocons ta n t  

exposure(.varnarne) vce(vcetype) i r r  j

In our experience, po isson  converges quickly and difficulties are rare.

Variable lists

depvar is the dependent variable, p o isso n  does not require this to be an integer; 
however, if you have nonintcger values, you obtain the following warning:

note: you are  re sp o n sib le  f o r  in te rp r e ta t io n  of noncount dep. v a r ia b le .
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indcpvars is a list of independent variables. If indepvars is not included, a model with 
only an intercept is estimated that fits a univariate Poisson distribution, as shown 
in the previous section.

Specifying the estimation sample

if  an d  in  q u a lifie r s , i f  and in  qualifiers can be used to restrict the estimation sample. 
For example, if you want to  fit a model for only women, you could specify p o is s o n  
a r t  i.m a r  k id5 phd ment i f  fem ale= = l.

L istw ise d e le tio n . Stata excludes observations with missing values for any of the vari­
ables in the model. Accordingly, if two models are estim ated using the same data 
but have different independent variables, it is possible to have different samples. 
As discussed in chapter 3, we recommend that you explicitly remove observations 
with missing data.

Weights and complex samples

poisson  can be used with fw eights, pweights, and iw eigh ts . Survey estimation for 
complex samples is possible using svy. See chapter 3 for details.

Options

n o co n stan t suppresses the constant term or intercept in the model.

exposure (vamame)  specifies a variable indicating the am ount of time during which an 
observation was “at risk” of the event occurring. Details are given in section 9.2.6.

v ce (vcetype) specifies the type of standard errors to be computed, vce(robust) re­
quests that robust variance estim ates be used. See sections 3.1.9 and 9.3.5 for details.

i r r  reports estimated coefficients that are transformed to  incidence-rate ratios defined as 
exp (Pk.)- These are discussed in section 9.2.2.

Example of the PRM

If scientists who differ in their rates of productivity are combined, the univariate dis­
tribution of articles will be overdispersed, with the variance greater than the mean. 
Differences among scientists in their rates of productivity could be due to factors such 
as quality of thoir graduate program, gender, m arital status, number of young chil­
dren, and the number of articles written by a scientist’s mentor. To account for these 
differences, we add these variables as independent variables:
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. use couart4, clear
(couart4.dta I Long data on Ph.D. biochemists I 2014-04-24)
. poisson art i.female i.married kid5 phd mentor, nolog
Poisson regression Number of obs = 915

LR chi2(5) = 183.03
Prob > chi2 = 0.0000

Log likelihood = -1651.0563 Pseudo R2 * 0.0525

art Coef. Std. Err. z P> 1 z | [95*/. Conf. Interval]

female
Female -.2245942 .0546138 -4.11 0.000 -.3316352 -.1175532

married
Married .1552434 .0613747 2.53 0.011 .0349512 .2755356

kid5 -.1848827 .0401272 -4.61 0.000 -.2635305 -.1062349
phd .0128226 .0263972 0.49 0.627 -.038915 .0645601

mentor .0255427 .0020061 12.73 0.000 .0216109 .0294746
_cons .3046168 . 1029822 2.96 0.003 .1027755 .5064581

How you interpret a count model depends on whether you are interested in 1) the 
expected value or ra te  of the count outcome or 2) the distribution of counts. If your 
interest is in the rate of occurrence, several methods can be used to compute the change 
in the rate for a change in an independent variable, holding other variables constant. If 
your interest is in the distribution of counts or perhaps the probability of a specific count, 
such as not publishing, the probability of a  count for a given level of the independent 
variables can be computed. We begin with interpretation using rates.

9.2.2 Factor and percentage changes in E(y i x)

In th e  PRM,
// = E ( y  | x ) =  exp(x/3)

The changes in fi as an independent variable changes can be presented in several ways. 
Factor change and percentage change coefficients are counterparts to odds ratios that 
were discussed in previous chapters. In those chapters, we expressed reservations about 
the usefulness of interpreting coefficients th a t indicated changes in the odds. As we will 
explain shortly, the interpretation of factor and percentage change coefficients in count 
models is much clearer and more useful.

Perhaps the most common method of interpretation is the factor change in the rate. 
Let E (y | x , Xk) be the expected count for a  given x, where we explicitly note the value 
of Xk, and let E  (y \ x . ,xk+  1) be the expected count after increasing Xk by 1. Simple 
algebra shows that the ratio is

E  (y I x , x k +  1) _  0k 
E  (y I x ,x fc)

(9.1)
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Therefore,

Factor change: For a unit change in £*, the expected count changes by a 
factor of exp(/3fc), holding other variables constant.

In some discussions of count models, /z is referred to as the incidence rate and (9.1) 
is called the incidence-rate ratio. These coefficients are shown by p o isso n  by adding 
the option i r r  or by using the l i s t c o e f  command, which is illustrated below. We can 
easily generalize (9.1) to changes in Xk of any amount Ô:

E  [y | x , x k + 6) _  ^ k6 
E  (y | x , x fc)

This leads to interpretations such as the following:

Factor change for S: For a change of S in Xk, the cxpected count changes by 
a factor of exp(^/c<5), holding other variables constant.

Standardized factor change: For a standard deviation change in £*, the 
expected rate changes by a factor of exp(^sjt), holding other variables con­
stant.

Alternatively, we can compute the percentage change in the expected count for a 
(5-unit change in x k. holding other variables constant:

E ( y \ x . , x k) v ’

which can be interpreted as follows:

Percentage change for <5: For a change of 5 in xk, th e  expected count changes 
by 100 x (e^*5 — l)%, holding other variables constant.

W hether you use percentage or factor change is a m atter of taste  and convention in
your area of research.



Example of factor and percentage change

Factor change coefficients can be com puted using l i s t c o e f  :
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. listcoef female mentor, help
poisson (N=915): Factor change in expected count 

Observed SD: 1.9261

b z P> lz| e'b e'bStdX SDofX
female

Female
mentor

-0.2246
0.0255

-4.112
12.733

0.000
0.000

0.799
1.026

0.894
1.274

0.499
9.484

b = raw coefficient 
z = z-score for test of b=0 

P> I z I = p-value for z-test
e~b = exp(b) = factor change in expected count for unit increase in X 

e"bStdX = exp(b*SD of X) = change in expected count for SD increase in X 
SDofX = standard deviation of X

By default, l i s t c o e f  will show all coefficients, including the constant. We typed the 
command l i s t c o e f  female mentor to select coefficients for only these variables. The
coefficients can be interpreted as follows:

Being a female scientist decreases the expected number of articles by a factor 
of 0.80, holding other variables constant.

For a standard  deviation increase in the mentor’s productivity, roughly 9.5 
articles, a scientist’s expected productivity increases by a factor of 1.27, 
holding other variables constant.

To compute the percentage change, we add the option p e rcen t:

. listcoef female mentor, percent help 
poisson (N=915) : Percentage change in expected count 

Observed SD: 1.9261

b z P> 1 z 1 •/. •/.StdX SDofX

female
Female
mentor

-0.2246
0.0255

-4.112
12.733

0.000
0.000

-20.1
2.6

-10.6
27.4

0.499
9.484

b = raw coefficient 
z = z-score for test of b=0

P> I z I = p-value for z-test
'/. = percent change in expected count for unit increase in X

°/,StdX = percent change in expected count for SD increase in X
SDofX = standard deviation of X
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These can be interpreted as follows:

Being a female scientist decreases the expected number of articles by 20%, 
holding other variables constant.

For every additional article by the mentor, a scientist’s expected productivity 
increases by 2.6%, holding other variables constant.

The standardized percentage change coefficient can be interpreted as follows:

For a standard deviation increase in the mentor’s productivity, a scientist’s 
expected productivity increases by 27.4%, holding other variables constant.

Factor or percentage change coefficients are quite effective for explaining the effect of 
variables in the PRM. Because the model is nonlinear, the specific amount of change in fi 
depends on the levels of all variables in the model, just like the odds in earlier chapters. 
However, because a multiplicative change in the rate is substantively much clearer than 
a multiplicative change in the odds, using factor change coefficients to interpret count 
models is more effective than the odds ratios we used in previous chapters. To give an 
example, suppose that exp(/?x) =  2. In the PRM, we would say that for a unit increase 
in x,  the expected number of publications doubles, holding other variables constant. If 
given a  scientist’s characteristics, her rate was // =  1, the rate becomes // = 2. If her 
rate was 2, it becomes 4, and so on. It is easy to understand the effect of x. If, however, 
we say the odds were 1 and become 2, it is not immediately obvious (for most of us) 
how the probability changes.

Because factor and percentage changes in the rate are an effective method for inter­
preting count models, we find it less important to use marginal effects. Still, they can 
be useful in applications when you are interested in providing a sense of the absolute 
amount of change in the rate. Accordingly, we consider marginal effects next.

.2.3 Marginal effects on E(y | x)

Marginal effects indicate the change in the rate for a given change in one independent 
variable, holding all other variables constant. As with the models in earlier chapters, we 
can compute the marginal change th a t indicates the ra te  of change in E (y x) for an 
infinitely small change in Xk or a discrete change that indicates the amount of change 
in E  (y | x ) for a discrete change in Xk-

For the PRM, the marginal change in E (y | x ) = fi equals

I*) A  (9-2)
OXk

The marginal change depends on both fa  and E  (y | x ) .  For f a  > O' the larger the 
current value of E (y | x), the larger the rate of change; for fa  < 0, the smaller the rate
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of change. Because E  (y | x) depends on the levels of all variables in the model, the 
size of the marginal change also depends on the levels of all variables. The marginal 
change can be computed at the m ean or a t other representative values. Alternatively, 
the average marginal change over all the observations in the sample can be computed.

A discrete change is the change in the rate as Xk changes from x f &rt to x ^ d, while 
holding other variables constant:

K x k frl»* ̂ Ir1) = E  ̂ 1 x'Xh = x‘"d* ~ E  ̂  = ‘1 x’Xk = x*
Different am ounts of change can be computed depending on your purpose:

• The effect of a binary variable x k is computed by letting Xk change from 0 to 1.

• The effect of an uncentered change of 1 in Xk is computed by changing from
the observed Xik to +  1. A centered change is computed by changing from 
Xik ~  (1/2) to Xik + (1/2). Change can also be computed from other values of
Xfc, such as the mean. Then, the uncentered unit change in xk is from Xk to
Xk +  1. The centered discrete change is the result of the change from Xk — (1/2) 
to Xk +  (1/2).

• The effect of an uncentered change of 5, where <5 might be the standard deviation of 
Xk, is computed by changing from Xik to  x,k + S. The centered change is computed 
by changing from Xik — (5/2) to Xik + (5/2). Change can also be computed from 
values of Xk other than the observed value, such as the mean. Then, the uncentered 
change of 5 in Xk is from Xk to  Xk +  5, and the centered change is from Xk — (5/2) 
to x,k +  (5/2). Changes of a  standard deviation or some other value may be 
particularly useful when the scale of Xk is very large or very small. For example, 
when the independent variable is a proportion, a unit change would be at least as 
large as the entire range of the variable. When the range of Xk is large, the effect 
of a unit change can be quite small.

• The to ta l possible effect of Xk is found by letting Xk change from its minimum to 
its maximum. Trimmed ranges can also be used and may be particularly useful 
when the distribution of Xk is highly skewed or contains outliers.
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Examples of marginal effects

Marginal effects can be computed using mchange. For example, the average marginal 
effects arc

. poisson art i.female i.married kid5 phd mentor, nolog
(output om itted)

. mchange
poisson: Changes in mu | Number of obs = 915 
Expression: Predicted number of art, predictO

Change p-value

female
Female vs Male -0.375 0.000

married
Married vs Single 0.256 0.010

kid5
+1 -0.286 0.000
+SD -0.223 0.000

Marginal -0.313 0.000
phd

+1 0.022 0.629
+SD 0.022 0.629

Marginal 0.022 0.627
mentor

+1 0.044 0.000
+SD 0.464 0.000

Marginal 0.043 0.000
Average prediction

1.693

Because fem ale and m arried  were entered using the factor-variable notation i .fem a le  
and i .m a r r ie d ,  the discrete change from 0 to 1 was computed and can be interpreted
as follows:

On average, for scientists similar on other characteristics, being female de­
creases the expected number of publications by 0.38 articles. Being married, 
on the other hand, increases the expected number of articles by 0.26 on av­
erage. Both effects are significant at the 0.001 level.

The most reasonable effect for the number of young children is an increase of 1 from 
the actual number of children a scientist has, which can be interpreted as follows:

On average, increasing the number of young children in the family by 1 
decreases the expected rate of productivity by 0.29, holding other variables 
a t their observed values.

Because the effect of doctoral prestige is not significant (given that our model in­
cludes the prestige of the mentor that is associated with the prestige of the department), 
we do not consider this variable further. The productivity of the mentor can be inter­
preted as a continuous variable. Consider the discrete change of 1:



496 Chapter 9 Models for count outcomes

On average, increasing the m entor’s number of papers by 1 is expected to 
increase a scientist’s productivity by 0.04 papers.

The effect is small, because an increase of one paper is tiny relative to the range of 77 
for mentor’s productivity. The effect of a standard deviation change gives a better sense 
of the effect of the mentor:

A standard deviation change in the mentor’s productivity, roughly 10 pa­
pers, on average increases a scientist’s expected rate of productivity by 0.46, 
holding other variables at their observed values.

The average marginal change could also be used to interpret the effect of the mentor’s 
productivity. For example:

The average ra te  of change for the productivity of the mentor is 0.04 (p <
0.001). The effect of departmental prestige is not significant.

In this example, the marginal change and the discrete change of 1 for mentor are 
nearly identical, reflecting that the curve for the expected number of publications is 
approximately linear within a 1-unit change around the observed values.

9.2.4 Interpretation using predicted probabilities

The estimated parameters can also be used to compute predicted probabilities with the 
formula

Predictions a t the observed values for all observations can be made using p re d ic t .  
Probabilities a t specified values or average predicted probabilities can be computed 
using m argins or m table. Changes in the probabilities can be computed with mchange. 
and plots can be made using mgen.

Predicted probabilities using mtable and mchange

To understand how independent variables affect the outcome, we can compute predicted 
probabilities a t different levels of the variables. For example, suppose that we want 
to compare productivity for married and unmarried women who do not have young 
children, holding other variables to their global means. This can be done using m table. 
where w id th (7) makes the output more compact:
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. mtable, at(married=(0 1) female=l kid5=0) atmeans pr(0/5) width(7) 
Expression: Pr(art), predict(prO)

married 0 1 2 3 4 5

1 0 0.244 0.344 0.243 0.114 0.040 0.011
2 1 0.193 0.317 0.261 0.143 0.059 0.019

Specified values of covariates
female kid5 phd mentor

Current 1 0 3.1 8.77

Row 1 has predictions for those who are not married (that is, married=0), while row 
2 has predictions for those who are married. Individuals who are not married have 
higher probabilities for zero and one publications, while married women have higher 
probabilities for two or more publications. The values of variables that are held constant 
are shown below the predictions.

We can use mchange to com pute and test differences between women who are single 
and those who are married, using the option s ta t( f ro m  to  change p) to request the 
starting prediction, the ending prediction, the change, and the p-value for the test that
the effect is 0:

. mchange married, at(female=l kid5=0) atmeans pr(0/5)
> stat(from to change p) width(7) brief
poisson: Changes in Pr(y) I Number of obs = 915
Expression: Pr(art), predict(prO)

0 1 2 3 4 5

married
From 0.244 0.344 0.243 0.114 0.040 0.011
To 0.193 0.317 0.261 0.143 0.059 0.019

Married vs Single -0.051 -0.027 0.019 0.029 0.019 0.008
p-value 0.011 0.014 0.014 0.011 0.013 0.017

The rows From and To correspond exactly to the predictions for unmarried and married 
women in the earlier m table output, while the row M arried  vs Single contains the 
discrete changes. The results show7 that the differences in the predicted probabilities 
are all statistically significant at the 0.05 level but not the 0.01 level.

In the prior example, we specified the values of all the independent variables and 
examined how predictions differed when the variable m arried  was changed from 0 to
1. T he result was a discrete change at a representative value. In our next example, 
we consider female scientists who are married, and we compute the average rate of 
productivity and average predicted probabilities if we assume these women all have no 
children, all have one child, all have two children, and so on. Because we are focusing on 
married women, we average the predictions over the subsample of married women rather 
than the full estimation sample. We do this by adding the condition i f  m arried==l & 
f emale==l to mtable. We begin by computing average rates assuming different numbers 
of children:
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. quietly mtable if married==l & female==l, at(kid5=(0/3)) long

By default, m table uses the wide format when reporting rates. Here we use the long 
option so th a t we can combine the rates with predicted probabilities that are by default 
shown in lo n g  format. The norownumbers option suppresses row numbers for the 
predictions.

