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What Makes Us Smart? Core Knowledge

and Natural Language

Elizabeth S. Spelke

10.1 Introduction

When we compare the sensory and motor capacities of humans to those

of other primates, we discover extensive similarities. Human visual and

auditory capacities closely resemble those of rhesus monkeys, for exam-

ple, as do the neural mechanisms that subserve these capacities (e.g.,

Felleman and van Essen 1991). Human locomotion and other actions

also depend on systems shared by many animals (e.g., Thelen 1984).

These similarities strongly suggest that the psychology of humans is

continuous with that of nonhuman animals and depends on a common

set of mechanisms.

When we compare the cognitive achievements of humans to those of

nonhuman primates, however, we see striking differences (table 10.1).

All animals have to find and recognize food, for example, but only

humans develop the art and science of cooking. Many juvenile animals

engage in play fighting, but only humans organize their competitive play

into structured games with elaborate rules. All animals need to under-

stand something about the behavior of the material world in order to

avoid falling off cliffs or stumbling into obstacles, but only humans sys-

tematize their knowledge as science and extend it to encompass the be-

havior of entities that are too far away or too small to perceive or act

upon. As a final example, all social animals need to organize their soci-

eties, but only humans create systems of laws and political institutions to

interpret and enforce them.

What is it about human cognition that makes us capable of these

feats? In this chapter, I consider two possible answers to this question.



The first answer guided my research for 20 years, but I now believe that

it is wrong. The second answer is just beginning to emerge from research

conducted over the last decade, and I think it has a chance of being right.

Both answers center on the concept of core knowledge, which I can best

introduce by turning to the first answer.

10.2 What Makes Us Smart? Uniquely Human, Core Knowledge

Systems

According to the first answer, the cognitive capacities of any animal de-

pend on early-developing, domain-specific systems of knowledge. Just as

infant animals have specialized perceptual systems for detecting particu-

lar kinds of sensory information and specialized motor systems guiding

particular kinds of actions, infant animals have specialized, task-specific

cognitive systems: systems for representing material objects, navigating

through the spatial layout, recognizing and interacting with other ani-

mals, and the like. These specialized systems provide the core of all

mature cognitive abilities, and so whatever is unique to human cognition

depends on unique features of our early-developing, core knowledge

systems. At the root of our capacities to construct and learn physics,

for example, may be a distinctive core system for representing material

objects and their motions; at the root of human mathematics may be

uniquely human core systems for representing space and number; and at

the root of human politics, law, and games may be distinctive systems for

representing people and their social arrangements.

This thesis supports a particular research agenda: to understand what

is special about human cognition, we should study core knowledge sys-

tems as they emerge in infants and young children. Such studies have

been conducted over the last 30 years, and they indeed suggest that hu-

Table 10.1
Some unique feats of human cognition

Cooking Theater Science

Music Architecture Politics

Sports Tool manufacture Law

Games Mathematics Religion
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man infants are equipped with core knowledge systems. Nevertheless,

the systems found in young infants do not appear to distinguish us from

many nonhuman animals.

10.2.1 Object Mechanics

Consider, for example, the core system for representing material objects.

Research over the last two decades provides evidence that infants have a

system for perceiving objects and their motions, for filling in the surfaces

and boundaries of an object that is partly hidden, and for representing

the continued existence of an object that moves fully out of view. Evi-

dence for these abilities comes from studies using both reaching methods

and preferential looking methods (see Spelke 1998, for review). An ex-

periment by Wynn (1992a) serves as an example of the latter.

Wynn (1992a; figure 10.1) presented 5-month-old infants with a pup-

pet stage on which she placed a single puppet. Then a screen was intro-

duced, concealing the puppet, and a second puppet appeared from the

side of the display and disappeared behind the screen. Finally, the screen

was lowered to reveal one or two puppets on the stage, and infants’

looking time at these displays was measured and compared. If infants

failed to represent the existence and the distinctness of the two puppets

behind the screen, then the outcome display presenting one puppet

should have looked more familiar to them, because they had only ever

seen a single puppet on the stage at a time. Because infants tend to look

longer at displays that are more novel, infants therefore should have

looked longer at the display of two puppets. In contrast, if infants rep-

resented the continued existence of the first puppet behind the screen, the

distinct identity of the second puppet when it was introduced from the

side, and the continued existence of the second puppet behind the screen,

then the outcome display presenting only a single puppet should have

looked more novel to them, because it suggested that one of the puppets

had mysteriously disappeared. Infants indeed looked longer at the one-

puppet outcome, providing evidence that they perceived and represented

two puppets in this event.

Wynn’s experiment has enjoyed many replications and extensions (see

Wynn 1998, for review). Notably, it has been replicated in studies that

control for infants’ representations of the features and spatial locations
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Figure 10.1
Schematic depiction of displays for a study of infants’ representations of per-
sisting, numerically distinct objects using a preferential looking method. (After
Wynn 1992a.)
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of the objects (respectively, Simon, Hespos, and Rochat 1995; Koechlin,

Dehaene, and Mehler 1998): infants look longer at arrays presenting the

wrong number of objects, even when the shapes, colors, and spatial

locations of the objects in both displays are new. Wynn’s findings also

have been replicated with older infants in experiments using two dif-

ferent methods, each focusing on a different response system: manual

search in a single, opaque box containing one or two objects, and loco-

motor choice between two such boxes (Feigenson, Carey, and Hauser

2002; Van de Walle, Carey, and Prevor 2001; figure 10.2). In studies

using the latter method, for example, infants who have just begun to

locomote independently are shown two cookies placed in succession into

one opaque box and one cookie placed into a second box, and then they

are allowed to crawl toward one or the other box. Infants were found

Figure 10.2
Schematic depiction of displays for studies of object representation using reach-
ing and locomotor choice methods. (After Feigenson, Carey, and Hauser 2002;
Van de Walle, Carey, and Prevor 2001.)
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to crawl preferentially to the box with the greater number of cookies

(Feigenson, Carey, and Hauser 2002). These converging findings from

three paradigms suggest that infants have robust abilities to represent the

persistence and the distinctness of hidden objects.

