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Preface

This book was written with a particular reader in mind. This reader is learning social
statistics and needs to learn Stata but has no prior experience with other statistical
software packages. When I learned Stata, I found there were no books written explicitly
for this type of reader. There are certainly excellent books on Stata, but they assume
extensive prior experience with other packages, such as SAS or IBM SPSS Statistics; they
also assume a fairly advanced working knowledge of statistics. These books moved
quickly to advanced topics and left my intended reader in the dust. Readers who have
more background in statistical software and statistics will be able to read chapters
quickly and even skip sections. The goal is to move the true beginner to a level of
competence using Stata.

With this target reader in mind, I make far more use of the menus and dialog boxes
in Stata’s interface than do any other books about Stata. Advanced users may not
see the value in using the interface, and the more people learn about Stata, the less
they will rely on the interface. Also, even when you are using the interface, it is still
important to save a record of the sequence of commands you run. Although I rely on
the commands much more than the dialog boxes in the interface in my own work, I still
find value in the interface. The dialog boxes in the interface include many options that
I might not have known or might have forgotten.

To illustrate the interface as well as graphics, I have included more than 100 figures,
many of which show dialog boxes. I present many tables and extensive Stata “results”
as they appear on the screen. I interpret these results substantively in the belief that
beginning Stata users need to learn more than just how to produce the results—users
also need to be able to interpret them.

I have tried to use real data. There are a few examples where it is much easier to
illustrate a point with hypothetical data, but for the most part, I use data that are in
the public domain. For example, I use the General Social Surveys for 2002 and 2006
in many chapters, as well as the National Survey of Youth, 1997. I have simplified the
files by dropping many of the variables in the original datasets, but I have kept all the
observations. I have tried to use examples from several social-science fields, and I have
included a few extra variables in several datasets so that instructors, as well as readers,
can make additional examples and exercises that are tailored to their disciplines. People
who are used to working with statistics books that have contrived data with just a few
observations, presumably so work can be done by hand, may be surprised to see more
than 1,000 observations in this book’s datasets. Working with these files provides better
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experience for other real-world data analysis. If you have your own data and the dataset
has a variety of variables, you may want to use your data instead of the data provided
with this book.

The exercises use the same datasets as the rest of the book. Several of the exercises
require some data management prior to fitting a model because I believe that learning
data management requires practice and cannot be isolated in a single chapter or single
set of exercises.

This book takes the student through much of what is done in introductory and
intermediate statistics courses. It covers descriptive statistics, charts, graphs, tests of
significance for simple tables, tests for one and two variables, correlation and regression,
analysis of variance, multiple regression, logistic regression, reliability, factor analysis,
and path analysis. There are chapters on constructing scales to measure variables and
on using multiple imputation for working with missing values.

By combining this coverage with an introduction to creating and managing a dataset,
the book will prepare students to go even further on their own or with additional re-
sources. More advanced statistical analysis using Stata is often even simpler from a
programming point of view than what we will cover here. If an intermediate course
goes beyond what we do with logistic regression to multinomial logistic regression, for
example, the programming is simple enough. The logit command can simply be re-
placed with the mlogit command. The added complexity of these advanced statistics is
the statistics themselves and not the Stata commands that implement them. Therefore,
although more advanced statistics are not included in this book, the reader who learns
these statistics will be more than able to learn the corresponding Stata commands from
the Stata documentation and help system.

I would like to point out the use of punctuation after quotes in this book. While the
standard U.S. style of punctuation calls for periods and commas at the end of a quote
to always be enclosed within the quotation marks, Stata Press follows a style typically
used in mathematics books and British literature. In this style, any punctuation mark
at the end of a quote is included within the quotation marks only if it is part of the
quote. For instance, the pleased Stata user said she thought that Stata was a “very
powerful program”. Another user simply said, “I love Stata.”

I assume that the reader is running Stata 13, or a later version, on a Windows-based
PC. Stata works equally as well on Mac and on Unix systems. Readers who are running
Stata on one of those systems will have to make a few minor adjustments to some of
the examples in this book. I will note some Mac-specific differences when they are
important. In preparing this book, I have used both a Windows-based PC and a Mac.

Corvallis, OR Alan C. Acock
March 2014
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Support materials for the book

All the datasets and do-files for this book are freely available for you to download. In
the Command window, type

. net from http://www.stata-press.com/data/agis4/

. net describe agis4

. net get agis4

Notice that each of these commands is preceded by a period (.) and a space. This is a
convention used by Stata. When you enter the command, you just type the command
without the . and space that precede it in the instructions.

Stata comes in several varieties. Small Stata is limited to analyzing datasets with a
maximum of 99 variables and 1,200 observations. If you are using Small Stata, you will
be able to do everything in this book, but you will need to download a different set of
datasets that meet these restrictions. In the Command window, type

. net from http://www.stata-press.com/data/agis4/

. net describe agis4_small

. net get agis4_small

Stata will place the datasets in a directory where you can access them. On aWindows
machine, this is probably C:\Users\userid\Documents. You may want to create a new
directory and copy the materials there. If you have several projects, it may be useful
to have a separate folder for each project. For simplicity, throughout this book, we will
use C:\data as the data directory.

To open one of the datasets that you downloaded from the commands above, for
example, relate.dta, type use relate in the Command window. If you are using
Small Stata, small is appended to the dataset name (relate small.dta), so you
would type use relate small. Those readers using Small Stata will need to append
small whenever I mention a dataset in this book.

If your computer is connected to the Internet, you can also load the dataset by
specifying the complete URL of the dataset. For example,

. use http://www.stata-press.com/data/agis4/firstsurvey

This text complements the material in the Stata manuals but does not replace it.
For example, chapters 5 and 6, respectively, show how to generate graphs and tables,
but these are only a few of the possibilities described in the Stata Reference manuals.
All reference material is available in PDF format. In the Stata menu, click on Help ⊲ PDF
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Documentation. One of the best aspects of the Stata documentation is that it provides
several real-data examples for most commands. An entry will start with a fairly simple
example and then give examples that are more complex. Looking at the examples is
how I have learned much of what I know about Stata. You will find that the capabilities
for many of the commands I discuss far exceed what I was able to cover here.

If you remember the name of a command, you can type help command name in
the Command window. For example, typing help summarize would display a Viewer
window with brief information and examples of how to run the command. If you do not
know the exact name of the command, you could just enter the first part. For example,
typing help sum opens a window with two options, one of which is summarize. If you
enter the wrong name for a command, say, you type help summary, Stata opens a
Viewer window with a list of files where the word “summary” was listed as a keyword.
You scroll through the list and find the summarize command. If you click on summarize,
the help file for the summarize command opens in the Viewer window.

The help file does not give you all the detailed explanation and examples that you
get from the PDF documentation, but it is often all you need. You can open the PDF

document for a specific command by clicking on the command name in the Title section
or in the Also See menu of the help file.

My hope in writing this book is to give you sufficient background so that you can
use the manuals effectively.



1 Getting started

1.1 Conventions

1.2 Introduction

1.3 The Stata screen

1.4 Using an existing dataset

1.5 An example of a short Stata session

1.6 Summary

1.7 Exercises

1.1 Conventions

Listed below are the conventions that are used throughout the book. I thought it might
be convenient to list them all in one place should you want to refer to them quickly.

Typewriter font. I use this font when something would be meaningful to Stata as
input. I also use it to indicate Stata output.

I use a typewriter font to indicate the text to type in the Command window.
Because Stata commands do not have any special characters at the end, any
punctuation mark at the end of a command in this book is not part of the com-
mand. Sometimes, to be consistent with Stata manuals, I will put a command on
a line by itself with the dot preceding it, as in

. sysuse cancer, clear

All of Stata’s dialog boxes generate commands, which will be displayed in the
Review window and in the Results window. In the Results window, each com-
mand will be preceded by the dot prompt. If you make a point of looking at the
command Stata prints each time you use the dialog boxes, you will quickly learn
the commands. I may include the equivalent command in the text after explaining
how to navigate to it through the dialog boxes.

1
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Why do we show the dot prompt with these commands?

When we show a listing of Stata commands, we place a dot and a space in front of
each command. When you enter these commands in the Command window, you
enter the command itself and not the dot prompt or space. We include these because
Stata always shows commands this way in the Results window. Stata manuals and
many other books about Stata follow this convention.

When you type a Stata command in the Command window, you execute the
command when you press the Enter key. The command may wrap onto more than
one line, but if you press the Enter key in the middle of entering a command,
Stata will interpret that as the end of the command and will probably generate
an error. The rule is that you should just keep typing when entering a command
in the Command window, no matter how long the command is. Press Enter only
when you want to execute the command.

I also use the typewriter font for variable names, for names of datasets, and to
show Stata’s output. In general, I use the typewriter font whenever the text is
something that can be typed into Stata or when the text is something that Stata
might print as output. This approach may seem cumbersome now, but you will
catch on quickly.

Folder names, filenames, and filename extensions, as in “The survey.dta file is in
the C:\data directory (or folder)”, are also denoted in the typewriter font. Stata
assumes that .dta will be the extension, so you can use just the filename without
an extension, if you prefer.

Sans serif font. I use this font to indicate menu items (in conjunction with the ⊲ symbol),
button names, dialog-box tab names, and particular keys:

• Menu items, such as “Select Data ⊲ Data utilities ⊲ Rename groups of variables
from the Stata menu” (see figure 1.1).

Figure 1.1. Stata menu
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• Buttons that can be clicked on, as in “Remember, if you are working on a
dialog box, it will now be up to you to click on OK or Submit, whichever you
prefer.”

• Keys on your keyboard, as in “The Page Up and Page Down keys will move
you backward and forward through the commands in the Review window.”

Some functions require the use of the Shift, Ctrl, or Alt key, which will be
held down while the second key is pressed. For example, Alt+f will open the
File menu.

Slant font. I use this font for dialog-box titles and when I talk about labeled elements
of a dialog box, with both items capitalized as they are on the dialog box.

Italics font. I use this font when I refer to a word that is to be replaced.

Quotes. I use double quotes when I am talking about labels in a general way, but I
will use the typewriter font to indicate a specific label in a dataset. For example,
if we decided to label the variable age “Age at first birth”, we would enter Age
at first birth in the textbox.

Capitalization. Stata is case sensitive, so summarize is a Stata command, whereas
Summarize is not and will generate an error if you use it. Stata also recognizes
capitalization in variable names, so agegroup, Agegroup, and AgeGroup will be
three different variables. Although you can certainly use capital letters in variable
names, you will probably find yourself making more typographical errors if you
do. I have found that using all lowercase letters when creating variable names is
usually the best practice.

I will capitalize the names of the various Stata windows, but I do not set them off
by using a different font. For example, we will type commands in the Command
window and look at the output in the Results window.
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Setting how much output is in the Results window

The default size for the scrollback buffer size for the Results window is 200 kilo-
bytes, approximately 200,000 characters. If you have many results being displayed
in the Results window, the default is to drop the oldest lines once you use up the
200 kilobyte buffer. If you want to be able to scroll back further, you can make
the buffer size larger, up to 2,000 kilobytes. Select Edit ⊲ Preferences ⊲ General
Preferences... and click on the Windowing tab. Stata for Mac users can make this
change by selecting Stata ⊲ Preferences ⊲ General Preferences... and clicking on
the Windows tab. You might change the scrollback buffer size from the default
200 kilobytes to 500 kilobytes. This change will not take effect until you restart
Stata.

Stata for Unix users cannot make this change from the Preferences dialog
box; they must type the command set scrollbufsize 500000 directly in the
Command window.

Typing the command sets the scrollback buffer size in bytes by default, whereas
using the menu method sets the size in kilobytes.

Many Stata users find having to click on the more message when it ap-
pears in the Results window irritating. It is designed to make it easier to read
the results of a single command, but if you do not like this feature, you can type
the command set more off or set more off, permanently. The permanently

option specifies that the setting be remembered for each future Stata session until
you reverse the action by typing set more on or set more on, permanently.

1.2 Introduction

The best way to learn data analysis is to actually do it with real data. These days,
doing statistics means doing statistics with a computer and a software package. There
is no other software package that can match the internal consistency of Stata, which
makes it easy to learn and a joy to use. Stata empowers users more effectively than any
other statistical package.
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Work along with the book

Although it is not necessary, you will probably find it helpful to have Stata running
while you read this book so that you can follow along and experiment for yourself.
Having your hands on a keyboard and replicating the instructions in this book
will make the lessons that much more effective, but more importantly, you will get
in the habit of just trying something new when you think of it and seeing what
happens. In the end, experimentation is how you will really learn how Stata works.
The other great advantage to following along is that you can save the examples we
do for future use.

Stata is a powerful tool for analyzing data. Stata makes statistics and data analysis
fun because it does so much of the tedious work for you. A new Stata user should
start by using the dialog boxes. As you learn more about Stata, you will be able to
do more sophisticated analyses with Stata commands. Learning Stata well now is an
investment that will pay off in saved time later. Stata is constantly being extended with
new capabilities, which you can install using the Internet from within Stata. Stata is a
program that grows with you.

Stata is a command-driven program. It has a remarkably simple command structure
that you use to tell it what you want it to do. You can use a dialog box to generate
the commands (this is a great way to learn the commands or prompt yourself if you
do not remember one exactly), or you can enter commands directly. If you enter the
summarize command, you will get a summary of all the variables in your dataset (mean,
standard deviation, number of observations, minimum value, and maximum value).
Enter the command tabulate gender, and Stata will make a frequency distribution of
the variable called gender, showing you the number and percentage of men and women
in your dataset.

After you have used Stata for a while, you may want to skip the dialog box and
enter these commands directly. When you are just beginning, however, it is easy to be
overwhelmed by all the commands available in Stata. If you were learning a foreign
language, you would have no choice but to memorize hundreds of common words right
away. This is not necessary when you are learning Stata because the dialog boxes are
so easy to use.
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Searching for help

Stata can help when you want to find out how to do something. You can use the
search command along with a keyword. For example, you believe that a t test is
what you want to use to compare two means. Enter search t test; Stata searches
its own resources and others that it finds on the Internet. The first entry of the
results is

[R] ttest . . . . . . . . . . . . . . . t tests (mean-comparison tests)
(help ttest)

The [R] at the beginning of the line means that details and examples can be found
in the Stata Base Reference Manual. Click on the blue ttest to go to the help file
for the ttest command. If you think this help is too cryptic, repeat the search t

test command and look farther down the list. Scroll past the lines starting with
Video, and look for the lines starting with FAQ (frequently asked questions). One
of these is “What statistical analysis should I use?” Click on the blue URL to go
to a UCLA webpage that will help you decide whether the t test is the best choice
for what you are doing. You might click on some of the other resources to see how
much support you get from a wide variety of resources.

When using the search command, you need to pick a keyword that Stata
knows. You might have to try different keywords before you get one that works.
Searching these Internet locations is a remarkable capability of Stata. If you are
reading this book and want to know more about a command, the online help is
the first place to start. Suppose that we are discussing the summarize command
and you want to know more options for this command. Type help summarize

and you will get an informative help screen. To obtain complete information for a
command, you should see the PDF documentation. The PDF documentation can be
opened from the Stata menu by selecting Help ⊲ PDF Documentation. Bookmarks
to all the Stata manuals are available; click on the plus sign (+) next to each
manual to see bookmarks to sections therein.

Stata has done a lot to make the dialog boxes as friendly as possible so that you
feel confident using them. The dialog boxes often show many options, which control the
results that are shown and how they are displayed. You will discover that the dialog
boxes have default values that are often all you need, so you may be able to do a great
deal of work without specifying any options.

As we progress, you will be doing more complex analyses. You can do these using the
dialog boxes, but Stata lets you create files that contain a series of commands you can
run all at once. These files, called do-files, are essential once you have many commands
to run. You can reopen the do-file a week or even several months later and repeat
exactly what you did. Keeping a record of what you do is essential; otherwise, you will
not be able to replicate results of elaborate analyses. Fortunately, Stata makes this easy.
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You will learn more about replicating results in chapter 4. The do-files that reproduce
most of the tables, graphs, and statistics for each chapter are available on the webpage
for this book (http://www.stata-press.com/data/agis4/).

Because Stata is so powerful and easy to use, I may include some analyses that are
not covered in your statistics textbook. If you come to a procedure that you have not
already learned in your statistics text, give it a try. If it seems too daunting, you can
skip that section and move on. On the other hand, if your statistics textbook covers
a procedure that I omit, you might search the dialog boxes yourself. Chances are that
you will find it there.

Depending on your needs, you might want to skip around in the book. Most people
tend to learn best when they need to know something, so skipping around to the things
you do not know may be the best use of the book and your time. Some topics, though,
require prior knowledge of other topics, so if you are new to Stata, you may find it best
to work through the first four chapters carefully and in order. After that, you will be
able to skip around more freely as your needs or interests demand.

1.3 The Stata screen

When you open Stata, you will see a screen that looks something like figure 1.2.

Figure 1.2. Stata’s opening screen
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You can rearrange the windows to look the way you want them, although many users
are happy with the default layout. If you are satisfied with the defaults, you might
skip the next couple paragraphs and come back to them if you change your mind later.
Many experienced Stata users have particular ways to arrange these screens. Feel free
to experiment with the layout.

Selecting Edit ⊲ Preferences gives you several options. One thing you might want
to do is change the size of the buffer for the Results window. The factory default of
200 kilobytes may be too small to be able to scroll through all your results. To change
the size of the buffer, select Edit ⊲ Preferences ⊲ General Preferences... and then click
on the tab labeled Windowing. Depending on how much memory your computer has
available, you might want to raise the default value to as much as 500 kilobytes. You
can resize the Stata interface as you would any other Windows product. There are other
options you can try under Windowing and each of the other tabs. It is nice to personalize
your interface in a way that is attractive to you. I will use the generic “factory settings”
for this book, however. If you make several changes and want to return to the starting
point, select Edit ⊲ Preferences ⊲ Load Preference Set ⊲ Widescreen Layout (default). If
you are using Stata for Mac, select Stata ⊲ Preferences ⊲ Manage Preferences ⊲ Factory
Settings.

When you open a file that contains Stata data, which we will call a Stata dataset, a
list of the variables will appear in the Variables window. The Variables window reports
the name of the variable (for example, abortion) and a label for the variable (for
example, Attitude toward abortion). Other information about the variable is shown
in the Properties window, such as the type of variable (for example, float) and the
format of the variable (for example, %8.0g). For now, just consider the name and label.
You can vary the width of each column in the Variables window by placing your cursor
on the vertical line between the name and label, clicking on it, and then dragging your
cursor to the right or left.

When Stata executes a command, it prints the results or output in the Results
window. First, it prints the command preceded by a . (dot) prompt, and then it prints
the output. The commands you run are also listed in the Review window. If you click
on one of the commands listed in the Review window, it will appear in the Command
window. If you double-click on one of the commands listed in the Review window, it
will be executed. You will then see the command and its output, if any, in the Results
window.

When you are not using the interface, you enter commands in the Command window.
You can use the Page Up and Page Down keys on your keyboard to recall commands
from the Review window. On a Mac that does not have the Page Up and Page Down
keys, you can use the fn key with the arrow up or arrow down key. You can also edit
commands that appear in the Command window. I will illustrate all these methods in
the coming chapters.
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The gray bar at the bottom of the screen, called the status bar, displays the current
working directory (folder). This directory may be different on different computers de-
pending on how Stata was installed. The working directory is where Stata will look for a
file or save a file unless you specify the full path to a different directory that contains the
file. If you have a project and want to store all files related to that project in a particu-
lar directory, say, C:\data\thesis, you could enter the command cd C:\data\thesis.
This command assumes that this directory already exists on your computer.

On a Mac, the gray bar at the bottom looks slightly different. To change the working
directory on a Mac or Unix computer from the current working directory to a Documents
folder in your home directory, you would type cd "~/Documents". Stata recognizes the
tilde to represent your home directory. If you had a folder in your Documents folder
called Learning Stata, you would type cd "~/Documents/Learning Stata". Also on
a Mac, you have help if you cannot remember where you saved a file containing data:
You can click on the magnifying glass in the upper right corner of your screen to search
the name of the file, and then click on the file to open it. You may want to type the
clear command first.

Stata has the usual Windows title bar across the top, on the right side of which
are the three buttons (in order from left to right) to minimize, to expand to full-screen
mode, and to close the program. Immediately below the Stata title bar is the menu bar,
where the names of the menus appear. Some of the menu items (File, Edit, and Window)
will look familiar because they are used in other programs. The Data, Graphics, and
Statistics menus are specific to Stata, but their names provide a good idea of what you
will find under them.

Figures 1.3 and 1.4 show the Stata toolbar as it appears in Windows and Mac,
respectively. The icons provide alternate ways to perform some of the actions you
would normally do with the menus. If you hold the cursor over any of these icons for a
couple of seconds, a brief description of the function appears. For a complete list of the
toolbar icons and their functions, see the Getting Started with Stata manual.

Figure 1.3. The toolbar in Stata for Windows

Figure 1.4. The toolbar in Stata for Mac

1.4 Using an existing dataset

Chapter 2 discusses how to create your own dataset, save it, and use it again. You will
also learn how to use datasets that are on the Internet. For now, we will use a simple
dataset that came with Stata. Although we could use the dialog box to do this, we will
enter a simple command. Click once in the Command window to put the cursor there,
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and then type the command sysuse cancer, clear; the Command window should
look like the one in figure 1.5.

Figure 1.5. Stata command to open cancer.dta

The sysuse command we just used will find the sample dataset on your computer
by name alone, without the extension; in this case, the dataset name is cancer, and the
file that is found is actually called cancer.dta. The cancer dataset was installed with
Stata. This particular dataset has 48 observations and 4 variables related to a cancer
treatment.

What if you forget the command sysuse? You could open a file that comes with
Stata by using the menu File ⊲ Example Datasets.... A new window opens in which
you click on Example datasets installed with Stata. The next window then lists all the
datasets that come with Stata. You can click on use to open the dataset.

Now that we have some data read into Stata, type describe in the Command
window. That is it: just type describe and press the Enter key. describe will yield a
brief description of the contents of the dataset.

. describe

Contains data from C:\Program Files\Stata13\ado\base/c/cancer.dta
obs: 48 Patient Survival in Drug Trial
vars: 8 3 Mar 2011 16:09
size: 576

storage display value
variable name type format label variable label

studytime int %8.0g Months to death or end of exp.
died int %8.0g 1 if patient died
drug int %8.0g Drug type (1=placebo)
age int %8.0g Patient’s age at start of exp.
_st byte %8.0g
_d byte %8.0g
_t byte %10.0g
_t0 byte %10.0g

Sorted by:

The description includes a lot of information: the full name of the file, cancer.dta
(including the path entered to read the file); the number of observations (48); the
number of variables (8); the amount of memory the data consume (576 bytes); a brief
description of the dataset (Patient Survival in Drug Trial); and the date the file was last
saved. The body of the table displayed shows the names of the variables on the far left
and the labels attached to them on the far right. We will discuss the middle columns
later.
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Now that you have opened cancer.dta, note that the Variables window lists the
eight variables studytime, died, drug, age, st d, t, and t0.

Internet access to datasets

Stata can use data stored on the Internet just as easily as data stored on your com-
puter. If you did not have the cancer.dta file installed on your computer, you could
read it by entering webuse cancer. However, you are not limited to data stored at
the Stata site. Typing use http://www.ats.ucla.edu/stat/stata/notes/hsb2

will open a dataset stored at the UCLA website.

Stata does not discard changes to the dataset currently in memory unless
you tell it to do so. That is, if you have a dataset in memory and you have modified
it, you will receive an error message if you try to load another dataset. You need
to save the dataset in memory, type the clear command to discard the changes,
or type the clear option of the use command to discard the changes. You can
then load the new dataset.

Stata provides all the datasets for every example in its manuals. For exam-
ple, click on File ⊲ Example Datasets.... A new window opens in which you click
on Stata 13 manual datasets. There you might click on Base Reference Manual
[R]; scroll down to correlate, and click on use to open any of the datasets or
describe to see what variables are in the dataset.

1.5 An example of a short Stata session

If you do not have cancer.dta loaded, type the command sysuse cancer. We will
execute a basic Stata analysis command. Type summarize in the Command window
and then press Enter.

Rather than typing in the command directly, you could use the dialog box by se-
lecting Data ⊲ Describe data ⊲ Summary statistics to open the corresponding dialog box.
Simply clicking on the OK button located at the bottom of the dialog box will produce
the summarize command we just entered. Because we did not enter any variables in the
dialog box, Stata assumed that we wanted to summarize all the variables in the dataset.

You might want to select specific variables to summarize instead of summarizing
them all. Open the dialog box again and click on the pulldown menu within the Variables
box, located at the top of the dialog box, to display a list of variables. Clicking on a
variable name will add it to the list in the box. Dialog boxes allow you to enter a
variable more than once, in which case the variable will appear in the output more than
once. You can also type variable names in the Variables box. A last alternative is to
click on the variable name in the Variables window. Figure 1.6 shows the dialog box
with the drop-down variable list displaying the variables in your dataset:
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Figure 1.6. The summarize dialog box

In the bottom left corner of the dialog box, there are three icons: , , and .

The icon gives us a help screen explaining the various options. The explanations are

brief, but there are examples at the bottom of the Viewer window. The icon resets

the dialog box. Just to the right of the icon is an icon that looks like two pages. If
you click on this icon, the command is copied to the Clipboard.

If you enter the summarize command directly in the Command window, simply
follow it with the names of the variables for which you want summary statistics. For
example, typing summarize studytime age will display only statistics for the two vari-
ables named studytime and age.

In the Results window, the summarize command will display the number of obser-
vations (also called cases or N ), the mean, the standard deviation, the minimum value,
and the maximum value for each variable.

. summarize

Variable Obs Mean Std. Dev. Min Max

studytime 48 15.5 10.25629 1 39
died 48 .6458333 .4833211 0 1
drug 48 1.875 .8410986 1 3
age 48 55.875 5.659205 47 67
_st 48 1 0 1 1

_d 48 .6458333 .4833211 0 1
_t 48 15.5 10.25629 1 39
_t0 48 0 0 0 0

The first line of output displays the dot prompt followed by the command. After
that, the output appears as a table. As you can see, there are 48 observations in this



1.5 An example of a short Stata session 13

dataset. Observations is a generic term. These could be called participants, patients,
subjects, organizations, cities, or countries depending on your field of study. In Stata,
each row of data in a dataset is called an observation. The average, or mean, age is
55.875 years with a standard deviation of 5.659,1 and the subjects are all between 47
(the minimum) and 67 (the maximum) years old.

If you have computed means and standard deviations by hand, you know how long
this can take. Stata’s virtually instant statistical analysis is what makes Stata so valu-
able. It takes time and skill to set up a dataset so that you can use Stata to analyze it,
but once you learn how to set up a dataset (chapter 2), you will be able to compute a
wide variety of statistics in little time.

We will do one more thing in this Stata session: we will make the histogram for the
age variable, shown in figure 1.7.
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Figure 1.7. Histogram of age

A histogram is just a graph that shows the distribution of a variable, such as age, that
takes on many values.

Simple graphs are simple to create. Just type the command histogram age in the
Command window, and Stata will produce a histogram using reasonable assumptions.
I will show you how to use the dialog boxes for more complicated graphs shortly.

At first glance, you may be happy with this graph. Stata used a formula to determine
that six bars should be displayed, and this is reasonable. However, Stata starts the
lowest bar (called a bin) at 47 years old, and each bin is 3.33 years wide (this information
is displayed in the Results window) even though we are not accustomed to measuring
years in thirds of a year. Also notice that the vertical axis measures density, but we

1. I may round numbers in the text to fewer digits than shown in the output unless it would make
finding the corresponding number in the output difficult.
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might prefer that it measure the frequency, that is, the number of people represented
by each bar.

Using the dialog box can help us customize our histogram. Let’s open the histogram
dialog box shown in figure 1.8 by selecting Graphics ⊲ Histogram from the menu bar.

Figure 1.8. The histogram dialog box

Let’s quickly go over the parts of the dialog box. There is a textbox labeled Variable
with a pulldown menu. As we saw on the summarize dialog, you can pull down the list
of variables and click on a variable name to enter it in the box, or you can type the
variable’s name yourself. Only one variable can be used for a histogram, and here we
want to use age. If we stop here and click on OK, we will have re-created the histogram
shown in figure 1.7.

There are two radio buttons visible to the right of the Variable box: one labeled Data
are continuous (which is shown selected in figure 1.8) and one labeled Data are discrete.
Radio buttons indicate mutually exclusive items—you can choose only one of them.
Here we are treating age as if it were continuous, so make sure that the corresponding
radio button is selected. On the right side of the Main tab is a section labeled Y axis.
Click on the radio button for Frequency so that the histogram shows the frequency of
each interval. In the section labeled Bins, check the box labeled Width of bins and type
2.5 in the textbox that becomes active (because the variable is age, the 2.5 indicates
2.5 years). Also check the box labeled Lower limit of first bin and type 45, which will
be the smallest age represented by the bar on the left.

The dialog box shows a sequence of tabs just under its title bar, as shown in figure 1.9.
Different categories of options will be grouped together, and you make a different set
of options visible by clicking on each tab. The options you have set on the current tab
will not be canceled by clicking on another tab.
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Figure 1.9. The tabs on the histogram dialog box

Graphs are usually clearer when there is a title of some sort, so click on the Titles
tab and add a title. Here we type Age Distribution of Participants in Cancer

Study in the Title box. Let’s add the text Data: Sample cancer dataset to the Note
box so that we know which dataset we used for this graph. Your dialog box should look
like figure 1.10.

Figure 1.10. The Titles tab of the histogram dialog box

Now click on the Overall tab. Let’s select s1 monochrome from the pulldown menu on the
Scheme box. Schemes are basically templates that determine the standard attributes of
a graph, such as colors, fonts, and size; which elements will be shown; and more.

From the Legend tab, under the Legend behavior section, click on the radio button
for Show legend. Whether a legend will be displayed is determined by the scheme that
is being used, and if we were to leave Default checked, our histogram might have a
legend or it might not, depending on the scheme. Choosing Show legend or Hide legend
overrides the scheme, and our selection will always be honored.

Now that we have made these changes, click on Submit instead of OK to generate
the histogram shown in figure 1.11. The dialog box does not close. To close the dialog
box, click on the X (close) button in the upper right corner, but we are not ready to do
that yet.
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Figure 1.11. First attempt at an improved histogram

If you look at the complex command that the dialog box generated, you will see why
even experienced Stata programmers will often rely on the dialog box to create graph

commands. In reading this command, you will want to ignore the opening dot (Stata
prints this in front of commands in the Results window, but the dot is not part of the
command and you do not type it). Stata prints the > sign at the start of the second and
third line, which might be confusing. Stata uses the Enter key to submit a command.
Because of this, Stata sees the entire command as one line. To print the entire line in
the confines of the Results window, Stata inserts the > for a line break. If you wanted to
enter this command in the Command window, you would simply type the entire thing
without the > and let Stata do the wrapping as needed in the Command window. Never
press the Enter key until you have entered the entire command.

. histogram age, width(2.5) start(45) frequency
> title(Age Distribution of Participants in Cancer Study)
> note(Data: Sample cancer dataset) legend(on) scheme(s1mono)

Clearing the Results window: The cls command

As you run commands, the results are displayed in the Results window. There may
be times when you want to clear the Results window, so that, for example, seeing
the top of the results of a command is easier, especially if your commands and
results are lengthy. Beginning with Stata 13, you can type the cls command (with
no options) to clear the Results window.

It is much more convenient to use the dialog box to generate that command than
to try to remember all its parts and the rules of their use. If you do want to enter a
long command in the Command window, remember to type it as one line. Whenever
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you press Enter, Stata assumes that you have finished the command and are ready to
submit it for processing.

When to use Submit and when to use OK

Stata’s dialogs give you two ways to run a command: by clicking on OK or by
clicking on Submit. If you click on OK, Stata creates the command from your
selections, runs the command, and closes the dialog box. This is just what you
want for most tasks. At times, though, you know you will want to make minor
adjustments to get things just right, so Stata provides the Submit button, which
still runs the command but leaves the dialog open. This way, you can go back to
the dialog box and make changes without having to reopen the dialog box.

The resulting histogram in figure 1.11 is an improvement, but we might want fewer
bins. Here we are making small changes to a Stata command, then looking at the results,
and then trying again. The Submit button is useful for this kind of interactive, iterative
work. If the dialog box is hidden, we can use the Alt+Tab (Windows) or Cmd+Tab
(Mac) key combination to move through Stata’s windows until the one we want is on
top again.

Instead of a width of 2.5 years, let’s use 5 years, which is a more common way to
group ages. If you clicked on OK instead of on Submit, you need to reopen the histogram
dialog box as you did before. When you return to a dialog that you have already used
in the current Stata session, the dialog box reappears with the last values still there.
So all you need to do is change 2.5 to 5 in the Width of bins box on the Main tab and
click on Submit. The result is shown in figure 1.12.
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Notice how different the three graphs appear. You need to use judgment to pick the best
combination and avoid using graphs that misrepresent the distribution. A good graph
will give the reader a true picture of the distribution, but a poor graph may be quite
deceptive. When people say that you can lie with statistics, they are often thinking
about graphs that do not provide a fair picture of a distribution or a relationship. Can
you think of any more improvements? The legend at the bottom center of the graph is
unnecessary. You might want to go back to the dialog box, click on the Legend tab, and
click on Hide legend to turn off the legend.

To finish our first Stata session, we need to close Stata. Do this with File ⊲ Exit. If
you are using Stata for Mac, select Stata ⊲ Quit Stata.

1.6 Summary

We covered the following topics in this chapter:

• The font and punctuation conventions I will use throughout the book

• The Stata interface and how you can customize it

• How to open a sample Stata dataset

• The parts of a dialog box and the use of the OK and Submit buttons

• How to summarize the variables

• How to create and modify a simple histogram

1.7 Exercises

Some of these exercises involve little or no writing; they are simply things you can do to
make sure you understand the material. Other exercises may require a written answer.

1. You can copy and paste text to and from Stata as you wish. You should try
highlighting some text in Stata’s Results window, copying it to the Clipboard, and
pasting it into another program, such as your word processor. To copy highlighted
text, you can use the Edit ⊲ Copy menu or, as indicated on the menu, Ctrl+c. You
will probably need to change the font to a monospaced font (for example, Courier),
and you may need to reduce its font size (for example, to 9 point) after pasting
it to prevent the lines from wrapping. You may wish to experiment with copying
Stata output into your word processor now so that you know which font size and
typeface work best. It may help to use a wider margin, such as 1 inch, on each
side.

2. After you highlight material in the Results window, right-click on it. You can copy
this output in several formats, including Copy, Copy Table (only works with some



1.7 Exercises 19

commands), Copy Table as HTML, and Copy as Picture (copies a graphic image
of what you highlighted). The Copy option works nicely, but you will need to
use a monospaced font, such as Courier, and may need to use a smaller font size
when you paste it into your word processing document. The Copy Table option
is limited because it only works with a few commands. The Copy Table as HTML
option will create a table that looks like what you would see on a webpage. Using
Microsoft Word, you can edit the table by making columns wider or narrower and
by aligning the columns so that each number has the same number of decimal
places. Just copy the tabular results and not the command when using the HTML

option. The Copy as Picture option works nicely in Windows, but you cannot edit
it in Word because it is a graphic image. In Word, you can resize the image.

Run the summarize command and copy the results to a Word document by using
each of the options. Highlight the table. Right-click on it and then select the
option you want. Switch to your word processor. Press Ctrl+v to paste what you
copied. In your word processor, make the table as nice as you can by adjusting
the font, font size, margins, etc.

3. Stata has posted all the datasets from its manuals that were used to illustrate
how to do procedures. You can access the manual datasets from within Stata by
going to the File ⊲ Example Datasets... menu, which will open a Viewer window.
Click on Stata 13 manual datasets and then click on User’s Guide [U].

The Viewer window works much like a web browser, so you can click on any of
the links in the list of datasets. Scroll down to chapter 25, and select the use link
for censusfv.dta, which opens a dataset that is used for chapter 25 of the User’s
Guide. Run two commands, describe and summarize. What is the variable
divorcert and what is the mean (average) divorce rate for the 50 states?

4. Open cancer.dta. Create histograms for age using bin widths of 1, 3, and 5. Use
the right mouse button to copy each graph to the Clipboard, and then paste it
into your word processor. Does the overall shape of the histogram change as the
bins get wider? How?

5. UCLA has a Stata portal containing a lot of helpful material about Stata. You
might want to browse the collection now just to get an idea of the topics covered
there. The URL for the main UCLA Stata page is

http://www.ats.ucla.edu/stat/stata/

In particular, you might want to look at the links listed under Learning Stata.
On the Stata Starter Kit page, you will find a link to Class notes with movies.
These movies demonstrate using Stata’s commands rather than the dialog box.
The topics we will cover in the first few chapters of this book are also covered on
the UCLA webpage using the commands. Each movie is about 25 minutes long.
Some of these movies are for older versions of Stata, but they are still useful.
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2.1 Creating a dataset

In this chapter, you will learn how to create a dataset. Data entry and verification can
be tedious, but these tasks are essential for you to get accurate data. More than one
analysis has turned out wrong because of errors in the data.

In the first chapter, you worked with some sample datasets. Most of the analyses
in this book use datasets that have already been created for you and are available on
the book’s webpage, or they may already be installed on your computer. If you cannot
wait to get started analyzing data, you can come back to this chapter when you need
to create a dataset. You should look through the sections in this chapter that deal
with documenting and labeling your data because not all prepared datasets will be well
documented or labeled.

The ability to create and manage a dataset is invaluable. People who know how to
create a dataset are valued members of any research team. For small projects, collecting,
entering, and managing the data can be straightforward. For large, complex studies that
extend over many years, managing the data and the documentation can be as complex
as any of the analyses that may be conducted.
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Stata, like most other statistical software, almost always requires data that are set in
a grid, like a table, with rows and columns. Each row contains data for an observation
(which is often a subject or a participant in your study), and each column contains
the measurement of some variable of interest about the observation, such as age. This
system will be familiar to you if you have used a spreadsheet.

Variables and items

In working with questionnaire data, an item from the questionnaire almost always
corresponds to a variable in the dataset. So if you ask for a respondent’s age, then
you will have a variable called age. Some questionnaire items are designed to be
combined to make scales or composite measures of some sort, and new variables
will be created to contain those items, but there is no single item corresponding
to the scale or construct on the questionnaire. A questionnaire may also have an
item where the respondent is asked to “mark all that apply”, and commonly there
is a variable for each category that could be marked under that item. The terms
item and variable are often used interchangeably, but they are not synonyms. An
item always refers to one question. A variable may be the score on an item or a
composite score based on several items.

There is more to a dataset than just a table of numbers. Datasets usually contain
labels that help the researcher use the data more easily and efficiently. In a dataset,
the columns correspond to variables, and variables must be named. We can also attach
to each variable a descriptive label, which will often appear in the output of statistical
procedures. Because most data will be numbers, we can also attach value labels to the
numbers to clarify what the numbers mean.

It is extremely helpful to pick descriptive names for each variable. For example, you
might call a variable that contains people’s responses to a question about their state’s
schools q23, but it is often better to use a more descriptive name, such as schools. If
there were two questions about schools, you might want to name them schools1 and
schools2 rather than q23a and q23b. If a set of items are to be combined into scales
and are not intended to be used alone, you may want to use names that correspond to
the questionnaire items for the original variables and reserve the descriptive names for
the composite scores. This is useful with complex datasets where several people will be
using the same dataset. Each user will know that q23a refers to question 23a, whereas
“friendly” names like schools1 may make sense to one user but not to another user.

There are a few variable names that Stata reserves: all, cons, N, using, with, etc.
For example, Stata uses the variable name N to always be the size of your sample and
uses the variable name cons to refer to the constant (intercept). See [U] 11.3 Naming

conventions for the complete list of reserved names.

No matter what the logic of your naming, try to keep names short. You will probably
have to type them often, and shorter names offer fewer opportunities for typing errors.
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A respondent’s age can be named age or age of respondent (note that no blank spaces
are allowed in a name).

Even with relatively descriptive variable names, it is usually helpful to attach a
longer and, one hopes, more descriptive label to each variable. We call these variable
labels to distinguish them from variable names. For example, you might want to further
describe the variable schools with the label “Public school rating”. The variable label
gives us a clearer understanding of the data stored in that variable.

For some variables, the meaning of the values in the data is obvious. If you measure
people’s height in inches, then when you see the values, it is clear what they mean. For
other variables, the meaning of the values needs to be specified with a value label. Most
of us have run across questions that ask us if we “Strongly agree”, “Agree”, “Disagree”,
or “Strongly disagree”, or that ask us to answer some question with “Yes” or “No”.
This sort of data is usually coded as numbers, such as 1 for “Yes” and 2 for “No”, and
it can make understanding tables of data much easier if you create value labels to be
displayed in the output in addition to (or instead of) the numbers.

If your project is just a short homework assignment, you could consider skipping the
labeling (though your instructor would no doubt appreciate anything that makes your
work easier to understand). For any serious work though, clear labeling will make your
work much easier in the long run. Remember, we need a variable name, a descriptive
label for the variable, and sometimes labels for the values the variable can have.

2.2 An example questionnaire

We have discussed datasets in general, so now let’s create one. Suppose that we con-
ducted a survey of 20 people and asked each of them six questions, which are shown in
the example questionnaire in figure 2.1.
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What is your gender?
Male Female

How many years of education have you completed?
0–8 9
10 11
12 13
14 15
16 17
18 19
20 or more

How would you rate public schools in your state?
Very poor Poor
Okay Good
Very good

How would you rate public schools in the community you lived in as a teenager?
Very poor Poor
Okay Good
Very good

How would you rate the severity of prison sentences of criminals?
Much too lenient Somewhat too lenient
About right Somewhat too harsh
Much too harsh

How liberal or conservative are you?
Very liberal Somewhat liberal
Moderate Somewhat conservative
Very conservative

Figure 2.1. Example questionnaire

Our task is to convert the questionnaire’s answers into a dataset that we can use
with Stata.

2.3 Developing a coding system

Statistics is most often done with numbers, so we need to have a numeric coding system
for the answers to the questions. Stata can use numbers or words. For example, we
could type Female if a respondent checked “Female”. However, it is usually better to
use some sort of numeric coding, so you might type 1 if the respondent checked “Male”
on the questionnaire and 2 if the respondent checked “Female”. We will need to assign
a number to enter for each possible response for each of the items on the survey.
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You will also need a short variable name for the variable that will contain the data
for each item. Variable names can contain uppercase and lowercase letters, numerals,
and the underscore character, and they can be up to 32 characters long. No blank spaces
are allowed in variable names. The variable name mother age would be interpreted as
two variables, mother and age. Generally, you should keep your variable names to 10
characters or fewer, but 8 or fewer is best. Variable names should start with a letter.

If appropriate, you should explain the relationship between any numeric codes and
the responses as they appeared on the questionnaire. For an example, see the example
codebook (not to be confused with the Stata command codebook, which we will use
later) for our questionnaire in table 2.1.
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Table 2.1. Example codebook

Question Variable name Value labels Code

Identification number
id Record in order 1 to 20

What is your gender?
gender Male 1

Female 2
No answer −9

How many years of education have you completed?
education 0–8 8

9–20 9 to 20
No answer −9

Rate public schools in your state.
sch st Very poor 1

Poor 2
Okay 3
Good 4
Very good 5
No answer −9

Rate public schools in the community you lived in as a teenager.
sch com Very poor 1

Poor 2
Okay 3
Good 4
Very good 5
No answer −9

Rate severity of prison sentences of criminals. They are . . .
prison Much too lenient 1

Too lenient 2
About right 3
Too harsh 4
Much too harsh 5
No answer −9

How liberal or conservative are you?
conserv Very liberal 1

Liberal 2
Moderate 3
Conservative 4
Very conservative 5
No answer −9
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A codebook translates the numeric codes in your dataset back into the questions
you asked your participants and the choices you gave them for answers. Regardless
of whether you gather data with a computer-aided interviewing system or with paper
questionnaires, the codebook is essential to help make sense of your data and your
analyses. If you do not have a codebook, you might not realize that everyone with eight
or fewer years of education is coded the same way, with an 8. That may have an impact
on how you use that variable in later analyses.

We have added an id variable to identify each respondent. In simple cases, we
just number the questionnaires sequentially. If we have a sample of 5,000 people, we
will number the questionnaires from 1 to 5,000, write the identification number on the
original questionnaire, and record it in the dataset. If we discover a problem in our
dataset (for example, somebody with a coded value of 3 for gender), we can go back
to the questionnaire and determine what the correct value should be. Some researchers
will eventually destroy the link between the ID and the questionnaire as a way to protect
human participants. It is good to keep the original questionnaires in a safe place that
is locked and accessible only by members of the research team.

Some data will be missing—people may refuse to answer certain questions, inter-
viewers forget to ask questions, equipment fails; the reasons are many, and we need a
code to indicate that data are missing. If we know why the answer is missing, we will
record the reason too, so we may want to use different codes that correspond to different
reasons the data are missing.

On surveys, respondents may refuse to answer, may not express an opinion, or may
not have been asked a particular question because of the answer to an earlier question.
Here we might code “invalid skip” (interviewer error) as -5, “valid skip” (not applicable
to this respondent) as -4, “refused to answer” as -3, “don’t know” as -2, and “missing
for any other reason” as -1. For example, adolescent boys should not be asked when they
had their first menstrual period, so we would type -4 for that question if the respondent
is male. We should pick values that can never be a valid response. In chapter 3, we will
redefine these values to Stata’s missing-value codes. In this chapter, we will use only
one missing-value code, -9.

We will be entering the data manually, so after we administered the questionnaire
to our sample of 20 people, we prepared a coding sheet that will be used to enter the
data. The coding sheet originates from the days when data were entered by professional
keypunch operators, but it can still be useful or necessary. When you create a coding
sheet, you are converting the data from the format used on the questionnaire to the
format that will actually be stored in the computer (a table of numbers). The more the
format of the questionnaire differs from a table of numbers, the more likely it is that a
coding sheet will help prevent errors.

There are other reasons you may want to use a coding sheet. For example, your
questionnaire may include confidential information that should be shown to as few
people as possible; also, if there are many open-ended questions for which extended
answers were collected but will not be entered, working from the original questionnaire
can be unwieldy.
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In general, if you transcribe the data from the questionnaire to the coding sheet,
you will need to decide which responses go in which columns. Deciding this will reduce
errors from those who perform the data entry, who may not have the information needed
to make those decisions properly.

Whether you enter the data directly from the questionnaire or create a coding sheet
will depend largely on the study and on the resources that are available to you. Some
experience with data entry is valuable because it will give you a better sense of the
problems you may encounter, whether you or someone else enters the data. For our
example questionnaire, we have created a coding sheet, shown in table 2.2.

Table 2.2. Example coding sheet

id gender education sch st sch com prison conserv

1 2 15 4 5 4 2

2 1 12 2 3 1 5

3 1 16 3 4 3 2

4 1 8 -9 1 -9 5

5 2 12 3 3 3 3

6 2 18 4 5 5 1

7 1 17 3 4 2 4

8 2 14 2 3 1 5

9 2 16 5 5 4 1

10 1 20 4 4 5 2

11 1 12 2 2 1 5

12 2 11 -9 1 1 3

13 2 18 5 5 -9 -9

14 1 16 5 5 5 1

15 2 16 5 5 4 2

16 1 17 4 3 4 3

17 1 12 2 2 -9 1

18 2 12 2 2 2 2

19 2 14 4 5 4 4

20 1 13 3 3 5 5

Because we are not reproducing the 20 questionnaires in this book, it may be helpful
to examine how we entered the data from one of them. We will use the ninth question-
naire. We have assigned an id of 9, as shown in the first column. Reading from left to
right, for gender, we have recorded a 2 to indicate a woman, and for education, we
have recorded a response of 16 years. This woman rates schools in her state and in the
community in which she lived as a teenager as very good, which we can see from the 5s
in the fourth and fifth columns. She thinks prison sentences are too harsh and she con-
siders herself to be very liberal (4 and 1 in the sixth and seventh columns, respectively).
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2.4 Entering data using the Data Editor

Stata has a Data Editor, shown in figure 2.2, in which we can enter our data from the
coding sheet in table 2.2. The Data Editor provides an interface that is similar to that
of a spreadsheet, but it has some features that are particularly suited to creating a Stata
dataset.

Figure 2.2. The Data Editor

Before we begin, let’s type the command clear in the Command window. This step
will give us a fresh Data Editor in which to enter data. To open the Data Editor in
edit mode, type edit in the Command window. Alternatively, click on the icon on the
toolbar that looks like a spreadsheet with a pencil pointing to it (see figure 2.3) or click
on Data ⊲ Data Editor ⊲ Data Editor (Edit). The Data Editor in edit mode is a convenient
way to enter or change data, but if you just want to see the data, you should use the
Data Editor in browse mode. The icon for the Data Editor (Browse) is just to the right
of the icon for the Data Editor (Edit); it is a spreadsheet with a magnifying glass on
top (see figure 2.3). You can also type the command browse in the Command window.
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Figure 2.3. Data Editor (Edit) and Data Editor (Browse) icons on the toolbar

Data are entered in the white columns, just as in other spreadsheets. Let’s enter the
data for the first respondent from the coding sheet in table 2.2. In the first cell under
the first column, enter the identification number, which is a 1 for the first observation.
Press the Tab key to move one cell to the right, and enter the value for the person’s
gender, which is a 2 for the first observation. Keep entering the values and pressing Tab
until you have entered all the values for the first participant. Now you can press the
Enter key, which will move the cursor to the second row of the Data Editor (Edit), and
then press the Home key, which will move the cursor to the first column of this row.
You can proceed to enter the rest of the data. The Tab key is smart, so after you enter
the last value for the second row of data, pressing Tab will move the cursor to the first
column of the third row. However, before doing this it would be good to enter more
informative variable names to replace the default names of var1, var2, etc. To change
a variable’s name, click anywhere in the column for that variable or click on its name
in the Variables pane at the top right of the Data Editor, for example, var1. Then in
the Properties pane at the lower right of the Data Editor, change Name from var1 to
id. The name can be up to 32 characters, but it is usually best to keep the name short.
Stata is case sensitive, so it is best to use lowercase names. By using lowercase names,
you will not have to remember what case to use because the names will all be lowercase.
From the Properties pane, we can also change the variable’s label to be “Respondent’s
identification” by typing this text in the Label box. Our Data Editor (Edit) will look
like figure 2.4.
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Figure 2.4. Variable name and variable label

Once we click outside the changed field in the Properties pane or press Enter, we
will see the new variable name displayed. Change each of the remaining generic variable
names to rename and label them as listed in table 2.3.

Table 2.3. New variable names and labels

Generic variable name New variable name Variable label

var2 gender Participant’s gender
var3 education Years of education
var4 sch st Ratings of schools in your state
var5 sch com Ratings of schools in your

community of origin
var6 prison Ratings of prison sentences
var7 conserv Conservatism/liberalism

As well as allowing us to specify the variable name and variable label, the Properties
pane includes a place to specify the format of the variable. The current format is %9.0g,
which is the default format for numeric data in the Data Editor. This format instructs
Stata to try to print numbers within nine columns. Stata will adjust the format if you
enter a number wider than nine columns.
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I typed the letter l for the number 1

A common mistake is to type a letter instead of a numeric value, such as typing
the letter l rather than the number 1 or simply pressing the wrong key. When this
happens for the first value you enter for a variable, Stata will make the variable
a “string” variable, meaning that it is no longer a numeric variable. When this
happens for a subsequent value you enter for a variable, Stata will display an error
message. If you made the mistake of inputting a variable as a string variable
instead of a numeric variable, you need to correct this. Simply changing the letter
to a number will not work because a string variable may include numbers, such as
a variable for a street address. Stata will still think it is a string variable. There
is a simple command to force Stata to change the variable from a string variable
back to a numeric variable: destring varlist, replace. For example, to change
the variable id from string to numeric, you would type destring id, replace.

If you have string data (that is, data that contain letters or symbols), you will see
a format that looks like %9s, which indicates a variable that is a string (the s) with
nine characters. For more detailed information about formats, see the Stata Data-
Management Reference Manual, which is available under Help ⊲ PDF Documentation.
Some people like to enter string data where they enter yes or no, male or female, and so
on. It is usually best here to simply enter numbers; I will show how to add value labels
for the numbers in the next section. Entering numbers will benefit you later because
some Stata commands work fine with string variables, but many of them require numeric
values. After entering the rest of your data, the Data Editor (Edit) should now look
like figure 2.5.
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Figure 2.5. Data Editor with a complete dataset

2.4.1 Value labels

It would be nice to have labels for the values on most of these variables. For example,
we would like gender labeled, so a code of 1 was labeled “Male” and a code of 2 was
labeled “Female”. We would not want to label values for id or education, but the rest
of them should have value labels. In Stata, labeling values is a two-step process.

1. First, we define a label and give it a nickname. Some defined labels may apply to
just one variable, such as gender, but other defined labels may apply to multiple
variables that share identical value labels, such as sch st and sch com.

2. Second, we assign the defined label to each variable. You may not appreciate
this being a two-step process with a small dataset, but in a major study, this is
a valuable feature of Stata. For example, you might have 30 variables that are
all coded as 1 for yes and 2 for no. You could define one value label and give it
a nickname of agree. Then we could apply this defined label to each of the 30
variables.

2.5 The Variables Manager

We could use the Data Editor to define and apply value labels, but we will use another
feature of Stata, the Variables Manager. The Stata for Windows and Stata for Unix
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toolbars have an icon for the Variables Manager, as shown in figure 2.6. By default,
this icon is not shown in the Stata for Mac toolbar. You can add the Variables Manager
icon by right-clicking on the toolbar and selecting Customize Toolbar.... You can then
drag the Variables Manager icon to the toolbar.

Figure 2.6. The Variables Manager icon on the Stata toolbar

Let’s open the Variables Manager and define a value label for gender. We could
have entered the variable names and variable labels here, but that was simple enough
in the Data Editor. The Variables Manager is a convenient place to make any changes
we might want. For example, when we click on gender, the Variable Properties pane on
the right shows whatever information we already have for the variable: its name, label,
type, format, value label, and notes.

For the moment, we will use the Variables Manager to define the value labels. Click
on the Manage... button next to the Value Label field, which opens a new dialog box
called Manage Value Labels; see figure 2.7. Because we have no value labels yet, nothing
is listed. Click on Create Label, and the Create Label dialog box opens as shown in
figure 2.7. For Label name, type sex. Notice that this is not the name of the variable
but a nickname for the set of labels we will use for the variable. For Value, type 1; tab
to Label and type Male; and then click on Add. Next type 2 under Value; tab to Label
and type Female; and then click on Add. Figure 2.7 shows the Variables Manager and
what we have done so far.
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Figure 2.7. Using the Variables Manager to add a label for gender

Because we have no more values, click on OK to close the Create Label dialog box
and add the label sex to the Manage Value Labels dialog box. Now click on the Close
button of the Manage Value Labels dialog box to return to the Variables Manager. In
the Variable Properties pane, we can click on the drop-down menu for Value Label and
select our label of sex. Then click on Apply. You will notice that the value label for
gender is now sex in the list of variables on the left.

Let’s define three more value labels. We do not need to click on a variable. We
can simply click on the Manage... button next to Value Label, and then click on Create
Label, which opens the Create Label dialog box. Let’s make a label nickname of rating
that we will apply to sch st and sch com. For Value, type 1; tab to Label and type
Very poor; and then click on Add. Repeat this step to add the following values and
labels for the rating value label:
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Value Label

2 Poor

3 Okay

4 Good

5 Very good

-9 Missing

This label needs to have a final value of −9 with the label “Missing” because not
everybody answered the relevant items. Click on OK in the Create Label dialog box.

Repeat these steps, starting by clicking on Create Label, and create value labels
named harsh and conserv with the following values and labels:

Label name Value Label

harsh 1 Much too lenient

2 Too lenient

3 About right

4 Too harsh

5 Much too harsh

-9 Missing

conserv 1 Very liberal

2 Liberal

3 Moderate

4 Conservative

5 Very conservative

-9 Missing

Once you have finished creating the last value label, click on Close in the Manage Value
Labels dialog box. Now we are back to the Variables Manager. Here we can click on
sch st, and then click on the drop-down menu next to Value Label. We select our just
created nickname, rating. Clicking on Apply will assign this set of value labels to the
sch st variable. We can repeat this for sch com because that variable uses the same
set of value labels, that is, rating.

Now click on prison, and then click on the drop-down menu next to Value Label.
Select the nickname harsh. Clicking on Apply will assign this set of values labels to the
prison variable. Repeat these steps to assign the nickname conserv to the conserv

variable.

Going through a series of dialog boxes can be confusing. You should experiment with
these dialog boxes until you are confident in using them. Try to change some of the
value labels, for example, use the Edit Label dialog box that appears as an option when
you click on the Manage... button next to Value Label in the Variable Properties pane.
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Fortunately, working with value labels is the most confusing part of data management
that we will cover. If you can get comfortable with this, the rest of the material on
data management will be less confusing. The key to remember is that you use the
Value Label dialog box to define a nickname (sex, harsh, rating, conserv) for sets of
value labels. Then you apply these sets to the appropriate variables. As you do this,
Stata will issue the commands you created, and they will appear in the Results window.
Study these commands to see what is involved, and as you get more experience, you will
use the commands directly. Here are the commands we generated using the Variables
Manager:

. label define sex 1 "Male" 2 "Female"

. label values gender sex

. label define rating 1 "Very poor" 2 "Poor" 3 "Okay" 4 "Good" 5 "Very good"
> -9 "Missing"
. label define harsh 1 "Much too lenient" 2 "Too lenient" 3 "About right"
> 4 "Too harsh" 5 "Much too harsh" -9 "Missing"
. label define conserv 1 "Very liberal" 2 "Liberal" 3 "Moderate"
> 4 "Conservative" 5 "Very conservative"
. label values sch_st rating
. label values sch_com rating
. label values prison harsh
. label values conserv conserv

We will see how to enter these commands in a do-file in chapter 4. A brief explanation
of commands may help now. The label define command says that we are going to
define some value labels. Then we have a nickname (sex, harsh, rating, conserv).
After the nickname, we have the values followed by their labels. We put quotes around
each of the labels. After we have defined the sets of labels, the label values command
applies these sets of labels to the variables. For example, the command label values

gender sex means to apply value labels to the gender variable and use the set of value
labels that have the nickname of sex.
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What happened to the Variables Manager? It now looks like figure 2.8:

Figure 2.8. Variables Manager with value labels added

We can use the Variables Manager in more ways. Let’s add a note to the variable
conserv. We want to make sure anyone using our dataset knows that this is a single-
item measure and not a scale of conservatism or liberalism that is based on a series
of items. First, highlight the conserv variable by clicking on it. Next click on the
Manage... button next to Notes in the Variable Properties pane. A dialog box opens
telling us that there are no items (notes) to show, so we click on Add. Enter This is

a single-item measure and click on Submit. Click on Close to close this dialog box.

There are several reasons for applying a note to a variable. When several people
are working on a large dataset and making changes, it is nice to have a record of
those changes. For example, you might find that both observation 222 and observation
318 were coded with an out-of-range value, say, 8 on sch com. You check the original
questionnaires they answered and find that observation 222 should have been coded as a
4 and observation 318 should have been coded a missing value of −9. You could attach
a note that “Observation 222 changed to 4 and 318 changed to −9 on 6/7/2012.” You
can have several notes assigned to each variable.

Another thing you might want to do is add a note to the entire dataset, not just to
a specific variable. If you right-click on any variable, a drop-down menu appears with
several useful options including Manage Notes for Dataset.... When you click on this
option, you get a dialog box that looks just like the one of Notes for variable, but it is
for Notes for Data. You can click on Add and then type These data were collected

in January of 2012. Now click on Submit and then Close to close the dialog box.
Dataset notes can be very useful for keeping track of general changes in the dataset.
For example, if Aidan merged some new variables from a different dataset into this
dataset, it would be good to know what dataset was merged and when.
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To see how the notes look in output, enter two commands. First, type describe in
the Command window, and then type notes.

. describe

Contains data
obs: 20
vars: 7
size: 560 (_dta has notes)

storage display value
variable name type format label variable label

id float %9.0g Respondent’s identification
gender float %9.0g sex Participant’s gender
education float %9.0g Years of education
sch_st float %9.0g rating Ratings of schools in your state
sch_com float %9.0g rating Ratings of schools in your

community of origin
prison float %16.0g harsh Ratings of prison sentences
conserv float %17.0g conserv * Conservatism/liberalism

* indicated variables have notes

Sorted by:
Note: dataset has changed since last saved

. notes

_dta:
1. These data were collected in January of 2012

conserv:
1. This is a single-item measure

The describe command gives us a nice description of the dataset including the
number of observations, the number of variables, the size of the dataset, the date the
dataset was originally constructed (displayed once the dataset is saved), and a comment
that dta has notes. An asterisk appears by the variable label for conserv in the list of
variables, and a note at the bottom of the list tells us that an asterisk means there is a
note attached to that variable. The notes command has one note for the dataset and
one note for the conserv variable. When a large group of researchers is working on a
large and complex research project, the use of notes is extremely important.

There are still other things we can do with the Variables Manager. Suppose that
we have a large dataset with 1,500 variables. We are looking for a variable and cannot
remember its exact name, but we remember that it starts with the letters so. We can
click on Variable—the title of the column that includes all the variable names—to sort
our variable list alphabetically. (Sorting our variable list in the Variables Manager does
not change the order in which the variables are stored.) An alphabetical listing can
help us find all the variables beginning with so very quickly. We find the variable; it is
soc sat1. If we want that variable included in a Stata command, such as summarize,
we could type summarize in the Command window, and then right-click in the Variables
Manager and choose Send Varlist to Command Window.

Still using this large dataset, we remember that a particular set of five variables
we want were coded as yes no variables. We could click on Value Label—the title of
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that column—to sort the variables by value labels. Instead of searching through 1,500
variables in the large dataset, we might have just 20 or 30 variables coded with the
yes no nickname. If we then remember that the variable we want is one of several that
start with the variable label of “Peer”, we could click on Label at the top of its column
to sort the variables by variable labels.

At this point, we probably should restore the order of the variables as they are in
the dataset. To return to the order of the variables in the dataset, click on the hash
mark (#), which is to the left of the Variable title. You should experiment with other
features in the Variables Manager. It is a valuable tool that was first made available in
Stata 11.

2.6 The Data Editor (Browse) view

In section 2.4, we entered data using the Data Editor in edit mode. Now that the data
have been entered, we want to check our work. We can use the Data Editor in browse
mode to do this. The purpose of using the Data Editor in browse mode is to look at
data without altering it.

Type browse in the Command window to open the Data Editor (Browse). In the
Data Editor window that opens, you see the numeric data where you did not add value
labels, but for all the variables to which you did assign value labels, you now see the
value label of each person, as shown in figure 2.9.
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Figure 2.9. Dataset shown in the Data Editor (Browse) mode

Viewing the data in Data Editor (Browse) mode can be quite helpful. For example,
person 11 has an ID of 11, is male, has 12 years of education, rates the schools in his state
as poor, rates the schools in his community of origin as poor, feels that prison sentences
are much too lenient, and considers himself to be very conservative. By seeing it laid
out this way, you do not have to remember how each variable was coded. However, if
you want to see just numeric values using the Data Editor (Edit), then you need to type
the edit, nolabel command in the Command window. If you want to see just numeric
values using the Data Editor (Browse), then you need to type the browse, nolabel

command. Some researchers, when working on a small dataset, combine variables or
change a variable and instantly see what happens in Browse mode. With a large dataset,
this ability is usually not useful.

2.7 Saving your dataset

If you look at the Results window in Stata, you can see that the dialog box has done a
lot of the work for you. The Results window shows that a lot of commands have been
run to label the variables. These commands also appear in the Review window. The
Variables window lists all your variables. We have now created our first dataset.
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Until now, Stata has been working with our data in memory, and we still need to
save the dataset as a file, which we can do from the File ⊲ Save As... menu. Doing this
will open the familiar dialog box where we can choose where we would like to save our
file. Once the data have been saved to a file, we can exit Stata or use another dataset
and not lose our changes.

Notice that Stata will give the file the .dta extension if you do not specify one.
You must use this extension, because it identifies the file as a Stata dataset. You can
give it any first name you want, but do not change the extension. Let’s call this file
firstsurvey and let Stata add the .dta extension for us. If you look in the Results
window, you will see that Stata has printed something like this:

. save "C:\data\firstsurvey.dta"
file C:\data\firstsurvey.dta saved

It is a good idea to make sure that you spelled the name correctly and that you saved
the file into the directory you intended. Note the quotation marks around the filename.
If you type a save command in the Command window, you must use the quotes around
the filename if the name contains a space; however, if you always use the quotes around
the filename, you will never get an error, whether or not the name contains a space.

Saving data and different versions of Stata

This book is written for users of Stata 13 and later. Stata is careful so that new
versions can read data files that were saved using earlier versions of Stata. For
example, if you were using an older version of Stata and upgraded, your new
version should be able to read datasets you stored when you were using the older
version. Stata is backward compatible in this sense.

Stata is not always forward compatible. New versions store data in different
formats. Datasets saved in the new data format cannot be opened by older versions
of Stata. One solution is to use the saveold command. For instance, if you are
using Stata 13 and want to share a dataset with another user who is using Stata 12,
you would type the following command:

. saveold "C:\data\firstsurvey.dta"

This command would store the dataset in the Stata 12 data format.

Stata works with one dataset at a time. When you open a new dataset, Stata will
first clear the current one from memory. Stata knows when you have changed your
data and will prompt you if you attempt to replace unsaved data with new data. It
is, however, a good idea to get in the habit of saving before reading new data because
Stata will not prompt you to save data if the only things that have changed are labels
or notes.
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A Stata dataset contains more than just the numbers, as we have seen in the work
we have done so far. A Stata dataset contains the following information:

• Numerical data

• Variable names

• Variable labels

• Missing values

• Formats for printing data

• A dataset label

• Notes

• A sort order and the names of the sort variables

In addition to the labeling we have already seen, you can store notes in the dataset,
and you can attach notes to particular variables, which can be a convenient way to
document changes, particularly if more than one person is working on the dataset. To
see all the things you can insert into a dataset, type the command help label. If the
dataset has been sorted (observations arranged in ascending order based on the values
of a variable), that information is also stored.

We have now created our first dataset and saved it to disk, so let’s close Stata by
selecting File ⊲ Exit.

2.8 Checking the data

We have created a dataset, and now we want to check the work we did defining the
dataset. Checking the accuracy of our data entry is also our first statistical look at the
data. To open the dataset, use the File ⊲ Open... menu. Locate firstsurvey.dta,
which we saved in the preceding section, and click on Open.

Let’s run a couple of commands that will characterize the dataset and the data
stored in it in slightly different ways. We created a codebook to use when creating our
dataset. Stata provides a convenient way to reproduce much of that information, which
is useful if you want to check that you entered the information correctly. It is also
useful if you share the dataset with someone who does not have access to the original
codebook. Use the Data ⊲ Describe data ⊲ Describe data contents (codebook) menu to
open the codebook dialog box. You can specify variables for the codebook entry you
want, or you can get a complete codebook by not specifying any variables. Try it first
without specifying any variables.
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Scrolling the results

When Stata displays your results, it does so one screen at a time. When there is
more output than will fit in the Results window, Stata prints what will fit and
displays more in the lower left corner of the Results window. Stata calls this
a more condition in its documentation. To continue, you can click on more in
the Results window, but most users find it easier to just press the Spacebar. If you
do not want to see all the output—that is, you want to cancel displaying the rest
of it—you can press the q key. If you do not like having the output pause this way,
you can turn this paging off by typing set more off in the Command window.
All the output generated by the command will print without pause until you either
change this setting back or quit and restart Stata. To restore the paging, use the
set more on command.

This setting will only apply to your current session. If you want to make
this change permanent, type set more off, permanently.

To see a list of other available settings, type help set.

Let’s look at the codebook entry for gender as Stata produced it. For this example,
you can either scroll back in the Results window or use the Data ⊲ Describe data ⊲
Describe data contents (codebook) menu and type gender in the Variables box, as I
have done in the examples that follow.

. codebook gender

gender Participant’s gender

type: numeric (float)
label: sex

range: [1,2] units: 1
unique values: 2 missing .: 0/20

tabulation: Freq. Numeric Label
10 1 Male
10 2 Female

The first line lists the variable name, gender, and the variable label, Participant’s
gender. Next the type of the variable, which is numeric (float), is shown. The value-
label mapping associated with this variable is sex. The range of this variable (shown as
the lowest value and then the highest value) is from 1 to 2, there are two unique values,
and there are 0 missing values in the 20 cases. This information is followed by a table
showing the frequencies, values, and labels. We have 10 cases with a value of 1, labeled
Male, and 10 cases with a value of 2, labeled Female.

Using codebook is an excellent way to check your categorical variables, such as
gender and prison. If, in the tabulation, you saw three values for gender or six values
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for prison, you would know that there are errors in the data. Looking at these kinds of
summaries of your variables will often help you detect data-entry errors, which is why
it is crucial to review your data after entry.

Let’s also look at the display for education:

. codebook education

education Years of education

type: numeric (float)

range: [8,20] units: 1
unique values: 10 missing .: 0/20

mean: 14.45
std. dev: 2.94645

percentiles: 10% 25% 50% 75% 90%
11.5 12 14.5 16.5 18

Because this variable takes on more values, Stata does not tabulate the individual values.
Instead, Stata displays the range (8 to 20) along with the mean, which is 14.45, and the
standard deviation, which is 2.95. It also gives the percentiles. The 50th percentile is
usually called the median, and here the median is 14.5.

In the codebook dialog box, if we leave the box where we enter variables blank,
then codebook will give us a detailed codebook for every variable in the dataset. This
detailed codebook can be combined with other options. By clicking on the Options tab,
we can ask to include any notes that are attached to variables. Clicking on Report
potential problems in dataset can be informative. Using this option, we might be told
that sch st, sch com, and conserv have incomplete value labels. Why would this
happen? If we did not assign a value label to the value of −9 for these variables, this
option would inform us that there is a value that does not have an assigned value label.
We will learn about how to manage missing values in the next chapter.

Sometimes we just want a brief summary of variables like we would get using the
describe command. Enter codebook, compact in the Command window or click on
Display compact report on the variables on the Options tab of the codebook dialog box.
This option gives you seven columns of information including the variable name, the
number of observations, the number of unique values the variable has in your data, the
mean for the item, the minimum and maximum values, and the variable label. A vari-
ation of the codebook, compact command includes one or more variable names in the
command, for example, codebook gender, compact. This gives you the same infor-
mation as the codebook, compact command, but only for the variable(s) you specify.
The compact option cannot be combined with the other options.

Another alternative to see a brief summary of variables is to actually use the
describe command. Enter the command in the Command window, or use the Data ⊲
Describe data ⊲ Describe data in memory or in a file menu, which will display the dialog
box in figure 2.10.
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Figure 2.10. The describe dialog box

If you do not list any variables in the Variables box, all the variables will be included,
as shown in the following output:

. describe

Contains data from C:\data\firstsurvey.dta
obs: 20
vars: 7 15 Jan 2012 07:54
size: 560 (_dta has notes)

storage display value
variable name type format label variable label

id float %9.0g Respondent’s identification
gender float %9.0g sex Participant’s gender
education float %9.0g Years of education
sch_st float %9.0g rating Ratings of schools in your state
sch_com float %9.0g rating Ratings of schools in your

community of origin
prison float %16.0g harsh Ratings of prison sentences
conserv float %17.0g conserv * Conservatism/liberalism

* indicated variables have notes

Sorted by:

As we can see by examining the output, the path to the data file is shown (directory
and filename), as are the number of observations, the number of variables, the size of the
file, and the last date and time the file was written (called a timestamp). We can attach
a label to a dataset, too, and if we had done so, it would have been shown above the
timestamp. Below the information that summarizes the dataset is information on each
variable: its name, its storage type (there are several types of numbers and strings),
the format Stata uses when printing values for the variable, the value-label mapping
associated with it, and the variable label. This is clearly not as complete a description
of each variable as that provided by codebook, but it is often just what you want.
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Working with Excel files

Many people create data files in Excel that they want to open to Stata, or they
have Stata files they want to save to Excel. Excel is much more limited than
Stata in what it can record in a data file. For example, Excel cannot store both
variable names and variable labels nor can it store value labels. If you have a
variable named race that is coded 1 for Hispanic, 2 for non-Hispanic–whites, 3
for non-Hispanic–blacks, 4 for Asian–Pacific Islander, and 5 for other, you can see
the problem. Stata will keep the value labels linked to the coded numerical value;
Excel will not do this. However, Stata makes it easy to translate from a Stata to
an Excel file given the limitations of what Excel can have in a file. Importing from
Excel to Stata is also a straightforward process.

Importing: An Excel file should have the first row be variable names and
the data should be below that in a wide format, that is, one row for each
observation. Using a file called auto.xlsx, in Excel the first few lines would look
like the following:

Notice that the first row is the variable names. Also, notice that missing values
appear as dots (.) or as blanks; for example, there is no information for the rep78
variable for the AMC Pacer. To import this file into Stata, we click on File ⊲ Import
⊲ Excel spreadsheet (*.xls, *.xlsx). In the dialog box, use the Browse... button to
locate the Excel file to open. Selecting the file and clicking on OK displays the
results of the Excel file in the Preview window. Also check the Import first row
as variable names box and change the Variable case to lower. We can review this
visually and then click on OK. If we have a Stata dataset already open, Stata will
issue a warning message asking if you want to continue and lose any unsaved data.
We will select Yes to complete the importing.

Exporting: Changing a Stata to an Excel file reverses this process. Select
File ⊲ Export ⊲ Data to Excel spreadsheet(*.xls,*.xlsx). Leave the Variables box
empty. Type autoexcel.xlsx in the Excel filename box—include the path as
needed; clicking the Save As... button will assist you in locating the right path.
Click on the Save variable names to first row in Excel file box. Under the Advanced
tab, I like to check the Export missing values as box and add a dot (.). That’s it!
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2.9 Summary

We covered the following topics in this chapter:

• How to create a codebook for a questionnaire

• How to develop a system for coding the data

• How to enter the data into a Stata dataset

• How to add variable names and variable labels to a dataset

• How to create value-label mappings and associate them with variables

2.10 Exercises

1. From the coding sheet shown in table 2.2, translate the numeric codes back into
the answers given on the questionnaire by using the codebook in table 2.1.

2. Using the Variables Manager, attach a note that provides a descriptive label to
the dataset you created in this chapter. What command is printed in the Results
window by the dialog box? Then run the notes command from the Command
window. See if you can use the Variables Manager to remove the note. What are
the advantages of keeping a note for a dataset inside the dataset?

3. Using the Variables Manager, attach a note for each variable you created in this
chapter. What command is printed in the Results window when you do this?
Then run the notes command from the Command window. See if you can use
the Variables Manager to remove the notes. What are the advantages of keeping
notes for variables inside the dataset?

4. Run the command to create a compact codebook from the Command window.
Interpret what the codebook shows for gender, education, and conserv.

5. Administer your own small questionnaire to students in your class. Enter the data
into a Stata dataset, and label the variables and values. Be sure to have at least
15 people complete your questionnaire, but do not try to enter data for a very
large group of people.

6. Create a codebook for your dataset from the previous exercise that includes notes
and any possible problems Stata can identify about your dataset. What command
appears in the Results window when you do this?

7. What is the value of using a two-step process for creating value labels? When is
this process especially helpful?
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3.8 Summary

3.9 Exercises

3.1 Introduction

Most of the time spent on any research project is spent preparing for analysis. Exactly
how much time will depend on the data. If you collect and enter your own data, most
of the actual time you spend on the project will not be analyzing the data; it will be
getting the data ready to analyze. If you are performing secondary analysis and are
using well-prepared data, you may spend substantially less time preparing the data.

Stata has an entire reference manual on data management, the Data-Management
Reference Manual. We will cover only a few of Stata’s capabilities for managing data.
Some of the data-management tasks required for a project you will be able to anticipate
and plan, but others will just arise as you progress through a project, and you will need
to deal with them on the spot. If your data are always going to be prepared for you
and you will use Stata only for statistics and graphs, then you might skip this chapter.

3.2 Planning your work

The data we will be using are from the U.S. Department of Labor, Bureau of Labor
Statistics, National Longitudinal Survey of Youth, 1997 (NLSY97). I selected a set
of four items to measure how adolescents feel about their mothers and another set

49
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of four parallel items to measure how adolescents feel about their fathers. I used an
extraction program available from http://www.bls.gov/nls/nlsdata.htm and extracted a
Stata dictionary that contains a series of commands for constructing the Stata dataset,
which we will use along with the raw data in plain text. I created a dataset called
relate.dta. In this chapter, you will learn how to work with this dataset to create two
variables, Youth Perception of Mother and Youth Perception of Father.

What is a Stata dictionary file?

A Stata dictionary file is a special file that contains Stata commands and raw data
in plain text. We will not cover this type of file here, but we use this format to
import the raw data into a Stata dataset. Selecting File ⊲ Import ⊲ Text data in
fixed format with a dictionary opens a window with a blank box for the Dictionary
filename and a blank box for the Text dataset filename. Because the raw data and
the commands to create the Stata file are both in the dictionary file, we can simply
enter the name of the dictionary file there and leave the Text dataset filename
empty. The name of the file is relate.dct. If we did not have this file stored in
the working directory, we could click on Browse... to help us search for it. The
extension .dct is always used for a dictionary file. Clicking on OK imports the
data into Stata. We can then save it using the name relate.dta. The dictionary
provides the variable names and variable labels. Had the variable labels not been
included in the dictionary, we would have created them prior to saving the dataset.
If you need to create a dictionary file yourself, you can learn how to do that in the
Stata Data-Management Reference Manual.

It is a good idea to make an outline of the steps we need to take to go from data
collection to analysis. The outline should include what needs to be done to collect or
obtain the data, enter (or read) and label the data, make any necessary changes to
the data prior to analysis, create any composite variables, and create an analysis-ready
version (or versions) of the dataset.

An outline serves two vital functions: it provides direction so we do not lose our way
in what can often be a complicated process with many details and it provides us with a
set of benchmarks for measuring progress. For a large project, do not underestimate the
benefit to measuring progress because it is the key to successful project management.

Our project outline, which is for a simple project on which only one person is working,
is shown in table 3.1.
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Table 3.1. Sample project task outline

◦ Consult NLSY97 documentation (see appendix 9 [PDF], page 23, available at
https://www.nlsinfo.org/sites/nlsinfo.org/files/attachments/12125/app9pdf.pdf)
to determine which variables are needed.

◦ Download the data that are in the dictionary file and the codebook. (This was done
for you as relate.dct and relate.cdb.)

◦ Create a basic Stata dataset. (This was done for you as relate.dta.)

◦ Create variable and value labels.

◦ Generate tables for variables to compare against the codebook to check for errors.

◦ Convert missing-value codes to Stata missing values.

◦ Reverse code those variables that need it; verify.

◦ Copy variables not reversed to named variables; verify.

◦ Create the scale variable.

◦ Save the analysis-ready copy of the dataset.

This is a pretty skeletal outline, but it is a fine start for a small project like this.
The larger the project, the more detail needed for the outline. Now that we have the
NLSY97-supplied codebook to look at, we can fill in some more details on our outline.

First, we will run a describe command on the dataset we created, relate.dta.
Remember that you can download relate.dta and other datasets used in this book
from the book’s webpage. Alternatively, if you are using Stata 13 or later, you can open
the file relate.dta by typing the command

. use http://www.stata-press.com/data/agis4/relate

Let’s show the results for just the four items measuring the adolescents’ perception
of their mothers. From the documentation on the dataset, we can determine that
these items are R3483600, R3483700, R3483800, and R3483900. First, we can run the
command describe R3483600 R3483700 R3483800 R3483900, and then we can get
more information by running the command codebook, compact. For the codebook, we
do not list the variables because the dataset includes only a few variables. Thus we use
the following command to produce a description of the data:
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. describe R3483600 R3483700 R3483800 R3483900

storage display value
variable name type format label variable label

R3483600 float %9.0g MOTH PRAISES R DOING WELL 1999
R3483700 float %9.0g MOTH CRITICIZE RS IDEAS 1999
R3483800 float %9.0g MOTH HELPS R WITH WHAT IMPT TO R

1999
R3483900 float %9.0g MOTH BLAMES R FOR PROBS 1999

. codebook, compact

Variable Obs Unique Mean Min Max Label

R0000100 8984 8984 4504.302 1 9022 PUBID - YTH ID CODE 1997
R3483600 8984 9 -.5638914 -5 4 MOTH PRAISES R DOING WELL 1999
R3483700 8984 9 -1.425312 -5 4 MOTH CRITICIZE RS IDEAS 1999
R3483800 8984 9 -.5893811 -5 4 MOTH HELPS R WITH WHAT IMPT TO R
R3483900 8984 9 -1.769813 -5 4 MOTH BLAMES R FOR PROBS 1999
R3485200 8984 9 -1.535508 -5 4 FATH PRAISES R DO WELL 1999
R3485300 8984 9 -2.143143 -5 4 FATH CRITICIZE IDEAS 1999
R3485400 8984 9 -1.586487 -5 4 FATH HELPS R WITH WHAT IMPT TO R
R3485500 8984 9 -2.388023 -5 4 FATH BLAME R FOR PROBS 1999
R3828100 8984 8 15.02538 -5 20 SYMBOL!KEY!AGE 1999
R3828700 8984 3 .9319902 -5 2 SYMBOL!KEY!SEX 1999

These variable names are not helpful, so we might want to change them later. For
example, we may rename R3483600 to mompraise. The variable labels make sense,
but notice that there are no value labels listed under the column labeled value label
in the results of the describe command. codebook, compact gives us a bit more
information. We see there are 8,984 observations, we see a mean for each item, and we
see the minimum (−5) and maximum value (4) reported for the items. Still, without
value labels, we do not know what these values mean.

Let’s read the codebook that we downloaded at the same time we downloaded this
dataset. So you do not need to go through the process of getting the codebook from
the NLS website, the part we use is called relate.cdb. You can open this file by point-
ing your web browser to http://www.stata-press.com/data/agis4/relate.cdb. Table 3.2
shows what the downloaded codebook looks like for the R3483600 variable.
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Table 3.2. NLSY97 sample codebook entries

R34836.00 [YSAQ-022] Survey Year: 1999

MOTHER PRAISES R FOR DOING WELL

How often does she praise you for doing well?

118 0 NEVER
235 1 RARELY
917 2 SOMETIMES

1546 3 USUALLY
1701 4 ALWAYS

-------
4517

Refusal(-1) 20
Don’t Know(-2) 3
TOTAL =========> 4540 VALID SKIP(-4) 3669 NON-INTERVIEW(-5) 775

We can see that a code of 0 means Never, a code of 1 means Rarely, etc. We need
to make value labels so that the data will have nice value labels like these. Also notice
that there are different missing values. The codebook uses -1 for Refusal, -2 for Don’t
know, -4 for Valid skip, and -5 for Noninterview. But there is no -3 code. Searching
the documentation, we learn that this code was used when there was an interviewer
mistake or an Invalid skip. We did not have any of these for this item, but we
might for others. The Don’t know responses are people who should have answered the
question but instead they said that they did not know what they thought or that they
had no opinion. By contrast, notice there are 3,669 valid skips representing people who
were not asked the question for some reason. We need to check this out, and reading
the documentation, we learn that these people were not asked because they were more
than 14 years old, and only youth 12–14 were asked this series of questions. Finally, 775
youth were not interviewed. We need to check this out as well. These are 1999 data,
the third year the data were collected, and the researchers were unable to locate these
youth, or they refused to participate in the third year of data collection. In any event,
we need to define missing values in a way that keeps track of these distinctions.

How does the Stata dataset look compared with the codebook that we downloaded?
We can run the command codebook to see. Let’s restrict it to just the variable R3483600
by entering the command codebook R3483600 in the Command window. The problem
with the data is apparent when we look at the codebook: the absence of value labels
makes our actual data uninterpretable.
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. codebook R3483600

R3483600 MOTH PRAISES R DOING WELL 1999

type: numeric (float)

range: [-5,4] units: 1
unique values: 9 missing .: 0/8984

tabulation: Freq. Value
775 -5

3669 -4
3 -2

20 -1
118 0
235 1
917 2

1546 3
1701 4

Before we add value labels to make our codebook look more like the codebook we
downloaded, we need to replace the numeric missing values (-5, -4, -3, -2, and -1)
with values that Stata recognizes as representing missing values. Stata recognizes up
to 27 different missing values for each variable: . (a dot), .a, .b, . . . , .z. Note that
a missing value will be larger than any numeric value. When there is only one type of
missing value, as discussed in chapter 2, we could change all numeric codes of -9 to .

(a dot).

Because we have five different types of missing values, we will replace -5 with .a

(read as dot-a), -4 with .b, -3 with .c, -2 with .d, and -1 with .e. Stata uses a
command called mvdecode (missing-value decode) to do this. Because all items involve
the same decoding replacements, we can do this with the following command:

. mvdecode _all, mv(-5=.a\-4=.b\-3=.c\-2=.d\-1=.e)
R3483600: 4467 missing values generated
R3483700: 4469 missing values generated
R3483800: 4468 missing values generated
R3483900: 4470 missing values generated
R3485200: 5608 missing values generated
R3485300: 5611 missing values generated
R3485400: 5610 missing values generated
R3485500: 5611 missing values generated
R3828100: 775 missing values generated
R3828700: 775 missing values generated

We use the all that is just before the comma to tell Stata to do the missing-value de-
coding for all variables. If we just wanted to do it for the R3483600 and R3828700 vari-
ables, the mvdecode all would be replaced by mvdecode R3483600 R3828700. Some
datasets might use different missing values for different variables, which would require
several mvdecode commands. For example, a value of -1 might be a legitimate answer
for some items and for these items a value of 999 might be used for Refusal. Each
replacement above is separated by a backslash (\). The results appear right below the
mvdecode command and tell us how many missing values are generated for each vari-
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able. For example, R3483600 has 4,467 missing values generated (775 replace the −5,
3,669 replace the −4, 3 replace the −2, and 20 replace the −1).

Stata and capitalization

Stata commands and options are all lowercase. Because Stata is case sensitive,
if you typed a command, say, Summarize instead of summarize, or an option
in uppercase, the word would be meaningless to Stata. For some reason, many
national datasets put everything in capital letters. When we get an email message
with a lot of capitalization, this does not make us happy; it makes us think the
sender is yelling at us and it is hard to read. Other researchers mix the case in
names using such names as MyID or MOMfeels. They might have an item named
MomFeels and a scale named MOMFEELS. Switching case can be confusing, and if
you make a mistake, say, you enter MyId instead of MyID, you will get an error
message. Many experienced Stata users use lowercase for variable names and
nicknames for value labels. If you do this consistently, you never have to worry
about shifting from lowercase to uppercase. Many users capitalize the first word
in the label assigned to a value, such as “Very strongly”. This capitalization helps
make output more readable, and you never have to type these labels again once
the dataset is created.

Stata’s rename command can change the case of any or all variables in a
dataset. Suppose that we have five variables in a dataset—ID, Age, WaistSize,
Ed, and MOMFEELS—and want to make all of these lowercase. We type rename

ID-MOMFEELS, lower in the Command window and press Enter. Regardless of
how the variable names used case originally, they will all now be lowercase. We
could select Data ⊲ Data utilities ⊲ Rename groups of variables. Then we can click
on Change the case on groups of variable names, enter our list of variables, click
on Lowercase variable names, and then click on OK.

3.3 Creating value labels

Now let’s add value labels, including labels for the five types of missing values. To do
this, we will open the Variables Manager by selecting Data ⊲ Variables Manager or by
typing varmanage. Click on R3483600 to highlight the variable. Click on Manage...
next to Value Label on the Variable Properties pane. This opens the Manage Value
Labels dialog box, where we click on Create Label. A new Create Label dialog box
opens. In the Create Label dialog box, enter often for Label name; enter 0 for Value;
enter Never for Label; and then click on Add. Repeat this step where Value is 1 and
Label is Rarely, Value is 2 and Label is Sometimes, Value is 3 and Label is Usually,
Value is 4 and Label is Always, Value is .a and Label is Noninterview, Value is .b and
Label is Valid skip, Value is .c and Label is Invalid skip, Value is .d and Label is
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Don’t know, and Value is .e and Label is Refused. At this point, our three windows
appear as figure 3.1:

Figure 3.1. The Variables Manager

From here, we can click on OK to close the Create Label dialog box and then click
on Close in the Manage Value Labels dialog box. We now need to assign our value label,
often, to the appropriate variables. In the Variables Manager, we can click on each of
the variables. By doing this, all properties of the variable are shown in the Variable
Properties pane. We will click on R3483600. The Value Label in the Variable Properties
pane is shown as a blank because we have not yet assigned the value label often to
this variable. Click on the drop-down menu next to Value Label and select often, and
then click on Apply. After we have repeated this for all eight variables, the Variables
Manager appears as figure 3.2:
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Figure 3.2. The Variables Manager with value labels assigned

Notice that each of the appropriate variables now shows that the value label nick-
named often is assigned to it. At some point, you might want to remove a value label.
For example, you might accidentally have applied the often value label to R3828100,
the age of the observation. To drop the value label, you click on the variable, erase the
label often, and then click on Apply.

The variable labels (remember, we can create or change variable names, variable
labels, and value labels) are okay as they are, but let’s change the case so that it
does not look like somebody is screaming at us. We also might make them simpler.
For instance, the label of PUBID - YTH ID CODE 1997 for variable R0000100 could be
improved. Because once entered, we never have to type a variable label again, we will
use capitalization rules for a normal sentence. We will make a few minor word changes
as well. In doing this, we want to keep the labels reasonably short.

In our Variables Manager, we can click on a variable, say, R3483600, and then in the
Label field of the Variable Properties pane, change MOTH PRAISES R DOING WELL 1999

to Mother praises child for doing well. Click on Apply and the label for this
variable in the Label column is immediately changed. Using the Variables Manager,
change the variable labels for the other seven variables as indicated in the commands
below.

. label variable R3483700 "Mother criticizes child’s ideas"

. label variable R3483800 "Mother helps child with what is important to child"

. label variable R3483900 "Mother blames child for problems"

. label variable R3485200 "Father praises child for doing well"

. label variable R3485300 "Father criticizes child’s ideas"

. label variable R3485400 "Father helps child with what is important to child"

. label variable R3485500 "Father blames child for problems"
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Do these changes help? Let’s do a codebook for R3483600 and see how it compares
with the codebook that appeared in table 3.2.

. codebook R3483600

R3483600 Mother praises child for doing well

type: numeric (float)
label: often

range: [0,4] units: 1
unique values: 5 missing .: 0/8984

unique mv codes: 4 missing .*: 4467/8984

tabulation: Freq. Numeric Label
118 0 Never
235 1 Rarely
917 2 Sometimes

1546 3 Usually
1701 4 Always
775 .a Noninterview

3669 .b Valid skip
3 .d Don’t know

20 .e Refused

3.4 Reverse-code variables

We have two items for the mother and two for the father that are stated negatively, so
we should reverse code these. R3483700 refers to the mother criticizing the adolescent,
and R3485300 refers to the father criticizing the adolescent. R3483900 and R3485500

refer to the mother and father blaming the adolescent for problems. For these items, an
adolescent who reports that this always happens would mean that the adolescent had
a low rating of his or her parent. We always want a higher score to signify more of the
variable. A score of 0 for never blames the child on this pair of items should be the
highest score on these items (4), and a response of always blames the child should be
the worst response and would have the lowest score (0).

It is good to organize all the variables that need reverse coding into groups based
on their coding scheme. It is important to create new variables instead of reversing the
originals. This step ensures that we have the original information if any questions arise
about what we have done. I recommend that you write things out before you start
working, as I have done in table 3.3.
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Table 3.3. Reverse-coding plan

Old value New value

0 4
1 3
2 2
3 1
4 0

For a small dataset like the one we are using, writing it out may seem like overkill.
When you are involved in a large-scale project, the experience you gain from working
out how to organize these matters on small datasets will serve you well, particularly if
you need to assign tasks to several people and try to keep them straight.

There are several ways to do this recoding, but let’s use recode right now. Se-
lect Data ⊲ Create or change data ⊲ Other variable-transformation commands ⊲ Recode
categorical variable.

The recode command and its dialog box are straightforward. We provide the name
of the variable to be recoded and then give at least one rule for how it should be recoded.
Recoding rules are enclosed in parentheses, with an old value (or values) listed on the
left, followed by an equal sign, and then the new value. The simplest kind of rule lists
one value on either side of the equal sign. So for example, the first recoding rule we
would use to reverse code our variables would be (0=4).

More on recoding rules

More than one value can be listed on the left side of the equal sign, as in (1 2

3=0), which would recode values of 1, 2, and 3 as 0. Occasionally, you may want
to collapse just one end of a scale, as with (5/max=5), which recodes everything
from 5 up, but not including the missing values, as 5. You might use this to
collapse the highest income categories into one category, for example. There is also
a corresponding version to recode from the smallest value up to some value. For
example, you might use (min/8=8) to recode the values for highest attained grade
in school if you wanted everybody with fewer than nine years of education coded
the same way.

When you use recode, you can choose to recode the existing variables or create
new variables that have the new coding scheme. I strongly recommend creating new
variables. The dialog boxes shown in figures 3.3 and 3.4 show how to do this for all four
variables being recoded. Figure 3.3 shows the original variables on the Main tab.
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Figure 3.3. recode: specifying recode rules on the Main tab

Figure 3.4 shows the names of the new variables to be created on the Options tab.

Figure 3.4. recode: specifying new variable names on the Options tab

The variables for mothers begin with mom, and the variables for fathers begin with
dad. Adding an r at the end of each variable reminds you that they are reverse coded.
Stata will pair up the names, starting with the first name in each list, and recode
according to the rules stated. We must have the same number of variable names in each
list. After you click on OK, the output from the selections shown in figures 3.3 and 3.4
is
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. recode R3483700 R3483900 R3485300 R3485500 (0=4) (1=3) (2=2) (3=1) (4=0),
> generate(momcritr momblamer dadcritr dadblamer)
(3230 differences between R3483700 and momcritr)
(4037 differences between R3483900 and momblamer)
(2562 differences between R3485300 and dadcritr)
(3070 differences between R3485500 and dadblamer)

The output above shows how Stata presents output that is too long to fit on one
line: it moves down a line and inserts a > character at the beginning of the new line.
This differentiates command-continuation text from the output of the command. If you
are trying to use the command in output as a model for typing a new command, you
should not type the > character.

The recode command labels the variables it creates. The text is generic, so we may
wish to replace it. For example, the momcritr variable was labeled with the text

RECODE of R3483700 (Mother criticizes child’s ideas)

This text tells us the original variable name (and its label in parentheses), but it does
not tell us how it was recoded. It may be worth the additional effort to create more
explicit variable labels. We can do this with the Variables Manager. If you want to try
entering the commands directly, they are

. label variable momcritr "Mother criticizes child’s ideas, reverses R3483700"

. label variable momblamer "Mother blames child for problems, reverses R3483900"

. label variable dadcritr "Father criticizes child’s ideas, reverses R3485300"

. label variable dadblamer "Father blames child for problems, reverses R3485500"

The recode command is useful. You can specify missing values either as original
values or as new values, and you can create a value label as part of the recode command.
You can also recode a range (say, from 1 to 5) easily, which is useful for recoding things
like ages into age groups. If the resulting values are easily listed (most often integers,
but they could be noninteger values), it is worth thinking about using the recode

command. See the Stata Data-Management Reference Manual entry for recode or type
help recode in Stata for more information.

Whenever we generate a new variable, we should always check to make sure we
did what we wanted to do. We can quickly check by running a cross-tabulation (see
chapter 6) of the old variable and the new variable. We will do this for R3483700 and
momcritr. Although we will learn a lot more about the tabulate command later, for
now we can just run the command to create a cross-tabulation in the Command window:
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. tabulate momcritr R3483700

Mother
criticizes

child’s
ideas,

reverses Mother criticizes child’s ideas
R3483700 Never Rarely Sometimes Usually Always Total

0 0 0 0 0 145 145
1 0 0 0 324 0 324
2 0 0 1,285 0 0 1,285
3 0 1,654 0 0 0 1,654
4 1,107 0 0 0 0 1,107

Total 1,107 1,654 1,285 324 145 4,515

Here the first variable after tabulate, that is, momcritr, appears as the row variable
and the second variable, R3483700, appears as the column variable. We do not have
the numeric values, 0, 1, 2, 3, and 4 for R3483700, because we have their labels, but we
know from our codebook that “Never” is 0, “Rarely” is 1, “Sometimes” is 2, “Usually”
is 3, and “Always” is 4. We see, for example, that the 1,107 people who had a 0 on
R3483700 now have a 4. What is missing? We need value labels for our new variable. We
cannot assign the value label nicknamed often to momcritr because we have reversed
the numbering. We need a new label where 4 is Never, 3 is Rarely, 2 is Sometimes, 1
is Usually, and 0 is Always.

We could use the Variables Manager to do this like we did to create the value label
often. We would just give it another name, such as often r, where the r stands for
reverse order. You can use the Variables Manager, but you might want to type the
command in the Command window:

. label define often_r 4 "Never" 3 "Rarely" 2 "Sometimes" 1 "Usually" 0 "Always"
> .a "Noninterview" .b "Valid skip" .c "Invalid skip" .d "Don’t know"
> .e "Refusal"

As we have noted, when a line is too long to fit in the Command window, it just
wraps around, but when it appears in the Results window, it has separate lines with >

signifying that the lines are tied. In the Command window, you would not type the dot
prompt (.) or the greater than signs (>).

Finally, we need to assign this nickname, often r, to the new variables. We can do
this with the Variables Manager or by using the following label values command:

. label values momcritr momblamer dadcritr dadblamer often_r

After the label values command, we list the variable names that share the same set of
value labels, and at the end we have the nickname for that set of value labels, often r.
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3.5 Creating and modifying variables

There are several commands that are used in creating, replacing, and modifying vari-
ables. Useful commands include generate, egen (short for extended generate), rename,
and clonevar. Suppose that we want to change the positive items so that their names
make more sense to us. A simple way to do this is to make the new variables be clones.
The clonevar newname = oldname command does this. clonevar has a couple of
advantages: the actual command is simple, it keeps the missing values coded the same
way as they were in the old variable, and it keeps the same value labels. We could run
the following commands from the Command window:

. clonevar mompraise = R3483600

. clonevar momhelp = R3483800

. clonevar dadpraise = R3485200

. clonevar dadhelp = R3485400

Let’s do this for the other three variables in the dataset: identification number, age,
and gender.

. clonevar id = R0000100

. clonevar sex = R3828700

. clonevar age = R3828100

You can open the dialog box for generate by selecting Data ⊲ Create or change
data ⊲ Create new variable. The generate command does much the same thing as the
clonevar command, but it does not transfer value labels. It does transfer the missing-
value codes we used: .a, .b, .c, .d, and .e. If we wanted to run the generate command
directly without using the dialog box, we would type the following commands. (Do not
type these commands now because we already created the new variables by using the
clonevar command.)

. generate mompraise = R3483800

. generate momhelp = R3483800

. generate dadpraise = R3485200

. generate dadhelp = R3485400

. generate id = R0000100

. generate sex = R3828700

. generate age = R3828100

The generate command can also be used to create new variables by using an arith-
metic expression. Table 3.4 shows the arithmetic symbols that can be used in these
expressions.
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Table 3.4. Arithmetic symbols

Symbol Operation Example

+ Addition mscore + fscore + sibscore

- Subtraction balance - expenses - penalty

* Multiplication income * .75

/ Division expenses/income

^ Exponentiation (x2) x^2

Attempts to do arithmetic with missing values will lead to missing values. So in
the addition example in table 3.4, if sibscore were missing (say, it was a single-child
household), the whole sum in the example would be set to missing for that observation.
From the Command window, type help generate to see several more examples of what
can be done with the generate command. If you ever have trouble finding a dialog box
but you know the command name, you can open the help file first. The upper right
corner of a help file opened in the Viewer window will show a Dialog menu. Select the
command name from the drop-down menu, and the dialog box for that command will
open.

For more complicated expressions, order of operations can be important, and you
can use parentheses to control the order in which things are done. Parentheses contain
expressions too, and those are calculated before the expressions outside of parentheses.
Parentheses are never wrong. They might be unnecessary to get Stata to calculate the
correct value, but they are not wrong. If you think they make an expression easier to
read or understand, use as many as you need.