. mtable if married==l & female==l, pr(0/5)
> at(kid5=(0/3)) atvars(_none) right norownumbers brief
Expression: Pr(art), predict(pr())

kid5 mu 0 1 2 3 4 5

0 1.656 0.205 0.315 0.249 0.136 0.059 0.022
1 1.376 0.266 0.343 0.227 0.105 0.039 0.013
2 1.144 0.331 0.357 0.199 0.078 0.025 0.007
3 0.951 0.398 0.358 0.168 0.056 0.015 0.004

The column mu show's that if all m arried women were assumed to have no children, 
their average rate of productivity is 1.60 papers. Assuming all of these women have one 
child, the ra te drops to 1.38, then 1.14 with two children, and 0.95 with three. Overall, 
as the number of young children increases, the rate of publication decreases by about
0.7, while the average probability of no publications increases from 0.21 to 0.40. We 
also see that having more young children increases the chances of having one publication 
and decreases the probabilities of more publications. These results are consistent with 
the negative effect of kid5 in the model.

Treating a count independent variable as a factor variable

The number of young children is itself a count variable, although it is an independent 
variable rather than the outcome. In the PRM that we fit, the estimated coefficient for 
kid5 was Acids =  —0.185, leading to the factor change in the rate of exp(/3kid5) =  0.83. 
This means the following:

For a unit increase in the number of children, the ra te  of productivity is 
expected to decline by a factor of 0.83, holding other variables constant.

The same ra te  of decline applies for the change from zero children to one child, from 
one child to two children, or from two to three children. It is possible, however, that 
the rate of change is not constant. For example, the impact of the first child could be 
greater than that of later children. To allow' for this possibility, we can include k id5 
as a set of indicator variables by entering the variable with the factor-variable notation
1.kid5. F itting this model,
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poisson art i.kid5 i.female i.married phd mentor, nolog
Poisson regression

Log likelihood = -1650.4198

Number of obs 
LR chi2(7) 
Prob > chi2 
Pseudo R2

915
184.31
0.0000
0.0529

art Coef. Std. Err. z P>lz| [95'/, Conf. Interval]

kid5
1 -.1786888 .0706698 -2.53 0.011 -.317199 -.0401785
2 -.3282044 .0909622 -3.61 0.000 -.5064871 -.1499217
3 -.8216372 .2816873 -2.92 0.004 -1.373734 -.2695402

(output om itted)

There are t hree indicator variables for the number of children, with zero children being 
the excluded category. We use the m table commands from the last section to compute
our predictions:

. quietly mtable if married==l & female==l, at(kid5=(0/3)) long

. mtable if married==l & female==l, pr(0/5) at(kid5=(0/3))
> atvars(_none) right norownumbers brief
Expression: Pr(art), predict(prO)

kid5 mu 0 1 2 3 4 5

0 1.648 0.207 0.316 0.249 0.135 0.059 0.022
1 1.379 0.266 0.342 0.228 0.106 0.039 0.013
2 1.187 0.318 0.355 0.205 0.083 0.027 0.008
3 0.725 0.493 0.342 0.124 0.032 0.007 0.001

There is a noticeable difference between the two models in predictions for those with 
three children; however, the Bayesian information criterion (BIC) statistics for the two 
models show very strong support for the model where k id5  is treated as a continuous 
variable (ABIC = 12.36).

In a similar vein, we might hypothesize that the effect of the mentor’s productivity 
on a scientist’s productivity decreases as the m entor’s productivity increases (that is, 
there are diminishing returns to each additional article by the mentor). We could either 
use a  squared term to capture this (c .m entor##c.m entor) or log the mentor’s number 
of publications before including it in the model. The larger point is that while count 
models are nonlinear, we still need to work at specifying this nonlinearity correctly, 
which requires thinking not just about the left-hand side of the model but also about 
the relationships implied by how we specify variables on the right-hand side of the 
model.
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The mgen command computes a series of predictions by holding all variables but one 
constant (unless there are linked variables such as age and age-squared). The resulting 
predictions can then be plotted. To provide an example, we plot the predicted proba­
bility of not publishing for married men and married women with different numbers of 
children. F irst, we compute predictions for women by using the stub Fprm to indicate 
predictions for female scientists from the PRM:

. mgen if married==l & female==l, atmeans at(kid5=(0/3))
> stub(Fprm) pr(0) predlabel(Married women)
Predictions from: margins if married==l & female==l, atmeans at(kid5=(0/3))
> predict(pr(0))
Sample selection: if married==l & female==l

Predicted probabilities using mgen

Variable Obs Unique Mean Min Max Label

FprmprO 4 4 .3179806 .2011927 .4940723 Married women
FprmllO 4 4 .2333646 .1677741 .3013507 95'/, lower limit
FprmulO 4 4 .4025967 .2346112 .6867938 95'/, upper limit
Fprmkid5 4 4 1.5 0 3 # of kids < 6
FprmCprO 4 4 .3179806 .2011927 .4940723 pr(y<=0)

Specified values of covariates
female married phd mentor

1 1 3.092822 7.88

The p re d la b e l () option adds a variable label that will be used in the legend when we
graph the results. Next, we compute predictions for men, using the stub Mprm:

. mgen if married==l & female==0, atmeans at(kid5=(0/3))
> stub(Mprm) pr(0) predlabel(Married men)
Predictions from: margins if married==l & female==0, atmeans at(kid5=(0/3))
> predict(pr(0))
Sample selection: if married==l & female==0
Variable Obs Unique Mean Min Max Label

MprmprO 4 4 .2309351 .1247218 .400383 Married men
MprmllO 4 4 .1531598 .0995559 .2010656 95*/. lower limit
MprmulO 4 4 .3087103 .1498877 .5997005 95*/, upper limit
Mprmkid5 4 4 1.5 0 3 # of kids < 6
MprmCprO 4 4 .2309351 .1247218 .400383 pr(y<=0)

Specified values of covariates
female married phd mentor

0 1 3.017231 9.330709

We can then plot the predictions:

. graph twoway connected FprmprO MprmprO Mprmkid5,
> ylabel(0(.1) .4, gmax) xlabel(0/3) msym(0 D)
> ytitle("Probability of No Articles") xtitle("Number of children")
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o
T0 2 3

Number ol children

— Married women — ♦—  Married men

If you compare the values plotted for women with those computed with ratable in the 
prior section, you will see th a t they are the same—ju s t presented differently.

.2.5 Comparing observed and predicted counts to evaluate model spec­
ification

Does the PRM fit the data in our example well? In th is section, we present an informal 
way to  evaluate the fit of the PRM by comparing the predicted distribution of counts 
with the observed distribution, extending the ideas from section 9.1.2. After fitting our 
model, we can compute the predicted probabilities for specific counts by using p red ic t. 
For example, for counts of 0, 1, and 2, we type

. poisson art i.female i.married kid5 phd mentor, nolog 
(output omitted)

. predict probO, pr(0)

. predict probl, pr(l)

. predict prob2, pr(2)

. sum probO probl prob2
Variable Obs Mean Std. Dev. Min Max

probO 915 .2092071 .0794247 .0000659 .4113403
probl 915 .3098447 .0634931 .0006345 .3678775
prob2 915 .242096 .0311473 .0030544 .2706704

The means are the average predicted probabilities defined as

t=i
The average predictions from p re d ic t  are identical to  the  average predictions computed 
by intable:
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. mtable, pr(0/2) brief 
Expression: Pr(art), predict(pr())

0 1 2

0.209 0.310 0.242

The m gen , m e a n p r e d  command computes the same average p r e d ic te d  probab ilities bu t
saves the predictions in variables th a t can be graphed:

. mgen, stub(PR) pr(0/9) meanpred 
Predictions from:
Variable Obs Unique Mean Min Max Label

PRval 10 10 4.5 0 9 Articles in last 3 yrs...
PRobeq 10 10 .0993443 .0010929 .3005464 Observed proportion
PRoble 10 10 .8328962 .3005464 .9934427 Observed cum. proportion
PRpreq 10 10 .0998819 .0009304 .3098447 Avg predicted Pr(y=#)
PRprle 10 10 .8308733 .2092071 .9988188 Avg predicted cum. Pr(...
PRob_pr 10 10 -.0005376 -.0475604 .0913393 Observed - Avg Pr(y=#)

list PRval PRpreq PRobeq in 1/3, clean 
PRval PRpreq PRobeq

1.
2.
3.

.2092071 

.3098447 
.242096

.3005464

.2688525

.1945355

The listed values of P R p req  match those from m ta b le , and the v a lu e s  of PRobeq are th e  
observed proportions for each value of a r t .

To show how m g en , m ean p red  is used to compare predictions fro m  different m o d e ls , 
we begin by fitting a  model with no independent variables, which is  sim ply  fittin g  th e  
Poisson PDF:

. poisson art, nolog 
Poisson regression

Log likelihood = -1742.5735

Number of obs 
LR chi2(0) 
Prob > chi2 
Pseudo R2

915
0.00

0.0000

Coef. Std. Err. P> Iz I [95*/, Conf. Interval]

_cons .5264408 .0254082 20.72 0.000 .4766416 .57624
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Next, we compute predictions for counts 0-9:

. mgen, stub(PDF) pr(0/9) meanpred 
Predictions from:
Variable Obs Unique Mean Min Max Label

PDFval 10 10 4.5 0 9 Articles in last 3 yrs. ..
PDFobeq 10 10 .0993443 .0010929 .3005464 Observed proportion
PDFoble 10 10 .8328962 .3005464 .9934427 Observed cum. proportion
PDFpreq 10 10 .0999988 .0000579 .311469 Avg predicted Pr(y=#)
PDFprle 10 10 .8307106 .1839859 .9999884 Avg predicted cum. Pr(...
PDFob_pr 10 10 -.0006546 -.0691068 .1165605 Observed - Avg Pr(y=#)

Because we specified the stub PDF. mgen created a new variable called PDFpreq with the 
average predicted probabilities for counts 0-9 from a  univariate Poisson distribution. 
Variable PDFobeq contains the corresponding observed probability, while PDFval con­
tains the values of the count itself (for example, 1 for the row that contains information 
about the observed and predicted counts of y =  1).

Next, we fit the PRM with the independent variables used above,

. poisson art i.female i.married kid5 phd mentor, nolog
(output om itted)

and compute the average predictions:

. mgen, stub(PRM) pr(0/9) meanpred 
Predictions from:
Variable Obs Unique Mean Min Max Label

PRMval 10 10 4.5 0 9 Articles in last 3 yrs...
PRMobeq 10 10 .0993443 .0010929 . 3005464 Observed proportion
PRMoble 10 10 .8328962 .3005464 .9934427 Observed cum. proportion
PRMpreq 10 10 .0998819 .0009304 .3098447 Avg predicted Pr(y=#)
PRMprle 10 10 .8308733 .2092071 .9988188 Avg predicted cum. Pr(...
PRMob_pr 10 10 -.0005376 -.0475604 .0913393 Observed - Avg Pr(y=#)

Variable PRMpreq contains the average predictions based on the PRM we just fit.

We plot PDFobeq, PDFpreq, and PRMpreq against the count values in PDFval (which 
has the same values as PRMval) on the x  axis:

. label var PDFobeq "Observed"

. label var PDFpreq "Poisson PDF"

. label var PRMpreq "PRM"

. graph twoway connected PDFobeq PDFpreq PRMpreq PRMval,
> ytitle("Probability") ylabel(0(.1).4, gmax) xlabel(0/9) msym(0 Th Sh)
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— • —  Observed — A —  Poisson PDF

The graph shows th a t, even though many of the independent variables have significant 
effects 011 the number of articles, there is only a modest improvement in the predictions 
made by the PRM over the univariate Poisson distribution. This suggests the need 
for an alternative model. Although an incorrect model might reproduce the observed 
distribution of counts reasonably well, systematic discrepancies between the predicted 
and observed distributions suggest th a t an alternative model should be considered. In 
section 9.7, we discuss other ways to compare the fit of the PRM model and alternative 
models.

.2.6 (Advanced) Exposure time

This section is marked as advanced because it may be more useful to 
read if you are working with an application in which observations vary 
in term s of exposure time— th a t is, how long they have been at risk of 
the event being counted. If you have previous experience with survival 
models or event history models, this section may also help you better 
understand how modeling event counts outcomes is related to modeling 
whether events have happened.

So far, we have implicitly assumed th a t each observation was at risk of an event 
occurring for the same amount of time. For our example, for each person in the sample, 
we counted their articles over a 3-year period. Often, when collecting data, however, 
different observations have different exposure times. For example, the sample of scien­
tists might have received their degrees in different years, and our outcome could have 
been the total publications from the PhD to the date of the survey. The amount of 
time in the career would clearly affect the number of publications, and scientists vary 
in the length of their careers. The same issue arises if we use d ata  in which the counts
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are collected from regions that have different sizes or populations. For example, if the 
outcome variable was the number of homicides reported in a city, the counts would be 
affected by the population size of the city. The methods we explain in this section could 
be applied in the same way.

To illustrate how to adjust for exposure time and the problems that occur if you do 
not make the appropriate adjustment, we have artificially constructed a variable named 
prof age measuring a scientist’s professional age. This is the amount of time th a t a 
scientist has been “exposed” to the possibility of publishing. The variable t o t a l a r t s  
is the to tal number of articles during the scientist’s career. Fitting a PRM, we obtain 
the following results:

. use couexposure4, clear
(couexposure4.dta I Simulated data illustrating exposure time I 2013-11-13)
. poisson totalarts kid5 mentor, nolog irr
Poisson regression Number of obs = 915

LR chi2(2) = 277.18

Log likelihood = -2551.3379
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.0515

totalarts IRR Std. Err. z P>lz| [95*/. Conf. Interval]

kid5
mentor
_cons

1.162731
1.024589
2.132354

.027327
.0014951
.0613343

6.42
16.65
26.33

0.000
0.000
0.000

1.110386
1.021663
2.015467

1.217544
1.027524
2.25602

As expected, the mentor’s productivity has a strong and significant effect on the 
student’s productivity. Surprisingly, having young children increases scientific produc­
tivity; most research in this area finds th a t having young children decreases productivity. 
One paper, however, found th a t having young children increases productivity. This re­
sult was an artifact from a sample where scientists w ith more children were older and 
the dependent variable was the total number of publications. Essentially, the number 
of children was a proxy for professional age, which has a positive effect on total publi­
cations. The same is true in our simulated data. Now, let’s consider how to adjust for 
the artifact.

Exposure time can be easily incorporated into count models. Let tj be the amount 
of time that observation i is a t risk. If //, is the expected number of observations for 
one unit of tim e for case i, then t i^ i  is the rate over a  period of length Assuming 
only two independent variables for simplicity, our count equation becomes

HiU =  {exp (/3o + PiXi +  P2 X2 )} x U

Because t =  exp (Ini), the equation can be rewritten as

HiU =  exp (£0 +  -I- /32x 2 +  Ini*)

This shows th a t the effect of different exposure times among observations can be in­
cluded in the model as the log of the exposure time w ith its regression coefficient con­
strained to 1. This is exactly what S ta ta  does with the  exposure () option:
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. poisson totalarts kid5 mentor, nolog irr exposure(profage) 
Poisson regression Number of obs

LR chi2(2) 
Prob > chi2

Log likelihood = -2416.7457 Pseudo R2

915
245.43
0.0000
0.0483

totalarts IRR Std. Err. z P>lz| [95*/, Conf. Interval]

kid5 
mentor 
_cons 

ln(profage)

.8991712
1.024787
1.411663

1

.0213644

.0014781

.0402961
(exposure)

-4.47
16.98
12.08

0.000
0.000
0.000

. 8582578 
1.021894 
1.334853

.9420349
1.027689
1.492893

Variable In  (p ro f age) appears ju s t as other variables, but the coefficient is shown 
as 1. There is no standard error or 2 statistic, because the coefficient was not estimated 
but was assumed to equal 1. The coefficients for kid5 and m entor can be interpreted 
using the same methods discussed earlier. The effect of the mentor’s productivity is 
nearly identical to our earlier results th a t did not adjust for exposure, but having young 
children now decreases scientific productivity, consistent w ith other studies.