Summarizing these and other studies, I have proposed that human

infants represent objects in accord with three spatiotemporal constraints

on object motion (figure 10.3). Infants represent objects as cohesive

bodies that maintain both their connectedness and their boundaries as

they move, as continuous bodies that move only on connected, unob-

structed paths, and as bodies that interact if and only if they come into

contact. Despite some controversy in the field, I believe these conclusions

are well supported (Spelke 1998). Nevertheless, there is no reason to

think that the core system for representing objects, centering on the con-

straints of cohesion, continuity, and contact, is unique to humans. Rep-

resentational abilities that equal or exceed those of human infants have

been found in a variety of nonhuman animals, including both adult

monkeys and newly hatched chicks.

Figure 10.3
Principles of object representation in human infancy. (After Spelke 1990.)
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Hauser has presented Wynn’s task to adult free-ranging rhesus

monkeys, using all three methods used with infants: preferential looking,

manual search, and locomotor choice (Hauser, Carey, and Hauser 2000;

Hauser, MacNeilage, and Ware 1996). With all three methods, the per-

formance of adult monkeys equaled or exceeded that of human infants.

Humans evidently are not the only creatures to represent objects as

spatiotemporally continuous bodies.

The monkeys in Hauser’s experiments were adults, but capacities to

represent objects have been found in infant animals as well. Indeed, they

have been found in chicks who are only 1 day old. Investigators in two

laboratories have used an imprinting method in order to present newly

hatched chicks with some of the object representation tasks used with

human infants (e.g., Lea, Slater, and Ryan 1996; Regolin, Vallortigara,

and Zanforlin 1995). As is well known, chicks who spend their first day

of life in isolation with a single moving inanimate object will tend to

approach that object in preference to other objects in any stressful situa-

tion. In a variety of studies, this approach pattern has been used to assess

chicks’ representations of the hidden object. In one set of studies, for

example, chicks who spent their first day of life with a center-occluded

object were placed on their second day of life in an unfamiliar cage (a

moderately stressful situation) with two versions of the object at opposite

ends, in which the previously visible ends of the object either were con-

nected or were separated by a visible gap. Chicks selectively approached

the connected object, providing evidence that they, like human infants,

had perceived the imprinted object to continue behind its occluder (Lea,

Slater, and Ryan 1996; see also Regolin and Vallortigara 1995; figure

10.4). In further studies, chicks were presented with events in which the

imprinted object became fully occluded. Even after an extended occlu-

sion period, the chicks selectively searched for the occluded object, pro-

viding evidence that they represented its continued existence (Regolin

and Vallortigara 1995).

These findings suggest that a wide range of vertebrates have early-

developing capacities to represent objects. The core system for repre-

senting objects found in human infants does not appear to be unique to

us and so cannot in itself account for later-developing, uniquely human

abilities to reason about the physical world.
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10.2.2 Number Sense

Perhaps studies of object representations fail to reveal uniquely human

capacities, because object representations are so close to perception and

so fundamental to many animals. Our human capacities for science

and technology, however, depend greatly on the development and use

of mathematics. Moreover, formal mathematics is a uniquely human ac-

complishment. Perhaps a core system for representing number distin-

guishes human cognition from that of nonhuman animals and serves as

the basis for the development of mathematics, technology, and science.

Research on normal human adults and on neurological patients pro-

vides evidence that representations of number and operations of arith-

metic depend in part on ‘‘number sense’’: a sense of approximate

numerical values and relationships (Dehaene 1997; Gallistel and Gelman

1992). The performance of this system is characterized by Weber’s law:

as numerosity increases, the variance in subjects’ representations of

numerosity increases proportionately, and therefore discriminability be-

tween distinct numerosities depends on their difference ratio. Does this

number sense derive from a core cognitive system that is present in

infants?

Recently, Fei Xu, Jennifer Lipton, and I have addressed this question

through studies of 6-month-old infants’ abilities to discriminate between

large numerosities. In our first studies (Xu and Spelke 2000b), infants

Figure 10.4
Schematic depiction of an experiment on object representation in 2-day-old
chicks using an imprinting method. (After Regolin and Vallortigara 1995.)
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were presented with visual arrays of dots on a succession of trials. On

different trials, the dots appeared in different sizes and at different posi-

tions, but there were always 8 dots in the array for half the infants and

16 dots for the others. To control for display brightness and size, the

dots in the more numerous arrays were half the size, on average, of those

in the less numerous array and appeared at twice the density. Dot arrays

were presented until infants’ spontaneous looking time to the arrays

declined to half its initial level. Then infants were presented with new

arrays of 8 and 16 dots in alternation, equated for density and dot size. If

infants responded to any continuous properties of the dot arrays, they

should have looked equally at the two test numerosities, because those

variables were equated either across the familiarization series or across

the test series. In contrast, if infants responded to numerosity and dis-

criminated the arrays with 8 versus 16 elements, they were expected to

look longer at the array with the novel numerosity. That looking prefer-

ence was obtained, providing evidence for numerosity discrimination at

6 months of age (figure 10.5).