Fortunately, the rules are pretty simple. Stata reads expressions from left to right,
and the order in which Stata calculates things inside expressions is to

1. Do everything in parentheses. If one set of parentheses contains another set, do
the inside set first.

2. Exponentiate (raise to a power).

3. Multiply and divide.

4. Add and subtract.

Let’s go step by step through an example:

. generate example = weight/.45*(5+1/age^2)

When Stata looks at the expression to the right of the equal sign, it notices the paren-
theses (priority #1) and looks inside them. There it sees that it first has to square age
(priority #2), then divide 1 by the result (priority #3), and then add 5 to that result
(priority #4). Once it is done with all the stuff in parentheses, it starts reading from
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left to right, so it divides weight by 0.45 and then multiplies the result by the final
value it got from calculating what was inside parentheses. That final value is put into
a variable called example.

Stata does not care about spaces in expressions, but they can help readability. So
for example, instead of typing something like we just did, we can use some spaces to
make the meaning clearer, as in

. generate example = weight/.45 * (5 + 1/age^2)

If we wanted to be even more explicit, it would not be wrong to type

. generate example = (weight/.45) * (5 + 1/(age^2))

Let’s take another look at reverse coding. We already reverse-coded variables by
using a set of explicit rules like (0=4), but we could accomplish the same thing using
arithmetic. Because this is a relatively simple problem, we will use it to introduce some
of the things you may need to be concerned about with more complex problems.

Reversing a scale is swapping the ends of the scale around. The scale is 0 to 4, so
we can swap the ends around by subtracting the current value from 4. If the original
value is 4 and we subtract it from 4, we have made it a 0, which is the rule we specified
with recode. If the original value is 0 and we subtract it from 4, we have made it a 4,
which is the rule we specified with recode.

This scale starts at 0, so to reverse it, you just subtract each value from the largest
value in the scale, in this case, 4. So if our scale were 0 to 6, we would subtract each
value from 6; if it were 0 to 3, we would subtract from 3. If the scale started at 1 instead
of 0, we would need to add 1 to the largest value before subtracting. So for a 1 to 5
scale, we would subtract from 6 (6− 1 = 5 and 6− 5 = 1); for a 1 to 3 scale, we would
subtract from 4 (4− 3 = 1 and 4− 1 = 3).

What we have said so far is correct, as far as it goes, but we are not taking into
account missing values or their codes. The missing values are coded in this dataset as
−1 to −5, and if you subtract those from 4 along with the item responses that are not
missing-value codes, we will end up with 4 − (−1) = 5 to 4 − (−5) = 9. So we must
first convert the missing-value codes to Stata’s missing-value code (.) and then do the
arithmetic to reverse the scale.

Many researchers would code the values 1–5 rather than 0–4. To reverse a scale
that starts at 1 and goes to 5, you need to subtract the current value from 1 more than
the maximum value. Thus you would use 6− variable. If the variable’s current value is
5, then 6− 5 = 1.

Let’s try this example. We have already run the mvdecode command on our vari-
ables, so let’s reverse code R3485300 and call it facritr. We will use the generate

dialog box to create the variable. Select Data ⊲ Create or change data ⊲ Create new
variable, type facritr for the Variable name, and type 4 - R3485300 in the Specify a
value or an expression box. Figure 3.5 shows the completed dialog box.
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Figure 3.5. The generate dialog box

Here is the output of the generate command:

. generate facritr = 4 - R3485300
(5611 missing values generated)

Whenever you see that missing values are generated (there are 5,611 of them in this
example!), it is a good idea to make sure you know why they are missing. These
variables have only a small set of values they can take, so we can compare the original
variable with the new variable in a table and see what got turned into what. Select
Statistics ⊲ Summaries, tables, and tests ⊲ Frequency tables ⊲ Two-way table with measures
of association, which will bring up the dialog shown in figure 3.6.
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Figure 3.6. Two-way tabulation dialog box

Here we select facritr as the Row variable and R3485300 as the Column variable.
We also check two of the options boxes: Because we are interested in the actual values
the variables take, select the option to suppress the value labels (Suppress value labels).
We are also interested in the missing values, so we check the box to have them included
in the table (Treat missing values like other values).

. tabulate facritr R3485300, miss nolabel

Father criticizes child’s ideas
facritr 0 1 2 3 4 Total

0 0 0 0 0 117 117
1 0 0 0 247 0 247
2 0 0 811 0 0 811
3 0 1,078 0 0 0 1,078
4 1,120 0 0 0 0 1,120
. 0 0 0 0 0 5,611

Total 1,120 1,078 811 247 117 8,984

Father criticizes child’s ideas
facritr .a .b .d .e Total

0 0 0 0 0 117
1 0 0 0 0 247
2 0 0 0 0 811
3 0 0 0 0 1,078
4 0 0 0 0 1,120
. 775 4,816 4 16 5,611

Total 775 4,816 4 16 8,984
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From the table generated, we can see that everything happened as anticipated. Those
adolescents who had a score of 0 on the original variable (the column with a 0 at the
top) now have a score of 4 on the new variable. There are 1,120 of these observations.
We need to check the other combinations, as well. Also the missing-value codes were
all transferred to the new variable, but we lost the distinctions between the different
reasons an answer is missing. The new variable, facritr, is a reverse coding of our old
variable, R3485300.

3.6 Creating scales

We are finally ready to calculate our scales. We will construct two scale variables:
one for the adolescent’s perception of his or her mother and one for the adolescent’s
perception of his or her father. With four items, each scored from 0 to 4, the scores
could range from 0 to 16 points. Higher scores indicate a more positive relationship
with the parent.

At first glance, this assertion is straightforward. We just add the variables together:

. generate ymomrelate = mompraise + momcritr + momhelp + momblamer

. generate ydadrelate = dadpraise + dadcritr + dadhelp + dadblamer

Before we settle on this, we should understand what will happen for missing values, and
we should check through the documentation to find out what Stata does about missing
values. The first thing to do is to determine how many observations have one, two,
three, or all four of the items answered, that is, not missing. This need introduces a
new command, egen (short for extended generate). Selecting Data ⊲ Create or change
data ⊲ Create new variable (extended) opens the egen dialog box, shown in figure 3.7.

Figure 3.7. The Main tab for the egen dialog box
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As you can see, the dialog box allows us to enter the name of the variable to be
created, which we will call mommissing because this will tell us how many of the items
about mothers that each adolescent missed answering. The next step is to select the
function from the alphabetical list. In this case, we want to look among the row functions
for one that will count missing values, which appears as Row number of missing. Last,
we enter the items about the mother in the box provided. These selections produce

. egen float mommissing = rowmiss(mompraise momcritr momhelp momblamer)

Beyond egen

We have seen how generate and egen cover a wide variety of functions. You can
always type help generate or help egen to see a description of all the available
functions. Sometimes this is not enough. Nicholas J. Cox, a Stata user, wrote in
2000, with subsequent revisions, a command called egenmore, which adds many
more functions that are helpful for data management. You can type ssc install

egenmore, replace in your Command window to install these added capabilities.
The replace option will check for updates Cox has added if egenmore is already
installed on your machine. If you now enter help egenmore, you will get a descrip-
tion of all the capabilities Cox has added.

If we look at a tabulation of the mommissing variable, the rows will be numbered
0–4, and each entry will indicate how many observations have that many missing values.
For example, there are 4,510 observations for which all four items were answered (no
missing values), 6 for which there are three items answered (one missing value), 2 for
which there are two items answered (two missing values), and 4,466 for which there
are no items answered. Our table does not include a row for 3 because there are no
observations in our example that have three missing values.

. tab mommissing

mommissing Freq. Percent Cum.

0 4,510 50.20 50.20
1 6 0.07 50.27
2 2 0.02 50.29
4 4,466 49.71 100.00

Total 8,984 100.00

We can see that there are a total of eight observations for which there are some, but
not complete, data. There should be little doubt about what to do for the 4,510 cases
with complete information, as well as for the 4,466 with no information (all missing).
The problem with using the sum of the items as our score on ymomrelate is that the
eight observations with partial data will be dropped, that is, given a value of missing.

There are several solutions. We might decide to compute the mean of the items
that are answered. We can do this with the egen dialog box; select Data ⊲ Create or
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change data ⊲ Create new variable (extended) to display the egen dialog box displayed
in figure 3.7. This time, call the new variable mommeana and pick Row mean from the
list of egen functions. This function generates a mean of the items that were answered,
regardless of how many were answered, as long as at least one item was answered. If we
tabulate mommeana, we have 4,518 observations, meaning that everybody who answered
at least one item has a mean of the items they answered.

Another solution is to have some minimum number of items, say, 75% or 80% of
them. We might include only people who answered at least three of the items. These
people would have fewer than two missing items. We can go back to the dialog box for
egen and rename the variable we are computing to mommeanb. The by/if/in tab allows
us to stipulate the condition that mommissing < 2, as shown in figure 3.8.

Figure 3.8. The by/if/in tab for the egen dialog box

The Stata command this dialog box generates is

. egen float mommeanb = rowmean(mompraise momcritr momhelp momblamer)
> if mommissing < 2

This command creates a variable, mommeanb, that is the mean of the items for each
observation that has at least three of the four items answered. Doing a tabulation on
this shows that there are 4,516 observations with a valid score. This command allows
us to keep the six cases that answered all but one of the items and drop the two cases
that were missing more than one item.
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Deciding among different ways to do something

When you need to decide among different ways of performing a data-management
task—which is what we have been doing this whole chapter—it is usually better to
choose based on how easy it will be for someone to read and understand the record
rather than based on the number of commands it takes or based on some notion of
computer efficiency. For example, computing the row mean has a major advantage
over computing the sum of items. The mean is on the same 0–4 scale that the
items have, and this often makes more sense than a scale that has a different range.
For example, if you had nine items that ranged from 1 for strongly agree to 5

for strongly disagree, a mean of 4 would tell you that the person has averaged
agree over the set of items. This might be easier to understand than a total or
sum score of 36 on a scale that ranges from 9 (one on each item) to 45 (five on each
item).

3.7 Saving some of your data

Occasionally, you will want to save only part of your data. You may wish to save only
some variables, or you may wish to save only some observations. Perhaps you have
created variables that you needed as part of a calculation but do not need to save, or
perhaps you wish to work only with the created scales and not the original items. You
might want to drop some observations based on some characteristic, such as gender or
parent’s educational level or geographic area.

To drop a variable from your dataset, you can use the Variables Manager. Right-
click on the variable name. A drop-down menu appears in which you can select Drop
Selected Variables. When you do this, as a safety check, Stata asks you to confirm that
you want to drop the variable. Suppose that we want to drop all the original variables,
R0000100–R3828700, because we have given all of them a new name that is easier to
understand. We could click on R0000100 to highlight it, and then press Shift+Down
arrow to highlight the rest of the variables that we want to drop. Right-click on the
highlighted variables and select Drop Selected Variables to drop the set of variables.
The command produced by this example is

. drop R0000100 R3483600 R3483700 R3483800 R3483900 R3485200 R3485300 R3485400
> R3485500 R3828100 R3828700

Sometimes it is more efficient to indicate the variables you want to keep rather than
the variables you want to drop. In the Variables Manager, right-clicking gives us the
Keep Selected Variables choice. If we only wanted to keep a few variables, this might
be a bit easier to do. We would highlight the ones we wanted to keep before clicking
Keep Selected Variables.
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Sometimes we want to drop or keep selected observations rather than variables. For
example, we might want to drop children who are under 12 or keep children if they are in
an honors program. Similarly, we might want to keep people who are African American
or drop people who are not African American. When we have an enormous dataset, we
might want to keep the first 500 observations for preliminary analysis. We can use the
same drop and keep commands we used for variables. Instead of using the Variables
Manager, we can enter the commands directly, but rather than using drop varlist , we
follow the syntax of drop if exp or drop in range. Here are a few examples:

. drop if age < 12

. drop if age > 17 & gender == 1

. keep if age >= 12 & age < 18 & gender == 1

. keep in 1/500

The first command, drop if age < 12, drops any observation who is under age 12.
The second command drops any observation who is over age 17 and whose gender is
coded as a 1. The double equal signs are read as “is”, that is, gender is 1. If you wrote
gender = 1 here, it would create an error. The statement gender = 1 would naturally
tell Stata you want to assign a value of 1 on gender to everybody. We do not want to
do this! We want to drop people if their gender “is” 1. Stata uses two equal signs, ==,
to say this statement. Notice the use of the ampersand, &, rather than typing and. If
you used the word and instead of the symbol &, you would get an error message. The
third example keeps people who are age 12 or over (>=) and are under age 18 (<) and
have a gender that is coded as 1. The last example keeps only observations 1 to 500.
The / sign can be read as “to”.

3.8 Summary

This chapter has covered a lot of ground. You may need to refer to this chapter when
you are creating your own datasets. We have covered how to label variables and create
value labels for each possible response to an item. In explaining how to create a scale,
we covered reverse-coding items that were stated negatively and creating and modifying
items. We also covered how to create a scale and work with missing values, especially
where some people who have missing values are included in the scale and some are
excluded. Finally, we covered how to save parts of a file, whether the parts were selected
items or selected observations.

In the next chapter, we will look at how to create a file containing Stata commands
that can be run as a group. The book’s webpage has such a command file for chapter 3
(chapter3.do). By recording all the commands into a program, we have a record of
what we did, and we can rerun it or modify it in the future. We will also see how to
record both output and commands in files.
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3.9 Exercises

1. Open relate.dta. The R3828700 variable represents the gender of the adolescent
and is coded as a 1 for males and 2 for females. There are 775 people who are
missing because they dropped out of the study after a previous wave of data
collection. These people have a missing value on R3828700 of -5. Run a tabulation
on R3828700. Then modify the variable so that the code of -5 will be recognized
by Stata as a missing value. Label the variable so that a 1 is male and a 2 is female.
Finally, run another tabulation and compare this with your first tabulation.

2. Open relate.dta. Using the R3483600 variable, repeat the process you did for
the first exercise. Go to the webpage for the book and examine the dictionary file
relate.dct to see how this variable is coded. Modify the missing values so that
-5 is .a, -4 is .b, -3 is .c, -2 is .d, and -1 is .e. Then label the values for the
variable and run a tabulation.

3. Using the result of the second exercise, run the command numlabel, add. Repeat
the tabulation of R3483600, and compare it with the tabulation for the second
exercise. Next run the command numlabel, remove. Finally, repeat the tabula-
tion, but add the missing option; that is, insert a comma and the word “missing”
at the end of the command. Why is it good to include this option when you are
screening your data?

4. relate.dta is data from the third year of a long-term study. Because of this, some
of the youth who were adolescents the first year (1997) are more than 18 years
old. Assign a missing value on R3828100 (age) for those with a code of -5. Drop
observations that are 18 or older. Keep only R0000100, R3483600, R3483800,
R3485200, R3485400, and R3828700. Save this as a dataset called positive.dta.

5. Using positive.dta, assign missing values to four of the variables: R3483600,
R3483800, R3485200, and R3485400. Copy these four variables to four new vari-
ables called mompraise, momhelp, dadpraise, and dadhelp, respectively.

6. Create a scale called parents of how youth relate to their parents using the four
items (R3483600, R3483800, R3485200, and R3485400). Do this separately for
boys (if R3828700 == 1) and girls (if R3828700 == 2). Use the rowmean()

function to create your scale. Do a tabulation of parents.
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4.1 Introduction

Throughout this book, I am illustrating how to use the menus and dialog boxes, but
underneath the menus and dialogs is a set of commands. Learning to work with the
commands lets you get the most out of Stata, and this is true of any statistical software.
Even the official Stata documentation is organized by command name, as illustrated by
the Stata Base Reference Manual, which has more than 2,500 pages explaining Stata
commands.

With the logical organization of the menu system, you may wonder why you need
to even think about the underlying commands. There are several reasons: Entering
commands can be quicker than going through the menus. More importantly, you can
put the commands into files that are called do-files, allowing for easy repetition of a
series of commands. These do-files allow you to replicate your work, something you
should always ensure you can do. When you collaborate with co-workers, they can use
your do-file as a way to follow exactly what you did. It is hard enough to remember
all the commands you create in a session, and if there is a delay between work sessions,
it is impossible to remember all those commands. Even when you are using the menu
system, it is useful to save the commands generated from the menus into a do-file, and
Stata has a way to facilitate saving these commands; we will soon learn how to do this.

75
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What is a command? What is a do-file?

A command instructs Stata to do something, such as construct a graph, a frequency
tabulation, or a table of correlations. A do-file is a collection of commands. “Do-
file” is a good name because it is so descriptive: the series of commands in the file
tells Stata what to “do”. A simple do-file might open a dataset, summarize the
variables, create a codebook, and then do a frequency tabulation of the categorical
variables. A do-file can include all the commands you use to label variables and
values; it can recode variables, average variables, and define how you treat missing
values. Such a do-file might be only a few lines long, but complicated do-files can
be thousands of lines long.

4.2 How Stata commands are constructed

Stata has many commands. Here are some of the commands covered in this book:

list List values of variables
summarize Summary statistics
describe Describe data in memory or in file
codebook Describe data contents
tabulate Tables of frequencies
generate Create or change contents of variable
egen Extensions to generate
correlate Correlations (covariances) of variables or coefficients
ttest Mean-comparison tests
anova Analysis of variance and covariance
regress Linear regression
logit Logistic regression, reporting coefficients
factor Factor analysis
alpha Compute interitem correlations (covariances) and Cronbach’s alpha
graph The graph command

Stata has a remarkably simple command structure. Stata commands are all lower-
case. Virtually all Stata commands take the following form: command varlist if/in,
options. The command is the name of the command, such as summarize, generate,
or tabulate. The varlist is the list of variables used in the command. For many com-
mands, listing no variables means that the command will be run on all variables. If
we said summarize, Stata would summarize all the variables in the dataset. If we said
summarize age education, Stata would summarize just the age and education vari-
ables. The variable list could include one variable or many variables. After the variable
list come the if and in qualifiers regarding what will be included in the particular
analysis. Suppose that we have a variable called male. A code of 1 means that the
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participant is a male, and a code of 0 means that the participant is female. We want
to restrict the analysis to males. To restrict the analysis, we would say if male == 1.
Here we use two equal signs, which is the Stata equivalent to the verb “is”. So the
command means “if male is coded with a value of 1”. Why the two equal signs? The
statement male = 1 literally means that the variable called male is a constant value of
1, but males are coded as 1 and females are coded as 0 on this variable. Sometimes we
want to run a command on a subset of observations, and so we use the in qualifier. For
example, we might have the command summarize age education in 1/200, which
would summarize age and education in the first 200 observations.

Each command has a set of options that control what is done and how the results
are presented. The options vary from command to command. One option for the
summarize command is to obtain detailed results, summarizing the variables in more
ways. If we wanted to do a detailed summary of scores on age and years of education
for adult males, the command would be

. summarize age education if male == 1 & age > 17, detail

The command structure is fairly simple, which is helpful for us because it is absolutely
rigid. This example used the ampersand (&), not the word “and”. If we had entered the
word “and”, we would have received an error message. Here are more examples with
if statements:

. summarize age education if sex == 0

. summarize age education if sex == 1 & age > 64

. summarize age sex if sex == 0 & age > 64 & education == 12

When you have missing values stored as . or .a, .b, etc., you need to be careful
about using the if qualifier. Stata stores missing values internally as huge numbers
that are bigger than any value in your dataset. If you had missing data coded as . or
.a and entered the command summarize age if age > 64, you would include people
who had missing values. The correct format would be

. summarize age if age > 64 & age < .

The < . qualifier at the end of the command is strange to read (less than dot) but
necessary. Table 4.1 shows the relational operators available in Stata.
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Table 4.1. Relational operators used by Stata

Symbol Meaning

== is or is equal to
!= or ~= is not or is not equal to
> is greater than
>= is greater than or equal to
< is less than
<= is less than or equal to

The in qualifier specifies that you will perform the analysis on a subset of cases based
on their order in the dataset. If we had 10,000 participants in a national survey and we
wanted to list the values in the dataset for age, education, and sex, this list would go
on for screen after screen after screen, which would be a waste of time. We might want
to list the data on age, education, and sex for just the first 20 observations by using
in 1/20. The 1 is where Stata should start (called the first case), the “/ ” is read as
“to”, and the 20 is the last case listed. Thus in 1/20 tells Stata to do the command
for the cases numbered from 1 to 20, or for the first 20 cases. The full command is

. list age education sex in 1/20

Listing just a few cases is usually all you need to check for logical errors. Most Stata
dialog boxes include an if/in tab for restricting data.

If your dataset contains few variables, it may be easier to just leave the Data Editor
(Browse) open with the data while you are typing your commands instead of running
a listing. Any changes made by your commands will appear immediately in the Data
Editor (Browse). You can open the Data Editor (Browse) by typing the browse com-
mand or the browse, nolabel command in the Command window or by clicking on
the toolbar icon that looks like a spreadsheet with a magnifying glass (see figure 2.3).

The final feature in a Stata command is a list of options. You must enter a comma
before you enter the options. As you learn more about Stata, the options become
increasingly important. If you do not list any options, Stata gives you what it considers
to be basic results. Often these basic results are all you will want. The options let
you ask for special results or formatting. For example, in a graph, you might want
to add a title. In frequency tabulation, you might want to include cases that have
missing values. One of the best reasons for using dialog boxes is that you can discover
options that can help you tailor your results to your personal taste. Dialog boxes either
include an Options tab or have the options as boxes that you can check on the Main
tab. The most common mistake a beginner makes when typing commands directly in
the Command window is leaving the comma out before specifying the options.

Here are a few Stata commands and the results they produce. You can enter these
commands in the Command window to follow along.
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. use http://www.stata-press.com/data/agis4/firstsurvey_chapter4

. summarize

Variable Obs Mean Std. Dev. Min Max

id 20 10.5 5.91608 1 20
gender 20 1.5 .5129892 1 2

education 20 14.45 2.946452 8 20
sch_st 18 3.444444 1.149026 2 5
sch_com 20 3.5 1.395481 1 5

prison 17 3.176471 1.550617 1 5
conserv 19 2.947368 1.544657 1 5

This summarize command does not include a variable list, so Stata will summarize
all variables in the dataset. It has no if/in restrictions and no options, so Stata
summarizes all the variables, giving us the number of observations with no missing
values, the mean, the standard deviation, and the minimum and maximum values. The
statistics for the id variable are not useful, but it is easier to get these results for all
variables than it is to list all the variables in a variable list, dropping only id.

We can add the detail option to our command to give more detailed information.
Do this for just one variable.

. summarize education, detail

Years of education

Percentiles Smallest
1% 8 8
5% 9.5 11

10% 11.5 12 Obs 20
25% 12 12 Sum of Wgt. 20

50% 14.5 Mean 14.45
Largest Std. Dev. 2.946452

75% 16.5 17
90% 18 18 Variance 8.681579
95% 19 18 Skewness -.1636124
99% 20 20 Kurtosis 2.522208

As expected, this method gives us more information. The 50% value is the median,
which is 14.5. We also get the values corresponding to other percentiles, the variance, a
measure of skewness, and a measure of kurtosis (we will discuss skewness and kurtosis
later).

Next we will use the list command. Here are four commands you can enter, one
at a time, to get three different listings:
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. list gender education prison in 1/5

gender educat~n prison

1. woman 15 too long
2. man 12 much too lenient
3. man 16 about right
4. man 8 .
5. woman 12 about right

. list gender education prison in 1/5, nolabel

gender educat~n prison

1. 2 15 4
2. 1 12 1
3. 1 16 3
4. 1 8 .
5. 2 12 3

. numlabel _all, add

. list gender education prison in 1/5

gender educat~n prison

1. 2. woman 15 4. too long
2. 1. man 12 1. much too lenient
3. 1. man 16 3. about right
4. 1. man 8 .
5. 2. woman 12 3. about right

The first command shows the first five cases. Notice that the education variable
appears at the top of its column as educat~n. We can use names with more than eight
characters, but some Stata results will show only eight characters. For names with more
than eight characters, Stata will keep the first six characters and the last character and
insert the tilde (~) between them. Because we assigned value labels to gender and
prison, the value labels are printed in the list. However, notice that the numerical
values are omitted.

The second command adds the nolabel option, which gives us a listing with the
numerical values we used for coding but not the labels. The next command, numlabel
all, add, adds a numeric value to each label for all variables (the all tells Stata to
apply this command to all variables). If we wanted to remove the values later, we would
enter numlabel all, remove. Finally, the last listing gives us both the values and the
labels for each variable.

4.3 Creating a do-file

You may be asking yourself how you will ever learn to use all the options and qualifiers.
One way is to read the Stata documentation, but it is often easier to use the menus and



4.3 Creating a do-file 81

record the command in a do-file. Stata has a simple text editor called the Do-file Editor
in which you can enter a series of commands. You can run all the commands in this
file or just some of them. You can then edit, save, and open the commands in a do-file
at a later date. Saving these do-files means not only that you can replicate what you
did and make any needed adjustments but also that you will develop templates you can
draw on when you want to do a similar analysis. To open the Do-file Editor window,
use Window ⊲ Do-file Editor ⊲ New Do-file Editor. You can also open the Do-file Editor
by clicking on the toolbar icon that looks like a notepad; see figure 4.1 for the icon in
Stata for Windows.

Figure 4.1. The Do-file Editor icon on the Stata menu

Stata allows you to have multiple do-files open at once, but we will use only one
do-file in this book. When you gain confidence using Stata, the ability to have several
do-files open simultaneously is a useful feature. You might use one do-file primarily
for data-management purposes; you might use another for general analysis of the data;
you might use a third for analyzing a subset of the data. You might even work on a
couple of different projects in one session. Using multiple do-files in a session is sort of
like juggling balls: some of us are better at it than others. For now, one Do-file Editor
window is all we need. When several do-files are open, clicking on the arrow to the right
of the icon shows the name of each open file. A blank do-file appears in figure 4.2.



82 Chapter 4 Working with commands, do-files, and results

Figure 4.2. The Do-file Editor of Stata for Windows

When you click on another window, the Do-file Editor can be hidden by it. You can
bring the Do-file Editor to the front again by clicking on it in the system toolbar or by
using the Alt+Tab key combination to move through the open windows until the Do-file
Editor is highlighted. You can avoid having the window disappear by arranging your
desktop so that other windows do not overlap with the Do-file Editor window. If you
have two monitors, it is convenient to have the main Stata window on one monitor and
the Do-file Editor on the other monitor.

The Do-file Editor lacks special features, such as underlining or the special fonts you
would get with a word processor such as MS Word. Word processors add a lot of hidden
features that would be confusing to Stata. The Do-file Editor is a plain-text editor. It
does, however, have some nice features for writing a do-file. As you can see in figure 4.3,
the toolbar has many features that you would expect in an editor.

Figure 4.3. The Do-file Editor toolbar of Stata for Windows

The first 10 icons on the left are fairly standard. The first four icons let you open
a new do-file, open an existing do-file, save your file, and print the file. The fifth icon
allows you to perform a search, although most people prefer to use Ctrl+f to perform a
search. The next three icons will cut, copy, and paste, although most people prefer to
use Ctrl+x, Ctrl+c, and Ctrl+v (Cmnd+x, Cmnd+c, and Cmnd+v for Macs), respectively.
The curved arrows provide undo and redo functions, like a word processor. The next
three icons have to do with bookmarks, marking lines in a file you are editing so you
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can easily jump back to them later. The second from last icon will show content of
the file in a Viewer window. Finally, the last icon runs either your entire do-file or the
part of your do-file that you have selected. This is the key icon for running your do-file.
You select lines of code in the same way you would in a word processor, by highlighting
them. If you want to select a section of several lines, you do not need to highlight all
the lines completely; you can highlight some of each line. Here is an example where we
want to run two commands, describe and summarize. In figure 4.4, we have selected
only part of the describe command but all the summarize command.

Figure 4.4. Highlighting in the Do-file Editor

The Do-file Editor automatically numbers your lines. Only the number 1 for the
first line appeared in figure 4.2 because the rest of the file is blank. In long do-files, the
line numbers help you find your way around. In the lower right, the Do-file Editor also
gives the exact location of the cursor, such as “Line: 1, Col: 0” (again, see figure 4.2).

I recommend that you include the name of the file as a comment in the first line
of the do-file. Placing an asterisk (*) at the beginning of the line marks the text as a
comment that Stata prints but does not interpret. I include this line because my do-file
will have the name of the file that created the output so that I know where to find the
file if I need to change something later on. Let’s type * my first.do at the top of our
blank do-file.

Another way of adding comments, especially long comments, to a file is by typing
/* just before the comment and */ right after the comment. Anything between the /*
and */ will be treated as a comment. Figure 4.5 shows what we will use in our example
do-file. This type of long comment is helpful for organizing a long do-file into sections
with a new comment explaining the purpose of each new section.

We will now add our first command, version 13. This command can be important
because it will execute the commands as they were written in Stata 13. Stata is contin-
ually being improved, and updates may include changes to the commands that you are
using. By including the version number you are using when you create the do-file, you
ensure that everything will work as intended even when you are using future versions
of Stata. This is called version control. It is how Stata maintains compatibility when
new versions add new capabilities.

Notice that the comments appear in the Do-file Editor in a green font. This makes
them easy to find in a long do-file. Stata commands appear in a bold blue font.

Next we need to open the dataset. In our do-file, we type

. use firstsurvey chapter4.dta, clear



84 Chapter 4 Working with commands, do-files, and results

Stata automatically looks in our working directory for this file. If we already have a
dataset open, the clear option will clear those data from Stata’s memory. If we had a
dataset open with changes made to the data and we did not include the clear option
with our use command, Stata would issue a warning because it does not want us to
accidentally clear an active dataset before we save our changes.

You do not have to store your data and do-files in the working directory. You can
create a separate directory for each project, or you can use an external flash drive. To
open a dataset that is not saved in the working directory, you must specify the full path
in your command. Say that our dataset, firstsurvey chapter4.dta, was saved to an
external flash drive in a folder called first project. We would type

. use "E:\first project\firstsurvey_chapter4.dta", clear

The quotation marks are required if your folder name or filename contains embedded
spaces like the space in first project above.

The folder path will vary for Mac and Unix. For example on a Mac if your file is in
the Documents folder, you would type

. use "Users/username/Documents/firstsurvey_chapter4.dta", clear

After using Stata for some time, it is usually best to organize your folders in such a
way that each project has a separate folder creating a good work flow. Scott Long has
written a wonderful book called The Workflow of Data Analysis Using Stata (2009),
which is available from Stata Press at http://www.stata-press.com/books/wdaus.html.
You should read this book if you plan to be involved in a series of major projects using
Stata.

The next two commands we need to type are describe and summarize, which will
describe the dataset and then perform a summary of the variables, giving us the number
of observations, mean, standard deviation, minimum value, and maximum value. Unless
there are too many variables in your dataset, these are good commands to include at
the beginning of your do-file.

If you are wondering how Stata knows when it is done with one command and ready
to start another, the answer lies with the Enter key. Every time you press the Enter
key, Stata assumes you are either done or starting a new command. Having a hard
return between them makes describe and summarize two separate operations. All
programs have some way to designate the end of a command. SAS, for example, ends
each procedure with a semicolon. The semicolon in SAS is the same as the Enter key in
Stata.

In general, one line equals one command in a do-file. This is a great way to distin-
guish one command from another as long as each command is short enough to fit on
one line. One line equals one command. What happens when you have a long command
that extends for more than one line? Stata needs a way to know that when you press
the Enter key, you are not really done with the command. The solution is to put ///
at the end of a line. This tells Stata that the next line is a continuation of the previous



4.3 Creating a do-file 85

one. We illustrate the use of /// in the graph pie commands shown in figure 4.5. (We
will cover these commands in the next chapter. For now, just enter them into the Do-file
Editor.)

If you are using dialog boxes to create your commands, you can click on the Copy
button in the bottom left corner to copy the command and then press Ctrl+v in the
Do-file Editor to paste the command into your do-file.

You must remember to save your do-file. You do this much like you would save a file
in any other program; that is, click on File ⊲ Save As.... Then you can type the name
of the file; in our example, we are using my first.do. You can also browse to find the
project folder where you want to save the file, such as E:\first project. Until you
have more experience, it is probably best to store your do-files and your data in the
same folder.

Figure 4.5 shows our do-file, my first.do, as it appears in the Do-file Editor. Notice
that when we saved the do-file, the filename now appears at the top of the Editor.

Figure 4.5. Commands in the Do-file Editor window of Stata for Mac

Are you convinced that you should keep a do-file? I hope so. Imagine that one
month from now, you decide to create a pie chart for another variable, conserv,
from firstsurvey chapter4.dta. You can open the my first.do file and replace
over(prison) with over(conserv). Click on the icon to run the do-file, and you are
done.
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As things get more complex, having a set of do-files that perform certain tasks
becomes extremely valuable. One thing you might do is create an MS Excel spreadsheet
to keep a record of the do-files you create. You might have three columns: the name
and path of the do-file, the dataset it uses, and a brief statement of the purpose of each
do-file. Eventually, you will have 30 or more do-files, and you can scan this listing to
find one that is close to what you plan to do next to serve as a template. If you start
doing several major projects, you probably should have a spreadsheet like this for each
of the projects.

Stata do-files for this book

The webpage for this book, http://www.stata-press.com/data/agis4/, has do-files
for each chapter along with the datasets used. You can copy the do-files and datasets
to your computer and reproduce the results in this book. These do-files may also
be useful as templates when you do your own work because they can be modified as
you need. You will have to change the paths in these files to the paths where you
have stored your data unless you have stored the data in Stata’s default directory,
C:\Data. You could also change the default directory. If you stored the data files
in C:\Data\agis4, you could enter the command cd "C:\Data\agis4" to make
that the default directory. Then to open a file for Stata to use, you would simply
type use filename, where filename is the name of the data file you want to use.

4.4 Copying your results to a word processor

Many people start using Stata to do their homework for a class in statistical method-
ology. In those cases, the datasets are often fully prepared, and you will not need to
keep a record of how the data were created, how you labeled variables, how you re-
coded some items and dealt with missing values, or how you produced your results. In
fact, many of the analyses will have short results. Here it may be simplest and best to
save your results by highlighting the text that you want to save in the Results window,
right-clicking on the highlighted text, and then selecting Copy from the menu (or using
Ctrl+c after you have highlighted the text to copy). You can then paste the text into
your favorite word processor. It is a good idea to include the commands that are in the
Results window, because these give you a record of what you did. Except when there is
no data manipulation, commands like these are no substitute for a do-file that includes
everything you did in preparing the data.

When you copy results from Stata’s Results window to your word processor, the
format may look like a hopeless mess because Stata output is formatted using a fixed-
width font; when you paste your results, things will likely not line up properly. The
simplest solution to this alignment problem is to change the font and probably the font
size, depending on your margins. I usually use the Courier or Courier New font at
9 point. Sometimes the lines may still wraparound, and you may need to widen the
margins. Most Stata results will fit nicely if you have 1-inch margins and a 9- or 10-
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point Courier font. With most word processors, you change the font of the lines that
contain the results by highlighting the lines you want to change and then selecting the
Courier font and the 9-point font size.

Saving tabular output

If you are using the Windows version of Stata and have tabular output (say, the
results of a summarize command), you may want to select just that portion of the
text that appears as a table, right-click on it, and select Copy Table, Copy Table
as HTML, or Copy as Picture from the menu. You can then paste this text into
your word processor. The Copy Table as HTML option pastes it as a table like one
you would see on a webpage. However, if you are working with a specific style
format, such as the APA requirements for tables, you will need to reenter the table
in your word processor to meet those requirements. The Copy as Picture option
works nicely as long as you do not need to format the output to a particular
style. The Copy as Picture option takes a picture of the output you highlighted.
If you paste this picture into a word processor, it will look just like it did in the
Results window. You will then be able to resize it, but you will not be able to edit it.

If you are using the Mac version of Stata and select Edit ⊲ Copy as Picture,
Stata will copy the table as both a TIFF image and as a PDF image to the
Clipboard. When you paste the file into another application, that application will
automatically determine which version of the file to take from the Clipboard.

As you progress in your class or as you start to use Stata in your own research, you
will find that copying and pasting is really not up to the task of creating a record of
your work. For more complex work, you will want to use log files, which we will now
discuss.

4.5 Logging your command file

Stata can write a copy of everything that is sent to the Results window into a file. The
file is called a log file. When you start logging, you can create a new file, or you can
add on to the end of an existing log. You can temporarily suspend logging at any time
and then restart it again. If you do not have a running Stata session, start one now,
and let’s take a look at output logs.

We can open a log by selecting File ⊲ Log ⊲ Begin..., which will bring up the file
selector window. Navigate to the directory in which we want to keep our log, and then
enter a name (or select one from the list). By default, Stata will save this log using a
markup language called Stata Markup and Control Language (SMCL) that only Stata
can read in a Viewer or Results window. The log will have a filename.smcl name, where
.smcl is the extension. It looks nice in Stata but in another application, although it
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is a text file, the SMCL tags will be displayed because the word processor or other text
editors will not understand them.

The other file format is called “log”, which is a simple text file that your word
processor can read. We need to pick the option of having a log file rather than a SMCL

file from the dialog box. At the bottom of the Begin logging Stata output dialog box,
we can specify Save as type. From the pulldown menu, select Log (*.log) for the type.
Like the Results window, the .log format uses a fixed-width format, and if you insert
this file into a word processor, you need to make sure that the font is fixed width (for
example, Courier) and the font size is small enough (for example, 9 point). Make sure
to select a location where you can find this log file. We can insert this log into an
open file in our word processor, or we can open the log file itself in our word processor.
Because the extension will be .log, when we open it into a word processor, we need to
make sure that the word processor is not just looking for certain other extensions. For
example, in MS Word, you would need to browse for the log file where the type is *.*
rather than *.docx.

If you are using MS Word as your word processor, you have two options when working
with a .log file. You can open it as a new document in Word as long as you remember
to change the file type from *.docx to *.* or show all. If you do this, the Word
document will have a fixed font. You may need to change the font size, say, to 9 point,
or make the margins wider. If you have an existing Word document, you need to use
the Insert option rather than the Open option, and insert the text where you want it.

Open a new log file called results.log. Make sure to specify that it is a log file
rather than a SMCL file. Then run a summarize command on the file. Now open the
log by selecting File ⊲ Log ⊲ View..., which will show us the basic information about our
file, where it is stored, and the date and time it was created, and will give the results
of our summary in a Viewer. When we go back to our Command window, the Viewer
will seem to disappear, but it will be on the taskbar at the bottom of our screen. We
can click on it to open it again.

Run a few more commands, such as a tabulation and a graph. Now select the Viewer
from the Windows toolbar, and the Viewer returns, but it goes only as far as the original
summarize command. However, at the top of the Viewer window is a Refresh button.
Clicking on this button will update the Viewer to include the tabulate and the graph
commands. What happened to the graph? Unfortunately, the log does not include the
graphic output in the log file.

Experienced users use log files a lot. For beginners, log files may not be necessary.
Also, if you make a lot of mistakes and need to run each command several times before
you get it just right, the log will have all the bad output that you do not want, along
with the good output that you do want. You might want to pause the log file while you
try out a command or do-file. Then when you have the command the way you want
it, you can restart the log to minimize the bad output. To do this, select File ⊲ Log ⊲
Suspend or Resume, respectively.
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A strength of using log files is that they provide a record of both your commands
and your results. The commands precede each result, so you can immediately see what
you did. The advantage of the do-file from the Do-file Editor is that the commands are
all together in a compact form, so it is easier to review the programming you did. A
major limitation of the log file is that it does not save graphic output, such as the pie
chart we did in this chapter. Graphs need to be saved by right-clicking within the graph
and then choosing an option, whether you want to save it (select Save As...) or copy it
(select Copy) so you can paste it into your word processor.

4.6 Summary

Let’s review what you have learned in this chapter:

• How to open a Do-file Editor and copy commands from the Results window

• How to use the dialog boxes in Stata to generate Stata commands and then copy
these to the Do-file Editor

• How to string a series of commands together in the Do-file Editor and add com-
ments to this file

• How to run an individual command and groups of commands from the Do-file
Editor

• How to save your do-file and retrieve it for later analysis

• How to cut and paste between Stata and a word processor, like Word

• How to create and view a log file

This is a lot of new knowledge for you to absorb. Never feel bad if you need to review
this material because you forgot a step along the way. Even as you gain experience with
Stata, this chapter will be a handy resource.

This chapter focused on the mechanics of using the Do-file Editor, writing a simple
do-file, and saving your results. As you go through the following chapters, you will learn
how to write more complex do-files and do more complex data management.

The rest of the book will focus on performing graphic and statistical analysis, build-
ing on what we have done so far. Most people learning a statistics program want to
learn how to do analyses rather than what we have done so far. Still, what we have
done so far sets the groundwork for doing the analyses. Chapter 5 will go over graphic
presentations and descriptive statistics.
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4.7 Exercises

1. Open firstsurvey chapter4.dta by selecting File ⊲ Open.... Open a Do-file
Editor, and copy into the Editor the command that opened the dataset. Open
the dialog box to summarize the dataset, run the summarize command for all
the variables, and copy this command from the Results window into the Do-file
Editor. Save this do-file as 4-1.do in a place where you can find it.

2. Open the do-file you created in the first exercise, and add appropriate comments.
Save the new do-file under the name 4-2.do.

3. Open the file 4-2.do. Put your cursor in the Do-file Editor just below the com-
mand that opened the dataset and above the command that summarized the
variables (you will need to insert a new line to do this). Type the describe com-
mand in the Do-file Editor. Add a command at the bottom of the file that gives
you the median score on education. Save the new do-file under the name 4-3.do.

4. Open 4-3.do, run the describe command and the command that gave you the
median score on education, highlight the results, paste the results into your word
processor, and change the font so that it looks nice.

5. Open 4-3.do. Open a log file with the log file type. Call the file 4results.log.
Run the entire 4-3.do file, and exit Stata. Open a new session in your word
processor, and open your log file into this session. Format it appropriately.
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5.1 Descriptive statistics and graphs

The most basic use of statistics is to provide descriptive statistics and graphs for indi-
vidual variables. Advanced statistics and graph presentation can disentangle complex
relationships between groups of variables, but for many purposes, simple descriptive
statistics and graphs are exactly what is needed. Virtually every issue of a major city
newspaper will have many descriptive statistics, and most issues will have one or more
graphs. One article might report the percentage of teenagers who smoke cigarettes.
Another article might report the average value of new homes. Each spring, there will
be one or more articles estimating the average salary new college graduates will earn.

If you are working in a position related to public health, economics, or any of the
social sciences, you will be a regular consumer of descriptive statistics, and many of you
will be producers of these statistics. A parole office may need a graph showing trends
in different types of offenses. A public health agency may need to demonstrate the need
for more programs focused on sexually transmitted diseases: How much of a problem
are sexually transmitted diseases? Is the problem getting worse or better?

Our society depends more and more on descriptive statistics. Policy makers are
reluctant to make decisions without knowing the appropriate descriptive statistics. So-
cial programs need to justify themselves to survive, much less to grow, and descriptive
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statistics and graphs are critical parts of this justification. In this chapter, you will
learn how to produce these statistics and graphs using Stata.

5.2 Where is the center of a distribution?

Descriptive statistics are used to describe distributions. Three measures of central
tendency describe the middle of the distribution: mean, median, and mode. The term
“average” in statistics is typically defined as a synonym of the mean. Occasionally, this
term is used to refer to the other measures of central tendency (the median and mode).
When you read a newspaper article, it may say that the average family in a community
has two children (this is probably the median, but it could be the mode) or that the
average income in the community is $55,218 (also probably the median, but it could be
the mean). The article might say that the average SAT score at your university is 1840
(probably the mean). It might say that the average person in a community has a high
school diploma (this could be the mean, median, or mode). It is important to know
when each central tendency measurement is appropriate.

The mode is the value or the category that occurs most often. We might say that
the mode for political party in a parliament is the Labor Party. This would be the
mode if there were more members of the parliament who were in the Labor Party than
members of any other party. If we said the mode was 17 for age of high school seniors,
this means that there are more high school seniors who are 17 than there are seniors
who are any other age. This would be a reasonable measure of central tendency because
most high school seniors are 17 years old. The mode represents the average in the sense
of being the most typical value or category. If there is not a category or value that
characterizes a distribution clearly, the mode is not descriptive of the central tendency
of a distribution. For example, the heights of eighth-grade class members would not
have a descriptive mode because each adolescent might be a different height, and there
is no single height that is typical of eighth graders.

When you have unordered categorical variables, such as gender, marital status, or
race/ethnicity, the mode is the only measure of central tendency. Even here, the mode
is helpful only if one category is much more common than the others. If 79% of the
adults in a community are married, saying that the modal marital status is married is
a fair description of the typical member of the community. However, if 52% of adults
in a community are female and 48% are male, it does not make much sense to say that
the modal gender is female because there are nearly as many men as there are women.

The median is the value or the category that divides a distribution into two parts.
Half the observations will have a higher value and half will have a lower value than the
median. The median can be applied to categories that are ordered (political liberalism,
religiosity, job satisfaction) or to quantitative variables (age, education, income). If
we said that the median household income of a community is $55,218, we mean that
half the households in that community have an income more than $55,218 and half the
households have an income less than $55,218. When we used the summarize, detail

command in chapter 4, we saw that Stata refers to the median as the 50th percentile.
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The median is not influenced by extreme cases. If Bill Gates moved to this commu-
nity, his multibillion dollar income would not influence the median. He would simply
be in the half of the distribution that made more than the median income. Because of
this property, the median is sometimes used with quantitative variables that are skewed
(a distribution is skewed if it trails off in one direction or the other). Income trails off
at the high end because relatively few people have huge incomes.

The median is occasionally used with variables that are ordered categories. When
there are relatively few ordered categories, there may not be a category that has exactly
half the cases above it and half below it. You might ask people about their marital
satisfaction and give them response options of a) very dissatisfied, b) somewhat dissat-
isfied, c) neither satisfied nor dissatisfied, d) somewhat satisfied, and e) very satisfied.
Because we usually code numbers rather than letters, we might code very dissatisfied as
1, somewhat dissatisfied as 2, neither satisfied nor dissatisfied as 3, somewhat satisfied
as 4, and very satisfied as 5. The median satisfaction for men might be in the category
we coded with a 4, somewhat satisfied. The median satisfaction for women might be 3,
neither satisfied nor dissatisfied.

More often, researchers compute the mean for variables like this, and the mean for
men might be 4.21 compared with 3.74 for women. These values indicate that men are,
on average, a little above the somewhat-satisfied level and women are a little bit below
the somewhat-satisfied level.

The mean is what lay people usually think of when they hear the word “average”.
It is the value every case would be, if every case had the same value. It is a fulcrum
point that considers both the number of cases above and below it and how far they are
above or below it. Although Bill Gates would scarcely change the median income of a
community, his moving to a small town would raise the mean by a lot. Some people use
M (recommended by the American Psychological Association) to represent the mean,
and others use X (recommended by most statisticians). The formula for the mean is

X =
ΣX

n

In plain English, this says the mean is the sum of all the values, ΣX (pronounced sigma
X or sum of X), divided by the number of observations, n. For example, if you had five
college women who weighed 120, 110, 160, 140, and 210 pounds, respectively, the mean
would be

X =
120 + 110 + 160 + 140 + 210

5
= 148

From now on, we will use M instead of X to represent the mean.

What measure of central tendency should you use? This decision depends on the
level of measurement you have, how your variable is distributed, and what you are
trying to show (see table 5.1).
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Table 5.1. Level of measurement and choice of average

Level of measurement Mode Median Mean

Categorical, no order (nominal, e.g., gender) Yes No No
Categorical, ordered (ordinal, e.g., social support) Yes Yes Yes*
Quantitative (interval or ratio, e.g., age) Yes Yes Yes

*Many researchers use the mean when there are several ordered categories.

• When you have categories with no order (gender, religion), you can use only
the mode. The mode for religion in Saudi Arabia, for example, is “Muslim”.
Unordered categorical variables are called nominal-level variables.

• When you have ordered categories (religiosity, marital satisfaction), the median
is often recommended. Such variables are often labeled as ordinal measures. You
might read that the median religiosity response in Chicago is “somewhat religious”.
Ordered categories can be ordered along some dimension, such as low to high or
negative to positive. When there are several categories, many researchers treat
them as quantitative variables and use the mean. If religiosity has seven ordinal
categories from 1 for not religious at all to 7 for extremely religious, you might
use the mean by treating these numbers from 1 to 7 as if they are an interval-level
measure. You might say that the mean is 3.4, for example.

• When you have quantitative data (meaningful numbers), you can use the mean,
median, or mode. Quantitative data are often called interval-level variables. You
will usually use the mean. If, however, the variable is extremely skewed, you would
use the median.

Suppose that we want an average value for the number of children in households
that have at least one child. The distribution is highly skewed in a positive direction
because it trails off on the positive tail (see figure 5.1).
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Figure 5.1. How many children do families have?
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In this distribution, the mode is 2, the median (Mdn) is 2, and the mean (M) is 2.5.
Notice how the small number of families with a lot of children drew the mean toward
the tail but did not influence either the mode or the median. When a distribution is
skewed, the mean will be bigger or smaller than the median, depending on the direction
the distribution trails off.

There are two specialized averages you could use. The harmonic mean is useful when
you want to average rates. Suppose that you go on a 60-mile bicycle ride where the
first half of the course is a major hill climb and the second half of the course is a major
descent. You might average just 5 miles per hour for the first half and then average 25
miles per hour for the second half of the ride. If we call your rate a, the harmonic mean
(H) is

H =
n

1
a1

+ 1
a2

+ · · ·+ 1
ak

=
2

1
5 + 1

25

= 8.33

This harmonic mean of H = 8.33 miles per hour is a much better estimate of your
average speed for the 60-mile ride than the arithmetic mean, which would be (5+25)/2 =
15 miles per hour.

The geometric mean is useful when you have a growth process where the growth is
at a constant rate. This happens with population size or annual income, such as having
your income grow at a rate of 3% per year. If you made 52,500 in 2000 and made 73,500
in 2010, what did you make in 2005? The arithmetic mean (52500 + 73500)/2 = 63000
exaggerates your income in 2005. The geometric mean (G) is

G = n
√
a1 × a2 × · · · × an

=
√
52500× 73500

= 62118.84

where G = $62,118.84 is a much better estimate of your 2005 income.

The Stata command ameans varlist computes the arithmetic mean, the geometric
mean, and the harmonic mean.
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5.3 How dispersed is the distribution?

Besides describing the central tendency or average value in a distribution, descriptive
statistics describe the variability or dispersion of observations. Are they concentrated in
the middle? Do they trail off in one direction? Are they widely dispersed? Some suburbs
are extremely homogeneous with rows of houses that are similar in style and value.
These communities are highly concentrated around the average on a range of variables
(income, education, ethnic background). Other communities are heterogeneous, and
although they may have the same average values as the first community, they differ by
having a mix of people who range widely on income, education, and ethnic background.
This means that to understand a distribution, we need to know how it is distributed as
well as its average value.

When there are only a few values or categories, we can use a frequency distribution
(tabulation) to describe the variable. This distribution shows each value or category
and how many people have that value or fall into that category. Stata calls this a
tabulation. We can also use graphs to describe the dispersion of a distribution. When
there are only a few categories being shown, the most common graphs to use are pie
charts and bar charts.

When a variable is quantitative, we will usually want one number to represent the
dispersion in the same way that we use one number to represent the central tendency.
The standard deviation (SD) is used, especially with variables that have many possible
values.

There are three parts of the SAT test: reading, writing, and math. Each of these
parts will have a score between 200 and 800. If we just consider the reading and math
sections of the SAT, the maximum possible score would be 1600. Let’s assume that the
total score on the math and reading sections has a mean of 1000 (M = 1000) and an
SD of 100 (SD = 100). How can we interpret the mean and SD? Nearly all the students
(about 95% of a normal distribution) are within two SDs of the mean and so they would
have scores between 800 and 1200 on the combined math and reading sections.1 This is
the tall, but skinny, distribution in figure 5.2. If another school has the identical mean
(M = 1000) but has an SD of 200, then nearly all the students had scores between 600
and 1400. The dispersion is much greater at the second school than at the first. We
can see this in a graph of the two schools (figure 5.2). These two schools would have
very different students even though the mean is identical. The smaller the SD, the more
homogeneous the distribution is. From the graph, you can see how students at the first
school are much more clustered around the mean (M = 1000) than are the students at
the second school. The greater the SD, the more heterogeneous the distribution is.

1. The numbers used do not include the writing part of the SAT.
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Figure 5.2. Distributions with same M = 1000 but SDs = 100 or 200

Both distributions in figure 5.2 are normal and have identical means of 1000 (M =
1000). The distribution that is tightly packed around the mean has an SD of 100
(SD = 100). The distribution that is more dispersed, the distribution that is low and
wide in the figure, has an SD of 200 (SD = 200).

Skewness is known as the third moment of the distribution. A positive value indicates
a positive skew, and I mentioned that income is often used as an example because there
are relatively few people who have enormous incomes. A negative value indicates a
negative skew. An example of a negatively skewed variable would be marital satisfaction.
Surveys show that most married people are satisfied or very satisfied, few people are
dissatisfied, and even fewer are very dissatisfied. Neither of the distributions in figure 5.2
is skewed. Both are symmetrical around their respective means.

Kurtosis is known as the fourth moment of the distribution. A distribution with high
kurtosis tends to have a bigger peak value than a normal distribution. Correspondingly,
a low kurtosis goes with a distribution that is too flat to be a normal distribution.
The value of kurtosis for a normal distribution is 3. Some programs (both SAS and
IBM SPSS Statistics, for example) subtract 3 from the kurtosis to center it on zero,
and some statistics books may use this approach, but Stata uses the correct formula.
If you are reporting the kurtosis in a field where either SAS or IBM SPSS Statistics is
a widely used program, you need to know that for Stata a kurtosis of 3 indicates a
normal distribution. In such fields, you might report the value of kurtosis minus 3 to
be consistent with common practice in that field. When you report a value of kurtosis
minus 3, a kurtosis with an absolute value greater than 10 is problematic.
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5.4 Statistics and graphs—unordered categories

About all we can do to summarize a categorical variable that is unordered is to report
the mode and show a frequency distribution or a graph (pie chart or bar chart). In this
chapter, you will use a dataset, descriptive gss.dta, that includes three categorical,
unordered variables. sex, marital, and polviews are nominal-level variables. The
variable sex is coded as male or female, marital is coded by marital status, and
polviews is coded by political view. There is no order to sex in that being coded male

or female does not make one higher or lower on sex. Similarly, there is no order to
marital in that having a particular status (that is, never married, married, separated,
divorced, or widowed) does not make one higher or lower on marital status. These are
just different statuses.

We can use the tabulate command to get frequency distributions for sex, marital,
and polviews. We could type tabulate sex, then tabulate marital, and then
tabulate polviews. However, Stata has another command named tab1 that will re-
peatedly issue the tabulate command on each of the specified variables: tab1 sex

marital polviews. This is so simple that you probably want to enter it directly, but
if you want to use the dialog box, select Statistics ⊲ Summaries, tables, and tests ⊲ Fre-
quency tables ⊲ Multiple one-way tables; see figure 5.3. Be sure to select Multiple one-way
tables rather than One-way tables.

Figure 5.3. Dialog box for frequency tabulation
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Tabulating a series of variables and including missing values

There are three variations of the tabulate command. tabulate, followed by one
variable name, produces a one-way table of frequency counts for the values of that
variable. To do a tabulation of a variable, say, educ, the command is tabulate

educ.

The tab1 command, as mentioned above, takes a list of variable names and
issues the tabulate command separately for each of them. Suppose that you
want to do a tabulation on educ, sex, and polviews, and you want to do this
using one command. You would use tab1 educ sex polviews. Sometimes
you might want to have the tabulation show missing values. To do this, add
the missing option. To do a tabulation of the three variables in one command
and show the missing values, the command is tab1 educ sex polviews, missing.

tabulate, followed by two variable names, produces a two-way table of fre-
quency counts for the combinations of values of those variables. The tab2

command takes a list of variable names and issues the tabulate command
separately for each possible pair of variable names.

Using the dialog box, we enter the variables sex, marital, and polviews. Clicking
on OK produces the following result:

. tab1 sex marital polviews

-> tabulation of sex

respondents
sex Freq. Percent Cum.

male 1,228 44.41 44.41
female 1,537 55.59 100.00

Total 2,765 100.00

-> tabulation of marital

marital
status Freq. Percent Cum.

married 1,269 45.90 45.90
widowed 247 8.93 54.83
divorced 445 16.09 70.92

separated 96 3.47 74.39
never married 708 25.61 100.00

Total 2,765 100.00
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-> tabulation of polviews

think of self as
liberal or

conservative Freq. Percent Cum.

extremely liberal 47 3.53 3.53
liberal 143 10.74 14.27

slightly liberal 159 11.95 26.22
moderate 522 39.22 65.44

slghtly conservative 209 15.70 81.14
conservative 210 15.78 96.92

extrmly conservative 41 3.08 100.00

Total 1,331 100.00

The first tabulations for sex and marital tell us a lot. Some 55.6% of our sample of
2,765 adults comprises women, and 44.4% comprises men. We have 1,537 women and
1,228 men. For the marital variable, 45.9% (1,269) of adults are married. This is a
clear mode because this marital status is so much more frequent than any of the other
statuses. By contrast, the mode for sex is not as predominant a category.

A Stata user, Ben Jann, in 2007, with subsequent revisions wrote a command called
fre, which provides more details than tab1. To install the fre command, type search
fre. A new Viewer window will open with a list of all packages with the keyword “fre”.
You can scroll through these to find the command fre, or you can press Ctrl+f on
Windows or Cmnd+f on Mac, type fre in the resulting box, and then press Enter until
you find the command fre. Click on the link, and in the new window, click on the
click here to install link, which will install the fre ado-file and help file. Because
you know the name of the command, you could install the command more simply by
typing ssc install fre in the Command window. This will automatically install the
command.

Enter the command fre sex marital polviews. This gives you the result we
had before, but this is more useful when there are missing values. In this dataset,
there are 1,434 people who were not asked—or at least did not report—their political
views. The fre command provides the percentage of the total sample who selected each
category (18.88% picked moderate). We usually do not want to use the percentages in
this column because we are usually interested in the percentage of the valid responses.
The valid responses are those 1,331 survey participants who answered the item. The
column headed with “Valid” shows us that 39.22% of those valid responses picked the
moderate category. The last column on the right is labeled “Cum.”, which is the
cumulative percentage for the valid responses. We see that 65.44% of the participants
picked moderate or more liberal responses, but only 14.27% picked the liberal or the
extremely liberal categories. One of the nicest features of the fre command is the way
it provides both the value label and the numeric value in one table. Being able to see
the label and value together is quite useful when you are recoding or creating a scale.
Comparing the fre results with the tab1 results above, we see that the variable label
is easier to read with the fre command.
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. fre sex marital polviews

sex respondents sex

Freq. Percent Valid Cum.

Valid 1 male 1228 44.41 44.41 44.41
2 female 1537 55.59 55.59 100.00
Total 2765 100.00 100.00

marital marital status

Freq. Percent Valid Cum.

Valid 1 married 1269 45.90 45.90 45.90
2 widowed 247 8.93 8.93 54.83
3 divorced 445 16.09 16.09 70.92
4 separated 96 3.47 3.47 74.39
5 never married 708 25.61 25.61 100.00
Total 2765 100.00 100.00

polviews think of self as liberal or conservative

Freq. Percent Valid Cum.

Valid 1 extremely liberal 47 1.70 3.53 3.53
2 liberal 143 5.17 10.74 14.27
3 slightly liberal 159 5.75 11.95 26.22
4 moderate 522 18.88 39.22 65.44
5 slghtly conservative 209 7.56 15.70 81.14
6 conservative 210 7.59 15.78 96.92
7 extrmly conservative 41 1.48 3.08 100.00
Total 1331 48.14 100.00

Missing . 1434 51.86
Total 2765 100.00
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Obtaining both numbers and value labels

Before doing the tabulations, you might want to type the command numlabel

all, add. After you enter this command, whenever you type the tabulate

command, Stata reports both the numbers you use for coding the data (1, 2, 3,
4, and 5) and the value labels (married, widowed, divorced, separated, and never
married). Later, if you do not want to include both of these, you can drop the
numerical values by using the command numlabel all, remove. Practice using
these commands as an exercise on your own.

The tables with both numbers and value labels may not look great, so you
may want two tables for each variable, with one showing the value labels without
the numeric codes and the other showing the numeric codes without the value
labels. The default gives you the value labels. On the dialog box, there is an
option to Display numeric codes rather than value labels. This option produces
the numeric values without the value labels. If you want both the numeric values
and the value labels using official Stata commands, you need to run either the
numlabel command or run the tab1 command twice—once with Display numeric
codes rather than value labels checked and once with it not checked. It is probably
simpler just to run Ben Jann’s fre command once you have installed it.

In chapter 4, we created a pie chart. Here we will create a pie chart for marital
status. Select Graphics ⊲ Pie chart and look at the Main tab. If this dialog still has

information entered from a previous pie chart, you should click on the (reset) icon in
the lower left of the view screen to clear the dialog box. Type marital as the Category
variable. This uses the categories we want to show as pieces of the pie. Leave the
Variable: (optional) box blank. Under the Titles tab, enter a nice title in the Title
box and the name of the dataset we used as a Note. Under the Options tab, click on
Order by this variable and type marital. Also check Exclude observations with missing
values (casewise deletion) because we do not want these, if there are any, to appear as
a separate piece of the pie. The dialog box for the Options tab is shown in figure 5.4.
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Figure 5.4. The Options tab for pie charts (by category)

The initial pie chart on the left in figure 5.5 provides a visual display of the dis-
tribution of marital statuses in the United States. The size of each piece of the pie is
proportional to the percentage of the people in that status. This pie chart shows that
the most common status of adults is married.

married widowed

divorced separated

never married

descriptive_gss.dta

Marital Status in the United States

Married Widowed

Divorced Separated

Never married

descriptive_gss.dta

Marital Status in the United States

Initial and Edited Pie Charts

Figure 5.5. Pie charts of marital status in the United States

It is possible to improve the default pie chart. The default pie chart is a bit hard
to read because it assumes you want each slice a different color, and this will not work
well when printing in black and white. Because many publications require black and
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white printing, we should edit the pie chart. From our dialog box for the pie chart, we
could click on the Overall tab, from which we could select a monochrome scheme from
the drop-down Scheme list. However, there are several other ways we can improve this
pie chart, so let’s open the Graph Editor.

We can open the Graph Editor by right-clicking on the pie chart and selecting Start
Graph Editor, clicking on the icon above the graph that has a bar chart with a pencil,
or in Windows, we can select File ⊲ Start Graph Editor. This expands the window that
has the graph and adds a panel on the side of the chart with things we might want to
change (see figure 5.6). On the left is the pie chart we will edit, and on the right are
the names of the parts of the pie chart.

Figure 5.6. The Graph Editor

Notice that the labels in the legend of the initial pie chart are not capitalized. Click
on the plus sign by legend and the plus sign by key region. Double-click on label[1] and
change the Text from married to Married. Do the same for each of the other labels.
We could also do this by double-clicking on the label married.

Next click on the plus sign by plotregion1, and then double-click on pieslices[1]. Here
we will pick Black as the Color and 100% as the Fill intensity. For pieslices[2], pick Black
and 70%. For pieslices[3], pick Black and 50%. For pieslices[4], pick Black and 30%,
check Explode slice, and make sure the Distance is Medium. Finally, for pieslices[5],
pick Black and 10%. You can experiment with other options. The pie chart on the right
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in figure 5.5 is what we have created. The exploded slice, Separated, would be useful
if you wanted to emphasize the size of this group.

We have only scratched the surface of what you can do with the powerful Graph
Editor. For example, you can click somewhere on the figure, then click on the T (Add
Text Tool) to the left of the graph, and a dialog box opens so you can add text. You
could then click on the \ (slash or Add Line Tool) just below the T, and draw a line
from the text to the piece of the pie it describes. As an exercise, you might add the
text “Less than half married” with a line pointing to the piece of the pie for married.

Within Stata’s Graph Editor, you can record the changes you make to a graph by
using the Graph Recorder. When the Graph Editor is open, there are symbols like those
you might see on a recorder or a video player (at the top right of the Editor). Clicking
on the red circle starts the Recorder, and clicking on the pair of vertical bars pauses a
recording. When you are done making your changes, click on the red circle again before
you save the graph or exit the Graph Editor, and the Graph Recorder will prompt you
to name the recording. Suppose that we call the recording myscheme and save it. The
next time we do a similar graph and want to make the same changes, we can click on
the arrow to the right of the pair of vertical bars, and it will give us a list of recordings
we have saved. We can pick myscheme to apply the changes we recorded and saved in
myscheme to our current graph.

A bar chart is more attractive than a pie chart for many applications. Instead of
selecting Bar Chart from the Graphics menu, select Histogram. Here we are creating a
bar chart rather than a histogram, but this is the best way to produce a high-quality
bar chart using Stata.

On the Main tab, type marital in the Variable box. Click on the button next to
Data are discrete. In the section labeled Y axis, click on the button next to Percent.
The trick to making this a bar chart is to click on Bar properties in the lower left of the
Main tab. This opens another dialog box where the default is to have no gap between
the bars. Change this to a gap of 10, which sets the gap between bars to 10 percent
of the width of a bar. Click on Accept. If you switch to the Titles tab, you can enter
a title, such as Marital Status in the United States. Next switch to the X axis
tab and click on Major tick/label properties. This opens another dialog box where you
select the Labels tab and check the box for Use value labels. Sometimes the value labels
are too wide to fit under each bar. You may need to create new value labels that are
shorter. If they are just a little bit too wide, you can change the angle. Click on Angle
and select 45 degrees from the drop-down menu. Click on Accept. Finally, switch back
to the Main tab. In the lower right corner of the dialog box, click on Add height labels
to bars. Because we are reporting percentages, this option will show the percentage in
each marital status at the top of each bar. The Main tab is shown in figure 5.7.



106 Chapter 5 Descriptive statistics and graphs for one variable

Figure 5.7. Using the histogram dialog box to make a bar chart

Figure 5.8 shows the resulting bar chart, which has the percentage in each status at
the top of each bar. Married is the most common status, but never married is second.
This dataset includes people who are 18 and older, and it is likely that many of those
in the never-married status are between 18 and 30.
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Figure 5.8. Bar chart of marital status of U.S. adults

Sometimes you may have a larger number of categories. When this happens, Stata’s
default will show only a limited number of value labels, so some of the bars will be
unlabeled. If you want to label all of them, you need to go to the X axis tab and click on
Major tick/label properties to open the dialog box we opened before. On the Rule tab,
click on Suggest # of ticks and enter the number of bars in the box by Ticks. Another
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issue can arise if you have value labels that are no longer used. For the polviews

variable, we could use seven ticks because there are seven categories for polviews.
However, our missing category includes people who had originally been coded as 0 na

for not applicable. They were not asked this question for some reason. If you create a
bar chart for polviews, you will need to change the value label or make a new set of
value labels that does not have this option.

5.5 Statistics and graphs—ordered categories and variables

When our categories are ordered, we can use the median to measure the central ten-
dency. When there are only a couple of categories, however, the median does not
work well. Here is an example where there are several categories for the polviews

variable, which asks people their political views on a seven-point scale from extremely
liberal to extremely conservative. We might want to report the median or mean and
the SD. We have done a summarize and a tabulate before using the dialog system,
so this time we will just enter the commands directly: tab1 polviews and summarize

polviews, detail. Before you run these commands, make sure that you run the com-
mand numlabel all, add so that both the numbers and the value labels are shown.

. numlabel _all, add

. tab1 polviews

-> tabulation of polviews

think of self as
liberal or conservative Freq. Percent Cum.

1. extremely liberal 47 3.53 3.53
2. liberal 143 10.74 14.27

3. slightly liberal 159 11.95 26.22
4. moderate 522 39.22 65.44

5. slghtly conservative 209 15.70 81.14
6. conservative 210 15.78 96.92

7. extrmly conservative 41 3.08 100.00

Total 1,331 100.00

. summarize polviews, detail

think of self as liberal or conservative

Percentiles Smallest
1% 1 1
5% 2 1

10% 2 1 Obs 1331
25% 3 1 Sum of Wgt. 1331

50% 4 Mean 4.124718
Largest Std. Dev. 1.385016

75% 5 7
90% 6 7 Variance 1.918268
95% 6 7 Skewness -.1509408
99% 7 7 Kurtosis 2.693351
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The frequency distribution produced by tab1 is probably the most useful way to
describe the distribution of an ordered categorical variable. We can see that it is fairly
symmetrically distributed around the mode of moderate, with somewhat more people
describing themselves as conservative rather than liberal.

Although the tabulation gives us a good description of the distribution, we often
will not have the space in a report to show this level of detail. The median is provided
by the summarize command, which shows that the 50th percentile occurs at the value
of 4, so the Mdn is 4, corresponding to a political moderate. Even though these are
ordinal categories, many researchers would report the mean. The mean assumes that
the quantitative values, 1–7, are interval-level measures. However, the mean (M =
4.12) is usually a good measure of central tendency. The mean reflects the distribution
somewhat more accurately here than does the median because the mean shows that the
average response is a bit more to the conservative end than to the liberal. We know
that the mean is a bit more conservative because the higher numeric score on polviews

corresponds to more conservative views. You should be able to see this from reading
the frequency distribution carefully. Although this variable is clearly ordinal, many
researchers treat variables like this as if they were interval and rely on the mean as a
measure of central tendency. If you are in doubt, it may be a good idea to report both
the median and the mean.

Here is how you can create a histogram showing the distribution of political views.
Type the command

. histogram polviews, discrete percent
> title(Political Views in the United States) subtitle(Adult Population)
> note(General Social Survey 2002) xtitle(Political Conservatism) scheme(s1mono)

Remember, this is the way Stata writes it in the Results window. You do not need to
type the . or the >. In a do-file, you would actually need to use the ///, preceded by a
space at the end of each but the last line, so Stata will know the three lines are all one
command. You would write this command in the Do-file Editor as

histogram polviews, discrete percent ///
title(Political Views in the United States) subtitle(Adult Population) ///
note(General Social Survey 2002) xtitle(Political Conservatism) scheme(s1mono)

Like most graph commands, this is an example of a complicated command that can
be easily produced using the dialog box. Commands for making graphs can get com-
plicated, so it is usually best to use the dialog box with graphs. Select Graphics ⊲
Histogram.

I will not show the resulting dialogs. On the Main tab, select polviews from the
Variable list, and click on the button by Data are discrete. Go to the X axis tab, and
enter the title you want to appear on the x axis (the x axis is the horizontal axis of
the graph). Go back to the Main tab and click on the radio button by Percent. If you
want your graph to appear without colors, you can pick a monochrome scheme. On the
Overall tab, select s1 monochrome from the Scheme list. Finally, go to the Titles tab;



5.6 Statistics and graphs—quantitative variables 109

enter the title, subtitle, and notes that you want to appear on the graph. Click on OK.
The example graph appears in figure 5.9.
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Figure 5.9. Histogram of political views of U.S. adults

This histogram allows the reader to quickly get a good sense of the distribution. In
2002, moderate was the overwhelming choice of adults in the United States. The bars
on the right (conservative) are a bit higher than the bars on the left, which indicates a
tendency for people to be conservative (M = 4.12, Mdn = 4, Mode = 4, SD = 1.39).

Some researchers, when making a graph to show the distribution of an ordinal vari-
able, are reluctant to have the bars for each value touch. Also some like to have the
labels posted on the x axis, rather than the coded values. These options and more can
be customized in the dialog box.

5.6 Statistics and graphs—quantitative variables

We will study three variables: age, educ, and wwwhr (hours spent on the World Wide
Web). Two types of useful graphs are the already familiar histogram and a new graph
called the box plot. We will usually use the mean or median to measure the central ten-
dency for quantitative variables. The SD is the most widely used measure of dispersion,
but a statistic called the interquartile range is used by the box plots that are presented
below.

Let’s start with wwwhr, hours spent in the last week on the World Wide Web. These
data were collected in 2002, and by now, the hours have probably increased a lot.

Computing descriptive statistics for quantitative variables is easy. Let’s skip the
dialog box and just enter the command:
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. summarize wwwhr, detail

www hours per week

Percentiles Smallest
1% 0 0
5% 0 0

10% 0 0 Obs 1574
25% 1 0 Sum of Wgt. 1574

50% 3 Mean 5.907878
Largest Std. Dev. 8.866734

75% 7 60
90% 15 64 Variance 78.61897
95% 21 100 Skewness 3.997908
99% 40 112 Kurtosis 30.39248

This output says that the average person spent a mean of 5.91 hours on the World Wide
Web in the week before the survey was taken. The median is 3 hours. Because the mean
is greater than the median when a distribution is positively skewed, we can assume that
the distribution is positively skewed (trails off on the right side). A positively skewed
distribution makes sense because the value for hours on the World Wide Web cannot
be less than zero, but we all know a few people who spend many hours on the web. The
SD is 8.87 hours, which tells us that the time on the web varies widely. For a normally
distributed variable, about two-thirds of the cases are within one SD of the mean (−2.96
hours and 14.77 hours) and 95% will be within two SDs of the mean (−11.83 hours and
23.64 hours). Clearly, this does not make any sense because you cannot use the World
Wide Web fewer than zero hours a week. Still, this information suggests that there is a
lot of variation in how much time people spend on the web.

The skewness is 4.00, which means that the distribution has a positive skew (greater
than zero), and the kurtosis is 30.39, which is huge compared with 3.0 for a normal
distribution. Remember that a kurtosis greater than 10 is problematic; a kurtosis over
20 is very serious. This result suggests that there is a big clump of cases concentrated
in one part of the distribution. Can you guess where this concentration was in 2002?

Stata can test for normality based on skewness and kurtosis. For most applications,
this test is of limited utility. It is extremely sensitive to small departures from normality
when you have a large sample, and it is insensitive to large departures when you have
a small sample. The problem is that, when we do inferential statistics, the lack of
normality is much more problematic with small samples (where the test lacks power)
than it is with large samples (where the test usually finds a significant departure from
normality, even for a small departure).

To run the test for normality based on skewness and kurtosis, we can use the dialog
box by selecting Statistics ⊲ Summaries, tables, and tests ⊲ Distributional plots and tests
⊲ Skewness and kurtosis normality test. Once the dialog box is open, enter the variable
wwwhr and click on OK. Unlike with the complex graph commands, with statistical tests
it is often easier to enter the command in the Command window (unless you cannot
remember it). The command is simply sktest wwwhr.
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. sktest wwwhr

Skewness/Kurtosis tests for Normality
joint

Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

wwwhr 1.6e+03 0.0000 0.0000 . 0.0000

These results show that, based on skewness, the probability that wwwhr is normal is
0.000 and, based on kurtosis, the probability that wwwhr is normal is also 0.000. Anytime
either probability is less than 0.05, we say that there is a statistically significant lack of
normality. Testing for normality based on skewness and kurtosis jointly, Stata reports a
probability of 0.000, which reaffirms our concern. It is best to report this as Pr < 0.001
rather than as Pr = 0.000. This test computes a statistic called chi-squared (χ2), and
it is so big that Stata cannot print it in the available space; instead, Stata inserts a
“.”. The results also report the number of observations as 1.6e+03. This format is
used with large numbers. The e+03 means to move the decimal place three places to
the right, so the number of observations is 1,600. The actual number of valid responses
is 1,574, so you can see that Stata is rounding to the nearest hundred.

We need to be quite thoughtful when using sktest. When we have a large sample,
this command is quite powerful, meaning that it will show even a small departure from
normality to be statistically significant. However, when we have a large sample, the
assumption of normality is less crucial than it is with a small sample. With a small
sample, the sktest command may fail to show a substantial departure from normality
to be significant because the test has very little power for a small sample. Unfortunately,
the violation of the assumption of normality is most important when the sample size is
small. So it is a catch-22: sktest may show an unimportant violation to be significant
for a large sample but fail to show an important violation to be significant for a small
sample. This is why we need to look at the actual size of the skewness and kurtosis as
a measure, as well as a histogram, and not depend just on the significance test.

When we are describing several variables in a report, space constraints usually limit
us to reporting the mean, median, and standard deviation. You can read these numbers
along with the measure of skewness and kurtosis and have a reasonable notion of what
each of the distributions looks like. However, it is possible to describe wwwhr nicely with
a few graphs. First, we will create a histogram by using the dialog box described in
section 5.5. Or for a basic histogram (shown in figure 5.10), we could enter
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. histogram wwwhr, frequency
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Figure 5.10. Histogram of time spent on the World Wide Web

This simple command does not include all the nice labeling features you can get using
the dialog box, but it gives us a quick view of the distribution. This graph includes
a few outliers (observations with extreme scores) who surf the World Wide Web more
than 25 hours a week. Providing space in the histogram for the handful of people using
the World Wide Web between 25 hours and 150 hours takes up most of the graph, and
we do not get enough detail for the smaller number of hours that characterizes most of
our web users.

We will get around this problem by creating a histogram for a subset of people
who use the web fewer than 25 hours a week, and we will do a separate histogram for
women and for men. You can get these histograms using the dialog box by inserting the
restriction wwwhr < 25 in the If: (expression) box under the if/in tab and by clicking
on Draw subgraphs for unique values of variables and then inserting the sex variable
under the By tab. Here is the command we could enter directly:

. histogram wwwhr if wwwhr < 25, frequency by(sex)

Notice that the frequency by(sex) part of the command appears after the comma.
The new histograms appear in figure 5.11.
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Figure 5.11. Histogram of time spent on the World Wide Web (fewer than 25 hours a
week, by gender)

By using the interface, we could improve the format of figure 5.11 by adding titles,
and we might want to report the results by using percentages rather than frequencies.
We also could experiment with different widths of the bars. Still, figure 5.11 shows that
the distribution is far from normal, as the measures of skewness and kurtosis suggested.
By creating the histogram separately for women and men, we can see that at the time
these data were collected in 2002, far more women were in the lowest interval. Although
we do not have more recent data, it would be interesting to compare these data from
2002 with a current histogram. Both of these distributions are surely quite different
today, and the gender differences of 2002 may no longer be present.

We could also open the Graph Editor by right-clicking on the graph we just created.
It is often easier to make changes using the Graph Editor than to work with the com-
mand. The advantage of working with the command is that we have a record of what
we did. We might want to replace male and female with Men and Women. To do this
in the Graph Editor, just click on the headers and change the text in the appropriate
boxes. You probably can think of additional changes that would make the graph nicer.

When you want to compare your distribution on a variable with how a normal
distribution would be, you can click on an option for Stata to draw how a normal
distribution would look right on top of this histogram. We will not show an illustration
of this, but all you need to do is open the Density plots tab for the histogram dialog
box and check the box that says Add normal-density plot. This is left for you to do on
your own. There is another option on the dialog box for adding a kernel density plot.
This is an estimate of the most likely population distribution for a continuous variable
that would account for this sample distribution. This will smooth out some of the bars
that are extremely high or low because of variation from one sample to the next.
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To get the descriptive statistics for men and women separately (but not restricted
to those using the web fewer than 25 hours a week), we need a new command:

. by sex, sort: summarize wwwhr

We can do this from the summarize dialog box by checking Repeat command by groups
and entering sex under the by/if/in tab. This command will sort the dataset by sex

and then summarize separately for women and men.

Another way to obtain a statistical summary of the wwwhr variable is to use the
tabstat command, which gives us a nicer display than what we obtained with the
summarize command. Select Statistics ⊲ Summaries, tables, and tests ⊲ Other tables ⊲
Compact table of summary statistics to open the dialog box.

Under the Main tab, type wwwhr under Variables. Check the box next to Group
statistics by variable and type sex. Now pick the statistics we want Stata to summarize.
Check the box in front of each row and pick the statistic. The tabstat command gives
us far more options than did the summarize command. The dialog box in figure 5.12
shows that we asked for the mean, median, SD, interquartile range, skewness, kurtosis,
and coefficient of variation.

Figure 5.12. The Main tab for the tabstat dialog box

Under the Options tab, go to the box for Use as columns and select Statistics, which
will greatly enhance the ease of reading the display. Next we could go to the by/if/in
tab and enter wwwhr < 25 under If: (expression), but we will not do that here. Here is
the resulting command:
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. tabstat wwwhr, statistics(mean median sd iqr skewness kurtosis cv) by(sex)
> columns(statistics)

Summary for variables: wwwhr
by categories of: sex (respondents sex)

sex mean p50 sd iqr skewness kurtosis cv

male 7.106892 4 9.98914 9 3.608189 25.2577 1.405557
female 4.920046 2 7.688655 4 4.409274 36.78389 1.56272

Total 5.907878 3 8.866734 6 3.997908 30.39248 1.500832

The table produced by the tabstat command summarizes the statistics we requested
that it include, showing the statistics for males and females, and the total for males and
females combined. Stata calls the median p50 because the median represents the value
corresponding to the 50th percentile. If you copied this table to a Word file, you might
want to change the label to “median” to benefit readers who do not really know what
the median is. If you highlight the tabstat output in the Results window and copy it
as a picture to a Word document, you will not be able to make this change in Word.
However, if you choose one of the other copy options, you will be able to make the
change.

In addition to skewness and kurtosis, we selected two additional statistics I have
not yet introduced. The coefficient of relative variation (CV) is simply the SD divided
by the mean (that is, CV = SD/M). This statistic is sometimes used to compare SDs
for variables that are measured on different scales, such as income measured in dollars
and education measured in years. The interquartile range is the difference between the
value of the 75th percentile and the value of the 25th percentile. This range covers the
middle 50% of the observations.

Men, on average, spent far more time using the World Wide Web in 2002 than
did women. Because the means are bigger than the medians, we can assume that the
distributions are positively skewed (as was evident in the histograms we did). Men are a
bit more variable than women because their SD is somewhat greater. Both distributions
are skewed and have heavy kurtosis. The CV is 1.41 for men and 1.56 for women. Women
have slightly greater variance relative to their mean than men do (based on comparing
the CV values), even though the actual SD is bigger for men. Finally, the interquartile
range of 9 for men is more than double the interquartile range of 4 for women. Thus
the middle 50% of men are more dispersed than the middle 50% of women. Comparing
the CVs suggests the opposite finding to comparing interquartile ranges. Because the
scale (hours of using the World Wide Web) is the same, we would not rely on the CV.

A horizontal or vertical box plot is an alternative way of showing the distribution
of a quantitative variable such as wwwhr. Select Graphics ⊲ Box plot. Here we will use
four of the tabs: Main, Categories, if/in, and Titles. Under the Main tab, check the
radio button by Horizontal to make the box plot horizontal, and enter the name of
our variable, wwwhr. Under the Categories tab, check Group 1 and enter the grouping
variable, that is, sex. This will create separate box plots for women and for men. We
could have additional grouping variables, but these plots can get complicated. If we
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wanted a box plot that included both women and men, we would leave this tab blank.
The Categories tab is similar to the by/if/in tab that we used for the tabstat command.
Under the if/in tab, we need to make a command so that the plots are shown only for
those who spend fewer than 25 hours a week on the web. In the If: (expression) box,
we type wwwhr < 25. Finally, under the Titles tab, enter the title and any subtitles or
notes we want to appear on the chart. The command generated from the dialog box is

. graph hbox wwwhr if wwwhr < 25, over(sex)
> title(Hours Spent on the World Wide Web) subtitle(By Gender)
> note(descriptive_gss.dta)

and the resulting graph appears in figure 5.13.

0 5 10 15 20 25
www hours per week

female

male

descriptive_gss.dta

By Gender

Hours Spent on the World Wide Web

Figure 5.13. Box plot of time spent on the World Wide Web (fewer than 25 hours a
week, by gender)

Histograms may be easier to explain to a lay audience than box plots. For a nontech-
nical group, histograms are usually a better choice. Many statisticians like box plots
better because they show more information about the distribution. The white vertical
line in the dark-gray boxes is the median. For women, you can see that the median is
about 2 hours per week, and for men, about 4 hours per week.

The left and right sides of the dark-gray box are the 25th and 75th percentiles,
respectively. Within this dark-gray box area are half of the people. This box is much
wider for men than it is for women, showing how men are more variable than women.
Lines extend from the edge of the dark-gray box 1.5 box lengths, or until they reach
the largest or smallest cases. Beyond this, there are some dots representing outliers, or
extreme values.

5.7 Summary

After four chapters about how to set up files and manage them, I hope you enjoyed
getting to a substantive chapter showing you some of the output produced with Stata.
We are just beginning to see the power of Stata, but you can already summarize variables
and create several types of attractive graphs. This chapter covered the following topics:
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• How to compute measures of central tendency (averages), including the mean,
median, and mode

• When to use the different measures of central tendency based on level of measure-
ment, distribution characteristics, and your purposes

• How to describe the dispersion of a distribution by using

– Statistics (standard deviations)

– Tables (frequency distributions)

– Graphs (pie charts, bar charts, histograms, and box plots)

• How to use Stata to give you these results for nominal-, ordinal-, and interval-level
variables

• How to use Stata’s Graph Editor

The graphs we have introduced in this chapter show just a few of the graph capa-
bilities offered by Stata. We will cover a few more types of graphs in later chapters,
but if you are interested in producing high-quality graphs, see A Visual Guide to Stata
Graphics, Third Edition by Michael Mitchell (2012), which is available from Stata Press.

This is just the start of the useful output you can produce using Stata. Statistics
books tend to get harder and harder as you move toward more complicated procedures.
I cannot help that, but Stata is just the opposite. Managing data and doing graphs
are the two hardest tasks for statistical programs because Stata is designed primarily
to do statistical analysis. In the next chapter, we will examine how to use graphs and
statistics when we are examining the relationship between two or more variables.

5.8 Exercises

1. Open descriptive gss.dta and do a detailed summary of the variable hrs1

(hours worked last week). Also create a histogram of the variable. Interpret the
mean and median. Looking at the histogram, explain why the skewness value is
close to zero. What does the value of kurtosis tell us? Looking at the histogram,
explain why the kurtosis is a positive value.

2. Open descriptive gss.dta and do a detailed summary of the variable satjob7
(job satisfaction). Type the command numlabel satjob7, add, and then do a
tabulation of satjob7. Interpret the mean and median values. Why would some
researchers report the median? Why would other researchers report the mean?

3. Open descriptive gss.dta and do a tabulation of deckids (who makes decisions
about how to bring up children). Do this using the by/if/in tab to select by sex.
Create and interpret a bar chart by using the histogram dialog box. Why would
it make no sense to report the mean, median, or standard deviation for deckids?
Use Stata’s Graph Editor to make the bar chart look as nice as you can.
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4. Open descriptive gss.dta and do a tabulation of strsswrk (job is rarely stress-
ful) and a detailed summary. Do this using the by/if/in tab to select by sex. Create
and interpret a histogram, using the By tab to do this for males and females. In
the Main tab, be sure to select the option Data are discrete. Carefully label your
histogram to show value labels and the percentage in each response category. Each
histogram should be similar to figure 5.9. Interpret the median and mean for men
and women.

5. Open descriptive gss.dta and do a tabulation of trustpeo, wantbest, advan-
tge, and goodlife. Use the tabstat command to produce a table that summa-
rizes descriptive statistics for this set of variables by gender. Include the median,
mean, standard deviation, and count for each variable. Interpret the means by
using the variable labels you get with the tabulation command.

6. Open descriptive gss.dta and do a tabulation of polviews. Create a bar chart
for this variable showing the percentage of people who are in each of the seven
categories. Next create a chart that has labels at a 45-degree angle for each of the
bars. Finally, change the chart by using the X axis tab’sMinor tick/label properties
and Major tick/label properties (using the Custom option) so that the histogram
does not have a null category and all the categories are labeled. Compare this
final figure with figure 5.9.

7. Open descriptive gss.dta. In figure 5.13, we created a box plot for the hours
women and men spend surfing the World Wide Web. First, create a similar box
plot for hrs1 (hours worked last week). Now add a second grouping variable,
marital. Using this graph, give a detailed interpretation of how marital status
and gender are related to hours a person works for pay.

8. Open descriptive gss.dta. Execute the following commands for educ and com-
pare the two sets of results. What problem are you illustrating here?

. summarize educ, detail

. sktest educ

. histogram educ

. preserve

. sample 10, count

. summarize educ, detail

. sktest educ

. histogram educ

. restore

9. Open descriptive gss.dta. Construct a graph showing two histograms, one for
women and one for men for the educ variable. Use the Graph Editor to improve
the appearance of the graph by adding an overall title and making other changes
you can think of. Is this graph helpful for comparing the educational achievement
of women and men? How so?

10. Repeat all parts of exercise 9, but construct a box plot instead of histograms.
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11. Repeat exercise 10 using the tabstat command, and ask for the mean, median,
standard deviation, skewness, kurtosis, and interquartile range. Interpret each of
these statistics to compare the women and men, and explain how the differences
are reflected (or not) in the graphs done in exercises 9 and 10.
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6.1 Relationship between categorical variables

Chapter 5 focused on describing single variables. Even there, it was impossible to
resist some comparisons, and we ended by examining the relationship between gender
and hours per week spent using the web. Some research simply requires a description
of the variables, one at a time. You do a survey for your agency and make up a
table with the means and standard deviations for all the quantitative variables. You
might include frequency distributions and bar charts for each key categorical variable.
This information is sometimes the extent of statistical research your reader will want.
However, the more you work on your survey, the more you will start wondering about
possible relationships.

• Do women who are drug dependent use different drugs from those used by drug-
dependent men?

121
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• Are women more likely to be liberal than men?

• Is there a relationship between religiosity and support for increased spending on
public health?

You know you are “getting it” as a researcher when it is hard for you to look at a
set of questions without wondering about possible relationships. Understanding these
relationships is often crucial to making policy decisions. If 70% of the nonmanagement
employees at a retail chain are women, but only 20% of the management employees are
women, there is a relationship between gender and management status that disadvan-
tages women.

In this chapter, you will learn how to describe relationships between categorical
variables. How do you define these relationships? What are some pitfalls that lead to
misinterpretations? In this chapter, the statistical sophistication you will need increases,
but there is one guiding principle to remember: the best statistics are the simplest statis-
tics you can use—as long as they are not too simple to reflect the inherent complexity
of what you are describing.

6.2 Cross-tabulation

Cross-tabulation is a technical term for a table that has rows representing one cate-
gorical variable and columns representing another. These tables are sometimes called
contingency tables because the category a person is in on one of the variables is contin-
gent on the category the person is in on the other variable. For example, the category
people are in on whether they support a particular public health care reform may be
contingent on their gender. If you have one variable that depends on the other, you
usually put the dependent variable as the column variable and the independent variable
as the row variable. This layout is certainly not necessary, and several statistics books
do just the opposite. That is, they put the dependent variable as the row variable and
the independent variable as the column variable.

Let’s start with a basic cross-tabulation of whether a person says abortion is okay
for any reason and their gender. Say you decide that whether a person accepts abortion
for any reason is more likely if the person is a woman because a woman has more at
stake when she is pregnant than does her partner. Therefore, whether a person accepts
abortion will be the dependent variable, and gender will be the independent variable.

We will use gss2006 chapter6.dta, which contains selected variables from the 2006
General Social Survey, and we will use the cross-tabulation command, tabulate, with
two categorical variables, sex and abany. To open the dialog box for tabulate, select
Statistics ⊲ Summaries, tables, and tests ⊲ Frequency tables ⊲ Two-way table with measures
of association. This dialog box is shown in figure 6.1.
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Figure 6.1. The Main tab for creating a cross-tabulation

If we had three variables and wanted to see all possible two-by-two tables (vara with
varb, vara with varc, and varb with varc), we could have selected instead Statistics ⊲
Summaries, tables, and tests ⊲ Frequency tables ⊲ All possible two-way tables. With our
current data, we continue with the dialog box in figure 6.1.

Select sex, the independent variable, as the Row variable and abany, the dependent
variable, as the Column variable. We are assuming that abany is the variable that
depends on sex. Also check the box on the right side under Cell contents for the Within-
row relative frequencies option. This option tells Stata to compute the percentages so
that each row adds up to 100%. Here are the resulting command and results:

. tabulate sex abany, row

Key

frequency

row percentage

ABORTION IF WOMAN
WANTS FOR ANY REASON

Gender YES NO Total

MALE 350 478 828
42.27 57.73 100.00

FEMALE 434 677 1,111
39.06 60.94 100.00

Total 784 1,155 1,939
40.43 59.57 100.00
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Independent and dependent variables

Many beginning researchers get these terms confused. The easiest way to remem-
ber which is which is that the dependent variable “depends” on the independent
variable. In this example, whether a person accepts abortion for any reason
depends on whether the person is a man or a woman. By contrast, it would make
no sense to say that whether a person is a man or a woman depends on whether
they accept abortion for any reason.

Many researchers call the dependent variable an “outcome” and the inde-
pendent variable the “predictor”. In this example, sex is the predictor because it
predicts the outcome, abany.

It may be hard or impossible to always know that one variable is indepen-
dent and the other variable is dependent. This is because the variables may
influence each other. Imagine that one variable is your belief that eating meat is
a health risk (there could be four categories: strongly agree, agree, disagree, or
strongly disagree). Then imagine that the other variable is whether you eat meat
or not. It might seem easy to say that your belief is the independent variable
and your behavior is the dependent variable. That is, whether you eat meat or
not depends on whether you believe doing so is a health risk. But try to think of
the influence going the other way. A person may stop eating meat because of a
commitment to animal rights issues. Not eating meat over several years leads to
look for other justifications, and they develop a belief that eating meat is a health
risk. For them, the belief depends on their prior behavior.

There is no easy solution when we have trouble deciding which is the inde-
pendent variable. Sometimes, we can depend on time ordering. Whichever came
first is the independent variable. Other times, we are simply forced to say that the
variables are associated without identifying which one is the independent variable
and which is the dependent variable.

The independent variable sex forms the rows with labels of male and female. The
dependent variable abany, accepting abortion under any circumstance, appears as the
columns labeled yes and no. The column on the far right gives us the total for each
row. Notice that there are 828 males, 350 of whom find abortion for any reason to be
acceptable, compared with 1,111 females, 434 of whom say abortion is acceptable for
any reason. These frequencies are the top number in each cell of the table.

The frequencies at the top of each cell are hard to interpret because each row and
each column has a different number of observations. One way to interpret a table
is to use the percentage, which takes into account the number of observations within
each category of the independent variable (predictor). The percentages appear just
below the frequencies in each cell. Notice that the percentages add up to 100% for
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each row. Overall, 40.43% of the people said “yes”, abortion is acceptable for any
reason, and 59.57% said “no”. However, men were relatively more likely (42.27%) than
women (39.06%) to report that abortion is okay, regardless of the reason. We get these
percentages because we told Stata to give us the Within-row relative frequencies, which
in the command is the row option.

Thus men are more likely to report accepting abortion under any circumstance. We
compute percentages on the rows of the independent variable and make comparisons up
and down the columns of the dependent variable. Thus we say that 42.27% of the men
compared with 39.06% of the women accept abortion under any circumstance. This is a
small difference, but interestingly, it is in the opposite direction from what we expected.

6.3 Chi-squared test

The difference between women and men seems small, but could we have obtained this
difference by chance? Or is the difference statistically significant? Remember, when
you have a large sample like this one, a difference may be statistically significant even
if it is small.

If we had just a handful of women and men in our sample, there would be a good
chance of observing this much difference just by chance. With such a large sample, even
a small difference like this might be statistically significant. We use a chi-squared (χ2)
statistic to test the likelihood that our results occurred by chance. If it is extremely
unlikely to get this much difference between men and women in a sample of this size
by chance, you can be confident that there was a real difference between women and
men, but you still need to look at the percentages to decide whether the statistically
significant difference is substantial enough to be important.

The chi-squared test compares the frequency in each cell with what you would expect
the frequency to be if there were no relationship. The expected frequency for a cell
depends on how many people are in the row and how many are in the column. For
example, if we asked a small high school group if they accept abortion for any reason,
we might have only 10 males and 10 females. Then we would expect far fewer people
in each cell than in this example, where we have 828 men and 1,111 women.

In the cross-tabulation, there were many options on the dialog box (see figure 6.1).
To obtain the chi-squared statistic, check the box on the left side for Pearson’s chi-
squared. Also check the box for Expected frequencies that appears in the right column
on the dialog box. The resulting table has three numbers in each cell. The first number
in each cell is the frequency, the second number is the expected frequency if there
were no relationship, and the third number is the percentage of the row total. We
would not usually ask for the expected frequency, but now you know it is one of Stata’s
capabilities. The resulting command now has three options: chi2 expected row. Here
is the command and the output it produces:
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. tabulate sex abany, chi2 expected row

Key

frequency

expected frequency

row percentage

ABORTION IF WOMAN
WANTS FOR ANY REASON

Gender YES NO Total

MALE 350 478 828
334.8 493.2 828.0
42.27 57.73 100.00

FEMALE 434 677 1,111
449.2 661.8 1,111.0
39.06 60.94 100.00

Total 784 1,155 1,939
784.0 1,155.0 1,939.0
40.43 59.57 100.00

Pearson chi2(1) = 2.0254 Pr = 0.155

In the top left cell of the table, we can see that we have 350 men who accept abortion
for any reason, but we would expect to have only 334.8 men here by chance. By contrast,
we have 434 women who accept abortion for any reason, but we would expect to have
449.2. Thus we have 350 − 334.8 = 15.2 more men accepting abortion than we would
expect by chance and 434 − 449.2 = −15.2 fewer women than we would expect. Stata
uses a function of this information to compute chi-squared.

At the bottom of the table, Stata reports Pearson chi2(1) = 2.0254 and Pr =

0.155, which would be written as χ2(1, N = 1939) = 2.0254; p not significant. Here we
have one degree of freedom. The sample size of N = 1939 appears in the lower right part
of the table. We usually round the chi-squared value to two decimal places, so 2.0254
becomes 2.03. Stata reports an estimate of the probability to three decimal places. We
can report this, or we can use a convention found in most statistics books of reporting
the probability as less than 0.05, less than 0.01, or less than 0.001. Because p = 0.155 is
greater than 0.05, we say p not significant. What would happen if the probability were
p = 0.0004? Stata would round this to p = 0.000. We would not report p = 0.000 but
instead would report p < 0.001.

To summarize what we have done in this section, we can say that men are more
likely to report accepting abortion for any reason than are women. In the sample of
1,939 people, 42.3% of the men say that they accept abortion for any reason compared
with just 39.1% of the women. This relationship between gender and acceptance of
abortion is not statistically significant.
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6.3.1 Degrees of freedom

Because I assume that you have a statistics book explaining the necessary formulas, I
have not gone into detail. Stata will compute the chi-squared, the number of degrees of
freedom, and the probability of getting your observed result by chance.

You can determine the number of degrees of freedom yourself. The degrees of freedom
refers to how many pieces of independent information you have. In a 2×2 table, like the
one we have been analyzing, the value of any given cell can be any number between 0
and the smaller of the number of observations in the row and the number of observations
in the column. For example, the upper left cell (350) could be anything between 0 and
784. Let’s use the observed value of 350 for the upper left cell. Now how many other
cells are free to vary? By subtraction, you can determine that 434 people must be in
the female/yes cell because 784 − 350 = 434. Similarly, 478 observations must be in
the male/no cell (828− 350 = 478), and 677 observations must be in the female/no cell
(1111− 434 = 677). Thus, with four cells, only one of these is free, and we can say that
the table has 1 degree of freedom. We can generalize this to larger tables where degrees
of freedom = (R − 1)(C − 1), where R is the number of rows and C is the number of
columns. If we had a 3×3 table instead of a 2×2 table, we would have (3−1)(3−1) = 4
degrees of freedom.

6.3.2 Probability tables

Many experienced Stata users have made their own commands that might be helpful to
you. Philip Ender made a series of commands that display probability tables for various
tests. The search command finds user-contributed ado-files and lets you install them
on your machine. Typing the command search chitable1 produces the results shown
in figure 6.2.