We can obtain the same result by using the o f f s e t  () option, where we specify 
a variable containing the log of the exposure time instead of the exposure time. For 
example,

poisson totalarts kid5 mentor, nolog irr offset(lnprofage)
Poisson regression Number of obs 

LR chi2(2)
915

245.43

Log likelihood = -2416.7457
Prob > 
Pseudo

chi2 = 
R2

0.0000
0.0483

totalarts IRR Std. Err. z P> 1 z 1 [95*/, Conf. Interval]

kid5 .8991712 .0213644 -4.47 0.000 .8582578 .9420349
mentor 1.024787 .0014781 16.98 0.000 1.021894 1.027689
_cons 1.411663 .0402961 12.08 0.000 1.334853 1.492893

lnprofage 1 (offset)

The effect of exposure time is constant over time. For those familiar with survival 
models, this is the same as saying the hazard of publishing is constant. To relax this 
assumption, we could estimate a param eter for the log of exposure time instead of 
constraining it to 1. This would require including lnp ro f age as an independent variable 
and estimating its effect just as we would any other independent variable. We could 
also use a different functional form to address the possibility of nonlinear effects of time 
on productivity.

Although the exposureQ  and o f f s e t () options are not considered further in this
chapter, they can be used with the other models we discuss.
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.3 The negative binomial regression model
The PRM  accounts for observed heterogeneity by specifying th a t the rate Hi is a function 
of observed xjt’s. In practice, the  PRM rarely fits because of overdispersion. That is, 
the model underfits the amount of dispersion in the outcome. The negative binomial
regression model (NBRM) addresses the failure of the PRM  by adding the parameter a
that reflects unobserved heterogeneity among observations.3 For example, with three 
independent variables, the PRM  is

Hi =  exp (A) +  f a n  + p2Xi2  +  £ 3^ 3)

The NBRM  a d d s  the error e th a t  is assumed to be uncorrelated with the ars,

Jli = exp (A) +  PlXil +  02x i2 +  03%i3 +  £i) (9.3)

With basic algebra and defining S as exp (e), the model becomes

Hi =  exp (A) +  PiXn +  /32xi2 +  03**3) exp (e*)
=  exp (/?o +  P ixn  + p2 Xi2  +  foxid)  <5*

To identify the model, we assume that E(6) =  1, which corresponds to the assump­
tion E  (e) =  0 in the linear regression model. With this assumption, it follows that 
E (Jl) = f iE (6) = h • Thus the  PRM  and the NBRM have the same mean structure. 
Accordingly, if the assumptions of the NBRM are correct, the expected rate for a given 
level of the independent variables will be the same in both  models. However, the stan­
dard errors in the PRM are biased downward, resulting in spuriously large 2-values and 
spuriously small p-values (Cameron and Trivedi 2013).4

To better understand the link between the PRM and the NBRM , as well as their dif­
ferences, suppose that the error term  e in (9.3) is an observed variable with a regression 
coefficient constrained to equal 1:

Jii =  exp (A, +  Pixn  + /32x i2 +  A?^3 +  l£i)

The distribution of observations conditional on the values of both  the x, and the £* has 
a Poisson distribution, just as it did for the PRM. Accordingly,

P r{yi | Xj, £i) = , ■■■
yi-

However, because e is unknown, we cannot compute P r(y  | x , e). This limitation is 
resolved by assuming that exp(£) has a gamma distribution (see Long [1997, 231 232] 
or Cameron and Trivedi [2013, 80-89]).

3. T he NBRM can also be derived through a process of contagion where the occurrence of an event 
changes the probability of further events— an approach not considered further here.

4. As we discuss in section 9.3.5, robust standard errors would be consistent and would produce 
p-values that yield nominal coverage, as discussed by Cam eron and Trivedi (2013). Instead of 
following the robust approach, we focus on using a more efficient estim ator whose standard errors 
are consistently estimated.



508 Chapter 9 Models for count outcomes

The probability of y  conditional on x .  but not conditional on e, is co m p u ted  a s  a  
weighted combination of Pr (y | x ,  e) for all values of £, where the w e ig h ts  are d e term in ed  
by Pr{exp(e)} from the gamma distribution. The mathematics for this m ix in g  a re  
complex and not particularly helpful for understanding the interpretation o f  th e  m o d e l,  
leading to the negative binomial distribution for y given x :

P r ( „  | x) =  r i g * « - 1) V _ i L _ V
li/l ' »!r(a-‘) U-'+My V«_1+/'/

where r(-) is the gamma function. T he parameter a  determines the degree o f  d isp ersio n  
in the predictions, as illustrated by the following figure:

Panel A: NBRM with a = 0.5

x

Panel B: NBRM wi th a = 1 .0

In both panels, the dispersion of predicted counts for a given value of x  is larger th a n  in 
the PRM (compare with the figure on page 488). This is m ost easily seen in th e  g r ea te r  
probability of zero counts. Further, the larger value of a  in panel B results in g r e a te r  
spread in the data. If a  =  0, the NBRM  reduces to the PR M , which turns o u t to  b e  th e  
key to testing for overdispersion. This is discussed in section 9.3.3.
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9.3.1 Estimation using nbreg

The NBRM  is fit with the fo llo w in g  co m m a n d :

nbreg depvar [ indepvars] [i f ]  [in]  [ weight ] [ ,  nocons ta n t

d is p e r s io n ( [mean | co n s tan t ]) exposure(vamame)  vce(vcetype) i r r  ]

Most options are the same as those for poisson with the notable exception of the 
option d is p e rs io n O , which is discussed in the next section. Because of differences in 
how p o isso n  and nbreg are implemented in Stata, models fit with nbreg take longer
to converge.

NB1 and NB2 variance functions

The d is p e rs io n O  option specifies the function for the variance of y given x, referred 
to as the dispersion function. To understand what this means, consider the dispersion 
function from the PRM. In th a t model,

Var (jfc | Xi) =  £  (yi | x ,) =  m

which is referred to as equidispersion. In real-world data , counts are usually overdis­
persed, meaning that the conditional variance is larger than  the conditional mean. 
The NBRM  addresses this problem by allowing overdispersion through the a  parameter. 
Cameron and Trivedi (2013) show th a t a variety of variance functions are possible. The 
most commonly used function, the default in Stata, is

Var (yi \ x )  = fii + ott f  (9-4)

which Cameron and Trivedi refer to as the NB2 model, in  reference to the squared term 
//“. The d is p e rs io n (c o n s ta n t)  option specifies the NB1 model in which

Var (yi | x) =  Hi + a ^ i  (9.5)

NBi r e fe r s  t o  the power of 1 in the a / i  term. Because the NB2 model is used most often 
in a p p lie d  research, we use this form of the model throughout the book.
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Here vve use the same example as for the PRM above:

.3.2 Example of NBRM

. use couart4, clear 
(couart4.dta | Long data on Ph.
. nbreg art i.female i.married
Fitting Poisson model:
Iteration 0: log likelihood =
Iteration 1: log likelihood =
Iteration 2: log likelihood =
Iteration 3: log likelihood =
Fitting constant-only model:
Iteration 0: log likelihood =
Iteration 1: log likelihood =
Iteration 2: log likelihood =
Iteration 3: log likelihood =
Fitting full model:
Iteration 0: log likelihood =
Iteration 1: log likelihood =
Iteration 2: log likelihood =
Iteration 3: log likelihood =
Negative binomial regression

D. biochemists | 2014-04-24) 
kid5 phd mentor

■ -1651.4574
■ -1651.0567 
-1651.0563 
-1651.0563

■1625.4242
•1609.9746
•1609.9368
-1609.9367

-1565.6652
-1561.0095
-1560.9583
-1560.9583

Number of obs 
LR chi2(5)

915
97.96

Dispersion = mean 
Log likelihood = -1560.9583

Prob > 
Pseudo

chi2
R2

0.0000
0.0304

art Coef. Std. Err. z P> lz I [957, Conf. Interval]

female
Female -.2164184 .0726724 -2.98 0.003 -. 3588537 -.0739832

married
Married

kid5
phd

mentor
_cons

.1504895 
-.1764152 
.0152712 
.0290823 
.256144

.0821063 

.0530598 

.0360396 

.0034701 

.1385604

1.83
-3.32
0.42
8.38
1.85

0.067
0.001
0.672
0.000
0.065

-.0104359
-.2804105
-.0553652
.0222811

-.0154294

.3114148
-.07242
.0859075
.0358836
.5277174

/lnalpha -.8173044 .1199372 -1.052377 -.5822318

alpha .4416205 .0529667 .3491069 .5586502

Likelihood-ratio test of alpha=0: chibar2(01) = 180.20 Prob>=chibar2 = 0.000

The output is similar to that of p o isso n  except for the results a t the bottom of the 
output, which initially can be confusing. Although the model is defined in terms of 
the parameter a , nbreg estimates In (a), which forces the estim ate of a  to be positive 
as required for the gamma distribution. The estimate In (a ) is reported as /Inalpha , 
with the value of a  shown on the next line. Test statistics are not given for In (a) or a  
because they require special treatm ent, as discussed next.
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1.3.3 Testing for overdispersion

Because the NBRM reduces to  the PRM when a  =  0, we can test for overdispersion by 
testing Hq: a  =  0. There are two points to remember:

1. The nb reg  command estim ates In (a) rather than a. A test of Ho: In (a) =  0 
corresponds to testing H 0: a  =  1, which is not the hypothesis we want to test.

2. Because a  must be greater than or equal to 0, the sampling distribution of 2 
when a  =  0 is only half of a normal distribution because values less than 0 have 
a probability of 0. This requires an adjustment to  the usual significance level of 
the test, which is done automatically by Stata.

S t a t a  p r o v id e s  a l ik e l ih o o d -r a t io  (LR) te s t  o f  Ho: a  =  0  th a t  is lis ted  a fte r  th e
e s t im a te s  o f  t h e  param eters:

Likelihood-ratio test of alpha=0: chibar2(01) = 180.20 Prob>=chibar2 = 0.000

The test statistic ch ibar2(01) is computed as

G2 =  2  ( I i i L n b r m  -  I n L p R M )

=  2 (-1560.9583 -  -1651.0563) =  180.20

T h e  lo g  l ik e lih o o d  for th e  PRM is  sh o w n  in th e  i te r a t io n  lo g  for nbreg under th e  h e a d in g  
F i t t i n g  P o i s s o n  model, w it h  th e  lo g  lik elih ood  for t h e  NBRM show n la st in  t h e  log. 
T h e  s ig n if ic a n c e  level o f  th e  t e s t  is a d ju s te d  for th e  tr u n c a te d  sa m p lin g  d is tr ib u tio n  for
a. For d e ta i ls ,  y o u  ca n  c lick  o n  th e  b lu e  linked ch ibar2 (01 ) in  th e  R esu lts  w in d o w . In 
our e x a m p le ,  th e  te s t  p r o v id e s  s t r o n g  e v id en ce  o f  o v e r d isp e r s io n . You can  su m m a r iz e  
th is  b y  sa y in g  th e  fo llow in g:

Because there is significant evidence of overdispersion (G2 = 180.2, p <
0.001), the NBRM is preferred over the PRM.

As with other LR tests, this test is not available if robust standard errors are used, 
including when probability weights, survey estimation, or the c lu s te r  () option is used. 
We talk more about robust standard errors shortly. Given that, in our experience, 
the test usually indicates overdispersion in cases where the LR test is available, we 
suggest that investigators using robust standard errors begin by fitting the NBRM  - 
simply assume there is overdispersion.

.3.4 Comparing the PRM  and NBRM using estimates table

T o u n d e r s ta n d  how th e  PRM a n d  NBRM differ, i t  is u s e fu l  to  c o m p a re  th e  e s t im a te s  from  
p o i s s o n  a n d  nbreg sid e  b y  sid e:
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. quietly poisson art i.female i.married kid5 phd mentor

. estimates store PRM

. quietly nbreg art i.female i.married kid5 phd mentor

. estimates store NBRM

. estimates table PRM NBRM, b(*/,9.3f) t p('/,9.3f) varlabel
> drop(lnalpha:_cons) stats(alpha N) eform vsquish

Variable PRM NBRM

female
Female 0.799 0.805

-4.11 -2.98
0.000 0.003

married
Married 1.168 1.162

2.53 1.83
0.011 0.067

# of kids < 6 0.831 0.838
-4.61 -3.32
0.000 0.001

PhD prestige 1.013 1.015
0.49 0.42

0.627 0.672
Mentor's # of articles 1.026 1.030

12.73 8.38
0.000 0.000

Constant 1.356 1.292
2.96 1.85

0.003 0.065

alpha 0.442
N 915 915

legend: b/t/p

The estimated parameters from the PRM and the NBRM are close, but the 2-values 
for the NBRM are consistently smaller than those for the PRM. This is the expected 
consequence of overdispersion. If there is overdispersion, estim ates from the PRM are 
inefficient, w ith standard errors th a t are biased downward (meaning that the z-values 
are inflated), even if the model includes the correct variables. As a consequence, if the 
PRM is used when there is overdispersion, the risk is th a t a variable will mistakenly 
be considered significant when it is not as is the case for m arried  in our example. 
Accordingly, it is important to test for overdispersion before using the PRM.

.3.5 Robust standard errors

In the presence of overdispersion, the standard errors in the PRM are downwardly bi­
ased. Accordingly, Cameron and Trivedi (2013, 85) recommend that robust standard 
errors be used—not only with the PRM bu t also with the NB R M —in case the variance 
specification of the model is misspecified. To illustrate how robust standard errors can 
affect the statistical significance of regression coefficients, the following table compares 
estimates from the PRM and NBRM both with and without using robust standard errors:
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. quietly poisson art i.female i.married kid5 phd mentor

. estimates store PRM

. quietly poisson art i.female i.married kid5 phd mentor, vce(robust)

. estimates store PRMrobust

. quietly nbreg art i.female i.married kid5 phd mentor 

. estimates store NBRM

. quietly nbreg art i.female i.married kid5 phd mentor, vce(robust)

. estimates store NBRMrobust

. estimates table PRM PRMrobust NBRM NBRMrobust, b(*/.9.3f) se(*/,9.4f) pC/.9.3f)
> varlabel drop(lnalpha:_cons) stats(alpha N) eform vsquish modelwidth(lO)

Variable PRM PRMrobust NBRM NBRMrobust

female
Female 0.799 0.799 0.805 0.805

0.0436 0.0573 0.0585 0.0568
0.000 0.002 0.003 0.002

married
Married 1.168 1.168 1.162 1.162

0.0717 0.0957 0.0954 0.0936
0.011 0.058 0.067 0.062

# of kids < 6 0.831 0.831 0.838 0.838
0.0334 0.0465 0.0445 0.0445
0.000 0.001 0.001 0.001

PhD prestige 1.013 1.013 1.015 1.015
0.0267 0.0425 0.0366 0.0381
0.627 0.760 0.672 0.684

Mentor's # of articles 1.026 1.026 1.030 1.030
0.0021 0.0039 0.0036 0.0040
0.000 0.000 0.000 0.000

Constant 1.356 1.356 1.292 1.292
0.1397 0.1988 0.1790 0.1812
0.003 0.038 0.065 0.068

alpha 0.442 0.442
N 915 915 915 915

legend: b/se/p

There are several things to  note. First, param eter estimates are not affected by 
vising robust standard errors. For example, the coefficient for f e m a le  is 0.799 for both 
PRM and P R M robust. Second, for the PRM, the robust standard errors are substantially 
smaller than the nonrobust standard errors. The m ost noticeable difference is with 
m arried , where the effect is significant at the 0.01 level when robust standard errors 
are not used bu t p = 0.06 with robust standard errors. For the NBRM, the two types of 
standard errors are similar. Third, the robust standard errors in the PRM are similar to 
the standard  errors in the NBRM , illustrating that robust standard errors for the PRM  
correct for the downward bias in the nonrobust standard  errors. However, even if the 
coefficients and standard errors for the PRM estimated with robust standard errors and 
those for the NBRM are similar, predicted probabilities from the two models can be quite 
different because these probabilities depend on the dispersion parameter for the NBRM. 
In other words, in the presence of overdispersion, the NBRM is preferred for accurate
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estimation of predicted probabilities. Cameron and Trivedi (2013, sec. 3.3) show that 
the NBRM is also robust to distributional misspecification when robust standard errors 
are used.

9.3.6 Interpretation using E(y j x)

Because the mean structure for the NBRM  is identical to  that for the PRM, the same 
methods of interpretation with rates can be used. As before, the factor change for an 
increase of in Xk equals

E  (y | x ,  x k +  8) _  akS 
E ( y  | x , x k )

and the corresponding percentage change equals

100 x g  („ 1 x ,x t +  < ) - £ ( »  | x ^ t ) _  100 x ^  _
E ( y  | x,*fe) ’

Factor and percentage change coefficients can be obtained using l is tc o e f .  For 
example, the factor change coefficients for female and m entor are

. nbreg art i.female i.married kid5 phd mentor, nolog 
(output omitted)

. listcoef female mentor
nbreg (N=915): Factor change in expected count 

Observed SD: 1.9261

b z P> Izl e~b e-bStdX SDofX

female
Female
mentor

-0.2164
0.0291

-2.978
8.381

0.003
0.000

0.805
1.030

0.898
1.318

0.499
9.484

and the percentage change coefficients are

. listcoef female mentor, percent 
nbreg (N=915): Percentage change in expected count 

Observed SD: 1.9261

b z P> | z I */. V.StdX SDofX

female
Female
mentor

-0.2164 -2.978 0.003 -19.5 -10.2 0.499
0.0291 8.381 0.000 3.0 31.8 9.484
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These coefficients can be interpreted as follows:

Being a female scientist decreases the expected number of articles by a factor 
of 0.805, holding other variables constant. Equivalently, being a female 
scientist decreases the expected number of articles by 19.5%, holding other 
variables constant.