Figure 10.5
Looking times to displays presenting a novel number of dots, in experiments
testing for discrimination of 8 from 16 or 12 dots. * indicates a significant dif-
ference. (After Xu and Spelke 2000b.)
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In subsequent studies using this method, infants failed to discriminate

between arrays of 8 versus 12 dots (Xu and Spelke 2000b), providing

evidence that their sense of number is imprecise. Moreover, infants suc-

cessfully discriminated 16 from 32 dots and failed to discriminate 16

from 24 dots (Xu and Spelke 2000a), providing evidence that dis-

criminability accords with Weber’s law for infants, as it does for adults,

and that the critical Weber fraction for infants lies between 1.5 and 2.

Finally, infants successfully discriminated between sequences of 8 versus

16 tones, presented with the same controls for the continuous variables

of the duration and quantity of sound, and they failed to discriminate

between sequences of 8 versus 12 tones (Lipton and Spelke in press).

These findings provide evidence that numerosity representations are not

limited to a particular sensory modality (visual or auditory) or format

(spatial vs. temporal), and that the same Weber fraction characterizes

discriminability across very different types of arrays. The sense of num-

ber found in adults therefore appears to be present and functional in

6-month-old infants.

Does a core sense of number account for our uniquely human capacity

to develop formal mathematics? If it did, then no comparable evidence

for number sense should be found in any nonhuman animals. In fact,

however, capacities to discriminate between numerosities have been

found in nearly every animal tested, from fish to pigeons to rats to pri-

mates (see Dehaene 1997 and Gallistel 1990 for reviews, and figure 10.6

for evidence from a representative experiment). Like human infants, ani-

mals are able to discriminate between different numerosities even when

all potentially confounding continuous variables are controlled, they

discriminate between numerosities for both spatial arrays and temporal

sequences in a variety of sensory modalities, and their discrimination

depends on the ratio difference between the numerosities in accord with

Weber’s law. Humans’ early-developing number sense therefore fails to

account, in itself, for our uniquely human talents for mathematics, mea-

surement, and science.

10.2.3 Natural Geometry

Before abandoning my first account of what makes humans smart, I will

consider one last version of this account, inspired by Descartes (1647).
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Descartes famously proposed that humans are the only animals who are

endowed with reason and that human reason is the source of all our

distinctive cognitive achievements. Many of Descartes’s examples of the

use of reason come from the domain of geometry. Descartes invited us

to consider the case of a blind man who holds two sticks that cross at a

distance from himself (figure 10.7, top). Because the man is blind, he

lacks any distal sense for apprehending the distance of the sticks’ cross-

ing point (c). Nevertheless, Descartes suggested, the man can use ‘‘natu-

ral geometry’’ to infer the location of this crossing point from knowledge

of the distance and angular relation between his two hands at the points

at which they grasp the sticks (a and b). Systematic use of Euclidean

geometric principles not only allows the blind man to perceive objects at

a distance, it also allows the development of the sciences of astronomy,

optics, and physics (Descartes 1647). Perhaps, then, natural geometry is

the core knowledge system that accounts for our uniquely human cogni-

tive capacities.

Figure 10.6
In this experiment, rats obtain food by pressing one lever (A) a predetermined
number of times and then pressing a second lever. The number of presses on A
matches approximately the required number, and responses become increasingly
variable as the numbers get larger. (After Mechner 1958.)
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Almost 20 years ago, Barbara Landau, Henry Gleitman, and I

attempted to test Descartes’s conjecture by presenting a version of his

triangulation problem to young blind and blindfolded children (Landau,

Spelke, and Gleitman 1984; figure 10.7, bottom). Children were intro-

duced into a room containing objects at four stable locations, and they

were walked between the objects on specific paths. For example, a child

might be walked from her mother seated in a chair (location A) to a table

(location B), a box of toys (location C), and a mat (location D). Then the

child was asked to move independently from one object to another on a

path she had not previously taken (e.g., she might be asked to take a toy

from the box and put it on the table, traversing the novel path from C to

B). Note that the same principles of Euclidean geometry that allow solu-

tion of the blind man’s stick problem should, in principle, allow solution

of this triangle problem. Both blind and blindfolded children solved the

problem reliably, providing evidence for Descartes’s thesis that humans

are endowed with natural geometry.

Does this endowment account for uniquely human reasoning abilities?

Once again, studies of navigation in other animals are pertinent to this

claim, and they provide resounding evidence against it. An exceedingly

wide range of animals have been observed and tested in navigation tasks

Figure 10.7
Top: schematic representation of the blind man’s problem. (After Descartes
1647.) Bottom: schematic depiction of a task presented to blind and to blind-
folded young children. (After Landau, Spelke, and Gleitman 1984.)
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like the one Landau, Spelke, and Gleitman (1984) presented to young

children. In every case, the performance of nonhuman animals has

equaled or exceeded the performance of young children.

The most dramatic evidence for natural geometry in a nonhuman

animal comes from studies of navigating desert ants (Wehner and Srini-

vasan 1981; figure 10.8). These ants leave their nest in the nearly fea-

tureless Tunisian desert in search of animals that may have died and can

serve as food, wending a long and tortuous path from the nest until food

is unpredictably encountered. At that point, the ants make a straight-line

path for home: a path that differs from their outgoing journey and that is

guided by no beacons or landmarks. If the ant is displaced to novel ter-

ritory so that all potential landmarks are removed, its path continues to

be highly accurate: within 2 degrees of the correct direction and 10 per-

cent of the correct distance. This path is determined solely by the geo-

metric relationships between the nest location and the distance and

direction traveled during each step of the outgoing journey. Ants there-

fore have a ‘‘natural geometry’’ that appears to be at least equal to, if not

superior to, that of humans.

