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Preface

Think back o the first time you learned about simple linear regression. You probably
learned about the underlying theory of linear regression, the meaning of the regression
coefficients, and how to ereate a graph of the regression line, The graph of the regression
line provided a visual representation of the intercept and slope coefficients. Using such
a graph, you could see that as the intercept increased, so did the overall height of the
regression line, and as the slope increased, so did the tilt of the regression line. Within
Stata, the graph twoway 1fit command can be used to easily visualize the results of
a simple linear regression.

Over time we learn about and use fancier and more abstract regression models—
models that include covariates, polynomial terms, piecewise terms, categorical predic-
tors, interactions, and nonlinear models such as logistic. Compared with a simple linear
regression model, it can be challenging to visualize the results of such models. The
utility of these fancier models diminishes if we have greater difficulty interpreting and
visualizing the results.

With the introduction of the marginsplot command in Stata 12, visualizing the
resuits of a regression model, even complex madels, is a snap. As implied by the name,
the marginsplot command works in tandem with the margins copmmand by plobting
(graphing) the results computed by the margins command. For example, atter fitting
a linear model, the margins command can be used to compute adjusted means as a
fanction of one or more predictors. The marginsplot command graphs the adjusted
means, allowing you o visually interpret the results.

The margins and marginsplot commands can be used following nearly all Stata es-
timation commands {including regress, anova, logit, ologit, and mlegit), Further-
more, these commands work with continuous linear predictors, categorical predictors,
polynomial {power) terms, as well as interactions (for example, two-way interactions,
three-way interactions). This book uses the marginsplot command not only as an
interpretive tool, but also as an instructive tool to help you understand the results of
regression models by visualizing them.

Categorical predictors pose special difficulties with respect to interpreting regression
models, especially models that involve interactions of categorical predictors. Categori-
cal predictors are traditionally coded using dummy (indicator) coding. Many research
questions cannot be answered divectly in terms of dummy variables. Furthermore, in-
teractions invelving dummy categorical variables can be confusing and even misleading,
Stata 12 introduces the contrast command, a general-purpose command that can be
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used to precisely test the effects of categorical variables by forming contrasts among
the levels of the eategorical predictors. For example, you can compare adjacent groups,
compare cach group with the overall mear, or compare each group with the mean of the
previous groups. The contrast command allows you to easily focus on the comparisons
that are of interest to you.

The contrast command works with interactions as well. You can test the simple
effect of ene predictor at specific Jevels of another predictor or form interactions that
involve comparisons of your choosing. In the parlance of analysis of variance, you
can est simple effects, simple contrasts, partial interactions, and interaction contrasts.
These kinds of tests allow you to precisely understand and dissect interactions with
surgical precision. The contrast command works not only with the regress command,
but also with commands such as logit, ologit, mlogit, as well as random-effects
models like xtmixed.

As you can see, the scope of the application of the margins, marginsplot, and
contrast commands.is broad. Likewise, so is the scope of this book. It covers con-
tinuous variables (modeled linearly, using polynomials, and piecewise), interactions of
continuous variables, categorical predictors, interactions of categorical predictors, as
well as interactions of continuous and categorical predictors. The bool also illustrates
how the margins, marginsplot, and contrast commands can be used to interpret re-
sults from multilevel models, models where time is a continuous predictor, models with
time as a categorical predictor, nonlinear models (such as logistic regression or ordi-
nal logistic regression), and analyses that involve complex survey data. However, this
book does not contain information about the theory of these statistical models, how
to perform diagnostics for the models, the formulas for the models, and so forth. The
summary section concluding each chapter includes references to books and artictes that
provide backpround for the techniques Hlustrated in the cha.ptei‘.-

My goal for this book is to provide simple and clear examples that illustrate how
to interpret and visualize the results of regression models. To that end, I have selected
examples that illustrate large effects generally combined with large sample sizes to create
patterns of effects that arve easy to visualize. Most of the examples are based on real
data, hut some are based on hypothetical data. In either case, I hope the examples help
you understand the results of your regression models so you can interpret and present
them: with clarity and confidence.

Simi Valley, California Michae!l N. Mitchell
March 2012
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1.1  QOverview of the book

This book illustrates how to interpret and visualize the results of regression models using
an example-based approach. The way we interpret the effect of a predictor depends on
the nature of the predictor. For example, the strategy we use to terpret and visualize
the contribution of a lincar continmous predictor is different from focusing on, say, the
interaction of two categorical variables.

The first three parts of this book Hlustrate how o interpret the results of linear
regression models, classifying examples based on whether the predictors are continuous,
categorical, or continuous by categorical interactions. Part T of the book focuses on the
interpretation of continuous predictors, including two-way and three-way interactions
of continuous predictors, Part II focuses on the interpretation of categorical predictors,
including two-way interactions and three-way interactions. Part IIT focuses on the
interpretation of interactions that combine continuous and categorical predictors. The
examples from parts 1 to I focus on linear models (for example, models fit using the
regress or anova commands), The first three parts of the book are deseribed in more
detail below.

Part 1 focuses on continuous predictors. This part begins with chapter 2, which
focuses on a linear continuous predictor. Even though you are probably familiar with
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such meodels, I encourage you to read this chapter as it introduces the margins and
marginsplot commands. Furthermore, this chapter addresses models that include co-
variates and how you can compute margins and marginal effects while holding covariates
constant at different values. It also describes how to check for nonlinearity in the re-
lationship between the predictor and outeome using graphical and analytic techniques.
Chapter 3 covers polynomial terims, including not only quadratic and cubic terms, but
also fractional polynomial models. Part I concludes with chapter 4 on piecewise mod-
els. Such models permit you $o account for nonlinearities in the relationship between
the predictor and outcome by fitting two or more line segments that can have separate
slopes or intercepts, All examples from part 1 are Hustrated using the GSS dataset
(deseribed in section 1.4).

Part II focuses on categorical predictors. This includes models with one categor-
ical predictor {see chapter 7), the interaction of two categorical predictors (see chap-
ter 8), and interactions of three categorical predictors (see chapter 9). The examples in
chapter 7 use the (S8 dataset (see section 1.4) as well the pain datasets (described in
section 1.5}, The examples from chapters 8 and 9 are based on the optimism datasets
(described in section 1.6).

Paxt I focuses on interactions of contimious and categorical variables. Such mod-
els both blend and build upon the examples from parts I and II. Chapters 10 to 12
illustrate interactions of a continuous predictor with a categorical variable. Chapter 10
illustrates the interaction of a linear continuous variable with a categorical variable.
Chapter 11 covers continuous variables fit using polynomial terms interacted with a
categorical variable. Interactions of a categorical variable with a continuous variable fit
via a piecewise model are covered in chapter 12. Chapters 13 and 14 cover three-way in-
teractions of continuous and categorical variables, Chapter 13 illustrates the interaction
of two continuous predictors with a categorical variable. This includes linear by linear
by categorical interactions and linear by quadratic by categorical interactions. Chap-
ter 14 iliustrates the interaction of a linear continuous predictor and two categorical
variables. All examples from part 111 are illustrated using the GSS dataset (described in
section 1.4).

Part IV of the book covers topics that go beyond linear regression. Chapter 15 cov-
ers multilevel models (also known as hierarchical linear models), such as models where
students are nested within classrooms. The examples from this chapter are based on the
school datasets (described in section 1.7). Chapters 16 and 17 cover longitudinal mod-
els. Chapter 18 focuses on models in which time is treated as a continuous predictor,
and chapter 17 covers models where time is treated as a categorical predictor. These
exainples are illustrated using the sleep datasels, described in section 1.8, Chapter 18
covers nonlinear models. This includes logistic regression, multinomial logistic regres-
sion, ordinal logistic regression, and Poisson regression. These examples are iflustrated
using the GSS dataset (see section 1.4). Finally, chapter 19 illustrates the interpretation
of the results of models that include complex survey data (that is, models fit using the
svy prefix}.

1.2 Getting the most out of this book

The hook concludes with part V, which contains appendices alioui the margins,
marginsplot, contrast, and pwcompare commands. These appendices describe fea-
tures of these commands that were not covered in the previous parts of the book.

1.2 Getting the most out of this book

After reading this introduction, I encourage you to read chapter 2 on continnous lin-
ear predictors, This provides important information about the use of the margins and
marginsplot commands. T would next suggest reading chapter 7. This provides impot-
tant information about the use of the contrast command for interpreting categorical
predictors. Many of the other chapters build upon what is covered in those two key
chapters.

Tn fact, the chapters in this book are highly interdependent, and many chapters build
upon the ideas of previous chapters. Such chapters include cross-references to previous
chapters. ¥or example, chapter 11 illustrates interpreting polynomial by calegorical
interactions. That chapier crossreferences chapter 3 regarding continuous variables
modeled using polynomials as well as chapter 7 on categorical variables. It might be
tempting to try to read chapter 11 without reading chapters 3 and 7, but I think it will
make much more sense having read the cross-referenced chapters first.

1 would also like to call your attention to the appendices that are contained in
part V. You might get the impression that those topics are unimportant because of their
placement at the back of the book in an appendix. Actually, I am trying to underscore
the importance of those topics by placing them at the end of the book where they can be
quickly referenced. These appendices contain details about the margins, marginsplot,
contrast, and pwcompare commands that are not specific to any particular type of
variable or type of tnodel. T think that you will get the most out of the book {and these
commands) by reading the appendices sooner rather than later.

Finally, I would like to note that the approach of the writing of this book differs
in some key ways from the way that you would approach your own research. In this
book, I take a discovery learning perspective, showing the results of a model and then
taking you on a journey exploring how we can use Stata to interpret and understand
the results. This is in contrast with the kind of approach that would commonly be
used in research where a theoretical rationale is used to form a research plan, which
is translated into a series of analyses to test previously articulated research questions.
Although I think the approach I have used is effective as a teaching tool, it may convey
three bad research habits that I would not want you to emmlate.

Bad research habit #£1: You let the pattern of the data guide further analysis! The examples
frequently illustrate a regression analysis, show the pattern of results, and then use the
pattern of results to motivate further exploration. When analyzing your own data,
T encourage you to develop an analysis plan based on your research questions. For
example, if yowr analysis plan involves testing an interaction, I recomnmend thai you
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describe the predicted pattern of results and the particular method that will be nsed to
test whether the pattern of the interaction conforms to your predictions,

Bad research habit #2: The results should be dissected in every manner possible. This issue
is particularly salient in the chapters involving interactions. Those chapters itustrate the
multipte ways that you can dissect an interaction to show you the different options you
can choose from. However, this is not to imply that you should dissect your interactions
using every method illustrated. Instead, I would encourage you to develop an analysis
plan that dissects the interaction in the way that answers your research question.

Bad research habit #3: No attention should be paid to the overall type | error rate. Each
chapter illustrates a variety of ways that you can understand and disscet your results.
Somelimes a wide variety of methods are illustrated, resulting in many statistical tests
being performed without any adjustments to the type I error rate. For your research,
1 suggest that your analytic plan considers the number of statistical tests that will be
performed and includes, as needed, methods for properly controlling the type I error
rate. :

1.3 Downloading the example datasets and programs

All example datasets and prograims used in this book can be downloaded from within
Stata using the following commands.

. net from hetp://wew,. stata-press.com/data/ivem/
. net install ivrm
. et get ivrm

The net install command downloads the showcoding program {used later in the
book). The net get command downloads the example datasets. I encourage you to
download these example datasets so yon can reproduce and extend the examples il-
lustrated in this book. The following sections provide background about the example
datasets, especially the GSS dataset, which is used throughout the book. The other
datasets are briefly described in the following sections and are described in more detail
in.the chapter in which they are used.

1.4 The GSS dataset

The most frequently used dataset in this book is based on the General Social Sur-
vey (G58). The ¢88 dataset is collected and created by the National Opinion Research
Center {NORC). You can learn more about NORC and the GSS by visiting the website
http: / /www.norc.uchicago.edu/GSS-+ Website/, The GS8 is a unique survey and dataset.
It contains numerous variables measuring demographics and societal trends from 1972
to 201¢. This iy a cross-sectional dataset, thus for each year the data represents dif-
ferent respondents. (Note that the €88 doos have a panel dataset covering the yoars

[}
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2006, 2008, and 2010, but this is not used here.) In some years, certain demographic
groups were oversanmpled. For simplicity, I am overlooking this and treating the sample
as though simple random sampling was used.

Tip! Complex survey sampling

Datasets from surveys often involve complex survey sampling designs. In such
cases, the svyset command and svy prefix are needed to obtain proper estimates
and standard errors. The tools ilustrated in this book can all be used in combi-
nation with such complex surveys, as illustrated in chapter 19,

The version of the dataset we will be using for the book was accessed from the
NORC website by downloading the dataset titled Entire 1972--2010 Cumulative Data Set
(Release 1.1, Feb, 2011). T created a Stata do-file that subsets and recodes the variables
to create the analytic data file we will use, named gss_ivrm.dta., This dataset is used
below.

. use gss_ivrm

The describe command shows that the dataset contains 55,087 observations and
32 variables.

. describe, short

Contains data from gss_ivrm.dta

obs: 55,087

vars: 32 1 Nov 2011 20:42
size: 2,478,915

Sorted by:

Let’s have a look at the main variables that are used from this dataset. The main
oulcome variable is realrine {income), and the main predictors arc age (age), educ
(education}, and female (gender).

1.4.1 Income

The variable realrinc measures the annual income of the respondent in rveal dollars.
This permits comparisons of income across years. The incomes are norined to the year
1986 and are adjusted using the Consumer Price Index—All Urban Consumers (CPI-U).
For those interested in more details, see Getting the Most Out of the GSS Income
Measures available from the NORC website. You can find this by searching the Internet
for GS8 income adjusted inflation.

Incomes generally have a right-skewed distribution, and this measure of income is
1o exception. Using the histogram cominand, we can see that the variable realrinc
shows a considerable degree of right skew (see figure 1.1).
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. histogram realrinc
{bin=45, start=289, width=10664.122)

109000 200000 300000 400000 500000
s Income in constant $

Figare 1.1. Histogram of income

"Phis will be the main outcome measure for many of the examples in this book.
There are a variety of methods that might be used for handling the right skewness of
this measure. Examples include top-coding the extreme values, using robust regression,
or performing a log tvansformation, For the analyses in this book, T would like to
remain true to the incomes as measured (because these vatues are presumably aceurate)
and would like to use a simple and common method of analysis. The simplest and
most common analysis method is ordinary least-squares regression. Another reasonably
simple method is the use of linear regression with robust standard errors (in Stata
parlance, adding the vce(robust) option). This permits us to analyze the variable
realrinc as it is (without top-coding or transforming it) and accounting for the right
skewness in the dataset. The regression coefficients from such an analysis are the same as
the ones that would be obtained from ordinary least-squares analysis, but the standard
errors are replaced with robust standard errors. I am sure that a case could be made
for the superiority of other analytic methods {such as taking the log of income), but the
use of robust standard errors provides familiar point estimates using a familiar metric,
while still providing a reasonable analytic strategy.

1.4.2 Age

The variable age is used as a predictor of realrinc. The values of age can range from
18 to 89, where the value of 89 represents being age 89 or older. Rather than showing
the entire distribution of age, let’s look at the distribution of ages for the youngest and
oldest respondents. The tabulate command below shows the distribution of age for

those aged 18 to 25, This shows relatively few 18-year-olds {compared with the other
ages).

. tabulate age if (age<=25)

age of
respondent Freq. Percent Cum.
18 194 2,78 2,78
19 757 10,88 13,64
20 799 11.486 25,11
21 B29 12,90 38,01
22 939 13.47 51.48
23 1,100 15,78 67.26
24 1,082 15,52 82,78
25 1,200 17.22 100,00
Total 6,970 100.00

Let's now look at the tabulation of ages for those aged 75 to 89. We can see that
the sample sizes are comparatively small for those in their late 80s.

. tabulate age if (age>=75)

age of
respondent Freq. Parcent Cum.
75 425 10.98 16.98
76 422 10.90 21.88
7 394 10.18 32.05
8 353 9.12 41.17
79 309 7.98 49.15
- 80 274 7.08 56.22
81 273 7.05 63.27
82 238 6.16 6%.42
83 214 5.53 74.9%
a4 i79 4.62 79.57
a5 163 4.21 83.73
86 i4i 3.64 87.42
87 118 3.00 90, 42
88 92 2.38 92,79
89 or older 278 7.21 10¢.00
Total 3,872 100G, 00

Mamy examples in this book look at the relationship between income and age. As you
might expect, incomes rise with increasing age until reaching a peak and then incomes
decline. Figure 1.2 illustraies the relationship between income and age by showing the
mean of income at each level of age.
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Adjusted Predictions of age
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Figure 1.2. Mean income by age (ages 18 to 89)

After around age 70, the mean income as a function of age is more variable, and
egpecially so after age 80. This is probably due in large part to the decreasing sample
sizes in these age groups. This could also be due to the increasing variability of whether
one works or not and the variability of refirement income sources. Let’s look at this
graph again, but we will include only respondents who are at most 80 years old. This
is shown in figure 1.3.
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Figure 1.3. Mean income by age {(ages 18 to 80}
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1.4.2 Age 9

Figure 1.3 clearly shows that the relationship between age and income is cuvvilinear
for the ages 18 to 80. Chapter 3 will model the relationship belween income and age
using a quadratic model focusing on those who are 18 to 80 years old. In chapter 11,
we will examine the interaction of age with coilege graduation status (I = yes, 0 = no).
For those examples, we will focus on ages ranging from 22 to 80

Looking at figure 1.3, we might conclude that it would be inappropriate to fit a
linear relationship between age and income. This would he unfortunate becanse I think
that examples based on a linear relationship between age and income can be intuitive
and compelling. Suppose we focused on the ages ranging from 22 to 55 (years in which
people are commonly employed full time). Figure 1.4 shows a line graph of the average
income at each level of age overlaid with a linear fit predicting income from age for this
age range

Fitted values
10000 15000 20500 25000 30000 25000

) T T T T
20 25 30 35 40 45 50 55
age of responden}

Mean income  —~—-- Linear fit |

Figure 1.4. Mean income by age {ages 18 to 65) with linear fit for ages 22 to 55

The linear fit reasonably depicts the association between age and income, with some
minor deviations. In fact, Hnear regression analysis shows that the linear component
of age explains 4.1% of the variance in income. Adding a quadratic term leads to only
a minor increase in the explained variance, increasing it to 4.7%. For the sake of the
exampies in this book, I will consider the relationship between age and income to be
linear when focusing on the ages of 22 to 55, This will permit me to create examples
that look at the linear relationship between age and income in a way that can be both
intuitive and justifiably linear.
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1.4.3 Education

Chapter 1 Introduction

Another variable that will be used as a predictor of realrine is educ (education). In
the G588 dataset, education is measured as the number of years of education, ranging
from 0 to 20. A tabulation of the variable educ is shown below. The missing-value code
.d indicates don’t know and .n indicates no answer.

. tabulate educ, missing

highest
year of
school

completed Freq. Percent Cun.

0 148 0.27 0.27

1 39 0.07 0.34

2 139 0.26 0.58

3 232 0.42 1.01

4 299 0.54 1.56

B 382 0.69 2.26

6 726 1.32 3.57

7 837 1.62 5.08

8 2,550 4.63 9.71

9 1,873 3.40 13.11

10 2,576 4.68 17.7¢

11 3,295 5.98 23.77

12 16,953 30.77 54.55

13 4,679 8.31 62.86

14 5,909 10.73 73.58

16 2,414 4.38 7T.97

18 6,681 12.13 90.10

17 1,604 2.91 93.01

18 1,885 3.42 96.43

19 719 1.31 97.73

20 1,086 1.97 99.71

d 68 0.12 99.83

n 94 0.17 100.00

Total 56,087 100.00

The relationship hetween income and education is one that has been studied at great
depth and one that people commonly understand. The average of income at each level

of education is graphed in figure 1.5.
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Figure 1.5. Mean income by education

Higher education is associated with higher income, but this relationship is not linear.
However, the relationship appears to have linear components. Between (0 and 11 years
of education, the relationship appears linear, as does the relationship for the span of 12
to 20 years of education. This figure is repeated in figure 1.6, showing a separate fitted
line for these two spans of education.

Fitted values
30000 40000 50000
L : 5

20000
1

10000
I3
=

1) 10 15 20
highest year of schoal completed

Mean of education
————— Linear fit; 0-11 years
eevemeneeos | inear fit: 12-20 years

Figure 1.6, Mean income by education with linear it for educations of §-11 and 12-20
years
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Figure 1.6 illustrates that although the relationship between education and income
may not be linear, a piccewise linear approach can provide an effective fit. Tn fact, chap-
ter 4 uses piecewise repression to model the relationship between income and education.

The graph in figure 1.6 seems to preclude the possibility of including education as
a linear predictor of income. If we focus on those with 12 to 20 years of education, the
relationship between education and income is reasonably linear. For some examples,
education will be considered a linear predictor by focusing on educations ranging from
12 to 20 years.

There nay be other times where it would be usefud, for the sake of illustration, to

treat educ as a categorical variable. Some examples will use a two-level categorical |

version of the variable edud, called cograd, that indicates whether the respondent is
a college graduate. This variable is coded 1 if the person has 16 or more years of
education, and 0 if the person has fewer than 16 years of education. Another two-level
variable, hsgrad, will sometimes be used to indicate whetler the person has graduated
high school. Some examples will use a three-level version of educ, called educ3. This
variable is coded 1 if the respondent is not a high school graduate, 2 if the respondent
is a high school graduate, and 3 if the respondent is a college graduate.

1.4.4 Gender

Some analyses will include the gender of the respondent as a predictor of reairinc.
The variable female is coded 1 il the respondent is a female, and 0 if the respondent is
a male.

1.5 The pain datasets

Chapter 7 includes exaraples that assess the relationship belween medieation dosage and
the amount of pain a person experiences. Two hypothetical datasets are used, named
pain.dta and pain2.dta. In both of these examples, the variable pain represents the
patient’s rating of pain on a scale of 0 (no pain) to 160 (worst pain).

1.6 The optimism datasets

The examples illustrated in chapters 8 and 9 are based on hypothetical studies com-
paring the effectiveness of different kinds of psychotherapy for increasing a person’s
optimism. The examples in chapter § itlustrate the interaction of two categorical vari-
ables using the datasets named opt-2by2. dta, opt-2by3-exi.dta, opt-2by3-ex2.dta,
and opt-3by3.dta. Chapter 9 illustrates models involving the interactions of three cat-
egorical variables and uses the datasets named opt-2byZby2.dta, opt-3by2by2.dta,
and opt~3by3by4.dta. These dﬂ.t‘l.‘:(,tb are described in more deLall as they are used in
chapters 8 and 9.

1.8 The sleep datasets 13

1.7 The school datasets

Chapter 15 illustrates the interpretation of multilevel models. The examples are based
on’ hypothetical studies looking at performance on different standardized tests. The
datasets allow us to explore how to interpret cross-leve! interactions of school and stu-
dent characteristics. These datasets are named school.math.dta, school _read.dta,
school. science.dta, and school _write.dta, and are described in more detail in the
sections in which they are used.

1.8 The sleep datasets

The examples used in chapters 16 and 17 ave based on hypothetical longitudinal stud-
ies of how many minutes people sleep at night. Chapter 16 presents four examples
that treat time as a_continuous predictor. The datasets used in this chapter are named

" sleep.conlin.dta, sleep_conpw.dta, sleep.cat3conlin.dta, and sleep cat3pw.dta.

The examples from chapter 17 treat time as a categorical predictor. Three exam-
ple datasets are used in this chapter: sleep.cat3.dta, sleep._catcat23.dta, and
sleep.catcat33.dta. In each of these examples, the outcone variable is named sleep,
which contains the number of minutes the person slept at night.
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Continuous predictors

Chapter 2 Coutinuous predictors: Linear

Chapter 3 Continuous predicfors: Polynomials
Chapter 4 Continuous predictors: Piecewise models
Chapter 5 Continuous by continuous interactions

Chapter 6 Continuous by continuous by continuous interactions

This part of the book focuses on the interpretation of continuous predictors. This
includes one continuous predictor {see chapters 2 to 4), interactions of two continuous
predictors (see chapter 5), and interactions of three continnous predictors (see chap-
ter 6).

Chapters 2 to 4 focus on one continuous predictor, Chapter 2 focuses on one linear
continuous predictor. Polynomial models {including quadratic, cubie, and fractional
polynomial models) are covered in chapter 3. A wide variety of piecewise regression
models are covered in chapter 4.

Chapter 5 covers models including an interaction of two continuous predictors. This
includes models with an interaction of two linear continuous predictors as well as an
interaction of a linear and quadratic predictor.

Chapter 6 focuses on models involving interaction of three continuous predictors
{linear by linear by linear interactions).
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2.1 Chapter overview

'This chapter focuses on how to interpret the coefficient of & continuous predictor in
a linear regression model. This chapter begins with a simple linear regression model
with one continuous variable predicting a continuous cutcome (see section 2.2). This
is followed by a multiple regression model with multiple predictors, but still focusing
on one of the continuous predictors (see section 2.3). The next two sections illustrate
methods for checking the linearity of the relationship between the predictor and out-
come, illustrating graphical methods for assessing linearity (see section 2.4) ay well as
analytic methaods for assessing linearity (see section 2.5).

2.2 Simple linear regression

This section Hlustrates the use of a continuous predictor for predicting a contimous
outcome nsing ordinary least-squares regression. This section illustrates how to interpret.

17
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and graph the results of such models. The examples in this section are based on the o The dataset includes several variables that can be used as predictors of the respon-
gas.ivrm.dta dataset. In this section, let’s focus only on males who were interviewed in ' : dent’s education, including the education of the respondent’s father, the education of
2008. Below the gss.ivrm.dta dataset is nsed and the relevant observations are kept. ‘ the respondent’s mother, and the age of the respondent. Surmmary statistics for these

variables are shown below. The education of the father and mother range from 0 to 20,

. use gss_ivrm and the age of the respondent ranges from 18 to 89.
. keep if female==0 & yrint==2008

(54157 observations deleted) . summarize paeduc maeduc age

Variable § - Obs Mean 5td. Dev. Min Max

- - . : pasduc 607  11.20373  4.304347 0 20
Tip! Combining the use command and the if qualifier - nmadie als  11.5042% 3696358 s 50
Rather than issuing the use command followed by the keep if command, you can R age 927 47.37864  16.52631 i8 89

instead include the if specification as part of the use command, as shown below. . . . . , .
As we interpret the meaning of these education variables, let’s assume that having

. use gss.ivrm if female==0 & yrint==2008 Lo 12 years of education corresponds to graduating high school and having 16 years of
education corregponds to completing a four-year cotlege degree.
This saves you a little bit of typing and can execute faster because only the obser- '
vations that meet the if condition are read into memory.

Terminology: Continuous and categorical variables

In statistics books and classes, four levels of measurement are often described:
nominal, ordinal, interval, and ratio. When T use the term continuous variable,
1 am referring to a variable that is measured on an interval or ratio scale. By
contrast, when I speak of a categorical (or factor) variable, T am referring to either
a nominal variable or an ordinal/interval/ratio variable that we wish to treat as

Let’s use the educational level of the respondent as the outeome variable. Below we
see a frequency distribution of this variable, We can see that the variable ranges from
0 years of education to 20 years of education. The missing value code .n indicates no
answer,

.. tabulate educ, missing : though it were a nominal variable.
highest
year of
school
completed Freq. Percent Cum. Let’s run a simple regression model in which we predict the education of the respon-
0 3 0.32 0.32 dent from the education of the respondent’s father.
3 2 0.22 0.54
4 5 0.54 1.08 : . regress educ paeduc
5 3 0.32 t.40 Source 88 df HH] Number of obs = 696
8 15 i.6l 3.01 - F( 1, 694) = 228.14
T 7 0.75 3.76 : Hodel 1649.70181 1 1649.70181 Prob > F = 0,0000
B 21 2,26 6.02 Residual 5018.43038 694 7.23116769 R-squared = (,2474
9 22 2.37 8.39 ) Adj R-squared = 0,2463
10 29 3.12 11.51 : Total | 6668,13218 695  D.5944348 Reot MSE = 2.6891
11 51 5.48 16.99
4 28.39 .38 -
ig 22 . ; io gg 23 educ Coef. Std. Err. t Prit] {95Y% Conf. Interval]
117 . .
ig 45 li gi gg gg : paeduc 3504331  ,0237969  15.10  0.000 .3127106 4081566
18 185 16.67 86 ! 56 . _cons 9.740211 2857915 34.08 0.000 9.179092 10.30133
17 29 3.12 89.68 : :
18 48 5.16 94.84 . . . .
19 22 2.37 97.20 : The regression equation can be written as shown in (2.1).
20 25 2.69 99.89 '
. 1 0.1 100.00
Total 930 100.00 . educ = 9.74 + 0.36paeduc {2.1)
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The intercept is 9.74 and the coefficient for paeduc is 0.36. The intercept is the
predicted mean of the respondent’s education when the father's education is 0. For every
one-year increase in the education of the father, we would predict that the education of
the respondent increases by 0.36 years. The output from the regress command shows
that the coeflicient for pasduc is statistically significant,

Note! A note about significance

In this book, I will use the term significant as a shorthand for statistically signifi-
cant using an alpha of 0.05. Such references to an effect being significant does not
speak to mathers such as clinical significance or practical significance.

2.2.1  Computing predicted means using the margins command

We could use the regression equation {2.1) to compute the predicted mean of the re-
spondent’s education for any given level of the father’s education. For example, if
the father had eight years of education, we would substitute 8 for paeduc, yielding
9.74 + 0.36 x 8, which results in the predicted mean of 12.62. Rather than doing this
computation by hand, we can use the marging command. The nargins command below
computes the predicted mean of the outcome when paeduc equals eight by specifying
tlie at(paeduc=8) option.

. margins, at(paeduc=8)

Adjusted predictions Musmber of obs = 686
Model VCE : OLS

Expressien : Linear prediction, predict(}

at ; paeduc = 8

Delta-method
Margin  Std. Err. % ozl f95% Conf. Intervall

_cons 12.61668 .1276167 $3.93 ©.000 12.36575 12.8656

The margins command produces the same predicted mean we computed by hand,
but with greater accuracy. The margins command also displays the standard error
of the predicted mean (0.13) as well as a 95% confidence interval {12.37 to 12.87).
The margins command also includes a statistical test of whether the predicted mean
significantly differs from 0 (z = 98.93, p = 0.000). In this case, this statistical test is
not useful, but in other cases this test can be very useful.

Suppose we wanted to compute the predicted mean of education for the respondent,
assuming separately that the father had 8, 12, or 16 years of education. Instead of
running the margins command three separale times, we can run it once specifying
at(paeduc=(8 12 16)}, as shown below.

2.2.1 Computing predicted means using the margins command 21

. margins, at{paeduc=(8 12 18}} vsquish

Adjusted predictions Kumber of obs = 696
Model VCE : OLS
Expression  : Linear prediction, predict()
1._at : paeduc = 8
2. _at : paeduc = 12
3._at : paeduc = 16
Delta-method
Maxrgin  Std, Err. H Prizl [85% Conf. Intervall
.at
1 12.61568 L127B167 98.93  0.000 12,.36575 12,8666
2 14.06341 . 1036084 135.64 0.000 13.86034 14,25647
3 15.49114 . 1527395 101.42  0.000 15,.190178 15,7906

Note! The vsquish option

The vsquish option vertically squishes the output by omitting extra blank lines.
I frequently use this option in this book to save space and produce more compact
output. You do not need to use this option when you run the examples for yourself.

The margins output includes a legend indicating that the margins are computed
for three _at values, when father’s education is 8, 12, and 16 (respectively). Thus the
first line of output shows the predicted mean is 12.62 when father's education is 8, the
second line of output shows the predicted mean is 14.05 when father’s education is 12,
and the third lize shows the predicted mean is 15.49 when father’s education equals 16.

Sometimes we might want to compute the predicted means given a range of values
for a predictor. For example, we might want to compute the predicted means when
father’s education is (0, 4, 8, 12, 16, and 20. Rather than typing all of these values, we
can specify 0(4)20, which telis Stata that we mean 0 to 20 in 4-unit increments. {For
more information, see [U] 11.1.8 numlist.)
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. margins, at(paeduc=(0(4)20)) vsquish

Adjusted predictions Number of obhs = 696

Model VGE 1 OLg

Expression : Linear prediction, predict(}

1,_at : paeduc = 0

2._at : ¢ paeduc = 4

3. _at ¢ pasduc = 8

4. _at 1 paeduc = 12

5. _at ¢ paeduc = 16

6. at : paeduc = 20

Delta—method
Margin  Std. Err. z prlz| [956%, Conf. Intervalj

-at
1 9.740211 , 2867918 34.08 0.00C 9.18007T 10.30035
2 11.17794 1997699 55,895  0.000 10.7864 11.56949
3 12.61568 . 1276167 88,93  0.00C 12.36675 12.8656
4 14.06341 1036064  135.64  0.000 13.86034 14.,25647
5 16.48114 .15627395 101,42 0.000 15.19178 16.7906
6 16.92887 . 2024774 72.82 0.000 16,47323 17.38452

2.2.2 Graphing predicted means using the marginsplot command

We can use the marginsplet comimand to create a graph showing the predicted means
and confidence intervals based on the most recent margins conunand. The last margins
command used the at (pasduc=(0(4)20)) option to compute the predicted mean given
that the father had §, 4, 8, 12, 16, or 20 years of education. The marginsplot command
below graphs the predicted means as a function of the father’s edueation, as shown in
figure 2.1. The graph shows the predicted means of the respondent’s education as a
function of the father’s education (spanning from 0 to 20). Confidence intervals are
shown for each vatue specified by the at () option (0, 4, 8, 16, and 20},

. marginsplot
Variables that uniquely identify margins: paeduc

Adjusled Predictions with 95% Cis

Lingar Prediction
14 .16 18

12

10

0 4 8 12 16 20
highest year schook completed, {athar

Figure 2.1. Linear regression predicting education from father’s education

Note! The margins and marginsplot commands are a team

The margins and marginsplot commands work together as a team. Following
the margins command, the marginsplot command graphs the values produced
by the margins command. But, if you exceute any other command after margins,
but before marginsplot, you will get the following error:

. marginsplot N
previous command was not margins
r{301);

This error is saying that the last command you issued was not the margins com-
mand. The solution is to run the margins command followed by the marginsplot
command {with no other commands in between}).

Let’s consider another example of using the margins command followed by the
marginsplot command. In this example, the margins command is used with the
at{paeduc=(0 20)) option. This computes the predicted mean of the respondent’s
education given the father’s education equals 0, and then again given that the father’s
education equals 20. Then the marginsplot command graphs the predicted means
computed by the margins command. This creates the graph shown in figure 2.2, show-
ing the predicted mean of the respondent’s education as the father’s education ranges
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from 0 to 20 years. This graph does not include a confidence interval because the noci
option was used on the marginsplot command,

. margins, at(paeduc=(0 20))

Adjusted predictions Number of obs = 696
Model VCE : OLS
Expression : Linsar prediction, predict{()
1._at : paeduc = 0
2._a%y ¢ paeduc = 20
Delta-method
Margin  Std. Frr, z Prizi [95% Conf. Intervall
-at
1 9.740211  .28579i6 34.08 0,000 9.18007 10.30035
2 16.92887 2324774 72.82  0.000 16.47323 17.38452

. marginsplot, noci
Variables that uniquely identify margins: paeduc

Adjusted Predictions

Linear Prediction
14 16 18

i2

10

highest year school compieted, father

Figure 2.2. Predicted means from simple regression model predicting education from
father’s education

Let’s now create a graph thatl shows the fitted line with a shaded confidence interval,
We can create such a graph by first rerunning the margins command and specifying
at (paeduc={0(1)20)) to compute the predicted means at each level of father’s ed-
ncation. The output is omitted to save space, We then create the graph using the
marginsplot command. The recast() option specifies that the fitted line should be
displayed as & line graph (suppressing the markers). The recastci{} option specifies
that the confidence interval should be displayed as an rarea graph, displaying a shaded
area for the confidence region. The resulting graph is shown in figure 2.3.
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. margins, at{paeduc=(0(1}20))
(output omitted )

. marginsplot, recast{line) recastci{rarea) ®
Variables that uniquely identify margins: paeduc

Adjusted Predictions with 95% Cls

Linear Prediction
14
I

12

10

0 1 273 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20
highest year school compisted, father

Figure 2.3. Predicted means and confidence interval shown as shaded region

2.3 Multiple regression

So far, all the examples have illustrated simple linear regression. Let's now tarn to a
multiple regression model that predicts the respondent’s education from the father’s
education (paeduc), the mother’s education {maeduc), and the age of the respondent
(age). This multiple regression model is fit below using the regress commmand.

. Tegress educ paeduc maeduc age

Source 53 dt NS : Number of obs = 850
F( 3, 646) = 92,93

Model 1822, 25082 3 607.420272 Prob > F = 0.0000
Residual 4232.37918 646 G6.53619069 R-squared = 0.3015
Adj R-squared = 00,2982

Total 6044.64 649 9,31377504 Root MSE = 2.6b6E
educ Coef. Std. Err. % P>t [96% Conf. Intervall
paeduc .2680701  .033014% 7.82  0.000 . 1932421 .3228981
maeduc . 2076304 .0378868 B.4g  0.000 .1331342 2819266
age 0344424 .Q066219 5.28 0.000 . 0216358 0472492
.cons 6.96181 .51064564 i3.63  0.000 . 5, 968085 7.9648356
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The multiple regression equation predicting the respondent’s edueation from the
father’s education, mother’s education, and age can be writlen as shown in (2.2).

educ = 6.96 + 0.26paeduc + 0.21maeduc + 0.03age (2.2

The coeficients from this multiple regression model refiect the association between
each predicior and the outcome after adjusting for all the other predictors. For exam-
ple, the cocflicient for paeduc is 0.268, meaning that for every one-year increase in the
education of the father, we would expect the education of the respondent to be 0.26
years higher, holding the mother's education and the age of the respondent constant.

2.3.1 Computing adjusted means using the margins command

As an aid to interpreting the coefficients from the multiple regression model, we can use
the margins command to compute adjusted means of the outcome as a function of one
or more predictors from the model. For example, to help interpret the coefficient for
paeduc, we can use the margins cominand to compute the adjusted maean of education
given different values of father’s education, adjusting for the other predictors in the
model. The margins command below computes the adjusted mean of the respondent’s
education when the father’s education equals 8, 12, and 16, adjusting for the other
predictors (mother’s education and age of the respondent).

. margins, at{paeduc=(8 12 16)) vsquish

Predictive margins Number of obs = 550
Model VCE : DLB

Expression ¢ Linear prediction, predict()

1. at 1 paeduc =
2. _at ¢ paeduc = 12
3. _at 1 paeduc = is
Delta-method
Margin  Std. Err, z P>lzf [96% Conf. Iatervall
_atb
1 13.03035 .1478844 83,11 0.000 12.746G51 13.3202
2 14.06263 .1029638  136.58 0.000 13,86083 14,28444
3 16.00491 . 1849627 81,61 0.000 14,73238 15.45743
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Terminology: Adjusted means

Looking at the output from the previous margins command, we see that when a
respondent’s father has 8 years of education, the respondent is predicted to have
13.03 years of education, after adjusting for education of the mother and age of
the respondent. What do we call the quantity 13.037 We can call this a predicted
mean after adjusting for all other predictors. For example, we can say that the
predicted mean, given the father has 8 years of education, is 13.03 after adjusting
for all other predictors. We could also call this an adjusted mean. When the
father has 8 years of cducation, the adjusted mean is 13.03. (The term adjusted.
mean implies after adjusting for all other predictors in the model.} When using ;
nonlinear models (such as a logistic regression model), we will use a more general
term, such as predictive margin.

L

The margins command shows the adjusted means at three different levels of father’s
education. When father’s education is 8, the adjusted mean is 13.03. When father’s
education increases to 12, the adjusted mean increases to 14.06, and when father’s
education is 16, the adjusted mean is 15.00.

The margins command allows us to hold more than one variable constant at a time.
I the example below, we compute the adjusted means when the father’s education
equals 8, 12, and 16, while holding the mother's education constant at 14. -

. margins, at(paeduc=(8 12 16) maeduc=i4) vsquish

Predictive margins Number of obs = 650
Model VCE ¢ QL8
Expression : Linear prediction, predict()
1. at : paeduc = 8
maedac = 14
2. _at i paeduc = 12
maeduc = 14
3. _at : paeduc = 18
maedne = 14

Delta-method

Margin  Std. Err. z P>zl [95% Conf. Intarval}

_at
1 13.64407 .21106229 64.18 0.000 13.13047 13.96767
2 14.576356  .1281276 113.76  0.000 14.32523 14,82748
3 15.60863 1522517 102.82 0.000 15.341022 1690704

Note how the legend informs ub that the first _at value corresponds to father’s
education equal to 8 and mother's education equal to 14. The second and third _at
values correspond to father's education equal to 12 and 16 (respectively), with mother’s
education equal to 14. {The variable age is not mentioned, which indicates that the
predicted means are adjusted for age by averaging across all levels of age. As we will
see shortly, for a linear model this is equivalent to holding age constant at its mean.)
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Compared with the results of the previous margins command, we can see that
the adjusted means are higher when the mother’s education is held constant at 14.

However, the effect of the father’s education remains the same. For example, in the

previous margins command, the change in the adjusted means due to increasing the
father’s education from 8 to 16 years was 2.06 (15.09 — 13.03). When the mother’s
education is held constant at 14, the change due to increasing the father’s education
from 8 to 16 years is the same (aside from rounding), 2.07 {15.61 —13.54). Although the
adjusted means are higher when the mother’s education is held constant at 14 years,
the difference in the adjusted means due to increasing the father’s education remains
the same.

2.3.2 Some technical details about adjusted means

A traditional ordinary least-squares approach computes adjusted means by holding other

predictors constant at their mean value. The adjusted mean computed using this ap-

proach is cailed the marginal vaiue at the mean. The margins command, by default,

uses a different approach; it adjusts for the other predictors by averaging across the

values of the other predictors. An adjusted mean computed in this fashion is called the
3 average wmarginal value, T S T

In a linear model, thess two methods yield the same results. We can see this for
ourselves by computing adjusted means using both methods. The margins command
below computes the adjusted mean given that father’s education is 8, averaging across
the other predictors (average marginal value).

. margins, at(paeduc=8) vsquish

1 Predictive margins Wumber of obs = 650
Model VCE : OLS
: Expression : Linear prediction, predict()

at i paeduc = 8

Delta-method
Margin  5td. Err. z P>zl {9B% Conf. Intervall

_cons 13.03035 .1478844 88.11  0.000 12.74051 13,3202

Now let’s repeat this command and add the atmeans option (shown below). This
command computes the adjusted means at the marginal value at the mean. That is,
the adjusted means are computed by holding the mother’s education at the mean and
the respondents age al the mean (as indicated in the legend of the margins output).
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, margins, at(paeduc=8) atmeans vsquish

Adjusted predictions Number of sbs = 650
Model VCE ¢ OLS
Expression ! Linear prediction, predict(}
at 1 paeduc = 8
maaduc = 11.52462 (mean)
age = 46.81077 (mean)
Delta-method
Margin  Std. Err. z P>z [95% Conf. Intervall
_cons 13.03035 .1478844 88.11 0.G00 12.740861 13.3202

We can see that adding the atmeans option yields the same adjusted means and
standard errors as the previous margins command where this option was omitted.!

2.3.3 Graphing adjusted means using the marginsplot command

Let’s graph the‘adjusted means of the respondent’s education as a function of the
father's edncation, adjusting for all other predictors. We can create such a graph using
the margins and marginsplot commands below. The marginsplot command creates
the graph shown in figure 2.4.

1. This is not the case for nonlinear models such as logistic regression, ordinal logistic regression,
Poisson regression, and so forth, See chapter 18 for more details ahowt computing predictive
margins for such models. ’
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. margins, at{paeduc=(0(4)20))
(output omitted)

. marginsplot
Variables that uniquely identify margins: paeduc

Predictive Marging with 95% Cls

18

l.inear Prediction

T T T

—
16 20

oy
ad

8 12
highest year schoot cornplated, father

Figure 2.4, Predicted means by father’s education, adjusting for mother’s education
and age

Tip! More on the margins and marginsplot commands

This chapter has only scratched the surface about the use of the margins and
marginsplot commands. Later chapters will provide more examples about the use
of these commands in the context of more complex regression models. In addition,
appendix A provides more details about the margins command, and appendix B
provides more details about the marginsplot command. Although we have not
seen these commands yet, you can find more details about the contrass command
in appendix C and about the pwcompare command in appendix D.

2.4 Checking for nonlinearity graphically

This section illustrates graphical approaches for checking for nonlinearity in the relation-
ship between a predictor and outcome variable. These approaches include 1) examining
scatterplots of the predictor and outcome, 2) examining residual-versus-fitted plots, 3)
creating plots based on Jocally weighted smoothers, and 4) plotting the mean of the
outcome for each level of the predictor. Each of these approaches is considered in turn,
beginming with the use of scatterplots.

2.4.2 Checking for nonlinearity using residuals 33

2.4.1 Using scatterplots to check for nonlinearity

Let’s use a subset of the anto dataset called autosubset . dta. Tt is the same asauto . dta
that comes with Stata, except that 1 have omitted three cars to make the nonlinear
relationships a bit more clear.

. usa autosubset
(1978 Automobile Data)

Let’s look at a scatterplot of the size of the engine (dizsplacement) by length of the
car (length) with a line showing the linear fit, as shown in figure 2.5,

. graph tuoway (scatter displacement length) (1fit displacement length),
> ytitle(*Engine displacement (cu in.)") legend(off)
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Figure 2.5. Scatterplot of engine displacement by car weight with Linear fit line

The relationship between these two variables looks fairly linear, but the addition of
the linear fit line helps us to see the nonlinearity. Note how for short cars {when length
is below 160) the fit line underpredicts and for longer cars (when length is above 210)
the fit line also underpredicts.

Using a scatterplot like this can be a simple means of looking at the linearity of the
simple relationship between a predictor and outcome variable. However, this does not
account for other predictors that you might want to include in a model. To this end,
let’s next look at how we can use the residuals for checking linearity.

2.4.2  Checking for nonlinearity using residuals

We can check for nonhinearity by looking at the relationship between the residuals-and
predicted values, after accounting for other variables in the model. For example, Jet’s
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run a regression predicting displacement from length, trunk, and weight, as shown 2.4.3 Checking for nonlinearity using locally weighted smoother
below.
With larger datasets, it can be harder to visualize nonlinearity using scatterplots or

- regress displacement length trunk weight residual-versus-fitted plots. To illustrate this, let's use an example from the dataset

Bource 58 ot Hs g;‘“‘bgr of 2‘7’? - 189 ;15 gss-ivim.dta, whicl has many observations.
Model | 535697.677 3 178665,892 Prob > F = 0.0000 .
Residual | 63213.9848 67  943.49231 R-squared = 0.8945 + use gss_xvim
Adj R-squared = 0.8897 . . .
Total 598911 .662 70 8555.88089 Root MSE = 30.718 Suppose we want to determine the nature of the relationship between year that the
- respondent was born (yrborn) and education level {educ). The scatter command can
P ¥
displacement Coef.  Std. Err. t  pPrlel [o8% Conf. Intervall be used {as shown below) to create a scatterplot of these two variables. The resulting
length | -.7790169 5796436  -~1.34 0.183  -1.936989  .3779577 scatterplot is shown in figure 2.7.
trunk 1.639695  1.230105 1.26 0.216  -.9156062  3.994995
weight 1276394 0155864 8.19  0.000 . 0965288 . 16876 . scatter educ yrboxn, msymbol{oh)
_cons | -67.78624 61.93616  -1.09 0.278  ~191.4093  55.83686
g1 o
We can then look at the residuals versus the fitted values, as shown in figure 2.6. _ © o
Note the U-shaped pattern of the residuals. This pattern suggests that the relationship ' 7 po
hetween the predictors and outcome is not linear. B2 wo o
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2 ¢ e Tigure 2.7. Scatterplot of education by year of birth
=]
(<3
oo v A . . . .
o It is hard to discern the nature of the relationship between year of birth and education
= using this scatterplot. With so many observations, the scatterplot is saturated with
e T T ; T g p Y y P
a 0 . 800 400 data points creating one big blotch that tell us little about the shape of the relationship

between the predictor and outcome.

Let’s try a different strategy where we create a graph that shows the relationship
between education and year of birth using a locally weighted regression (also called
a locally weighted smoother or lowess). The lowess comumand below creates a graph
showing the locally. weighted regression of education on year of birth, as shown in
figure 2.8. The msymbol (p) option displays the markers using tiny points.

Fignre 2.6. Residual-versus-fitted plot of engine displacement by car length, trunk size,
and weight

There are many excellent resources that illustrate Stata’s regression diagnostic tools,
including the manual entry for [R] regress postestimation. You can also see the help
entries for avplot, rvEplot, and rvpplot.
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{. lowess educ yrborn, msyrbel(p)

Lowess smoother
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:
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5
b
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- year of birth

bandwidth = .8

Figure 2.8. Locally weighted regression of education by year of birth

The lowess graph suggests that there is nonlinearity in the relationship between
year of birth and education. Education increases with year of birth until the 19508, at
which point the smoothed education values level out and then start to decline. The
graph produced by the lowess command is much more informative than the scatterplot
alone.

2.4.4 Graphing outcome mean at each level of predictor

Another way to visualize the relationship betwsen the predictor and outcome is to
create a graph showing the mean of the cutcome at each level of the predictor. Using
the example predicting education from year of birth means creating a graph of the
average of education at each level of year of birth. Although the variable yrborn can
assume many values {from 1883 to 1990), the variable is composed of discrete integers
with reasonably many observations (usually more than 100) for each value. In such a
case, we can explore the nature of the relationship between the predictor and outcome
by creating a graph of the mean of the outcome variable {education level) for each level
of the predictor (year of birth). This kind of graph imposes no structure on the shape

of the relationship between year of birth and education and allows us to observe the .

nature of the relationship between the predictor and the outcome.?

is

2. This technique requires that the predictor have integer values. If the predictor were income mea-
sured to the penny, you could ereate income rounded to the nearest dollar. However, to have many
observations per income category, you might be even better off using income rounded to the nearest
thousand dollars.or nearest ten thousand.dollars. .

2,44 Graphing outcome mean at each level of predictor 35

One simple way to create such a graph is to fit a repression model predicting the
outcome treating the predictor variable as a categorical (factor) variable. Following
that, the margins command is used to obtain the predicted mean of the outecome for
each level of the predictor. In this case, the predicted mean reflects the mean education
level at each year of birth. .

. regress educ i,yrborn
{output omitted)

. marging yrborn
{output omitted}

Now we can use the marginsplot command (shown below) to graph the average
fevel of education as a function of the year of birth. The resulting graph is shown in
figure 2.9. : :

. marginsplot

Variables that uniquely identify margins: yrborn

Adjusted Predictions of yrborn with 85% Cls

Linear Prediction
10 15
! .

5

1850 1800 1950 2000
year of birth

Figure 2.9. Mean education by year of birth

The graph in figure 2.9 shows that education level generally increases with year of
birth until the 1980s where the level of education plateaus and then starts to decline.
This is consistent with the graph created by the lowess command shown in figure 2.8.

The predicted means vary erratically for the years before 1900 because of the few
observations per year during those years. For these years, the confidence intervals are
much wider compared with later years, reflecting greater uncertainty of the estimates

. because of fewer observations.,

If ali the years had such few observations, then the entire graph might be dominated

by wild swings in the means and show little about the na.tu;'é of the relationship between
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the predictor and outcome. For such a case, we could try grouping the predictor into
larger bins such as creating a variable that contains the decade of birth, based on the year
of birth. The gss_ivrm.dta dataset has a variable called yrborndec. The tabulation
of this variable is shown below.

. tabulate yrborndec

Chapter 2 Continuous predictors: Linear

Year born
{as decade)

{recoded) Fred. Percent. Cum
1880s 80 0.11 0.11
18¢0s 608 1.11 1,22
1900s 2,051 3.74 4,95
1910s 4,135 7.53 12,49
1920s 5,892 16.73 23,22
1830s 6,401 11.66 34.88
1940s 9,508 17,32 52.20
1950s 11,631 21.19 73.39
1960s 8,265 16.06 88.45
1970s 4,570 8.33 98.77
1980s 1,707 3.11 99.88
1990s 64 0.12 100,00
Total 654,889 100.00

Let’s graph the mean of education by decade of birth but omit the 1880s and 1990s
because of their very small sample sizes. This graph is shown in figure 2,10,
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. drop if yrborndec==1 | yrborndec==12
(124 observations deleted)

. regress educ i.yrborndec
(outpui omitted }

. margins yrborndec
(output cmitted }

. marginsplot

Variables that uniquely identify margins: yrboradec

Adjusted Predictions of yrborndec with 95% Cls

12 13

1

Linear Prediction

18803 1960s  1990s 19205 1930s 1940 19505 19B0s 19705  1980s
Year born (as decade) {recoded)

Figure 2.10. Mean education by decade of birth

For each decade of year of birth, the estimate of the mean of education is much
more stable because of the larger sample size in each decade (compared with each year).
However, if there were important changes in trend within a decade, this graph would
' conceal that information.

2.4.5 Summary

The previous sections have illustrated several ways to check for nonlinearity for a con-
tinuous predictor using visual approaches: - creating scatterplots, examining residuals,
creating plots based on locally weighted smoothers, and examining the predicted means
for éach level of the predictor by treating the predictor as a eategorical variable.

__2.5 Checking for nonlinearity analytically

This section shows how to check for nonlinearity using analytic approaches, including
adding power terms and using factor. variables,
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2.5.1 Adding power terms

Another way to check for nonlinearity of a continuous variable is to add power terms
(for example, quadratic or cubic). Let’s continue using the example with education as
a function of the year the respondent was bori, beginning by showing the linear model
predicting education from year of birth.

. use gsas_ivra

. regress educ yrborn

-2.5.2  Using factor variables 39

compared with.0.088] for the linear model. This provides analytic support for including

"o quadratic term for year of birth wiien predicting education.

: : B s O
‘A cubic term would imply that the line fitting year of birth and education has a

‘tendency to have two bends in it. We can test for a cubic trend by specifying the
- model as shown below. Including ¢.yrborn##c.yrborn##c. yrborn as a predictor is a
“shorthand for including the linear, quadratic, and cubie terms for year of birth (yrborn).

. regress educ c.yrborn##c.yrborn##c.yrborn

Source 85 daf MS Number of obs =  BAT4S
F( 1, 54743) = 5291.46

Model 48751.0017 1 48751.0917 Prob > F = 0.0000
Residual 504356,171 B4T43 9.2131628 R-squared = (.0881
) Adj R-squared = 0.0881

Total 553107.263 54744 10.103523 Root MBE = 3.0353
educ Coef. Std. Err. t P>t [95% Conf. Intervall
yrborn . 0464875 ,0006391 72.74 0,000 .0452348 L0477401
_cons ~T7.72922 1.243564 -62.561 0.000 -80. 16662 -75.20183

Clearly, this model has a strong linear component, indicating that education tends
to increase as year of birth increases. However, there may be nonlinearity in this re-
lationship as well. Let’s introduce a quadratic term (in addition to the linear term)
by adding c.yrborn#c.yrborn to the model. This introduces a quadratic effect that
would account for one bend in the line relating year of birth to education. We would
expect the quadratic term to be significant based on the graphs we saw in figures 2.8
and 2.9 that showed that there was a bend in the relationship between year of birth and
education. The model with the linear and quadratic terms is shown below.?