For every additional article by the mentor, a scientist’s expected rate of 
productivity increases by 3.0%, holding other variables constant.

For a standard deviation increase in the mentor’s productivity, roughly 10 
articles, a scientist’s expected productivity increases by 32%, holding other 
variables constant.

As noted earlier, factor and percentage change coefficients for count models are often 
quite effective for interpretation in contrast to models in previous chapters for which 
we think factor and percentage changes in odds are not as readily miderstood.

The similarity in magnitude of coefficients in the PRM  and the NBRM, as well as the 
difference in standard errors when there is overdispersion, also affects predictions. To 
see this, we compute the rate of productivity for women from elite programs who have 
m entors with different levels of productivity:

. poisson art i.female i.married kid5 phd mentor, nolog
(output om itted)

. quietly mtable, estname(PRM_mu) ci at(mentor=(0(5)20) female=l phd=4)
> atmeans clear dec(2)
. nbreg art i.female i.married kid5 phd mentor, nolog

(output omitted)
. mtable, estname(NBRM_mu) ci at(mentor=(0(5)20) female=l phd=4)
> atmeans right dec(2) noatvars norownumbers brief
Expression: Predicted number of art, predict()

sntor PRM_mu 11 ul NBRM_mu 11 ul

0 1.15 1.03 1.27 1.12 0.96 1.28
5 1.31 1.18 1.44 1.30 1.13 1.46
10 1.49 1.35 1.63 1.50 1.32 1.68
15 1.69 1.53 1.85 1.73 1.52 1.95
20 1.92 1.74 2.11 2.00 1.73 2.28

The predicted rates, in the columns PRMjnu and NBRM_mu, are similar, but the confidence 
intervals for the PRM are narrower than those for the NBRM , reflecting the under­
estimation of standard errors in the PRM when there is overdispersion. In the next 
section, we will show how predicted probabilities differ between the two models even 
when the rates are similar.

M arginal effects for the NBRM  can be computed and interpreted exactly as they were 
for t h e  PRM. For example, we can compute the average discrete change for increasing 
th e  number of young children in a scientist's family by 1:
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. nbreg axt i.female i.married kid5 phd mentor, nolog 
(output om itted)

. mchange kid5, amount(one) stats(ci) brief 
nbreg: Changes in mu | Number of obs = 915 
Expression: Predicted number of art, predict()

Change LL UL

kid5
+1 -0.276 -0.426 -0.125

.3.7 Interpretation using predicted probabilities

In the presence of overdispersion, predicted probabilities from the NBRM can differ sub­
stantially from those for the PRM , even though the predicted rates are similar. The 
methods used to interpret predicted probabilities, however, arc the same with probabil­
ities for the NBRM  computed with

P r ( j / |x )  =  r ( ^ +  « " ')  (  O'* V ' 7  M
/yir̂ a:-1) \ a ~ i + f i j  \ a _ 1 +/z

where /i =  exp(x/3). Predicted probabilities for observed values of the independent 
variables can be computed using p re d ic t .  Average predicted probabilities or pre­
dicted probabilities a t specific values can be calculated using m table, mgen, mchange, 
or margins. Because there is nothing new in how to use these commands with the 
NBRM, we provide only a few examples th a t are designed to illustrate key differences 
and similarities between the PRM and the NBRM.

In this example, we use m table to compare predicted probabilities for counts 0 7, 
specified with the option pr (0 /7 ), for the two models for a  hypothetical case of someone 
who is average on all characteristics.

. poisson art i.female i.married kid5 phd mentor, nolog 
(output o m itted )

. quietly mtable, rowname(PRM) pr(0/7) atmeans 

. nbreg art i.female i.married kid5 phd mentor, nolog 
(output om itted)

. mtable, rowname(NBRM) pr(0/7) atmeans below brief decimals(3) width(6)
Expression: Pr(art), predict(pr())

0 1 2 3 4 5 6 7

PRM 0.200 0.322 0.259 0.139 0.056 0.018 0.005 0.001
NBRM 0.298 0.279 0.189 0.111 0.061 0.031 0.016 0.008

The predicted probability of a 0 is 0.20 for the PRM and 0.30 for the NBRM, a substantial 
difference. This difference is offset by higher probabilities for the PRM for counts 1-3. 
At 4 and above, the probabilities are larger for the NBRM. The larger probabilities at 
the higher and lower counts reflect the greater dispersion in the NBRM compared with 
the PRM. Differences between predictions in the NBRM and the PRM  are generally most
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noticeable for Os. You can think of it this way. With overdispersion, the variance in 
the predicted counts increases. Because counts cannot be smaller than 0, the increased 
variation below the mean leads to predictions “stacking up” at 0. Above the mean, the 
greater variation affects all values.

To highlight the greater probability of a 0 in the NBRM, we plot the probability 
of Os as mentor productivity increases from 0 to 50, holding other variables a t the 
mean. Using mgen, we make predictions for the probability of 0 at different levels of the 
m entor’s productivity for the PRM:

. poisson art i.female i.married kid5 phd mentor, nolog 
(output omitted)

. mgen, atmeans at(mentor=(0(5)50)) stub (PRM) pr(0)
Predictions from: margins, atmeans at(mentor=(0(5)50)) predict(pr(0))
Variable Obs Unique Mean Min Max Label

PRMprO 11 11 .110384 .009894 .2760837 pr(y=0) from margins
PRM110 11 11 .0954709 .0026402 .2517684 95*/, lower limit
PRMulO 11 11 .125297 .0171479 .3003991 95/C upper limit
PRMmentor 11 11 25 0 50 Mentor's # of articles
PRMCprO 11 11 .110384 .009894 .2760837 pr(y<=0)

Specified values of covariates
1 . 1. 

female married kid5 phd

.4601093 .6622951 .495082 3.103109

We make corresponding predictions for the NBRM:

. nbreg art i.female i.married kid5 phd mentor, nolog 
(output om itted)

. mgen, atmeans at(mentor=(0(5)50)) stub(NBRM) pr(0)
Predictions from: margins, atmeans at(mentor=(0(5)50)) predict(pr(0))
Variable Obs Unique Mean Min Max Label

NBRMprO 11 11 . 1954706 .0648641 .371642 pr(y=0) from margins
NBRM110 11 11 .1629587 .0318453 .3382501 95*/, lower limit
NBRMulO 11 11 .2279824 .0978828 .4050339 95% upper limit
NBRMmentor 11 11 25 0 50 Mentor's # of articles
NBRMCprO 11 11 .1954706 .0648641 .371642 pr(y<=0)

Specified values of covariates
1 . 1 . 

female married kid5 phd

.4601093 .6622951 .495082 3.103109

We use these results to graph the predictions along with their confidence intervals:

. label var PRMprO "PRM"

. label var NBRMprO "NBRM"
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. graph twoway
> (rarea PRM110 PRMulO NBRMmentor, color(gsl4))
> (rarea NBRM110 NBRMulO NBRMmentor, color(gsl4))
> (connected PRMprO NBRMmentor, lpattern(dash) msize(zero))
> (connected NBRMprO NBRMmentor, lpattern(solid) msize(zero)) ,
> legend(on order(3 4)) ylabel(0(.1) .4, gmax)
> ytitle("Probability of a zero count")

The ra re a  graphs add the shaded confidence intervals, with the connected graphs 
drawing the lines for predicted probabilities. The o rd e r () suboption of the legend 
option indicates to order the lines in the legend to start w ith the third graph (that is. 
the first connected graph), followed by the fourth. Because graphs 1 and 2 are not 
included in o rd e r  () , no entries are included in the legend for the raxea graphs, which 
is what we want. The following graph is created:

----- PRM ----------- NBRM

For both models, the probability of a 0 decreases as the  mentor’s productivity in­
creases, but the predicted probability of a scientist not publishing is substantially larger 
for the NBRM. Because both models have roughly the same expected number of publica­
tions, the higher proportion of Os for the NBRM is being offset by the higher proportion 
of larger counts that are predicted by this model. The smaller confidence interval for the 
predictions from the PRM reflects the underestimation of standard  errors when there is 
overdispersion. In this example, the PRM substantially underestimates the probability 
of a scientist not publishing, but it. does this with excessive precision!

.4 Models for truncated counts
Modeling zeros often poses special problems in count models. One type of problem 
arises when observations with outcomes equal to 0 are missing from the sample because 
of the way the data were collected. For example, suppose th a t we are gathering data to 
study scientific productivity among chemists but that we do not have a sampling roster
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of all chemists with PhDs. One solution is to take a sample from those scientists who 
published at least one article th a t was listed in Chemical Abstracts , which excludes all 
chemists who have not published. O ther examples of truncation are easy to find. A 
study of how many times people visit national parks could be based on a survey given 
to people entering the park. Or, when you fill out a customer satisfaction survey after 
buying a TV , you might be asked how many TVs are in your household, leading to a 
dataset in which everyone has a t least one TV.

Zero-truncated count models are designed for instances like these, where observations 
with an outcome of 0 exist in the population but have been excluded from the sample. 
The zero-truncated Poisson model (Z T P ) begins with the PRM from section 9.2:

P r ( , i = f c i x ) = ^ M :
Vi-

where m  = exp (x,/3). For a given the probability of observing a 0 is

P r (it/i =  0 | x,) =  exp {-Hi)

and the probability of a positive (th a t is, nonzero) count is

P r (y{ > 0 | Xi) =  1 -  exp (- /x t) (9-6)

Because our counts are truncated a t 0, we want to compute the probability for each 
positive count given that we know the count must be greater than 0 for a case to be 
observed. By the law of conditional probability,

Thus the conditional probability of observing a specific value y — k given that we know 
the count is not 0 is

Pr(yi =  fc | S i > 0 , x j) =  Pr(!/i =  fc& !'i> 0 |3 C dPr (yi >  0 | Xi)

Given the probability that y  =  k and y > 0 is simply the probability that y — k, and 
substituting (9.6) leads to the conditional probability

, . . n n P r ( ^  = k  I Xi) i n 7 \
Pr (i/i =  12/i > 0, Xj) =  1_ exp{_,tt) (9 7)

This formula increases each unconditional probability by the factor {1 — exp (—//)} ,
forcing the probability mass of the truncated distribution to sum to 1.

W ith a truncated model, there are two types of expected counts that might be of 
interest. F irst, we can compute the expected rate w ithout truncation. For example, we 
might want to estimate the expected number of publications for scientists in the entire 
population, not just among those who have at least one article. We will refer to  this
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as the unconditional prediction. Im portantly, we use “unconditional” to indicate that 
the prediction applies to the whole population; unconditional predictions are still, of
course, conditional on x. In the Z TP, the unconditional ra te  has the same formula as
for the standard PRM:

E{Vi I Xj) =  exp (xj/3)

Second, we can compute the expected rate given that the count is positive, written as 
E (y  | y > 0, x ). For example, among those who publish, what is the expected number 
of publications? Or, among those who see the doctor at least once a year, what is the 
average number of visits with a doctor? The conditional ra te must be larger than the 
unconditional rate because we are excluding Os. As with the conditional probability in 
(9.7), the ra te  increases proportionally to the probability of a positive count:

E  {yi \ v i> 0 ,X i )  = — - — — - =  ------------- ----------- r  (9.8)
P r (yi > 0 | Xj) l - e x p ( —/¿¿)

The same idea applies to the NBRM , where

F(yi + a ~ [) /  a;-1
P r (yi | Xi) = tH

Accordingly, P r (y =  0 | x) =  (1 + ap,) and Pr (y > 0 | x) =  1 — (1 + afi) l^a . The 
conditional probability in the zero-truncated negative binomial model (ZTNB) is

^  / i x P r o l ix » )
Pr ( y i  | yi >  0, X j) =

1 -  (1 +  aHi) 1/a 

and the conditional mean equals

E(y i \ y i > 0 , x i ) = ------ — —— (9. 9)
l - ( l + Q / / j )  '

The adverse effects of overdispersion are worse with truncated models. When the 
sample is not truncated, using the PRM in the presence of overdispersion underestimates 
the standard errors but does not bias the estimated /3’s. W ith the ZTP, overdispersion 
results in biased and inconsistent estim ates of the f t s and, consequently, in biased 
estimates of rates and probabilities (Grogger and Carson 1991). Accordingly, before 
using the ZTP, you should check for overdispersion by fitting the ZTNB. As with the 
NBRM, overdispersion in the ZTNB is based on an LR test of a  =  0, which is included in 
the output for the ZTNB (see page 511).
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9.4.1 Estimation using tpoisson and tnbreg

The ZTP is fit with the command tp o isso n , and the ZTNB is fit with the command 
tnbreg:

tp o is so n  depvar [ indepvars] [ i f  ] [in ] [ weight] [ ,  options]

tn b reg  depvar [ indepvars ] [i f ]  [in ] [ weight ] [ , options ]

where options are largely the same as those for p o isso n  and nbreg. These commands 
can also be used when the sample is truncated at a  value greater than 0. Imagine a 
study in which the outcome is number of criminal offenses with data that are collected 
only on people with multiple offenses, so only people with a count of at least two are 
included in the dataset. A model for this outcome can be fit by adding the 1 1 (# )  
option to cither tp o isson  or tn b re g , where #  is the value of the largest nonobserved 
count. In the example where only individuals with a count of a t least two are included, 
this option should be specified as 1 1 (1 ). The default for both tpo isson  and tnb reg  is 
a zero-truncated model (that is, 11 (0 )), so you do not have to  specify this option for 
zero-truncated models.5

Example of zero-truncated model

To illustrate zero-truncated count models, we continue our example of scientific pro­
ductivity with the outcome variable a r ttru n c , which artificially recodes values of 0 in 
a r t  to missing. We begin by truncating the sample to  exclude scientists who have no 
publications.

. use couart4, clear
(couart4.dta | Long data on Ph.D. biochemists | 2014-04-24) 
. sum art arttrunc

Variable Obs Mean Std. Dev. Min Max

art 915 1.692896 1.926069 0 19
arttrunc 640 2.420313 1.882269 1 19

. drop if art==0
(275 observations deleted)
. sum art arttrunc

Variable Obs Mean Std. Dev. Min Max

art 640 2.420313 1.882269 1 19
arttrunc 640 2.420313 1.882269 1 19

After dropping those 275 observations, we have a truncated  sample of 640 scientists.

5. In Stata 12, tpoisson and tnbreg replaced the ztp and ztnb com mands that only allow truncation 
at 0. Users of Stata 11 or before should use the latter com mands. Because predict does not 
support the prediction of specific counts or ranges when ztp or ztnb are used, quantities based on 
predicted probabilities cannot be computed using margins or our SPost commands.
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Next, we fit the ZTNB with the truncated sample, w h er e  w e u s e d  the i r r  o p tio n  so  
that the parameters are shown as factor change coefficients:

. tnbreg arttrunc i.female i.married kid5 phd mentor, nolog irr
Truncated negative binomial regression Number of obs = 640
Truncation point: 0 LR chi2(5) = 44.58
Dispersion = mean 
Log likelihood = -1027.3185

Prob > 
Pseudo

chi2
R2

0.0000
0.0212

arttrunc IRR Std. Err. z P>lz| [95*/. Conf. Interval]
female

Female .7829619 .0761181 -2.52 0.012 .6471253 .9473116
married
Married

kid5
phd

mentor
_cons

1.108954 
.8579072 
.9970707 
1.024022 
1.426359

.1213525

.0619658

.0479265

.0043898

.2807513

0.95
-2.12
-0.06
5.54
1.80

0.345
0.034
0.951
0.000
0.071

.8948841 

.7446614 

.9074256 
1.015454 
.969809

1.374233
.9883751
1.095572
1.032662
2.097836

/lnalpha -.6034753 .2249915 -1.044451 -.1625001

alpha .5469076 .1230496 .3518851 .850016

Likelihood-ratio test of alpha=0: chibar2(01) = 105.43 Prob>=chibar2 = 0.000

The output looks like that from nbreg  except that the title now says “Truncated nega­
tive binomial regression” and the truncation point is listed. The LR test provides clear 
evidence of overdispersion, as was the case with the NBRM. Indeed, the ZTNB is esti­
mating the same parameters as the NBRM but with more limited data. The effects of 
estimating the parameters with the truncated sample can be seen by comparing the 
estimates from the two models:
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Variable NBRM ZTNB

female
Female 0.805 0.783

-2.98 -2.52

married
Married 1.162 1.109

1.83 0.95

kid5 0.838 0.858
-3.32 -2.12

phd 1.015 0.997
0.42 -0.06

mentor 1.030 1.024
8.38 5.54

_cons 1.292 1.426
1.85 1.80

lnalpha
_cons 0.442 0.547

-6.81 -2.68

Statistics
N 915 640

legend: b/t

Although the estimates are similar, there is more sampling variability in the ZTNB 
(indicated by the smaller z-values), which is expected given th a t estimation uses more 
limited data.