To summarize, humans indeed have early-developing core knowledge

systems, and these systems permit a range of highly intelligent behaviors

and cognitive capacities including the capacity to represent hidden ob-

jects, to estimate numerosities, and to navigate through the spatial lay-

out. In each case, however, nonhuman animals have been found to have

capacities that equal or exceed those of human infants. The core knowl-

edge systems that have been studied in human infants so far therefore do

not account for uniquely human cognitive achievements. It remains pos-

sible, of course, that other core knowledge systems are unique to humans

and account for unique aspects of our intelligence. In the absence of

plausible candidate systems, however, I will turn instead to a different

account of uniquely human cognitive capacities.

10.3 What Makes Us Smart? Uniquely Human Combinatorial

Capacities

The suggestion I now explore begins with the thesis that humans and

other animals are endowed with early-developing, core systems of knowl-
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Figure 10.8
Path taken by a desert ant during its outward (thin line) and homeward (thick
line) journey in familiar territory. (After Wehner and Srinivasan 1981.) Very
similar behavior was observed after a displacement that removed all local spatial
cues.
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edge but that these systems are limited in four respects. First, the systems

are domain specific: each serves to represent only a subset of the entities in

the child’s surroundings. Second, the systems are task specific: the repre-

sentations constructed by each system guide only a subset of the actions

and cognitive processes in the child’s repertoire. Third, the systems are

relatively encapsulated: the internal workings of each system are largely

impervious to other representations and cognitive processes. Fourth, the

representations delivered by these systems are relatively isolated from one

another: representations that are constructed by distinct systems do not

readily combine together.

The core knowledge systems found in human infants exist throughout

human life, and they serve to construct domain-specific, task-specific,

encapsulated, and isolated representations for adults as they do for in-

fants. With development, however, there emerges a new capacity to com-

bine together distinct, core representations. This capacity depends on

a system that has none of the limits of the core knowledge systems: it

is neither domain nor task specific, for it allows representations to be

combined across any conceptual domains that humans can represent and

to be used for any tasks that we can understand and undertake. Its rep-

resentations are neither encapsulated nor isolated, for they are available

to any explicit cognitive process. This system is a specific acquired natu-

ral language, and the cognitive endowment that gives rise to it is indeed

unique to humans: the human language faculty. Natural languages pro-

vide humans with a unique system for combining flexibly the repre-

sentations they share with other animals. The resulting combinations are

unique to humans and account for unique aspects of human intelligence.

To illustrate this suggestion, I will briefly describe the two lines of

research that led to its emergence. First, I present a series of studies on

children’s developing navigation and spatial memory, conducted in col-

laboration with Linda Hermer-Vazquez, Ranxiao Frances Wang, and

Stephane Gouteux. Then, I discuss a larger body of research on chil-

dren’s developing concepts of number undertaken by Susan Carey and

myself, with numerous collaborators and students.

10.3.1 Space

Although animals are endowed with rich and exquisitely precise mecha-

nisms for representing and navigating through the spatial layout, the
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navigation of nonhuman animals sometimes shows interesting limits. In

experiments by Biegler and Morris (1993, 1996; figure 10.9), for exam-

ple, rats learned quite readily to locate food by searching in a particular

geocentric position (e.g., the northeastern corner of the test chamber) or

by searching near a particular landmark (e.g., in the vicinity of a white

cylinder), but they had more difficulty learning to search in a particular

geocentric relationship to a particular landmark (e.g., northeast of the

white cylinder). Although rats evidently could represent that food was

located ‘‘northeast of the room’’ or ‘‘at the cylinder,’’ they could not

readily combine these representations so as to represent that food was

located ‘‘northeast of the cylinder.’’

A similar limit has appeared in experiments by Cheng and Gallistel

(Cheng 1986; Gallistel 1990; Margules and Gallistel 1988). In their

studies, rats were shown the location of food, then were disoriented, and

finally were allowed to reorient themselves and search for the food. Rats

readily reoriented themselves in accord with the shape of the room, but

not in accord with the brightness of its walls, even though experiments

dating back to Lashley show that rats can learn to respond selectively to

white versus black walls directly. Although the rats’ reorientation system

evidently represented that food was located ‘‘at a corner with a long wall

Figure 10.9
Schematic and simplified depiction of three tasks presented to rats. (After Biegler
and Morris 1993, 1996.)
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on the left,’’ it did not readily represent that food was located ‘‘at a

corner with a white wall on the left.’’ Like Biegler and Morris’s studies,

these studies suggest a limit to the combinatorial capacities of rats in

navigation tasks.

Hermer-Vazquez and I sought to determine whether the same limit

exists in children; to our surprise, we found that it did. In our studies, 1.5

to 2-year-old children were tested in a situation similar to Cheng’s, in

which they saw an object hidden in a corner of a rectangular room, they

were disoriented, and then they searched for the object (Hermer and

Spelke 1994, 1996; figure 10.10). Like Cheng’s rats, children reoriented

themselves in relation to the shape of the room but not in relation to the

coloring of its walls. In subsequent experiments, children failed to re-

orient in accord with wall coloring even when it was made highly famil-

iar (through experience over several sessions), when it was highly stable,

when it was a successful direct cue for children in a task not involving

reorientation, and when the distinctive wall coloring was presented in a

cylindrical room with no geometrically distinctive shape (Gouteux and

Spelke 2001; Wang, Hermer-Vazquez, and Spelke 1999).