1. You cannot install this user-written command by typing ssc install chitable, because the ssc

command is limited to installing and uninstalling user-written commands that are located within
the Statistical Software Components (SSC) archive or often called the Boston College Archive at
http://www.repec.org. Although the SSC archive is by far the dominant depository of user-written
Stata commands, it does not include all user-written commands.
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Figure 6.2. Results of search chitable

From here, click on the blue web link

probtabl from http://www.ats.ucla.edu/stat/stata/ado/teach

This link takes you to another screen where you can click on the blue link labeled
click here to install. Once you have done this, anytime you want to see a chi-
squared table, you merely type the command chitable. This installation also gives
you other probability tables that we will use elsewhere in this book, including t-test
tables (ttable) and F -test tables (ftable). Simply entering chitable is a lot more
convenient than having to look up a probability in a textbook. Try it now.
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. chitable

Critical Values of Chi-square
df .50 .25 .10 .05 .025 .01 .001
1 0.45 1.32 2.71 3.84 5.02 6.63 10.83
2 1.39 2.77 4.61 5.99 7.38 9.21 13.82
3 2.37 4.11 6.25 7.81 9.35 11.34 16.27
4 3.36 5.39 7.78 9.49 11.14 13.28 18.47
5 4.35 6.63 9.24 11.07 12.83 15.09 20.52
6 5.35 7.84 10.64 12.59 14.45 16.81 22.46
7 6.35 9.04 12.02 14.07 16.01 18.48 24.32
8 7.34 10.22 13.36 15.51 17.53 20.09 26.12
9 8.34 11.39 14.68 16.92 19.02 21.67 27.88
10 9.34 12.55 15.99 18.31 20.48 23.21 29.59
11 10.34 13.70 17.28 19.68 21.92 24.72 31.26
12 11.34 14.85 18.55 21.03 23.34 26.22 32.91
13 12.34 15.98 19.81 22.36 24.74 27.69 34.53
14 13.34 17.12 21.06 23.68 26.12 29.14 36.12
15 14.34 18.25 22.31 25.00 27.49 30.58 37.70
16 15.34 19.37 23.54 26.30 28.85 32.00 39.25
17 16.34 20.49 24.77 27.59 30.19 33.41 40.79
18 17.34 21.60 25.99 28.87 31.53 34.81 42.31
19 18.34 22.72 27.20 30.14 32.85 36.19 43.82
20 19.34 23.83 28.41 31.41 34.17 37.57 45.31
21 20.34 24.93 29.62 32.67 35.48 38.93 46.80
22 21.34 26.04 30.81 33.92 36.78 40.29 48.27
23 22.34 27.14 32.01 35.17 38.08 41.64 49.73
24 23.34 28.24 33.20 36.42 39.36 42.98 51.18
25 24.34 29.34 34.38 37.65 40.65 44.31 52.62
26 25.34 30.43 35.56 38.89 41.92 45.64 54.05
27 26.34 31.53 36.74 40.11 43.19 46.96 55.48
28 27.34 32.62 37.92 41.34 44.46 48.28 56.89
29 28.34 33.71 39.09 42.56 45.72 49.59 58.30
30 29.34 34.80 40.26 43.77 46.98 50.89 59.70
35 34.34 40.22 46.06 49.80 53.20 57.34 66.62
40 39.34 45.62 51.81 55.76 59.34 63.69 73.40
45 44.34 50.98 57.51 61.66 65.41 69.96 80.08
50 49.33 56.33 63.17 67.50 71.42 76.15 86.66
55 54.33 61.66 68.80 73.31 77.38 82.29 93.17
60 59.33 66.98 74.40 79.08 83.30 88.38 99.61
65 64.33 72.28 79.97 84.82 89.18 94.42 105.99
70 69.33 77.58 85.53 90.53 95.02 100.43 112.32
75 74.33 82.86 91.06 96.22 100.84 106.39 118.60
(output omitted )

100 99.33 109.14 118.50 124.34 129.56 135.81 149.45

In a chitable, the first row shows the significance levels. The first column shows the
degrees of freedom. You can see that with 1 degree of freedom, you need a chi-squared
value of 3.84 to be significant at the 0.05 level. If you had 4 degrees of freedom, you
would need a chi-squared of 9.49 to be significant at the 0.05 level. You might try the
other commands for the other tables. If you have ever had to search for one of these
tables in a textbook, you will appreciate the convenience of these commands.
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Reporting chi-squared results

How do we report the significance level of chi-squared? How do we report that
chi-squared varies somewhat from one field to another? A safe way to report
the significance is as p < 0.05, p < 0.01, or p < 0.001. Suppose that we had a
chi-squared of 10.05 with 1 degree of freedom and p = 0.002. This is less than 0.01
but not less than 0.001. We would say that χ2(1) = 10.05, p < 0.01. Notice that
we put the degrees of freedom in parentheses. Some disciplines would also like you
to list the sample size, for example, χ2(1, N = 435) = 10.05, p < 0.01. Still other
disciplines would rather you report the probability value, for example, p = 0.002.

Reporting the probability value has the advantage of providing more-detailed
information. For example, one result might have a p = 0.052 and another might
have a p = 0.451. The first of these is almost statistically significant and is an
unlikely result if the null hypothesis of no relationship is correct. The second of
these is just about what you would expect to get by chance flipping a coin. Saying
that both of these have the same classification of p not significant conceals the
clear difference between these two results.

6.4 Percentages and measures of association

We have already discussed the use of percentages. These are often the easiest and
best way to describe a relationship between two variables. In our last example, the
percentage of men who said abortion was okay for any reason was slightly greater than,
although not statistically significantly greater than, the percentage of women who said
abortion was okay for any reason. Percentages often tell us what we want to know.
There are other ways of describing an association called measures of association; they
try to summarize the strength of a relationship with a number.

The value of chi-squared depends on two things. First, the stronger the association
between the variables, the bigger chi-squared will be. Second, because we have more
confidence in our results when we have larger samples, then the more cases we have,
the bigger chi-squared will be. In fact, for a given relationship expressed in percentages,
chi-squared is a function of sample size. If you had the same relationship as in our
example but, instead of having 1,939 observations, you had 19,390 (10 times as many),
then chi-squared would be 20.254, also 10 times as big. There would still be 1 degree of
freedom, but here the results would be statistically significant, p < 0.001. With large
samples, researchers sometimes misinterpret a statistically significant chi-squared value
as indicating a strong relationship. With a large sample, even a weak relationship can
be statistically significant. This makes sense because with a large sample we have the
power to detect even small effects.
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One way to minimize this potential misinterpretation is to divide chi-squared by the
maximum value it could be for a table of a particular shape and number of observations.
This is simple in the case of 2× 2 tables, such as the one we are using. The maximum
value of chi-squared for a 2× 2 table is the sample size, N . Thus in our example, if the
relationship were as strong as possible, chi-squared would be 1,939. Our chi-squared of
2.03 is tiny in comparison. The coefficient φ (phi) is defined as the positive or negative
square root of the quantity chi-squared divided by N :

φ =

√
χ2

N

Stata uses a different formula for calculating the value of φ. Stata’s formula produces
a positive or negative value directly, depending on the arrangement of rows and columns;
see the box on page 132. A φ with an absolute value from 0.0 to 0.19 is considered weak,
from 0.20 to 0.49 is considered moderate, and from 0.50 and above is considered strong.
In our example, φ = 0.03, which we would thus describe as a weak relationship, meaning
that the strength of the relationship is weak regardless of whether it is statistically
significant. This is an important distinction between the strength of the relationship
(some call this substantive or practical significance) and statistical significance. So long
as the same distribution based on percentages describes a table, φ will have the same
value whether we have 194 observations, 1,939 observations, or 19,390 observations.

Because both Cramér’s V and φ are the square root of chi-squared divided by its
maximum possible value and because φ can be thought of as a special case of V , Stata
simply has an option to compute Cramér’s V . However, if you have a 2× 2 table, you
should call this measure of association φ to avoid confusion and recognize that it may be
either a positive or negative value. On the dialog box for doing the cross-tabulation with
measures of association, simply check Cramer’s V under the list of Test statistics. This
results in the command tabulate sex abany, chi2 row V. If you type this command
directly into the Command window, remember to capitalize the V; this is a rare example
where you must use an uppercase letter in Stata.

The ability to have a positive or negative φ does not extend to larger tables where
Cramér’s V is the appropriate measure of association. The maximum value chi-squared
can obtain for a larger table is N times the smaller of R − 1 or C − 1, where R is the
number of rows and C is the number of columns in the table. For these tables, we report
the positive square root of the ratio of chi-squared to its maximum positive value and
call it V :

V =

√
χ2

N ×min(R− 1, C − 1)
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Why can φ be negative?

Stata uses a special formula for calculating φ, and this formula gives us the positive
or negative sign for φ directly. The formulas that Stata uses is

φ =
n11n22 − n12n21√

n1.n2.n.1n.2

Let’s look at how this formula applies to a sample table. In the following table,
the first subscript is the row and the second subscript is the column. Hence, n11 is
the number of cases in row 1, column 1, and n21 is the number of cases in row 2,
column 1. A dot is used to refer to all cases in both rows or both columns. Thus
n1. is the number of people who are in row 1 summed over both columns; it is the
row total. Similarly, n.1 is the column total for the first column. Here is how this
looks in a 2× 2 table:

column

row 1 2 Total

1 n11 n12 n1.

2 n21 n22 n2.

Total n.1 n.2 n..

Applying the above formula to a simple table, we obtain φ = −0.3333 (re-
ported in the table as Cramér’s V ):

column

row 1 2 Total

1 10 20 30

2 20 10 30

Total 30 30 60

Pearson chi2(1) = 6.6667 Pr = 0.010

Cramér’s V = -0.3333

However, if we rearrange the rows and columns, we obtain φ = 0.3333. Here are
the rearranged table and results:

column

row 1 2 Total

1 20 10 30

2 10 20 30

Total 30 30 60

Pearson chi2(1) = 6.6667 Pr = 0.010

Cramér’s V = 0.3333

For most 2 × 2 tables, we do not care about how the rows and columns are
arranged and so use only the positive value of V and φ.
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6.5 Odds ratios when dependent variable has two categories

Odds ratios (ORs) are useful when the dependent variable has just two categories. We
define ORs by using the independent variable. What are the odds that a man will say
that abortion is okay for any reason? What are the odds a woman will say that abortion
is okay for any reason? Let’s look at our cross-tabulation, where I have added letter
labels for each cell:

. tabulate sex abany

ABORTION IF WOMAN
WANTS FOR ANY REASON

Gender YES NO Total

MALE 350 (a) 478 (b) 828
FEMALE 434 (c) 677 (d) 1,111

Total 784 1,155 1,939

We know that 350 men say abortion is okay for any reason and 478 do not, so the
odds are a/b = 350/478 = 0.73. What about women? The odds for a woman supporting
abortion for any reason are c/d = 434/677 = 0.64. The real question is the difference
between men and women. We could say simply that the odds of a man supporting
abortion are higher, 0.73, than a woman supporting abortion, 0.64. Alternatively, we
can calculate an OR. This is the odds of a man supporting abortion divided by the odds
of a woman supporting abortion. It is call the OR because it is the ratio of two odds.

OR =
a/b

c/d
=

350/478

434/677
= 1.14

The OR for men compared with women is (approximately) 0.73/0.64 = 1.14. Thus
the odds of a man supporting abortion for any reason are greater than the odds of a
woman supporting abortion for any reason. How much greater? When an OR is greater
than 1, we calculate 100 × (OR − 1.00) = (1.14 − 1.00) = 14%. The odds of a man
supporting abortion are 14% greater than the odds of a woman supporting abortion.

We could reverse this and calculate the OR with the odds for women in the numerator:

OR =
c/d

a/b
=

434/677

350/478
= 0.88

The OR for women compared with men is (approximately) 0.64/0.73 = 0.88. When the
OR is less than 1, we calculate 100×(1.00−OR) = 100×(1−0.88) = 12%. The odds of a
woman supporting abortion are 12% lower than the odds of a man supporting abortion.

Sometimes an OR can be calculated for a 2× 2 table and provide much more useful
information than a measure of association such as φ. Here is an illustration of how φ can
be very misleading. Utts (2014) reports a table showing the relationship between men
taking a daily dose of aspirin and having a heart attack. This was originally reported by
the Steering Committee of the Physicians’ Health Study Research Group and involved
a 5-year trial that followed 22,071 male physicians between 40 and 84 years of age who
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were randomly assigned to either take an aspirin every day or take a placebo pill. We
will use chapter6 aspirin.dta for our example. Our command and the results are

. tabulate aspirin heartattack, chi2 row V

Key

frequency

row percentage

Heart Attack
Condition No Attack Attack Total

Placebo 10,845 189 11,034
98.29 1.71 100.00

Aspirin 10,933 104 11,037
99.06 0.94 100.00

Total 21,778 293 22,071
98.67 1.33 100.00

Pearson chi2(1) = 25.0139 Pr = 0.000
Cramér’s V = -0.0337

The results are inconsistent. Notice that the Pearson chi2(1) = 25.01, p < 0.001, so
the results are highly significant. A problem with this finding is that even a small effect
will be significant when we have a large sample, and 22,071 men is definitely a large
sample. This is one reason why it is always good to look into other measures of effect
size when doing a chi-squared test of significance. We see that Cramér’s V (or φ) is just
−0.03, which suggests a weak relationship. Stata and other statistics software packages
report a value for φ that can be the positive or negative square root of chi-squared over
N and thus have a potential range of −1.0 to +1.0. In our example, we coded the
aspirin group as 1 and the control group as 0, and those who had a heart attack as
1 and those who did not as 0. With this coding, the negative φ indicates that being
in the aspirin group (coded 1) is negatively related to being in the heart attack group
(coded 1). If we had coded the variables differently, the sign would have been positive.

ORs are also quite useful when interpreting the effect size shown in the above cross-
tabulation, but they lead to a very different conclusion. The odds of a man in the
aspirin group having a heart attack are 104/10933 = 0.0095. The odds of a man in
the placebo group having a heart attack are 189/10845 = 0.0174. The OR of a man
in the aspirin group having a heart attack compared with a man in the placebo group
is the ratio OR = (a/b)/(c/d) = 0.0095/0.0174 = 0.546. Because the OR is less than
1.00, we subtract it from 1.00, 100 × (1.0 − 0.546) = 45.4%. Thus we can say that
the odds of a man having a heart attack in a 5-year period are reduced by 45.4% if he
takes an aspirin every day. This is an important finding that has influenced medical
care even though the measure of association is only −0.034. The φ coefficient can be
very misleading, especially when one outcome (having a heart attack) is a rare event.
Millions of people have been advised to take a daily small aspirin by their physician
because of the OR = 0.546 and not because the φ = −0.034.
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What else can we use to aid our interpretation of this table? The percentage in
each cell can be quite useful. The table shows that 1.71% of the men who took the
placebo had a heart attack within 5 years, but only 0.94% of the men who took aspirin
every day had a heart attack within 5 years. Comparing these percentages, we see that
1.71/0.94 = 1.81. Thus men who were in the placebo group were 1.81 times as likely
to have a heart attack than men in the aspirin group. Alternatively, we could say that
0.94/1.71 = 0.54, or men taking aspirin were about half as likely to have a heart attack
than men taking a placebo.

What is the best way to describe the results? The results of this study indicate that
adult males taking a daily dosage of aspirin are significantly less likely to have a heart
attack than men who take a placebo pill. Although a heart attack is a rare event for
either the treatment or the control group, occurring in only 1.33% of the men, those
taking the placebo were 1.81 times as likely to have an attack. The OR = 0.55 indicates
that the odds of a man taking aspirin daily having a heart attack are 45% lower than if
he took a placebo.

6.6 Ordered categorical variables

The example we have covered involves two unordered categorical variables (nominal
level). Sometimes the categorical variables have an underlying order. For example, we
might be interested in the relationship between health (health) and happiness (happy)
from gss2006 chapter6.dta, which contains selected variables from the 2006 General
Social Survey. Are people who are healthier also happier? When the question is asked
this way, health is the independent variable because being happy is said to depend on
your health.

health→ happy

Another researcher might reverse this premise and argue that the happier a person
is then the more likely he or she is to rate everything, including his or her own health,
as better than people who are unhappy. If this is your argument, then happiness is the
independent variable and health depends on how happy you are.

health← happy

A third researcher may simply say that the two variables are related without claiming
the direction of the relationship. We say that happiness and health are reciprocally
related. In other words, the happier you are, the more positive you will report your
health to be, and the healthier you are, the happier you will report being.

health↔ happy

The example above uses a double-headed arrow, meaning that happiness leads to
better perceived health and better perceived health leads to happiness. Because both
variables depend on each other, there is no single variable that we can call independent
or dependent. This probably makes sense. We have all known people who are happy and
see the world through rose-colored lenses, where they rate nearly everything positively.
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They are likely to rate their health as positive. We have also known people for whom
their health has a big influence on their happiness. If they have a health condition that
varies, then when they are feeling relatively well they will report being happy, and when
they are feeling bad they will report being unhappy.

If there is no clear independent or dependent variable, it is usually best to make the
row variable the one with the most categories. Running the command codebook happy

health shows that health has four categories (excellent, good, fair, and poor) and
happy has just three categories (very happy, pretty happy, and not too happy). So
we will make health the row variable and happy the column variable.

Select Statistics ⊲ Summaries, tables, and tests ⊲ Frequency tables ⊲ Two-way table
with measures of association. The resulting dialog box is the same as the one in fig-
ure 6.1. We need to enter the names of the variables and the options we want. Enter
health for the row variable and happy for the column variable. We pick both Within-
column relative frequencies and Within-row relative frequencies. Also check Pearson’s
chi-squared, Goodman and Kruskal’s gamma, Kendall’s tau-b, and Cramer’s V to obtain
these statistics. Here are the command and results that are produced:

. tabulate health happy, chi2 column gamma row taub V

Key

frequency

row percentage

column percentage

CONDITION GENERAL HAPPINESS
OF HEALTH VERY HAPP PRETTY HA NOT TOO H Total

EXCELLENT 271 247 33 551
49.18 44.83 5.99 100.00
42.74 22.50 12.50 27.61

GOOD 261 567 103 931
28.03 60.90 11.06 100.00
41.17 51.64 39.02 46.64

FAIR 82 231 92 405
20.25 57.04 22.72 100.00
12.93 21.04 34.85 20.29

POOR 20 53 36 109
18.35 48.62 33.03 100.00
3.15 4.83 13.64 5.46

Total 634 1,098 264 1,996
31.76 55.01 13.23 100.00
100.00 100.00 100.00 100.00

Pearson chi2(6) = 182.1737 Pr = 0.000
Cramér’s V = 0.2136

gamma = 0.3917 ASE = 0.030
Kendall’s tau-b = 0.2492 ASE = 0.020
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Stata makes some compromises in making this table. If a value label is too big
to fit, Stata simply truncates the label. You might need to do a codebook on your
variables to make sure you have the labels correct. In this table, the value label “very
happy” appears as VERY HAPP, and “not too happy” appears as NOT TOO H. If you were
preparing this table for a report or publication, you would want to edit it so that it has
proper labels.

Just like with unordered categories, we use chi-squared to test the significance of the
relationship. The relationship between perceived health and happiness is statistically
significant: χ2(6, N = 1996) = 182.17, p < 0.001.

The percentages are also useful. Here we will pick one variable, health, arbitrarily as
the independent variable. The box just above the table tells us that the row percentages
are the second number in each cell. Only 18.35% of those with poor health said they are
very happy, compared with 49.18% of those in excellent health. Similarly, only 5.99%
of those in excellent health said they were not too happy, but 33.03% of those in poor
health said they were not too happy.

If you decide to treat happiness as the independent variable, you would say that
42.74% of those who were very happy reported being in excellent health, compared
with just 12.50% of those who were not too happy. Analyzing the percentages provides
far richer information about the relationship than a measure of association can provide.
However, researchers often want the simplicity of having a number that summarizes the
strength of the association, and this is exactly why we have measures of association.

Cramér’s V can be used as a measure of association, but it does not use the ordered
nature of the variables. Both gamma (γ) and tau-b (τb) are measures of association
for ordinal data. Both of these involve the notion of concordance. If one person is
happier than another, we would expect that person to report being in better health.
We call this “concordance”. If a person has worse health, we expect this person to
be less happy. This is what we mean when we say that health and happiness are
positively related. Gamma and tau-b differ in how they treat people who are tied on
one or the other variable, but both measures are bigger when there is a predominance
of concordant pairs. Because of the way it is computed, gamma tends to be bigger than
tau-b, and tau-b is closer to what you would get if you treated the variables as interval
level and computed a correlation coefficient. Values of tau-b less than 0.2 signify a weak
relationship. Values between 0.2 and 0.49 indicate a moderate relationship. Values of
0.5 and higher indicate a strong relationship. Stata tells us that tau-b is 0.25, so we can
say the relationship is moderate. After we study the percentages, they seem consistent
with this judgment provided by tau-b.

The chi-squared test is an appropriate test for the significance of Cramér’s V .
Stata does not provide a significance level of gamma or tau-b, but it does provide
an asymptotic standard error (ASE) for each. The asymptotic standard error for tau-b
is ASE = 0.020. If you divide tau-b by this estimated standard error, you get the z-
test value. For our example, z = 0.249/0.020 = 12.45. |z| ≥ 1.96 is significant at the
p < 0.05 level, |z| ≥ 2.60 is significant at the 0.01 level, and |z| ≥ 3.32 is significant at
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the 0.001 level. Considering these levels, we can say that our tau-b = 0.25, z = 12.45,
p < 0.001, meaning that there is a moderate relationship and that it is statistically
significant. A note of caution: Because these are asymptotic standard errors, they are
only good estimates when you have a large sample.

6.7 Interactive tables

If you are reading a report, you might find a cross-tabulation where the authors did not
compute percentages, did not compute chi-squared, or did not compute any measures
of association. Here is an example of a table showing the cross-tabulation of sex and
abany (abortion is okay for any reason). We have been using data from the 2006
General Social Survey, but this table is from the 2002 General Social Survey. Let’s
say that you come across this table and want to study its contents to see if there is a
statistically significant relationship and how strong the association is. The author may
have presented this table to show that men are less supportive of abortion than women,
and you want to make sure the author has interpreted the table correctly.

. use http://www.stata-press.com/data/agis4/gss2002_chapter6

. tabulate sex abany

abortion if woman
respondent wants for any reason

sex yes no Total

male 215 269 484
female 172 244 416

Total 387 513 900

If you do not have access to the author’s actual data, you need to enter the table into
Stata. You can enter the raw numbers in the cells of the table, and Stata will compute
percentages, chi-squared, and measures of association.

Select Statistics ⊲ Summaries, tables, and tests ⊲ Frequency tables ⊲ Table calculator to
open a dialog box in which you enter the frequencies in each cell. The format for doing
this is rigid. Enter each row of cells, separating the rows with a backslash, \. Enter
only the cell values and not the totals in the margins of the table. This entry format
is illustrated in figure 6.3. You need to check the table Stata analyzes to make sure
that you entered it correctly. Check the boxes to request chi-squared and within-row
relative frequencies. Because this is not ordinal data, the only measure of association
you request is Cramér’s V .
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Figure 6.3. Entering data for a table

If you click on Submit in this dialog box, you obtain the same results as if you had
entered all the data in a big dataset.

. tabi 215 269\172 244, chi2 row V

Key

frequency

row percentage

col
row 1 2 Total

1 215 269 484
44.42 55.58 100.00

2 172 244 416
41.35 58.65 100.00

Total 387 513 900
43.00 57.00 100.00

Pearson chi2(1) = 0.8633 Pr = 0.353
Cramér’s V = 0.0310

These results indicate that the author overstated his findings. The results are not
statistically significant; p = 0.353 and Cramér’s V is 0.03. A slightly higher percentage
of men in the 2002 sample said that abortion was acceptable for any reason (44.42%)
compared with women (41.35%), but this difference is not statistically significant.
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6.8 Tables—linking categorical and quantitative variables

Many research questions can be answered by tables that mix a categorical variable and
a quantitative variable. We may want to compare income for people from different
racial groups. A study may need to compare the length of incarceration for men and
for women sentenced for the same crime. A drug company may want to compare the
time it takes for its drug to take effect with the time it takes another drug.

Here we switch back to 2006 General Social Survey, gss2006 chapter6.dta. We will
use hrs1, hours a person worked last week, as our quantitative variable and compare
men with women. Our hypothesis is that men spend more time working for pay each
week than do women. We will use a formal test of significance in the next chapter, but
here we will just show a table of the relationship. Select Statistics ⊲ Summaries, tables,
and tests ⊲ Other tables ⊲ Flexible table of summary statistics to get to the dialog box in
figure 6.4.

Figure 6.4. Summarizing a quantitative variable by categories of a categorical variable

The dialog box looks fairly complicated. Look closely at where we enter the variable
names and statistics we want Stata to compute. The Row variable is the categorical
variable, sex. Under Statistics, select the following from the menus: Mean, Standard
deviation, and Count nonmissing. On the far right, there are places to enter variables.
We want hrs1 for the mean, standard deviation, and count. Click on Submit so that we
can return to this dialog box at a later time. The resulting command is
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. table sex, contents(mean hrs1 sd hrs1 count hrs1)

Gender mean(hrs1) sd(hrs1) N(hrs1)

MALE 44.8767 14.27598 1,387
FEMALE 39.2034 13.60452 1,352

This table shows that the week before the survey, men spent on average over 5 more
hours working for pay than did women: 44.88 hours for men versus 39.20 for women.

Now suppose that you want to see the effect of marital status and gender on hours
spent working for pay. Go back to the dialog box, click on the checkbox next to Column
variable, and add marital as the variable. Go to the Options tab and select Add row
totals. The command for this is

. table sex marital, contents(mean hrs1 sd hrs1 count hrs1) row

I omitted the results here.

These summary tables are useful, but to communicate to a lay audience, a graph
often works best. We can create a bar chart showing the mean number of hours worked
by gender and by marital status. We created one type of bar chart in chapter 5, where
we used the dialog box for a histogram to create the bar chart. Now we are doing a bar
chart for a summary statistic, mean hours worked, over a pair of categorical variables,
sex and marital. To do this, access the dialog box for a bar chart by selecting Graphics
⊲ Bar chart. Under the Main tab, make sure that the first statistic is checked, and, by
default, this is the mean. To the right of this, under Variables, type hrs1 to make
the graph show the mean hours worked. Next click on the Categories tab. Check
Group 1 and type sex as the Grouping variable. Check Group 2 and type marital as
the Grouping variable. There is a button labeled Properties to the right of where you
entered sex. Click on this button and change the Angle to 45 degrees. Click on Accept.

It would be nice to have the actual mean values for hours worked at the top of each
bar, so switch to the Bars tab, and click on the radio button for Label with bar height.
If we stop here, the numerical labels will have too many decimal places to look nice.
We can fix these by making the numerical labels have a fixed format. Click on the
Properties button in the section labeled Bar labels, and type the value %9.1f in the
Format box. The Bar label properties dialog box is shown in figure 6.5.
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Figure 6.5. The Bar label properties dialog box

This effort produces a nice bar chart, but there are some things we can still improve.
The marital status labels are too wide and run into each other. The label of the hours
worked for pay could also be better. Open the Graph Editor and change the font of the
labels of marital status and gender to size small. Then add the title Hours Worked Last

Week and the subtitle By Sex and Marital Status. Your final bar chart is shown in
figure 6.6.
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6.9 Power analysis when using a chi-squared test of signifi-

cance

Power analysis is discussed in more detail in chapter 7, but I will introduce it briefly
here. Power is the ability to do what you want to do. In statistics, power means
how likely you are to get a statistically significant result for your chi-squared test if
the relationship in the population is strong enough for you to consider it important.
One characteristic of chi-squared tests that sometimes leads to misinterpretation is
that for a given relationship in terms of percentages, the value of chi-squared varies
directly with the sample size. We can illustrate this variation by taking a 10% sample
of gss2006 chapter6.dta and doing a cross-tabulation of health and gender. There
are two steps to taking a 10% sample. The first step is to set an arbitrary value for the
seed. The value of the seed controls where the random process starts the generation of
our 10% subsample. By specifying a specific value, we ensure that we will get the same
10% sample if we repeat this process at a later time. The second step is to take the
random sample. Here are the two commands needed for these steps:

. set seed 219

. sample 10

I have already done these steps and saved the results as a new dataset,
gss2006 chapter6 10percent.dta, which we will now use to do our tabulation.

. tab sex health, lrchi2 row

Key

frequency

row percentage

CONDITION OF HEALTH
Gender EXCELLENT GOOD FAIR POOR Total

MALE 53 75 32 6 166
31.93 45.18 19.28 3.61 100.00

FEMALE 51 84 41 15 191
26.70 43.98 21.47 7.85 100.00

Total 104 159 73 21 357
29.13 44.54 20.45 5.88 100.00

likelihood-ratio chi2(3) = 3.8933 Pr = 0.273

These results are not significant, chi-squared(3) = 3.893, ns. We used what is called
the likelihood-ratio chi-squared with the lrchi2 option in the command. This variation
on how chi-squared is estimated is very similar to what we would have obtained using
the chi2 option, but we need to use the likelihood-ratio chi-squared to do our power
analysis. If we look at the percentages, it seems that relatively fewer women, 26.7%,
say their health is excellent than do men, 31.9%. Also women are more likely to rate
their health as fair or poor. Let’s assume these percentages are the true values in the
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population. If that were the case, how much power do we have to get a significant
chi-squared with this sample size of N = 357?

Philip Ender at UCLA wrote a useful command, chi2power, that can help us. You
can install this command by typing search chi2power and following the instructions.
The chi2power command is run immediately after the tab command that included
the option to get a likelihood-ratio chi-squared, lrchi2. Here is the command and the
results:

. chi2power, startf(1) endf(10) incr(1)

alpha = .05
sample size factor = 1.00 power = 0.3496 for n = 357
sample size factor = 2.00 power = 0.6410 for n = 714
sample size factor = 3.00 power = 0.8293 for n = 1071
sample size factor = 4.00 power = 0.9272 for n = 1428
sample size factor = 5.00 power = 0.9715 for n = 1785
sample size factor = 6.00 power = 0.9896 for n = 2142
sample size factor = 7.00 power = 0.9964 for n = 2499
sample size factor = 8.00 power = 0.9988 for n = 2856
sample size factor = 9.00 power = 0.9996 for n = 3213
sample size factor = 10.00 power = 0.9999 for n = 3570

In the chi2power command, the first option, startf(1), asks Stata for the power
of the current sample size, that is, N = 357. The endf(10) option asks Stata to do
a power analysis where the percentage in each cell is the same but where there are up
to 10 times as many observations (3,570). The incr(1) option asks Stata to do this
for increments of a factor of 1. That is, 1 times the starting sample size, 2 times the
starting sample size, up to 10 times the starting sample size. We assume we are using
an alpha equal to 0.05.

The results show that for the sample-size factor of 1.0 of our current sample size
of N = 357, we have a power of 0.350. This means that if the percentage distribution
we observed were true in the population, we would obtain a statistically significant
chi-squared just 100 × 0.350 = 35.0% of the time. If these percentages represent what
we consider an important or interesting gender difference (women rating their health
worse than men), then we would be doomed to failure with a sample of 357. If we had
a sample that was four times bigger, making N = 1, 428, we would have power of 0.927.
Meaning that 92.7% of the time, we would get a sample of 1,428 people in which the
chi-squared was significant, but the other 7.3% of the time, we would get a chi-squared
that was not statistically significant.

Statisticians usually say that the power should be greater than 0.80, and in many
fields, they say it should be greater than 0.90. The results of the chi2power command
show that we would need 1,071 observations to have a power greater than 0.80 and 1,428
observations to have a power greater than 0.90.

Why is this important? If you are requesting a grant to support collecting data
to test your hypothesis that women rate their health worse than men do, the funders
want to be reasonably confident that you will find significant results when there is a
substantively significant relationship. If you proposed to collect data on 500 people,
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you would have inadequate power to get a statistically significant result. The funders
would not want to fund you because you would be asking for too little. By contrast,
this sort of power analysis may show that you are collecting data from more people than
necessary to have good power. Asking for support to collect data on 2,000 observations
would be unnecessary and an inefficient investment of the funders’ money. This type
of power analysis is difficult to implement because the researcher needs to specify what
result would be the smallest result that would be substantively important. It is often
very difficult to do this, especially with larger tables.

6.10 Summary

Cross-tabulations are extremely useful ways of presenting data, whether the data are
categorical variables or a combination of categorical and quantitative variables. This
chapter has covered a lot of material. We have learned

• How to examine the relationship between categorical variables

• How to develop cross-tabulations

• How to perform a chi-squared test of significance

• How to use percentages and compute appropriate measures of association for un-
ordered and ordered cross-tabulations

• What the odds ratio is

• How to use an interactive table calculator

• How to extend tables to link categorical variables with quantitative variables

• How a bar graph can show how means on a quantitative variable differ across
groups on a categorical variable

Stata has many capabilities for dealing with categorical variables that we have not
covered. Still, think about what you have learned in this chapter. Policies are made
and changed because of highly skilled presentations. Imagine your ability to make
a presentation to a research group or to a policy group. Now you can “show them
the numbers” and do so effectively. Much of what you have learned would have been
impossible without statistical software. The next chapter will continue to show how
Stata helps us analyze the relationship between pairs of variables. It will focus on
quantitative outcome variables and categorical predictors and move beyond the point
biserial correlation.
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6.11 Exercises

1. Open gss2006 chapter6.dta, do a codebook on pornlaw, and then do a cross-
tabulation of this with sex. Which variable is the independent variable? Which
variable will you put on the row, and how will you do the percentages? If you were
preparing a document, how would you change the labels of the response options
for pornlaw?

2. Based on the first exercise, what is the chi-squared value? How would you report
the chi-squared and the level of significance? What is the value of Cramér’s V , and
how strong of an association does this show? Finally, interpret the percentages to
answer the question of how much women and men differ in their attitude about
legalizing pornography.

3. Open gss2006 chapter6.dta and do a cross-tabulation of pres00 (whom you
voted for in 2000) and pres04 (whom you voted for in 2004). From the dialog
box, check the option to include missing values. Do a codebook on both variables,
and then use the by/if/in tab in the tabulate dialog box to repeat the table just
for those who voted for Gore or Bush in 2000 and for Kerry or Bush in 2004.
Treat the 2000 vote as the independent variable. Is there a significant relationship
between how people voted in 2000 and 2004? Interpret the percentages and phi,
as well as the statistical significance.

4. Open gss2006 chapter6.dta and do a cross-tabulation of polviews and
premarsx. Treating polviews as the independent variable, compute percentages
on the rows. Because these are ordinal variables, compute gamma and tau-b. Is
there a significant relationship between political views and conservatism? Inter-
pret the relationship using gamma and tau-b. Interpret the relationship using the
percentages.

5. In exercise 4, Stata reports that there is 18 degrees of freedom. How does it get
this number?

6. Open gss2002 chapter6.dta. Create a table showing the mean hours worked in
the last week (hrs1) for each level of political views (polviews). In your table,
include the standard deviation for hours and the frequency of observations. What
do the means suggest about people who are extreme in their views (in either
direction)?

7. Based on exercise 6, create a bar chart showing the relationship between hours
worked in the last week and political views.
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8. You are given the following dataset:

RESPONDENT FEELINGS ABOUT PORNOGRAPHY LAWS
S SEX ILLEGAL T ILLEGAL U LEGAL Total

MALE 234 568 38 840
FEMALE 541 557 29 1,127

Total 775 1,125 67 1,967

Calculate the chi-squared test of significance, percentages, and Cramér’s V using
the tabi command. Interpret Cramér’s V .

9. Examine the relationship between gender and self-reported health condition using
gss2006 chapter6.dta. Recode the health variable so excellent and good are
combined into a new category labeled satisfactory, and fair and poor are
combined into a new category labeled unsatisfactory. Call the new variable
health2 and label the variable “Is your health satisfactory?” Conduct a chi-
squared analysis along with Cramér’s V (φ). Calculate the odds ratio. Write a
short paragraph on how you would report these analyses.
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7.1 Introduction to tests for one or two means

Imagine that you are in the public relations department for a small liberal arts college.
The mean score for the math and reading sections on the SAT at your college is M =
1180.1 Suppose that the mean for all small liberal arts colleges in the United States is
µ = 1080. We use M to refer to the mean of a sample and µ, pronounced “mu”, to refer
to the mean of a population. For our purposes, we are treating the students at your
college as the sample and all students at small liberal arts colleges in the United States
as the population. Say that our supervisor asked if we could demonstrate that our
college is more selective than its peer institutions. Could this difference, our M = 1180,
and the mean for all colleges, µ = 1080, occur just by chance?

1. The scores used do not include the writing part of the SAT.
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Suppose that last year, our Boys and Girls Club had 30% of the children drop out of
programs before the programs were completed. We have a new program that we believe
does a better job of minimizing the dropout rate. However, 25% of the children still
drop out before the new program is completed. Because a smaller percentage of children
drop out, this is better, but is this enough difference to be statistically significant?

These two examples illustrate a one-sample test where we have one sample (students
at our college or the children in the new Boys and Girls Club program), and we want to
compare our sample mean with a population value (the mean SAT score for all liberal
arts colleges or the mean dropout rate for all programs at our Boys and Girls Club).

At other times, we may have two groups or samples. For example, we have a program
that is designed to improve reading readiness among preschool children. We might have
100 children in our preschool and randomly assign half of them to this new program
and the other half to a traditional approach. Those in the new program are in the
treatment group (because they get the new program), and those in the old program are
in the control group (because they did not get the new program). If the new program
is effective, the children in the treatment group will score higher on a reading-readiness
scale than the children in the control group. Let’s say that, on a 0–100 point scale,
the 50 children randomly assigned to the control group have a mean of M = 71.3 and
a standard deviation of SD = 10.4. Those in the treatment group, who were exposed
to the new program, have M = 82.5 and SD = 9.9. It sounds like the program helped.
The children in the treatment group have a mean that is more than one standard
deviation higher than that of the students in the control group. This sounds like a
big improvement, but is this statistically significant? Here we have a problem for a
two-group or two-sample t test.

We have a 20-item scale that measures the importance of voting. Each item is
scored from 1, signifying that voting is not important, to 5, signifying that voting is
very important. Thus the possible range for the total score on our 20-item scale is from
20 (all items answered with a 1, indicating that voting is not important) to 100 (all
items answered with a 5, signifying that voting is very important). We hypothesize
that minority groups will have a lower mean than will whites. Can we justify this
hypothesis? Perhaps the lower mean results because minority groups have experienced
a history of their votes not counting or because of the perception that their vote does not
matter in the final outcome. To do an experiment with a treatment and control group,
we would need to randomly assign people to minority status or majority status. Because
we cannot do this, we can use a random sample of 200 people from the community. If
this sample is random for the community, it is a random sample for any subgroup.
Let’s say that 70 minority community members are in our sample, and they have a
mean importance of voting score of M = 68.9. The 130 white community members
in our sample have a mean importance of voting score of M = 83.5. This is what
we hypothesized would happen. A two-sample t test will tell us if this difference is
statistically significant.
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Sometimes researchers use a two-sample t test even when they do not have random
assignment to a treatment or control group or when they do not have random sampling.
You might want to know if a highly developed recreation program at a full-care retire-
ment center leads to lower depression among center members. Your community might
have two full-care retirement centers, one with a highly developed recreation program
and the other without such a program. We could do a two-sample test to see whether
the residents in the center with the highly developed recreation program had a lower
mean score on depression.

Can you see the problems with the above example? First, without randomization to
the two centers, we do not know whether the recreation program makes the difference
or if people who are more prone to be depressed selected the center that does not offer
much recreation. A second problem is that the programs being compared may be differ-
ent in many respects other than our focus. A center that can afford a highly developed
recreation program may have, for example, better food, more spacious accommodations,
and better-trained staff. Even if we have randomization, we want the groups to differ
only on the issue we are testing. More-advanced procedures, such as analysis of covari-
ance and multiple regression, can help control for other differences between the groups
being compared, but a two-sample t test is limited in this regard without randomization
or random sampling.

Random sample and randomization

It is easy to confuse random sample and randomization. A random sample refers
to how we select the people in our study. Once we have our sample, randomization
is sometimes used to randomly assign our sample to groups. Some examples will
better illustrate the distinction between the terms:

Random sample without randomization. We obtain a list of all hous-
ing units that have a water connection from our city’s utility department. We
randomly sample 500 of these houses.

Randomization without a random sample. We solicit volunteers for
an experiment. After 100 people volunteer, we randomly assign 50 of them to
the treatment group and 50 to the control group. We randomized the assign-
ment, but we did not start with a random sample. Because we did not start
with a random sample, we could have a sample selection bias problem because
volunteers are often much more motivated to do well than the rest of the population.

Randomization with a random sample. Obtaining a list of all students
enrolled in our university, we randomly sample 100 of these students. Next we
randomly assign 50 of them to the treatment group and 50 to the control group.
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7.2 Randomization

How can we select the people we want to randomly assign to the treatment group
and the control group? There are two types of random selection. One is done with
replacement, and one is done without replacement. When we sample with replacement,
each observation has the same chance of being selected. However, the same observation
may be selected more than once. Suppose that you have 100 people and want to do
random sampling with replacement. You randomly pick one case, say, Mary. She has
a 1/100 probability of being selected. If you put her back in the pool (replacement)
before selecting your second case, whomever you select will have the same 1/100 chance
of being selected. However, you may sample Mary again doing it this way.

Many statistical tests assume sampling with replacement, but in practice, we rarely
do this. We usually sample without replacement. This means that the first person would
have a 1/100 chance of being selected, but the second person would have a 1/99 chance
of being selected. This method violates the assumption that each observation has the
same chance of being selected. Sampling without replacement is the most practical way
to do it. If we have 100 people and want 50 of them in the control group and 50 in
the treatment group, we can sample 50 people without replacement (this gives us 50
different people) and put them in the control group. Then we put the other 50 people
in the treatment group. If we had sampled with replacement, the 50 people we sampled
might actually be only 40 different people, with a few of them selected twice or even
three times.

Sampling without replacement is a simple task in Stata. If you have N = 20 ob-
servations, you would number these from 1 to 20. Then you would enter the command
sample 10, count to select 10 observations randomly but without replacement. These
10 people would go into your treatment group, and the other 10 would go into your
control group. Here is the set of commands:

clear
set obs 20
gen id = _n
list
set seed 220
sample 10, count
list

The first command clears any data we have in memory. You should save anything
you were doing before entering this command. The second command, set obs 20, tells
Stata that you want to have 20 observations in your dataset. The next command, gen
id = n, will generate a new variable called id, which will be numbered from 1 to the
number of observations in your dataset, in this case, 20. The underscore n ( n) is a
reserved name in Stata that refers to the observation number. This command generates
a new variable, id, which is the same as the observation number, 1, 2, 3, . . . , 20. You
can see this in the first listing below. We then use the command set seed 220, where
the number 220 is arbitrary. This is not necessary, but by doing this, we will be able
to reproduce our results. When you set the seed at a particular value, every time you
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run this set of commands, you will get the same result. Without setting the seed at a
specific value, we would get a different result every time we ran the set of commands.
Finally, we take the sample using the command sample 10, count and show a listing
of the 10 cases that Stata selected at random without replacement. These cases would
go into the control group, and the other 10 would go into the treatment group. Thus
observations numbered 8, 19, 9, 13, 18, 12, 6, 11, 17, and 3 (as shown below with the
list command) go into the control group, and the other 10 observations go into the
treatment group. By doing this, any differences between the groups that are not due to
the treatment are random differences.

. clear

. set obs 20
obs was 0, now 20

. gen id = _n

. list

id

1. 1
2. 2
3. 3
4. 4
5. 5

6. 6
7. 7
8. 8
9. 9
10. 10

11. 11
12. 12
13. 13
14. 14
15. 15

16. 16
17. 17
18. 18
19. 19
20. 20

. set seed 220

. sample 10, count
(10 observations deleted)
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. list

id

1. 8
2. 19
3. 9
4. 13
5. 18

6. 12
7. 6
8. 11
9. 17
10. 3

7.3 Random sampling

The process of selecting a random sample is similar. Suppose that you had 20,000 stu-
dents in your university. Assume that each student has a unique identification number.
You would have a Stata dataset with these numbers. Assume too that you need a sam-
ple of N = 500 students. You would simply set the seed at some arbitrary value, such
as 3 with the command set seed 3, and then run the command sample 500, count.
You could then list these ID numbers to see your sample.

If we have a target sample of 500, we can expect that several of our initial list of
N = 500 either will not be located or will refuse to participate. Therefore, we should
draw a second sample of, say, N = 300, and go down this list as we need replacements.

7.4 Hypotheses

Before we can run a z test or a t test, we need to have two hypotheses: a null hypothesis
(H0) and an alternative hypothesis (Ha). I will mention these briefly because they are
covered in all statistics texts.

Although one-tailed tests are appropriate if we can categorically exclude negative
findings (results in the opposite direction of our hypothesis), we will rarely be this con-
fident in the direction of the results. Most statisticians report two-tailed tests routinely
and make note that the direction of results is what they expected. Other statisticians
rely on a one-tailed test when they have a clear prediction of the direction. For example,
if they have a new drug that should reduce the level of cholesterol, they might use a
one-tailed test because they have a clear directional hypothesis. If, however, this new
drug increased the level of cholesterol, then they would fail to reject the null hypothesis
without having to do a test of significance. A two-tailed test is always more conservative
than a one-tailed test, so the tendency to rely on two-tailed tests can be viewed as a
conservative approach to statistical significance.
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Stata reports both one- and two-tailed significance for all the tests covered in this
chapter. For more-advanced procedures, such as those based on regression, Stata reports
only two-tailed significance. It is easy to convert two-tailed significance to one-tailed
significance. If something has a probability of 0.1 using a two-tailed test, its probability
would be 0.05 using a one-tailed test—we simply cut the two-tailed probability in half.

7.5 One-sample test of a proportion

Let’s use items from the 2002 General Social Survey dataset gss2002 chapter7.dta

to test how adults feel about school prayer. An existing variable, prayer, is coded 1

if the person favors school prayer and 2 if the person does not. We must recode the
variable prayer into a new variable, schpray, so that a person has a score of 1 if he or
she supports school prayer and a score of 0 if he or she does not. We can use Stata’s
recode command to accomplish this. We will do a cross-tabulation as well to make sure
we did not make a mistake:

. recode prayer (1 = 1 Approve) (2 = 0 Disapprove), gen(schpray)

. tabulate schpray prayer, missing

Stata will not let you accidentally write over an existing variable, so if you try to
create a variable that already exists, Stata will issue an error message. When we give
schpray a score of 1 for those adults who favor school prayer and a score of 0 for those
who oppose it, Stata can compute and test proportions correctly. If we ran a proportions
test on the prayer variable, we would get an error message saying that prayer is not a
0/1 variable.

Although we can speculate that most people oppose school prayer, that is, have a
score of 0 on schpray, let’s take a conservative track and use a two-tailed hypothesis:

Alternative hypothesis Ha: proportion 6= 0.5

Null hypothesis H0: proportion = 0.5

The null hypothesis, proportion = 0.5, uses a value of 0.5 because this represents
what the proportion would be if there were no preference for or against school prayer.

Open the appropriate dialog box by selecting Statistics ⊲ Summaries, tables, and tests
⊲ Classical tests of hypotheses ⊲ Proportion test. On the Main tab, select One-sample, if it
is not already selected, in the Tests of proportions section. Enter the schpray variable
and the hypothesized proportion for the null hypothesis, 0.5, and click on OK. The
resulting command and results are
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. prtest schpray == 0.5

One-sample test of proportion schpray: Number of obs = 859

Variable Mean Std. Err. [95% Conf. Interval]

schpray .3969732 .0166937 .3642542 .4296923

p = proportion(schpray) z = -6.0392
Ho: p = 0.5

Ha: p < 0.5 Ha: p != 0.5 Ha: p > 0.5
Pr(Z < z) = 0.0000 Pr(|Z| > |z|) = 0.0000 Pr(Z > z) = 1.0000

Let’s go over these results and see what we need. All the results in this chapter use
this general format for output, so it is worth the effort to review it closely. The first
line is the Stata command. The second line indicates that this is a one-sample test of
a proportion, the variable is schpray, and we have N = 859 observations. The table
gives a mean, M = 0.397, and standard error, 0.017. Because we recoded schpray as
a dummy variable, where a 1 signifies that the person supports school prayer and a 0

signifies that the person does not, the mean has a special interpretation. The mean is
simply the proportion of people coded 1. (This is true only of 0/1 variables and would
not work if we had used the original variable, prayer.) Thus 0.397, or 39.7%, of the
people in the survey say that they support school prayer. The 95% confidence interval
tells us that we can be 95% confident that the interval 0.364 to 0.430 includes adults
who support school prayer. Using percentages, we could say that we are 95% confident
that the interval of 36.4% to 43.0% contains the true percentage of adults who support
school prayer.

Below the table, we can see the null hypothesis that the proportion is exactly 0.5,
that is, Ho: p = 0.5. Also just below the table but to the far right is the computed
z test, z = −6.039.

Below the null hypothesis are three results that depend on how we stated the al-
ternative hypothesis. Here we used a two-tailed alternative hypothesis, and this result
appears in the middle group. Stata’s Ha: p != 0.5 is equivalent to stating the alter-
native hypothesis, Ha: proportion 6= 0.5. Because Stata results are plain text, Stata
uses != in place of 6=. Stata programmers use an exclamation mark (programmers often
call this a “bang”) to mean “not”, so != literally means “not equal”. Below the alter-
native hypothesis is the probability that the null hypothesis is true: Pr(|Z| > |z|)

= 0.0000. The p-value = 0.0000 does not mean that there is no probability that the
null hypothesis is true, just that the probability is all zeros to four decimal places. If
p-value = 0.00002, this is rounded to 0.0000 in Stata output. A p-value = 0.0000 is
usually reported as a significance level of p < 0.001. This finding is highly statistically
significant and allows us to reject the null hypothesis. Fewer than 1 time in 1,000 would
we obtain these results by chance if the null hypothesis were true.

We would write our results as follows: 39.7% of the sample support school prayer.
With a z = −6.039, we can reject the null hypothesis that proportion is 0.5 at the
p < 0.001 level. The 39.7% is in the direction expected, namely, that fewer than half of
the adult population supported school prayer in 2002.
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On the left side of the output is a one-tailed alternative hypothesis, Ha: p < 0.5. If
another researcher thought that only a minority supported school prayer and could rule
out the possibility that the support was in the opposite direction, then the researcher
would have this as a one-tailed alternative hypothesis, and it would be statistically
significant with a p < 0.001.

On the right side of the output is a one-tailed alternative hypothesis, Ha: p > 0.5.
This means the researcher thought that most adults favored school prayer, and the
researcher (incorrectly) ruled out the possibility that the support could be the other
way. The results show that we cannot reject the null hypothesis. When we observe only
39.7% of our sample supporting school prayer, we clearly have not received a significant
result that most adults supported school prayer in 2002.

Distinguishing between two p-values

In testing proportions, we have two different p-values. Do not let this confuse you.
One p-value is the proportion of the sample coded 1. In this example, this is the
proportion that supports school prayer, 0.397 or 39.7%.

The second p-value is the level of significance. In this example, p < 0.001
refers to the probability that we would obtain this result by chance if the null
hypothesis were true. Because we would get our result fewer than 1 time in 1,000
by chance, p < 0.001, we can reject the null hypothesis. Many researchers will
reject a null hypothesis whenever the probability of the results is less than 0.05,
that is, p < 0.05.

Proportions and percentages

Often we report proportions as percentages because many readers are more comfort-
able trying to understand percentages than proportions. Stata, however, requires
us to use proportions. As you may recall, the conversion is simple. We divide a per-
centage by 100 to get a proportion, so 78.9% corresponds to a proportion of 0.789.
Similarly, we multiply a proportion by 100 to get a percentage, so a proportion of
0.258 corresponds to a percentage of 25.8%.

7.6 Two-sample test of a proportion

Sometimes a researcher wants to compare a proportion across two samples. For example,
you might have an experiment testing a new drug (wide.dta). You randomly assign
40 study participants so that 20 are in a treatment group receiving the drug and 20
are in a control group receiving a sugar pill. You record whether the person is cured
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by assigning a 1 to those who were cured and a 0 to those who were not. Here are the
data:

. list

treat control

1. 1 1
2. 0 0
3. 1 0
4. 1 0
5. 1 0

6. 1 1
7. 1 1
8. 0 0
9. 1 0
10. 1 0

11. 1 0
12. 1 1
13. 1 1
14. 0 1
15. 1 1

16. 1 0
17. 0 0
18. 1 0
19. 0 0
20. 1 0

In the treatment group, we have 15 of the 20 people, or 0.75, cured; that is, they
have a score of 1. In the control group, just 7 of the 20 people, or 0.35, are cured. Before
proceeding, we need a null and an alternative hypothesis. The null hypothesis is that
the two groups have the same proportion cured. The alternative hypothesis is that the
proportions are unequal, and therefore, the difference between them will not equal zero:
p(treat) − p(control) 6= 0. Your statistics book may state the alternative hypothesis as

p(treat) 6= p(control). The two ways of stating the alternative hypothesis are equivalent.

They are both two-tailed tests because we are saying that the proportions cured in the
two groups are not equal. We could argue for a one-tailed test that the proportion in
the treatment group is higher, but this means that we need to rule out the possibility
that it could be lower. The null hypothesis is that the two proportions are equal; hence,
there is no difference between them: p(treat) − p(control) = 0.

Alternative hypothesis Ha: p(treat) − p(control) 6= 0

Null hypothesis H0: p(treat) − p(control) = 0

These are independent samples, and the data for the two groups are entered as two
variables. To open the dialog box for this test, select Statistics ⊲ Summaries, tables, and
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tests ⊲ Classical tests of hypotheses ⊲ Proportion test. Because we have two samples, those
participants in the treatment condition and those participants in the control condition,
we select Two-sample using variables in the Tests of proportions section of the Main
tab. Type treat in the box for the First variable, and type control in the box for the
Second variable. That is all there is to it, and our results are

. prtest treat == control

Two-sample test of proportions treat: Number of obs = 20
control: Number of obs = 20

Variable Mean Std. Err. z P>|z| [95% Conf. Interval]

treat .75 .0968246 .5602273 .9397727
control .35 .1066536 .1409627 .5590373

diff .4 .1440486 .1176699 .6823301
under Ho: .1573213 2.54 0.011

diff = prop(treat) - prop(control) z = 2.5426
Ho: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.9945 Pr(|Z| < |z|) = 0.0110 Pr(Z > z) = 0.0055

These results have a layout that is similar to that of the one-sample proportion test.
The difference is that we now have two groups, so we get statistical information for each
group. Under Mean is the proportion of 1 codes in each group. We have 0.75 (75%)
of the treatment group coded as cured, compared with just 0.35 (35%) of the control
group. The difference between the treatment-group mean and the control-group mean
is 0.40; that is, 0.75− 0.35 = 0.40. This appears in the table as the variable diff with
the mean of 0.4.

Directly below the table is the null hypothesis that the difference in the proportion
cured in the two groups is 0, and to the right is the computed z test, z = 2.5426. Below
this are the three hypotheses we might have selected. Using a two-tailed approach, we
can say that z = 2.54, p < 0.05. If we had a one-tailed test that the treatment-group
proportion was greater than the control-group proportion, our z would still be 2.54, but
our p would be p < 0.01. This one-tailed test has a p-value, 0.0055, that is exactly one-
half of the two-tailed p-value. If someone had hypothesized that the treatment-group
success would have a lower proportion than the control group, then he or she would
have the results on the far left. Here the results would not be significant because the
p = 0.9945 is far greater than the required p < 0.05.

This difference-of-proportions test requires data to be entered in what is called a
wide format. Each group (treatment and control) is treated as a variable with the
scores on the outcome variable coded under each group, as illustrated in the listing that
appeared above. Data in statistics books and related exercises often present the scores
this way.

When dealing with survey data, it is common to use what is called a long format
in which one variable is a grouping variable of whether someone is in the treatment
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group, coded 1, or the control group, coded 0. The second variable is the score on the
dependent variable, which is also a binary variable coded as 1 if the person is cured and 0

if the person is not cured. This appears in the following long-format listing (long.dta).

. list

group cure

1. 1 1
2. 1 0
3. 1 1
4. 1 1
5. 1 1

6. 1 1
7. 1 1
8. 1 0
9. 1 1
10. 1 1

11. 1 1
12. 1 1
13. 1 1
14. 1 0
15. 1 1

(output omitted )

36. 0 0
37. 0 0
38. 0 0
39. 0 0
40. 0 0

When your data are entered this way, you need to use a different test for the dif-
ference of proportions. Select Statistics ⊲ Summaries, tables, and tests ⊲ Classical tests
of hypotheses ⊲ Proportion test like we did before, but this time we select Two-group
using groups in the Tests of proportions section. Type cure under Variable name (the
dependent variable) and group under Group variable name (the independent variable).
Click on OK to obtain the following results:
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. prtest cure, by(group)

Two-sample test of proportions 0: Number of obs = 20
1: Number of obs = 20

Variable Mean Std. Err. z P>|z| [95% Conf. Interval]

0 .35 .1066536 .1409627 .5590373
1 .75 .0968246 .5602273 .9397727

diff -.4 .1440486 -.6823301 -.1176699
under Ho: .1573213 -2.54 0.011

diff = prop(0) - prop(1) z = -2.5426
Ho: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.0055 Pr(|Z| < |z|) = 0.0110 Pr(Z > z) = 0.9945

Here we have two means: one for the group coded 0 of 0.35 and one for the group
coded 1 of 0.75. These are, of course, the means for our control group and our treatment
group, respectively. Below this is a row labeled diff, the difference in proportions,
which has a value of −0.40 because the mean of the group coded as 1 is subtracted from
the mean of the group coded as 0. Be careful interpreting the sign of this difference.
Here a negative value means that the treatment group is higher than the control group:
0.75 versus 0.35. The z test for this difference is z = −2.54. This is the same absolute
value that we had with the test for the wide format, but the sign is reversed. Be careful
interpreting this sign just like with interpreting the difference. It happens to be negative
because we are subtracting the group coded as 1 from the group coded as 0.

We can interpret these results, including the negative sign on the z test, as follows.
The control group has a mean of 0.35 (35% of participants were cured), and the treat-
ment group has a mean of 0.75 (75% of the participants were cured). The z = −2.54,
p < 0.05 indicates that the control group had a significantly lower success rate than
the treatment group. Pay close attention to the way the difference of proportions was
computed so that you interpret the sign of the z test correctly.

This long form is widely used in surveys. For example, in the General Social Survey
2002 data (gss2002 chapter7.dta), there is an item, abany, asking if abortion is okay
anytime. The response option is binary, namely, yes or no. If we wanted to see whether
more women said yes than did men, we could use a difference-of-proportions test. The
grouping variable would be sex, and the dependent variable would be abany. First, we
must see how they are coded. To do this, we run the command codebook abany sex.
We see that abany is coded as a 1 for yes and 2 for no. We must recode abany and
make a new variable coded 0 for no and 1 for yes. We do not need to change the coding
of sex. The independent variable has to be binary (just two values), but does not have
to be coded as 0,1. Try this and do the difference of proportions test.
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7.7 One-sample test of means

You can do z tests for one-sample tests of means, or you can do t tests. We will cover
only the use of t tests because these are by far the most widely used. A z test is
appropriate when you know the population variance (which it is highly unusual to
know). Unless you have a small sample, both tests yield similar results.

Several decades ago, social theorists thought that the workweek for full-time employ-
ees would get shorter and shorter. This has happened in many countries but does not
seem to be happening in the United States. A full-time workweek is defined as 40 hours.
Among those who say they work full time, do they work more or less than 40 hours?
The General Social Survey dataset (gss2002 chapter7.dta) has a variable called hrs1,
which represents the reported hours in the workweeks of the survey participants. The
null hypothesis is that the mean will be 40 hours. The alternative hypothesis is that
the mean will not be 40 hours. Using a two-tailed hypothesis, you can say

Alternative hypothesis Ha: µ(hours) 6= 40

Null hypothesis H0: µ(hours) = 40

Notice that we are using the Greek letter, µ, to refer to the population mean in
both the alternative and the null hypotheses. To open the dialog box for this test,
select Statistics ⊲ Summaries, tables, and tests ⊲ Classical tests of hypotheses ⊲ t test
(mean-comparison test). In the resulting dialog box, select One-sample if it is not al-
ready selected in the t tests section of the Main tab. Enter hrs1 (outcome variable)
under the Variable name and 40 (hypothesized mean for the null hypothesis) under the
Hypothesized mean.

Because we are interested in how many hours full-time employees work, we should
eliminate part-time workers. To do this, click on the by/if/in tab, and type wrkstat

== 1 as the If: (expression). The variable wrkstat is coded as 1 if a person works
full time (you can run a codebook wrkstat to see the frequency distribution). The
resulting by/if/in tab is shown in figure 7.1.
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Figure 7.1. Restrict observations to those who score 1 on wrkstat

Clicking on OK produces the following command and results:

. ttest hrs1 == 40 if wrkstat == 1

One-sample t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

hrs1 1419 45.97111 .3156328 11.88977 45.35195 46.59026

mean = mean(hrs1) t = 18.9179
Ho: mean = 40 degrees of freedom = 1418

Ha: mean < 40 Ha: mean != 40 Ha: mean > 40
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

From these results, we can see that the mean for the variable hrs1 is M = 45.97
hours, and the standard deviation is SD = 11.89 hours. Because we are using a two-
tailed test, we can look at the center column under the table to see that, for t = 18.92,
p < 0.001. Thus full-time workers work significantly more than the traditional 40-hour
workweek. In fact, they worked about 6 hours more than this standard on average in
2002. Remember, 2002 was a year of relatively full employment.

When we report a t test, we need to also report degrees of freedom. Look closely at
the results above. The number of observations is 1,419, but the degrees of freedom is
1,418 (found just below the t = 18.92). For a one-sample t test, the degrees of freedom
is always N − 1. If we report the degrees of freedom as 1,418, a reader will also know
that the sample size is one more than this, or 1,419.

Different specialty areas report one-sample t tests slightly differently. The format
I recommend is t(1418) = 18.918, p < 0.001. This is read as saying that t with 1,418
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degrees of freedom is 18.918, p is less than 0.001. The results show that the average
full-time employee worked significantly more than the standard 40-hour week.

Degrees of freedom

The idea of degrees of freedom was discussed in chapter 6 on cross-tabulations. For
t tests, the degrees of freedom is a little different. Your statistics book will cover
this in detail, but here we will present just a simple illustration. Suppose that we
have four cases with M = 10. The first three of the four cases have scores of 8, 12,
and 12. Is the fourth case free? Because the mean of the four cases is 10, the sum
of the four cases must be 40. Because 40 − 8 − 12 − 12 = 8, the fourth case must
be 8. It is not free. In this sense, we can say that a one-sample test of means has
N − 1 degrees of freedom.

Those who like to use confidence intervals can see these in the results. Stata gives
us a 95% confidence interval of 45.4 hours to 46.6 hours. The confidence interval is
more informative than the t test. We are 95% confident that the interval of 45.4 to
46.6 hours contains the mean number of hours full-time employees report working in a
week. Because the value specified in the null hypothesis, µ = 40, is not included in this
interval, we know the results are statistically significant. The confidence interval also
focuses our attention on the number of hours and helps us understand the substantive
significance (importance), as well as the statistical significance.

7.8 Two-sample test of group means

A researcher says that men make more money than women because men work more
hours a week. The argument is that a lot of women work part-time jobs, and these
neither pay as well nor offer opportunities for advancement. What happens if we only
consider people who say they work full time? Do men still make more than women
when both the men and the women are working full time?

The General Social Survey 2002 dataset (gss2002 chapter7.dta) has a question
asking about the respondent’s income, variable rincom98. Like many surveys, the
General Social Survey does not report the actual income but reports income in categories
(for example, under $1,000, $1,000 to 2,999). Run a tabulate command to see the
coding the surveyors used. For some reason, they have not defined a score coded as
24 as a “missing value”, but this is what a code of 24 represents. Even with highly
respected national datasets like the General Social Survey, you need to check for coding
errors. A code of 24 was assigned to people who did not report their income. Many
researchers have used rincom98 as it is coded (I hope after defining a code of 24 as
a missing value). However, this coding is problematic because the intervals are not
equal. The first interval, under $1,000, is $1,000 wide, but the second interval, $1,000
to $2,999, is nearly $2,000 wide. Some intervals are as much as $10,000 wide.
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Before we can compare the means for women and men, we need to recode the
rincom98 variable. We could recode it by using the dialog box as described in sec-
tion 3.4, but let’s type the commands instead. You could enter the following commands
in the Command window, one by one. A much better approach would be to enter them
into a do-file so that we can easily modify or reproduce the routine later if we need to.
Remember that we should add some comments at the top of the do-file that include the
name of the file and its purpose. For this example, you must use Stata/MP or Stata/SE
because the number of columns exceeds the 20-column limit of Stata/IC.

* recode income.do (sample do-file)
* This is a short do-file that recodes income. It does a
* tabulation to see how income is coded (tab rincom98). People
* given a value of 24 are recoded as missing (mvdecode rincom98,
* mv(24)). We generate a new variable called inc that is equal to the
* old variable, rincom98. We recode each interval with its
* midpoint. We do a cross-tabulation of the new and old income
* variables as a check.
version 13
tabulate rincom98, missing
mvdecode rincom98, mv(24)
gen inc = rincom98
replace inc = 500 if rincom98 == 1
replace inc = 2500 if rincom98 == 2
replace inc = 3500 if rincom98 == 3
replace inc = 4500 if rincom98 == 4
replace inc = 5500 if rincom98 == 5
replace inc = 6500 if rincom98 == 6
replace inc = 7500 if rincom98 == 7
replace inc = 9000 if rincom98 == 8
replace inc = 11250 if rincom98 == 9
replace inc = 13250 if rincom98 == 10
replace inc = 16250 if rincom98 == 11
replace inc = 18750 if rincom98 == 12
replace inc = 21250 if rincom98 == 13
replace inc = 23750 if rincom98 == 14
replace inc = 27500 if rincom98 == 15
replace inc = 32500 if rincom98 == 16
replace inc = 37500 if rincom98 == 17
replace inc = 45000 if rincom98 == 18
replace inc = 55000 if rincom98 == 19
replace inc = 67500 if rincom98 == 20
replace inc = 82500 if rincom98 == 21
replace inc = 100000 if rincom98 == 22
replace inc = 110000 if rincom98 == 23
tabulate inc rincom98, missing

There are several lines commenting on what the do-file will do. The first line after
the version command runs a tabulation (tabulate), including missing values. The
results help us understand how the variable was coded. The next line makes the code of
24 into a missing value so that anybody who has a score on rincome98 of 24 is defined as
having missing values (mvdecode). The next line generates (gen) a new variable called
inc that is equal to the old variable rincom98. Following this command is a series of
commands to replace (replace) each interval with the value of its midpoint. Thus a
code of 8 for income98 is given a value of 9000 on inc. The final command does a cross-
tabulation (tabulate) of the two variables to check for coding errors. Economists and
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demographers may not be happy with this coding system. Those who have a rincom98

code of 1 may include people who lost a fortune, so substituting a value of 500 may
not be ideal. The commands make no adjustment for these possible negative incomes.
Those who have a code of 23 include people who make $110,000 but also may include
people who make $1,000,000 or more. We hope that there are relatively few such cases
at either end of the distribution, so the values we use here are reasonable.

Now that we have income measured in dollars, we are ready to compare the income
of women and men who work full time by using a two-sample t test. Open the dialog
box by selecting Statistics ⊲ Summaries, tables, and tests ⊲ Classical tests of hypotheses ⊲ t
test (mean-comparison test). In this dialog box, select Two-sample using groups in the t
tests section of the Main tab because the data are arranged in the common long format.
Type inc (outcome variable) as the Variable name and sex as the Group variable name.
This dialog box is shown in figure 7.2.

Figure 7.2. Two-sample t test using groups dialog box

Statistics books discuss assumptions for doing this t test, one of which is that the
variance of the outcome variable, inc, is equal for both categories of the grouping
variable, sex. That is, the variance in income is the same for women as it is for men.
If we believed that the variances were unequal, we could click on the Unequal variances
box, and Stata would automatically adjust everything accordingly.

We can click on Submit at the bottom of the dialog box at this point, and we will find
a huge difference between women and men, with men making much more on average
than women. However, remember that we only wanted to include people who work full
time. To implement this restriction, click on the by/if/in tab in the dialog box. In the
Restrict observations section, type wrkstat == 1 (remember to use the double equal
signs) in the If: (expression) box. Here are the results:
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. ttest inc if wrkstat == 1, by(sex)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

male 671 44567.81 1054.665 27319.7 42496.96 46638.66
female 589 33081.07 895.9353 21743.74 31321.45 34840.69

combined 1260 39198.21 718.7267 25512.27 37788.18 40608.25

diff 11486.74 1404.217 8731.874 14241.61

diff = mean(male) - mean(female) t = 8.1802
Ho: diff = 0 degrees of freedom = 1258

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

The layout of these results is similar to what we had for the one-sample t test.
Using a two-tailed hypothesis (center column, below the main table), we see that the
t = 8.1802 has a p < 0.001 (p = 0.0000). The N = 671 men who work full time have an
average income of just under $44,568, compared with just over $33,081 for the N = 589
women who are employed full time. Notice that the degrees of freedom, 1,258, is two
fewer than the total number of observations, 1,260, because we used two means and
lost one degree of freedom for each of them. For this two-sample t test, we have N − 2
degrees of freedom. A good layout for reporting a two-sample t test is t(1258) = 8.18,
p < 0.001.

Is this result substantively significant? This question is pretty easy to answer because
we all understand income. Men make about $11,487 more on average than do women,
and this is true even though both our men and our women are working full time. It
is sometimes helpful to compare the difference of means with the standard deviations.
The $11,487 difference of means is roughly one-half of a standard deviation if we use
the average of the two standard deviations as a guide. A difference of less than 0.2
standard deviations is considered a weak effect, a difference of 0.2 to 0.49 is considered
a moderate effect, and a difference of 0.5 or more is considered a strong effect. If your
statistics book covers the delta statistic, δ, you can get a precise number, but here we
have just eyeballed the difference.

So far, we have been using the group-comparison t test, which assumes that the
data are in the long format. The dependent variable income is coded with the income
of each participant. income is compared across groups by sex, which is coded 1 for
each participant who is a man and 2 for each participant who is a woman. If the data
were arranged in the wide format, we would still have two variables, but they would be
different. One variable would be the income for each man and would have 671 entries;
the other variable would be the income for each woman and would have 589 entries. This
would look like the wide format shown previously for comparing proportions, except that
the variables would be called maleinc and femaleinc.
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When our data are in a wide format, we again select Statistics ⊲ Summaries, tables,
and tests ⊲ Classical tests of hypotheses ⊲ t test (mean-comparison test) to open the dialog
box; however, we now select Two-sample using variables in the t tests section of the
Main tab. We simply enter the names of the two variables, maleinc and femaleinc.
The resulting command would be ttest maleinc == femaleinc, unpaired. I cannot
illustrate this process here because the data are in the long format. If you are interested,
you can use Stata’s reshape command to convert between formats; see help reshape.



7.8 Two-sample test of group means 169

Effect size

There are two measures of effect size that are sometimes used to measure the
strength of the difference between means. These are R2 and Cohen’s d (δ). At
the time this book was written, R2 is not directly computed by Stata, but it can
be computed using Stata’s built-in calculator. The formula is R2 = t2/(t2 + df).
Using the results of the two-sample t test comparing income of women and men,
R2 = 8.18022/(8.18022 + 1258). We can compute this with a hand calculator or
with the Stata command

. display "r-squared = " 8.1802^2/(8.1802^2 + 1258)
r-squared = .05050561

The square root of this value is sometimes called the point biserial correlation. A
value of 0.01 to 0.09 is a small effect, a value of 0.10 to 0.25 is a medium effect,
and a value of over 0.25 is a large effect. If you use the Stata calculator with a
negative t, it is important to insert parentheses correctly so that Stata does not see
the negative sign as making the t2 a negative value. If we had a t = −4.0 with 100
degrees of freedom, the Stata command would be

. display "r-squared = " (-4.0)^2/((-4.0)^2 + 100)

or you could simply use the absolute value of t when doing the calculations.

Cohen’s d measures how much of a standard deviation separates the two
groups.

Cohen’s d =
mean difference

pooled standard deviation

sp =

√
(N1 − 1)s21 + (N2 − 1)s22

df

Stata does have an effect-size command to compute Cohen’s d, esize. This com-
mand has a similar structure to the two-sample ttest command: esize twosample

inc if wrkstat==1, by(sex). This command results in Cohen’s d = 0.461 and
also reports a 95% confidence interval. When you read a study that reports the
means and standard deviations for each of two groups but does not report Cohen’s
d, you can compute the d using an immediate form of esize, that is, with the
esizei command. For example, you can type esizei #obs1 #mean1 #sd1 #obs2

#mean2 #sd2. Suppose we read that in a study with 100 participants in each group
the means for the two groups were 60.2 and 65.3 and their respective standard devi-
ations were 9.0 and 10.1. For our example, we can type esizei 100 60.2 9.0 100

65.3 10.1. Stata will report that the effect size is Cohen’s d = −0.533. You need
to be careful to interpret the sign. In our example, group two has a larger mean,
65.3, than group one, 60.2. Hence, group one’s mean is less than group two’s mean.
You can type help esize to find other applications of the effect-size command.
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7.8.1 Testing for unequal variances

In the dialog box for the group-comparison t test, we did not click on the option that
would adjust for unequal variances. If the variances or standard deviations are similar
in the two groups, there is no reason to make this adjustment. However, when the
variances or standard deviations differ sharply between the two groups, we may want
to test whether the difference is significant. Before doing the t test, some researchers
will do a test of significance on whether variances are different. This test is problematic
because the test of equal variances will show small differences in the variances to be
statistically significant in large samples (where the lack of equal variance is less of a
problem), but the test will not show large differences to be significant in small samples
(where unequal variance is a bigger problem). To open the dialog box, select Statistics
⊲ Summaries, tables, and tests ⊲ Classical tests of hypotheses ⊲ Variance-comparison test.
Here we select Two-sample using groups in the Variance-comparison tests section. We
enter our dependent variable, inc, and the grouping variable, sex, just like we did for
the t test. We also should use the by/if/in tab to restrict the sample to those who work
full time, wrkstat == 1. The command and results are

. sdtest inc if wrkstat == 1, by(sex)

Variance ratio test

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

male 671 44567.81 1054.665 27319.7 42496.96 46638.66
female 589 33081.07 895.9353 21743.74 31321.45 34840.69

combined 1260 39198.21 718.7267 25512.27 37788.18 40608.25

ratio = sd(male) / sd(female) f = 1.5786
Ho: ratio = 1 degrees of freedom = 670, 588

Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1
Pr(F < f) = 1.0000 2*Pr(F > f) = 0.0000 Pr(F > f) = 0.0000

This test produces an F test that tests for a significant difference in the variances
(although the output reports only standard deviations). The F test is simply the ratio
of the variances of the two groups. Just below the table, we can see on the left side that
the null hypothesis is Ho: ratio = 1. Below the table on the right side, we see that the
f = 1.5786 (note that this is the ratio of the variances, i.e., 27319.72/21743.742) and
we see two degrees of freedom, degrees of freedom = 670, 588. The first number,
670, is the degrees of freedom for males (N1− 1), and the second number is the degrees
of freedom for females (N2 − 1). The variance for males is 1.58 times as great as
the variance for females. In the middle bottom of the output, we can see the two-
tailed alternative hypothesis, Ha: ratio != 1, and a reported probability of 0.0000.
Because the F test has two numbers for degrees of freedom, we would report this as
F (670, 588) = 1.58, p < 0.001.
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Although the variances are significantly different, remember that this test is sensitive
to large sample sizes, and in such cases, the assumption is less serious. If the groups
have roughly similar sample sizes and if the standard deviations are not dramatically
different, most researchers choose to ignore this test. If you want to adjust for unequal
variances, however, look back at the dialog box for the two-sample t test. All you need
to do is check the box for Unequal variances. When you get the results, the degrees
of freedom are no longer N − 2 but are based on a complex formula that Stata will
compute for you.

7.9 Repeated-measures t test

The repeated-measures t test goes by many names. Some statistics books call it a
repeated-measures t test, some call it a dependent-sample t test, and some call it a
paired-sample t test. A repeated-measures t test is used when one group of people is
measured at two points. An example would be an experiment in which you measured
everybody’s weight at the start of the experiment and then measured their weight a
second time at the end of the experiment. Did they have a significant loss of weight? As
a second example, we may want to know if it helps to retake the GRE. How much better
do students perform when they repeat the GRE? We have one group of students, but
we measure them twice—once the first time they take the GRE and again the second
time they take it. The idea is that we measure the group on a variable, something
happens, and then we measure them on that variable a second time. A control group
is not needed in this approach because the participants serve as their own control.

An alternative use of the repeated-measures t test is to think of the group as being
related people, such as parents. Husbands and wives would be paired. An example
would be to compare the time a wife spends on household chores with the time her
husband spends on household chores. Here each husband and each wife would have a
score on time spent for the wife and a score on time spent for the husband.

Who spends more time on chores—wives or husbands? Here we do not measure time
spent on chores twice for the same person, but we measure it twice for each related pair
of people. The way the data are organized involves having two scores for each case.
With paired data, the case consists of two related people (see chores.dta). Here is
what five cases (couples) might look like:

. list

husband wife

1. 11 31
2. 10 40
3. 21 44
4. 15 36
5. 12 29
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We will illustrate the related-sample t test with data from the General Social Survey
2002 dataset gss2002 chapter7.dta. Each participant was asked how much education
his or her mother and his or her father had completed. This survey is not like the
example of mothers and fathers because we have two measures for each participant.
We know how much education each person reports for his or her mother and for his
or her father. Do these respondents report more education for their mothers or for
their fathers? Here we will use a two-tailed test with a null hypothesis that there is no
difference on average and an alternative hypothesis that there is a difference:

Alternative hypothesis: Ha: µdiff 6= 0

Null hypothesis: H0: µdiff = 0

Remembering that we use M for a sample mean and µ for a population mean, we
express these hypotheses as mean differences in the population (µdiff). To open the
dialog box, select Statistics ⊲ Summaries, tables, and tests ⊲ Classical tests of hypotheses ⊲
t test (mean-comparison test). This is the same dialog box that we have been using, but
this time we select Paired in the t tests section. We enter the two variables. It does not
really matter which we enter as the First variable and which as the Second variable, but
we need to remember this order because changing the order will reverse the signs on all
the differences. Type paeduc as the First variable and maeduc as the Second variable.
Remember that different statistics books will call this test the repeated-measures t test,
paired-sample t test, or dependent-sample t test. All of these tests are the same.

Here are the command and results:

. ttest paeduc == maeduc

Paired t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

paeduc 1903 11.42091 .0917118 4.000779 11.24105 11.60078
maeduc 1903 11.58276 .0781763 3.410314 11.42944 11.73608

diff 1903 -.1618497 .0729315 3.181518 -.3048838 -.0188156

mean(diff) = mean(paeduc - maeduc) t = -2.2192
Ho: mean(diff) = 0 degrees of freedom = 1902

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0133 Pr(|T| > |t|) = 0.0266 Pr(T > t) = 0.9867

Mothers have more education on average than fathers. The mean for mothers is
M = 11.58 years, compared with M = 11.42 years for fathers. Before going further,
we need to ask if this difference (father’s education − mother’s education = −0.16) is
important. Because we entered father’s education as the first variable and mother’s
education as the second variable, the negative difference indicates that the mothers had
slightly more education than did the fathers. However, 0.16 years of education would
amount to 0.16×12 = 1.92 months of education, which does not sound like an important
difference, even though it is statistically significant.
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Just below the table, on the left, is the null hypothesis that there is no difference,
Ho: mean(diff) = 0, and on the right is the t test, t = -2.2192, and its degrees of
freedom, 1,902. The middle column under the main table has the alternative hypothesis,
namely, that the mean difference is not 0. The t = −2.22 has a p < 0.05; thus, the
difference is statistically significant.

This example illustrates a problem with focusing too much on the tests of signif-
icance. With a large sample, almost any difference will be statistically significant; it
still may not be important. We have seen that this difference represents fewer than 2
months of education (Mdiff = 1.92 months), so it might be fair to say that we have a
statistically significant difference that is not substantively significant.

7.10 Power analysis

You can think of the power of a test as its ability to do what you want to do. Normally,
using your sample, you want to reject the null hypothesis in favor of the alternative
hypothesis when the alternative hypothesis is correct in the larger population. If the
power of a test is 0.20, this means that you have only a 20% chance of rejecting the
null hypothesis when the alternative hypothesis is correct. Before a researcher begins
collecting data to do a study, he or she should have a good idea of the power of the
tests that will be run. A pharmaceutical company would not want to fund a $1,000,000
study that had only a 20% chance of finding a statistically significant result for a new
drug that actually was effective. Nor would a thesis committee want to support such a
study. Certainly, you would not want to invest your own time in such a project because
it is virtually doomed to failure.

Power analysis can be done a priori, that is, before the study is done, or a posteriori,
that is, after the study is done. It makes the most sense to do power analysis before
you do the study so that you are confident that your sample size will be sufficient to
have adequate power. However, the procedures for doing power analysis can be reversed
so that they are done after a study is completed. Doing power analysis a posteriori is
controversial but may be appropriate in some cases. Suppose that you read a study
that had a very small sample and, in spite of having means that were very different,
did not obtain a statistically significant alpha. Was this because the means really
were not different in the population as specified by the null hypothesis? Or was this
because the means in the population really were different as specified by the alternative
hypothesis, but the sample size or alpha level was too small to have a powerful test? A
posteriori power analysis could tell you that given the study design, say, a two-sample
t test a sample size, say, n1 = n2 = 10; and an alpha value, say, 0.01, the power
was extremely low. This information would help you evaluate the importance of the
statistically insignificant finding. With Stata, we can do either an a priori or an a
posteriori power analysis.
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There are seven things we need to know or estimate to do a power analysis for a
t test:

1. Is it a repeated or paired t test, or are there two independent samples?

2. Is it a one-tailed or two-tailed test?

3. What alpha value is used? Usually, α = 0.05.

4. How big of a difference do we need for it to be considered a substantively significant
difference? This is called the critical effect size (Cohen 1988).

5. How much power do we need? Usually, a power of 0.80 is minimally adequate for
exploratory research, but a power of 0.90 or 0.95 may be required in highly critical
areas.

6. If there are two independent samples, what is the ratio of the Ns? (Do we have
the same number of participants in each group? Do we have twice as many
participants in one group as in the other?)

7. We need an estimate of the standard deviation of the two groups.

We have already covered most of these requirements, but the idea of an effect size
is new. The effect size is simply how much difference we need to be able to consider it
substantively significant. There are many measures of effect size, depending on what
test you are using. We will illustrate effect size with a measure called Cohen’s d that is
used when there are two independent samples. Cohen’s d is calculated using

d =
Mt −Mc

SDpooled

where

SDpooled =

√
SD2

t (Nt − 1) + SD2
c(Nc − 1)

Nc +Nt − 2

and where Mt and Mc are the means for the treatment group and the control group,
respectively; SD2

t and SD2
c are the square of the respective standard deviations; and Nt

and Nc are the respective sample sizes.

Cohen’s d tells us how far the two means need to be separated for the results to be
substantively significant. Sometimes we do not need the pooled standard deviation that
is in the denominator to say a difference is substantively significant. If, in comparing
women and men on income, we said the mean for men was $90,000 and the mean for
women was $50,000, we would all be satisfied that this was a big difference. Other
times, our variables are measured in ways where it is hard to compare the two means
directly.

Suppose we said that one group had a mean score on depression of 49 and the other
group had a mean score of 40. Is this an important difference? One way to judge the
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difference is in terms of how many standard deviations separate the two groups. This
is precisely what Cohen’s d does. If we have a mean of 100 in one group and a mean
of 115 in another group and the pooled standard deviation is 15, then we would say
that the groups are one standard deviation apart. This would be a very big difference.
Imagine two people, one with an IQ of 100 and the other with an IQ of 115, where the
standard deviation for IQ scores is about 15. These two people are about one standard
deviation apart. With an IQ of 100, a person should be able to complete high school
without much trouble but might have trouble completing a college degree. The person
with an IQ of 115 would be able to complete college without much trouble. A difference
of one standard deviation is definitely a big difference.

When Cohen defined his Cohen’s d, he said that a d = 0.2 would be considered a
small effect, a d = 0.5 would be a moderate effect, and a d = 0.8 would be a large effect.
The following three figures give you a visual of these three d values. Figure 7.3a has
a Cohen’s d of 0.2 and shows the distribution of two groups. Clearly, there is a lot of
overlap and this is a small effect. Those in the treatment group are the distribution
under the solid line and those in the control group are the distribution under the dashed
line.

Figure 7.3b shows a medium effect, where there is still a lot of overlap. Even in
figure 7.3c, where the effect is described as large, there is a lot of overlap. Indeed,
the majority of people under the control-group distribution would also fall under the
treatment-group distribution, and vice versa.
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(c) d = 0.8, large effect

Figure 7.3. Cohen’s d effects

You can see how Cohen’s d is important to power. It would take a very large sample
to show a statistically significant difference between the two groups if you insist on being
able to detect a small effect. It would take a much smaller sample to be able to detect
a statistically significant effect for the large effect.

To estimate power, we do not need to first estimate the effect size, but we need to
decide whether we want to detect a small, medium, or large effect. If a cost-benefit
analysis shows that a small difference would be important, then we need a big enough
sample to detect a small effect. If any improvement or any difference between the null
and the alternative hypothesis would be important, then a small effect size is what you
have. Otherwise, you may only be interested in demonstrating a difference if the effect
size is moderate or large. This is a decision you need to make.

Looking at the equation defining Cohen’s d, we need to estimate the pooled standard
deviation, which is often challenging to do. Suppose that you have an intervention
designed to reduce depression. You know that the depression score runs from 0 to 50.
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Reading literature where this scale has been used, you may find that several authors
reported standard deviations for their samples. You could use one of those values as
your standard deviation. If you are unable to find a published standard deviation, you
might run a pretest on 30 people and compute the standard deviation for this sample.
If you cannot do that, you can make an intelligent guess. A good guess would be the
interquartile range divided by 1.35, but you are not likely to know the interquartile
range. So here is a very crude way to guess what the standard deviation is. We know
that 4 standard deviations covers about 95% of a normal distribution. We might think
that very few people would score below 5 or above 45 on our 0 to 50 scale of depression.
If that is the case, then perhaps about 95% of the people would have a score between
5 and 45. Our guess of the standard deviation would be (45− 5)/4 = 10. Then we can
use this value of 10 in our estimation of power.

We also need some way to estimate the means for the two groups. Again, if we have
any past research or a pilot study, we might get good estimates of the mean. But let’s
suppose that we have no available information to help us estimate the means. We can
use Cohen’s d to give us a difference of means. The difference of means, (Mc−Mt)/10,
is 0.2 for a small effect size, 0.5 for a medium effect size, and 0.8 for a large effect size.
Thus SD× 0.2 = 10× 0.2 = 2 for a small difference of means, 10× 0.5 = 5 for a medium
difference of means, and 10× 0.8 = 8 for a large difference of means.

If we want to be able to detect a small difference of means on a depression scale
that ranges from 0 to 50, we could pick as examples reasonable values that are 2 points
apart, for example, 35 and 37, 30 and 32, or 38 and 40. If we have a large effect size,
then we would pick means that are within our scale range and are 8 points apart, such
as 30 and 38, 25 and 33, or 35 and 43.

With this background on picking a mean and a standard deviation, we are ready for
our power analysis. Here is what we know or assume:

1. Two-sample comparison of means (two independent samples)

2. Two-tailed test

3. α = 0.05

4. Small effect size, Mc = 35, Mt = 37; SD = 10

5. Desired power = 0.90

6. Nc = Nt, so the ratio is 1

7. SD for both groups approximately 10

Beginning with Stata 13, the new power command can be used to estimate our
two-sample means test. Let’s open the dialog box for power analysis; select Statistics ⊲
Power and sample size. A control panel with many options opens instead of a dialog box
like we have previously seen; see figure 7.4. From this control panel, we can easily open
any power dialog box.
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Figure 7.4. Power and sample-size control panel

The left pane organizes the methods, and the right pane displays the methods cor-
responding to the selection in the left pane. Because we are comparing two means from
independent samples, we will use the power twomeans command. To open the related
dialog box, select Population parameter ⊲ Means from the left pane, and then select Test
comparing two independent means from the right pane. After you read the rest of this
section and perhaps the Stata Power and Sample-Size Reference Manual (StataCorp
2013b), you will be able to apply the following ideas to other types of power analysis.
For now, we will focus on the commands rather than using the menu system.

How many people do we need, combined across the two groups, to have a power of
0.80, assuming our means are M1 = 35 and M2 = 37, SD1 = SD2 = 10? Because both
standard deviations are assumed to be equal, we will enter only one of them. (If we had
reason to believe the standard deviations were different, say, SD1 = 10 and SD2 = 15,
our command would be power twomeans 35 37, sd1(10) sd2(10) power(0.80) and
the Satterthwaite’s t test assuming unequal variances adjustment would be made). Here
are the command and results:
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. power twomeans 35 37, sd(10) power(0.80)

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.0000

m1 = 35.0000
m2 = 37.0000
sd = 10.0000

Estimated sample sizes:

N = 788
N per group = 394

In the above command, 35 37 are our guesses on what the means might be, sd(10)
is our guess on what the standard deviation might be in both groups, and power(0.08)

is provided as is commonly done in power analysis because a power of 0.08 is considered
adequate in most applications. How do you pick the mean values for the command?
These should be values that represent the minimum difference that would be clinically
important. As explained above, this combinations of means and standard deviations
would represent a small effect size of d = 0.20, that is, (35− 37)/10. We could use any
values for the means that are about a fifth of a standard deviation apart if a small effect
size would have clinical or substantive importance.

The results indicate that we are using a t test and the SD1 = SD2. We are using a
two-tailed test (the default) because our alternative hypothesis is that the two means
are not equal (that is, != is read as not equal). The results show our assumed alpha is
0.05 (the default). If you wanted a different alpha, say, we wanted alpha < 0.001, we
would add the option alpha(0.001). We have specified a power of 0.80 with M1 = 35
and M2 = 37. Both samples are assumed to have a standard deviation of 10. The
results also show the estimated sample sizes of N = 788 with 394 people in each of our
groups.

If we had typed power twomeans 35 37, sd(10) power(0.80) onesided, Stata
would have estimated the sample sizes based on an alternative hypothesis of M2 > M1

for a one-sided test. Try this, and you should get a total N = 620 with 310 people
needed in each group.

Sometimes, it is much easier to obtain participants for the control group than it is
for the intervention group or vice versa. Suppose you wanted a power of 0.90 and you
believe you can get three people in the control group for every person in the intervention
group. Unequal sample size can lead to misleading results, especially when the variances
are also unequal, but let’s estimate the power where the ratio of the control group to
the intervention group is three to one. We use the nratio(3) option. This will give us
the total sample size we need and the size we need in each group with the restriction
that we have three times as many participants in the control group as we have in the
intervention group:
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. power twomeans 35 37, sd(10) power(0.80) nratio(3)

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.0000

m1 = 35.0000
m2 = 37.0000
sd = 10.0000

N2/N1 = 3.0000

Estimated sample sizes:

N = 1052
N1 = 263
N2 = 789

Suppose you wanted to know how much power you would have if you could afford a
sample of 1,000 people with 500 in each group.

. power twomeans 35 37, sd(10) n(1000)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 1000

N per group = 500
delta = 2.0000

m1 = 35.0000
m2 = 37.0000
sd = 10.0000

Estimated power:

power = 0.8848

The results show that if you had 1,000 people with 500 in each group you would
have a power of 0.88.

In some applications, you have little control over your group size. You might want
to know how great the difference would need to be to give you a power of 0.80 when
you know you will have 100 people in each of your groups. We would only specify one
of the group means, and Stata will give us the value the other group mean would need
to be to have the power of 0.80 with 200 people divided so that 100 of them were in
each group.
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. power twomeans 35, sd(10) power(0.80) n(200)

Performing iteration ...

Estimated experimental-group mean for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1; m2 > m1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 200
N per group = 100

m1 = 35.0000
sd = 10.0000

Estimated effect size and experimental-group mean:

delta = 3.9814
m2 = 38.9814

The results show that the group mean for the treatment group would need to be
38.98 or more to have a power of 0.80 with 100 participants in each group and both
groups having a standard deviation of 10.00. You could convert this to a Cohen’s d
measure of effect size, d = (38.981 − 35.000)/10 = 0.398. You would have a power of
0.80 to detect a difference with this effect size. If only a moderate (d = 0.50) or large
(d = 0.80) effect would be clinically important, then this study should be alright.

It is generally not recommended to do a power analysis after you have run an ex-
periment. However, this may sometimes be useful. Some researchers conduct poorly
designed studies that are underpowered. That is, there could be a clinically important
difference between the means, but because the sample size was too small, the differ-
ence is not statistically significant. So far, we have been using a fairly small difference
37− 35 = 2. This is a difference of just a fifth of a standard deviation, d = 2/10 = 0.20.
Suppose there was a substantial difference of half a standard deviation. The treat-
ment group would need to have a mean of 40 in this case, and the difference would be
d = 5/10 = 0.50 or half a standard deviation.

Unfortunately, the researchers did not do a power analysis prior to conducting their
study and settled on having just 10 participants in the control group and 10 in the
treatment group for a total N = 20. Did they have a reasonable power to detect a
substantial difference of half a standard deviation? Let’s see.
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. power twomeans 35 40, n1(10) n2(10) sd(10)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 20
N1 = 10
N2 = 10

delta = 5.0000
m1 = 35.0000
m2 = 40.0000
sd = 10.0000

Estimated power:

power = 0.1851

Here we specify the means, 35 and 40, and then for the options we specify the N ’s
for each group and the standard deviation. The result is power = 0.185. Remember
what power means: the researchers had only an 18.5% chance of finding a significant
difference given that there was a substantial difference of half a standard deviation. I
would not want to reject the efficacy of the intervention the researchers found to be
insignificance because their design was grossly underpowered.

Power analysis is highly dependent on the assumptions you make:

• What is a clinically important difference?

• What is the standard deviation of each group?

• How much power do I want to have?

• What alpha level am I using?

If you make small changes in how you answer any of these questions, you will get
very different results. We used an effect size of d = 0.20 with an SD1 = SD2 = 10.0 to
select our means of 35 and 37. Try slightly different means, say, 35 and 36 or 35 and 38.
These small changes in the minimum difference you consider clinically important make
a huge difference in the sample sizes you would need. Increasing your desired power has
a similar effect. You can obtain the results by typing

. power twomeans 35 (36 37 38), sd(10) power(0.80)

The positive value of power analysis is it helps us to plan our studies and to justify
what we are doing when we are requesting funding for our project. If a funding agency
considers a small effect to be substantively important, they will not want to fund us if
we have too small of a sample to detect such an effect. On the other hand, if we request
funding for a very large sample when we have adequate power for a much smaller sample,
the funding agency will not want to waste its money on the excessively large sample.
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7.11 Nonparametric alternatives

The examples in this chapter for t tests have assumed that the outcome or dependent
variable is measured on at least the interval level. The examples also assumed that
both groups have equal variances in their populations and are normally distributed. The
tests we have covered are remarkably robust against violations of these assumptions, but
sometimes we want to use tests that make less-challenging assumptions. Nonparametric
alternatives to conventional t tests are such tests. These tests have some limitations of
their own, including being somewhat less powerful than the t test. Here are examples
of nonparametric alternatives available in Stata.

7.11.1 Mann–Whitney two-sample rank-sum test

If we assume that we have ordinal measurement rather than interval measurement,
we can do the rank-sum test. We can test the hypothesis that two independent sam-
ples (that is, unmatched data) are from a population distribution by using the Mann–
Whitney two-sample rank-sum test. The rank-sum test works for both ordinal and
interval data.

This test involves a simple idea. It combines the two groups into one group and
ranks the participants from top to bottom. The highest score gets a rank of N (8,871
in this example), and the lowest score gets a rank of 1. If one group has higher scores
than the other group, that group should have a predominance of higher ranks. If girls
report that more of their friends smoke, they should have more of the top ranks, and
boys should have more of the lower ranks. If girls and boys have the same distribution,
then both groups should have about the same number of high ranks and low ranks. In
other words, the sum of the girls’ ranks should be about the same as the sum of the
boys’ ranks.

The test computes the sum of ranks for each group and compares this with what we
would expect by chance. Using data from the National Longitudinal Survey of Youth
1997 (nlsy97 chapter7.dta), we can compare the answers girls and boys give on how
many of their friends smoke. They were asked what percentage of their friends smoke,
and they answered in broad categories that were coded 1–5. Treating these categories
as ordinal, we can do a rank-sum test. I will not show the dialog box for this, but the
command and results are
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. ranksum psmoke97, by(gender97)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

gender97 obs rank sum expected

1 4540 19130393 20139440
2 4331 20221363 19212316

combined 8871 39351756 39351756

unadjusted variance 1.454e+10
adjustment for ties -7.360e+08

adjusted variance 1.380e+10

Ho: psmoke97(gender97==1) = psmoke97(gender97==2)
z = -8.589

Prob > |z| = 0.0000

This output shows that there is a significant difference of z = -8.589. We should also
report the medians and means so that the direction of this difference is clear. The rank
test compares the entire distribution rather than a particular parameter, such as the
mean or median.

7.11.2 Nonparametric alternative: Median test

Sometimes you will want to compare the medians of two groups rather than the means.
Whereas the Mann–Whitney rank-sum test compares entire distributions, the median
test performs a nonparametricK-sample test on the equality of medians. It tests the null
hypothesis that the K samples were drawn from populations with the same medians. In
the case of two samples (K = 2), a chi-squared statistic is calculated with and without
a continuity correction.

Ideally, there would be no ties, and a median could be identified that had exactly
50% of the observations above it and 50% below it. With this example, the dependent
variable is on a 1-to-5 scale, and there are many ties; for example, hundreds of students
have a score of 2. This means that there is not an equal number of observations that
are above and below the median for either group. I will not illustrate the dialog box for
this command, but the command and results are



7.12 Summary 185

. median psmoke97, by(gender97) exact medianties(split)

Median test

Greater
than the youth gender 1997

median 1 2 Total

no 2,904 2,470 5,374
yes 1,636 1,861 3,497

Total 4,540 4,331 8,871

Pearson chi2(1) = 44.6269 Pr = 0.000
Fisher’s exact = 0.000

1-sided Fisher’s exact = 0.000

Continuity corrected:
Pearson chi2(1) = 44.3371 Pr = 0.000

The median test makes sense for comparing skewed variables, such as income. We
would report the example as χ2(1) = 44.63, p < 0.001. If we set up a hypothesis,
we would reject the null hypothesis, H0: Med1 = Med2, in favor of the alternative
hypothesis, Ha: Med1 6= Med2.

7.12 Summary

The tests presented in this chapter are among the most frequently used statistical tests.
As you read this chapter, you may have thought of applications in which you can use a
t test or a z test for testing individual means and proportions or for testing differences.
These are extremely useful tests for people who work in an applied setting and need
to make decisions based on statistics. It is becoming a requirement to demonstrate
that any new program has advantages over older programs; it is not enough to say
that you believe that the new program is better or that you can “see” the difference.
You need to find appropriate outcomes, such as reading readiness, retention rate, loss
of weight, increased skill, or participant satisfaction. Then you need to show that the
new program has a statistically significant influence on the outcomes you select. If
you are designing an exercise program for older adults, there is not much reason to
implement your program unless you can demonstrate that it has a good retention rate,
that participants are satisfied with the program, and that behavioral outcome goals are
met.

In this chapter, we discussed statistical significance and substantive significance,
both of which are extremely important. If something is not statistically significant, we
do not have confidence that there is a real effect or difference; what we observed in
our data may be something that could have happened just by chance. There are two
major reasons why a result may not be statistically significant. The first is that the
result represents a small effect where there is little substantive difference between the
groups. The second is that we have designed our study with too few observations to show
significance, even when the actual difference is important. Therefore, I introduced the
basic Stata commands to estimate the sample size needed to do a study with sufficient
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power to show that an important result is statistically significant. We only touched the
surface of what Stata can do with power analysis, and I encourage you to check the
Stata reference manuals for more ways to estimate power and sample-size requirements.

When we have statistical significance, we are confident that what we observed in
our data represents a real effect that should not be attributed to chance. It is still
essential to evaluate how substantively significant the result is. With a large sample,
we may find a statistically significant difference of means when the actual difference is
small and substantively insignificant. Finding a significant result begs the question of
how important the result is. A statistically significant result may or may not be large
enough to be important.