.4.2 Interpretation using E(y | x)

If counts of zero are missing from your sample because of the way the data were collected, 
the param eters can be interpreted in the same way as those for the PRM and the NBRM. 
Essentially, the model fills in the data  that were lost when the data were collected. 
Accordingly, exp (/3k) is the factor increase in the ra te  for a unit increase in x k , holding 
other variables constant. Keep in mind that we are referring to the factor change in the 
unconditional rate E ( y  | x) not the conditional rate E  (y \ y > 0, x ) .

As with the NBRM and the PRM, you can use the i r r  option (as shown in the output 
above) or use l i s tc o e f  to compute factor change coefficients after running tp o is so n  
or tn b reg .
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. listcoef female mentor
tnbreg (N=640): Factor change in expected count 
Observed SD: 1.8823

b z P> 1 z I e~b e~bStdX SDofX
female

Female
mentor

-0.2447
0.0237

-2.517
5.538

0.012
0.000

0.783
1.024

0.886
1.278

0.497
10.329

Here are some examples of interpreting these results:

Being a female scientist decreases the expected number of papers by a factor 
of 0.78, holding other variables constant.

Each additional publication by the mentor increases the predicted number 
of publications by 2.4%, holding other variables constant.

A standard deviation increase in publication by the mentor increases the 
predicted number of publications by a factor of 1.28, holding other variables 
constant.0

9.4.3 Predictions in the estimation sample

Running p r e d ic t  after fitting a truncated count model will generate a new variable with 
predictions based on the values of the  independent variable for each observation. The 
predictions can be conditional or unconditional. Consider our hypothetical example in 
which scientists are in the sample only if they have published at least once. Uncondi­
tional predictions are predictions about the entire population of scientists, regardless of 
whether they have published. Conditional predictions are predictions conditional on the 
count being greater than the truncation point. If we want to make predictions about 
those who have published (that is, the count is greater than 0), we would use conditional 
predictions. As noted before, both unconditional and conditional predictions are still 
conditional on the values of the independent variables.

By default, p re d ic t  computes the unconditional rate. We can obtain the uncon­
ditional predicted probability of a specific count Pr (y = k ) with the option pr(fc) and 
the predicted probability of a count within a range P r(m  < y < n) with the option 
p r(m ,n ) . We can also compute conditional predictions th a t are conditional on the 
count being greater than the truncation point. We obtain conditional predictions about 
the rate with the option cm and conditional predicted probabilities with the option 
cpr() instead of p r ( ) .

6. The estimate for the effect of a standard deviation increase in the mentor’s productivity is computed 
as exp(/3nentor X  sdm0nt;or)'
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In our example, we use p r e d ic t  followed by summarize to show the average uncon­
ditional and conditional rates and to compare those with the mean number of articles 
in the sample.

. predict rate
(option n assumed; predicted number of events)
. label var rate "Unconditional rate of productivity"
. predict crate, cm
. label var rate "Conditional rate of productivity given at least 1 article"
. summarize rate crate arttrunc

Variable Obs Mean Std. Dev. Min Max

rate 640 1.687704 .641613 .9468752 8.397242
crate 640 2.425643 .5871667 1.774038 8.774148

arttrunc 640 2.420313 1.882269 1 19

Variable r a t e  is the unconditional rate of publication, and c ra te  is the conditional 
rate. The average unconditional ra te  is smaller because it is estimating the rate for a 
population th a t includes scientists with no publications. Because our sample includes 
only people who have published, the mean of a r t t r u n c  is very close to the average 
conditional rate. Recall th a t to illustrate truncated models, we dropped observations 
with zero publications. In the  full sample, the mean number of articles is 1.693, which 
is extremely close to the mean of ra te . Indeed, our model did an excellent job of 
predicting the unconditional rate.

.4.4 Interpretation using predicted rates and probabilities

m table, mgen, and mchange can compute conditional and unconditional rates and pre­
dicted probabilities. Unconditional rates are computed by default. Other type of pre­
dictions can be made using the p r e d ic t  0  option. For example, to compute the average 
conditional rate, you could use the command m tab le , p r e d ic t  (cm). To compute un­
conditional probabilities for counts from m  to n, we use the option p red ict ( p r (m / n ) ). 
To compute conditional probabilities, wre use p re d ic t  ( c p r (m / n ) ) .

To illustrate this, we compare the conditional and unconditional rates of productivity 
for married (m arried=l), female (f emale=l) scientists without young children (kid5=0), 
who are average 011 other characteristics:

. qui mtable, rowname(Unconditional) at(female=l married=l kid5=0) atmeans ci 

. mtable, rowname (Conditional) at(female=l married=l kid5=0) atmeans ci 
> predict(cm) below brief
Expression: Conditional mean of art > 11(1), predict(cm)

mu 11 ul

Unconditional 1.561 1.243 1.880
Conditional 2.308 2.062 2.553

An otherwise average married, female scientist without young children is predicted to 
publish 1.56 papers. However, if we know she has published a t least one paper, this pre­
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diction increases to 2.31 articles. The conditional rate is higher than the unconditional 
rate, as it m ust be, because the conditional rate includes only those with at least one 
paper. To compute unconditional probabilities from 0 to 5 articles for a married female 
scientist w ithout children, we type

. mtable, at(female=l married=l kid5=0) atmeans pr(0/5) ci brief 
Expression: Pr(art), predict(prO)

0 1 2 3 4 5
Pr(y) 0.323 0.272 0.177 0.104 0.058 0.031

11 0.240 0.253 0.150 0.081 0.042 0.020
ul 0.407 0.292 0.205 0.127 0.074 0.042

The probability of a zero count is 0.32 with a 95% confidence interval from 0.24 to 0.41, 
indicating th a t we expect that an otherwise average married female scientist with no 
children would have a 32% chance of having no publications. O ther probabilities can 
be interpreted similarly.

We cannot compute the conditional probability of a zero count because we are con­
ditioning on having a t least one publication. Accordingly, we compare unconditional 
and conditional probabilities of counts greater than 1:

. qui mtable, rowname(Unconditional) at(female=l married=l kid5=0) atmeans
> pr(1/5)
. mtable, rowname(Conditional) at(female=l married=l kid5=0) atmeans
> cpr(l/5) below brief
Expression: Pr(art | art>0), cpr()

1 2 3 4 5

Unconditional 0.272 0.177 0.104 0.058 0.031
Conditional 0.403 0.262 0.154 0.086 0.046

As expected, the conditional probabilities are larger than the unconditional probabil­
ities. This is because the unconditional probability of a 0 is 0.32, so the conditional 
predictions equal P r (y =  A; | x, y > 0) =  P r (y = k | x) /  {1 -  P r ( y  =  0 | x)}. Accord­
ingly, each unconditional probability is 32.3% lower than the corresponding conditional 
probability.

Although we do not illustrate them, other methods of interpretation that were used 
for the PRM and NBRM can also be used for count models with truncation.
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9.5 (Advanced) The hurdle regression model

This section is marked as advanced because it involves fitting a model 
th a t is not built-in to S tata. Obtaining estimates is, consequently, more 
complicated. The section is useful if you have an application of the hur­
dle model, and it also provides an opportunity to  learn about working 
with matrices and using the su e s t command to  combine results from 
different models.

The hurdle regression model (HRM ) combines a binary model to predict Os and a 
ZTP or ZTNB to  predict nonzero counts (Mullahy 1986; Cameron and Trivedi [2013, 
136-139]). Let y be a count outcome that is not truncated a t 0. Suppose that zero 
counts are generated by a binary process. Here we use a logit to model the binary 
outcome y = 0 versus y > 0, but other binary models could be used:

In this two-equation model, 0 is viewed as a hurdle th a t you have to get past before 
reaching positive counts. Positive counts are generated either by the ZTP or the ZTNB 
models from section 9.4. Because there are separate equations to predict zero counts 
and positive counts, this allows the process that predicts zeros to be different from the 
process th a t predicts positive counts.

The name “hurdle” might suggest that the process of moving from 0 to 1 with 
the count outcome is more difficult than subsequent increases. This makes sense in 
many count processes, including the case of scientific publishing: we might imagine that 
getting one’s first publication is especially difficult, and publishing is easier after that. 
In such cases, the number of zero counts would be greater than we would predict using 
the PRM or NORM. Unlike the zero-inflated models considered in section 9.6, however, 
the hurdle model can also be applied to cases in which there are fewer Os than expected. 
In such cases, getting over the hurdle is easier to achieve than subsequent counts.

The predicted rates and probabilities for the HRM are computed by mixing the results 
of the binary model and the zero-truncated model. The probability of a 0 is

Pr(y* = 0 | x*) =  7fi

as estim ated by a binary regression model. Because positive counts can occur only if you 
get past the 0 hurdle, which occurs with probability 1 — 7Tj, we rescale the conditional 
probability from the zero-truncated model to compute the unconditional probability

Pr (y{ | x t ) =  (1 -  ni) Pr {y{ | y{ > 0, x £) for y > 0 (9.10)
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The unconditional ra te is computed by combining the mean rate for those with y =  0 
(which, of course, is 0) and the mean rate for those with positive counts:

E(y i  | Xj) =  ( TTi x 0  ) +  { ( 1  -  7Tj) x E(yi \ y{ > 0 , X i )  } ( 9 . 1 1 )

=  ( 1  -  TTi) x E ( y i  | yi >  0 , X j )  ( 9 . 1 2 )

where E(yi \ yi > 0.x*) is defined by (9.8) for the ZTP and (9.9) for the ZTNB.

Although S tata does not include the hurdle model as a command, it can be fit 
by combining results from lo g i t  with those from either tn b reg  or tpo isson .' Using 
these estimation commands along with commands for working with predictions, we 
can compute predictions for the hurdle model that correspond to those for other count 
models. This process involves a few more steps than the other examples in this book, 
but these are straightforward and necessary for using this model. The process also 
provides an example of accomplishing postestimation analyses “by hand” .

A bigger problem is that the standard  errors for the param eter estimates and pre­
dictions obtained using this method will be incorrect. We will show you how to obtain
correct standard errors for the param eters by using S ta ta ’s s u e s t  command. Unfor­
tunately, these estimates cannot be used with p re d ic t , m argins, mtable, mgen, or 
mchange to obtain predicted probabilities. Accordingly, we show how to make these 
predictions with estimates from l o g i t  and tnbreg. The predictions will be correct 
because they do not depend on the standard errors; but the standard errors will be 
incorrect, so you cannot construct confidence intervals around these predictions or do 
hypothesis testing.

9.5.1 Fitting the hurdle model

With binary models (see chapter 5), S ta ta  defines the two outcome categories as 0 or 
any nomnissing value that is not 0. For the hurdle model, this is very convenient. If 
we use l o g i t  or p ro b it  for a count outcome, the resulting estimates are for a binary 
model of any positive count versus 0, which is precisely what we want for the first step 
in the hurdle model. Here we fit the logit model and store the estimates:

. logit art i.female i.married kid5 phd mentor, nolog or 
(output om itted)

. est store Hlogit

Then, we fit a ZTNB by using i f  a r t> 0  to restrict our sample to scientists with at least 
one article:

7. Hilbe (2005) has written a suite of com mands that fit a hurdle model. For example, his hnblogit 
command fits a hurdle model that uses a logit model for the 0s and an NBRM for the positive 
counts. You can find these commands by typing net search hurdle. These commands do not 
work with factor-variable notation.
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. tnbreg art i.female i.married kid5 phd mentor if art>0, nolog irr
(output om itted)

. est store Hztnb

This correctly estimates the coefficients, but the standard  errors are incorrect. Accord­
ingly, in the following table, the estimated coefficients are correct but the 2-values are 
not (we only show them for comparison with the correct standard errors, computed with 
su e s t  below):

. est table Hlogit Hztnb, b('/,9.3f) eform t

Variable Hlogit Hztnb

art
female

Female 0.778 0.783
-1.58 -2.52

married
Married 1.386 1.109

1.80 0.95

kid5 0.752 0.858
-2.57 -2.12

phd 1.022 0.997
0.28 -0.06

mentor 1.083 1.024
6.15 5.54

_cons 1.267 1.426
0.80 1.80

lnalpha
_cons 0.547

-2.68

legend: b/t

To obtain the correct standard errors, we use the s u e s t  command (see [r ] su es t), 
which takes into account th a t even though the two models were independently estimated, 
they are dependent on one another.
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. suest Hlogit Hztnb, vce(robust) eform(expB)
Simultaneous results for Hlogit, Hztnb

Number of obs = 915

expB
Robust 

Std. Err. z P>lz| [95*/, Conf. Interval]

Hlogit_art
female

Female .7779048 .1215446 -1.61 0.108 .5727031 1.056631

married
Married

kid5
phd

mentor
_cons

1.385739
.7518272
1.022468
1.083419
1.267183

.2475798

.0831787

.0822485

.0154716

.3694752

1.83
-2.58
0.28
5.61
0.81

0.068
0.010
0.782
0.000
0.417

.9763455

.6052643

.8733296
1.053515
.7155706

1.966796 
.93388 

1.197075 
1.114171 
2.244016

Hztnb_art
female

Female .7829619 .0724833 -2.64 0.008 .6530404 .9387312

married
Married

kid5
phd

mentor
.cons

1.108954 
.8579072 
.9970707 
1.024022 
1.426359

.1169726 

.0626125 

.0504934 

.0050724 
.27488

0.98
-2.10
-0.06
4.79
1.84

0.327
0.036
0.954
0.000
0.065

.9018383
.743562
.9028585
1.014129
.9776649

1.363636 
.9898365 
1.101114 
1.034012 
2.080979

Hztnb_lnal~a
_cons .5469076 .1302053 -2.53 0.011 .3429761 .8720957

You can confirm th a t the param eter estimates are the same as those shown with 
estim ates ta b le  earlier but that the 2-values differ.

With the hurdle model, a variable can be significant in one part of the model but not 
in the other part. For example, women are not significantly different from men “getting 
over the hurdle” , but they have a significantly lower rate of publication once over the 
hurdle. For th a t m atter, coefficients for the same variable can be in opposite directions 
for the two parts of the model, and there is no need for both  parts to include the same 
independent variables.

The logit coefficients can be interpreted as discussed in chapter 6. If the coefficient 
for Xk is positive, it means that a un it increase in Xk increases the odds of publishing one 
or more papers by a factor of e x p (^ ) ,  holding other variables constant. For example, 
consider the effect that young children have 011 publishing:

For an additional young child, the odds of publishing at least one article 
decrease by a factor of 0.75, holding other variables constant.

The ZTNB part of the model estim ates how independent variables affect the rate of 
publication for those who have gotten “over the hurdle” of publishing. The coefficients
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from t h e  ZTP or ZTNB do not have a direct substantive interpretation because we are 
not using th e  truncated model to overcome limitations of a truncated sample. If there 
were no Os in our sample because data were only collected if the event occurred at 
least once, w e  could interpret these parameters. Here, however, we assume th a t the 
process generating zeros is different from the process generating nonzeros. Recall from 
our discussion of the zero-truncated model that the exponentiated coefficients estim ate 
effects on the unconditional rate of the outcome. In this case, however, we use the 
logit equation to predict zero counts, so the exponentiated coefficients from the zero- 
truncated model no longer correspond directly to changes in the unconditional rate.

.5.2 Predictions in the sample

Using p r e d ic t  with the estim ates from our logit model, we can compute the predicted 
probability of observing a positive count for each observation:

. estimates restore Hlogit 
(results Hlogit are active now)
. predict HprobgtO 
(option pr assumed; Pr(art))
. label var HprobgtO "Pr(y>0>"

If we subtract this probability from 1, we get the predicted probability of a zero count:

. gen HprobO = 1 - HprobgtO 

. label var HprobO "Pr(y=0)"

Averages can be computed using summarize:

. summarize HprobO HprobgtO
Variable Obs Mean Std. Dev. Min Max

HprobO 915 .3005464 .1180336 .0015213 .5612055
HprobgtO 915 .6994536 .1180336 .4387945 .9984787

The a v e r a g e  predicted probability of a 0 is 0.3005, which is exactly the same as the 
proportion of the Os in the sample, as shown with ta b u la te  a r t  earlier. When lo g i t  
is used for the binary portion of the model, the average probability of a 0 will always 
exactly match the observed proportion of Os.8 Accordingly, in the hurdle model, the 
a v e r a g e  predicted probability of a 0 equals the observed proportion of Os.