Figure 10.10
Tasks and performance of young children tested in a version of Cheng’s (1986)
reorientation task in which a toy was hidden and searching was measured at the
correct location (C), the geometrically equivalent location (R), and the near and
far, geometrically distinct locations (N and F). (After Hermer and Spelke 1984.)
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Research in other laboratories confirms that children are highly pre-

disposed to reorient in accord with the shape of their surroundings, and

that under many circumstances children fail to reorient in accord with

nongeometric information (Learmonth, Nadel, and Newcombe, in press;

Learmonth, Newcombe, and Huttenlocher, in press; Stedron, Munakata,

and O’Reilly 2000). Both rats and children do show sensitivity to non-

geometric information in some circumstances, however (e.g., Cheng and

Spetch 1998; Dudchenko et al. 1997; Learmonth, Newcombe, and Hut-

tenlocher, in press; Stedron, Munakata, and O’Reilly 2000), possibly by

means of a mechanism that circumvents geocentric navigation altogether

and locates food by matching specific views of the environment to stored

‘‘snapshots’’ (e.g., Cartwright and Collett 1983; see Collett and Zeil

1998, for discussion).

In brief, both children and rats can learn to search to the left or right

of a geometrically defined landmark, and they can learn to search di-

rectly at a nongeometrically defined landmark, but they do not readily

combine these two sources of information so as to search left or right

of a nongeometrically defined landmark. In contrast, human adults

tested under similar circumstances show this ability quite readily (Gou-

teux and Spelke 2001; Hermer and Spelke 1994). What accounts for this

difference?

Developmental research by Hermer-Vazquez, Moffett, and Munkholm

(2001) suggested that the transition to more flexible navigation is closely

related to the emergence of spatial language. In cross-sectional research,

the transition was found to occur at about 6 years of age, around the

time that children’s language production shows mastery of spatial ex-

pressions involving left and right. Further studies of children at this

transitional age revealed that performance on a productive language task

with items involving the terms left and right was the best predictor of

success on the reorientation task. Spatial language and flexible naviga-

tion therefore are correlated, but are they causally related?

In an initial attempt to address this question, Hermer-Vazquez, Spelke,

and Katsnelson (1999; figure 10.11) returned to studies of human adults,

using a dual-task method. If spatial language is causally involved in

flexible navigation, we reasoned, then any task that interferes with sub-

jects’ productive use of language should interfere with their navigation
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as well. Accordingly, adults were tested in Hermer’s reorientation task

while performing one of two simultaneous interference tasks: a verbal

shadowing task that interferes specifically with language production, or

a nonverbal, rhythm shadowing task that is equally demanding of atten-

tional and memory resources but does not involve language. Although

rhythm shadowing caused a general impairment in performance, subjects

in that condition continued to show a flexible pattern of reorientation in

accord with both geometric and nongeometric information. In contrast,

subjects in the verbal shadowing condition performed like young chil-

dren and rats, reorienting in accord with the shape of the room but not

in accord with its nongeometric properties. These findings provide pre-

liminary evidence that language production is causally involved in flexi-

ble performance in this reorientation task.

Why might language make humans more flexible navigators? One

possible answer relies on the combinatorial properties of language. Per-

haps the most remarkable property of natural language is its composi-

tionality: once a speaker knows the meanings of a set of words and the

rules for combining those words together, she can represent the mean-

ings of new combinations of those words the very first time that she

hears them. The compositionality of natural languages explains how it is

Figure 10.11
Tasks and performance of adults tested in the reorientation task used with chil-
dren, under conditions of no interference (left) or of verbal or nonverbal inter-
ference (right). (After Hermer-Vazquez, Spelke, and Katsnelson 1999.)
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possible for people to understand what they hear or read, when virtually

every sentence they encounter is new to them. Once a speaker knows the

syntactic rules of her native language and the meanings of a set of terms,

she will understand the meanings of any well-formed expressions using

those terms the first time that she hears them, and she will be able to

produce new expressions appropriately without any further learning.

Although the compositional semantics of a natural language is intri-

cate and not fully understood, one thing is clear: the rules for combining

words in a sentence apply irrespective of the core knowledge system that

constructs the representations to which each word refers. Once a speaker

has learned the expression left of X and a set of terms for people, places,

numbers, events, objects, collections, emotions, and other entities, she

can replace X with expressions that refer to entities from any and all of

these domains (e.g., left of the house where the happy old man cooked a

14-pound turkey for his family last Thanksgiving). Natural language

therefore can serve as a medium for forming representations that tran-

scend the limits of domain-specific, core knowledge systems.

More specifically, the navigation experiments of Cheng and Hermer

suggest that humans and other animals have a core system for repre-

senting geometric properties of the spatial layout (in the terms of Cheng

and Gallistel, a ‘‘geometric module’’). Left-right relationships are dis-

tinguished in this system: a rat or a child who has seen an object hidden

left of a long wall searches reliably to the left of that wall rather than to

its right. Children therefore may learn the meaning of the term left by

relating expressions involving that term to purely geometric representa-

tions of the environment. Studies of the visual system suggest further that

children also have relatively modular systems for representing informa-

tion about colors and other properties of objects, and these systems may

permit children to learn the meanings of terms for colors such as blue

and for environmental features such as wall. Once they have learned

these terms, the combinatorial machinery of natural language allows

children to formulate and understand expressions such as left of the

blue wall with no further learning. This expression cannot be formulated

readily outside of language, because it crosscuts the child’s encapsulated

core domains. Thanks to the language faculty, however, this expression
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serves to represent this conjunction of information quickly and flexibly.

Such use may underlie adults’ flexible spatial performance.

10.3.2 Number

So far, I have suggested that natural language allows humans, and only

humans, to represent combinations of information such as ‘‘left of the

blue wall.’’ Does language also allow humans to construct new systems

of knowledge? Research on children’s changing concepts of number is

beginning to suggest that it may.