Finally, we learned briefly about nonparametric alternatives to z tests and t tests.
These alternatives usually have less power but may be more easily justified in the
assumptions they make.

Sometimes we have more than two groups, and the t test is no longer adequate.
Chapter 9 discusses analysis of variance (ANOVA), which is an extension of the t test
that allows us to work with more than two groups. Before we do analysis of variance,
however, we will cover bivariate correlation and regression in chapter 8.

7.13 Exercises

When doing these exercises, you should create a do-file for each assignment; you might
name the do-file for the first exercise c7 1.do. Put these do-files in the directory where
you are keeping the Stata programs related to this book. Having these do-files will be
useful in the future if you need to redo one of these examples or want to do a similar
task. For example, you could use the do-file for the second exercise anytime you need
to do randomization of participants in a study.

1. According to the registrar’s office at your university, 52% of the students are
women. You do a web-based survey of attitudes toward student fees supporting
the sports program. You have 20 respondents, 14 of whom are men and 6 of
whom are women. Is there a gender bias in your sample? To answer this, create
a new dataset that has one variable, namely, sex. Enter a value of 1 for your first
14 observations (for your 14 males) and a value of 0 for your last 6 observations
(for your 6 females). Your data will have one column and 20 rows. Then do a
one-sample z test against the null hypothesis that p = 0.52. Explain your null
hypothesis. Interpret your results.

2. You have 30 volunteers to participate in an exercise program. You want to ran-
domly assign 15 of them to the control group and 15 to the treatment group. You
list them by name—the order being arbitrary—and assign numbers from 1 to
30. What are the Stata commands you would use to do the random assignment
(randomization without replacement)? Show how you would do this.
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3. You learned how to do a random sample without replacement. To do a random
sample with replacement, you use the bsample command. Repeat exercise 2, but
use the command bsample 15. Then do a tabulation to see if any observations
were selected more than once.

4. Using the approach you used in exercise 1, draw a random sample of 10 students
from a large class of 200 students. You use the class roster in which each student
has a number from 1 to 200. Show the commands you use, and set the seed at
953. List the numbers for the 10 students you select.

5. Open nlsy97 chapter7.dta. A friend says that Hispanic families have more chil-
dren than do other ethnic groups. Use the variables hh18 97 (number of children
under age 18) and ethnic97 (0 being non-Hispanic and 1 being Hispanic) to
test whether this is true. Are the means different? If the result is statistically
significant, how substantively significant is the difference?

6. Use the same variables as exercise 5. Use summarize, detail, and tabulate

to check the distribution of hh18 97. Do this separately for Hispanics and for
non-Hispanics. What are the medians of each group? Run a median test. Is the
difference significant? How can you reconcile this with the medians you computed?
(Think about ties and the distributions.)

7. You want to compare Democrats and Republicans on their mean scores on abortion
rights. From earlier uses of the scale, you know that the mean is somewhere around
50 and the standard deviation is about 15. Select an alpha level and the minimum
difference that you would find important. Justify your minimum difference (this
is pretty subjective, but you might think in terms of a proportion of a standard
deviation difference). How many cases do you need to have 80% power? How
many cases do you need to have 90% power? How many cases do you need to
have 99% power?

8. A friend believes that women are more likely to feel that abortion is okay under
any circumstances than are men because women have more at stake in a deci-
sion about whether to have an abortion. Use the General Social Survey 2002
dataset (gss2002 chapter7.dta), and test whether there is a significant differ-
ence between women and men (sex) on whether abortion is acceptable in any case
(abany).

9. You are planning to evaluate the effectiveness of Overeaters Anonymous to reduce
the body mass index (BMI) of participants. You will weigh each person at the start
of the intervention and then again after they have participated for 5 weeks. From
past research, you expect the average BMI to be 30 prior to the intervention. The
standard deviation is about 4. You want to be able to detect a difference if the
effect size is medium. How many people do you need to have in your intervention?

10. You are planning to compare how satisfied women and men are with a particular
weight loss program. You have 20 items measuring satisfaction and each item is
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scored from 1 for very dissatisfied to 5 for very satisfied. You are interested in
being able to detect a small effect size with alpha = 0.05 and power = 0.90. How
big of a sample will you need?

11. A researcher is planning a study of the effectiveness of a new method of teaching
a course on statistics. Students in one class get a traditional course, where all the
work is done without computers. Students in a different course (new method) do
half the work by hand and half using Stata. If you want a moderate effect size,
alpha of 0.05, and a power of 0.80, how many students are needed in each class?
The final examination is used to evaluate performance, and the mean score has
been around 80 with a standard deviation of 10.

12. You are planning an intervention to reduce test-taking anxiety. You have a 100-
point scale to measure anxiety and a pretest you did without any intervention had
a mean of 70 and a standard deviation of 15. You want to be able to show that a
true difference of means between your intervention group and your control group
should lower the anxiety by one third of a standard deviation or 5 points. You
want a power of 0.80.

a. How many students do you need in each group (control group and interven-
tion group) using a two-tail test?

b. How many using a one-tail test?

13. Suppose you are doing question 12, it is much more expensive to get measures for
the intervention group. Because of the cost of running the intervention, let’s say
it is two times as expensive to obtain students’ scores for the intervention group.
How many students do you need in the intervention group? The control group?

a. For a two-tail test?

b. For a one-tail test?
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8.1 Introduction to bivariate correlation and regression

Bivariate correlation and regression are used to examine the relationship between two
variables. They are usually used with quantitative variables that we assume are mea-
sured on the interval level. Some social-science statistics books present correlation first
and then regression, whereas others do just the opposite. You need to understand both
of these, but which comes first is sort of like asking whether the chicken or the egg came
first. In this chapter, I present topics in the following order:

1. Construct a scattergram. This is a graphic representation of the relationship
between two variables.

2. Superimpose a regression line. This is a straight line that best describes the linear
form of the relationship between two variables.

3. Estimate and interpret a correlation. This tells us the strength of the relationship.

4. Estimate and interpret the regression coefficients. This tells us the functional form
of the relationship.

5. Estimate and interpret Spearman’s rho as a rank-order correlation for ordinal
data.

189
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6. Estimate and interpret the reliability coefficient called alpha. This uses correlation
to assess the reliability of a measure.

7. Estimate and interpret kappa as a measure of agreement for categorical data.

In chapter 10, we will expand this process to include multiple correlation and multiple
regression. If you have a good understanding of bivariate correlation and regression,
you will be ready for chapter 10.

8.2 Scattergrams

Suppose that we are interested in the relationship between an adult man’s education
and the education his father completed. We believe that the advantages of education
are transmitted from one generation to the next. Fathers who have limited education
will have sons who have restricted opportunities, and hence they too will have limited
education. On the other hand, fathers who have high education will offer their sons
opportunities to get more education. When examining a relationship like this, we know
that it is not going to be “perfect”. We all know adult men who have far more education
than their own fathers, and we may know some who have far less.

To understand the relationship between these two variables, let’s use the dataset
gss2006 chapter8.dta and create a graph. Because this is a large dataset, a scatter-
gram will have so many dots that it will not make much sense. Suppose that we have
20 father–son dyads that have a father with a score of 15 and a son with a score of 15,
but just 1 father–son dyad that has a father with a score of 20 and a son with a score of
10. The 20 dyads and the 1 dyad would each appear as one dot on the graph, creating
a visual distortion of the relationship. (We will discuss ways to work around this later.)
To manage this problem, limit the scattergram to a random sample of 100 observations
by using the command sample 100, count.

How can you get the same result each time?

When you take a random sample of your data for a scattergram or for any other
purpose, you may want to make sure you get the same sample if you repeat the
process later. Random sampling is done by first generating a seed that instructs
Stata where to begin the random process. If you have a table of random numbers,
generating a seed is equivalent to picking where you will start in the table. By
setting the seed at a specific value, you can replicate your results. The easiest way
to select your subsample and make sure that you get the same subsample if you
repeat the process is with this pair of commands:

. set seed 123

. sample 100, count

Here I used a seed of 123. You can pick any number, and when you repeat the
command using the same number, you will get the same random sample.
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Because a father’s education comes before his son’s, the father’s education will be
the predictor (the X or independent variable). The son’s education will be the outcome
(the Y or dependent variable). By convention, a scattergram places the predictor on
the horizontal axis and the outcome on the vertical axis.

The interface is helpful when working with scattergrams because scattergrams have
so many options that it would be hard to remember them all. Open the dialog box by
selecting Graphics ⊲ Twoway graph (scatter, line, etc.). The resulting dialog box is shown
in figure 8.1.

Figure 8.1. Dialog box for a scattergram

Under the Plots tab, click on Create.... We will use the Basic plots and make sure
Scatter is highlighted. Type educ (Y variable) and paeduc (X variable), and click
on Accept. This returns you to the main Plots tab. Here you need to make sure
that Plot 1 is highlighted, and you can add features to the graph by using the other
tabs. Click on the if/in tab and type sex==1 in the If: (expression) box, because we
want to limit this graph to sons and sex==1 is the code for males. Click on the Y
axis tab and, under Title, type Son’s education. Click on the X axis tab and, under
Title, type Father’s education. Using the Titles tab, you can give the graph a title
of Scattergram relating father’s education to his son’s education and add
a note at the bottom of the graph, Data source: GSS 2006; random sample of N =

100. If you click on Submit, you will probably decide the title is too wide for the graph.
To make it fit better, you can click on Properties (to the right of the title) in the dialog
box and change the Size to Medium.

Click on Submit. This gives a nice graph, but the y-axis title might be too close to
the numbers on the y axis. If you want to move that title away from the numbers, then
go back to the Y axis tab and click on Properties, which is to the right of the title. This
gives you several options. Go to the Advanced tab to change the Inner gap. Try putting
a 5 here. Click on Submit and see how you like the graph.

These dialog boxes are complex, but remember that you are not going to hurt Stata
or your data by trying different options. If you do not understand what an option does,
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just try it and see what happens. You can always return to the default value for the

option in the dialog box by clicking on the icon in the bottom left of the dialog box.

Here is the resulting Stata command. (Notice that in addition to what we have done
with the dialog box, I turned the legend off in the Legend tab. Also the command is
listed as you would see it in a do-file with the three forward slashes, ///, used as a line
break.) The resulting graph is shown as figure 8.2.

twoway (scatter educ paeduc) if sex==1, ytitle(Son’s education) ///
yscale(titlegap(5)) xtitle(Father’s education) ///
title(Scattergram relating father’s education to his son’s education, ///
size(medium)) note(Data source: GSS 2006; random sample of N = 100) legend(off)
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Data source: GSS 2006; random sample of N = 100

Scattergram relating father’s education to his son’s education

Figure 8.2. Scattergram of son’s education on father’s education

How do we interpret the resulting scattergram? There is a general pattern that
the higher the father’s education, the higher his son’s education, but there are many
exceptions. The data are for the United States. Some countries have a virtual caste
system, which permits little opportunity for upward mobility and little risk of downward
mobility. In those countries, the scattergram would fall close to a straight line, meaning
the father’s education largely determined his son’s education. In liberal democracies,
such as the United States, the relationship is only moderately strong, and there is a lot
of room for intergenerational mobility.

Can you think of relationships for which a scattergram would be useful? A geron-
tologist might want to examine the relationship between a score on the frequency of
exercise and the number of accidental falls an older person has had in the last year. Un-
like the results in figure 8.2, the older people who exercise more often might have fewer
falls. The scatter would start in the upper left and go down if those who exercise more
regularly are less prone to accidental falls. An educational psychologist might examine
the relationship between parental support and academic performance. All you need is a
pair of variables that are interval level or that you are willing to treat as interval level.



8.2 Scattergrams 193

What happens to the relationship between self-confidence among college students and
how long they have been in college? Is the initial level of self-confidence high? Does
it drop to a low point during the freshman year, only to gradually increase during the
sophomore, junior, and senior years? This is an empirical question whose answer could
be illustrated with a scattergram.

Rarely does a scattergram help when you have a very large sample, say, 500 or more
observations. However, there is a clever approach in Stata that tries to get around
this problem and that works for reasonably sized datasets: the sunflower command.
Sunflowers are used to represent clusters of observations. Sunflowers vary in the number
of “petals” they have. The more petals there are, the more observations are at that
particular coordinate point. Even the sunflower command is of limited value with
really large samples. If you want to try the sunflower command, you can enter help
sunflower to see the various options. When you are in the Viewer window with the
help file for the sunflower command open, you can select Dialog ⊲ sunflower from the
menu at the top right corner to open the sunflower dialog box. If you have trouble
finding a dialog box but you know the name of the command, you can always access
the dialog box through the help file in this way.

A more common approach is to add “jitter”, which is spherical random noise, to the
markers (dots) where there are several observations with the same score on both the X
variable and the Y variable. To do this, return to the twoway dialog box and click on
the Plots tab. Make sure that Plot 1 is highlighted, and click on Edit. Next you will
click on Marker properties and click on the Advanced tab. Check the box for Add jitter
to markers and type 6 for the Noise factor. You might want to set the seed at some
number, here 222. The resulting graph (figure 8.3) is a more realistic representation of
our 100 observations.
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Scattergram relating father’s education to his son’s education

Figure 8.3. Scattergram of son’s education on father’s education with “jitter”
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The command that results from the twoway dialog box and produces the above graph
is

twoway (scatter educ paeduc, jitter(6) jitterseed(222)) if sex==1,
ytitle(Son’s education) yscale(titlegap(5)) xtitle(Father’s education)
title(Scattergram relating father’s education to his son’s education,
size(medium)) note(Data source: GSS 2006; random sample of N = 100) legend(off)

Predictors and outcomes

Different statistics books and different substantive areas vary in the terms they use
for predictors and outcomes. We need to be comfortable with all these different
terms. A scattergram is a great place to really understand the terminology because
we must have one variable on the horizontal x axis and another variable on the
vertical y axis. Sometimes it helps to think of the X variable as a cause and the
Y variable as an effect. This works if we can make the statement “X is a cause
of Y ”. It makes sense to say that the father’s education is a cause of his son’s
education rather than the other way around. We say “a” cause rather than “the”
cause because many variables will contribute to how much education a son will
achieve.

People who are uncomfortable with cause–effect terminology often call the
X variable the independent variable and the Y variable the dependent variable.
Which variable is dependent? In the scattergram, we would say that the son’s
education is dependent on his father’s education. We would not say that the
father’s education depends on his son’s education. The dependent variable is
the Y variable, and the other variable is the X variable or the independent
variable—because it does not depend. That is, a father’s education does not
depend on his son’s education.

Other people prefer to think of an outcome variable and a predictor. We do
not need to know what causes something, but we can discover what predicts it.
The son’s education is an outcome, and the father’s education is the predictor.
Predictors may or may not meet a philosopher’s definition of a cause. Couples who
fight a lot before they get married are more likely to fight after they are married, so
we would say that conflict prior to marriage predicts conflict after marriage. The
premarriage conflict is the predictor, and the postmarriage conflict is the outcome.

Sometimes none of these terms makes a lot of sense. Wives who have high
marital satisfaction more often have husbands who have high marital satisfaction.
Both variables depend on each other and simultaneously influence each other.
Sometimes we refer to these kinds of variables as having reciprocal relationships.
In such a case, which variable is the X variable and which is the Y variable is
arbitrary.
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8.3 Plotting the regression line

Later in this chapter, we will learn how to do a regression analysis. For now, I will simply
introduce the concept and show how to plot it on the scattergram. The regression line
shows the form of the relationship between two variables. Ordinarily, we assume that
the relationship is linear. For example, what is the relationship between income and
education? To answer this question, we need to know how much income you could
expect to make if you had no education (intercept or constant) and then how much
more income you can expect for each additional year of education (slope). Suppose that
you could expect to make $10,000 per year, even with no formal education, and for each
additional year of education, you could expect to earn another $3,000. You could write
this as an equation

Estimated income = 10000 + 3000(educ)

where 10000 is the estimated income if you had no education, that is, educ = 0. This is
called the intercept or constant. The 3000 is how much more you could expect for each
additional year of educ, and it is called the slope. Thus a person who has 12 years of
education would have an estimated income of 10000 + 3000(12) = 46000 or $46,000.

A symbolic way of writing a regression equation is

Ŷ = a+ b(X)

where a is the intercept or constant, and b is the slope. The Ŷ (pronounced Y-hat) is
the dependent variable (income), and the circumflex means that it is estimated (many
statistics texts use a ̂ over the Y for an estimated value). The X is the independent
variable (educ). Let’s use the example relating educational attainment of fathers and
sons to see how the regression line appears. We will not get the values of a and b until
later, but we will get a graph with the line drawn for us.

Return to your Plots tab, or if you closed the dialog box by clicking on OK instead
of Submit, you will need to reopen it by selecting Graphics ⊲ Twoway graph (scatter,
line, etc.). We already have the information entered for Plot 1, the scattergram. Click
on Create.... Previously, we selected Basic plots and Scatter. This time, we select Fit
plots and make sure that Linear prediction is highlighted. We type educ and paeduc

as the Y variable and X variable, respectively. Click on Submit, and the graph appears
as shown in figure 8.4.
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Scattergram relating father’s education to his son’s education

Figure 8.4. Scattergram of son’s education on father’s education with a regression line

The linear regression line gives you a good sense of the relationship. It shows how the
higher the father’s education is, the higher his son’s education is on average. The obser-
vations are not extremely close to the regression line, meaning that there is substantial
intergenerational mobility. Sons whose fathers have little education are expected to
have more education than their fathers, but sons whose fathers have a lot of education
are expected to have a little less education than their fathers. Can you see this in the
scattergram? Pick a father who has 5 years of education, X = 5. Project a line straight
up to the regression line and then straight over to the Y axis, and you can see that we
would expect his son to have about Y = 10 years of education. Pick a father who has
20 years of education, X = 20. Can you see that we would expect his son to have less
education than he did?

8.4 An alternative to producing a scattergram, binscatter

Using a scattergram with a large sample is impractical, and taking a subsample of ob-
servations or adding the jitter() option is an imperfect solution. Michael Stepner is
the author of a user-written command, binscatter. This command develops an ear-
lier version by Jessica Laird and had guidance from Raj Chetty, John Friedman, and
Lazlo Sandor. It produces a remarkably simple solution for conveying a relationship by
plotting the mean value of the dependent variable for equal-sized bins on the contin-
uous independent variable. Rather than having hundreds or thousands of dots on the
scattergram, we have a small number of means. The set of mean outcome scores for
the bins gives a clearer idea of the relationship than does a scatter when there are a
large number of observations. We will illustrate this by using a few of the commands
borrowed from the binscatter help file.

First, you need to install the command, because it is not part of official Stata. In
your Command window, type ssc install binscatter. This will install the command
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and the help file. The command can do much more than I illustrate, so you might want
to read the help file, help binscatter. The help file uses a dataset that is installed
with Stata, so you can type

. sysuse nlsw88

. keep if age > 34 & age < 45 & race < 3

The first command opens the 1988 National Longitudinal Survey of Women. The
second command restricts our sample to people who are between ages 35 and 44 and
who are either white or black. We want to know the relationship between tenure on a
job and a woman’s wages. Now type a scatter command and a binscatter command
to see the differences:

Here is the scatter command, which creates the graph in figure 8.5.

. scatter wage tenure
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Figure 8.5. Scattergram relating hourly wage to job tenure

We have over 2,000 observations in this dataset, and you can see that it is hard to
discern any pattern in the relationship. The binscatter command divides the indepen-
dent variable, tenure, into a series of bins. The default is 20 bins. (If the independent
variable has fewer than 20 distinct values, binscatter will compute the mean for each
value.) binscatter then places a dot for the mean on the outcome variable, wage,
for each bin. Here is the binscatter command, followed by the resulting graph in
figure 8.6.
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. binscatter wage tenure
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Figure 8.6. Average wage by tenure

As you can see, the binscatter command also places a linear regression line on the
figure. Unlike the scattergram, the graph created by binscatter shows a consistent
increase in wages over years. We would have missed this finding completely if we relied
on the scattergram. Examining the graph created by binscatter, you might say that a
curve would fit better. Fitting a curve will be covered in chapter 10, but the option for
binscatter is line(qfit). We will not show the result, but you can run the command
yourself to see how the curve fits.

Can you see an alternative to using a curve? Carefully examining the binscatter

graph, we see that there is a very rapid increase in wages the first 2 or 3 years. After
that, an increase is evident, but the increase is less dramatic. We could use two linear
regressions. The point of discontinuity looks to be around 3 years of tenure. Between
0 and 3 years, there is a dramatic increase, but from 3 years to 20 years, there is
a much less dramatic increase in wages. Here is the binscatter command followed
by the resulting graph in figure 8.7. Notice that the rd(3.0) option is the point of
discontinuity where the rate of growth changes. You might try this option with slightly
different values, such as rd(2.5). Do you see if a different possible point of discontinuity
produces similar results?
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. binscatter wage tenure, rd(3.0)
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Figure 8.7. Relationship between wages and tenure with a discontinuity in the relation-
ship at 3 years

We might want to see if this relationship varies by race. We may hypothesize that the
rate of increase is less dramatic for blacks than it is for whites because of discrimination.
We have already restricted our sample to blacks and whites, and we can show a separate
result for each group by using

. binscatter wage tenure, rd(3.0) by(race)

Figure 8.8 shows the result. It appears that both black and white women have a
positive relationship between wages and tenure and the discontinuity applies to both
groups. The biggest contrast is that black women are systematically paid less than
white women regardless of their tenure. The rate of increase does not appear to be
greater for whites than it is for blacks, but the main take away is that black women
have lower wages regardless of their tenure. In figure 8.8, I used the Graph Editor to
slightly modify the graph produced by binscatter.
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Figure 8.8. Relationship between wages and tenure with a discontinuity in the relation-
ship at 3 years; whites shown with solid lines and blacks shown with dashed lines

8.5 Correlation

Your statistics textbook gives you the formulas for computing correlation, and if you
have done a few of these by hand, you will love the ease of using Stata. We will
not worry about the formulas. Correlation measures how close the observations are
to the regression line. We need to be cautious in interpreting a correlation coefficient.
Correlation does not tell us how steep the relationship is; that measure comes from the
regression. You may have a steep relationship or an almost flat relationship, and both
relationships could have the same correlation. Suppose that the correlation between
education and income is r = 0.3 for women and r = 0.5 for men. Does this mean that
education has a bigger payoff for men than it does for women? We really cannot know
the answer from the correlation. The correlation tells us almost nothing about the form
of the relationship. The fact that the r is larger for men than it is for women is not
evidence that men get a bigger payoff from an additional year of education. Only the
regression line will tell us that. The r = 0.5 for men means that the observations for
men are closer to the regression line than are the observations for women (r = 0.3) and
that the income of men is more predictable than that of women. Correlation also tells
us whether the regression line goes up (r will be positive) or down (r will be negative).
Strictly speaking, correlation measures the strength of the relationship only for how
close the dots are to the regression line.

Bivariate correlation is used by social scientists in many ways. Sometimes we will be
interested simply in the correlation between two variables. We might be interested in
the relationship between calorie consumption per day and weight loss. If you discover
that r = −0.5, this would indicate a fairly strong relationship. Generally, a correlation
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of |r| = 0.1 is a weak relationship, |r| = 0.3 is a moderate relationship, and |r| = 0.5 is
a strong relationship. An r of −0.3 and an r of 0.3 are equally strong. The negative
correlation means that as X goes up, Y goes down; the positive correlation means that
as X goes up, Y goes up.

We might be interested in the relationship between several variables. We could
compare three relationships between 1) weight loss and calorie consumption, 2) weight
loss and the time spent in daily exercise, and 3) weight loss and the number of days per
week a person exercises. We could use the three correlations to see which predictor is
more correlated with weight loss.

Suppose that we wanted to create a scale to measure a variable, such as political
conservatism. We would use several specific questions and combine them to get a score
on the scale. We can compute a correlation matrix of the individual items. All of them
should be at least moderately correlated with each other because they were selected to
measure the same concept.

When we estimate a correlation, we also need to report its statistical significance
level. The test of statistical significance of a correlation depends on the size or substan-
tive significance of a correlation in the sample and depends on the size of the sample.
An r = 0.5 might be observed in a very small sample, just by chance, even though there
were no correlations in the population. On the other hand, an r = 0.1, although a weak
substantive relationship, might be statistically significant if we had a huge sample.
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Statistical and substantive significance

It is easy to confuse statistical significance and substantive significance. Usually,
we want to find a correlation that is substantively significant (r is moderate or
strong in our sample) and statistically significant (the population correlation is
almost certainly not zero). With a very large sample, we can find statistical
significance even when r = 0.1 or less. What is important about this is that we
are confident that the population correlation is not zero and that it is very small.
Some researchers mistakenly assume that a statistically significant correlation
automatically means that it is important when it may mean just the opposite—we
are confident it is not very important.

With a very small sample, we can find a substantively significant r = 0.5 or
more that is not statistically significant. Even though we observe a strong
relationship in our small sample, we are not justified in generalizing this finding
to the population. In fact, we must acknowledge that the correlation in the
population might even be zero.

• Substantive significance is based on the size of the correlation.

• Statistical significance is based on the probability that you could get the
observed correlation by chance if the population correlation is zero.

Now let’s look at an example that we downloaded from the UCLA Stata Portal. As
mentioned at the beginning of the book, this portal is an exceptional source of tutorials,
including movies on how to use Stata. The data used are from a study called High School
and Beyond. Here you will download a part of this dataset used for illustrating how to
use Stata to estimate correlations. Go to your command line, and enter the command

. use http://www.ats.ucla.edu/stat/stata/notes/hsb2, replace

You will get a message back that you have downloaded 200 cases, and your listing of
variables will show the subset of the High School and Beyond dataset. If your computer
is not connected to the Internet, you should use one that is connected, download this
file, save it to a flash disk, and then transfer it to your computer. This dataset is also
available from this book’s webpage.

Say that we are interested in the bivariate correlations between read, write, math,
and science skills for these 200 students. We are also interested in the bivariate re-
lationships between each of these skills and each students’ socioeconomic status and
between each of these skills and each students’ gender. We believe that socioeconomic
status is more related to these skills than gender is.
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It is reasonable to treat the skills as continuous variables measured at close to the
interval level, and some statistics books say that interval-level measurement is a critical
assumption. However, it is problematic to treat socioeconomic status and gender as
continuous variables. If we run a tabulation of socioeconomic status and gender, tab1
ses female, we will see the problem. Socioeconomic status has just three levels (low,
middle, and high) and gender has just two levels (male and female). This dataset has all
values labeled, so the default tabulation does not show the numbers assigned to these
codes. We can run codebook ses female and see that female is coded 1 for girls and
0 for boys. Similarly, ses is coded 1 for low, 2 for middle, and 3 for high. If you have
installed the fre command using ssc install fre, you can use the command fre

female ses to show both the value labels and the codes, as we discussed in section 5.4.
We will compute the correlations anyway and see if they make sense.

Stata has two commands for doing a correlation: correlate and pwcorr. The
correlate command runs the correlation using a casewise deletion (some books call
this listwise deletion) option. Casewise deletion means that if any observation is missing
for any of the variables, even just one variable, the observation will be dropped from the
analysis. Many datasets, especially those based on surveys, have many missing values.
For example, it is common for about 30% of people to refuse to report their income.
Some survey participants will skip a page of questions by mistake. Casewise deletion can
introduce serious bias and greatly reduce the working sample size. Casewise deletion
is a problem for external validity or the ability to generalize when there are a lot of
missing data. Many studies using casewise deletion will end up dropping 30% or more
of the observations, and this makes generalizing a problem even though the total sample
may have been representative.

The pwcorr command uses a pairwise deletion to estimate each correlation based on
all the people who answered each pair of items. For example, if Julia has a score on write

and read but nothing else, she will be included in estimating the correlation between
write and read. Pairwise deletion introduces its own problems. Each correlation
may be based on a different subsample of observations, namely, those observations who
answered both variables in the pair. We might have 500 people who answered both var1

and var2, 400 people who answered both var1 and var3, and 450 people who answered
both var2 and var3. Because each correlation is based on a different subsample, under
extreme circumstances it is possible to get a set of correlations that would be impossible
for a population.

To open the correlate dialog box, select Statistics ⊲ Summaries, tables, and tests ⊲
Summary and descriptive statistics ⊲ Correlations and covariances. To open the pwcorr

dialog box, select Statistics ⊲ Summaries, tables, and tests ⊲ Summary and descriptive
statistics ⊲ Pairwise correlations. Because the command is so simple, we can just enter
the command directly.
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. correlate read write math science ses female
(obs=200)

read write math science ses female

read 1.0000
write 0.5968 1.0000
math 0.6623 0.6174 1.0000

science 0.6302 0.5704 0.6307 1.0000
ses 0.2933 0.2075 0.2725 0.2829 1.0000

female -0.0531 0.2565 -0.0293 -0.1277 -0.1250 1.0000

We can read the correlation table going either across the rows or down the columns.
The r = 0.63 between science and read indicates that these two skills are strongly
related. Having good reading skills is probably helpful to having good science skills. All
the skills are weakly to moderately related to socioeconomic status, ses (r = 0.21 to
r = 0.29). Having a higher socioeconomic status does result in higher expected scores
on all the skills for the 200 adolescents in the sample.

A dichotomous variable, such as gender, that is coded with a 0 for one category
(man) and 1 for the other category (woman) is called a dummy variable or indicator
variable. Thus female is a dummy variable (a useful standard is to name the variable
to match the category coded as 1). When you are using a dummy variable, the stronger
the correlation is, the greater impact the dummy variable has on the outcome variable.
The last row of the correlation matrix shows the correlation between female and each
skill. The r = 0.26 between being a girl and writing skills means that girls (they were
coded 1 on female) have higher writing skills than boys (they were coded 0 on female),
and this is almost a moderate relationship. You have probably read that girls are not
as skilled in math as are boys. The r = −0.03 between female and math means that in
this sample, the girls had just slightly lower scores than boys (remember an |r| = 0.1
is weak, so anything close to zero is very weak). If, instead of having 200 observations,
we had 20,000, this small of a correlation would be statistically significant. Still, it is
best described as very weak, whether it is statistically significant or not. The math
advantage that is widely attributed to boys is very small compared with the writing
advantage attributed to girls.

Stata’s correlate command does not give us the significance of the correlations
when using casewise deletion. The pwcorr command is a much more general command
to estimate correlations because it has several important options that are not available
using the correlate command. Indeed, the pwcorr command can do casewise/listwise
deletion as well as pairwise deletion. When you are generating a set of correlations, you
usually want to know the significance level, and it would be nice to have an asterisk
attached to each correlation that is significant at the 0.05 level. You can use the dialog
box or simply enter the command directly. We use the same command as we did for
correlate, substituting pwcorr for correlate and adding listwise, sig, and star(5)

as options:
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. pwcorr read write math science socst ses female, listwise sig star(5)

read write math science socst ses female

read 1.0000

write 0.5968* 1.0000
0.0000

math 0.6623* 0.6174* 1.0000
0.0000 0.0000

science 0.6302* 0.5704* 0.6307* 1.0000
0.0000 0.0000 0.0000

socst 0.6215* 0.6048* 0.5445* 0.4651* 1.0000
0.0000 0.0000 0.0000 0.0000

ses 0.2933* 0.2075* 0.2725* 0.2829* 0.3319* 1.0000
0.0000 0.0032 0.0001 0.0000 0.0000

female -0.0531 0.2565* -0.0293 -0.1277 0.0524 -0.1250 1.0000
0.4553 0.0002 0.6801 0.0714 0.4614 0.0778

In this table, the listwise correlation between science and reading is r = 0.63. The
asterisk indicates this is significant at the 0.05 level. Below the correlation is the prob-
ability and we can say that the correlation is significant at the p < 0.001 level. The
reported probability is for a two-tailed test. If you had a one-tailed hypothesis, you
could divide the probability in half.

If you want the correlations using pairwise deletion, you would also want to know
how many observations were used for estimating each correlation. The command for
pairwise deletion that gives you the number of observations, the significance, and an
asterisk for correlations significant at the 0.05 level is

. pwcorr read write math science ses female, obs sig star(5)

Notice that the only change was to replace the listwise option with the obs option.
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Multiple-comparison procedures with correlations

When you are estimating several correlations, the reported significance level given
by the sig option can be misleading. If you made 100 independent estimates
of a correlation that was zero in the population, you would expect to get five
significant results by chance (using the 5% level). In this example, we had 21
correlations, and because we are considering all of them, we might want to adjust
the probability estimate. One of the ways to adjust the probability estimate in
the pwcorr command is with the option bon, short for the Bonferroni multiple-
comparison procedure. You can get this procedure simply by adding the bon option
at any point after the comma in the pwcorr command. The complete command
would be (add the listwise option if you want to use casewise/listwise deletion)

. pwcorr read write math science socst ses female, bon obs sig star(5)

Without this correction, the correlation between write and ses, r = 0.21, had a p =
0.0032 and was significant at the 0.01 level. With the Bonferroni adjustment, the
r = 0.21 does not change, but the correlation now has a p = 0.067 and is no longer
statistically significant. (An alternative multiple-comparison procedure uses the
sidak option, which produces the Šidák-adjusted significance level.) It is difficult
to give simple advice on when you should or should not use a multiple-comparison
adjustment. If your hypothesis is that a certain pattern of correlations will be
significant and this involves the set of all the correlations (here, 21), the multiple-
comparison adjustment is appropriate. If your focus is on individual correlations,
as it probably is here, then the adjustment is not necessary.

8.6 Regression

Earlier you learned how to plot a regression line on a scattergram. Now we will focus
on how to estimate the regression line itself. Suppose that you are interested in the
relationship between how many hours per week a person works and how much occupa-
tional prestige he or she has. You expect that careers with high occupational prestige
require more work rather than less. Therefore, you expect that the more hours re-
spondents work, the more occupational prestige they will have. This is certainly not a
perfect relationship, and we have all known people who work many hours, even doing
two jobs, who do not have high occupational prestige. We will use the General Social
Survey 2006 dataset (gss2006 chapter8 selected.dta) for this section. It has vari-
ables called prestg80, which is a scale of occupational prestige, and hrs1, which is the
number of hours respondents worked last week in their primary jobs.
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Before doing the regression procedure, we should summarize the variables:

. summarize prestg80 hrs1

Variable Obs Mean Std. Dev. Min Max

prestg80 4270 44.16745 13.99946 17 86
hrs1 2739 42.07631 14.23166 1 89

This summary gives us a sense of the scale of the variables. The independent variable,
hrs1, is measured in hours with a mean of M = 42.08 hours and a standard deviation
of SD = 14.23 hours. The outcome variable, prestg80, has corresponding values of
M = 44.17 and SD = 14.00. A scattergram does not help because there are so many
cases that no pattern is clear. A correlation—pwcorr prestg80 hrs1, obs sig—tells
us that r = 0.16, p < 0.001. We can interpret this as a fairly weak relationship that is
statistically significant.

To estimate the regression, open the regress dialog box by selecting Statistics ⊲
Linear models and related ⊲ Linear regression. This dialog box is shown in figure 8.9.

Figure 8.9. The Model tab of the regress dialog box

Enter the Dependent variable, prestg80, and the Independent variable, hrs1. Click on
the Reporting tab and check Standardized beta coefficients. Click on Submit to obtain
the following command and results:



208 Chapter 8 Bivariate correlation and regression

. regress prestg80 hrs1, beta

Source SS df MS Number of obs = 2715
F( 1, 2713) = 67.32

Model 13125.035 1 13125.035 Prob > F = 0.0000
Residual 528901.224 2713 194.950691 R-squared = 0.0242

Adj R-squared = 0.0239
Total 542026.259 2714 199.714908 Root MSE = 13.962

prestg80 Coef. Std. Err. t P>|t| Beta

hrs1 .1546416 .0188468 8.21 0.000 .1556109
_cons 38.14733 .8362129 45.62 0.000 .

Understanding the format of this regression command is important because more-
advanced procedures that generalize from this command follow the same command
structure. The first variable after the name of the command, that is, prestg80, is
always the dependent variable. The second variable, hrs1, is the independent variable.
When we do multiple regression in chapter 10, we will simply add more independent
variables. When we do logistic regression in chapter 11, we will simply change the name
of the command. After the comma, we have the option beta. This will give us beta
weights, which are represented as β and will be interpreted below.

The table in the upper left of the output shows the Source, SS, df, and MS. This is an
analysis of variance (ANOVA) table summarizing the results from an ANOVA perspective
(ANOVA is covered in chapter 9), and we will ignore this table for now. In the upper
right corner is the number of observations, N = 2715, representing the number of people
who have been measured on both variables. We also have an F test, which we will cover
more fully in the ANOVA chapter. The larger the F ratio is, the greater the significance.
Like the t test and chi-squared, F also involves the idea of degrees of freedom. There
are two values for the degrees of freedom associated with an F test: the number of
predictors (here, 1) and N − 2 (here, 2,713). Just below the number of observations are
F (1, 2713) = 67.32 and the probability level (Prob > F = 0.0000). Any probability less
than 0.0001 is reported as 0.0000 by Stata. We could write this as F (1, 2713) = 67.32,
p < 0.001. Thus there is a statistically significant relationship between hours worked
and the prestige of the job.

Is this relationship strong? We have two values, namely, R2 and the adjusted R2,
that serve to measure the strength of the relationship. When we are doing bivariate
regression, R2 is simply r × r. Similarly, r =

√
R2, but we need to decide on the sign

of the r-value—whether it is positive or negative. For our model, R2 = 0.02, meaning
that the hours worked explain 2% of the variation in the prestige rating. Because of the
large sample, this R2, although obviously weak because it does not explain 98% of the
variation in prestige, is still statistically significant. When there are many predictors
and a small sample, neither of which apply here, some report the adjusted R2. The
adjusted R2 removes the part of R2 that would be expected just by chance. Whenever
the adjusted R2 is substantially smaller than the R2 because there is a small sample
relative to the number of predictors, it is best to report both values.
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The root mean squared error, Root MSE = 13.96, has a strange name, but it is
a useful piece of information. The summarize command showed SD = 14.00 for our
dependent variable, prestg80. The root mean squared error is the standard deviation
around the regression line. Recall when we did a plot of a regression line. If the
observations are close to this line, the standard deviation around it should be much
smaller than the standard deviation around the overall mean. It is not surprising that
our R2 is so small, given that the standard deviation around the regression line, 13.96,
is nearly as big as the standard deviation around the mean, 14.00. In other words, the
regression line does little to improve our prediction.

The bottom table gives us the regression results. The first column lists the outcome
variable, prestg80, followed by the predictor, hrs1, and the constant, called cons.
This last variable is the constant, or intercept. The equation would be written as

Estimated prestige = 38.15 + 0.15(hours)

Remember that M = 44.17 and SD = 14.00 for prestige. If we did not know how
many hours a person worked per week, we might guess that they had a prestige score
of 44.17 given that 44.17 is the mean prestige score. The regression equation lets us
estimate prestige differently depending on how many hours a person works per week.
This equation tell us that a person who worked 0 hours would have a prestige score of
38.15 (the intercept or constant), and for each additional hour he or she worked, the
prestige score would go up 0.15. For example, a person who worked 40 hours a week
would have a predicted prestige score of (approximately, because we have rounded)
38.15 + 0.15(40) = 44.15, but a person who worked 60 hours a week would have a
predicted prestige score of 38.15 + 0.15(60) = 47.15. This shows a small payoff in
prestige for working longer hours. The payoff is statistically significant but not very
big.

The column labeled Std. Err. is the standard error. The t is computed by dividing
the regression coefficient by its standard error; for example, 0.1546416/0.0188468 = 8.21.
The t is evaluated using N−2 degrees of freedom. We do not need to look up the t-value
because Stata reports the probability as 0.000. We would report this as t(2713) = 8.21,
p < 0.001.

The final column gives us a beta weight, β = 0.16. When we have just one predictor,
the β weight is always the same as the correlation (this is not the case when there are
multiple predictors). The β is a measure of the effect size and is interpreted much like
a correlation with β = 0.10 being weak, 0.30 being moderate, and 0.50 being strong.

Your statistics book may also show you how to do confidence intervals. There are two
types of these: a confidence interval around the regression coefficient and a confidence
interval around the regression line. Stata gives you the former as an option for regression
and the latter as an option for the scattergram. First, let’s do the confidence interval
around the regression coefficient. Reopen the regress dialog box and click on the
Reporting tab. This time, make sure that the Standardized beta coefficients box is not
checked. By unchecking this option, you automatically get the confidence interval in
place of β. The command is the same except there is no option.
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. regress prestg80 hrs1

Source SS df MS Number of obs = 2715
F( 1, 2713) = 67.32

Model 13125.035 1 13125.035 Prob > F = 0.0000
Residual 528901.224 2713 194.950691 R-squared = 0.0242

Adj R-squared = 0.0239
Total 542026.259 2714 199.714908 Root MSE = 13.962

prestg80 Coef. Std. Err. t P>|t| [95% Conf. Interval]

hrs1 .1546416 .0188468 8.21 0.000 .117686 .1915972
_cons 38.14733 .8362129 45.62 0.000 36.50765 39.78701

All of this is identical, except that where we had β, we now have a 95% confidence
interval for each regression coefficient. The effect of an additional hour of work on
prestige is b = 0.15. (Do not confuse b = 0.15 with β = 0.16 from the previous
example.) The bs and βs are usually different values. The 95% confidence interval for b
has a range from 0.12 to 0.19. Because a value of zero is not included in the confidence
interval (a zero value signifies no relationship), we know that the slope is statistically
significant. It could have been as little as 0.12 or as much as 0.19. We would report
this by stating that we are 95% confident that the interval of 0.12 to 0.19 contains the
true slope.

The second type of confidence interval is on the overall regression line. We will run
into trouble using the regression line to predict cases that are very high or very low on
the predictor. Usually, there are just a few people at the tails of the distribution, so we
do not have as much information there as we do in the middle. We also get to areas
that make no sense or where there is likely a misunderstanding. For example, predicting
the occupational prestige of a person who works 0 hours a week makes no sense, but
it does not make much more sense to predict it for somebody who works just 1 or 2
hours a week. Similarly, if a person said they worked 140 hours a week, they probably
misunderstood the question because hardly anybody actually works 140 hours a week
on a regular basis given that there are only 168 hours in a week. That would be 20
hours a day, 7 days a week! On the other hand, there are lots of people who work 30–50
hours a week, and here we have much more information for making a prediction. Thus,
if we put a band around the regression line to represent our confidence, it would be
narrowest near the middle of the distribution on the independent variable and widest
at the ends.

This relationship is easy to represent with a scattergram. If we use the menu system,
selecting Graphics ⊲ Twoway graph (scatter, line, etc.) opens the dialog box we need. Next
click on Create.... Then click on Fit plots and highlight Linear prediction w/CI. Finally,
we enter our two variables. The results are shown in figure 8.10.
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Figure 8.10. Confidence band around regression prediction

8.7 Spearman’s rho: Rank-order correlation for ordinal data

Spearman’s rho, ρs, is the correlation between two variables that are treated as ranks.
This procedure converts the variables to ranks (1st, 2nd, . . . , nth) before estimating
the correlation. For example, if the ages of five observations are 18, 29, 35, 61, and 20,
these five participants would be assigned ranks of 1 for 18, 3 for 29, 4 for 35, 5 for 61,
and 2 for 20. If we had a measure of liberalism for these five cases, we could convert
that to a rank as well. Here are the data (spearman.dta) for this simple example:

. list

age liberal rankage ranklib

1. 18 90 1 4.5
2. 29 90 3 4.5
3. 35 80 4 2
4. 61 50 5 1
5. 20 89 2 3

Ideally, all the scores (and hence, the ranks) would be unique. Stata will assign an
average value when there are ties. The two observations who have a score of 90 on
liberal occupy the fourth and fifth (highest) rank. Because they are tied, they are
both assigned a rank score of 4.5. Computing the correlation between age and liberal

by using the command corr age liberal, we obtain an r of −0.97. Computing the
correlation between the ranked data by using the command corr rankage ranklib,
we obtain an r of −0.82. This is lower because the one extreme case (age = 61,
liberal = 50) inflates the Pearson correlation, but this case is not extreme when
ranked data are used.
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Spearman’s rho is a correlation of ranked data. To save the time of converting the
variables to ranks and then doing a Pearson’s correlation, Stata has a special command:
spearman. Here we could run the command spearman age liberal to yield ρs =
−0.82.

8.8 Summary

Scattergrams, correlations, and regressions are great ways to evaluate the relationship
between two variables.

• The scattergram helps us visualize the relationship between two variables and is
usually most helpful when there are relatively few observations.

• The correlation is a measure of the strength of the relationship between two vari-
ables. Here it is important to recognize that it measures the strength of a partic-
ular form of the relationship. The other examples have used a linear regression
line as the form of the relationship. Although it is not covered here, it is possible
for regression to have other forms of the relationship.

• The regression analysis tells us the form of the relationship. Using this line, we
can estimate how much the dependent variable changes for each unit change in
the independent variable.

• The standardized regression coefficient, β, measures the strength of a relationship
and is identical to the correlation for bivariate regression.

• You have learned how to compute Spearman’s rho for rank-order data, and you
now understand its relationship to Pearson’s r.

8.9 Exercises

1. Use gss2006 chapter8.dta. Imagine that you heard somebody say that there was
no reason to provide more educational opportunities for women because so many
of them just stay at home anyway. You have a variable measuring education, educ,
and a variable measuring hours worked in the last week, hrs1. Do a correlation
and regression of hours worked in the last week on years of education. Then do
this separately for women and for men. Interpret the correlation and the slope
for the overall sample and then for women and for men separately. Is there an
element of truth to what you heard?

2. Use gss2006 chapter8.dta. What is the relationship between the hours a person
works and the hours his or her spouse works? Do this for women and for men
separately. Compute the correlation, the regression results, and the scattergrams.
Interpret each of these. Next test if the correlation is statistically significant and
interpret the results.
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3. Use gss2006 chapter8.dta. Repeat figure 8.2 using your own subsample of 250
observations. Then repeat the figure using a jitter(3) option. Compare the two
figures. Set your seed at 111.

4. Use gss2006 chapter8.dta. Compute the correlations between happy, hapmar,
and health by using correlate and then again by using pwcorr. Why are the
results slightly different? Then estimate the correlations by using pwcorr, and
get the significance level and the number of observations for each case. Finally,
repeat the pwcorr command so that all the Ns are the same (that is, there is
casewise/listwise deletion).

5. Use gss2002 chapter8.dta. There are two variables called happy7 and satfam7.
Run the codebook command on these variables. Notice how the higher score goes
with being unhappy or being dissatisfied. You always want the higher score to
mean more of a variable, so generate new variables (happynew and satfamnew)
that reverse these codes so that a score of 1 on happynew means very unhappy
and a score of 7 means very happy. Similarly, a score of 1 on satfamnew means
very dissatisfied and a score of 7 means very satisfied. Now do a regression of
happiness on family satisfaction with the new variables. How correlated are these
variables? Write the regression equation. Interpret the constant and the slope.

6. Use spearman.dta. Plot a scattergram, including the regression line for age

and liberal, treating liberal as the dependent variable. Repeat this using
the variables rankage and ranklib. Interpret this scattergram to explain why
the Spearman’s rho is smaller than the Pearson’s correlation. Your explanation
should involve the idea of one observation being an outlier.

7. Use depression.dta from the Stata Press website; that is, type

. use http://www.stata-press.com/data/r13/depression.dta

From this hypothetical data, you are interested in the relationship between de-
pression (variable TotalScore) and age. (This dataset uses capitalization as an
aid in reading the total score variable. This is rarely a good idea because it is hard
to remember these conventions, and if you always use all lowercase, you do not
need to remember when and how you used capitalization. Perhaps better options
would be to label the variable totalscore or total score.) Are older people
more or less depressed?

a. Type scatter and binscatter to describe the relationship.

b. Interpret these results. Why is the binscatter graph easier to interpret?

8. You suspect that the relationship may be nonlinear with a gradual increase among
those over about 50 years of age.

a. Type binscatter to fit a curve.

b. Interpret these results and compare them with the graphs created in exer-
cise 7.
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9.1 The logic of one-way analysis of variance

In many research situations, a one-way analysis of variance (ANOVA) is appropriate,
most commonly when you have three or more groups or conditions and want to see
if they differ significantly on some outcome. This procedure is an extension of the
two-sample t test.

You might have two new teaching methods you want to compare with a standard
method. If you randomly assign students to three groups (standard method, first new
method, and second new method), an ANOVA will show whether at least one of these
groups has a significantly different mean. ANOVA is usually a first step. Suppose you find
that the three groups differ, but you do not know how they differ. The first new method
may be best, the second new method may be second best, and the standard method may
be worst. Alternatively, both new methods may be equal but worse than the standard
method. When you do an ANOVA and find a statistically significant result, this begs
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216 Chapter 9 Analysis of variance

a deeper look to describe exactly what the differences are. These follow-up tests often
involve several specific tests (first new method versus standard method, second new
method versus standard method, first new method versus second new method). When
you do multiple tests like this, you need to make adjustments to the tests because they
are not really independent tests, and you need to control for the type I error, α. If
you run a single test of significance that is significant at the α = 0.05 level, everything
is okay. Can you see the problem when you run a series of related significance tests?
Imagine running 100 of these tests using purely random data. You would expect about
5% of them to be significant at the 0.05 level, just by chance.

ANOVA is normally used in experiments, but it can also be used with survey data.
In a survey, you might want to compare Democrats, Republicans, independents, and
noninvolved adults on their attitudes toward stem cell research. There is no way you
could do an experimental design because you could not randomly assign people to these
different party identifications. However, in a national survey, you could find many
people belonging to each group. If your overall sample was random, then each of these
subgroups would be a random sample as well. An ANOVA would let you compare the
mean score on the value of stem cell research (your outcome variable) across the four
political party identifications.

ANOVA makes a few assumptions:

• The outcome variable is quantitative (interval level).

• The errors or residuals are normally distributed. This is problematic if we have a
small sample.

• The observations represent a random sample of the population.

• The outcomes are independent. (We have repeated-measures ANOVA when this
assumption is violated.)

• The variance of each group is equal. You can test this assumption.

• The number of observations in each group does not vary widely.

Violating combinations of these assumptions can be especially problematic. For ex-
ample, unequal Ns for each group combined with unequal variances is far worse than
unequal variances when the Ns are equal.

9.2 ANOVA example

People having different political party identifications may vary in how much they sup-
port stem cell research. You might expect Democrats to be more supportive than
Republicans, on average. What about people who say they are independents? What
about people who are not involved in politics? Stata allows you to do a one-way ANOVA

and then do multiple-comparison tests of all pairs of means to answer two questions:
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• Are the means equal for all groups? This is a global question answered by ANOVA.

• Are pairs of group means different from one another? Specific tests answer this
question.

There are two ways of presenting the data. Most statistics books use what Stata calls
a wide format, in which the groups appear as columns and the scores on the dependent
variables appear as rows under each column. An example appears in table 9.1.

Table 9.1. Hypothetical data—wide view

democrat republican independent noninvolved overall

9 5 7 5
7 9 8 4
9 4 6 6
6 6 6 4
9 3 7 5
8 1 7 4
9 5 8 6
7 9 7 4
9 4 8
6 6 6
9 3 6
8 1 7

7
8

M 8.00 4.67 7.00 4.75 6.26
SD 1.21 2.61 .78 .88 2.09

Stata can work with data arranged like this, but it is usually easier to enter data in
what Stata calls a long format. We could enter the data as shown in table 9.2.
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Table 9.2. Hypothetical data—long view

stemcell partyid

9 1
6 1
6 1
9 1
9 1
7 1
8 1
7 1
9 1
8 1
9 1
9 1
6 2
5 2
4 2
1 2
6 2
4 2
1 2
3 2
5 2
9 2
3 2
9 2
. . . . . .
5 4

There are 46 observations altogether, and table 9.2 shows 25 of them. We know
the party membership of each person by looking at the partyid column. We have
coded Democrats with a 1, Republicans with a 2, independents with a 3, and those not
involved in politics with a 4. If you want to see the entire dataset, you can open up
partyid.dta and enter the command list, nolabel. This method of entering data
is similar to how we enter data for a two-sample t test, with one important exception.
This time, we have four groups rather than two groups, and the grouping variable is
coded from 1 to 4 instead of from 1 to 2.

To perform a one-way ANOVA, select Statistics ⊲ Linear models and related ⊲
ANOVA/MANOVA ⊲ One-way ANOVA, which opens the dialog box shown in figure 9.1.
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Figure 9.1. One-way analysis-of-variance dialog box

Under the Main tab, indicate that the Response variable is stemcell and the Fac-
tor variable is partyid. Many analysis-of-variance specialists call the response variable
the dependent or outcome variable. They call the categorical factor variable the inde-
pendent, predictor, or grouping variable. In this example, partyid is the factor that
explains the response, stemcell. Stata uses the names response variable and factor
variable to be consistent with the historical traditions of analysis of variance. Many
sets of statistical procedures developed historically, in relative isolation, and produced
their own names for the same concepts. Remember, the response or dependent variable
is quantitative and the independent or factor variable is categorical.

Stata asks if we want multiple-comparison tests, and we can choose from three:
Bonferroni, Scheffe, and Sidak. These are three multiple-comparison procedures for
doing the follow-up tests that compare each pair of means. A comparison of these three
approaches is beyond the purpose of this book. We will focus on the Bonferroni test,
so click on Bonferroni. Finally, check the box to Produce summary table to get the
mean and standard deviation on support for stem cell research for members grouped by
partyid. Here are the results:
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. oneway stemcell partyid, bonferroni tabulate

party Summary of support for stem cell
identificat research

ion Mean Std. Dev. Freq.

democrat 8 1.2060454 12
republica 4.6666667 2.6053558 12
independe 7 .78446454 14
noninvolv 4.75 .88640526 8

Total 6.2608696 2.0916212 46

Analysis of Variance
Source SS df MS F Prob > F

Between groups 92.7028986 3 30.9009662 12.46 0.0000
Within groups 104.166667 42 2.48015873

Total 196.869565 45 4.37487923

Bartlett’s test for equal variances: chi2(3) = 20.1167 Prob>chi2 = 0.000

Comparison of support for stem cell research by party identification
(Bonferroni)

Row Mean-
Col Mean democrat republic independ

republic -3.33333
0.000

independ -1 2.33333
0.684 0.003

noninvol -3.25 .083333 -2.25
0.000 1.000 0.015

This is a lot of output, so we need to go over it carefully. Just below the command
is a tabulation showing the mean, standard deviation, and frequency on support for
stem cell research by people in each political party. Democrats and independents have
relatively high means, Mdemocrat = 8.00 and Mindependent = 7.00, and Republicans and
those who are not involved in politics have relatively low means, Mrepublican = 4.67 and
Mnoninvolved = 4.75. (These are hypothetical data.)

Looking at the standard deviations, we can see a potential problem. In particular,
the Republicans have a much larger standard deviation than that of any other group.
This could be a problem because we assume that the standard deviations are equal for
all groups. Finally, the table gives the frequency of each group. There are relatively
fewer noninvolved people than there are people in the other groups, but the differences
are not dramatic.

Next in the output is the ANOVA table. This is undoubtedly discussed in your
statistics textbook, so we will go over it only briefly. The first column, Source, has
two sources. There is variance between the group means, which should be substantial
if the groups are really different. There is also variance within groups, which should be
relatively small if the groups are different from each other, but should be homogeneous
within each group. Think about this a moment. If the groups are really different, their
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means will be spread out, but within each group the observations will be homogeneous.
The column labeled SS is the sum of squared deviations for each source, and when we
divide this by the degrees of freedom (labeled df), we get the values in the column
labeled MS (mean squares). This label sounds strange if you are not familiar with
ANOVA, but it has a simple meaning. The between-group mean square is the estimated
population variance based on differences between groups; this should be large when
there are significant differences between the groups. The within-group mean square
is the estimated population variance based on the distribution within each group; this
should be small when most of the differences are between the groups (Agresti and Finlay
2009). The test statistic, F , is computed by dividing theMS(between) by theMS(within).
F is the ratio of two variance estimates. The F = 30.90/2.48 = 12.46. This ratio is
evaluated using the degrees of freedom. We have 3 degrees of freedom for the numerator
(30.90) and 42 degrees of freedom for the denominator (2.48). You can look this up in
a table of the F distribution. However, Stata gives you the probability as 0.0000. We
would never report a probability as 0.0000 but instead would say p < 0.001.

Can Stata give me an F table?

We get the probability directly from the Stata output, so we do not need to look
it up in an F table. However, if you ever need to use an F table, you can get one
from Stata without having to find the table in a statistics textbook. Type the
command search ftable, which opens a window with a link to a webpage. Go
to that webpage, and click on install to install several tables. You may have
already downloaded these tables when you were obtaining z tests or t tests. From
now on, whenever you want an F table, you need only enter the command ftable.

When you download these tables, you also have ttable, ztable, and chitable.

Years ago, these ANOVA tables appeared in many articles. Today, we simplify the
presentation. We could summarize the information in the ANOVA table as F (3, 42) =
12.46, p < 0.001, meaning that there is a statistically significant difference between the
means.

Stata computes Bartlett’s test for equal variances and tells us that the χ2 with 3
degrees of freedom is 20.12, p < 0.001. (Do not confuse this χ2 test with the χ2 test for
a frequency table. The χ2 distribution is used in many tests of significance.) One of the
assumptions of ANOVA is that the variances of the outcome variable, stemcell, are equal
in all four groups. The data do not meet this assumption. Some researchers discount this
test because it will usually not be significant, even when there are substantial differences
in variances, if the sample size is small. By contrast, it will usually be significant when
there are small differences, if the sample size is large. Because unequal variances are
more problematic with small samples, where the test lacks power, and less important
with large samples, where the test may have too much power, the Bartlett test is often
ignored. Be careful when the variances are substantially different and the Ns are also
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substantially different: this is a serious problem. One thing we might do is go ahead with
our ANOVA but caution readers in our reports that the Bartlett test of equal variances
was statistically significant.

Given that the overall F test is statistically significant, we can proceed to compare
the means of the groups. This is a multiple comparison involving six tests of signif-
icance: Democrat versus Republican, Democrat versus independent, Democrat versus
noninvolved, Republican versus independent, Republican versus noninvolved, and inde-
pendent versus noninvolved. Stata provides three different options for this comparison,
but here I consider only the Bonferroni. Multiple comparisons involve complex ideas,
and we will mention only the principal issues here. The traditional t test worked fine for
comparing two means, but what happens when we need to do six of these tests? Stata
does all the adjustments for us, and we can interpret the probabilities Stata reports in
the way we always have. Thus, if the reported p is less than 0.05, we can report p < 0.05
using the Bonferroni multiple-comparison correction.

Below the ANOVA table in our output above is the comparison table for all pairs
of means. The first number in each cell is the difference in means (Row Mean - Col

Mean). Because political independents had a mean of 7 and Democrats had a mean
of 8, the table reports the difference, 7 − 8 = −1. Independents, on average, have a
lower mean score on support for stem cell research. Is this statistically significant? No;
the p = 0.684 far exceeds a critical level of p < 0.05. The noninvolved people and
the Republicans have similar means, and the small difference, 0.08, is not statistically
significant. However, all the other comparisons are statistically significant. For example,
Republican support for stem cell research has a mean that is 3.33 points lower than that
of Democrats, p < 0.001. One way to read the table is to remember that a negative
sign means that the row group mean is lower than the column group mean and that a
positive sign means that the row group mean is higher than the column group mean.

How strong is the difference between means? How much of the variance in stemcell

is explained by different political party identification? We can compute a measure of
association to represent the effect size. Eta-squared (η2) is a measure of explained
variation. Some refer to this as r2 because it is the ANOVA equivalent of r2 for correlation
and regression. Knowing the political party identification improves our ability to predict
the respondent’s attitude toward stem cell research. The η2 or r2 in the context of
ANOVA is the ratio of the between-groups sum of squares to the total sum of squares. The
oneway command does not compute this for you, but you can compute it by using the
simple division below. Or you could obtain this by using Stata’s anova command. For
example, you could type anova stemcell partyid and then type the postestimation
command estat esize.

η2 = r2 =
Between group SS

Total SS
=

92.703

196.870
= 0.471

Do not forget about Stata’s calculator. You can enter display 92.703/196.870,
and Stata will report back the answer of 0.471. This result means that 47.1% of the
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variance in attitude toward stem cell research is explained by differences in party iden-
tification. Some researchers prefer a different measure that is called ω2 (pronounced
omega-squared), and you will learn how to obtain this later in the chapter.

Stata is always adding new capabilities. As of Stata 12, the pwmean command is a
way of doing multiple comparisons, which you might find as a useful supplement to the
straight ANOVA approach we just covered. pwmean’s output includes more information
than oneway, and it offers a wider variety of multiple-comparison procedures. Your
statistics books probably cover several of these procedures but describing them is beyond
the scope of this book. There is a brief discussion of each of these procedures in the
Stata Base Reference Manual. The available multiple-comparison adjustments include
the following:

• no adjustment for multiple comparisons; the default

• Bonferroni’s method

• Šidák’s method

• Scheffé’s method

• Tukey’s method

• Student–Newman–Keuls’ method

• Duncan’s method

• Dunnett’s method

We will apply pwmean to our data on support for use of stem cells to see how much the
support varies across our categories of party identification using the same hypothetical
data as above. The pwmean command has many options and methods for adjusting the
error rate. We will use the following command:
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. pwmean stemcell, over(partyid) effects cimeans mcompare(bonferroni)

Pairwise comparisons of means with equal variances

over : partyid

Unadjusted
stemcell Mean Std. Err. [95% Conf. Interval]

partyid
democrat 8 .4546206 7.082538 8.917462

republican 4.666667 .4546206 3.749205 5.584128
independent 7 .4208969 6.150596 7.849404
noninvolved 4.75 .5567943 3.626344 5.873656

Number of
Comparisons

partyid 6

Bonferroni Bonferroni
stemcell Contrast Std. Err. t P>|t| [95% Conf. Interval]

partyid
republican

vs
democrat -3.333333 .6429306 -5.18 0.000 -5.113618 -1.553048

independent
vs

democrat -1 .6195435 -1.61 0.684 -2.715526 .7155256
noninvolved

vs
democrat -3.25 .7188183 -4.52 0.000 -5.240419 -1.259581

independent
vs

republican 2.333333 .6195435 3.77 0.003 .6178077 4.048859
noninvolved

vs
republican .0833333 .7188183 0.12 1.000 -1.907086 2.073753

noninvolved
vs

independent -2.25 .6979785 -3.22 0.015 -4.182714 -.3172864

pwmean speaks for itself. Our dependent variable is support for stem cell research.
We are comparing the means over the different party identifications. We want the effects
of these differences, such as Democrat versus independent, to see which individual pairs
are significantly different. We have also asked for confidence intervals and means for each
category by using the cimeans option. Finally, we make our mean comparisons using the
Bonferroni adjustment. If we wanted these results without any adjustment for multiple
comparisons, we would replace mcompare(bonferroni) with mcompare(noadjust).

The results are different from the ANOVA table in terms of the layout and what is
reported. We do not get the traditional ANOVA table with the F test for the overall
relationship. We do get the means and standard errors for each category. We now get
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a confidence interval for each mean. We see that with our four categories of the party
identification, we make six comparisons; these six comparisons appear in the bottom
table. An advantage of this approach is that along with the contrast and standard error,
we now get a Bonferroni adjusted t-test value reported with the two-tailed probability.
Also we now get a confidence interval for each difference. For example, the republican
vs democrat row has a difference of −3.33. This number is the result of the Republican
mean of 4.67 minus the Democratic mean of 8.00. This difference is has a t = −5.18 and
a p < 0.001 using the Bonferroni adjustment. This significance is confirmed because the
confidence interval does not include 0.00.

The Stata Base Reference Manual has an extensive set of examples illustrating the
different options and comparison criteria. pwmean is a nice addition to the traditional
ANOVA approach.

9.3 ANOVA example using survey data

You will find several examples of studies like the one we just did in standard statistics
textbooks. Our second example uses data from a large survey, the 2006 General Social
Survey (gss2006 chapter9.dta), and examines occupational prestige. For our one-way
ANOVA, we will see if people who are more mobile have the benefit of higher occupational
prestige. We will compare three groups (the factor or independent variable must be a
grouping variable). One group includes people who are living in the same town or city
they lived in at the age of 16. We might think that these people have lower occupational
prestige, on average, because they did not or could not take advantage of a broader labor
market that extended beyond their immediate home city. The second group comprises
those who live in a different city but still in the same state they lived in at the age of 16.
Because they have a larger labor market, one that includes areas outside of their city
of origin, they may have achieved higher prestige. The third group contains those who
live in a different state than they lived in at the age of 16. By being able and willing
to move this far, they have the largest labor market available to them. We will restrict
the age range so that age is not a second factor; the sample is restricted to adults who
are between 30 and 59 years of age.

Make sure that you open the One-way analysis of variance dialog box shown in
figure 9.1. There is another option for analysis of variance and covariance that we will
cover later in this chapter. In the Main tab, we are asked for a Response variable.
The dependent variable is prestg80, so enter this as the response variable. This is a
measure of occupational prestige that was developed in 1980 and applied to the 2006
sample. The dialog box asks for the Factor variable, so type mobile16 (the independent
variable). This variable is coded 1 for respondents who still live in the same city they
lived in when they were 16; 2 if they live in a different city but still in the same state;
and 3 if they live in a different state. Also click on the box by Produce summary table
to get the means for each group on the factor variable. Finally, click on the box by
Bonferroni in the section labeled Multiple-comparison tests. Because we have three
groups, we can use this test to compare all possible pairs of groups, that is, same city
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to same state, same city to different state, and same state to different state. On the
by/if/in tab, we enter the following restriction under If: (expression): age > 29 & age

< 60 & wrkstat==1. This restriction limits the sample to those who are 30–59 years
old and have a wrkstat of 1, signifying that they work full time. Remember to use the
symbol & rather than the word “and”.

In our results (shown below), we first get a table of means and standard deviations.
The first two means are in the direction predicted, but the third mean is not. Those
who live in the same city have a mean of 44.12, those who have moved from the city but
are still in the same state have a mean of 48.67, and those who have moved out of the
state have a mean of 47.19. The standard deviations are similar (we can use Bartlett’s
test of equal variances to test this assumption). Also the N for each group varies from
269 to 425. Usually, the unequal Ns are not considered a serious problem unless they
are extremely unequal and one or more groups have few observations.

. oneway prestg80 mobile16 if age > 29 & age < 60 & wrkstat==1, bonferroni
> tabulate

GEOGRAPHIC
MOBILITY Summary of RS OCCUPATIONAL PRESTIGE

SINCE AGE SCORE (1980)
16 Mean Std. Dev. Freq.

SAME CITY 44.116162 13.73443 396
SAME ST,D 48.672862 13.002183 269
DIFFERENT 47.185882 13.959368 425

Total 46.437615 13.758919 1090

Analysis of Variance
Source SS df MS F Prob > F

Between groups 3716.07404 2 1858.03702 9.98 0.0001
Within groups 202440.184 1087 186.23752

Total 206156.258 1089 189.307858

Bartlett’s test for equal variances: chi2(2) = 1.6873 Prob>chi2 = 0.430

Comparison of RS OCCUPATIONAL PRESTIGE SCORE (1980)
by GEOGRAPHIC MOBILITY SINCE AGE 16

(Bonferroni)
Row Mean-
Col Mean SAME CIT SAME ST,

SAME ST, 4.5567
0.000

DIFFEREN 3.06972 -1.48698
0.004 0.487

We can summarize the second table (the ANOVA table) by writing F (2, 1087) = 9.98,
p < 0.001. Just beneath the ANOVA table is Bartlett’s test for equal variances. Because
χ2(2) = 1.69, this finding is not statistically significant (p = 0.43). This is good because
equal variances is an assumption of ANOVA. The F test is an overall test of significance
for any differences between the group means. You can have a significant F test when
the means are different but in the opposite direction of what you expected.
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Now let’s perform multiple comparisons using the Bonferroni adjustment. Those
adults who moved to a different state scored 3.07 points higher on prestige, on average,
than those who stayed in their hometown (47.19 − 44.12 = 3.07), p < 0.01. Those
who moved but stayed in the same state scored 4.56 points higher on the prestige scale
(48.67−44.12 = 4.55), p < 0.001. Although these two comparisons are significant, those
who moved but stayed in the same state are not significantly different from those who
moved to a new state.

We can do a simple one-way bar chart of the means. The command is

. graph bar (mean) prestg80 if age > 29 & age < 60 & wrkstat==1, over(mobile16)

You can enter this command as one line in the Command window or enter it in a do-file
using /// as needed for a line break. Because of the length of graph commands, it is
probably a good idea to use the dialog box, as discussed in chapter 5. Select Graphics
⊲ Bar chart to open the appropriate dialog box. On the Main tab, select Graph by
calculating summary statistics and Vertical in the Orientation section. Under Statistics
to plot, check the first box, select Mean from the drop-down menu and, to the right of
this, type prestg80 as the variable. Next go to the Categories tab and check Group 1;
select mobile16 as the Grouping variable. Finally, open the if/in tab and, under the If:
(expression), type age > 29 & age < 60 & wrkstat==1.

The resulting bar chart, shown in figure 9.2, provides a visual aid showing that the
mean is highest for those with some geographical mobility, that is, who live in the same
state but a different city. Although all three means are different in our sample, only
two comparisons (staying in your hometown versus moving to a different city within
your home state and staying in your hometown versus moving to a different state) reach
statistical significance.
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Figure 9.2. Bar graph of relationship between prestige and mobility
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We can compute η2 = r2 = 3716.074/206156.258 = 0.02, as described in the pre-
vious section. Thus, even though the overall result is significant and two of the three
comparisons are significant in the direction we predicted, the mobility variable does not
explain much of the variance in prestige. Why is this? To get an answer, look at the
means and standard deviations. In the previous example, the standard deviations for
groups tended to be much smaller than the overall standard deviation. This is not the
case in this example. The standard deviations for each group are between 13.00 and
13.96, whereas the overall standard deviation is 13.76. Although the means do differ,
most of the variance still remains within each group. When the variance within the
groups is not substantially smaller than the overall variance, the group differences are
not explaining much variance.

9.4 A nonparametric alternative to ANOVA

Sometimes treating the outcome variable as a quantitative, interval-level measure is
problematic. Many surveys have response options, such as agree, don’t know, and
disagree. In such cases, we can score these so that 1 is agree, 2 is don’t know, and
3 is disagree, and then we can do an ANOVA. However, some researchers might say
that the score was only an ordinal-level measure, so we should not use ANOVA. The
Kruskal–Wallis rank test lets us compare the median score across the groups. If we
are interested in political party identification and differences in support for stem cell
research, we might use the Kruskal–Wallis rank test instead of the one-way ANOVA. If
we want to use only ordinal information, it may be more appropriate to compare the
median rather than the mean.

For this example, we will use partyid.dta. To open the dialog box for the Kruskal–
Wallis rank test, select Statistics ⊲ Nonparametric analysis ⊲ Tests of hypotheses ⊲ Kruskal-
Wallis rank test. In the resulting screen, there are only two options. Type stemcell

under Outcome variable and partyid under Variable defining groups. As with ANOVA,
the variable defining the groups is the independent variable, and the outcome variable
is the dependent variable.

. kwallis stemcell, by(partyid)

Kruskal-Wallis equality-of-populations rank test

partyid Obs Rank Sum

democrat 12 422.00
republican 12 174.00

independent 14 391.00
noninvolved 8 94.00

chi-squared = 22.115 with 3 d.f.
probability = 0.0001

chi-squared with ties = 22.696 with 3 d.f.
probability = 0.0001
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This test ranks all the observations from the lowest to the highest score. With a scale
that ranges from 1 to 9, there are many ties, and the command adjusts for that. If the
groups were not different, the rank sum for each group would be the same, assuming an
equal number of observations. Notice from the output that the Rank Sum for Democrats
is 422 and for Republicans it is just 174, even though there are 12 observations in each
group. This means that Democrats must have higher scores than Republicans. The
output gives us two chi-squared tests. Because we have people who are tied on the
outcome variable (have the same score on stemcell), use the chi-squared with ties: chi-
squared(3) = 22.696, p < 0.001. Thus there is a highly significant difference between
the groups in support for stem cell research.

Because we are treating the data as ordinal, it makes sense to use the median rather
than the mean. Now run a tabstat to get the median. It is easiest to type the command
in the Command window, but if you prefer to use the dialog box, select Statistics ⊲
Summaries, tables, and tests ⊲ Other tables ⊲ Compact table of summary statistics.

. tabstat stemcell, statistics(mean median sd) by(partyid)

Summary for variables: stemcell
by categories of: partyid (party identification)

partyid mean p50 sd

democrat 8 8.5 1.206045
republican 4.666667 4.5 2.605356

independent 7 7 .7844645
noninvolved 4.75 4.5 .8864053

Total 6.26087 6 2.091621

We have the same pattern of results we had when we ran an ANOVA on these data.
The p50 is the median. Notice that the medians are in the same relationship as the
means with Democrats having the highest median, Mdn = 8.5; followed by the indepen-
dents, Mdn = 7.0; and the Republicans and noninvolved having the lowest, Mdn = 4.5.
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There are two graphs we can present to represent this information. We can do a bar
chart like the one we did for the ANOVA, only this time we will do it for the median
rather than for the mean. Select Graphics ⊲ Bar chart to open the appropriate dialog
box, or type the command

. graph hbar (median) stemcell, over(partyid)
> title(Median stem cell attitude score by party identification)
> ytitle(Median score on stem cell attitude)

which produces the graph in figure 9.3.

0 2 4 6 8
Median score on stem cell attitude

noninvolved
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democrat

Median stem cell attitude score by party identification

Figure 9.3. Bar graph of support for stem cell research by political party identification

Because we are working with the median, we can use a box plot. Open the ap-
propriate dialog box by selecting Graphics ⊲ Box plot. Under the Main tab, we enter
stemcell under Variables. Switching to the Categories tab, we check the Group 1 box
and enter partyid as the variable under Grouping variable. Clicking on OK produces
the following command and figure 9.4.
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. graph box stemcell, over(partyid)

0
2

4
6

8
1
0

s
u
p
p
o
rt

 f
o
r 

s
te

m
 c

e
ll 

re
s
e
a
rc

h

democrat republican independent noninvolved

Figure 9.4. Box plot of support for stem cell research by political party identification

This is a much nicer graph than the bar chart because it not only shows the median
of each group but also gives us a sense of the within-group variability. With the ANOVA,
political party identification explained nearly half (0.471) of the variance in support for
stem cell research. This box plot shows that not only are the medians different but also
there is little variance within each group, except for the Republicans. (Again, these are
hypothetical data.)

9.5 Analysis of covariance

We will discuss analysis of covariance (ANCOVA) as an extension of multiple regression
in chapter 10. However, I will present an example of it here because it has a long history
as a type of analysis of variance. ANCOVA has a categorical predictor (factor) and a
quantitative dependent variable (response) like one-way ANOVA. ANCOVA adds more
covariates that are quantitative variables that need to be controlled.

One of the areas in which ANCOVA developed was education, where the researchers
could not assign children to classrooms randomly. Researchers needed to adjust for the
fact that without random assignment, there might be systematic differences between
the classrooms before the experiment started. For instance, one classroom might have
students who have better math backgrounds than students in another classroom, so they
might seem to do better because they were ahead of the others before the experiment
started. We would need to control for initial math skills of students. People who
volunteer to participate in a nutrition education course might do better than those in a
control group, but this might happen because volunteers tend to be more motivated. We
would need to control for the level of motivation. The idea of ANCOVA is to statistically



232 Chapter 9 Analysis of variance

control for group differences that might influence the result when you cannot rule out
these possible differences through randomization. We might think of ANCOVA as a
design substitute for randomization. Randomization is ideal, but when it is impossible
to randomly assign participants to conditions, we can use ANCOVA as a fallback.

I do not mean to sound negative. ANCOVA allows us to make comparisons when we do
not have randomization. Researchers often need to study topics for which randomization
is out of the question. If we can include the appropriate control variables, ANCOVA does
a good job of mitigating the limitations caused by the inability to use randomization.

The one-way ANOVA, with gss2006 chapter9.dta, showed that people who moved
out of their hometown had higher prestige than people who did not. Perhaps there is
a benefit to opening up to a broader labor market among people who move away from
their hometown. They advance more because there are more opportunities when they
cast their job search more broadly than if they never moved out of their home city.
On the other hand, there might be a self-selection bias going on. People who decide
to move may be people who have more experience in the first place. A person who
is 30 years old may be less likely to have moved out of state than a person who is 40
years old simply because each year adds to the time in which such a move could occur.
Also people who are 40 or 50 years old may have higher occupational prestige simply
because they have had more time to gain experience. Because age could be related to
the chances of a respondent living in the same place that he or she did at age 16 and
to a respondent’s prestige, we should control for age. Ideally, we would identify several
other variables that need to be controlled, but for now we will just use age.

Instead of using the one-way ANOVA dialog box, we need to use the full ANOVA

procedure. We have two predictors. The first is mobile16, which has three categories:
same city, same state–different city, and different state. We are interested in differ-
ences in occupational prestige, prestg80, based on these fixed mobility categories. The
mobility categories are not a random sample of mobility categories, but they are the
specific population of categories about which we want to make a statistical inference.
There are k = 3 groups and we should have 2 degrees of freedom (k − 1). The other
variable is age. Although age can take on several values (30–59 in our example), we
do not think of these values as categories because this is just one continuous variable,
where the older you get, the higher we think your prestige will be. As a continuous
variable, age should have 1 degree of freedom.
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What are categorical covariates and what are continuous covariates?

Whenever we have an intervention, we could think of the intensity of the interven-
tion varying widely. We could think of the intensity as the dosage level, that is,
how much of the intervention the participant received. We might be interested in
the dosage of a daily aspirin, and our dependent variable could be some measure
of a specific side effect. To generalize across the full range of dosage levels, we
would need to randomly sample levels of the dosage. One participant might take
10 mg; another, 500 mg; a third, 50 mg; a fourth, 35 mg; a fifth, 325 mg; and so
on. If we had 80 participants, each of them might get a different dosage level. Here
the dosage is thought of as a continuous covariate. The dosage each participant
receives would be a continuous variable. We would want to be able to generalize
our findings across a wide range of possible dosage levels.

More often, we think of an intervention as a categorical covariate. One
group of 20 participants would all get a daily placebo, a second group of 20 would
all get a low dosage of 50 mg, a third group of 20 would all get 325 mg, and a
fourth group of 20 would all get 500 mg. Although we would want to randomly
assign our 80 people to each of these groups, the groups themselves represent
categorical covariates of none, low level, moderate level, and high level. We want
to generalize to these specific levels. We are not going to be able to generalize to
other levels. We could not say what happens when the dosage is very low rather
than low or when it is 400 mg—just what it is at the four categorical covariates in
our study.

When we have an intervention and a control group, we think of them as
categorical covariates. When we are comparing views on stem cell research of
Muslims to Catholics to Protestants, we are thinking of these as three categorical
covariates. We have a random sample of members of each religion, but the
three religions we picked are categorical. We cannot generalize to other religions
(Hinduism, Buddhism, Judaism, Taoism, etc.)—just these three. When we have
a continuous covariate, we usually think of it as a continuous covariate. In our
example, we do not use categorical age groups; everybody can be a different age.
We are asking the question of whether prestige goes up or down with age, and
if it does, we control for it in estimating the effect of the three fixed mobility
categories. The anova command identifies a continuous variable with the prefix c.,
as in c.age. If we just enter age, then anova treats this variable as a categorical
covariate. As a categorical covariate, the mean of people who are 30 is compared
with the overall mean, the mean of people who are 31 is compared with the overall
mean, etc. To do this, treat each possible age as its own categorical covariate.
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Let’s use the tabulate command to obtain the mean prestige for each mobility
category and for each year of age:

. tabulate mobile16 if age > 29 & age < 60 & wrkstat==1, summarize(prestg80)

GEOGRAPHIC
MOBILITY Summary of RS OCCUPATIONAL PRESTIGE

SINCE AGE SCORE (1980)
16 Mean Std. Dev. Freq.

SAME CITY 44.116162 13.73443 396
SAME ST,D 48.672862 13.002183 269
DIFFERENT 47.185882 13.959368 425

Total 46.437615 13.758919 1090

It looks like some mobility (within the state) goes with the highest prestige and no
mobility goes with the lowest prestige. These differences are not huge, though, given
that the overall standard deviation is 13.76.

Let’s see how prestige varies across the age range.

. tabulate age if age > 29 & age < 60 & wrkstat==1, summarize(prestg80)

Summary of RS OCCUPATIONAL PRESTIGE
AGE OF SCORE (1980)

RESPONDENT Mean Std. Dev. Freq.

30 48.766667 15.6133 60
31 46.860465 13.772957 43
32 43.71875 13.082727 64
33 41.807692 12.929732 52
34 45.761905 13.523831 63
35 46.627451 13.518818 51
36 48.869565 14.200158 69

(output omitted )
56 47.128205 12.825098 39
57 42.969697 14.08786 33
58 47 15.007315 42
59 45.261905 12.597056 42

Total 46.021537 13.863176 1718

Looking at the results for age, we see a mess. The prestige goes up and down but
not consistently up like we speculated. When we do an ANCOVA and treat age as a
continuous variable, we may expect that it will not be significant because prestige does
not seem to go consistently up or down with age. Undaunted, we will still add age as
a covariate so that we can see how this is done.

Stata identifies continuous variables when doing ANOVA by adding c. as a prefix
to the variable. To add age as a continuous covariate, we must type c.age (with the
c. telling Stata that age is continuous). Here are the results if we do not prefix age

with c.:
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. anova prestg80 mobile16 age if age > 29 & age < 60 & wrkstat==1

Number of obs = 1090 R-squared = 0.0421
Root MSE = 13.6621 Adj R-squared = 0.0140

Source Partial SS df MS F Prob > F

Model 8676.62028 31 279.890977 1.50 0.0396

mobile16 3668.50734 2 1834.25367 9.83 0.0001
age 4960.54623 29 171.053318 0.92 0.5943

Residual 197479.638 1058 186.653722

Total 206156.258 1089 189.307858

Notice that we have k−1 = 2 degrees of freedom for the fixed effects of mobile16 and the
effect of mobility is highly significant, F (2, 1058) = 9.83, p < 0.001. In sharp contrast,
age, which has k − 1 = 29 degrees of freedom for the mobility effects is not significant,
F (29, 1058) = 0.92, pns. The overall Model, however, is significant, F (31, 1058) = 1.50,
p < 0.05. This model provides a different prediction for each of the 3 categories of
mobile16 and for each of the 30 categories of age.

To make Stata know that we are treating age as a continuous variable, we need to
use c.age, as follows:

. anova prestg80 mobile16 c.age if age > 29 & age < 60 & wrkstat==1

Number of obs = 1090 R-squared = 0.0183
Root MSE = 13.6511 Adj R-squared = 0.0156

Source Partial SS df MS F Prob > F

Model 3777.3325 3 1259.11083 6.76 0.0002

mobile16 3750.73122 2 1875.36561 10.06 0.0000
age 61.2584614 1 61.2584614 0.33 0.5665

Residual 202378.925 1086 186.352602

Total 206156.258 1089 189.307858

The conclusion does not change in this example because age does not have a significant
effect either way, but in other applications, the difference can be dramatic. Notice that
we have just 1 degree of freedom for age here, where we had 29 degrees of freedom when
age was treated as a categorical variable.

In many applications where you do not have a randomized trial, you will need to
control for more than one continuous covariate. Depending on what you are studying,
you may want to add age, education, ability, and motivation as additional covariates.
This is done by simply adding these variables with a c. prefix on each of them. Typically,
your primary focus is on whether the categorical variable still has a significant effect
after these covariates are included. In our example, mobility categories still have a
significant effect after we control for age.
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Significant covariates can change the result for your categorical variable. If you have
two different interventions in two classrooms and have a third classroom as a control
group, you would probably adjust for possible differences in ability level of the students
and their parents’ education. If the difference you observe without these covariates is
explainable by these covariates, then the adjusted difference might disappear. One class-
room may seem to do better but does not do better when you adjust the means for the
covariates. In Stata, estimating the adjusted effects is best handled using the margins

command, which will give you the estimated mean for each level of your categorical
variable for a person who was average (mean) on each of the covariates.

Immediately after running the anova command, you type the margins command.
You can find the dialog box for this command by clicking on Statistics ⊲ Postestimation
⊲ Marginal means and predictive margins. Under the Main tab, enter mobile16 in the
box labeled Factor terms to compute margins for. This is the only thing to do under
the Main tab. Under the At tab, we want to create a specification of the level to set our
covariate, age. To do this, click on Create..., and in the dialog box that appears, specify
the values for the covariates. Check the box to the left of the 1 for the statistics and
select Means using the drop-down menu; for Covariates, type age (do not type c.age

here). Clicking on OK twice produces the following command and output:

. margins mobile16, at((mean) age)

Adjusted predictions Number of obs = 1090

Expression : Linear prediction, predict()
at : age = 43.82294 (mean)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

mobile16
SAME CITY 44.10402 .6863205 64.26 0.000 42.75736 45.45068

SAME ST,DI.. 48.68809 .832746 58.47 0.000 47.05412 50.32206
DIFFERENT .. 47.18756 .6621822 71.26 0.000 45.88826 48.48686

The command shows that the mobile16 variable is the categorical variable on which
we are focused. We want to know the adjusted mean for each level of this categorical
variable. This would be extended if we had two or more continuous covariates. The
option at((mean) age) allows us to specify that the continuous covariate, age, is to be
fixed at its mean.

This is a very useful result. It estimates what the mean prestige would be for each
category of mobility for a person who was average on the covariate age. The number of
observations is 1,090, which matches our anova results, so we know that this includes
only the subsample that we analyzed in the ANOVA, namely, people between 30 and 59
who were working full time.
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If we wanted to do pairwise tests of significance comparing the prestg80 score for
our three types of mobile16, while adjusting for age, we could add the pwcompare

option to our margins command, margins mobile16, at((mean) age) pwcompare.
This command does not show us the adjusted means, but it does show us the difference
between the pairs of means.

The mean age for our subsample of people who are over 29 and under 60 and who
work full time is 43.82. This is a reasonable way to adjust for a continuous covariate. A
person who was average on the covariate but never left his or her hometown would have
one estimated mean; a person who was average on the covariate but moved, staying
within his or her state, would have a different estimated mean; and a person who was
average on the covariate but moved out of state would have a different estimated mean.

What happens if you want to include a covariate that is categorical? We have seen
that age was not significant when used as a covariate. We might think that gender may
also be an important covariate. Perhaps men are more mobile than women and gender
influences occupational prestige. First, let’s check on these two possibilities. We do a
cross-tabulation of mobility and gender for our subsample.

. tab mobile16 sex if age > 29 & age < 60 & wrkstat==1, col chi2

Key

frequency

column percentage

GEOGRAPHIC
MOBILITY SINCE RESPONDENTS SEX

AGE 16 MALE FEMALE Total

SAME CITY 188 212 400
32.36 40.85 36.36

SAME ST,DIF CITY 142 129 271
24.44 24.86 24.64

DIFFERENT STATE 251 178 429
43.20 34.30 39.00

Total 581 519 1,100
100.00 100.00 100.00

Pearson chi2(2) = 11.0260 Pr = 0.004

This output does show a significant relationship—chi-squared(2) = 11.03, p <
0.01—and notice that 43.2% of men moved to a different state compared with just
34.3% of the women, but 40.9% of the women are in the same city compared with just
32.4% of the men. Our second idea was that there would be gender differences in pres-
tige. We could check that using a t test, but we will go ahead and put it in the anova.
To do this, we can repeat our first anova and simply add the variable for gender, sex.
It is coded as 1 for male and 2 for female. We will not put a c. in front of sex because
gender is a factor variable and not a continuous variable.
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. anova prestg80 mobile16 sex c.age if age > 29 & age < 60 & wrkstat==1

Number of obs = 1090 R-squared = 0.0207
Root MSE = 13.641 Adj R-squared = 0.0171

Source Partial SS df MS F Prob > F

Model 4263.58121 4 1065.8953 5.73 0.0001

mobile16 3917.43128 2 1958.71564 10.53 0.0000
sex 486.248705 1 486.248705 2.61 0.1063
age 45.250989 1 45.250989 0.24 0.6220

Residual 201892.677 1085 186.0762

Total 206156.258 1089 189.307858

We see that our overall model is significant, F (4, 1085) = 5.73, p < 0.001. Mobility
is still significant, F (2, 1085) = 10.53, p < 0.001. However, neither sex nor age is
significant. For gender, we have a significance of F (1, 1085) = 2.61, pns. For age,
we have a significance of F (1, 1085) = 0.24, pns. So we can conclude that there are
significant differences for prestige and these are related to mobility, but neither of the
covariates we added is significant.

However, for illustrative purposes, we will show how to use the margins command
to get the adjusted means. We are estimating the mean prestige for each category of
mobility, adjusting for gender and age. We will open the margins dialog box again
by selecting Statistics ⊲ Postestimation ⊲ Marginal means and predictive margins. Under
the Main tab, enter mobile16 as the Factor terms to compute margins for (if it is not
already listed). Under the At tab, confirm that Specification 1 is selected and click on
Edit, which reopens the Specification 1 dialog box. The checkbox and text should be
filled in as completed before. Because gender is categorical, we need to enter it in the
bottom group for the Fixed values. Check the box to the left of the 1, type sex as the
Covariate, and type 1 2 as the Numlist. Our Specification 1 dialog box will look like
figure 9.5:
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Figure 9.5. The Specification 1 dialog box under margins

We click on OK twice. Here are the command that is generated and the results:

. margins mobile16, at((mean) age sex=(1 2))

Adjusted predictions Number of obs = 1090

Expression : Linear prediction, predict()

1._at : sex = 1
age = 43.82294 (mean)

2._at : sex = 2
age = 43.82294 (mean)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at#mobile16
1#SAME CITY 43.39188 .8151133 53.23 0.000 41.7925 44.99126

1 #
SAME ST,DI.. 48.04545 .9222139 52.10 0.000 46.23592 49.85497

1 #
DIFFERENT .. 46.62672 .7471295 62.41 0.000 45.16074 48.0927
2#SAME CITY 44.73797 .7900194 56.63 0.000 43.18783 46.28811

2 #
SAME ST,DI.. 49.39154 .9390421 52.60 0.000 47.54899 51.23408

2 #
DIFFERENT .. 47.97281 .8208526 58.44 0.000 46.36217 49.58344
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The additional specifications to the margins command are straightforward. We still
have the at() option for age to be set at its mean, but now we have specified that sex
be fixed at 1 and then fixed at 2. We see that we have the same 1,090 people as we
had in the anova results. The results are a bit hard to read because we get separate
estimated means when sex is at 1 (males) and when sex is at 2 (females). Both of these
results have age set at the overall mean of 43.82.

It made sense to set the continuous variable, age, at its mean as a way of controlling
for age. It would not make sense to set the categorical variable, sex, at its mean. People
are either male or female. These are fixed categories. Setting sex at its mean for our
subpopulation (the mean happens to be 1.47) would not be meaningful. What is a 1.47
sex?

The estimated means still appear under the column labeled “Margin”. The first
three are men (sex = 1) who are in the same town, 43.39; men who are in the same
state, different town, 48.05; and men who are in a different state, 46.63. The bottom
three rows are the corresponding values for women (sex = 2). It is interesting how
occupational prestige for women in this age group who work full time has the same
pattern but is slightly higher than the corresponding occupational prestige of men.

Using adjusted means can be very informative. Consider the effects of family struc-
ture (married, divorced, never married) on child outcomes. Generally, children living
in families with married parents have better outcomes. This could be tested using a
one-way ANOVA, where each outcome was a dependent variable and the three family
types were a categorical independent variable. You might ask whether the differences
have to do with marital status or whether they are dependent on other covariates.
Never-married parents tend to have much lower income and somewhat lower maternal
education than do married parents. Divorced parents tend to have much lower income
than do married parents. These income and educational differences may be what is in-
fluencing child outcomes rather than just the family structure. Acock and Demo (1994)
did a series of ANOVAs for different child outcomes using family structure as a categorical
variable and adding income, education, and several other covariates. They found that
for many of the outcomes, the advantage of the married parents structure was greatly
reduced when controlling for the covariates.

In this example, some of the covariates of marital status may be intervening variables.
Lower income or a change in school following a divorce may be mechanisms whereby
divorce creates problems for child well-being. We could say that marital status is the
driver variable and covariates such as income and school quality are variables that
mediate the effect of divorce on child well-being (see section 14.4).
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Estimating the effect size and omega-squared, ω2

Some fields use a measure of effect size for each variable in an ANOVA. Three
effect size measures are fairly widely used: eta-squared, η2; omega-squared, ω2;
and Cohen’s f2. The η2 is the sum of squares for a variable (factor) divided by
the total sum of squares. It can be interpreted as how much of the variation in the
sample is explained by the predictor. Cohen (1988) suggests that a value of η2 of
0.01 is a small effect size, 0.06 is medium, and 0.14 is large. The ω2 is an estimate
of the explained variable in the population and adjusts for degrees of freedom
and the error term, making it somewhat smaller than η2. Because ω2 adjusts for
chance effects, an estimated value of ω2 can be less than 0.0, even though it would
be impossible to actually explain less than nothing. A negative value would be
estimated only when a factor was clearly unimportant as a predictor. Cohen’s f2

is the ratio of the square root of the explained variance over the variance that is
not explained. Cohen (1992) suggested that an f of 0.10 is a small effect, 0.25 is
medium, and 0.40 is large.

After running an anova command, we can obtain the η2 and the ω2 using
the estat esize postestimation command. We need to run this command twice:
first, we will run the command by default to report η2, and second, we will add
the omega option to obtain ω2.

. estat esize

Effect sizes for linear models

Source Eta-Squared df [95% Conf. Interval]

Model .0206813 4 .005142 .0371681

mobile16 .0190342 2 .0055725 .0369944
sex .0024027 1 0 .0116359
age .0002241 1 0 .005375

. estat esize, omega

Effect sizes for linear models

Source Omega-Squared df [95% Conf. Interval]

Model .0170709 4 .0014743 .0336185

mobile16 .017226 2 .0037395 .0352193
sex .0014832 1 0 .0107249
age 0 1 0 .0044583
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Estimating the effect size and omega-squared, ω2, continued

Philip B. Ender created a user-written command, omega2, that calculates ω2 and
Cohen’s f . If you do not have this command installed, type search omega2 and
follow the link to install the command. Neither estat esize nor omega2 will run
after oneway, but both commands run after anova.

. omega2 sex
omega squared for sex = 0.0015
fhat effect size = 0.0382

. omega2 mobile16
omega squared for mobile16 = 0.0172
fhat effect size = 0.1322

. omega2 c.age
omega squared for c.age = -0.0007
fhat effect size = 0.0000

These results show that the effect of our predictors was at best “small”, es-
pecially so for sex and c.age. In the case of c.age, the negative ω2 indicates
that the effects are not even as strong as would be expected using random numbers.

You will notice that for age, we used c.age because it is a continuous variable.
From these results, we see that our one statistically significant effect, mobility, has
an ω2 = 0.02 and that the effect size is 0.13. Both of these are considered small ef-
fect sizes. So along with saying that the effect of mobility is statistically significant,
we should also acknowledge that it is quite weak. The other two variables, age
and sex, were not statistically significant in our example, and it is not surprising
that ω2 and the effect size for them is too small to be considered even a small effect.

Although omega2 does not work for the one-way ANOVA command, you can
always do a one-way ANOVA by using the full anova command rather than
the oneway command. Then, after doing the one-way ANOVA using the anova

command, you can run the omega2 command.
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9.6 Two-way ANOVA

Stata has enormous capacity for estimating a wide range of ANOVA models; we are only
touching on a few of the ways Stata can fit ANOVA models here. One important extension
of one-way ANOVA is two-way ANOVA, where we have two categorical predictors. For
our example, we will use gss2006 chapter9 2way.dta to predict how many hours a
person watches TV, tvhours, our dependent variable. We think this varies by marital
status, married (coded 0 if a person is not married and 1 if a person is married), and
work status, workfull (coded 0 if a person is not working full time and 1 if a person
is working full time). We believe that people who work full time and people who are
married will watch fewer hours of TV. Before doing the two-way ANOVA, let’s check the
mean number of hours of TV that married people watch compared with the number of
hours that people who are not married watch and the corresponding mean number for
people who work full time compared with the number for those who do not work. We
do this with the following tabulate commands:

. tabulate married, summarize(tvhours)

Are you Summary of HOURS PER DAY WATCHING
married or TV

not? Mean Std. Dev. Freq.

Not Marri 3.2383268 2.5831093 1028
Married 2.611691 1.8652487 958

Total 2.9360524 2.2864047 1986

. tabulate workfull, summarize(tvhours)

Does R work Summary of HOURS PER DAY WATCHING
full time TV

or not Mean Std. Dev. Freq.

Not Full 3.4610778 2.5842414 1002
Full-time 2.4010152 1.784816 985

Total 2.9355813 2.2859255 1987

It looks like we might be on to something. Those working full time average 2.40
hours a day watching TV compared with 3.46 hours for people who do not work full
time. Those who are married watch TV 2.61 hours per day compared with 3.24 hours
per day for those who are not married.

To do a two-way ANOVA, we can open the anova dialog box by clicking on Statistics
⊲ Linear models and related ⊲ ANOVA/MANOVA ⊲ Analysis of variance and covariance. In
the dialog box, we enter tvhours as our Dependent variable. For Model, we simply list
our two categorical variables, workfull and married. We are asking for partial sum of
squares. Here are the command and results:
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. anova tvhours workfull married

Number of obs = 1986 R-squared = 0.0701
Root MSE = 2.2059 Adj R-squared = 0.0692

Source Partial SS df MS F Prob > F

Model 727.597834 2 363.798917 74.76 0.0000

workfull 532.878166 1 532.878166 109.51 0.0000
married 170.139227 1 170.139227 34.96 0.0000

Residual 9649.28082 1983 4.86600142

Total 10376.8787 1985 5.22764668

Both workfull, F (1, 1983) = 109.51, p < 0.001, and married, F (1, 1983) = 34.96,
p < 0.001, are statistically significant. The R2 = 0.07 means that we can explain
just 7% of the variance. If you now use the omega2 command, you can see that both
workfull and married have fairly small effect sizes, so the relationships are significant
but somewhat weak. Typing omega2 workfull produces an omega squared of 0.05 and

an f̂ effect size of 0.23. Both of these results are considered small to medium effects.
Typing omega2 married returns an omega squared of 0.02 and an f̂ effect size of 0.13.

Imagine that you think the effect of working full time may be different if you are
not married than if you are married. You think that people who are not married watch
a lot more TV if they do not work full time than if they do work full time. You think
this difference will be less for people who are married because of marital obligations
they have. This is the basis of what is called a statistical interaction. We can look at
the combination of means to get a sense of this. We run a tabulate listing both of our
predictors.

. tabulate workfull married, summarize(tvhours)

Means, Standard Deviations and Frequencies of HOURS PER DAY WATCHING TV

Does R
work full Are you married or

time or not?
not Not Marri Married Total

Not Full 3.8215613 3.0431034 3.4610778
2.8497018 2.1664723 2.5842414

538 464 1002

Full-time 2.5979592 2.2064777 2.4014228
2.0761564 1.4163199 1.7856777

490 494 984

Total 3.2383268 2.611691 2.9360524
2.5831093 1.8652487 2.2864047

1028 958 1986

It looks like you were right! An unmarried person who is not working full time
watches over one more hour a day of TV than an unmarried person who is working; the
means are 3.82 compared with 2.60 hours, a difference of 1.22 hours a day. By contrast,
the difference is about half as much for those who are married; the means are 3.04
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compared with 2.21, a difference of just 0.83 hours a day. This means that the effect
of one variable, work status, on the dependent variable is different for different levels of
the other variable, marital status. If you are married, the effect of work status on TV

watching is weaker than if you are not married.