To compute predictions of positive counts, we restore the results from the ZTNB and 
use p r e d ic t  with the cm option to generate conditional predictions:

. estimates restore Hztnb 
(results Hztnb are active now)
. predict Hcrate, cm
. label var Hcrate "Conditional rate"

8. If p ro b it is used for the binary model, the average probability of a 0 is close but not exactly the  
same as the proportion of Os in the sample.
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The conditional rate is the expected number of publications for those who have made it 
over the hurdle of publishing at least one article. To compute the unconditional rate, we 
multiply the conditional rate by the probability of having published at least one article, 
which we estim ated using the logit portion of the model.

. gen Hrate = Hcrate * HprobgtO 

. label var Hrate "Unconditional rate"

We use summarize to compare the average conditional and unconditional rates:

. sum Hcrate Hrate
Variable Obs Mean Std. Dev. Min Max

Hcrate 915 2.356661 .52643 1.73671 8.774148
Hrate 915 1.697686 .7016245 .7705519 8.7608

We follow the same idea to compute unconditional probabilities for nonzero counts. 
Because we want to compute predictions for multiple counts, we use a fo rv a lu es  
loop. W ithin the loop, we first com pute the conditional predicted probabilities by 
using p re d ic t .  Next, we multiply the conditional probabilities by the probability from 
our logit model of having published a t least one article:

. forvalues icount = 1/8 {
2. predict Hcprob'icount', cpr('icount')
3. label var Hcprob'icount' "Pr(y=* icount'|y>0)"
4. gen Hprob'icount' = Hcprob'icount' * HprobgtO
5. label var Hprob"icount' "Pr(y='icount')"
6 . >

The loop executes the code within braces eight 1 imes, successively substituting the values 
1-8 for the macro icount. The p r e d ic t  command uses the c p r ()  option to compute 
conditional probabilities. The unconditional probabilities are obtained by multiplying 
conditional probabilities by the probability of a positive count. We use summarize to 
obtain the average unconditional probabilities:

. sum Hprob*
Variable Obs Mean Std. Dev. Min Max

HprobgtO 915 .6994536 .1180336 .4387945 .9984787
HprobO 915 .3005464 .1180336 .0015213 .5612055
Hprob1 915 .2772253 .0264024 .0672922 .3398655
Hprob2 915 .1783374 .0225025 .07815 .2233984
Hprob3 915 .1053164 .0246465 .0489526 .1597355

Hprob4 915 .0599405 .022171 .0196098 .1201168
Hprob5 915 .0336258 .0178631 .0075859 .0961457
Hprob6 915 .0188354 .0136543 .002865 .0806172
Hprob7 915 .0106266 .0102113 .0010633 .0676752
Hprob8 915 .0060773 .0075988 .0003894 .0604464

The mean predicted probabilities can be compared with the observed predictions, as 
illustrated for the PRM and NBRM.
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.5.3 Predictions at user-specified values

We can use mtable or m argins to compute predictions at specific values of the inde­
pendent variables. You should not compute confidence intervals for these predictions: 
they will be incorrect because they do not use the correct standard errors from su es t.

For our example, we make predictions for the ideal type of a married, female sci­
entist (fem ale=l m arried= l) from an elite PhD program (phd=4.5) who studied with 
a mentor with average productivity. We begin by making predictions from the logit 
portion of the model:

. est restore Hlogit 
(results Hlogit are active now)
. mtable, at(female=l married=l kid5=0 phd=4.5) atmeans 
Expression: Pr(art), predictO 

Pr(y)

0.753
Specified values of covariates

female married kid5 phd mentor

Current 1 1 0 4.5 8.77

Recall, th a t Pr(y) is the probability of a 1 in the logit model, which corresponds to 
having one or more publications. Accordingly, the predicted probability of publishing 
one or more papers for a scientist with these characteristics is 0.753.

Next, we need the probability of a positive count to compute unconditional pre­
dictions w ith (9.10) and (9.12). Although we could simply type .753 in our do-file, a 
b e tte r way is to save the result as a local macro. Not only does this prevent typing 
errors, but our code will still work correctly if we change the model or sample and the 
predicted probability is no longer 0.753. To do this, we use information in the matrix 
r  ( ta b le )  th a t is returned by m table. If you type m a t l i s t  r  ( tab le ), you will see that 
the prediction we want is in row 1 and column 1 of the matrix. To store this value in 
the local macro prgtO, we use

local prgtO = el(r(table) , 1,1)

where the e l  () function extracts the element in row 1 and column 1 of matrix r  ( t a b l e ) . 
After we compute conditional probabilities, we will use the macro when computing 
unconditional probabilities.
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. est restore Hztnb 
(results Hztnb are active now)
. mtable, at(female=l married=l kid5=0 phd=4.5) atmeans noesample cpr(l/8) 
Expression: Pr(art I art>0), cpr()

1 2 3  4 5  6 7 8

0.413 0.264 0.152 0.083 0.044 0.022 0.011 0.006
Specified values of covariates

Next, we compute conditional probabilities from the truncated portion of the model:

female married kid5 phd mentor

Current 1 1 0 4.5 8.77

The noesample option is essential; we explain it briefly here, with further discussion 
below. The predictions for m table above use estimates from tn b reg , which was fit using 
only observations where a r t  is nonzero. By default, atm eans would use this sample to 
compute the mean for mentor. We want to compute predictions with the mean for 
mentor based on the entire sample not just the estimation sample. The noesample 
option tells m table (and other commands based on m argins) to use the entire sample.

The conditional probabilities computed by m table were stored in the matrix 
r ( ta b le ) .  To compute unconditional probabilities, we multiply these conditional prob­
abilities by th e  probability of a positive count, which we saved in the local macro prgtO. 
This can be done simply with a m a trix  command:

. matrix Huncond = 'prgtO' * r(table)

. matlist Huncond, format('/,8.3f) title (Unconditional probabilties) names(col)
Unconditional probabilties

1 2 3  4 5  6 7 8

0.311 0.199 0.114 0.062 0.033 0.017 0.009 0.004

These predictions are for the ideal type of a married, female scientist with no children, 
who studied with an average mentor a t an elite graduate program. The predicted 
probabilities of publishing one article is 0.31, two articles is 0.20, and so on. We could 
extend these analyses to compare these predictions with those for scientists with other 
characteristics.

.5.4 Warning regarding sample specification

The two parts of the hurdle model are fit using different samples. The full sample 
was used to fit the binary model, while the truncated sample was used to fit the zero- 
truncated model. When computing predictions at specified values of the independent 
variables— say, the mean— you want the mean for the full sample, not the smaller, 
truncated sample. Or, if we want average predictions, we want averages for the full 
sample. By default, margins, m table, mgen, and mchange use the estimation sample. 
For example, after fitting the ZTNB. m tab le , atmeans computes predictions by  using
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the means for cases with nonzero outcomes. What we want, however, are the means for 
the sample used for the binary portion of the model. To avoid problems, we suggest the 
following steps.

1. Before fitting the binary portion of the model, use the drop command to drop 
cases with missing d a ta  or th a t you would otherwise drop by using an i f  or in  
condition. This was not necessary in our example above because we wanted to 
use all the cases to fit the model.

2. Fit the truncated model with an i f  condition to drop cases that are 0 on the 
outcome (for example, tn b re g  a r t  . . .  i f  a rt> 0 ).

3. When using m argins, m tab le, or other margins-based commands, use the option 
noesample, which specifies th a t all cases in memory be used to compute averages 
and other statistics, ra ther than  using only the estimation sample.

.6 Zero-inflated count models
The NBR.M improves upon the underprediction of Os in the PRM  by increasing the condi­
tional variance without changing the conditional mean. The hurdle model addresses the 
underprediction of Os by using two equations: a binary model to predict Os and a zero- 
truncated model for the remaining counts. We can th ink of this as allowing the process 
th a t generates the first count to be distinct from the process that generates subsequent 
counts. Zero-inflated count models, introduced by Mullahy (1986) and Lambert (1992), 
change the mean structure to  allow Os to be generated by two distinct processes.

Consider our example of scientific productivity. The PRM , NBRM, and h r m  assume 
th a t every scientist has a nonzero rate of publishing. This implies a chance that any 
given scientist would have no publications, but it also implies a  positive probability for all 
positive counts. The rates and predicted probabilities differ across individuals according 
to their characteristics, but all scientists could publish even if that probability is quite 
small. Substantively, this would be unrealistic if some scientists have no opportunity for 
publishing. For example, scientists might be employed in an industry where publishing is 
not allowed, or they might hold jobs that do not involve research. As a result, we would 
observe more scientists w ith no publications because zero counts reflect a combination 
of scientists with no probability of publishing and scientists for whom no publications 
is the result of a probabilistic process.

Zero-inflated models allow for this possibility. A zero-inflated model assumes that 
there are two latent (that is, unobserved) groups. An individual in the ‘‘always 0 group 
(group A) has outcome 0 with a probability of 1, whereas an individual in the ‘not 
always 0” group (group ~A) might have outcome 0, but there is a nonzero probability 
th a t the individual has a positive count. For someone w ith no publications, we cannot 
determ ine whether he or she is in group A or group ~A, but we can model the individual’s 
probability of being in one of the groups based on observed characteristics. This process 
is developed in three steps.
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Step 2. Model counts for those in group ~A who can publish.

Step 3. Compute probabilities for each count as a mixture of the probabilities from the 
two groups.

We consider each step in turn, followed by an example.

Step 1: Membership in group A

Let Ai =  1 if someone is in group A or let, Ai =  0 otherwise. Group membership is 
a binary outcome th a t can be modeled using the logit or probit model from chapters 5 
and 6 :

P r(A i =  1 | Zi) =  F ( z.,;7) =  if)i (9.13)

This is a binary regression model, where the outcome Ai  is unobserved and ipi is the 
probability of being in group A for individual i. The 2 variables are referred to as 
inflation variables becausc they inflate (that is, increase) the number of Os, as shown 
below. To illustrate (9.13), assume th a t two variables affect the probability th a t an 
individual is in group A and that we model this with the logit equation

t) / \  ̂ ; exp (70 +  7 i* ii + 722*2)
P r (Ai ~  1 Zn,Zi2) =ipi = — -------7---- ----------- --------- r

1 + exp (70 +  7 iZn +  722*2)

If we had an observed variable indicating group membership, this would be a standard, 
binary logit model. But because group membership is a latent variable, we do not know 
whether an individual is in group A or group ~A.

Step 1. Model membership into the latent groups A and ~A.

Step 2: Counts for those in group ~A

Among those who are not always 0, the probability of each count, including 0, is 
determined by either a PRM or an NBRM . I11 the equations th a t follow, w e are condi­
tioning both 011 the observed x^.’s and 011 A  being equal to 0. Although th e  x's can be  
the same as the 2’s in the first step, they could be different. Defining = e x p  (x,/3), 
for the zero-inflated Poisson (ZIP) model, we have

P r (yi | Xj, Ai = 0) = e ' V f
Vi'-

and for the zero-inflated negative binomial (ZINB) model, we have

T ( i j i + a ~ l ) (  a-1 \ a  (  Vi
P r (yi | Xi, Ai = 0) =

;yi ! r ( Q ~ 1 ) \Q ! - 1  + Hi J
If we knew which observations were in group ~A, these equations would define the PRM 
and the NBRM . Here the equations apply only to those observations from group ~A, but 
we do not have an observed variable indicating group membership.
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Step 3: Mixing groups A and ~A

Predicted probabilities of observed counts are computed by mixing the probabilities 
from the binary and count models. The simplest way to understand mixing is with an 
example. Suppose that retirem ent status is indicated by r  =  1 for retired folks and 
r  =  0 for those not retired, where

P r (r  =  1) =0 .2
P r ( r  =  0) =  1 - P r ( r  =  1) = 0 .8

Let y  indicate living in a warm climate, with y = 1 for yes and y = 0 for no. Suppose 
th a t the conditional probabilities are

P r (y =  1 | r  =  1) =  0.5 
P r (y =  1 | r  =  0) =  0.3

so people are more likely to  live in a warm climate if they are retired. What is the 
probability of living in a warm climate for the population as a whole? The answer is 
a m ixture of the probabilities for the two groups weighted by the proportion in each
group:

Pr (y =  1) =  {Pr (r =  1) x Pr (y =  1 | r  =  1)}
+  {Pr (r =  0) x P r  (y  =  1 | r  =  0)}

=  (0.2 x 0.5) +  (0.8 x 0.3) =  0.34

In other words, the two groups are mixed according to  their proportions in the popula­
tion to determine the overall rate. The same thing is done for the zero-inflated models 
th a t mix predictions from groups A and ~A.

The proportion in each group equals

P r (A{ = I) = tfti 
P r (Ai = 0) =  1 -  fa

from the binary portion of the model. The probabilities of a 0 within each group are

Pr (y{ =  0 | Ai =  l,X j, Zi) =  1 by definition of the A  group
Pr (yi =  0 | A{ =  0, Xi, Zi) =  prediction from PRM or NBRM portion of model

T he overall probability of a 0 mixes the two types of 0s:

P r (yi =  0 | x i7 Zi) =  ( x 1) +  {(1 -  </>*) x  P r fa* =  0 | x ^ A i  =  0) }
=  fa  +  { (1 -  ipi) x P r (yi =  0 | * i,A i = 0) }

For count outcomes other than 0,

P r (yi = k \ Xi,Zi) = ( fa  x  0) + { ( I  -  fa )  *  Pr (y{ =  k | x , , ^  =  0) }
=  (1 -  Tpi) x Pr (yi =  k | Xi, Ai =  0)
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where we use the assumption that the probability of a positive count in group A is by 
definition 0.

Expected counts are computed similarly:

E(yi | Xi,Zi) =  ( 0  x  + x  (1 -rpi)} 
=  Vi (1

Because 0 < 'ip < 1, the expected value must be smaller than //, which shows that the 
mean structure in zero-inflated models differs from that in the PRM or NBRM.

The ZIP and ZINB differ in their assumption about the distribution of the count 
outcome for members of group ~A. The ZIP assumes a conditional Poisson distribution 
with a mean indicated by the count equation, while the ZINB assumes a conditional 
negative binomial distribution that also includes a dispersion parameter that is fit along 
with the other parameters of the model.

9.6.1 Estimation using zinb and zip

The ZIP and ZINB models are fit with the z ip  and zinb  commands, respectively, listed 
here with their basic options:

zip  depvar [ indepvars ] [i f ] [m ]  [weight], in f  l a t e  (indepvars2) [nocons ta n t  
p ro b it  v ce(vcetype) i r r  vuong j

zinb depvar [ indepvars ] [i f ] [ in  ] [weight], i n f l a t e  (indepvars2)

[nocons ta n t  p ro b it  vce(vcetypc) i r r  vuong]

Variable lists

depvar is the dependent variable, which must be a count with no negative values or 
non integers.

indepvars is a list of independent variables that determine counts among those who 
are not always Os. If indepvars is not included, a model with only an intercept is 
fit.

indepvars2 is a list of inflation variables that determine whether one is in the “always 
0” group (group A) or the “not always 0” group (group -A).

indepvars and indepvars2 can be the same variables but do not have to be.

Options

Here we consider only those options that differ from the options for earlier models in 
this chapter.
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p ro b i t  specifies that the model determining the probability of being in group A versus 
group -A be a binary probit model. By default, a binary logit model is used.

vuong requests a Vuong (1989) test of the ZIP versus the PRM or of the ZINB versus 
the NBRM . Details are given in section 9.7.2. T he vuong option is not available if 
robust standard errors are used.