. regress educ -yrborn c.yrborndc.yrborn

Source 35 df 13 Humber of oba = 547456
F( 3, 54741} = 2399.43
Model 64279 .431 3 21426.477 Prob > F = 0.0000
Residual 488827.832 54741 8.92983015 - B—squared = 0.1162
Adj R-sqiared = 0.1162
Total 553107.263 84744  10.103623 Root HMSE = 12,9883
educ Coef. Std. Err. t P> % [95Y% Conf. Intervall
yrkorn ~-81.36027  11.42235 -7.12  ¢.000 -103.7382  -58.96238
c.yrborn# N .
c.yrborn . 0429897 , 0058818 7.31  0.00C .0314614 064518
c.yrborni
c.yrborn#
c.yrborn -7.56e-06 1.019-06 ~7.49  0.000 ~9.64e-06  —b5.58a-06
_cons 51255.565  7393.524 6.93  0.000 36764.19 B5746.91

Source 85 df M3 Number of obs = 54746
F( 2, 54AT42) = 3567.40
Model 63778.2779 2 31889,1389 Prob > F = 0.0000
Residual 489328,986 54742 8§.93882184 R-squaxed = 0.1153
Adj R-squared = 0.1153
Total 553107.263 54744  10.103523 Root MSE = 2.9888
educ Coef, Std. Err. t P>t [95% Conf. Intervall
yrborn 4.218252  ,1017488 41.46 0.000 4.018824 4.417681
g.yrboraft
¢.yrborn -,.0010738  ,0000262 -41.00 [ ¢.G0C -.0011262  -,0010225
_cons -4129  98.B166% -41.78 \0.000 -4322.,679 ~3935.32

e

Indeed, the quadratic term is significant in this model, confirming what we graphi-
cally saw in figures 2.8 and 2.9. Furthermore, the R? for this model increased to 0.1153
—W

3. This model can also be specified as regreas educ c.yrbornitfic, yrbora.

The cubic term is statistically significant in this model. However, this dataset has
many observations so the model has the statistical power to detect very small effects.
Note how the R? is 0.1162 for the cubic model compared with 0.1153 for the quadratic

“model. This is a trivial increase, suggesting that the cubic trend is not really an impor-

tant term to include in this model.

‘We could continue this exploration process by adding power terms, searching for

additional nonlinear components, but for this example it seems that the major nonlinear

component is strictly quadratic. See chapter 3 for more details about how to analyze
and interpret such models.

5.2  Using factor variables

The strategy of using factor variables to check for nonlinearity malkes sense only when
you have a relatively limited number of levels of the predictor that are coded as whole

numbers. We have such an example in the predictor variable named agedec, which is

the age of the respondent expressed as a decade of life (for example, 30s, 40s, or 50s).
Let's explore the relationship between the decade of life and the health status rating
given by the respondent, with health status rated as: 4 = excellent, 3 = good, 2 = fair,
and 1 = poor. We expect that as people age, their health status will decline, but does
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statts? Let’s investigate this using the variable agedec as the age of the person (as a
decade), tabulated below.

. use gas_ivrm

. tabulate agedec

Age {as
decade) of

respondent Freq. Percent Cusl.

i8-19 951 1.73 1.73

205 10,849 19.76 21.50

30s 11,875 21.63 43.13

40s 10,082 18.37 61.50

508 8,123 14.80 76.30

60s 6,639 t1.91 88.21

708 4,502 8,20 96.41

80s 1,969 3.59 100.60

Total 54,390 100.00

Let’s begin by graphing the mean health rating by each decade of life (using the
strategy that was illustrated in section 2.4.4}, The graph of the relationship between
the mean of health at each level of age as a decade is shown in figure 2.11.

. regress health i.agedec
(output omitted )

. margins agedec
(output omitted )

. marginsplot
Variables that uniquely identify margins: agedec

Adjusted Predictions of agedec with 85% Cls

3 3.2
r

Linear Prediction
28
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Age {as decade) of respondent

Figure 2.11. Average health by age {as a decade)
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This graph shows nonlinearity in this relationship, but let’s perform an analysis to
detect any kind of nonlinearity in the relationship between decade of age and health
status. One approach is to formulate a regression model as shown below, which includes
both ¢.agedec and i.agedec as predictors in the same model.

. regress health ¢,agedec i.agedec
note: 8.agedec omitted because of collinearity

Source 858 df MS Kumber of obs = 40984
F( 7, 409768) = 451.59
Hodel 2111.10121 T 301.585887 Prob > F = 0.0000
Residual 27364.9308 40976 .667828261 R-sguared = 0.0716
Adj R-squared = 0.0718
Total 20476.032 40983 .719225826 Root MSE = .Birzl
health Coef. Std. Err, t Pl [95% Conf. Intervall
agedec ~. 0977603 0052951 ~18.48 0.000 -,1081388 -.0B73819
agedec

2 . 1095664 .0276956 3.97  0.000 0554674 .1636433
3 . 16848267 . 0240665 6.86 0,000 .11765658 .2119876
4 .1354884 .0217134 6.24 0.0060 . 0929287 .178047%
5 .06862266 Q206744 3.1 0.002 0247032 .1057478
6 -.0058219 .021133 -0.28 0.783 ~. 047243 ,0355992
7 -.0377352 .0236222 -1.60 0.110 —~.0840352 .0085648

8 0 (omitted)
_cons 3.320438 034656 95.81  (.C00 3.252611 3.388364

This unconventional-looking model divides the relationship between the age decade
and the outcome into two pieces: the linear relationship, which is accounted for by
c.agedec, and any remaining nonlinear components, which are explained by the indi-
cator variables specified by i.agedec. Because of the inchusion of c.agedec, one of
those indicators was no longer needed and Stata excluded it for us. Let’s now use the
testparm command to perform a test of the indicator variables, giving us an overall -
test of the nonlinearity in the relationship between age decade and health status.

(. testparm i.agedec

{ 1) 2.agedec = G
{ 2) 3.agedec = 0
{ 3) 4.agedec = 0
{ 4) S5.agedec = 0
{ B) 6.agedac = 0
( 8) T.agegec =0
F( 6, 40976) = 20.61
Prob > F = 0.0000

This test is significant, indicating that overall there is a significant contribution of
nonkinear terms in the relationship between the age decade and health status. This
general strategy tells us that there is nonlinearity between the age decade and health
status but does not pinpoint the exact nature of the noilinearity. Let’s try another
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strategy that will pinpoint the nature of the nonlinearity. We begin by running a model
predicting the variable health from i.agedec.

. regress health i.agedec
(output omitted )

We now can use the contrast command with the p. contrast operator to obtain
a detailed breakdown of possible nonlinear trends in the relationship between the age
decade and health status,

. contrast p.agedec
Contrasts of marginal linear predictions

Margins 1 asbalanced
df F P>F
agedec
) {linear) 1 1187.58 0.0000
. (quadratic) 1 26.65 0.0000
(cubic) 1 52.99 0.0000
{quartic) 1 1.18 0.2778
(quintic) i 1.0 0.317%
(sextic) i 0.15 0.6959
(septic) 1 0.02 0.8748
Joint 7 451,689 0.0000
Residual 409786
Contrast  Std. Err. {95% Conf, Intervall
agedec
{linear} -.2599865 .0075437 ~. 2747524 -.2451806
(quadratic) ~.0384272 .0074436 -.053016b6 -.0238378
(cubic) 04660456 . 0064025 .03406554 . 0591536
(quartic) .0056375 .0051894 -, 0045420 .0158178
(quintic) -~.0042917 0042988 -,0127i34 .00413
(sextic) .0014878  .0038067 ~. 0069734 .0089489
(septic) -.0005636 . 003578 ~-,0075765 0064494

These results show that in the relationship between the age decade and health status,
there are significant linear, quadratic, and cubic effects. If we wished, we could limit
our examination to only the nonlinear effects, as shown below, '
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. contrast p(2/7).agedec
Contrasts of marginal linear predictions

Margins 1 asbalanced
df F P>F
agedec
{gquadratic) i 26.65 0.00600
(cubic) 1 52.99 0.0000
{quartic) 1 1.18 0.2778
{gquintic) 1 1.00 0.3179
(sextic) 1 0.16 0.6859
(septic) 1 0.02 0.8748
Joint 6 20.61 0.0000
Residual 40976
Contrast Std. Err. {85% Conf. Intervall
agedec
(quadratic) -.0384272 . 0074435 -.0630165 ~.0238378
(cubic) . 0466045 . 0064025 .0340654 .0b91638
(quartic) 0086375 005194 -.0045429 0158178
(quintic) ~. 0042917 . 0042968 ~.0127134 00413
(sextic) .0014878 . 0038067 -.0069734 .00B9482
(septic) -. 0005636 003578 ~.0075765 0064494

The overall (Joint) test matches the test we performed carlier looking at the contri-
bution of the indicator variables (1i.agedec) in the presence of the continuous version
{c.agedec). Both of these fests ask the same question regarding the nonlinear contri-
butions.

These tests suggest that linear, quadratic, and cubic terms may be appropriate to
use when modeling the relationship predicting health from agedec. See section 7.9
for more inforination about the use of the contrast command with the p. contrast

“operator for performing polynomial confrasts.

2.6 Summary

This chapter has illustrated fitting linear models with a continuous predictor. These
maodels have included simple regression models and multiple regression models. We have
seen how to compute adjusted means using the margins command and how to create
graphs of the adjusted means using the marginsplot command. We also saw how to
assess the linearity assumption, ilustrating both graphical (section 2.4) and analytic
techniques (section 2.5).

If the relationship between a predictor and outcome is not linear, there are several
ways you can account for the nonlinearity. Chapter 3 illustrates the use of polynomial
terms to account for nonlinearity in the relationship between the predictor and outcome.
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Such approaches include the addition of quadratic (squared) terms (see section 3.2),
the addition of cubic terms (see section 3.3), and fractional polynoinial regression (see
section 3.4). You could also account for nonlinearity using piecewise modeling, as illus-
trated in chapter 4. For example, you can fit a piecewise regression model with one or
two known knots (see sections 4.2-4.6), a piecewise regression model with one unknown

knot (see section 4.7), or a piecewise regression model with multiple unknown knots (see | 3 Ccntén VOIS pred ECt@fS: P@Eyﬂ@m §a HS

section 4.8).

For more background about the use of Jinear regression, I recommend Fox (2008),
Hamilton (1992), Chatterjec and Hadi (2006), Cohen et al. (2003), or your favorite

regression book. I also recommend Baum {2006), Xohler and Kreuter (2009}, and _ 3.1 Chapter overview . . ..o v 45
Juul and Frydenberg (2010} as books that iliustrate the use of regression methods using : 3.2 Quadratic (squared) terms . . . .. ... 45
Stata. For more information about the difference between the average marginal effect _ 321 Overview. . . ..., ... 45
and the marginal effect at the mean, see Cameron and Trivedi {2010). o 322 BExamples . . ... e e 49
3.3  Cubic (third power) terms . . . .. .. ... . L L. 55

3.3.1 Overview . . . . . . . e e e e e 55

3.3.2 Exampies . . - - o o i i e e e e e e 56

3.4 Fractional polynomiaj regression . . .. .. .. ........ 62

3.4.1 Overview . . . v o v 0 s e e e e 62

3.4.2  Example using fractional polynomial regression . . . . . . G6

.5 Main eflects with polynomial terms . . . . . . . . .. .. ... 75

3.6 Summary ... - e e e 77

3.1 Chapter overview

This chapter focuses on the use of po]ynﬁmizzl terms to account for nonlinearity in the
relationship between a continuous predictor and a continuous outcome. This chapter
illustrates the use of quadratic (squared) terms in section 3.2, the use of cubic (third
order) terms in section 3.3, and fractional polynomiat models in section 3.4, The chapter
concludes with a discussion of the interpretation of main effects in the presence of
polynomial terms (see section 3.5).

3.2 Quadratic (squared) terms
3.2.1 Overview

A quadratic (squared) term can be used to model curved relationships, accounting for
one bend in the relationship between the predictor and outcome. Such curves come in
two general types: U-shaped (convex) and inverted U-shaped (concave).

Coustder the graph shown in figure 3.1 illustrating a hypothetical refationship be-
tween age on the # axis and income on the y axis. The curve shows an inverted U-shape
with incomes rising with increasing age until income reaches s peak at around 50.years

45
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of age, after which incomes decline with increasing age. Let’s relate the nature of the
curve to the regression equation predicting income {realrinc) from age {age), shown
helow.

realrinc = —30000 -+ 2500age + (-25age?)

The curve has an inverted U-shape because the coefficient for age squared is negative.
If the coefficient for the squared term was positive, the curve would have a U-shape.

Income = ~-30000 + 2500age + ~25age’
40000

30000+

Incorme

20000

10000 7

Age
Figure 3.1. Quadratic regression with quadratic coefficient of —25

The magnitude of the squared term determines the degree of curvature. The squared
term in figure 3.1 is —25. Contrast this with the left panel of figure 3.2, where the
squared tersm is less negative (—22), and the right panel of figure 3.2, where the squared
term is more negative (—28). :

3.21 QOverview 47

Incame = -306000 + 2500age + —22age’ income = 30000 + 2500age + f.’ZBagez

40000 1 40000
30000 20000
w o
E &
3 H]
£ =
20000 200004
10000-] 10000
. . r , y . . ; : ,
20 30 40 50 50 70 20 % 4 50 60 70
Age Age

Figure 3.2. Quadratic regression with quadratic coefficient of —22 (left) and —28 (right)

The left panel shows less curvature in the relationship between age and income (due
to the squared term being less negative) and the vight panel shows more curvature (due
to the squared term heing more negative). If the quadratic coefficient is more negative,
the curve will show a more strongly inverted U-shape.

The linear coefficient for age represents the age slope when age equals zero (which
obviously is a preposterous value). To picture this, we need to extend the 2 axis of age
further to the left to include zero. The linear coefficient determines the slope of the line
when age is held constant at zero.

Terminology! Slopes

The above paragraph uses the term “age slope”. This refers to the slope of the
refationship between income and age or to the slope in the direction of age. In this
chapter and through the book, T often use the shorthand term age slope in place
of these longer descriptions.

In figure 3.1, the linear term is 2,500. Contrast this with the loft panel of figure 3.3,
where the linear term is lower (2,300), and the right panel of figure 3.3, where the linear

_term is higher (2,700).
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Income = -30000 + 2300age + ~25age’ “Ingome = 30000 + 2700age + ~25age’

40000 40000

30000 | 40000+

20000 20000

10000 10000-]

o o

£ E

E 0 E a4

~10600 ~10000-]

—20000 4 ~20000-

-30000 -30000-]
; y ¥ v T y ; T y : T v 3 T T v
0 10 20 30 49 A0 B0 7O ¢ 10 2 30 40 56 6O 70

Age Age

Figure 3.3. Quadratic regression with linear coefficient of 2,300 (left) and 2,700 (right)

A larger coefficient for the linear term increases the siope at the point where age is
zero. Comparing the left and right panels of figure 3.3, we can see that in this exampic
a higher linear term yields a steeper relationship between age and income before the
bend in the curve.

For an inverted U-shaped curve, we ean compute the value of 2 that corresponds to
the maximum value of . Referving back to figure 3.1, we can see that the maxinnun
income corresponds to an age of around 50 years old. If we call the linear coefficient
of age b1 and the guadratic coeflicient of age 52, then the value of age that yields the
maximum income is given by —~b1/(2 x b2). Substituting 2,500 for b1 and —25 for b2
vields a value of 50; therefore, the maximum income occurs when someone is 50 years
old. This also corresponds to the age where the slope of the relationship between age
and income is flat. When age is lower than 50, the slope is positive (and becomes
progressively more positive as age further decreases below 50). Likewise, when age is
greater than 50, the slope is negative (and becomes further negative as age increases
beyond 50).

We can take this idea one step firther and not only describe the place where the
fit line is at its maximumn (and the slope is zero), but also describe the slope for any
given level of age. Figure 3.4 contains the same graph as figure 3.1 and displays the
slope at three different values, 30, 50, and 60. At age 30, the slope is positive and has a
value of 1,000, At age 50, the curve is at its maximum and the slope is zero. At age 60,
the slope is negative and has a value of —500. This nnderscoves that the slope changes
every time age changes.

3.2.2 Examples 49

Tangent (siope) at ages 30, 50, 60

2500¢ 30000 35000
: 1 L

Predicted income

15000 20000

15000
L

20 - 30 40 50 60 70
age

Figure 3.4. Linear slopes for quadratic regression with age at 30, 50, and 60

All of these examples have depicted a relationship where the quadratic coefficient is
negative, ylelding an inverted U-shaped relationship between z and . If the quadratic
cocfficient were positive, the relationship between 2 and y would show a U-shaped
relationship, but the other principles illustrated so far would remain the -same. The
degree of curvature (U-shape) would increase as the quadratic coefficient increases. The
linear coefficient would still determine the slope when the predictor is at zero. Because
the curve is U-shaped, the minimum of that curve would be represented by —b1/(2x b2),
where bl is the lincar coefficient and b2 is the quadratic coefficient.

3.2.2 Examples

Let's use the (88 dataset to illustrate a quadratic relationship between the age of the
respondent {age) and income (realrinc). For this analysis, let’s focus only on those

who are 18 to 80 years old. T
e

et g i e

.

. use gss.ivrm

. kaep if (age<=80)
{1892 observations deleted)

Before fitting a quadratic model relating income to age, let’s assess the shape of the
relationship between these variables using a locally weighted smoother. The lowess,
command is used to ereate the variable yhatlowess, which is the predicted value based -
on the locally weighted regression predictiug income from age. The line command then
draws the graph showing the relationship between the fitted value of income and age.
This graph is shown in figure 3.5.
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. lowess realrinc age, nograph gen(yhatlowess} : . regress realrinc age c.age##ic.age i.female, vce(robust)
. line yhatlowess age, sort . Linear regression Number of obs = 32100
F( 3, 32096} = 1252.67
Prob > F = 0.0000
B-squared = 0.1089
§ E Root MSE = 25407
4
Robust
8 realrinc Coef.  5td. Err, & Pritl [95% Conf. Intervall
2]
(=]
g o age 2412.339 58.05774 41,56 0,000 2298.544 2626. 135
Lo
_§§ ] ¢.aga#c.age -24.20196  .6958906 -34.78  0.000 -25,56593  -22.83799
fiEs
= i.female ~-12419.24  280.4746 -44.28  0.000 -12968.98 -11869.49
§ ] _conz -26679,.77 1038.412 -24.73 {.000 -27716.1  -23644.44
i=3
2 We could simplify this command by using the ## operator, which creates both main
S
wy

20 46 80 a0
age of respondent

effects and products (interactions) of the connected variables:

. regress realrinc c.age#i#fc.age i.female, vee(robust)
(ouiput omitted)

Figure 3.5. Lowess-smoothed values of income by ape

. ) . Note! Why not square age?
The graph shows a curved relationship between the predictor and outcome. Income Y q &

vises as a function of age until it reaches a peak at about 50 years of age, and then income : You might be wondering why we do not instead use the generate command to cre-
declines thereafter. A model with only a lincar terin would not be able to account for ate a new variable, say, age2, that contains the age squared. We could then enter
K \ this bend in the relationship between age and income. Introducing a quadratic term age and age2 into the model. If we do this, the results of the regress command
.‘;\%‘ can account for such a bend. ' woulld be the same, but this would confuse the margins command. The pargins_

coinmand would think that age and age? are two completely different v_flil_nbloq
i 'So, when estimating the adjusted means as a function of age, the margins com-
Note! Checking for nounlinearity _ mand would do so, adjusting for age2. By specifying c, age#titc . age, the margins
command understands that both c.age and c. -age#c. age are derived from the

variable age and accordingly computes appropriate ad]uated means.

Chapter 2 describes methods for checking for nondinearity using graphical methods
{see section 2.4). That chapter also describes methods for checking for nonlinearity
using analytical methods {see section 2.5).

Before interpreting the coefficients from this regression model, let’s first create a
graph showing the adjusted means of income as a function of age. The first step is to
use the margins command to compute the adjusted means across the spectrnm of age.
The at () option is nsed to compute the adjusted means for ages ranging from 18 to
80 in one-year increments, Using one-year increments will make a smoother curve than
using 5- or 10-year increments.

Let's fit a model with a guadratic (squared) term to account for the bend in the
relationship between age and income. We do this using the interaction operator #
(as shown below), which creates a term that multiplies age by age. Specifying c.age
indicates to Stata that age should be treated as a continuous variable (instead of treating
it as factor variable). By default, variables connected with the mi,eracmon -operator (#)

_are assumed to be factor %)lcs This model also includes female as a covariate. . margins, at{age=(18{1)80))
eSSt - (output omitted)

The second step is to use the marginsplot command, which creates the graph shown
in figure 3.6.
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. marginsplot, noci
Variables that uniquely identify margins: age
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=

(=3

=

b

ﬁwwm“@\w\“q

< : o

o . N

21 ;ff XK%

b} b
58 ' \\\\\
_QD—
8o 3,
& .
g s
[s3=1
=8
83
o
£

[=3

[>]

3

b=t /{

o ;zf

[= 3

(=3

i !

T T T T
20 40 60 80

age of respondent

Figure 3.6. Adjusted mean of income by age

tnterpreting the relationship between age and income

Now let’s interpret the coefticients from the regression output using the graph shown
in figure 3.6. First, the age#age coeficient. is negative, which is why the curve has an
inverted U-shape. The coefficient for age is positive. This is the slope at the point
where age equals zero. If we immagine the graph in figure 3.6 extending age to zero, the
slope would be 2,412.34.

We can use the formula —b1/{2 x b2} (see section 3.2.1) to compuie the age at which
income is at its maximuim. This yields —2412.34 /(2 x —24.20), which equals 49.84. The
adjusted mean of income is highest for those who are 49.84 years old. This age also
corresponds to the point at which the slope of the fitted line is zero. Based on these
computations, and by looking at figure 3.6, we see that the slope is positive when age
equals zero (2,412.34) and becomes smaller with increasing age until the slope is zero
at age 49.84. The slope is negative afterward,

Suppose we wanted to estimate the age slope for any given value of age. We can
do so using the margins command combined with the dydx(age) option. For example,

below we compute the age slope at 40 years of age. At 40 years,of age, the slope is'};

476.18.

|
i
;

3.2.2 Examples 53

. margins, at{age=40) dydx(age) ‘/

Average marginal effects Number of obs = 32100
Model VCE : Robust
Expression : Linear prediction, predict()
dy/dx w.r.t. : age
at ¢ age = 40
Delta-method
dy/dx  Std. Err. z P>zl [95% Conf. Intervall
age 476.1827  9.823473 48.47  0.000 456,929 4956, 4.363

To help you visualize this, I have created figure 3.7, which shows the adjusted means
of income as a function of age. This includes a tangent line showing the age slope when
age is 40. At that point, the age slope is 476.18.

Slope at age=40 is 476.18

40000
:

. 30000
!

Predicted income

20000
'

10000
:

TFigure 3.7. Slope when age is held constant at 40

In fact, we can use the margins command to estimate the age slope at any value of
age. Below we obtain the age slope for ages ranging from 30 to 70 in 10-year inerements.

\ e F,

il
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55
. margins, at(age=(30(10)70)) dydx(age) vsguish . margins, at(age={18(1)80)}
Average marginal effects ¥umber of obs = 32100 o B : (output omitted)
Model VCE ¢ Robust . marginsplot, recast(line) recastci(rarea)
Expression : Linear prediction, predict(} Variables that uniquely identify margins: age
dy/dx u.r.t. : age
1._at 1 age = 30
2._at i age = 40
3,.at : age = 5C . Predictive Marging with 95% Cls
4, _at : age = 60 g
5. at : age = 70 =
o
Delta~method
dy/fax / 5td. Err. z Priz] [95% Cont. Intervall .8
&
age §
_at i
1 . 980.2218 18.27387 52.658 0.000 924.4057 986,033 E
2 476.1827  9,823473 48.47  0.000 456,929 495.4353 5 § ]
3 -7 .866484 15.69961 -0.60 0.817 ~38,62717 22.91418 e
4 -491, 8957 27.9976  -17.57  0.000 -B46.77  -437.0214
5 ~975,9348 41,336 ~23,61 0.000 -1066.962 ~894.9178
J—
< L=
This output shows how the age slope chanpes ag a function of age. For example, the o 20 40 80 80

age of respondent

age slope is 960.22 at 30 years of age. At 40 years of age, the slope is smaller (476.18},
and by the age of 50, the slope is negative (—7.86). In a quadratic model, there is .
no single valie that we can use for describing the age slope because the age slope is ' Figure 3.8. Adjusted means with shaded confidence region from quadratic regression
different at every ape. L

Graphing adjusted means with confidence intervals

. . Note! Inchuding linear and quadratic effects
Tlie marginsplot comunand can be used to create a graph of the adjusted means with a

shaded region showing the confidence interval for the adjusted means. We first need to
run the margins command to compute the adjusted means as a function of age {shown
below). We can then run the marginsplet connmand, adding the recast (line) and
recastci(rarea) options to display the adjusted means as a line and the confidence
interval as a shaded region. The resulting graph is shown in figure 3.8.

Consider the model we ran ecarlier:

. regress realrinc c.ageit#c.age i.female, vce(robust) \ /

This includes both the linear and quadratic effects of age. Even il the linear effect
is not significant, it is important to still include it in the model.

3.3 Cubic (third power) terms
3.3.1 Overview

Previously, we saw that a quadratic term can account for one bend in the relationship
between the predictor and outcome, Adding a cubic term can account.for two bends in
the relationship between the predictor and the outcome. This section illustrates the use
of cubic terms I6F HTTgE @ Telalionship belween a predictor and oufcome that inchudes
two bends. '
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An example of such a cubic relationship is shown in figure 3.9. This shows a hypo-
thetical relationship between the year of a woman’s birth and her number of children.

255

Number of children

1920 1930 1940 1050 1960
Year of birth

Figure 3.9, Number of children by year of birth

The mumber of children initially increases until it reaches a peak for those born
around 1930. Then the number of children declines until hitting a minimum around
1952 and then the number of children rises again. A cubic term can be appropriate for
modeling a relationship between a predictor and outcome that has two bends, like the
relationship shown in figure 3.9.

3.3.2 Examples

L

Let’s examine the relationship between the year of birth and number of children &
woman has using the gss_ivrm.dta dataset, focusing on women aged 45 to 55 born
between 1920 and 1960.

(50021 ohservations deleted)

use gss_ivrm
\f’\ -, keep if (age>=48 & age<=b5) & (yrborn>=1920 & yrborn<=1960) & female== } D/
)

I~
Let’s get a sense of the relationship between year of birth (yrborn) and the average
number of children a woman has (children) by looking at a lowess-smoothed regression
relating year of birth to number of children. The lowess command is used with the
generate() option to create the variable yhatlowess, which is the smoothed value of
the average number of children.

. lowess children yrborn, generate(yhatlowess) nograph

3.3.2 Examples : 57

The graph twoway command is then used to show the smoothed values as a function
of the year of birth in figure 3.10.

. graph twoway line yhatlowess yrborn, sort

uw)
9
o
g
z
£
o
=
=l
w
o
e
T T T y
19'20 1930 1940 18950 1960
year of birth

Figure 3.10. Lowess-smoothed fit of number of children by year of birth

The lowess-smoothed values show that there are two bends in the relationship be-
tween year of birth and number of children. The number of children rises initially, then
declines, and then rises again. This suggests that including year of birth as a cubic term
may ackount for this nonlinearity.

Below we fit a model predicting. ckildren from yrborn fit using a cubic term. The
model specifies c.yrborn##c.yrborn##c.yrb'o'fr'i_'; which includes the cubic term for
yrborn, the quhdratic tein fof yrborn, and the linear term for yrborn.

——— —_ B}
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. regress children c.yrbornit#c.yrbormiific.yrborn

Using the centered value yrborn40 solved the problem of collinearity. The results |
note: c.yrborn#c.yrborndic.yrborn omitted because of collinearity

show, as expected, that the cubic termn is significant. This is consistent with the two |

8 8s -
ource at K g‘(""bgr 02022,’? - 1920‘113 A bends that we saw in the lowess-smoothed relationship between yrborn and children.
Model | 1163.13728 2 581.56864 Prob > F = 0.0000 £ in figure 3.10.
Residual 15189.893 5046 3.01028399 R-squared = p.0711 -
Adj R-squared = 0.0708
Total 16363.0303 5048  3.2395088 Root MSE = 1.736
- Note! Including linear, quadratic, and cubic terms
children Coef, Std. Err. t P>t [96% Cont. Intervall

; When [itting this kind of a cubic model, you might find that the linear or quadratic
: g Y g q

yrborn 1.430931  .B156673 1,76 0.079  -.1681309  3.029994 S coefficients are not significant. For the sake of parsimony, you might want to
AR omit those variables because they are not significant. However, it is essential

zﬁigiﬂﬂ -.0003795  .0002101  -1.8% 0.071  -.0007915 0000324 that these terms be included in the model {even if not significant} to preserve the
- interpretation of the cubic term.
i c.yrborn#
; ¢.yrborn#
5‘: c.yrhorn 0 (omitted) .
: _cons | -1344.881 791.4741  -1.70 0.089  -2896.514  206.7501 Let’s show a graph of the relationship between year of birth (yrborndQ) and the

‘ _ predicted number of children (children). The first step is to use the margins command
; - a to compute the predicted means for the spectrum of yrborn40 vcﬂueamth the at ()
: There was a problem running this modei There is a note Sa,ying that the cubi(‘ terin L aption. Specifying at (yrbornd0=(-20(1)20)) yields predicted means fﬂl years of biith
was 01mtted b(’(‘dllSG of Colil : rangmg hom 192(} to 19(” O m"one«y(.m increments.

i yrborn40 which is the vauabi(, yrborn C(,nter(,d alound t.he year 1040 (Lhdt is; 1.34(} ‘, L ’ ];z,r,f;::: :,;:-Gt(tifsornwz(_20(1)20)) )/
is subtracted from each value of yrborn). Let’s try fitting the above model again, but
instead using the variable yrborn40.

Voo The marginsplot command is then used to ereate the graph shown in figure 3.11.

. regrass children c.yrborndO##C. yrborndote. yrborndd . _ The recast(llm?) and ?ecastm (rarea) options display the predicted means as a.sohd
i Source 88 af s Wumber of ob 5010 line and the confidence interval as a shaded area. The graph shows that the predicted
B umber of obs = . X . s
. FC 3, B048) = 166,84 - mean of children reaches a high at approximately —10 (those born about }.930) and
Model | 1475.96128 3 491.987087 Prob > F = 0.0000 : then reaches a low at approximately 13 (ihose born about 1953).
| Residual 14877.069 5045 2,94887394 R-squared = 0.0903 )
4 Adj R-squared = 0.0897

Total | 16353.0303 5048  3.2395068 Reot MSE = 1.7172
. , children Coef.  Std. Err, t P>t {95% Conf. Intervall
l-i Lo yrbernd0 -.0908745  .0052396  -17.34 0.000  -.1011462 -.0808028
“
! c.yrbornd0#
| Lot € yrborndé | -.0007751  .0002116  -3.66 0.000  ~.0011897  —,0003605
‘ c.yrbornd(#
1 C\)m\\() c.yrbornd0i
: : c.yrbornd0 0002081 .0000203  10.30  0.000 .0001693 . 000249
1 _cong 2.741426 0372098  73.67 0.000 2.668477 . 2.814372
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. marginsplot, recast(line} recastci(rarea)

Variables that uniquely identify margins: yrboxnd0

Adjusted Predictions with 95% Cls

Linear Prediction
25

2
:

1.5

20 10 0 10 20
Year born minus 1840

Figure 3.11. Predicted means from cubic regression with shaded confidence region

Based on this model, we might want to obtain predicted means for specified years
of birgh. However, we need to specify the year of birth with the variable yrbornd0.
For example, the margins command below obtains the predicted mumber of children for
those born in 1950. This was accomplished by specifying the value of yrbornd¢ as 10
{1950 — 1940).

. margins, at{yrborn40=10) vsquish

Adjusted predictions Number of obs = 5049
Model VCE ¢ OLS
Expression : Lipear prediction, predict()
‘at : yrbornd0 = 10
Delta-method
Margin Std. Err, z Prlzl| [95% Conf. Intervall
_cons 1.964318 0394603 49.78  0.000 1.886977 2.041669

The margins command below obtains the predicted number of children for the years
1920 to 1960 incrementing by 10.

3.3.2 Examples 61

. margins, at(yrbornd0=(-20(16)20)) vsquish

Adjusted predictions ¥umber of obs = 5049

Model VCE : OLS

Expression : Linear prediction, predict{)

1. at : yrbornd0 = -20

2, at t yrborad0 = -10

3._at ¢ yrbornd0 = g

4._at ¢ yrborn40 = 10

B._at : yrborndl = 20

Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervail)

_at
1 2,676693  .1118682 23.03 0.000 2.356455 2.794931
2 3.363512  .0468221 71.84 0,000 3.271743 3.455282
3 2.741426 0372098 73.67 0,000 2.668495 2.814356
4 1.964318  .0334603 49,78 0,000 1.886977 2.041669
5 2.287081 0886407 25,80 0.000 2.113349 2.460814

The margins command can also be used to estimate the yrborn40 slope. For ex-
ample, we might want to know the yrborn40 slope when the year of birth is 1950 (that
is, yrbornd0=10). The margins command can compute this using dydx () option, as
shown below. :

. margins, at(yrbornd0=10) dydx{yrbornd() vsquish

Conditional marginal effects Humber of cbs = 5049
Model YCE : OLS
Expression  : Linear predictionr, predict(}
dy/fdx w.r.t. : yrboradD
at : yrhorndl = 10
DPalta-method
dy/dx  Std. Err. z Pzl [95% Conf. Intervall
yriorndd ~. 043632 004444 -9.82 0.000 -.0623421  -.0349219

You can further explore how the yrborn40 slope varies as a function of year of birth
by specilying multiple values within the at () option, as shown below.
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. margins, at(yrbornd0=(-20(5)20}) dydx(yrborn40) vsquish

3.4.1 Overview G3

Let’s look at this canvas of shapes, beginning with the negative powers {2, ~1,
and —0.5). These models take the form of y == b 2P where b could be positive or
negative, and power could be —2, —1, or —0.5. Figure 3.12 shows some possible shapes
of these models, showing the powers —2, -1, and —0.5 in columns 1, 2, and 3. The first
row shows a positive value of b (specifically, 0.3}, and the second row shows a negative
value of b (specifically, —0.3).

Conditional marginal effects llumber of cbs = 5049

Model VCE : OLB

Expression : Linear prediction, predict()

dy/dx w.r.t. : yrbornd0

1. _at : yrborn40 = -20

2. _at 1 yrhorndd -1i5

3._at : yrborndd = -10

4, at : yrborn4d = -b

5. _ab : yrborndQ = 4]

G6._at ¢ yrborndQ = 5

7._at 1 yrborndd = 10

8._at i yrborn40 = 15

9. .at + yrborndQ = 20

Delta-method
dy/dx  Std. Err, z P>zl {95% Conf. Intervall

yrborndd
_at
i .1911069 .0229201 8.34 0.000 .1461843 . 23602986
2 .0735633 0122085 .02 0.000 .049625 .0974815
3 ~. 0126282 .00B638683 -2.35 0.619 ~.0231408 ~.0021068
4 -.0674375 0042965 ~15.70 0.000 -.0768584  ~,0690165
5 -. 0908746 L0062395 -17.34  0.000 -.1011437  ~.0B06053
6 -.0820394  .0045Y64 -18.12  ©.000 -.091809%  ~.0739697
T ~.043632 . 004444 -9.82 0,000 -.0523421 —.0349219
8 L0270476  .0100178 2,70 0.007 0074137 .04686816
9 .1290894 .018872 6.50 0.0C0 0901511 . 1680478

The output from this margins command shows that the slope of yrborn40 is positive
when yrborn40 is --20 and —15, is negative when yrborndC is between —10 and 10,
and is positive when yrborn40 is 15 and 20.

3.4 [Fractional p

UV e

3.4.1 Overview

olynomial regression

|

The previous sections showed polynomial regressions, illustrating regression models with
quadratic terms and cubic terms. Fach of these terms is a positive integer, but we do
not need to restrict ourselves to only positive integers. Fractional polynomial regression
is more flexible by considering other kinds of power terms as well, including negative
powers and fractional powers.

Stata has a convenience command for fitting fractional polynomial models called
fracpoly. The fracpely prefix auntomates the process of selecting the best fitting
fractional polynomial model. It fits a variety of polynomial texms {and combinations
of polynomial terms) and shows you the best fitting model. The default set of powor
terms the fracpoly prefix will try includes-—2, -1, --0.5, 0, 0.5, 1, 2, and 3 (where 0
indicates that the natural log of the predictor is used}. This vields a large canvas of
possible shapes. '
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Figure 3.12. Fractional polynoinials, powers = —2, —1, and —0.5 (columns) for b= 0.3
{top row) and b = —0.3 (bottom row)

The graph in the first row of column 1 shows the equation g = 0.3 x 2~2, This shows
that y drops rapidly with increasing values of - until y hits a floor. The equation in the
second row of column 1 is the same, except that the coefficient for b is negative (that
is, ¥ = —0.3 x 72). This figure shows that ¥ rises rapidly with increasing values of o
until ¥ hits a ceiling.

The graphs in the first row (with the positive coefficients) are all typified by a steep
descent; and then reaching a floor. The more strongly negative the power term, the
stronger the descent. The second row is a vertical mirror image of the first. When the
coefficient is negative, there is a sharp ascent and then a ceiling is reached. The more
negative power terms are associated with & sharper ascent. '

The shapes of the relationship between x and y for the powers 1, 2, and 3 are shown
in figure 3,13, Fhe three columns correspond to the powers 1, 2, and 3; the fst row
represents a posttive regression coefficient (of +0.3}; and the second row iilustrates a
negative regression coefficient (of —0.3). The first cohunn shows a lnear relationship
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between z and y. The second and third coluinns show the second and third power,
with the top row showing a U-shaped bend and the bottom row showing an inverted
U-shaped bend. The higher power terms are asscciated with a more }.apld change in
th(, outcome f01 a umllge n tho picd]CtOL

y = .3 y =.3*%
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Figure 3.13. Fractional polynomials, powers = 1, 2, and 3 (columns) for b = 0.3 (top
row) and & = 0.3 (bottom row)

Note! Cubic shapes

H might appear that the graphs for the cubic terms shown in the third column
of figure 3.13 (with only one bend) are at odds with the graphs of cubic models
from section 3.3, which showed fwo bends. The key is that the third column
of figure 3.13 includes only a cubic term, whereas the examples from section 3.3
included linear, quadratic, and cubic terms all in the saime model.

Figure 3.14 shows the remaining two of the default powers used by the fracpoly
prefix. The power of 0 (which it uses to indicate the natural log of the predictor) is
shown in the left column and the power of 0.5 is shown in the right colanm. The top
row shows a positive coefficient of 0.3 and the bottom row shows a negative coefficient of
--(1.3. The graph in the first row of column 1 shows an initial steep ascent in y lollowed
by gradual growth in y thereafter. The second row shows the mirror image, an initial
steep descent followed hy a gradual decrease thereafter. The top row of column two
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shows a gradually curved ascent in y as a function of &, whereas the bottom row shows
a gradual descent in y as a function of .
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Figure 3.14. Fractional polynomials, In{z) {(colunn 1) and = to the 0.5 {column 2) for
B = 0.3 (top row) and B = —0.3 (bottom row)

The graphs in figares 3.12, 3.13, and 3.14 cover eight different powers of the predictor
{2, —1, ~0.5,0, 0.5, 1, 2, and 3) crossed with one example of a positive coeflicient (0.3)
and one example of a negative coeflicient (—0.3). This creates a wide variety of shapes
for modeling the relationship between z and 3. Furthermore, the fracpoly prefix (by
default) will not only fit each of these eight powers alone, but also includes all two-way
combinations of these powers,

Consider the curves shown in figure 3.15. The left panel shows the curve given by
y = —10 x 7. In that curve, you can see y rises rapidly as z increases and then
quickly reaches a ceiling. The middle curve is given by the formula y = —1 x 2%, and in
this curve the values of y show an inverted U-shape. The right panel shows the formula
combining these two curves, y = —~10xg '+ —1x2”. Note how this curve combines the
rapid rise of the left panel with the gradual inverted U-shape of the middle panel. As
you can imagine, being able to combine two different fractional polynomials can yield a
flexible set of possible curve shapes for modeling your data.
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y = 1% Y= -1 gm0 4 1% To show the relationship between age and education, let’s graph the average of
o o o education by cach level of age. First, we will run a regression predicting educ from
"X I age, treating age as a categorical variable (the output of this is omitted to save space).
Then we obtain the predicted values using the predict command, ealling the variable
§1 & § : yhatmean. This variable containg the mean of education at each level of age.! The
graph command then shows the relationship between the predicted mean of education
© o ° and age. The graph is shown in figure 3.16.
£ 71 7 T
= 2 © . regress aduc i.age
: T . = {output omitied )
i o o 2 L :
it g z 21 s . predict yhatmean
. P {option xb assumed; fitted values)
i . graph twoway line yhatmean age, sort xlabel{20(5)80)
& < = a.
; T T |
N g | g | g H
Ty g g gy Tl——— I S i
¢ 2 4 & & 10 bz 4 6 8 10 6 2 4 6 8 10 :
! % x x -

Figure 3.15. Combined fractional polynomials

Fitted values
12

1

3.4.2 Example using fractional polynomial regression

Let’s now consider an example of fractional polynomial regression using the GSS dasaset,
For this-example, let’s look at the relationship between the respoudent’s age and ed- ' . ; ; . y : — ' y ; ' ;
ucation level. This example is a bit odd because the age of the person reflects both : : 2B 0 B0 agtsoﬁ res‘r’gande:}s wos oo
their chronological age and the era of their birth, That is, older people tended o be
born in an earlier era when it was more common for people to have less education. This
example is tiot ideal in this respect. However, it shows an excellent contrast between
the fit of a quadratic model with a {ractional polynomial mnodel, so 1 will ask for your
indulgence as I present this example. Note how there is a curvilinear aspect to the relationship between age and education,
: suggesting that we might try including a guadratic term for educ. We fit such a model

below (for more on quadratic models; see section 3.2).

10
:

Figure 3.16. Average education at each level of age

This example uses the gss_ivrm.dta dataset, keeping only those who are 18 to 80
years okl

. use gss_ivrm

. keep if {(age<=80)
(1892 observations deleted)

: 1. ¥ could have used the margins and marginsplot C[)]lli]‘lﬁlld.‘i; but this strategy will allow me to
) averlay graphs comparing different. fit methods.
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. regress educ c.age#flc.age

Source 53 df M5 Number of obs =  B3070

F{ 2, B3067) = 1616.60

Model 29981.1031 2 14990.5515 Prob > F = 0,0000
Residual 492083.6501 53067 9,27287206 R-squared = 0.0574
Adj R-squared = 0.0574

Total 622064.604 B3069 9.83746828 Root MSE = 3.0451

educ Coef.,  3td, Err. t priti [95% Conf. Imtervall]

age .138446 . 6048059 28.22 0,000 .1288304 .1480615
c.agefic.age -.0018433 . 0000512 -36.02 0,000 -.0019436 -.001743
_cons 1¢.76335 .1074823 100.14  0.000 10.565269 10.97402

This seems promising, with the quadratic term for age being significant. Let’s use
the predict command to compute the fitted values from the quadratic model, naming
the variable yhatq., Then let’s graph the fitted values from the quadratic model and the
mean of education by age, as shown below, The resulting graph is shown in figure 3.17.

. predict yhatgq

(option xb assumed; fitted values)

. graph twoway line yhatmean yhatq age, sort xiabel{20(5)85)
> legend(label(l "Mean at each age") label(2 "Quadratic £it"})

12 13 14
X

Fitted values

11

10
L

20 25 30 35 40 45 53 55 B0 65 70 75 &0 A5
age of respendent

Mean ateachage  ~--—- Quadralic it i

Figure 3.17. Fitted values of quadratic model compared with observed means
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Note how the quadratic fit line yields predicted values that arve too high i the
younger years and too low in the older years. Another way of putting this is that the
quadratic line dods not account for the rapid rise in education in the late teens and
early 20s, nor does it account for the slow decline of education in later years.

A fractional polynomial model, with its increased flexibility, could provide a more
appropriate fit. We fit such a model by adding the fracpoly prefix to the regress
command, as shown below.

. fracpoly: regress sduc age

> gen dovble Tage__i = X*-2-.0508307579 if e(sample) \ T
> gen double Lage. 2 = X~4.435439085 if e{sample) el
(vhere: X = age/10) o

Source 88 df MS Number of obs = 53070
F( 2, B30B7) = 1812.66

Hodel 33384.5311 2 16692, 2855 Prot: » F = 0.0000
Residual 488680,073 53067  ©.208737b R-squared = 0.0839
Adj R-squared = 00,0639

Total 522064.604 53069 9,83746828 Root MSE = 3,0346
educ Coef.  Btd. Err, t P>it} [85% Conf. Intervall
Tage__1 -16.56009 .4042931 -40.94  0.000 -17.34262 -15.75766
Tage__2 -.9024893 LO1BB777 ~57.93 0.000 -~.5330018 -. 8719369
_CORS 13.24544 0172283 T76B.82 0.000 13.21187 13,2792

Deviance:268426.64. Best powers of age among 44 models fit: -2 1.

The fracpoly prefix tried 44 different models involving the polynomials —2, —1,

—0.5,.0, 0.5, 1, 2, and 3 selected alone and in pairs {where 0 indicates that the natural

log of the 1)1ed1ctm) The fracpoly results show that it selected the model usmg the
powers —2 and I as the best fitting combination of polynomials.

The ‘variable Iage__i reflects the term associated with age™2, and the coefficient
for this variable is negative. Referring to the bottom left panel of figure 3.12, we see
the general shape of this kind of relationship. As z increases, there is a sharp rise in y
followed by a plateau.

The variable Iage .2 reflects the term associated with age, and the coefficient for
this variable is negative. This is a linear effect with a negative coeflicient, as illustrated
in the bottom left panet of figure 3.13. This shows a linear decrease in ¥ with increasing
values of z.
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Tip! Automatic modeling

Any thine we let the computer perlonn andomatic modeling for us, we want to be
at least a little bit skeptical of the results. We want to ask if the results make
sense, in both a practical sense and a theoretical sense. Also, we want to be sure
that the model does not overfit our sample data. For example, we can explore the
issue of overfitting with the use of cross validation.

The fracpoly prefix selected two curves that, when blended, address the wmique
features of the relationship between age and education, where there is a rapid rise in
education for the early values of age combined with a roughly linear decline in education
for the later ages. The variable Iage..1 heips to account for the sharp rise in education
in the carly years, and the variable Iage__2 helps to account for the linear decline I
education in the later years. Let's generate the predicted values based on this model
and see if they conform to these expectations, The predict command is used to create
the predicted values from the fractional polynomial model, callivg the variable yhatfp.

. predict yhatfp
{option xb assumed; fitted values)
{1256 missing values generated)

Let’s now graph the predicted values from the fraciional polynomial ntodel (yhatfp)
against age. Let’s also include the predicted values from the quadratic model (yhatq)
ancd the average education at cach age (yhatmean).

3.4.2 Example using fractional polynomial regression 71

. graph twoway line yhatmean yhatq yhatfp age, sort. xlabel(20(5)85)
> legend(label (1l "Mean at each age") label(2 "Quadratic fit"})
> legend(label(3 "Fractional polynomial fit"))
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PFipure 3.18. Fitted values of quadratic and fractional polynomial models compared with
observed means

jal ; modol are more

"The fractional
“early 20s, and it

As figure 3.18 shows, the fitted valaes from the fractional polyno
el S R S 1ron
closely aligned with the mean at e'xch age thar dra
polynomial model fits the rapid rise in education m the late teens ar

fits the steady decline in education for those who are older.

The graphs that we have created so far have used variables ereated by the predict
command and could correctly do so because we had only one predictor in the model,
age. However, if we had other predictors in the model, the predict command will
not adjust for the other predictors in the model. That is a good job for the margins
command.

In using the margins command, we normally use the at{) option to compute ad-
Jjusted means for specific values of the predictor, such as at (age=25). Alter the frac-
1 tionat poly polynomisl 1model, we 11(30(1%0 prless age in_ in terms of Lhc vmmi)lcq Iage__l and
Tage_.2. The output from fracpoly shows us how to convert age into these two vari-
ables. The key part of the output is repeated below.

X~-2~.05608307679 if e(sample)
X-4.435439985 if e(sample)

-» gen double Iage__
~> gen double Iage__2
(where: X = age/i0)

]

age by 10 aud thcu substlt.uto ‘it into the formulas to create lage...1 and Tage..2. We
use the display commaﬁd to per torm th(—‘b&‘ (‘11( ula.flolﬁ for the age of 2o T

SR
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. display "Age=2b converted into Iage _
Age=25 converted into Yage__1 is

. display "Age=25 converted inte Iage
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1 is " (26/10)"-2~.0508307579
10916924

2 is " {25/10)-4.435439985

Loy
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as a function of age, as shown below. The resulting graph is shown in figure 3.19. If we
included more levels of age, we would obtain a smoother graph.

Age=25 converted into Iage__2 is ~1,03544

We now use these values in the margins comumand below. This shows that the
adjusted mean for someone who is 25 years old is 13.19.2

. preserve

. Glear qu ~ Pt

S o S
. input age yhat Lo b

O~ U W

age

147077
.b43231
44528

.915188
.214998
434406
.611189

yhat

e 0

. margins, at(Iage._ 1= .10916824 Yage _2= -1.93544)
Adjusted predictions Humber of obs = 53070
Hodel VCE + OLS
Expression : Linear prediction, predict()
ab : Iage__1 = . 1091692
Iage_ 2 = -1.93644
Delta-method
Margin  Std. Err. z P>lz] [95% Conf. Intervall
_cons 13.18535 .0217437 606,40 0.00C 13.14273 13.22797

Suppose that we wanted to compute the adjusted mean for multiple ages, say, for
the ages 20 to 80 in 10-year increments. We can use the forvalues command to loop
across such a range of ages, as shown below. Within the loop, the local command is
used to compute the local macros agel and age?2, using the formulas from the fracpely
prefix. The margins command is then used to compute the adjusted mean based on the
values of agel and age2. The matrix and local commands extract the adjusted mean,
resulting in the local macro named adjmean. Finally, the display command displays

the adjusted mean.

. forvalues age =

2. local agel =

2010380 {

("age”/10)"-2-.0608307679

3.  local age2 = (“age”’/10)-4.435439985

4. margins, at(Tage__1="agel  Tage._
{output omitted }

6. matrix am = r{bh)

2="age2")

.

6. local adjmean = am[i,1] .
7. display "Adjusted mean for age = “age” is ": “adjmean”
8.}
Adjusted mean for age = 20 is 12,147077
Adjusted mean for age = 30 ims 13.543231
Adjusted mean for age = 40 is 13.44528
Adjusted mean for age = BO is 12.915188
Adjusted mean for age = 60 is 12.214998
Adjusted mean for age = 70 is 11.434406 )
Adjusted mesn for age = 80 is 10.6111B9

This forvalues loop helps tc omate the process of computing the &d}usted means

as aTanction of age We can inpu hese ¢ adjusted means into a dataset and graph them
R Rt

2. I am referring to this as an adjusted mean even though no additional predictors are present. This -

emphasizes that this technique would properly adjust for any additional predictors if they were
present.

Wi.‘ﬁ " ¢
end oM U'
. graph twoway line yhat age, sort
. restore

yhat
12 13 14
)
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Figure 3.19. Adjusted means values from fractional polynomial model, ages 20 to 80
incrementing by 10

‘Fo avoid the process of typing the values into a dataset, we can automate the process
of saving the adjusted means to a dataset using the postfile and post commands, as
illustrated below. (See [P] postfile for more information on these commands.)
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. * New: Close the postfile named -adjmeans-
. postclose adjmeans
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. * New: Open up a postfile named ~adjmeans- that will
. * contain the variables age and yhat
. postfile adjmeans age yhat using adjmeans

. forvalues age = 18(1)80 {

2. local agel = (“age’/10)”-2-.050992897

3.  local age2 = (“age /10)-4,428382819

4.  margins, at(Tage__l="agel” lage__2="age2")

{output omitted )

5. matrix mm = r(b)

[ local yhat = mm[1,13

7. * New: Save the local macro 'age’- and ~“yhat™ to
* the postfile named adjmeans
post adjmeans {(“age’) (“yhat~)

This ereates a dataset named adjmeans. dta that contains the adjusted means. Let’s

use this dataset and list the first 10 observations.

. use adjmeans
. list in 1/10

age yhat

1. 18 11.35336
2, 19 11.78665
3. 20 12.14339
4, 21 12.43781
o, 22 12.68098
6. 23 12.88181
7. 24 13.04665
B. 25 13.18i686
9. 26 13.28119
10. 27 13.378%4

We can then graph the adjusted means using the graph conmmand below, which

creates the graph displayed in figure 3.20. When automating the process of storing the
adjusted means, we computed adjusted means in one-year incremnents of age, yielding a
much smoother graph than the manually ereated graph from figure 3.19,
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. graph twoway line yhat age
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Figure 3.20. Adjusted means from fractional polynomial model, ages 18 to 80 incre-
mentéing by one

Tip! graph command shortcuts

The previous example uses the graph twoway line yvhat age command, which
emphasizes that the underlying command is graph twoway. For your convenience,
Stata will permit you to instead specify twoway line yhat age or cven line
yhat age,

3.5  Main effects with polynomial terms

The meaning of main effects changes when polynomial terms are included in the model. 2
In fact, the inchusion of polynomial terms can substantially change the coefficient for
the main effect when compared with the main effect--only model. Many find this dis-
tressing, wondering why the main effect changed after including a nonlinear term. Let’s
briefly explore why this can happen and what it means using the example we saw from
section 3.2.2. That example predicted realrinc from age and c.age#c.age, including
i.female asg a control variable. )

Let’s begin by fitting the lincar model shown below, predicting realrinc [rom age
and i.female. As we did in section 3.2.2, we keep people who are at most 80 years old.
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. use gss_ivrm

. keep if {age<=80) !
(1892 observations deleted)

. regress realrinc age i.female, vce(robust)

Linear regression ¥umber of obs = 32100
F( 2, 32007) = 1170.51
Prob > F = 0.0000
R-squared = 0.0787
Root MSE = 25833
Robust
realrinc Coef.  Std. Err. t P>it [96% Conf.. Intervall
age 320.0676 10.696569 29,93 0.000 289.1039 341.0314
1.female -12373.26  285.02b64 -43.41 0.000 -12931.91  -11814.B69
_cons 15106.17  403.0443 37.48 0,000 14316.19 15896.16

The main effect of age is significant. For each year age increases, income is predicted
to increase by $320.07. In the context of this model, the main effect of age describes
the general trend in the relationship between income and age.

However, there i a problem. As we saw in section 3.2.2, the relationship between
income and age is not linear. As we did in that section, let’s add a quadratic term for
age, as shown below.