I have already described two lines of research providing evidence that

human infants and other animals represent numerical information. First,

experiments by Wynn and others reveal that infants and nonhuman pri-

mates can represent the numerical identity of each object in a scene, the

numerical distinctness of distinct objects, and the effects of adding or

subtracting one object. Second, experiments by Xu and others reveal that

infants and many nonhuman animals can represent the approximate

numerosity of a set of objects or events. These two capacities, however,

appear to depend on distinct systems: human infants and adult non-

human primates do not spontaneously combine them into a system of

knowledge of natural number.

Evidence for the distinctness of core representations of small numbers

of objects, on one hand, and of approximate numerical magnitudes, on

the other hand, comes from four types of experimental findings. First,

representations of numerically distinct objects show a set size limit of

about 3 for infants (4 for adult humans and for nonhuman primates),

whereas representations of approximate numerosities are independent of

set size: infants and nonhuman primates can discriminate equally well

between sets of 8 versus 16 and 16 versus 32, for example (Xu and

Spelke 2000a,b). Second, representations of large approximate numer-

osities show a Weber fraction limit between 1.5 and 2 for 6-month-old

infants, between 1.2 and 1.5 for 9-month-old infants, and about 1.15

for adult humans (e.g., Lipton and Spelke, in press; van Oeffelen and Vos

1982), whereas representations of numerically distinct objects do not:

infants can discriminate 2 from 3 objects, even though the Weber frac-

tion is below their threshold. These contrasting limits create a double
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dissociation between representations of small numbers of objects and

representations of sets (table 10.2a).

A third finding that differentiates between representations of objects

and sets concerns the effects of occlusion: representations of numerically

distinct objects are robust over occlusion, whereas representations of

approximate numerosities are not. Although human infants and mon-

keys who witness the successive introduction of individual objects into

an opaque box can represent that a box with 3 objects has more objects

than a box with 2, they fail to represent that a box with 8 objects has

more objects than a box with 4, even though the ratio difference between

these numerosities is above their Weber limit (Feigenson, Carey, and

Hauser 2002; Hauser, Carey, and Hauser 2000).

A fourth difference concerns the effects of variations in properties of

the items to be enumerated such as their size and spacing: representa-

tions of large approximate numerosities are robust over such variations,

whereas representations of objects are not. Human infants discriminate 8

from 16 items on the basis of numerosity when item size, item density,

filled area, and total area are varied—findings that provide evidence that

they represent large numbers of items as forming a set with an approxi-

mate cardinal value. In contrast, infants fail to discriminate 1 item from

2 or 2 items from 3 on the basis of numerosity under these conditions

(Clearfield and Mix 1999; Feigenson, Carey, and Spelke 2002; Xu and

Spelke 2000a). This latter finding suggests that infants represent small

numbers of objects as distinct individuals but not as forming a set, whose

cardinal value can be compared to the cardinal values of sets composed

Table 10.2
Dissociations between human infants’ representations of individuals and their
numerical distinctness, and of sets and their cardinal values

Individuals Sets

a. Limits to discrimination
Set size limit of 3–4 þ "
Weber limit of 1.5–2 " þ
b. Robustness over stimulus variations
Variation in visibility þ "
Variation in element size " þ
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of other, numerically distinct objects. The third and fourth findings con-

stitute a second double dissociation between representations of small

numbers of objects and representations of large approximate numero-

sities (table 10.2b).

Considerable evidence therefore suggests that human infants are

endowed with two distinct systems for representing numerosity. One

system represents small numbers of persisting, numerically distinct indi-

viduals exactly and takes account of the operation of adding or removing

one individual from the scene. It fails to represent the individuals as a set,

however, and therefore does not permit infants to discriminate between

different sets of individuals with respect to their cardinal values. A sec-

ond system represents large numbers of objects or events as sets with

cardinal values, and it allows for numerical comparison across sets. This

system, however, fails to represent sets exactly, it fails to represent the

members of these sets as persisting, numerically distinct individuals, and

therefore it fails to capture the numerical operations of adding or sub-

tracting one. Infants therefore represent both ‘‘individuals’’ and ‘‘sets,’’

but they fail to combine these representations into representations of

‘‘sets of individuals.’’

The concept ‘‘set of individuals’’ is central to counting, simple arith-

metic, and all natural number concepts. If infants lack this concept, they

should have trouble understanding natural number terms such as two.

Moreover, young children should miss the point of the verbal counting

routine, even if they learn to mimic this routine. A rich body of research

provides evidence that preschool children have both these problems

(Fuson 1988; Griffin and Case 1996; Wynn 1990, 1992b).

Most children begin verbal counting in their second or third year of

life. For months or years thereafter, however, they fail to understand the

meaning of the routine or of the words that comprise it. Research by

Wynn (1990, 1992b) provides evidence that children’s understanding

develops in four steps (table 10.3). At stage 1, when they first begin

counting, children understand that one refers to ‘‘an object’’: if they are

shown a picture of one fish and a picture of three fish and are asked

for one fish, they point to the correct picture; if they are allowed to

count an array of toy fish and then are asked to give the experimenter

one fish, they offer exactly one object. At this stage, children also
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understand that all other number words apply to arrays with more than

one object. They never point to a picture of one object when asked to

point to two fish or six fish, and they never produce just one object when

asked for more than one.

Nevertheless, stage 1 children have very limited understandings of the

meanings of the words in their counting routine. When they are shown

pictures of two fish and of three fish and are asked to point to the picture

with two fish, they point at random. Moreover, when they are allowed

to count an array of objects and then are asked to give the experimenter

one of the numbers of objects designated by a word in their own count-

ing routine, they grab a handful of objects at random (Wynn 1990,

1992b). At this stage, children do not even understand that the applica-

bility of specific number words changes when the numerosity of a set is

changed by addition or subtraction: if children are allowed to count a

pile of eight fish and then are told that the pile contains eight fish, they

will continue to maintain that the pile has eight fish after four fish are

Table 10.3
The development of children’s understanding of number words and the counting
routine. (After Wynn 1990, 1992b.)