.2 Example of zero-inflated models

The output from z ip  and z in b  is similar, so here we show only the output for zinb:

. zinb art i.female i.married kid5 phd mentor,
> inf late (i. female i. married kid5 phd mentor) nolog
Zero-inflated negative binomial regression Number of obs = 915

Nonzero obs = 640
Zero obs = 275

Inflation model = logit LR chi2(5) 67.97
Log likelihood = -1549.991 Prob > chi2 = 0.0000

art Coef. Std. Err. z P> Izl [95’/. Conf. Interval]

art
female

Female -.1955068 .0755926 -2.59 0.010 -.3436655 -.0473481

married
Married

kid5
phd

mentor
_cons

.0975826
-.1517325
-.0007001
.0247862
.4167466

.084452 

.054206 
.0362696 
.0034924 
.1435962

1.16
-2.80
-0.02
7.10
2.90

0.248
0.005
0.985
0.000
0.004

-.0679402 
-.2579744 
-.0717872 
.0179412 
.1353032

.2631054
-.0454906
.0703869
.0316312
.69819

inflate
female

Female .6359328 .8489175 0.75 0.454 -1.027915 2.299781

married
Married

kid5
phd

mentor
_cons

-1.499469 
.6284274 

-.0377153 
-.8822932 
-.1916865

.9386701 

.4427825 

.3080086 

.3162276 
1.322821

-1.60
1.42

-0.12
-2.79
-0.14

0.110
0.156
0.903
0.005
0.885

-3.339228
-.2394105
-.641401

-1.502088
-2.784368

.3402909 
1.496265 
.5659705 

-.2624984 
2.400995

/Inalpha -.9763565 .1354679 -7.21 0.000 -1.241869 -.7108443

alpha .3766811 .0510282 . 288844 .4912293

The top set of coefficients, labeled a r t  in the left margin, corresponds to the NBRM  for 
those in group ~A. The lower set of coefficients, labeled i n f l a t e ,  corresponds to the 
binary model predicting group membership.
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When interpreting zero-inflated models, it is easy to be confused by the direction of the 
coefficients, l i s t c o e f  makes interpretation simpler. For example, consider the results 
for the ZINB:

. listcoef, help
zinb (N=915): Factor change in expected count 
Observed SD: 1.9261

.6.3 Interpretation of coefficients

Count equation: Factor change in expected count for those not always 0

b z P> t z I e"b e"bStdX SDofX

female
Female -0.1955 -2.586 0.010 0.822 0.907 0.499

married
Married 0.0976 1.155 0.248 1.103 1.047 0.473

kid5 -0.1517 -2.799 0.005 0.859 0.890 0.765
phd -0.0007 -0.019 0.985 0.999 0.999 0.984

mentor 0.0248 7.097 0.000 1.025 1.265 9.484
constant 0.4167 2.902 0.004

alpha
lnalpha -0.9764

alpha 0.3767

b = raw coefficient 
z = z-score for test of b=0 

P> I z I = p-value for z-test
e~b = exp(b) = factor change in expected count for unit increase in X 

'bStdX = exp(b*SD of X) = change in expected count for SD increase in X 
SDofX = standard deviation of X

Binary equation: factor change in odds of always 0

b z P> lz| e~b e~bStdX SDofX

female
Female 0.6359 0.749 0.454 1.889 1.373 0.499

married
Married -1.4995 -1.597 0.110 0.223 0.492 0.473

kid5 0.6284 1.419 0.156 1.875 1.617 0.765
phd -0.0377 -0.122 0.903 0.963 0.964 0.984

mentor -0.8823 -2.790 0.005 0.414 0.000 9.484
constant -0.1917 -0.145 0.885

b = raw coefficient 
z = z-score for test of b=0 

P>|z| = p-value for z-test
e~b = exp(b) = factor change in odds for unit increase in X 

e"bStdX = exp(b*SD of X) = change in odds for SD increase in X 
SDofX = standard deviation of X

The top half of the output, labeled Count equation, contains coefficients for the factor 
change in the expected count for those who have the opportunity to publish (that is,
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group ~A). The coefficients can be interpreted in the same way as coefficients from the 
PRM or the NBRM. For example,

Among those who have the opportunity to publish, being a female scientist 
decreases the expected rate of publication by a  factor of 0.82, holding other 
variables constant.

The b o t t o m  half of the output, labeled Binary eq u a tio n , contains coefficients for the 
factor change in the odds of being in group A compared with being group ~A. These 
can b e  interpreted just as the coefficients for a binary logit model. For example,

Being a  female scientist increases the odds of not having the opportunity to 
publish by a factor of 1.89, holding other variables constant.

As found in this example, when the same variables are included in both equations, 
the signs of the corresponding coefficients from the binary equation are often in the 
opposite direction of those from the count equation. This makes substantive sense. The 
count equation predicts number of publications, so a  positive coefficient indicates higher 
productivity. In contrast, the binary equation is predicting membership in the group 
th a t always has zero counts, so a positive coefficient implies lower productivity. This is 
not, however, required by the model.

.6.4 Interpretation of predicted probabilities

For th e  ZIP,

P r (y =  0 | x ,z) =  ip +  — ipj e ^

where jl =  exp ip = F  (z'y). The predicted probability of a positive count

applies only to the 1 — ip observations in group ~A:

P r(y | x) = ( l  -  ip) — —

Similarly, for th e  ZINB,

P Ï(y  =  0 | x , z ) = ÿ + ( l - ÿ )  ( s _“  +  -  )  

and the predicted probability for a positive count is

iMi, | x) = (i -$) rJ,r|s-i))
Predicted probabilities can be computed with m argins and with our SPost commands 
m table, mgen, and mchange.
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Suppose th a t we want to compare the predicted probabilities for a married female 
scientist with young children who came from a weak graduate program with those for a 
married male from a strong departm ent who had a productive mentor. We can use the 
mtable command to display these two predictions in one table.

First, we use a tv a rs O  to include in the table the variables on which we are focusing. 
By default, these would not be included because they do not vary within either of the 
mtable commands. Second, because the a t ( )  variables in the table make it clear what 
each row contains, we use norownumbers so that only column labels are shown. The 
w idth(7) option makes the results fit without wrapping.

. quietly mtable, at(female=0 married=l kid5=3 phd=3 mentor=10)
> atvars(female phd mentor) pr(0/5)
. mtable, at(female=l married=l kid5=3 phd=l mentor=0)
> atvars(female phd mentor) pr(0/5) below width(7) norownumbers
Expression: Pr(art), predict(pr())

1.
female phd mentor 0 1 2 3 4 5

0 3 10 0.334 0.300 0.185 0.097 0.047 0.021
1 1 0  0.835 0.096 0.043 0.017 0.006 0.002

Specified values of covariates

Predicted probabilities with mtable

female married kid5 phd mentor

Set 1 0 1 3 3 10
Current 1 1 3 1 0

The predicted probabilities of a 0 include both scientists from group A and scientists 
from group ~A who by chance did not publish.

To compute the probability of being in group A , we use the p re d ic t  (pr) option:9

. quietly mtable, at(female=0 married=l kid5=3 phd=3 mentor=10)
> atvars(female phd mentor) predict(pr)
. mtable, at(female=l married=l kid5=3 phd=l mentor=0)
> atvars(female phd mentor) predict(pr) below norownumbers decimals(4) 
Expression: Pr(art = always 0), predict(pr)

1.
female phd mentor PrAllO

0 3 10 0.0002
1 1 0 0.6883

Specified values of covariates
female married kid5 phd mentor

Set 1 0 1 3 3 10
Current 1 1 3 1 0

9. To determine that this is the option needed to compute the probability of always being 0, we typed 
help zinb, clicked on the blue zinb postestimation link, and then clicked on the blue predict 
link.
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We used the option decim als (4) to  show that the probability of being in group A for 
the men is small but is not 0.

Plotting predicted probabilities with mgen

In this section, we explore the two sources of Os and how they each contribute to the 
predicted proportion of Os as the number of publications by a scientist’s mentor changes. 
F irst, we use mgen to compute the predicted probability of a 0 of either type as m entor’s 
publications range from 0 to  6, holding other variables to their means:

. mgen, at(mentor=(0/6)) atmeans pr(0) stub(ZINB) replace 
Predictions from: margins, at(mentor=(0/6)) atmeans predict(pr(0))
Variable Obs Unique Mean Min Max Label

ZINBpranyO 7 7 .3711116 .2896935 .5536149 prany(y=0) from margins
ZINB110 7 7 .316322 .2592648 .4426188 957, lower limit
ZINBulO 7 7 .4259011 .3201222 .664611 95’/. upper limit
ZINBmentor 7 7 3 0 6 Mentor's # of articles
ZINBCpranyO 7 7 .3711116 .2896935 .5536149 pr(y<=0)

Specified values of covariates
1. 1 . 

female married kid5 phd

.4601093 .6622951 .495082 3.103109

Next, we compute the probability of being in group A by specifying the p re d ic t  (p r)
option.

. mgen, at(mentor=(0/6)) atmeans predict(pr) stub(ZINB) replace 
Predictions from: margins, at(mentor=(0/6)) atmeans predict(pr)
Variable Obs Unique Mean Min Max Label

ZINBprallO 7 7 .0912045 .0024928 .3322358 Pr(art=always0) from m...
ZINB11 7 7 .0154536 -.0287807 .1578766 95*/. lower limit
ZINBul 7 7 .1669554 .0116607 .506595 95*/. upper limit
ZINBmentor 7 7 3 0 6 Mentor's # of articles

Specified values of covariates
1 . 1 . 

female married kid5 phd

.4601093 .6622951 .495082 3.103109

Variable ZINBprallO contains the probability of a 0 from being in group A. If we 
subtract this from the overall probability of a 0 from any source, contained in the variable 
ZINBpranyO. we obtain the probability of a 0 for those in group -A; these scientists could 
have published but by chance did not. After we compute this difference, we label the 
variables so that the legend of our plot will be clear.
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. gen ZINBprcountO = ZINBpranyO - ZINBprallO 
(908 missing values generated)
. label var ZINBprallO "Always Zero from Binary Equation"
. label var ZINBprcountO "Sometimes Zero from Count Equation"
. label var ZINBpranyO "Zeroes from Both Equations"
. label var ZINBmentor "Mentor's Publications"

These variables can then be plotted:

. graph twoway connected ZINBprallO ZINBprcountO ZINBpranyO ZINBmentor,
> xlabel(0/6) ylabel(0(. 1).5, gmax)
> ytitle(Probability of Zero) msymbol(Sh Dh 0) legend(rows(3))

-O—  Always Zero from Binary Equation 

-0 —  Som etim es Zero from Count Equation 

- • —  Zeroes from Both Equations

The curve marked with CPs is a probability curve like those in chapters 5 and 6 for 
binary models. It indicates the probability of being in the group that never publishes, 
where each point corresponds to different rates // determined by the level of the mentor’s 
publications. The curve marked with O ’s shows the probability of Os from a negative 
binomial distribution. The overall probability of a zero count is the sum of the two 
curves, which is shown by the curve with # ’s. We see th a t the probability of being 
in group A drops off quickly as the m entor’s number of publications increases, so for 
scientists whose mentors have more than  three publications, virtually all the zero counts 
are due to membership in group ~A.

.7 Comparisons among count models
There are two approaches that can be used to compare count models. First, we can 
compare the mean predicted probabilities and the observed proportions for each count. 
This was done when we compared predictions from the PRM  and NBRM earlier. Second,
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w e c a n  u se  va r io u s t e s t s  a n d  m e a su r e s  o f fit to  c o m p a r e  m o d e ls ,  such as th e  LR te s t  o f  

o v e r d is p e r s io n  or th e  BIC s t a t i s t i c . 10

We begin by showing you how to make these com putations using official S ta ta  com­
mands. Then, we dem onstrate the SPost command c o u n tf i t ,  which automates this 
process. Although c o u n t f i t  is the simplest way to  compare models, it is useful to 
understand how these computations are made to more fully understand the output of 
c o u n tf i t .

7.1 Comparing mean probabilities

One way to  compare count models is to compute average predicted probabilities and 
compare their fit to the observed data across models. F irst, we compute the mean 
predicted probability. For example, in the PRM,

This is simply the average across all observations of the probability of each count. 
Pi'Observed (?/ =  k) is the observed probability or proportion of observations with the 
count equal to k. The difference between the observed probability and the mean prob­
ability is

APrpR.M(l/ =  k) ~  Pl’Observed(V PrpRM(?/ k)

To compute these measures, we first fit each of the four models and then use mgen, 
meanpred to  create variables containing average predictions:

. poisson art i.female i.married kid5 phd mentor, nolog
( output omitted)

. mgen, stub(PRM) pr(0/9) meanpred
( output omitted)

. nbreg art i.female i.married kid5 phd mentor, nolog
(output omitted)

. mgen, stub(NBRM) pr(0/9) meanpred
(output omitted)

. zip art i.female i.married kid5 phd mentor,
> inflate(i.female i.married kid5 phd mentor) nolog

( output om itted)

. mgen, stub(ZIP) pr(0/9) meanpred
( output omitted)

. zinb art i.female i.married kid5 phd mentor,
> inf late (i. female i. married kid5 phd mentor) nolog

i= l

( output omitted)

10. Note that many of these statistics cannot be computed when robust standard errors are used.
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. mgen, stub(ZINB) pr(0/9) meanpred 
(output omitted )

After each model, mgen generates the  variable stubpreq th a t  contains the average pre­
dicted probability P r(y  =  k )  for counts 0 -9  (specified with the p r(0 /9 )  option) and the 
variable stubobeq th a t contains the observed proportion Pi'observed(y = k). The value 
of the count itself is stored in variable stubva l. Using these variables, we create a plot 
that compares the four models with the observed data:

. label variable PRMobeq "Observed"

. label variable PRMpreq "PRM"

. label variable NBRMpreq "NBRM"

. label variable ZIPpreq "ZIP"

. label variable ZINBpreq "ZINB"
• graph twoway connected PRMobeq PRMpreq NBRMpreq ZIPpreq ZINBpreq PRMval,
> ytitle(Average Predicted Probability)
> xlabel(0/9) msymbol(Th Oh Sh 0 S) legend(col(3) holes(4))

-A—  O bserved  — G —  PRM — a —  N BRM  

— • —  ZIP — • —  ZIN B

The graph is not very effective because the lines are difficult to distinguish from each 
other. The information is much clearer if we can instead plot the differences between 
the observed and predicted probabilities:
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Positive deviations indicate more observed counts than predicted

PRM NBRM

• ZIP ---- ZINB

Points above 0 on the y axis indicate more observed counts than predicted on average; 
those below 0 indicate fewer observed counts than predicted.

The graph shows that only the PRM has a problem predicting the average number 
of Os. The ZIP does less well, predicting too many Is and too few 2s and 3s. The NBRM  
and ZINB do about equally well. From these results, we might prefer the NBRM because 
it is simpler. Section 9.7.3 shows how to autom ate the creation of this type of graph 
with the c o u n tf i t  command.

9.7.2 Tests to compare count models

Plotting predictions is only an informal method of assessing the fit of a count model. 
More formal testing can b e  done with an LR test of overdispersion and a Vuong test to 
compare two models.

LR tests of ex.

Because the NBRM reduces to the PRM when a  = 0, the PRM and NBRM can be compared 
b y  testing Ho: a  =  0. As shown in section 9.3.3, we find th a t

Likelihood-ratio test of alpha=0: chibar2(01) = 180.20 Prob>=chibar2 = 0.000

which provides strong evidence for preferring the NBRM over the PRM. When robust 
standard errors are used, estimates are based on pseudolikelihoods rather than likeli­
hoods, and an LR test is not available.

Because the ZIP and ZINB are also nested, the same LR test can be used to  compare 
them . By default, S ta ta’s l r t e s t  command will not compare two models th a t are fit 
using different estimation commands; however, you can override this with the f o r c e  
option. When you do so, the onus is on you to affirm that the estimation samples used 
are the same and that the LR test is otherwise valid.
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. quietly zip art i.female i.married kid5 phd mentor,
> inflate(i.female i.married kid5 phd mentor)
. estimates store zip

. quietly zinb art i.female i.married kid5 phd mentor,
> inflate(i.female i.married kid5 phd mentor)
. estimates store zinb

. lrtest zip zinb, force
Likelihood-ratio test 
(Assumption: zip nested in zinb)

LR chi2(l) 
Prob > chi2

109.56
0.0000

Given the significant LR test statistics, we conclude that the ZINB significantly improves 
the fit over the  ZIP.

Vuong test of nonnested models

Greene (1994) points out that the PRM and the ZIP are not nested.11 For the ZIP 
model to reduce to the PRM, ^  m ust equal 0, but this does not occur when 7  =  0 
because ip — F  (zO) =  0.5. Similarly, the NBRM and the ZINB are not nested. Greene 
proposes using a test by Vuong (1989, 319) for nonnested models. This test considers 
two models, where P r i (yi | x;) is the predicted probability of observing yi in the first 
model and P r -2 ( iji \ x*) is the predicted probability for the second model. If there are 
inflation variables, we are assuming they are part of x. Define

and let m be the mean and srn be the  standard deviation of raj. The Vuong statistic to 
test the hypothesis th a t E  (ra) =  0 is

V  has an asym ptotic normal distribution. If V > 1.96, the first model is favored; if
V < —1.96, the  second model is favored.