Two-way ANOVA lets us test this very easily. We open the anova dialog box again.
This time under the Model tab, we enter workfull married workfull#married. Stata
interprets workfull#married as telling it to multiply these two variables and use the
product terms for testing the interaction. You might click on Examples... in the dialog
box to see how you can do even more complicated models and how there are shortcuts
beyond what we have used here. Here are the results:

. anova tvhours workfull married workfull#married

Number of obs = 1986 R-squared = 0.0719
Root MSE = 2.20434 Adj R-squared = 0.0705

Source Partial SS df MS F Prob > F

Model 746.133601 3 248.7112 51.18 0.0000

workfull 525.37818 1 525.37818 108.12 0.0000
married 169.421376 1 169.421376 34.87 0.0000

workfull#married 18.5357671 1 18.5357671 3.81 0.0509

Residual 9630.74505 1982 4.85910447

Total 10376.8787 1985 5.22764668

These results show not only that workfull and married influence TV watching, as we
saw before, but also that there is a marginally significant interaction, workfull#married,
F (1, 1982) = 3.81, p = 0.0509. The tabulation we did aids our interpretation. After
running this ANOVA, we probably should use a postestimation command, like margins,
to estimate these means because it also provides confidence intervals for each of the
means. Select Statistics ⊲ Postestimation ⊲ Marginal means and predictive margins. Under
the Main tab, all we need to do is enter our three predictors, workfull, married, and
workfull#married, in the space under Factor terms to compute margins for. Here are
the results:
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. margins workfull married workfull#married

Predictive margins Number of obs = 1986

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. t P>|t| [95% Conf. Interval]

workfull
Not Full 3.446051 .0696898 49.45 0.000 3.309378 3.582724

Full-time 2.409118 .070326 34.26 0.000 2.271197 2.547038

married
Not Married 3.215305 .0688002 46.73 0.000 3.080377 3.350234

Married 2.628582 .071277 36.88 0.000 2.488796 2.768368

workfull#
married

Not Full #
Not Married 3.821561 .0950357 40.21 0.000 3.635181 4.007942

Not Full #
Married 3.043103 .1023338 29.74 0.000 2.84241 3.243797

Full-time #
Not Married 2.597959 .0995818 26.09 0.000 2.402663 2.793255

Full-time #
Married 2.206478 .0991778 22.25 0.000 2.011974 2.400982

Although the R2 is small and the partial or semipartial R2s for workfull, married,
and workfull#married are even smaller, the means show what many would consider a
substantively important effect. It is probably better to look at these means than simply
rely on the measures of effect size.

If you are really good with numbers, the results of the margins command are all
you need. We can see that workfull is associated with fewer hours watching TV (2.409
versus 3.446 under the Margin column). We see that those who are married also watch
less TV. The interaction of working full time and marriage is hard to understand if we
just look at these numbers. Fortunately, this is exactly where a graph is useful.

We have three factors in our ANOVA: workfull, married, and their interaction,
workfull#married. We can produce three graphs. The first graph we create is the
effect of workfull to visually display the difference in hours watching TV. We rerun the
margins command, this time with only the workfull variable. (We include the quietly
prefix because we do not want to see these results again.) Then we run marginsplot,
which creates the graph in figure 9.6.
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. quietly: margins workfull

. marginsplot
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Does R work full time or not

Predictive Margins of workfull with 95% CIs

Figure 9.6. Hours of TV watching by whether the person works full time

Figure 9.6 might be improved with some judicious editing, but it is nice this way.
What would you change with the Graph Editor? I would change the y-axis title from
“Linear Prediction” to “Hours Watching TV”, a more appropriate title. After examining
all three graphs we will produce, I would change the range on the y axis to be consistent.
The graph shows the difference in hours TV was watched and includes a 95% confidence
interval. If we do not want this confidence interval, we simply add the noci option as
we do in the next two graphs. To display whether the person is married, we use the
following command, which creates figure 9.7:
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. quietly: margins married

. marginsplot, noci
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Figure 9.7. Hours of TV watching by whether the person is married

This graph makes it clear that married people watch fewer hours of TV than people
who are not married. The real value of the marginsplot command is evident in the next
example, which creates the graph in figure 9.8, when we plot the interaction between
working full time and marital status:
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. quietly: margins workfull#married

. marginsplot, noci

2
2
.5

3
3
.5

4
L
in

e
a
r 

P
re

d
ic

ti
o
n

Not Full Full−time

Does R work full time or not

Not Married Married

Adjusted Predictions of workfull#married

Figure 9.8. Hours of TV watching by whether the person is married and whether the
person works full time

Many of your readers will find a graph like this more understandable than the table
of workfull#married marginal means. This shows that married people watch fewer
hours of TV regardless of their work status, p < 0.001 (from the anova command
output). Those who work full time also watch fewer hours of TV regardless of their
marital status (p < 0.001). The marginally significant interaction of marital status and
work status, p < 0.10, is reflected in the lines not being parallel. Those who do not
work full time have a greater gap in hours watching TV that depends on their marital
status and those who work full time have less of a gap. In cases of extreme interaction,
the lines might even cross over.

9.7 Repeated-measures design

Chapter 7 included a section on repeated-measures t tests. These tests were useful
when you had a before–after design in which participants were measured before an
intervention and then the same participants were measured again after the intervention.
We use repeated-measures ANOVA when there are more than two measurements. For
example, we might want to know if the effect of the intervention was enduring. With only
before and after measurements, we do not know what happens in the weeks or months
following the experiment. We might have three time points, namely, pretest (before
the intervention), posttest (shortly after the intervention is completed), and follow-up
(another measurement a couple of months later). Students can think of many subjects



250 Chapter 9 Analysis of variance

where the follow-up measure would be revealing. They would have scored poorly on the
final examination if they took it before taking the class. They would score much better
when they took the final examination after taking the course. However, they might
score poorly again if they took the same test again a few months after completing
the course. This is a special problem with courses that emphasize memorization. A
repeated-measures ANOVA allows us to test what happens over time.

A critical assumption of the F test when doing ANOVA is that the observations are
independent. This makes sense when comparing several groups; the people in one group
are independent of the people in the other group. This is not a reasonable assumption
when you have repeated measures on the same set of people. For example, if Alexander,
Matthew, Emma, Abigail, and Jacob are each measured on their attitude toward people
who are obese before an intervention, after an intervention, and three months after the
intervention, each of the three measures are likely to be correlated. If Jacob is the most
prejudiced at the start, the researcher hopes his prejudice will be reduced, but he is still
likely to be more prejudiced than the others. If Abigail is the least prejudiced initially,
she is likely to be one of the less prejudiced at each of the four measurement points. This
is what we mean by a lack of independence. The scores will be somewhat homogeneous
within each person. That is, three scores for the same person will be more similar than
three randomly selected scores.

The way a repeated-measures ANOVA adjusts for this lack of independence is to
adjust the degrees of freedom using three different strategies. The Box conservative
approach is a lower bound on the adjustment. It makes it hardest to obtain statistical
significance. The Greenhouse–Geisser adjustment is somewhat less conservative, but it
still may have a conservative bias. The Huynh–Feldt approach is the least conservative.

There are alternatives to a repeated-measures ANOVA that go beyond the scope of
this chapter. One alternative is to do a multivariate ANOVA, which Stata implements
with the manova command. A second alternative is to do a mixed-model approach, as
done with the mixed command. Both of these methods are beyond the scope of this
chapter. We will see how to do a repeated-measures ANOVA with the caution that this
does not work on a very large sample and the other approaches not covered in this book
may be more appropriate.

Here are some hypothetical data for students in a small class as the data might be
presented in a textbook (wide9.dta).
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. list

id test1 test2 test3

1. 1 55 85 80
2. 2 65 90 85
3. 3 34 70 71
4. 4 55 75 65
5. 5 61 59 65

6. 6 79 94 85
7. 7 63 59 59
8. 8 45 65 50
9. 9 54 70 60
10. 10 69 90 82

Stata refers to this arrangement as a wide layout of the data, but Stata prefers a
long arrangement. You could make this conversion by hand with a small dataset like
this, but it’s easier to use the reshape command. Many find this command confusing,
and I will illustrate only this one application of it. A detailed explanation appears at
http://www.ats.ucla.edu/stat/stata/modules/reshapel.htm. For our purposes, the com-
mand to reshape the data into a long format is reshape long test, i(id) j(time).

This looks strange until we analyze what is being done. The reshape long part
lets Stata know that we want to change from the wide layout to a long layout. This
is followed by a variable name, test, that is not a variable name in the wide dataset.
However, test is the prefix for each of the three measures: test1, test2, and test3.
If we had used names like pretest, posttest, and followup, we would have needed to
rename the variables so that they would have the same stubname and then a number.
We can do this by opening the Data Editor, double-clicking on the variable name we
want to change, and then changing the name in the Properties pane. We could also
do this by opening the Variables Manager, clicking on the variable name, changing the
name in the Variable Properties pane, and clicking on the Apply button. Performing the
changes in the Data Editor or the Variables Manager generates the commands rename
pretest test1, rename posttest test2, and rename followup test3.

After the comma in the reshape command are two required options. (Stata calls
everything after the comma an option, even if it is required for a particular purpose.)
The i(id) option will always be the ID number for each observation. The parentheses
would contain whatever variable name was used to identify the individual observations.
Here we use id, but another dataset might use a different name, such as ident or case (if
you do not have an identification variable, run the command gen id = n before using
the reshape command). The j(time) option refers to the time of the measurement.
This option creates a new variable, time, that is scored a 1 if the score is for test1, a
2 for test2, or a 3 for test3. The choice of the name time is arbitrary. Here are the
command and its results:
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. reshape long test, i(id) j(time)
(note: j = 1 2 3)

Data wide -> long

Number of obs. 10 -> 30
Number of variables 4 -> 3
j variable (3 values) -> time
xij variables:

test1 test2 test3 -> test

. list

id time test

1. 1 1 55
2. 1 2 85
3. 1 3 80
4. 2 1 65
5. 2 2 90

6. 2 3 85
7. 3 1 34
8. 3 2 70
9. 3 3 71
10. 4 1 55

11. 4 2 75
12. 4 3 65
13. 5 1 61
14. 5 2 59
15. 5 3 65

16. 6 1 79
17. 6 2 94
18. 6 3 85
19. 7 1 63
20. 7 2 59

(output omitted )
26. 9 2 70
27. 9 3 60
28. 10 1 69
29. 10 2 90
30. 10 3 82

If you are uncomfortable with the reshape command, you can always enter the
data yourself using the long format. id is repeated three times for each observation,
corresponding to the times 1, 2, and 3 that appear under time. The last column is the
variable stub test with 55 being how person 1, id = 1, did on test1 at time = 1; 85
being how person 1 did at time 2; and 80 being how person 1 did at time 3. You can see
how the long format appears as a wide format to check that you have either entered the
data correctly or done the reshape command correctly. In this example, the command
is tabdisp id time, cellvar(test) (the results are not shown here).
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With the data in the long format, we can first see how much we have violated the
assumption of independence. The intraclass correlation coefficient (ICC), which is often
called rho-sub-i, ρI , is a measure of the lack of independence. The variance in our
three sets of test scores can be thought of as consisting of two components. There is
the difference between the people because some people tend to consistently score high
or consistently score low. There is also the difference within individual people, which
represents the variance from one test to another for each person. If all the variability is
between people, then each person would score the same at each testing and there would
be complete dependence. If I know how Jacob or Abigail, or anybody else, scored at
one point, I would know exactly how he or she scored at each other point. We can run a
command to obtain the ICC or ρI when the data are in the long form. Without showing
the dialog box, here are the commands and output:

. xtset id
panel variable: id (balanced)

. xtreg test

Random-effects GLS regression Number of obs = 30
Group variable: id Number of groups = 10

R-sq: within = 0.0000 Obs per group: min = 3
between = 0.0000 avg = 3.0
overall = 0.0000 max = 3

Wald chi2(0) = .
corr(u_i, X) = 0 (assumed) Prob > chi2 = .

test Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 67.96667 3.510988 19.36 0.000 61.08526 74.84808

sigma_u 8.8746414
sigma_e 11.555662

rho .37099391 (fraction of variance due to u_i)

The xtreg command is one of several xt commands. This group of Stata commands
is appropriate for panel data like our example above, where the scores for each person
are measured at three separate time points. Prior to running the xtreg command, we
need to declare our data to be panel data arranged in the long form. We do this with
the xtset command. In our example, id is the variable that identifies the observations
(people) that have repeated measures. Each person was measured at three different
times. Depending on what is repeated, the variable could have different names, for
example, xtset case, xtset school, or xtset clinic.

The xtreg command estimates our intraclass correlation. The variable test is our
dependent variable. The variable name test is the common stem of the three variables
we had (test1, test2, and test3) when the data were in the wide format.

We see from the xtreg results that rho = 0.371. This is called either the ICC or the
ρI , depending on your area of specialty. This would be considered a substantial lack of
independence. Whenever the ICC is 0.05 or more, we need to make some adjustment.
Many researchers would make an adjustment regardless of the size of the ICC because
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some dependency is expected as part of the research design that involves repeated
measures on the same observations.

Here are the Stata command to do our repeated-measures ANOVA and the results:

. anova test id time, repeated(time)

Number of obs = 30 R-squared = 0.8284
Root MSE = 7.56233 Adj R-squared = 0.7235

Source Partial SS df MS F Prob > F

Model 4969.56667 11 451.778788 7.90 0.0001

id 3328.3 9 369.811111 6.47 0.0004
time 1641.26667 2 820.633333 14.35 0.0002

Residual 1029.4 18 57.1888889

Total 5998.96667 29 206.86092

Between-subjects error term: id
Levels: 10 (9 df)

Lowest b.s.e. variable: id

Repeated variable: time
Huynh-Feldt epsilon = 0.7848
Greenhouse-Geisser epsilon = 0.6969
Box’s conservative epsilon = 0.5000

Prob > F
Source df F Regular H-F G-G Box

time 2 14.35 0.0002 0.0007 0.0012 0.0043
Residual 18

In this command, we list the dependent variable, test; the grouping variable, id, be-
cause the repeated measures are repeated for each person; and the time variable. We
included the repeated(time) option to make this repeated over time.

The top part of the results shows a traditional ANOVA table. We do not want to
make much use of this information. The R2 = 0.828 is misleading because this applies to
the Model, which includes both the differences between individuals and the differences
across time. We are only interested in the differences across time, so we should report
the R2 for time as the partial sum of squares for time divided by the total sum of
squares. Hence, R2 for time is 1641.267/5998.967 = 0.274. If you have the omega2

command installed, you could run omega2, and you would obtain ω2 = 0.252, with an
effect size of 0.581. These results would indicate a substantial change over time in the
test scores.

To test our significance, we need to use the table at the bottom of the results. The
Huynh–Feldt epsilon will adjust the degrees of freedom by multiplying it by 0.785, the
Greenhouse–Geisser will multiply it by 0.697, and Box’s conservative approach would
multiply it by 0.500 to estimate the probability of the F . Our F = 14.35 for our
unadjusted degrees of freedom of 2 and 18. You can see that by using this degrees
of freedom, our p < 0.001 as it is for using the Huynh–Feldt adjustment. For the
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Greenhouse–Geisser adjustment, the p < 0.01, and this is also true by using Box’s
conservative adjustment. In this case, all our results are significant, but whether we
report it as p < 0.001 or p < 0.01 will be determined by our choice of adjustment.
Because there is no definitive best choice, it may be best to report the p for all three
adjustment methods. Box’s approach is generally considered to be too conservative.

These results show that the scores do change significantly over time and the results
are substantial in terms of R2 and the effect size. However, this does not tell us exactly
what the effects are. To get that, we need to run the margins command immediately
after running the anova command:

. margins time

Predictive margins Number of obs = 30

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. t P>|t| [95% Conf. Interval]

time
1 58 2.39142 24.25 0.000 52.97581 63.02419
2 75.7 2.39142 31.65 0.000 70.67581 80.72419
3 70.2 2.39142 29.35 0.000 65.17581 75.22419

9.8 Intraclass correlation—measuring agreement

The intraclass correlation coefficient, ICC or ρI , can be used as a measurement of agree-
ment. When we have just two measures, we may be tempted to measure agreement
using a simple correlation coefficient. We might have just a before and an after mea-
sure, or we might have a measure on two related people, say, a husband and his wife
or a mother and her child. It is a mistake to use a simple correlation coefficient to
measure agreement. Consider data reflecting how liberal a mother and her child are. If
each child scored 2 points higher than the mother on a 1 to 10 scale of liberalism, then
they clearly would not agree, but the correlation would be 1.0. The regression equation,
kidscore = 2 + 1(momscore), would fit perfectly, yielding an R2 = 1.0, even though
each child scored 2 points higher than his or her mother. If each child scored two times
the mother’s score, the equation kidscore = 0 + 2(momscore) would fit perfectly. In
either of these examples, we would say that there was agreement, and the R2 = 1.0
would be inappropriate as a measure of agreement.

The ICC will only be 1.0 if there is perfect agreement. We will illustrate it with an
example from dynamics. The ICC is a better measure of agreement than the correlation,
but in this example, we have three scores rather than two and agreement is across all
three scores.

We randomly assign three people to each of 10 groups and have them discuss re-
forming Medicare. After 30 minutes of discussing the issue, each person completes a
questionnaire that includes a scale measuring attitude toward welfare reform. Assume
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that one member out of both groups 3 and 7 got sick, so we would have only two scores
for each group 3 and 7 on their attitudes toward reforming Medicare. You enter your
data using the long format, and the data look like this (intraclass.dta):

. list

medicare group

1. 21 1
2. 22 1
3. 22 1
4. 17 2
5. 16 2

6. 15 2
7. 15 3
8. 16 3
9. 18 4
10. 19 4

11. 20 4
12. 12 5
13. 12 5
14. 14 5
15. 14 6

16. 21 6
17. 24 6
18. 23 7
19. 22 7
20. 26 8

(output omitted )
26. 35 10
27. 33 10
28. 45 10

The groups, numbered 1 to 10, each appear three times, with the exception of
groups 3 and 7 (because one member in each group got sick and did not complete the
questionnaire). The three people in the first group have scores of 21, 22, and 22. The
order of members is arbitrary in this example. If the group process leads to agreement
among group members, we would expect the variance within each group to be small—all
of them would have similar scores. By contrast, we would expect there to be considerable
variance across groups. Compare the three people in group 1 with the three people in
group 2, and you can see that most of the variance is between groups. If everybody
within each group agrees with his or her group members and all the differences are
between groups, then the intraclass correlation will be 1.0.

In section 9.7, we illustrated the commands to declare data to be panel and to
produce the ICC once the data are in the long format. We can use the same statistic as
our measure of agreement. Here are the commands and results:
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. xtset group
panel variable: group (unbalanced)

. xtreg medicare

Random-effects GLS regression Number of obs = 28
Group variable: group Number of groups = 10

R-sq: within = 0.0000 Obs per group: min = 2
between = 0.0000 avg = 2.8
overall = 0.0000 max = 3

Wald chi2(0) = .
corr(u_i, X) = 0 (assumed) Prob > chi2 = .

medicare Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 21.38081 2.214351 9.66 0.000 17.04077 25.72086

sigma_u 6.7602232
sigma_e 2.9907264

rho .83631742 (fraction of variance due to u_i)

In this example, the xtset command specified group as our unit of observation.
The xtreg command specified medicare as our dependent variable. Each group is one
observation that has three repeated scores for the three people in each group. Notice
that in section 9.8, we used id as the unit of observation with three repeated tests for
each individual. Here we use group as the unit of observation with three scores for the
group members.

Stata reports that the ICC is 0.836, which reflects an extremely high level of agree-
ment. Many studies have reported correlations as measures of agreement when the ICC

would be more appropriate. Sometimes researchers say a correlation is a reliable mea-
sure because when a scale is given to the same people on two occasions, we get a high
correlation. This is not an appropriate measure of agreement, and the ICC should be
reported instead.

9.9 Power analysis with ANOVA

Stata’s power command can be very useful when you are designing a study. The power
command has a wide range of capabilities for analyzing power in ANOVA studies, and we
will illustrate only some of the basic applications. The capabilities are fully described
in the Stata Power and Sample-Size Reference Manual (StataCorp 2013b).

9.9.1 One-way ANOVA

Imagine you are designing a study in which you will randomly assign women with
chronic back pain to one of three conditions. Condition A uses the current, best practice
treatment. Condition B uses an alternative holistic treatment. Condition C tells the
women to rest and take it easy. You want to do a one-way ANOVA to see if the condition
matters. How many participants will you need in your study? Let’s say it is practical
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for you to have at least 60 participants with 20 randomly assigned to each of the three
groups or conditions. However, you are writing a grant proposal to fund this project,
and you could have a lot more participants if needed to have a good study. What does it
mean to have a good study? One key ingredient is that your study will have the power
necessary to show a significant result given that the true condition is substantively and
clinically important. You need a measure of the effect size you consider important to
help you decide what would be a clinically important result.

We could enter the means and standard deviations for each group, but we do not
usually know them. One solution is to use a general measure of effect size used in
ANOVA. We have covered η2 and ω2. A third measure of effect size is Cohen’s f , which
is what Stata uses for its power analysis in ANOVA models. Cohen’s f is the square root
of the ratio of the between-group to the within-group variances. This can be estimated
quickly as follows:

f =

√
η2

1− η2

An f = 0.10 is defined as a small effect size, an f = 0.25 is defined as a medium effect
size, and an f = 0.40 is defined as a large effect size.

The cutoff values for f were suggested by Cohen (1992). These reflect Cohen’s
own experience in the field of psychology. In some applications, you may want to have
either larger or smaller cutoff values. A larger value of f simply means that more of the
variance is due to differences between the groups (numerator) than differences remaining
within the groups (denominator). You should use cutoff values of f that are appropriate
to your own field.

You will need a much larger sample size for power to detect a small effect than you
would need for power to detect a large effect. Let’s say you want power to detect a
medium effect. You decide that you need to have a power of 0.80 to detect a medium
effect size of 0.25 with an alpha of 0.05. The power of 80% means that if you replicated
this study an infinite number of times, 80% of the studies would obtain a statistically
significant result at the p < 0.05 level when the true effect size was f = 0.25. You would
still be taking a gamble, because you had the bad fortune of having one of the 20% of
studies that did not obtain a significant result even though there was a true difference
at the effect-size level. However, greater certainty, such as a power of 0.90, might make
the study cost prohibited. Many researchers and funding agencies are satisfied to have
a power of 0.80.

We will use the power oneway command to see what happens to the effect size we
can detect with different N ’s. We will let the total N vary from 40 to 500 in increments
of 20, that is, 40, 60, 80, . . . , 500. We will specify a power of 0.80, an alpha of 0.05,
and the three conditions or groups. We will ask for a graph and a table. Here is our
command and the results:
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. power oneway, n(40(20)500) power(0.80) alpha(0.05) ngroups(3) graph table

Performing iteration ...

Estimated effect size for one-way ANOVA
F test for group effect
Ho: delta = 0 versus Ha: delta != 0

alpha power N N_per_group delta N_g

.05 .8 40 13 .5185 3

.05 .8 60 20 .4115 3

.05 .8 80 26 .3586 3

.05 .8 100 33 .3169 3

.05 .8 120 40 .287 3

.05 .8 140 46 .2672 3

.05 .8 160 53 .2485 3

.05 .8 180 60 .2333 3

.05 .8 200 66 .2223 3

.05 .8 220 73 .2112 3

.05 .8 240 80 .2016 3

.05 .8 260 86 .1944 3

.05 .8 280 93 .1868 3

.05 .8 300 100 .1801 3

.05 .8 320 106 .1749 3

.05 .8 340 113 .1693 3

.05 .8 360 120 .1643 3

.05 .8 380 126 .1603 3

.05 .8 400 133 .156 3

.05 .8 420 140 .152 3

.05 .8 440 146 .1488 3

.05 .8 460 153 .1454 3

.05 .8 480 160 .1421 3

.05 .8 500 166 .1395 3
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Figure 9.9. Effect size for power of 0.80, alpha of 0.05 for N ’s from 40 to 500
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If we look at the graph (the effect size is labeled σ), we can see that our original
hope of doing this study with an N = 60 was off the mark. We now know why a funding
agency would not want to fund such a study with an N = 60, because it would require
a much greater effect size than the minimum effect size, f = 0.25, for which we said
it would be clinically important to have a power of 0.80 with an alpha of 0.05. Based
on the graph, it appears that we need about 160 observations overall with about 53 in
each of our three groups. If we want a more precise way to pick our needed sample size,
we can look at the tabular results. There we see that we would have a power of 0.80 to
detect an effect size of 0.25 (column labeled delta) if we had just under 160 participants
with 53 in each group. We could hone it down even more precisely by varying the total
N from 150 to 170 in increments of 1.

. power oneway, n(150(1)170) power(0.80) alpha(0.05) ngroups(3) graph table

Try this command and see why we would decide on N = 159 with 23 participants
in each group.

What if we said only a large effect size would have clinical importance, f = 0.40?
Looking at our tabular results, we see that we would need only about 60 study partic-
ipants, with 20 in each group. We can also see what would happen if we insisted on
detecting a small effect size. We would need a huge sample to obtain an effect size of
f = 0.10 with an alpha of 0.05 and a power of 0.80. From the table above, we see that
not even 500 participants would be enough. If we were to again type

. power oneway, n(500(20)1000) power(0.80) alpha(0.05) ngroups(3) graph table

we would see that we would need about 980 participants with 326 in each group. You
can imagine that when even a small effect has important clinical implications, many
research studies have samples that are too small to be effective. In that case, we do
not know whether a lack of significance is because the effect is unimportant or if it is
because the study design is underpowered.

Power analysis for two-way ANOVA

Let’s extend our one-way example to a two-way ANOVA. Our one-way example was
restricted to women. Let’s see if there is also a gender difference. With a two-way
ANOVA, we have three interests: 1) whether the three conditions make a difference;
2) whether being a woman or a man makes a difference; and 3) whether there is a
gender x condition interaction.

For the condition difference (three columns in the two-way ANOVA), we will use the
0.80 for our power, 0.05 for our alpha, and 0.25 for our effect size. Our data now have
two rows, one for women and one for men. To run the power twoway command, we
will need to add the number of rows, nrows(2), and specify that we want the results
for the condition effect in the three columns, factor(column). Here is our command
for the condition difference and the table and graph (figure 9.10) it produces:
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. power twoway, nrows(2) ncols(3) power(0.80) n(100(20)300) factor(column)
> graph table

Performing iteration ...

Estimated effect size for two-way ANOVA
F test for column effect
Ho: delta = 0 versus Ha: delta != 0

alpha power N N_per_cell delta N_r N_c

.05 .8 100 16 .3221 2 3

.05 .8 120 20 .2871 2 3

.05 .8 140 23 .2673 2 3

.05 .8 160 26 .251 2 3

.05 .8 180 30 .2334 2 3

.05 .8 200 33 .2223 2 3

.05 .8 220 36 .2127 2 3

.05 .8 240 40 .2017 2 3

.05 .8 260 43 .1944 2 3

.05 .8 280 46 .1879 2 3

.05 .8 300 50 .1801 2 3
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Figure 9.10. Effect size for power of 0.80 with two rows in each of the three columns for
N ’s from 100 to 300

These results are virtually the same as we had for the columns in the one-way ANOVA.
In the results, the only difference is that we need 26 people in each cell.

If we were testing for gender differences, we would simply use the option
factor(row):

. power twoway, nrows(2) ncols(3) power(0.8) n(100(10)300) factor(row) graph
> table

Detecting a row effect of gender would require about 130 observations.
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If we were testing for an interaction of condition x row, we would use the option
factor(rowcol):

. power twoway, nrows(2) ncols(3) power(0.8) n(100(10)300) factor(rowcol)
> graph table

Detecting a medium interaction effect of f = 0.25 would require about 160 observa-
tions. Each of these power commands show that having around 160 participants in our
study will work fine.

9.9.2 Power analysis for repeated-measures ANOVA

This time we are going to think about designing a different study. Suppose we are
interested in how maternal stress varies depending on the age of a mother’s oldest child.
We will select three fixed ages for the oldest child. We will have one group of mothers,
but we will measure their stress at four points. The first time is when the oldest child
is 10. The second time is when the oldest child turns 13. The third time is when the
oldest child turns 16. Finally, the fourth time is when the oldest child turns 19. Our
question is whether maternal stress is consistent or varies depending on the age of the
mother’s oldest child. Our hypothesis is that a mother’s stress does vary with the age
of the oldest child and our null hypothesis is that it does not. We want to use the 0.05
alpha level of significance. We want to have a power of 0.80. How big of a sample do
we need?

We know we cannot treat this as a one-way ANOVA because we do not have four
independent samples. The issue is that a mother’s maternal stress at one point is likely
to strongly correlate with her maternal stress at another point. To allow for this lack
of independence, we need to make some estimate of the correlation. Let’s pick a value
of r = 0.6. If you have no basis for estimating the correlation, you might try to repeat
the analysis using different values to see how much difference that makes. You could
run a simple pilot test with a few mothers to get a reasonable value for this correlation.
The r = 0.60 was picked because we expect there to be a strong correlation between
measures of the maternal stress. We might find this value through a literature review,
or we may have to just make a guess. We decide that a small effect size of f = 0.10
is unlikely to be clinically important, but a moderate effect size of f = 0.25 would be
important. This decision on the size of effect size can sometimes be justified by reference
to literature in the field. We will be interested in how many mothers we need in our
sample to have a power of 0.80 with an alpha of 0.05, four repeated measurements, and
a correlation between measurements of r = 0.60 to detect an effect size of 0.25. Here
are the command and results:
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. power repeated, n(100(10)300) power(0.80) alpha(0.05) corr(0.60) nrepeated(4)
> ngroups(1) graph table

Performing iteration ...

Estimated within-subject variance for repeated-measures ANOVA
F test for within subject with Greenhouse-Geisser correction
Ho: delta = 0 versus Ha: delta != 0

alpha power N N_per_group delta N_g N_rep corr

.05 .8 100 100 .3324 1 4 .6

.05 .8 110 110 .3167 1 4 .6

.05 .8 120 120 .3031 1 4 .6

.05 .8 130 130 .2911 1 4 .6

.05 .8 140 140 .2804 1 4 .6

.05 .8 150 150 .2708 1 4 .6

.05 .8 160 160 .2621 1 4 .6

.05 .8 170 170 .2542 1 4 .6

.05 .8 180 180 .247 1 4 .6

.05 .8 190 190 .2404 1 4 .6

.05 .8 200 200 .2342 1 4 .6

.05 .8 210 210 .2286 1 4 .6

.05 .8 220 220 .2233 1 4 .6

.05 .8 230 230 .2183 1 4 .6

.05 .8 240 240 .2137 1 4 .6

.05 .8 250 250 .2094 1 4 .6

.05 .8 260 260 .2053 1 4 .6

.05 .8 270 270 .2014 1 4 .6

.05 .8 280 280 .1978 1 4 .6

.05 .8 290 290 .1943 1 4 .6

.05 .8 300 300 .1911 1 4 .6
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Figure 9.11. Effect size for power of 0.80, alpha of 0.05, four repeated measurements,
and a 0.60 correlation between measurements for N ’s from 100 to 300
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We decided to try sample sizes of between 100 and 300 in increments of 10. If this
does not work, we could quickly try a larger or smaller set of sample sizes. We added the
corr(0.60) option because our measures are not going to be independent; we indicated
that we have 4 repeated measurements with the nrepeated(4) option and just one
group of mothers with the ngroups(1) option.

It looks like we need about 170 mothers in our sample. We could rerun the command
changing n(100(10)300) to n(160(1)180) to get a more precise estimate of the sample
size required. You can see how important it is to pick the appropriate minimum effect
size that would be clinically important. If you insist on being able to demonstrate a
small effect size, you may need to have an impractically large sample size. If you pick
a large effect size, you may find you need a very small sample, but you run a very high
risk of not finding a true moderate effect to be significant.

9.9.3 Summary of power analysis for ANOVA

We have just scratched the surface of the capabilities of the power command when
used with ANOVA. You can see how useful this is for studies involving ANOVA. When
you propose to do a study and are requesting funding for your research, you need to
justify your cost, and your sample size is usually a critical factor in your cost—more
people means more money. A funding agency would have no reason to fund you if you
requested money for a far larger sample than you need to find an appropriate effect size.
At the same time, a funding agency would have no reason to fund you if you requested
less money for a sample that was too small to have a good chance, say, a power of 0.80,
of demonstrating a clinically worthwhile result when one existed in the population.

9.10 Summary

ANOVA is an extremely complex and powerful approach to analyzing data. We have
only touched the surface of ANOVA here. Stata offers a powerful collection of advanced
procedures that extend traditional ANOVA. In this chapter, you have learned how to

• Conduct a one-way ANOVA as an extension of the independent t test to three or
more groups

• Use nonparametric alternatives to ANOVA for comparing distributions or compar-
ing medians when you have three or more groups

• Control for a covariate through ANCOVA when you do not have randomization but
know how the groups differ on background variables

• Use a two-way ANOVA for situations in which you have two categorical predictors
that might or might not interact with one another

• Graph interaction effects for a two-way ANOVA
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• Perform a repeated-measures ANOVA as an extension of the dependent/paired t
test for when you have three or more measurements on each subject

• Calculate the intraclass correlation coefficient to measure agreement or homogene-
ity within groups

The next chapter presents multiple regression. Many of the models we have fit within
an ANOVA framework can be done equally well or better within a multiple-regression
format. Multiple regression is an extremely general approach to data analysis.

9.11 Exercises

1. Suppose that you have five people in condition A, five in condition B, and five in
condition C. On your outcome variable, the five people in condition A have scores
of 9, 8, 6, 9, and 5. The five in condition B have scores of 5, 9, 6, 4, and 8. The
five in condition C have scores of 2, 5, 3, 4, and 6. Show how you would enter
these data using a wide format. Show how you would enter them using a long
format.

2. Using the data in the long format from exercise 1, do an ANOVA. Compare the
means and the standard deviations. What does the F test tell us? Use pwmean to
conduct multiple-comparison tests. What do the results tell us?

3. Use gss2002 chapter9.dta. Does the time an adult woman watches TV (tvhours)
vary depending on her marital status (marital)? Do a one-way ANOVA, includ-
ing a tabulation of means; do a Bonferroni multiple-comparison test; and then
present a bar chart showing the means for hours spent watching TV by marital
status. Carefully interpret the results. Can you explain the pattern of means and
the differences of means? Do a tabulation of your dependent variable, and see if
you find a problem with the distribution.

4. Use gss2002 chapter9.dta. Does the time an adult watches TV (tvhours) de-
pend on his or her political party identification (partyid)? Do a tabulation
of partyid. Drop the 48 people who are Other party. Combine the strong
Democrats, not strong Democrats, and independent near Democrats into one
group and label it Democrats. Combine the strong Republicans, not strong Re-
publicans, and independent near Republicans into one group and label it Republi-
cans. Keep the independents as a separate group. Now do a one-way ANOVA with
a tabulation and Bonferroni test to answer the question of whether how much
time adults spend watching TV depends on their political party identification.
Carefully interpret the results.

5. Use gss2002 chapter9.dta. Repeat exercise 3 using the Kruskal–Wallis rank
test and a box plot. Interpret the results, and compare them with the results in
exercise 3.
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6. Use nlsy97 selected variables.dta. A person is interested in the relationship
between having fun with your family (fun97) and associating with peers who
volunteer (pvol97). She thinks adolescents who frequently have fun with their
families will associate with peers who volunteer. The fun-with-family variable is a
count of the number of days a week an adolescent has fun with his or her family.
Although this is a quantitative variable, treat this as eight categories, 0–7 days
per week. Because of possible differences between younger and older adolescents,
control for age (age97). Do an analysis of covariance, and compute adjusted
means. Present a table showing both adjusted and unadjusted means. Interpret
the results.

7. Use partyid.dta. Do a two-way ANOVA to see if there is 1) a significant differ-
ence in support for stem cell research (stemcell) by political party identification
(partyid), 2) a significant difference in support by gender, and 3) a significant
interaction between gender and party identification. Construct a two-way overlay
graph to show the interaction and interpret it.

8. In exercise 1, you entered data for five people in each of three conditions, A, B, and
C, in a wide format. Now use these same data but assume that five people were
measured at three times where A is a pretest measure of the dependent variable
before an intervention of some program, B is a posttest measure of the dependent
variable at the conclusion of the intervention, and C is a follow-up measure 30
days after the completion of the intervention. Because you are treating this as a
repeated-measures ANOVA, you need to add a variable named id, numbered 1–5
for the five people. You also need to label the three measures with a common
stem. Let’s use time1, time2, and time3 to replace A, B, and C as labels. Use
the reshape command to transform the data from the wide to the long format.
Do a repeated-measures ANOVA and interpret the result.

9. You have 5 two-parent families, each of which has two adolescent children. You
want to know if the parents agree more with each other about the risks of pre-
marital sex or if the siblings agree more. The scores for the five sets of parents are
(9, 3) (5, 5) (4, 2) (6, 7) (8, 10). The scores for the five sets of siblings are (9, 8)
(7, 4) (8, 10) (3, 2) (8, 8). Enter these data in a long format, and compute the
intraclass correlation for parents and the intraclass correlation for siblings. Which
set of pairs has greater agreement regarding the risks of premarital sex?
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10.1 Introduction to multiple regression

10.2 What is multiple regression?

10.3 The basic multiple regression command

10.4 Increment in R-squared: Semipartial correlations

10.5 Is the dependent variable normally distributed?
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10.14 Summary

10.15 Exercises

10.1 Introduction to multiple regression

Multiple regression is an extension of bivariate correlation and regression that opens
a huge variety of new applications. Multiple regression and its extensions provide the
core statistical technique for most publications in social-science research journals. Stata
is an exceptional tool for doing multiple regression because regression applications are
at the heart of the original conceptualization and subsequent development of Stata. In

267
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this chapter, I introduce multiple regression and regression diagnostics. In the following
chapter, I will introduce logistic regression.

10.2 What is multiple regression?

In bivariate regression, you had one outcome variable and one predictor. Multiple regres-
sion expands on this by allowing any number of predictors. Allowing many predictors
makes sense because few outcomes have just one cause. Why do some people have more
income than others? Clearly, education is an important predictor, but education is only
part of the story. Some people inherit great wealth and would have substantial income
whether or not they had any education. The incomes people have tend to increase as
they get older, at least up to some age where their incomes may begin to decline. The
careers people select will influence their incomes. A person’s work ethic may also be
important because those who work harder may earn more income. There are many
more variables that influence a person’s income, for example, race, gender, and marital
status. You need more than one variable to adequately predict and understand the
variation in income.

Predicting and explaining income can be even more complicated than having multiple
predictors. Some of the predictors may interact such that combinations of independent
variables have unique effects. For example, a physician with a strong work ethic may
make much more than a physician who is lazy. By contrast, an assembly-line worker who
has a strong work ethic has little advantage over an assembly-line worker who is working
only at the minimum required work rate. Hence, the effect of work ethic on income can
vary depending on occupation. Similarly, the effect of education on income may be
different for women and men. Clearly, social science requires a statistical strategy that
allows you to study many variables working simultaneously to produce an outcome;
multiple regression provides that strategy.

In this chapter, we will use data from a 2004 survey of Oregon residents, called
ops2004.dta. There is a series of 11 items with views on how concerned the person is
about different environmental issues, such as pesticides, noise pollution, food contami-
nation, air quality, and water quality. Using the alpha reliability procedures and factor
analysis that are covered in chapter 12, I constructed a scale called env con that has
a strong alpha of 0.89. This will serve as our dependent variable; it is the outcome we
want to predict.

Say that you are interested in several independent variables (predictors). These
might include variables related to the person’s health, education, income, and commu-
nity identification. For example, we might expect people who have higher education
and community identification to score higher on concern for environmental issues. Per-
haps the expectation is less clear for how a person’s health or income will be related to
concerns for the environment, but we think they both might be important. Clearly, we
have left out some important predictors, but these predictors will be sufficient to show
how multiple regression analysis is done using Stata.
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10.3 The basic multiple regression command

Select Statistics ⊲ Linear models and related, and you will see a long list of regression-
related commands. Stata gives us more options than I could possibly cover in this book.
In this chapter, we focus on the Statistics ⊲ Linear models and related ⊲ Linear regression
menu item. The basic dialog box for linear regression asks for the dependent variable
in one box and a list of our independent variables in another box. Type env con as the
dependent variable, and then type the following independent variables: educat (years of
education), inc (annual income in dollars), com3 (identification with the community),
hlthprob (health problems), and epht3 (impact of the environment on the person’s
own health). The resulting dialog box looks like figure 10.1.

Figure 10.1. The Model tab for multiple regression

The by/if/in tab lets you fit the regression model by some grouping variable (you
might estimate it separately for women and men), restrict your analysis to cases if a
condition is met (you might limit it to people 18–40 years old), or apply your regression
model to a subset of observations. We will go over the Weights tab and the SE/Robust
tab later. The Reporting tab has several options for what is reported. Click on that tab,
and check the option to show Standardized beta coefficients.

These dialog box options produce the simple command regress env con educat

inc com3 hlthprob epht3, beta. The syntax of this command is simple, and unless
you want special options, you can just enter the command directly in the Command
window. The command name, regress, is followed by the dependent variable, env con,
and then a list of the independent variables. After the comma comes the only option
you are using, namely, beta. Here are the results:
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. regress env_con educat inc com3 hlthprob epht3, beta

Source SS df MS Number of obs = 3769
F( 5, 3763) = 320.15

Model 647.67794 5 129.535588 Prob > F = 0.0000
Residual 1522.55872 3763 .404613001 R-squared = 0.2984

Adj R-squared = 0.2975
Total 2170.23666 3768 .575965144 Root MSE = .63609

env_con Coef. Std. Err. t P>|t| Beta

educat -.0011841 .004077 -0.29 0.772 -.0044584
inc -5.51e-08 3.62e-07 -0.15 0.879 -.0023317

com3 .0503162 .0092717 5.43 0.000 .074352
hlthprob -.2974035 .0248129 -11.99 0.000 -.172927

epht3 -.4020741 .012687 -31.69 0.000 -.4575999
_cons 3.726345 .0651735 57.18 0.000 .

The results have three sections. The upper left block of results is similar to what
you saw in chapter 9 on analysis of variance. This time, the source called Model refers
to the regression model rather than to the between-group source. The regression model
consists of the set of all five predictors. The source called Residual corresponds to the
error component in analysis of variance. You have 5 degrees of freedom for the model.
The degrees of freedom will always be k, the number of predictors (here educat, inc,
com3, hlthprob, and epht3) in the model.

The analysis of variance does not show the F ratio like the tables in chapter 9. The F
appears in the block of results in the upper right section. The output says F(5, 3763) =

320.15. The F of 320.15 is the ratio of the mean square for the model to the mean square
for the residual. It is 129.535588/0.404613001 = 320.15 in this example. The degrees of
freedom for the numerator (Model) is 5, and for the denominator (Residual) it is 3,763.
The probability of this F ratio appears just below the F value, Prob > F = 0.0000.
When this probability is less than 0.05, you can say p < 0.05; when it is less than 0.01,
you can say p < 0.01; and when it is less than 0.001, you can say p < 0.001. In a report,
you would write this as F (5, 3763) = 320.15, p < 0.001. There is a highly significant
relationship between environmental concerns and the set of five predictors.

How well does the model fit the data? This question is usually answered by reporting
R2. The regression model explains 29.8% of the variance in environmental concerns.
Stata reports this as R-squared = 0.2984. In bivariate regression, the r2 measured
how close the observations were to the straight line used to make the prediction. With
multiple regression, you use the capital R2, which measures how close the observations
are to the predicted value, based on the set of predictors. What is a weak or a strong
value for R2 varies by the topic being explained. If you are in a fairly exploratory area,
an R2 near 0.3 is considered reasonably good. A rule of thumb some researchers use
is that an R2 less than 0.1 is weak, between 0.1 to 0.2 is moderate, and greater than
0.3 is strong. Be careful in applying this rule of thumb because some areas of research
require higher values and others allow lower values. You might report our results as
showing that we can explain 29.8% of the variance in environmental concern using our
set of predictors, and this is a moderate-to-strong relationship.
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On a small sample with several predictors, the value of R2 can exaggerate the
strength of the relationship. Each time you add a variable, you expect to increase
R2 just by chance. R2 cannot get smaller as you add variables. When you have many
predictors and a small sample, you may get a big R2 just by chance. To offset this bias,
some researchers report the adjusted R2. This will be smaller than the R2 because it
attempts to remove the chance effects. When you have a large sample and relatively
few predictors, R2 and the adjusted R2 will be similar, and you might report just the
R2. However, when there is a substantial difference between the two, you should report
both values.

Across the bottom of the results is a block that has six columns containing the key
regression results. A formal multiple regression equation is written as

Ŷ = b0 + b1X1 + b2X2 + · · ·+ bkXk

Ŷ is the predicted value of the dependent variable. b0 is the intercept or constant. Stata
calls b0 the cons, which is an abbreviation for the constant. You can think of this as
the base prediction of Y when all the X variables are fixed at zero. b1 is the regression
coefficient for the effect of X1, b2 is the regression coefficient for the effect of X2, and
bk is the regression coefficient for the last X variable. You might see these coefficients
called unstandardized regression coefficients. You can get the values for the equation
from the output (see table 10.1).

Table 10.1. Regression equation and Stata output

Name in the Stata name Stata results:
regression equation Unstandardized coefficient

b0 cons 3.726
b1 educat −0.001
b2 inc −5.51e–08
b3 com3 0.050
b4 hlthprob −0.297
b5 epht3 −0.402

You can input this information into the equation, calculating the estimated value of
the dependent variable:

̂env con = 3.726− 0.001(educat)− 0.000(inc) + 0.050(com3)

− 0.297(hlthprob)− 0.402(epht3)

The regression results next give a standard error, t-value, and P > |t| for each
regression coefficient. If you divide each regression coefficient by its standard error, you
obtain the t-value that is used to test the significance of the coefficient. Each of the t
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ratios has N − k − 1 degrees of freedom. Subtract one degree of freedom for each of
the k = 5 predictors and another degree for the constant. From the upper right corner
of the results, you can see that there are 3,769 observations, and from the analysis of
variance table, you can see that there are 3,763 degrees of freedom for the residual. If
you forget the N − k− 1 rule for degrees of freedom, you can use the number of degrees
of freedom for the residual in the analysis of variance table. You might want to include
the degrees of freedom in your report, but you do not need to look up the probability
in a table of t-values because Stata gives you a two-tailed probability. For example, you
might write that b5 = −0.402, p < 0.001. In some fields, you would write b5 = −0.402,
t(3763) = −31.69, p < 0.001.

The unstandardized regression coefficients have a simple interpretation. They tell
you how much the dependent variable changes for a unit change in the independent
variable. For example, a 1-unit change in com3, identification with the community, pro-
duces a 0.05-unit change in env con, environmental concern, holding all other variables
constant. Without studying the range and distribution of each of the variables, it is
hard to compare the unstandardized coefficients to see which variable is more or less
important. The problem is that each variable can be measured on a different scale.

Here we measured income using dollars, and this makes it hard to interpret the
b-value as a measure of the effect of income. After all, a $1.00 change in your annual
income is something you might not even notice, and this change surely would not have
much of an effect on anything. This is reflected in binc = −5.51e–08, which is a tiny
value. (If you have not seen this format for numbers, it is a part of scientific notation,
which is used for tiny numbers. The e–08 tells us to move the decimal place eight places
to the left. Thus this number is −0.0000000551.) If we had used the natural logarithm
of income or if we had measured income in 1,000s of dollars or even 10,000s of dollars,
we would have obtained a different value. When you use income as a predictor, it is
common to use a natural logarithm or measure income in 10,000s of dollars, where an
income of 47,312 would be represented as 4.7312.

In our command above, we included the option to get beta weights (β). Beta weights
are more easily compared because they are based on standardizing all variables to have
a mean of 0 and a standard deviation of 1. These beta weights are interpreted similarly
to how you interpret correlations in that β < 0.20 is considered a weak effect, β between
0.2 and 0.5 is considered a moderate effect, and β > 0.5 is considered a strong effect.
The beta weights tell you that education, income, and community identity all have a
weak effect, and of these, only community identity is statistically significant, p < 0.001.
Having a health problem in the family, hlthprob, has a beta weight that is still weak,
β = −0.173, but it is statistically significant, p < 0.001. Having environmental health
concerns, epht3, has β = −0.458, p < 0.001, which is a moderate-to-strong effect.

You might summarize this regression analysis as follows: A model including educa-
tion, income, community identity, environmental health concerns, and health problems
in the family explains 29.8% of the variance in environmental concerns of adults in Ore-
gon, F (5, 3763) = 320.15, p < 0.001. Neither education nor income has a statistically
significant effect. Community identity has a weak but statistically significant effect,
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β = 0.074, p < 0.001. The two health variables are the strongest predictors in this
group: having a health problem in the family has β = −0.173, p < 0.001, and having
environmental health concerns has β = −0.458, p < 0.001.

If you do not want beta weights, you would simply rerun the regression without the
beta option. Without the beta option, you get a confidence interval for each unstan-
dardized regression coefficient. If you have an analysis where your primary interest is in
the unstandardized coefficients, confidence intervals are a useful extension on the simple
tests of significance.

10.4 Increment in R-squared: Semipartial correlations

Beta weights are widely used for measuring the effect sizes of different variables. Because
it is based on standardized variables, a beta weight tells you how much of a standard
deviation the dependent variable changes for each standard deviation change in the in-
dependent variable. Except for special circumstances, beta weights range from −1 to
+1, with a zero meaning that there is no relationship. Sometimes the interpretation of
beta weights is problematic. If you have a categorical variable like gender, the interpre-
tation is unclear. What does it mean to say that as you go up one standard deviation
on gender, you go up β standard deviations on the dependent variable? Also, when you
are comparing groups, the beta weights can be misleading. If you compare regression
models predicting income for women and for men, the beta weights would be confounded
with real differences in variance between women and men in the standardization of all
variables.

Another approach to comparing the importance of variables is to see how much each
variable increases R2 if the variable is entered last. Effectively, this approach fits the
model with all the variables except for the one you are interested in. You obtain an
R2 value for this model. Then you fit the model a second time, including the variable
in which you are interested. This will have a larger R2, and the difference between
the two R2 values will tell you how much the variable increases R2. This increment
is how much of the variance is uniquely explained by the independent variable you are
interested in, controlling for all the other independent variables. This increment is often
called simply an increment in R2, which is a very descriptive name. Some people call
it a part-correlation square because it measures the part that is uniquely explained by
the variable. Others call it a semipartial R2. Another way to compare variables is
using what is called a partial correlation; we will not cover that here because it has
less-desirable properties for comparing the relative importance of each variable.

Estimating the increment inR2 would be a tedious process because you would have to
fit the model twice for every independent variable and compute each of these differences.
In this example, we would have to run 10 regression models. Fortunately, there is a Stata
command, pcorr, that automatically does this and gives us the partial and semipartial
correlations for each variable controlling for all the other variables. Select Statistics ⊲
Summaries, tables, and tests ⊲ Summary and descriptive statistics ⊲ Partial correlations to
open the pcorr dialog box.
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In the dialog box, we enter our dependent variable in the box labeled Display partial
and semipartial correlation coefficient of variable. Then we enter our list of independent
variables in the box labeled Against variables. Figure 10.2 displays our updated dialog
box:

Figure 10.2. The Main tab of the pcorr dialog box

Here are the command and results:

. pcorr env_con educat inc com3 hlthprob epht3
(obs=3769)

Partial and semipartial correlations of env_con with

Partial Semipartial Partial Semipartial Significance
Variable Corr. Corr. Corr.^2 Corr.^2 Value

educat -0.0047 -0.0040 0.0000 0.0000 0.7715
inc -0.0025 -0.0021 0.0000 0.0000 0.8788
com3 0.0881 0.0741 0.0078 0.0055 0.0000

hlthprob -0.1918 -0.1637 0.0368 0.0268 0.0000
epht3 -0.4590 -0.4327 0.2107 0.1873 0.0000

Here you are interested only in the column labeled Semipartial Corr.^2, semipar-
tial R2, which shows how much each variable contributes uniquely. The concern for
environmental health problems has an increment to R2 of 0.1873, p < 0.001. Although
two other variables have statistically significant effects, this is the only variable that
has a substantial increment to R2. The semipartial R2 is a conservative estimate of the
effect of each variable because it measures only how much the R2 increases when that
variable is entered after all the other variables are already in the model. You might
notice that the sum of the semipartial R2s is just 0.220 even though the model R2 is
0.298. This happens because some of the predictors are explaining the same part of the
variance in the dependent variable, and whatever is shared with other predictors is not
unique. The semipartial R2 estimates only the unique effect of each predictor.



10.5 Is the dependent variable normally distributed? 275

10.5 Is the dependent variable normally distributed?

Now let’s examine the distribution of the dependent variable. Many applied researchers
believe that multiple regression assumes the dependent variable is normally distributed.
Actually, the assumption is that the residuals (error term) are normally distributed;
this will be discussed in section 10.6. If the dependent variable has a highly skewed
distribution or is bimodal, the residuals may not be normally distributed unless we
have independent variables that predict this pattern. If we do not have independent
variables that predict this pattern, the residuals may also be skewed. Because we
make the assumption that the residuals are normally distributed, it would be helpful
to understand the distribution of the dependent variable and consider whether we have
predictors to explain any skewness and other nonnormalities. This section shows how
to examine the distribution of the dependent variable.

Let’s create a histogram on env con:

. histogram env_con, frequency normal kdensity
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Figure 10.3. Histogram of dependent variable, env con

Three distributions are represented in figure 10.3. The bars represent the actual
distribution, which does not look too bad except for the big bunch of high scores (there
are 348 people who have the maximum possible score of 4.0 on the environmental
concerns scale). Apparently, many people in Oregon share a serious concern about
the environment. The smooth, bell-shaped curve represents how the data would be
distributed if they were normal.

The other curve, called a kdensity curve, is a bit hard to see in figure 10.3. The
kdensity curve is an estimation of how the population data would look given our sample
data. The actual data from the histogram, the normal curve, and the kdensity curve
are similar up to a value of about 3.2–3.5. At the center of the distribution, the data
and the kdensity curve are a little flatter than a normal curve. We have too few cases
in the middle of the distribution to call it normal. The real problem, however, is on the
right side of the distribution, where we have too many people who have a mean score
of over about 3.5. The scale ranged from 1 to 4, and a mean score of 3.5 or more means
that the person has strong environmental concern.
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An alternative plot is the hanging rootogram (ssc install hangroot). Once the
hangroot command is installed, we simply enter hangroot env con, bar. This pro-
duces the graph in figure 10.4.
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Figure 10.4. Hanging rootogram of dependent variable, env con

This hanging rootogram has a smooth curve representing how the data would be dis-
tributed if it were normal. When a bar descends below the horizontal line, there are
too many observations at this value compared with a normal distribution. At a value
of 4, the bar drops far below the horizontal line, and the bars are all below the line
from a value of about 3.5 and higher. There are a few values toward the middle of the
distribution that do not drop down to the horizontal line; there are not enough values
in this area of the distribution.

The hanging rootogram is sometimes easier to read than a histogram, in part, be-
cause the vertical axis is the square root of the frequency rather than the actual fre-
quency. This makes it much easier to see deviations from normality in the tails where
there are usually relatively few observations. John Tukey suggested this type of graph,
and Maarten L. Buis, a Stata user, wrote the hangroot command in 2010.

We can evaluate the normality of our dependent variable by using two additional
statistics that are known as skewness and kurtosis. We learned earlier about the detail
option to the summarize command; this option provides these statistics. Just use the
summarize command with the detail option now.



10.5 Is the dependent variable normally distributed? 277

. summarize env_con, detail

mean(unstandardized items)

Percentiles Smallest
1% 1.181818 1
5% 1.545455 1

10% 1.8 1 Obs 4506
25% 2.272727 1 Sum of Wgt. 4506

50% 2.9 Mean 2.842405
Largest Std. Dev. .7705153

75% 3.5 4
90% 3.818182 4 Variance .5936939
95% 4 4 Skewness -.2302043
99% 4 4 Kurtosis 2.059664

In the lower right column, you find skewness of −0.23 and kurtosis of 2.06. Skewness
is a measure of whether a distribution trails off in one direction or another. For exam-
ple, income is positively skewed because there are a lot of people with relatively low
incomes, but there are just a few people who have extremely high incomes. By contrast,
env con is negatively skewed because there are a lot of people who have a high level
of environmental concern, but there are relatively fewer people who have a low level
of environmental concern. A normal distribution has skewness of 0. If the skewness is
greater than 0, the distribution is positively skewed; if the skewness is less than 0 (as
with env con), the distribution is negatively skewed.

Kurtosis measures the thickness of the tails of a distribution. If you look at our
histogram, you see that the tail to the left of the mean is a little too thick and the tail
to the right of the mean is way too thick to be normally distributed. When a distribution
has a problem with kurtosis indicated by thick tails, it will also have too few cases in
the middle of the distribution. By contrast, when a distribution has a problem with
kurtosis indicated by thin tails, it will also have too many cases in the middle of the
distribution (peaked) for it to be normally distributed; this would happen for a variable
in which most people were very close to the mean value.

A normal distribution will have a kurtosis of 3.00. A value of less than 3.00 means
that the tails are too thick (hence, too flat in the middle), and a value of greater than
3.00 means that the tails are too thin (hence, too peaked in the middle). The kurtosis
is 2.06 for env con, meaning that the tails are too thick; you could tell that by looking
at the histogram. Some statistical software, such as SAS or IBM SPSS Statistics, reports
a value for kurtosis that is the actual value of kurtosis minus three so that a normal
distribution would have a value of zero. Stata does not do this, so the correct value for
a normal distribution in Stata is 3.00. You need to be careful when writing a report
that will be read by people who rely on other programs that may have kurtosis of 0 for
a normal distribution.

The summarize command does not give you the significance of the skewness or
kurtosis coefficients. To get the significances, you need to run a command that you
enter directly:
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. sktest env_con

Skewness/Kurtosis tests for Normality
joint

Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

env_con 4.5e+03 0.0000 0.0000 . 0.0000

The 4.5e+03 under “Obs ” means that there are 4,500 observations in our survey. (The
e+03 means to move the decimal place three places to the right.)

This does not report the test statistics Stata uses (the chi-squared is too big to
fit in the space Stata provides for that column), but it does give us the probabilities.
Combining this result with the results from the summarize command, we would say
that skewness = −0.23, p < 0.001, and kurtosis = 2.06, p < 0.001. Both of these tested
jointly have a p < 0.001. Hence, the distribution is not normal, the skewness tells us
the distribution has a negative skew, and the kurtosis tells us the tails are too thick.

10.6 Are the residuals normally distributed?

An important assumption of regression is that the residuals are normally distributed.
At a risk of oversimplification, this means that we are as likely to overestimate a person’s
score as we are to underestimate their score, and we should have relatively few cases
that are extremely overestimated or underestimated.

We could examine the residual to see if it is normally distributed. Following the
regress command that we ran on page 270, we can obtain the residual values by
running the predict command with the residual option. This command generates
a new variable that we have called res, which includes the residual value for each
observation. We then run a summarize command to obtain the skewness and kurtosis.
Here are our results:

. regress env_con educat inc com3 hlthprob epht3, beta
(output omitted )

. predict res, residual
(739 missing values generated)

. summarize res, detail

Residuals

Percentiles Smallest
1% -1.425768 -2.247876
5% -1.05727 -1.951321

10% -.8467104 -1.940851 Obs 3769
25% -.4719241 -1.762432 Sum of Wgt. 3769

50% .0352801 Mean -4.12e-10
Largest Std. Dev. .6356698

75% .483786 1.849233
90% .7994747 1.852046 Variance .4040761
95% .9625443 1.914089 Skewness -.0997807
99% 1.357709 1.944407 Kurtosis 2.592773
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We see that the skewness of −0.010 is close to the value of 0.000 for a normal
distribution. The kurtosis of 2.592 a bit low compared with the value of 3.00 for a
normal distribution (remember SAS and SPSS subtract 3.0 from the kurtosis). If we
wanted to test the significance of the skewness and kurtosis, we would type

. sktest res

Skewness/Kurtosis tests for Normality
joint

Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

res 3.8e+03 0.0124 0.0000 41.53 0.0000

Both the skewness and the kurtosis are significantly different from what they would
be if our residuals were normally distributed. However, we have a very large sample, and
this large sample N not only contributes to the tests being statistically significant, but
also limits the concern we have about violating the normality of residuals assumption.
You should use this test of a normal residual cautiously because it tends to result in
a significant test when there is only a small departure of normality for a large sample
where there is considerable robustness against violating the normality assumption. By
contrast, when you have a smaller sample, say, under 100 observations, the violation
of normality is more serious, but this test may have insufficient power to detect the
departure from normality.

Assumptions about the distribution of the residual become more difficult when we
add the fact that this distribution should be about the same for any value or combination
of values for the predictors. Imagine predicting income from a person’s education. With
a low education, we would predict a low income. As a person goes up the scale on
education, we would predict higher income. However, for those with 16 or more years of
education, there is a huge range in income. Some may be in low-paying service positions,
and others may be in extremely high-paying positions. If we plotted a scattergram with
the regression line drawn through it, we might expect the variance around the line to
increase as education increases. This effect is illustrated in figure 10.5.

This figure shows that the residual values are not normally distributed for each
value of education (think of a vertical slice at a particular value of education); they
are not equally likely to be above or below the predicted value for a particular value
of education. Additionally, figure 10.5 shows that the variance of the residual values
increases as education increases. That is, if you consider people who have less than
about 12 years of education, there is little variance in the residuals. For any particular
value of education up to about 12 years, a vertical slice has little variance with all the
residuals closely packed together. By contrast, if you look at people who have more
than 12 years of education, say, those with 16 years of education, a vertical slice of the
residuals has a lot of variance. The residual values in this case range from far below
the predicted value to far above it. The way the variance of the residual increases
as years of education increases is called heteroskedasticity of residuals. When there is
heteroskedasticity as shown in this example, we cannot predict income well for higher
values of education.
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Figure 10.5. Heteroskedasticity of residuals

When we have multiple regression, it is difficult to do a graph like this because
we have several predictors. The solution is to look at the distribution of residuals for
different predicted values. That is, when we predict a small score on environmental
concern, are the residuals distributed about the same as they are when we predict a
high score?

Stata has several options to view distributions of residuals. Selecting Statistics ⊲
Linear models and related ⊲ Regression diagnostics ⊲ Residual-versus-fitted plot opens a
dialog box for the residual-versus-fitted value plot. On the Main tab, we see that we
only need to click on OK. We could use the other tabs to make the graph more appealing
(I used the Y axis tab to add a reference line at a value of zero), or we could just click
on OK. Figure 10.6 shows the results.
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Figure 10.6. Residual-versus-fitted plot

This graph is a bit hard to read. Ideally, the observations would be normally dis-
tributed for any fitted values (x axis) about the reference line (residual of 0 on y axis).
Where the fitted values are low, the residuals tend to be mostly positive, and where the
fitted values are high, the residuals tend to be mostly negative.

A residual-versus-predicted plot, similar to the plot in figure 10.6, makes the most
sense when the dependent variable takes on a larger range of values. In those situations,
it may show that there is increasing or decreasing error variance as the predicted value
gets larger. With our current example, where the dependent variables are between 1
and 4, it makes the problem clear but does not suggest any solution.

Sometimes it is easier to visualize how the residuals are distributed by doing a graph
of the actual score of env con on a predicted value for this score. It is easiest to show
how to do this using the commands. Before doing that, however, we might want to
draw a sample of the data. Because this is a very large dataset, there will be so many
dots in a graph that it will be hard to read and many of the dots will be right on top
of each other. To make the graph easier to read, we will include a step to sample 100
observations. Here are the commands:

. regress env con educat inc com3 hlthprob epht3, beta

. predict envhat

. preserve

. set seed 111

. sample 100, count

. twoway (scatter env con envhat) (lfit env con envhat)

. restore

This series of commands does the regression first. The next line, predict envhat,
will predict a score on env con for each person based on the regression equation. Here
the new variable is called envhat, but you can use any name because the default is
to predict the score based on the regression equation. Before we take a sample of 100
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observations, we enter the command preserve, which allows us to restore the dataset
back to its original size. The fourth line, set seed 111 provides a fixed start for the
random sampling so that we can repeat what we did and get the same results. The
command sample 100, count will draw a random sample of 100 cases. We are doing
this to make the graph easier to read. We might want to save our data before doing this
because once we drop all but 100 people, they are gone. If you save the sample of 100
observations, make sure you give the file a different name. (Using the preserve and
restore commands is a simpler way to preserve the full dataset.) The next line is a
twoway graph, as we have done before. The first section does a scattergram of env con

on envhat, and the second section does a linear regression line, regressing env con on
envhat. The final line has the command restore, which returns the complete dataset.
The resulting graph is shown in figure 10.7, where I have used the Graph Editor to
relabel some parts of the figure.
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Figure 10.7. Actual value of environmental concern regressed on the predicted value

Examining this graph, we can see that in the middle, there is not much of a problem.
The problem is really only at the ends, where we are predicting a very high or very low
score. That is, for predictions of a high score, there are more people who actually
report being lower than what we predict, and for predictions of a low score, it is just
the opposite.

Is there anything we can do when we have concerns about the distribution of the
residuals? One solution is to run a robust regression. A robust regression uses what is
known as a sandwich estimator to estimate the standard errors. The command is

regress env_con educat inc com3 hlthprob epht3, vce(robust)

The vce(robust) option tells Stata to estimate the variance–covariance matrix of the
errors in a way that does not assume normality. This will yield identical parameter
estimates for the b’s, β’s, and R2, but somewhat different t-values for testing their
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significance. It is important to emphasize that only the standard errors and resulting
t-values will change, so violating normality of residuals’ direct impact is on tests of
significance.

Another alternative when you are concerned about the distribution of the residuals
is to use a bootstrap estimation of the standard errors. This will draw several random
samples with replacement (we will use 10,000 here) from your dataset. The regression
will be estimated for each of these samples. Stata then examines the distribution of each
parameter, for example, the b for educat, across the 1,000 results and then Stata uses
the variance of that distribution to estimate a standard error. The regress command
with bootstrap estimation of the standard errors is

regress env_con educat inc com3 hlthprob epht3, vce(bootstrap, reps(1000))

As with the robust estimator, the only thing that changes is the standard errors and
hence the t-values. The vce(bootstrap, reps(1000)) option may sound like it would
take forever to run, but with modern computers and the efficient programming behind
Stata commands, this command runs quickly.

10.7 Regression diagnostic statistics

Stata has a strong set of regression diagnostic tools. We will cover only a few of them.
Enter the command help regress postestimation, and you will see a basic list of
what we cover as well as several other regression diagnostic tools that are beyond the
scope of this book.

10.7.1 Outliers and influential cases

When we are doing regression diagnostics, one major interest is finding outliers. These
are cases with extreme values, and they can have an extreme effect on an analysis.
One way to think of outliers is to identify those cases that the regression equation has
the most trouble predicting; these are the cases that are farthest from the predicted
values. These cases are of special interest for several reasons. You might want to
examine them to see if there was a coding error by comparing your data with the original
questionnaires. If you can contact these people, you might want to do a qualitative
interview to better understand why the variables you thought would predict their scores
failed. You may discover factors that you had not anticipated, and this could guide
future research.

To find the cases we cannot predict, use postestimation commands. Select Statistics
⊲ Postestimation ⊲ Predictions, residuals, etc. to open the dialog box to predict the esti-
mated value, yhat; the residual, residual; and the standardized residual, rstandard.
We could also enter the following series of commands directly:
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. use http://www.stata-press.com/data/agis4/ops2004, clear

. regress env con educat inc com3 hlthprob epht3, beta

. predict yhat

. predict residual, residual

. predict rstandard, rstandard

. list respnum env_con yhat residual rstandard
> if abs(rstandard) > 2.58 & rstandard < .

The first prediction command, predict yhat, will predict the estimated score based
on the regression. This has no option after a comma because the estimated score is the
default prediction and the variable name, yhat, could be any name we choose. The next
command, predict residual, residual, will predict the residual, or Y − Ŷ , giving
us a raw or unstandardized measure of how far the estimated value, yhat, is from the
person’s actual score on the environmental-concern outcome. The residual option tells
Stata to predict this residual value. The last prediction command, predict rstandard,

rstandard, tells Stata to estimate the standardized residual for each observation and
to create a new variable called rstandard. This is a z score that we can use to test
how bad our prediction is for each case. We usually will be interested in our “bad”
predictions, because these are the residual outliers. The list command lists all cases
that have a standardized residual—that is, z score—whose size is greater than 2.58 (we
include the restriction that rstandard is also less than “.”). We picked 2.58 because
this corresponds to the two-tailed 0.01 level of significance. In other words, we would
expect residuals this large in either direction less than 1% of the time by chance. Here
are the results of this string of commands:

. use http://www.stata-press.com/data/agis4/ops2004, clear

. regress env_con educat inc com3 hlthprob epht3, beta

Source SS df MS Number of obs = 3769
F( 5, 3763) = 320.15

Model 647.67794 5 129.535588 Prob > F = 0.0000
Residual 1522.55872 3763 .404613001 R-squared = 0.2984

Adj R-squared = 0.2975
Total 2170.23666 3768 .575965144 Root MSE = .63609

env_con Coef. Std. Err. t P>|t| Beta

educat -.0011841 .004077 -0.29 0.772 -.0044584
inc -5.51e-08 3.62e-07 -0.15 0.879 -.0023317

com3 .0503162 .0092717 5.43 0.000 .074352
hlthprob -.2974035 .0248129 -11.99 0.000 -.172927

epht3 -.4020741 .012687 -31.69 0.000 -.4575999
_cons 3.726345 .0651735 57.18 0.000 .

. predict yhat
(option xb assumed; fitted values)
(738 missing values generated)

. predict residual, residual
(739 missing values generated)

. predict rstandard, rstandard
(739 missing values generated)
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. list respnum env_con yhat residual rstandard
> if abs(rstandard) > 2.58 & rstandard < .

respnum env_con yhat residual rstandard

65. 100072 4 2.055593 1.944407 3.060185
170. 100189 4 2.339057 1.660942 2.616319
323. 100370 4 2.355076 1.644924 2.589258
539. 100626 4 2.353892 1.646108 2.591119
800. 100928 4 2.353216 1.646784 2.5918

803. 100931 1.454545 3.110656 -1.656111 -2.604731
1056. 101237 4 2.150767 1.849233 2.911431
1657. 101958 4 2.355283 1.644717 2.589034
1690. 101996 4 2.349444 1.650556 2.598174
2017. 102384 3.9 2.251481 1.648519 2.594183

2247. 102656 1.272727 3.213579 -1.940851 -3.055561
2418. 102866 4 2.197531 1.802469 2.836931
2608. 103091 1.818182 3.50535 -1.687168 -2.654609
3386. 200221 1.363636 3.058592 -1.694955 -2.665744
3463. 200325 1 2.655898 -1.655898 -2.604345

3655. 200587 1.111111 3.062432 -1.951321 -3.069876
3662. 200595 3.818182 1.904093 1.914089 3.012149
3679. 200621 4 2.353216 1.646784 2.5918
3736. 200704 4 2.356122 1.643878 2.587669
3743. 200712 4 2.147954 1.852046 2.918959

3745. 200716 1.3 3.062432 -1.762432 -2.772711
3762. 200743 1 2.666197 -1.666197 -2.624323
3795. 200785 1 3.247876 -2.247876 -3.542243
4117. 201350 1.363636 3.007862 -1.644226 -2.586329
4147. 201423 1 2.709645 -1.709645 -2.690599

4172. 201472 4 2.242008 1.757992 2.767844
4348. 201767 4 2.347377 1.652623 2.600933

In this dataset, respnum is the identification number of the participant. Participant
100072 had an actual mean score of 4 for the scale. This is the highest possible score,
yet we predicted that this person would have a score of just 2.06. The residual is 1.94,
indicating how much more environmentally concerned this person is than we predicted.
The z score is 3.06. Toward the bottom of the listing, participant 200785 had a score of
1, indicating that he or she was at the low point on our scale of environmental concern.
However, we predicted that this person would have a score of 3.25, and the z score is
−3.54. We might look at the questionnaires for these two people to see if there was a
miscoding. If the coding was correct, we might try to contact these participants to find
out other variables we need to add to the regression equation. Unstructured interviews
with participants that have extreme outliers can be helpful. We may find that those
who have positive outliers are politically liberal and those who have negative outliers
are politically conservative. Then we could add a variable measuring liberalism as a
predictor. Correlating rstandard with other possible predictors would also be helpful.
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A variable that is highly correlated with rstandard helps explain the variance in our
outcome that is not already explained by the predictors in our model.

10.7.2 Influential observations: DFbeta

Stata offers several measures of the influence each observation has. DFbeta (the dfbeta
command) is the most direct of these. It indicates the difference between each of the
regression coefficients when an observation is included and when it is excluded. You
could think of this as redoing the regression model, omitting just one observation at
a time and seeing how much difference omitting each observation makes. A value of
DFbeta > 2/

√
N indicates that an observation has a large influence.

To open the dfbeta dialog box, select Statistics ⊲ Linear models and related ⊲ Regres-
sion diagnostics ⊲ DFBETAs, but it is easier to type the one-word command, dfbeta, in
the Command window:

. dfbeta
(739 missing values generated)

_dfbeta_1: dfbeta(educat)
(739 missing values generated)

_dfbeta_2: dfbeta(inc)
(739 missing values generated)

_dfbeta_3: dfbeta(com3)
(739 missing values generated)

_dfbeta_4: dfbeta(hlthprob)
(739 missing values generated)

_dfbeta_5: dfbeta(epht3)

These results show that Stata created five new variables. dfbeta 1 has a DFbeta
score for each person on the education variable; dfbeta 2 does this for the income
variable; dfbeta 3 does this for the community identity variable; dfbeta 4 does this
for health problems; and dfbeta 5 does this for environmental-specific health concerns.

We could then list cases that have relatively large values of DFbeta, using the formula
DFbeta = 2/

√
3769 = 0.03 as our cutoff because we have N = 3769 observations. For

example, if we wanted to know problematic observations for the educat variable, the
list command would be

. list respnum rstandard dfbeta 1 if abs( dfbeta 1) > 2/sqrt(3769) & dfbeta 1 < .

I do not show the results of this command here. This list command, however, has a few
features you might note. We use the absolute value function, abs( dfbeta 1). We also
include a simple formula, 2/sqrt(3769), where 3,769 is the sample size in our regression.
This listing is just for the educat variable. dfbeta gives us information on how much
each observation influences each parameter estimate. This is more specific information
than that provided by the standardized residual. If there are a few observations that
have a large influence on the results, we might see if they were miscoded. If possible, we
might interview the individuals to see why they picked the answers they did and how
they interpreted the item.



10.7.3 Combinations of variables may cause problems 287

10.7.3 Combinations of variables may cause problems

Collinearity and multicollinearity can be a problem in multiple regression. If two inde-
pendent variables are highly correlated implicitly, it is difficult to know how important
each of them is as a predictor. Multicollinearity happens when a combination of vari-
ables makes one or more of the variables largely or completely redundant. Figure 10.8
shows how this can happen with just two predictors, X1 and X2, which are trying to
predict a dependent variable, Y. The figure on the left shows that areas a and c repre-
sent the portion of Y that is explained by X1, and areas b and c represent the portion
of Y that is explained by X2. Because X1 and X2 overlap a little bit (are correlated),
the area c cannot be distributed to either X1 or X2. Still, there is a lot of variance in
both predictors that is not overlapping, and we can get a good estimate of the unique
effect of X1, namely, area a, and the unique effect of X2, namely, area b. Earlier in this
chapter, we referred to the areas represented by a and b as the semipartial R2s.

The figure on the right shows what happens when the two predictors are more
correlated and, hence, overlap more. Together, X1 and X2 are explaining much of the
variance of Y, but the unique effects represented by areas a and b are relatively small.
You can imagine that as X1 and X2 become almost perfectly correlated, the areas a and
b all but disappear while the confounded area c increases. This example illustrates what
could happen with just two predictors. You can imagine what could happen in multiple
regression when there are many predictors that are correlated with each other. The
more correlated the predictors, the more they overlap and, hence, the more difficult it is
to identify their independent effects. In such situations, you can have multicollinearity
in which one or more of the predictors are virtually redundant.

Y Y

X₁ X₂ X₂X₁

a ab b

c c

Figure 10.8. Collinearity

Stata can compute a variance inflation factor to assess the extent to which multi-
collinearity is a problem for each independent variable. This is computed by running
the command estat vif after the regression. Here are the results for our example:
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. estat vif

Variable VIF 1/VIF

educat 1.26 0.791143
inc 1.25 0.797304

epht3 1.12 0.894240
hlthprob 1.12 0.895659

com3 1.01 0.993215

Mean VIF 1.15

This command computes both the variance inflation factor (VIF) and its reciprocal
(1/VIF). Statisticians usually look at the VIF. If this is more than 10 for any variable, a
multicollinearity problem may exist, and you may need to consider making an adjust-
ment to your model. None of the variables has a problem using this criterion. If the
average VIF is substantially greater than 1.00, there still could be a problem. Here the
mean VIF is 1.15, and this is not a problem.

The value of 1/VIF may have a more intuitive interpretation than the VIF. If we
regress educat on inc, epht3, hlthprob, and com3, we get an R2 of 0.21. This means
that there is an overlap of education with all the other predictors of 21% of the variance
in education. Alternatively, 1− 0.21 = 0.79, or 79% of the variance in education is not
overlapping, that is, it is not explained by the other predictors. Thus 79% of the variance
in educat is available to give us an estimate of the independent effect of education on
environmental concern, controlling for the other predictors. Some people call 1/VIF the
tolerance. It is 1.00 minus the R2 you obtain if you regress an independent variable
on the set of other independent variables. It tells how much of the variance in the
independent variable is available to predict the outcome variable independently. When
VIF = 10, this means that only 10% of the variance in an independent variable is really
available after you adjust for the other predictors. When VIF > 10 or 1/VIF < 0.10,
there may be a multicollinearity problem.

When you have a problem with multicollinearity, consider these solutions. Dropping
a variable often helps. If two variables both have a high VIF value, try dropping one of
them and repeating the analysis. Dropping a variable that has a high VIF value is not
as much of a problem as you might suspect; a variable that has more than 90% of its
variance confounded with the other predictors probably does not explain much uniquely
because it has little unique variance itself. Sometimes there are several closely related
variables. For example, you might have a series of items involving concerns people have
about global warming. Rather than trying to include all of these individual items, you
might create a scale that combines them into one variable.

Multicollinearity sometimes shows up in what may seem like strange parameter
estimates. Normally, the standardized βs should not be outside the range of −1 to +1.
Yet you might have one variable that has β = 2.14 and a closely related variable that
has β = −1.56. Sometimes these βs will be excessively large, but neither of them will
be statistically significant. You almost certainly have a multicollinearity problem when
this happens. If you drop either variable, the remaining variable may have a β that is
within the normal range and is statistically significant.
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10.8 Weighted data

Regression allows us to weight our cases. Many large datasets will use what is known
as a weighted sample. Researchers want to have an adequate number of observations
of groups that otherwise would be a small subsample. One survey of a community
that is mostly Caucasians may oversample Hispanics and African Americans. Another
survey might oversample people who are cohabiting or people who have a disability.
If you want to take a subsample of people who are disabled, cohabiting, Hispanic,
or African American, this oversampling is critically important, because it means that
your subsample will be large enough for meaningful analysis. However, if you want to
generalize to the entire population, you will need to adjust for this oversampling.

Many surveys provide a weight that tells you how many people each respondent
represents, based on the sample design. This sampling fraction is simply the population
N for the group, say, the number of African Americans in the United States, divided
by the sample n for African Americans in your sample. Other surveys provide a pro-
portional weight so that if you oversampled African Americans by a factor of two (that
is, an African American was twice as likely to be sampled as anyone else), then each
African American would have a weight value of 0.5 when you tried to generalize to the
entire population.

When using a weighted sample, you need to consult the documentation on the survey
to know what weight variable to use. The Oregon sample we have been using has both
types of weights. We can list these for the first five observations:

. list finalwt finalwt2 in 1/5

finalwt finalwt2

1. 969.7892 1.602893
2. 384.8077 .6360203
3. 91.07467 .1505306
4. 5000 8.264132
5. 27.0839 .044765

With complex weighting, we can have different weights for each person. The first ob-
servation in the Oregon sample represents 969.79 Oregonians, and the fifth observation
represents just 27.08 Oregonians, as indicated by the scores they have for the variable
finalwt. The sum of all the finalwt scores will be close to the population of Oregon.

The probability weights represented by finalwt2 accomplish the same thing for the
sample. A person who is in a highly oversampled group (say, Native Americans) will
have a finalwt2 score of less than 1.00. A person who is not oversampled because
we know we will have plenty of them (say, Caucasian males) in our sample will have a
finalwt2 score of more than 1.00. The sum of all the finalwt2 scores will approximate
the total sample size.

Weighting is complicated and beyond the scope of this book. Consult the docu-
mentation for the dataset you are using to find out the right weight variable to use.
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Stata can adjust for different kinds of weights, but here we will just use what Stata calls
pweights. In the dialog box for multiple regression, you will find a tab called Weights.
Click on this tab, and select that you want to use Sampling weights (this is the name
Stata’s interface uses for what Stata calls pweights). Then all you need to do is enter
the name of the weight variable; here use finalwt. The command and results are as
follows:

. regress env_con educat inc com3 hlthprob epht3 [pweight = finalwt], beta
(sum of wgt is 2.3167e+06)

Linear regression Number of obs = 3769
F( 5, 3763) = 120.73
Prob > F = 0.0000
R-squared = 0.3073
Root MSE = .60771

Robust
env_con Coef. Std. Err. t P>|t| Beta

educat -.0077949 .0071749 -1.09 0.277 -.0303352
inc -1.64e-07 5.96e-07 -0.28 0.783 -.0076229

com3 .0467495 .0181525 2.58 0.010 .0694138
hlthprob -.2687917 .0449038 -5.99 0.000 -.1620468

epht3 -.4099326 .0226743 -18.08 0.000 -.4702973
_cons 3.797229 .1182412 32.11 0.000 .

When you do a weighted regression this way, Stata automatically uses the robust
regression—whether you ask for it or not—because weighted data require robust stan-
dard errors. The results of this robust regression have important differences from the
original regression. Because it is robust regression, we do not get the ANOVA table and
cannot get an adjusted R2. Because we used a weighted sample, we get a line saying
that the sum of wgt is 2.3167e+06. (Remember that when Stata encounters a num-
ber that is extremely small or extremely large, it uses this notation. The e+06 means
to move the decimal place six places to the right.) Expanded, the sum of the weights is
2,316,700. This is the approximate total adult population of Oregon at the time of this
survey. It is good to check this value, which should be the total population size if you
use this type of weight or the total sample size if you use the proportional weight.

The number of observations is 3,769, and this is the actual size of the sample used
for tests of significance. We should check this to make sure that we did the weighting
correctly. If we had used the other weight, finalwt2, the line would read sum of wgt

is 3.8291e+03. Moving the decimal place three spaces to the right, this is 3,829, which
is close to the actual sample size we have of 3,769. The Oregon Survey includes 4,508
observations. Because regression uses casewise deletion, we have only 3,769 observations
with valid scores on all the variables used in the regression. Because the sum of the
weights for the observations with incomplete data is not equal to the actual number of
observations with incomplete data, the sum of the weights for the complete data will
not be identical to 3,769.
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You may have observed that many of the results are different from the unweighted
results. For example, the F value is 120.73 compared with 320.15 for the unweighted
sample. This difference is partly due to the weighting and partly due to using robust
regression. The parameter estimates of the coefficients and the βs are different, as
are the standard errors and t tests. When the weighted sample gives different results,
this means that the weighting is important. Imagine that the authors of the study
decided they needed many Native Americans, so they oversampled Native Americans
by a factor of 10. This means that each Native American would count 10 times as much
in the unweighted sample as he or she would if you wanted to generalize the overall
population. If the relationship between the variables were somehow different for Native
Americans than for other groups, these differences would be overrepresented by a factor
of 10. Weighting makes every case accurately represent its proportion of the population.

10.9 Categorical predictors and hierarchical regression

Smoking by adolescents is a major health problem. We will examine this problem in
this section by using nlsy97 selected variables.dta as a way of illustrating what
can be done with categorical predictors. Let’s pick a fairly simple model to illustrate
the use of categorical variables. Say that we think smoking behavior depends on the
adolescent’s age (a continuous variable), gender (a dichotomous variable), peer influence
(a continuous variable), and race/ethnicity (a multicategory nominal variable). Let’s
also say that we think of these variables as being hierarchical. Start with just age and
gender, and see how much they explain. Then add peer influence and see how much it
adds. Finally, add race/ethnicity to see if it has a unique effect above and beyond what
is explained by age, gender, and peer influence.

When we are working with categorical predictors, it is important to distinguish
between dichotomous predictors, such as gender, and multicategorical predictors, such
as race, for which there are more than two categories. When we have a dichotomous
predictor, such as gender, we can create an indicator variable coded 0 for one gender,
say, females, and 1 for the other gender, males. We can then enter this as a predictor in
a regression model. We can do this by using the recode command; select Data ⊲ Create
or change data ⊲ Other variable-transformation commands ⊲ Recode categorical variable.
In the Variables box, type gender97 because this is the name of the variable for gender
in our dataset. Because males are coded as 1 and females as 2, we need to recode.
An indicator or dummy variable is a 0/1 variable, where a 1 indicates the presence of
the characteristic and a 0 indicates its absence. Click on the Options tab, and check
Generate new variables. Name the variable male because that is the category we will
code as 1. If we had named the variable female, we would code females as 1. The
choice is arbitrary and only changes the sign of the regression coefficient. Returning to
the Main tab, enter the Required rule: (1 = 1 Male) (2 = 0 Female). If you want to
run the command directly from the command line, enter

. recode gender97 (1 = 1 Male) (2 = 0 Female), generate(male)



292 Chapter 10 Multiple regression

Names for categorical variables

The conventions for coding categorical variables precede the widespread use
of multiple regression. Conventions are slow to change, and we usually need
to recode categorical variables before doing regressions. Most surveys code
dichotomous response items using codes of 1 and 2 for yes/no, male/female, and
agree/disagree items. We need to convert these to codes of 0 and 1. With more
than two category response options for categorical variables (for example, religion
or marital status), we need to recode the variable into a series of dichotomous
variables, each of which is coded as 0 or 1. I explain how to do this in the text,
but there is some inconsistency in names used for these recoded variables.

A common name for a 0/1 variable is dummy variable. Others call these
variables indicator variables, and still others call them binary variables. You
should use whatever naming convention is standard for your content area. Here I
will use these names interchangeably.

When we pick a name for one of these variables, it is useful to pick a name
representing the category coded as 1. If we code women with 1 and men with
0, we would call the variable female. Calling the variable gender would be less
clear when we interpret results. If whites are coded 1 and nonwhites are coded 0,
it would make sense to call the variable white. Which category is coded 1 and
which is coded 0 is arbitrary and affects only the sign of the coefficient. A positive
sign signifies that the category coded 1 is higher on the dependent variable, and a
negative sign signifies that it is lower on the dependent variable.

We must always check our changes, so enter a cross-tabulation, tab2 gender97

male, missing, to verify that we did not make a mistake. Once we have an indicator
variable, we can enter it in the regression as a predictor just like any other variable.
The unstandardized regression coefficient tells us the change in the outcome for a 1-
unit change in the predictor. Because a 1-unit change in the predictor, male, constitutes
being a male rather than being a female, the regression coefficient is simply the difference
in means on the dependent variable for males and females, controlling for other variables.
Although this regression coefficient is easy to interpret, many researchers also report
the βs. These make a lot of sense for a continuous variable; that is, a 1-standard-
deviation change in the independent variable produces a β-standard-deviation change
in the dependent variable. However, the βs are of dubious value for an indicator variable.
It does not make sense for an indicator variable to vary by degree. Going from 0 for
female to 1 for male makes sense, but going up or down one standard deviation on
gender does not make much sense.

Using dummy variables is more complex when there are more than two possible
scores. Consider race: We might want a variable to represent differences between Cau-
casians, African Americans, Hispanic Americans, and others. We might code a variable
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race as 1 for Caucasian, 2 for African American, 3 for Hispanic American, and 4 for
other. This variable, race, is a nominal-level categorical variable, and it makes no sense
to think of a code of 4 being higher or lower than a code of 1 or 2 or 3. These are simply
nominal categories and the order is meaningless. To represent these four racial or ethnic
groups, we need three indicator variables. In general, when there are k categories, we
need k − 1 indicator variables.

How does this work? First, choose one category that serves as a reference group. It
makes sense to pick the group we want to compare with other groups. In this example,
it would make sense to pick Caucasian as our reference group. This is a large enough
group to give us a good estimate of its value, and we will probably often want to compare
other groups with Caucasians. It would make little sense to pick the “other” group as
the reference category because this is a combination of several different ethnicities and
races (for example, Pacific Islander and Native American). Also, there are relatively
few observations in the “other” category.

Next generate three dummy or indicator variables (aa, hispanic, and other), allow-
ing us to uniquely identify each person’s race/ethnicity. A score of 1 on other means
that the person is in the “other” category. A score of 1 on hispanic means that the
person is Hispanic. A score of 1 on aa means that the person is African American. You
may be wondering how we know that a person is Caucasian. A Caucasian person will
have a score of 0 on aa, 0 on hispanic, and 0 on other.

The dataset used two questions to measure race/ethnicity. This is done to more
accurately represent Hispanics, who may be of any race. The first item asks respondents
if they are Hispanic. If they say no, they are then asked their race. The coding is fairly
complicated, and here are the Stata commands used.

. generate race=race97

. replace race=1 if race97==1 & ethnic97==0

. replace race=2 if race97==2 & ethnic97==0

. replace race=3 if ethnic97==1

. replace race=4 if (race97==4 | race97==5) & ethnic97==0

. tab2 race race97 ethnic97

. recode race (2 = 1 African_American) (1 3/4 = 0 Other), generate(aa)

. recode race (3 = 1 Hispanic) (1/2 4 = 0 Other), generate(hispanic)

. recode race (4 = 1 Other_race) (1/3 = 0 W_AA_H), generate(other)

. tab1 aa hispanic other

The first line creates a new variable, race, which is equal to the old variable, race97.
We never want to change the original variable. We then change the code of race based
on the codes the person had on two variables, his or her original race97 variable and his
or her ethnicity, ethnic97. You can type the command codebook race97 ethnic97

to see how these were coded. For example, we make race=1 if the person had a code of
1 on race97 and a code of 0 on ethnic97. We use the command tab2 race race97

ethnic97 to check that we have done this correctly. We then use the recode command
to generate the three dummy variables. Finally, we do frequency tabulations for the
three dummy variables. Here only African Americans will have a code of 1 on aa, only
Hispanics will have a code of 1 on hispanic, only others will have a code of 1 on other,
and only Caucasians will have a code of 0 on all three indicator variables.
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Now we are ready to do the multiple regression. In this example, we will enter the
variables in blocks. The first block is estimated by using

. regress smday97 age97 male
> if !missing(smday97, age97, male, psmoke97, aa, hispanic, other), beta

Source SS df MS Number of obs = 3467
F( 2, 3464) = 94.68

Model 22864.9705 2 11432.4853 Prob > F = 0.0000
Residual 418279.523 3464 120.75044 R-squared = 0.0518

Adj R-squared = 0.0513
Total 441144.493 3466 127.277696 Root MSE = 10.989

smday97 Coef. Std. Err. t P>|t| Beta

age97 1.838514 .1337569 13.75 0.000 .2274106
male .2707643 .3735982 0.72 0.469 .0119908
_cons -20.33657 1.995249 -10.19 0.000 .

We have a special qualification on who is included in this regression with the if quali-
fier. By inserting if !missing(smday97, age97, male, psmoke97, aa, hispanic,

other), we exclude people who did not answer all the items. If we did not exclude these
people, the number of observations for each regression might differ. When you put this
qualification with a command, there are a couple of things to remember: 1) !missing
means “not missing”; programmers like to use the exclamation mark to signify “not”. 2)
You must insert the commas between variable names in this particular function; this is
inconsistent with how Stata normally lists variables (without commas) but is necessary
because missing() is a Stata function, not a command.

The R2 = 0.05, F (2, 3464) = 94.68, p < 0.001. Although age and gender explain just
a little bit of the variance in adolescent smoking behavior, their joint effect is statistically
significant. How important is age as a predictor? For each year an adolescent gets older,
he or she smokes an expected 1.84 more days per month. This is highly significant:
t(3464) = 13.75, p < 0.001. This seems like a substantial increase in smoking behavior.
However, β = 0.23 suggests that this is not a strong effect. What about gender—is it
important? Because we coded males as 1 and females as 0, the coefficient 0.27 for male
indicates that males smoke an average of 0.27 more days per month than females do,
controlling for age. This difference does not seem great, and it is not significant. The β
is very weak, β = 0.01, but we will not try to interpret β because gender is a categorical
variable.

The next regression equation adds peer influence. Repeat the command, but add the
variable psmoke97, which represents the percentage of peers who smoke. The command
and results are
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. regress smday97 age97 male psmoke97
> if !missing(smday97, age97, male, psmoke97, aa, hispanic, other), beta

Source SS df MS Number of obs = 3467
F( 3, 3463) = 134.24

Model 45956.7038 3 15318.9013 Prob > F = 0.0000
Residual 395187.789 3463 114.117179 R-squared = 0.1042

Adj R-squared = 0.1034
Total 441144.493 3466 127.277696 Root MSE = 10.683

smday97 Coef. Std. Err. t P>|t| Beta

age97 1.286699 .1356942 9.48 0.000 .1591551
male .9523383 .3663385 2.60 0.009 .0421741

psmoke97 2.250031 .1581743 14.23 0.000 .2406996
_cons -19.47606 1.940615 -10.04 0.000 .

This new model explains 10% of the variance in smoking behavior: R2 = 0.10,
F (3, 3463) = 134.24, p < 0.001. Does psmoke97 make a unique contribution? There are
two ways of getting an answer. First, we can see that the regression coefficient of 2.25
is significant: t(3463) = 14.23, p < 0.001, and β = 0.24.

A second way of testing the unique effect of adding psmoke97 is to use the pcorr

command, as follows:

. pcorr smday97 age97 male psmoke97 if !missing(smday97, age97, male, psmoke97,
> aa, hispanic, other)
(obs=3467)

Partial and semipartial correlations of smday97 with

Partial Semipartial Partial Semipartial Significance
Variable Corr. Corr. Corr.^2 Corr.^2 Value

age97 0.1591 0.1525 0.0253 0.0233 0.0000
male 0.0441 0.0418 0.0019 0.0017 0.0094

psmoke97 0.2350 0.2288 0.0552 0.0523 0.0000

So we can say that the influence of peer smoking adds 5% to the explained variance
because the semipartial R2 = 0.05, p < 0.001. The significance level is reported as a
probability without any test statistic. There are two ways of obtaining the test statistic.
Most statistics books show how to do an F test for adding a single variable (or set of
variables). More simply, because we are interested in the contribution of a single added
variable, the t test Stata reports for psmoke97 will be the same as the square root of
the F test. We could say that the semipartial R2 = 0.05, t(3463) = 14.23, p < 0.001.
This t-value was reported in the previous regression command.

The next model we want to fit includes race/ethnicity. We can fit this by simply
adding the variables aa, hispanic, and other to the regression command. Here are the
command and its results:
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. regress smday97 age97 male psmoke97 aa hispanic other
> if !missing(smday97, age97, male, psmoke97, aa, hispanic, other), beta

Source SS df MS Number of obs = 3467
F( 6, 3460) = 90.57

Model 59879.4994 6 9979.91657 Prob > F = 0.0000
Residual 381264.994 3460 110.192195 R-squared = 0.1357

Adj R-squared = 0.1342
Total 441144.493 3466 127.277696 Root MSE = 10.497

smday97 Coef. Std. Err. t P>|t| Beta

age97 1.308304 .1333711 9.81 0.000 .1618275
male 1.058956 .3601243 2.94 0.003 .0468957

psmoke97 2.173683 .1557058 13.96 0.000 .2325322
aa -4.676358 .4592876 -10.18 0.000 -.1674716

hispanic -3.223299 .4638056 -6.95 0.000 -.1144606
other .3825068 1.143897 0.33 0.738 .0053334
_cons -18.01775 1.911984 -9.42 0.000 .

When we add the set of three indicator variables that collectively represent race and
ethnicity, we increase our R2 to 0.14, F (6, 3460) = 90.57, p < 0.001. This represents a
0.1357−0.1042 = 0.0315, or 3.2%, increase in R2 when we add the set of three indicator
variables that represent race/ethnicity.

The t tests for aa and hispanic are statistically significant, and the t test for other
is not. This shows that both African Americans and Hispanics smoke fewer days per
month than do Caucasians. If we want to know whether the set of three indicators is
statistically significant (this refers to the three variables simultaneously and tests the
significance of the combined race/ethnicity variable), we can type the following test

command immediately after the regression and before doing another multiple regression
(because it uses the most recent results):

. test aa hispanic other

( 1) aa = 0
( 2) hispanic = 0
( 3) other = 0

F( 3, 3460) = 42.12
Prob > F = 0.0000

This test command is both simple and powerful. It does a test that three null
hypotheses are all true. It is testing that the effect of aa is zero, of hispanic is zero,
and of other is zero. It gives us F (3, 3460) = 42.12, p < 0.001. Thus we can say that the
effect of race/ethnicity is weak because it adds just 3.2% to the explained variance, but it
is statistically significant. If you paid careful attention to the unstandardized regression
coefficients, you may object to the statement that the effect is weak. Uniquely explaining
3.2% of the variance sounds weak, which is why we described it this way. However,
b = −4.68 for African Americans, and this means that they are expected to smoke
almost five fewer days per month than Caucasians. If you think this is a substantial
difference, you might want to focus on this difference rather than the explained variance.



10.9 Categorical predictors and hierarchical regression 297

More on testing a set of parameter estimates

We have seen one important use for the test command, namely, testing a set of
indicator variables (aa, hispanic, other) that collectively define another variable
(race/ethnicity). There are many other uses for this command. You may want to
test whether a set of control variables is significant. When you have interaction
terms, you may want to test a set of them. The test is always done in the context
of the multiple regression most recently estimated. In this example, if we ran the
command test age97 male, we would get a different result from when we entered
these two variables by themselves. This is because we are testing whether these
two variables are simultaneously significant, controlling for all the other variables
that are in the model.

There is a useful command called nestreg. The procedures we have been using
here involve nested regressions. The regressions are nested in the sense that the first
regression is nested in the second regression because all the predictors in the first regres-
sion are included in the second. Likewise, the second regression is nested in the third
regression, and so on. Some people call this hierarchical regression. If you call it hier-
archical regression, you should not confuse it with hierarchical linear modeling, which
is the name of a program that does multilevel analysis or mixed regression, which is
related to the command in Stata called mixed. Nested regression is used where we have
blocks of variables that we want to enter in a sequence, each step adding another block.
Our method, using a series of regressions followed by the test command, is extremely
powerful and flexible. However, the nestreg command was created to automate this
process.

To use the nestreg command, you add the nestreg: prefix (the colon must be
included) to the regression command. You then write a regress command, but put
each block of predictors in parentheses. Here we have three blocks of predictors: (age97
male), (psmoke97), and (aa hispanic other). The usual options for the regress

command are available. We selected the option to produce the beta weights.

. nestreg: regress smday97 (age97 male) (psmoke97) (aa hispanic other), beta

Block 1: age97 male

Source SS df MS Number of obs = 3467
F( 2, 3464) = 94.68

Model 22864.9705 2 11432.4853 Prob > F = 0.0000
Residual 418279.523 3464 120.75044 R-squared = 0.0518

Adj R-squared = 0.0513
Total 441144.493 3466 127.277696 Root MSE = 10.989

smday97 Coef. Std. Err. t P>|t| Beta

age97 1.838514 .1337569 13.75 0.000 .2274106
male .2707643 .3735982 0.72 0.469 .0119908
_cons -20.33657 1.995249 -10.19 0.000 .
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Block 2: psmoke97

Source SS df MS Number of obs = 3467
F( 3, 3463) = 134.24

Model 45956.7038 3 15318.9013 Prob > F = 0.0000
Residual 395187.789 3463 114.117179 R-squared = 0.1042

Adj R-squared = 0.1034
Total 441144.493 3466 127.277696 Root MSE = 10.683

smday97 Coef. Std. Err. t P>|t| Beta

age97 1.286699 .1356942 9.48 0.000 .1591551
male .9523383 .3663385 2.60 0.009 .0421741

psmoke97 2.250031 .1581743 14.23 0.000 .2406996
_cons -19.47606 1.940615 -10.04 0.000 .