Age Understanding of number words and counting routine

2–2.5 years One designates ‘‘an individual.’’
Two, three, . . . , six, . . . designate ‘‘a set.’’

2.5–3.25 years One designates ‘‘an individual.’’
Two designates ‘‘a set composed of an individual and
another individual.’’
Three, . . . , six, . . . designate ‘‘a set other than two.’’

3.25–3.5 years One designates ‘‘an individual.’’
Two designates ‘‘a set composed of an individual and
another individual.’’
Three designates ‘‘a set composed of an individual,
another individual, and still another individual.’’
Four, . . . , six, . . . designate ‘‘a set other than two or
three.’’

3.5–adult Each number word designates ‘‘a set of individuals.’’
The set designated by each number word contains
‘‘one more individual’’ than the set designated by the
previous word in the counting routine.
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removed (Condry, Spelke, and Xu 2000). For stage 1 children, one ap-

pears to refer to ‘‘an individual’’ and all other number words appear to

refer to ‘‘some individuals’’ (in the informal sense of ‘‘more than one’’).

After about nine months of counting experience, on average, Wynn’s

children work out the meaning of the word two. At this stage, children

correctly point to or produce two objects when asked for two, and they

point to or produce arrays of more than two objects when asked for any

larger number. Three further months suffice for children to learn the

meaning of three. Finally, children show comprehension of all the words

in their counting routine, and they use counting when they are asked for

larger numbers of objects. On average, it takes children about 1–1.5

years of experience with counting before they achieve this understanding.

Why does it take children so long to learn the meanings of words like

two? I suggest that two is difficult to learn because it refers to a ‘‘set of

individuals,’’ and such a concept can only be represented by combining

information across distinct core knowledge systems. Children readily

learn part of the meaning of one by relating this word to representations

constructed by their core system for representing objects: they learn

that one applies just in case the array contains an object. Children also

readily learn part of the meanings of the other number words by relating

each word to representations of sets constructed by their core system of

number sense: they learn that (e.g.) six applies just in case the array

contains a set with an approximate cardinal value. To learn the full

meaning of two, however, children must combine their representations

of individuals and sets: they must learn that two applies just in case the

array contains a set composed of an individual, of another, numerically

distinct individual, and of no further individuals (figure 10.12). The lexi-

cal item two is learned slowly, on this view, because it must be mapped

simultaneously to representations from two distinct core domains.

Children eventually are able to learn the meanings of two and three,

because the sets of individuals to which these terms refer are within both

the set size limit of their system for representing objects and the Weber

fraction limit of their system for representing sets. Larger numbers,

however, exceed both these limits. How do children progress from

Wynn’s stage 3 to stage 4 and work out the meanings of the terms for

the larger numbers within their counting routine?
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The above analysis suggests a possible answer. Once children have

mapped two and three both to their system for representing individuals

and to their system for representing sets, they are in a position to notice

two things. First, relating the counting routine to the system of object

representation reveals that the progression from two to three in the

counting routine is marked by the addition of one individual to the set.

Second, relating the counting routine to the system of number sense

reveals that the progression from two to three is marked by an increase

in the cardinal value of the set. Children may come to understand both

the workings of the counting routine and the meanings of all the words it

encompasses by generalizing these discoveries to all other steps in the

counting routine. That is, children may achieve stage 4 when they realize

that every step in the counting routine is marked by the successive addi-

tion of one individual so as to increment the cardinal value of the set of

individuals. Because these representations exceed the limits of all the

child’s core knowledge systems, these realizations depend on elaborate

     

Figure 10.12
Hypothesized linkages between number words and core systems of representa-
tion at the first three steps in children’s developing understanding of counting,
number words, and the natural numbers
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conceptual combinations. Those combinations, in turn, may depend on

the natural language of number words and of the counting routine.

Studies of children’s learning of number words and counting there-

fore are consistent with the thesis that language serves as a medium for

combining core representations of numerosity and constructing natural

number concepts. To test this thesis, however, we must go beyond the

present, correlational evidence with children. One way to do this is to

ask whether the counting words of a specific natural language are caus-

ally involved in number representations in adults. Research with Sanna

Tsivkin and Gail O’Kane suggests that they are (O’Kane and Spelke

2001; Spelke and Tsivkin 2001; figure 10.13).

This research used a bilingual training method. Adults who were pro-

ficient in two languages (Russian and English or Spanish and English)

were taught different sets of number facts. In some studies, the facts

were in the domain of arithmetic: for example, adults might be taught

to memorize the exact answer to a two-digit addition problem. In other

studies, the facts appeared in stories and concerned the age of a charac-

ter, the number of people or objects in a scene, the date at which some-

thing occurred, or some measured dimension of an object. In each study,

subjects learned some facts in one of their languages and some facts in

the other. In each language, a given fact could concern a large exact

numerosity, a large approximate numerosity, or a small exact number of

objects. Study materials were presented until subjects could retrieve all

the information correctly and easily.

After learning each fact in just one language, subjects were tested on

all the facts in both their languages, and the amounts of time needed to

retrieve facts in the trained and untrained language were compared. For

facts about approximate numerosities or small numbers of objects, there

was little or no advantage to performance in the trained language, rela-

tive to the untrained language. These findings suggest that large approxi-

mate and small exact number facts were represented independently of

language for adults, as they must be for infants and nonhuman animals.

In contrast, for facts about large exact numbers, there was a distinct

advantage to performance in the language in which a fact was trained.