. regress realrinc c.ageit#c.age i.female, vce(robust)

Linear regression Number of obs = 32100
F( 3, 32086) = 1252.67
Prob > F = 0,0000
R-squared - = 0.1089
Root MSE = 26407
Robust
realrinc Coef. Std. Err. t P>t {95% Conf. Intervall
age 2412.339 58.05774 43.85 0,000 2298.544 2626,135

.

c.agetc.age -24.20196 .6868906 ~34.78 0.000 -25.66583  -22.83799

-12419.24  280.4746 -44.28 0.000
1038.412 -24.73 0.000

-12968.98 ~11868.49
-27716.1 -23644.44

*1.female
_cons -26679.77

The guadratic term is significant, but we might suddenly become concerned that
the main effect of age has skyrocketed from 320.07 in the linear model to 2,412.34 in
the quadratic model. Why did the main effect change so much? Did we do something
wrong? The key is that the terin “main effect” is really a misnomer, because we axpect
this term to deseribe the general trend of the relationship between income and age.

In the presence of the quadratic term, the coefficient for age represents the age slope
when age is held constant at zero. At that point, the slope is 2,412.34. This value is
meaningless for two reasons. First, nobody has income when they are zero years old.
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Second, this term no longer reflects the general trend. As we saw in section 3.2.2, the
age slope changes for every level of age, so there is no such thing as a measure of general
trend in this kind of model.

This underscores the importance of remembering that the main effect in the presence
of a guadratic term (or any other nonlinear term) really is no longer & main effect. It
simply represents the linear slope relating the predictor and outeome when the predictor
is held constant at zero.

.3_,6 Summary

This chapter has illustrated the use of polynomials for fitting nonlinear relationships
between a predictor and outcome. Quadratic terms were illustrated for fitting a rela-
tionship between a predictor and outcome that has one bend. For relationships that
have two bends, cubic models were introduced. Fractional polynomial models can ac-
count for polynomial trends that go beyond simple quadratic and cubic terms. The
next chapter considers a different method for fitting nonlinear relationships between
the predictor and outcome through the use of piecewise regression models.

For more information about fitting curvilinear relationships using polynomial terms,
I recormnmend Coben et al. (2003). Royston and Sauerbrei (2008) provide excellent and
thorough coverage of fractional polynomial models.

*
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4.1 Chapter overview

There is a wide variety of modeling techniques that can be used fo account for non-
linearity in the relationship between a predictor and outcome. This chapter illustrates
the use of plecewise regression, This involves fitting separate line segments, demarcated
by kuots, that aceount for the nonlinearity between the predictor and outcome. This
chapter illustrates piecewise regression models with one knot (see section 4.3), with two
knots (see section 4.4), one knot and one jump (see section 4.5), and fwo knots and two
jumps {see section 4.6). This chapter also covers piecewise regression models with- one
unknown knot, (see section 4.7) and piecewise regression models with multiple unknown

79



80 Chapter 4 Continnous predictors: Piecewise models

knots {see section 4.8). Piecewise regression models pose special difficulties in graphing
the adjusted means as a function of the predictor, as described in section 4.9, This is fol-
lowed by section 4.10, which illustrates ways to automate graphing the adjnsted means
from piecewise models. This chapter begins with an overview of piecewise models.

4.2 Introduction to piecewise regression models

A plecewise regression goes by several names, including spline regression, broken line
regression, broken stick regression, and even hockey stick models. Consider the example,
predicting annual income from education, shown in the left panel of figure 4.1.

One knot Two knots

incame
30000 40000 50000 60000
L .
40000 50000 80000
\ : :

inceme
30000

20000
!
20000

0 2 4 6 8 10 1tz 14 16 18 20 )
Education in years

10000
L
10000

]
1

0
L

§ 10 t2 14 16 18 20
Education in years

o
.

Figure 4.1. Piecewise regression with one knot (left) and two knots (right)

-In this hypothetical example, the slope of the relationship between education and
income {that is, the educ slope) for those who have fewer than 12 years of education is
408. The slope is different for those who have 12 or more years of education. For those
people, the slope is 4,100, For those with fewer than 12 years of education, income is
predicted to merease by $400 for each additional year of education. Starting at the 12th
year of education, each additional year of education is associated with a $4,100 increase
in income. When education reaches 12 years, the slope increases by 3,700 {to 4,100).
The place where the slope changes is called the knot. In the left panei of figure 4.1,

1 ‘E‘here is one knot at 12 years of education. T

In the right panel of figure 4.1, there are two knots: one at 12 years of education, and
another at 16 years of education. For those with fewer than 12 years of eduecation, the

4.2 Introduction to piecewise regression models 81

slope of the relationship between income and education is 600. For those with between
12 and 16 years of education, the slope increases by 2,500 (to 3,100}, and for those with
16 or more years of education the slope increases by an additional 2,000 {to 5,100).

Models with one knot are illustrated in section 4.3, and models with two kiots are
illustrated in section 4.4.

A knot can signify a change of slope and a change of intercept, yielding an increase
(or decrease) in the outcome upon attaining a particular milestone. For example, in
the Jeft panel of figure 4.2, achieving 12 years of education results in not only a change
of slope, but also a jump in income.! The slope for those with fewer than 12 years of
education is 200, and that slope increases by 3,500 to 3,700 for those with 12 years of
education. The predicted income also jumps at 12 years of edueation, At 12 years of
education, predicted income increases by 2,200,

The right panel of figure 4.2 shows a model with two knots, both associated with a
change of slope and change of intereept. The slope for those with fewer than 12 years of
education is 100. At 12 years of education, the predicted income increases (jumps) by
3,500. Plus, the slope of the relationship between income and education also increases
by 1,700 (to 1,800). At 16 years of education, the predicted income jumps by 3,500,
and the slope increases by 2,700 (to 4,500).

Piecewise regression with

Piecewlise regression with 3
wo knots and two jumps

one knot and ane jump

income
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Figure 4.2, Piecewise regression with one knot {left) and two knots {right)

1. Although the term jump is somewhat informal, T feel it is simpler than the more technically correct
term, change in intercept. T will use the term jump in this chapter ari(ﬁlsubsgquent chapters to refer
to a sudden increase in intercept and use the term drop to refer {o'a sudden decrease in intercept.
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Models with one knot with a chanpge in slope and intercept are illustrated in sec-
tion 4.5, and models with $wo knots with a change of stope and intercept are illustrated
in section 4.6.

Note! Instantaneous jumps?

In the example shown in the left panel of figure 4.2, achieving 12 years of education
vields a sudden increase in income of §2,200. Is this plausible? As a thought
experiiment, imagine someone being one day short of graduating high schooi and
the wages they would obtain as they seek a job. Compare this person with an
identical job seeker who has one more day of education (that is, they graduated
high school). These two people are identical except that one crossed the threshold
of getting a diploma. If is indeed plausible that the second person would be offered
an annual income $2,200 more than the first person. Another application of such a
model is a regression discontinuity design, where the application of a treatment is
based on reaching a threshold of a covariate {predictor). The change in intercept

(jWb—bha:ﬁ-thmx%hoj_gi_igx_,the._Qstimat;e of the effect of @LW

44444

Suppose you have a predictor that shows a nonlinear relationship with the outcome,
and you believe that a piecewise model with one knot signifying a change in slope would
fit your data well. However, unlike the previous examples, you do not have a theoretical
or practical basis for sclecting the placement of the kuot. You could haphazardly try a
variety of placements for the knot, trying to find a placement that results in the best
fitting model. Alternatively, you can let Stata do the work for you by using a least
squares procedure for selecting a location for the knot that produces the lowest residual
swn of aquares. This process is described in section 4.7,

It is possible that you might have multiple unknown knots for a continuous variable,

- but you do not know how many knots should be selected, or where the knots should be

placed, Ag fllustrated in section 4.8, you can fit such a model by intentionally selecting

too many knots and then progressively eliminating superfluous knots until you have a
parsimonious (and hopefally sensible) model.

4.3 Piecewise with one known knot
4.3.1 Overview

This section iltustrates piecewise regression with one knot. Such a model was visualized
in the left panel of figure 4.1. That figure is reproduced in greatdr detail and shown
in figure 4.3. This medel predicts the income from education and includes one knot at
12 years of education. The slope of the relationship between income and education for
those who have fewer than 12 years of education is 400, but for the person who has 12
years of education, the slope increases to 4,100.

4.3.2 Examples using the GSS 83
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Tigure 4.3. Hypothetical piecewise regression with one knot

4.3.2 Examples using the GSS

Let’s use the GSS dataset to illustrate a pilecewise model with one knot, focusing on the
relationship between income and education.

. use gss_ivrm,

Let’s create a graph that shows the mean of income (realrinc) for each level of
education {educ). {Section 2.4.4 provides more details about how to create such a
graph.) First, we fit a model that predicts realrinc from i.educ. We then use the
marging command followed by the marginsplot command to show a graph of the mean
of income at each level of education. This graph is shown in figure 4.4, This allows us
to see the shape of the relationship between education and income.
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The showcoding command {which you can download, see section 1.3) shows the
correspor?dﬁfﬁé“ﬁf"‘ﬂié values of educ with edl and ed2. The command shows that the
variable edl corresponds to the variable educ for 12 or fewer years of education and
contains the value of 12 for more than 12 years of education. The variable ed2 contains
0 for 12 or fewer years of education and contains educ minus 12 for more than 12 years
of education.

. showcoding educ edl ed2 {/

. Tegress realrinc i.educ, vee(robust)
(output omitted )

. margins educ
{output omitted)

. marginsplot, noci

Variables that uniquely identify margins: educ

Adjusted Predictions of educ

o
2

21 educ  edl  ed2
- o 0 0
g - 1 1 0
=) 2 2 0
_;9; 3 3 0
g 4 4 0
28, 5 & 0
B 6 6 0
£ 7 7 0
g 8 8 ¢
27 ) 9 0
10 1Q- 0

11 1 0

g | 12 12§ 0
S ST T T S S e | S S S e S T T 13 19 4 7-———{’
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highest year of schoo! completed [ 14 12 2

Lo 16 12 3

16 12 4

. . . 17 12 3
Figure 4.4. Mean of income at each level of education B 12 e

19 12 7

. . . . . . 26 12 8

Tt looks like the relationship between education and income could be fit well with :

& piecewise model with a koot at 12 {corresponding to graduating high school). The
following subsections illustrate two different ways to fit this kind of piecewise model:
using individual slope coding and using change in slope coding.

The next step is to use the regress command to predict realrinc from edl and
ed2. This will yield a piecewise model with 12 years of education as the knot. The
variable i.female is also included in the model as an additiona) predicior {covariate).

-,

. regress realrinc %dl ed2\‘gi.female, vee(robust)

Individual slope codiﬁg

e s et =0

) . . ) Linear regression i . . Number of obs = 32183
The individual slope coding scheme estimates the slope of each line segment of the ‘( ‘ i T S F{ 3, 32179) = 1030.24
piecewise model. In this example, the individual slope coding scheme would estimate v,;\ g 11;:_-02; > Fd = o.ozgo
the educ slope for those with fewer than 12 years of education (non-high school gradu- | Rona e - oééo 42
ates} and estimate the slope for those with 12 or more years of education (high school -
graduates). ' g Robust
. . el realrine Coef. 8td. Err. t P>t [96% Conf. Intervall
The first step is to create two new variables that are coded to represent the educ e
slope before and after graduating high school. The mkspline ‘command creates the i .;WJU\? P — eg; giiizgg: ;g‘izzgz éé'gz g‘ggg gggé‘;gﬁ’ 2;3&1213
s . . T : e . . . . . .
variables edl and ed2 .bas‘ed on the origina variable editc. The value of 12 is inserted : i fohale | -19379.88  976.3531 -44.77 0.000  -12914.05 -11830.72
between edt and ed?2, indicating that thi§ is yhe knot. ' : cons 12062.18 793.4194  15.19 0.000  10497.04  13607.31
. mkspli 2 ed2 = ed £ _
mkspline edl 12 e educ @(A ) - \;\".';‘-.\ o AR RN Qﬂk k"?}lf; Cragt § =
S . § .
Ean o PR A T S A F e

o e



86

Chapter 4 Continuous predictors: Piecewise models

Figure 4,5 shows a graph of the adjusted means as a function of education to aid in
the interpretation of these results (we will see how to make such a graph lager).

Adjusted means
30000 40000 50000

20000

10000

Figure 4.5.
educ = 12

-

10 15 20
Education

Adjusted means for incoine from a piecewise model with one knot at

e The coeflicient for edt is the slope of the relationship between income and education
: j for those with fewer than 12 years of education (non-high school graduates). Among
non—=high school graduates, each additional year of education is predicted to increase
income by $832.27. The coeflicient for ed2 is the slope for those with 12 or more years .
of education (high school graduates). Income increases by $3,441.33 for each additional }

year of education beyond 12 years of education. Fach of these slopes is significantly

different from 0.

We might ask whether the difference in these slopes is significant. In other words, is

* the slope for high school graduates steeper than the slope for non—high'school gradustes?
We can test this using the lincom command, as shown below.

. lincom edZ - 2dt

(1) =~ edl + ed2 = 0
realrinc Coef. 8td. Err. t P>t [95% Conf. Intervall
(1) 2609, 055 134.397 19,41 0.Q00 2345.632 2872.479

The slope of the relationship between income and education is significantly higher
for high school graduates than for non-high school graduates (# = 19.41, » = 0.000}.
High school graduates earn $2,609.06 more for each additional year of education than

non-high school graduates.
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Say that we want to compute the adjusted mean given that a person has eight
years of education. We can compute this adjusted mean using the margins command,;
however, we cannol specify the variable educ in the at {) option (becanse educ does not
appear in the rogression model). Instead, we express education in terms of the variables
adl and ed2. Referring to the showcoding results above, we see that for eight years of
education, the corresponding value of edl is 8 and ed2 is 3. We specily these values in
the at () option below. The adjusted mean (adjusting for gender) given eight years of
education is $12,623.14.

. margins, at(edi=8 ed2=0)

Predictive margins Number of obs = 32183
Model VCE : Robust :
Expression : Linear prediction, predict()
at : oaedl = ]
ed2 = 0
Delta-method
Margin  8td. Err, z P>|z] [95% Conf. Intervall
-cons 12623.14 244 .9678 b1.53  0.000 12143.01 13103.27

We can compute the adjusted mean given 16 years of education by referving again
to the output of the showcoding conumand and specifying a value of 12 for edl and
4 for ed2, as shown below. At 16 years of education, the adjusted mean of income is

$20,717.52.
. margins, at(edi=12 ed2=4)
Predictive margins Number of obs = 32183
Model VCE : Robust
Expression ! Linear prediction, predict()
at toedl = 12
ed2 = 4
Delta-method
Mergin  Std. Err, z P>zl [95% Conf. Interval]
.cons 20717,.52 299.4035 99.26 0.000 28130.7 30304.34

To graph the adjnsted means as a function of education, we need to compute the
adjusted means when education is 0, 12, and 20, 'T'he margins command below computes
these.three-adiusted means by using the at () option three times.

O et Ao~ N A T I



88 Chapter 4 Continucus predictors: Piecewise models

. margins, at(edl=0 ed2=0) at(edl1=12 ed2=0) at(edl=12 ed2=8) vsquish

Predictive margins Number of obs = 32183
Hodel VCE : Robust
Expression 1 Linear prediction, pradict{)
1._at ¢ adl = 0
ed2 = 0
2._at : edl = 12
ed2 = 0
3._at poedl = 12
ed2 = a8
Delta-methed
Margin  Std. Err. z P>zl [95% Conf. Intervall
_at
1 5964.977  794.2416 7.561 0.0CG0 4408 ,292 T521,662
2 15952,22 161.46 98.80  0.000 15635.76 1626%.68
3 43482.83  B657.6587 65.12 0,000 42193.84 44771.81

‘We can then manually inpué the adjusted means into a dataset. The graph command
creates a graph showing the adjusted means as a function of income.” This creates the
graph that we saw in figure 4.5.

. preserve
. clear
. input educ yhat

educ yhat
i, 0 b65964.977
2, 12 15952,22
3, 20 43482.83
4, end

. graph twoway line yhat educ, x1abel(0(4)20) xline(12)

. restore

Change in slope coding

Let's it this model again, but this time use change in slope coding, This coding scheme
estimates the slope for the line segment before the first knot (for example, for non-
high school graduates) and then estimates the difference in the slopes of adjacent line
segments (for example, for high school graduates versus non-high school graduases).
This strategy emphasizes the change in slope that occurs at each knot.

The process of fitting this kind of model is similar to fitting a individual slope model
(as we saw in section 4.3.2). The key difference is that we add the marginal option® to
the mkepline command, as shown below. I name the variables edlm and ed2m, adding
the{ to emphasize that these variables were created using the marginal option.

2. This process of graphing the adjusted means can be automated, as shown in section 4.10.
{E. Not to be confused with the margins command.

4.3.2 Examples using the GSS 29

. mkspline edlm@edZm = educ, marginal

Let’s use the showc\}:“ding command (which you can download, see section 1.3} to
see the correspondence between educ and edim and between educ and ed2m, showing
the impact of the addition of the marginal option on the mkspline command.

. showcoding educ edlm edZm

@&
f=n
B
=3

educ edlm

W~ WO

B oW E LN ~O

O~ ;o kW N

-
=
P
COCO0OD0O00O0

The variable edim corresponds to edunc. The variable ed?m contains 0 for 12 or fewer
years of education and contains the value of educ minus 12 for more than 12 years of
education. (If you arve curious, you can compare the coding of edim and ed2m with edl
and ed2 from the previous section.)

The next step is to enter edim and ed2m as predictors of income, as shown below.

. regress realrinc edim ed2m i.female, vce(robust)

Linear regression Number of obs = 32183

F(C 3, 32179) = 103G.24

Prob > F = 0,000

R-squared = 0.1420

Root MBE = 25045

Robust

realrinc Coef . Std. Err. 4 P>t [85% Conf. Intervall

edim 832.2703  T72.37999 11.60  0.000 680.4028 974.1378

ed2m 2609.0656 134.397 19.4%1  0.000 2345.632 2872.478

1.female -12372.38  276.35631 -44.77  0.000 -12914.06 -11830.72
.cons 12062.18  793.4194 15.19  0.000 10497 .04 13607.31 -
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The coefficient for edim is the slope for non-high school graduates. The coefficient 4'4 Piecewise with two kinown knots
for ed2m is the change in the slope after the knot compared with before the knot (that is, Pl
for high school graduates compared with non—high school graduates). For those without o441 Overview
a high school diploma, the slope is 832.27. The change in the slope upon graduating LR

high school is 2,609.06 (and this is significantly different from 0},

We can extend the previous example to include two knots. We saw such an example
in the right panel of figwe 4.1. That graph is shown in more detail in figure 4.6,
which shows the fitted values from a hypothetical piccewise model predicting income
from education with a knot at 12 and 16 years of education. Because this model has
two knots, there are three slopes. The slope of the relationship between income and
education is 600 for those who have fewer than 12 years of education. The slope increases
by 2,500 {from 600 to 3,100) for those who have 12 or inore years of education, and the
slope increases again by 2,000 (from 3,100 to 5,100} for those who have 16 or more years
of education. In other words, the slope for non—high school graduates is 600, the slope
for high school graduates is 3,100, and the slope for college graduates is 5,100.

If we want to estimate the slope for those with 12 or more years of edueation, we
can use the following lincom command. Each additional year of education beyond 12
years s associated with a $3,441.33 increase in income.

. lincom sdim + ed2m
(1) edim + ed2m = O

realrinc Coef. Std. Err. t P>lt| [95% Conf. Intervail

(1) 3441.326  93.42434 36.84 0.000 3268 .211 3624.441

4

The process of computing and graphing adjusted means for the change in slope v
model is the same as we saw [or the individual slope model. The key difference is that
adim and ed2m would be used to express the level of education, To save space, I refer
you to section 4.3.2 for a description of how to compute and graph adjusted means.

Summary :

income
10004 20000 30000 40000 50000 BCOGO

.
In this section, we have secn how to fit a piecewise model with one known knot. In
fact, we have seen two ways we can fit such a model. The individual slope coding

/ Slopa = 5100

method omitted the marginal option on the mkspline command and yielded estimates i Slope = 3100
of the educ slope before and after the knot. We also saw the change in slope coding Slope = 600
method, which included the marginal option on the mkspline command, and yielded i o
\ > ; 6 8 10 12 w4 1B 18 20

{La.u estimate of the educ slope before the knot and the change in the educ slope before ; 0 2 4
Education in years

and after the knot.

- -_ Figure 4.6. Hypothetical piecewise regression with two knots
Note! Coding of remaining examples

The remaining examples in this chapter wilt use change in slope coding (that is,
including the marginal option on the mkspline command). If you prefer, you can
fit these models using individual slope coding by cmitting the marginal option.

4.4.2 Examples using the GS5

e e e

Let’s fit a model with two knots corresponding to 12 years of education {graduating
high school) and 16 years of education (graduating college) using the gss ivrm.dta
dataset. As shown in section 4.3, the mkspline command is used, but now we have
knots at 12 and 16. The variables edin, ed2m, and ed3m are created using the mkspline
command, and the marginal option is used s0 ed2m and ed3m will be coded fo represent
the change in siope from the previous piece of the regression line. The coefficient for
ed2m will represent the change in slope for high school graduates versus non-high school
graduates. The coefficient for ed3m will represent the change in slope comparing coliege
graduates with high school graduates.

e
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. use gss_ivxm

., mksplire edinm 12 ed2m 16 ed3m = educ, marginal

Let’s use the showcoding command (see section 1.3) to show how edim, ed2m, and
edim are coded. ‘

. showceding educ edim ed2m ed3m

edunc  edim ed2m  ed3n
[} 0 4] 4]
i 1 0 0
2 2 Q [+]
3 3 ¢} 4]
4 4 Q 0
b 5 ¢} 0
8 6 0 4]
7 7 0 0
8 8 0 0
9 9 0 0
10 10 0 0
11 i1 0 0
12 £2 o] ]
13 12 1 0
14 14 2 0
15 1% 3 0
16 16 4 0
17 17 B 1
i8 i8 6 2
i9 19 7 3
20 20 8 4

The variable edlm is coded as the value of educ. The variable ed2m is coded as 0 for
those with fewer than 12 years of education, and educ minus 12 for those with 12 or
more years of education. Likewise, ed3m is coded as 0 for those with fewer than 16 years
of education, and educ minus 16 for those with 16 or more years of education. We will
use this information later to compute adjusted means for any given value of education.

We can now run the piecewise regression as shown below. Note the female variable
is included as a covariate.

e e e e e
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. regress realrinc edim ed?m ed3m i.female, vce(robust) w:/

Linear regression Number of obs = 32183
F( 4, 32178) = 784.42
Prob > F = 0,0000
R-squared = 0.1432
Root M3E = 26029

Robust
realrine Coef . Std. Err. t iR ] [95% Conf. Intervall
edlm 935.6728  70.54866 13.32  0.000 801.3987 1077.947
ed2m 2022.422 144,2374 14.02 0,000 1739.711 2306,132
ed3m 1667 .462 412 . 1507 4.02 0.000 849.6215 2465.283
f.female -12336.74 277.0882 -44.62 0.000 -12879.84 -11793.64
~cons £1215,32 787.534 14.24 0.000 9671.725 12768.92

Figure 4.7 shows the adjusted means of income as a function of education for this
model. Later we will see how to create this graph. Let’s refer to fgure 4.7 to help
interpret the coefficients. ‘The slope for those without a high school degree is 939.67.
Upon attaining a high school degree (when educ = 12), the slope increases by 2,022.42
and that increase is significant. Upon receiving a college degree (when educ = 16}, the
slope increases by 1,657.45 and that increase is also significant.

Adjusted mean
20000 30000 4000C 50000
! 1 . L

10000
L

o
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o
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Education

o

Figure 4.7. Adjusted means from piecewise model with knots at educ = 12 and
educ = 16

We can use the lincom command $o compute the slope for high school graduates by
adding together the coefficients of edim and ed2m, as shown below. The slope for high

school graduates is 2,962.09 and that slope is significantly different from 0.
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. lincom edim + edZm
{ 1) edim + ed2m = 0

realrinc Coef.  Std. Exr, t P>1tl [956% Conf. Intervall

(1) 2962.054 110.5663 26.79 0.000 2745.38 3178.808

Likewise, we can compute the slope for college graduates by adding the slopes of
edlm, ed2m, and ed3dm. The slope for college graduates is 4,619.55 and is significantly
different from 0.

. lincom edlm + ed2m + ed3m
(1} edim + ed2m + ed3m = O

realrinc Coef. 8td. Err. t Prltl {954 Conf. Intervall

(1 4619, 647 347 .5481 13.2¢  0.000 3938.343 §300.75

We can use the margins command to compute adjusted means for any given value
of education by expressing education in terms of the variables edim, ed2m, and ed3m.
Reforring to the output of the showcoding command, we can compute the adjusted
mean for a person with 14 years of education by specifying that edim equals 14, ed2m
equals 2, and ed3m equals 0. After adjusting for gender, a person withi 14 years of
education is predicted to have $22,346 of income.

. margins, at(edlm=14 ed2m=2 ed3m=0)

Predictive margins Number of obs = 32183
Model VCE : Robust
Expression : Linear prediction, predict()
at 1 edinm = 14
. ed2m = 2
ed3m = o

Delta-metheod
Maxgin  Std. Err. z P>[z] [95% Conf, Intervall

_cons 22345.82 187.3362 119.28 0.000 21978.75 22713.09

To graph the entire range of education values, we need to compute the adjusted
means for the minimmum of education (0), for each of the knots (12 and 16), and for the
maximum of education (20}. The margins command below computes these adjusted
means using the at () option once for each of these four levels of education.
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. margins, at{edlm=0 od2m=0 ed3m=0) &

> at{edin=12 ed2m=0 ed3m=0) °
> at(edin=16 ed2m=4 ed3m=0) "
> at (edim=20 ed2m=8 ed3m=4) vsquish 2O
Predictive margins “ Number of obs = 32183
Model VCE : Robust
Expression ! Linear prediction, prediet{)
1._at 1 edim = 0
ed2m 0
ed3n = 0
2. at : edim = 12
ed2m 0
ed3m = 0
3._at 1 edlm = 186
edZm 4
ed3n ¢
4,_at 1 edlm = 20
ad2mn = 8
ed3m = 4
Delta~method
Margin  Std. Err. z P> |z [96% Conf. Interval}
_at
1 5145.66 785.1576 6.55 0.000 3606.779 6684.541
2 16421.73 145.5957 112.79 0,000 16136.37 16707.1
3 28270.11 383.1319 73.79 G000 27619.19 20021.04
4 46748.3 1242,792 37.62 0,000 44312 .47 49184 .13

We can then manually input the adjusted means from the margins command into
a dataset as shown below. The graph command is then used to graph the relationship
between education and income. The resulting graph matches the one we saw in fignre 4.7
(hence, it is not repeated).

. preserve
. clear
. inpat educ yhat

educ yhat
1. 0 b145,66
2. 12 16421.73
3. 18 28270.11
4. 20 46748.3
6. end

graph twoway line yhat educ, xlabei(0{4)20) xline(12 16)
xtitle{Bducation) ytitie(Adjusted mean)

[V

. restore
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n!

Note! Individual slope coding

You could fit this model by omitting the marginal option on the mkspline com-
mand. The slope terms would then correspond to the three line segiments of the
piecewise model: for those with fewer than 12 years of education, for those with
12 up to (but not including) 16 years of education, and for those with 16 or more
years of education.

4.5 Piecewise with one knot and one jump

4.58.1 Oveyrview

In section 4.3, we saw a piecewise model with one knot where there was a change in the
slope at the knot. It is possible that there can also be a jump (or fall) that coincides
with the knot as well. We saw such an example in the left panel of figure 4.2, That
graph is shown in more detail in figure 4.8. This model has one knot at 12 years of
education that signifies a change in both slope and intercept. For those with fewer than
12 years of education, the slope is 200. Upon reaching 12 years of education, there is
a change of both the intercept and the slope. The intercept increases (jumps) by 2,200
and the slope increases by 3,500 (from 200 to 3,700).
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Figure 4.8. Hypothetical piecewise regression with one knot and one jump
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" 4.5.2 Examples using the GSS

Let’s illustrate a model with one knot and one jump using the G8S dataset.

. use gss_ivrm

As shown In section 4.3.2, the mkapline command is used with the marginal option
to create the variables edim and ed2m. edim represents the slope for non—high scheol
graduates, and ed2m represents the change in slope for high school graduates compared
with non—high school graduates,

. mkspline edim 12 ed2m = educ, marginal

To fit the jump (change in intercept) associated with having 12 or more years of
education, we need a dummy variable that reflects having 12 or more years of education.
The variable hsgrad is coded 1 if someone has 12 or more years of education, and 0
otherwise: - C T mm——

e it e T

We can fit a piecewise model that includes a change in both slope and intercept
(jump} by including edim, ed2m, and hsgrad as predictors in the model. The variable
i.female is also included in the model as a covariate.

. regress realrinc edim ed2s hsgrad i.femals, ‘vee(robust)

Linear regression ¥umber of obs = 3283
F( 4, 32178) = B803.67
Prob > F = 0.0000
R-squared = 0.,1425
Root MSE = 25039

Robust
realrinc Coef. Std. Err. t Priti [95% Conf. Intervall
edlm 273.1002 105.8843 2.58 ¢.010 65.56293 480.6374
’bJ ad2m 3102,954 141.8274 21.88 C¢.000 2824.967 3380.941
PN hsgrad 2731.636 ) 412.816 6.59  0.000 1912.402  3530.671
1.female ~17391731 2v8.3032 —44.86  (.000 -12932.87 -1i849.74
_cons 16345.24  988,3754 16.54  ¢.000 14407 .98 18282.49

To help interpret the results, a graph of the adjusted means is shown in figure 4.9.
This shows the adjusted mean of income at specific levels of education, for those having
0, 1, 12, 13, and 20 years of education. At 12 years of education, the adjusted mean is
computed twice, once assuming the absence of a high school degree and once assuming
2 high school degree, illustrating the jump in income due to graduating high school.
{We will see how to malke this kind of graph later.)
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Figure 4.9. Adjusted means from piecewise model with one knot and one jump at
educ = 12 -

Let's interpret the regression coefficients by relating the coefficients to the adjusted
means shown in figure 4.9. The coefficient, for edim is 273.10, representing the slope for
¢ bhose who have fewer than 12 years of education, For cach additional year of education
(up to 12), income increases by $273.10. For example, figure 4.9 shows the adjusted
means given zero and one year of education. This difference in these adjusted means
equals 273.10 (10521.83 — 10248.73).

The coefficient of ed2m is 3,102.95, which is the change (increase) in slope for high
school graduates compared with non-high school graduates. The slope of the relation-
ship between income and education for high school graduates is significantly different
from the slope for non—high school graduates (¢ = 21.88, p = (0.000). We can estimate
the slope for high school graduates using the Iincom command below. That slope is
3,376.05 and is significant (¢ = 35.29, p = 0.000). Note how this slope corresponds to
the change in the adjusted means for 13 years of education versus 12 years of education
{19623.52 — 16247.46 = 3376.05). For 12 or more years of education, a one-unit increase f
in education is associated with a $3,376.06 increase in income. '

. lincom edim + ed2m .
{ 1) edim + ed2m = 0 !

realrine Coef,  Std. Err. t Pt [95% Conf. Intervall

(6] 3376.054 3188.568 3563.55

95.66936 35.29 ’0.000-_ -

Finally, the hsgrad coefficient {2,721.54) rvepresents the predicted jump (increase
in income) due to graduating high school. This is shown in figure 4.9 by showing the
acjusted mean of income at 12 years of education omitting the benefit of a high school
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diploma ($13,525.93) compared with 12 years of education, including the benefit of a
high school diploma ($16,247.46). The difference in these adjusted means is $2,721.54,
showing the jump in income due to graduating high school (which corresponds to the
hsgrad coefficient).

We can use the margins cominand to compute adjusted means for any given value
of education. However, we need to express education in terms of the variables edim,
ed2m, and hsgrad. The coding of these variables is illustrated using the showcoding
comemand. (Section 1.3 shows how to download this command.)

. showcoding educ hsgrad edim ed2m

edac  hsgrad edim eddm
0 0 0 0
i 0 i 0
2 0 2 0
3 0 3 0
4 o 4 0
5 0 5 0
[ 0 6 0
7 0 7 0
8 0 8 L]
9 0 9 0
10 0 10 o
11 4] i1 A=
12 T 12 0
13 1 i3 1
14 1 14 2
15 t 15 3
16 1 16 4
17 i 17 b
18 1 18 6
18 i 19 7
20 i 20 8

As you can see {rom the output above, edim is coded as the value of edunc. The
variable ed2m is coded as 0 for those with fewer than 12 years of education, and educ
minus 12 for those with 12 or more years of education. The variable hsgrad is coded as
0 for those with fewer than 12 years of education and 1 for those with 12 or more years
of education. We can use this information to compute adjusted means of the outcome
variable {income) for any given value of education.

Below we compute the adjusted mean of income for a person with 14 years of ed-
ucation (corresponding to edim equaling 14, ed2m equaling 2, and hsgrad equaling 1).
At 14 years of education, the adjusted mean of income is $22 999.57.
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. margins, at(edim=14 ed2m=2 hsgrad=1)

Praedictive margins Number of obs = 32183
Model VCE : Robust
Expression : Linear prediction, predict{)
at 1 edim = 14
ed2n = 2
hsgrad = i
Dalta-method
Margin  8Std. Err. z p>izi [95% Conf. Interval]
_cons 22999.67  152.7437  160.58  0.000 22700,2 23298.94

To graph the entire range of education values, we need to compute the adjusted
means when education is zevo, at the value of the knot (that is, when education is 12)
with and without a high school diploma,? and at the maximum of education (that is,
when education is 20). The margins command below computes these adjusted means.

. margins, at(edim=0 ed2m=0 hsgrad=0)

> at{edim=12 ed2m=0 hsgrad=0)
> at{edim=12 ed2m=0 hsgrad=1)
> at{ed1m=20 ed2m=8 hsgrad=1) wvsquish
Pradictive margins Number of obs = 32183
Model VCE ¢ Robust
Expression : Linear prediction, predict()
1._at 1 edim = [«
ed2m = ¢
hsgrad = 0
2. _at : aedlm = 12
ad2m = 0
hsgrad = Q
3, _.at s adim = 12
adZm = 4}
hsgrad = 1
4, _at 1 edim = 20
ed2m = 8
hsgrad i
Delta~method
Margin  Std. Err. z P>izl [95% Conf. Interval]
_at
1 10248.73  987.4159 10.36 0.000 8313.428 12:84,02
\!‘\ % [—2 13525.93  374.9727 36.07 0.000 12790.99 14260.86
(“)‘\’}}* 3 16247 .46 174.7942 92.96 0.000 16904 .87 16530.08
i 4 43255.9  664.0012 65.14  G.000 41954.48 44B57 .32

We can then manually input these values into o dataset and ghaph them as shown
in the commands below. The resulting graph is shiown in figure 4.10.

4. This illustrates the jump in income due to graduating high school.

4.5.2 Examples using the GSS

. preserve
. clear
. input educ yhat

educ yhat
i, 0 10248.73
2. 12 13525.93
3. 12 16247.46
4
5

. 20 43265.9
. end

. graph twoway line yhat educ, x1abel{0{4)20) xline(12)

. Tastore

yhat
30000 40000 50000
I 1 A

20000
:

10000
L

101

.
Y
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-
n

educ

16 20

Figure 4.10. Adjusted means from piecewise model with one knot and one jump at

educ = 12

This shows how you can create a visual representation of the adjusted means. It
illustrates the slope when education is fewer than 12 years, the slope (or change in slope)
when education is at least 12 years, and the jump in income upon achieving 12 years of

education.

Note! Individual slope coding

This model was estimated using the change in slope coding method (that is, with
the marginal option on the mkspline comumand). If you wished, you could fit
$his model using individual slope coding by omitting the marginal option on the
mkspline command. This would yield estimates of the educ slope before having
12 years of education and the educ slope after reaching 12 years of education.
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4.6 Piecewise with two knots and two jumps

4.6.1 Overview

In section 4.4, we saw a piecewise regression model that contained two knots with a
change of slope (but not a change of intercept). Section 4.5 showed a model with one
knot that signified a change of slope and intercept. This section will illustrate a model
with two knots signifying a change of slope and intercept. We saw such an example in
the right panel of figure 4.2. That graph is shown in more detail in figure 4.11. It shows
the results of a hypothetical piecewise model predicting income from education with
knots at 12 and 16 years of education, each representing a change in siope and change
in intercept.

L

Slope=4500

10000 20000 30000 40000 50000 60000

[

E

581 Siope=1800 | jump=5500

Slope=103
Jump=3500
o 4

T T T T o T 1 T
] 2 4 6 8 10 12 14 16 18 20

Education in years
Figure 4.11. Hypothetical piecewise regression with two knots and two jumps

In figure 4,11, the slope for those with fewer than 12 years of education is 100, At
12 years of education, the intercept increases (jumps) hy 3,500 and the slope increases
by 1,700 {from 100 to 1,800). At 16 years of education, the intercept jumps by 5,500
and the slope increages by 2,700 {from 1,800 to 4,500).

4.6.2 Examples using the GSS

Let’s use the G585 dataset to fit a piecewise model predicting income from education,
including two lomots at 12 and I6 years of education. Each knot will include a change
in slope and a change in intercept.
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Looking back to section 4.4.2, we saw how to use the mkspline command to create
the variables corresponding to knots at 12 and 16 years of education. We use the same
mkspline command below. This creates the variables edim, ed2m, and ed3m, which will
include changes in the slope (knots) at 12 and 16 years of education.

. usa gss_ivrm ¢
. mkspline edim 12 ed2w 16 ed3m = educ, marginal :\;’(‘}"”

i section 4.5.2, we saw how to include a change of intercept at 12 years of education
by including a dummy variable for achieving 12 years of education (hsgrad). The same
strategy is used for this model, also including a dummy variable for achieving 16 yoars
of education (cograd). These two dummy variables will fit the change in intercept at
12 and 16 years of education.

We can now fit a piecewise model with knots at 12 and 16 years of education, allowing
for a change in slope and change in intercept at each knot using the regress command
below. This model also includes gender as a covariate.

. regress realrinc edim edZm ed3m hsgrad cograd i.female, vce(robust)

Linear regression Number of obs = 32183
F( 6, 32176) = b544.02
Prob > F = 0.0000
R-squared = 0.14b8
Root MSE = 24991

Robist
realrinc Coef. 5td. Err. t Prit] [85% Conf. Intervall
edim 272.2715 105.8731 2.57 0.010 64,7562 479,7868
edZm 1329.815 189.3145 7.02  0.000 958.7514 1700.879
ed3n 2540.166  398.7068 6.37 0,000 1758.686 3321.647
hsgrad 3926.683  405.8082 5.67 0.000 3130.184 4720.982
cograd B740.762 733.167 7.83 0,000 4303.72¢ Ti77.797
1.fomale -12368.72 276.6883 -44.67 0.000 ~12901.04 -11816.4
_cons 16338.1 988.2776 16.563 0.000 14402.04 18276. 16

To help us interpret the coefficients from this model, let’s first visualize the adjusted
means using the graph shown in figure 4.12. This shows the adjusted means as education
ranges from 0 to 20, along with the adjusted means for selected values of education,
namely, 0, 1, 12, 13, 16, 17, and 20 years of education.® {We will see how to create a
line graph like this one shortly.)

5. The adjusted means are computed at 12 years of education twice, once assuming the absence of a
high schoal degree and again assiming a high school degree. The difference in these adjusted mesans
illustrates the predicted jump in income due to graduating high school. Lilewise, at 16 years of
education the adjusted means are computed once assuming no college degree and again assuming
a college degree. The difference in these predicted incomes illustrates the jump in income dae to
graduating college.
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Figure 4.12. Adjusted means from piecewise model with knots and jumps at edue = 12
and educ = 16

Leb's begin by interpreting the coefficients for hagrad and cograd. The coefficient for
hsgrad is 3,925.58, which represents the jump in income due to graduating high school.
This can be seen in figure 4.12 by the jump from $13,525.93 to $17,451.46, which is
an increase in $3,925.58. The coefficient for cograd is 5,740.76, which represenis the
predicted jump in income at 16 years of education. This is represented in figuwre 4,12 by
the jump from $23,859.81 to $29,600.57 that occurs due to graduating callege.

Now let’s interpret the coefficients for edim, ed?m, and ed3m. Note that we used the
marginal option when creating these terms. The coefficient for edim is 272.27, which is
the slope for those with fewer than 12 years of education. We can see this in the change
from zero to one year of education where the adjusted mean of income increases from
$10,258.62 to $10,530.89, an increase of $272.27.

The coecfficient for ed2m is the difference between the slope for high school graduates
and the slope for non—high school graduates. The difference in these stopes is significant
(t = 7.02, p-= 0.000). To estimate the slope for high school graduates, we can use the
lincom comménd, as shown below. The slope for high school graduates is 1,602.09.
Note how this corresponds to the increase in income as education increases from 12 to
13 years (19053.55 — 17451.46 = 1602.09). yd

. lincom edim + adZm
(1) edim + ed?m = 0

realirinc Coef. Std. Err. t Pritl [98% Conf. Interwval]

(1) 1602.086  166.9098 10.21 0.000 1294 .537 1909,838
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Finally, the coefficient for ed3m is the change in the slope for college graduates
compared with Ligh school graduates. This change in slope is significant (f = 6.37,
p = 0.000). We can estimate the slope for college graduates by adding the coefficients
for edim, ed2m, and ed3m using the lincom command below. The slope for college
graduates is 4,142.25. We can see this reflected in figure 4.12 by the change in income
as education increases from 16 to 17 years (33742.82 — 29600.57 = 4142.25).

. lincom edim + ed2m + ed3m
(1) edim + ed?m + ed3m = O

realrinc Coef. 8td. Err. t P>zl [96Y Conf. Intervall

(1) 4142.263  366.6663 11.30 0.000 3423,673 4860.933

Now that we understand how (o interpret the coefficients from this model, let’s
show how to use the margins command to compute adjusted means for any given value
of education. To use the margins command to compute adjusted means, we need to
understand the coding of edim, ed2m, ed3m, hagrad, and cograd. Let’s show this below
using the showcoding command.

. showcoding educ edim ed2m ed3m hsgrad cograd

educ  edlm ed2m ed3m hsgrad cograd
0 o 0 0 o [
3 1 0 0 [\] 0
2 2 4] o] o] 0
3 3 0 0 0 0
4 4 0 0 [¢] 0
5 B 0 o ] 0
6 [ 0 0 o 0
7 7 0 0 0 0
a8 8 0 i} 0 0
9 9 o] 0 0 0
10 10 O 0 0 0
11 11 0 0 ] 0
12 12 G o 1 0
13 13 1 [ 1 0
14 14 2 [ 1 0
15 15 3 G i o]
i6 16 4 [+] i 1
17 17 3 1 1 1
i8 18 6 2 1 1
i9 19 7 3 1 1
20 20 8 4 1 1

As you can see from the output above, edim is coded as the value of educ. The
variable ed2m is coded as 0 for those with fewer than 12 years of education, and educ
minus 12 for those with 12 or more years of education. The variable ed3m is coded as
0 for those with fewer than 16 years of education, and educ minus 16 for those-with
16 or more years of education. The variables hsgrad and cograd are dummy coded.
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The variable hsgrad is coded 0 for those with fewer than 12 years of education and 1 ' . margins, at Eedim=0 ed2n=0 Ed3mﬁg 11:Sg1‘a3=g Cograg=g;
- i N - . S £ ~ : fe el e : > at (edim=12 ed2m=0 ed3m= sgrad=0 cograd=
for thoa'o with 12 o1 more years of educaetlon. The variabie cc?grad is coded as U for . at (edim=12 6d2m=0 ed3m=0 hsgrad=1 cograd=0)
those with fewer than 16 years of education and 1 for those with 16 or more years of > at(edim=16 ed2m=4 ed3m=0 hsgrad=1 cograd=0)
education. > at (edim=16 ed2m=4 ed3m=0 hsgrad=1 cograd=1)
> at(ed1m=20 ed2m=8 ed3m=4 hsgrad=1 cograd=1) vsquish noatlegend
Using this information, we can compute adjusted means as a function of education. . Predictive margins Humber of obs = 32183
The margins command below computes the adjusted mean for a person with 14 years C Hodel VCE : Robust
of education (corresponding to edim equaling 14, ed2m equaling 2, ed3m equaling 0, P Expression : Linear pradiction, predict()
hsgrad equaling 1, and cograd equaling 0). Adjusting for gender, the predicted mean S .
3 3 : : Delta~metho
¥ OITLE ¢ <y , 4 I
of income at 14 years of education is $20,655.64. S Mergin S, Err, w  Prizl [95% Conf. Intervall
. margins, at{edim=14 ed2m=2 ed3m=0 hsgrad=1 cograd=0) _at
Predictive margins Nunbexr of chs = 32183 P 1 10258.62 987 .3208 10.39 0.000 8323.6509 12193.74
Hodel VCE : Robust . R 2 13626.88  374.9279  36.08  0.000 12791.04  14260,73
: ; — icti ; : 3 17451.46 157.3674 110.90  0.000 17143.03 17769.9
E:Pressmn : Eﬁar pmdmtmz’ predmt(i,; 4 23859.81  558.5285 . 42.72  0.000 22766.11  24954.51
" edom = 2 5 20600.67 475.6116  62.24  0.000 28668.39  30632.75
ad3n = 0 6 46169.58  1265.734  36.77  0.000 43708.39  48630.78
hsgrad = 1
cograd = Q .
: We can then manually input the adjusted means from the margins command into
Delta-method : & dataset and graph the adjusted means by education. The resulting graph is shown in
Margin  Std. Err. z P>izl| [95% Conf. Intervall ! figure 4.13
_cons 20685.64  264.3417  78.14  0.000 20137.54  21173.74 !

To graplh the adjusted means as a function of education, we need to compute the |
adjusted mean when education equals zero, the value of the first knot (that is, 12} with !
and withont a high school diploma,® the value of the second knot (that is, 16) with and
without a college degree,” and at the maximuam of education (that is, 20). The margins
command below computes these adjusted means. {The noatlegend option suppresses
the display of the legend of the covariate values to save space.)

G. This ithustrates the junp in income due to graduating ligh school,
7. This illustrales the jump in income due to graduating college.
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. preserve
. ¢lear
. input educ yhat

educ yhat

0 10258.62
12 13625.88
12 17451.46
238569,81
16 29600.57
20 46169.58
end

graph twoway line yhat educ, xlabei{(0{4)20) xLine(i2 i86)
xtitle(Education} ytitle{Adjusted means)

N WR W
-
[+

Vo

, restore

8
2]
(=]
(e}
o
[=]
g
o
~
2
o
@
£3
281
%@
2
e
<
o
24
o
o
© /”/
o
2 4
oLy T T u
0 4 8 12 16 20
Education

Figure 4.13. Adjusted means from piecewise model with knots and jumps at educ = 12
and educ = 16

The graph in igure 4.13 shows the relationship between education and the adjusted
mean of income. This illustrates the change of intercept and change of siope that occur
at 12 and 16 years of education.

Note! Individual slope coding

If you prefer, you can omit the marginal option on the mkspline command. This
would estimate the educ slopes for each of the three line segments of the piecewise
model: the slope for those with fewer than 12 years of education, for those with
between 12 and 16 years of education, and for those with 16 or more years of
education.
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4.7 Piecewise with an unknown knot

This section explores the use of a piecewise model with one knot where the placement of
the knot is unknown. Contrast this with the model llustrated in section 4.3, which used
a piecewise model relating income to education. That model had one knot correspond-
ing to 12 years of education because receiving a high school diploma is an important
milestone with respect to one’s income. Sometimes, however, we may want to fit a
plecewise model with one knot without a predefined location for the knot. This section
illustrates a method for fitting a piecewise model with one knot where the location of
the knot is unceriain.

The gss_ivim.dta dataset is used to illustrate this, focusing on people who were
o born hetween 1805 and 1985 with nonmissing data on educ.

. use gss_ivrm

i . heep if (yrborn>=1905 & yrborn<=1985) & !missing{educ)
' (2214 observationa deleted)

Consider the relationship between year of birth and level of education. In this
dataset, the year of birth is recorded in the variable yrborn and education level is
recorded in the variable educ. To visualize the relationship between year of birth and
| education, let’s make a graph showing the mean of educ at each level of yrborn. (This
\ technique is illustrated in more detail in section 2.4.4.) The regress command is
‘ used to predict educ® from the variable yrborn, treating it as a categorical (factor)

variable. The marging command is then used to compute the adjusted means, and the
: marginsplot command graphs the means as a function of yrborn. The resulting graph
: is shown in figure 4.14.

8. The variable educ is not skewed like realrinc, so the vee{robust) option is not used for analyses
where aduc is the cutcome.
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. regress educ i.yrborn - .l
(output omitted) : b3

. margins yrborn
(output cmitted }

. marginsplot, noci
Variables that uniquely identify margins: yrborn

Adjusted Pradictions of yrborn

o+ 3
(=1
I WAPE Tt ; : T
N Iﬂfﬁf Aafus vl KAM" =
® i S o
e DJV;F v 1880 1920 1940 1850 1980
g ’ oo Mean education  --—----- Pisce 1
& ,‘,ﬂfﬁ Pieca 2
o | V’ y Figure 4.15. Average education with hand-drawn fitted lines
o Unfortunately, I have no basis for selecting the year 1945 as the knot. We could
1900 1920 1940 1980 1980 ‘ haphazardly select different years for the placement of the knot and select the knot that
year of birli : yields the best fitting model. Rather than manually doing this selection process, we can

use the nl command to automate the process of selecting the optimal knot, by selecting
a knot location that yields the lowest residual sum of squares. The code for fitting such

Figure 4.14. Average education at each level of year of birth \ : \
a model is shown helow. You can use this as a template for fitting your own model.?

Picture fitting the observed values shown in figure 4.14 using a piecewise model with
one knot. Imagine two line segments, where the first line segment would begin in 1905
and extend to a period somewhere in the 1940s. The second line segment would begin
where the first line segment left off {in the 1940s) and extend until 1985. This model
is shown in Bgure 4.15, where I have overlaid a hand-drawn fitted line spanning from ;
1905 to 1945 (labeled “Piece 17) and a second such fitted line spanning from 1945 to :
1985 (labeled “Picce 27).

i 9. In place of educ, you would insert your outcome vartable, and in place of yrborn, you would place
your predictor variable. Then for the iritial() option, you would insert plausible values for knot,
bi, b2, and cons. These correspond to the placement of the knot, the slope hefore the knot, the
i slope after the knot, and the constant. In this example, 1 used 1945 ag the knot. To estimate bi, I
locked at the graph and saw that the mean education rose about 4 units from 1905 to 1945, Taking
a change of 4 units divided by 40 gave me an cstimate of 0.1 for bl. Likewise, | estimated that
: education declined by about 0.5 units from 1945 to 1985 and divided —0.5 units by 40 to yield
—0.0325 as an estimate of b2, Finally, to estimate cons I estimated the average educatien to be 8.5
units at 1905 and then used the estimated slope of (1.1 to estimate the education at year 0 would
he 9.5 — 190h x 0.} = —181.
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. nl {educ = {{cons} + {bil*yrborn)*(yrborn < {knotl}) + t}zi.
> ({cohs} + {bi}x{knot} + {b2}*(yrborn-{knot}))*{yrborn »>= {knotl)), 73

> initial{knot 1845 bl .1 b2 ~-.0125 cons -181)
{obs = b28T3)

Tteration 0: residual §5 = 464140
Tteration i: residnal 85 = 464092.3
Tteration 2: residoal 83 = 4640982.3
Source 85 df MS

Number of obs = 52873

Model 48574 , 1867 3 16191.3962 R-squared = 0.0047

Residual 464092.285 52868 8.77815515 Adj R-squared = 0.0947

Root MSE = 2,982796

Total 512666.47 52872 9.69636992 Res. dev. = 264897.3

aduc Coef, Std. Err. t P>t [95% Conf. Intervall

Jcons -152.0708  3.2439284 ~48.83 0.000 -168,4289  -145.7127

/bl .0Bb0B3Y 0016812 6¢.69  0.000 .0817588 .0B83491

/knot 1946. 965 ,5123086 3800.38  0.000 1945.961 1947 .969

/b2 -. 0063693 0017983 -2,98  0.003 -, 008884 -.0018347

Parameter cons taken as constant term in medel & ANOVA table

The coefficient labeled cons is the constant for the model (the predicted value of
educ when yrborn is 0). This value is generally uninteresting. The coefficient labeled
knot is the location of the knot, selected as 1946.97 (which we can round to 1947}, The
coeflicient labeled b1 is the slope of the relationship between education and year of birth
for those born before the knot (before 1947). The coefficient labeled b2 is the slope for
those born in or after 1947. The key is that 1947 was selected as the optimal location
for the knot.

Now that we have identified the knot as 1947, we can fit & piecewise model with
one knot (as itlustrated in section 4.3). The mkspline command is used to create the
variables yrbornl and yrborn2, which are separated by a knot at 1947. The marginal
option is omitted, so the coefficient for yrbornt will be the slope for the years before
1947, and yrborn2 will be the slope for the years after 1947. As I would expect,
the results of the regress command below match closely to the results using the nl
command above.
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. mkspline yrborni 1947 yrborn2 = yrborn

. regress educ yrborni yrborn2 7’%
Source 58 df 3] Number of obs =  B2B73
F{ 2, B2B7H) = 2768.81
Hodel 48574145 2 24287.0726 Prob > F = (,0000
Residual 464092,326 52870 8.77798989 R-squared = 0,0047
Adj R-squared = 0.0947
Total 512666.47 52872 9.69G36992 Root MSE = 2,9628
aduc Coef. Std. Frr. t Pt [95% Conf. Intervall
yrbornl .0849812 0012892 65,43 0.000 . 0824348 .0B7B276
yrborn2 -.0054247 0016211 -3.57 0.000 -.0084061 ~. 0024432
.cons ~-151.98311% 2.513383 -60.45 G.000 ~166.8573 -147.0048

I will not belabor the explanation of these results because this kind of model was
explained in section 4.3, Briefly, the educ slope for those born before 1947 is 0.085
and for those born in 1947 or later the slope is —0.005. The 1incom command below
estimates the difference in the slopes (for 1947 and later compared with before 1947).

+ lincom yrborn2 -~ yrborni
{ 1) - yrborni + yrboxn2 = 0

educ Coef. &td, Err. t P>t [95% Conf. Intervall

1) ~. 0904059 .Q024694  -36.76  0.000 -, 0962263  -.00BEBGH

The siope for those born in 1947 and later shows a significant decrease compared
with the slope for those born before 1947.

4.8 Piecewise model with multiple unknown knots

This section illustrates the use of piecewise regression models where there could be
multiple knots in the relationship between the predictor and outcome, and you have no
basig for the placement of the knots. Contrast this with earlier sections of this chapter
(namely, sections 4.3, 4.4, 4.5, and 4.6), where we fit models with one or two knots
where the gelection of the knot was known, or section 4.7, where there was one knot
with an unknown value.