Block 3: aa hispanic other

Source SS df MS Number of obs = 3467
F( 6, 3460) = 90.57

Model 59879.4994 6 9979.91657 Prob > F = 0.0000
Residual 381264.994 3460 110.192195 R-squared = 0.1357

Adj R-squared = 0.1342
Total 441144.493 3466 127.277696 Root MSE = 10.497

smday97 Coef. Std. Err. t P>|t| Beta

age97 1.308304 .1333711 9.81 0.000 .1618275
male 1.058956 .3601243 2.94 0.003 .0468957

psmoke97 2.173683 .1557058 13.96 0.000 .2325322
aa -4.676358 .4592876 -10.18 0.000 -.1674716

hispanic -3.223299 .4638056 -6.95 0.000 -.1144606
other .3825068 1.143897 0.33 0.738 .0053334
_cons -18.01775 1.911984 -9.42 0.000 .

Block Residual Change
Block F df df Pr > F R2 in R2

1 94.68 2 3464 0.0000 0.0518
2 202.35 1 3463 0.0000 0.1042 0.0523
3 42.12 3 3460 0.0000 0.1357 0.0316

This command will run the three regressions, and report increments in R2 and
whether these are statistically significant. A special strength of this command is that it
works with many types of nested models, as you can see by typing help nestreg. The
nestreg command is hard to find under the menu system. You find it at Statistics ⊲
Other ⊲ Nested model statistics. In addition to working with our multiple regression ex-
ample, the dialog box provides a way of evaluating nested models by using 18 specialized
extensions of multiple regression, such as logistic regression.

The results show the three regressions we ran earlier—calling them Block 1,
Block 2, and Block 3—and list the variables added with each block. After the last
block is entered, there is a summary table showing the change in R2 for the block along
with its significance. For example, the second block added the variable psmoke97. This
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block increased the R2 by 0.0523, from 0.0518 to 0.1042. This increment in R2 is sig-
nificant, F (1, 3463) = 202.35, p < 0.001. The significance of R2 = 0.104 at this stage is
taken from the Block 2 regression, F (3, 3463) = 134.24, p < 0.001. Avoid confusing the
F test for the increment in R2 from the summary table and the F test for the R2 itself
from the regression for the block. Adding the race/ethnicity variables to the model in
Block 3 increased R2 by 0.032, and this is significant, F (3, 3460) = 42.12, p < 0.001.
So, too, is the final R2 = 0.136, F (6, 3460) = 90.57, p < 0.001.

Tabular presentation of hierarchical regression models

You may find it helpful to have a table showing the results of your nested (hierar-
chical) regressions. The table should show b’s, standard errors, and standardized
betas for each model you fit. You should also include R2 for each model and the
F test of the change in the R2. In many fields, it is conventional to show the
significance of regression coefficients by using asterisks. One asterisk is used for pa-
rameter estimates that are significant at the 0.05 level, two asterisks for parameters
significant at the 0.01 level, and three asterisks for parameters significant at the
0.001 level. Some fields—for example, psychology through the American Psycho-
logical Association—have recommended tables that only report the coefficients for
the variables that are added at each step. This approach ignores the fact that the
coefficients for the variables from previous blocks will change when the new block of
variables is added. This can become misleading because a variable in block 1 may
be significant at that step, but it may become insignificant when subsequent blocks
are added. A detailed example of a summary table format for nested regression is
shown at http://oregonstate.edu/˜acock/tables/regression.pdf.

Nested regression is commonly used to estimate the effect of personality character-
istics or individual beliefs after you have controlled for background variables. If you
want to know whether motivation was important to career advancement, you would do
a multiple regression entering background variables first and then adding motivation as
a final step. For example, you might enter gender, race, and parents’ education in the
first step as background variables over which the individual has no control; then enter
achievement variables, such as education, in a second step; and finally, enter motivation.
If motivation makes a significant increase in R2 in the final step, then you have a much
better test of the importance of motivation than if you had just done a correlation of
career achievement and motivation without entering the control variables first.

10.10 A shortcut for working with a categorical variable

In the previous analysis, we did a regression of smday97 on age97, male, psmoke97, aa,
hispanic, and other. The last three are our race/ethnicity variables, where we used
Caucasian as our reference group and created dummy variables for African Americans,
Hispanics, and others. There is a much easier way of doing this, but you need to
understand how it works.
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Stata treats categorical variables, regardless of the number of categories, as factor
variables. Gender is a two-level factor variable. Our race/ethnicity variable is a four-
level factor variable. Stata then has an elegant way of producing the dummy variables
for us and entering them in a regression analysis. Using this feature makes the most
sense when the first category is a good reference category and when you want to use all
the categories. If you put i. as a stub in front of a categorical variable, Stata will make
the first category the reference category and then generate a dummy variable for each
of the remaining categories. Here are two regression results. The first uses the dummy
variables as we named them before and the second uses the factor-variable feature.

. regress smday97 age97 male psmoke97 aa hispanic other

Source SS df MS Number of obs = 3467
F( 6, 3460) = 90.57

Model 59879.4994 6 9979.91657 Prob > F = 0.0000
Residual 381264.994 3460 110.192195 R-squared = 0.1357

Adj R-squared = 0.1342
Total 441144.493 3466 127.277696 Root MSE = 10.497

smday97 Coef. Std. Err. t P>|t| [95% Conf. Interval]

age97 1.308304 .1333711 9.81 0.000 1.04681 1.569798
male 1.058956 .3601243 2.94 0.003 .3528779 1.765033

psmoke97 2.173683 .1557058 13.96 0.000 1.868399 2.478968
aa -4.676358 .4592876 -10.18 0.000 -5.57686 -3.775856

hispanic -3.223299 .4638056 -6.95 0.000 -4.132659 -2.313938
other .3825068 1.143897 0.33 0.738 -1.860274 2.625288
_cons -18.01775 1.911984 -9.42 0.000 -21.76648 -14.26902

. regress smday97 age97 male psmoke97 i.race

Source SS df MS Number of obs = 3467
F( 6, 3460) = 90.57

Model 59879.4994 6 9979.91657 Prob > F = 0.0000
Residual 381264.994 3460 110.192195 R-squared = 0.1357

Adj R-squared = 0.1342
Total 441144.493 3466 127.277696 Root MSE = 10.497

smday97 Coef. Std. Err. t P>|t| [95% Conf. Interval]

age97 1.308304 .1333711 9.81 0.000 1.04681 1.569798
male 1.058956 .3601243 2.94 0.003 .3528779 1.765033

psmoke97 2.173683 .1557058 13.96 0.000 1.868399 2.478968

race
2 -4.676358 .4592876 -10.18 0.000 -5.57686 -3.775856
3 -3.223299 .4638056 -6.95 0.000 -4.132659 -2.313938
4 .3825068 1.143897 0.33 0.738 -1.860274 2.625288

_cons -18.01775 1.911984 -9.42 0.000 -21.76648 -14.26902
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Notice that under race in the second result, we have three categories that are labeled
2, 3, and 4. Category 2 is the second category and corresponds to the aa category in
the first results. Similarly, category 3 matches the hispanic category, and category 4
matches the other category.

This method saves us the work of having to generate the dummy variables, but it
has the possible disadvantage of not having clear labels for the resulting categories. It
is easy to remember that aa is African American, hispanic is Hispanic, and other is
other races. It is harder to remember which category coincides with 2, 3, or 4. Still,
if you have several categorical variables, you can save a lot of recoding time by using
the factor-variable feature. It is possible to change the reference category or what Stata
refers to as the baselevel. If we want to make Hispanics the reference category, we
could type

. regress smday97 age97 male psmoke97 ib3.race

where the ib3. makes category 3 the base. If we wanted African Americans to be the
reference category, we would use ib2.race. Rarely would we want the last category to
be the reference category, but if we did, we would use ib(last).race.

10.11 Fundamentals of interaction

In many situations, the effect of one variable depends on where you are on another
variable. For example, there is a well-established relationship between education and
income. The more education you have, the more income you can expect, on average.
There is also an established relationship between gender and income. Men, on average,
make more money than do women. With this in mind, we could do a regression of
income on both education and gender to see how much of a unique effect each predictor
has. There is, however, an important relationship that we could miss by doing this. In
addition to the possibility of men making more money than women, the payoff men get
for each additional year of education may be greater than the payoff women receive.
Thus men are advantaged in two ways. First, they make more money on average, and
second, they get a greater return on their education. This second issue is what we mean
by interaction. That is, the effect of education on income depends on your gender—
stronger effect for men, weaker effect for women. How can we test this relationship
using multiple regression?

As an example here, we will fit two models. The first model includes just educa-
tion and gender as predictors, or main effects, to distinguish them from interaction
effects. The second model adds the interaction between education and gender. Let’s
use c10interaction.dta, a dataset with hypothetical data. The first model is fit using
regress inc educ male, where inc is income measured in thousands of dollars, educ
is education measured in years, and male represents gender, with men coded 1 and
women coded 0. Here are the command and results:
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. regress inc educ male, beta

Source SS df MS Number of obs = 120
F( 2, 117) = 37.19

Model 100464.105 2 50232.0527 Prob > F = 0.0000
Residual 158015.895 117 1350.5632 R-squared = 0.3887

Adj R-squared = 0.3782
Total 258480 119 2172.10084 Root MSE = 36.75

inc Coef. Std. Err. t P>|t| Beta

educ 8.045694 1.008586 7.98 0.000 .5775017
male 19.04991 6.719787 2.83 0.005 .2052297
_cons -42.54411 14.2919 -2.98 0.004 .

We can explain 38.87% of the variance in income with education and gender,
F (2, 117) = 37.19, p < 0.001, and both education and gender are significant in the
ways we anticipated. Each additional year of education yields an expected increase in
income of $8,046, and men expect to make $19,050 more than women. (Remember,
these are hypothetical data!)

We can make a graph of this relationship. First, generate a predicted income for
women as a new variable and a predicted income for men as a new variable. Just after
the regression, type the following commands:

. predict incfnoi if male==0

. predict incmnoi if male==1

The first command generates a predicted value for income for women (male==0), and
the second command does the same for men. Then do an overlaid two-way graph by
using the dialog box we discussed earlier in the book. The graph command used to
produce figure 10.9 is long:
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. twoway (connected incmnoi educ if male == 1, lcolor(black) lpattern(dot)
> msymbol(diamond) msize(large)) (connected incfno educ if male == 0,
> lcolor(black) lpattern(solid) msymbol(circle) msize(large)),
> ytitle(Income in thousands) xtitle(Education) legend(order(1 "Men" 2 "Women"))
> scheme(s2manual)
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Figure 10.9. Education and gender predicting income, no interaction

There is one line for the education-to-income relationship for men (the higher line)
and another line for women. This shows a strong positive connection between education
and income, as well as a big gender gap. We use this model that includes just the main
effects and has both lines parallel because it is the best model, as long as we assume
that the gender gap is constant. If the size of the gender gap increases with increasing
age, this model would not be able to show that.

Testing for interaction takes us a huge step further. When we test for interaction,
we want to see if the slopes are different. In other words, we want to see if the slope
between education and income is different and perhaps steeper for men than it is for
women. You may be thinking that the graph shows the lines to be parallel, but this
is because we set up the equation without an interaction term; without the interaction
term, Stata gives us the best parallel lines. To see if the lines really should not have
this restriction, we add an interaction term. We get the interaction term as the product
of gender and education.

There are two ways to include an interaction term as the product of gender and
education. One way is to use the generate command, for example,

. generate ed_male = educ*male

where ed male is the interaction term. Then we would refit the model by adding the
interaction term:

. regress inc educ male ed_male, beta
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A better way to include an interaction term is to use factor-variable notation. This
produces identical parameter estimates, but has two advantages. First, you do not need
to generate the interaction or product term, ed male, before running the regression.
This is a small advantage in this example, but in more complex models, it can save
considerable time. The second, and more important advantage, is that some postesti-
mation commands (for example, margins and marginsplot) require that you used the
factor-variable notation. For a categorical variable like gender, we insert i. at the front
of the variable name, i.male. For a continuous variable, like education, we insert c. at
the front of the name of the variable, c.educ. Stata uses the ## notation to indicate a
product of variables. Thus we can write a command that includes both the main effects
of gender and education and the interaction between gender and education as follows:

. regress inc i.male##c.educ, beta

With the ## notation, Stata knows to include both male and educ along with their
product. Thus this command is equivalent to the command in the above paragraph,
regress inc educ male ed male, beta. Here are the results:

. regress inc i.male##c.educ, beta

Source SS df MS Number of obs = 120
F( 3, 116) = 34.89

Model 122604.719 3 40868.2397 Prob > F = 0.0000
Residual 135875.281 116 1171.33863 R-squared = 0.4743

Adj R-squared = 0.4607
Total 258480 119 2172.10084 Root MSE = 34.225

inc Coef. Std. Err. t P>|t| Beta

1.male -91.88539 26.27242 -3.50 0.001 -.9899052
educ 3.602369 1.388076 2.60 0.011 .2585699

male#c.educ
1 8.196446 1.885263 4.35 0.000 1.287508

_cons 16.84834 19.07279 0.88 0.379 .

These results show that we can explain 47.43% of the variance, F (3, 116) = 34.89,
p < 0.001, in income after we add the effect of the interaction of education and gender.
This is an increase of 8.56% in the explained variance we had when we did not include
the interaction. Is the interaction significant? In the result, we see that male#c.educ,
the interaction, has a t = 4.35, p < 0.001 so we know the interaction is significant. (The
output does not include the i. at the start of the categorical variable, but it is implied.)
We could also get this increase in explained variance increase by using pcorr for the
semipartial R2 or by using nestreg: regress inc (educ male) (ed male), beta.



10.11 Fundamentals of interaction 305

Centering quantitative predictors before computing interaction terms

Although we have not done it here, some researchers choose to center quantitative
independent variables, such as education, before computing the interaction terms.
The interaction term is the product of the centered variables, but the interaction
term will not be centered itself. Centering involves subtracting the mean from each
observation. If the mean of education were 12 years, centered education would
be generate c educ = educ - 12. A better way to do this is to summarize the
variable first. Stata then saves the mean to many decimal places in memory as
a variable called r(mean). We would use two commands: summarize educ and
then generate educ c = educ - r(mean). If you plan to center many variables,
you may want to install the user-written command center (type search center

or ssc install center). Ben Jann wrote this command in 2004, with subsequent
revisions. Once it is installed, you can type center educ to automatically create
a new variable named c educ.

If you center these variables, the mean has a value of zero. Because the intercept
is the estimated value when the predictors are zero, the intercept is the estimated
value when the centered variable is at its mean. This often makes more sense,
especially when a value of zero for the uncentered variable is a rare event, like it is
in the example of years of education. The centered education variable becomes a
measure of how far a person is above or below average on years of education rather
than how many years of education they have had. This centering can help you
interpret the intercept.

Interpreting the interaction term (i.male#c.educ) and the main effects (educ, male)
is tricky when the interaction is significant. Just glancing at them seems to suggest
ridiculous relationships. The −91.89 for the male variable might look like men make
significantly less income than do women, but we cannot interpret it this way in the
presence of interaction. We need to make a separate equation for each level of the
categorical variable. Thus we need to make an equation for men and a separate equation
for women. This is not hard to do; just remember that women have a score of zero on
two variables: male and ed male (educ× 0 = 0). For men, by substituting a value of 1
for the male variable, the equation simplifies to

înc = (16.85− 91.89) + (3.60 + 8.20)educ

înc = −75.04 + 11.80(educ)

For women, by substituting a value of 0 for the male variable, the equation simplifies to

înc = 16.85 + 3.60(educ)

Here the payoff of one additional year of education for men is $11,800 compared with
just $3,600 for women. The adjusted constant or intercept for men of −$75, 040 does
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not make much sense. In the data, the lowest education is 8 years, and the constant
refers to a person who has no education. Do not interpret an intercept that is out of
the range of the data.

A nice way to see how the interaction works is with a graph. In this example, we are
interested in how the relationship between income and education varies by gender. We
want to see if the numerical results shown above really show a substantively important
difference in this relationship. We will use two commands to do this. The margins

command is run first to find out what the estimated income is for specific years of
education for women and for men. Let’s do this by specifying that education years will
have values of 8 years, 10 years, 12 years, 14 years, 16 years, and 18 years. The margins
has the categorical variable, male, listed immediately following the command. Then,
after the command, we specify the specific values for the continuous variable, educ.
Here are the command and results:

. margins male, at(educ=(8 10 12 14 16 18))

Adjusted predictions Number of obs = 120
Model VCE : OLS

Expression : Linear prediction, predict()

1._at : educ = 8

2._at : educ = 10

3._at : educ = 12

4._at : educ = 14

5._at : educ = 16

6._at : educ = 18

Delta-method
Margin Std. Err. t P>|t| [95% Conf. Interval]

_at#male
1 0 45.66729 8.66112 5.27 0.000 28.51285 62.82173
1 1 19.35346 8.545103 2.26 0.025 2.42881 36.27812
2 0 52.87203 6.431252 8.22 0.000 40.13412 65.60993
2 1 42.95109 6.496577 6.61 0.000 30.0838 55.81838
3 0 60.07676 4.808436 12.49 0.000 50.55305 69.60048
3 1 66.54872 4.940843 13.47 0.000 56.76276 76.33468
4 0 67.2815 4.505014 14.93 0.000 58.35875 76.20425
4 1 90.14635 4.431483 20.34 0.000 81.36924 98.92346
5 0 74.48624 5.734395 12.99 0.000 63.12855 85.84393
5 1 113.744 5.280516 21.54 0.000 103.2853 124.2027
6 0 81.69097 7.802914 10.47 0.000 66.23632 97.14563
6 1 137.3416 7.01066 19.59 0.000 123.4561 151.2271

The first part of the results show that we picked 6 values for education, where the
first value represents 8 years and the sixth value represents 18 years. The second part
shows the estimated incomes for each value when male equals a value of 0 (woman) and
when it equals a value of 1 (man).

Next we want to plot the estimated values of income on education separately for
women and men. We simply type marginsplot, noci. We added the noci option to
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the marginsplot command because we did not want confidence intervals. If you retype
this command without the option, you will see that the confidence interval is widest at
the extremes (8 years of education and 18 years of education) in the resulting graph;
see figure 10.10. (Note that I have made some minor enhancements to the figure with
the Graph Editor.)
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Figure 10.10. Education and gender predicting income, with interaction term

Figure 10.10 shows that at low levels of education, men are estimated (using a linear
model) to make less than women, but at higher levels of education, the men make much
more than women. It shows that the rate of increase in income for additional years of
education is much steeper for men than it is for women. Remember that we are using
hypothetical data.
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Do not compare correlations across populations

We have found a significant interaction showing that women are relatively disadvan-
taged in the relationship between education and income. We did this by examining
the unstandardized slopes, which showed that the payoff for an additional year of
education was $11,800 for men, compared with $3,600 for women. If these were ac-
tual data, this would be compelling evidence of a gross inequity. Some researchers
compare standardized beta weights or correlations to make this argument, but this
is a serious mistake. The standardized beta weights depend on the form of the rela-
tionship (shown with the unstandardized slopes in figure 10.10) and the differences
in variance. Unless the men and women have identical variances, comparing the
correlations or beta weights can yield misleading results. Correlation is a measure
of fit or the clustering of the observations around the regression line. You can have
a steep slope like that for men, but the observations may be widely distributed
around this, leading to a small correlation. Similarly, you can have a much flatter
slope, like that for women, but the observations may be closely packed around the
slope, leading to a high correlation. Whether the correlation between education
and income is higher or lower for women than it is for men measures how closely
the observations are to the estimated values. How steep the slopes are, measured
by the unstandardized regression coefficients as we have done, measures the form
of the relationship.

10.12 Nonlinear relations

We have been assuming that the relationship between each independent variable and our
dependent variable is linear and thereby described by a straight line. This is often an
adequate assumption, even when it is not the best possible model. Many relationships
have a curve. You could think of one example as a decreasing marginal utility. If the
income of the average college student goes up or down $10,000 per year, this represents a
big change in their resources and will influence many outcome variables. What about the
average billionaire? As their income goes up or down $10,000 per year, they are unlikely
to notice the change and the change will not influence any outcomes. Figure 10.11(A)
shows such a relationship. Note the following equation:

ŷ = 0.10 + 0.122x − 0.006x2

linear quadratic

We fit this by adding a quadratic term, x2. The 0.122x is the linear component and
has a positive slope, but the −0.006x2 has a negative slope. The positive component is
pushing the estimated value of y up and the negative quadratic is pushing the estimated
value of y down. Because the −0.006 is a much smaller value than the 0.122, the positive
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linear push dominates initially. Although the −0.006 is a small value, it is multiplied
by x2 rather than by x. Because x changes arithmetically, x2 changes geometrically
and the quadratic component will eventually bring the estimated value of y down. We
can illustrate this using different values of x. Because x increases from 0 to 10, the
estimated value of y increases from 0.91 to 1.53; after that, additional increases in x
actually lead to a lowering of the estimated value of y.

Value of x Value of x2 Estimated value of y using
y = 0.910 + 0.122x− 0.006x2

0 0 0.91
10 100 1.53
20 400 0.95
30 900 −0.83
40 1600 −3.81
50 2500 −7.99

Sometimes we need a model that allows a positive relationship for part of the range
of the independent variable and a negative relationship for the rest of the range. How
often do a husband and wife have conflict? If they have conflict all the time, they will
be unhappy. However, one theory argues that couples that never or rarely have conflict
are also unhappy and those who have a moderate degree of conflict are the happiest.
Figure 10.11(B) shows such a relationship. Notice that the positive linear component
is pushing the estimated value of y, happiness, up and that the negative quadratic
component is pushing the estimated value of y down. Within the range of the data, the
value of x2 becomes so great that the initially small quadratic component effect reverses
the effect of the linear component.
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Figure 10.11. Five quadratic curves

Figure 10.11 illustrates some of the models that can be fit by adding a quadratic term
to our regression model. We have discussed the first two models, which are examples
of a positive linear component and a negative quadratic component. The regress

command provides the best estimates of the linear and quadratic parameters for all of
these curves. Figure 10.11(C) is labeled decreasing decay. Here a negative effect begins
being quite strong but then levels out for high values of x. Notice figure 10.11(C) is
obtained by having a negative value for the linear component, x, and a very small
positive value for the quadratic component, x2. Can you think of an example where
this would apply? Suppose you were studying infant mortality (y) at the nation level
and your independent variable is the gross national product (GNP). Countries with the
lowest GNP would have a high rate of infant mortality, but this would drop quickly in
countries with somewhat higher GNP’s. However, at some point, a further increase in
GNP would not lead to a substantial reduction in infant mortality. There would be a
leveling off of infant mortality for nations that have higher GNP’s.

When using a quadratic, you never want to make an inference that goes beyond your
range of the independent variable. What would happen if the x axis were extended
farther to the right? The small positive quadratic component would push up more
and more, and you would get something like figure 10.11(D), a U curve. Imaging a
group of patients who have headache pain (y), you administered varying dosages of a
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pain medicine (x). Initially, you have a large drop in the pain, but as you increase the
dosage, the benefit diminishes. You know you have a model like that in figure 10.11(C) or
10.11(D) when you have a negative linear coefficient and a positive quadratic component.
The distinction between models like those in figures 10.11(C) and 10.11(D) is often
difficult to distinguish without creating a graph.

Figure 10.11(E) shows an example of accelerating growth. Both the linear and the
quadratic components are positive. The linear component is fairly small meaning that
at the lower range of the x variable, the estimate y value is increasing only slightly.
The positive quadratic term is being added to this effect as an extra push to a higher
estimated value of y.

10.12.1 Fitting a quadratic model

Consider the relationship between the log of your wages and your total years of expe-
rience. We believe that the more years of experience you have, the greater the log of
your wages. Let’s use data that come from Stata:

. use http://www.stata-press.com/data/r13/regsmpl.dta
(NLS Women 14-26 in 1968)

We run a linear regression and obtain the following results:

. regress ln_wage ttl_exp, beta

Source SS df MS Number of obs = 28534
F( 1, 28532) = 6110.45

Model 1150.37005 1 1150.37005 Prob > F = 0.0000
Residual 5371.51384 28532 .188262787 R-squared = 0.1764

Adj R-squared = 0.1764
Total 6521.88388 28533 .228573367 Root MSE = .43389

ln_wage Coef. Std. Err. t P>|t| Beta

ttl_exp .0431613 .0005522 78.17 0.000 .4199835
_cons 1.406646 .0042866 328.15 0.000 .
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We can represent these results as a graph (figure 10.12) by typing

. twoway lfit ln_wage ttl_exp
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Figure 10.12. Graph of quadratic model

Figure 10.12 shows a moderately strong relationship between the total years of work
experience and the estimated log wage. Do you see a problem? With many occupational
positions, there is a top wage, so after several years, your wage rate may not increase
or may only increase very gradually. We expect that wages will increase fairly rapidly
the first several years and then level off in latter years. We can get a feel of whether
this is correct using the binscatter command that we discussed in section 8.4.



10.12.1 Fitting a quadratic model 313

. binscatter ln_wage ttl_exp
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Figure 10.13. binscatter representation of nonlinear relationship between the log of
wages and total years of experience

How does adding a quadratic component represent this? We expect the linear com-
ponent to be positive because initially there is a regular increase in your wage rate, but
we expect diminishing returns for additional years, especially after you have worked
for many years. Therefore, we expect the linear component to be positive and the
quadratic component to have a small, but significant, negative effect. We can han-
dle the quadratic term the same way we could handle the interaction term. We could
generate a new variable by multiplying the variables together, for example,

. generate ttl_sq = ttl_exp*ttl_exp

and then adding the new term to the regression model:

. regress ln_wage ttl_exp ttl_sq, beta

As with the interaction term, we have a better alternative. We can use the factor-
variable notation for the continuous variable. Stata lets us use this special notation to
indicate that a variable is continuous. We will use the ## notation like we did with an
interaction term, c.ttl exp##c.ttl exp. This notation keeps the main effect of total
experience, ttl exp, and it adds the product term to the model, ttl exp*ttl exp.
This method is better than generating the squared term in a separate step because
postestimation commands will behave properly. The double hash marks, ##, along with
the c. prefixes (for continuous independent variables) tell Stata to include both the
linear component of ttl exp and the quadratic component ttl exp2.



314 Chapter 10 Multiple regression

Here are the command and results:

. regress ln_wage c.ttl_exp##c.ttl_exp, beta

Source SS df MS Number of obs = 28534
F( 2, 28531) = 3166.13

Model 1184.57867 2 592.289333 Prob > F = 0.0000
Residual 5337.30522 28531 .187070387 R-squared = 0.1816

Adj R-squared = 0.1816
Total 6521.88388 28533 .228573367 Root MSE = .43252

ln_wage Coef. Std. Err. t P>|t| Beta

ttl_exp .0660334 .0017787 37.12 0.000 .6425416

c.ttl_exp#
c.ttl_exp -.0013929 .000103 -13.52 0.000 -.2340455

_cons 1.348441 .0060651 222.33 0.000 .

These results are exactly the same as we would have obtained by using the generate
command to create the ttl sq variable.

Just like with interaction terms, we can use the margins and marginsplot com-
mands to graph these nonlinear results. This time we just have one predictor so we
must set representative values for it. Running the fre ttl exp (or tab ttl exp) com-
mand, we find that experience ranges from 0 years to 28.885 years. Let’s specify values
from 0 to 28 years in increments of 2.
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. margins, at(ttl_exp = (0(2)28))

Adjusted predictions Number of obs = 28534
Model VCE : OLS

Expression : Linear prediction, predict()

1._at : ttl_exp = 0

2._at : ttl_exp = 2

3._at : ttl_exp = 4

4._at : ttl_exp = 6

5._at : ttl_exp = 8

6._at : ttl_exp = 10

7._at : ttl_exp = 12

8._at : ttl_exp = 14

9._at : ttl_exp = 16

10._at : ttl_exp = 18

11._at : ttl_exp = 20

12._at : ttl_exp = 22

13._at : ttl_exp = 24

14._at : ttl_exp = 26

15._at : ttl_exp = 28

Delta-method
Margin Std. Err. t P>|t| [95% Conf. Interval]

_at
1 1.348441 .0060651 222.33 0.000 1.336553 1.360329
2 1.474936 .0037037 398.24 0.000 1.467676 1.482195
3 1.590288 .0029503 539.03 0.000 1.584505 1.59607
4 1.694497 .0033365 507.87 0.000 1.687957 1.701036
5 1.787563 .0038029 470.06 0.000 1.780109 1.795016
6 1.869485 .0040283 464.08 0.000 1.861589 1.877381
7 1.940265 .0042471 456.84 0.000 1.93194 1.948589
8 1.999901 .0050573 395.45 0.000 1.989989 2.009814
9 2.048394 .0069713 293.83 0.000 2.03473 2.062059
10 2.085745 .0100468 207.60 0.000 2.066052 2.105437
11 2.111952 .0141597 149.15 0.000 2.084198 2.139705
12 2.127016 .0192161 110.69 0.000 2.089351 2.16468
13 2.130936 .0251649 84.68 0.000 2.081612 2.180261
14 2.123714 .0319792 66.41 0.000 2.061033 2.186395
15 2.105348 .039644 53.11 0.000 2.027644 2.183053

In this margins command, we use a shortcut, 0(2)28, meaning to start at a value
of 0 and increment it by 2 until you get to 28 (that is, 0 2 4 6 8 . . . 28). This will
give us an estimate value of the log of income for 15 different values on total years of
experience.
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We now run the marginsplot command, which produces figure 10.14.

. marginsplot
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Figure 10.14. Quadratic model of relationship between total experience and log of
income

The linear component is 0.066, and it is significant, t = 37.12, p < 0.000. The
quadratic component, −0.001, is significant, t = −13.52, p < 0.001. We can interpret
these results in terms of their significance and the fact that they are in the predicted
direction, that is, positive for the linear component and negative for the quadratic
component. Caution is needed for interpreting the coefficients beyond noting their
direction and significance. Converting to standardized β values will not simplify the
interpretation.

There is no single slope coefficient that describes the relationship like we had without
the quadratic term. We cannot make a meaningful statement about the effect of a one-
unit difference in experience on wages using the linear component or the quadratic
component individually. Examining figure 10.14, we see that going from 0 to 1 year of
work experience has a steep increase in the wages, going from 22 to 23 years has almost
no increase in estimated wages, and going from 26 to 28 years of experience actually
results in a slight decrease in estimated wages. We should be cautious about the 26 to
28 difference because this is at the upper end of the range of our independent variable
and we have relatively few observations at that part of the distribution. You can see
this in the confidence interval Stata constructed for each estimated value.

It can be shown that the linear slope, B = 0.066, is actually the tangent of the curve
at a value of 0.0 on total years of experience. This may or may not be of much interest,
but it is critical to not represent this as the difference in y for a unit difference in x
because this only applies at a value of zero on the x variable. It is important to show a
figure so the reader can see the big picture.
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There are interpretations you can make based on the coefficients that are useful.
The intercept ( cons) is simply the estimated value of y when x is zero, and this is the
same whether we have a linear or a quadratic model. The linear slope is the tangent of
the curve when x = 0. In our example, the tangent of the curve for the ln wage variable
is 0.066 when you have zero total work experience. What else can we say? The curve
is flat (the tangent to the curve being 0) at a value of −B1/2B2. For our example, the
curve is flat at −0.0660334/{2(−0.0013929)} = 23.704 total years of experience. (It is
important to keep all the decimal places you have in calculating this value and to use
the unstandardized coefficients.) You can verify that the curve is flat in this area by
observing where the tangent of the curve approaches zero in figure 10.14.

10.12.2 Centering when using a quadratic term

Often, it is useful to center the independent variable to provide a more reasonable
value for the linear component. We center a variable by subtracting the mean of the
variable from each score. We use this centered variable to generate the squared value.
We covered centering a bit more when we introduced interaction models. Here is what
we do for now by replacing the uncentered total experience variable, ttl exp, with its
centered value, cttl exp:

. summarize ttl_exp

Variable Obs Mean Std. Dev. Min Max

ttl_exp 28534 6.215316 4.652117 0 28.88461

. generate cttl_exp = ttl_exp - 6.215

. regress ln_wage c.cttl_exp##c.cttl_exp, beta

Source SS df MS Number of obs = 28534
F( 2, 28531) = 3166.13

Model 1184.57867 2 592.289333 Prob > F = 0.0000
Residual 5337.30522 28531 .187070387 R-squared = 0.1816

Adj R-squared = 0.1816
Total 6521.88388 28533 .228573367 Root MSE = .43252

ln_wage Coef. Std. Err. t P>|t| Beta

cttl_exp .0487197 .0006869 70.92 0.000 .4740703

c.cttl_exp#
c.cttl_exp -.0013929 .000103 -13.52 0.000 -.0903913

_cons 1.705036 .0033948 502.25 0.000 .

The intercept, cons = 1.705, is the estimated log income when cttl exp = 0 that
is at the mean on experience, which is 6.215 years. At this point, with 6.215 years
of experience, the tangent is 0.0487, notably less steep than when we did not center
experience. We will generate our figure to show the centered experience results using
the following commands:
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. margins, at(cttl_exp = (-6(2)22))

. marginsplot

The figure corresponding to the centered solution appears in figure 10.15. This is
the same shape as in figure 10.14, where the total experience was not centered except
for the shift in the x variable due to subtracting the mean (6.215) from each person’s
score on ttl exp. Thus instead of ranging from 0 years of experience to 28 years, it
ranges from −6 years of experience to 22 years. The only added value of this approach,
which is the linear component—now 0.049—is the instantaneous rate of change for a
person with an average amount of experience, that is, with 6.215 years of experience.
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Figure 10.15. Quadratic model relating log of income to total experienced where expe-
rience is centered

Centering is important for independent variables where a value of zero may not be
meaningful. For example, we would not be interested in a person who had zero years of
education compared with a person who has an average amount of education. We would
not be interested in the instantaneous rate of change for a person who had a graduate
record examination of zero because that is not even a possible value. Other examples
where a zero value is probably not meaningful and you should center include body
mass index, weight, depression measured on a 30–75 point scale, and age in subsample
of retired people. In each instance, a value of zero is neither useful nor meaningful.
Nobody has a body mass index of zero or weight zero. No retired person has an age of
zero and nobody has a score of zero on a scale that ranges from 30–75. With centering
the independent variable, the size of the linear component still needs to be interpreted
with care, but it is often more useful than using uncentered data. With a centered
independent variable, the linear component represents the instantaneous rate of change
for the person who has an average score on the independent variable.
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10.12.3 Do we need to add a quadratic component?

The possible answers to this question are yes, no, or maybe. Consider our example of
predicting a person’s wage based on their total years of work experience. Figure 10.16
shows the result for both the linear model and the quadratic model.

. twoway (lfit ln_wage ttl_exp) (qfit ln_wage ttl_exp)
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Figure 10.16. Comparison of linear and quadratic models

Examining figure 10.16, if you are interested in people with fewer than about 15
years of work experience, the linear model and the quadratic model are nearly indis-
tinguishable. The linear model, being simpler, might be preferred. For people with
more than 15 years of total work experience, the alternative models are different. The
downward trend in the quadratic model indicates that it may be important to think of
the wage benefit of increasing experience as leveling off. Sometimes the linear compo-
nent works nearly as well as a quadratic model or at least does so over a range of the
x variable. Science always favors the simplest solution that works, so the linear model
may be preferred at least for a partial range of the independent variable.

We can use the nestreg command to determine if adding the quadratic term
strengthens R2 and whether the improvement is statistically significant. However, it
is important to note that this command only works if we do not use the factor-variable
notation. The nestreg command requires you to generate the squared value of the
independent variable; that is, first, you would type

. generate ttl_sq = ttl_exp*ttl_exp

We can then open the dialog box for the nestreg command by selecting Statistics
⊲ Other ⊲ Nested model statistics. In the Dependent variable box, type ln wage. In
the Command box, select regress. Check the Block 1 and type the linear component,
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ttl exp. Check the Block 2 and type the quadratic component, ttl sq. Alternatively,
you could type the command directly. Here are the command and results:

. nestreg : regress ln_wage (ttl_exp) (ttl_sq)

Block 1: ttl_exp

Source SS df MS Number of obs = 28534
F( 1, 28532) = 6110.45

Model 1150.37005 1 1150.37005 Prob > F = 0.0000
Residual 5371.51384 28532 .188262787 R-squared = 0.1764

Adj R-squared = 0.1764
Total 6521.88388 28533 .228573367 Root MSE = .43389

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

ttl_exp .0431613 .0005522 78.17 0.000 .042079 .0442435
_cons 1.406646 .0042866 328.15 0.000 1.398244 1.415048

Block 2: ttl_sq

Source SS df MS Number of obs = 28534
F( 2, 28531) = 3166.13

Model 1184.57867 2 592.289333 Prob > F = 0.0000
Residual 5337.30522 28531 .187070387 R-squared = 0.1816

Adj R-squared = 0.1816
Total 6521.88388 28533 .228573367 Root MSE = .43252

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

ttl_exp .0660334 .0017787 37.12 0.000 .0625471 .0695197
ttl_sq -.0013929 .000103 -13.52 0.000 -.0015948 -.001191
_cons 1.348441 .0060651 222.33 0.000 1.336553 1.360329

Block Residual Change
Block F df df Pr > F R2 in R2

1 6110.45 1 28532 0.0000 0.1764
2 182.86 1 28531 0.0000 0.1816 0.0052

The “Block 1” result replicates our linear regression solution. The “Block 2” result
replicates our results for the quadratic model that includes both ttl exp and ttl sq.
The key results are in the bottom table. “Block 1” has an F (1, 28532) = 6110.45,
p < 0.001, and an R2 = 0.176. “Block 2”, for which we add the quadratic component,
increases the R2 by just 0.005 to a total R2 = 0.182. The increase in R2 of 0.005 is
small, but it is statistically significant, F (1, 28531) = 182.86, p < 0.001.

Is our answer to the question posed in this section “yes”, “no”, or “maybe”? Based
on the test of significance, the answer is yes. The quadratic model significantly improves
our explanatory power. However, we need considerable caution with this result and
should acknowledge that the improvement, while it should not be attributed to chance,
is quite small. We should examine our graphs to further note the quadratic effect that
applies mostly latter in a person’s career. Although the curvature is interesting, the
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tiny increase in the R2 is likely because only a small portion (less than 5%) of the total
sample have scores on ttl exp of more than 20 years.

10.13 Power analysis in multiple regression

There are two types of research questions for which we need to do a power analysis.
The first type of power analysis estimates the power we have to show that our set of
variables is significant. This is comparable to the overall F test in multiple regression.
Do age, gender, and education explain a significant portion of the variance in income?
The null hypothesis is the R2 = 0.00. To do a power analysis, we need to decide
how much explained variance is substantively important. Do we care if race/ethnicity,
gender, and education explain 5% of the variance; how about 10%, 20%, or 30%? If we
are only interested in our results so that we can explain at least 20% of the variance,
we will need far fewer people than if we wanted to have the power to obtain statistical
significance of the true explained variance in our population for just 5%. Let’s start
with an alternative hypothesis that R2 = 0.20.

Philip Ender and Xiao Chen, at the UCLA Academic Technology Services Center,
wrote a useful command, powerreg, that we will use for this power analysis. To install
this command, type search powerreg and follow the online instructions. To do a power
analysis for our first type of question, we specify that H0: R

2 = 0.00; Ha: R
2 = 0.20,

alpha = 0.05, power = 0.90; and the number of variables is three. The command needs
this information but uses a slightly different notation than what we have been using.
H0 is r2f(.20), Ha is r2r(0), alpha is alpha(.05), power is power(.90), the number
of variables is nvar(3), and the number of variables we are testing is ntest(3).

. powerreg, r2f(.2) r2r(.0) nvar(3) ntest(3) alpha(.05) power(.90)

Linear regression power analysis
alpha=.05 nvar=3 ntest=3
R2-full=.2 R2-reduced=0 R2-change=0.2000

nominal actual
power power n
0.9000 0.8957 60

These results indicate that we only need N = 60 observations to have a power of
0.90 with alpha of 0.05 when we use three predictors and are interested in a significant
result only if the true R2 in the population is at least 0.20.

What if we want to be able to detect a small effect, say, a population R2 of just
0.05? This is a much more sensitive test. It is going to be harder, meaning that we
need more observations, to show that a small effect is statistically significant than to
show that a relatively larger effect is statistically significant.
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. powerreg, r2f(.05) r2r(.0) nvar(3) ntest(3) alpha(.05) power(.90)

Linear regression power analysis
alpha=.05 nvar=3 ntest=3
R2-full=.05 R2-reduced=0 R2-change=0.0500

nominal actual
power power n
0.9000 0.8962 270

You can see why it is important to make a good judgment of how big an R2 or
change in an R2 needs to be for it to be considered important. When we specified
that and R2 = 0.20 was the minimum we would consider important, we needed only 60
observations, but when we said we wanted to be able to show statistical significance for
an R2 = 0.05, we needed 270 observations.

It is often difficult to decide on a specific effect size, that is, R2, to use. You can
look to published research in your area of interest. If you cannot find a standard for
your field, there is a general guideline you can use. Many researchers rely on a statistic
called f2 (Cohen 1988) that is simply the ratio of how much variance you explain to
how much you do not explain.

f2 =
R2

1−R2

Dattalo (2008) presents a table (10.2) showing what is generally recognized as a
small, moderate, and large effect size. This table shows both the f2 and the R2 values.
Remember, these are general recommendations and your area may use different values.

Table 10.2. Effect size of f2 and R2

Effect size f2 R2

small 0.02 0.02
medium 0.15 0.13

large 0.35 0.26

These numbers may sound small, but remember that they are squared values. The
corresponding Rs would be 0.14, 0.36, and 0.51.

The second type of power analysis involves the ability to test the effect of adding one
variable or a set of variables to an existing regression equation. Our previous research
showed that age and education explained 35% of the variance in income, R2 = 0.35. We
want to see if race/ethnicity using our four categories (Caucasian, African American,
Hispanic, and other) can explain an additional 10% of the variance. We would be adding
three dummy variables using Caucasian as our reference group. The change in R2 for
the new “full” model is 0.45. We will assume that our alpha is 0.05 and that we want
a power of 0.90.
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. powerreg, r2f(.45) r2r(.35) nvar(5) ntest(3) alpha(.05) power(.90)

Linear regression power analysis
alpha=.05 nvar=5 ntest=3
R2-full=.45 R2-reduced=.35 R2-change=0.1000

nominal actual
power power n
0.9000 0.8997 82

These results show that adding three variables (ntest()) to the two we already had
means that we have a total of five variables (nvar()). Using an alpha of 0.05 and a
power of 0.90, we will need 82 observations.

Instead of race/ethnicity, what would happen if we wanted to add one variable, say,
motivation? We will keep the other parameter estimates the same. Our command
would be as follows:

. powerreg, r2f(.45) r2r(.35) nvar(3) ntest(1) alpha(.05) power(.90)

Linear regression power analysis
alpha=.05 nvar=3 ntest=1
R2-full=.45 R2-reduced=.35 R2-change=0.1000

nominal actual
power power n
0.9000 0.9007 60

All of these examples of power analysis are the type you conduct before you begin
your study. The power analysis is done to make sure that you have a large enough
sample to be able to show a result you feel is statistically significant and that you are
not using a larger sample than is necessary to show this.

It is possible to reverse the process using powerreg to see what the power was in
a study that has already been conducted. Imagine reading a study that argued that
gender does not have a significant effect on income after you control for education, age,
and uninterrupted time at the current employer. The researchers report that education,
age, and uninterrupted time explained 25% of the variance in income and that this is
significant. However, when gender is added, it explains only 5% and that increase is
not statistically significant. Reading more carefully, you notice that they had only 50
people in their study. You decide that increasing the variance by 5% sounds important
enough that you do not want to dismiss gender as an irrelevant variable. You do an a
posteriori power analysis. How much power did they have with this size of sample? The
powerreg command is done the same way as before except that this time the unknown
is the power and the known is the sample size, N . Thus, instead of putting in a value
for power, we put in the sample size, that is, n(50).

. powerreg, r2f(.30) r2r(.25) nvar(4) ntest(1) alpha(.05) n(50)

Linear regression power analysis
alpha=.05 nvar=4 ntest=1
R2-full=.3 R2-reduced=.25 R2-change=.05

n = 50 power = 0.4561
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It seems clear that the researchers did not have sufficient power with a power analysis
estimate of just 0.46 for an N = 50. When a study has inadequate power, we can be
skeptical of any results that are reported as insignificant. We do not know if the results
are insignificant because they are unimportant or simply because their sample was too
small to have a meaningful test.

10.14 Summary

Multiple regression is an extremely powerful and general strategy for analyzing data.
We have covered several applications of multiple regression and diagnostic strategies.
These provide you with a strong base, and Stata has almost unlimited ways of extending
what you have learned. Here are the main topics we covered in chapter 10:

• What multiple regression can do, and how it is an extension of the bivariate
correlation and regression we covered in chapter 8

• The basic command for doing multiple regression, including the option for stan-
dardized beta weights

• How we measure the unique effects of a variable, controlling for a set of other
variables, which included a discussion of semipartial correlation and the increment
in R2

• Diagnostics of the dependent variable and how we test for normality of the error
term

• Diagnostics for the distribution of residuals or errors in prediction

• Diagnostics to find outlier observations that have too much influence and may
involve a coding error

• Collinearity and multicollinearity, along with how to evaluate the seriousness of
the problem and what to do about it

• How to use weighted samples where different observations have different probabil-
ities of being included, such as when there is oversampling of certain groups and
we want to generalize to the entire population

• How to work with categorical predictors with just two categories and with more
than two categories

• How to work with nested (hierarchical) regression in which we enter blocks of
variables at a time

• How to work with interaction between a continuous variable and a categorical
variable
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If you are a Stata beginner, you may be amazed by the number of things you can do
with regression and by what we have covered in this chapter. If you are an experienced
user, I have only whetted your appetite. The next chapter, on logistic regression,
includes several references that you should pursue if you want to know more about
Stata’s capabilities for multiple regression. Stata has special techniques for working
with different types of outcome variables, for working with panel data, and for working
with multilevel data where subgroups of observations share common values on some
variables.

The next chapter is the first extension of multiple regression. I will cover the case in
which there is a binary outcome because this happens often. You will have data with
which you want to predict whether a couple will get divorced, whether a business will
survive its first year, whether a patient recovers, whether an adolescent reports having
considered suicide, whether a bill will become a law, or something similar. In each case,
the outcome will be either a success or a failure. Then we will learn how to predict a
success or a failure.

10.15 Exercises

1. Use gss2002 chapter10.dta. You are interested in how many hours a person
works per week. You think that men work more hours, older people work fewer
hours, and people who are self-employed work the most hours. The GSS has the
needed measures, sex, age, wrkslf, and hrs1 (hours worked last week). Recode
sex and wrkslf into dummy variables, and then do a regression of hours worked
on the predictors. Write out a prediction equation showing the β. What are the
predicted hours worked for a female who is 20 years old and works for herself?
How much variance is explained and is this statistically significant?

2. Use census.dta. The variable tworace is the percentage of people in each state
and the District of Columbia who report being a combination of two or more
races. Predict this by using the percentage of the state that is white (white),
the median household income (hhinc), and the percentage with a BA degree or
more education (ba). Predict the estimated value, calling it yhat. Predict the
standardized residual, calling it rstandard. Plot a scattergram like the one in
figure 10.5. Do a listing of states that have a standardized residual of more than
1.96. Interpret the graph and the standardized residual list.

3. Use census.dta. Repeat the regression in exercise 2. Compute the DFbeta score
for each predictor, and list the states that have relatively large DFbeta values on
any of the predictors. Explain why the problematic states are problematic.

4. Use gss2002 chapter10.dta. Suppose that you want to know if a man’s socioe-
conomic status depends more on his father’s or his mother’s socioeconomic status.
Run a regression (use sei, pasei, and masei), and control for how many hours
a week the man works (hrs1). Do a test to see if pasei and masei are equal.
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Create a graph similar to that in figure 10.7, and carefully interpret it for the
distribution of residuals.

5. Use gss2002 chapter10.dta. You are interested in predicting the socioeconomic
status of adults. You are interested in whether conservative political views pre-
dict higher socioeconomic status uniquely, after you have included background
and achievement variables. The socioeconomic variable is sei. Do a nested re-
gression. In the first block, enter gender (you will need to recode the variable sex
into a dummy variable, male), mother’s education (maeduc), father’s education
(paeduc), mother’s socioeconomic index (masei), and father’s socioeconomic in-
dex (pasei). In the second block, enter education (educ). In the third block, add
conservative political views (polviews). Carefully interpret the results. Create a
table summarizing the results.

6. Use c10interaction.dta. Repeat the interaction analysis presented in the text,
but first center education and generate the interaction term to be male times the
centered score on education. Centering involves subtracting the mean from each
observation. You can either use the summarize command to get the mean for
education and then subtract this from each score or type search center and
install the ado-file called center. Type center educ to generate a new variable
called c educ. Then generate the interaction term with the command generate

educc male = c educ*male. After running the regression (regress inc male

c educ educc male) and creating a two-way overlay graph, compare the results
with those in the text. Why is the intercept so different? Hint: The intercept
is when the predictors are zero—think about what a value of zero on a centered
variable is.

7. Repeat exercise 6 using the i., c., and # factor-variable operators. You do not
need to do the graph, just type the commands, and show how the results match
the results in exercise 6.

8. You want to do a study of sleep problems of college students. You have a scale
measuring sleep problems. You think the following are all predictors: 1) use of
social drugs (yes/no), 2) frequency of use of social drugs (0–30 times a month), 3)
hours worked for pay, 4) stress about academic performance, and 5) stress about
social relationships. How big of a sample do you need if you are interested in
showing that these variables have a moderate effect on sleep problems? You need
to justify the R2 value you use along with the alpha and power.

9. Suppose that the study described in exercise 8 was conducted and the R2 = 0.20.
You think these predictors are important, but another predictor should have been
financial stress. You think financial stress would explain at least an additional
5% of variance. You are interested in showing that such an increase would be
statistically significant. Setting your alpha and power, what sample size will you
need?

10. You are going to do the study described in exercise 9, but just as you are starting,
you find an article that already did it. Using a sample of 75 people, the researchers
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found that financial stress did increase the R2 by 6%, but it was not a significant
increase. How much power did they have? Why is this a problem?

11. In section 8.4, we used nlsw88.dta, which is installed with Stata. We again load
this dataset by typing sysuse nlsw88. We will also again drop people who are
under 35 or over 45 and keep only blacks and whites by keeping only people who
had a code of less than 3 on the variable race. We will use the binscatter

command. If you did not install this command in section 8.4, type ssc install

binscatter.

a. Type binscatter wage tenure, and then type binscatter wage tenure,

line(qfit).

b. Does it look like a quadratic component is needed?

c. Use the nestreg prefix command to test whether adding the quadratic term
improves the fit.

12. Repeat the previous exercise using nlsw88.dta but this time center tenure.

a. What is different?

b. What is the same?

c. Carefully interpret the linear effect.
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11.1 Introduction to logistic regression

The regression models that we covered in chapter 10 focused on quantitative outcome
variables that had an underlying continuum. There are important applications of re-
gression in which the outcome is binary—something either does or does not happen and
we want to know why. Here are a few examples:

• A woman is diagnosed as having breast cancer

• A person is hired

• A married couple get divorced

• A new faculty member earns tenure

329
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• A participant in a study drops out of the program

• A candidate is elected

We could quickly generate many more examples where something either does or
does not happen. Binary outcomes were fine as predictors in chapter 10, but now we
are interested in them as dependent variables. Logistic regression is a special type of
regression that is used for binary-outcome variables.

11.2 An example

One of the best predictors of marital stability is the amount of positive feedback a
spouse gives her or his partner.

• You observe 20 couples in a decision-making task for 10 minutes.

• You do this 1 week prior to their marriage and record the number of positive
responses each of them makes about the other. An example would be “you have
a good idea” or “you really understand my goals”.

• You look just at the positive comments made by the husband and call these
positives.

• You wait 5 years and see whether they get divorced. You call this divorce.

• You assign a code of 1 to those couples who get divorced and a code of 0 to those
who do not.

• The resulting dataset has just two variables and is called divorce.dta.
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The following is a list of the data in divorce.dta:

. list divorce positives

divorce positi~s

1. 0 10
2. 0 8
3. 0 9
4. 0 7
5. 0 8

6. 0 5
7. 0 9
8. 0 6
9. 0 8
10. 0 7

11. 1 1
12. 1 1
13. 1 3
14. 1 1
15. 1 4

16. 1 5
17. 1 6
18. 1 3
19. 1 2
20. 1 0

If we graph this relationship (see figure 11.1), it looks strange because the outcome
variable, divorce, has just two possible values. (The graph has been enhanced by using
the Graph Editor, but the basic command is scatter divorce positives.)
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Husband’s rating on positive feedback before marriage

Figure 11.1. Positive feedback and divorce
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A couple with a very low rating, say, 0–4 on positives, is almost certain to have
a score of 1 on divorce. With a score of 7–10, a couple is almost certain to not
get divorced, that is, to score 0 on divorce. A couple somewhere in the middle on
positives, with a score of 5 or 6, may or may not get divorced. This is the zone of
transition. It would not make sense to use a straight line as a prediction rule like we
did with bivariate regression.

If we use logistic regression to predict the probability of a divorce based on the
husband’s rating on giving positive feedback prior to the marriage (we will soon learn
how to do this), we get a predicted probability of divorce based on the score a husband
has for positives. This conforms to what is sometimes called an S-curve (figure 11.2).
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Figure 11.2. Predicted probability of positive feedback and divorce

Now this graph makes sense; it is a nonlinear relationship. The probability of divorce
is nonlinearly related to the number of positive responses of the husband. If he gives
relatively few positive responses, the probability of a divorce is very high; if he gives
a lot of positive feedback, the probability of divorce is very low. Those husbands who
are somewhere in the middle on positive feedback are the hardest to predict a divorce
outcome for. This is exactly what we would expect and what our figure illustrates.

To fit a model like this, we do not estimate the probability directly. Instead, we
estimate something called a logit. When the logit is linearly related to the predictor,
the probability conforms to an S-curve like the one in figure 11.2. The reason we go
through the trouble of computing a logit for each observation and using that in the
logistic regression as the dependent variable is that the logit can be predicted by using
a linear model. Notice that the probability of getting a divorce varies from 0 to 1, but,
in fact, the logit ranges from about −10 to about 10 in this example. Although the
probability of divorce is not linearly related to positives, the logit is. The relationship
between the positive feedback the husband gives and the logit of the divorce variable
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is shown in figure 11.3. From a statistical point of view, figure 11.3 predicting the logit
of divorce is equivalent to figure 11.2 predicting the probability of divorce.
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Figure 11.3. Predicted probability of positive feedback and logit of divorce

Before logistic regression was available, people did ordinary least-squares (OLS) re-
gression, as described in chapter 10, when there was a binary-outcome variable. One
problem with this is that the probability of the outcome being a 1 is much more likely
to follow an S-curve than it is to follow a straight line. A second problem is that there is
an absolute lower limit of zero and an absolute upper limit of one for a binary variable.
If you predict 1 using OLS regression, you are saying that the probability is 1.0. If
you predict 0.5, you are saying that the probability is 0.5. What if you are predicting
−0.2 or 1.5? These are impossible values, but they can happen using OLS regression.
Figure 11.4 shows what would happen using OLS regression because OLS regression has
no way of knowing that your outcome cannot be below 0 or above 1.

. regress divorce positives

Source SS df MS Number of obs = 20
F( 1, 18) = 42.95

Model 3.52343538 1 3.52343538 Prob > F = 0.0000
Residual 1.47656462 18 .082031368 R-squared = 0.7047

Adj R-squared = 0.6883
Total 5 19 .263157895 Root MSE = .28641

divorce Coef. Std. Err. t P>|t| [95% Conf. Interval]

positives -.1381739 .021083 -6.55 0.000 -.1824677 -.0938801
_cons 1.211596 .1260582 9.61 0.000 .9467574 1.476434

. predict divols
(option xb assumed; fitted values)
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. twoway (scatter divorce positives) (lfit divols positives)
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Figure 11.4. Positive feedback and divorce using OLS regression

You can see the problem with using a straight line with OLS regression. A couple
with a score of 10 on positives would have a probability of getting divorced within 5
years of less than zero. A couple with a score of 0 on positives would have a probability
of about 1.25. Both of these are impossible values because a probability must not be
greater than 1.0 nor less than 0.0. Comparing figure 11.2 and figure 11.4, you can see
that a logistic regression approach makes sense for binary-outcome variables.

11.3 What is an odds ratio and a logit?

I will explain odds ratios and logits by using a simple example with hypothetical data,
environ.dta. Suppose that you are interested in the relationship between environmen-
tal support and support for a liberal candidate in a community election. Your survey
asks items that you can use to divide your sample into two categories of environmental
concern, namely, high or low environmental concern. You also ask participants whether
they support a particular liberal candidate, and they either support this candidate or
they do not. We have two variables that we will call environ (1 means high environ-
mental concern; 0 means low environmental concern) and libcand (1 means that they
support this liberal candidate; 0 means that they do not). Here is how the relationship
between these variables looks:
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. tab2 environ libcand, row

-> tabulation of environ by libcand

Key

frequency

row percentage

Environmen
tal

concern: 1 support liberal
high, 0 candidate: 1 yes, 0 no

low 0 1 Total

0 6 4 10
60.00 40.00 100.00

1 3 7 10
30.00 70.00 100.00

Total 9 11 20
45.00 55.00 100.00

• The probability of supporting a liberal candidate (1 on support liberal) is 11/20,
or 0.55.

• The probability of supporting a liberal candidate if you have low environmental
concern (1 on support liberal if 0 on environmental concern) is 4/10, or 0.4.

• The probability of supporting a liberal candidate if you have high environmental
concern (1 on support liberal if 1 on environmental concern) is 7/10, or 0.7.

From these last two probabilities, we can see that there is a relationship. With only 4
of the 10 people who have a low environmental concern supporting the liberal candidate
compared with 7 of the 10 people who have high environmental concern, this looks like
a fairly strong difference.

What are the odds of supporting a liberal candidate? The odds are the ratio of those
who support the candidate to those who do not.

• The odds of supporting a liberal candidate are 11/9 = 1.22. This means that there
are 1.22 people supporting the liberal candidate for each person who opposes the
liberal candidate.

• The odds of supporting a liberal candidate if you have low environmental concern
are 4/6 = 0.67. This means that among those with low environmental concern
there are just 0.67 people supporting the liberal candidate for each person who
opposes the liberal candidate.

• The odds of supporting a liberal candidate if you have high environmental concern
are 7/3 = 2.33. This indicates that among those with high environmental concern,
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there are 2.33 people supporting the liberal candidate for each person who opposes
the liberal candidate.

11.3.1 The odds ratio

We need a way to combine these two odds, 2.33 and 0.67, into one number. We can take
the ratio of the odds. The odds ratio of supporting the liberal candidate is 2.33/0.67 =
3.48. The odds of supporting a liberal candidate are 3.48 times as great if you have
high environmental concern as they are if you have low environmental concern.

The odds ratio gives us useful information for understanding the relationship between
environmental concern and support for the liberal candidate. Environmental concern is
a strong predictor of this support because the odds of a person high on environmental
concern supporting the liberal are 3.48 times as great as the odds of a person with low
environmental concern supporting the liberal.

11.3.2 The logit transformation

Odds ratios make a lot of sense for interpreting data, but for our purposes, they have
some problems as a score on the dependent variable. The distribution of the odds ratio
is far from normal.

An odds ratio of 1.0 means that the odds are equally likely and that the predictor
makes no difference. Thus an odds ratio of 1.0 is equivalent to a beta weight of 0.0.
If those with and without environmental concerns were equally likely to support the
liberal candidate, the odds ratio would be 1.0.

An odds ratio can go from 1.0 to infinity for situations where the odds are greater
than 1.0. By contrast, the odds ratio can go from 1.0 to just 0.0 for situations where
the odds are less than 1.0. This makes the distribution extremely asymmetrical, which
could create estimation problems. On the other hand, if we take the natural logarithm
of the odds ratio, it will not have this distributional problem. This logarithm of the
odds ratio is the logit:

Logit = ln(odds ratio)

Although the probability of something happening makes a lot of sense to most peo-
ple and the odds ratio also makes sense to most of us, a lot of people have trouble
understanding the score for a logit. Because the logistic regression is predicting a logit
score, the values of the parameter estimates are difficult to interpret. To get around
this problem, we can reverse the transformation process and get coefficients for the odds
ratio that are easier to interpret.
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11.4 Data used in the rest of the chapter

The National Longitudinal Survey of Youth, 1997 (nlsy97 chapter11.dta) asked a
series of questions about drinking behavior among adolescents between the ages of 12
and 16. One question asked how many days, if any, each youth drank alcohol in the
past month, drday97. We have dichotomized this variable into a binary variable called
drank30 that is coded 1 if the youth reported having had a drink in the past month or
0 if the youth reported not having had a drink in the past month.

Say that we want to see if peer behavior is important and if having regular meals
together with the family is important. Our contention is that the greater the percentage
of your peers who drink, the more likely you are to drink. By contrast, the more often
you have meals together with your family, the less likely you are to drink. Admittedly,
having meals together with your family is a limited indicator of parental influence.
Because older youth are more likely to drink, we will control for age. We will also
control for gender.

Predicting a count variable

We have a variable that is a count of the number of days the youth reports drinking
in the last month. We have dichotomized this as none or some. This makes sense
if we are interested in predicting whether a youth drinks or not. What if we were
interested in predicting how often a youth drinks rather than simply whether they
did? Certainly, there is a difference between an adolescent who drank once in the
last month and an adolescent who drank 30 days in the last month.

Stata has commands for estimating a dependent variable that is a count, al-
though these commands are beyond the scope of this book. Using OLS regression
with a count variable can be problematic when the count is of a rare event such
as the number of days a youth drank in the past month. The distribution of
rare events is skewed and sometimes has a substantial percentage of participants
reporting a count of zero.

Here are two things we could do. One is to use what is called Poisson re-
gression of the count. Poisson regression is useful for counts that are skewed,
with most people doing the behavior rarely or just a few times. A second thing
Stata can do is called zero-inflated Poisson regression, in which there is not only a
skewed distribution but there are more zeros than you would expect with a Poisson
distribution. If you asked how many times a female adolescent had a fist fight
in the past 30 days, most would say zero times. Zero-inflated Poisson regression
simultaneously estimates two regressions, one for the binary result of whether the
count is zero and the other for how often the outcome occurred. Different factors
may predict the onset of the outcome than would predict the count of the outcome.
Long and Freese (2006) have an excellent book that discusses these extensions to
what we cover in this chapter.
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Interpreting a logistic regression depends on understanding something of the distri-
bution of the variables. First, do a summary of the variables so that we know their
means and distributions. If we need to eliminate any observations that did not answer
all the items, we drop the cases that have missing values on any of the variables. It
would also be important to do a tabulation, although those results are not shown here.
The summary of the variables is

. summarize drank30 age97 pdrink97 dinner97 male
> if !missing(drank30, age97, pdrink97, dinner97, male)

Variable Obs Mean Std. Dev. Min Max

drank30 1654 .382104 .4860487 0 1
age97 1654 13.67352 .9371347 12 16

pdrink97 1654 2.108222 1.214858 1 5
dinner97 1654 4.699516 2.349352 0 7

male 1654 .5405079 .4985071 0 1

We see that the mean for drank30 is 0.382. This means that 38.2% of the students
reported drinking at least once a month. Logistic regression also works well even when
the outcome is rare, such as whether a person dies after surgery. When the mean is
around 0.50, the OLS regression and logistic regression produce consistent results, but
when the probability is close to 0 or 1, the logistic regression is especially important.

11.5 Logistic regression

There are two commands for logistic regression: logit and logistic. The logit

command gives the regression coefficients to estimate the logit score. The logistic

command gives us the odds ratios we need to interpret the effect size of the predictors.
Select Statistics ⊲ Binary outcomes. From here, we can select Logistic regression or Lo-
gistic regression (reporting odds ratios). Selecting the latter produces the dialog box in
figure 11.5.
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Figure 11.5. Dialog box for doing logistic regression

This dialog box is pretty straightforward. Type drank30 as the Dependent variable
and age97 male pdrink97 dinner97 as the Independent variables. The Offset variable
is for special purposes and is not discussed here. The option to Retain perfect predictor
variables should not be checked in most applications. In a rare case where there is
a category that has no variation on the outcome variable, Stata drops the predictor.
Checking the Retain perfect predictor variables box forces Stata to include the variable,
which can lead to instabilities in the estimates. The other tabs have the usual set of
options to restrict our sample, weight the observations, or use different estimators.

The only difference between the dialog boxes for logistic regression and for logistic
regression with odds ratios is that the default for logistic regression is the estimated
regression coefficients and the default for the logistic regression with odds ratios is the
odds ratios. Regardless of which dialog box you choose, on the Reporting tab, we can
specify whether we want the regression coefficients or the odds ratios. The following
commands and output show the results of both dialogs. The first results are for the
command logistic, where we get the odds ratios, and the second results are for the
command logit, where we get the regression coefficients.
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. logistic drank30 age97 male pdrink97 dinner97

Logistic regression Number of obs = 1654
LR chi2(4) = 78.01
Prob > chi2 = 0.0000

Log likelihood = -1061.0474 Pseudo R2 = 0.0355

drank30 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age97 1.169241 .0684191 2.67 0.008 1.042546 1.311332
male .9794922 .1046935 -0.19 0.846 .7943646 1.207764

pdrink97 1.329275 .0598174 6.33 0.000 1.217056 1.451841
dinner97 .942086 .0208682 -2.69 0.007 .9020603 .9838878

_cons .0524677 .0415938 -3.72 0.000 .0110944 .2481314

. logit drank30 age97 male pdrink97 dinner97

Iteration 0: log likelihood = -1100.0502
Iteration 1: log likelihood = -1061.142
Iteration 2: log likelihood = -1061.0474
Iteration 3: log likelihood = -1061.0474

Logistic regression Number of obs = 1654
LR chi2(4) = 78.01
Prob > chi2 = 0.0000

Log likelihood = -1061.0474 Pseudo R2 = 0.0355

drank30 Coef. Std. Err. z P>|z| [95% Conf. Interval]

age97 .1563548 .0585158 2.67 0.008 .0416659 .2710437
male -.020721 .1068855 -0.19 0.846 -.2302128 .1887708

pdrink97 .2846336 .0450001 6.33 0.000 .1964351 .3728321
dinner97 -.0596587 .022151 -2.69 0.007 -.1030739 -.0162434

_cons -2.947557 .7927494 -3.72 0.000 -4.501317 -1.393797

Both commands give the same results, except that logit gives the coefficients for
estimating the logit score and logistic gives the odds ratios. The results of the logit
command show the iterations Stata went through in obtaining its results. Logistic re-
gression relies on maximum likelihood estimation rather than ordinary least squares;
this is an iterative approach where various solutions are estimated until the best so-
lution of having the maximum likelihood is found. The results show the number of
observations followed by a likelihood-ratio (LR) chi-squared test and something called
the pseudo-R2. In this example, the likelihood-ratio chi-squared(4) = 78.01, p < 0.001.
There are several coefficients that are called pseudo-R2. The one reported by Stata is
the McFadden pseudo-R2. This is often a small value, and it should not be confused
with R2 for OLS regression. Many researchers do not report this measure.

It is difficult to interpret the regression coefficients for the logit command. We can
see that both the percentage of peers who drink and the number of dinners a youth
has with his or her parents are statistically significant. The peer variable has a positive
coefficient, meaning that the more of the youth’s peers who drink, the higher the logit
for the youth’s own drinking. The dinner97 variable has a negative coefficient, and
this is as we expected; that is, having more dinners with your family lowers the logit for
drinking. We can also see that age is significant and in the expected direction. Sex, by
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contrast, is not statistically significant, so there is no statistically significant evidence
that male versus female adolescents are more likely to drink.

The first output is for the logistic command, which gives us the odds ratios. We
need to spend a bit of time interpreting these odds ratios. The variable age97 has an
odds ratio of 1.17, p < 0.01. This means that the odds of drinking are multiplied by 1.17
for each additional year of age. When the odds ratio is more than 1, the interpretation
can be simplified by subtracting 1 and then multiplying by 100: (1.17 − 1.00) × 100 =
17%. This means that for each increase of 1 year, there is a 17% increase in the odds of
drinking. This is an intuitive interpretation that can be understood by a lay audience.
You have probably seen this in the papers without realizing the way it was estimated.

For example, you may have seen that there is a 50% increase in the risk of getting
lung cancer if you smoke. People sometimes use the word risk instead of saying that
there is a 50% increase in the odds of getting cancer. What would you say to a lay
audience? Each year older an adolescent gets, the odds of drinking increases by 17%.
You need to be careful when you interpret the odds ratio. There is a separate coefficient
called the relative-risk ratio, which is discussed in the box a few pages from here about
the odds ratio versus the relative-risk ratio. Lay audiences often act as if both of these
were the same thing, but they are not and they can be different when the outcome is
not a rare event. Odds ratios tell us what happens to the odds of an outcome, whereas
risk ratios tell us what happens to their probability.

What happens if you compare a 12-year-old with a 15-year-old? The 15-year-old is
3 years older, so you might be tempted to say that the risk factor is 3 × 17% = 51%
greater. However, this underestimates the effect. If you are familiar with compound
interest, you have already guessed the problem. Each additional year builds on the
previous year’s compounded rate. To compare a 15-year-old with a 12-year-old, you
would first cube the odds ratio, 1.173 = 1.60 (to compare a 16-year-old with a 12-year-
old, you would compute 1.174 = 1.87). Thus the odds of drinking for a 15-year-old is
(1.60−1.00)×100 = 60% greater than that for a 12-year-old. The odds for a 16-year-old
is (1.87− 1.00)× 100 = 87% greater than that for a 12-year-old.

When an odds ratio is less than 1.00, you need to change the calculation just a
bit. We like to talk of the decrease in the odds ratio, so we need to subtract the
odds ratio from 1.00 to find this decrease. Thus for each extra day per week that
an adolescent has dinner with his or her family, the odds of drinking are reduced by
(1.00−0.94)×100 = 6%. Consider two adolescents. One has no family dinners, and the
other has them every day of the week. Once again, you could be tempted to say that
the odds of drinking are now (7×6%) = 42% lower. This is just as wrong for odds ratios
smaller than one as it is for odds ratios larger than one. Just as before, we must raise the
original odds ratio to a power: the odds of drinking for the adolescent who eats at home
is 0.947 = 0.65 times as large as the odds of drinking for the adolescent who never eats
with his or her family. Again we want to express this as a percentage change. Because
the multiplier is less than 1.00, we compute the change as (1.00 − 0.65) × 100 = 35%,
meaning that a youth who has dinner with the family every night of the week has 35%
lower odds of drinking than a youth who has no meals with his or her family.
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Using Stata as a calculator

When doing logistic regression, we often need to calculate something to help us
interpret the results. We just said that 1.174 = 1.87. To get this result, in the
Stata Command window, enter display 1.17^4, which results in 1.87.

The odds ratios are a transformation of the regression coefficients. The co-
efficient for pdrink97 is 0.2846. The odds ratio is defined as exp(b), which for this
example is exp(0.2846). This means that we exponentiate the coefficient. More
simply, we raise the mathematical constant e to the b power, eb or e0.2846 for the
pdrink97 variable. This would be a hard task without a calculator. To do this
within Stata, in the Command window, type display exp(0.2846), and 1.33 is
displayed as the odds ratio.

It is hard to compare the odds ratio for one variable with the odds ratio for another
variable when they are measured on different scales. The male variable is binary, going
from 0 to 1, and the variable dinner97 goes from 0 to 7. For binary predictor variables,
you can interpret the odds ratios and percentages directly. For variables that are not
binary, you need to have some other standard. One solution is to compare specific
examples, such as having no dinners with the family versus having seven dinners with
them each week. Another solution is to evaluate the effect of a 1-standard-deviation
change for variables that are not binary. This way, you could compare a 1-standard-
deviation change in dinners per week with a 1-standard-deviation change in peers who
drink. When both variables are on the same scale, the comparison makes more sense,
and this is exactly what we can do when we use the standard of a 1-standard-deviation
change.

Using the 1-standard-deviation change as the basis for interpreting odds ratios and
percentage change is a bit tedious if you need to do the calculations by hand. There
is a command, listcoef, that makes this easy. Although this command is not part
of standard Stata, you can do a search spost command and install the most recent
version of spost, which will include listcoef. There are several items that appear
when you enter search spost9. Toward the end of this list of items is a section called
packages found. Under this heading, go to spost9 ado, and click on the link to install
it. When you install spost9 ado, you will install a series of commands that are useful
for interpreting logistic regression. Be sure to install the latest version of this package
of commands because versions for earlier Stata releases, for example, Stata 7, are still
posted. To run this command, after doing the logistic regression, enter the command
listcoef, help. The help option gives a brief description of the various values the
command estimates. Here are the results:



11.5 Logistic regression 343

. listcoef, help

logit (N=1654): Factor Change in Odds

Odds of: 1 vs 0

drank30 b z P>|z| e^b e^bStdX SDofX

age97 0.15635 2.672 0.008 1.1692 1.1578 0.9371
male -0.02072 -0.194 0.846 0.9795 0.9897 0.4985

pdrink97 0.28463 6.325 0.000 1.3293 1.4131 1.2149
dinner97 -0.05966 -2.693 0.007 0.9421 0.8692 2.3494

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X

This gives the values of the coefficients (called b), their z scores, and the probabilities.
These match what we obtained with the logit command. The next column is labeled
e^b and contains the odds ratios for each predictor. The label may look strange if you
are not used to working with logarithms. If you raise the mathematical constant e,
which is about 2.718, to the power of the coefficient b, you get the odds ratio. Thus
e0.15635 = 1.1692.

We can interpret the odds ratio for male directly because male is a binary variable.
The other variables are not binary, so we use the next column, which is labeled e^bStdX

to interpret their odds ratios. This column displays the odds ratio for a 1-standard-
deviation change in the predictor. For example, the odds ratio for a 1-standard-deviation
change in age is 1.16, and this is substantially smaller than the odds ratio for a 1-
standard-deviation change in the percentage of peers who drink, 1.41.

If you prefer to use percentages, you can use the command

. listcoef, help percent

logit (N=1654): Percentage Change in Odds

Odds of: 1 vs 0

drank30 b z P>|z| % %StdX SDofX

age97 0.15635 2.672 0.008 16.9 15.8 0.9371
male -0.02072 -0.194 0.846 -2.1 -1.0 0.4985

pdrink97 0.28463 6.325 0.000 32.9 41.3 1.2149
dinner97 -0.05966 -2.693 0.007 -5.8 -13.1 2.3494

b = raw coefficient
z = z-score for test of b=0

P>|z| = p-value for z-test
% = percent change in odds for unit increase in X

%StdX = percent change in odds for SD increase in X
SDofX = standard deviation of X
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For communicating with a lay audience, this last result is remarkably useful. The
odds of drinking are just 2.1% lower for males than for females, and this is not statis-
tically significant. Having a 1-standard-deviation-higher percentage of peers who drink
increases a youth’s odds of drinking by 41.3%, and having dinner with his or her family
1 standard deviation more often reduces the odds by 13.1%. Both of these influences
are statistically significant.

It is often helpful to create a graph showing the percentage change in the odds ratio
associated with each of the predictors. This could be done with any graphics pack-
age, such as PowerPoint. To do this using Stata, we need to create a new dataset,
c11barchart.dta. This dataset has just four variables, which we will name Age, male,
peers, and dinners. There is just one observation, and this is the appropriate percent-
age change in the odds ratio. For Age, peers, and dinners, we enter 15.8, 41.3, and
−13.1, respectively, because we are interested in the effects of a 1-standard-deviation
change in each of these variables. For male, we enter −2.1 because we are interested in
a 1-unit change for this dichotomous variable (female versus male). Then we construct
a bar chart. You can use Graphics ⊲ Bar chart to create this graph. The command is

. graph bar (asis) Age male peers dinners, bargap(10)
> blabel(name, position(outside)) ytitle(Percentage Change in Odds)
> title(Percentage Change in Odds of Drinking by)
> subtitle("Age, Gender, Percent of Peers Drinking, Meals with Family")
> legend(off) scheme(s2manual)

Note that if your title or subtitle includes commas, as shown in the subtitle()

option above, you must enclose the title in quotes. We had Stata put the variable labels
just above or below each bar; we must have very short labels for this to work. Also, on
the Bar tab, we put a Bar gap of 10 that so the bars would be separated a little bit.
The resulting bar chart is shown in figure 11.6.
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Figure 11.6. Risk factors associated with teen drinking
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This bar graph shows that as adolescents get older, there is a substantial increase
in the odds of their drinking; that drinking risks are roughly comparable for males and
females; that having peers who drink is a substantial risk factor; and that the more the
adolescent shares dinners with his or her family, the lower the odds of drinking.

Odds ratio versus relative-risk ratio

In section 11.3, we learned how to compute the odds ratio. There we noted that
among the 10 people who favored environmental protection, seven voted liberal
and three voted conservative, creating odds of voting liberal of 7/3 = 2.33. By
contrast, the 10 people who did not favor environmental protection had odds of
voting liberal of 4/6 = 0.67. The resulting odds ratio was 2.33/0.67 = 3.48.

The analogous measure for percentages or probabilities is the relative-risk
ratio. There are 7 of 10 (70% or 0.70) pro-environmentalists supporting a liberal
candidate. There are 4 of 10 (40% or 0.40) people who are not pro-environment
supporting a liberal candidate. The relative risk of supporting a liberal candidate
for people who are pro-environment is 0.70/0.40 = 1.75. People who are not used
to odds ratios and popular media such as newspapers often misinterpret the odds
ratio as if it were the relative risk. Generally, the odds ratio will be larger than
the relative-risk ratio. The difference is small with a rare outcome, but with
an outcome like this, there is a substantial difference. Being pro-environment
makes the odds of voting for a liberal 3.48 times as great. Being pro-environment
increases the risk of voting for a liberal candidate 1.75 times. In this example,
there is a 248% increase in the odds of voting liberal if you are pro-environment,
but there is only a 75% increase in the risk of voting liberal.

Stata’s logit and logistic commands do not estimate the relative-risk ra-
tio (sometimes called incidence relative risk). However, Joseph Hilbe, a Stata user,
wrote a command, oddsrisk, in 2008 that converts odds ratios to risk ratios. You
can install this command by entering ssc install oddsrisk.

The relative risk is appealing, but it should not be used in a study that
controls the number of people in each category. For example, you should not use
the relative risk if you are comparing 100 stroke victims to 100 people who did not
have a stroke on their participation in a rigorous physical activity. By controlling
the number of people in each group, you have artificially (nonrandomly) inflated
the number of stroke victims because 50% of your sample have had a stroke—a
far greater percentage than would be obtained in a representative sample. For
more on relative risk, visit http://www.emrevision.co.uk/resources/Exams/FCEM-
Exam/Academic/Stats -Odds-ratio-versus-relative-risk.pdf, which was written by
Steve Simon.
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11.6 Hypothesis testing

There are many types of hypothesis testing that can be done with logistic regression. I
will cover some of them here. As with multiple regression, we have an overall test of the
model, tests of each parameter estimate, and the ability to test hypotheses involving
combinations of parameters. As noted above, with logistic regression there is a chi-
squared test that has k degrees of freedom, where k is the number of predictors. For
our current example, the χ2(4) = 78.01, p < 0.001. This tells us only that the overall
model has at least one significant predictor.

11.6.1 Testing individual coefficients

There are two tests we can use to test individual parameters, and they often yield
slightly different probabilities. The most common is a Wald test, commonly reported in
journal articles. The z test in the Stata output is actually the square root of the Wald
chi-squared test. Some other statistical packages test individual parameters by using
the Wald chi-squared test (evaluated with 1 degree of freedom), but this is identical to
the square of the z test in Stata.

Many statisticians prefer the likelihood-ratio chi-squared test to theWald chi-squared
test or the equivalent z test reported by Stata. The likelihood-ratio chi-squared test
for each parameter estimate is based on comparing two logistic models, one with the
individual variable we want to test included and one without it. The likelihood-ratio
test is the difference in the likelihood-ratio chi-squared values for these two models (this
appears as LR chi2(1) near the upper right corner of the output). The difference be-
tween the two likelihood-ratio chi-squared values is 1 degree of freedom. In standard
Stata, the likelihood-ratio test is rather tedious to get. If you want the best possible test
of the significance of the effect of age on drinking, with nlsy97 chapter11.dta, you
would need to type the command—logistic drank30 male dinner97 pdrink97—
and record the chi-squared. Then you would type the command—logistic drank30

age97 male dinner97 pdrink97—and record the chi-squared. The difference between
the chi-squared values with 1 degree of freedom would be the best test of the effect of
age on drinking.

Stata lets us simplify this process a bit with the following set of commands:

. logistic drank30 male dinner97 pdrink97

. estimates store a

. logistic drank30 age97 male dinner97 pdrink97

. lrtest a

The first line runs the logistic regression without including age97. The second line
saves all the estimates and stores them in an estimation set labeled a. This estimation
set includes the LR chi2(1) value. The third line runs a new logistic regression, this
time including age97. The last line, lrtest a, subtracts the chi-squared values and
estimates the probability of the chi-squared difference. Although this is not too difficult,
doing this process for each of the four predictors would be a bit tedious. An automated
approach is available with a command written by user Zhiqiang Wang in 1999 called
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lrdrop1, which gives the likelihood-ratio test for each parameter estimate, along with
some other information we will not discuss (lrdrop1 works with the logit, logistic,
and poisson regression commands). Type the command ssc install lrdrop1 to in-
stall this command. Immediately after running the full model (with all four predictors),
simply type the following command:

. lrdrop1
Likelihood Ratio Tests: drop 1 term
logistic regression
number of obs = 1654
------------------------------------------------------------------------
drank30 Df Chi2 P>Chi2 -2*log ll Res. Df AIC

------------------------------------------------------------------------
Original Model 2122.09 1649 2132.09

-age97 1 7.18 0.0074 2129.27 1648 2137.27
-male 1 0.04 0.8463 2122.13 1648 2130.13

-dinner97 1 7.23 0.0072 2129.33 1648 2137.33
-pdrink97 1 40.62 0.0000 2162.72 1648 2170.72
------------------------------------------------------------------------
Terms dropped one at a time in turn.

Here we can see that the likelihood-ratio chi-squared for the age97 variable is χ2(1) =
7.18, p < 0.01. If we take the square root of 7.18, we obtain 2.68, which is close to the
square root of the Wald chi-squared, that is, the z test provided by Stata of 2.67.
The likelihood-ratio chi-squared and the Wald statistic are not always this close, but
the two approaches rarely produce different conclusions. Although the likelihood-ratio
test has some technical advantages over the Wald test, the Wald test is usually what
people report—perhaps because it is a bit tedious to estimate the likelihood-ratio chi-
squared in other statistical packages. If the Wald test and the likelihood-ratio tests
differ, the likelihood-ratio test is preferred. These results are identical whether you are
testing the regression coefficients with the logit command or the odds ratios with the
logistic command. Because this lrdrop1 command is so easy to use and because the
likelihood-ratio test is invariant to nonlinear transformations, you may want to report
the likelihood-ratio test routinely. When you do so, specify that it is the likelihood-ratio
chi-squared test rather than the Wald test.

11.6.2 Testing sets of coefficients

There are three situations for which we would need to test a set of coefficients rather
than a single coefficient. These parallel the tests we used for multiple regression in
chapter 10.

1. We have a categorical variable that requires several dummies. Suppose that we
want to know if marital status has an effect, and we have three dummies rep-
resenting different marital statuses (divorced or separated, widowed, and never
married, with married serving as the reference category). We want to know if
marital status is significant, so we need to test the set of coefficients rather than
just one coefficient.
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2. We want to know if a set of variables is significant. The set might be whether peer
and family variables are significant when age and gender are already included in a
model to predict drinking behavior. We need to test the combination of coefficients
for peer and family rather than testing these individually.

3. We have two variables measured on the same scale, and we want to know if
their parameter estimates are equal. Suppose that we want to know if mother’s
education is more important than father’s education as a predictor of whether
an adolescent plans to go to college. Both predictors are measured on the same
scale (years of education), so we can test whether the mother’s education and the
father’s education have significantly different coefficients.

The first two situations are tested by the hypothesis that all coefficients in the set
are zero. For the marital status set, the three simultaneous null hypotheses would be

H0: Divorce effect = 0

H0: Widow effect = 0

H0: Never-married effect = 0

For the peer and family set, the set of two simultaneous null hypotheses would be

H0: pdrink97 effect = 0

H0: dinner97 effect = 0

We will illustrate how to test for the first two situations with the data we have been
using. The full model is

. logistic drank30 age97 male pdrink97 dinner97

We want to know if pdrink97 and dinner97, as a set, are significant.

There are several ways of testing this. We could run the model twice:

(a) logistic drank30 age97 male

(b) logistic drank30 age97 male pdrink97 dinner97

We would then see whether the difference of chi-squared values was significant. Because
the second model added two variables, we would test the chi-squared with 2 degrees of
freedom.

We can alternatively use the test command. We run this after we run the full
logistic regression. In other words, we run the command logistic drank30 age97

male pdrink97 dinner97, and then we run the command test pdrink97 dinner97.
Here are the results:
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. test pdrink97 dinner97

( 1) pdrink97 = 0
( 2) dinner97 = 0

chi2( 2) = 48.85
Prob > chi2 = 0.0000

The variables pdrink97 and dinner97, as a set, are statistically significant, chi-
squared(2) = 48.85, p < 0.001. We can say that one or both of these variables are
statistically significant. When the set of variables is significant, we should always look
at the tests for the individual coefficients because this overall test only tells us that at
least one of them is significant.

The third situation for testing a set of parameter estimates is to test the equality of
parameter estimates for two variables (assuming that both variables are measured on
the same scale). We might do a logistic regression and find that both mother’s education
and father’s education are significant predictors of whether an adolescent intends to go
to college. However, we may want to know if the mother’s education is more or less
important than the father’s education. Say that we want to test whether the parameter
estimates are equal. Our null hypothesis is

H0: mother’s education effect = father’s education effect

I will not illustrate this test because it uses a different dataset, but the command is
simple. Let’s assume that mother’s education is represented by the variable maeduc and
father’s education is represented by faeduc. The command is test maeduc=faeduc.

11.7 More on interpreting results from logistic regression

This section will stay with the same basic model except we will substitute the variable
black for the variable male. We do this substitution because the effect of gender was not
significant, and because we are interested in understanding possible differences between
whites and blacks. To keep the example straightforward, we limit our analysis to whites
and blacks and exclude other racial and ethnic groups. We first need to generate this
new variable:

. generate black = race97 - 1

. replace black = . if race97 > 2

We also will label our race variable:

. label define black 0 "White" 1 "Black"

. label define drank30 0 "No" 1 "Yes"

. label values drank30 drank30

. label values black black

We discussed the special notation for factor variables in chapter 10 as used in mod-
eling interaction and with a quadratic term. We can use this notation here as well.
We can think of three of our independent variables, age97, pdrink97, and dinner76,
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as having underlying continuums and hence as continuous variables even though some
are measured crudely. However, our variable black is strictly categorical because it
is coded 1 for blacks and 0 for whites. We can run the logistic regression using the
i. label for this categorical variable, i.black. This produces the same results for the
logistic regression as if we had simply used black, but the results will work properly if
we follow this command with other postestimation commands. Here are the command
and the results:

. logit drank30 age97 i.black pdrink97 dinner97

Iteration 0: log likelihood = -935.86755
Iteration 1: log likelihood = -901.48553
Iteration 2: log likelihood = -901.37312
Iteration 3: log likelihood = -901.37311

Logistic regression Number of obs = 1413
LR chi2(4) = 68.99
Prob > chi2 = 0.0000

Log likelihood = -901.37311 Pseudo R2 = 0.0369

drank30 Coef. Std. Err. z P>|z| [95% Conf. Interval]

age97 .138153 .0635579 2.17 0.030 .0135818 .2627241

black
Black -.3804608 .1352133 -2.81 0.005 -.645474 -.1154476

pdrink97 .2822417 .048233 5.85 0.000 .1877067 .3767767
dinner97 -.069024 .0246204 -2.80 0.005 -.1172791 -.0207689

_cons -2.590308 .8609411 -3.01 0.003 -4.277722 -.9028946

We have already discussed how to interpret these results, but now we are going to
consider some new aids. The first margins command that we use below is useful for cat-
egorical variables. In our example, the categorical variable is black (see Williams [2012]
for an excellent discussion of the margins command or see http://www.ats.ucla.edu/
stat/stata/faq/margins mlogcatcon.htm for applications of this command, including use
of interactions). The margins command will tell us the difference in the probability of
having drunk in the last 30 days if an individual is black compared with if an individual
is white. For this to be meaningful, we need to set the covariates at some meaningful
value. We will set them at the mean. So the question we want to answer is as fol-
lows: What is the difference between blacks and whites who are average on the other
covariates in the probability that they drank in the last 30 days? Here is our command:
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. margins, dydx(black) atmeans

Conditional marginal effects Number of obs = 1413
Model VCE : OIM

Expression : Pr(drank30), predict()
dy/dx w.r.t. : 1.black
at : age97 = 13.67445 (mean)

0.black = .7523001 (mean)
1.black = .2476999 (mean)
pdrink97 = 2.112527 (mean)
dinner97 = 4.760793 (mean)

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

black
Black -.0862436 .0296054 -2.91 0.004 -.144269 -.0282181

Note: dy/dx for factor levels is the discrete change from the base level.

We specified two options. First, we specified dydx(black) because black is the
variable on which we are focused. Second, we specified atmeans because this option
will set the covariates at their mean. From the results, we see that age was fixed at
13.674 and so on. The dy/dx value of −0.086 is the difference. Because blacks are
coded 1 and whites are coded 0, a hypothetical black adolescent who is average in age,
percent of peers who drink, and in how often his or her family eats together will have a
probability of drinking in the last 30 days that is 0.086 lower than a hypothetical white
adolescent with the same scores on the covariates. An easier way of saying this is that
black adolescents who are average on covariates are 8.6% less likely to report having
drunk in the last 30 days than white adolescents.

Rather than trying to interpret the dy/dx values for quantitative and continuous
independent variables, we will use a different option with the margins command. Sup-
pose we wanted to understand the relationship between the percentage of friends who
drink and whether the adolescent drank in the last 30 days, but we want to control for
the other covariates. As before, we will fix the other covariates at their means. This
way we can estimate the probability a hypothetical adolescent drank in the last 30 days
who is average on all the covariates, except they differ on the percentage of their friends
who drank. The pdrink97 variable was coded 1 for up to 20% of friends, 2 for 20 to
40% of friends, 3 for 40 to 60% of friends, 4 for 60 to 80% of friends, and 5 for 80 to
100% of friends.

In the following command, the at() option fixes the other covariates at their means
for each value of pdrink97 from 1 to 5. If we were doing this for a variable that ranged
from 0 to 100, we might type margins, at(var = (0(10)100)), which would be equiv-
alent to typing margins, at(var = (0 10 20 30 40 50 60 70 80 90 100)), mean-
ing every 10 years.
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. margins, at(pdrink97=(1 2 3 4 5)) atmeans

Adjusted predictions Number of obs = 1413
Model VCE : OIM

Expression : Pr(drank30), predict()

1._at : age97 = 13.67445 (mean)
0.black = .7523001 (mean)
1.black = .2476999 (mean)
pdrink97 = 1
dinner97 = 4.760793 (mean)

2._at : age97 = 13.67445 (mean)
0.black = .7523001 (mean)
1.black = .2476999 (mean)
pdrink97 = 2
dinner97 = 4.760793 (mean)

3._at : age97 = 13.67445 (mean)
0.black = .7523001 (mean)
1.black = .2476999 (mean)
pdrink97 = 3
dinner97 = 4.760793 (mean)

4._at : age97 = 13.67445 (mean)
0.black = .7523001 (mean)
1.black = .2476999 (mean)
pdrink97 = 4
dinner97 = 4.760793 (mean)

5._at : age97 = 13.67445 (mean)
0.black = .7523001 (mean)
1.black = .2476999 (mean)
pdrink97 = 5
dinner97 = 4.760793 (mean)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .3011665 .0168523 17.87 0.000 .2681367 .3341963
2 .3636614 .0132156 27.52 0.000 .3377592 .3895636
3 .4311242 .0169284 25.47 0.000 .3979451 .4643033
4 .501244 .0261244 19.19 0.000 .450041 .5524469
5 .5713148 .0361017 15.83 0.000 .5005567 .6420729

From these results, we see that if our hypothetical average adolescent on the covari-
ates had a code of 1 on pdrink97, then we estimate a probability of 0.301 that this
adolescent drank in the last 30 days. This estimated probability goes up fairly sharply
so that if our hypothetical average adolescent on the covariates was coded 5 on prink97,
then he or she would have a probability of 0.571 of having drunk in the last 30 days.
It would be nice to be able to see a figure showing these results, so after the margins

command, we can type the marginsplot. This graph is shown as figure 11.7 with a few
minor changes applied using the Graph Editor:
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Figure 11.7. Estimated probability that an adolescent drank in last month adjusted for
age, race, and frequency of family meals

11.8 Nested logistic regressions

In chapter 10, we discussed nested regression (sometimes called hierarchical regression),
where blocks of variables are entered in a planned sequence. The nestreg command is
extremely general, applicable across a variety of regression models, including logistic,
negative binomial, Poisson, probit, ordered logistic, tobit, and others. It also works with
the complex sample designs for many regression models. Although most of these models
are beyond the scope of this book, I will illustrate how nestreg can be generalized with
logistic regression.

We have been interested in whether the percentage of an adolescent’s peers who
drink and the number of days a week the adolescent eats with his or her family influence
drinking behavior. In doing this, we controlled for gender and age. We might decide
to enter the four predictors in three blocks. In the first block, we enter gender; in the
second block, we enter age; and in the third block, we enter dinners with the family
and peer drinking. We now apply the format used in chapter 10 for logistic regression
to get the following results:
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. nestreg: logistic drank30 (male) (age97) (dinner97 pdrink97)

Block 1: male

Logistic regression Number of obs = 1654
LR chi2(1) = 4.37
Prob > chi2 = 0.0365

Log likelihood = -1097.864 Pseudo R2 = 0.0020

drank30 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

male .8087911 .0820956 -2.09 0.037 .6628816 .9868173
_cons .6926503 .0510996 -4.98 0.000 .599401 .8004065

Block 2: age97

Logistic regression Number of obs = 1654
LR chi2(2) = 27.87
Prob > chi2 = 0.0000

Log likelihood = -1086.1173 Pseudo R2 = 0.0127

drank30 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

male .8304131 .0849837 -1.82 0.069 .6794898 1.014858
age97 1.304566 .0723084 4.80 0.000 1.170271 1.454273
_cons .0178754 .0137142 -5.25 0.000 .0039738 .080409

Block 3: dinner97 pdrink97

Logistic regression Number of obs = 1654
LR chi2(4) = 78.01
Prob > chi2 = 0.0000

Log likelihood = -1061.0474 Pseudo R2 = 0.0355

drank30 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

male .9794922 .1046935 -0.19 0.846 .7943646 1.207764
age97 1.169241 .0684191 2.67 0.008 1.042546 1.311332

dinner97 .942086 .0208682 -2.69 0.007 .9020603 .9838878
pdrink97 1.329275 .0598174 6.33 0.000 1.217056 1.451841

_cons .0524677 .0415938 -3.72 0.000 .0110944 .2481314

Block Wald chi2 df Pr > F

1 4.37 1 0.0366
2 23.01 1 0.0000
3 48.85 2 0.0000

These results show that each block is statistically significant. Our main interest is
in the third block, and we see that adding dinners with your family and peer drinking
has χ2(2) = 48.85, p < 0.001. These results duplicate those obtained with the lrtest

command. The results do not duplicate those for the first two blocks (age and gender)
using the lrtest. Here we are testing if each additional block makes a statistically
significant improvement above what was done by the preceding blocks. We would say
that “Block 1”, male, is significant. Gender was not significant in the overall model,
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controlling for the other three variables, but “Block 1” contains only the variable male.
“Block 2”, age97, increases the significance, but it does not control for “Block 3”
variables because they have yet to be added to the model.

11.9 Power analysis when doing logistic regression

As with multiple regression, when doing logistic regression, it is helpful to perform a
power analysis before beginning a study. Logistic regression, using maximum likelihood
estimation tends to require a larger sample size than ordinary least-squares multiple
regression. The program will run on a sample that is very small, but it is best to have
at least 100 observations when doing a logistic regression for even a simple model. Philip
Ender at UCLA adapted a SAS macro to create a command called powerlog. You can
type the command search powerlog and follow the online instructions to install the
command. This command is designed to work either with one continuous predictor or
several predictors. We will illustrate it first for one predictor.

Suppose that a researcher wants to know if motivation (the predictor) can predict
whether a person stays in a smoking cessation program or drops out. The question is
whether a person with higher motivation has a higher rate of retention. Here is what
we need to know to run the powerlog command:

1. What proportion of people would stay in the program if they had average motiva-
tion? Let’s say that we found some results for similar programs, and about 70%
of the participants stayed in the program and 30% dropped out. We would say
the proportion for people with average motivation would be p1 = 0.70.

2. What proportion of people would stay in the program if they were 1-standard-
deviation change above average on motivation? We should think in terms of the
smallest increase (or decrease) that would be considered important. Let’s say that
increasing the retention rate from 70% to 75% would be considered important.
We would say the proportion of people who are retained for the entire program,
if they were 1-standard-deviation change above average on motivation, would be
p2 = 0.75.

3. We need to set our alpha level at, say, 0.05.
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This is all we need for the command.

. powerlog, p1(.70) p2(.75) alpha(.05)

Logistic regression power analysis
One-tailed test: alpha=.05 p1=.7 p2=.75 rsq=0 odds ratio=1.285714285714286

power n
0.60 204
0.65 233
0.70 266
0.75 303
0.80 348
0.85 404
0.90 481

To have a power of 0.90, we would need a sample of 481 people. If we were satisfied
with a power of 0.80, we would only need 348 people. Say that a person comes to you
and says that she can collect retention data on a sample of 50 people and wants to do
this analysis. You must advise her that she has too little power if she is interested in a
difference that is this small. She says, What if I am interested in an increase of 0.10, so
the retention rate would go from 70% to 80%. If you run the command using p2(80),
you will see that she would have 0.80 power with just 89 cases, so you still need to
advise her to get a larger sample.

When we are using this command, we set it up as a one-tailed test because we
thought about increasing the retention rate. If you want a two-tailed test, where the
proportion could go up or down, you could use α/2 = 0.025 for your alpha value. You
will also notice that we are thinking in terms of proportions rather than odds ratios.
The command results report that the odds ratio is 1.286. Do you know how it got this
value? For p1, we had a proportion of 0.70, so the odds were 0.70/0.30 = 2.333. For p2,
we had a proportion of 0.75, so the odds were 0.75/0.25 = 3.000. Thus the odds ratio
is 3.000/2.333 = 1.286. This is a good reminder that when we say the odds are 28.6%
greater, we are describing the odds and not the proportions, where the corresponding
change from 0.70 to 0.75 represents only a 7.1% increase in the proportion.

Sometimes when you are doing a logistic regression, you have several predictors and
want to know the power for adding one more predictor. Let’s stick with our study of
retention. Suppose that in addition to motivation being a predictor of whether a person
stays in the smoking cessation program, we expect the following people to be more
likely to stay for the entire program: people who are older, people who smoked fewer
days in the last month, and people who are more educated. We want to add to this
the number of other program participants who are their friends. If you have a group in
which several of your friends are participating, you think this will substantially increase
your retention rate. What do we need to know to do the power analysis?

• What proportion of people would stay in the program if they had average moti-
vation, age, days smoked in last month, and education? Let’s say that we found
some results for similar programs, and about 70% of the participants stayed in
the program and 30% dropped out. We would say the proportion for people with
average scores would be p1 = 0.70.
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• What proportion of people would stay in the program if they were 1-standard-
deviation change above average on the number of friends they had who were also in
the program? Again we should think in terms of the smallest increase (or decrease)
that would be considered important. Let’s stay with the idea that increasing the
retention rate from 70% to 75% would be considered important. We would say
the proportion of people who are retained for the entire program, if they were 1-
standard-deviation change above average on number of friends also participating,
would be p2 = 0.75.