This finding suggests that subjects drew on a specific natural language in
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Figure 10.13
Performance of bilingual adults when tested for knowledge of small exact, large
approximate, and large exact numbers in the language of training versus the
untrained language. (After O’Kane and Spelke 2001.)
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learning facts about large, exact numbers: the language in which those

facts were presented.

These findings and others (see especially Dehaene et al. 1999) begin to

suggest that human number representations have at least three compo-

nents (see Dehaene 1997 and Spelke 2000 for more discussion). For very

small numbers, these representations depend in part on what is often

called a ‘‘subitizing’’ system (Mandler and Shebo 1982; Trick and Pyly-

shyn 1994): a system for representing small numbers of objects (up to

four). For large approximate numerosities, number representations de-

pend in part on a system for representing approximate numerical mag-

nitudes (Dehaene 1997; Gallistel and Gelman 1992). For large exact

numerosities, number representations depend in part on each of these

systems and in part on a specific natural language.

10.4 Thought and Language

I have considered two possible answers to the question, What makes

humans smart? According to the first answer, human intelligence de-

pends on a biological endowment of species-specific, core knowledge

systems. According to the second answer, human intelligence depends

both on core knowledge systems that are shared by other animals and on

a uniquely human combinatorial capacity that serves to conjoin these

representations to create new systems of knowledge. The latter capacity,

I suggest, is made possible by natural language, which provides the me-

dium for combining the representations delivered by core knowledge

systems. On the second view, therefore, human intelligence depends both

on a set of core knowledge systems and on the human language faculty.

Recent research on human infants, nonhuman primates, and human

adults now seems to me to favor this view.

In closing, I attempt to situate this view in the context of debates over

the relation of language and thought. Does this view imply that many of

our concepts are learned? Does learning a natural language change the

set of concepts that we can entertain? Do people who learn different

languages have different conceptual repertoires? To approach these

questions, I begin with one a priori objection that is commonly raised

against all these possibilities.
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10.4.1 The Nativist’s Objection: Learnability of Natural Languages

Natural languages are learned by children who hear people talk about

the things and events around them. In order for this learning to be pos-

sible, however, children must be able to conceptualize the things and

events around them in the right ways: children won’t, for example, learn

the meaning of cow unless they can relate the utterance of the word to

the presence of an object in the extension of the kind ‘‘cow.’’ The latter

representation is only possible if the child already has a workable con-

cept of cows and a workable procedure for identifying instances of that

concept. Thus, it would seem that language gives us a vehicle for ex-

pressing our concepts but doesn’t provide a means to expand our con-

cepts: we don’t learn new concepts by learning a natural language.

My response to this argument is to grant it. Children learn many of the

words of their language by relating those words to preexisting concepts:

the concepts that are made explicit by their core knowledge systems. In

particular, children learn the term left in relation to the preexisting con-

cept ‘‘left’’ that is provided by their geometric system of representation.

This concept, which is shared by rats, is surely independent of language,

as are the child’s concepts ‘‘blue’’ and ‘‘thing,’’ which allow her to learn

the words blue and thing. Moreover, children cannot learn, through

language or any other means, any concepts that they cannot already

represent. If children cannot represent the concept ‘‘left of the blue

thing,’’ as Hermer’s research suggests, then they cannot learn to repre-

sent it.

Natural languages, however, have a magical property. Once a speaker

has learned the terms of a language and the rules by which those terms

combine, she can represent the meanings of all grammatical combina-

tions of those terms without further learning. The compositional seman-

tics of natural languages allows speakers to know the meanings of new

wholes from the meanings of their parts. Although a child lacking the

concept ‘‘left of the blue thing’’ cannot learn it, she does not need to.

Having learned the meanings of left, blue, and thing, she knows the

meaning of the expression left of the blue thing. Thanks to their compo-

sitional semantics, natural languages can expand the child’s conceptual

repertoire to include not just the preexisting core knowledge concepts

but also any new well-formed combination of those concepts.
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10.4.2 A Whorfian Research Program

If the compositionality of natural language semantics gives rise to

uniquely flexible human cognition, then the thesis that language pro-

duces new concepts cannot be ruled out on logical grounds, and both

this thesis and the possibilities that follow from it become open to em-

pirical test. One much-discussed possibility that can be pursued in this

context is Whorf’s thesis that the members of different cultures and

language groups have different repertoires of concepts. Note that no evi-

dence or arguments in this chapter support Whorf’s thesis. If the combi-

natorial properties of language that produce new concepts are universal

across human languages, then uniquely human conceptual capacities

will be universal as well. Questions about the existence of cultural dif-

ferences in human conceptual capacities therefore hinge in part on ques-

tions about the origins and nature of compositional semantics. How does

compositional semantics work? Is there a single, universal compositional

semantics that applies to all languages, or do languages vary in their

combinatorial properties? How do children develop the ability to use the

compositional semantics of natural languages?

Although I cannot answer any of these questions, I close with a final

suggestion. Studies of cognition in nonhuman animals and in human

infants, and studies of cognitive development in human children, may

shed light both on our remarkable capacity for combining word mean-

ings into complex expressions and on our corresponding capacity to

combine known concepts into new ones. Two difficult questions faced by

linguists and other cognitive scientists are (1) what are the primitive

building blocks of complex semantic representations? and (2) what are

the basic combinatorial processes by which these building blocks are

assembled? Research from the fields discussed here suggests a general

approach to these questions. The building blocks of all our complex

representations are the representations that are constructed from indi-

vidual core knowledge systems. And the basic processes that combine

them are the processes that children use in constructing their first new

concepts. Studies of cognition in nonhuman animals, in human infants,

and in developing children therefore may shed light on central aspects

both of our uniquely human capacity for language and of our uniquely

human capacity for building new systems of knowledge.
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