Consider the relationship between age and income. I would suspect that income
would initially rise rapidly with increasing age, hit a peak, and then decline with in-
creasing age. Even though I have some general prediction about the pattern of the
relationship between age and income, I do not have a strong basis for the placement of
the knots for a piecewise model. In such a case, we can intentionally fit a model with
too many knots and then progressively remove the superfiuous knots, For this example,
we will use the gss_ivrm.dta dataset and will keep only those who are 80 years old or
younger.
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. use gss_ivim

. keep if age<=80
(1892 observations deleted)

T like to start this process by fitting an indicator model in which the predictor (for
example, age) is treated as a categorical variable. Such a model makes no assumption
about the relationship between the predictor and outeome (in this case, between age and
realrinc}. Let’s call this model 8. This model is run below (the output is suppressed
to save space).

. * Kodel 0
. regress realrinc i.age, vece(robust)
(output omitted }

This model includes 62 predictors {corresponding to the indicators for ages 19 to
80). The test of these indicators is significant, and they have an 72 value of 0.05G7.
This 12 value is the highest amount of variance we could hope to explain using age as a
predictor. This is because this set of indicators accounts for every {iny bump and drop
in the relationship between age and income. Any simpler model (for example, linear,
quadratic, or piecewise) will not account for ali the buraps and drops and thus will have
a lower R2. However, a good model will acconnt for the major bumps and drops and
have an R? that is not too much smaller than the B2 from the indicator model. This is
our goal in fitting the piecewise model with inultiple knots.

Let’s visualize the relationship between age and income. We can do this by using
the predict command to create predicted values based on the indicator model, in this
case named yhatind. These predicted values contain the mean of income at each level
of age (as described in section 2.4.4). The graph command shows the mean of income
at each level of age, as shown in figure 4.16.
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. predict yhatind
(option xb assumed; fitted values)

. graph twoway line yhatind age, sort xlabel{18 20(E)80)
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Figure 4.16. Income predicted from age using indicator model

This figure s consistent with my tuition about the relationship between age and
income. Incomes rise rapidly fromn ages 18 to about 35. The incomes continue to rise
from ages 35 to 55 but not as rapidly as in the younger years. Tlen around age 55, the
incomes start to decline. Using these visual observations, we can see that it might be to
our advantage to include more knots in the early years because of the greater degree of
change in the slope of the relationship between income and age during that time period.
Likewise, fewer knots scem to he needed for later ages.

Lel's begin with a model with knots at ages 25, 30, 35, 45, 55, and 65, This provides
knots closer together at the earlier years and provides knots at milestone years of 55
{(when people might consider early refirement) and 65 {a standard retirement age). Let’s
first visualize such a model and see whether this makes sense by repeating figure 4.16,
but let’s include lines on the 2 axis showing the proposed placement of these knots.
This is shown in figure 4.17.
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, graph twoway line yhatind age, xlabel{25 30 35 456 55 85)
> x1line{25 30 35 45 55 65) sort

30000

M
]

20000

/1

Fitted values

10000
!

25 30 35 45 55 65
age of respendent

Figare 4.17. Income predicted from age using indicator model with lines at ages 25, 30,
35, 45, 55, and 65

As you look at figure 4.17, imagine hnposing a livear relationship between each
segment created by the knots. The piecewise model can acconnt for nonlinearities that
oceur ak the knots but canmot accowné for nonlinearitios Letween any pair of knots,
As 1 look at this, T can picture the overall curve hroken into a geries of shraight lines
connected at cach knot. In fact, 1 could picture eliminating some of the knols and still
baving a sevies of straight lines. But, before I leapfrog ahoad, let’s first fit a model
specified by the knots at ages 25, 30, 35, 45, 55, and 65, which we will call model 1.
Note how the mkspline command is nsed to create knots at each of the ages, and this
creales the variables agelB8to24m to age65t080m.’ These seven predictors are then
used in the regress command to predict realrine.

10. Tincinded the m suflix to cmphasize that these varisblos were ereated using the marginal oplion.

i
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1

. * model 1: full model
. mkspline agelSto24m 25 age25to29m 30 age30to34m 35 ageldbtoddm 45
> agedbtobdm 55 agebbtoB4m 65 age6BroB80m=age, marginal

. regress realrinc agelBto24m-ageSbteBOm, vee(robust)

Linear regression Number of obs = 32100
F( 7, 32002) = 7i2.84
Prob > F = 0.0000
R-squared = 0,0559
Root MSE = 26153

Robust
realrinc Coef.  Std. Err. t P>t {96% Conf. Intervall
agelBtoldn i559.142  B6.34466 23.80 0.000 1429.104 1689.18
age2bt028m ~-582,0045 3i31.6503 -4.42 0.060 ~-840.044 ~323.9649
age30toddm -45.67108 i88.3367 ~0.24 0.808 -414.8181 323,.4759
age35toddm -484 4584 84,9308 -2.67 0.008 -8b6.9294 ~131.9874
agedbtobdm -310.1838 i54.2868 -2.01 0.044 -612.6096 -7.7880b3
agebStobdm -B27.8346 190.3534 -4.35 0.000 ~1200, 934 ~454.7348
agetbtolin ~4.333834 214.9239 -0.02 0.984 -~425.5928 416,89262
_cons -25134.4 1502.493 -16.Y3 0.000 -28079,54 -22189.66

Recall (from section 4.4) the interpretation of the coefficients when using the option
marginal. The coeflicient for age18to024 is the slope for the line segment before the first
knot (that is, the slope of those aged 18 to 24). Then age26t029 is the change in the
slope comparing the second line segment with the first line segment (that is, the siope of
those aged 25 to 29 compared with those aged 18 to 24). The coefficient for age30to34
is the change in the slope comparing the slope of those aged 30 to 34 compared with
those aged 25 to 29, and so forth. When a cocflicient regarding the change in the slope
in the line scgments is not significant, it indicates a knot that can be removed because
the slopes before and after the knot are not sighificantly different. We can use this as
a guide for removing superflucus knots.

The knot for age65to80 (corresponding Lo change i the slope for ages 65 to 80
compared with ages 55 to G4} is not significant. Reloerring to figure 4.17, we can see
that the slope for those who are 55 to 64 years old is similar to the slope for those who
are 65 years old and older. Thus the knot at age G5 is not really needed and we can
assume one slope from ages 55 to 80. Let’s refit the model omitting the knot at age 65,
creating a model we will call model 2.

First, the variables age18to24m to age65to80m are dropped so we can then use the
mkspline command to make the new set of predictors. The mkspline command is used
to create the predictors agel8to24m to age55to80m, and then the regress cotnand
is run using the new set of predictors. Although the names of some of the predictors
are the same in model 2 and model 1, the meaning changes hased on knots specified in
the new mkspline command.
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. * model 2: drop knot at age 65

. drop apgel8tce24m-agetbiotim

mkspline agel8to24m 25 age2b5to29m 30 age30toddm 35 age3Stoddm 45
age4btobdm 55 agehbto8im—~age, marginal

(VN

. regress realrinc ag918t024m—ag355t080m, vee{robust)

Linear regraession Number of obs = 32100
F( 6, 32093) = 830.57
Prob > F = (.0000
R-squared = 0.05669
Root MSE = 26162

Robust
realrinc Coef., Std. Err, B P>{ti [95% Conf. Interval]
agel8to2dm 1669, 147 66.34308 23.50 0.000 1429.113 1689.182
age2bto20m -582.0308 131.6404 ~4,42 0.000 -840,081 ~324.0107
age30to34m ~45 . 56634 188.2268 -0.24 0.809 ~414, 4975 323.3648
age3btodim ~494,68 184.3103 -2.68 0.007 -855,9352 -133.4248
agedbtob4m ~309.493 146,2357 -2.12 0.032 -596.1206 —-22,86546
agebbto80m ~829, 9867 133.1483 -6.23 0.0600 -1090.962 -569.0111
_cons -25134.71 1602.459 -18.73 ¢.000 ~28079.69 -22189.83

In model 2, the coefficient for age30to34m is not significant. This suggests that the
slope for those aged 30 to 34 are not different from those aged 25 to 29. Let's consolidate
the slope for the ages 25 to 35 and refit the model, calling it model 3.

. * model 3: drop knot at age 30
. drop agel8to24m-agebbtoBim

. mkspline agelB8to24m 25 age25tc34m 35 agelbtoddm 45
> agedBtobdm 556 agebBtoBOm=age, marginal

. regress reairinc agelBto24m-ageb5to80m, vce(robust)

Linear regression Kumber of obs = 32100
F{ 5, 32084) = 961.72
Prob > F = 0.0000
R-squared = 0.0659
Root MSE = 26i52

Robust
realring Coef . 3td., Err. t Prltl [95% Conf. Intervall
agel8to24m 1670,773  £6.98834 23.456  0.000 1439.473 1702.073
age2btoddm ~617.8846  106.5122 -5.86  0.000 -824.6925  -411.0767
agedbtoddm -b20.3487  108,280G7 ~4.81 0,000 -732.5829 -308.1145
agedStobim’ ~303.80T 139,2214 -2.18  0.029 ~-576.7863 ~31.0278
agebsto8im -831.4762  132.p477 -6.27  0.000 -1091.274  -5Y1.6786
_cons ~26377.%5 1512.811 -16.78 0.00C ~28342.66  -22412.33

All terms in model 3 are significant, but we should be mindful that we have a very
large sample size with considerable statistical power to detect minor changes in slopes.
If we focus solely on statistical significance as our guide for removing knots, we could
overfit the model. Let’s visualize the fit of this model against the mean of income at
each level of age to see how well the model fits. This is shown in figure 4.18,
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. predict yhat .

(option xb assumed; fitted values)

. line yhat yhatind age, sort xline{(25 35 46 55) xlabel(25 35 45 55)
> legend{label{l “"Piecewise model") label{2 "Indicater model"))
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Figure 4.18. Income predicted from age using indicator model and piecewise model 3
with four knots at 25, 35, 45, and 55

‘The change in slope at age 45 does not scem as necessary as some of the other knots.
The slope for ages 35 and 44 is not visually much different from the slope for ages 45 to
54. TFhis is also reflected in the coefficient for age4btobdm, which, although significant,
gliows the smallest change of all the coefficients. For the sake of creating a parsimonious
model, let’s try removing the lknot at age 45. This fits one slope for those who are 35
to b4 years old. Let's call this model 4,
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. * model 4: dxop knot at age 45
. drop agel8to24m-ageb5to80m

- mkspline agel8to2dm 25 age26to34m 35 age35tobdm 55 ageBSto80m=age, marginal
. regrass realrinc apgel8to24m-agebbtoBOm, vcel(robust)

Linear regression Number of obs = 32100
F( 4, 32095) = 1201.52
Prob > F = 0,0000
R-squared = (.,0657
Root MSE = 26154

Robust
realrinc Coef. Std. Err. t Pt [96% Conf. Intervall
ageiBtolam 1526.973  66.44689 22.98 0,000 1396.735 1657.21
age2bto3dn ~503.65632  101.8505 -4.95  0.000 -703.2841  -304.0223
age3htobin ~736.2145  72.34209 -10.18 0.000 -878.0077  ~B94.4212
agebbto8m ~1047.584  78.89915 -13.28 0.000 -1202.229  -892.9382
_cons -24462.77  1502.233 -16.28  (0.000 -27407.21 -21518.34

Let’s compare the R? for the current model (model 4, without the kunot at age 45)
with the previous model (model 3, with the knot at age 45). The R? for model 3 is
0.0559 and the B2 for model 4 is 0.0557. This is a trivial drop m the B2,

There are two issies that we have not covered with respect to this kind of inodel: how
ta compute adjusted means with the margins command and how to graph the adjusted
means with the marginsplot conunand. The techniques illnstrated in section 4.4 (which
showed piecewise regression with two knots) can be applied to this kind of model. I refer
you to that section for more information about how to compute adjusted means with
the margins command and how to graph the adjusted means using the marginsplot
command,

4.9 Piecewise models and the marginsplot command

The examples in this ¢chapter have nsed a manual method for graphing the results of the
margins command instead of using the marginsplot conmmand. You might be rightly
asking yourself why have Inot been using the marginsplot command instead. Althongh
the marginsplot command is extremely simart in terms of creating useful graphs follow-
ing the margins commnand, the graphs it creates in the context of a piecewise regresston
model are not very useful. Let’s sce why by using the example of a plecewise model
with one knot and one jump from section 4.5.2. As we did in that scction, we use the
mkspline command o create the variables edim and ed2m and use those variables, as
well as hsgrad, in the regress command to predict realrine. The variable female is
included as a covariate.
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. use gss_ivrm
. mkapline edim 12 ed2m = educ, warginal

. regress realrinc edlm ed2m hsgrad i.female, vce{robust)

Linear regression Wumber of obs = 32183
F( 4, 32178) = 803.67
Preb > F = {,0000
fi-squared = {.1425
Root MSE = 26038

Robust
realrinc Coef.  Btd. Err, t P>lt] [26% Conf. Intervall
edinm 273.1002 106.8843 2.58 0.010 G65.566293 480.6374
ed2m 3102.954 141.8274 21.88 0.000 2824.967 32380,.841
hagrad 2721.536 412,816 6.59 0.000 1912.402 3530.671
1.female -12391.31 276.3032 —44.85 G. 000 ~12932.87 ~1184%.74
_COnS 16345.24 988 ,3764 16.54 G.000 14407.98 18282.49

Now I would like to compute and graph the adjusted means as a fanction of educ.
But the variable educ is not in the model. Instead, the model represents education ysing
edlm, ed2m, and hsgrad. As we did in section 4.5.2, let’s use the margins command $o
compute the adjusted means as a function of edim, ed2m, and hagrad.

. margins, at(edim=0 ed2m=0 hsgrad=0}

> at(edim=12 ed2m=0 hsgrad=0)
> at(edim=12 ed2m=0 hsgrad=1)
> at{edim=20 ed2mw=8 hsgrad=1) vsquish
Predictive margins Number of obs = 32183
Model VCE : Robust
Expression : Linear prediction, predict()
1. at : edim = [¢]
ed2m = 0
hzgrad = ¢}
2, at : edim = 12
ed2m = 0
hsgrad = 0
3._at 1 edlm = 12
ad2m = Q
hagrad = t
4._at : edim = 20
ed2m = 8
hsgrad = 1
Delta-method
Margin  Std. Err. z P>zl [95% Conf. Intervall
_at
1 10248.73  987.4159 10.38  0.000 8313.426 12184.02
2 13525.93  374.9727 36.07  0.000 12780.99 14260.88
3 16247 .46 174.7842 92.95 0.000 15904 .87 1656%0.06
4 43266.9 664, 0012 6b.14  0.000 41954.48 44557 .32
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Now let’s try using the marginsplot command to graph the adjusted means. The
resulting graph is shown in figure 4.19.

. marginsplot
Variables that vniguely identify margins: _atopt
Multiple at() options specified:
.atoption=1: edim=0 ed2m=0 hsagrad=0
_atoption=2: edim=12 ed2m=0 hsgrad=0
.atoption=3: edim=12 ed2m=0 hsgrad=1
_atoption=4: edim=20 ed2m=8 hsgrad=1

Predictive Margins with 95% Cls

Linear Prediction
30000 40000 50000

26000

§////—-§T:

edim=0 ed2m=0 hsgrad-0 ed1m=12 ed2m=0 hsgrad=0 ed1m=12 ed2m=0 hsgrad=1 ed1m=20 ed2m=B hegrat=1
at() ,

10000

Figure 4.19, Graph of adjusted means from a piccewise regression using the
marginsplot command

The margingplot command graphs each of the four adjusted neans in the order in
which they were computed by the margins command. Although it is hard te read, the
2 axis is labeled with the valies of edim, ed2m, and hagrad for each adjusted mean.
Although this is Jogical behavior for the marginsplot command, it does not produce the
graph that we wanted. The problemn is that the specification of the margins command
obscures the true meaning of what we want.

Unfortunately, this is a rare cage where the marginsplot command does not create
the graph we want, thus we need to manually create the graph ourselves. The process of
creating the graph for this example wag illustrated in section 4.5.2. The steps illustrated
in that section involved manually retyping the adjusted means, which was simple to
understand but not efficient. The followimg section shows a more complex, but more
efficient, method for graphing adjusted means from a piecewise model,
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4,10 Automating graphs of piecewise models

So far, I have illustrated Low to graph adjusted means by using the margins connmand
and then retyping those values into a dataset. This is shnple to understand, but if you
change your data (for example, fix incorrect values), the adjusted means will not be
automatically updated to reflect the new data. This section illustrates a more efficient,
but trickier, way of creating such graphs that does not require retyping the data.

First, let’s use the gss_ivrm.dta dataset and run the analysis that was shown in
section 4.6 in which we fit a piecewise model with two knots that specified a change
in both slope and intercept. This is followed by the margins command that computes
adjusted means at key values of education. The output of these commands is omitted
to save space. :

. use gss_ivrm

. mkspline edim 12 ed2m 16 ed3m = educ, marginal

. ‘regress Tealrinc edim ed2m ed3m hsgrad cograd i.female, vce(robust)

(output omitted)

margins, at{edim=0 ed2mr=0 ed3m=0 hsgrad=0 cograd=0)
at{edim=1 ed2m=0 ed3m=0 hsgrad=0 cograd=0)
at{edlm=12 ed2m=0 ed3m=0 hsgrad=0 cograd=0)
at{edim=12 ed2m=0 ed3m=0 hsgrad=1 cograd=0)
at{edin=13 ed2m=1 ed3m=0 hsgrad=1 cograd=0)
at (edim=16 ed2m=4 ed3m=0 hsgrad=1 cograd=0)
at (edim=16 ed2n=4 ed3m=0 hsgrad=1 cograd=1)
at (edin=17 ed2m=5 ed3m=1 hsgrad=1 cograd=1)
at(edin=20 ed2m=8 ed3m=4 hsgrad=1 cograd=1)

{output omitted)

VOV OV VYV VY

The following steps save the adjusted meaus from the margins command, as well
as the corresponding values of education into the active dataset. The graph command
is then used to graph the adjusted means by education, creating the graph shown in
figure 4.20.
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. matrix yhat = r(b)’

. svmat yhat

Chapter 4 Continnous predictors: Piecewise models

. matrix educ = €0 N 1\ 12 N 42 N\ 13\ 16 \ 16 \ 17 \ 20)

. svmat educ

. graph twoway line yhati educl, xline{12 18}
> xtitle{Education) ytitle(Adjusted mean}

40000 50000
L L

Adjusted mean
30000
:

L= /

(=1

34

p=1
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Education

Figure 4.20. Adjusted means from pilecewise regression with two knots and two jumps

Let’s walk through this process again, but do so more slowly. The adjusted means
computed by the margins command are stored in a wmatrix named r(b) with one row
and nine columns, corresponding to the nine values specified with the at (O option. We
can list this matrix, as shown below.

. matrix list r(b)

r{b) [1,9]
1. 2, 3. 4. 5. 8.
_at .at _at _at _at .at
rl 10258.823 10530.894 13525,881 17451.464 19063.556  23859.81
7. 8. 9.
_at at _at

i 20600.571 33742.524 46169.582

Let’s store these adjusted means as a matrix called yhat and in the process transpose
the matrix (converting the columns to rows), The matrix 1list command shows the
adjusted means from the matrix named yhat. This matrix has nine rows and one

column.
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. matrix yhat = r(b)"
. matrix list yhat
yhatig,1]

ri
i._at 10258.623
2. .at  10530.89%4
3,_at 13525.881
4, at 17451.464
5. _at  19053.55
6. at 23859.81
7._at 29600.571
8. at 33742.824
0..at 46169.582

We can then save yhat inte the current dataset with the svmat command. The result
is that the first nine observations countain the values from yhat, stored in the variable
named yhatil, The remaining chservations in the dataset contain missing values. We
can see this below, listing the first 10 observakions.

. svmat yhat
. list yhatl in 1/10

yhatl

10268.62
. 10530.89
13525.88
17451.46
19063. 55

[ R /U L

23869.81
29600.57
33742.82
46169.58

SO XN,

[y

Now let’s make a matrix containing the values of education. This is stored in the
matrix named educ. We then save this matrix into the dataset, as shown below.
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.omatrix edue = (0N 3\ 12 N\ 12 N\ 13 \ 16 \ 168 \ 17 \ 20
. svmat ednc . ;
. 1list yhatl educt in 1/10 ;

yhatl  educt ’
. | L L] 5 o L]
o | omee o 5 Continuous by continuous interactions
2. | 10830.89 i P
3. 13526.88 12 i )
4. | 17461.48 12 b
5. | 19083.55 13 i
b 5.1 Chapteroverview . . . . . . . . . . e 127
6. | 23859.81 16 ; . . . .
7. | 2e600.57 16 i 5.2  Linear by linear interactions . . . . .. ... ... ... ..., 127
8. | 33742.82 11 i 521 Overview . . . ... 127
9. | 46160.58 20 i )
10. . . 522 Exampleusing G8Sdata . . .. ... ... L. 132
5.2.3  Interpreting the interaction in terms of age. . . . . . . .. 133
Now we can graph the adjusted means, called yhatl, by the levels of education, . 524  Interpreting the interaction in terms of education . . . . . 135
called educi, as shown below. i 5.2.b Interpreting the interaction in terms of age slope ., ., . . 137
i .
) i 5.2.6  Interpreting the interaction in terms of the edue slope ., 138
. graph twoway line yhatl educl, xline{i2 16} xtitle(Education) ; . L. ,
> ytitle{Adjusted mean} P 5.3  Linear by guadratic interactions . . . . . . .. .. .. ..., 140
(output omitied } A 5.3.1 Overview . . . . . oL e e 140
Although the process of creating this graph is more complicated, the benefit is that - 5.3.2  Example using GBS data . . . .. ... o 143
it will automatically be updated if the dataset changes. This can be a little more work - B4 Bummary .. ... e e 148
in the short run but saves us time in the long run.
4.11 Summary - 5.1 Chapter overview
This chapter has covered a variety of piecewise models you can use for fitting a nonlinear : This chapter Hlustrates how to interpret interactions of two continuous predictors. Sec-

relationship between a continuous predictor and continuous outcome. This included tion 5.2 covers models involving the interaction of twe linear continnous predictors.
piecewise models permitting a change of slope (with one and with multiple knots), Then section 5.3 covers models involving a linear continuous predictor interacted with
piecewise madels permitting a change of slope and intercept (with one and with two ; a quadratic continuous predietor.

knots), and piecewise models with one unknown knot. This chapter also illustrated how '
to fit a piecewise model with multiple unknown knots. The chapter coneluded with an ‘ . . . .
example showing how the process of graphing piecewise models can be automated. . 5.2 Linear by linear interactions

For more information about piecewise regression models, I recommend Marsh and 5.2.1 Overview
Cormier (2002). You can also see Panis (1994) for a piecewise regression example using
logistic regression. . A linear by linear interaction implies that the slope of the relationship between one
of the predictors and the oulcome changes as a linear function of the other predictor.
Suppose that realrinc is the outcome, and age and educ are the predictors of interest.
An interaction.of age and educ describes the degree to which the slope of one predictor
changes as a linear iunctlon of the ofher predictor. The interaction can be described
: as the degree to which the age slope Changes as a function of education. It can also be
5 described as the depree to which the educ slope changes as a function of age. I think
i this is difficult to cxpfam in the 'ﬂ)'stmct so T will 111113L1ate ‘this nsing a liypothetical
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example. I will begin with a hypothetical example in which there is no linear by linear
interaction, and then contrast that with an exaumnple that inchides such an interaction.

Let’s begin with a hypothetical exainple in which we predict income (realrinc)
from age (age) and education (educ) without an interaction, The regression equation
for this hypothetical example is shown in (5.1).

realrinc = —41300 + 600age + 3000sduc (5.1)

The fitted values are shown using a three-dimensional graph in figure 5.1.

20

Figure 5.1, Three-dimensional grapl of fitted values from model without an interaction

The fitted values in figure 5.1 form a flat regression plane. The coefficients from
(5.1) describe the slope of the plane with respect to age and education. The slope of
the plane in the direction of age is 600 (regardless of the value of education), and the
slope of the plaue in the direction of eddcation is 3,000 (vegardless of the value of age).

¥ - - \ - - . .
- Let’s now consider a second hypothetical regression model that containg an interac-
tion of age (age) and education (educ). The rcg)ression equation for this second model
is shown in (5.2).

realrinc = 24000 + —1100age — 1600educ + 120age*educ - (5.2)

i. These three-dimensional graphs were created using a maodified version of the surface commancdd
written by Adrian Mander (2011).
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Let’s ignore the coefficients associated with age and education and focns on the
cocflicient for the interaction. The interaction term is 120. To help understand this
interaction term, let’s visnalize the fitted values using a three-dimensional graph (see
fipure 5.2). Note how the regression plane in figure 5.2 i no longer flat due to the
inclision of the interaction term. The plane looks like a picce of paper that has a twist.

70000 ¢

20

predicted income

10000

age

Figure 5.2. Tlree-dimensional graph of fitéed values from meodel with an interaction

Threc-dimensional graphs provide the most comprehensive visnalization of these
regression models, but T feel that two-dimensional graphs can be easior o wderstand,
especially for precisely visualizing how the interaction changes the slope associated with
each predictor. Leb’s trangition to the use of two-dimensional graphs for illustrating the
precise role of linear by linear interactions. I have created a two-dimensional version

R S N A
representation_of the model without an interaction, and the right pane
dimensional representation of the model With an interaction.

e e TR - e T o T Sy
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Figure 5.3. Two-dimensional graph of fitted values from model without an interaction
(left pancl} and with an interaction (right panel)

The left panel of figure 5.3 clearly shows that the slope of the relationship between
income and age is the same af, each level of education. From (5.1}, we can see that the
age slope is 600. By contrast, the right panel of figure 5.3 clearly shows how, in the
presence of an interaction, the age slope grows with increasing values of education.?
The age slope for each of the lines depicted in the right panel of figure 5.3 is shown in
table 5.1.

Note! Describing slopes

The graph in the right panel of figure 5.3 shows that the slope of the relationship
hetween income and age changes as a functi " education, Tnstéad of referring
to the slope of the relationsliip bétween income and age, 1 will refer to this as the
age slope. _E)tlk@l‘s might refer to this as the marginal effeci of age or the age effoct,

P

2. For a real analysis with real data, the margins command could easily estimate the age slope at
each level of education. This will be iltustrated later in this chapter.

52.1 Overview l 131

Table 5.1, The age slope at each level of education
Edueation 12 13 14 15 16 17 18 19 20

age slope 340 466 580 700 820 940 1060 1180 1300

For those with 12 years of education, the age slope is 340. The age slope increases
to 460 for those with 13 years of education, and the age slope increases to H80 for those
with 14 years of education. Note how the age slope increases by 120 units for every
one-unit increase in education. This is due to the age by education interaction term.
As shown in (5.2), the age by education interaction is 120. This interaction can be
described as the degree to which the age slope increases for every one-unit increase in
education.

The interaction can afso be described as the degree to which the educ slope changes
as a linear function of age. We can visualize the interaction focusing on the slope of the
refationship between income and education as shown in figure 5.4. This graph shows
the fitted values of predicted income on the 9 axis and education on the z axis, using
separate lines for ages 25, 35, 45, and 55,

o
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(=1
3
a'l . T ¥ ;
12 14 16 18 20
edue
Age25 —-—--—- Age 35
Aged5 — —- Age 55

Figure 5.4. Two-dimensional graph of an interaction, focusing on educ slope

Note how the educ slope increases as a function of age. For this hypothetical exam-
ple, the educ slope for each of the lines from figure 5.4 is shown in table 5.2
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Table 5.2. The educ slape at 25, 35, 45, and 55 years of age

Age 25 35 45 55

educ slope 1400 2600 3800 5000

The educ slope is 1,400 for 25-year-olds, 2,600 for 35-year-olds, and 3,800 for 45-
yvear-olds. Note how the educ slope inereases by 1,200 units for every 1(-year increase
in age. This corresponds to a 120-unit increase for every one-year increage in age, which
matches the coefficient for the age by education interaction. This shows another way o
imterpret, the age by education interaction. It shows the degree to which the educ slope
changes for a one-year increase in age.

5.2.2 Example using GSS data

Let’s now consider an example that includes two contimions predictors, as well as the
interaction of the two continuous predictors. This will be illustrated using the Gss
dataset predicting realrinc {rom the continuous variables age and educ, as well as the
interaction of these two variables. The model illustrated in this section assumes that
the relationship between the predictor and outcome is lincar. Actually, both age and
educ exhibit considerable nonlinearity in the prediction of realrinc. However, if we
focus on those aged 22 to 55, the relationship between age and income is reasonably
linear. Likewise, for those with 12 or more years of education, educ is linearly related
to realrinc. So for the examples in this section, we will use the ges_ivrm.dta dataset
and focus on those who are 22 to 55 years old and have 12 or more years of education.

. use gss_ivrm

. keep if (age>=22 & age<=5B) & (educ>=12) .51(-
(26024 observations deleted) E

2y

Let's fit a model where we predict realrinc fromn educ, age, and the interaction of
these {wo variables.

i
H
I
f
'
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regress realrinc c.educ##c.age i.female, vee(robust}
!

Linear regression ! ¥ Number of obs = 22367
F( 4, 22362} = 664.04
Prob > F = 0.000C
R-sguared = 0,1712
Root MSE = 24677

Robust
realrinc Coef, Std. Err. + P>t {95% Conf. Intervall
educ -1487.578  339.5978 -4,38  0.000 -2183.214  -821.9428
age -1036.792 126.2278 -8.21 0.000 ~1284.,207 -789.3764
c.eductc.age 114,9126  9.382337 12.25  0.000 96, 52269 133.3027
1.female -12553.79 328.284 -38.24 . 0,000 -13197.26  -11910.33
_cons 28738.43 4550.477 6.32 0.000C 19819.18 37657.69

The educ#age interaction is significant. This interaction can be interpreted hy fo-
cusing on the age slope or by focusing on the educ slope. The next section, section 5.2.3,
interprets the interaction by focusing on the age slope, followed by seetion 5.2.4, which
interprets the interaction by focusing on the educ slope.

5.2.3 Interpreting the interaction in terms of age

We can use the margins and marginsplot commalxly 1o visualize this interaction. Let’s
visualize this interaction by graphing the adjusted means with age on the x axis and
with separate lines for each level of educ. The margins command is used with the at ()
option to compute the adjusted means for ages 22 and 55 and educations ranging from
12 to 20 in two-year increments.

. marging, at(age=(22 65} educ=(12(2)20))
{output omitted)

Then the marginsplot command is used to graph the adjusted means with age
on the 2 axis and with separate lines for each level of educ. The legend () option is
included to customize the display of the grapl legend. The resulting graph is shown in
figure 5.5.
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. marginsplot, noci legend(rows(2) title(Education))

Variables that uniquely identify margins: age educ

Predictive Margins

Linear Prediction
10000 20000 36000 406006 50000 50000

22 55
age of respandent
Education
g pduc=12 —"-— pdug=14 —— educ=16
e gluc=18 ~——w— educ=20

Tigure 5.5. Adjusied means for a linear by linear interaction with age on the x axis

Note! Choosing the x-axis dimension using the marginsplot command

The marginspiot command chooses the variable that is placed on the 2 axis and
the variable that is represented using separate lines. In figure 5.5, the variable age
wag placed on the 2 axis and the variable educ was represented using separate lines.
Had the marginsplot command placed educ onto the x axis, you could specify
the xdimension(age) option, which can be abbreviated as x(age), to place age
ton the » axis, Appendix B provides more details about options you can use with
i the marginsplot command.

Note how the age slope increases with increasing values of educ. The age slope for
those with 14 years of education is greater than the age slope for those with 12 years
of education. In fact, we can use the margins command combined with the dydx(age)
option to estimate the slope for each of the lines displayed in figure 5.5.

¢ 5.2.4 Interpreting the interaction in terms of education

5.24 Interpreting the interaction in terms of education 135

. margins, at(educ=(12(2)20}) dydx{age} wvsquish

Average marginal effects Humber of obs = 22367
Model VCE : Robust

Expression : Linear prediction, predict{)
dy/dx w.r.t. : age

1. _at 1 educ = 12
2. _at : educ = 14
3. _at 1 educ = 18
4, _at : educ = 18
6. _at 1 educ = 20
Delta-method
dy/dx  Std. Err. 2 P>zl f96Y% Conf. Intervall
age
_at
1 ~342.1589  19.78151 17.30 0.000 303.3889 380,931
2 © B71.9862  16.30163 36.09  0.000 540.0346 603.9358
3 801.8104 - 29.0B863 27.69  0.000 744 ,8566 858,7843
4 1031.636  46.12256 22,37 0.000 941.2371 1122.034
B 1261.461  64.14361 19.67  0.000 1136.742 1387.18

The estimates of the age slope Increase as a function of educ. For example, at

12 years of education, the age slope iy 342.16, and at 14 years of education, the age
slope is 571.99. For a two-unit increase in edueation, the age slope increases by 229.83
(571.99 — 342.16). We can relate this to the coefficient for the educ#age interaction,
_wehich-is-the-amount by Which the agé s anges fol évery one-year increase in educ.
For gvery one=year-iiereage in:ei‘cj ] 1 8 by 114.9 T

Now let’s explore the meaning of the interaction by focusing on the educ slope. Let’s
visualize this by creating a graph of the adjusted means showing educ on the 2 axis and
separate lines for age, First, the margins command is used to create adjusted means
for 12 and 20 years of education and ages ranging from 25 to 556 in 10-year increments.

. margins, at(educ=(12 20) age=(26(10)56))
(outpui omitted }

Seecond, the marginsplet command is used to graph these adjusted means with educ
on the & axis and with separate lines for age. The resulting graph is shown in figure 5.6.
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. marginsplot, noci legend{title{Age))
VYariables that uniquely identify margins: educ age

Predictive Margins

Linear Prediction
10000 20000 30000 40000 50000 80000

12 20
highest year of school compleled

) Age

—%—— 25 -—— — 36

e 45 et BB

Figanre 5.6. Adjusted means for a linear by linear interaction with education on the «

axis

Note how the slope of the lines inerease with increasing values of age. In lact, we can
estimate the slope of each line {that is, the educ slope) using the margins command,
as shown below.

7

. margins, at(age=(25(10J55)) dydx(educ) vsquish

rd
Average marginal effects ~ Number of cbs = 22367
Model VCE ¢ Robust
Expression ¢ Lineay prediction, predict()
dy/dx w.r.t, : educ
1. _at : age = 26
2. _at : age = 36
3._at : age = 45
4. at ! age = b5
bBelta-method
dy/dx  Std. Exr. z P> |z [85% Conf. Intervall
educ
~at .
1 1385.237-  120.777 10.67  0.000 1130.87% 1639.596
2 1.2634.364, 90,87424 27.89 0.000 2356.254 2782474
" 3 'A§§8_3.49 ' 131.4528 28,02  0.000 3425.847 3941.133
\ 4 14832 7616)-. 209.5404 23.08  0.000 4421.925 5243.308

]
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The educ slope for a 25-year-old is 1,385.24, ‘This corresponds to the slope of the line
for 25-year-olds shown in figure 5.6. This means that for someone who is 25 years old,
their income is expected to Increase by $1,385.24 for every year of additional education.
As age increases, so does the educ slope, For every one-unit increase in age, the educ
slope Increases by 114.91, the estimate of the age#educ interaction. For a 10-unit
increase in age, the educ slope would be expected to increase by 1,149.12. We see this
when comparing the age slope for a 35-year-old with o 25-year-old. The educ slope for
a 35-year-cld is 2,534.36 compared with 1,385.24 for a 25-year-old. The difference in
these slopes is 1,149.12.

5.2.5 Interpreting the interaction in terms of age slope

We can visualize the age by educ interaction by illustrating the way that the age
slope changes as a [unction of education. The margins command helow includes the
dydx(age) option to estimate the age slope at each level of educ.

- margins, dydx(age) at(edue=(12(1)20)) vsquish

Average marginalleffects Number of obs = 22367
Model VCE ¢ Robust
Expression : Linear prediction, predict()
dy/dx w.r.t. : age ’
1. at ! educ = 12
2, _at 1 educ— = i3
3. _at : educ, - = i4
4, _at 1 educ - = 16
6. _at : educ- = 18
6._at ¢ educ = 17
7. .at ¢ educ = 18
8._at 1 educ = 19
9._at : educ = 20
Delta-method
dy/dx  Std. Err. 2 Polz| {95% Conf. Intervall
age
.at S
1 (a42.15087 19.7815t  17.30  0.000 303.3889 380.931
2 ~487.0726 15.50798 29.47 0.000 426.6775 487 ,4676
3 571.9852 16.30163 38,09 0,000 540,0346 663.9368
4 -686.,8978 21.61123 31.78 0,000 644 6406 729,255
5 801.8104  29.05863 27.59 0.000 744 .8566 868.7643
6 £916.723%.  37.38742  24.52  0.000 843.4451  990.0011
7 1031636 48,12256 22,37 0.0600 941.2371 1122.034
8 1146.548 56.07103 20.82 0.000 1038.611 1254.486
i “_‘1261.46'1"\‘ 64,14361 19.87 Q.000 1135.742 1387.18

This shows that the age slope increases as a function of education. In fact, the age
slope increases by 114.91 wunits for every one-unit increase in educ. We can visualize
these age slopes as a fuuction of education using the marginsplot command (shown
below). Fhis creates the graph shown in figure 5.7, which visually depicts the age slope
increasing linearly as a function of education. The graph alse includes the confidence
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interval with respect to each age slope, illustrating that the age slope is significant at
every level of education.®
. marginsplot

Variables that uniquely identify margins: educ

Average Marginal Effects of age with 95% Cls

1000 1500
1 —

Effects on Linear Prediction
500
L

12 13 4 15 18 17 18 19 20
highest year of school compleled

Figure 5.7. age slope as a function of education

5.2.6 Interpreting the interaction in terms of the educ slope

We can visualize the age by educ interaction by focusing on the way that the educ
stope changes as a function of age. The margins command below estimates the educ
slope for ages ranging from 25 to 55 in five-year increments,

3. Bach age slope is significant because each confidence interval excludes zero,

5.2.6  Interpreting the interaction in terms of the educ slope

. margins, dydx{edué) at (age=(25(5)65)) vsquish

Average marginal effects Humber of aobs 22367
Model VCE : Robust
Expression  : Linear prediction, predict()
dy/dx w.r.t. : educ
1, at : age = 25
2.._at 1 age = 30
3. _at : age = 36
4._at : age = 40
5, _at : age = 45
6. _.at : age = 50
T._at : age bb
Delta-method
dy/dx  Std. Err. z P> lz| [95% Conf. Intervall
sduc
_at
1 ©1385,237 120,777 10.67  0.600 1130,879 1639.696
2 - 1858,801 101,732 18,26 $.000 1760.41 2159.192
3 -2534.364 90.87424 27.8%  0.000 2366,254 2712.474
4 -3108,927 102.8021 30.24  0.000 2907.438 3310.4156
5 - 3683.49 131.45628 28.02 0.000 3425.847 3941.133
6 4258.053 168.6017 26.27  0.000 3927 .796 4683, 31
7 4832.616 20%. 6404 23.08 G.000 . 4421,925 5243,308
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This shows that the educ slope increases as a funchtion of age. For each five-year
increase in age, the educ slope increases by 574.56 (that is, the age#teduc cocficient
multiplied by five, 114.91 x 5). For example, as age increases from 25 to 30, the educ
slope increases by 574.56 (1959.80—1385.24). We can visualize the educ slopes estimated
by the margins conunand using the marginsplot command, shown in figure 5.8,
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. marginsplot, noci o o 5
Variables that uniguely identify margins: age S realrinc = —70000 -+ 2100age + —20age” + 3000educ (5.3)

The fitted values from this model are visualized using a three-dimensional graph in

Average Marginal Effects of educ figure 5.9,
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o ® -
s, . ; ; ; ‘ ; & 20
25 a0 a8 40 45 50 55 !
age of resparxient pord 18
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Figure 5.8. educ slope as a function of age & 14
educ
_ 10000 , . . - 12
Figure 5.8 shows that the educ slopes increases linearly as a function of age. 25 35 45 K5 65 75
. age
5.3 Linear by qu adratic interactions i Figure 5.9. Three-dimensional graph of fitted values for linear and quadratic models

without an interaction
This section considers models with an interaction of two continuous variables, where
one of the variables is fit Hnearly and the other is fit using a quadratic term. This
combines ideas found in the previous section on interaction of two continuous variables
with section 3.2 on quadratic predictors.

Focusing on age in figure 5.9, we can see how incomes rise until about age 50 and then
diminish thereafter. As we saw in section 3.2.1, such inverted U-shaped relationships
arise from a negative coefficient for the quadratic term. The quadratic term lvom (5.3)
is indeed negative. Note how the degree of curvature in age i$ constant across the levels
5.3.1 Overview of education. '

Let's now consider a model that includes an interaction between age (as a quadratic i e

- A quadratic term introduces curvature in the fitted relationship between the predictor i . S .
term) and educ. This regression equation is shown in (5.4),

and outcome. As we saw in section 3.2.1, this curvature can be convex (U-shape) or
concave (inverted U-shape). By interacting a linear variable with a quadratic variable,
the guadratic term can change linearly as a funetion of the linear term. ' .
e & Y ) realrinc =165000 + —8600age + 95age® + —14000educ

Let’s consider a hypothetical example that ilustrates a greater degree of curvature + 780age*educ + 8a ge?reduc (5.4)

with increasing values of the linear predictor. Let’s first illustrate a model that contains
a quadratic predictor and a linear predictor but no interaction between these predictors.
This hypothetical example uses realrinc as the cutcome variable, age as the quadratic
predictor, and educ as the linear predictor. The regression equation for this hypothetical
example is shown in (5.3).

This model includes age, age squared, education, age interacted with education, and
age squared interacted with edncation. The key term is the age squared by education
interaction. This governs the degree of the curvature in age as a function of education.
The fitted values from this regression equation are graphed’'in figure 5.10.
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70000

predicted income

16000 -+

age

Figure 5.10. Three-dimensional graph of fitted values for linear and quadratic models
with an interaction

Ovwerall, this figure looks a little bit like a hill. Let’s focus on the age slope at each
level of education. At 12 years of education, the relationship between age and income
locks almost linear. At 20 years of education, the relationship between age and income
has a considerabie inverted U-shape. As education increases from 12 to 20 years, the
degree of the inverted U-shape grows as a function of education. This is due to the
interaction of education with age squared. Note that this term is —8. For every one-
unit increase in education, the quadratic term for age changes by —8. When quadratic
terms become more negative, the inverted U-shape becomes more pronounced. Thus
for every one-unit increase in education, the relationship between income and age shows
more of an inverted U-shape.

i can be difficult to visualize these relationships using three-dimensional praphs, so
let’s show how to visualize them using two dimensions.

The left panel of figure 5.11 shows a two-dimensional representation of figure 5.9,
where there was no interaction. We can clearly see how the degree of the curvature in
relationship between income and age is the same across the levels of education. The
right panel of figure 5.11 shows a two-dimensional representation of figure 5.10, where
there was an interaction of education with the quadratic term for age. We can see how
the relationship between income and age is nearly linear for 12 veafs of education and
grows more concave with increasing levels of education.
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Figure 5.11. Two-dimensional graph of fitted values for linear and quadratic models
without an interaction (left panel) and with linear by quadratic interaction (right panel)

5.3.2 Example using GSS data

Let’s use the Gsg dataset t6 fit a model that predicts realrinc from educ (treated as
a continuous linear variable) interacted with age (treated as a continuous variable fit

using a quadratic term). The examples in this section will focus on people with 12 to

20 years of education who are 22 to 80 years old.* Let’s use the gss_ivrm.dta dataset,

focusing only on those aged 22 to 80 with 12 or more years of education.

. use gss_ivrm

. keep if {age>=22 & age<=80) & (educ>=12)
{15934 observations deleted)

Let’s begin by fitting a model that predicts realrinc using educ as a linear term
and age as a quadratic term but no interaction between educ and age.

4. As described in section 1.4.3, the relationship between income and education is linear for 12 to 20
years of education, and the relationship between income and age is quadratic for 18 to 80 years of
age. Because we are interacting age with educ, the sample is further restricted to those aged 22 to
80 to avoid observations in the 18 to 21 year age range, because people at such a young age would
not have had much of a chance to have any higher levels of education.
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. regress realrinc c.educ c.agel#f¢.age i.female, vce(robust)

Linear regression Number of obs = 26064
F( 4, 25959) = 786.49
Prob > F = 0.0000
R-squared = 0.1658
Root MSE = 26078
Robust
realrinc Coef. Std. Err. t P>itl {96% Conf. Intervall
educ 3071.265  93.45769 32.86  0.000 2888 ,083 3264.447
age 2245.623  79.06411 28,41 0.000 2090 .,873 2400.573

c.agefic.age —~21.76866 . 9428415 ~23.09  0.000 ~23.61667 -19.92063
i.female -13344.78 319.659 ~41.75 (.000

_.cons -64839.08 2060.085 -31.47 0.000

-13971.33 ~12718.23
-68876.96 -60801.2

The quadratic term is significant and is negative. This negative coefficient indicates
that the relationship between age and income has an inverted U-shape. Let’s use the
marging and marginsplot commands to visualize the adjusted means of income as a
function of age while holding education constant at 12 to 20 years of education (in
two-year increments). We first compute the adjusted means as a function of age and
education using the margins command. Then the marginsplot command graphs the
adjusted means on the y axis and age on the ¢ axis, with sepsrate lines for each level
of education. This graph, shown in figure 5.12, shows that the degree of the curvature
in the relationship between income and age is the same across levels of education.

]
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. margins, at{age=(22(1)80) educ=(12(2)20))
{output omitted )

-%’ . marginspiot, noci legend{rows{2)} recast(line) scheme(simono)
Variables that uniquely identify margins: age educ

Predictive Margins

) Linear Prediction
10000 20000 30000 40000 50000

e T
T T
20 40 60 80
age of respondent
edue=12 ————- educ=14  --eeeemeees educ=16
- gduc=18 ——— educ=20

Figure 5.12. Adjusted means at 12, 14, 16, 18, and 20 years of education

Let’s now fit a model that includes an interaction of educ with the quadratic term
for age. This model is shown below,
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., regress realrinc c.educH#c.agelific.age i.female, vce{robust} RO . margins, atfage=(22 25{(5)B0) educ={12(2)20})
Linear regression Number of obs = 25964 e {output omitted)
F{ 6, 25957) = 6BB5.27 : . marginsplot, plotdimension{, allsimple} legend(subtitle(Education) rows(2))
Prob > F = 0.0000 > noe¢l recast(line) scheme(simono)
R-squared = 0.1757 Variables that uniquely identify margins: age educ
Root MBE = 25924
Robust - - .
realrine Coef. Std. Err. t P>t [96% Conf. Intervall g Predictive Margins
[=
.o o
educ £8347.791 817.8192 -11.39 0.000 -10920.75 ~7734.811 g
aga’| —-5009.265 551.9681 -~9.08 0.000 -6091.143 ~3927.367 3
. (=)
o c @
c.educ#c.age 517.9477 41.56362 12.46 0.000 436.4807 699.4147 22
lEg=
T o
¢.age#c.age 46, 88394 6.386088 7.34 0.000 34.36686 69.40103 a._": g
[
=
c. 83
educ# FEE 52
c.age#lc.age -4,906356 -4819612 -10.18 0.000 -5.850067 -3.960726 o f 31
&
1.female -13160.33  317.9162 -4i.40 0.000 -13783.46 -12537.2 § |
_COns 1085659.9 10897.04 9.96 0.000 87201.06 129918.7 =] : . . . . i , .

2 25 30 35 40 45 50 55 & 65 70 75 80
age of respondent

The interaction of educ#age#age is significant. Let’s interpret this as a function of

. . . . . Education
age by graphing the adjusted means on the y axis and age on the x axis, with separate 12 - __t_ 1 e 16
lines to indicate the levels of education. The graph is shown in Agure 5.13. e 18— —— B

Figure 5.13. Adjusted means from linear by quadratic model

‘ - Figure 5.13 shows that the relationship between income and age has an inverted
' U-shape, but the degree of the inverted U-shape varies by the levels of education. As
education increases, so does the degree of the inverted U-shape. People with 12 years
of education show a mild inverted U-shape, and people with 20 years of education show
a more inverted U-shape. In fact, the educitageifage coeflicient describes the degree to
which the inverted U-shape changes as a function of education. This coefficient, which
is ~-4.9, represents the change in the quadratic term for age for a one-unit increase in
educ. As education increases by one unit, the quadratic term for age decreases by 4.9,
creating a more inverted U-shape. The more negative a quadratic term ig, the more
it exhibits an inverted U-shape. Thus increasing values of educ are associated with a
greater inverted U-shape in the relationship between age and income. For those with
lower educations, the relationship between age and income tends to be more linear, and
for those with higher levels of education, the relationship between age and income is
more curved, showing a greater rise and fall across ages.
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5.4 Summary

This chapter illustrated the application of models involving interactions of two contin-
uous predictors. Section 5.2 investigated the interaction of educ and age, finding an :
interaction between these two variables. This interaction was interpreted by focusing b

on how the age slope changes as a function of education. It was also interpreted by 6

Continuous by continuous by
focusing on how the educ slope changes with increasing age. Section 5.3 illustrated a ’ - » .
model involving a linear continuous predictor interacted with a quadratic continuous oA CO!’]tII’!UOUS H’lte Fa CthﬂS

predictor. We saw that age {when treated as a quadratic term) interacted with educ §
in the prediction of income. This interaction showed that increasing education was
associated with a greater curvature in the relationship between age and income.

6.1 Chapteroverview . . . . . . . . .. .o 149

For more information about continuous by continuous interactions, I recommend 6.2 OVEIVIEW . o o e e 140
Aiken and West (1991) and Cohen et al. (2003). Also, Wess, Aiken, and Krull (1996) 6.3 Examples using the GSSdata . . .. ... ... .. ...... 154
provide an excellent introduction and example of the use of such models. 6.3.1 A model without a three-way interaction . . . . ... ... 154

832 A three-way interaction model . . . . .. .. ... ... .. 158
6.4 Summary ... ... L. e e 164

B Chapter overview

This chapter ¢ cxplorggﬂodcis that involve the interaction of three continuous linear pre-
dictors. This bullds upon the foundation of what we leatned about the interaction of
twotear predictors in section 5.2. That section illustrated the prediction of realrinc
from age, educ, and the interaction of those two variables. This chapter extends that
example by adding; a third continucus predictor, yrborn (the year the respondent was
born). This chapter will illustrate the prediction of realrinc from the three-way intermi;
action of age, educ, and yrborn. In exploring the three-way interaction, we will focusi(%
on the age by educ interaction, illustrating how the size of this interaction linearly
increases as a function of yrborn. Let's first consider such a model in the context of a
hypothetical example.

6.2 Overview

. e To illustrate the meaning of an interaction of three continuous variables, let’s first con-
) sider a model that does not include a three-way interaction. We can then contrast such a
model with cne that includes a three-way interaction. Consider the regression equation
shown in (6.1). This regression equation predicts realrinc from age, educ, yrborn, and
F I the two-way interactions of these predictors (age*educ, age*yrborn, and educ#*yrborn).
e SRR Note this equation does not include a three-way interaction of age*educ*yrborn.

redlrine = 3365394 + —58747age + —66053educ + —1712yrborn .
4+ 10%age*educ + 28age*yrborn + 33.2educ*yrborn (6.1)

149
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The predicted values from this eqnation are visualized using a three-dimensional
graph as shown jn figure 6.1. The variable age is plotted on the 2 (horizontal) axis,
educ is on the z axis (representing deptl), and the predicted value of realrinc is on
the y (vertical) axis. Separate graphs are used to represent yrborn. Reading from left
to right and then top to bottom, the graphs represent the years of birth 1830, 1940,
1950, and 1960. The lines with respect to age are drawn thicker to help accentuate
changes in the slope of the relationship between age aid the outcome as a function of
educ and yrborn. '

1930 1940

e

-
70000
. 20
o F i8
N
= 7 N 16
14
- educ
= v i2
1000030 40 50
age
1950 1960
// 7AA“MMH7 /
v 7 #
70000 ~—— s 70000
o 20 - 20
o // w f’— /
= ’ <18 E 18
- 18 > . 16
/1e4duc - 1e4d I
e F-E e e 1111 o K e - yp &
i000030 40 50 EGm}cﬁf) 40 50 -

age age

Figure 6.1. Three-dimensional graph of predicted values from model without the three-
way interaction

Focusing on the top left graph, for those born in 1930, the age slope is moderately
negative for those with 12 years of education, and it increases to being mildly positive
for those with 20 years of education. For those born 10 years later (in 1940, in the
top right graph), the age slope is mildly negative for those with 12 years of education
and moderately positive for those with 20 years of education. Note the pattern that
is emerging. The age slope grows more positive with increasing education. The same
pattern is illustrated for those horn in 1950 and 1960 (in the bottom left and bottom

6.2 Overview 151

right panels, respectively). Although it might be hard to judge visually, all fowr graphs
exhibit the same degree in the growth of the age slope as a fmction of educ. In other
words, the size of the age*educ interaction is the same acvoss the four graphs {(across
the levels of yrborn). This is because of the absence of a three-way interaction term.
Fhe threc-way interaction term would be the factor that would permit the agexeduc
interaction to vary across the levels of yrborn.

So, let’s now consider a mode! that includes a three-way interaction. Consider the
regression equation shown in (6.2). This regression model predicts realrinc from age,
educ, yrborn, the two-way interactions of these predictors (age*educ, age*yrborn, and
ednctyrborn), and the three-way interaction (age*educ*yrborn).

realrinc = —2004225 + 66407age -+ 313720educ + 1042yrborn
+ —8524age*educ 4 —34.Tage*yrborn
+ —161.62educ*yrborn + 4.43age+*eductyrborn (6.2)

The predicted values from this model are visualized in figure 6.2, with age on the
z axis, educ on the z axis, the predicted value of realrinc on the ¢ axis. Separate
graphs represent yrborn for the years of birth 1930, 1940, 1950, and 1960 shown from
jeft to right and then top to bottom.
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Figure 6.2. Three-dimensional graph of predicted values from model with the three-way
interaction

Comparing fignre 6.1 {without the three-way interaction) with figure 6.2 (with the
three-way interaction), we can get an overall sense of the contribution of the three-
way interaction. Let's begin to understand the three-way interaction by focusing on
figure 6.2. For those born in 1930 (the Lop left pancl), the age slope is mildly negative
for those with 12 years of education and remains mildly negative across the different
levels of education. Skipping forward to those born in 1960 {the bottom right panel), the
age slope is mildly positive for those with 12 years of education and is sharply positive
for those with 20 years of education. Looking across the panels from those born in 1930
(top left) to those born in 1960 (bottom right), we can see how the increase in the age
slope due to higher levels of education grows as the year of birth increases from 1930 to
1960. For those born in 1930, the age slope remains largely the same for all education
levels. By contrast, {or those born in 1960, the age slope increases considerably with
increasing levels of educ, In other words, the size of the age*educ interaction changes
as a function of yrborn. This is a result of, and a way to describe, the interaction of
age*educkyrborn.

L P )
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Three-dimensional graphs provide a useful mental model for visualizing the results.
However, such graphs can be difficult to read in terms of clearly seeing the exacl pattern
of results or being able to ascertain the predicted values for a given set of predictors.
Let’s see how these models can be visualized using two-dimensional graphs. Let's vi-
sualize figure 6.2 {in which there is a three-way interaction) using a two-dimensional
graph, as shown in figure 6.3. The variable age is plotted on the z axis and yrbern is
shown as separate panels. The variable educ is depicted using separate lines ranging
from 12 (shown at the bottom as a solid line) to 20 (shown at the top as dots). I could
have included a legend for educ but omitted it to save space.