• We need to set our alpha level at, say, 0.05.

• This time we need one additional estimate. When there are multiple variables
on the right side of an equation, we need to worry about multicollinearity; thus
we need an estimate of how serious the multicollinearity is. This estimate is the
proportion of the variance in our new variable, which is the number of friends also
participating. The proportion of the variance is explained by the variables already
in the model (motivation, age, days smoked in last month, and education). We
might find some data where we could do an R2 for predicting number of friends
from motivation, age, days smoked in last month, and education. Let’s estimate
the R2 = 0.30.

Here are our command and results. We added the help option to get an explanation
of the terms.

. powerlog, p1(.70) p2(.75) alpha(.05) rsq(.30) help

Logistic regression power analysis
One-tailed test: alpha=.05 p1=.7 p2=.75 rsq=.3 odds ratio=1.285714285714286

power n
0.60 292
0.65 333
0.70 380
0.75 434
0.80 498
0.85 578
0.90 687

Explanation of terms
p1 -- the probability that the response variable equals 1

when the predictor is at the mean
p2 -- the probability that the response variable equals 1

when the predictor is one standard deviation above the mean
rsq -- the squared mulitple correlation between the predictor

variable and all other variables in the model

As these results show, if we want a power of 0.90, we will need 687 participants in our
study.

What do you do when some of your predictors are categorical, such as race/ethnicity
or gender? One possibility is to use the powerlog command, but it will only give very
approximate results because the command assumes you have continuous and normally
distributed predictors.
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It is not unusual for people to run a logistic regression command when they have
less-than-optimal power. Suppose that you ran this analysis on a sample of just 200
people and all your variables were statistically significant. This can be interpreted two
ways. First, you are a big risk taker because you had woefully inadequate power to run
this analysis. You were most lucky to find a funding source that would support a study
that had inadequate power. Second, you must be a lucky researcher because you did
find significant results, and when you find significant results even when you do not have
a lot of power, they are still significant.

11.10 Summary

Logistic regression is a powerful data-analysis procedure that on one hand is fairly
complicated but on the other hand can be presented to a lay audience in a clear and
compelling fashion. Policy makers are likely to understand what odds mean, and they
want to know which factors raise the odds of a success and reduce the odds of a failure.
Although the language surrounding logistic regression can be intimidating, the results
are easy to understand and explain. To continue with the example from this chapter,
policy makers are definitely interested in the factors that increase or decrease the odds
that an adolescent will drink. With logistic regression, this is exactly the information
you can provide.

Some inexperienced researchers, upon learning logistic regression, may use it for
too many applications. Logistic regression makes sense whenever you have an outcome
that is clearly binary. If you have an outcome that is continuous or a count of how
often something happens, you may want to use other procedures. For example, if you
have a scale measuring political conservatism, which is what you want to explain, it is
probably not wise to dichotomize people into conservative versus liberal categories just
so that you can do logistic regression. When you have a continuous variable and you
dichotomize it, you lose a lot of variance. The difference between a person who is just
a little right of center and a radical conservative is lost if they both go into the same
category. In our example, we lost the difference between an adolescent who drank only
occasionally and one who drank 30 days a month. This was probably okay because we
wanted to find out what explained whether the child drank or did not drink. Therefore,
the variance in how often an adolescent drinks was not part of our question.

This chapter covered the following topics that prepare you to do logistic regression:

• Examples of when the technique is appropriate

• Key concepts, including odds, odds ratios, and logit

• How a linear estimation of a logit value corresponds to a nonlinear relationship
for the probability of a success

• Two Stata commands, logit and logistic, that are used for doing logistic re-
gression
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• The regression coefficients and the odds ratios

• How to interpret the results for categorical and continuous predictors

• How to associate a percentage change in the odds ratio with each variable and
how to summarize this in a bar chart

• Alternatives for hypothesis testing, including two ways to test the significance of
each variable’s effect and how to test the significance of sets of predictors

Chapters 10 and 11 provided the core techniques used by many social scientists.
Although multiple regression and logistic regression are both complex procedures, they
can provide informative answers to many research and policy questions. I have covered
many useful and powerful methods of data analysis using Stata, and you are prepared for
the next steps. Many researchers can do everything they need to do with the techniques
we have already covered, but we have tapped only the core capabilities of Stata. An
exciting thing about working with Stata is that it is a constantly evolving statistical
package, and it is one that few of us will outgrow.

11.11 Exercises

1. Use severity.dta, which has three variables. The variable severity is whether
the person sees prison sentences as too severe (coded 1) or not too severe (coded 0).
The variable liberal is how liberal the person is, varying from 1 for conservative
to 5 for liberal. The variable female is coded 1 for women and 0 for men. Do a
logistic regression analysis with severity as the dependent variable and liberal

and female as the independent variables. Carefully interpret your results.

2. Use gss2002 chapter11.dta. What predicts who will support abortion for any
reason? Recode abort12 to be a dummy variable called abort. Use the following
variables as predictors: reliten, polviews, premarsx, and sei. You may want
to create new variables for these so that a higher score goes with the name; for
example, polviewsmight be renamed conservative because a higher score means
more conservative. Do a logistic regression followed by the listcoef command.
Carefully interpret the results.

3. Using the results from exercise 2, create a bar graph showing the percentage change
in odds of supporting abortion for any reason associated with each predictor.
Justify using a 1-unit change or a 1-standard-deviation change in the score on
each predictor.

4. Using the results from the logistic regression in exercise 2, compute likelihood-
ratio chi-squared tests for each predictor, and compare them with the standard z
tests in the logistic regression results.
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5. In exercise 1, you did a logistic regression using gender and how liberal a person
was to predict whether they thought prison sentences were too harsh. Suppose
that you think people with more education are likely to feel that sentences are too
severe. Do a tabulation on severity to see what proportion overall think sentences
are too severe. Then do a power analysis to see how big a sample you would
need to have a power of 0.80 to detect whether a 1-standard-deviation increase
in education would raise the proportion of people who think sentences are too
severe by 0.10 when liberalism and gender are already in the model. You would
be adding education as a third predictor. State the information you need and the
values you assume. What assumption of the command you used did you violate?
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12.8 Summary

12.9 Exercises

12.1 Overview of reliability and validity

The quality of our measurement is the foundation for all statistical analysis. We must
always keep two facts in mind: First, our analysis can be no better than our measure-
ment. If we have poor measurement of our variables, then the relationship we find will
be inaccurate and will often underestimate the true strength of the relationship. Second,
virtually every variable we measure has some error, and often this error is substantial.

361
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Imagine doing a study of the relationship between postpartum depression and body
fat among a group of women two months after childbirth. Suppose that we find a
weak relationship, say, r = 0.10. Is this because postpartum depression is not strongly
related to body fat percentage? Perhaps, but it could be due to poor measurement
of depression and body fat. Our depression scale might have an alpha (α) reliability
of 0.90, and our measure of body fat percentage might have a test–retest reliability of
0.80. I will explain these measures of reliability later, but both of them indicate that
at least some of the variance in our two measures is not related to what we call them
but is simply measurement error. Reliability means that our measurement process will
produce consistent results.

We also need to worry about validity. Many measures of body fat percentage are
not only prone to error, that is, have low reliability, but also are biased. For example, a
strong athlete may have a completely wrong estimated fat percentage. An NFL running
back may be 5’11” and weigh 235 pounds. An estimator of his body fat—such as the
BMI, which uses just height and weight to estimate body fat—might grossly overestimate
his percentage of body fat. In his case, his weight is coming from musculature rather
than from fat. Just adding his waist size of 32 inches would greatly improve the accuracy
of the estimate. This is a problem of validity. The answer we get is off the mark. It
may or may not be reliable, but it is not valid.

This chapter discusses what we can do to evaluate the reliability and the validity of
our measures. Our discussion is largely limited to what is known as classical measure-
ment theory.

12.2 Constructing a scale

The most typical situation is having a set of k items that measure a concept. We might
have 10 items measuring depression, 5 items measuring attitude toward abortion, or 15
items measuring perceived risk of sexually transmitted HIV. How does Stata generate
a scale score? Some researchers like to generate the sum of the items. If each of 10
items is on a scale of 1 to 4 (strongly agree, agree, disagree, and strongly disagree),
the sum (total score) would range from a minimum of 10 to a maximum of 40. Other
researchers like to generate the mean of the items, and in this example, the mean would
be between 1 and 4. One advantage of generating the mean is that it is on the same
scale as the individual items and hence can be interpreted more easily. For example, a
sum of 25 might not have an obvious meaning, but a mean of 2.5 would indicate that
the participant was halfway between agree and disagree on the 4-point scale.

The 2006 General Social Survey (gss2006 chapter12.dta) asked people a series of
seven items, empathy1–empathy7, designed to measure empathy. Each of these was
scored from 1 for Does not describe me very well to 5 for Describes me very well. There
was also a category of 8 for Don’t know, which we treat as a missing value.

If you run a tabulate on the empathy items, you will see that some of the items,
empathy2, empathy4, and empathy5, are worded so that a higher score goes with less
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empathy, and the others, empathy1, empathy3, empathy6, and empathy7, are worded so
that a higher score goes with more empathy. When we cover factor analysis, we will see
how such an arrangement introduces a methods factor. For now, we will recode the three
negative items so that each item has a higher score indicating greater empathy. Always
coding a scale so that a higher score represents more of whatever is being measured
makes it easier for readers to understand what you are doing. We discussed how to
recode variables by using the recode command. The command is

. recode empathy2 empathy4 empathy5 (1=5 "Does not describe very well")
> (2=4) (3=3) (4=2) (5=1 "Describes very well"), pre(rev) label(empathy)

Because we are recoding three variables with one command, this is a bit more com-
plicated. We are applying value labels to two values, the new value 5 and the new value
1, and we did not bother to make labels for the other values. When we have value labels
in the command, we need to give a nickname for this set of labels. This could be any
value label name we have not used already in a dataset. I chose the label(empathy)

option for the nickname. We never overwrite variables but instead generate new vari-
ables, and to name those variables, we chose to add a prefix of rev to each variable
by using the pre(rev) option. Thus our seven variables are now named empathy1,
revempathy2, empathy3, revempathy4, revempathy5, empathy6, and empathy7.

12.2.1 Generating a mean score for each person

Stata has a convenient command for generating the mean score for each person. Because
each participant’s data are in a row, we want the row mean for the selected items. The
command name is egen, which stands for extended generation. We name the new
variable that we want to generate empathy, and we make this equal to the row mean
(with the rowmean() function) of the listed variables. The variables are listed inside
parentheses and have no commas separating them. Here is the command:

. egen empathy = rowmean(empathy1 revempathy2 empathy3 revempathy4 revempathy5
> empathy6 empathy7)
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Requiring a 75% completion rate

The rowmean() function calculates the mean of the items from the set that a partic-
ipant answers. If Sara answered all but the last empathy item, she would get a mean
for the six items she answered. If George answered only the first three items, he
would get a mean for those three items. Some researchers will want to exclude peo-
ple who did not answer at least 75% of the items (at least 5 of the 7 items). One way
to do this is to count how many items each person answers and then exclude people
who did not answer at least the minimum requirement. Here we would count the
number of missing values by using egen miss = rowmiss(empathy1 revempathy2

empathy3 revempathy4 revempathy5 empathy6 empathy7). This creates a new
variable, miss, that is the count of the number of items that have a missing value.
Because we require that 5 of the 7 questions be answered, we would compute the
empathy score only for those who have a count of fewer than 3 (they answered 5, 6,
or all 7 of the items). We can use this variable to restrict our sample; our new egen

command will be: egen empathya = rowmean(empathy1 revempathy2 empathy3

revempathy4 revempathy5 empathy6 empathy7) if miss < 3.

12.3 Reliability

There are four types of reliability, and these are illustrated in Shultz, Whitney, and
Zickar [2014].
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Stability means that if you measure a variable today using a particular scale and
then measure it again tomorrow using the same scale, your results will be consistent.
For depression, we would expect new mothers who are higher than average on depression
today to still be higher than average tomorrow.

A problem generating a total scale score

Many researchers generate a total score rather than a mean. I mentioned that this
is often hard to interpret because it is not on the same scale as the original items.
Another problem is that Stata, as well as other software such as IBM SPSS Statistics,
assigns a value of zero to missing data when generating the total score. If you have
items that range from 1 to 5, assigning a zero to missing values makes no sense. If
a person answers four of the items and picks a 5 for each of them, the total score
will be 20. If another person answers seven items and picks a 3 for each of them,
the score will be 21. It does not make sense that a person who picked a neutral
answer to every item has more empathy than the person who answered the most
empathetic response to each of the items. We could restrict scores to those who
answered all the items, but we would be throwing out a lot of information. In the
box on page 364, Sara answered six of the seven items, and we would be acting
like we had no information on her level of empathy. There is a simple solution if a
person insists on having a total score: generate the row mean and then multiply it
by the number of items. You could restrict your sample to those who answered at
least 75% of the items.

Equivalence means that you have two measures of the same variable and they pro-
duce consistent results. For example, you might have mothers write an essay on moth-
erhood, and then your coders would rate the essay from 1 to 10 based on indications
in the essay that the mother is depressed. Then you might give the new mothers a
questionnaire that includes a 20-item scale measuring depression. The alternate forms
or alternate measures could be evaluated for reliability by correlating the score on one
measure with the score on the other measure.

Internal consistency is widely used with scales that involve several items in the same
format. Likert-type items that have responses varying from strongly agree to strongly
disagree are one example. A reliability assessment might be done by generating the
mean score on the first half of the items and the mean score on the second half and then
correlating these two scores. A reliable test would be internally consistent if the score
for the first half of the items was highly correlated with the score for the second half of
the items. Below we will discuss the coefficient alpha, α, which is a better measure of
internal consistency.

Rater consistency is important when you have observers rating a video, observed
behavior, essay, or something else where two or more people are rating the same infor-
mation. Here reliability means that a pair of raters gives consistent results. If a person
who wrote an essay is rated high on depression by one rater and low on depression by
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a second rater, then we have reason to say there is low reliability measured for rater
consistency.

12.3.1 Stability and test–retest reliability

A researcher uses the identical measure twice and simply correlates the results. The
data (retest.dta) consist of the score at time one, called score1, and the score at time
two, called score2.

The test–retest correlation is computed by using the command

. pwcorr score1 score2, obs sig

score1 score2

score1 1.0000

10

score2 0.7702 1.0000
0.0091

10 10

The option obs reports the number of observations, and the option sig reports the
significance level. From the results, we see that there is a high test–retest reliability,
r = 0.77, p < 0.01. We would expect the correlation to be substantial, say, r > 0.5. If
the correlation is not substantial, then the measure is not giving reliable results.

Test–retest reliability has some limitations as a measure of reliability. First, distin-
guishing between a lack of a reliable measure and real change can be difficult. If the
length of time between the two measures is very long or if some event related to the
concept has occurred between the measurements, there may be real change. In that
case, the correlation would be low regardless of the reliability of the true measure. If
you have a measure of health risks associated with smoking tobacco, a television special
on the topic might air between the first and second measurements. The measure might
be reliable, but the correlation could be low if those who viewed the television program
changed their beliefs. If you try to minimize the risk of this happening by having the two
measurements close together, say, one in the morning and the other in the afternoon,
participants may recall their responses and try to be consistent.

A second limitation of using test–retest reliability to measure reliability is that
correlation does not measure agreement in a strict sense. If the scores at time one had
been 2, 3, 4, 5 and the corresponding scores at time two had been 4, 6, 8, 10, then the
regression equation

Ŷ = 0 + 2X

would have a correlation of r = 1.0 because each score at the second measurement is
exactly twice the time one score. There is no strict agreement, only relative agreement,
with the higher the score at time one being matched to the higher the score at time
two.
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12.3.2 Equivalence

An alternative approach to reliability uses a different form of the measure for the second
measurement. This alternative form has different items and, hence, the issue of partic-
ipants trying to remember how they answered items the first time is eliminated. The
alternative forms can be administered at separate times or one right after the other.
The main problem with this approach is that developing two versions of a measure
that we can assume are truly equivalent is extremely difficult. With this approach, the
correlation, r, between the scores on the two forms is all that is needed to measure
reliability. A low correlation means either that the measure is not reliable or that the
measures are not truly equivalent.

12.3.3 Split-half and alpha reliability—internal consistency

Instead of developing alternative forms of a measure, one approach is known as split-
half reliability. This is easier to use because you only need to have one measurement
time. Suppose that you have 10 items. You compute a score for the first five items
and a separate score for the last five items. Then you correlate these two scores. There
are various ways of splitting the items. A random selection would probably be best.
One problem with this approach is that we are using only 5-item measures to estimate
the reliability of a 10-item measure. A 10-item measure will be more reliable than a
5-item measure, so our correlation for the two 5-item measures will underestimate the
correlation for the 10-item measure. To correct this, we can use the Spearman–Brown
prophecy formula (developed by Spearman and Brown independently over a century
ago).

The major limitation of split-half reliability is that we could get a different result
with each split we make. Using the first half and the second half of the items would
yield a different reliability estimate than would using the even versus the odd items or
randomly selecting items. Also, if the ordering of items is important, this method could
be misleading.

Given these concerns with the split-half correlation, the standard for measuring
reliability within classical measurement-theory framework is to use a coefficient called
Cronbach’s alpha (α). In general, an α > 0.80 is considered good reliability, and many
researchers feel an α > 0.70 is adequate reliability.

There are two widely used interpretations of α. The simplest is that it is the expected
value of all corrected split-half correlations. This approach is a simple interpretation.
The second interpretation of α is the proportion of the observed variance that represents
true variance. If we believe our items are an unbiased sample of items from a domain
of possible items and hence that α is valid, we can interpret α as the ratio of the true
variance to the total variance (the total variance contains both the true variance and
the error variance): α = σ2

true/(σ
2
true + σ2

error). This approach is elegant in that an
α = 0.80 means that 80% of the variance in the scale represents the true score on the
variable, and 20% is random error. However, for this interpretation to be used, we need
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to assume that the scale is valid. We will discuss validity assessment techniques later
in this chapter.

There are two formulas for computing α. One of these uses the covariance matrix,
and the other uses the correlation matrix. You can think of the correlation matrix as a
special transformation of the covariance matrix, where all the variances are rescaled to
be equal and fixed at a value of 1.0. Analyzing the covariance matrix is called the un-
standardized approach, and analyzing the correlation matrix is called the standardized
approach. If items have similar variances, the two approaches will yield similar results.
The unstandardized alpha is more general because it allows for items to have different
variances. This can happen where some items have most people giving the same re-
sponse, say, most people strongly agree to the item. By contrast, other items may have
considerable variance with some people strongly agreeing and some people strongly dis-
agreeing. The unstandardized alpha is the default in Stata. This is appropriate when
generating a total score or a mean of the items.

However, sometimes people are generating a scale score when items are measured
on different scales. One item might have three response options (agree, undecided, and
disagree) and another item might have four response options (strongly agree, agree,
disagree, and strongly disagree). In this case, it is reasonable to first standardized the
items before generating the total or mean score. With standardized variables pooled
this way, the standardized alpha would be appropriate.

We now return to using the recoded gss2006 chapter12.dta. We will use the dia-
log box to generate the alpha command because there are several options that might
be hard to remember if you write the command directly. Open the dialog box by
selecting Statistics ⊲ Multivariate analysis ⊲ Cronbach’s alpha. On the Main tab, sim-
ply enter the variables, empathy1 revempathy2 empathy3 revempathy4 revempathy5

empathy6 empathy7. Under the Options tab, there are several powerful options. The
first one takes the sign of each item as is. This makes sense to select because we already
reverse-coded the items that were worded negatively. If we do not check this option,
Stata will decide if any items should have their signs reversed. The second option will
delete cases with missing values on any item. We will not check this option for now.
Next we have an option to list individual interitem correlations and covariances. We will
not check this option now, but it is useful when combined with selecting a standardized
solution to see if there are problematic items, that is, items that have low or negative
correlations with the other items.

Next is an option that will generate the scale for us. I already showed you how to
generate this score earlier by using the egen rowmean command. It is reasonable to
check this if you want Stata to generate the mean score for you. But only do this after
you are satisfied with your scale and its reliability. If you check this option, there is a
box highlighted in which you enter the name of the computed scale score. We check the
next option to display item-test and item-rest correlations. We do not check the box to
include variable labels, though with big scales this can be useful. We do check the box
to require a certain number of items and enter 5. This means that people who answer 5,
6, or 7 of the items will be included, and people who answer fewer than 5 items will be
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dropped. At the bottom of the dialog box is the option to select a standardized solution.
This can be useful when combined with asking for correlations if your reliability is low
to see where there is a problem. We will not check this for now. The command and
results are as follows:

. alpha empathy1 revempathy2 empathy3 revempathy4 revempathy5 empathy6 empathy7,
> asis item min(5)

Test scale = mean(unstandardized items)

average
item-test item-rest inter-item

Item Obs Sign correlation correlation covariance alpha

empathy1 1349 + 0.6701 0.5151 .3722749 0.7034
revempathy2 1346 + 0.5957 0.3933 .3954405 0.7332
empathy3 1348 + 0.5733 0.4027 .4118086 0.7281
revempathy4 1349 + 0.6303 0.4474 .3827332 0.7191
revempathy5 1342 + 0.6088 0.4277 .3932707 0.7233
empathy6 1347 + 0.6762 0.5358 .3764256 0.7004
empathy7 1349 + 0.6701 0.5204 .3748609 0.7026

Test scale .3866902 0.7462

We have selected three options. The asis (as is) option means that we do not want
Stata to change the signs of any of our variables. We want a display of the item analysis,
and we require that there are a minimum of 5 answered items, min(5). The bottom
row of the output table, Test scale, reports the α for the scale (0.7462). Above this
value is the α we would obtain if we dropped each item, one at a time. For example,
if we dropped empathy7, our α would be 0.7026. Dropping this item would make our
scale less reliable. Sometimes you will find an item that, if dropped, would improve α.
Carefully used, this information can maximize your α. However, be cautious in doing
this because you are capitalizing on chance. Imagine having 100 items and computing
α. Then drop one item to increase α and redo the analysis using 99 items. You could
continue until you had a very high α with, say, 20 items, but you would have not tested
to see if you are capitalizing on chance.

The column labeled Obs reports the number of observations. This varies slightly
because we used pairwise deletion for people who answered at least 5 of the 7 ques-
tions. The column labeled Sign contains all plus signs, meaning that all the items are
positively related to the scale. If any item had a minus sign in this column, you would
need to reverse-code the item or drop it. The item-test correlation column reports
the correlation of each item with the total score of the seven items. All of these are
strong. Because the total score includes the item, the values in this column are artifi-
cially inflated. Therefore, Stata also reports the item-rest correlation. This is the
correlation of each item with the total of the other items. For example, the correla-
tion between empathy1 and the total of the other six items is 0.5151. The correlations
are useful, but the most valuable information is in the alpha column, where we can see
whether each item is useful (dropping it would lower α) or not useful (dropping it would
increase α).
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Alpha, average correlation, number of items

The unstandardized alpha is a function of the number of items, the mean covariance
of the items, and the mean variance of the items. The standardized alpha is a
function of just the number of items and their mean correlation. We will have a
large α whenever we have either a large average correlation among the items, r̄,
or a large number of items, k. This can lead to misleading results when you have
just a few items that are reasonably consistent or when you have a large number
of items that are not consistent.

For example, we might not consider a set of items with an average correla-
tion of r̄ = 0.1 as having much in common. With a 5-item scale, this results in an
alpha of 0.36; with a 20-item scale, the alpha becomes 0.69; and with a 50-item
scale, the alpha is 0.85. This shows an important qualification on how we view
alpha. A 50-item scale with a reliability of just 0.85 contains items that do not
have much in common. Some major scales are like this where they gain consistency
from the large number of items and not from the items sharing much common
variance.

The opposite happens when we have scales with just a few items. Many
large-scale surveys attempt to measure many concepts and have just a few items
to measure each of the concepts. If we have an average correlation among items of
0.3, a 3-item scale yields a standardized alpha of just 0.56, whereas a 10-item scale
yields an alpha of 0.81. Adding just a few items greatly enhances the reliability of
a scale, and 10-item scales should be adequate even if the average correlation is
only moderate. At the other extreme, some researchers feel the need to have many
items. Increasing our scale from 10 items to 30 items, and measuring one-third as
many concepts in the survey as a result, raises the alpha from 0.81 to 0.93. For
many applications, this small improvement will not offset the resulting increase in
the length of the questionnaire.

12.3.4 Kuder–Richardson reliability for dichotomous items

The equivalent of alpha for items that are dichotomous is the Kuder–Richardson mea-
sure of reliability. The dichotomous items need to be coded as a 1 for “Yes” or “Correct”
and a 0 for “No” or “Incorrect”. This measure is sometimes used with multiple-choice
tests where students get each item right or wrong. It is also used when there are simple
yes/no response options to the items. You can estimate the Kuder–Richardson reliabil-
ity coefficient by simply running alpha on the set of items about using the web for art
that were asked on the 2002 General Social Survey (kuder-richardson.dta):
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. alpha newartmus1 newartmus2 newartview newartinfo newartmus3, asis item

Test scale = mean(unstandardized items)

average
item-test item-rest interitem

Item Obs Sign correlation correlation covariance alpha

newartmus1 90 + 0.5767 0.3432 .0578652 0.5626
newartmus2 90 + 0.6600 0.3966 .0485019 0.5327
newartview 90 + 0.5948 0.3123 .0563046 0.5784
newartinfo 90 + 0.6420 0.3831 .0506242 0.5404
newartmus3 90 + 0.6423 0.3749 .0506242 0.5448

Test scale .052784 0.6066

The value of alpha reported by Stata is identical to the value given using the formula
for the Kuder–Richardson reliability. The results show that the Kuder–Richardson
reliability coefficient is 0.607.

12.3.5 Rater agreement—kappa (κ)

Reliable coding of observational data is often extremely difficult. If you have two people
trained to code videotapes of interactions for evidence of conflict, it is hard to have both
of them code everything the same way. If your two coders do not agree on how they
are coding the observational data, then it is difficult to have much confidence in the
analysis based on their coding.

When collecting observational data, we often have two or more raters code their
observations, and we measure the reliability of their agreement. We might have two
physicians rating the health of the same patients on a 5-point scale. We might have
two clinicians identify the mental health condition of patients. A widely used measure
of interrater agreement is the coefficient kappa (κ).

Suppose that we are observing people from the press who are asking questions of a
political leader. We might have several categories such as

• Friendly questions that the political leader would like to have asked—Do you feel
education is important?

• Difficult questions that the political leader would like to have asked—Could you
elaborate on the benefits of your plan to reform the Social Security system?

• Unwanted questions that the political leader would not like to have asked—Why
did your press secretary resign?

• Extremely unwanted and difficult questions that the political leader would not
like to have asked—How can you justify the $125,000 donation you received from
the Committee to Promote Higher Pay for Men?
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Perhaps at the beginning of the politician’s tenure, there is a honeymoon period in
which most of the questions are ones the leader wants to answer because they are easy or
because they allow the leader to clarify his or her plans. Perhaps later in their tenure,
the questions become less desirable from the politician’s perspective. You have two
coders rate a press conference in which 20 questions were asked, and their hypothetical
ratings are in kappa1.dta.

We can do a tabulation of these data:

. tabulate coder1 coder2

coder2
coder1 Easy Hard want Unwanted Very unwa Total

Easy 5 1 0 0 6
Hard wanted 0 3 0 0 3

Unwanted 1 2 2 0 5
Very unwanted 0 1 1 4 6

Total 6 7 3 4 20

The coders seem to agree on the classification of the friendly questions and the
unwanted questions. They seem to have a harder time distinguishing the difficult-but-
wanted questions from the difficult-unwanted questions. Ideally, all the observations
should fall on the diagonal where coder one and coder two have the same classification
of the question.

To estimate κ, we enter the command kap coder1 coder2. Note that we typed kap

and not kappa. The latter is only used for data entered in a special way. The output is
as follows:

. kap coder1 coder2

Expected
Agreement Agreement Kappa Std. Err. Z Prob>Z

70.00% 24.00% 0.6053 0.1221 4.96 0.0000

We would describe this by writing that the judges agree exactly on the classification
70% of the time, that is, (5+3+2+4)/20. The coefficient of agreement is κ = 0.61, z =
4.96, p < 0.001, indicating a reasonable level of agreement.

Some people would use the percentage agreement instead of κ, but the percentage
agreement exaggerates the amount of agreement because it ignores the agreement we
would expect by chance. κ only gives us credit for the extent the agreement exceeds
what we would have expected to get by chance alone.
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What is a strong kappa?

We would like alpha to be 0.80 or higher for a scale to be considered reliable.
The expectations for kappa are different. Because kappa adjusts the percentage
agreement for what would be expected by chance, kappa tends to be lower than
alpha. Landis and Koch (1977) suggested these guidelines; see also Altman (1991):

Alpha Strength of agreement

Under 0.20 Poor
0.21 – 0.40 Fair
0.41 – 0.60 Moderate
0.61 – 0.80 Good
0.81 – 1.00 Very good

Thus our κ = 0.605 is between moderate and good.

If you conceptualize the classes as ordinal, it is possible to estimate a weighted
kappa. This κweighted gives partial credit for being close. If the two judges are close, the
weighted kappa gives us partial credit. Stata allows us to use the default value for the
weights or to enter our own criterion. This is explained in [R] kappa with a detailed
example. Entering the command help kap provides a brief explanation. We will not
cover weighted kappa here.

Some researchers can use three raters rather than two, and this offers much more
information. With three raters, kappa not only reports the overall κ but also can give
us a κ for each category. For example, we may find that the coders have a high level of
reliability for coding items that are in the “Easy” or “Hard wanted” categories, but a
very low reliability for the “Unwanted” or “Very unwanted” categories. Here we might
find that combining the “Unwanted” and “Very unwanted” categories into one category
is necessary to have interrater reliability. The extension of kappa to three raters is
described in [R] kappa.
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12.4 Validity

A good measure needs to be reliable, but it also needs to be valid. A valid measure
is one that measures what it is supposed to be measuring. A measure of maternal
depression may be reliable, meaning it gets consistent results, without being valid. In
order to be valid, the measure should have a high score for mothers who actually are
depressed and a low score for mothers who are not. A measure is not valid when it is
measuring other phenomena. For example, asking a person if they have high anxiety
is not an especially valid item to measure depression. A person may have high anxiety
just before an examination, but this is different from being depressed. The gist of
validity is simply that a measure needs to measure what you are trying to measure and
not something else. Assessing validity involves comparing a measure with one or more
standards. There are many possible standards, resulting in several types of validity
checks.

12.4.1 Expert judgment

In making a scale, you first need to carefully define the content domain of what you are
measuring. Once you have done this, you share your items and your definition of the
domain with a small group of experts in the field and have them critique each item.
This will provide a good measure of content validity if your definition of the content
domain and the quality of your experts are both good.

Defining the content domain is often difficult. Suppose that you are measuring self-
reported health. What does this include? Does it include mental health? Does it
include living a healthy lifestyle? Is it limited to physical health? What about ability
to perform activities of daily living? What about flexibility, strength, and endurance?
Are you interested in a global rating of health or more specific aspects?

Once you have carefully defined the domain of your concept, your panel of experts
can judge whether you have items that represent this domain. Judges may be academic
scholars who have published in the area or others who have worked in the field. A
psychiatric social worker, a physician, and an academic scholar on health might be
good candidates for your panel of experts. In other cases, you might want to include
people who are experiencing issues related to your content. A member of a youth gang
would be an expert if you were measuring gang-related violence.

One measure of content validity is the content validity ratio (CVR) (Lawshe 1975;
Shultz et al. 2014). Judges rate each item as essential, useful, or not necessary. For
each item, you compute the CVR by using

CVRi =
ne − N

2
N
2

where ne is the total number of judges rating item i as essential, and N is the number
of judges. Assume that you have a 10-item scale and four judges, with three of the four
judges rating the first item as essential. The CVRi would be (3− 2)/2 = 0.50. You can
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keep the items that have a relatively high CVR and drop those that do not. However,
a limitation of this is that it is no better than the quality of your definition of your
domain and the quality of the judges.

Face validity is a type of content validity, but it does not require expert judgment.
People like those who will be measured by your scale can often be most helpful for
evaluating face validity. If there are subgroups that might have special understandings
(gender, ethnicity, etc.), they should be asked to say whether the items make sense for
measuring the variable you are trying to measure. Imagine that you are developing a
scale to measure the self-regulation in a group of 8-year-olds. You could ask a small
number of 8-year-olds to read each item aloud and explain what the item is trying to
say or ask. Then ask each of these 8-year-olds to pick an answer and explain why they
picked that answer. You will almost always find that a few of the items are interpreted
differently by these 8-year-olds from the way you intended and that the reason they
pick an answer is extraneous to what you are measuring.

12.4.2 Criterion-related validity

Criterion-related validity picks one or more criteria or standards for evaluating a scale.
The standard may be a concurrent measure or a predictive measure. If you have a
10-item scale of self-reported health, you need to find a standard. This could be a more
comprehensive 40-item measure that has been used in the literature but is too long for
your purposes. You include both your 10-item measure and the 40-item measure in a
pilot survey and correlate the two scale scores. You might also use as a standard a
clinical evaluation of the person’s health.

Predictive standards are criteria that your measure should predict, and these typi-
cally require a time interval. A measure of motivation to achieve given to high school
juniors might use grade point averages during their senior year as a criterion. Where
correlations are used, a value of 0.30 is considered moderate support, and a correlation
of 0.50 is considered strong support.

If you are measuring intention of medical students to work in rural areas, you might
wait until the group graduates and see how many of them actually do work in a rural
area. This would involve predictive validity. Because working in a rural area is a binary
0/1 variable, you would use logistic regression with your scale score as the predictor.
If your scale score is a substantively and statistically significant predictor of whether
medical students work in a rural area, then this would be evidence of predictive criterion
validity. If you are measuring the commitment to quit smoking, you might use the
number of cessation sessions a person attends as your criterion, in which case you would
compute a simple correlation.

Criterion-related validity can also be used to evaluate individual items. If you believe
the overall scale is valid, you can correlate each item with the total score and drop those
that have low correlations with the total score. Stata’s command alpha with the option
item provides this information, as was shown in the output on page 372 under the
columns labeled item-test correlation and item-rest correlation.
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You can also divide the sample into quartiles based on the total score. Then you
would compare the top quartile to the bottom quartile on each item by using a t test.
Try this as an exercise.

12.4.3 Construct validity

The term construct validity is reserved for analyses that involve more than one approach
to assessing validity. Some of the analyses that fall under the rubric of construct validity
include the following:

• Comparing known groups. A measure of depression might be evaluated by com-
paring the mean score for a group of people being treated for post-traumatic stress
disorder with a group who are not being treated. With two groups, you would use
a t test, and with more than two groups, you would use ANOVA.

• Internal consistency. Although I presented alpha reliability as a measure of relia-
bility, it is also reasonable to think of it as tapping validity. If you have a series
of items measuring commitment to stop smoking, they should all be internally
consistent, as indicated by item-rest correlations and alpha, as well as by compar-
ing the top and bottom quartiles. These techniques were covered in the previous
section. If the scale is valid, then α = 0.80 signifies that 80% of the variance
represents true variance in the variable.

• Correlational analysis. We would expect criterion-related validity to be demon-
strated. Better yet, with construct validity we would use multiple criteria. Our
motivation scale given in the junior year of high school should predict grade point
average in the senior year, college plans, etc. These are known as convergent
criteria-related validity because we expect these correlations to all be positive.
Divergent criteria-related validity would identify additional criteria for which we
would expect a negative relationship. We would expect our motivational scale
score to be negatively related to such criteria as frequency of arrest, use of hard
drugs, likelihood of dropping out of high school, and unprotected sexual behavior.
With construct validity, we are looking at a pattern of correlations. An extension
of this is to use factor analysis (see the next section) and possibly confirmatory
factor analysis.

• Qualitative analysis. We should interview people who complete our set of items
and ask them to explain each answer they gave. Having a group of fifth-grade
students answer questions about how much they like school by using a computer-
assisted interview program that includes neat graphics may be measuring how
much they like school, but it also may measure how much they like “foolin’ around
on the computer”. Asked why they give a positive response to an item, we might
learn that it is because they would rather play on the computer than sit in a class.
A surprising number of scales have been developed by academics that have never
been evaluated by the target population. We should always evaluate whether the
people in our target population are interpreting the items and the options the way
we expected.
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12.5 Factor analysis

Ideally, a scale measures just one concept. We sometimes ignore this, and the results
can be misleading. Imagine that Shanice has a GRE score on the quantitative reasoning
part of the examination of 165 (very high),1 but her score on the verbal reasoning part
of the examination is just 140 (low). A second student, Emma, has just the opposite
scores, that is, 140 on the quantitative reasoning part and 165 on the verbal reasoning
part. Some graduate programs use a single number, the total of the quantitative and
verbal sections, to evaluate applications. Using one number, the same 305 total for
both Shanice and Emma, can be problematic if they both are applying for a statistics
program or for a humanities program. This is because we are combining two distinct
dimensions of academic ability—verbal and quantitative achievements. It would make
more sense for graduate programs to consider the quantitative and verbal reasoning
scores as two separate dimensions with some graduate programs emphasizing one or the
other of these.

Some concepts are multidimensional. For example, health might have one dimension
for physical health and a separate dimension for psychological health. We would expect
these two dimensions of health to be correlated, but the correlation should be small
enough that we recognize them as two distinct dimensions of health. In such a case,
we might not want to average items. Instead, we might want to make two scales, one
for physical health and one for psychological health. Some researchers would ignore our
advice to have two scales and simply combine them. If you do this, it would make more
sense to call this an index rather than to call it a scale. Ideally, a scale should represent
one dimension.

How do we know a set of items represents one dimension? This is where we use factor
analysis. If the items represent one dimension, then all of them should be moderately to
strongly correlated with each other, and the pattern of correlations should be consistent.
If we had a six-item scale, it might look something like table 12.2.

Table 12.2. Correlations you might expect for one factor

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Item 1 1.00
Item 2 0.60 1.00
Item 3 0.45 0.40 1.00
Item 4 0.50 0.55 0.45 1.00
Item 5 0.70 0.55 0.45 0.40 1.00
Item 6 0.35 0.40 0.45 0.40 0.35 1.00

1. Before August 2011, the GRE scores ranged from 200 to 800 for both the verbal reasoning and the
quantitative reasoning sections. Since August 2011, the GRE scores have ranged from 130 to 170
for both sections.
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What would happen if we had two dimensions with the first three items representing
physical health and the last three items representing psychological health? This scenario
is illustrated in table 12.3, where the first three items are highly correlated with each
other (top left triangle), the last three items are highly correlated with each other
(bottom right triangle), but the two sets of items are only moderately correlated with
each other (bottom left rectangle).

Table 12.3. Correlations you might expect for two factors

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Item 1 1.00

Item 2 0.60 1.00

Item 3 0.80 0.70 1.00

Item 4 0.30 0.25 0.35 1.00

Item 5 0.20 0.25 0.25 0.70 1.00

Item 6 0.25 0.20 0.15 0.75 0.65 1.00

Factor analysis is a collection of techniques that does an exploratory analysis to see
if there are clusters of items that go together. When constructing a scale, you would
hope that all the items you include in your scale form one factor or principal component.

There are two types of analysis that are often lumped together under the label of
factor analysis. The default is exploratory factor analysis, which Stata calls principal
factor analysis. We will use PF to refer to this type of factor analysis. The second type
is principal-component factor analysis. We will use PCF to refer to this approach. Each
of these procedures has distinct objectives.

PF analysis attempts to identify a small number of latent variables or dimensions that
explain the shared variance of a set of measures. If you believe that an attitude toward
use of methamphetamines includes a cognitive component (beliefs), an affective com-
ponent (emotional response, feelings), and a behavioral component (predispositions),
you might do a PF analysis of a set of 30 items to see if the items fall into these three
dimensions and label each dimension as a latent variable. Here the latent variables
explain how you respond to the items. In PF analysis, the variance is partitioned into
the shared variance and unique or error variance. The shared variance is how much of
the variance in any one item can be explained by the rest of the items. This shared
variance is estimated using a multiple R2. In practical terms, factor analysis analyzes a
correlation matrix in which the 1.00s on the diagonal are replaced by the square of the
multiple correlation of each item with the rest of the items. PF analysis is not trying to
explain all the variance, just the variance that is shared among the set of items.

PCF analysis has a different approach, and its strength is in the area of data reduc-
tion. It does not distinguish between the common or shared variance and the unique or
error variance. In practical terms, PCF analysis analyzes a correlation matrix in which
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the 1.00s on the diagonal stay there. It is trying to explain all the variance. PCF analysis
is used when developing a scale where one dimension is identified to represent the core
of a set of items. If we have 20 items measuring your satisfaction with a drug, and we
find that 15 of the items load highly on the first dimension in a PCF analysis, then we
may want to use those 15 items in our scale and drop the other 5 items.

Factor analysis has a special vocabulary of its own. The following is a list of some
of the most important terminology. You can read this now, but it may be most helpful
to refer to it after you have read the section where each term is used.

• Extraction. There are different ways of extracting a solution. This extraction
involves analyzing the correlation matrix (sometimes the covariance matrix) to
obtain an initial factor solution. The initial factor solution may subsequently be
rotated to aid interpretation.

• Eigenvalues. Both PCF analysis and PF analysis produce a value for each factor
that is known as the eigenvalue for that factor. In the case of PCF analysis,
because all the variance is being explained, the sum of the eigenvalues for all
possible components is the number of items. If there are 10 items, the sum of the
eigenvalues will be 10. Therefore, a component that has an eigenvalue of less than
1 is not helpful for data reduction because it accounts for less than one item. The
factors will be ordered from the most important, which has the largest eigenvalue,
to the least important, which has the smallest eigenvalue. In PF analysis, the
sum of the eigenvalues will be less than the number of items, and the eigenvalues’
interpretation is complex.

• Communality and uniqueness. Communality is how much of each item is explained
by the set of factors, and uniqueness (shown in Stata) is how much is unexplained.
PF analysis tries to explain the shared variance. PCF analysis tries to explain all
the variance, which is why it is ideal for the uniqueness to approach zero. This ideal
is rarely achieved in practice but is a caution that PCF may not be appropriate.

• Loadings. Both PCF analysis and PF analysis produce a matrix with the items in
the rows and the factors in the columns. The elements of this matrix are called
loadings, and they are used to assess how clusters of items are most related to
one or another of the factors. If an item has a loading over 0.4 on a factor, it
is considered a good indicator of that factor. Many researchers limit themselves
to orthogonal rotation. This may be a problem if they conceptualize the factors
as correlated. For example, we might have a physical health factor and a mental
health factor. Conceptually, these would be correlated.

• Simple structure. This is a pattern of loadings where each item loads strongly on
just one factor and a subset of items load strongly on each factor. When an item
loads strongly on more than one factor, it is factorially confounded.

• Scree plot. This is a graph showing the eigenvalue for each factor. Its name comes
from geology, where scree collects at the bottom of a cliff. It is used to decide
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how many factors are included by throwing out those that are considered scree.
When doing a PCF analysis, we usually drop factors that have eigenvalues in the
neighborhood of 1.0 or smaller.

• Rotation. Neither PF analysis nor PCF analysis has a unique solution without
making a series of assumptions. It is often helpful to rotate the initial solution to
obtain a solution that is more interpretable.

• Orthogonal versus oblique. Some rotations require that the factors be uncorre-
lated. These are orthogonal solutions. Other rotations allow the factors to be
correlated and are called oblique solutions. There are many options for each type
of rotation, and each type of rotation makes different assumptions to obtain iden-
tification.

• Factor score. This is a score on each factor. Rather than simply averaging or
adding the items that load above some value, such as 0.4, on the factor to get
a scale score, a factor score weights each item based on how related it is to the
factor. Also the factor score is scaled to have a mean of 0.0 and a variance of 1.0.

Should you use PF analysis or PCF analysis? If you want to explain as much of the
variance in a set of items as possible with one dimension, then PCF analysis is reasonable.
Use PCF when you have a set of items that you believe all measure one concept. In this
situation, you would be interested in the first principal factor. You would want to see if
it explained a substantial part of the total variance for the entire set of items, and you
would want most of the items to have a loading of 0.4 or above on this factor.

If, on the other hand, you want to identify two or more latent variables that repre-
sent interpretable dimensions of some concept, then PF analysis is probably best. For
example, you might have 20 items asking about a person’s level of alienation. A PF

analysis might find that there are subsets of items that fall into different dimensions
such as value isolation, powerlessness, and normlessness. With PF analysis, the focus is
on finding two or more interpretable dimensions or factors rather than on maximizing
the amount of variance that is explained.

In this chapter, we limit our coverage to PCF analysis because it relates to developing
a measure of a concept. Using the Stata menu, select Statistics ⊲ Multivariate analysis ⊲
Factor and principal component analysis. Here you will find several options:

• Factor analysis

• Factor analysis of a correlation matrix

• Principal component analysis (PCA)

• PCA of a correlation or covariance matrix

• Postestimation
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We will focus on the first of these, factor analysis. This option allows us to do
either PF analysis or PCF analysis. (Be careful not to select Principal component analysis
(PCA).) The terminology used in factor analysis is highly specialized, and the same
terms can be used differently by different software packages.

The second menu option, Factor analysis of a correlation matrix, allows you to enter
a correlation matrix and do the factor analysis of it. This is useful when reading an
article that includes a correlation matrix because you do not need the raw data to do
the factor analysis; you just need the correlation matrix.

The third and fourth options involve Stata’s application of principal component
analysis (PCA). We will not consider these options here. The last option, Postestimation,
includes things we can do after we obtain the first solution to help us interpret the results,
including rotating the solution, creating scree plots, and estimating factor scores.

What’s in a name?

Because factor analysis is an area of long-standing specialization, there are many
differences of opinion as to what is the best approach to it. Many of these
distinctions are not of great importance when we use factor analysis to develop or
evaluate a scale. There are many technical terms that you rarely see in other areas
of statistics. To make matters especially confusing, different software may use the
same name for different procedures. We will only cover the procedures for factor
analysis as Stata implements them. But do not be surprised if you hear the same
names used differently with other packages.

In Stata, PCF analysis produces the same results as what IBM SPSS Statis-
tics calls principal component analysis. However, what Stata calls principal
component analysis (PCA—the third and fourth options in the menu) has impor-
tant differences. We will use the name PCF analysis to refer to what IBM SPSS

Statistics calls principal component analysis.

The default in Stata is to do a PF analysis; in IBM SPSS Statistics, the de-
fault is to do a PCF analysis.
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12.6 PCF analysis

Here is an example of PCF analysis using 14 items from the 2006 General Social Survey
(gss2006 chapter12 selected.dta). There are four options for how Stata extracts
factors from your data. Other packages offer more options not available in Stata, but
the options in Stata should meet most needs for people developing or evaluating a scale.

We will examine the 14 items from the 2006 General Social Survey that measure
desire to invest in different national programs. Our goal is to select items that we can
use in a scale. Here is a compact codebook of the items:

. codebook natspac natenvir natheal natcity natcrime natdrug nateduc natrace
> natarms natfare natroad natsoc natchld natsci, compact

Variable Obs Unique Mean Min Max Label

natspac 1407 3 2.237385 1 3 SPACE EXPLORATION PROGRAM
natenvir 1446 3 1.375519 1 3 IMPROVING PROTECTING ENVIRONMENT
natheal 1451 3 1.297726 1 3 IMPROVING PROTECTING NATIONS HEALTH
natcity 1349 3 1.634544 1 3 SOLVING PROBLEMS OF BIG CITIES
natcrime 1448 3 1.446133 1 3 HALTING RISING CRIME RATE
natdrug 1428 3 1.45028 1 3 DEALING WITH DRUG ADDICTION
nateduc 1462 3 1.317373 1 3 IMPROVING NATIONS EDUCATION SYSTEM
natrace 1348 3 1.780415 1 3 IMPROVING THE CONDITIONS OF BLACKS
natarms 1442 3 2.144938 1 3 MILITARY, ARMAMENTS, AND DEFENSE
natfare 1434 3 2.110879 1 3 WELFARE
natroad 2899 3 1.756468 1 3 HIGHWAYS AND BRIDGES
natsoc 2864 3 1.407472 1 3 SOCIAL SECURITY
natchld 2758 3 1.517041 1 3 ASSISTANCE FOR CHILDCARE
natsci 2786 3 1.688442 1 3 SUPPORTING SCIENTIFIC RESEARCH

Running tabulate with the codebook command or the fre command, if you have
that command installed, we see that these items have a higher score, implying less
support for spending. We can reverse these codes, reverse the corresponding labels, and
add a prefix of “r” to each variable to remind us that we have reversed them:

. recode natspac natenvir natheal natcity natcrime natdrug nateduc natrace
> natarms natfare natroad natsoc natchld natsci
> (1=3 "Too little") (2=2 "About right") (3=1 "Too much"), prefix(r) label(revnat)
(756 differences between natspac and rnatspac)
(1081 differences between natenvir and rnatenvir)
(1169 differences between natheal and rnatheal)
(839 differences between natcity and rnatcity)
(992 differences between natcrime and rnatcrime)
(1027 differences between natdrug and rnatdrug)
(1152 differences between nateduc and rnateduc)
(746 differences between natrace and rnatrace)
(967 differences between natarms and rnatarms)
(919 differences between natfare and rnatfare)
(1392 differences between natroad and rnatroad)
(1973 differences between natsoc and rnatsoc)
(1756 differences between natchld and rnatchld)
(1570 differences between natsci and rnatsci)
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Now a higher score implies greater support. A researcher may think there is one
dimension representing how liberal or conservative a person is regarding government
spending. This researcher may feel that a liberal would score high on all of these
items (big spenders) and a conservative would score low, meaning that they want to
minimize government spending initiatives. Another person may think there are two
separate dimensions, one focused on investing in social welfare issues—for example,
education, health, welfare, environment—and one focused on investing in the national
infrastructure. A third researcher may believe it is more complicated and want to see
what dimensions are needed to explain this set of 14 items.

To run a PCF analysis, we select Statistics ⊲ Multivariate analysis ⊲ Factor and principal
component analysis ⊲ Factor analysis. The first tab is labeled Model, and here we list
our 14 recoded variables. The second tab is labeled Model 2. Here we select Principal-
component factor. This generates the following results:

. factor rnatspac rnatenvir rnatheal rnatcity rnatcrime rnatdrug rnateduc
> rnatrace rnatarms rnatfare rnatroad rnatsoc rnatchld rnatsci, pcf
(obs=1082)

Factor analysis/correlation Number of obs = 1082
Method: principal-component factors Retained factors = 4
Rotation: (unrotated) Number of params = 50

Factor Eigenvalue Difference Proportion Cumulative

Factor1 3.00301 1.62066 0.2145 0.2145
Factor2 1.38235 0.12372 0.0987 0.3132
Factor3 1.25863 0.22702 0.0899 0.4031
Factor4 1.03161 0.06974 0.0737 0.4768
Factor5 0.96187 0.05047 0.0687 0.5455
Factor6 0.91140 0.09801 0.0651 0.6106
Factor7 0.81339 0.02930 0.0581 0.6687
Factor8 0.78409 0.05945 0.0560 0.7247
Factor9 0.72464 0.01659 0.0518 0.7765
Factor10 0.70804 0.04088 0.0506 0.8271
Factor11 0.66717 0.06485 0.0477 0.8747
Factor12 0.60231 0.01414 0.0430 0.9178
Factor13 0.58817 0.02484 0.0420 0.9598
Factor14 0.56333 . 0.0402 1.0000

LR test: independent vs. saturated: chi2(91) = 1701.47 Prob>chi2 = 0.0000
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Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Factor4 Uniqueness

rnatspac -0.0405 0.6150 -0.4468 -0.0108 0.4204
rnatenvir 0.5562 0.0698 -0.1925 0.1629 0.6221
rnatheal 0.6298 0.0420 0.0923 0.2638 0.5235
rnatcity 0.5264 -0.0580 -0.0677 -0.4598 0.5036
rnatcrime 0.4533 0.1160 0.5154 -0.4234 0.3361
rnatdrug 0.5381 0.1048 0.3346 -0.2872 0.5051
rnateduc 0.5997 0.0035 0.0425 0.3838 0.4912
rnatrace 0.5921 -0.2286 -0.2660 -0.1885 0.4909
rnatarms -0.1087 0.4926 0.4682 0.1719 0.4968
rnatfare 0.4725 -0.1726 -0.3547 -0.0629 0.6172
rnatroad 0.1421 0.5022 0.0704 -0.1269 0.7065
rnatsoc 0.4196 -0.1209 0.3374 0.4575 0.4862

rnatchld 0.5369 -0.1049 -0.1130 0.1343 0.6699
rnatsci 0.3057 0.6059 -0.2865 0.0493 0.4549

If these 14 items all fall along one dimension, we would expect the first factor to
have a dominant effect. We can assess this by using the Eigenvalues. Remembering
that in PCF analysis the total of the eigenvalues for all factors is the number of items,
14 in this case, we can see that the first factor has an eigenvalue of 3.00, and this is 21%
of the total possible of 14. By comparison, the second factor has an eigenvalue of just
1.38. It looks like there is a strong first factor.

If you look at the matrix showing the “Factor loadings”, you can go down the column
labeled Factor1 to see the loadings for each item on the first factor (component). Notice
how many of the items have a loading greater than 0.40. The exceptions are for the
space programs, armaments, roads, and science. The rest of the items have strong
loadings and include the environment, health, crime, drugs, education, race, welfare,
social programs, and children. This seems to be a general liberal spending program,
and we could make a scale using these 10 items, dropping the other 4 items.

There is a problem with our results that many researchers ignore. Because PCF

analysis is trying to explain all the variance in the items, the uniqueness for each item
should approach zero. For example, rnatchld has a loading of 0.537 on the first factor
and this is considered satisfactory. However, the uniqueness for this item is 0.670. In
other words, the set of factors does not explain about two-thirds of the variance in
rnatchld. This calls to question the use of PCF analysis and suggests that another type
of factor analysis would be more appropriate. Although we note this problem with PCF,
we will still illustrate PCF because of its wide use in scale construction. You will need to
explore the Stata Multivariate Statistics Reference Manual to learn about these more
advanced options.

Generally, we should consider any factor that has an eigenvalue of more than 1.0.
A visual way to examine the eigenvalues is with a scree plot. This is a postestimation
command that we run just after doing a factor analysis. Select Statistics ⊲ Multivariate
analysis ⊲ Factor and principal component analysis ⊲ Postestimation ⊲ Scree plot of eigen-
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values. This dialog box gives us a variety of options, but it takes less work to enter the
command directly than it does to find the dialog box. The command is screeplot, and
it produces the graph in figure 12.1.
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Figure 12.1. Scree plot: National priorities

This scree plot starts leveling off (going across more quickly than it is going down)
with the fourth factor. This would suggest that we need three factors, and we could
drop the rest of them. Deciding on the number of factors when doing a PCF analysis is
not an easy task. We had four factors that had an eigenvalue of more than 1, although
the fourth factor was just barely over 1. The scree plot suggests that we might just
focus on the first three factors, and the scree plot makes it clear that the first factor is
dominant because there is such a big drop-off in the size of the eigenvalue between the
first and second factors.

When there is more than one factor, it is usually useful to rotate the initial solution
to see if a different solution is easier to interpret. We have two ways of doing this. One
is an orthogonal rotation where we force the factors to be uncorrelated with each other.
The other is an oblique rotation in which we allow the factors to be correlated. There
are multiple options for both types of rotation (15 for orthogonal rotation and 8 more
for oblique rotation). I will illustrate just one approach for each type.

12.6.1 Orthogonal rotation: Varimax

Stata has kept the factor analysis solution in memory, so to do an orthogonal rotation,
all we need to do is enter the command rotate (this is the default rotation). If you
forget this command, you can find it under the Statistics ⊲ Multivariate analysis ⊲ Factor
and principal component analysis ⊲ Postestimation ⊲ Rotate loadings menu. Here is what
we obtain:
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. rotate

Factor analysis/correlation Number of obs = 1082
Method: principal-component factors Retained factors = 4
Rotation: orthogonal varimax (Kaiser off) Number of params = 50

Factor Variance Difference Proportion Cumulative

Factor1 1.96564 0.29211 0.1404 0.1404
Factor2 1.67353 0.04093 0.1195 0.2599
Factor3 1.63260 0.22876 0.1166 0.3766
Factor4 1.40384 . 0.1003 0.4768

LR test: independent vs. saturated: chi2(91) = 1701.47 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Factor4 Uniqueness

rnatspac -0.1295 -0.0143 -0.1449 0.7360 0.4204
rnatenvir 0.4623 0.3085 0.0890 0.2471 0.6221
rnatheal 0.6328 0.1374 0.2186 0.0975 0.5235
rnatcity 0.0262 0.4831 0.5052 0.0839 0.5036
rnatcrime 0.0941 -0.0276 0.8066 -0.0599 0.3361
rnatdrug 0.2187 0.0910 0.6618 0.0296 0.5051
rnateduc 0.6899 0.1329 0.0932 0.0808 0.4912
rnatrace 0.2352 0.6335 0.2259 0.0389 0.4909
rnatarms 0.1103 -0.6491 0.1967 0.1763 0.4968
rnatfare 0.2255 0.5642 0.0480 0.1061 0.6172
rnatroad 0.0039 -0.1708 0.2889 0.4252 0.7065
rnatsoc 0.6718 -0.1136 0.0967 -0.2007 0.4862

rnatchld 0.4475 0.3393 0.1075 0.0559 0.6699
rnatsci 0.1777 0.0334 0.0832 0.7110 0.4549

Factor rotation matrix

Factor1 Factor2 Factor3 Factor4

Factor1 0.6858 0.4868 0.5116 0.1758
Factor2 -0.0311 -0.4717 0.1951 0.8594
Factor3 0.1676 -0.6530 0.5615 -0.4798
Factor4 0.7075 -0.3379 -0.6204 -0.0190

The second table shows the factor loadings. With a varimax rotation, we can think
of the loadings as being the estimated correlation between each item and each factor.
For example, the last item, rnatsci has a high correlation with the fourth factor, 0.711.
We hope each item has a loading of 0.40 or higher on one factor and a smaller loading on
the other factors. We use the items that have relatively large loadings on each factor to
decide on what the factor is to be called. Let’s work backward, starting with the fourth
and weakest factor. It has just two items with high loadings, rnatspac and rnatsci.
This factor might be labeled liberal spending support for science as a national priority.
Factor3 has three items with loadings higher than 0.4, namely, rnatcity, rnatcrime,
and rnatdrug. This might be called a priority on urban problems, although we need
to acknowledge that crime and drugs are problems outside of urban places as well. We
could call this liberal spending support for urban problems.
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Factor2 has four items with loadings higher than 0.4. Support for minorities
(rnatrace) and support for welfare programs (rnatfare) both have strong positive
loadings. By contrast, support for the military (rnatarms) has just as strong a loading,
but it is negative. This factor seems to be pitting together support for the disadvantaged
against support for the military. This might make sense considering the disproportional
burden minorities pay for military engagements and how military expenses can drain
money from social welfare. The problem with this factor and the third factor is that
rnatcity loads strongly on both factors. It is compounded. Although Stata distin-
guishes between these two factors, the public sees both of these as special concerns in
urban areas. We could call this factor liberal spending support for the disadvantaged.

Factor1 is the strongest, and it has five items with loadings greater than 0.4. These
involve the environment, health, education, Social Security, and child care. One might
think of this as representing a liberal–conservative factor, where liberals want to put a
higher spending priority on each of these than do conservatives.

12.6.2 Oblique rotation: Promax

Sometimes it is unreasonable to think that the factors are orthogonal. We could argue
that the first factor, which we have labeled liberalism, would be correlated with the
second factor, which we have labeled support for the disadvantaged. It is possible
through an option for the rotate command to do an oblique rotation in which we allow
the factors to be correlated. Here we illustrate one of the seven options for oblique
rotation. We will do a promax rotation by using the command rotate, promax. When
we allow the factors to be correlated, it is useful to see how correlated they are. When we
run any command in Stata, the program saves some statistics that it does not report in
the Results window. These saved statistics can be obtained with the estat command.
To obtain the correlations between the common factors in an oblique rotation, the
command is estat common. Here are the results of running these two commands in
sequence:

. rotate, promax

Factor analysis/correlation Number of obs = 1082
Method: principal-component factors Retained factors = 4
Rotation: oblique promax (Kaiser off) Number of params = 50

Factor Variance Proportion Rotated factors are correlated

Factor1 2.46691 0.1762
Factor2 1.99629 0.1426
Factor3 1.97508 0.1411
Factor4 1.53936 0.1100

LR test: independent vs. saturated: chi2(91) = 1701.47 Prob>chi2 = 0.0000
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Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Factor4 Uniqueness

rnatspac -0.1749 -0.0294 -0.2002 0.7787 0.4204
rnatenvir 0.4216 0.2378 -0.0437 0.2156 0.6221
rnatheal 0.6293 0.0361 0.0830 0.0460 0.5235
rnatcity -0.1558 0.4893 0.5021 0.0281 0.5036
rnatcrime -0.0338 -0.0575 0.8526 -0.1366 0.3361
rnatdrug 0.1026 0.0462 0.6555 -0.0410 0.5051
rnateduc 0.7179 0.0258 -0.0616 0.0370 0.4912
rnatrace 0.1043 0.6229 0.1546 -0.0083 0.4909
rnatarms 0.1864 -0.7131 0.2047 0.1762 0.4968
rnatfare 0.1329 0.5519 -0.0371 0.0790 0.6172
rnatroad -0.0535 -0.2080 0.2760 0.4176 0.7065
rnatsoc 0.7637 -0.2163 -0.0129 -0.2463 0.4862

rnatchld 0.4121 0.2818 -0.0035 0.0167 0.6699
rnatsci 0.1175 -0.0307 -0.0209 0.7162 0.4549

Factor rotation matrix

Factor1 Factor2 Factor3 Factor4

Factor1 0.8518 0.6478 0.6627 0.3341
Factor2 -0.0024 -0.4155 0.2418 0.8357
Factor3 0.1455 -0.5818 0.5015 -0.4341
Factor4 0.5032 -0.2632 -0.5008 -0.0396

. estat common

Correlation matrix of the promax(3) rotated common factors

Factors Factor1 Factor2 Factor3 Factor4

Factor1 1
Factor2 .3358 1
Factor3 .3849 .1688 1
Factor4 .1995 .1322 .2256 1

We can see that the factors are all positively correlated. The factor loadings can no
longer be interpreted as simple correlations like before, but they tend to be “cleaner”
than with the oblique rotation. By this I mean that the big loadings tend to be even
bigger, and the small loadings tend to be even smaller. This sometimes simplifies the
interpretation.

12.7 But we wanted one scale, not four scales

The rotations helped us gain insight into how people cluster different items and helped
us recognize that there are some differences between people who would support each of
these dimensions. However, we are trying to develop one scale, and we need to select
items that represent one dimension. For this, we go back to our original PCF analysis
results.
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We clearly had one dominant factor as the first principal component, and most of
the items loaded strongly on that first component. Indeed, 10 of the 14 items had
loadings over 0.4. The items that failed to meet this standard are support for the
space program, support for spending on science, support for roads, and support for
the military. Space and science are special areas, as are roads and the military. Both
liberals and conservatives may support or not support more spending for roads, space,
and science. Some liberals may not support spending on the military in general, but
many liberals and conservatives support spending to support the soldiers. By contrast,
the 10 items with strong loadings on the first factor clearly differentiate liberals and
conservatives. We could think of the 10 items as representing a general liberal-to-
conservative dimension for federal spending policies.

We need to rerun our PCF analysis, including just the 10 items. Try this as an
exercise. When we do this, the eigenvalue for the first factor is 2.941, explaining almost
30% of the variance in the set of 10 items. There are a second and third factor, but the
eigenvalue for each of them is just barely over 1. All the items load over 0.4 on the first
factor.

Not all researchers use factor analysis when they are constructing a scale. However,
if you use this approach and obtain a set of 10 items that have loadings over 0.4 on
a first factor, and the first factor has a much larger eigenvalue than the other factors,
your results of doing a reliability analysis are almost certainly going to be positive. For
these 10 items, the alpha is 0.72 and dropping any of the items would reduce alpha.

12.7.1 Scoring our variable

We have used factor analysis to identify a set of items that load highly on one dimension.
We can use the 10 items to construct our scale in one of two ways. One of these is exactly
what we did before by using the egen command to generate the row mean of the 10
items. We could do that and then do an alpha for the 10 items to estimate the reliability
of our scale.

There is a more complex alternative, which is to estimate what is called a factor
score. This is a standardized value that has a mean of 0 and a standard deviation of 1.
If our variable is normally distributed, about two-thirds of the observations will have
a score between −1.0 and +1.0, and about 95% of the observations will have a score
between −2.0 and +2.0.

An advantage of a factor score over a mean or total score is that the factor score
weights each of the items differently, based on how central it is to the first factor. For
example, education has a loading of 0.6, and health has a loading of 0.63. These should
be weighted more in the factor score than Social Security, which has a loading of 0.43.
By contrast, when we generate a mean or total for the set of items, each item counts as
if it were equally central to the concept.
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It is easy to estimate a factor score. Using the default options for the command just
after doing the PCF analysis, we enter the command predict libfscore, norotate,
where libfscore is the name we are giving the factor score.

Which method is better? There is some controversy about how to best estimate
a factor score, so I have simply used the default option, which is a regression-based
approach. Although there is some disagreement about the best method, there is rarely
a substantive difference in the result.

We should not forget that there is an advantage of a factor score over a mean or total
score in that the factor score weights less-central items less and more-central items more,
which makes sense. However, this distinction rarely makes a lot of practical difference.
The factor score may make a difference if there are some items with very large loadings,
say, 0.9, and others with very small loadings, say, 0.2. But we would probably drop the
weakest items. When the loadings do not vary a great deal, computing a factor score or
a mean/total score will produce comparable results. Here are the commands you would
use to compute a factor score and a mean score:

. factor rnatenvir rnatheal rnatcity rnatcrime rnatdrug rnateduc rnatrace
> rnatfare rnatsoc rnatchld, pcf

. predict libfscore, norotate

. egen libmean = rowmean(rnatenvir rnatheal rnatcity rnatcrime rnatdrug
> rnateduc rnatrace rnatfare rnatsoc rnatchld)

12.8 Summary

This chapter introduced some of the classical procedures for developing a scale. This
is an area of social research that often is given too little attention. Without measures
that are both reliable and valid, it is impossible for social science to develop. The intent
of this chapter was to introduce the most basic ideas for developing a scale and how to
execute basic Stata commands that help demonstrate the reliability and validity of a
scale. We covered

• How to use the egen command to generate a scale score.

• Test–retest reliability.

• How to estimate alpha and how to use it to evaluate the internal consistency
standard for a reliable scale. We saw that alpha depends on the average correlation
between the items and the number of items in the scale; too few items makes it
hard to obtain an adequate alpha, and too many items makes a questionnaire
needlessly long. We also covered the Kuder–Richardson reliability coefficient for
dichotomous items.

• Kappa as a measure of interrater reliability. We briefly discussed weighted kappa
and how kappa can be used when there are three raters.
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• Various types of validity, including expert judges, face validity, criterion-related
validity, predictive validity, and construct validity.

• Principal factor (PF) analysis and principal-component factor (PCF) analysis, with
an example of how to use PCF analysis.

• Key terminology for understanding factor analysis, along with orthogonal and
oblique rotations of the PCF analysis solution.

• How to construct a factor score and how this compares with generating a mean
score.

12.9 Exercises

1. Use gss2002 and 2006 chapter12.dta. Compute a split-half correlation for the
10 items that load most strongly on the first factor in the PCF analysis (sec-
tion 12.6). Correlate the mean of the first five items and the mean of the second
five items. Why does this correlation underestimate the reliability of the 10-item
scale?

2. Using the data from above, compute the alpha reliability for this scale. Interpret
alpha to decide if this scale is adequate. Interpret the item-test correlations, item-
rest correlations, and what happens to alpha if any of the items is dropped. Why
is alpha a better measure of reliability for this 10-item scale than the split-half
correlation?

3. Using the data from above, do an alpha analysis including all 14 items. Use the
values of alpha to drop the worst item and repeat alpha for the remaining 13
items. Repeat this process, dropping an item each time, until there is no item to
drop that would increase alpha. Compare this set of items with what the factor
analysis indicated was the best set of items.

4. Use gss2002 and 2006 chapter12.dta. Do a PCF analysis (section 12.6) of the
10 items that load on the first factor for the spending items. Interpret the results.

5. Using the results from exercise 4, create the factor score for the 10 items and use
egen to create a mean score for the 10 items. Compare the means and standard
deviations of both scores, and explain the differences. What is the correlation
between the two scale scores? What does it mean that it is so high? When would
it not be so high?

6. Use gss2002 and 2006 chapter12.dta. Do a PCF analysis of the 14 items, and
construct a factor score. Do a PCF analysis for the 10 items as done above, and
construct a factor score. Correlate these two scores, and explain why they are so
highly correlated even though they are based on different items.
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13.1 The nature of the problem

Most data that social scientists analyze have missing values. These can occur for many
reasons.

• A participant in a randomized trial may decide to withdraw from the study halfway
through data collection.

• In a panel study, some participant may have no data at one wave. For example,
they were ill when measurement was done halfway through the project. They
would have missing values on every item at that wave of the study.

• There are sensitive items that people are reluctant to report, such as criminal be-
havior. A business may conduct an anonymous survey of employees that includes
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some questions about employee theft. Although the survey is anonymous, some
employees may be reluctant to answer these questions, resent being asked these
questions, or even be suspicious of the stated anonymity of their responses.

• About 20–30% of people, when asked their income in national surveys, simply do
not give an answer.

• Interviewers sometimes accidentally skip a section of a questionnaire.

• A survey participant simply gets tired of answering questions and turns in a par-
tially complete questionnaire.

• Participants in an experimental condition do poorly on the baseline and decide
the intervention is going to be too hard so they drop out.

In the first 12 chapters of this book, we used the default approach to missing values,
which drops any participant who does not have complete information on every item used
in the analysis. This approach goes by several names, including full case analysis, case-
wise deletion, or listwise deletion. Perhaps the term listwise deletion is most common
in the social sciences. If you use 50 items in an analysis, anybody who did not give a
complete answer to all 50 items (the list) is deleted. It is not unusual for this approach
to result in 20–50% of the participants being dropped from a complex analysis. This
loss of information has two serious implications:

• There will be a substantial loss of power because of the reduced sample size. When
doing a power analysis using listwise deletion, you need to take this loss of power
into account.

• Listwise deletion can introduce substantial bias. For example, if people who are
poorly motivated at the start of an intervention drop out of a study, it will look
like the intervention was more successful than it really was.

One alternative to listwise deletion involves substituting the mean on a variable for
anybody who does not have a response. This is based on the idea that if you do not
know anything about an observation and need to guess a value, the mean is the best
guess. This has two serious limitations. People who are average on a variable are often
more likely to give an answer than are people who have an extreme value. Income
provides a good example of this. People who have extremely low income are hesitant to
reveal this. If the average income in a community were $52,500, this would be a terrible
estimate for many people who have refused to report their income because they felt that
their income was too low. The second problem with mean substitution is that when
you give several people the same score on a variable, these people have zero variance
on the variable. Sticking with income, if we have 30% of our people not reporting their
income and give each of them the same estimated value of $52,500, we will dramatically
attenuate the variance on income. Because this makes income a constant for 30% of
our sample, there is no explanatory power for 30% of our sample—they all are treated
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as if they had the same incomes. This artificially reduced variance will seriously bias
our parameter estimates. You can imagine the effect this will have on R2. We will not
be able to explain any variance in any outcome for the 30% of the people who have
identical estimated incomes. This will attenuate the variance explained by income but
can have a complex effect on other variables that have fewer missing values.

13.2 Multiple imputation and its assumptions about the
mechanism for missingness

Beginning with Stata 11, there is a comprehensive suite of commands for doing mul-
tiple imputation of missing values. These are in addition to the excellent user-written
commands ice (Royston 2004, 2009) and mim (Carlin, Galati, and Royston 2008; Roys-
ton, Carlin, and White 2009). All of these procedures make an important assumption
about the mechanism for missingness but are fairly robust against violations of these
assumptions.

When a value is missing, we need to make some assumption about the underlying
process that generated this missingness (Rubin 1987). Ideally, the missing value could
be missing completely at random (MCAR). Suppose that you have a research team
developing a survey that will be given to children in the third grade. Each member
of the team is likely to want his or her own set of variables measured. When you get
a good measure of each of these variables, your draft questionnaire explodes to 150
items. You are not likely to give a 150-item questionnaire to a third grader; they would
skip over many of the items or give answers without reading each of the items carefully.
Thoughtful completion of a 150-item questionnaire is just too much to expect of a typical
third grader. You decide the most items you can ask a third grader to expect thoughtful
responses is 50. What can you do? You could randomly select 50 items from your list of
150 and given them to the first child. Then randomly select a new set of 50 items and
give them to the second child. You could use the sample command in Stata to randomly
generate a different set of 50 items for each participant. Each child would have missing
values on 100 of the 150 items, 67% missing values, but these missing values would
be MCAR. The process that produced the missingness in this example is unrelated to
whether a child was asked any particular item or to how the child might answer any
item. Because the process that generated the missingness is completely random, there
is no bias introduced in your study.

MCAR is probably unreasonable in most research settings because people with miss-
ing values are likely to be different from people without missing values. A second mech-
anism for missingness occurs whenever the reason for missingness can be explained by
variables that are in your analysis. For example, we know that men are less likely to
answer items than are women. So long as we have gender in our model, we can explain
that part of the differential missingness. The missing data would not be MCAR, but a
variable in our analysis would explain the missingness. This missing-value type is called
missing at random (MAR).
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MAR is not to be confused with MCAR. Many researchers are confused by the name
MAR, thinking that it literally means that the missing values are like a random sample
of all values, which is not the case. The variables that explain missingness are either
included in the model or added as auxiliary variables when imputing missing values.
Fortunately, many of our studies include the key variables that predict who will and
who will not be as likely to answer individual items. We know that in addition to gen-
der, race/ethnicity and education are related to missingness, and many studies include
measures of these variables.

The MAR assumption is more reasonable than you might think. Suppose that you
have an intervention that is given at three different levels of intensity: low, medium, and
high. Let’s imagine an exercise program for people who are obese. Some people who
were randomly assigned to the low-intensity condition may decide that the intervention
is not likely to be effective because they recognize that not much is happening. They
drop out. Conversely, the high intensity of exercise may overwhelm some of the people
who were randomly assigned to the high-intensity intervention and they also drop out.
Certainly, the dropouts are not MCAR. However, they are MAR because the reason they
have missing data, namely, the intensity of the intervention, is a variable that is included
in the model.

The key to understanding multiple imputation is that the imputed missing values
will not contain any unique information once the variables in the model and the auxiliary
variables are allowed to explain the patterns of missing values and predict the score of
the missing values. The imputed values for variables with missing values are simply
consistent with the observed data. This allows us to use all available information in our
analysis.

Unfortunately, there is no test of the validity of the MAR assumption. We may
include gender, race/ethnicity, and education as more or less universal mechanism vari-
ables. If we know a pretest score and believe people who score poorly on that measure
will drop out, we want to include the pretest score even if it is not relevant to our
model. The reason we do not have an explicit test of the MAR assumption is that
we never know if some additional unobserved variable also provides a mechanism for
missingness—because we would not have the variable in our analysis. We can never be
certain that we have specified the exact right imputation model.

How can we locate important auxiliary variables? One way is to generate an indicator
variable coded as 1 if the value is missing and 0 if the value is present, regardless of what
the person’s score on the variable might be. This is a new indicator variable, and it may
or may not be related to the observed score. It is simply an indicator of missingness.
We will have one such indicator variable for each variable that has any missing values.
Next we can run a series of logistic regressions, where each of these indicator variables is
regressed on a list of potential auxiliary variables. We probably should err on the side of
inclusion and might have 10 to 20 candidate auxiliary variables. Any of these candidate
auxiliary variables that is significantly related to any of the indicator variables should be
included as an auxiliary variable. If a variable has very few missing values, the logistic
regressions will encounter estimation problems and will drop some variables and cases.
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You may want to ignore these results because there are so few missing values on those
variables anyway. Doing this makes the MAR assumption reasonable. Extensive studies
including simulations have shown that including a reasonable set of auxiliary variables
leads to excellent results.

13.3 What variables do we include when doing imputations?

Some applied researchers are reluctant to include the main outcome variable from the
analysis model when doing multiple imputation. They think including the outcome
variable is somehow cheating; they are wrong. When doing multiple imputation, it
is important to properly specify the imputation model. If we leave out any relevant
variable, we are effectively assuming that the deleted variable is unrelated to the other
variables. Because the outcome variable should be related to each of the predictors in
the model, leaving the outcome variable out of the imputation will bias correlations to
zero.

In addition to the variables in our model and the auxiliary variables, we should
include any available variables that would help us predict the score on the variable that
has missing values. Of course, this can be a problem if the additional variable has many
missing values itself. Here is a checklist:

1. Include all variables in the analysis model, including the dependent variable,

2. Include auxiliary variables that predict patterns of missingness, and

3. Include additional variables that predict a person’s score on a variable that has
missing values.

Excluding variables from the imputation process is a misspecification of the impu-
tation model. This probably does not matter much when there are few missing values;
say, no variable has more than a couple percent of missing values. But it can lead to
substantial biases when many missing values exist. This book has not fully addressed
the more advanced topic of working with complex sample designs, but in those cases, it
would also be important to include sampling characteristics such as weights and strata
(StataCorp 2013a).

All this discussion of what variables to include to properly specify the imputation
model needs to be balanced with common sense. First, you probably only want to
impute values for variables where a score would be meaningful. It would not make
sense to ask men the age they were when they had their first period. Theoretically, you
could impute this without bias, but you might want to leave it missing. People who
were not asked a question on purpose might be left missing. Many questionnaires use
complex skip patterns where you get a different set of questions based on your answers
to initial questions. If there were a legitimate skip of an item because it would make no
sense to ask it, you probably do not want to impute the missing value.
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The advice is to include a lot of variables to ensure proper specification, but this can
make matters worse if the included variables are themselves adding a lot of missing val-
ues. If you were using education as a variable in your model, but not income, you might
say income would be a good additional variable because it would help predict education.
However, income might have so many missing values that it will not be helpful. Once
you have included a reasonably large number of variables, adding additional variables
may not be helpful because of multicollinearity. If you were to put 100 variables in
your imputation model, the contribution of many of these variables may be virtually
redundant, adding complexity without materially improving the proper specification of
your imputation.

13.4 Multiple imputation

Beginning with Stata 11, there is a powerful way of working with missing values that
involves multiple imputation. The command mi will be illustrated in this chapter. This
command involves three straightforward steps:

1. Create m complete datasets by imputing the missing values. Each dataset will
have no missing values, but the values imputed for missing values will vary across
the m datasets.

2. Do your analysis in each of the m complete datasets.

3. Pool your m solutions to get one solution.

a. The parameter estimates—for example, regression coefficients—will be the
mean of their corresponding values in the m datasets.

b. The standard errors used for testing significance will combine the standard
errors from the m solutions plus the variance of the parameter estimates
across the m solutions. If each solution is yielding a very different estimate,
this uncertainty is added to the standard errors. Also the degrees of freedom
is adjusted based on the number of imputations and proportion of data that
have missing values.

Is this cheating? This really is not cheating! The uncertainty caused by missing val-
ues comes into the process at multiple points. In generating m complete datasets, each
of which will have somewhat different imputed values, the variability of the resulting
solutions is added to the estimated standard errors. If the imputations are doing a good
job, not much variance will be added. The results report the average relative increase
in the variance (RVI) of the estimates (squared standard errors) because of missing val-
ues. Because this cannot be done with a single imputation, studies that rely on single
imputation will potentially underestimate standard errors and inflate t-values. If the
RVI is close to zero, then the imputation will increase power, but power may not in-
crease over listwise deletion if the RVI is substantial. If the imputations are problematic,
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then considerable variance is added. The imputed values do not contain any additional
information than that contained in all the variables in your model and those used as
auxiliary variables. The imputed values allow Stata to use all available data. Imagine
having 10 waves of data in a study of the transition to adulthood. John participated
in all but the third wave because he was sick the day that measurement was taken. It
makes no sense to ignore all the information John provides on the other nine waves;
that would be a waste of valuable information. Using multiple imputations will usually
increase power by using all available data on all participants.

13.5 A detailed example

Stata has a comprehensive set of commands for working with missing values. We will
only consider the most general case. The Stata Multiple-Imputation Reference Manual
(StataCorp 2013a) provides details on alternatives. The most widely used approach is
using multivariate normal regression (MVN). Stata’s mi impute mvn command imple-
ments an iterative Markov chain Monte Carlo method (Schafer 1997) that is known
as data augmentation. The MVN method is designed for continuous variables. Where
there are several categorical or count variables, Stata’s mi impute chained command
implements the chained equation approach for imputing missing values (van Buuren,
Boshuizen, and Knook 1999) and provides a useful alternative. If you are using a
version earlier than Stata 12, there is a pair of user-written commands available, ice
(Royston 2004, 2009) and mim (Carlin, Galati, and Royston 2008; Royston, Carlin, and
White 2009), that have many of the same capabilities as mi impute chained and mi

estimate.

The chained equations approach has less theoretical justification than the MVN ap-
proach, but it has the advantage of using an appropriate estimator for each imputed
variable based on the measurement level and distribution characteristics of the variable,
for example, logistic regression, multinomial logistic regression, Poisson regression, neg-
ative binomial regression, and others. In practical experience, the final model estimation
usually produces similar results whether the mi impute mvn command or the mi impute

chained command is used. This section focuses on the MVN method and is intended
to be introductory. Users of multiple imputation are encouraged to consult the Stata
Multiple-Imputation Reference Manual, which provides a comprehensive treatment on
over 350 pages.

We will use a modified version of a dataset, regsmpl.dta, that is available from the
Stata menu, File ⊲ Example Datasets... ⊲ Stata 13 manual datasets. The modified version
we will use, chapter13 missing.dta, can be thought of as a nonrandom subsample of
regsmpl.dta.

We are interested in the natural log of wages (ln wagem). We have as predic-
tors the person’s highest grade completed (gradem), age (agem), total work experience
(ttl expm), time in years at his or her present job (tenurem), whether they are from
a non-SMSA area (not smsa), whether they are from the South (south), and whether
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they are black (blackm). The letter m has been appended to each variable where there
are missing values to distinguish them from the original dataset.

13.5.1 Preliminary analysis

To get an idea of the extent of the problem with chapter13 missing.dta, we use the
misstable command: first, to get a summary of missing values, and second, to get a
sense of the pattern of missingness.

. misstable summarize ln_wagem gradem agem ttl_expm tenurem not_smsa south
> blackm

Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

ln_wagem 300 1,393 393 .0682788 4.242752
gradem 148 1,545 13 0 18

agem 165 1,528 12 18 30
ttl_expm 206 1,487 >500 .0833333 15.53846
tenurem 200 1,493 74 0 15.5
blackm 99 1,594 2 0 1

This is similar to the regular summarize command except that it is for missing values.
A missing value will have a code of ., .a, .b, etc. Observations with these codes are
tabulated in the columns labeled Obs=. and Obs>.. Remember that a missing value is
recorded in a Stata dataset as an extremely high value. Within mi, a missing-value code,
. (dot), has a special meaning. It denotes the missing values eligible for imputation. If
you have a set of missing values that should not be imputed, you should record them
as extended missing values, that is, as .a, .b, etc. The column labeled Obs<. contains
the number of observations that are not missing. For example, our dependent variable
has 300 missing values we want to impute, no missing values we do not want to impute
(.a, .b, etc.), and scores on 1,393 observations. Notice that we listed all our variables
in the command, but neither not smsa nor south appear in the table. This is because
they have no missing values.

Some datasets use the extended missing-value codes .a, .b, .c, etc. One of these
extended missing-value codes might be assigned for people who answer “Don’t know”.
If you want to impute missing values for any of the extended missing-value codes, you
will want to recode it to a system missing value of dot (.) before you perform the
multiple imputation. For example, if you used .a for “Don’t know” responses on age
and want to include these responses when you do the multiple imputation, you should
type recode agem (.a = .) prior to performing multiple imputation.

Next we type the misstable patterns command. This command can produce a
lot of output when there are many different patterns. Here are the patterns that each
variable has for at least 2% of the total N .



13.5.1 Preliminary analysis 401

. misstable patterns ln_wagem gradem agem ttl_expm tenurem not_smsa south
> blackm

Missing-value patterns
(1 means complete)

Pattern
Percent 1 2 3 4 5 6

51% 1 1 1 1 1 1

8 1 1 1 1 1 0
7 1 1 0 1 1 1
6 1 1 1 0 1 1
5 1 1 1 1 0 1
4 1 0 1 1 1 1
4 0 1 1 1 1 1
3 1 1 1 1 0 0
2 1 0 1 1 1 0

(output omitted )

100%

Variables are (1) blackm (2) gradem (3) agem (4) tenurem (5) ttl_expm
(6) ln_wagem

As noted in the results, a 1 indicates that the value is present. Thus 51% of the
sample have a value on all the variables. If we did a listwise deletion, we would have
lost 49% of our cases! Below this row are different patterns. The most common pattern
is to have answered all but the sixth variable, which we see from the bottom of the
table is ln wagem. Eight percent of the participants are in this pattern. This table is
not especially useful here because there are no dominant patterns of missingness.

Next we will generate a dummy variable for each of our variables that has missing
values. We want the dummy variable to be coded 0 if the variable is observed and 1
if the variable has a missing value. We will use the misstable summarize command
again, but this time we include the generate(miss ) option. This option generates the
dummy variables and adds the prefix miss to each variable name. For example, agem
is a variable we want to impute, and miss agem will be a dummy variable coded 1 if the
person has a missing value on agem and 0 if the person has an observed value. We use
the quietly prefix because we already have seen the standard misstable summarize

output. We also use describe miss * to review the changes. Here are the commands
and results:

. quietly misstable summarize ln_wagem gradem agem ttl_expm tenurem not_smsa
> south blackm, generate(miss_)

. describe miss_*

storage display value
variable name type format label variable label

miss_ln_wagem byte %8.0g (ln_wagem>=.)
miss_gradem byte %8.0g (gradem>=.)
miss_agem byte %8.0g (agem>=.)
miss_ttl_expm byte %8.0g (ttl_expm>=.)
miss_tenurem byte %8.0g (tenurem>=.)
miss_blackm byte %8.0g (blackm>=.)
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The generate() option is nice because it not only generates the dummy variables,
but also it adds a variable label to each of the generated variables to remind us what
has been done.

We can treat each of these dummy variables as a dependent variable and do a
logistic regression to locate possible auxiliary variables. We do not have any candidates
for auxiliary variables in our dataset. Can you think of some candidates we should
have included? For instance, gender would be an auxiliary variable. Here we show
the six logistic regression commands, recognizing that, ideally, we should have included
additional variables that are not part of our model but may help explain missingness. If
your data happen to have variables with very few missing values, the logit command
will have estimation problems and will drop one or more variables and cases. You might
simply ignore those results because there are few missing values on those variables.
You are looking for the results of the logistic regressions for variables that have several
missing values, say, 5% or more.

. logit miss_ln_wagem gradem agem ttl_expm tenurem not_smsa south blackm
> if ln_wages <= .

. logit miss_gradem ln_wagem agem ttl_expm tenurem not_smsa south blackm
> if gradem <= .

. logit miss_agem ln_wagem gradem ttl_expm tenurem not_smsa south blackm
> if agem <= .

. logit miss_ttl_expm ln_wagem gradem agem tenurem not_smsa south blackm
> if ttl_expm <= .

. logit miss_tenurem ln_wagem gradem agem ttl_expm not_smsa south blackm
> if tenurem <= .

. logit miss_blackm ln_wagem gradem agem ttl_expm tenurem not_smsa south
> if blackm <= .

We are not interested in predicting the indicator variables if the person has an
extended missing value such as .a, .b, etc. We ensure the avoidance of predicting these
variables by using the if condition to drop any case that has an extended missing value
such as .a. This works because these extended missing values are recorded in the Stata
dataset as a larger value than the value assigned to the . (dot). Any variable that is
statistically significant in these logistic regressions should be included in the imputation
step. In our example, these are already included because they are all variables used in
the analysis stage.

13.5.2 Setup and multiple-imputation stage

Next we tell Stata how to arrange the imputed datasets; that is, we choose a multiple-
imputation storage style. We could store the datasets in a wide format, using the wide
style, where we have new variable names for each imputed dataset and they go to the
right. Or we could store the datasets in a long format, where the datasets are stacked.
Using the long style, we have our initial dataset, labeled 0. Below that, we have a
dataset labeled 1; below that is a dataset labeled 2; and so on. We will use this long
style in this example.
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You could imagine how the stacked datasets could get very, very long. If we imputed
100 datasets on a base sample of 10,000 observations, we would need 1,000,000 records.
Stata has a way of minimizing the storage issues with this approach by including only
the records that have imputed values in each of the subsequent sets. In our example, we
would have all our records in the first set, labeled 0. In the second and subsequent sets,
we would only have cases for the 49% of the participants who had missing values. This
would cut the number of records in our file in half. The style containing the complete
sets is flong (full and long), which is the style we will use; the style that only has
the cases with missing values is mlong (marginal and long). If you run out of memory
space, you could change from the flong to the mlong style. Stata has other storage
styles described in the Stata Multiple-Imputation Reference Manual (StataCorp 2013a).

To prepare our data for multiple imputation, we need to run three commands:

. mi set flong

. mi register imputed ln_wagem gradem agem ttl_expm tenurem blackm

. mi register regular not_smsa south

The mi set flong command tells Stata how to arrange our multiple datasets. The
mi register imputed command registers all the variables that have missing values and
need to be imputed. The mi register regular command registers all the variables
that have no missing values or for which we do not want to impute values.

We are now ready to create the multiple completed datasets. Here we use the
mi impute command to obtain imputations and the rseed() option to set a seed at
some arbitrary value so that the results can be duplicated. You can enter any value in
rseed(); I use 2121 in this example.

. mi impute mvn ln_wagem gradem agem ttl_expm tenurem blackm, add(20) rseed(2121)

Performing EM optimization:
observed log likelihood = -5347.0692 at iteration 12

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 20
Multivariate normal regression added = 20
Imputed: m=1 through m=20 updated = 0

Prior: uniform Iterations = 2000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total

ln_wagem 1393 300 300 1693
gradem 1545 148 148 1693

agem 1528 165 165 1693
ttl_expm 1487 206 206 1693
tenurem 1493 200 200 1693
blackm 1594 99 99 1693

(complete + incomplete = total; imputed is the minimum across m

of the number of filled-in observations.)
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The mi impute mvn command specifies that we are using the multivariate normal
model to impute missing values. It would be good to check that the variables are
reasonably normal. With a large sample, violations of this assumed normality may not
be too serious. We specified the add(20) option to generate 20 datasets in addition to
the initial dataset that has missing values. Each of the 20 datasets will be complete; each
will have no missing values. The imputed values will vary from one of these datasets to
the next.

Why did we impute 20 complete datasets? Much of the literature, especially the
early applications, uses relatively few imputed datasets, often picking m = 5. Early
software was much harder to use than Stata is, so this might have been one motivation
for a small m. The theory behind multiple imputation as presented by Rubin (1987)
was based on an infinite number of imputed, complete datasets. However, high relative
efficiency for even small m has been documented when the assumptions are appropri-
ate. Rubin (1987) and van Buuren, Boshuizen, and Knook (1999) report that m = 5
can produce 95% relative efficiency when half the values are missing, given that the
MAR assumption is justified. However, others have shown cases where a much larger
value of m is needed (Kenward and Carpenter 2007). The Stata Multiple-Imputation
Reference Manual (StataCorp 2013a) recommends an m of at least 20. Because of
the ease with which Stata can implement multiple imputations, you should adhere to
this recommendation and may experiment with even larger values of m. If you obtain
comparable results with 10, 20, 40, and 60 imputed datasets, this is reassuring. The
multiple imputation and the analysis take a bit longer with more imputations, but with
modern computers, there is no reason to limit the number to 5. The current example
took 50 seconds for the imputation stage and 3 seconds for the analysis stage (described
later) using m = 20, compared with just over 3 minutes and 23 seconds when estimated
using m = 100. This was using a not-so-new iMac with five other programs running in
the background. There is rapidly decreasing marginal utility to making m even larger.
However, the cost of computation time is fairly small for making m large.

Along with the creation of our 20 new complete datasets, the mi set command
created three new variables at the bottom of the list of variables in our Variables window.
mi id is a new ID variable. It ranges from 1 for our first case to 1,693 for our last case.
If you do a tabulation of it, you will see that each ID value has a frequency of 21; that
is, 1 for each of our 20 imputed datasets and 1 for our original dataset. Our new data
file now has 35,553 observations. The mi miss variable is simply an indicator variable
coded 0 if there are no missing values and 1 if there are any in the original data. It
contains a missing value for all records in imputed data. As we saw before, 51.09%
of the observations had no missing values. The mi m variable identifies datasets and
ranges from 0 to 20. All 1,693 cases in the first imputed dataset have mi m = 1; all
1,693 cases in the second imputed dataset have mi m = 2; and so on. Original records
have mi m = 0.

The mi impute mvn command uses data augmentation, an iterative imputation
method, to fill in missing values. Thus it is important to check the convergence of
data augmentation after imputation; however, a discussion of this step is beyond the
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scope of this book. For details, you can refer to Convergence of the MCMC method in
[MI] mi impute mvn.

13.5.3 The analysis stage

Now we are ready to run our 20 regressions and pool the results. We use the prefix
command mi estimate: in front of the regression command. Stata then knows to do
the 20 regressions and pool the results. We have added the option dftable to the
mi estimate prefix command to see coefficient-specific degrees of freedom. You might
want to run this without the dftable option to obtain confidence intervals. Here are
the command and results:

. mi estimate, dftable: regress ln_wagem gradem agem ttl_expm tenurem not_smsa
> south blackm

Multiple-imputation estimates Imputations = 20
Linear regression Number of obs = 1693

Average RVI = 0.4925
Largest FMI = 0.4706
Complete DF = 1685

DF adjustment: Small sample DF: min = 82.21
avg = 188.33
max = 340.51

Model F test: Equal FMI F( 7, 672.6) = 66.25
Within VCE type: OLS Prob > F = 0.0000

% Increase
ln_wagem Coef. Std. Err. t P>|t| DF Std. Err.

gradem .0764098 .0066494 11.49 0.000 97.1 31.27
agem .0201299 .0041309 4.87 0.000 118.3 26.73

ttl_expm .0155184 .0104858 1.48 0.143 82.2 35.90
tenurem .062319 .0091294 6.83 0.000 129.3 24.97

not_smsa -.1124143 .0239484 -4.69 0.000 285.4 13.81
south -.0831899 .0222689 -3.74 0.000 323.9 12.55

blackm -.0247194 .0243708 -1.01 0.311 340.5 12.08
_cons .133795 .1084921 1.23 0.220 130.0 24.87

These results look similar to what we get with the regress command on one dataset,
but some information is additional and some information is missing. On the right, we
have the number of imputations, 20; the number of observations after imputations,
1,693; and what the degrees of freedom would have been if there were no missing values,
1,685. We have a different number of degrees of freedom for different variables, ranging
from 82.2 to 340.5. These numbers are estimated using complex formulas described in
the Stata Multiple-Imputation Reference Manual (StataCorp 2013a). The calculated
degrees of freedom depends on the number of imputations and, loosely speaking, the
rates of missing values for different variables, because both of these factors influence
our inference. If you repeat this analysis using more imputations, you will have more
information for estimating the parameters and will gain additional degrees of freedom.
For example, repeating this analysis with 100 imputations rather than 20 increases the
average degrees of freedom from the 188.33 reported here to 597.03 degrees of freedom.
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The dftable option gives us the specific degrees of freedom for each of the predictors.
Although having more imputations will increase the degrees of freedom, this does not
necessarily result in a higher level of statistical significance.

There is an overall F test of the model, F (7, 672.6) = 66.25, p < 0.001, and you
will notice an adjustment for the degrees of freedom. In a separate analysis using 100
imputations, the F (7, 1374.2) = 69.58, p < 0.001. In both cases, the model is highly
significant. We could report the significance for each of the variables. For instance,
we could say that each additional year of tenure on a job increases the natural log of
income by 0.06, t(129.3) = 6.83, p < 0.001. In writing a report, you should explain
that the degrees of freedom has been adjusted based on the number of imputations and
fractions of information about parameter estimates lost because of missing values.

The average RVI = 0.4925 line is an estimate of the average relative inflation in
variance of the estimates, that is, in the squared standard error, that is caused by
the missing values. Ideally, this would be close to zero. The obtained value of 0.4925
is relatively high because we had missing values for almost half the participants. mi

estimate explicitly recognizes this inflation, which increases the standard errors, thus
reducing the t-values and increasing the probabilities. This increase in the standard
errors is conservative and an example of how this approach is not cheating or taking
advantage of made-up new data.

13.5.4 For those who want an R
2 and standardized βs

Stata’s mi estimate command does not pool the R2 that is obtained for each of the 20
solutions. It also does not pool the standardized beta weights, βs. Rubin’s rule (1987)
for pooling may not apply to pooling the R2s and the βs—both parameter estimates
are not normally distributed because of the upper limit of 1.0 (although there are rare
cases where βs can exceed 1). However, the values of these coefficients in social-science
research rarely approach these limits, and a simple average may be satisfactory. Because
the sampling distribution of the R2 and βs may have a substantial negative skew, a
better solution is to first transform the values by using an inverse hyperbolic-tangent
transformation. Then the final estimate is transformed back by using the hyperbolic
tangent. This approach was originally recommended in Fisher’s tests of correlations
and is sometimes labeled a z transformation. This approach is recommended by Harel
(2009).

Fortunately, there is a user-written command, mibeta, that was written by Yulia
Marchenko. You can find and install this command by typing search mibeta. Let’s say
that we want to estimate how much variance in ln wage our set of predictors explains.
We need a pooled estimate of R2. We might also be interested in the standardized β
for education. We can use the mibeta command to obtain these estimates.
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. mibeta ln_wagem gradem agem ttl_expm tenurem not_smsa south blackm, fisherz
> miopts(vartable)

Multiple-imputation estimates Imputations = 20
Linear regression

Variance information

Imputation variance Relative
Within Between Total RVI FMI efficiency

gradem .000026 .000018 .000044 .723264 .430175 .978944
agem .000011 6.1e-06 .000017 .606162 .386527 .98104

ttl_expm .00006 .000048 .00011 .846905 .470153 .977032
tenurem .000053 .000029 .000083 .561662 .368201 .981923

not_smsa .000443 .000125 .000574 .295244 .232133 .988527
south .000391 .000099 .000496 .266842 .214296 .989399

blackm .000473 .000115 .000594 .256283 .207465 .989733
_cons .007549 .00402 .011771 .559136 .367129 .981974

Note: FMIs are based on Rubin’s large-sample degrees of freedom.

Multiple-imputation estimates Imputations = 20
Linear regression Number of obs = 1693

Average RVI = 0.4925
Largest FMI = 0.4702
Complete DF = 1685

DF adjustment: Small sample DF: min = 82.21
avg = 188.33
max = 340.51

Model F test: Equal FMI F( 7, 672.6) = 66.25
Within VCE type: OLS Prob > F = 0.0000

ln_wagem Coef. Std. Err. t P>|t| [95% Conf. Interval]

gradem .0764098 .0066494 11.49 0.000 .0632128 .0896067
agem .0201299 .0041309 4.87 0.000 .0119499 .02831

ttl_expm .0155184 .0104858 1.48 0.143 -.0053404 .0363772
tenurem .062319 .0091294 6.83 0.000 .0442566 .0803814

not_smsa -.1124143 .0239484 -4.69 0.000 -.1595523 -.0652764
south -.0831899 .0222689 -3.74 0.000 -.127 -.0393799

blackm -.0247194 .0243708 -1.01 0.311 -.0726557 .0232169
_cons .133795 .1084921 1.23 0.220 -.0808444 .3484344

Standardized coefficients and R-squared
Summary statistics over 20 imputations

mean* min p25 median p75 max

gradem .3199883 .276 .3119789 .3182819 .3356211 .347
agem .1394257 .106 .1275456 .138892 .1534131 .167

ttl_expm .0556211 .0167 .0358535 .0590751 .0712295 .104
tenurem .2253669 .189 .2165822 .2267747 .2371736 .265

not_smsa -.1132504 -.133 -.1215403 -.1120459 -.1060444 -.093
south -.0927989 -.118 -.1008746 -.0927794 -.0842485 -.0755

blackm -.0248217 -.0475 -.0267832 -.0223056 -.0204527 -.00461

R-square .2937282 .273 .287215 .2932148 .3003806 .316
Adj R-square .2907927 .27 .2842539 .2902786 .2974742 .313

* based on Fisher’s z transformation
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Notice that we have included two options. The fisherz option implements the z
transformation to help normalize the sampling distribution. The miopts(vartable)

option implements an option from the mi estimate command’s set of options. This
option provides very helpful additional information that we discuss below. The mean
R2 = 0.294 and the mean standardized weight for gradem is 0.320. We should not treat
these values as formal parameter estimates, but they give a sense of how much of the
variance we can explain and the approximate standardized strength for the effect of
education. To see if means are reasonable estimates, we can look at other summaries of
the distribution of R2 and the standardized β weights over imputed data as reported
by mibeta.