For z ip . the vuong option computes the Vuong statistic comparing the ZIP with the 
PRM; for z in b , the vuong option compares the ZINB with the NBRM . For example,

. zip art i.female i.married kid5 phd mentor,
> inf late (i. female i. married kid5 phd mentor) vuong nolog 

(output omitted)

Vuong test of zip vs. standard Poisson: z = 4.18 Pr>z = 0.0000

The significant, positive value of V supports the ZIP over the PRM. If you use l i s t c o e f , 
you get more guidance in interpreting the result:

11. See Allison (2012a) for an alternative view on the nesting of these models. Even if you agree that 
these models arc nested, the Vuong test can be used.

V  = y/N  m
(914)
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. listcoef, help
zip (N=915): Factor change in expected count 

(output omitted)
Vuong Test = 4.18 (p=0.000) favoring ZIP over PRM.

(output om itted)

Although it is possible to com pute a Vuong statistic to compare other pairs of models, 
such a s  ZIP and NBRM, these are not available in Stata. This does not mean they 
cannot be computed, and in the next section, we show how it can be done with the 
more complicated case of a  comparison against the hurdle model. The Vuong test is 
not appropriate when robust standard  errors are used.

Overall, these tests provide evidence that the ZINB fits the data best. However, 
when fitting a series of models w ith no theoretical rationale, it is easy to overfit the 
data, and the ZINB adds m any more parameters to  the NBRM. Here the most compelling 
evidence for the ZINB is th a t it makes substantive sense. Within science, there are some 
scientists who for structural reasons cannot publish, but for other scientists, the failure 
to  publish in a given period of tim e is a matter of chance. This is the basis of the zero- 
inflated models. The NBRM  seems preferable to the PRM, because there are probably 
unobserved sources of heterogeneity that differentiate the scientists. In sum, the ZINB 
makes substantive sense and fits the data well. At the same time, the simplicity of the 
NBRM is also compelling.

(Advanced) Computing the Vuong test with a hurdle model

We mark this section as advanced because it involves computing a test 
th a t is not built into S ta ta . The section is only directly useful if you are 
working with hurdle models. However, computing the test also provides 
another illustration of working with predicted values postestimation, as 
well as of the value of mastering how to use loops in Stata.

You might be interested in computing a Vuong test to compare the ZINB to the HRM  
we fit earlier. This test is not built into Stata, bu t we can use what we have explained 
so far to compute it. Because we are computing the test “by hand”, Stata will not stop 
us from calculating the test statistic even when it is inappropriate; in particular, the 
Vuong test should not be com puted if robust standard errors have been used.

The Vuong test is based on comparing the predicted probabilities of the count values 
th a t were actually observed. In other words, for cases in which y =  k, we compare 
P r (y = k ) across models for all observed values of the count outcome. The first step, 
then, is to  generate the predicted probabilities for every observation for all observed 
counts. In our data, y ranges from 0 to 19. For the ZINB, computing the predicted 
probabilities of each count is a  relatively straightforward application of a fo rv a lu e s  
loop:
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. quietly zinb art i.female i.married kid5 phd mentor,
> inflate(i.female i.married kid5 phd mentor)
. forvalues icount = 0/19 {
2. predict ZINB'icount', pr('icount')
3. >

For the HRM, this step is more complicated. We first fit the HRM by separately 
fitting logit and zero-truncated models and store the results:

. quietly logit art i.female i.married kid5 phd mentor 

. estimates store Hlogit

. quietly tnbreg art i.female i.married kid5 phd mentor if art > 0 

. estimates store Hztnb

We need the logit results to compute the predicted probability of observing a posi­
tive count, which we save in the variable HRMnotO. Subtracting from 1 gives us the 
probability of a 0:

. estimates restore Hlogit 
(results Hlogit are active now)
. predict HRMnotO
(option pr assumed; Pr(art))
. label var HRMnotO "HRM prob of non-zero count"
. gen HRMO = 1 - HRMnotO 
. label var HRMO "HRM prob of zero count"

To compute the predicted probabilities of counts 1-19, we calculate the conditional 
probability of each count and then multiply by HRMnotO to  compute the unconditional
probabilities:

. estimates restore Hztnb 
(results Hztnb are active now)
. forvalues icount = 1/19 {
2. predict HRM'icount', cpr('icount')
3. quietly replace HRM'icount' = HRM'icount' * HRMnotO
4. label var HRM'icount' "HRM unconditional prob(*icount')"
5. >

At this point, we have two sets of predicted probabilities: ZINB0-ZINB19 and HRM0- 
HRM19. For each model, we need to generate a single variable that contains the predicted 
probability of the count that was actually observed. Every observation has a probability 
for all possible counts, but only one count is the one th a t actually occurred for each 
scientist. We save the probability of the observed count by first creating an empty 
variable and then using a loop to assign the predicted probability of the observed count 
to this variable:
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. gen ZINBprobs = .
(915 missing values generated)
. label var ZINBprobs "ZINB prob of count that was observed"
. gen HRMprobs = .
(915 missing values generated)
. label var HRMprobs "HRM prob of count that was observed"
. forvalues icount = 0/19 {
2. quietly replace ZINBprobs = ZINB'icount' if art == 'icount'
3. qui replace HRMprobs = HRM'icount' if art == ‘icount'
4. >

We then summarize these variables:

. sum ZINBprob HRMprobs
Variable Obs Mean Std. Dev. Min Max

ZINBprobs 915 .2346309 .1369695 .0001224 .7454953
HRMprobs 915 .23238 .1221957 .0002254 .5574288

The means are similar, though the average probability of the observed count is slightly 
higher for the ZINB, meaning th a t the ZINB has a higher likelihood than the HRM. The 
Vuong test from (9.14) formalizes this comparison:

. gen mZINB_HRM = ln(ZINBprobs/HRMprobs)

. sum mZINB.HRM
Variable Obs Mean Std. Dev. Min Max

mZINB.HRM 915 .0028478 .1551608 -.7172124 .9502291
. display (r(mean)*sqrt(r(N)))/r(sd)
.5551782

T he resulting V is 0.56, which is less than 1.96. We conclude that we do not have 
evidence of a significant difference in fit between the ZINB and the HRM.

.7.3 Using countfit to compare count models

T he c o u n tf i t  command autom ates the analyses described in the last two sections for 
th e  PRM, NBRM, ZIP, and ZINB. The command can provide a  table of estimates, a table 
of differences between observed and average estim ated probabilities, a graph of these 
differences, and various tests and measures of fit used to compare count models. The 
syntax is

c o u n t f i t  varlist [i f ] [ in]  [ ,  i n f l a t e ( varlist2) noco n s tan t prm nbreg z ip  
z in b stub  (prefix) re p la c e  no te (string) nograph nodiffe ren c es  n o p r ta b le  

noes tim a te s  n o fi t  nodash maxcount( # )  n o i s i l y  ]



Options for specifying the model

varlist is the variable list for the model, beginning with the count outcome variable, 

i f  exp and in  range specify the sample used for fitting the models, 

i n f l a t e (varlist2) specifies the inflation variables for z ip  and zinb. 

noconstan t specifies that no constant be included in the model.

Options to select the models to fit

By default, PRM , NBRM, ZIP, and ZINB are all fit. If you want only some of these 
models, specify the models you want:

prm fits  t h e  PRM. 

n b r e g  fits  t h e  NBRM . 

z ip  fits  t h e  ZIP. 

z in b  fits t h e  ZINB.

Options to label and save results

stub (prefix) can be up to five letters to prefix the variables th a t are created and to 
label the  models in the output . This name is placed in front of the type of model 
(for example, namePRM). These labels help keep track of results from multiple 
specifications of models.

rep lace  replaces variables created by s tu b O  if they already exist.

note (string) adds a label to the graph.

Options to control what is printed

nograph suppresses the graph of differences from observed counts, 

n o d iffe ren ces  suppresses the table of differences from observed counts, 

nop rtab le  suppresses the table of predictions for each model, 

noestim ates suppresses the table of estimated coefficients, 

n o f i t  suppresses the table of fit statistics and tests of fit. 

nodash suppresses dashed lines between measures of fit. 

maxcount ( # )  specifies the number of counts to evaluate.

552 Chapter 9 M odels for count outcomes
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n o i s i ly  includes output from S tata estimation commands; without this option, the 
results are shown only in the estim ates t a b le  output.

To illustrate what c o u n t f i t  does, we use c o u n t f i t  with our publication example 
and discuss the output th a t is generated, c o u n tf i t  estimates each of the models, so our 
command includes the specification of the outcome, the x  variables, and the 2 variables 
for zero-inflated models. We do not use any of the options that limit the output th a t is 
generated:

countfit art i. female i. married kid5 phd mentor, inf late (i .mentor i. female)

First, c o u n tf i t  presents estim ates of the exponentiated parameters for the four models. 
As we would expect, the direction of coefficients for a given variable is the same for all 
models.
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Variable PRM NBRM ZIP ZINB

art
female

Female 0.799 0.805 0.811 0.822
-4.11 -2.98 -3.30 -2.59

married
Married 1.168 1.162 1.109 1.103

2.53 1.83 1.46 1.16
# of kids < 6 0.831 0.838 0.866 0.859

-4.61 -3.32 -3.02 -2.80
PhD prestige 1.013 1.015 0.994 0.999

0.49 0.42 -0.20 -0.02
Mentor's # of articles 1.026 1.030 1.018 1.025

12.73 8.38 7.89 7.10
Constant 1.356 1.292 1.898 1.517

2.96 1.85 5.28 2.90

lnalpha
Constant 0.442 0.377

-6.81 -7.21

inflate

female
Female 1.116 1.889

0.39 0.75

married
Married 0.702 0.223

-1.11 -1.60
# of kids < 6 1.242 1.875

1.10 1.42
PhD prestige 1.001 0.963

0.01 -0.12
Mentor's # of articles 0.874 0.414

-2.96 -2.79
Constant 0.562 0.826

-1.13 -0.14

Statistics
alpha 0.442

N 915 915 915 915
11 -1651.056 -1560.958 -1604.773 -1549.991

bic 3343.026 3169.649 3291.373 3188.628
aie 3314.113 3135.917 3233.546 3125.982

legend: b/t

Next, c o u n t f  i t  lists the count for which tlu> deviation between the observed and a v era g e  
predicted probability is the greatest. For the PRM, the biggest problem is th e  p r ed ic tio n  
of zero counts, with a difference th a t is much larger than the maximum for th e  o th e r  
models. The average difference between observed and predicted is largest for th e  PRM  
(0.026) and smallest for the NORM (0.006) and ZINB (0.008):
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Comparison of Mean Observed and Predicted Count
Maximum At Mean

Model Difference Value IDiffl

PRM 0.091 0 0.026
NBRM -0.015 3 0.006
ZIP 0.054 1 0.015
ZINB -0.019 3 0.008

This summary information is expanded with detailed comparisons of observed and pre­
dicted probabilities for each model.

PRM: Predicted and actual probabilities
Count Actual Predicted IDiffl Pearson

0 0.301 0.209 0.091 36.489
1 0.269 0.310 0.041 4.962
2 0.195 0.242 0.048 8.549
3 0.092 0.135 0.043 12.483
4 0.073 0.061 0.012 2.174
5 0.030 0.025 0.005 0.760
6 0.019 0.010 0.009 6.883
7 0.013 0.004 0.009 17.815
8 0.001 0.002 0.001 0.300
9 0.002 0.001 0.001 1.550

Sum 0.993 0.999 0.259 91.964

NBRM: Predicted and actual probabilities
Count Actual Predicted IDiffl Pearson

0 0.301 0.304 0.003 0.028
1 0.269 0.272 0.003 0.039
2 0.195 0.180 0.014 1.066
3 0.092 0.106 0.015 1.818
4 0.073 0.060 0.013 2.753
5 0.030 0.033 0.004 0.348
6 0.019 0.018 0.000 0.004
7 0.013 0.010 0.003 0.719
8 0.001 0.006 0.005 3.593
9 0.002 0.004 0.001 0.456

Sum 0.993 0.993 0.062 10.824
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ZIP: Predicted and actual probabilities
Count Actual Predicted IDiffI Pearson

0 0.301 0.299 0.002 0.012
1 0.269 0.215 0.054 12.408
2 0.195 0.210 0.016 1.083
3 0.092 0.143 0.051 16.603
4 0.073 0.076 0.003 0.100
5 0.030 0.034 0.005 0.652
6 0.019 0.014 0.005 1.337
7 0.013 0.005 0.008 9.960
8 0.001 0.002 0.001 0.430
9 0.002 0.001 0.001 2.069

Sum 0.993 0.999 0.145 44.653

ZINB: Predicted and actual probabilities
Count Actual Predicted IDiffI Pearson

0 0.301 0.312 0.011 0.381
1 0.269 0.256 0.013 0.623
2 0.195 0.181 0.014 0.969
3 0.092 0.111 0.019 2.926
4 0.073 0.063 0.010 1.493
5 0.030 0.035 0.005 0.721
6 0.019 0.019 0.000 0.005
7 0.013 0.010 0.003 0.711
8 0.001 0.006 0.005 3.391
9 0.002 0.003 0.001 0.298

Sum 0.993 0.995 0.081 11.517

The iD iff I columns show the absolute value of the difference between the observed 
and predicted counts. A plot of these differences is also provided:
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Note: positive deviations show underpredictions.

....A.... - PRM NBRM
.......A ZIP .......a ......  ZINB

Finally, countf i t  compares the fit of the four models by several standard criteria and 
t e s t s ,  including AIC and BIC. For each statistic comparing models, the last three columns 
indicate which model is preferred.
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T e s t s  a n d  F i t  S t a t i s t i c s

PRM BIC= 3343.026 AIC= 3314.113 Prefer Over Evidence

vs NBRM BIC= 3169.649 
AIC= 3135.917 
LRX2= 180.196

dif= 
dif= 
prob=

173.377
178.196
0.000

NBRM
NBRM
NBRM

PRM
PRM
PRM

Very strong 

p=0.000
vs ZIP BIC= 3291.373 

AIC= 3233.546 
Vuong= 4.180

dif= 
dif= 
prob=

51.653
80.567
0.000

ZIP
ZIP
ZIP

PRM
PRM
PRM

Very strong 

p=0.000
vs ZINB BIC= 3188.628 

AIC= 3125.982
dif= 
dif=

154.398
188.131

ZINB
ZINB

PRM
PRM

Very strong

NBRM BIC= 3169.649 AIC= 3135.917 Prefer Over Evidence

vs ZIP BIC= 3291.373 
AIC= 3233.546

dif= 
dif=

-121.724
-97.629

NBRM
NBRM

ZIP
ZIP

Very strong

vs ZINB BIC= 3188.628 
AIC= 3125.982 
Vuong= 2.242

dif= 
dif= 
prob=

-18.979
9.935
0.012

NBRM
ZINB
ZINB

ZINB
NBRM
NBRM

Very strong 

p=0.012

ZIP BIC= 3291.373 AIC= 3233.546 Prefer Over Evidence

vs ZINB BIC= 3188.628 
AIC= 3125.982 
LRX2= 109.564

dif= 
dif= 
prob=

102.745
107.564
0.000

ZINB
ZINB
ZINB

ZIP
ZIP
ZIP

Very strong 

p=0.000

Both the NBRM  and the ZINB consistently fit better than either the PRM or the ZIP. 
This also provides a good example of how BIC penalizes ex tra  parameters more se v e r e ly  
than does AIC. The more parsimonious NBRM is preferred over the ZINB according to 
the BIC statistic  but not according to the AIC statistic. The Vuong statistic prefers the 
ZINB over the NBRM . In terms of fit, there is little to distinguish these two models. If 
the two-part structure of the ZINB was substantively compelling, we would choose this 
model. Otherwise, the simplicity of the NBRM would make this the model of choice.

.8 Conclusion
Count outcomes are not categorical variables in the sense that binary, ordinal, and 
nominal variables are. Although they are discrete, there is no sense in which the values 
assigned to a  count variable are arbitrary. Indeed, count outcomes support both additive 
and multiplicative operations, and the number of potential outcome values is not limited.

Even though count variables are thus not categorical, we hope that it is clear how 
the study of count outcomes can benefit from the same strategies of modeling and inter­
pretation th a t we introduced in earlier chapters. Instead of only offering interpretations 
in terms of expected counts, we offered interpretations based on the probabilities of 
observing a specific count or range of counts. Also, as we showed, the outcomes of 0 
can be conceptualized and even modeled as though they are categorically different from 
the process by which positive counts accumulate. Consequently, as with other types
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of outcomes in this book, we can learn much by thinking about and testing our ideas 
about how outcome values are generated. The combination of Stata with the extra tools 
we provide in this book make it easy to interpret the relationship between independent 
variables and count outcomes in ways that are much more effective than vast tables of 
untransformed coefficients.
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The goal of Regression Models fo r  Categorical Dependent Variables Using Stata, Third 
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