Focusing on those born in 1930, the slope of the relationship between income and
age (that is, the age slope) is mildly negative for all levels of education. Jumping
forward to those born in 1960, the age slope is mildly positive for those with 12 years of
education (the solid line) and is sharply positive for those with 20 years of education (the
dotted line at the top). In 1960, the age slope increases considerably with increasing
education. We can compare how the age slope changes as a funetion of education for
those born in 1930 with those born in 1960. For those born in 1930, the age slope
remains mildly negative for all levels of education. By contrast, for those born in 18960,
the age slope grows increasingly positive with increasing levels of education. As we saw
in the three-dimensional graph, this two-dimensional graph illustrates how the age*educ
interaction changes as a function of yrborn, which is another way of saying that there
is an age*educ*yrborn interaction.
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Figure 6.3. Two-dimensional graph of adjusted means for model with the three-way
interaction :
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6.3 Examples using the GSS data

. regress realrinc c.age c¢.educ c.yrborn
> c.age#tc.educ c.agefc.yrborn c.educk#c.yrborn i.race, vce(robust)
e T T -

Let’s now illustrate a model with an interaction of three continuous variables using 3 Linear regression Number of obs = 11766
the GSS dalaset. This example predicts realrinc from age, educ, and yrborn. This i Eiobs; 11:1766) - éag{)ﬁg
example will build upon the example from section 5.2.2 that predicted realrinc from : R-squared - 0.1142
age and educ. That example focused on those aged 22 to 55 with 12 or more years of b Root MSE = 24595
education. In this example, we are further introducing the year of birth (yrborn). Let’s :
focus on those who were born from 1930 to 1 ‘ther restrict ag e be . Rebust
I 960 and further restrict age to be between L realrine Coef.  Std. Err. ¢ Pl (95% Conf. Intervall
30 and 55,
. age | -48960.89 8316.818  -5.89 0.000  -65263,24 -~32658.56
. use gss_ivrm _ : s educ | -61659.03 34481,43  ~1.T9 0.074  -120248.5  5930.414
. keep if (age>=30 & age<=6B) & (educ>=12} & (yrborm>=1930 & yrborn<=1960} i yrborn ‘| -1529.751 290.8206 ~-5.26 0.000 -2099,808 -959.6944
{39526 observations deleted} L
[ c.age#c.oduc 109.4449  18.74366 5.84  ©.000 72.70425  146.1856
6.3.1 A model without a th i i N
3. model without a three-way interaction S | c.yrborn 24.52853  4.280298 5.73  0.000 16.13844  32.91863
As we did with the hypothetical example, let’s begin with a regression model that P .,  G.educk
coneli o : . ) . : e, .92122 . 1. .0 -3. .22137
predicts realrinc from age, educ, yrborn, and the two-way interactions of these terms, b [ ©-yrborn 90.921 174986 rro.0.077 3.378932  6h.22
but not the three-way interaction.? This regression model is shown below and includes c Tace
the variable i.race as a covariate. Lo 2 ~-5274.182 464.2166 -11.36  0.000 -6184.123 ~-4364.24
H 3 -4616.737 1145.586 ~4,03  0.000 -6862.275 -2371.199
g _cons 3011547  570438.5 £.28 0.000 1893393 4129701

: We can visualize these results using the margins and the marginsplot commands.
| The marging command is used to obtain the fitted value for ages 30 and 55, for educa-
: tions of 12 to 20 years (in two-ycar increments}, and for the years of birth 1930, 1940,
. 1950, and 1960. The marginsplot command is then used to graph these values, placing
. age on the z axis, using separate panels for yrborn, and using separate lines for educ.
(Appendix B includes more details about the options yon can use to customize the look
of graphs using the marginsplot command.) The resulting graph is shown in figure 6.4,

1. Without this restriction, a substantial portion of the youngest ages would not be represented at alt
among those born in the early 1530s.

2. We will see a model in the next section that includes a three-way interaction so we can see the
effect of incliding the three-way interaction ferm,
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. margins, at(age={30 55) educ={12(2)20) yrborn=(1930(i0)1960)}
(output omitted)

. marginsplot, xdimension{age} bydimension(yrborn) plotdimension{educ, allsimple)
> legend(row(2) subtitle(Education)) recast(line) scheme(slmono)
> noci ylabel(, angle(0})

Variables that uniquely identify margins: age educ yrborn

Predictive Margins
yrborn=1930 -

yrborn=1940

Linear Prediction

30 55 30 55
age of respondent
Education
_ 'E 2 _____ 1 4 .‘ .......... 16
— =18 ———20

figure 6.4. Adjusted means from model without the three-way interaction, showing age
on the z axis, separate panels for year of birth, and separate lines for education

Let's first focus on the age siope for those with 12 years of education across each of
the years of birth. For thosé born in 1930, the age slope is mildly negative; in 1940, the
age slope approximately zero; in 1950, the age slope grows to be mildly positive; and in
1960, the age slope is moderately positive. These age slopes form a kind of baseline for
each of the years of birth. Let’s now consider how the age slope changes with respect
to these baseline values. For those born in 1930, the age slope gently increases as a,
function of educ. The same pattern is revealed for the other years of birth as well.
Although the people born in different years might show a different age slope at 12 years
of education, the increase in the age slope as a function of educ is the same across the
years of birth. In fact, the coeflicient for ¢.age#c.educ describes the exact degree of
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this increase. For every unit increase in educ, the age slope increases by 109.44. This
is true for all years of birth.

Let's see this {or ourselves using the margins command. The margins command
helow estimates the age slope for those with 14 and 15 years of education who were
born in 1930.

. margins, dydx{age) at(educ=(14 15) yrborn=1930) vsquish

Average marginal effects Namber of obs = 11765
Model VCE : Robust
Expression  : Linear prediction, predict()
dy/dx w.xr.t. : age
1._at 1 pduc = ia
yrborn = 1930
2..at 1 educ = 15
yrborn = 1930
Delta-method
dy/dx  Std. Err. z Prizi [95Y% Conf. Intervall
aga
—at
1 -38.59318  81.20956 ~1,09  0.275 ~247.761 70.5T463
2 20.85176  B6.72229 0.24 0.810 ~149,1208 190,8243

The age slope is 20.85 for someone with 15 years of education born in 1930 and is
—88.59 for someone with 14 years of education born in the same year. The difference
in these slopes is 109.44. Note how this corresponds to the ¢.age#c.educ coefficient.
This coefficient describes the increase in the age slope for a one-unit increase in educ,
Let’s make the same comparison, except for those born in 1940.

. margins, dydx{age) at{educ=(14 15) yrborn=1840) vsguish

Average marginal effects Number of obs = i1765
Modal VCE ¢ Robust
Expression : Linear prediction, predict()
dyfdx w.r.t. : age
1. at : educ = 14
yrborn = 1840
2, _at ¢ educ = ib
yrborn = 1940
Delta-method
dy/dx  Std. Err. z P>z} [96% Conf. Intervall
age
.at
£ 156.6922 46.03779 3.40  0.001 66.45975 246.9246
2 2686.1371  53.956642 4.93 0.000 160, 3649 371,9093
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The difference in the age slopes is the same for someone born in 1940, 266.1371 —

6.3.2 A three-way interaction model

. regress realrine c.agedOffiic.educléfic.yrhorn29 i, race, vee{robust)

1

156.6922 = 109.44. You would find that this difference is the same for those born : Linear regression Number of obs = 11766
in 1950 and 1960 as well. Another way {o say this is that the size of the ageffeduc i FC B, 11768) = 126'23
interaction is the same across levels of yrborn. This is becanse this model does not gf:guzrzd - 8:2245
include a three-way interaction of age#teduc#tyrborn. So, let’s now consider a model Root MSE = 24591 |
E with such a three-way interaction. {
; Robust
: realrine Goef, Std. Err. t  Prltl [96% Conf. Intervall
6.3.2 A three-way interaction model agedd | -60.45006  141.408  -0.43 01669  -337.6332 216,733
Let’s now consider a model that includes a three-way interaction of age, educ, and ! educts Z788.051  383.4937 73t 0.000 2086.34 3599762
yrborn when predicting realrinc. Such models can have a high degree of multi- c. agad0H
collinearity that can lead to numerical instability of the estimates and inflated standard - c.educif 22.31301  44.52773 0.50 0.616  -64.96784  109.5956
errors, ‘1o avold these problems, Aiken and West (1991) recommend centering the pre- i yrborn20 | -£8.92108 55.933  -1.50 0.112 ~108.560  20.71687
dictors prior to the analysis.> Let’s adopt this advice and center age, educ, and yrborn 3
before attempting an analysis that includes the interaction of these three variables. j c.agedO 5791 6.6ED896 4.87  ©0.000 19.4439 4567052
The following generate commands create centered versions of these variables, center- °.yriornas 52857 ’ ' ' ) '
ing them around values that I chose to ease the interpretation of the centered values. I c.educi6¥ .
: c.yrborn29 12.89238  17.90104 0.72 0.471  -22.19662  47.98139
. generate yrborn289 = yrborn - 1929 S~
. generate agedO = age - 40 ; c.educle#
. generate educlé = educ ~ 16 c.yrborn23 4.319807 2.19088 1.97 0.049 .0253188 B8.6142956
(39 mizsing values generated)
j race
The variable yrborn is centered by subtracting 1929, creating a new variable called g :ﬁizg'ggg ﬁzé‘lg{:g _i};'g? g'ggg :gégg'?gg :ﬁgg'ggi
yrborn29. This centered variable will range from 1 to 31, corresponding to the years : ' ) ’ ' ' '
of birth ranging from 1930 to 1960. The centered version of age is called aged0 and i _cons 33520.07 1215.006  27.60 0.000 31148.46  35911.69

contains the value of age minus 40. An age of 30 would be represented as —10 using the
centered version of age (aged0). Finally, the centered version of educ is called educis,

9

which contains educ minus 16. We could refer to 20 years of education via the centered . Th'e coefficient for the three-way 1,}'11;6173’(;{;1.011 8 mgmﬁca.nl; .{p = 0.049). .VVe 10&1,1
variable by specifying that educ16 equals 4. The rest of this section will use these i visualize the aged0#educiB#yrborn29 interaction in a variety of ways. We can focus on
centered varialiles for the analysisd - i . the age40 slope, the educis slope, or the yrborn29 slopfa. As we have don?. throughout,
this chapter, let’s focus our attention on the age slope (via the centered variable age40).
Let’s now form a model that predicts realrinc from aged0, educif, and yrborn29, i
the two-way interactions among these variables, and the three-way interaction of these !
variables. We could manually specify the main effect and interaction terms, or we can
specify c.agedO#titc. educlbitic. yrborn28, which is a Stata shorthand for the main
effects, the two-way interactions, and the three-way interaction of aged0, educi6, and
yrborn29. The variable i.race ig also included as a covariate.

P Note! Retaining main effects and two-way interactions

Looldng at the estimates from the regress command, you might notice that some
of the main effects and two-way interaction terms are not significant. Even though
they are not significant, it is important to retain these effects to preserve the
interpretation of the three-way interaction ferm.

3. Centering means to subtract a constant from the variable. One form of centering is called mean
. centering, in which the mean Is subtracted from the variable. =

- 4. You might wonder if the results of the following analysis would change il these variablge Were
centered around different values. For example, suppose age was centered around 45 instead of ;
40. The estimates regarding the three-way interaction would remain the same, whether age was i
centered around 40 or 45. The estimates of the adjusted means would remain the same as weli.
However, there would be diflerences in the maia effects and two-way interactions. These differences
are not consequential because these lower order effects are not important in the presence of the
three-way interaction term.
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Visualizing the three-way interaction

To visualize the three-way interaction, the margins command is first used to com-
pute the adjusted means as a function of aged0, educi6, and yrborn29. Then the
marginsplot command is used to graph the adjusted means.

The margins command is used to compute the adjusted means at different values of
the centered variable using the at () option. In terms of the uncentered variables, the
at{) option specifies ages 30 and 55, edueations from 12 to 20 in 2-unit increments, and
years of birth from 1930 to 1960 in 10-unit increments. Then the marginsplot command
is used to graph the fitted values, placing aged0 on the z axis, with separate lines for
educl6 and with separate panels for yrborn29. The graph is shown in figure 6.5,

. margins, at(aged0=(-10 15) aduci6=(-4(2)4) yrborn29={1(10)31))
(output omitted ) .

. marginsplot, xdimension(age4C) bydimension{yrborn29}

> plotdimension{educi6, allsimple) legend(row(2) subtitle{Education))

> recast(line} scheme(simono) noci ylabel{, angle{0)}

Variables that uniquely identify margins: aged40 educl8 yrborn29

Predictive Margins
yrborn29=1

yrborn29=11
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Figure 6.5. Adjusted means from model with the three-way interaction as a fanction of
age (2 axis}, year of birth (separate panels), and education (separate lines)
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Let’s focus on the age40 slope, beginning with those born in 1930 (that is,
yrborn2¢ = 1}. The age40 slope is mildly negative for those bormn in 1930, across
all levels of education. Jumping forward to 1960 {that is, yrborn29 = 31), the age40
slope is mildly positive for those with 12 years of education and is sharply positive for
those with 20 years of education. Looking across the years of birth, we can see that
increasing education is more highly related to an increase in the age40 slope as the year
of birth increases. Let’s use the margins command to obtain exact estimates of the
aged0 slope for specific values of educ16 and yrborn29 to further quantify what we see
in figure 6.5.

-
| .

Let’s begin by estimating the aged0 slope when yrborn28 is 1 and educi6 is —2
and —1. This corresponds to those born in 1930 with 14 and 15 years of education.

. margins, dydx(aged0) at{yrborn29=1 educif=(-2 -1)) vsquish

Average marginal effects Number of obs = 11765
Medel VCE : Robust
Expression : Linear prediction, predict(}
dy/dx w.r.t. : agedl
1. _at 1 educis = -2
yrhorn29 = i
2. _at ! educls = -1
yrhorn29 = 1
Delta-method
dy/dx  Std. Err. z p>lz| {95% Conf. Intervall
aged0
.at
1 ~81.16028 80.00272 ~1.01 0.310 -237.9627 75.64217
2 -54&,52667 102.6867 ~0.63 0.595 -255.7888 146.7366

The age40 slope is —81.16 for those with 14 years of education compared with
—54.53 for those with 15 years of education, a gain of 26.63 units. This illustrates that
8 one-unit increase in education leads to a 26.63-unit increase in the age40 slope for
those born in 1930

Let’s now obtain the same estimates for those horn one year later, born in 1031
This will allow us to assess the impact of a one-unit increase in yrborn29.
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. margins, dydx(age40) at{yrborn29=2 educi6={-2 -1)} vsguish

Average marginal effects Number of obs = 11765
Model VCE : Hobust :
Expression : Linear prediction, predict()
dy/dx w.r.t. : agedl
1. at : educlé = -2
yrhorn2d = 2
2. _at : educls = -1
yrborn29 = 2
Pelta-method
dy/dx  Std. Frr. z Priz| [95% Conf. Intervall
agad
.at
i -57.24268  76.23312 ~0.76 0,483 —206.6569 92.17149
2 -26.28917  98.05195 -0.2Y  0.788 ~218.46756 165.8891

Tor those born in 1931, the change in the aged0 slope due to a one-unil increase in
edncation is 30.95 (—26.29 — —57.24). This is larger than the value we found for 1930,
A one-unit increase in educ16 yields a larger increase in the aged0 slope for those horn
in 1931 {30.95) than for those born in 1930 (26.83). This is due to the inclusion of the
threc-way interaction.

Consider the value we oblain if we take 30.95 minus 26.63. We ohtain 4.32, which
corresponds to the coefficient for the age4O#teduc16#yrborn29 interaction. This inter-
action can be interpreted as the degree to which the age4( siope increases as a fanc-
tion of educi6 for every one-unit increase in yrborn29, For every ouc-unit increase in
yrborn29, the age40 slope increases by 4.32 units for every one-unit increase in educié.

Visualizing the age slope

We can visualize the contribution that educi6 and yrborn29 make with respect to
the age40 slope using the margins and marginsplot commands, First, the margins
comnand is used with the dydx(aged®) option to obtain estimates of the aged0 slope
for those with 12 to 20 years of education (in one-year increments) and those bors in
1930 to 1960 (in 10-year increments). The marginsplot connmand is then used to graph
the aged0 slope as » function of educl6 and yrborn29, as shown in figure 6.6.

i
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. margins, dydx(aged0) at(educl6=(-4{1)4) yrborn29=(1(10)31})
{output omitted)

. marginsplot, noci
Variables that uniquely identify margins: educl§ yrborm29

Average Marginal Effects of age4d

-500 1000 1500

Effects on Linear Prediction

0

educ1f

s YO 29=1 —— yrborn29=11
—t— yrborn28=21 —a— yrbom29=31

Figure 6.6. aged0 slope as a function of education (2 axis) and year of birth {separate
lines)

Focusing on those born in 1930 (that is, when yrborn29 equals 1), figure 6.6 shows
that the age40 slope increases only slightly as educ18 increases. Contrast this with those
born in 1960 (that is, when yrborn29 equals 31), where increasing leveis of educ16 are
associated with a considerable increase in the aged0 slope.

Note! Interpreting main effects and two-way interactions

In a model that includes a three-way interaction, it might be tempting to draw
conclusions regarding the main effects (for example, effect of age40, educi6, or
yrborn29) or the two-way interactions {for example, age4O#educ). However, in the
presence of the three-way interaction, these main effects and two-way interactions
are no longer meaningful and it is not Fuitful to dwell on the interpretation of
such effects. Ingtead, as illustrated in this chapter, the margins command can he
used to further understand the thres-way interaction.
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6.4 Summary

This chapter has iHustrated the application of models that inveolve the interaction of .

three continuous predictors. The visualization of these models using three dimensions :

was illustrated, as well as their two-dimensional counterparts. In these examples, we

saw how the age slope changes little as a function of educ for those born in the 1930s. P P art
By contrast, those born in the 1960s showed a much more rapid increase in the age slope
as a function of educ. We saw how to visualize this by showing the adjusted means on !
the y axis or by showing the age slope on the y axis.

For more information about the interaction of three continuous predictors, see J s C ategor cal pr e di C t ors
Aiken and West (1991). L

o Chapter 7 Categorical predictors.

Chapter 8 Categorical by categorical interactions.

Chapter 9 Categorical by categorical by cé,tegorica,l interactions.

| P This part of the book focuses on the interpretation of categorical predictors. This
B includes the interpretation of one categorical predictor, the interaction of two categorical
predictors, and the interaction of three categorical predictors.

Chapter 7 covers models involving one categorical predictor. This chapter introduces
the contrast command, a powerful tool for forming contrasts among the levels of
categorical predictors. Such contrasts are formed using contrast operators, which are
described and illustrated in this chapter. The chapter also illustrates the use of the
margins and marginsplot commands for computing and visualizing the mean of the
b outcome as a function of the categorical variable. The chiapter also describes the use of
' the pwcompare command for making pairwise comparisons among groups.

Chapter 8 covers models involving the interaction of two categorical predictors. The
emphasis of this chapter is how to visualize and interpret the interactions. This chapter
illustrates how to dissect two-way interactions using sitnple effects, simple contrasts,
partial interactions, and interaction contrasts. The contrast command is illustrated
for dissecting the interactions, and the margins and marginsplot commands are used
to display and graph the means associated with the interactions.

Chapter 9 covers models involving the interaction of three categorical predictors.
This chapter, like the previous chapter, emphasizes the visualization and interpretation
of the interactions, in this case focusing on the three-way interaction. Figures are used
to visually understand the three-way interactions and a variety of analytic and graphical
methods are illustrated for understanding three-way interactions.
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" 7.1 Chapter overview

This chapter covers models that involve categorical predictors. The emphasis is on
how to make contrasts among levels of the categorical predictor to answer interesting
questions regarding the differences among the categories. The contrast command is
used to illustrate how you can easily form contrasts of your choosing among the levels
i of a categorical predictor. ' '

167
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The chapter begins with a simple comparison of two groups using a ¢ test (see
section 7.2), followed by an example that includes a multigroup categorical predictor
along with additional predictors in section 7.3. That example introduces the use of
the contrast command and the concept of a contrast operator. Section 7.4 lists and
describes the contrast operators.

The following sections illustrate how contrast operators can be used to perform
reference group conirasts (see section 7.5), perform contrasts against the grand mean
{see section 7.6), compsre adjacent means {see section 7.7), compare each mean with
subsequent or previous levels (see section 7.8}, and make polynomial contrasts (see
section 7.9). The use of custom contrasts, for making any contrast of your choosing,
is illustrated in section 7.10 followed by a discussion of weighted contrasts (see sec-
tion 7.11).

The pucompare command, for performing pairwise comparisons, is covered in sec-
tion 7,12, Section 7.13 provides some caveats about the interpretation of confidence
intervals produced by the marginsplot cornmand. The chapter conciudes with a com-
parison of the anova and regress commands for the analysis of categorical predictors
{see section 7.14).

7.2 Comparing two groups using a t test

The simplest kind of cabegorical predictor has two levels. Examples of such two-level
predictors include gender (male versus female), treatiment assignment (treatment group
verstis control group), or whether one is married (married versus not married). Suppose
we are interested in comparing the happiness rating of people who are married with
those who are not married. We might hypothesize that those who are married would
be happier than those who are unmarried. Let’s explore this question using the G88
dataset.

. use gss_ivrm, clear

The variable happy7 indicates the happiness rating of the respondent on a 1 to
7 scale, where 7 is completely happy and 1 is completely unhappy. To compare the
average happiness between those who are married and unmarried, we can perform an
independent groups ¢ test, as shown below.?

1. Some might be bothered by analyzing a Likert scale like happy7 as though it were measured on an
interval scale. For the sake of these examples, let’s assume that happy?¥ is measured on an interval
scale.
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. ttest happy7, by{married)

Two-sample t test with equal variances

Group Obs Mean Std, Err.  Std. Dev. [9B% Conf. Intervall
Unmarrie 604 5,35596 .0426197 1.044982 5.272456 5.435465
Married 556 5.,705036 .0368763 8696302 5.632602 5. 77747
combined 1160 b6.B623276 .0287773 9801179 5.466815 5.678737
diff ~. 3480767 0567084 -.4603384 -.237813
diff = mean(Unmarrie) - mean(Married) t = -6.1b56
Ho: diff = 0 degrees of freedom = 1158
Ha: diff < 0 Ha: diff 1= ¢ Ha: diff > 0
Pr(T < t) = 0.0000 Pr(iT| > [ti} = 0.C000 Pr(T > t) = 1.0000

The ttest command shows that the average happiness is 5.356 for those who are
unmarried and 5.705 for those who are married. The difference between these means is
—{(.349, and that difference is significantly different from 0 {with a two-tailed p-value of
0.0000). The difference between these means is negative. We can interpret this result
to say that those who are unmarried are significantly less happy than those who are
married. We could also say that those who are married are significantly happier than
those who are unmarried. I belabor this point here because this issue will arise many
times throughout this chapter. The contrast of those who are unmarried versus married
is negative. Thus the mean of the first group {unmarried) is lower; the mean of the
second group {married)} is higher.

7.3 More groups and more predictors

We are seldom interested in simply comparing two groups in the absence of any addi-
tional predictors (covariates). Let’s extend the previous example in two ways. First, let’s
use a fve-level measure of marital status, which is coded: 1 = married, 2 = widowed,
3 = divorced, 4 = separated, and 5 = never married. Second, let’s include additional
predictors (covariates): gender (female), race, and age. We begin by testing the over-
all nult hypothesis that the average happiness is equal among the five marital status
groups:

Hy: pi1 = pig = pig = fba = U5

We can perform that test using the anova command (shown below) that predicts
happiness from marital status, gender, race, and age. Note that T included the i. prefix
before each of the categorical variables and the ¢. prefix in front of age to specify that
it is a continuous variable.?

2. T could have omitied the t. prefix in front of the eategorical variables because the anova command
assumes variables are categorical unless we specify otherwise. The inclusion of the ¢. prefix before
age is mandatory; not including the ¢. prefix wouid cause age to be treated as a categorical variahle.
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. anova happyT i.marital i.female i.race ¢.age

Number of obs = 1166 R-squared = 0.0488

Root MSE = .957826 Adj R-squared = 0.0422

Source Partial BS daf 1S F Prob > F

Model 53.9791041 8 6.74738301 7.35 0.0000

marital 47.156057 4 11.7890142 12.85 ¢.0000

ferale 3.8954776 1 3.8954776 4,25 0.0396

race 924493737 2 .462246868 0.50 ©.6043

age 5.32004967 1 5.32004967 5.80 0.0162
Residual 1052,29339 1147 .917431026
Total 1106,27245 1185 .957811681

Note! The anova and regress commands |

The previous analysis could have been performed using the regress command. In
fact, section 7.14 covers the use of the regress command for fitting the models
involving categorical predictors. 'T'he examples in this chapier (as well as chapters 8
and 9} will be illustrated uging the anova command because it produces compact
and space-saving output. '

!

The overall test of marital is significant (F = 12.85, p = 0.000). After adjusting
for gender, race, and age, we can reject the null hypothesis that the average happiness
is equal among the five marital status groups.

Let’s probe this finding in more detail. Suppose that our research lyypothesis (prior
to even seeing the data} was that those who are married will be happier than each of the
four other marital status groups. We can frame this as four separate null hypotheses,
shown below, in which the happiness of each of the other marital status groups (2, 3, 4,
and 5) is compared with the happiness of group 1 (married).

Hotl: g = 1y
Ho#2: ppg =
Ho#3: pg =
H0#4: s =

Let’s begin the exploration of these tests by using the margins command to compute
the adjusted mean of happiness by marital status. This output shows, for example, that
the adjusted mean of happiness (after adjusting for gender, race, and age} for those who
are married {group 1) is 5.70.
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. margins marital

Predictive margins Number of obs = 1166
Expression  : Linear prediction, predict(}
Delta-method
Margin  Std. Err. z P>|z| fo5% Conf. Intervall}
marital
1 5.698407  .0408098 139.63 0.000 5.618421 5.778392
2 5.245245  .1178389 44,51  0.000 5.014285 5.476205
3 6.199342 0684863 75.92 0.000 5.066114 5.333571
4 6.148789  .1647873 31.26  ©.000 4.825812 5.471766
& b.5426256 Q830837 B87.86 0.000 5.418984 5.666267

The marginsplot command can be used to make a graph of the adjusted means
and confidence intervals that were computed by the margins command. This produces
the graph shown in figure 7.1.

. marginsplot .
Variables that uniquely identify margins: marital

Predictive Margins of marital with 95% Cls
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Figure 7.1, Adjusted mean of happiness by marital status

Note! Interpreting confidence intervals

Figure 7.1 shows the adjusted mean of happiness at each level of marital status
along with a 95% confidence interval for each of the adjusted means. I{ is not
appropriate to use these confidence intervals for making inferences about the dif-
ferences between marital status groups. See section 7.13 for more details.
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The results so far have given some indirect support for our research hypotheses.
The averall test of marital is significant, and the pattern of means is consistent with
our hypothesis—the adjusted means of those who are married appear greater than the
means for the other groups. But Iet’s directly test the four null hypotheses based on our
research question—the happiness ratings for each group compared with those who are
married t0 determine if these differences are statistically significant. We can perform
such tests using the contrast command, as shown below. (I will discuss the syntax of
the contrast command shortly.)

. contrast r.marital

Contrasts of marginal linear predictions

HMargins : ashalanced
af F P>F
marital
(2 vs 1) 1 13.44 0.0003
3 wvs 1) i 39.38 ©.0000
(4 vs 1) 1 10.46 ¢.0013
(6 vs 1) 1 4,18 0.0411
Joint 4 12.85 0.0000
Residual 1147
Contrast  Std. Err. F9BY Conf. Intervall
marital
(2 vs 1) -.4531618 .123599 | -.B966673  —.2106563
(3 vs 1) -.499064  .0795273 -.6650994  -,3430287
(4 vs 1) ~.B4B617T .1698695 ~.8831036 -.2161317
(5 vs-1) ~. 1556781 .07T61828 ~.306263%  ~.(063082

This contrast command compares each marital status group with group 1 (adjust-
ing for gender, race, and age). The first test compares group 2 versus 1, comparing
those who are widowed versus married. The upper portion of the output shows that
this difference is statistically significant (F' = 13.44, p = (.0803). The lower portion
of the output shows the difference in the adjusted means for those who are widowed
versus married is —0.45 with a 95% confidence interval of —0.70 to —0.21. Those who
are widowed are significantly less happy than those who are married. Put another way,
those who are marvied are happier than those who are widowed. We can reject g+l
and say the results are consistent with our prediction that those who are married are
significantly happier.

Let’s now consider the output for the second, third, and fourth contrasts. These
test the second, third, and fourth null hypotheses. The contrasts of groups 3 versus 1, 4
versus 1, and 5§ versus 1 are each statistically significant (as shown in the upper portion
of the output). Furthermore, the difference in the means (as shown in the lower portion
of the output) is always negative, indicating that those who are married are happier
than the group they are being compared. We can reject the second, third, and fourth
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null hypotheses. Moreover, the results are in the predicted direction: those who are
married are happier.

Now that we afe ready to publish these excellent findings, we might want to include
a graph that visually depicts these contrasts. We can create such a graph using the
margins command followed by the marginsplot commmand,?® creating the graph shown
in figure 7.2. This graph illustrates the differences in the adjusted means (comparing
each group with those who are unmarried) along with the 95% confidence interval for
each difference. For example, the estimate of the difference in the adjusted means for
group 2 versus 1 is —0.45 and the 95% confidence interval is —0.70 to —0.21. This
confidence interval excludes zero, indicating that this difference is significant at the 5%
level.

. margins r.marital
Contrasts of predictive margins

Expression ! Linear prediction, predict()-
df chi2 P>chi2
marital
(2 ve 1) i 13.44 0.0002
(3 vs 1) 1 39.38 0.00060
(4 vs t) 1 10.46 0.0012
(6 vs 1) 1 4.18 0.0409
Joint 3 51.40 0.0060
Delta-method
Contrast Std. Err. {95% Conf. Intervall
marital
{2 wa 1) -.4531618 123599 ~-,6954814  -,2109122
{3 va 1) ~.498064  .0795273 -, 6540347  -.343:1934
{4 vs 1) ~. 5496177 1699605 -.8827617  -.2164836
{6 vs 1) -.166781  .0761826 -.3050961  -.0064659
. marginsplot

Variables that uniquely identify margins: marital

3. The marginsplot command cannot be used following the contrast command. So instead we use
the margins command followed by the marginsplot command.
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Contrasts of Predictlve Margins of maritaf with 95% Cls
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Figure 7.2. Contrasts of adjusted means to those who are married

In these examples, we specified r.marital afiér the contrast and margins com-
mands. You might be rightly asking: what is this r. prefix and what does it mean?
Stata calls this a contrast operator, and this is just one of many contrast operators thag
you can choose from. The r. contrast operator compares each group with a reference
group (which, by defauls, is group 1).

The r. contrast operator tested contrasts that corresponded to the null hypotheses
based on the research questions for this study. It compared the happiness of each group
with the reference group (married). There are many other kinds of questions that we
conld have asked, implying different kinds of contrasts among the groups. Fortunately,
Stata offers a wide variety of contrast operators that answer many interesting research
questions. These are described in the following section.
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Note! Margins and contrast output

The output of the margins and contrast commands are similar in many ways
but different in others. Let’s compare the output of the most recent contrast and
margins commands. The top portion of the output is the saimne for both commands
in that both provide significance tests of the specified contrasts. However, the
contrast command uses I tests, and the margins command uses x* tests. (This
is analogous to the difference between ¢ tests and z tests.) In the second portion of
the output, the estimates of the contrasts are the same, and the standard errors are
the same even though the margins command describes them as being computed
using the delta method. The confidence intervals are similar, but not the same.
This relates to the fact that the contrast command is obtaining the critical values
using an F' distribution or ¢ distribution, whereas the margins command is using
a x? distribution or z distribution. You will notice more differences between the
output of the contrast and margins commands when fitting nonlinear models
{for example, logit models). See chapter 18 for more details.

7.4 Overview of contrast operators

The examples I have shown so far have illustrated one of the contrast operators you can
use with the contrast and margins commands, the r. contrast operator. Table 7.1
provides an overview of the contrast operators that can be used with the contrast and
margins conmmands. This table provides a brief deseription of each contrast operator
and shows the section of this chapter in which each contrast operator is covered.t

4, The custom contrast operator is left empty in table 7.1, 1t takes the fonmn {varname numibist},
described in more detail in section 7.10.
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Table 7.1. Sutnmary of contrast operators

Operator Section Description

r. 7.5 differences from the reference (base) level; the default

g. 7.6 differences from the balanced grand mean

a. 7.7 differences from the next level (adjacent contrasts)

ar. 7.7 differences from the previous level (reverse adjacent contrasts)

h. 7.8 differences from the balanced mean of subsequent levels

' {(Hebmert contrasts)

j. 7.8 differences from the balanced mean of previous levels (reverse
Helmert contrasts)

p. 7.9 orthogonal polynomial in the level values

G- 7.9 orthogonal polynomial in the level sequence

7.10 custom contrasts

gu. 7.11 differences from the observation-weighted grand mean

hw. 7.11 differences from the observation-weighted mean of subsequent
levels

jw. 7.11 differences from the observation-weighted mean of previous lov-
els

pv. 7.11 observation-weighted orthogonal polynomial in the level values

qu. 7.11 observation-weighted orthogonal polynomial in the level se-
quence

The following sections cover each of these contrast operators in turn. Examples are
provided illustrating their usage and how to interpret the results. This discussion begins
with a more detailed discussion of the r. contrast operator in the following section.

7.5 Compare each group against a reference group

This section provides further examples illustrating the r. contrast operator for making
reference group contrasts. Let’s continue with the example from section 7.3 predicting
happiness from marital status, adjusting for gender, race, and age. The anova command
for that analysis is repeated below (the output is omitéed to save space).

. use gss_ivrm
h

. anova happy7 i.marital i.female i.race c.age
{output omiited)

7.5.1 Selecting a specific contrast Iy

o 7.5.1 Selecting a specific contrast

Suppose we wanted to focus only on the contrast of those who have never been married
to those who are married {group 5 versus 1}. We can specify the r5. contrast operator
and this yields a contrast of group 5 (the group we specified) compared with the reference
group (group 1}.

. contrast rh.marital, nowald effects
Contrasts of marginal linear predictions

Margins 1 asbalanced
Contrast Std. Err. t P>l [958Y% Conf. Interval]
marital
(5 vs 1) ~, 166781 0761826 ~2.04 0.041 —.30525639 -.0063082

Note! Contrast options

The previcus command included the nowald and effects options. These options
vield a concise printed output and will be frequently used in this chapter. Ap-
pendix C provides more details about these options, as well as other options you
can use with the contrast command.

1f we wanted only to compare those who are divorced with those who are married, we
could have specified r3.marital. This would have shown only the contrast of group 3
to group 1.

Suppose you wanted to focus on the contrast of group 3 to group 1 (divorced versus
married) and group 5 to group 1 {never married versus married). You can perform those
two contrasts by specifying the v (3 5). coutrast operator. This compares each of the
groups within the parentheses with the reference group {group 1}.
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. contrast r{3 5).marital, effects

Contrasta of marginal linear predictions

Maxgins : asbalanced
af F P>F
marital
(3 vs 1) 1 39.38 90,0000
(& vs 1) 1 4.18 0.0411
Joint 2 19.78 Q. 0020
Residual 1147
Contrast  Std. Err. t P>t [95% Conf. Intervall
marital
{3 vs 1) -.4990864 07956273 -6.28 0.000 ~.65560894 ~.3430287
{6 vs 1) ~-.15656781 .0761828 -2.04 0.041 ~.3062639 -.0063082

The output shows the test of the contrast of those who are divorced versus married
(3 versus 1), and the contrast of those who have never been married versus those who
are married (5 versus 1). The upper portion of the output includes the joint test of
these two contrasts (F' = 19.78, p = (L.00G0}. This jointly tests the contrast of grodps 3
versus 1 and 5 versus 1. In other words, this tests the equality of the means for groups
1, 3, and 5. This is a useful way to test the overall equality of the means for a subset of
groups.

7.5.2 Selecting a different reference group

Suppose that instead we wanted to compare each group with a different reference group.
For example, let’s compare each group with those who have never been married, group 5.
We can specify the rbb. contrast operator, which requests reference group contrasts
using group 5 as the baseline (reference) group.

. contrast rbb.marital, nowald effects
Contrasts of marginal iinear predictions

Margins : asbalanced
Contrast  Std. Exr. t P>t {95% Conf. Fntervall
marital
{1 va B) . 155781 .0761826 2,04 0.041 .(G063082 30562539
(2 vs 5) -.2973808 1446159 ~2.06  0.040 -.6811222 ~.0136394
(3 v& B) -.343283 0947271 -3.62 0.000 ~-.5291408  -,1574252
(4 vs B) -.3938368 JLTB1455 -2.24  0.026 -. 7394402 -, 048233

Each of these contrasts is statistically significant. For example, the contrast of those
who are separated versus those who have never been married (4 versus 5) is significant

i
]
i
i
!
1
i

7.6 Compare each group against the grand meai i7e

(p = 0.026). Those who are separated are significantly less happy than those who have
never been married.

-7.5.3 Selecting a contrast and reference group

You can both specify the reference group and specify the contrasts to be made at one
time. For exsmple, the contrast command below compares group 3 {divorced) with
group 5 (never married). People who are divorced are significantly less happy than
those who have never been married.

. contrast r3bb.marital, nowald effects

Contrasts of marginal linear predictions

Margins 1 asbalanced
Contrast  Std. Err. t P>t [95% Conf. Intervall
marital
(3 va B) -.343283 . 0947271 ~3.62  0.000 ~.5281408  -~.1574252

More than one specific contrast can be specified at once, through the use of paren-
theses. The contrast command below compares group 1 with group 5 and group 3
with group 5. People who are married are significantly happier than those who have
never been married (p = 0.041), but those who are divorced are significantly less happy
than those who have never been married {p = 0.000).

. contrast r{l 3)bb.marital, nowald effects

Coatrasts of marginal linear predictions

Margins : asbalanced
Contrast Std. Err. t P>t {96% Conf. Interval]
marital
(1 vs B) . 165781 LOT61826 2,04 0,041 . 0063082 . 3052539
{3 vs R) ~.343283 .0847271 -3.62 0,000 -.5291408  ~. 1574252

7.6 Compare each group against the grand mean

This section illustrates the g. contrast operator that compares each group with the
grand mean of all groups. This allows you to assess whether a particular group sig-
nificantly differs from atl groups combined. Continuing the example from the previous
section regarding marital status and happiness, a researcher might be interested in
comparing the mean happiness of each marital status group with all other groups. This
allows you to assess if the mean of each group is significantly different from the mean
of the remaining groups.
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Let’s begin the analysis by using the G8s dataset and running the anova command
below. The output of the anova command is the same as that from the previous section,
80 it is omitted.

. use gss_ivrm

. anova happy? i.marital i.female i.race c.age
{output omitted )

The following margins command uses the g. contrast operator to compare the mean
happiness of each marital status group with the grand mean.’

. margins g.marital, contrast(nowald effects)
Contrasts of predictive margins

Expression : Linear prediction, predict()
Delta-method
Contrast  Std. Frr. z pPrizl [95% Conf. Intervall
marital

(1 vs mean) .331524%  .0541916 6.12  0.000 2263113 .4377386
(2 vs mean) -.121636% 1035071 -1,18  0.240 ~.324507 .0812332
(3 vs mean) -.1675381  .0685289 -2.44 0.014 ~. 3018532 -.033225
(4 vs mean) -.2180927  .13b0667 -1.61 0.108 ~.4828185 . 046633
(6 vs mean) .1757439  .0708618 2.48 0.0i3 .0368573 . 3146305

Note! The contrast(} option

The previous margins command included the contrast (nowald effects) option.
This yields very concise output and will be [requently used in conjunction with the
margins command. This also illustrates how you can supply options that would
be used in conjunction with the contrast comnmand via the contrast() option
on the margins command. See appendix A for more examples of options that you
can use with the margins command.

The adjusted mean of those who are married (group 1) is 0.33 units greater than the
grand adjusted mean and this difference is significant. The contrasts of group 3 versus
the grand mean and group 5 versus the grand mean are also significant.

. Let’s now graph these differences, along with the confidence intervals, using the
marginsplot command, shown in figure 7.3. When the confidence interval for a contrast
excludes zero, the difference is significant at the 5% level.

5.1 chose the margins command (instead of the contrast command) so we can graph the resulis
using the marginsplot command.
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. marginsplet, yline(0)
Variables that uniquely identify margins: marital

Contrasts of Predictive Margins of marital with 95% Cls
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Figure 7.3. Confrasts comparing each group with the grand mean

7.6.1 Selecting a specific contrast

Suppose we only wanted to focus on the contrast of those who are married {group 1)
compared with the grand mean. Using the g1. contrast operator, only the contrast of
group 1 to the grand mean is performed.

. contrast gl.marital, nowald effects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Frrx. % P>t [95Y% Conf. Intarvall
marital
(1 va mean) . 3315249 .0541916 6.12  0.000 .2251991 .4378508

As we have seen previously, we can use parentheses to specify more than one contrast.
In the example below, we compare the first group with the prand mean, and we compare
the third group with the grand mean,
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» contrast g(1 3).marital, nowald effects command and the marginsplet command to display and graph the predicted mean of

Contrasts of marginal linear predictions pain by dosegrp. The graph of the means is shown in figure 7.4.

Margins : asbalanced
. margins dosegrp
Contrast  Std. Err. t P2t [96% Conf. Intervall Adjusted predictions Number of obs = 180
. Expression : Linear predictien, predict()
marital
(1 vs mean) .331524%  .0541916 6.12  0.000 .2251591 . 4378508
(3 vs mean) -.1675391  .0685289  -2.,44 0.0156  -.3019861 -.0330832 Delta-method
Hargin  Std. Err. -1 iz £96% Conf. Intervall
dosegrp
1 71.83333  1.911982 37.57  0.000 68.08592  75.58075
H 2 70.6  1.911982 36.93  0.000 66.852568  74.34742
7.7 Compare ad.lacent means 3 72.13333  1.911982 37.73  0.000 68.38502  75.88075
. L. 4 70.4  1.911982 36.82 0.000 66.65268 74.14742
This section illustrates contrasts that compare the means of adjacent groups, for ex- 5 54.7 1.811982  28.61 0.000 50.95258  58.44742
ampie, group 1 versus 2, group 2 versus 3, group 3 versus 4. These kinds of contrasts 6 48.3  1.911982 256,26 0.000 44.55258  52.04742
are especially useful for studies where you expect a nonlinear relationship between an
. marginsplot

ordinal or interval predictor and outcome. For example, consider a hypothetical study
about the dosage of a new pain medication where the researchers expect that at a cer-
tain dosage level the effects of the medication will kick in and lead to a statistically _
significant reduction in pain. To study this, people in pain are given different dosages T Adjusted Predictions of dosegrp with 95% Cls

Variables that uniquely identify margins: dosegrp

of the medication and their pain level is measured on a 100 point scale, where 100 is 3
the worst pain and 0 is no pain. The medication dosages range from 0 mg to 250 mg
incrementing by 50 mg, yielding six dosage groups: 1) 0 mg, 2) 50 mg, 3) 100 mg, 4) -
150 mg, 5) 200 mg, and 6) 250 mg. The most general null hypothesis that could be ™~
tested is that the average pain is equal across all six dosage groups: P
z
i
Hyr py = g = p3 = fg = s = Y T8
[
Let’s begin by testing this overall hypothesis. The dataset for this example, pain.dta, 5
is used below. The outcome variable is pain. The dosage variable is dosegrp and is Q-
coded: 1= 0 mg, 2 = 50 mg, 3 = 100 mg, 4 = 150 ing, 5 = 200 mg, and 6 = 250 mg.
The anova command is used to predict pain from the dosegrp categories.
[=
=+
; Zero (gontrol 507 100 mg 150 200 250
» use pain ero feontel " Med?g;ﬁondosagegroﬂg ™ e
. anova pain i.dosegrp
Fumber of obs = 180 R-squared = 0.4602
Root: MSE = 10,4724 Adj R-squared = 0.4447 Figure 7.4. Mean pain rating by desage group
Source Partial 83 df M3 F Prob > F
Model | 16271.6944 5 3264,33889 29.67 0.000C ol For this study, the research question of interest focuses on the test of each dosage
dosegrp | 16271.6944 & 3954.33889 29,67 0.0000 against, the previous dosage to determine the dosage that leads to a statistically signi

icant decrease in pain. This leads us to five specific null hypotheses.
Residual 19082.,6333 174 109.670307 ’

Total 35354.3278 173 197.580211

The test assoclated with dosegrp tests the null hypothesis above. The F value is i
29.67 and is significant. We can reject the overall null hypothesis. Let’s use the margins i -
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[:fg#] DM T 2
Ho#t2: g =y
Ho#3: pg =
Ho#td: pg = pis
Ho#b: ps = g

Let’s now test each of the hypotheses using the contrast command with the a. con-
trast operator to compare each dosage with the adjacent (subsequent) dosage.

. margins a.dosegrp, centrast(nowald effects)
Contrasts of adjusted predictions

Expression : Linear prediction, predict()

Belta-method
Contrast  Std. Err, 2 Prlzl [96% Conf. Intervall
dosegrp

(1 vs 2) 1.233333 2.703052 ¢.46 0.648 -4.066314 6.532081
(2 vs 3) -1.533333 2.7063952 -0.57 0.571 -6,832981 3.766314
(3 vs 4) 1,733333 2.703952 0.64 0.521 ~3.566314 7.032981
(4 vs 5) 15.7 2.703952 5.81 G.000 10.40035 20.999656
(5 vs 6) 6.4 2.703962 2,37 0.018 1.1003562 1%.,69965

The contrast of groups 1 versus 2, 2 versus 3, and 3 versus 4 are each not significant.
The contrast of group 4 versus 5 {150 mg versus 200 mg) is significant (p = 0.000).
Likewise, the contrast of group 6 versus 5 (250 mg versus 200 mg) is also significant
{p = 0.018}.

The output also shows the estimated difference in the means as well as the confidence
interval for the difference. For example, the difference in means between groups 4 and
5 (150 mg versus 200 mg) is estimated as 15.7 with a 95% confidence interval of (10.40,
21.00). Because we used the margins command to estimate these differences, we can
graph the differences using the marginsplot command, The resulting graph js shown
in figure 7.5.
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. marginsplot, yiine(0)
Variables that uniquely identify margins: dosegrp

Contrasts of Adjusted Predictions of dosegrp with 95% Cis
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Contrasts of Linear Prediction
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Medication dosage grougp

-0

\ ' Figure 7.5. Contrasts of each dosage to the previous dosage

Figure 7.5 visually presents the results from the margins command, It shows that
the adjacent group contrasis for groups 1 versus 2, 2 versus 3, and 3 versus 4 are not
significant. I also shows that the contrasts for groups 4 versus 5 and 5 versus 6 are
significant. This pain medication appears to become effective with the dosage given to
group 9, 200 mg.

7.7.1 Reverse adjacent contrasts

In locking at the estimated differences in the means from the previous section, I notice
that the contrasts focus on the contrast of a lower dose to a higher dose. For example
the contrast of group 1 to group 2 compares 0 mg with 50 mg. The results might be
clearer if we reverse the order of the contrasts, The ar. contrast operator, shown below,
provides adjacent group contrasts in reverse order.

O —
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. contrast ar.dosegrp, nowald effects
Contrasts of marginal linear predictions

Chapter 7 Categorical predictors

Margins 1 asbalanced
Contrast  S5td, Err. t P>sl {95% Conf. Intervall
dosegrp

(2 vs 1) ~1.233333 2.703952 -0.46 0.649 -~6.5670089 4.103433
(3 vs 2) 1.633333  2.703952 0.57T 0.571 ~3.803433 6. 870099
(4 vs 3) ~-1.733333 2.703952 -0.64 0.522 ~7.070089 3.603433
(5 vs 4) -15.7  2.703952 -6.81 .000 -21.03677 -10.36323
(6 vs &) -6.4  2.703952 -2.37 (.019 ~11,73677T ~1.063234

By supplying the ar. contrast operator, the contrasts are formed in reverse or-
der, comparing the higher group (dosage) with the adjacent lower group (dosage). By
comparing each group with the previous group, the difference in the means can be
interpreted as the reduction in pain comparing the higher dosage with the lower dosage.

7.7.2 Selecting a specific contrast

‘When making adjacent group contrasts, you can select a specific contrast. For example,
using the a. contrast operator, we can specify particular contrasts of interest. We can
select the contrast of group 1 versus its adjacent catepory (group 2} as shown below,
Note that the al operator contrasts the first group to its adjacent group. If we had
specified a8, this would contrast group 3 to the subsequent category (group 4).

. contrast al.dosegrp, nowald effects

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err, t P>iti [98% Conf. Intervall
dosegrp
(1 vs 2) 1.233333  2.703952 0.46 0,649 ~4,103433 6. 570099

We can also select contrasts using the ar. conlrast operator. The ar. contrast
operator forms contrasts with the previous group, so specifying ar3. (as shown below)
contrasts group 3 with the previous group (group 2). :

. contrast ard.dosegrp, howald effects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. t Prlt| [96% Conf, Intervall
dosegrp
{3 vs 2) 1.533333 2.703952 0.57 0,571 ~3.803433 6.870099
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We can combine selected contrasts as well. Suppose we wanted to test the equality
of the mean pain ratings for the first four groups. The individual contrasts of the
adjacent means suggest that the overall test of the equality of these means would be
nounsignificant, but we have not formally performed such a test. Let’s perform this test
using the contrast command, as shown below.

. contrast a{i 2 3).dosegrp
Contrasts of marginal linear predictions

Margins + asbalanced
df F P>F
dosegrp
(1 vs 2) i 0.21 0.6489
(2 vs 3) 1 0.32 0.5714
(3 vs 4) i 0.41 0.5223
Joint 3 0.21 0.8918
Residual 174
Contrast  Std. Err. [96% Conf. Intervall
dosegrp
{1 vs 2) 1.233333  2.703952 -4,103433 6.570099
{2 vs 3) -1.533333 2,703952 -6.870099 3.803433
{3 vs 4) 1.733333  2.703952 -3.603433 7.070098

This contrast compares groups 1 varsus 2, 2 versus 3, and 3 versus 4. Each of these
contrasts is individually nonsignificant, but let’s focus on the joint test. That test is
not significant (p = (.8918). The joint test simultaneonsly tests all specified contrasts,
providing a test of the mill hypothesis of the equality of the means for groups 1, 2, 3,
and 4. We could cite this statistical test to indicate that the test of the equality of the
pain ratings for the first four dosage groups was not significant.

7.8 Comparing the mean of subsequent or previous levels

This section describes contrasts that compare each group mean with the mean of the
subsequent groups (also known as Helmert contrasts), 1t also illustrates contrasts that
compare each group with the mean of the previous groups (also known ag reverse Helmert
contrasts). For example, cousider a follow-up to the pain study described in section 7.7.
The previous study focused on the Jowest dosages needed to achieve significant pain
veduction. This hypothetical study focuses on determining the dosage at which no
significant pain reductions are achieved. The participants in this study all suffer from
pain and are given one of six different medication dosages: 300 mg, 400 mg, 500 mg,
600 mg, 800 mg, or 1000 mg. In this example, the variable dosage contains the actual
size of the dosage {(in milligrams), values 300, 400, 500, 600, 800, or 1000. The dataset
for this example, pain2.dta, is used below, and the tabulate command shows the
tabulation of the variable dosage.
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. use pain2

» tabulate dosage

Chapter 7 Categorical predictors

Medication
dosage in

mg - Freq. Parcent Cum,

300 30 16.67 16.67

400 30 16.67 33.33

500 30 16.67 50.00

600 30 16.67 66.67

800 30 16.67 83.33

1000 30 16.67 100.00

Total 180 100.00

The averall nuil hypothesis regarding dosage is that the average pain is equal across

all six dosage groups:

Hy: paoe = prago = M500 == {2600 =% H8o0 = 11000

Let’s begin by testing this overall null hypothesis using the anova command below.

. use pain2

. anova pain i,dosage

Number of obs

i

180 R-squared = 0. 205?

Root MSE = 10,5056 Adj R-squared = (,i824

Source Partial 88 df M8 F Prob > F

Model 4958, 86667 5 991.773333 8.99 G.0000

dosage 4958, 86687 5 991.773333 8,99 G. 0000
Residual 19204,1333 174 110.388582
Total 24163 179 134.988827

We can reject. the overall null hypothesis of the equality of the six means (F' = 8.99,

» = 0.000).

Let’s use the margins and marginsplot commands to show and graph the means
by the six levels of dosage. The graph of the means is shown in figure 7.6. Note how
the spacing of the dosages on the x axis reflect the actual dosage.

7.8 Comparing the mean of subsequent or previous levels

. margins dosage

Adjusted predictions Humber of obs = 180

Expression  : Linear prediction, predict(}

Delta-method
Margin  Std. Err. z P>lzl| [98% Conf. Intervall
dosage
300 43.83333 1.81806 22.85 0.000 40.0740% AT .59266
400 3r.6 1.91806 19.80  0.000 33.84067 41..356933
500 31.86687 1.91806 16.61 G.000 28.10734 36.62599
600 29.63333 1.51806 16.45  0.000 25.87401 33.39266
800 30.63333 1.51806 15.87 C.000 26.87401 34.39266
1000 29,43333 1.91808 15,36 0.000 25.67401 33.192686
. marginsplot

Variables that uniquely identify margins: dosage
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Figure 7.6. Mean pain rating by dosage

185

For this study, we want to establish the dosage threshold where no statistically
significant pain reduction is achieved when compared with higher dosages. Thus the
mean pain rating at each dosage is compared with the mean pain rating for all the
higher dosages. At some dosage, the pain rating will not be significantly different from
those receiving higher dosages. We can express this using the following mull hypotheses:

Ho#1: pgoo = p>300
Hy##2: pago = fi>a00
Ho#3: pis00 = pe>s500
Hy#4: psoo = fe>600
Ho#b: prgon = [hooo
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Let’s now test each of the null hypotheses below using the margins command com-
bined with the h. contrast operator.

. margins h.dosage, contrast(nowald pveffects)
Contrasts of adjusted predictions

Expression : Linear prediction, predict()

Delta-method
Contrast  Std. Err, z Prlezl
dosage

(300 vs > 300) 12 2.101129 5.71 0,000
(400 vs > 400) 7.208333  2.144456 3.36  0.001
(500 vs > 500) 1.966667 2,214784 0.89 0.375
{600 vs > 600) -4 2,340134 -0.17  0.865
(800 vs 1000) 1.2 2.712548 0.44  0.858

The h. contrast operator compares the mean of each group with the mean of the
subsequent groups. The comparisons are specified in terms of the actual dosage, for
example, (300 vs > 300). The contrast of those receiving 300 mg to those receiving
more than 300 mg is significant (p == 0.000), as is the contrast of those receiving 400 mg
o those receiving more than 400 mg {p = 0.601). The contrast of those receiving 500 mg
to those receiving more than 500 mg is not significant (p = 0.375). All subsequent
contrasts are also not significant. Referring to the null hypotheses, we would reject the
first- and second null hypotheses, and we would not reject the third through Afth null
hypotheses. In other words, those receiving 400 mg experience significantly more pain
than those receiving 500 mg or more. Comparing those recciving 500 mg with those
receiving 600 mg or move, there is no statistically significant difference in pain.