From the results table labeled “Standardized coefficients and R-squared”, we have
some useful information to help us assess the quality of our estimates. We have seen
that the β for gradem is 0.320. To the right of that in the table, we see that for over
20 regressions, the minimum value is 0.276, the 25th percentile is 0.312, the median is
0.318 (close to the mean, suggesting that the sampling distribution is symmetrical), the
75th percentile is 0.336, and the maximum value is 0.347. We can conclude that the
estimate is quite stable across the 20 imputations. Even more useful is the top table
in the results, which is labeled “Variance information”. This information is available
because we used the miopts(vartable) option. Perhaps the most useful information
in this table is in the last column on the right, “Relative efficiency”. For gradem, the
relative efficiency is 0.979. This is how efficient our estimate is when using 20 imputed
datasets, compared with what we would have obtained with use of an infinite number
of imputed datasets. When this value is very close to 1.000, we can be confident that m
is large enough. There is no convention as to how close this needs to be to 1.000, but a
value of at least 0.98 is reasonable. In general, when the variance in an estimate from
one dataset to another (between the datasets) is fairly large, increasing the value of m
will be very beneficial. When there is little variance between datasets, there is little to
gain by using a large value of m.

13.5.5 When impossible values are imputed: Binary variables, squares,
and interactions

The MVN assumption assumes a multivariate normal distribution. As a consequence, we
may have imputed values that are outside the possible range of a variable. Remember
that a normal distribution can range from minus infinity to plus infinity, and this is not
the case with any of our variables. Here is a summary of the 33,860 observations in
our 20 completed datasets. Notice the restriction of if mi m > 0 so that we do not
include the original dataset in our summary results. The dataset included the original
data where the value of mi m was 0 and we are only interested in the 20 created datasets;
that is, mi m equals 1 to 20.
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. summarize ln_wagem gradem agem ttl_expm tenurem not_smsa south blackm
> if _mi_m > 0

Variable Obs Mean Std. Dev. Min Max

ln_wagem 33860 1.612628 .4384923 -.2661006 4.242752
gradem 33860 12.15729 1.835523 0 18.23831

agem 33860 22.81233 3.03532 14.77328 33.67864
ttl_expm 33860 3.336014 1.569637 -1.765149 15.53846
tenurem 33860 1.736031 1.585292 -3.53045 15.5

not_smsa 33860 .2658004 .441765 0 1
south 33860 .3951565 .4888915 0 1

blackm 33860 .2621881 .4402057 -1.512018 1.606588

The scores for education, gradem, range from 0 to 18.238. In our original data,
the range was 0 to 18. Because a normal distribution does not have a fixed upper or
lower limit, we can understand how we might have an imputed value of slightly over the
maximum. In our original data, agem ranged from 18 to 30, and here it ranged from
14.773 to 33.679. This change is a bit more worrisome because the study was intended
to be limited to people ages 18 to 30. The minimum imputed value for tenurem is
−3.530, which is confusing. A person cannot be on a job for less than 0 years. If we do
a tabulation on tenurem, we see that these impossible negative values are rare, so the
imputed values may not be too problematic. We might be more concerned about the
blackm variable, an indicator variable coded as 1 if the person is black and 0 otherwise.
A minimum value of −1.512 and a maximum value of 1.607 for blackm make no intuitive
sense.

We know the cause of these “impossible” values. It is that the MVN solution does
not limit the imputed values to be in a specified range as with tenurem or to only
take on certain values as with blackm. There has been considerable controversy over
how to handle the “impossible” values. One approach that was widely used in early
applications of multiple imputation involved fixing the problem by restricting the range
of continuous variables or by rounding to the nearest integer for binary variables. We
could take all the negative values for tenurem and change them to 0. We could change
the agem scores below 18 to 18 and those above 30 to 30. We could assign anybody
who has a score on blackm that is greater than 0.5 a value of 1 and anybody who has
a score of 0.5 or lower a value of 0. Intuitively, this is an appealing solution.

More recently, the choice of how to handle “impossible” values is to leave them alone.
Although this may not seem intuitively reasonable, it may be the best solution. The
imputation model and the analysis model need to be compatible or else the results will
be biased. If the analysis stage, where we did the regressions, used different datasets
(because of the rounding or truncating) than the one generated by the imputation
model, then the results would be biased (Horton, Lipsitz, and Parzen 2003). Today,
the recommended approach is to leave the imputed values as they are. Statisticians will
continue to work on this problem, but usually the conclusions you draw will not change
whether you make the adjustment or not.

Not illustrated here is what you do when you have an interaction term (X1X2) or
squared variables (X2). The recommended approach for these situations is to create
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the interactions or squared variables in the original dataset, before doing the multiple-
imputation stage (von Hippel 2009). Because of the way the interactions and squared
terms are imputed as distinct variables, the values of the imputed X2 may not be equal
to the value of the imputed X times itself. You might have something like an imputed
X = 10.3 and an imputed X2 = 98.6. Similarly, the values of the imputed X1X2 may
not equal the value of the imputed X1 times the imputed X2. It would be tempting
to leave the interaction terms and squared terms out of the original dataset, do the
imputation, and then compute them such that if an imputed X = 10.3, the X2 will
equal 106.09. X2 will then be defined as a “passive” variable in Stata. This is not
recommended; von Hippel has shown that doing this will introduce a bias. The best
general advice is to impute everything and do nothing to change any imputed values
for the analysis stage.

13.6 Summary

We have only touched the surface of Stata’s multiple-imputation capabilities. The Stata
Multiple-Imputation Reference Manual (StataCorp 2013a) is well written and gives
numerous examples for more specialized applications. I included this brief introduction
to multiple imputation because it would serve most needs of researchers.

Professional journals are increasingly demanding that some sort of imputation be
done so that all available data can be used in the analysis. Several simulations sug-
gest that most of the modern approaches yield remarkably similar findings. We have
discussed some issues, such as rounding imputed values for binary variables. There is
an enormous amount of scientific investigation by statisticians into what is the optimal
approach. It can be shown that there are situations where different strategies lead to
very different parameter estimates and tests of significance. However, in most applica-
tions, one type of multiple imputation produces results that are similar to other types.
We may be worrying about more subtle distinctions than is necessary. The multivariate
normal approach outlined in this chapter should work for a wide range of situations;
see, for example, Allison (2001).

I only illustrated the use of the regress command with the mi estimate prefix com-
mand. This one example can be used in a wide range of research applications. However,
the mi estimate prefix command works with many Stata commands. Among those not
covered in this book is logit used for logistic regression. The Stata Multiple-Imputation
Reference Manual (StataCorp 2013a) lists 43 estimation commands in Stata that work
with mi estimate prefix. These cover count models, ordinal models, categorical models,
quantile regression models, specialized regression commands, descriptive statistics for
means, proportions and ratios, many survey regression commands, and many panel-data
regression commands.
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Here is a checklist of what we need to do for multiple imputation:

1. Include in the imputation model all variables that will be used in the analysis
model, including the dependent variable.

2. Include auxiliary variables that predict patterns of missingness.

3. Include additional variables that predict a person’s score on a variable that has
missing values.

4. Drop observations that have variables you do not want to impute because the item
was deliberately skipped.

5. Avoid adding variables that have a lot of missing values themselves because in-
cluding them may increase the uncertainty of your imputations and greatly reduce
your degrees of freedom.

6. Explore patterns of missing values to see if there are certain variables or combi-
nations of variables that explain the lion’s share of missing values.

7. Although you should include all important variables in the imputation stage, in-
cluding too many can create estimation problems due to multicollinearity.

8. Generate all interactions and squared variables in the original dataset before the
imputation stage.

9. Impute a reasonable number of completed datasets, at least m = 20, and experi-
ment with different numbers of imputed datasets.

10. Do not change the imputed values as you move to the analysis stage, even if they
seem to be “impossible” values.

11. Use the mibeta command if you want pooled estimates of R2 and the βs and also
to obtain the relative efficiency of the value you have used for m.

Those who have been plagued by missing-data problems may think these procedures
can change lead to gold. They cannot. These procedures should be used with caution,
and the MAR assumption should be given serious consideration. Properly specified
imputation models, however, can do better than any of the alternative ways of working
with missing values.

13.7 Exercises

1. Describe a study in which the data are MCAR.

2. Describe a regression model using survey data in which the data are not MCAR

but are instead MAR.
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3. How can you have an important auxiliary variable that is not related to a person’s
score? Why is such a variable important to include when doing the imputations?

4. If you use m = 10, what statistical results would indicate that you need a much
larger m?

5. A person says that when you get significant results by using multiple imputation,
it is just because you made up data. Give an intuitive explanation of why this
argument is wrong.

6. Why do you lose degrees of freedom when you do multiple imputations? When
would you lose the most degrees of freedom?

7. Use the dataset we used in chapter 10, ops2004.dta. Using this dataset, we
saw a multiple regression predicting a person’s concern for the environment by
using their education, income, involvement in the community, health problems,
and how much they feel the environment impacts people’s health. Answer each of
the following:

a. How much missing data are there? Which variables contain the biggest num-
ber of missing values?

b. Past research has shown that males are less likely to complete all questions.
Evaluate whether gender needs to be included as an auxiliary variable. Why
is it a good idea to include gender as an auxiliary variable based on this
analysis?

c. Impute 20 datasets and include the auxiliary variable. How can you do this
so that you get the same result if you run your do-file another time?

d. Use the mi estimate prefix command to do the regression and compare this
with the results reported in chapter 10.

e. Why does income have far fewer degrees of freedom than do the other vari-
ables?

8. Repeat exercise 7, but use mibeta to obtain estimates for R2 and for the βs.
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14.1 Ordinary least-squares regression models using sem

14.1.1 Using the SEM Builder to fit a basic regression model

14.2 A quick way to draw a regression model and a fresh start

14.2.1 Using sem without the SEM Builder

14.3 The gsem command for logistic regression

14.3.1 Fitting the model using the logit command

14.3.2 Fitting the model using the gsem command

14.4 Path analysis and mediation

14.5 Conclusions and what is next for the sem command

14.6 Exercises

The sem and gsem commands extend everything we have covered with regression
and factor analysis. These commands are more fully discussed in terms of structural
equation modeling (SEM) for continuous outcome variables and growth curve analysis
in Acock (2013). In this chapter, we will show how to use the sem and gsem commands
to fit basic regression models and logistic regression models, and we will extend this to
an introduction to path analysis including mediation models with direct and indirect
effects. We will not cover latent variables, confirmatory factor analysis, or growth curves;
see Acock (2013) for more information on these topics.

14.1 Ordinary least-squares regression models using sem

The application of sem to models that we have been fitting using the regress command
offers two distinct advantages:

1. Stata’s SEM Builder provides a production-quality graphic interface that provides
an enhanced way to report your regression results using a figure rather than a
table. Many readers find that a figure is a great way to understand what is
happening in a regression model and a valuable tool for remembering their work.

413
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2. In the presence of missing data when the missing at random (MAR) assumption and
the assumption of multivariate normality are both reasonable, the sem command
provides a much simpler way of handling missing values than the use of multi-
ple imputation that we covered in chapter 13. Sometimes called full-information
maximum likelihood (FIML), this method uses all available data and is equivalent
to multiple imputation when the number of imputed datasets approaches infinity
(Graham et al. 2007). Like multiple imputation, this approach works best with
large samples. As with multiple imputation, the FIML estimation makes the less
restrictive assumption about the missing values than listwise (casewise) deletion,
which is the default with the regress command. Where the regress command’s
default of listwise deletion assumes missing completely at random (MCAR), the
FIML approach assumes only MAR. This important distinction was discussed in
chapter 13.

To show how to use sem to represent a basic regression model, we will use data from
the Flourishing Families Study (Day and Acock 2013). I have modified the data to
simplify the example so generalizations of our findings are problematic; thus our results
will not replicate the results obtained by analyzing the unmodified Flourishing Families
Study Data. To be in the Flourishing Families Study, the women had to have a child
who was approaching adolescence, so this does not represent a nationally representative
sample of adult women. We are predicting a mother’s body mass index (BMI). Many
variables are related to BMI among women. For this example, we have selected five
predictors (independent variables). These include the mother’s age, the number of
children in the household, the natural log of the family income, the mother’s education,
and how often the family members eat at fast food restaurants. We hypothesize that
the BMI is positively associated with age, the number of children, and how often the
family eats at fast food restaurants. Conversely, we hypothesize that BMI is negatively
associated with the log of household income and the mother’s education. If we wanted
to use the regress command, we would type

. use http://www.stata-press.com/data/agis4/flourishing_bmi.dta

. regress bmi age children income educ quickfood, beta

Source SS df MS Number of obs = 448
F( 5, 442) = 16.92

Model 2921.16092 5 584.232183 Prob > F = 0.0000
Residual 15264.4284 442 34.5349059 R-squared = 0.1606

Adj R-squared = 0.1511
Total 18185.5893 447 40.683645 Root MSE = 5.8766

bmi Coef. Std. Err. t P>|t| Beta

age .0849882 .0471673 1.80 0.072 .085525
children .6167338 .2881417 2.14 0.033 .0983799
incomeln -1.750445 .4360436 -4.01 0.000 -.2080029

educ -.6900809 .2208598 -3.12 0.002 -.1627779
quickfood .9260216 .2496412 3.71 0.000 .1716324

_cons 37.48497 3.890134 9.64 0.000 .
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We obtain an R2 = 0.161, F (5, 442) = 16.92, and p < 0.001. The p-values are for a
two-tailed test. Because our hypotheses are all one-tailed tests and because the sign of
the estimated coefficient is in the same direction as our hypotheses, we cut the p-values
in half. Thus all the variables have a p < 0.05 using a one-tailed test. When using the
more conservative two-tailed test, all the variables except for age have a p < 0.05, and
age is marginally significant, p < 0.10. The standardized beta’s (β’s) are fairly small,
but all of them are in the predicted direction.

14.1.1 Using the SEM Builder to fit a basic regression model

If you type the command sembuilder in the Command window, the graphic interface
for building sem and gsem models will open. Figure 14.1 shows part of the SEM Builder
as it appears on a Mac.

Figure 14.1. SEM Builder on a Mac

The interface is essentially the same when using Windows or Unix. The Mac requires
you to click on the Tools icon in the upper-right corner to open the menus, whereas
Windows and Unix have the names of the menus distributed across the top of the
screen. The menus include Object, Estimation, Settings, and View. Before you start
using the Builder, make sure you have the dataset open, which we did by typing

. use http://www.stata-press.com/data/agis4/flourishing_bmi.dta

The drawing tools appear on the left side of the Builder. Let’s start drawing our
model. We will do this the hard way at first to get you familiar with the interface. We

have one dependent variable, bmi, and five predictors. Click on the rectangle tool, ;
it is third down on the drawing toolbar on the left side. Next click on the interface
where you want to locate each of the six variables. (Hint: look at figure 14.7 to see
the finished drawing and how we should arrange the rectangles.) Generally, we place
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independent variables on the left side of the figure and the dependent variable on the
right side of the figure. If your five rectangles for the independent variables are not

aligned, you can click on the selection tool, , and drag over the five predictors. Then
select Object ⊲ Align ⊲ Vertical Left (remember on a Mac you first need to click on the
Tool icon) from the Builder menu.

I used the blue grid lines to help me set up the figure. This grid should appear by
default, but if it does not, you can select View ⊲ Show Grid to change the setting. The
grid will not appear when you print or copy your drawing.

Next click on the tool with the straight line with an arrow on the right side, . It
is the seventh tool down on the drawing toolbar. You use this drawing tool to draw the
paths. If you click on the edge of a rectangle, it turns green. Drag to the dependent
variable, and when it turns green, you let go. Notice that the Builder knows to add the
error term for your dependent variable. Figure 14.2 shows the diagram thus far:

Figure 14.2. Initial SEM diagram

Click on the selection tool and then click on one of the rectangles. Just above the
drawing area on the left side of the screen is a box labeled Variable. You can type the
name of the variable, or you can use the drop-down menu and select the variable from
the list. Click on the next rectangle and enter that variable name. Do this so that each
rectangle has a variable name inserted. You must use the exact variable names.

One thing is missing. In regression, the independent variables are often correlated.
For example, older mothers might have more children, or mothers with more education
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might eat fast food less often. We should allow for all the independent variables to
be correlated. Stata will do this automatically and drawing these does not change the
assumptions of the model, but for now let’s see how we can insert these correlations.

Click on the tool with the curved line with an arrow at both ends, . When there are
several independent variables, entering all of these correlations becomes tedious. I start
at the bottom and enter all adjacent variable correlations. That is, quickfood up to
educ, educ up to incomeln, etc. When I connect quickfood to educ, going up, three
tiny circles appear. One circle appears at each arrow point, and one circle appears to
the left of the curved line. The circles at the arrows can be used to move the place
where the arrows connect to the rectangles. The circle to the left of the line can be
used to move the arc so it is steeper or flatter. If you started with educ and drew
the arc down to quickfood, you could use the tiny circle to move the arc to the other
side. Next I start at quickfood and link it to incomeln, then educ to children, and
then incomeln to age. I then connect quickfood to children and educ to children.
Finally, I connect quickfood with age. Figure 14.3 shows what we have done:

age

children

incomeln

educ

quickfood

bmi ε1

Figure 14.3. Adding variable names and correlations of independent variables

The first few times you add the correlations among the independent variables you
may not have it appear as neat as in figure 14.3. You can use the tiny circles to move
things around. In this example, there are four arrows attached to each independent
variable and you can space them evenly.

We are ready to fit our model. Select Estimation ⊲ Estimate... (on a Mac, select
Tools ⊲ Estimation ⊲ Estimate...) from the Builder menu. The first tab in the dialog
box that opens, Model, has three estimation options. The Maximum likelihood method
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is similar to the regress command in that it uses listwise deletion; it is different in
that it uses maximum likelihood estimation rather than ordinary least-squares (OLS)
estimation. The Maximum likelihood with missing values method indicates to select a
FIML solution so that all available information is used. The Asymptotic distribution
free method does not assume normality. We will check the radio button for Maximum
likelihood with missing values so that we use all available data.

On the Group tab, we will select Standard analysis (no groups), because we only
have one group. If we wanted to fit this model on mothers and on fathers, we could
select Group analysis and then use gender as the Group variable. The if/in tab allows
you to restrict the sample, such as restricting it to mothers who are under 50 years old
or to mothers who live in a certain geographic area. The Weights tab allows you to
weight the data by using a weighting variable, if this were appropriate.

The SE/Robust tab provides several options for estimating the standard errors. Nei-
ther the Robust standard-error type nor the Bootstrap standard-error type will help if
your parameter estimates are biased, but these types can help estimate unbiased stan-
dard errors and thus tests of significance without assuming normality of error terms. It
should be stressed that neither Robust nor Bootstrap will give you unbiased parameter
estimates if the assumptions of MAR and normality are violated. If we selected Boot-
strap, we could select the number of replications, say, 200. This would fit the model on
200 subsamples of our data and then pool those results to obtain unbiased standard er-
rors. This can take considerable time to run. By selecting Bootstrap, we also can enter
a cluster variable. If we had a sample of 20 children from each of 15 schools, we could
enter the school variable name as the cluster variable. If we had clustered data and
wanted a robust solution, we could have selected Clustered robust as the standard-error
type. For our example, we will use the Default standard errors type.

On the Reporting tab, check the box for Display standardized coefficients and values,
which will report beta weights. Figure 14.4 shows our results.
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Figure 14.4. Result without any reformatting

These results are a bit overwhelming, and we should eliminate some of the reported
coefficients. Select Settings ⊲ Variables ⊲ All observed.... If we had variable names that
were too long to fit in the rectangles, we could change the default size of 0.60 inches
by 0.38 inches to be a little wider, say, 0.80 inches by 0.38 inches. On the Results tab
under the Exogenous variables section, change Variance to None and Mean to None.
Under the Endogenous variables section, change Intercept to None. Click on OK. The
term exogenous refers to independent variables or predictors that are not explained by
our model. Their explanation is external to the model. The term endogenous refers to
the dependent or outcome variable that is explained by our model.

It would be nice to have all the beta weights have the same number of decimal places.
Let’s fix these at 3 digits to the right of the decimal place. Select Settings ⊲ Connections
⊲ Paths.... On the Results tab, click on the Result 1... button in the Appearance of
results section. In the resulting dialog box, change the Format from %7.2g to %5.3f

and then click on OK twice.

It is nice to indicate the significance level of each path. We are no longer using OLS

regression where t tests were used. With maximum likelihood estimation, we rely on
z tests. The values will be different from the t-tests values because they are z tests,
but also because we obtain different point estimates and standard errors when using all
available information (or FIML) in this example. The results would be more similar to
the t tests had we used the default maximum likelihood estimation, which does listwise

deletion. Using the Select tool, , click on the first path, which goes from age to bmi.
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On the right side of the Builder, the details appear when you click on a parameter
estimate in the model. Click on the 0.103 for the path from age to bmi. We are
interested in the “Std. Coef” results: z = 2.210 and p = 0.027. This standardized
coefficient is significantly different from zero based on a two-tailed test and using a
0.05 level. The regress command only reports one significance level, and this is valid
only for the unstandardized coefficient, although many researchers also use it for the
standardized solution as well. The sem command offers separate probabilities for the
unstandardized and standardized solutions. The sem results happen to be stronger than
the regress results for age, but this will not always be the case. For example, the effect
of children is now weaker and less significant (although both variables are significant
using a one-tailed test here and with the OLS regression result).

We can signify the level of significance using one-tailed tests by selecting the Text

tool, , from the drawing tools. Click just to the right of the 0.103, and in the
resulting textbox, type a single asterisk, *. Click on OK, and then repeat this for each
path, entering the appropriate one-tailed level of significance—* for 0.05, ** for 0.01,
or *** for 0.001. If the asterisks are not exactly where you want them, you can click on
the Select tool, and then click on the asterisk and move it to exactly where you want
it. Figure 14.5 shows what we have so far.
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Figure 14.5. Intermediate results

Notice the correlations among our independent variables. With five independent
variables, this is messy, and if you had more independent variables, the correlations
would be unreadable. We should inspect these correlations ourselves. We can see that
more-educated mothers eat at fast food restaurants less frequently than less-educated
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mothers do. However, including these correlations in the figure is too much detail for
many readers. To omit these correlations, simply click on each of them and then press
the Delete key. We will soon see that it was not necessary to draw them in the first
place.

After deleting the correlations, the figure looks pretty good. We might want to
move the independent variables closer to the dependent variable. You might want to
do this before adding the asterisks. Click on the Select tool and drag over the set of
independent variables. Then click on any one of them and move them all to the right.
When we do this, the asterisks are in the wrong places, so we need to click on each of
them and move them where they belong.

The figure is looking great at this point, but it is nice to add some additional
information to a regression model. We need to show the sample size and R2. When we
fit our model, the Builder generated the appropriate Stata command and reported the
results in Stata’s Results window. Look at the Results window, and you see that the
number of observations is 480. To obtain the R2 by using the Builder, select Estimation
⊲ Goodness of fit ⊲ Equation-level goodness of fit, click on Equation-level goodness-of-fit
statistics (eqgof), and click on OK. Returning to Stata’s Result window, we see the R2

for bmi is 0.152.

Click on the Text tool and then click under the bmi variable. In the resulting
textbox, enter the information shown in figure 14.6. The textbox automatically wraps
text without making a new line, unless you press the Enter key. Therefore, after z

tests, I pressed the Enter key and inserted five spaces to indent the next line. I did the
same after simplify in the last line.

Figure 14.6. The SEM Text dialog box in Stata for Mac

When you click on OK, the textbox appears in your figure. Click on the Select tool
and then click on the textbox to move it or to change the font. In the box labeled Size,
located just above the drawing area on the left side of the screen, change the font size
to 8.
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Now we are ready to copy the final figure into our report. Click on the selection
arrow and drag it over the entire figure, that is, highlight all the rectangles, paths, and
text. Next click on the rectangle labeled quickfood and drag it toward the lower left
corner, leaving a little space to the left and below the drawing. We have the grid lines
turned on and each big square represents a square inch. Notice that our figure is about
4 inches wide and about 3.5 inches high—yours may vary. We need to reshape our
drawing surface to be 4.5×3.5 inches. Select View ⊲ Adjust Canvas Size..., type 4.5 and

3.5 in the textboxes, and click on OK. From the top toolbar, select the Copy icon, .
In your Word document, select Edit ⊲ Paste. Figure 14.7 shows the final result as it
would appear in a Word (or other word processing) document.
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Figure 14.7. Final result

14.2 A quick way to draw a regression model and a fresh

start

Now that you are more familiar with the SEM Builder, we will look at a great sim-
plification. This works for any estimation method, but we will illustrate it using the
method(ml) option (the default), which uses listwise deletion. Because we are going
to use the maximum-likelihood listwise deletion estimator, the results will be closer to
those results of the regress command. However, the point of this section is to provide
a quicker way to draw a regression model. The method of drawing works regardless of
the estimator you are using.
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Because we have already drawn a model and changed several settings, such as the
number of digits displayed, let’s start fresh by restoring the default settings for the
Builder. To do this, select Settings ⊲ Setting Defaults. When you do this, a message
notifies you that the SEM Builder is not empty; click on Yes. We should then close the
SEM Builder to complete the resetting process and clear the interface. We can now type
the sembuilder command again.

Select the third tool up from the bottom, , of the drawing toolbar. This tool is
designed explicitly for drawing regression models. With this tool highlighted, click on
the right side of the SEM Builder about halfway from the top and bottom. Doing this
opens the dialog box shown in figure 14.8.

Figure 14.8. Regression component dialog box

Notice that we typed bmi as the dependent variable, entered the independent vari-
ables, and selected Left for the direction of the independent variables. When entering
the independent variables, be sure that you use the exact names. Now you can click on
OK and have the regression drawn without showing the correlations of the independent
variables; see figure 14.9.
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Figure 14.9. Quick drawing of regression model

To fit this model, we select Estimation ⊲ Estimate.... In the resulting dialog box,
check the radio button for Maximum likelihood on the Model tab, and then click on
OK. Figure 14.10 shows the results.
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Figure 14.10. Maximum likelihood estimation of model using listwise deletion

Although the diagram does not show the correlations among the independent vari-
ables, these correlations are taken into account. If we had selected Maximum likelihood
with missing values, we would have received a message box saying “Connections implied
by your model are not in your diagram: Shall I add them?” We can click on “No” to
keep our figure simple. This opens another message box that asks if we want to see the
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results anyway, and here we click on “Yes”. The correlations will be taken into account
but not shown in the figure. You can modify the figure the same way as was done in
section 14.1.1.

After you have done this a few times, making a figure like this is a relatively quick
process. Do you see the value of the figure? It is easier for most readers who are
not statisticians themselves to interpret a figure than a regression summary table. We
see that education and income are both contributing to lower obesity. Obesity is a
significant problem for mothers with limited education and low income. There are
many reasons for this, such as the elevated cost of a high quality diet. Eating at fast
food restaurants also leads to great risk of obesity. The more often family members
eat at fast food restaurants, the higher the mother’s estimated BMI. As a writer, it is
often easier to tell your story by using a figure like this than it is by using a regression
summary table.

14.2.1 Using sem without the SEM Builder

A popular cliché is that a picture is worth a thousand words, but in programming, a few
words can be a lot quicker than drawing a picture of your model. We can fit models like
this without using the SEM Builder. If you examine the Results window within Stata,
you will see that the Builder created an sem command. These are sometimes hard to
read, and there are usually simpler ways to write the sem command. To fit a regression
model, we use the sem command as the first word. The dependent variable, bmi, is the
second word. This is followed by an arrow and the list of independent variables. In our
model, we will use the FIML estimator, so after the comma, we write method(mlmv). We
would omit this option if we wanted to do listwise deletion with maximum likelihood
estimation. Here is the command:

. sem bmi <- age children incomeln educ quickfood, method(mlmv)

To obtain the R2, we enter a postestimation command:

. estat eqgof

That is it. Try it and see the result.

14.3 The gsem command for logistic regression

To show how to use gsem to fit a logistic regression model, we will dichotomize BMI.
Rather than trying to predict a BMI for each mother, we can try to predict whether the
mother is obese. Here we define obesity as having a BMI score of 30 or more. There are
111 mothers (24.3%) who have a BMI of 30 or more and 346 (75.7%) who have a BMI of
less than 30. We can construct a variable called obese, which is coded 1 if the mother
is obese and 0 if she is not obese.

. recode bmi (0/29.999=0) (30/60=1), gen(obese)
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Alternatively, we could type

. generate obese = bmi>=30 & bmi < .

14.3.1 Fitting the model using the logit command

In chapter 11, we covered logistic regression, which is appropriate for a binary outcome.
We can fit the logistic regression model with the logistic command. To help simplify
our interpretation, we will obtain odds ratios for a one-unit difference in each variable
and for a one standard-deviation difference by using the listcoef postestimation com-
mand. If you do not already have the user-written command listcoef installed, type
search spost9 in the Command window. Then click on the spost9 ado package and
install this package. This command was previously discussed in section 11.5. Here are
the results:

. logit obese age children incomeln educ quickfood

Iteration 0: log likelihood = -247.43569
Iteration 1: log likelihood = -221.17297
Iteration 2: log likelihood = -220.50785
Iteration 3: log likelihood = -220.50712
Iteration 4: log likelihood = -220.50712

Logistic regression Number of obs = 448
LR chi2(5) = 53.86
Prob > chi2 = 0.0000

Log likelihood = -220.50712 Pseudo R2 = 0.1088

obese Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0288883 .0190012 1.52 0.128 -.0083534 .06613
children .2782205 .1189227 2.34 0.019 .0451362 .5113047
incomeln -.6097175 .1797268 -3.39 0.001 -.9619756 -.2574595

educ -.2011274 .0917525 -2.19 0.028 -.3809591 -.0212957
quickfood .2603238 .108617 2.40 0.017 .0474383 .4732093

_cons 2.301053 1.574824 1.46 0.144 -.7855441 5.387651

. listcoef

logit (N=448): Factor Change in Odds

Odds of: 1 vs 0

obese b z P>|z| e^b e^bStdX SDofX

age 0.02889 1.520 0.128 1.0293 1.2037 6.4187
children 0.27822 2.340 0.019 1.3208 1.3272 1.0175
incomeln -0.60972 -3.392 0.001 0.5435 0.6299 0.7579

educ -0.20113 -2.192 0.028 0.8178 0.7389 1.5045
quickfood 0.26032 2.397 0.017 1.2974 1.3604 1.1822

Examining the results of the listcoef command, we can see that having more
children and eating more meals at fast food restaurants is associated with greater odds
of obesity. The odds ratio appears in the column labeled e^b because the odds ratio is
the exponentiated value of the regression coefficient. Having more education and more
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income is associated with lower odds of obesity. The mother’s age and controlling for
the other predictors do not have a significant effect. You may want to review chapter 11
to provide a more detailed interpretation.

The logit command is a special application of the generalized linear model. We
can obtain the same results by using the glm command. The glm command requires us to
specify the family of our model, family(binomial), and the link function, link(logit).
To obtain the odds ratio, we can replay these results by using glm, eform. We show
this only because the gsem command is using the generalized linear model, and we will
need to enter both the family and the link function. Here are the glm commands and
partial results:

. glm obese age children incomeln educ quickfood, family(binomial) link(logit)

Iteration 0: log likelihood = -220.76408
Iteration 1: log likelihood = -220.50737
Iteration 2: log likelihood = -220.50712
Iteration 3: log likelihood = -220.50712

Generalized linear models No. of obs = 448
Optimization : ML Residual df = 442

Scale parameter = 1
Deviance = 441.0142362 (1/df) Deviance = .9977698
Pearson = 429.8899828 (1/df) Pearson = .9726018

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.011192
Log likelihood = -220.5071181 BIC = -2257.304

OIM
obese Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0288883 .0190012 1.52 0.128 -.0083534 .06613
children .2782205 .1189227 2.34 0.019 .0451362 .5113047
incomeln -.6097175 .1797268 -3.39 0.001 -.9619756 -.2574595

educ -.2011274 .0917525 -2.19 0.028 -.3809591 -.0212957
quickfood .2603238 .108617 2.40 0.017 .0474383 .4732093

_cons 2.301053 1.574824 1.46 0.144 -.7855441 5.387651
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. glm, eform

Generalized linear models No. of obs = 448
Optimization : ML Residual df = 442

Scale parameter = 1
Deviance = 441.0142362 (1/df) Deviance = .9977698
Pearson = 429.8899828 (1/df) Pearson = .9726018

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.011192
Log likelihood = -220.5071181 BIC = -2257.304

OIM
obese Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.02931 .0195581 1.52 0.128 .9916814 1.068366
children 1.320777 .1570704 2.34 0.019 1.04617 1.667465
incomeln .5435044 .0976823 -3.39 0.001 .3821372 .7730129

educ .8178083 .075036 -2.19 0.028 .6832059 .9789295
quickfood 1.29735 .1409143 2.40 0.017 1.048582 1.605137

_cons 9.984695 15.72413 1.46 0.144 .4558716 218.6891

14.3.2 Fitting the model using the gsem command

We draw a figure in the same way we did before, except this time we need to click on the

top tool, , from the drawing toolbar. This is the generalized SEM tool, GSEM, which
uses the generalized linear model. This tool allows Stata to work with outcomes that
are not continuous. In this example, our outcome is binary but it could be a count of a
rare event when using a Poisson model, or it could be a nominal outcome that has more
than two possibilities, such as religion (Muslim, Christian, Jewish, Hindu, Other), when
using a multinomial model. Although we only illustrate the results of a binary outcome,
there are many other options. Table 14.1 shows several of these options. Beginning with
Stata 13.1, the gsem command can also be used with censored variables.
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Table 14.1. Selected families available with gsem

Dependent or
outcome variable Traditional command Selected families Link function

Continuous regress gaussian identity

Binary logit binomial or logit

bernoulli

Binary probit binomial or probit

bernoulli

Multinomial (nominal) mlogit multinomial logit

Ordinal ologit ordinal logit

Ordinal oprobit ordinal probit

Count poisson poisson log

Count nbreg nbreg log

Continuous gamma log

With the GSEM tool selected, click on the add regression tool, . We specify the
family and the link function for our estimation by checking the box for Make response
generalized and selecting Binomial, Logit in the Family/Link box. By doing this, we
are identifying the variable obese as being in the binomial family and in the logit

link. Figure 14.11 is how we represent the model.
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Figure 14.11. A logistic regression model with the outcome, obese, clicked to highlight
it

Using the Select tool, you can click on the outcome variable, obese, as shown in
figure 14.11. The top left of the interface then displays a new toolbar that shows
Family/Link, which currently shows Binomial, Logit; you can click on the dropdown
arrow to see the other possibilities.

With the GSEM logistic regression model, we cannot use the method(mlmv). The
default estimator, method(ml), with listwise deletion is our only choice. We can click on
Estimation ⊲ Estimate... and then click on OK. This produces the results in figure 14.12
(I changed the format of the paths to %5.3f):
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obese

binomial

logit

2.3

age
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incomeln

educ

quickfood

0.029

0.278

−0.610

−0.201

0.260

Figure 14.12. Initial results

We can now use the Add Text tool to add asterisks to indicate the level of signif-
icance and odds ratios. We obtain the odds ratios by selecting Estimation ⊲ Other ⊲
Report exponentiated coefficients, selecting Table of exponentiated coefficients (eform)
from the Reports and statistics box, and then clicking on OK. Doing this runs the estat
eform postestimation command. The odds ratios are not placed on the drawing but
are reported in the Results window. Notice that because a single unit change in age,
incomeln, educ, and quickfood is difficult to interpret, the odds ratios for those vari-
ables might be replaced by using the odds ratio for a 1-standard-deviation change in
the predictor rather than a one-unit change. You could obtain these results by running
the logit command followed by the listcoef command. To compute the results from
the gsem command, you need to calculate these results by hand using Stata’s display
command.

To calculate the odds ratios from the gsem results, we need the standard deviations
for each independent variable. When running a summarize command to obtain the
standard deviations, we need to make sure that we are using listwise deletion. We use
the if !missing (not missing) restriction to do this and include all variables in our
logistic model. It is necessary to include the comma delimiter between each variable in
this list:
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. summarize age incomeln educ quickfood
> if !missing(age,incomeln,educ,quickfood,obese)

Variable Obs Mean Std. Dev. Min Max

age 448 43.10491 6.418665 27 74
incomeln 448 8.403083 .7579329 5.298317 11.15625

educ 448 4.430804 1.504546 1 7
quickfood 448 2.064174 1.182192 .5 11.5

For age with a 1-standard-deviation change, 6.419, we obtain the odds ratio for a
1-standard-deviation change by using e(B×SD) or by typing display exp(.029*6.419).
We do this respectively for age, incomeln, educ, and quickfood by typing the following
display commands:

. display exp(.029*6.419)
1.2046041

. display exp(-.610*.758)

.62978298

. display exp(-.201*1.505)

.73896479

. display exp(.260*1.182)
1.359776

These results differ slightly from those of the listcoef command, which uses more
significant figures. We will use the listcoef result because of its greater precision.

Thus a 1-standard-deviation difference in incomeln is associated with a 47% reduc-
tion in the odds of being obese [(1− 0.630)× 100)]. In the case of chldren, a one-unit
difference, that is, one additional child, is meaningful and is associated with a 32.1%
increase in the odds of obesity [(1.321− 1)× 100].

After inserting the textboxes, I felt the size of the font was too large. I changed
the font size to 7 points in the size control box that appears in the Contextual Toolbar
at the upper left corner of the Builder when the textbox is selected. If you click on a
completed textbox, it opens the dialog box shown in figure 14.13. Here you can modify
the text and make other changes to the appearance.
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Figure 14.13. Dialog box for changing information in a textbox

Our final generalized SEM diagram is shown in figure 14.14. Asterisks show the
significance levels. Odds ratios are given in parentheses.
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quickfood

0.029
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−0.610
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0.260

(1.205)

(1.321)

(0.630)

(0.739)

(1.360)

*

***

*

*

N=448
Odds ratios in parentheses 
     based on one SD change
     except for number of children
* p<0.05; ** p<0.01; *** p<0.001

Figure 14.14. Final results for logistic regression
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14.4 Path analysis and mediation

Path analysis is an extension of regression where we believe there is a causal order
to the variables. In our regression model, we had all the predictors on the left and
allowed them to be correlated. Can you see how one of the predictors might actually
be an endogenous variable, meaning it depends on the other predictors? Consider the
quickfood variable. It is reasonable to argue that mothers who have higher income and
more education are less likely to have more meals at fast food restaurants. Because of
their education, these mothers may be more aware of the health issues associated with
eating more meals at fast food restaurants. Mothers from families with more income
may be more able to afford options other than eating in fast food restaurants. For
simplicity, we will drop the age and chldren variables. Figure 14.15 is our model that
does not include the quickfood variable:

bmi ε1

educ

incomeln

a

b

Figure 14.15. BMI predicted without using the quickfood variable

When we add the quickfood variable, we show it is an intervening mechanism
(mediator) between educ and incomeln on the one hand and bmi on the other hand.
The underlying argument is that education and income lead to eating fast food less
often, and eating fast food less often in turn leads to a lower BMI. This appears in
figure 14.16.



14.4 Path analysis and mediation 435

bmi ε2

educ

incomeln
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c

d
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Figure 14.16. A path model with the quickfood variable mediating part of the effect
of educ and incomeln on bmi

To evaluate whether quickfood mediates the influence of educ and incomeln on
bmi, we normally fit both of these models. First, make sure you have the dataset opened:

. use http://www.stata-press.com/agis4/nourishing_bmi

Figure 14.15 had only two paths with the coefficients a and b. If these coefficients are
not significant, then we would usually not go farther to test for mediation because there
was not a significant effect to begin. There are special cases where we have multiple
mediators that have the opposite effects. For example, divorce may indirectly harm the
well-being of children mediated by a loss of income, but divorce may indirectly benefit
the well-being of children by reducing parental conflict.

If a in figure 14.15 is significant, but a’ in figure 14.16 is not significant while c × e

is significant (indirect effect of educ on bmi that is mediated by quickfood), we say that
quickfoodmediates the effect of education on BMI (full mediation). If a in figure 14.15 is
significant, and a’ in figure 14.16 is smaller but also significant while c × e is significant,
we say that quickfood mediates part of the relationship (partial mediation) between
education and BMI. Whether there is full mediation or partial mediation, the mediation
model has extended our understanding of the relationship between education and BMI.
A similar analysis would be done by using incomeln.

When you read an article that says income predicts a person’s BMI, you should think
of possible mediators like we did here when we considered how often the person eats at
fast food restaurants. Often there are two or more possible mediators. For example,
food that is better for your health may cost more. People with higher income can afford
a better diet. You might include dietary variables such as consumption of food that is
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high in fat. If we had two possible mediators, namely, eating food high in fat and eating
at fast food restaurants, both of these or just one of these might be the mediator.

Path models are often called causal models. This is problematic because we are only
examining associations and partial associations. A causal argument could be strength-
ened if we had longitudinal data. For example, we might measure education and income
one year, measure the use of fast food restaurants the second year, and then measure
BMI the third year. Instead, we measured all three variables simultaneously. When we
measure all the variables concurrently, we cannot rule out the possibility that the true
model goes in the opposite direction. A mother who has a very high BMI may have had
this obesity problem all of her life, and that may have influenced her education level
and her income. There is considerable evidence, for example, of discrimination against
overweight women in the workforce. In any event, path models never prove anything
with certainty, and this is especially true when the variables are measured concurrently.
This is an important limitation that we need to keep in mind so that we do not overstate
our findings. Used with caution, however, path models can enrich our understanding of
influence processes. Path models offer a more elaborate explanation of causal processes
and may be consistent or inconsistent with the observed data.

To fit a causal model that involves mediation, it is common to fit the model without
the mediator or mediators first. For example, if a in figure 14.15 were not significant,
then many researchers would not go on because they would conclude there was not a
significant effect to be mediated. As noted earlier, there are special cases where this is
not the case. The standardized results for the model that were shown in figure 14.15
are seen in figure 14.17:

bmi ε1 .88

educ

incomeln

−0.177

−0.230

.48

***

***

a

b

Figure 14.17. Direct effects without the mediator
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We see that both education and income have significant negative effects on BMI. We
meet our first goal of having a and b both statistically significant. Next we fit the model
that includes the mediation term. In figure 14.18, I had to click on ǫ1, drag it to the
right, and then click on the path from it to quickfood and move the line to improve the
alignment. I also moved the letters to improve their alignment with the standardized
regression coefficients, β’s.

bmi ε2 .86

educ

incomeln

quickfood

ε1 .89−0.169

−0.185

0.146

.48

−0.070

−0.294

c

d

a’

b’

e

Figure 14.18. Final mediation model

We can obtain the indirect effects by calculating the product of the path coefficients.
That is, the indirect effect of education on BMI that is mediated by quickfood is c×e =
0.070 × 0.146 = −0.010, and the indirect effect of income on BMI that is mediated by
quickfood is d× e = −0.294× 0.146 = −0.043. However, this does not tell us whether
these indirect effects are statistically significant. We can obtain the indirect effects
and their significance by clicking on Estimation ⊲ Testing and CIs ⊲ Direct and indirect
effects. In the resulting dialog box, we select Decomposition of effects into total, direct,
and indirect (teffects). We click on Report standardized effects and then click on OK.
Looking at the Results window, we see a section of Direct effects, a second section
of Indirect effects, and a final section of Total effects.

We see that the indirect effect of educ through quickfood on bmi is −0.010 and this
is not significant (as a caution, we should note that the test of significance is actually
for the unstandardized solution). The indirect effect of incomeln through quickfood

on bmi is −0.043 and this is significant, p = 0.005. We summarize these results in
table 14.2. We include the total effect in the table that is simply the sum of the direct
and indirect effects.
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Table 14.2. Direct and indirect effects of mother’s education and family income on her
BMI

Relationship Direct effect Indirect effect Total effect
Education on BMI −0.169*** −0.010ns −0.179***
Income on BMI −0.185*** −0.043** −0.228***

With these results, we can go back to our question of whether eating in fast food
restaurants mediates the effect of education and income on a mother’s BMI. Using the
rules for whether mediation is partial, full, or insignificant, we will first look at the
effects of education on BMI without controlling for quickfood. Education has a highly
significant direct effect on a mother’s BMI without controlling for quickfood. The more
education she has, the lower her BMI (β = −0.169***). However, there is no significant
indirect effect mediated of education that is mediated by quickfood (β = −0.010ns).

Now consider the effects of income on the mother’s BMI. The larger the family income,
the lower the mother’s BMI, (β = −0.185***) when we do not control for quickfood.
There is also a small but statistically significant indirect effect mediated by eating at
fast food restaurants (β = −0.043*). When we compare these results to figure 14.15
where there was no mediation, the direct effect was larger (β = −0.230***) than the
β = −0.185 we have for figure 14.16. Thus we conclude that there is partial mediation
whereby part of the direct effect of income on BMI is mediated by eating at fast food
restaurants. Although significant, we should acknowledge that the indirect effect is
quite small.

14.5 Conclusions and what is next for the sem command

This chapter has just given you a taste of what the sem command can do. If you
are fitting more complex path models, you should also read the companion book; see
Acock (2013). Nonetheless, what we have covered here is useful for presenting results
for regression and logistic regression models that will have greater potential for impact
on your reader than would presenting tabular results. Also there are many path models
that can enrich a simple regression model by inserting potential mediators. Whenever
you add a significant mediator to your model, you are helping explain the influence
process. Consider the effects of divorce on child well-being. Generally, we have seen a
negative effect where divorce is associated with somewhat worse child well-being. We
can add to our understanding by thinking of possible mediators. What happens after
divorce that might lead to problems for the children? Perhaps some things happen that
will be good for the children.
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• Possible adverse mediators

1. Loss of household income post divorce

2. Difference in peer group educational aspirations

• Possible positive mediators

1. Reduced parental conflict

2. Enhancement in mother–child relationship

How could we put all of these together? Figure 14.19 shows what the model pre-
dicts. Divorce is shown to have a direct effect on child well-being, but to also have two
negative indirect effects mediated by a loss in income and a difference in the peer group
educational aspirations, plus two positive indirect effects that include reduced parental
conflict and enhancement of the relationship between the mother and child.

When we have endogenous mediators that do not have a causal relationship specified
between them, it is important to consider whether the errors should be correlated.
Otherwise, our model will not fit the data very well. For example, a loss of income and
a difference in peers may be fully explained by divorce (errors would be zero in this
case), but more likely there are other variables that account for these variables and the
correlation of the error terms provides for this possibility.

What’s next? The sem command has so many possibilities that it is hard to provide
more than a rudimentary inventory. Acock (2013) discusses many of these extensions.
Consider the model in figure 14.19; it is possible for the paths for daughters to be quite
different from what they are for sons. Perhaps the mother–child relationship might
become stronger for the daughters but not for the sons. Perhaps reduced parental
conflict is more important for daughters than it is for sons. The sem command allows
us to simultaneously fit the model for daughters and sons and test for all possible
differences.
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Chd_well_being ε1

income ε2
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Figure 14.19. More complex path model

We have limited our discussion to observed variables. The sem command allows us
to work with latent variables, as well as use confirmatory factor analysis models where
we specify a specific form for a factor solution. We might be interested in internal and
external political efficacy. We would specify observed indicators of each and confirm
or disconfirm this model. Extending this, we can combine confirmatory factor analysis
and our path models (the structural model) where instead of linking observed variables,
we are linking latent variables.

14.6 Exercises

1. Using gss2002 chapter10.dta, fit the model using all the variables except for
polviews.

a. Do this using the regress command.

b. Do this using the sem command and the SEM Builder.

c. List the commands as you would enter them in a do-file.

2. Use a subset of data from the National Longitudinal Survey (NLS) of women who
were aged 14–28 in 1968. You can obtain these data by typing

. use http://www.stata-press.com/data/r13/regsmpl.dta
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Predict wages by using a person’s age, their highest grade completed, whether
they live in a non-SMSA (rural) area, whether they are from the south, their total
years of work experience, and their years at this job.

a. Fit the regression model using the regress command (standardized) and
interpret the results.

b. Fit the regression model using the sem command and the SEM Builder, show-
ing the results in a diagram. Interpret these results.

c. Fit the regression model again using the method(mlmv) option of sem. Ex-
plain what this option does.

3. Redo exercise 2 from chapter 11 using the SEM Builder.

a. Show your results in the figure and include both the significance level and
the odds ratios.

b. Interpret the results.

4. Open http://www.ats.ucla.edu/stat/stata/faq/pathreg.htm. This page was devel-
oped by the Institute for Digital Research and Education at UCLA. Fit the model
using the SEM Builder.

a. Does math fully mediate, partially mediate, or not significantly mediate the
effect reading and writing have on science?

b. Present a table summarizing your findings.
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A.1 Introduction to the appendix

A.2 Resources

A.2.1 Web resources

A.2.2 Books about Stata

A.2.3 Short courses

A.2.4 Acquiring data

A.3 Summary

A.1 Introduction to the appendix

The goal I had in writing this book was to help you learn how to use Stata, including
creating a dataset, managing the dataset, changing variables, creating graphs and tables,
and doing basic data analysis. There is much more to learn about each of these topics,
as well as about entirely new topics. At this point, you are ready to pursue these more
advanced resources.

The purpose of this concluding chapter is to give you some guidance on what material
is most useful as you develop greater expertise using Stata. What will give you a quick
start? What requires a lot of statistical background? What are the most accessible
resources? A word of caution as we start: new supporting resources appear regularly,
so the suggestions here are current only at the time this book is published.

A.2 Resources

Many resources can help you expand your knowledge of Stata. More importantly, many
of these resources are absolutely free and can be obtained over the Internet, including
some online “movies” about specialized Stata techniques. Other resources include books
about Stata and online courses.

443



444 Appendix A What’s next?

A.2.1 Web resources

The premier web resource about Stata is at UCLA. They have an extraordinary webpage
at http://www.ats.ucla.edu/stat/stata/. It has movies and extensions beyond what I
have included in this book. For example, I only briefly mentioned how to work with
complex samples that involve clusters, stratification, and weighting. The UCLA webpage
has a link to a pair of movies about how to work with complex surveys. Some of the
content is based on earlier versions of Stata, but even that content can be helpful. Stata
maintains remarkable consistency between versions, with new versions simply adding
capabilities. The UCLA webpage also has many links to statistics and data-analysis
courses where you can obtain lecture information. It has many Stata commands that
you can install on your machine to simplify your work. It even has Stata do-files
that match examples in a few of the standard statistics textbooks. Much of what this
webpage does not have itself appears in the links it provides to other sources.

Stata maintains a webpage on resources for learning Stata at
http://www.stata.com/links/resources1.html, and this is an excellent place to start your
resource search. This webpage shows you links to a wide variety of sources that can help
you learn Stata and extend your knowledge of Stata. Stata has a searchable frequently-
asked-questions (FAQs) webpage at http://www.stata.com/support/faqs/. This page
includes many examples of how to do different procedures. Although some of these
examples are extremely technical, many of them are accessible to a person who has
completed this book. The way these pages work through examples and help you interpret
results is way ahead of what we usually see in FAQs support.

We have installed a few commands from a webpage at Boston College. You can check
out the full list of available commands at http://ideas.repec.org/s/boc/bocode.html.
This site is often referred to by Stata users as the “SSC” (Statistical Software Compo-
nents). This is the largest collection of user-written Stata commands and is maintained
by Christopher F. Baum. For example, go down the list of commands for 2005, and find
a command called optifact. This webpage has a brief description of the command,
and when you click on the link, it takes you to a more detailed description. From there,
you can click on the name of the author, Paul Millar, to get a list of papers he has
written about this procedure. All of these commands are made available at no cost, and
collectively, they represent a considerable extension of the basic capabilities of Stata
itself. To install a package from the SSC, simply type ssc install filename, for exam-
ple, ssc install optifact. The highly developed, user-driven extensibility of Stata
is a feature that sets it above competing statistical analysis software.
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The downloads of commands from the Statistical Software Components website have
increased dramatically over the last 10 years. Figure A.1 shows the number of downloads
and the number of abstracts that have been viewed. In 2000, there were fewer than 5,000
files downloaded, and in 2013, there were 100,000 files downloaded. The Statistical
Software Components archive is an extraordinary resource for all Stata users.

Figure A.1. Growth of downloads of files from Statistical Software Components (source:
http://logec.repec.org/scripts/seriesstat.pf?item=repec:boc:bocode)

Stata also has a Facebook page and a Twitter resource. You can find these at
http://www.facebook.com/StataCorp and http://twitter.com/stata, respectively. In
addition, there is a very valuable Stata Blog at http://blog.stata.com. The Stata Blog
has entries that show you how to get the most out of Stata and features new and im-
proved capabilities. Many of these entries have been written by the top authorities
at Stata, including William Gould, President of Stata, and Vince Wiggins, Vice Pres-
ident for Scientific Development. You can receive automatic updates of this blog by
subscribing to the RSS feed.

There is a Stata listserver, Statalist, to which people submit questions and anybody
who wants to can provide an answer. It is hosted at the Harvard School of Public
Health and maintained by Marcello Pagano. You can find details on how to subscribe
at http://www.stata.com/statalist/. You probably want to subscribe as a digest, which
gives you one or two messages per day, each of which contains many questions and
answers. If you do not pick the digest option, you might get 20–50 or more messages per
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day. Much of the content on Statalist is for professional programmers and statisticians.
However, the subscribers are often willing to answer questions from beginners, and many
of these answers would cost you hundreds of dollars if you were paying for a consultant.
The list will also keep you aware of new commands that you can install.

Stata is a completely web-aware package, and web-based resources are constantly
expanding. If you enter the command search followed by a keyword, Stata will search
the web for relevant information. You might try it with a keyword, such as search

missing, if you were concerned about having a lot of missing values in your dataset.
Stata will give you a list of relevant resources followed by a list of commands you can
install that will help you work with missing values.

We have discussed only a few of the available resources on the web. By the time
you have checked these out, you will see more resources for your special interests and
needs. Fortunately, many of these webpages have links to other webpages.

A.2.2 Books about Stata

Stata has a collection of reference manuals containing over 11,000 pages of information
that includes details about each command, detailed examples, calculation formulas, and
references to other literature. These reference manuals are available as PDFs that can
be accessed from within Stata. Printed manuals are available either separately or as a
set from the Stata Bookstore website at
http://www.stata.com/bookstore/documentation.html.

Many universities participate in a special program that Stata offers, the GradPlan,
which lets you buy the printed manuals at a reduced price. Even at the full price,
however, they are inexpensive compared with other books about statistics and software.
The manuals are among the best provided by a software company. In my experience,
the books that Stata Press publishes are less expensive if you buy them directly from
StataCorp than they are if you buy them online from other sources. Before buying them
elsewhere, check the Stata Press pricing.

All reference manuals are available as PDF files and installed when you install Stata.
These manuals are an excellent resource, and many of the examples should be un-
derstandable now that you have finished this book. The examples for each command
typically begin with a fairly simple problem, and subsequent examples deal with more
complex applications of the command.

The Stata Journal is a peer-reviewed, indexed journal on Stata, which is published
quarterly. The editors are H. Joseph Newton and Nicholas J. Cox. It includes articles
on commands people have written that you might want to install; tutorials on how to
do different tasks using Stata; articles on statistical analysis and interpretation, data
management, and graphics; and book reviews. You can find out more about it at
http://www.stata-journal.com/.
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Several excellent books about Stata are available. In 2012, Stata Press published
the third edition of the English-language version of Ulrich Kohler and Frauke Kreuter’s
German book Data Analysis Using Stata; see http://www.stata-press.com/books/
daus3.html. This book builds on what I have done in A Gentle Introduction to Stata
and covers some more-advanced data-analysis techniques. It goes much further than I
did on programming Stata. Lawrence Hamilton published a book on Stata 12 in 2013,
Statistics with Stata. The publisher is Brooks/Cole, and the book is available from
the Stata Bookstore; see http://www.stata.com/bookstore/sws.html. This is a useful
reference book, and you can quickly find commands that do specific tasks. It has a
simple organization and many interesting empirical examples.

You have seen how graph commands are the longest and most complicated. The
Stata Graphics Reference Manual is competently written, but many find it hard to
follow. Remember, if a picture is worth a thousand words, it takes a lot of words
to tell a computer how to make a good picture of your data. Michael Mitchell, who
was previously associated with the UCLA Stata Portal, published a book in 2004 with
Stata Press called A Visual Guide to Stata Graphics (now in its third edition); see
Mitchell (2012) and http://www.stata.com/bookstore/vgsg3.html. This book shows a
few graphs on each page, and you scan the book until you see something similar to what
you want to do. Next to the picture, you find the Stata command that produced the
graph. This does not make use of the dialog system, but you can use his examples to
enhance the graphs you make using the dialogs.

J. Scott Long published a book, Workflow in Data Analysis Using Stata, in 2009 that
is available from Stata Press at http://www.stata-press.com/books/wdaus.html. If you
are going to create datasets and manage them, this is the next book you should read. It
provides sage advice from a senior scholar and expert Stata user on how to manage com-
plex datasets. A person who masters these skills is worth his or her weight in gold to a
research team. Long will take you far beyond what we have covered in this book. A great
complement to Workflow in Data Analysis Using Stata is a book by Michael Mitchell,
Data Management Using Stata: A Practical Handbook, which was published by Stata
Press in 2010 and is available at http://www.stata-press.com/books/dmus.html.

In 2006, Stata Press published a book, Regression Models for Categorical Dependent
Variables Using Stata, Second Edition, written by J. Scott Long and Jeremy Freese; see
http://www.stata-press.com/books/regmodcdvs.html. This book builds on chapter 13
(logistic regression), providing extensions to multinomial regression, ordered regres-
sion, Poisson regression, and zero-inflated models. It is extremely accessible given the
complexity of the topic. One of the most important areas of development in Stata is
multilevel analysis. Although this extends beyond the scope of my book, this type of
analysis is an important extension to what we did cover.

The revised edition of Microeconometrics Using Stata by A. Colin Cameron and
Pravin K. Trivedi (2010) is also published by Stata Press and is available at
http://www.stata-press.com/books/musr.html. If you are going to do more-advanced
statistics than we covered in this book, Cameron and Trivedi provide a remarkably ac-
cessible guide to a wide range of procedures and show you how to use them with Stata
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do-files. Full understanding of econometrics requires considerable advanced background
in mathematics, but most of the topics Cameron and Trivedi discuss can be understood
and applied with a minimum of mathematics. Even though the statistical concepts are
advanced, the elegance of Stata makes the application of them quite straightforward.
You do not need to be an economist to use this book because most of what is covered
is as applicable to political science, sociology, criminal justice, and human development
as it is to economics.

A special strength of Stata is that users can write their own commands. An advanced
user who finds himself or herself doing some combination of actions by using several
commands can decide to write one command that combines these commands. Another
user might write a new command to add features to an existing Stata command. For
most statistical software packages, this would be a major challenge, but it is much easier
to do in Stata. Christopher Baum, in addition to maintaining the Statistical Software
Components website, has written a highly accessible book to assist you in writing your
own commands: An Introduction to Stata Programming, published by Stata Press in
2009 and available at http://www.stata-press.com/books/isp.html.

A specialized topic we have not covered involves working with complex samples.
Stata has strong capabilities for this type of analysis. Many national surveys use strat-
ified or cluster sample designs and deliberately oversample certain groups that would
otherwise have too few observations for analysis. If you need to use such a survey for
your research, you should contact the group that designed the survey and get their
recommendations on how to manage the sample design. You will need to learn how to
implement their advice in Stata. A useful introduction to what you need to know is
available online from the UCLA portal:

http://www.ats.ucla.edu/stat/stata/seminars/svy stata 8/default.htm

This information is a bit dated but is still a great place to start. Once you have been
through this tutorial, you should move on to the Stata Survey Data Reference Manual.

If you are fitting complex, multilevel, or longitudinal models, Stata has a rich col-
lection of panel-data (longitudinal data) commands that are described in the Stata
Longitudinal-Data/Panel-Data Reference Manual. For an example of a multilevel model,
you might have individuals nested in families that are nested in communities. With such
data, all individuals in a given family would have the same score on family variables,
such as household income. Also, all families in a given community would have the same
score on community-level variables, for example, community crime rate or unemploy-
ment rate. The resulting lack of statistical independence requires more-complex proce-
dures than we have covered in this book. Sophia Rabe-Hesketh and Anders Skrondal’s
Multilevel and Longitudinal Modeling Using Stata, Third Edition (2012) is available
from Stata Press at http://www.stata-press.com/books/mlmus3.html. It is a truly re-
markable treatment of this advanced topic. Although this is an extremely advanced
and innovative treatment of the topic, they use great examples from published research.
They show you step by step how to apply Stata to properly analyze the data.
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Consult the Stata Bookstore, http://www.stata.com/bookstore/statabooks.html, to
see a list of all the available books about using Stata. These include books on many
special topics.

A.2.3 Short courses

Stata offers on-site training and public training sessions. On-site training is useful
for Stata users of all levels, whether your site is new to Stata or needs an in-depth
look at a specific feature of Stata. On-site training is taught at your facility by
expert StataCorp personnel. If you are interested in arranging on-site training, see
http://www.stata.com/training/onsite.html for additional details.

Public training courses are taught by various senior members of the StataCorp staff
at sites around the country. Courses range from learning to use Stata effectively to
learning to use Stata for subject-specific topics, like multilevel/mixed models and mul-
tiple imputation. To view the list of available courses, dates, and other details, see
http://www.stata.com/training/public.html.

Stata provides NetCourses to help you learn to use Stata more effectively. These
courses include two that are designed to introduce you to data management, analysis,
and programming with Stata, and a third, more advanced programming course. You
can enroll in a regularly scheduled NetCourse or in NetCourseNow, which allows you to
take the course at your own pace. These courses may be a little too advanced for a true
beginner, but those who have completed this book will find them useful, as will those
who have expertise in a competing statistical package. These courses are useful if you
already know the statistical content and if you are switching to Stata from some other
package such as SYSTAT, SAS, or IBM SPSS Statistics. Now that you have completed this
book, you might want to pursue these NetCourses. You will be given weekly readings
and assignments, and you will have a web location where you can ask for clarification
and interact with other students. For more information, consult the Stata NetCourse
website at http://www.stata.com/netcourse/.

Many individual instructors provide supporting documentation for their own stu-
dents, and they have placed it on the web where anybody has access to it. One such
instructor is Richard Williams, an associate professor of Sociology at Notre Dame, who
has data and programs that cover a one-year graduate course in social statistics; see
http://www.nd.edu/˜rwilliam/stats/StataHighlights.html. Williams’ page is especially
useful for people who have used IBM SPSS Statistics but are switching to Stata.

A.2.4 Acquiring data

So you want to use Stata. Where can you get data? National funding organizations
that support social-science research expect researchers to make the data they collect
available to others. This is a professional and ethical obligation that researchers have.
As a result, you can acquire many national datasets at little or no cost. When you
read an article that uses a dataset, you can do a web search on the name of the dataset
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with a search engine, such as Google. For example, I used a subset of variables from
NLSY97 (National Longitudinal Survey of Youth, 1997). Enter NLSY97 in your search
bar, and it will show you a link to a home page for the U.S. Department of Labor
(http://www.bls.gov/nls/nlsy97.htm). Here you can download the documentation and
data for all waves of this panel survey. They even provide an extraction-software pro-
gram that will help you select variables and generate a Stata dataset. There is no
charge to do this, unless you want a hard copy of documentation (and even that charge
is minimal). Not all datasets are free, but the cost is usually minimal.

There are several clearinghouses that archive datasets. One of the best is the Inter-
University Consortium for Political and Social Research (ICPSR), located at the Uni-
versity of Michigan. Many universities pay an annual fee for membership in this or-
ganization. If you are affiliated with an organization that is a member, your orga-
nization has a set of numbers that identifies each computer on its network, and this
range of numbers is recorded at ICPSR. If you are eligible, go to the ICPSR webpage
(http://www.icpsr.umich.edu/). Enter a keyword and do a search. You might enter “re-
cidivism”, for example. This will give you a list of all the surveys that involve recidivism
or include questions about it. You can then download the dataset and documentation.

Although ICPSR is putting new datasets in the Stata format and updating some of
the more widely used older datasets to Stata format, this is certainly not true for all the
older datasets. SAS and IBM SPSS Statistics were used for statistical analysis for many
years before Stata was developed, and the dataset you want may be in one of those two
formats. There is a simple solution. Stat/Transfer is a program you can buy from Stata
or from Circle Systems, the publisher of Stat/Transfer (http://www.stattransfer.com/);
it converts datasets from one format to another. We discussed this in an early chapter,
and you should make use of it.

When working with national datasets, you can run into some limitations in Stata.
One possible limitation is the number of variables you can have in a dataset. With
Stata/IC, you are limited to 2,047 variables, and with Stata/SE, you are limited to
32,767 variables. Both of these numbers sound huge for any study, but some large
datasets can exceed these numbers.

A.3 Summary

At the beginning of this book, I assumed that you had no experience using a computer
program to create and manage data or to do data analysis and graphics. If you already
had experience using another software program and had a strong statistical background,
my gentle approach may have been a bit too slow at times. I deliberately made few
assumptions about your background and decided to build from the simplest applications
to the more complex.

You may encounter specialized topics in your statistics books that I have not em-
phasized here. Having gone through this book, you may be able to figure out what to
do on your own. Suppose that you need to do what is called a path analysis. You might
see an example like figure A.2.



A.3 Summary 451

X₁

X₂

X₃

X₄

Figure A.2. A path model

Studying this figure, you see that X3 depends on X1 and X2 and that X4 depends on
X2 and X3. Because we see a curved line with an arrowhead on both ends linking X1

and X2, we acknowledge that we cannot regress X2 on X1 or vice versa because the
relationship is that they are just correlated. We are not assuming X1 causes X2 or that
X2 causes X1, just that they are correlated.

Your statistics book tells you that the path coefficients are standardized βs. You
might guess that we could fit this model using

. correlate X1 X2

. regress X3 X1 X2, beta

. regress X4 X2 X3, beta

The correlation would go on the curved line. The standardized βs would go on the
straight lines. You would also want to report both R2 values. One problem you might
have is that if there are different Ns for each variable because of missing values, you
would want to do one of the following two things: 1) eliminate anybody who is missing
values on any of the variables before doing the analysis, or 2) use multiple imputation,
as discussed in chapter 13, to use all available data.

This example is included here to show you that you have learned a lot and you should
be ready to attack specialized statistical questions. Now you can reflect on what you
have learned. We covered creating graphs, charts, tables, statistical inferences for one or
two variables, analyses of variance, correlations, regressions, multiple regressions, and
logistic regressions; entering data; labeling variables and values; managing datasets;
generating new variables; and recoding variables. This is a lot of material. At this
point, you know enough to do your own study or to manage a study for a research
team. Although this book has been designed more for learning Stata than as a reference
manual, the extended index can help you use it in the future as a reference manual.

You now have a valuable set of skills! Congratulations!





References

Acock, A. C. 2013. Discovering Structural Equation Modeling Using Stata. Rev. ed.
College Station, TX: Stata Press.

Acock, A. C., and D. H. Demo. 1994. Family Diversity and Well-Being. Thousand
Oaks, CA: Sage.

Agresti, A., and B. Finlay. 2009. Statistical Methods for the Social Sciences. 4th ed.
Englewood Cliffs, NJ: Prentice Hall.

Allison, P. D. 2001. Missing Data. Thousand Oaks, CA: Sage.

Altman, D. G. 1991. Practical Statistics for Medical Research. London: Chapman &
Hall/CRC.

Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata
Press.

Buis, M. L. 2010. hangroot: Stata module to create a hanging rootogram comparing an
empirical distribution to the best fitting theoretical distribution. Statistical Software
Components, Department of Economics, Boston College.
http://ideas.repec.org/c/boc/bocode/s456886.html.

Bureau of Labor Statistics. 2005. NLSY97 Questionnaires and Codebooks.
http://www.bls.gov/nls/quex/y97quexcbks.htm.

Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics Using Stata. Revised ed.
College Station, TX: Stata Press.

Carlin, J. B., J. C. Galati, and P. Royston. 2008. A new framework for managing and
analyzing multiply imputed data in Stata. Stata Journal 8: 49–67.

Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale,
NJ: Erlbaum.

. 1992. A power primer. Psychological Bulletin 112: 155–159.

Cox, N. J. 2014. egenmore: Stata modules to extend the generate function. Statistical
Software Components, Department of Economics, Boston College.
http://ideas.repec.org/c/boc/bocode/s386401.html.

Dattalo, P. 2008. Determining Sample Size: Balancing Power, Precision, and Practical-
ity. New York: Oxford.



454 References

Day, R. D., and A. C. Acock. 2013. Marital well-being and religiousness as mediated
by relational virtue and equality. Journal of Marriage and Family 75: 164–177.

Graham, J. W., A. E. Olchowski, and T. D. Gilreath. 2007. How many imputations are
really needed? Some practical clarifications of multiple imputation theory. Prevention
Science 8: 206–213.

Hamilton, L. C. 2013. Statistics with Stata (Updated for Version 12). Boston, MA:
Brooks/Cole.

Harel, O. 2009. The estimation of R2 and adjusted R2 in incomplete data sets using
multiple imputation. Journal of Applied Statistics 36: 1109–1118.

Hilbe, J. 2008. oddsrisk: Stata module to convert logistic odds ratios to risk ra-
tios. Statistical Software Components, Department of Economics, Boston College.
Http://ideas.repec.org/c/boc/bocode/s456897.html.

Horton, N. J., S. R. Lipsitz, and M. Parzen. 2003. A potential for bias when rounding
in multiple imputation. American Statistician 57: 229–232.

Jann, B. 2013. fre: Stata module to display one-way frequency table. Statistical Software
Components, Department of Economics, Boston College.
http://ideas.repec.org/c/boc/bocode/s456835.html.

. 2014. center: Stata module to center (or standardize) variables. Statistical
Software Components, Department of Economics, Boston College.
http://ideas.repec.org/c/boc/bocode/s444102.html.

Kenward, M. G., and J. R. Carpenter. 2007. Multiple imputation: Current perspectives.
Statistical Methods in Medical Research 16: 199–218.

Kohler, U., and F. Kreuter. 2012. Data Analysis Using Stata. 3rd ed. College Station,
TX: Stata Press.

Landis, J. R., and G. G. Koch. 1977. The measurement of observer agreement for
categorical data. Biometrics 33: 159–174.

Lawshe, C. H. 1975. A quantitative approach to content validity. Personnel Psychology
28: 563–575.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX:
Stata Press.

Long, J. S., and J. Freese. 2006. Regression Models for Categorical Dependent Variables
Using Stata. 2nd ed. College Station, TX: Stata Press.

Mitchell, M. N. 2004. A Visual Guide to Stata Graphics. College Station, TX: Stata
Press.

. 2010. Data Management Using Stata: A Practical Handbook. College Station,
TX: Stata Press.



References 455

. 2012. A Visual Guide to Stata Graphics. 3rd ed. College Station, TX: Stata
Press.

Rabe-Hesketh, S., and A. Skrondal. 2012. Multilevel and Longitudinal Modeling Using
Stata. 3rd ed. College Station, TX: Stata Press.

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227–241.

. 2009. Multiple imputation of missing values: Further update of ice, with an
emphasis on categorical variables. Stata Journal 9: 466–477.

Royston, P., J. B. Carlin, and I. R. White. 2009. Multiple imputation of missing values:
New features for mim. Stata Journal 9: 252–264.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chap-
man & Hall/CRC.

Shultz, K. S., D. J. Whitney, and M. J. Zickar. 2014. Measurement Theory in Action:
Case Studies and Exercises. 2nd ed. New York: Routledge.

StataCorp. 2013a. Stata 13 Multiple-Imputation Reference Manual. College Station,
TX: Stata Press.

. 2013b. Stata 13 Power and Sample-Size Reference Manual. College Station,
TX: Stata Press.

Utts, J. M. 2014. Seeing Through Statistics. 4th ed. Belmont, CA: Brooks/Cole.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing
blood pressure covariates in survival analysis. Statistics in Medicine 18: 681–694.

von Hippel, P. T. 2009. How to impute interactions, squares, and other transformed
variables. Sociological Methodology 39: 265–291.

Wang, Z. 1999. lrdrop1: Stata module to calculate likelihood-ratio test after dropping
one term. Statistical Software Components, Department of Economics, Boston Col-
lege. Http://ideas.repec.org/c/boc/bocode/s400901.html.

Williams, R. 2012. Using the margins command to estimate and interpret adjusted
predictions and marginal effects. Stata Journal 12: 308–331.





Author index

A

Acock, A. C. . . . 240, 413, 414, 438, 439
Agresti, A. . . . . . . . . . . . . . . . . . . . . . . . . 221
Allison, P. D. . . . . . . . . . . . . . . . . . . . . . . 410
Altman, D. G. . . . . . . . . . . . . . . . . . . . . . 374

B

Baum, C. F. . . . . . . . . . . . . . . . . . . 444, 448
Boshuizen, H. C. . . . . . . . . . . . . . .399, 404
Brown, W. . . . . . . . . . . . . . . . . . . . . . . . . 368
Buis, M. L. . . . . . . . . . . . . . . . . . . . . . . . . 276

C

Cameron, A. C.. . . . . . . . . . . . . . . . . . . .447
Carlin, J. B. . . . . . . . . . . . . . . . . . . 395, 399
Carpenter, J. R. . . . . . . . . . . . . . . . . . . . 404
Chen, X. . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Chetty, R. . . . . . . . . . . . . . . . . . . . . . . . . . 196
Cohen, J. . . . . . . . . . . . 174, 241, 258, 322
Cox, N. J. . . . . . . . . . . . . . . . . . . . . . 69, 446
Cronbach, L. . . . . . . . . . . . . . . . . . . . . . . 368

D

Dattalo, P. . . . . . . . . . . . . . . . . . . . . . . . . 322
Day, R. D.. . . . . . . . . . . . . . . . . . . . . . . . .414
Demo, D. H.. . . . . . . . . . . . . . . . . . . . . . .240

E

Ender, P. . . . . . . . . . . . . . . . . . . . . . 127, 321

F

Finlay, B.. . . . . . . . . . . . . . . . . . . . . . . . . .221
Freese, J. . . . . . . . . . . . . . . . . . . . . . 337, 447
Friedman, J. . . . . . . . . . . . . . . . . . . . . . . . 196

G

Galati, J. C. . . . . . . . . . . . . . . . . . . . . . . . 399
Gilreath, T. D. . . . . . . . . . . . . . . . . . . . . 414

Graham, J. W. . . . . . . . . . . . . . . . . . . . . 414

H

Hamilton, L. C. . . . . . . . . . . . . . . . . . . . 447
Harel, O. . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Hilbe, J. . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Horton, N. J. . . . . . . . . . . . . . . . . . . . . . . 409

J

Jann, B. . . . . . . . . . . . . . . . . . . . . . . 100, 305

K

Kenward, M. G. . . . . . . . . . . . . . . . . . . . 404
Knook, D. L. . . . . . . . . . . . . . . . . . . . . . . 399
Koch, G. G. . . . . . . . . . . . . . . . . . . . . . . . 374
Kohler, U. . . . . . . . . . . . . . . . . . . . . . . . . . 447
Kreuter, F. . . . . . . . . . . . . . . . . . . . . . . . . 447

L

Laird, J. . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Landis, J. R. . . . . . . . . . . . . . . . . . . . . . . 374
Lawshe, C. H. . . . . . . . . . . . . . . . . . . . . . 375
Lipsitz, S. R. . . . . . . . . . . . . . . . . . . . . . . 409
Long, J. S. . . . . . . . . . . . . . . . . . . . .337, 447

M

Millar, P. . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Mitchell, M. N. . . . . . . . . . . . . . . . 117, 447

N

Newton, H. J. . . . . . . . . . . . . . . . . . . . . . 446

O

Olchowski, A. E.. . . . . . . . . . . . . . . . . . .414

P

Parzen, M. . . . . . . . . . . . . . . . . . . . . . . . . 409



458 Author index

R

Rabe-Hesketh, S. . . . . . . . . . . . . . . . . . . 448
Royston, P. . . . . . . . . . . . . . . . . . . . 395, 399
Rubin, D. B. . . . . . . . . . . . . . 395, 404, 406

S

Sandor, L. . . . . . . . . . . . . . . . . . . . . . . . . . 196
Schafer, J. L. . . . . . . . . . . . . . . . . . . . . . . 399
Shultz, K. S. . . . . . . . . . . . . . . . . . . 364, 375
Simon, S . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Skrondal, A. . . . . . . . . . . . . . . . . . . . . . . . 448
Spearman, C. E. . . . . . . . . . . . . . . . . . . . 368
Stepner, M.. . . . . . . . . . . . . . . . . . . . . . . .196

T

Trivedi, P. K. . . . . . . . . . . . . . . . . . . . . . . 447
Tukey, J. . . . . . . . . . . . . . . . . . . . . . . . . . . 276

U

Utts, J. M. . . . . . . . . . . . . . . . . . . . . . . . . 133

V

van Buuren, S. . . . . . . . . . . . . . . . .399, 404
von Hippel, P. T. . . . . . . . . . . . . . . . . . . 410

W

Wang, Z. . . . . . . . . . . . . . . . . . . . . . . . . . . 347
White, I. R. . . . . . . . . . . . . . . . . . . 395, 399
Whitney, D. J. . . . . . . . . . . . . . . . . 364, 375
Williams, R. . . . . . . . . . . . . . . . . . . 350, 449

Z

Zickar, M. J. . . . . . . . . . . . . . . . . . . 364, 375



Subject index

Symbols

β weights . . . . . . . . . . . . . . . . . . . . . . . . . . 272
η2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
* comment . . . . . . . . . . . . . . . . . . . . . . . . . 83
/* and */ comment. . . . . . . . . . . . . . . . .83

A

acquiring datasets . . . . . . . . . . . . .449–450
add, label define option . . . . . . . . . . . 2
agreement, intraclass correlation . . . 255
alpha reliability. . . . . . . . . . . . . . . . . . . .369
ameans command . . . . . . . . . . . . . . . . . . . 95
analysis of covariance . . . . . see ANCOVA

analysis of variance. . . . . . . . .see ANOVA

ANCOVA . . . . . . . . . . . . . . . . . . . . . . 231–242
ANOVA,

degrees of freedom . . . . . . . . . . . . 221
equal-variance test . . . . . . . . . . . . 221
one-way . . . . . . . . . . . . . . . . . . 215–216
one-way power analysis . . . 257–260
power analysis . . . . . . . . . . . . 257–264
repeated-measures . . . . . . . . . . . . 249
repeated-measures power

analysis . . . . . . . . . . . . . . 262–264
two-way . . . . . . . . . . . . . . . . . . 243–249
two-way power analysis . . . 260–262

ANOVA assumptions . . . . . . . . . . . . . . . 216
ATS at UCLA . . . . . . . . . . . . . . . . . . . . . . 202

B

bar chart . . . . . . . . . . . . . . . . . . . . . 105, 344
bar graph of means . . . . . . . . . . . . . . . . 227
Bartlett test of equal variances . . . . 221
beta weights . . . . . . . . . . . . . . . . . . 209, 272

limitation . . . . . . . . . . . . . . . . . . . . . 308
binary variables . . . . . . . . . . . . . . . 292–293

binscatter command. . . .196–200, 313
block regression . . . . . . . . . . . . . . . 291–299
blog . . . . . . . . . . . . . . . . . . . . see Stata Blog
Bonferroni multiple-comparison test . . .

. . . . . . . . . . 206, 219
bookstore, Stata . . . . . . . . . . . . . . . . . . . 446
bootstrap estimation of standard errors

. . . . . . . . . . . . . 283
bootstrap regression . . . . . . . . . . . . . . . 278
Boston College Stata site . . . . . . . . . . 444
box plot . . . . . . . . . . . . . . . . . .115, 230–231

C

casewise deletion . . . . . . . . . . . . . . . . . . 203
categorical covariates . . . . . . . . . 233, 237
categorical predictors, regression . . . 293
categorical variable. . . . . . . . . . . .299–301
cause and effect . . . . . . . . . . . . . . . . . . . 194
center command . . . . . . . . . . . . . . . . . . 305
centering . . . . . . . . . . . . . . . . . . . . . .317–318
chi-squared

table . . . . . . . . . . . . . . . . . . . . . . . . . . 127
test . . . . . . . . . . . . . . . . . . . . . . 125, 346

chitable command . . . . . . . . . . . 127–129
clear command . . . . . . . . . . . . . . . . . . . . 29
cls command . . . . . . . . . . . . . . . . . . . . . . 16
codebook command . . . . . 43–45, 53–54,

136
codebook example . . . . . . . . . . . . . . . 25–28
coding system . . . . . . . . . . . . . . . . . . . 24–28
coefficient of variation . . . . . . . . . . . . . 114
Cohen’s d . . . . . . . . . . . .169–170, 174–182
Cohen’s f . . . . . . . . . . . . . . . . . . . . . . . . . 258
collinearity . . . . . . . . . . . . . . . . . . . . . . . . 287
command structure . . . . . . . . . . . . . . . . . 76
Command window . . . . . . . . . . . . . . . 8, 10



460 Subject index

confidence interval
regression line . . . . . . . . . . . . . . . . .209
slope . . . . . . . . . . . . . . . . . . . . . . . . . . 209

constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
continuous covariates. . . . . . . . . .233–235
continuous variable . . . . . . . . . . . . . . . . 313
conventions used in the book. . . . . . . . .1
copying, HTML format. . . . . . . . . . .18, 87
copying results to word processor. . .18,

86
correlate command. . . . . . . . . .203–204
correlation,

interpreting . . . . . . . . . . . . . . . . . . . 200
limitation . . . . . . . . . . . . . . . . . . . . . 308
multiple comparison. . . . . . . . . . .206

correlation ratio . . . . . . . . . . 222, 241–242
count outcome variables . . . . . . . . . . . 337
Cramér’s V , measure of association . . .

. . . . . . . . . . . . . 131
creating value labels . . . . . . . . . . . . . 55–58
criterion-related validity . . . . . . . . . . . 376
cross-tabulation . . . . . . . . . . . . . . . . . . . 122
curve fitting. . . . . . . . . . . . . . . . . . .311–317

D

data,
long format . . . . . . . . . . . . . . 160, 217
wide format . . . . . . . . . . . . . . 158, 217

Data Editor . . . . . . . . . . . . . . 29–33, 40–41
dataset contents . . . . . . . . . . . . . . . . . . . . 43
dataset,

acquisition . . . . . . . . . . . . . . . 449–450
c10interaction . . . . . . . . . 301, 326
c11barchart . . . . . . . . . . . . . . . . . .344
cancer . . . . . . . . . . . . . . . . . . . . . 10, 11
census . . . . . . . . . . . . . . . . . . . . . . . .325
censusfv . . . . . . . . . . . . . . . . . . . . . . 19
chapter6 aspirin . . . . . . . . . . . . 134
chapter13 missing . . . . . . . . . . . 399
chores . . . . . . . . . . . . . . . . . . . . . . . .171
create . . . . . . . . . . . . . . . . . . . . . . 21–23
depression . . . . . . . . . . . . . . . . . . . 213
descriptive gss . . . . . 98, 117, 118
divorce . . . . . . . . . . . . . . . . . . . . . . 331
download . . . . . . . . . . . xxix, 449–450

dataset, continued
environ . . . . . . . . . . . . . . . . . . . . . . 334
firstsurvey . . . . . . . . . . . . . . . . . . . 43
firstsurvey chapter4 . . . . 78, 83,

90
flourishing bmi . . . . . . . . 414, 415
gss2002 and 2006 chapter12 . . .

. . . . . . . . . . . . . 392
gss2002 chapter10 . . . . . . . . . . . 440
gss2002 chapter6 . . . . . . . 146, 147
gss2002 chapter7 . . 155, 161, 162,

164, 172, 187
gss2002 chapter8 . . . . . . . . . . . . 213
gss2002 chapter9 . . . . . . . . . . . . 265
gss2002 chapter10 . . . . . . 325, 326
gss2002 chapter11 . . . . . . . . . . . 359
gss2006 chapter6 . . 122, 135, 140,

143, 146
gss2006 chapter6 10percent . . . .

. . . . . . . . . . . . . 143
gss2006 chapter8 . . 190, 212, 213
gss2006 chapter8 selected . .206
gss2006 chapter9 . . . . . . . 225, 232
gss2006 chapter9 2way . . . . . . 243
gss2006 chapter12 . . . . . . 362, 369
gss2006 chapter12 selected . . . .

. . . . . . . . . . . . . 383
intraclass . . . . . . . . . . . . . . . . . . . 256
kappa1 . . . . . . . . . . . . . . . . . . . . . . . .373
kuder-richardson . . . . . . . . . . . .371
long . . . . . . . . . . . . . . . . . . . . . . . . . . 160
nlsw88 . . . . . . . . . . . . . . . . . . . . . . . .327
nlsy97 chapter7 . . . . . . . . 183, 187
nlsy97 chapter11 . . . . . . . 337, 346
nlsy97 selected variables . . . . .

. . . . . . . . . . 266, 291
ops2004 . . . . . . . . . . . . . . . . . .268, 412
partyid . . . . . . . . . . . . . 218, 228, 266
positive . . . . . . . . . . . . . . . . . . . . . . 73
regsmpl . . . . . . . . . . . . . 311, 399, 440
relate . . . . . . . . . . . . . . . xxix, 50, 73
relate small . . . . . . . . . . . . . . . . xxix
retest . . . . . . . . . . . . . . . . . . . . . . . .367
severity . . . . . . . . . . . . . . . . . . . . . 359
spearman . . . . . . . . . . . . . . . . 211, 213



Subject index 461

dataset, continued
wide . . . . . . . . . . . . . . . . . . . . . . . . . . 157
wide9 . . . . . . . . . . . . . . . . . . . . . . . . . 250

degrees of freedom, . . . . . . . . . . . . . . . . 127
ANOVA . . . . . . . . . . . . . . . . . . . . . . . . 221
one-sample t test . . . . . . . . . . . . . . 164

dependent t test . . . . . . . . . . . . . . . . . . . 171
dependent variable . . . . . . . . . . . . . . . . 124
describe command . . . . . . 10, 45–46, 51
dfbeta command . . . . . . . . . . . . . . . . . . 286
dialog box,

alpha . . . . . . . . . . . . . . . . . . . . . . . . . 369
anova . . . . . . . . . . . . . . . . . . . . . . . . . 243
codebook . . . . . . . . . . . . . . . . . . . 43–45
correlate . . . . . . . . . . . . . . . . . . . . 203
describe . . . . . . . . . . . . . . . . . . . 45–46
egen . . . . . . . . . . . . . . . . . . . . . . . .68–70
generate . . . . . . . . . . . . . . . 63, 65–66
graph bar . . . . . . . . . . .141–142, 227
graph box . . . . . . . . . . . . . . . . . . . . 230
graph hbox . . . . . . . . . . . . . . . . . . . 115
graph pie . . . . . . . . . . . . . . . . . . . . 102
histogram . . . . . . . . 14–15, 105–107
kwallis . . . . . . . . . . . . . . . . . . . . . . 228
lfit . . . . . . . . . . . . . . . . . . . . . . . . . . 210
logistic . . . . . . . . . . . . . . . . .338–339
margins . . . . . . . . 236, 238–239, 245
nestreg . . . . . . . . . . . . . . . . . . . . . . 319
oneway . . . . . . . . . . . . . . . . . . . 218–219
open . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
pcorr . . . . . . . . . . . . . . . . . . . . 273–274
power . . . . . . . . . . . . . . . . . . . . 177–178
prtest . . . . . . . . . . . . . . . . . . . 155–161
recode . . . . . . . . . . . . . . . . 59–60, 291
regress . . . . . . . . . . . . . . . . . .207, 269
rename . . . . . . . . . . . . . . . . . . . . . . . . . 55
rvplot . . . . . . . . . . . . . . . . . . . . . . . .280
scatter . . . . . . . . . . . . . . . . . . 191–195
sdtest . . . . . . . . . . . . . . . . . . . . . . . .170
sktest . . . . . . . . . . . . . . . . . . . . . . . .110
Submit vs. OK . . . . . . . . . . . . . . . . . 17
summarize . . . . . . . . . . . . . . . . . . . . . 11
tab1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
tabi . . . . . . . . . . . . . . . . . . . . . 138–139
table . . . . . . . . . . . . . . . . . . . . . . . . . 140

dialog box, continued
tabstat . . . . . . . . . . . . . . . . . . . . . . 114
tabulate . . . . . 66–67, 122–126, 136
ttest . . . . . . 162–163, 166–169, 172

dictionary file . . . . . . . . . . . . . . . . . . . . . . . 50
difference of means test . . . . . . . . . . . . 164
difference of proportions test. . . . . . .157
discontinuity graph . . . . . . . . . . . 198–200
display command. . . . . . .169–170, 342,

431–432
do-file,

continuation line . . . . . . . . . . . . . . 165
introduction . . . . . . . . . . . . . . . . . . . . . 6

Do-file Editor . . . . . . . . . . . . . . . . . . . 81–85
download datasets . . . . . . . . . . . . 449–450
drop command . . . . . . . . . . . . . . . . . . . . . 71
dummy variables . . . . . . . . . . . . . . 292–293

E

effect size . . . . . . . 169–170, 222, 241, 273
η2 . . . . . . . . . . . . . . . . . . . 222, 241–242

egen command . . . . . . . . . 63, 68–70, 363
egen count command . . . . . . . . . . . . . 363
egen rowmean command . . . . . . . 70, 363
egen rowmiss command. . . . . . . . . . . . 69
egenmore command . . . . . . . . . . . . . . . . 69
entering data . . . . . . . . . . . . . . . . . . . . 29–33
equal variance, Bartlett test . . . . . . . 221
esize command . . . . . . . . . . . . . . 169–170
estat esize command . . . . . . . 241–242
estat vif postestimation command . .

. . . . . . . . . . .287–288
estimates store command . . . . . . . 346
Excel

exporting data . . . . . . . . . . . . . . . . . 47
importing data . . . . . . . . . . . . . . . . . 47

exit Stata . . . . . . . . . . . . . . . . . . . . . . . 18, 43
exponentiation. . . . . . . . . . . . . . . . . . . . .342
external validity . . . . . . . . . . . . . . . . . . . 203

F

F ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
F test of unequal variances . . . . . . . . 170
Facebook . . . . . . . see Stata on Facebook



462 Subject index

factor analysis, . . . . . . . . . . . . . . . . . . . . 378
commonality . . . . . . . . . . . . . . . . . . 381
eigenvalue . . . . . . . . . . . . . . . . 381, 386
exploratory factor analysis . . . . 379
extraction. . . . . . . . . . . . . . . . . . . . .381
factor score . . . . . . . . . . . . . . 381, 390
loading . . . . . . . . . . . . . . . . . . . . . . . 381
oblique rotation . . . . . . . . . . 381, 388
orthogonal rotation. . . . . . .381, 387
PCF . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
PF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
postestimation . . . . . . . . . . . . . . . . 382
principal component analysis . . 380
principal-component factor analy-

sis . . . . . . . . . . . . . . . . . . . . . . . . 380
promax . . . . . . . . . . . . . . . . . . . . . . . 388
rotation . . . . . . . . . . . . . . . . . . . . . . . 381
scree plot . . . . . . . . . . . . . . . . 381, 386
simple structure. . . . . . . . . . . . . . .381
varimax . . . . . . . . . . . . . . . . . . . . . . . 387

factor variable . . . . . . . . . . . . . . . . 299–301
fonts, fixed . . . . . . . . . . . . . . . . . . . . . . . . . 86
format,

numeric . . . . . . . . . . . . . . . . . . . . . . . . 31
string . . . . . . . . . . . . . . . . . . . . . . . . . . 32

fre command . . . . . . . . . . . . . . . . . 100–102
frequency distributions. . . . . . . . . . . . . .99
ftable command . . . . . . . . . . . . . . . . . . 221
full mediation . . . . . . . . . . . . . . . . . . . . . 435

G

gamma, measure of association . . . . 136
generalized linear model . . . . . . .427–428
generalized structural equation model-

ing. . . . . . . . . . . . . . . . . . .413–441
generate command . . . . . . . . . . . . . 63–68
geometric mean . . . . . . . . . . . . . . . . . . . . . 95
glm command . . . . . . . . . . . . . . . . . 427–428
Goodman and Kruskal’s gamma, mea-

sure of association . . . . . . . . 136
GradPlan. . . . . . . . . . . . . . . . . . . . . . . . . .446
graph,

alternative scattergram . . . 196–200
bar chart . . . . . . . . . . . . 105, 142, 344
box plot . . . . . . . . . . . . . . . . . . . . . . 115

graph, continued
collinearity . . . . . . . . . . . . . . . . . . . . 287
discontinuity . . . . . . . . . . . . . 198–200
hanging rootogram . . . . . . . . . . . . 275
heteroskedasticity . . . . . . . . . . . . . 279
histogram . . . . . . . . . . . . . . . . 108, 275
medians. . . . . . . . . . . . . . . . . . . . . . .231
overlay two-way showing

interaction effects. . . . . . . . .303
pie chart . . . . . . . . . . . . . . . . . . . . . . 102
residual versus fitted . . . . . . . . . . 280
scattergram . . . . . . . . . . . . . . 190–196

graph bar command . . . . 141–142, 227,
344

graph box command. . . . . . . . . .230–231
Graph Editor . . . . . . . . . . . . . . . . . 104–105
graphics book . . . . . . . . . . . . . . . . . . . . . 447
gsem command. . . . . . . . . . . . . . . .413–441

logistic regression . . . . . . . . . 425–428
GUI interface, Edit ⊲ Preferences . . . . . . 8

H

harmonic mean . . . . . . . . . . . . . . . . . . . . . 95
help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

video. . . . . . . . . . . . . . . . . . . . . . . . . . .19
web-based. . . . . . . . . . . . . . . . . . . . . .19

help, listcoef option . . . . . . . . 342–343
help label command . . . . . . . . . . . . . . 43
heteroskedasticity. . . . . . . . . . . . . . . . . .279
hierarchical regression . . . . . . . . 291–299,

319–321, 353–355
histogram . . . . . . . . . . . . . . . . . . . . . . . . . 108
histogram command . . . . . . . 13–17, 275
HTML format . . . . . . . . . . . . . . . . . . . . . . . 87

I

ice command . . . . . . . . . . . . . . . . . . . . . 399
imputation . . . . see multiple imputation
increment in R2 . . . . . . . . . . . . . . . . . . . 273
independent variable. . . . . . . . . . . . . . .124
indicator variables . . . . . . . . . . . . 292–293
interaction term. . . . . . . . . . . . . . .301–304
interactive table . . . . . . . . . . . . . . . . . . . 138
intercept . . . . . . . . . . . . . . . . . . . . . . . . . . 209
interquartile range . . . . . . . . . . . . . . . . . 114



Subject index 463

interval-level variables . . . . . . . . . . . . . . 94
intraclass correlation . . . . . . . . . . 255, 256

J

jitter(), scatter option . . . . . . . . . 193

K

kappa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
kappa, weighted . . . . . . . . . . . . . . . . . . . 374
kappa with three raters . . . . . . . . . . . . 374
keep command . . . . . . . . . . . . . . . . . . . . . 71
Kendall’s tau, measure of association . .

. . . . . . . . . . . . . 136
Kruskal–Wallis test, ANOVA alternative

. . . . . . . . . . . . . 228
Kuder–Richardson coefficient of

reliability . . . . . . . . . . . . . . . . . 371
kurtosis . . . . . . . . . . . . . . 97, 110, 277–278

L

label variable command . . . . . . . . . 57
labeling values . . . . . . . . . . . . . . . . . . . . . . 33
labeling variables . . . . . . . . . . . . . . . . . . . 23
likelihood-ratio chi-squared test . . .346–

347
limitations of Stata . . . . . . . . . . . . . . . . 450
list command . . . . . . . . . . . . . 79–80, 218
list option, nolabel . . . . . . . . . . . . . .218
listcoef command . . . . . . . . . . . 342–344
listwise deletion . . . . . . . . . . . . . . . . . . . 203
log, .smcl extension . . . . . . . . . . . . . . . . 87
log files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
log files and graphs . . . . . . . . . . . . . . . . . 88
logistic command . . . . . . . . . . . 338–341
logistic regression . . . . . . . . 329–360, 433

bar chart. . . . . . . . . . . . . . . . . . . . . .344
exponentiation . . . . . . . . . . . . . . . . 342
hypothesis tests . . . . . . . . . . . . . . . 346
interpreting odds ratio . . . . . . . . 341
likelihood-ratio chi-squared test . . .

. . . . . . . . . . . . . 346
logits . . . . . . . . . . . . . . . . . . . . . . . . . 336
McFadden pseudo-R2 . . . . . . . . . 340
nested . . . . . . . . . . . . . . . . . . . . 353–355
nonlinear . . . . . . . . . . . . . . . . . . . . . 332

logistic regression, continued
odds ratio . . . . . . . . . . . . . . . . . . . . .334
percentage change. . . . . . . . . . . . .341
pseudo-R2 . . . . . . . . . . . . . . . . . . . . 340
S-curve . . . . . . . . . . . . . . . . . . . . . . . 332
vs. OLS regression. . . . . . . . . . . . .333
Wald chi-squared test . . . . . . . . . 346

logit command . . . . . . . . . 332, 338–341,
426–428

logits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
long format . . . . . 160, 167, 217, 251–252
lrdrop1 command . . . . . . . . . . . . 346–347
lrtest command . . . . . . . . . . . . . . . . . . 346

M

MAR . . . . . . . . . . . . . . . . . . . . . . . . . . 395–397
margins command . . 236, 238–240, 306,

350–352
marginsplot command. . . . . . .246–249,

306–307
maximum number of variables . . . . . 450
MCAR . . . . . . . . . . . . . . . . . . . . . . . . .395–396
McFadden pseudo-R2 . . . . . . . . . . . . . . 340
mean squares . . . . . . . . . . . . . . . . . . . . . . 221
measure of association,

η2 . . . . . . . . . . . . . . . . . . . 222, 241–242
φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
odds ratio . . . . . . . . . . . . . . . . . . . . .133
V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

median command . . . . . . . . . . . . . . . . . . 185
median, graph box plot . . . . . . . . . . . . 231
mediation . . . . . . . . . . . . . . . . . . . . . 434–438

correlated residuals . . . . . . . . . . . 439
full . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
partial . . . . . . . . . . . . . . . . . . . . . . . . 435

menu, open . . . . . . . . . . . . . . . . . . . . . . . . . 64
mi estimate command . . 399, 405–406
mi impute chained command. . . . .399
mi impute command. . . . . . . . . .403–404
mi impute mvn command. . . . .399, 404
mi register command . . . . . . . . . . . . 403
mi set command . . . . . . . . . . . . . 403–404
mibeta command . . . . . . . . . . . . . 406–408
mim command . . . . . . . . . . . . . . . . . . . . . 399
missing, count . . . . . . . . . . . . . . . . . . . . . 363



464 Subject index

missing values . . 27, 54, 65, 77, 393–412
types . . . . . . . . . . . . . . . . . . . . . . . 53, 54

misstable command. . . . . . . . . .400–401
more command . . . . . . . . . . . . . . . . . . . 4, 44
multicollinearity . . . . . . . . . . . . . . . . . . . 287
multiple comparison,

Bonferroni . . . . . . . . . . . . . . . . . . . . 219
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