We can visualize these contrasts using the marginsplet command, as shown below.
'T'his creates the graph in figure 7.7, which shows each of the contrasts with a confidence
interval. When the confidence interval for the contrast excludes zero, the difference is
significant at the 5% level. (The xlabel() option is used to make the labels of the 2
axis more readable,)

7.8.1 Comparing the mean of previons levels 191

. marginsplot, yline(G) xlabel(, angle(45)}
Variables that uniquely identify margins: dosage

Contrasts of Adiusied Predictions of dosage with 95% Cls
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Figure 7.7, Mean paiu rating by dosage

7.8.1 Comparing the mean of previous levels

We have seen how the h. operator compares the mean of each group with the mean of
the subsequent groups. You might be interested in making the same kind of contrast,
Lut in the reverse direction—comparing the mean of each group with the mean of the
previous groups. The j. contrast operator is used for such contrasts.

Although it does not make much sense in the context of this example, the contrast
comipand is shown below ilustrating the use of the j. contrast operator.

. vontrast j.dosage, nowald pveflfects
Contrasts of marginal linear predictions

Margins i asbalanced

Contrast  5td. Bryr. t Pritl
dosage

(400 vs 300D ~6.233333  2.712648 -2.30 0.023
(500 vs < BOO) ~-8.85 2.349134 -3.77  0.000
(600 vs < 600) ~8§.133333 2.214784 -3.67 0,000
(800 vs < 800) -5.1  2.144456 -2.3%8  0.018
(1000 vs <1QDO) -5,28 2.101129 -2.861 0.013
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When nsing the j. contrast operator, the mean of each group is compared with the
mean of the previous groups. In this case, all the contrasts are significant.

7.8.2 Selecting a specific contrast

Refurning to the h. contrast operator, lot’s illustrate how you can select specific con-
trasts. Say that we wanted to {focus only on the contrast of those whose vatue of dosage
was 400 to those who have higher values of dosage. We can specify h400.dosage as
shown in the contrast command below,®

. contrast h400.dosage, nowald pveffects

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Btd. Err, t P>t
dosage
(400 ws >400) 7.208333 2.144456 3.36 0.001

Alternatively, we might want to focus only on the contrasts of 400 mg versus the
subsequent groups and 500 mg versus the subsequent groups. We can perform these
contrasts, as shown below.

. contrast h(400 500).dosage, nowald pveffects

Contrasts of marginal linear predictions

Margins 1 asbalanced
Contrast  Std. Err. t P>it!
dosage
(400 vs >400) 7.208333  2.144466 3.36 0.001
(500 vs >500) 1.966667  2,214784 0.89 0.376

This selection process cail be used with the j. operator as well. If we wanted to
select the contrast of 500 mg versus the mean of the previous groups, we could specify
J500 . dosage, as shown below.

. contrast j500.dosage, nowald pveffects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. t Prlt|
dosage
{500 vs <500) ~8.856  2.349134 -3.Y7 0.000

6. We specify h400. because that is the actual value stored in the variable dosage. Specifying the
contrast in this way is related to the coding of the variable dosage and not becanse we are using
the k. contrast operator.
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7.9 Polynomial contrasts

Let's consider the use of polynomial contrasts for assessing nonlinear fvends (for ex-
ample, quadiatic, cubic, or quartic). Let's refer back to the example from section 7.7
that looked at the relationship between the dosage of pain medication and pain ratings
using the pain. dta dataset. In that dataset, the medication dosages ranged from ( mg
to 250 mg and werce recorded in the variable dosegrp. This variable was coded: 1 =
0 mg, 2 = 50 mg, 3 = 100 mg, 4 = 150 mg, § = 200 mg, and 6 = 250 mg. Let's use
the pain.dta dataset followed by the anova command to predict pain from 1.dosage.
The anova oufput is omitted o save space.

. use pain

. anova pain i.dosegrp
(output omitted)

. We can specify p.dosegrp on the contrast conmnand to compute tests of polynomial
trend with respect to dosegrp. (The noeffects option is used to save space and focus
on the results of the Wald tests.)

. contrast p.dosegrp, noeffects

Contrasts of marginal linear predictions

Hargins . asbalanced

df F PF
dosegrp

{linear) 1 109.12 0.0000
(guadratic) 1 29.25 0.0000
(cubic) 1 0.00 0.9824
(guartic) 1 8.39 0.0043
(quintic) 1 i.62 0.2048
Joint B 29.67 0.0000

Residual 174

The test of Hnear trend is significant (F' = 109.12, p = 0.000), and the test of
guadratic trend is also significant (£ == 29.25, p = 0.000). The test of cubic trend is not
significant, but the test of quartic trend is significant (¥ = 8.39, p = 0.0043).

Suppose you wanted to fit the relationship between a predictor and outcome using
a linear term and wanted to assess whether there are significant nounlinear trends in the
relationship between the predictor and outcome. You can use the contrast command
to test only the nonlinear terms, as shown helow. The joint test of all the nonlinear
terms (powers 2 through 6) is significant (I" = 9.81, p = 0.0000). In such a case, it
would be inadvisable to fit the relationship between the predictor and outceme using
only a linear fit.
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. contrast p{2/6).dosegrp, noeffects

Contrasts of marginal linear predictions

Margins 1 asbalanced

df F P>F
dosegrp

(quadratic) 1 29.25 0.0000
(cubic) 1 .00 0.9824
(quartic) 1 8.39 0.0043
(quintic) 1 1.62 0.2048
Joint 4 9.81 0.0000

Rasidual 174

The p. contrast operator assumes that the levels of desegrp are equidistant from
each other. Indeed, the levels of dosegrp range from 0 mg to 250 mg in 50 mg incre-
ments. Let’s consider an example using the pain2.dta dataset (from section 7.8) where
the levels of dosage were not equidistant, In the pain2.dta dataset, the dosages were
recorded as the actual dosage in milligrams: 300, 400, 500, 600, 800, or 1,000, The
pain2.dta dataset is used below, and the anova command is used to predict pain from
the dosage groups. The output of the anova command is omitted to save space.

. use pain2

. anova pain i.dosage
(output omitted)

The contrast command is nsed, applying the q. contrast operator to desage. This
tests the polynomial trends based on the actual dosage, aceounting for the differing gaps
among the levels of dosage.

. contrast g.dosage, noeffects
Contrasts of marginal linear predictions

Margins ¢ asbalanced

df F P>F
dosage

(linear) 1 35.14 0.0000
(quadratic) 1 8.78 0.0035
(cubic) 1 0.31 0.5791
(guartic) 1 0.69 0.4072
(quintic) 1 0.00 0.9503
Joint 3 8,99 0.0000

Residual 174

The test of linear and quadratic trends are significant, whereas the cubic, guartic,
and quintic trends are each individually not significant. Let’s form a test of only the
cubic, quartie, and quintic trends using the contrast command below.

e
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. contrast g(3/6).dosage, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

daf F P>F
dosage

(cubic) 1 0.31 0.5791
(quartic) 1 0.69 0.4072
(gquintic) 1 Q.00 0.9603
Joint 3 0.33 0.8006

Residual 174

The joint test of the cubic, quartic, and quintic trends is not, significant (I = 0.33,

= (.8005). These tests show that there are significant linear and quadratic trends

in the relationship between pain and dosage. In addition, the joint test of the cubic,

quartic, and quintic trends is not significant. Altogether, these tests suggest that we
could be justified in modeling pain as a linear and quadratic function of dosage.

Tip! Minding your Ps and Qs

In this example, the levels of dosage are not equidistant, and we would have
obtained different results by specifying p.dosage compared with specifying
q.dosage. In the previons example, where the levels of dosegrp were equidis-
tant, specifying p.dosegrp yiclds the same results as specifying q.dosegry.

7.10 Custom contrasts

In sections 7.5 to 7.9, we have seen several contrast operators that can be used to form
contrasts among the levels of a categorical variable. Specifically, we have seen the r.,
a.,ar., g., h., 3., p., and q. contrast operators. These contrast operators aulomate
the process of forming most of the kinds of contrasts you might make. For those times
when you want to make another kind of contrast, you can specify a custom contrast.
Let’s illustrate the use of custom contrasts using the analysis we saw in section 7.3.
Using the GSS dataget, let’s predict happiness from marital status, gender, race, and
age. The output from the anova command is the same as shown in section 7.3, so it is
omitted to save space.

. usa gss_ivrm, c¢lear

. anova happy’ i.marital i.female i.race c.age
(output omitted }

Let’s begin by illustrating how to perform custom contrasts using simple exmnples
that compare one group with another group. For the first example, let’s compare the
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mean of group 1 {married) with group 5 (not married). The custom contrast is enclosed
within curly braces by specifying the variable name followed by the contrast coefficients.
The contragt coefficients map to the levels (groups) of the variable: Tn this example, the
contrast coefficient of 1 is applied $o group 1, and ~1 is applied to group 5. (A contrast
cocficient of 0 is applied to groups 2, 3, and 4.) The result is a contrast of group 1
minus group §. The contrast command computes difference in the adjusted means for
group 1 versus group 5 as (116 and that difference is significant.

. contrast {marital 1 0 0 O -1}, nowald effects
Contrasts of marginal linear predictions

Margins 1 asbalanced
Contrast 3td. FErr. t P> %] [95% Conf. Intervall
marital
(1) .165781 0761826 2,04  0.041 . 0063082 . 3052539

Let’s switch the above contrast. Lel’s compare group 5 (not married) with group 1
{married), as shown below. Note how the results are the same as the previous results,
excepl that the sign of the contrast changes from positive to negative,

. contrast {marital -1 0 0 0 1}, nowald effects
Contrasts of marginal linear predictioms

Margins : asbalanced
Contrast  Std. Err. t Pyt [95% Conf. Intervall
marital
(1) -.1B65781 .OT61826 ~2.04 0.041 -.3062539  -.0063082

Now let’s compare those who ase divorced (gronp 4) with those who arc separated
{group 3). We perform this contrast by using a contrast coefficient of 1 for group 4
and —1 for group 3. The difference in the adjusted means for group 4 versus group 3 is
~{.05; this test is not significant (p = 0.777).

. contrast {marital ¢ ¢ -1 i 0}, nowald effects
Contrasts of marginal linear predictions

Margins 1 agbalanced
Contrast  Std. Err, t Pt 195% Conf. Intervall
marital
(1) ~. 0508536 .1784857 -0.28 0.777 -. 4007488 2996416

All the above contrasts could have been performed using the r. contrast operator
but were useful for getting us familiar with how to specify custom contrasts. Let’s
now consider a contrast that cannot be performed with one of the standard contrast
operators. Say that we want o compare those who are married {(group 1} with the

o et 1o
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average of those who are separated and divorced (groups 3 and 4). We can form that
contrast as shown below. The contrast is statistically significant. The adjusted mean
for group 1 is significantly different from the average of the adjusted means for groups
3 and 4. Pul another way, the adjusted mean for group 1 minus the average of the
adjusted means of groups 3 and 4 equals (152, and that contrast is significantly different
from 0.

. contrast {marital 1 0 -.5 -.5 0}, nowald effects

Contrasts of marginal linear predictions

Hargins 1 asbalanced
Contrast  Std. Err. t P>lt] [96Y Conf. Intervall
marital
(1) .5243409 .0581978 5.34 0.000 .3316733 L 7170084

Suppose we want to compare those who are married (group 1) with the average of
those who ave widowed, divorced, or separated {groups 2, 3, and 4). We can perform
that contrast as shown below. The adjusted mean of those who are married is .50
units greater than the average of the adjusted means for those are widowed, divorced,
or separated. This contrast is significant.

. contrast {marital 1 ~.33333333 -.33333333 -.33333333 0}, nowald effects

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Exr, t P>t [95% Conf. Intervail
marital
(1) .5006146 .0820748 6.10  ©.000 . 3395800 .6616482

Note! Contrasts must sum to zero

The contrast coefficients that we specify in a custom contrast must swun to zero. In
the previous example, the contrast coeflicients for groups 2, 3, and 4 are expressed
as —.33333333, using eight digits after the decimal point. Although the sum of
the coefficients for that custom contrast is not exactly zero, it is close enough to
zero Lo satisfy the margins command. Had we used seven or fewer digits, the sum
of the coefficients would be sufficiently different from {) for the margins command
to complain with the following crror:

invalid contrast vector
r(198);

This error arises when the sum of the coefficients is not sufficiently close to zero.
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Let’s form a contrast of the average of those who are mauried (group 1) or separated
(group 4) to the average of those who are widowed (group 2) or divorced (group 3).
Note how the coeflicients for groups 1 and 4 are specified as 0.5 and the coefficients for
groups 2 and 3 are specified as —0.5.

. contrast {marital .5 ~.5 ~.5 ,5 0}, nowald effects
Contrasts of marginal linsar predictions

Margins ¢ asbalanced
Contrast  Std. Err, t P>t [95% Conf. Intervall
nmarital
(1) .2013041 .1091831 1.84 0.065 -.0128169 4155251

To formulate the contrast coefficients, it can be helpful to write out the null hypotl-
esis that you want to test. For example, let’s write the null hypothesis corresponding
to the contrast above:

Ho: (s + p1a)/2 = (o + p13)/2

Let's now vewrite this showing the coefficient multiplied by cach mean. That yields
the following: ‘!

Hot (1/2) %y + (3/2) % g = (3/2) % juo + (31/2) + pg

Then let’s solve this for 0 by moving the right side of the equation to the left side
of the equals sign and making shose coeflicients negative.

Ho: (1/2) w4+ (1/2) % pg + —(1/2) % pia + —(1/2) % 13 = 0

Woe can then sort the groups to yield the foliowing:

Ho: (1/2) % py + —(1/2) % g+ —(1/2) % peg + {1/2) # p1g = 0

We then use these contrast coefficienis in the contrast command, repeated below.

Note that a valne of 0 is inserted with respect to group 5.

. contrast {marital .5 -.5 -.6 .5 0}, effects
{output omitted)

7.11 Weighted contrasts

The examples [ have presented so far have sidestepped the issue of how to account for
unequal sample sizes. For example, say that we are comparing proup 1 versus groups
2 and 3 combined. So far, the examples T have shown estimate the niean for groups 2
and 3 combined by obtaining the mean for group 2 and the mean for group 3, and then
averaging thoge means. Stata calls this the as-halanced approach, because it gives equal
weiphts to the groups even if their sample sizes are different. We could, instead, weight
the means for groups 2 and 3 proportionate to their sample size. Stata calls this the
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as-observed approach, because the means are weighted in proportion to their observecd
sample size.

Let’s illustrate this using the G8S dataset, predicting happiness from the three-level
marital status coded: 1 = married, 2 = previously married, and 3 = never maried. The
anova command is used below Lo predict happiness from marital status (the output is
omitted to save space).

. use gss_ivrm

. anova happy7 i.maritalld
(vutput omitted)

We cant obtain the average happiness by marital status using the margins command,
as shown below.

. margins marital3d

Aﬁjusted predicticns Humber of obs = 1160
Expression @ Linear prediction, predict{)
Delta-method
Margin  Std. Err. z P>zl [86% Conf. Interval]
maritald
t 5.706036  .040827Y5 139,74 0.000 5.626016 5,785056
2 5,263323 . 0539007 87.66 0.000 6.157678 5.368966
3 5.459649  ,0B702563 96.74  0.000 5.347882 5.671417

Let’s use the h. contrast operator to compare each group with the mean of the
subsequent groups, using the as-balanced approach. Let's focus our attention on the
contrast of group 1 to groups 2 and 3.

. margins h.marital3d, conirast{nowald effects)
Contrasts of adjusted predictions

Expression ¢ Linear predictlon, predict()
Delta-methoed
Contrast  Std. Err. z P>z} [95% Conf. Intervall
maritaid
{t vs >1) . 34355 . 0566231 6.07 0,000 2326707 4545292
(2vs 3 -.1963262  .0784677 ~2,60  0.012 -.35012  ~.0425326

The margins command with the h. contrast operator estimates the difference in the
means for group 1 versus groups 2 and 3 as 0.34355. We can manually compute this
estimate by taking the mean of group 1 minus the average of the means from groups 2
and 3, displayed below.

. display B.705036 - (5.263323 + 5.459649)/2
. 34355
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With a tiny bit of algebra, we can express this a little bit differently, as shown below.
The fractions (1/2) represent the fact that groups 2 and 3 are weighted equally.

. display 5.705036 - (5.263323%(1/2) + 5.459649+%(1/2))
.343BE

Let’s compare this with the as-observed approach, which weights the mean of groups
2 and 3 by their sample size. The hw. contrast operator is used to obtain the as-observed
estimate.

. margins hy.marital3, contrast(nowald effects)
Contrasts of adjusted predictions

Expression : Linear prediction, predict()
Delta-method
Contrast Std. Err. 2z P>z [98% Conf. Interval]
maritall
(1 va >1) . 3490767 .0bBES 8.17  0.000 .2381809 4599705
{2 vs 3) -.1563262 0784877 -2.50 0.012 —~.36012 —.0425328

Instead of weighting groups 2 and 3 equally—hy (1/2)—groups 2 and 3 are weighted
by their individual sample size divided by the combined sample size. The N for group 2
is 319, and the N for group 3 is 285, and the combined N for the two groups is 604. ‘The
estimate of the difference using the as-observed approach is computed, as shown below,
weighting the mean for group 2 by (319/604), and weighting the mean for group 3 by
(285/604).

. display 5.705036 - (5.263323#(319/604)+ 5,4569649+(285/604})
. 349807573

Although this example has focused on the h. conirast operator, this issue arises for
all contrast operators that involve contrasts among more than two groups, namely, the
g., k., j., p., and q. operators. Used without the w, these will provide as-balanced
estimates. If you include the w, by specifying gw., hw., iw., pu., or qw., then the
as-observed estimates are computed.

7.12 Pairwise comparisons

Sometimes you want to test all pairwise comparisons that can be formed for a factor
variable. The pwcompare command can be used to form such comparisons. Let’s illus-
trate the pwcompare command to form pairwise comparisons of the happiness ratings
among the five marital status groups using the analysis from section 7.3. To begin,
we use the QS8 dataset and use the anova command to predict happiness from marital
status, gender, race, and age. (The output from the anova command is omitted but is
the same as shown in section 7.3.)

i
o
t L
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. use gss_ivrm, clear

. anova happy7? i.marital i.female i.race c.age
(output omitted)

We can use the pucompare command to form all pairwise comparisons among the
marital status groups. The effects option is specified to include ¢-values and p-values
for each comparison.

. pwvcompare marital, effects

Pairwise comparisons of marginal linear predictions

Margins : ashalanced
Unadjusted Unadjusted

Contrast  Std. Erx. T P>itl [95% Conf. Intervall
marital
2wvs 1 -.4531618 .123599 -3.67 0.000 ~.8966673  ~.2106563
3vs 1l ~. 499064 0795273 ~6.28  0.000 -.6660994  -.3430287
4 va 1 ~.B49617T . 1699695 -3.23 0.601 -.8831036 ~.2161317
Svs 1 -, 156781 0761828 -~2.04 - 0.041 -.3052539 -.0063082
3vs 2 ~-. 0459022 .1339204 -0.34 0,732 -.3086764 L2168719
4 vs 2 -, 0964558 .202613 ~0.48 0.634 -. 4939805 3010778
5vs 2 . 2973608 .14464159 2.06 0.040 .0136394 .5811222
4 vs 3 ~.0505536 .1784857 -0.28  0.7¢7 ~.4007488 . 2096416
6 vs 3 .343283 .094727% 3.62 0.000 1674262 5291408
5 vs 4 . 3938366 .17614560 2.24 0.026 .048233 .7394402

Tip! More on the pwcompare command

More details about the pwcompare command are contained in appendix D.

Because of the many comparisons, we might want to make adjustments to the p-
values to account for the multiple comparisons. For example, let’s use Siddk's method
for adjusting for multiple comparisons by adding the mcompare (sidak} option.
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. pwcompare marital, effects mcompare(sidak} - use gss_ivim, clear

. anova happy7 i.marital i.female i.race c.age

irwi i arginal 1i icti LT !
Pairuise comparisons of marginal linear predictions : (output cinitted )

Margins 1 asbalanced
Number of The margine command is used to estimale the adjusted means of happiness by
Comparisons marital. The output also includes the 95% confidence interval for each adjusted mean.
s For example, among those who are married (group 1), we are 95% confident that the
marital 0 b population mean of happiness (adjusting for gender, yace, and age) is between 5.62 and
5.78.
Sidak Sidak R . )
Contrast Std. Err. t P>t [95% Conf. Tntervall S + margins marital
R Pradictive margins Number of obs = 1166
marital e Expression : Linear prediction, predict()
2vs 1 -.4531618  .1i23693  ~B.67 0.003  —.7998605  -.1064632 aEe
3vs 1 -.499064  .O7S5273  -6.28 0.000  -.7221404 - 2789877 B :
4vs 1 | -.5406177 .1699695  -3.23 0.013  -1.026387  -.0728486 po _ Delta-method .
Eovs 1 S {BE7B1  .0761826  -2.04 0.343  -.3694753 0579132 Margin = Std. Err. = Prlzi fo5% Conf. Intervall
3vs 2 -.0459022  ,1339294  -0.34  1.000 -.421578  ,3297736 s .
4 vs 2 -~ .0064568 L202613  -0.48 1,000  ~.6647909 .4718792 : marital
5vs 2 2973808  .1446i59  2.06 0.335  —,1082709  .7030325 - L 5.698407  .0408098  139.63 0.000  6.618421  5.778392
4 vs 3 -.0505636  .1784857  -0.28  1.000  ~.56i2111  .4501039 | 2 5.245245  .1178380  44.51 " 0.000  5.014285  5.476205
5 vs 3 .343283  .0947271  3.62  0.003 .O776T08 6089951 | ! 3 5.100342 0684853  75.92 0.000  5.066114  5.333571
B vs & ,3938366 1761455  2.24 0,228  -.1002865  .8879298 | | 2 5.148789 1647873  31.25 0.000  4.825812  5.471768
! 5 5.542626 0630837  87.86  0.000 5.418984  5,666267

The bonferroni or scheffe method could have been specified within the mcompare ()
option. When you have balanced data, the tukey, snk, duncan, or dunnett method [
van be specified within mcompare () (see [R] pwcompare for more details).

We can graph the adjusted means and confidence intervals computed by the margins
command using the marginsplot command, as shown below.

Tip! The pwmean command :

Instead of using the anova command followed by the pycompare command, you can
use the pwmean command. For example, the pumean command below reports the
same results as the previous pwcompare command, without needing to previously
rua the anova command.

. pumean happy7, over(marital) effects mcompare(sidak)

7.13 Interpreting confidence intervals

The marginsplot command displays margins and confidence intervals that were comn-
puted from the most recent margins command. Sometimes these confidence intervals
miglt tempt you into falsely believing that they tell us abount differences among groups.
To illustrate this point, let’s use the analysis from section 7.3 predicting happiness from
marital status, gender, race, and age. The ¢88 dataset is used below, and the anova
comnand is shown (the output is omitted to save space).
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. marginsplot
Variables that unigquely identify margins: marital

Predictive Margins of marital with 95% Cis
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Figure 7.8. Adjusted means of happiness by marital status

Figure 7.8 is a graphical representation of the adjusted means and confidence inter-
vals computed by the margins command. Our eye might be tempted to use the overlap
(or lack of overlap) of confidence intervals between groups to draw conclusions about
the significance of the differences hetween groups. However, such conclusions would
not be appropriate. For example, although the confidence intervals for groups 4 and
5 gverlap, the output from the contrast command below shows that the difference in
these means is statistically significant (p = 0.026).

. contrast ar.marital, nowald effects

Contrasts of marginal linear predictions

largins 1 asbalanced
Contrast  Std. Err. t P>t [95% Conf. Intervall
marital
{2 vs 1} -.4h31618 . 123599 -3.67  0.000 -.6956673 ~.2106563
{3 vs 2) ~. 0459022 .1339294 ~0.34 0.732 ~.3086764 .2168719
(4 vs 3) -. 0506536 .1784857 ~0.28 0.777 ~,4007488 .2996416
(5 vs 4) . 3938366 .1761456 2.24 0.0286 . 048233 . 7384402

Using the contrast command, like the one shown above, is the appropriate way to
assess the significanece of group differences.
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'- 7.14 Testing categorical variables using regression

The analyses in this chapter have been conducted using the anova command because it
produces concise printed output. However, this is not to imply that we cannol perform
guch tests using the regress command. All tests illustrated in this chapter could have
been performed using the regress command and related linear modeling commands. (In
fact, these tests could also have heen performed using nonlinear modeling commands
such as logit, as illusivated in chapter 18.) Consider the anova command we have
frequently issued in this chapter, repeated below.

. use gss_ivrm, clear

. anova happy7 i.marital i.female i.race c.age

Number of obs = 1156 A-squarad = 0.0488

Root MSE = .9BTB26 Adj B-squared = 00,0422

Source Partial 85 df M8 ¥ Prob > F

Model 53,9791041 8 6.74738801 7.36 0.0000

marital 47 . 166057 4 11.7890142 12.85 G,0000

female 3.8064776 1 '3.8954778 4,25 0.0396

race . 924483737 2 462246868 0.50 0,6043

age 5.32004967 1 5.32004967 5.80 0.0162
Residual 1052.208338 1147 .917431026
Total 1106.2724% 1156 957811681

The output includes tests of the overall effect of each of the categorical variables,
marital, female, and race.” The output also includes the test of age, treated as a
continuous variable.

7. The variable female has only two Jevels, so there is only one test with respect to this variable.
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Let’s now nse the regress command with the same set of predictors.

- regress happy7 i.marital i.female i.race c.age

Seurce 55 af MS Number of obs = 1166

F{ 8, 1147) = 7.35

Model 53.9791041 8 6.74738801 Prob > F = 0.0000

Residual 1052.29339 1147 ,917431026 R-squarad = 0.0488

Adj R-squared = 0.0422

Total 1106.27249 1156 .957811681 Root MSE = .96783

happy7? Coef.  Std. Err. t P>t [95% Conf. Interval]
marital

2 -.4531618 .12388% -3.867 0.000 -, 8966673 -.2106563

3 ~-.499084 .0795273 -6.28  0.000 -.6550884  —.3430287

4 ~.b496177 .16996856 -3.23 0.001 -.B8831036  -.2161317

5 -.165781 0761826 -2.04 0.041 ~.3052539 —. 0063082

1i.female .1198361 . 0580584 2,06 0.040 . 0057225 . 2335476
race

2 -. 0354866 .0BB0OO4T -0.42 0.676 -.2022688 L 1312956

3 -.1123621 .1179656 -0.95 0.3431 —.3438146 .11909056

age . 0050064 .002079 2.41 0.018 .0009273 .0090854

_cons 5.416611 1130652 47.90 0.000 5,193673 5.637349

The output of the regress command is Iengthier becanse i uses dmuney coding for
eachy of the categorical varkables and shows the effect for each of the dunnmy varialios,
To obiain the test of the overall effect of marital and the test of the overall efoet of
race, we cal: use the contrast conunand, as shown helow. Flie overall Lest of marital
Is significant (7 = 12,85, p = 0.0000). The overall test of race is nob significant
(I = 0.50, p = (1LG043). Note thal these F' tests mateh those produced by the anova
counnal.

contrast marital race

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
marital 4 12.88 0. 0000
race 2 0.50 0,6043
Residual 1147

The contrast, margins, marginsplot, and pwcompare commaids work the same
way aftor the regress command as they do afier the anova connnand. For example, we
can use the margins conmnand to obtain the adjusted means broken down by marital.

7.14 Testing categorical variables using regression

. margins marital
Predictive margins Yumber of obs = 1168
Model VCE : OLS
PR Expression ! Linear predictien, predict{)
Delta-method
Margin  Std. Err. z P>lz]| [98% Conf. Intervall
marital
1 5.8698407 . 0408098 139.63  0.000 b.618421 5.778392
2 5.245245 .1178389 44,51 0.000 5.0142856 5.476205
3 £5.199342 .0684853 75.92 G.000 5.065114 5,3335671
4 b.148789 .1647873 31.26  G.000 4,825812 5.471766
5 5.542625 .0630837 87.86 0.000 b.418984 5.666267

. contrast r.

Contrasts of

The contrast command can also be used to
means, as shown below.

marital, nowald effects

marginal linear predictions
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make contrasts among the adjusted

H . Margins ¢ asbalanced
Contrast  Std. Err. t P>t [95Y% Conf. Intervall
marital
(2 vs 1) ~. 4531618 .123599 -3.87 0.000 -.6956673  -.2106663
. (3 vs 1) -. 498064 0795273 ~6.28  0.000 -.6680994  -.3430287
i - (4 vs 1) - . BA9BLTT . 1692695 -3.23 0.00% -.8831036 -.2161317
(6 vs 1} ~.16578%  .0761826 -2.,04 0.041 -.3052639  -.0063082

to save space.)

obtain such tests.

The margins and marginsplot commands can also be used following the regress
command to display and graph the adjusted means. The pwcompare command can also
e used to ohiain pairwise comparisons of means. (These commands are not Hlustrated

The anova and regress commands provide the same results, but in a different
format. The anova command provides the overall test of the equality of thie means by
dofault. When using the regress command, we need to use the contrast conunand to

Note! Interaction terms with the anova and regress commands

If you include interaction terms, the estimates of the main effects will differ when
using the regress conumand compared with the anova command, This is covered
in more detail in section 8.6.

‘ In the case of ordinary least squares regression, you can use either the anova or

e —

the regress command, depending on your taste. Howevgr, there are fealbures provided
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by the regress command that are not available with the anova command. For ex-
ample, the regress command pernits estimation of robust standard errors with the
vee(robust) option or the use of the svy prefix. These features are not available witl

the anova command. In such cases, the regreass command can be used as illustrated
in this section.

8 Categorical by categorical interactions
7.15 Summary g

Ll this section, we have seen how you can interpret the effects of a categorical predictor. 8.1 Chapter overview . . .. ... ... oo 209
The margins and marginsplot commands make it easy to compute and graph the 8.2 Twobytwomeodels: Examplel . . .. ... .. ... .. ... 211
adjusted means of the outcome as a function of the categorical predictor. Furthermore, 821 Simpleeffects . .. .. ... . 215
the contrast and margins commands can be used with contrast operators to form 8.2.2  Bstimating the size of the interaction . . . .. .. ... .. 216
Fleaningful contrasts among the levels of the categorical variable. There are many built- 8.2.3 Movreabout interactionn . . . . .. ... ... 217
in contrast opjera,tors that you can use; you can also specify eustom contrast operators. 8.92.4 Summary ... .o e e e . 218
Tar thc-.n nore, if you use E,hel fnarglns command to form such contrasts, the marginsplot 83 Twobythreemodels . . . . .. .. .. ... ... .. ... .. 218
comrand can be used to graph the contrasts, '
831 Example2 ........... e e e 218
For more details about options you can use with the contrast command, see ap- i 8.3.2 Example 3 .. ... .. .. oo 223
pendix C. For more details about options you can nse with the margins command, o 833  Summary ... 228
see appendix A. Appendix B contains more details about customizing the appearance L 8.4  Three by three models: Example 4 . . ... .. ... ... .. 228
of the graphs creqtcd by the marginsplot command. For more information about the o 841 Simpleeffects . . . .. ..o oo o 230
pwecompare command, sce appendix D. For further help with these commands, you can b - - 842 Simpleconfrasts. . . . .. ... e 231
also see [R] contrast, [R] margins, [R] marginsplot, and [R] pweompare. Lo 8.4.3  Partial interaction . . . . ... .. .o 233
For more information about modeling categorical predictors in regression models, = 844 Interaction contrasts . .. ........ R 234
Irecommend Keppel and Wickens (2004), Maxwell and Delaney (2004), and Pedhazur 845 Summary ... 236
and Schmetkin (1981}, For more information about different coding schemes, see Davis o 8.5 Unbalanceddesigns . . . .. .. .. ... 0 236
{2010} and Wendorf .(2004). . 8.6  Main eflects with interactions: anova versus regress . . . . . . 241
8.7 Interpreting confidence intervais . . . . .. .. ... ... 244
8.8 SBUMIIAIY . . . . i e e e e e e 246

8.1 Chapter overview

This chapter illustrates models that involve the interaction of two categorical variables
{also called factor variables or factors). The emphasis of this chapter is not only how to
test for interactions between factor variables, but also how to understand and dissect
those interactions. A Ley feature of such interactions is the number of levels of each
factor. In fact, this is such a key feature that interactions are often named based on the
number of levels for each factor. If both factors have two levels, then the interaction
is referred to as a two by two interaction and the design is often called a two by two
design.

The way that you can dissect an interaction depends on the nwmber of levels of each
factor. This chapter focuses on three types of interactions: two by two interactions, two
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by three interactions, and three by three interactions, These three types of interactions
cover the most common interactions that researchers will encounter. Furthermore, these
interactions form the building blocks that can be used for analyzing larger interactions,
The tools nsed to dissect two by three interactions generalize to two by X interactions.
Likewise, the section on three by three interactions can be gener alized to any kind of
two-way interaction.

Four examples ave presented in this chapter, one illustrating a two by two design
(see section 8.2}, two examples of a two by three design {sec sections 8.3.1 and 8.3.2),
and an example illustrating a three by three design (see section 8.4). For each design, I
present each of the techniques that you could use for dissecting and understanding the
interaction. You do not need to apply the techniques in the order in which they ave
presented, and you do not need to apply all the techniques that are illustrated. You
can pick and choose the techniques that are most applicable to your study to dissect
your interaction. Furthermore, I recommend that you create an analysis plan {(prior
to examining your data) in which you describe the predicted pattern of results and
how you plan to dissect the interaction to test for the exact pattern of results Lhat you
anticipate,

Each example is based on a hypothetical research study conducted by a research
psychologist. Rather than studying the reduction in depression, this psycliologist is
interested in increasing optimism. The research focuses on the effectiveness of different
kinds of therapy for increasing optimism and determining how the effectiveness of tho
different kinds of therapy can depend on the person’s depression status from before the
beginning of the study.

The first example uses a two by two design with two levels of treatment (control
group and lappiness therapy) and two levels of depression status (nondepressed and
depressed). The second example extends this example using a two by three design,
using the same two levels of treatment (control group and happiness therapy) but in-
cluding three levels of depression status {nondepressed, mildly depressed, and severely
depressed). The third example also uses a two by three design, but instead focuses on
three types of treatment (control group, traditional therapy, and happiness therapy) and
two levels of depression (nondepressed and depressed). The fourth example llustrates
a three by three design, including three levels of treatment {control group, traditional
therapy, and happiness therapy), and three levels of depression status {nondnpwssed
mildly depressed, and severely depressed).

In each of these examples, the outcome variable is the optimism score of the person
‘at the end of the study. Scores on this hypothetical aptimism scale can theoretically
range from 0 to 160, with a valie of 50 representing the swverage opmnnsm for people in
general.

In discussing these designs, T often borrow terminology used regarding the analysis
of variance. For example, as mentioned earlier, a categorical variable can be referred to
as a factor. In describing a factor and its levels, it can be useful to refer to the factor
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using one letter, and to the levels uging one letter followed by a number designating the
level. Consider the vartable depression status that has three levels: 1) nondepressed, 2)
mildly depressed, and 3) severely depressed. As a shorthand, 1 might refer to this as
factor D (for depression). Also, as a shorthand, instead of referring to the nondepressecd
group, I might stimply refer to that group as Di.

8.2 Two by two models: Example 1

The field of psychology has a long history of studying depression and trying to find
ways of lessening it. Imagine a hypotletical research psychologist who, instead, focuses
her research on studying optimisim and finding ways of increasing it. She developed
a validated measure of optimism that, although correlated with conventional measures
of depression, is conceptually and operationally distinet from depression. As part of
her research, she has created a new kind of therapy, called happiness therapy, that she
believes can be effective in increasing optimisny. In this fivst hypothetical study, she
seeks to determine the effectiveness of happiness therapy by comparing the optimism of
people who have completed happiness therapy treatinent with the optimism of people
in a control group who received no treatiment. The researcher is not only interestecd in
assessing the effectiveness of happiness therapy, but alse assessing whether its eflective-
ness depends on whether the person has heen diagnosed as clinically depressed. This
yields a two by two research design, crossing treatment group assignment {control group
versus happiness therapy) with depression status (nondepressed versus depressed).

The dataset for this example is used below, and the first five observations are dis-
played. The variable treat indicates the treatment assignment, coded 1 = control
group (Con) and 2 = happiness therapy (HT). The variable depstat roflects the person’s
depression stabus at the heginming of the study and is coded 1 = nondepressed snd
2 = depressed. The variable opt is the optimism score at the end of the study. In this
dataset, opt has o mean of 44.5, a minimum of 16, and a maximum of 8%

. use oph-ZhyZ, clear
. 1list in 1/5

treat depstat opt

1. Con Nor  41.0
2. Hr Ron §4.0
3. Con Dep 47.0
4, aT Dep 30.0
5. Con Nox  27.0

The tabulate command is used to show the frequencies broken down by depstat
and treat. This illustrates the research design, showing that the study involved a total
of 120 participants. Hall of them (60) were nondepressed prior to the beginning of the
study, and half were depressed. Each of these 60 people was randomly assigned (in
equal numbers) to the treatinent or control group.
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. tabulate depstat treat

Depression Treatment group
status Con HF Total
Non 30 30 60
Dap 30 30 60
Total 80 60 20

The table command is used to display the mean optimism broken down by treat-
ment and depression status. For example, the mean optimism for someone who is
nondepressed in the control group was 44.9,

. table depstat treat, contents{mean opt)

Treatment
Depressio group
n status Con HT

Non | 44.9 60.0
Dep | 34.6 38.8

The effect of happiness therapy {(as compared with the control group} can be as-
sessed by comparing the mean optimism of the happiness therapy group with the mean
optimism of the contrel group. For example, among those who are nondepressed, the
effect of happiness therapy is 60.0 minus 44.9, or 15.1. Among those who are depressed,
the effect of happiness therapy is 38.8 minus 34.6, or 4.2.

By including both depressed and nondepressed people in this study, we can ask
whether the effect of happiness therapy is the same for those who are depressed as those
who are nondepressed.! In other words, we can ask if there is an interaction between
treatment and depression status. We can get a sense of whether such an interaction
might exist by praphing the mean optimism by treatment and depression status, as
shown in figure 8.1. (We will see liow to create such a graph later.)

1. For example, optimism might be more malleable for those who have not been diagnosed as clinically
depressed than for those who have been diagnosed as clinically depressed. I so, then happincess
therapy miglt be more effective for those who are not depressed than for those who are depressed.
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Figure 8.1. Graph of means

Each line in figure 8.1 reflects the effect of happiness therapy. The steepness of the
line reflects the size of the effect of happiness therapy. The line for the nondepressed
group looks steeper than the line for the depressed group, suggesting that happiness
therapy might be more effective for those who arve nondepressed, The test of the treat-
ment by depression group interaction tests whether the difference in the steepness of
the lines is significant.

Let’s now run an analysis that predicts opt based on treat, depstat, and the
interaction of these two variables. This analysis uses the anova command (instead of
the regress command) because the anova command directly shows the significance
tests for each of the main effects as well as the interaction,

. anova opt depstat##treat

Number of obhs = 120 Rk-squared = {.4889

Root MSE = 10.0138 Adj R-squared = 0.4757

Source Partial S8 df s F Prob > F

Model 11126 3 3708.66667 36.99 0.0000

depstat 7426.13333 1 7426,.13383 74.08 0.8000

treat 2803.33333 1 2803,33333 27.96 0.06000

depstati#treat 896.533333 1 896.533333 8.54 0.0034
Residual 11831 .4667 116 100.271264
Total 22767.4667 119 191.23%216
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Note! The anova and regress commands

You could nse the regress command instead of the anova cormmnand to fit. the pre-
vious model, as well as all 1nodels illustrated b this chapter. However, there are two
caveals. First, the regress command will require an extra step using the contrast
command to test the overall interaction (for example, contrast depstat#treat).
Second, the tests of the main cffects differ when using the regress command
compared with the anova command, as explained in section 8.6.

The depstat#treat interaction is statistically significant (F = 8.94, p = 0.0034).
To begin to understand the nature of this interaction, we can compute the means broken
down by treatment group and depression status using the margins command below.?
The average optimism for those in treatment 1 (contrel group) and depression status
1 (uondepressed) is 44.9. The average optimism for those in treatment 2 (happiness
therapy) and depression status 1 {nondepressed) is 60.0. The effect of happiness therapy
among those wlio are nondepressed is 15.1 (60.0 — 44.9). By contrast, for those whio are
depressed, the effect of happiness therapy is 4.2 (38.8—34.6). The significant interaction
indicates that these cffects ave significantly different (that 15.1 significantly differs from
4.2). in other words, the effect of happiness therapy for those who arc nondepressed is
significantly different from the effect of happiness therapy for those who are depressed.

margins treat¥#depstat

Adjusted predictions Number of obs = 120
Expression  : Linear prediction, predict{)
Delta-method
Margin  5td. Err. z prlzt [86% Conf. Intervall
treatd
depstat .
i1 44.86667  1.828216 24.54  0.000 41.28343 48.44991
12 34,8  1.828216 18.93  0.000 31,01676 38.18324
21 60  1.828216 32.82  0.009Q 56.41676 63.68324
22 38.8  1.828216 21,22 0.000 35.21676 42.38324

Tt can be easier to interpret the results by displaying them using a graph. The
marginsplot command below creates a graph of the means computed by the margins
command. This creates the graph that we saw in figure 8.1.

. marginsplot
(output omitted)

9. Note that the means are the snme as those that we obtained from the tabla command earlier., This
is hecanse Lhere are no additional predictors (covariates) in the model. Had there been additional
predictors in the model, the means from the margins command would have heen adjusted for those
predictors and would have differed from the meaus produced by (he table command,
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The graph in figure 8.1 ilustrated how the effect of liappiness therapy is greater for
those who are nondepressed than for those who are depressed. It also helps us see the
effect of happiness therapy at each level of depression status. It appears that among
those who are depressed, those who receive happiness therapy have shuilar optimism
to those in the control group. We can assess the effect of treatment at each level of
depression through the use of simple effects analysis, described below.

8.2.1 Simple effects

The significant interaction indicates that the effect of happiness therapy is different for
those who are depressed versus nondepressed. Each of these effects is called a simple
effect, as they veflect the effect of one variable while holding another variable constand.
We can further probe the nature of this interaction by looking at the simple effect of
happiness therapy separately for those who are deprossed and nondepressed. Referring
to figure 8.1, these simple effects correspond to the stopes of each of the lines. We can
. estimate and test these simple effects using the contrast command, as shown below,
P Note the use of the @ symbol. This requests the siinple effect of treat at each level of
depstat.

. contrast freat@depstat

Contrasts of marginal linear predictions

Margins : asbalanced
at 'F P>F
treat@depstat
1 1 34.26 {0.0000
2 1 2.64 0. 1070
Joint 2 18,45 0.0000
Residual 116

The Arst test shows that the effect of happiness therapy is significant for those who
are nondepressed (F = 34.26, p = 0.0000). The second test shows that the effect of
happiness therapy is not significant for those who are depressed (F = 2.64, p = (1.1070).

Let’s run this contrast command again, except this time we will add the pveffects
and nowald options, as shown below.
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. contrast treat@depstat, pveffects nowald
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. t P>it]
treat@depstat
{2 vs base) 1 15.13333  2,585489 5.86 0.0060
{2 vs base) 2 4.2 2.685489 1.82 0,107

By adding the pveffects and nowald options, the contrast command displays a
table with the estimate of the simple effect, the standard error, and a significance test of
the simple effect. This shows the effect of treatment among those who are nondepressed
equals 15.1 and this effect is significant (t = 5.85, p = 0.000).® Among those who are
depressed, the treatment effect is 4.2 and this difference is not significant (¢ = 1.62,
p = 0.107).

Note! Contrast options

Combining the pveffects and nowald options provides a concise cutput that
includes an estimate of the size of the contrast and a test of its significance. Many
examples in this chapter will incorporate these options on the contrast comimand.
See appendix C for more about the nowald and pveffects options for customizing
the output from the contrast command.

8.2.2 Estimating the size of the interaction

As we saw in the analysis of the simple effects, the simple effect of treatment is 4.2
for those who are depressed and is 15.1 for those who are nondepressed. Taking the
difference in these simple effects (4.2 — 15.1) gives us an estimate of the size of the
interaction, which is —10.9. This is the same value that we obtain if we estimate the
interaction using the contrast command below.

. contrast treat#depstat, nowald pveffects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. t P> %1
treatftdepstat .
(2 ve base) (2 vs base) -10.93333  3.656433 ~2.99  0.003

3. This significance test is reported as a ¢ test, but it is eqquivalent to the F tesl we saw from the
previous example.

P
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This provides the estimate of the size of the interaction effect, the standard error, and
a test of the significance of the interaction. Note that the p-value for this test matches
the p-value of the treat#depstat interaction from the original anova command.

8.2.3 More about interaction

Before concluding this section on two by two inleractions, let’s {urther explore what
we mean by an interaction by considering the hypothetical pattern of resulis shown in
figure 8.2, where there is no interaction.
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Figure 8.2. Two by two with no interaction

This is an example pattern in which there is no interaction between treatment and
depression status. One way we can see the absence of an interaction is by seeing that
the line for Df is parallel to the line for 2. What makes these lines parailel is the fact
that the distance between DI and D2 is the same at each level of treatment. At T, the
difference between D and D2is 2 (42 —40). At level T2, the difference between DI and
D2 is also 2 (52 — 50). The size of the interaction is the difference in these differences,
2—-2or0.

Another way to think about the absence of an interaction is o think in terms of
comparing the simple effect of treatment for those who are nondepressed and depressed.
The simple effect of treatment {12~ T'1) for those who are nondepressed is 10 (52 —42).
The simple effect of treatment for those who are depressed is also 10 (50 ~ 40). The
interaction is the difference in these simple effects, 10 — 10 or G
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8.2.4 Summary

This section has ilfustrated how to perform an analysis involving an interaction of two
eategorical variables that each have two levels. To help mterpret the interaction, the
marging command can be nsed to create a table of the outcome means broken down by
the categorical variables, and the marginsplot command can be used to create a graph
of the means. Furthermore, the contrast command can be used to test simple effects
and can also he used to obtain an estimate of the size of the two by two interaction.

8.3 Two by three models

This section considers models where one of the categorical variables has two levels and
the other categorical variable has three levels. Such models are often described as bwo
by three models (also called three by two models). The examples from this section are
an extension of the example from section 8.2.

8.3.1 Example 2

Referring to the example from the previous section, depression status had two levels,
nondepressed and depressed. Suppose that we instead use three categories for depression
status: nondepressed, mildly depressed, and severely depressed. The previous example
found that the treatment effect was not significant among those who are depressed.
Perhaps the effect of happiness therapy for those who are mildly depressed is significant,
but it could not be detected in the previous study because they were pooled together
with those who are severely depressod.

Let’s begin by using the dataset for this example and showing a table of the mean

of optimism broken down by treatment group and depression group.

. use opt-2by3-exl, clear
. table depstat treat, contents(mean opt)

Treatment
Depressio group
n group Con HT

Mo | 44.2 59.8
Mild | 39.6 48.7
Sev | 20.8 29.8

Let’s look at the effect of happiness therapy (compared with the control group) for
each depression group. For those who are nondepressed, the effect of happiness thorapy
is 59.6 compared with 44.2 for the control group (59.6—44.2 = 15.4). Compare that with

. the effect of happiness therapy for those who are mildly depressed (49.7 — 39.6 = 10.1)
and for those who are severely depressed (29.6 — 20.8 = —0.2). 'This suggests that the
effect of happiness therapy (compared with the control group) may be greater for those
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who are nondepressed and mildly depressed than for those who are severely depressed.
Tn other words, it appears that there may be a treatinent group by depression group
interaction.

Let’s look at a grapl of these ineans ag shown in figure 8.3. This is another way to
sac that happiness therapy appears to be more effective for those who are nondepressed
and mildly depressed than for those who are severely depressed.

Adjusted Predictions of freatiidepstat with 85% Cls

70

60
!

Linear Pradiction
50
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——— Non ——.— Mild
—— Sev

Figure 8.3. Graph of means

Let’s now perform an analysis predicting optimism {rom treatment group, depression
status, and the interaction of these two variables.

. anova opt depstatfi#treat

Number of cbs = 180 R~squared = 0.5402

Root HMSE = 10.0154 Adj B-squared 0.5270

Source Partial S8 daf MS F Prob > F

Model 20506.8278 5 4101.165856 40.89 0.G000

depstat 1543%, 8444 2 7T16.42222 76,93 0.0000

treat 3183.60556 1 3183.805656 31.74 0.0000

depstatiitreat 1889.37778 2 944,.688889 3.42 0,0001
Residual 17453.6867 174 100.307854
Total 37959.3%944 179 212.063666

As expected, the depstat#treat interaction is significant. We can compute the
mean optimism as a function of depression status and treatment group using the margins
command below. Had there been additional predictors in the model, the marging com-
mard would have produced adjusted means, adjusting for the other predictors in the
model.
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. margins treat#depstat

Adjusted predictions Number of obs = 180
Expression : Linear prediction, predict()
Delta-method .
Margin Std. Err. z P>zl [96% Conf. Intervall
treat#
depstat
11 44.23333 1.82865 24.19 0.000 40, 64944 47.81723
12 39,63333 1.82855 21.67 0.000 36.04944 43.21723
13 29.8 1.82866 16.30 0.000 26.21611 33,3B8389
21 59.6 1.82855 32.59 0.000 b6,01611 63.18389
22 49,73333 1.82855 27.20 0.000 46. 14944 53.31723
23 29,56667 1.82855 18.17 0.000 26.98277 33.15058

The marginsplot command can be used to create a graph of the means created by
the margins command. This produces the same graph that we saw in figure 8.3.

. marginsplot
{output omitted)

Now that we know the interaction is significant, we can say that the effect of happi-
ness therapy (compared with the control group) differs as a function of depression status.
One way to further understand this interaction is through tests of simple effects.

Simple effects

We can ask whether the effect of happiness therapy is significant at each level of de-
prossion status. In other words, we can test the simple effect of treat at each level of
depstat, We test this using the contrast command, as shown below.

. contrast treat@depstat, nowald pveffects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast Std. Err. t Pr|t|
éreat@depstat
(2 vs base) 1 15,36667 2.58B96 5.94 ¢.000
(2 vs base) 2 10.1 2,58696 3.91 0.000
(2 vs base) 3 -.2333333 2.58696 -0.09 0.928

For those who are nondepressed, the effect of happiness therapy versus the control
group is 15.4, and that difference is significant. For those who are mildly depressed,
the effect of happiness therapy is 10.1, and that difference is also significant. However,
for those who are severely depressed, the effect of happiness therapy is —0.2, and that
difference is not significant, This test of simple effects tells us thal happiness therapy is
significantly betéer than the control group for those who are nondepressed and for those
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who are mildly depressed. For those who are severely depressed, happiness therapy is
not significantly different from being in the control group.

partial interactions

Another way to dissect a two by three interaction is through the use of partial interac-
tions. In this example, a partial inferaction can be constructed by applying a contrast
operator to depstat and interacting that with treat. For example, applying the a. con-
trast operator to depstat yields two contrasts: group 1 versus 2 and group 2 versus
3. Interacting a.depstat with treat forms two partial interactions. I used the means
from the margins command to manually create graphs that illustrates these two partial
interactions, shown in figure 8.4. ’

Partial interactions
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Figure 8.4, Partial interactions

‘The first partial interaction forms a two by two interaction of treatment by depression
group 1 versus 2, as pictured in the left panel of figure 8.4. This tests whether the
treatment effect is the same for those who are nondepressed versus mildly depressed.
The second partial interaction forms a two by two interaction of treatment group by
depression group 2 versus 3, as pictured in the right panel of figure 8.4. This tests
if the treatment efiect is the same for those who are mildly depressed versus severely
depressed. We can test these partial interactions using the contrast command below.
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. contrast a,depstat#treat

Contrasis of marginal linear predictions

Margins + asbalanced
df F P>F
depstatfitreat
(1 vs 2} (joint) 1 2.07 0.1616
(2 vs 3) (joint) 1 7.98 3.0053
Joint 2 9.42 0.0001
Residual 174

The first partial interaction is not significant (F = 2.07, p = 0.1516). The effect
of happiness therapy (compared with the control group) is not significantly different
for those who are nondepressed versus mildly depressed. Referring to the ieft panel of
figure 8.4, we can see that the effect of happiness therapy (compared with the control
group) is similar for those who are nondepressed and those who are mildly depressed.

The second partial interaction is significant (F = 7.98, p = 0.8053). The 'effect
of happiness therapy (compared with the control group) is significantly different when
comparing those who are mildly depressed versus sovercly depressed. Referring to the
graph of the means in the right panel of figure 8.4, we can see that the effect of happiness
therapy (compared with the control group) is greater for those who are mildly depressed
than for those who are severely depressed.

We are not limnited to using the a. contrast operator for forming such partial inter-
actions. Any of the contrast aperators Hlustrated in chapter 7 could have been used in
place of the a. contrast operator. For examnple, the j. contrast operator (as described in
section 7.8.1) is interacted with treat using the contrast conmuand. The j. contrast
operator compares each group with the mean of the previous groups. When applied to
depstat, this yvields a comparison of group 2 versus 1 and of group 3 versus groups 1
and 2 combined.

. contrast j.depstatiltreat

Contrasts of marginal linear predictions

Margins : asbalanced
af F P>F
depstat#ttreat
(2 vs 1) {joint} 1 2.07 0.1516
(38 vs <3} {joint} 1 16.76 0.0001
Joint 2 9.42 0.0001
Residual i74

i
;
.
f
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The first contrast shown by the contrast command is the same as the first tost
we saw using the a. countrast operator. However, the second contrast shows us the
nteraction of the comparison of those who are severely depressed versus those mildly
depressed and nondepressed interacted with treatment. This partial interaction is sig-
nificant. The effoectiveness of happiness therapy {compared with the control group) is
significantly different when comparing severcly depressed people with the average of
those who are mildly depressed or nondepressed.

8.3.2 Example 3

Let’s consider another example of a two by three design. This study is an extension of
the two by two study from section 8.2, but adds a third treatment group, traditional
therapy. Bach subject is assigned to one of the three treatinents: a control proup,
traditional therapy, or happiness therapy. Furthermore, the participants are elassified
as nondepressed or depressed. Thus the design includes depression status as a two-level
factor and treatment group as a three-level factor, forming a two by three design. The
dataset for this example is used helow.

v usg opt-2byd-ex2

The table command is used to show the mean optimism by treatment group and
depression status.

. table depstat treat, contents (mean opt)

Depressio | Treatment group
n status Con T HT
Non | 44.6 54.7 59.3
Dep | 34.8 44.3 39.2

Let’s analyze the data using the anova comunand predicting optimism from
depstat, treat, and the interaction of these two variables. The analysis shows that
the depstat#ttreat iuteraction is significant (F = 5.00, p == 0.0077).

. anaova opt depstat#fitreat

Number of obs = 180 R-squared = {.4256

Root MSE = 9,97535 Adj R-squared = ©.4091

Source Partial 88 df M3 F Prob > F

Hodel 12830.6687 6 2666.13333 26,79 0.0000

depstat 8107.02222 1 8107.02222 81.47 0.0060

treat 3727.6 2 1863.8 18.73 0.0000

depstatfitraat 996, 644444 2 488,022222 5.00 0.0077
Residual 17314.3333 174 99.5076528
Total 30145 179 168.407821
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Let’s use the margins command to show the mean of the outcome broken down by
treat and depstat. This is followed by the marginsplot command to create a graph
of these means, as shown in figure 8.5.

. margins treatfidepstat

Adjusted predictions Wumber of sbs = 180
Expression : Linear prediction, predict(}
Delta-method
Margin  Std, Exr. z P> lu {98% Conf. Intervall
treat#
depstat
11 44.63333 1.821242 24,51 0.000 41.06378 48,2029
12 34.83333 1.821242 19.13 0.000 31.26376 38.4029
21 54.73333 1.821242 30.056 0.060 61.16376 58,3029
22 44.,33333 1.821242 24.34 0.000 40.76378 47,9029
31 59.26667 1.821242 32,64 0.000 55.6071 62.83624
32 39.2 1.821242 23,52 0.000 35.63043 42.7695?
. marginsplot

Variables that uniquely identify margins: treat depstat

Adjusted Predictions of freat#tdepstat with 95% Cls
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Figure 8.5. Graph of means

Let’s inspect the graph of the means to begin to make sense of the interaction. If
we focus on those who are nondepressed, it looks like hoth traditional therapy and
happiness therapy are more effective than being in the control group. Among those
who are depressed, it looks like traditional therapy yields larger optimism scores than
the scores in the control group, but the optimism scores for happiness therapy and the
control group scem similar.

i
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Let’s explore this further by looking at the effect of treatment group assignment
separately for each level of depression.

Simple effects

To further understand this interaction, we can compute the simple effect of treatment
at each level of depression status. This shows us whether the overall effect of treatment
was significant at each level of depression status. The test of the simple effect of treat
at each level of depstat is performed below using the contrast command.

. contrast treat@depstat

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
treat@depstat )
1 2 16.92 0.0000
2 2 6.82 0.0014
Joint 4 11.87 0.0000
Residual 174

The effect of treatment is significant for those who are depressed. The effect of
treatment is also significant for those who are nondepressed. Let’s further dissect these
simple effects by applying contrasts to the treat factor, forming simple contrasts.

Simple contrasts

We can follow up on these simple effects by performing simple contrasts on treatment
at each level of depression status. For example, let’s apply the r. contrast operator to
treat to compare each group with the reference group (that is, comparing traditional
with the control group, and happiness therapy with the control group). These compar-
isons are performed separately for those who are nondepressed and for those who are
depressed.

. contrast r.treat@depstat, nowald effects

Contrasts of marginal linear predictions

Margins : asbalanced

Contrast  Std, Err, t P>it] [95% Conf. Intervall

treat@

depstat
(2vs 1) 1 10,1 2,575835 3.92  0.000 6.018511 15.18349
(2 va 1) 2 9.5 2,67b625 3.69  0.000 4.416511 14.58349
(3vs 1)1 14.63333 2.57b625 5.68 0.000 9.649844 19.71682
(3 vs 1) 2 4,366667  2.575625 1.70  0.092, -.71i68224 9.450156°
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This yields a total of fowr tests. The first test compares the traditional therapy group
with the control group (group 2 versus 1) for those who are nondepressed. The optimisn
scores for those in traditional therapy are significantly larger than the control group
{by 10.1 units) among those whe are nondepressed. The sccond test forms this sane
comparison for those who are depressed. The mean optimism for those in traditional
therapy is significantly larger (by 9.5 units) than the control group for those who are
depressed.

The third and fourth tests compare the happiness therapy group with the control
group (group 3 versus 1). The third test forms this comparison among those who are
nondepressed, showing a significant difference (14.6) in favor of happiness therapy. The
fourth test forms the same comparison for those who are depressed, finding a difference
of 4.4, which is not significant.

Partial interaction

Another way to dissect a three by two interaction is through the use of a partial inter-
action. 'This applies a contrast to the three-level factor and interacts those contrasts
with the two-level factor. Let's apply the r. contrast operator to the treatment [actor,
This yields two contrasts: group 2 versus 1 and group 3 versus §. Interacting these con-
trasts with depression status Jorms two partial interactions, The first partial interaction
forms a two by two interaction of treatment group 2 versus 1 with depression status (as
pictured in the left panel of figure 8.6). The sccond partial interaction forms a two by
two interaction of treatment group 3 versus 1 with depression status (as pictured in the
right panel of figire 8.6).%

4. Node thal T manually created the graph shown in figure 8.6,

i
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Partial interaction of treatment by depression status
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Figure 8.6. Partial interactions

These partial interactions can be estimated by applying the r. contrast operator to

treat and interacting that with depstat, as shown below.

. contrast r.treatiidepstat

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
treat#depstat
(2 vs 1) (jeoint} 1 0.03 0.8694
(3 vs 1) (joint) 1 7.94 0.0054
Joint 5.00 0.0077
Residual 174

The first partial interaction is not sipnificant (F' = 0.03, p = 0.8694). This shows
that the effect of traditional therapy (when compared with the condrol group) is not sig-
nificantly different for those who are depressed versus nondepressed. This is illustrated
in the left panel of figure 8.6.

The second partial interaction is significant. This shows that the effect of happiness
therapy (when compared with the control group) is significantly different for those who
are nondepressed compared with those who are depressed. This fest is Hhustrated in the
right panel of figure 8.6, showing that happiness therapy is significantly more effective
for those who are nondepressed than for those who are depressed.
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. anova opt depstat##treat

8.3.3 Summary

Bumber of obs = 70 R-squared = 0.4898
. . s . s Root MSE = 10.023 Adj R-squared = 0.4742

i i ad § amples to illustrate nteractions of two categorical vari-
This section has used two examp ateg) Source Partial 5 s ¥s ¢ Prob > F

ables where one variable has two levels and the other has three levels. The margins
command creates a table of means broken down by the categorical predictors and then ! Model | 25175.6185 8 3146.93981 21.30 ©.0000
the marginsplot command graphs the means. The interaction can be further explored :

. , X depstat 17664.0863 2 8832.048i5 87.92 ¢.0000
through tests of simple effects that ook at the effect of one factor at each otj the ‘ievels ; treat 5360, 36796 2 969518148 26,13 ©.0000
of the other factor. We can further explore the simple effects by performing simple ; depstatitroat 9961 . 05926 4 565.264816 .63 0.0002

contrasts that apply contrasts to one factor at each of the levels of the other factor.
Tinally, we saw that we can perform partial inferaction tests by applying contrasts to
the three-level factor and interacting those contrasts with the two-level factor. P Total | 51395.8852 269  194.06277

Residual 26220.3667 261 100.461175

- The depstat#treat interaction is significant, Let’s use the margins command to

8.4 Three by three models: Examp!e 4 f compute the mean optimism by treat and depstat and then use the marginsplot
! command to graph the means computed by the marging command (see figure 8.7). We
Let’s now consider an example that ilkustrates a three by three design. Like the previous ; can use this table and graph to heip us interpret the depstat#treat interaction.
examples, the two categorical variables are treatment group and depression group, al}d
the outcome is optimism. In this example, there are three levels of treatment {con- : . margins treat#depstat
trol group, traditional therapy, and happiness therapy), and three depression groups Adjusted predictions Number of obs = 270
(nondepressed, mildly depressed, and severely depressed}. Expression : Linear prediction, predict()
The dataset for this analysis is used below, followed by a tabutation of the frequencies % el ta-method
of participants by depstat and treat. ¢ Margin  Std. Err. z Prlzl [95% Conf. Intervall
. use opt-3by3, clear de;::::#

. tabulate depstat treat . : i 44.2  1.820947 24,15  0.000 40.61337 47.78663
Depression Treatment group i 12 39.7  1.820847 21,69 0,000 36.11337 43, 28663
group Con T HT Total i 13 29.9  1.829947 16.34  0.000 26.31337 33.48663
i 21 54.53333  1.820947 28.80 0,000 50, 2467 68.11996
Non 30 30 30 20 22 49,53333  1.829947 27.07  0.000 45,9467 53.11996
Mild 30 30 30 90 : i 23 38.8  1.829947 21,75 0.000 36.,21337 43.38663
Sev 30 30 30 90 | 31 59.33333  1.829947 32.42 0.000 BE. 7467 62.91996
- : 32 49.86667  1.820847 27.26  0.000 46, 28004 53.4533
Total 90 [0 80 270 i 33 30.1  1.829947 16.45  0.000 26.61337 33.68683
|
|

There were a total of 270 participants in the study. Before the beginning of the i
study, 90 participants were nondepressed, 90 were mildly depressed, and 90 were severely
depréssed. Each of these 90 participants was randomly assigned {in equal numbers) to
one of three treatments: a control group, traditional therapy, or happiness therapy. i

Let’s use the anova command to predict optimism scores at the end of the study
from treat, depstat, and the interaction of these two variables.
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. marginsplot
Variables that uniquely identify margins: treat depstat

Adjusted Predictions of treat#fdepstat with 85% Cls
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Figure 8.7. Mean optimisin by treatrent group and depression status

Let’s foeus on the two lines representing the nondepressed and mildly depressed
groups in figure 8.7. The eflect of treatiment assignment appears similar for these two
groups. Optimism scores look larger for traditional therapy than for the control group,
and optimism scores for happiness therapy appear larger than the control group as well.
Contrast this with the severely depressed group, where it appears that the optimism
scores are larger for those in traditional therapy than for those in the control group, but
abott the same for those in happiness therapy as for those in the control group.

We can statistically dissect this interaction in four different ways, using simple ef-
fects (sce section 8.4.1), simple contrasts (see section 8.4.2), partial interactions (see
section 8.4.3), and interaction contrasts (see section §.4.4). Each of these techniques is
ilustrated below.

8.4.1 Simple effects

One way to dissect tle interaction is by looking at the effect of treatinent at each level
of depression status. This is performed using the contrast command below.
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. contrast treat@depstat

Contrasts of marginal linear predictions

Maxrgins : asbalanced

df F B>F
treat@depstat
1 2 17.86 0.0000
2 2 9.96 0.0001
3 2 9.66 0.0001
Joint 6 12.46 0.5000
Rezidual 261

Three tests are performed, showing the effect of treat at each of the three levels
of depstat. These results show that the effect of treat is significant at each level of
depstat. We can further dissect the simple effects by applying contrasts to treat,
yielding simple contrasts.

8.4.2 Simple contrasts

Let’s repeat the previous contrast conunand, but apply the r. contrast operator to
treat. This yields a comparison of each treatment group with the reference group
(that is, group 1, the control group) at each level of depression status. To keep the
output simple, let’s begin by focusing on those who are nondepressed (by specifying
i.depstat).

. contrast r.treat@l.depstat, nowald effects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast Std. Errx. + P>it| [98% Conf. Intervall}
treatd
depstat
(2 vs 1) 1 10.33333  2.587936 3.99 0.000 5.237443 15.42922
(3vs 1} 1 15.13333 2.587936 5.86 0.0060 10.03744 20.,22922

For those who are nondepressed, the comparison of group 2 versus 1 {traditional
therapy versus control group) is significant. The mean optimism is 10.3 units larger for
those receiving traditional therapy than those in the control group.

The comparison of group 3 versus 1 (happiness therapy versus control group) is also
significant. The mean optimism geores are 15.1 units larger for those receiving happiness
therapy than those in the control group.
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Let’s now perform these simple contrasts for those who are mildly depressed.

. contrast r,treat®2.depstat, nowald effects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. % P>ltl £95% Conf. Intervall
treat@
depstat
(2 vs 1) 2 9.833333 2.587936 3.80 ¢.000 4,737443 14.,92922
(3vs 1) 2 10.16667 2.5687936 3.93 Q.000 6.0Q70776 15.26256

Both of these contrasts are significant, The mean optimism is 9.8 units larger for
those in the traditional therapy group than those in the control group. Also, the hap-
piness therapy group shows 10.2 units larger optimism than those in the control group.

Finally, let’s perform these simple contrasts for those who are severely depressed. :

. contrast r,treat@3.depstat, nowald effects

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. t P>t [95 Conf. Interval]
treat®
depstat
(2 vs 1) 3 9.9 2.b87%36 3.83  0.000 4.,804109 14.99589
(3vs 1) 3 .2 2.587936 0.08 0,938 ~4. 895891 5.255891

Among those who are severely depressed, there is a significant difference comparing
group 2 (traditional therapy) with group 1 (control group). The average optimism for
those in traditional therapy is 9.9 units larger than the control group. However, the
differenee between group 3 and group'l is not significant. Among those who are severely
depressed, there is no significant difference between happiness therapy and the control
group.

If you prefer, you can obtain all six of these simple contrasts at once using the
contrast command below (the output is omitted to save space).

. contrast rltreat@depstat, nowald effects
(output omitted )

Let’s now consider the use of partial interactions to further understand the interac-
tion treat#depstat.

'
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8.4.3 Partial interaction

The three by three interaction can also be further understood through the use of a
partial interaction. A contrast is applied to one of the factors and those contrasts are
interacted with the other three-level factor. For example, applying the r. contrast
operator to the treatment factor yields two contrasts: group 2 versus 1 and group 3
versus 1. We can then interact these contrasts with depression status. This decomposes
the overall three by three interaction into a pair of three by two interactions.

I used the means from the margins command to create a visual depiction of these
two partial interactions, shown in figure 8.8. The left panel of figure 8.8 illustrates
the comparison of treatment group 2 versus 1 interacted with depression status. The
right panel illustrates the comparison of treatmeni group 3 versus 1 interacted with
depression status.

Partial interaction of treatment by depression status
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Figure 8.8. Partial interactions
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The contrast command below tests the two partial interactions pictured in fig-
ure 8.8.

. contrast r.treatfidepstat

Contrasts of marginal linear predictions

Margins : asbalanced
af F P>F
treat#depstat
(2 vs 1) (joint} 2 0.01 0.9891
(3 vs 1) (joint) 2 5.64 ©.0002
Joint 4 5.63 G. 0002
Residual 261

The first partial interaction is not significant (# = 0.01, p = 0.9891). The difference
in optimism between traditional therapy and the control group does not differ among
the levels of depression status. We can see this in left panel of figure 8.8, The effect of
traditional therapy (versus the control group) is similar for all three lines (representing
the three levels of depression).

The second partial nteraction is significant (I7 = §.64). The diffierence in optiminn
Detween happiness therapy and the control group depends on the level of depression.
Looking at the right panel of figure 8.8, it appears that the effect of happiness therapy
{compared with the control group) may be similar for those who are nondepressed and
mildly depressed, but different for those who are severely depressed. We can investigate
these differences using interaction contrasts, ilustrated in the next section.

8.4.4 lInteraction contrasts

An interaction contrast.is formed by applying contrasts to both of the factor variables
and then interacting the vesulting contrasts. Suppose we applied the r. contrast oper-
ator to treatment group and the a. contrast operator to depression statis. This would
ereate contrasts of each treatinent group against the control group (that i, group 2
versus 1 and group 3 versus 1) interacted with contrasts of adjacent jevels of depression
groups (that 'is, group 1 versus 2 and group 2 versus 3). This yvields a total of fowr
interaction contrasts. 1 have created a visual representation of these four interaction
contrasts based on the means from the margins command, pictured in fipure 8.9.
1
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Figure 8.9. Interaction contrasts

Each panel of figure 8.9 forms a two by two interaction, selecting two levels of the
treatment factor to be interacted with two levels of the depression factor, For example,
the top left panel interacts the comparison of the traditional therapy group versus the
contral group by nondepressed versus mildly depressed. In the case of a three by three
design, an interaction contrast dissects the interaction into four pieces. You can select
the contrast operators for cach factor to form comparisons that are of interest to you.
In this example, we are applying the r. contrast operator to the trestment factor and
the a. contrast operator to the depression status factor. The contrast conunand below
{ests cach of these interaction contrasts.

. contrast a.depstat#r.treat, nowald pveffects
Contrasts of marginal linear predictions

Margins ¢ agbalanced
Contrast  5Std. Err. t P>l
dapstat#treat
(1 ws 2) (2 vs 1) N 3.659894 0.14 0,891
(1 vs 2) {3 vs 1) 4.966667 3.659994 1.38 0.178
(2 wvs 3)°{(2 vs 1) —-. (666667 3.659894 -~0.02 0.985
(2 vs 3) (3 vs 1} 0,966667  3.659394 2.72 0.007

The four tests created by the contrast command correspond to the top left, top
right, bottom left, and bottom right panels of figure 8.9 (that is, the panels are read
left to right and then top to bottom).
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Let’s begin by interpreting the fourth interaction contrast, the only one that was
significant. This contrast, pictured in the bottom right panel of figure 8.9 is the same
as a two by two interaction where treatment has two levels (control group versus hap-
piness therapy) and depression status has two levels (mildly depressed versus severely
depressed). The significance of this interaction contrast indicates that the effect of hap-
piness therapy (compared with the control group) is different for those who are mildiy
depressed compared with those who are severely depressed. Based on the pattern of
means we see in figure 8.9, we can say that happiness therapy is more effective for those
who are mildly depressed than for those who are severely depressed.

Now leb's return to interpreting the first, second, and third contrasts. The first
contrast shows that the effect of traditional therapy (versus the control group) is not
significantly different for those who are nondepressed and mildly depressed. This is
consistent with the pattern of means shown in the top lefi panel of figure 8.9.

The second contrast (which is depicted in the top right panel) focuses on the com-
parison of happiness therapy with the contrel group interacted with the compagison
of nondepressed versus mildly depressed people. This nonsignificant interaction con-
trast indicates that the effect of happiness therapy does not differ (significantly) when
comparing those who are nondepressed and mildly depressed.

The third contrast {depicted in the bottom left panel) shows that the effect of tradi-
tional therapy (versus the control group) is not significantly different when comparing
those who are mildly and severely depressed.

8.4.5 Summary

Tlis section has illustrated how you can interpret interactions that involve {wo categor-
ical variables that both have three levels. Actually, the principles illustrated here can
be applied to designs where each of the categorical variables hag three or more levels.
The interpretation of the interaction begins with using the margins command to com-
pute the means as a function ol the categorical variables followed by the marginsplot
command to create a graph of the means. Then four different techniques can be used
for dissecting the interaction: simple effects, simple contrasts, partial interactions, and
interaction contrasts.

8.5 Unbalanced designs

The examples presented in this chapter have illustrated balanced designs-—the number
of observations was the same for all the cells. Even in the context of a randomized
experiment, it is unusual to have the same number of observations in each cell. This
section presents an example of an unbalanced design. This will allow us to consider
two different strategies that can be used for estimating adjusted means, the as-observed
strategy and the as-balanced strategy. As we will see, the asbalanced option can
be used with the margins command to estimate marpging as though the design were
balanced, even if the actual design is not balanced.

8.5 Unbalanced designs 237

For this example, let’s use the GSS dataset with the variable happy7 as the out-
come. This Likert variable contains the respondent’s rating of their happiness where 1
represents “completely unhappy” and 7 represents “completely happy”. Let's predict
happiness based on whether the respondent is married (married}, whether the vespon-
dent is a college graduate (cograd), and the interaction of these two variables. Because
married has fwo levels and cograd has two levels, this yields a two by two design. Let’s
assess whether this is a balanced design by displaying the cell frequencies of married
by cograd when happy7 is not missing.

. use gss_ivem

. tabulate married -cograd if Imissing(happy7), row

Key

frequency
row percentage

marital:
marrieds=1,
unmarrieds= College graduate
0 {1=yes, O=no)
(recoded) | Not CO Gr C0 Grad Total
Unmarrisd 454 147 601
75.54 24.48 100.00
Married 403 163 bE6
T2.48 27.52 100.60
Total B57 300 1,157
T4.07 25.93 100.00

This tabulation clearly shows that this is not a balanced design. The number of
ohservations is not equal in each of the cells. For example, there are 454 respondents
who are unmarried and are not college graduates compared with 147 respondents who
are unmarried and are college graduates. Note that this table also shows us that, overall,
25.93% of the respondents are college graduates and 74.07% ave not college graduates.
I will refer to these percentages when manually computing adjusted means later in this
section,

Before performing the analysis, let’s compute the mean of happy7 by married and
cograd using the tabulate command below.
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. tabulate married cograd, sum(happy7)
Means, Standard Deviations and Frequencies of how happy R is (recoded)

marital:
married=1,
unmarrieds= College graduate
o] {i=yes, O=no}
(recoded) | Not COD Gr C0 Grad Total

Unmarried | 5.3039848 5.5170068 | 5.3560732
1.0590229 89556373 | 1.0470596
454 147 801

Married | 5.7121688 5.6862745 5.705036
.8986037. 79032462 . B6953016
403 153 bBEB

Total 5.495816 65.6033333 | 5.5237684
1.0071217 .89926887 8810472
857 300 1167

This shows the mean of happy7 for each cell of the two by two design. It also shows
the row mean of happy7 for each level of marital. T will refer to these means to illustrate
how adjusted means are computed in an unbalanced design.

Let’s now perform an analysis that predicts happy? from married, cograd, and the
interaction of these two variables. This is performed using the anova command below.

. anova happy7 marriedfticograd

Number of obs = 11567 R-squared = (.0362

Root MSE = .9B4375 Adj R-squared = ©.0337

Source Partial 58 df 148 F Prob » F

Model 40,2844252 3 13.4281417 i4.44 0.90000

married 18.5023361 1 18.5023361 19.89 0.0000

cograd 1.94355001 1 1.943b66001% 2.08 0.1488

marriedffcograd 3.16743845 1 3.16743846 3.41 0.0862
Residual | 1072.3i194 1153 830019033
Total 1112.59637 1156 9624536807

We can see that the married#cograd interaction is not significant (p = 0.0652).
Let’s assume that we want to retain this interaction, (We may want to retain it based
on theoretical considerations or because its p-value approaches 0.05.) Let’s now turn our
attention to married, which is significant (p = 0.0000). To understand this significant
result, let’s use the margins command to compute the adjusted means by the levels of
married.
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. margins married

Predictive margins Number of obs = 1157
Expression  : Linear prediction, predict()
Delta-method
Margin  Std. Err. z P>zl [95% Conf. Intervall
married
0 5, 3589205 0383807 i36.16 0.00¢ 5.282069 5,43835
1 6.705447  .0409245 13%.41  0.000 5.625237 5.785658

Note how the adjusted means from the margins command are similar to, but not
the same as, the row means from the tabulate command. Consider the adiusted mean
for those who are not married, 5.359205. We can think of this adjusted mean as being
camputed by taking each cell mean of happy7? among those who are not married and
weighing it by the corresponding proportion of those are college graduates or non-college
graduates, as illustrated below. '

. dispiay 5.3039648+,7407 + 5.6170068+%.25693
5.3592066

The cell mean for unmarried non-college graduates (5.30) is multiplied by the overall
proportion of respondents who are non-college graduates (0.7407). The cell mean for
unmarried college graduates {5.52} is multiplied by the overali proportion of college
graduates (0.2503). Wlen these weighted means are added together we obtain 5.3592,
the adjusted mean for those who are not married.

We can likewise compute the adjusted mean for those who are married using the
same strategy, as shown below.

. display 5.7121688%.7407 + 5.6862745%.2693
6. 706447

The key point is that the adjusted means are computed by creating a weighted
average of cell means that is weighted by the observed proportions of observations in the
data {inn this case, the ohserved proportions of cograd). Stata calls this the as-observed
strategy. This is the default strategy, unless we specify otherwise. We can explicitly
request this strategy by adding the ascbserved option to the margins command, as
shown below. This yields the same adjusted means we saw in the previous margins
command.
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. margins married, asobserved

Predictive margins Number of obs = 1167
Expression : Linear prediction, predict{()
Delta-method
Margin  Std. Err. z Priz| [96% Conf. Interwvall
married :
0 5.3592056 . 0393607 136.16 ¢.000 5.282058 5.43635
1 5.705447 ,0409246  139.41  (.000 5.625237 5.785658

In some cases, we might want the adjusted means to be computed using an equal
weighting of the cell means, as though the design had been balanced. In the context
of this example, it would mean weighing college graduates and non-college graduates
equally.’ This can be accomplished by using the asbalanced option. In the example
below, the adjusted means are computed as though the design was balanced.

. margins married, asbalanced

Adjusted predictions Wumber of obs = 1157
Expression : Linear prediction, predict(}
at 1 married (ashalanced)
cograd (asbalanced)
Dalta—method
Margin  Std. Frr. 7 Prizi [95% Conf. Interwvall
married
0 5.410486 .048758 118.24 0.000 5.320802 6.50017
1 5.699217 0457884 124 .47 0.000 5,609473 5.78896

These adjusted means reflect an equal weighting of college graduates and non-college
graduates. Let’s illustrate this by manually computing the adjusted mean for those who
are not married. The as-balanced adjusted mean for those who are unmarried can be
computed by multiplying the cell mean for unmarried non-college graduates by 0.5 and
the cell mean of unmarried college graduates by 0.5. These equally weighted cell means
are added together. This is illustrated using the display command below. This yields
the as-balanced adjusted mean for those who are not masried.

. display 5.3038648+.5 + 5.5170068+.5
5.4104858

Likewise, we can manmually compute the as-balanced adjusted mean for those who
are married, as shown below.

5. Such a strategy may be desirable when ansiyzing the results from a designed experiment. For
example, imagine that we have a variable that reflects experimental group assignment (for exam-
ple, treatment versus control group). In computing adjusted means, the experimenter may want
the treatment and control groups to be weighted equally, even if there were diflering mumbers of
participants in each group.
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. display 5.7121588%.5 + 5.6862745%.5
5.6992167 ’

This only scratches the surface regarding the ways in which you can use the op-
tions asbalanced and asobzerved. For example, you can specify that certain variables
be treated as-balanced while other variables be treated as-observed. For more details
regarding these options, see [R] margins.

8.6 Main effects with interactions: anova versus regress

This section considers the meaning of main effects in the presence of an interaction
when using the regress command compared with the anova command. The regress
command uses dummy (0/1) coding compared with the anova command that uses effect
{~1/1) coding (Pedhazur and Schmelkin 1991, 474). In the presence of interactions,
this can lead to conilicting estimates of so-called main effects for the regress command
versus the anova command. This is illustrated using the example from section 8.2 in
which a two by two model was used predicting optimism from treatment (control group
and happiness therapy)} and depression status {nondepressed and depressed). Let’s use
the dataset for this example and show the mean optimism by treatment group and
depression status.

use opt-2by2
. tabulate depstat treat, summarize{opt)
Means, Standard Deviations and Frequencies of Optimism

Depression Treatment group
status Con KT Total
Non 14,9 60.0 52.4
10.1 16.0 12.5
30 30 60
Dep 34.8 38.8 36.7
10.0 10.1 10.2
30 30 60
Total 38.7 49.4 44.6
i1.2 14.6 13.8
60 60 120

Now let's repeat the anova command that was used in section 8.2 predicting opti-
mism from treatment, depression status, and the interaction of these two variables.
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. anova opt treatiitdepstat

Number of obs = 120 R-squared = (.4889
Root MSE = 10.0136 Adj R-squared = Q.4757
Source Partial 83 af MS F Prob > F
Yodel 11126 3 3708.86667 36.98 0.0000
treat 2803.33333 1 2803.33333 27.96 0.0000
depstat 7426.13333 1 7426.13333 74.06 0.0000
treatfdepsiat 896.533333 1 896.533333 8.94 0.0034
Residual 11631.4667 116 100.271264
Total 22757.4667 119 191.235216
Let’s now perform this analysis but instead use the regress command.
. regress opt treatiffidepstat, vsquish
Source | . 58 daf s Humber of obs = 120
F({ 3, 116) = 36.89
Model 11126 3 3708.66667 Prob > F = 0.0000
Residual 11631.4667 116 100.271264 R-squared = (.4889
- Adj R-squared = 0.4757
Total 20757.4667 119 191.239216 Root MSE = 10.014
opt Coef. Std. Err. . t P>t [95% Conf. Intervall
2.treat 15.13333  2.585489 5.85 0.000 10.01245 20,25422
2.depstat -10,26667  2.585489 -3.97 0.000 -15,38766  -5.145781
treat#
depstat
22 -10.93333  3.656433 -2.99 ©.003 -18.17536  -3.601307
.cons 4486667  1.828216 24,54 0.000 41.24565 48.48768

Let’s now compare the results of the anova command with the results of the regress
command, focusing on the significance tests. These comparisons are a bit tricky, because
the anova command reports F statistics, whereas the regress command reports ¢
statistics. But, we can square the ¢ value from the regress command to convert it into
an equivalent of an F' statistic.

Let's first compare the test of the treat#depstat interaction. The results of this
test are the same for the anova and regress commands. If we square theé ¢ value of
~2.99 from the regress command, we obtain the 8.94, the same value as the I statistic
from the anova command.

Using the contrast treat#depstat conunand following the regress command also
yields the same results as the anova command. The F value from the contrast com-
mand is the same as the F value from the anova command, 8.94.
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. contrast treat#depstat

Contrasts of marginal linear predictions

Margins : asbalanced
af F P>F
treatiidepstat 1 B.94 0,0034
Residual 116

Let’s now compare the test of treat from the anova command with the regress
command. We square of the ¢ value for the treat effect from the regress commmand
(5.85) and obtain 34.22. This is different from the F value for the treat effect from the
anova command, 27.96.

Suppose we use the contrast treat command to test the treat effect. The I value
from the contrast command is 27.96, which matches the F value as from the anova
command.

. contrast treat

Contrasts of marginal linear predictions

Margins : asbalanced
af F P>F
treat 1 27.96 0.0000
Residual 1186

This might seem perplexing, but there is a perfectly logical explanation for this.
The reason for these discrepancies is because of differences in the coding used by the
anova and regress commands. The regress command uses dummy (0/1) coding,
whereas the anova comunand and the contrast command use effect {—1/1) coding.
The interpretation of the interactions is the same whether you use effect coding or
dummy coding, but the meaning of the main effects differ. When using dummy coding,
the coefficient for treat represents the effect of treat when depstat is held constant
at 0 (that is, for those who are nondepressed, the reference group). Referring back to
the table of means, we see that the effect of treat for those who are nondepressed is
60.0 ~ 44,9 = 15.1. This matches the coefficient for treat from the regress command.
Likewise, the coefficient for depstat corresponds to the effect of depstat for the control
group, which is 34.6 — 44.9 = —10.3. This matches the cocflicient of depstat from the
regress command.

In the dummy-coded model used by the regress command, the tests of treat and
depstat might be called main effects, but this is really a misnomer. These are really
simple eflects. The test of treat from the regress output is the effect of treat when
depstat is held constant at the reference group, and the coefficient for depstat is the
effect of depstat when treat is held constant at the reference group.
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The anova and contrast commands instead use effect coding, and the terms as-
sociated with the main effects represent the classic analysis of variance main effects.
Referring to the table of means, the main effect of treat concerns the differences in the
column means (that is, 39.7 versus 49.4), and the main effect of depstat concerns the
differences in the row means (that is, 52.4 versus 36.7).

This begs the question of whether we should even be interpreting main effects in the
presence of an interaction. Whether the main effects are coded using dummy coding or
using effect coding, main effects are not meaningful when they are part of a significant
interaction term.

8.7 Interpreting confidence intervals

The marginaplot command displays margins and confidence intervals that were com-
puted from the most recent margins command. The graphs produced by the comimand
marginsplot, especially those created in the context of categorical by categorical inter-
actions, can temp$ you into falsely believing that the confidence intervals reflect compar-
isons between groups. Let’s consider an exarmple where this temptation can be very com-
pelling. This example predicts happy7 from marital3, female, and marital3#female.
This model is run below, including ¢.health as a covariate.

. use gss_ivram

. anova happy? i.marital3##i.female ¢.health

Humber of ohs = 783 R-squared = 0,1246
Root MSE = .941604 Adj R-squared = 0.1178
Source Partial S35 daf MS F Prob > F
Model 97.864391 6 16.3107318 18.40 00,0000
maritald 26.1721406 2 13.0860702 14,76 0.0000
female 3.81264652 1 3.81264652 4.30 0.0384
marital3#female 2.47082028 2 1.23541014 1.3% 0.2488
health 51.8856842 1 51.9855842 58.656 0.0000
Residual GEY.869964 776 .B86430366
Total 785.734356 782 1.00477539

The interaction of marital3 by female is not significant. Nevertheless, let’s compute
the adjusted means of happiness by marital3 by female using the margins command
and graph them using the marginsplot command (see figure 8.10).
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. marginsg marital3#female

Predictive margins Number of obs = 783
Expression : Limear prediction, predict()
Delta-method
Margin  Std. Err. z P>zl f95% Conf. Intervall
marital3#
female
10 5.681808  .0948106 5%.93  0.000 6.495883 5.867634
11 5.687241  .0575204 98.87  0.000 5.6574503 5.798978
20 5.12593  ,1140485 44.95 0,000 4,902399 5.349461
21 5.293967 . 0825156 64.16  0.000 5.132231 5.465684
30 5.267392  .0910344 67.86  0.000 5.088968 5.445816
31 5.552688  .0912994 60.82 0,000 5.373744 5.731631
. marginsplot
Variables that uniquely ideatify margins: marital3 female
Predictive Margins of marital3#femate with 95% Cls
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Figure 8.10, Adjusted means of happiness by marital status and gender

Looking at the confidence intervals in figure 8.10, your eye might be tempted to
belicve happiness is the same for males and females at each level of marital status
because the confidence intervals for males and females highly overlap. However, we
would need to test the effect of gender at each level of marital status using the margins
command, as shown below.
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- margins female@maritald, comtrast(nowald pveffacts) data, I encourage you to describe the pattern of results that you expect and create an

Contrasts of predictive margins analysis plan (using the techniques described in this chapter) that will test for your

Expression  : Linear prediction, prediet() predicted pattern of results.
Delta-method P For more informasion about the interaction of two categorical variables, I recommend
Contrast  Std. Err. z Pz : Keppel and Wickens (2004), Maxwell and Delaney (2004), and Jaccard (1998). For a
female@maritald more detailed discussion of the use of partial interactions and interaction contrasts, see
(1 vs base) 1 .0054323 . 1111648 0.05  0.961 : Abelson and Prentice {1997), Boik (1979), and Levin and Marascuilo (1972). For an
{1 vs base) 2 . 1680273 .140184 1.20  0.231 3 H 3 H H Ry . oat .- N
wxample iHustratin eraction con s Aas
(1 ve bace) 3 'ogE0962 1288355 521 6.097 examp g the application of an interaction contrast, see Mason, Prevost, and
Sutton (2608).

After adjusting for the covariates, these results actually show that the happiness of .
males and females significantly differs among thoese who were never married (p = 0.027). e

In summary, the marginsplot command provides a graphical display of the fesults i
calculated by the margins command. Sometimes the appearance of the confidence intex-
vals of individual groups might tempt you to inappropriately make statistical inferences
about the comparisons between the groups. To avoid this trap, you can directly form
comparisons among the groups of interest to ascertain the significance of the group
differences.

8.8 Summary

This chapter considered three types of designs involving two categorical variables: two ;
by two, three by two, and three by three designs. Following each design, the margins
command can be used to obtain the means as a function of the categorical variables,
and the marginsplot command can be used to display a graph of the means. Following i
each of these designs, you can use a test of simple effects to assess the significance of ;
one factor at each of the levels of the other factor.

Tn & two by three design, you can further perform simple contrasts by applying
contrast coefficients to the three-level factor and examining the eflfect of the contrasts
at each level of the two-level factor. You can also perform partial interaction tests
by applying contrasts to the three-level factor, and interacting that with the two-level
factor. These techniques can be applied in the same way for four by two designs, five
by two designs, and so forth.

In a three by three design, you can use all techniques illustrated in the three by two
design, namely the use of simple effects, simple contrasts, and partial interactions. In
a three by three design, you can also use interaction contrasts by applying contrasts to
each of the three-level factors and then interacting the contrasts.

I will reiterate a point I made at the beginning of the chapter. This chapter has
illustrated a wide variety of methods for understanding and dissecting interactions. You
do not need to apply every method illustrated in this chapter, and you do not need to
apply them in the order they were illustrated in this chapter. Before looking at your
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9.1 Chapter overview

This chapter illustrates models involving interactions of three categorical variables, with
an emphasis on how to interpret the interaction of the three categorical variables. The
chapter begins with a two by two by two model (see section 9.2) followed by an example
illustrating a two by two by three model (see section 9.3). The chapter then concludes
with a discussion of models that have at least three levels for each factor, using a three
by three by four model as an example (sce section 9.4).

Like the previous chapter, this chapter illustrates the many ways in which you can
dissect interactions. In the case of a three-way interaction, there are even more ways
that such interactions can be dissected. The best practice would be to use your re-
search questions to develop an analysis plan that describes how the interactions will
be dissected. This plan would also consider the number of statistical tests that will be
performed and consider whether a strategy is required to control the overall type I ¢rror
rate. By contrast, an undesirable practice would be to include an interaction because

249
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it happened to be significant, dissect it every which way possible until an unpredicted
significant test is obtained, and make no adjustment for the number of nnplanned sta-
tistical tests that were performed.

The examples in the chapter illustrate the possible ways to dissect interactions, so
you can understand how these techniques work and can choose ameong them for your
analysis plan. This chapter focuses on teaching thesé techniques and, to that end, data
are inspected prior to analyzing it, patterns of data are used to suggest interesting tests
to perform, and every possible method is illustrated for dissecting interactions, I think
this is a useful teaching strategy but not a research strategy to emulate.

9.2 Two by two by two models

This chapter begins with the simplest example of 2 model with an interaction of three
categorical variables, a two by two by two model. Let's continue to use the same research
example that we saw from chapter 8 that focused on the effect of treatment type and
depression status on optimism. The same hypothetical optimism scale is used, in which
scale scores could range From 0 to 100 and average about 50 for the general population.

Suppose that the researcher wants to further extend this work by considering the
role of the time of year (that is, season), thinking that optimism may be less malleable
during dark winter months than during cheerful summer months. To investigate this,
the rescarcher conducts a new study using a two by two by two model in which treatment
has two levels (control group versus happiness therapy), depression status has two levels
(nondepressed versus mild}yJ depressed), and season has two levels (winter and summer).

The resuits of this study are contained in the dataset named opt-2by2by2.dta. Let's
use this dataset and show the mean of the ontcome variabie (optimism) by depression
status, treatment, and season.

. use opt-2by2by2, clear
. table depstat treat season, contents(mean opt)

Season and Treatment
group

Depressio | — Winter — = Summex —

n status Con Hr Con HT

Norn | 44.4 £9.9 51.7 ©4.6
Mild | 39.2 50.9 45.0 64.8

The anova command is used below to fit a model that predicts optimism from
treatinent, depression status, season, all two-way interactions of these variables, and
the three-way inferaction of these variables.

|
i
1
b

9.2 Two by two by two models

. anova opt depstat##treatfHiseason

Number of obs = 240 R-sgquared = 0.5677
Root MBE = §.01794 Adj R-squared = 0.5546
Source Partial 35 daf Ms F Prob > F
Hodel 19584.5167 7 2797.7881 43.562 0.0000
depstat 1601.66667 1 :601.68667 24.91 0.0000
treat 13470.0167 1 13470.0167 209.53 0.0000
depstat#treat 35.2666667 1 35.2666667 0.55 0.4506
season 3713.06667 1 3713.06667 57.76 0.06000
depstat#iseason 220. 416667 1 2920.416667 3.43 0.06563
treatfiseason 112.066667 1 112066667 1.74 0. 1880
dapstat#treat#season 432. 016667 1 432.016667 .72 0.0104
Residual 14914.68667 232 64.2873563
Total 34499.1833 239  144.348047

251

WNote! Three-way interaction shortcut

Specifying depstat##treat##season is a shorteut for specifying all main ef-
fects, two-way interactions, and the three-way interaction of depstat, treat, and
seaszon. This both saves time and helps ensure that you include ail lower order
effects. Even if not significant, these lower order effects should be included in the
model.

The depstati#treat#season interaction is significant (I == 6.72, p == 0.0101). Let’s
use the margins command to show the mean of optimism broken down by these three
factors.

. margins depstat#treati#fseason

Adjusted predictions Humber of obs = 240
Expression : Linear prediction, predict(}
Delta-method

Margin  Std. Err. z P>z {95% Conf. Intervall
depstat#
treati#iseason

111 44.4  1,463869 30.33  0.000 41.53087 47.26913

112 51.66667 1.463869 35.29  0.000 48, 79764 54.5358

121 59,93333 1.463869% 40.94 0.000 57.0642 62, 80246

122 64, 66667 1,463869 44 .11 0.060 61.697564 67.4368

211 39.23333  1.463860 26,80 0.000 36.3642 42.10246

212 44 . 96667 1.463869 30.72 0.000 42,09754 47,8368

221 50.93333  1,463869 34.79  0.000 48,0642 53,80246

222 &64,76667 1.463869 44,24 0.000 61.88754 67.6368
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. ' . . contrast treatiidepstat@season
Let’s then use the marginsplot command to make a graph of the means, showing P

! g , Contrasts of marginal line dictio
treat on the x axis and the different seasons in separate panels (see figure 9.1). 8 or precienions

Margins ¢ asbalanced
. marginsplot, xdimension(treat) bydimension(seasen) neci i df F P>F
Variables that uniquely identify margins: depstat treat season
. treatiidepstat@season
1 1 1.71 0.1917
i L 2 1 5.B5 0.0183
Adjusted Predictions of depstal#treat#season Joint 2 3.63 0.0279
Winter : Summer L
o] i Residual 232

Indeed, the interaction of treatment by depression status is not significant during
the winter (F' = 1.71, p = 0.1917) and is significant during the summer (F = 5.55,
p == 0.0193}. Looking at the left panel of figure 9.1, we see that in the winter, the effect
of happiness therapy (compared with the control group) does not depend on depression
P status, hence the nonsignificant simple interaction. However, in the summer, the effect
i of happiness therapy does depend on depression status. Looking at the right panel of
figure 9.1, we can see that in the summer happiness therapy is more effective for those
who are mildly depressed than for those who are nondepressed,

Linear Prediction

Con HT Con HT

Treatment group 9.2.2 Simple interactions by depression status

—rm Nom —S— Wil . Another way to dissect this three-way interaction is by looking a$ the simple interaction
I of treatment by season at each level of depression status, To visualize this, let’s rerun
’ the margins command and then use the marginsplot command to graph the means
showing treat on the 2 axis and separate panels for those who are nondepressed and
mildly depressed. This is visnalized in figure 9.2,

Figure 9.1. Optimism by treatment, depression status, and season

The graph in figure 9.1 illustrates the three-way interaction, showing that the size
of the treat#depstat interaction differs for winter versus summer. It appears that
there is no treat#depstat interaction during the winter but that there is such an
interaction during the summer. In fact, we can perform such tests by looking at the
simple interaction of treat by depstat at each level of season.

9.2.1 Simple interactions by season

One way that we can dissect the three-way interaction is by looking at the simple
interactions of treatment by depression status at each season. Looking at figure 9.1,
the left panel illustrates the simple interaction of treatment by depression status for the
winter, and the right panel illustrates the simple interaction of treatment by depression
status for the summer. It appears that the interaction is not significant during the winter
and is significant during the summer. We test this using the contrast command, which
tests the treat#depstat interaction at each level of season.
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. margins depstat#treati#iseason
(outpul omitted)

. marginsplot, xdimension(treat) bydimension(depstat) noci
Variables that uniguely identify margins: depstat treat season

Adjusted Predictions of depstati#treat#fseason
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Figure 9.2, Optimism by trealment, season, and depression status

Among those who are nondepressed, it appears that happinass therapy is equally
effective in the summer and winter (see the left panel of figure 9.2). By contrast, amnong
those who are mildly depressed, it appears that the effectiveness of happiness therapy
depends on the season {see the right panel of figure 9.2). In other words, it appears
that there is an interaction of treatment by season for those who are mildly depressed,
bt no such interaction for those who are not depressed. We can test the interaction of
treatment by depression status at each level of season using the contrast command.

. contrast treatiseason@depstat

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
treati#season@depstat
' 1 1 0.8t 0.3693
2 1 7.6b 0.0061
Joint 2 4.23 0.0167
Residual 232
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Indeed, the interaction of treatment by depression status is not significant for those
who are not. depressed {F = (.81, p = 0.3693) but is significant for those who are mildly
depressed (F' == 7.65, p = 0.0061).

9.2.3 Simple effects

We have seen that the effect of happiness therapy depends on both scason and depression
statis. We might want to know whether the effect of happiness therapy is significant fox
each combination of season and depression status. This simple effect can be tested using
the contrast command shown below. It tests the effect of treat at each combination
of season and depstat.

. contrast treat@season#depstat, nowald pveifects
Contrasts of marginal linear predictions
Margins 1 asbalanced

Contrast  Std. Err. t P>l

treat@seasoniidepstat

. (2 vs base) 1 1 15.53333  2.070223 7.50  0.000
: (2 vs base) 1 2 11,7 2.070223 5.86  ©.000
: (2 ve base) 2 1 12,9  2,070223 6.23 0.000
i (2 vs base) 2 2 19.8  2.070223 9.56 0,000

The mean optimism for those in the happiness therapy group is always greater than
the control group at each level of season and at each level of depression status, For
example, among those who are nondepressed and treated during the winter, the mean

; optimism for those in happiness therapy is 15.5 points greater than the control group,
a significant difference (¢ = 7.50, p = 0.000).

9.3 Two by two by three models

Let’s now consider an example with three factors, two of which have two levels and one
of which has three levels. This is an extension of the example shown in the previous
section, involving treatment group, depression status, and season as factor variables. In
this example, the treatment variable now has three levels: 1} control group, 2) traditional
therapy, and 3} happiness therapy.

Let’s use the dataset for this example and show the mean optimism by depression
status, treatment group, and seasorn.
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. use opt-Jby2by2, clear . margins depstat#treat#season

. table depstat treat season, contents(mean opt} Adjusted predictions Number of obs = 360
Expression  : Linear prediction, predict()
Season and Treatment group
Depressie | — Winter (51) —  ~— Suamer (S2) — . Delta-method
n status Con TT BT Con T HT . Margin Std. Brr. -4 Prlz| [95% Conf. Intervall]
Fon | 44.7 654.3 59.8 49.7 59.4 64.6 ) depstat#
Mild | 39.6 49.2 49.3  44.2 B4.7 64.2 . treat#season
111 44.7  1.458384  30.65  0.000 41.84162  47.55838
, ‘ 112 49.7  1.458384  34.08  0.000 46.84162  52.55838
Let’s now use the anova command to predict opt from depstat, treat, seasecn, all 121 54,33333  1.458384  37.26  0.000 51.47495 57.19171
two-way interactions of these variables, and the three-way interaction, 122 59.4  1.458384  40.73  0.000 56.54162  62,26838
131 £9,76667  1.458384 40,98  0.000 56.90829  62.62505
: 132 64.56667 1.458384 44,27  0.000 61.70829  67.42506
- anova opt depstat##treatiitseason i 211 30.63333  1.458384  27.18  0.000 36.77495  42.4817%
Humber of obs = 360 R-squared = 0.49812 1 212 44.2  1.458384  30.31  0.000 41.34162  47.05838
Root MSE = 7.9879 Adj R-squared = 0.4751 : 221 49.23333  1.458384  33.76  0.000 46.37495  B2.081T1
Source { Partial 88  df s F Prob > F f 222 B4.7 1.458384  37.61 0.000 51.84162  57.55838
j 231 49.33333  1.458384  33.83  0.000 46.47495  52.19171
Model 21435 2333 i1 1948.B5758 30.54 0.0000 ‘ 232 64.23333 1.458384 44,04  0.000 61.37495 67.09171
depstat 2423 .2151% 1 2423.211%1 37.98 0.0000 f _ . marginsplot, bydimension{depstat)} noci
| treat | 13811.2167 2 6905.60833 108.23 0.0000 { Variables that uwniquely idemtif -
depstat#ttreat | 3.90565856 2 1.95277778 0.08  0.9699 ‘ at wniguely identify margins: depstat treat season
season 3960.1 1 3960.1 62.06 0.0000
depstatfigeason | 253.344444 1 253.344444 3.97 0.0471 |
treat#iseason | 469.116867 2 234.558333 3.68 0.0263 ; Adjusted Predictions of depstatiireat#fseason
depstatiitreatiiseason 514.338889 2 257.169444 4.03 3.0186 ;
; ) Non Mild
Residual 22204,66867 348 63.8065134 i ~
Total 43539, 359  121.55961 i

The three-way interaction is significant (F = 4.03, p = (.018G). Let's use the
marging and marginsplot commands to display and graph the means by each of these !
categorical variables. In creating the graph of the means, let’s display separate panels i
for each lavel of depression status {see figure 9.3). This allows us to focus on the way :
that the treat#season intéraction varies by depression status,

Linear Prediction

¥ T T T
g Gon T HT Con T HT
; Treatmem group ’

! —o—- Winter (81) —"%— Summer (S2)

Figure 9.3. Optimism by treatment, season, and depression status
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9.3.1 Simple interactions by depression status

Tt appears that the treat#season interaction might not be significant for those who are
not depressed (see the left panei of figure 9.3) but might be significant for those who
are mildly depressed (see the right panel of figure 9.3). We can explore this by assessing
the treat#season interaction at each level of depstat using the contrast comniand
below.

. contrast treatiiseason@depstab
Contrasts of marginal limear predictions

Margins : asbalanced
daf F P>F
treat#season@depstat
1 2 G.00 0.9985
2 2 7.70 0.0005
Joint 4 3.85 0.0044
Residual 348

The treatment by season interaction is not significant among those who are nonde-
pressed. The parallel lines in the left panel of figure 9.3 illustrate the absence of an
interaction. By contrast, the treatment by season interaction is significant for those
who are mildly depressed (see the right panel of figure 9.3).

Let’s further dissect this simple interaction by applying contrasts to the treatment
factor through the use of simple partial interactions,

9.3.2 Simple partial interaction by depression status

If we focus our attention on the right panel of figure 9.3, we can sce that this simple
interaction is really a two by three interaction, and we can dissect it using the tools
from section 8.3 on two by three interactions. We can begin by applying contrasts
to the treatment factor, forming a simple partial interaction. Say that we want to
form two comparisons with respect to treat, comparing group 2 versus 1 (traditional
therapy versus control group) and comparing group 3 versus 2 (happiness therapy versus
traditional therapy). The interaction of treatment (traditional therapy versus control
group) by season for those who are mildly depressed is visualized in the left panel
of figure 9.4, and the irtetaction of treatment {(happiness therapy versus traditional
therapy) hy season for those who are mildly depressed is visualized in the right panel
of Ggure 9.4. -
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Figure 9.4. Simple partial interactions

The contrast command below tests the two partial interactions depicted in the left
and right panels of figure 9.4 by specifying ar.treat#season@2.depstat. To under-
stand this, let’s break it into two parts. The first part, ar.treat#zeason, creates the
interactions of treatment (group 2 versus 1) by season, and treatment {group 3 versus
2) by season. The second part, 82.depstat indicates the contrasts will be performed
only for level 2 of depstat (the mildly depressed group).

. contrast ar.treat#season®l.depstat
Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
treat#season@depstat
(2 vs 1) (joint) 2 1 0.10 0.7678
(3 vs 2) (joint) 2 1 10.46 0.0013
Joint 2 7.70 0.0005
Residual 3438

The first test is not significant (F = 0.10, p = G.7578). As depicted i the left -
panel of figure 9.4, the difference between traditional therapy and control group does
not depend on scason (focusing on those who are mildly depressed). The second test
is significant (/7 = 10.46, p = 0.0013). As shown in the right panel of figure 9.4; the
difference between happiness therapy and traditional therapy does depend on season.
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Let’s now further understand this simple partial interaction ghrough the use of sitaple

contrasts. Adiusted Predictions of depsiat#ireat#season

Non Miid

80

9.3.3 Simple contrasts

55

The significant simple partial interaction shown in the right pane! of figure $.4 is now a2
by 2 analysis and can be dissected using simple contrasts. In particular, let's aslc whether
there is a difference between happiness therapy and traditional therapy separately for
each season focusing only on those who are mildly depressed. We can perform this test
by specifying ar3.treat@season#2.depstat on the contrast command. Let's break .
this into two parts. The first part, ar3.treat, requests the comparison of treatment -
group 3 versus 2 (happiness therapy versus traditional therapy). The second part, :
@season#2. depstat, requests that the contrasts be performed at each level of season
and at level 2 of depression status (mildly depressed).

50
1

Ogtimism

45
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T T T
Con TT Gon TF
Treatment group

. contrast ar3.treat@season#2.depstat, nowald pveifects Season

Contrasts of marginal }inear predictions ¢ ——— Winter (S1)  ~—i— Summer (§2)

Hargins : asbalanced

- | | | il interacti
Contrast Std, Err v Prlel ‘ Figure 9.5. Simple partial interaction: T2 vs. T1 by season by depstat

treat@seasoniidepstat

(3vs 2} 12 .1 2.062466 .06 0.961
(3vs 2) 22 9.533333  2.062466 4.62  0.000 . L
Adjusted Predictions of depstat#ireat#season
; \ . . - Non Mitd
The results of these two tests are consistent with what we observe in the right 84 '

panel of figure 9.4. The first test is ot significant (t = 0.05, p = 0.961). There is
no difference between happiness therapy and traditional therapy among those who are
mildly depressed in the winter. The second test is significant (t = 4.62, p = 0.000). in
the surmmer, there is a significant difference between happiness therapy and traditional
therapy among those who are mildly depressed.

Optimism

9.3.4 Partial interactions

Let’s consider another strategy we could use for further understanding the three-way i
interaction. Let’s look back to the original graph of the results of the three-way inter- T HT Tr Hr

action shown in figure 9.3. Say that we wanted to further understand this interaction Treatment group
by applying adjacent group contrasts to the treatment factor. These contrasts compare Senson
group 2 versus 1 (traditional therapy versus control group) and group 3 versus 2 (happi- e Winter (81)  ———— Summer (S2)

and depression status. The contrast of treat (traditional therapy versus control group)
by depstat by season is visualized in figure 8.5 and the contrast of treat (happiness

therapy versus traditional therapy) by depetat by season is vigualized n figure 9.6.

!

I

E

ness therapy versus traditional therapy). We could interact these contrasts with season l
E Figure 9.6. Simple partial interaction: T3 vs. T2 by season by depstat
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We can test each of these partial interactions using the contrast command below.

. contrast ar.treatiseasonfidepstat

Contrasts of marginal linear predictions

Margins : asbalanced
daf F P>F
treati#seasonf#idepstat
(2 vs 1) (jeoint) (joint) 1 0.04 0.8400
(3 vs 2) (joint) (joint) i 5.53 0.0193
Joint 2 4.03 0.0186
Residual 348

"The first partial interaction is not significant (FF=004, p= 0.8400). As we can see
in Agure 9.5, the treat (traditional therapy versus control group) by season interaction
is roughly the same for each level of depression status.

The second partial interaction is significant (I = 5.53, p = 0.0193). As shown in fig-
ure 0.6, the treat (happiness therapy versus traditional therapy) by season interaction
differs by depression status. This partial interaction now resembles a two by two by two
model, and you can further dissect it using the techniques illustrated in section 9.2

Let’s now move on to the most complex kind of three-way interactions, those that
invoive at least three levels for each factor.

9.4 Three by three by three models and beyond

Threc-way interactions become increasingly complex as the number of levels of each
factor increases. When a factor goes from having two levels to having three levels,
it introduces the possibility. of applying contrasts to the factor to further probe the
interaction. For example, in the two by two by three model from section 9.3, we applied
contrasts to the three-level treat factor. If we extended the depstat factor to also have
three levels {for exampie, nondepressed, mildly depressed, and severely depressed), then
it would be possible to apply contrasts to the depstat factor as well. If we take this
one step further and nchude a third level of season, then the model would be a three
by three by three model, and it would be possible to apply contrasts to any (or all) of
the three {actors.

Let's consider an extension of the exampie from 2.3 involving the factors treat,
depstat, and season, except that these factors have three, three and four levels, re-
spectively. The three levels of treat are 1) control group, 2) traditional therapy, and
3) happiness therapy. The three levels of depstat are 1) nondepressed, 2) mildly de-
pressed, and 3) severely depressed. The four levels of season are 1) winter, 2) spring,
3) summer, and 4) fall.
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Let’s use the dataset for this hypothetical example and show the mean of the outcome
by these three factors.

. use opt-3by3by4, clear
. table season treat depstat, contents{mean opt)

Depression status and Treatment group
Non Mild Severe
Season Con TF RT Con TT HT Con T HF

Winter | 44.6 54.3 61.3  39.6 48.2 51.2  36.7 47.2 46.7
Spring | 47.5 7.3 62.7  42.7 52.2 B6.4  39.7 506.2 40.8
Summer | 49.7 60.4 64.7 44.5 54.1 66,3  39.6 49.2 48.6
Fall | 47.8 57.0 62.9  42.7 52.0 56.2  40.0 50.0 50.2

Let’s analyze the data {or this example using the anova command below.

. anova opt depstatii#treatiiseason

Numbexr of obs = 1080 R-squared = 00,6172

Root MSE = 5.00663 Adj R-squared = 0.6043

Source Partial BS df MS F Prob > F

Moded 80718.9 35 1734.8257% 48.08 0.0000

depstat 18782.0389 2 9391.01944 260.29 ¢.0000

treat 34636,02389 2 17318.0194 480.00 0.0000

depstatfitreat 1702.00856 4 425.501389 11.79 0.0000

season 3522,83333 3 1174.27778 32,566 0.0000

depstatitzeason 1004 ,27222 6 167.378704 4.64 0.0001

treatiiseason 185. 116667 6 30.8527778 0.86 0.6275

depstatfitreatiiseason 886.594444 12 73.88R28704 2.05 0.017¢
Residual 37667.0667 1044 36.0795668
Total 98385.8667 1079 91.1826466

The three-way interaction of depstat#treat#season is significant (F' = 2.05,

p = 0.0179). To begin to understand the nature of this interaction, let’s first graph the
interaction using the margins and marginsplot commands. The graph of the mean
optimism by treatment group, depression status, and season ig shown in figare 9.7.
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. margins depstat#treatiiseason
(output omitted)

. marginsplot, xdimemsion(treat) bydimension(season) noci legend(rows(1})
Variables that uaiquely identify margins: depstat treat season

Adjusted Predictions of depstat#ireat#season
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Figure 9.7. Optimism by treatment, season, and depression status

9.4.1 Partial interactions and interaction contrasts

Tet’s explore ways to dissect the three-way interaction of depstat#treat#season by
applying contrasts to one or mare of the factors, Let’s begin by testing whether the
interaction of treat#idepstat is the same for each season compared with winter {sea-
son 1). This is performed by applying the r. contrast operator to season and interacting
that with treat and depstat.
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. contrast r,seasonfitreat#depstat
Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F

seasonifttreat#depstat
{2 va 1) (joint) {(joint) 4 0.48 G.7619
(3 vs 1) (joint) {(joint) 4 5.36 0.0003
{4 vs 1) (joint)} (joint) 4 0.40 0.81:5
Joint 12 2.08 - 0.0179

Rasidual 1044

The season (2 versus 1) by treat by depstat interaction is not significant (F = 0.46,
p = 0.7619), In figure 9.7, we can see how the two-way interaction of treat by depstat
is similar for spring versus winter. Likewise, the season (4 versus 1) by treat by
depstat interaction is not significant (F' = 0.40, p = 0.8115). However, the seaszon (3
versus 1) by treat by depstat interaction is significant (F == 5.36,'p = 0.0003). Looking
at the winter and summer panels from figure 9.7, we can see that the treat#depstat
interaction differs for summer versus winter.

Note! Fall versus spring

Say that we wanted to test the season (spring versus fall) by treat by depstat
interaction. We could form that test using the following contrast command. A
custom contrast is applied to season to obtain the comparison of fall versus spring
{seasons 4 versus 2},

. contrast {season 0 -1 0 il#treat#depstat

This test is not significant (I = 0.01, p = 0.9996). This is consistent with what
we see in figure 9.7, in which the pattern of the treat by depstat interaction is
rather similar for spring versus fall.

Let's further explore the season (3 versus 1) by treat by depstat interaction.
Referring to the winter and summer panels from figure 9.7, let’s focus on nondepressed
and mildly depressed groups. Imagine testing the interaction formed by focusing on
the interaction of season (3 versus 1), by depression status (nondepressed versus mildly
depressed) by trentment. I created a graph visualizing this partial interaction contrast,
see figure 9.8. The contrast command below performs this comparison by applying the
r3. contrast to season to compare summer with winter (3 versus 1) and the r2. contrast
on depstat to compare those who are mildly depressed with those who are nondepressed
(2 versus 1). These terms are all interacted (that is, r3.season#r2.depstatiftreéat)
vielding a test of season (3 versus 1) by depstat {2 versus 1) by treat.
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. * Season{winter vs. summer) by depstat(nondepressed vs, mildly depressed) by
> treat
. contrast r3,season#r2.depstatiitreat

Contrasts of marginal linear predictions

Hargins : asbalanced
af ¥ P>F
seasonfidepstatiitreat 2 9.03 0.0001
Residual 1044

Adjusted Predictions of depstat#treatiiseason
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Figure 9.8. Interaction contrast of season (winter versus sunumer) by depression status
(mildly depressed versus nondepressed) by treatment

This test is significane (F = 9.03, p = 0.0001). This is visualized by comparing
the interaction in the left panel of figure 9.8 with the right panel of figure 8.8. This
significant test indicates that the two-way interaction formed by interacting depression
status (nondepressed versus mildly depressed) by treatment differs by season (winter
versus suminer).

Say that we wanted to take this test and focus on the contrast of happiness therapy
versus traditional therapy (group 3 versus 2).} This yields an interaction of season
(winter versus summer) by depression status (nondepressed versus mildly depressed) by
treatment {(happiness therapy versus traditional therapy). I created the graph shown in

1. This contrast is specified as r3b2.treat, which indicates to compare group 3 with group 2. This
could have also been specified as a custom contrast, {treat 0 -1 1}
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figure 9.9 that visualizes this interaction contrast. We can test this interaction contrast
using the contrast comunand below.

. ¥ season (winter vs. summer) by depstat (nondepressed vs. mildly depressed)
> by treat (HYT ve. TT)

. contrast r3.seascn#r2.depstat#fr3bl.treat, nceffects
Contrasts of marginal linear predictions

Marging : asbalanced
daf F P>F
geagonfdepstat#treat 1 14.64 ‘0.0001
Rasidual 1¢44

Adjusted Predictions of depstatifireatitseason
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Figure 9.9. Interaction contragt of season (winter versus summer) by depression status
(mildly depressed versus nondepressed) by treatment (HT versus TT)

This test is significant (F = 14.64, p = 0.0001). The two-way interaction of depres-
sion status (nondepressed versus mildly depressed) by treatment (happiness therapy
versus traditional therapy) significantly differs between summer and winter.
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9.4.2 Simple interactions

Let's now explore a different way to dissect the three-way interaction through the use
of simple interaction tests, Consider the treat#depstat interaction at each of the
four levels of season, as shown in the four panels of figure 9.7, We can assess the
treat#depstat interaction for each season using the contrast command below.

. contrast depstat#itreat@season
Contrasts of marginal linear predictions

Margins : asbalanced

daf ¥ P>F
depstat#treat@season
1 4 3.75 0.0049
2 4 2.29 0.0675
3 4 9.88 G, 0000
4 4 2.01 0.0904
Joint 16 4.48 0.0000
Rasidual 1044

The treat#depstat interaction is significant for winter (season 1) and summer {sea-
son 3). The treat#depstat interaction is not significant in the spring (season 2) or fall
(season 4).

Let's perform this same contrast command, but apply the 2. contrast to depstat
that compares those who are nondepressed versus mildly depressed. This yields four
partial interactions of depression status (nondepressed versus mildly depressed) by treat-
ment at each level of season. These tests are illustrated in figure %.10. These tests are
performed using the foliowing contrast command.

. contrast r2.depstat#treat@season
Contrasts of marginal 'linear predictions

Margins - : asbalanced

df F PoF
depstat#treat@season
{2 vs 1) (joint) t 2 3.49 0.0309
€2 vs 1) (joint) 2 2 0.27 0.7631
(2 vs 1) (joint) 3 2 5.74 0.0033
(2 va 1) (joint) 4 2 0.38 0.6861
Joint 8 2.47 0.0119
Residual 1044
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8.4.2 Simple interactions 260

Adjusted Predictions of depstat#treat#season
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Figure 9.10. Optimism by treatment and season focusing on mildly depressed versus
nondepressed

The interaction of depression status {nondepressed versus mildly depressed) by treat-
ment is significant in season 1, winter (F = 3.49, p = 0.0309). In the top left panel of
figure 9.10, we can see how the lines are not parallel for during the winter. Jumping
forward to summer {group 3), this test is also significant (F* = 5.74, p = 0.0033). Thisis
consistent with the nonparallel lines displayed in the bottom left panel in figure 9.10. By
comparison, the lines are parallel for spring (group 2) and fall (group 4), reflected in the
nonsignificant interaction of depression status {nondepressed versus mildly depressed)
by treatment, for those seasons.

Let's also apply the r3b2. contrast to treat, comparing group 3 with group 2 (hap-
piness therapy to traditional therapy). This yields an interaction contrast of depression
status (mildly depressed versus nondepressed) by treatment (happiness therapy versus
traditional therapy) performed at each of the four seasens. These four simple interaction
contrasts, visualized in figure 9.11, are tested using the contrast command below.
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. contrast r2.depstat#r3b2.treat@saason, neeffects

Contrasts of marginal linear predictions

Hargins : asbalanced
df F P>F
depstat#treat@sseason
(2 vs 1) (3vs 2} 1 1 5.13 0.0238
(2vs 1) Bvs D 2 1 0.30 0.5844
(2vs 1) (3vs 20 3 1 9.90 0.0017
(2va 1) (Bvs 2) 4 1 0.60 0.4385
Joint 4 3.98 ¢.0033
Residual 1044
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Figure 9.11. Simple interaction contrast of depression status by treatment at each season

The sitaple interaction contrast of depression status {nondepressed versus mildly
depressed) by treatment (happiness therapy versus traditional therapy) is significant for
season 1, winter (F = 5.13, p = 0.0238). The top left panel of figure 9.11 shows how the
effect of treatment {happiness therapy versus traditional therapy) differs by depression

et emned
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status (nondepressed versus mildly depressed) during the winter. The simple interaction
contrast is also significant for the season 3, summer (F' = 9.90, p = 0.0017). As we see
in the bottom left panel of figure 9.11, the effect of treatment (happiness therapy versus
traditional therapy) differs by depression status (nondepressed versus mildly depressed)
during the semmer. The simple interaction contrasts for season 2 (spring) and season 4
(fall) are not significant, consistent with the parallel lines for these two seasons shown
in figure 9.11.

9.4.3 Simple effects and simple comparisons

We might be interested in focusing on the simple effects of treatment across the levels
of season and depression status. The following contrast command tests the effect of
treat at each level of season and depression status. The output is lengthy, so it is
omitted to save space.

. contrast treat@seasonildapstat
(output omitted)

The resulls of this contrast command would show that the effect of treat is sig-
nificant for every combination of season and depression status. We could finther refine
this test by focusing on the comparison of happiness therapy versus traditional therapy
{group 3 versus 2) by applying the r3b2. contrast operator to treat, as shown below.

., contrast r3b2.treat@seasonfidepstat, nowald pveffects
Contrasts of marginal linear predictions

Margins 1 asbalanced
Contrast  Std. Err. t Pt
treat@seasonfdepstat
(3vs 2) 1 1 ¥ 1.550904 4.561  0.000
(3 vs 2) 12 2.033333 1.550904 1.31  0.190
{3wvs 2)13 -.5333333  1.550904 -0.34 0.731
(3vs 2) 21 5.366667  1.550804 3.46 0.001
Bvs 2)22 4,166867  1.550804 2.69 0,007
Bvs2)23 ~.4666667  1.660904 -0.30 0.764
(3vs 2) 31 4.333333  1.550804 2.7% 0.005
(3wvs 2) 32 11.23333  1.550004 7.24  0.000
(3vs 2)33 -.6666667 1.550904 ~0.43  0.687
Bvs 2) 41 5.833333  1.550904 3.76 0.000
(3vs 2) 42 4.133333  1.560904 2.67 0.008
(3va2) 43 .2 1.550904 0.13  0.897

This shows that for some combinations of season and depatat, the difference be-
tween happiness and traditional therapy is significant. For example, in season 1 (winter)
and depression status I (nondepressed), the difference between happiness and traditional
therapy is significant, with happiness therapy yielding optimism scores that are seven
points greater than traditional therapy. ‘
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9.5 Summary

This chapter has illustrated many of the ways that you can dissect three-way interac-
tions. It has illustrated common designs with three categorical variables, including two
by two by two designs and two by two by three designs. The chapter also illustrated
a three by three by four design, illustrating some of the other ways you can dissect an Pa rt i E I
interaction that involves at least three levels for each factor.

For more information about models involving three-way interactions of categorical
variables, I recommend Keppel and Wickens (2004). ’ |

Continuous and categorical predictors

Chapter 10 Linear by categorical interactions

Chapter 11 Polynomial by categorical interactions

Chapter 12 Piecewise by categorical interactions

Chapter 13 Continuous by continuous by categorical interactions

Chapter 14 Continuous by categorical by categorical interactions

This part of the ook focuses on models that involve interactions of continuous and
categorical variables. Such models blend (and build upon) the models illustrated in
parts I and IL

Chapters 10 to 12 illustrate models with a continuous predictor interacted with a
categorical variable.

Chapter 10 illustrates the interaction ol a Hnear continuous variable with a cat-
egorical variable. Chapter 11 covers continuous variables fit using polynomial terms
interacted with a categorical variable. Tnteractions of a continuous variable fit via a
piecewise model interacted with a categorical variable are ilustrated in chapter 12.

Chapters 13 and 14 cover models involving three-way interactions of continuous and
categorical variables.

Chapter 13 illustrates models involving an interaction of two continucus predictors
and a categorical variable. This includes linear by linear by categorical interactions and
linear by quadratic by categorical interactions. Chapter 14 illustrates models involving
an interaction of a linear continuous predictor and two categorical variables.
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10.1 Chapter overview

This chapter illustrates models that involve interactions of categorical and continuous
variables. Section 10.2 begins with an analysis of a model including a two-level cat-
egorical predictor and a continuous predictor but no interaction. Next, section 10.3
illustrates the same maodel but includes an interaction of the continzous and categorical
predictor. Finally, section 10.4 illustrates a model with an interaction of a contimious
by calegorical predictor where the categorical predictor has three levels,

In this chapter, the continuous variable is assumed to be linearly related to the
outcomne variable. Chapters 11 and 12 cover models with interactions of categorical and
continuous variables where the continuous variable is nonlinearly related to the outeome
variable. Chapter 11 covers models where the nonlinearity is in the form of a polynomial
term (for example, quadratic or cubic), whereas chapter 12 illustrates models in which
the nonlinearity is in the form of a piecewise model.

10.2 Linear and two-level categorical: No interaction
10.2.1 Overview

This section introduces the concepts invelving models that combine contimmous and
categorical predictors with no interaction. Let’s begin by considering a hypothetical

275
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simple regression model predicting income from age, focusing on people who are aged
22 to 55. Using the gss_ivrm.dta dataset, we can predict income {realrinc) from age
{(age). The fitted values from this hypothetical model are graphed in figure 10.1. In this
model, the intercept is 9,000, and the slope is 400. The intercept reflects the predicted
income for someone who is zero years old. Although the actual ages range from 22 to
55, I have extended the z axis to include zero to show the placement of the intercept.
The equation for this regression is shown below.

realrinc = 9000 + 400age

40000 50000
L i

30000
1

Siope = 400

Predicted income

20000
:

10000
L

Int = 9000

o]
L

3 22 27 32 37 42 47 52
Age

Figure 10.1. Simple linear regression predicting income from age

Let’s now expand upon this model and introduce a categorical variable with two lev-
els reflecting whether the respondent graduated college (named cograd in the dataset
gss_ivrm.dta). It is coded 0 if the respondent did not graduate college and 1 if the re-
spondent did graduate college. The hypothetical results of this fitted model are graphed
in figure 10.2. The slope of the relationship between income and age is 400 for both
groups. However, the intercept for those who did not graduate college is 4,000 and for
those who did graduate college is 21,000. The difference in these intercepis is 17,000,

!
-
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Figure 10.2. One continuous and one categorical predictor with labels for slopes and
intercepts '

This regression model can be expressed as separate equations for each group. One
equation is given for non-college graduates and another for college graduates, as shown
below.

Non-college graduates: realrinc = 4000 4 400age
College graduates: realrinc = 21000 + 400age

This regression model can also be expressed as one equation, as shown below.

realrine = 4000 + 1700cograd -+ 400age

Note how the intercept is expressed as the intercept for those who did not grachate
college, and the main effect of cograd corresponds to the difference in the intercepts (of
those who did versus those who did not graduate collepe). The age slope is identical
for both groups so is expressed as one term in this combined model.

The predicted values at 30, 40, and 50 years of age have been computed both for
those who did and for those who did not graduate college and are graphed in figure 10.3.



278 Chapter 10 Linear by categorical interactions 10.2.2 Examples using the GSS : 279

g | ‘ . use gss_ivrm
o B
o . . keep if age>=22 & age<=5B
A
2 41000, or- : {18936 observations deleted)
‘sfk ..:.5.7399""""' ’ : . regress reairinc age i.cograd i.female, vce(robust)
gg 33300 i Linear regression Humber of obs = 256718
gg1 - i F( 3, 26714) = 906.12
e R : Prob > F = 0.0000
.‘38 .............. e TR0 1 R-squared = (,1569
BET e FoR0D Root MSE = 23938
ad -
=" 16000
=3 e .
§ 1 T - Robust
- P - realrinc Coef. Std. Err. t Prit] [95% Conf. Intervall]
e . i , . . . , . age 539.9036  15.26786 36.36 0.000 509.9777 560.8295
¢ 20 25 30 35 40 45 50 55 ’ 1.cograd 14176.56 425,1603 33.34 Q.000 13343.22 16008.9
: Age 1.female -12119.68  295.2722 -41.05  0.000 -~12698.33 -11540.83
[ ,,,,, 0=Non-collegs graduate - 1=Callege graduate | _cons 4171.565 518.7608 8.04 0.000 3154.765 5188.366

Figure 10.3. One continuous and one categorical predictor with labels for predicted Before interpreting the coefficients for this model, let’s create a graph showing the
values : adjusted means as a function of age and cograd.? Tirst, we use the margins command
to compute the adjusted means at ages 22 and 55 for each level of cograd.

Note how the predicted values for those who graduated college is always $17,000

. . . margins cograd, at{age={(22 55)) vsquish
more than their counterparts who did not graduate college. For example, a 40-year- grat, ¥

. . . Predictive margins Number of obs = 25718
old who graduated college has a predicted income of $37,000, compared with $20,000 Model VCE :gRobust
for someone who did not graduate college. No matter what the age of the person g Expression  : Linear prediction, predict()
is, graduating college has the same impact on income, leading to a predicted gain of ; i._at : age = 22
$17,000. This is because this model has only main effects and does not include an 2..a% i age = 55
interacti e : epe graduati atus,
interaction between age and college graduation status Delta-meathod
Margin  Std. Err. z prlz| [95% Conf, Intervall
10.2.2 Examples using the GSS ! _at#cograd
' : 10 10048.09  216.1878 46.48  0.000 9624 ,349 10471.83
This section applies the model predicting realrinc from age and cograd using the GS8 11 24224 .65  398.8161  60.74  0.000 23442.98  25006,31
Lot B o the . ta d d use tl d to ke 20 27864.91  344.2312  80.95  0.000 27190.23  28539.59
dataset. Below we use the gss_ivrm.dta dataset and use the keep command Lo keep 91 42041.46 55337383 76.97  0.000 40956 .57 43126.06

only those aged 22 to 55. We fit a regression model predicting realrinc from age and i
i.cograd. The variable i.female is included as a covariate.! {

i The marginsplot command graphs these adjusted means, placing age on the z axis
and using separate lines for those who have and have not graduated college. This graph
is shown in figure 10.4.

. marginsplot, noci

Variables that uniquely identify margins: age cograd

L. From a substantive perspective, the variable famale is included to account for gender in the predic-

tion of income. For the purposes of the examples in this chapter, the variable female is included for 2. 1 am graphing the adjusted means as a function of age and cograd to illustrate the pattern of the
the sake of having a covariate in the model so 1 can illustrate how to compute adjusted means after i adjusted means when there is no interaction between these variables. In section 1(1.3.2, the model
accounting for one or more covarlates. For this reason, 1 will not focus on the results regarding ! will inciude an interaction of these variables and we will see how the graph of the adjusted méans

famale. changes due to the age by cograd interaction.
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Predictive Margins of cograd
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Figure 10.4. Fitted values of continuous and categorical model without interaction

Note how figure 10.4 shows two parallel lines, one for those who graduated cotlege
and one for those who did not graduate coliege. These parallel lines have the same
slope, as represented by the coefficient for age. Regardless of whether you graduated
college, the age slope is 539.90.

Although the lines for college graduates have the same slope as non-college graduates,
these Jines do not have the same overall height. The fitted line for those who graduated
college is higher than the fitted line for those who did not. In fact, the fitted line
for those who graduated college is 14,176.56 higher, corresponding to the coefficient
for 1.cograd. This coefficient represents the difference in the fitted values for those
who graduated college (group 1) compared with those who did not graduate college
{group 0). :

We can use the margins command to compute adjusted means based on this model.
For example, the adjusted mean for someone who graduated college and was 40 years
old, adjusting for gender, is 33,942.91.

. margins, at{cograd=1 age=40)

Predictive margins Humber of obs = 25718
Model VCE ¢ Robust
Expression : Linear prediction, predict()
at toage = 40
cograd = 1

Delta-method
Margin  Std. Err. z P>z} [96% Conf. Intervail

.cons 33942.01 419 .5859 80.82  0.000 33119.75 34766.07

|
|
i
£
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Let’s repeat this command, but this time obtain the adjusted means separately for
those who did and for those who did not graduate college.

. margins cograd, at{age=40)

Predictive margins Number of obs = 26718
Model VCE 1 Robust
Expression : Linear prediction, predict{)
at i age = 40
Delta-method
Margin  Std. Err. z Prlzi [95), Con%. Interval}
cograd
¢ 19766,35 151.4622 130.50 0.000 19469.49 20063.21
1 33942.91  419,9859 80.82 0.000 33119.75 34766. 07

Note the difference between these two values corresponds to the main effect of
cograd. Here 33942.91 — 19766.35 = 14176.66. You could repeat the above command
for any given level of age and the difference in the adjusted means would remain the
saIne. '

Adjusted means

In the context of this example, it would be cominon to express the difference between
college praduates and non-college graduates, adjusting for age and gender, using ad-
justed means. The adjusted means are computed by setting all the covariates (that is,
age and female) to the average value of the entire sample. In this example, adding the
at({mean) age female) option specifies that age and female should be held constant
at their mean.

. margins cograd, at((mean} age fenale)

Adjusted predictions Number of obs = 25718
Model VCE : Robust

Expression : Linear prediction, predict()

at 1 age = 37.28214 (mean)

0.female = 5048215 (mean)
1.female = .4951785 (mean)
Delta-methed
Margin  Std. Err. z p>|z| [85% Conf. Intervall
cograd
0 18298.97 129,817 140.96 0.000 18044 .53 18553.41
1 32475.53 405.0787 80.17 0.060 31681.59 33268, 47

The adjusted mean for non-college graduates is 18,298.97, compared with 32,475.53
for college graduates. The difference in these means is sometimes called the marginal
effect at the mean, because the effect is computed at the mean of the covariates.
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Based on this example, you might think that you would need to specify each of the
covariates in the at () option to compute adjusted means. However, we can use the

margins command below and obtain the same results.®

. margins ‘cograd

Number of obs = 26718

Predictive margins
Hodel VCE : Robust
Expression : Linear prediction, predict(}
Pelta—mathod
Margin  Std. Err. 2z P>|z| [98Y% Conf. Intervall
cograd
0 18298.97 128.817  1406.%6  0.000 18044.53 18663, 41
1 32475.53  405.0787 80.17  0.0060 31681.69 33268.47

The difference in these means, although the same, is sometimes called the average
marginat effect. In a linear model (for example, following the regress command), the
marginal effect at the mean and average marginal effect methods provide the same

results.

Unadjusted means

You might be interested in computing the unadjusted mean of income separately for
college graduates and non-college graduates. Such values can be computed using the

margins command with the over(cograd) option, as shown below.

. margins, over{cograd)

Predictive margins Number of obs = 26718
Model VCE : Robust .
Expression ! Linear predictiom, predict()
over : cograd
Delta-methed
Margin  S5td. Err. z P> |zl [95% Conf. Intervall
cograd
a 18157.94  128.4178  141.40 0.000 17906, 26 18409.64
1 32821.9%  408,3032 80.3% 0.000 32021.73 33622.25

Among those included in the estimation sample, the average income for non-college

graduates is $18,157.94, compared with $32,821.99 for coflege graduates.

3. This is not the case for nonlinear models such as logistic regression {sce chapter 18 for more details).

- ey

10.3.1 Overview

Summary
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These examples have illustrated a model that predicts income from age and college
praduation status, assuming that the age slope is the same for those who did and for
those who did not graduate college. These examples illustrated how to use the margins
command to compute adjusted means and unadjusted means.

Rather than assuming that the age slope is the same for those who did and for those
who did not graduate college, we might hypothesize that the age slope might differ by
college graduation status. Let’s explore this in the following seetion.

10.3 Linear by two-level categorical interactions

10.3.1 Overview

Let’s build upon the model that was iHustrated in section 10.2.1 by including age
and cograd as predictors, as well as the interaction between age and cograd. Such
a model fits a separate slope for the relationship between income and age for those
who graduated college versus those who did not graduate coliege. The hypothetical
predicted values from such a model are shown in figure 10.5. This figure inchudes labels
showing the intercept and slope for those who did not graduate college (labeled “Int0”
and “Slope()”) and the intercept and stope for those who did graduate college (labeled

“Int1” and “Slopel”).

ncome
10000 20000 30000 40000 50000
, A

4 Intd = 9300

0

Slopel = 250

T =T Y

0 20 25

Age

40 45 50 55

G=Non-coilage graduate

1=College graduate |

Figur
slopes

(o]

7]

10.5. Linear by two-level categorical predictor with labels for intercepts and
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The regression equation for this hypothetical example can be written as shown below.

_reairinc = 9300 -+ —1300cograd + 250age + 450cogradrage

The intercept in the regression equation corresponds to the intercept for those who
did not graduate college (that is, 9,300). The coeflicient for cograd is the difference in
the intercepts (that is, 8000 — 9300 = ~1300). Note how this represents the difference
between a college graduate versus a non-college graduate when age is held constant at
zero (which is implausible and completely absurd). This is often called the main effect
of cograd, but that is misleading because in the presence of the interaction, this term
represents the effect of cograd when age is held constant at zero.

The coefficient for age is 250, corresponding to the slope for those who did not
graduate college. The interaction term {cograd#age) is the difference in the slopes
comparing those who graduated college with those who did not graduate college (that
is, 700 — 250 = 450), This interaction term compares the slope of college graduates with
the slope of non-college graduates.

It can be easier to understand this model when it is written as two cquations, one
equation for those who did not graduate college (labeled as “Non-college praduate”)
and another for those who did graduate college {labeled as “College graduate”).

Non-college graduate: realrinc = 9300 + 250age

College graduate: realrinc = 8000 + 700age

This allows ug to think in terms of the slopes for each group. These equations make
it, clear that the slope is 250 for those who did not graduate college and is 700 for those
who did graduate college. The meaning of the intercepts is aiso clear. For a non-college
graduate, the predicted income is $9,300 for someone who is zero years old. Likewise,
for a college graduate, the predicted incotne is $8,000 for somaeone who is zero years old.
Clearly, the intercepts are generally not meaningful in such a model.

A key question in this model is whether the age slope for college graduates is signif-
icantly diftexrent from the siope for non-college graduates.?! Furthermore, we might be
interested in knowing whether cach of the slopes is significantly different from 0—is the
slope of 250 significantly different from 0, and is the slope of 700 significantly different
from 07 _—

We might also be interested in the effect of graduating college on income. However,
the size of this effect depends on a person’s age. Referring to figure 10.5, the eflect of
cograd grows larger with increasing age. Because the lines for college graduates and
non-college graduates are not parallel, the difference in the predicted income for college

4. If these slopes are not significantly different, then you could estimate a common slope for both
groups by removing the interaction term.

l
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graduates versus non-college graduates varies as a function of age. In other words, there
is no longer an overall estimate of the main effect of cograd. Instead, we can estimate
the effect of cograd at a particular age (or ages). For example, we can estimate the
effect of cograd for 30-year-olds and 50-year-olds {illustrated in figure 10.6). For 30-
year-olds, college graduates are predicted to earn $28,000 compared with $16,800 for
non-college graduates, a difference of $12,200. Compare that with 50-year-olds, where
the college graduates are predicted to earn $21,200 more than non-college graduates
($43,000 minus $21,800).
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Figure 10.6. Linear by two-level categorical predictor with tabels for fitted values

10.3.2 Examples using the GSS

Let's use the GSS dataset to explore and fit the model above. First, we use the
gas.ivrm.dta dataset and keep only those who are aged 22 to 55.

. use gss_ivrm

. keep if ager=22 & aga<=bb
(18936 observations deleted}

Now let’s fit a model that predicts realrinc from age, cograd, and the interaction of
these two variables. Such a model is fit below. The interaction is included by specifying
i.cograditc,age. The variable i.female is included as a covariate.
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. regress realrin¢ i.,cograd age i.cogradiic,age i.female, vce(robust)

Linear regression Namber of obz = 25718
F( 4, 26713) = 710.76
Prob > F = 90,0000
R~squared = 0.16861
Root MSE = 23807
Robust

realrinc Coef. Std. Err. t P>t {96% Conf. Intervall
1.cograd -8648.272  1426.594 -B.06  0.000 -11444 .48  -5852,068
age 375.1647  14,67547 25.66  0.000 346.39 403.9195

cograd#c.age
i 607.5224  42,23988 i4.38  0.000 524 .,729% 620.31b
1.female ~12004.56  293.4602 -40.91 0.000 ~12579.76  -11429.37
_cons 10224.87  480.3151 21,28 0.000 9283,523 11188.41

As a shorthand, we can specily 1.cograd#ic.age. The ## operator includes both
the main effects and interactions of the variables specified.

. regress realrinc i.cograd##c.age i.female, vce(robust)
(output omitted )

The coefficient, estimates are expressed using the following regression equation:

reairinc = 10224.97 + —8648.27cograd + 375.15age
+ 607.5224cograd*age + —12004.56female

Let's create a graph to aid in the process of interpreting the results. The margins
command is used {o compule the adjusted means for ages 22 and 55 separately for each
level of cograd. ' '

. margins cograd, at(age=(22 65))

Predictive margins Number of obs = 25718
Model VCE : Robust
Expression @ Linear prediction, predict(}
i._at i age = 22
2. .at ¢ age = 56
Delta-method
Mergin  Std. Err. z Pr|z]| {957 Conf. Intervall
_atifcograd
10 12633.97  185.5671 67.64  0.000 12370.27 12897.67
11 i7261.19  549.5347 31.39 0.000 i6174.12 18328.26
20 24914.08  349.7497 71,23 0.000 24228.58 25599 .57
21 49679.54  950.3806 52,27 $.000 47816.83 51642.26
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Then the marginsplot cominand is used to graph these adjusted means. The result-
ing graph is shown in figure 10,7, This shows the adjusted mean for income as a function
of age (on the x axis) and with separate lines to represent whether one graduated college.

. marginsplot, noci
Variables that wniquely identify margins: age cograd

Predictive Margins of cograd

Linear Prediction
30000 40000 50000
L . !

20000
1

10000
L

22 55
age of respondant

[—=— NotCOGrd — — GO Grad ]

Figure 10.7. Fitted values for linear by two-level categorical predictor model

Figure 10.7 iflustrates the slopes for the two groups. The interaction effect
(cograd#ic.age) from the original regress command tests the equality of the age co-
efficients for those who graduated college compared with those who did not graduate
college. That test is significant (¢ = 14.38, p = 0.000), indicating that the slopes are
significantly different.

Estimates of As!apes

Figure 10.7 fllustrates the age slope is larger for college graduates than non-college
graduates. Let’s use the margins command to compute the age slope for college gradu-
ates and non-college graduates, The dydx(age) option is used with the over(cograd)
option to compute the age slope at each level of cograd. The slope for college graduates
(that is, when cograd equals 1} is 982.68 and is statistically significant. The slope for
non-college graduates (that is, when cograd equals 0) is 375.15 and is also statistically
significant.5

5. Note how the slope for non-college graduates corresponds to the caefficient for age from the regress
command. The slope for college graduates corresponds to the age coefficient plus the cogradiic , age
cocflicient.
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. margins, dydx(age) over{cograd)

Average marginal effects Number of obs = 25718
Model YCE : Robust :
Exprassion : Linear predictien, predict()
dy/dx w.xr.t. i age
over : cograd
Delta-method
dy/dx  Std. Err. z P>z} [95% Conf. Intervall
age
cograd
0 376. 1647 14.87547 25,56 0.000 346,3913 403.9181
1 982.6772 39,6625 24.84 0.000 905, 1657 1060.199

Estimates and contrasis on means

Let’s change our focus from the estimates and comparisons of the slopes, to the estimates
and comparisons of means. Referring to figure 10.7, you can see how the difference
between these college graduates and non-college graduates depends on age. As age
increases, the differences in the adjusted mean for college praduates compared with
non-college graduates grows larger. Let's begin the investigation of the effect of cograd
by computing the adjusted mean of income for each level of cograd, helding age constant
at 30. The adjusted mean for 30-year-old college graduates is 25,112.61 compared with
15,535.21 for 30-year-old non-college graduates.

. margins cograd, at{age=30)

Predictive margins Humber of obs = 25718
Model VCE : Robust
Expression : Linear predictlon, predict()
at i age = 30
Delta-method .
Margin  Std. Exr. z pP>iz} [06% Corf. Interval}
cograd
0 15635.21  1i2.55616  138.03  0.000 15314.61 15766.8
1 25112.61  367,2368 68,38  0.000 24392.84 26832.38

Now let's compare these two adjusted means by applying the r. contrast operator
with cograd, which compares each proup with the reference group. This compares
group 1 (college graduates) with group 0 (non-college graduates), yielding a difference
of 9,577.40, which is significant. At age 30, college graduates earn $9,577.40 more than
non-college graduates. i

10.3.2  Examples using the GSS 289

. margins r.cograd, at(age=30) contrast(nowald effects}
Contrasts of predictive margins

Model VCE ¢ Robust
Expression : Linear prediction, predict()
at © oage = 30
Delta-method
Contrast  S5td. Frr. z Prlzl [95% Conf. Intervall
cograd
{1 vs 0) a577 .4 383.8666 24,95 0.000 §825.038 10329.76

Let’s repeat this margins command, but this time specify that the comparisons
should be made at three ages—-30, 40, and 50.

. margins r.cograd, at{age=(30 40 50)) contrast{(nowald effects} vsquish
Contrasts of predictive margins

Hodel VCE : Robust
Expression : Linear prediction, predict()
1._at 1 age = 30
2. _at 1 age = 40
3._at : age = 50
Delta-method
Contrast  Std. Err. z P>lz] {95% Conf. Intervall
cograd@_at
{1 vs M 1 9577 .4 383.86bHG 24.95 {.000 8825, 038 10329.76
(1vs 0) 2 15652.62  481,4179 32.51  0.000 14709.086 16696.19
(1 vs Q) 3 21727.856 820.375 26.49 0.000 20119.94 23336.756

As we saw before, the dilference in adjusted means for college graduates versus nou-
college graduates at age 30 is 9,577.40, which is significant. At 40 years of age, this
difference is 15,652.62, which is also significant (z = 32.51, p = 0.000). At 50 years of
age, this difference is 21,727.85, which is also significant {z = 26.49, p = 0.000).

Let’s now create a graph that visualizes the differences in the adjusted means for
college graduates versus non-college graduates for each year of age from 22 to 55. We
first use the margins command fo compute these differences.

. margins r.cegrad, at(age=(22(1)55})
{outpui omitted)

Then we use the marginsplot command to graph these differences and the con-
fidence interval for the difference, as shown in figure 10.8. If the confidence interval
does not include zero, then the difference is significant. The income of college gradu-
ates is significantly higher than non-college graduates across the entire spectrum of ages
(ranging from 22 to 55).
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. marginsplot
Variables that uniquely identify margins: age

Contrasts of Predictive Marging of cograd with $5% Cls

p

Contrasts of Linear Prediction
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; L ;

5000

20 30 40 5O 60
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Figure 10.8. Contrasts of fitted values by age with confidence intervals

This section has illustrated an analysis that includes an interaction of a continuous
and. a two-level categorical predictor. We have sven that the interaction reflects the
difference in the slopes between the two groups. Furthermore, the margins command
can be used to estitnate the slope for each group. The margins command also allows
us to estimate and compare the adjusted means for each group, holding the continuous
variable constant. The concepts and commands used for a two-level categorical variable
apply to a three-level categorical variable, as illustrated in the next section.

10.4 Linear by three-level categorical interactions

10.4.1 Qverview

Let’s now explore a model in which a three-level categorical variable is interacted with a
continuous variable. Let’s extend the previous example by considering three educational
groups: 1) non—high school graduates, 2) high school graduates, and 3) college grad-
uates. The hypothetical predicted values from such a model are shown in figure 10.9.
This figure includes labels showing the slope for each of the three educational groups.
Although not shown in the graph, the intercept is 3,000 for group 1, 3,700 for group 2,
and —5,000 for group 3.
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Income
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Figure 10.9. Linear by three-level categorical predictor with labels for slopes

'The regression equation for this hypothetical example can be written as shown be-
Iow. Note that non-high school graduates is the reference group, hsgrad represents
the comparisont of high school graduates with non-high school graduates, and cograd
represents the comparison of college graduates with non~high school graduates.

realrinc = 3000 + T00hsgrad + —8000cograd
+ 300age + 10Chsgrad*age + 700cograd+age

First, let’s consider the meaning of the intercept and the hsgrad and cograd coeffi-
cients. The value of 3,000 is the intercept for those who did not graduate college. The
coefficient for hsgrad is the difference in the intercepts between high school graduates
and non—high school graduates (that is, 3700 — 3000 = 708). The coefficient for cograd
is the difference in the intercepts between college praduates and non-high school grad-
uates (that is, —5000 — 3000 = —8000}. 'The terms for hsgrad and cograd represent
differences ainong the education groups when age is held constant at zero. These are
often called main effects with respect to education, but this is misleading. In the pres-
ence of the interaction with age, these terms represents comparisons among education
groups when age is held constant at zero. The terms for the intercept, as well as educ2
and educ3 are usually not interesting.

Now let’s consider the coefficients for age and the interactions of education with age.
The coeflicient for age is 300, corresponding to the slope for those whe did not graduate
high school. The hsgrad+age interaction is the difference in the age slopes comparing
those who graduated high school with those who did not graduate high school (that
is, 406 — 300 = 100). The cograd*age interaction is the difference in the age slopes
comparing those who graduated college with those who did not graduate high school
{that is, 1000 —~ 300 = 700).
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Tt can be easier to understand this model when it is written as three equations, one
equation for those who did not graduate high scheol, one for those who did graduate
high schoot, and another for those who graduated college, as shown below.

Non-HS grad: realrinc = 3000 + 300age
HS grad: realrine = 3700 -+ 400age
College grad: realrinc = —5000 + 1000age

This allows us to focus on the slopes for each group. Looking at these equations
makes it clear to that the slope is 300 for non--high sehool graduates, 400 for high school
graduates; and 1,000 for college graduates. In such a model, it is interesting to test the
null hypothesis that all of these slopes are equal. If we do not reject this null hy pothesis,
then the education by interaction berms may no longer be needed and could be omitted
from the maodel. If we do reject this nuil hypothesis, we might be further interested
in forming specific contrasts atong the slopes, for example comparing the slopes for
Ligh school graduates with non—high school graduates, and college graduates with high
school graduates.

Because the lines for the three educational groups are not paratlel {due to the inclu-
sion of the age by education interaction), the difference in the predicted incomes among
the education groups will vary as a function of age. We might be interested in compar-
ing the different educational groups given different levels of age. As an illustration, the
predicted mean of income for those aged 30, 40, and 50 for each educational group have
been computed and are plotted in figure 10.£0.
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Figure 10.10. Linear by three-level categorical predictor with labels for fitted values
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There are three means that can be compared at any specific level of age. For ex-
ample, at age 30 the predicted mean ineome is $12,000 for non-high school graduates,
$15,700 for high school graduates, and $25,000 for college graduates. There are several
comparisons we could make among these three groups. We could compare the averall
equality of the three means, we could compare sach mean with a reference group (such
as non--high school graduates), we could compare each educational level with the next
highest educational level, and so forth,

10.4.2 Examples using the GSS

Let’s now consider applying this kind of model using the Gss dataset. Let’s continue to
use age as the contimious predictor and realrinc as the outcome, but now we will nse
a three category education variable, educ3. The variable educ3 is coded: 1 = non-high
school praduate, 2 = high school graduate, and 3 = college graduate. The ges_ivrm.dta
dataset is used below and, as before, the analysis focuses on those aged 22 to 85,

. use gss_ilvrm
. keep if age»=22 & age<=55

(18936 observations deleted)

Let’s begin by running an analysis that predicts realrinc from age, educ3, and the
interaction of these two variables. Thie model also includes gender as a covariate.

. regress realrinc i.educ3#iic.age i.female, vce(robust)

Linear regression Number of obs = 26718
F{ 6, 25711) = B663.58
Prob > ¥ = 0,0000
R~-squared = 0.1728
floot MSE = 23712
Robust
realrinc Coef. Std. Err. t P>t [95% Conf. Intervall
educ3
2 1906.981  1095.008 1.74 0.082 -245.1763 4089, 137
3 -G287.644  1643.872 -3.82  0.000 ~9609.626  -3065.462
age 299,15606 28.35131 10.56 0.000 243.56804 354,7208
educ3#c.age
2 119.9961 32,9687 3.64 0.0G00 55,39518 184. 597
3 682.8823  48.70B36 14,02 0.000 587.4171 778.3476
1.female -12268.8  293,4448 -~41.78  0.000 -12833.96 -11683.63
_Consg 8012.498 944,865 8.48 0.00¢ 6160,509 9864 , 486

Before interproting these results, let’s make a graph showing the adjusted means by
age and educ3. We first use the margins command to compute the adjusted means at
ages 22 and 55 for each level of educ3. '
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. margins educ3, at{age=(22 55))

Predictive margins Number of obs = 25718
Model VCE : Robust
Expression : Linear prediction} predict()
1..at . 1 age = 22
2._at : age = 55
Delta-methad
Margin  Std. Err. z Pr |zl [95% Conf. Intervall
_at#educd
1 8623.519 a61.1772 23.60 0,000 7815.625 9231.413
12 13070.41 208.6737 62.64 0.000 12661 .42 13479.41
13 17259.38 549.75661 31.39 . 000 184181 .88 18336.89
21 18395.49 656.3127 28.07 0,000 17111.1 19679.88
22 26002,256  405.95436 66.27  0.000 26106, 62 27697.89
23 49666 .47 950.,08566 52.28 0.000 47804.34 51528.61

Then the marginsplot command is used to graph the adjusted mean on the y axis,
graph age on the « axis, and indicate educ3 using separate lines (see figure 10.11).

. marginsplot, noci

Variables that uniquely identify margins: age educ3

50000
.

Linear Prediction
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L
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Figure 10.11. Fitted values for linear by three-level categorical predictor model

Estimates and contrasts on slopes

The graph in figure 10.11 itlustrates the slopes for each group. The margins command
below computes the age stope at each level of educ3. The dydx (age) is combined with
the over (educd) aption to compute the age slope separately for each level of educ3.
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. margins, dydx{age) over(educ3)

296

Average marginal effects ‘Number of obs = 25718
Model VGE 1 Robust
Expression : Linear prediction, predict()
dy/dx w.r.t. ! age
over ¢ educd
Delta-method
dy/dx  Std. Err. 2 P>z {95% Conf. Intervall
age
educ3

1 299.1606 28.36131 10.55 0.000 243.5831 3654.7182

2 419,1467  16.856162 24.87 0.000 386.1181 452, 1753

3 982.0329 39.54918 24.83 0.000 904.518 1069.548

The output not only shows the age siope at each level of educ3, but it also includes
the standard error, confidence interval, and a test of whether the slope is significantly
different from 0. The age slope is significantly different from 0 at each level of educ3.

Let’s test whether these slopes are equal to each other. In other words, let's test the

null hypothesis,

Hy: =2 =03

where (3 is the slope for non-high school graduates, B, is the slope for high school
graduates, and F; is the slope for college graduates. The following contrast command
tests this null hypothesis by testing the interaction of educ3 and age. This interaction
is significant, so we can reject the null hypothesis thatb these slopes are all equal.

. contrast educi#c.age

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
educ3#c.age 2 105.89 0.0000
Residual 26711

Suppose we wanted to further dissect this interaction by comparing the slope for
each level of educd with the third group (that is, college graduates). Expressed in
terms of null hypotheses, say, we want to test the following two null hypotheses:

Hoff 1 =55
Ho#2: By =
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The following contrast command tests these two null hypotheses. Specifying
rb3.educd uses reference group comparisons with group 3 as the baseline {compari-
son) group. We can reject both null hypotheses. The difference in the age slopes for
group 1 versus 3 (non-high school graduates to college graduates) is signifieant. Like-
wise, the difference in the age slopes for group 2 versus 3 {high school graduates versus
college graduates) is also significant.

. contrast rb3.educdfic.age, nowald affects

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast Std. Err. t P>t} [95% Conf. Intervall
educ3i#c.age
{1 va 3) -682.8823 48.70636 -14.02 0.000 -778.3476 -587.4171
(2 va 3) -562.8863  43.03201 -13.08 0.000 -647.2314  -478.5411

We can specify any of the contrast operators covered in chapter 7 in place of the
rb3. operator to form contrasts among the age slopes. Let’s try using the j. contrast
operator that compares each group with the mean of the previous levels, as shown below.

. contrast j.educ3#c.age, nowald effects
Contrasts of marginal linear predictions

Margins + asbalanced
Contrast Std. Err. t P>t} [98% Cont. Intervall
educ3ftc. age
(2 vs 1} 119.9961 32,9587 3.64 0.000 55.39518 184.597
(3 vs <3) 622.,8843 42.90004 i4.52 0.000 538.7978 T06.9708

This shows that the age slope for group 2 is significantly different from group 1 (high
school graduates versus uon-high school praduates). Also, the age slope for group 3
{college graduates) is significantly different from. the average of groups 1 and 2.

Estimates and contrasts on means

The previous section focused on comparisons of the slopes as a. means of understanding
and interpreting the interaction of age and educ3. Another way we can understand
this interaction is to examine the differences in the adjusted means among the levels of
educ3 for a specified level (or levels) of age.
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Referring back to figure 10.11, imagine estimating the adjusted means at specific
values of age for the different levels of educ3. Let’s begin by computing the adjusted
means when age equals 30 for the different levels of educ3 using the margins conmumand
{below).

. margins educ3, at{age=30)

Predictive margins Number of obs = 25718
Model VCE : Robust
Expression : Linear prediction, predict{)
at : age = 30
Delta-method
Margin  Std. Err. z P>iz| [95% Conf. Intervall
educd
1 10916.72  205,3568 53.16 0.000 10514.23 11319.2%
2 16423.659 127.05615 129.27  0.000 i6174.57 16672.6
3 25116.65  367.3734 68.37  0.000 24395.61 25835.69

Let’s test the equality of these means by adding the contrast(overall) option.
This tests the equality of the adjusted means across the levels of educ3 when age is
held constant at 30. This test is significant (p = 0.0000).

., margine educ3, at(age={30)) contrast{overall)

Contrasts of predictive margins

Model VCE : Robust
Expression : Linear prediction, predict(}
at i age = 30
df chi2 P>chiZ2
educ3 ' 2 1£86.90 G, 000G

We can specify any of the contrast operators described in chapter 7 to form contrasts
on the categorical variable (that is, educ3). For example, let's use the ar. contrast
operator to perform adjacent group contrasts on educ3 while holding age constant at 30.
The output shows that, at 30 years of age, there is a significant difference in the adjusted
mean of income comparing group 2 versus 1 {(high school graduates compared with non--
high school graduates). Likewise, there is a significant difference in the comparison of
group 3 versus 2 {college graduates compared with high school graduates).
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. margins ar.educ3, at(age=(30}) contrast(nowald effects)
Contrasts of predictive margins

Model VGE : Robust
Expression : Linear prediction, predict()
at i age ) = 30
Delta-method
Contrast  B5td. Err. z P>lz} [96% Conf. Intervall
aduc3
(2 vs 1) 6506.863 242.8756 22,67 0.000 5030.836 5082.89
(3 va 2) 8692.063  387.2089 22,46 Q.000 7933.148 9450.979

Let’s repeat these contrasts, but do so instead at ages 30, 40, and 50. These contrasts
are performed using the margins command below.

. marging ar.educ3, at{age={30 40 5O)) contrast(nowald effects)

Contrasts of predictive margins
Modei VCE ¢ Robust

Expression ! Linear prediction, predict{)

i._at 3 age = 30
2, _at : age = 40
3,.at 1 age = 50

Delta-method

Contrast  Std. Exr. z P>fz]| {95% Conf. Interval]
educ3d_at

(2 va 1) 1 5506.863 242.8766 22.67 0.000 5030.838 £082,89
(2 vs 1) 2 §706.824  333.5987 20,10 0.000 6052.982 7360.665
(2 vs 1) 3 T906.785  617.1248 12.81 0.000 6697.243 9116,327
(3 wvs 2) 1 8692,083  387.2089 22.45 0.000 7933.148 9450.979
(3 vs 2) 2 14320.93  488.5892 29.31 0.000 13363.31 16278.54
(3vs 2) 3 19949.79  835.3796 23.88 0.000 18312.47 21687.1

This provides a total of six tests. There are two tests of the comparisons among the
levels of educ3 (groups 2 versus 1 and 3 versus 2) al the three different levels of age.
Al of these comparisons are significant.

Say that we wanted to form the same comparisons from the previous test (that is,
using the ar, contrast operator), but spanning the ages ranging from 22 to 55. We can
create a graph that illustrates such comparisons using the margins and marginsplot
commands. First, the margins command is used, applying the ar. contrast operator
to educ combined with the at () option. This performs the contrasts comparing group
2 versus 1 and group 3 versus 2 holding age constant at every value ranging from 22 to
55 years of age.

. margins ar.educ3, at{age=(22(1)58))
(output omitted)
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Then the marginsplot command graphs the coutrasts computed by the margins
command (see figure 10.12). The bydimension{educ3) option produces two panels, the
left panel that compares group 2 versus 1 and the vight panel that compares group 3
vorsus 2. When the confidence interval for a contrast excludes zero, the difference is
significant at the 5% level.

. marginsplot, recast(line) vecastci(rarea) bydimension(educ3)

Variables that uniguely identify margins: age educ3

Contrasts of Predictive Margins of educ3 with 95% Cls
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Pigure 10.12. Adjacent contrasts on education by age with confidence intervals, as two
graph panels

Across the entire spectrum of age, these graphs show that the difference in the
adjusted means comnparing group 2 versus 1 are significant (see left panel of fignre 10.12).
Likewise, the difference in the adjusted means comparing group 3 versus 2 is also all
significant (see right panel of figure 10.12).

10.5 Summary

This chapter has illustrated the interpretation of interactions of continuous and categor-
ical variables using age as a continuous variable and education as a categorical variable.
In the presence of an age by educ hiteraction, the age slope differs as a function of the
categorical variable, educ. When educ was treated as a two-level categorical variable, a
significant interaction implied that the age slope differed fgr the two levels of eduecation.
When educ was treated as a three-level categorical variable, the age by educ interaction
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was more complex. The interaction signifies that the slopes of the three groups are not !

equal. The contrast command can be used to form contrasts among the slopes for :

the three different groups. The margins command can also be used to form contrasts

among the levels of education, holding age constant at one or more levels. This chapter {

illustrated the use of the marginsplot command to visualize the pattern of results, 1 E

For more information about the interaction of continuous and categorical variables,

Polynomial by categorical
consult your favorite regression book as this is a topic is covered in most regression books.

: ! - interactions
In particular, I recommend Fox (2008) and Cohen et al. (2003) for their treatiment of N
this topic. ‘ ;
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11.1 Chapter overview

This chapter illustrates models that involve a continuous variable modeled using a poly-
! nomial term interacted with a categorical variable. This chapter covers two types
i of polynomial terms: quadratic and cubic. The first section involves interactions of
quadratic terms with categorieal variables (see section 11.2). This includes models in-
volving the inleraction of a quadratic term with a two-level categorical variable (see
section 11.2.2) and a quadratic term intevacted with a three-level categorical variable
(see section 11.2.3). Section 11.3 describes models involving the interaction of a cubic
term with a categorical variable, illustrating a cubic term interacted with a two-level
categorical variable.

11.2 Quadratic by categorical interactions

' This section covers models that include a two-lovel categorical variable interacted with
a continuous variable modeled with a quadratic term. The examples prescated are an
] extension of the examples shown in section 3.2.2, which showed a guadratic relation-
i ship between age and income {age and realrinc). That section illustrated a quadratic
l model in which income rises with increasing age until avound age 50 and then income
! declines thereafter. This section will illustrate how the degree of curvature in the rela-
| tionship between age and realrinc depends on one’s educational status (for example,
i whether one is a college graduate). Let’s frst consider an overview of such models before
considering specific examples.

301
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11.2.1  QOverview

Models that involve interactions of a categorical variable with a continuous variable
modeled using a quadratic term blend two modeling technigques that we have previously
seen.

The first modeling technique is the use of a quadratic term to account for nonlinearity
in the relationship between the predictor and outcome. We have seen the modeling of
quadratic terms in section 3.2. A hypothetical example of a quadratic model predicting
income from age is shown i figure 11.1, The quadratic term for age is 25, hence the
inverted U-shape in the relationship between age and income.

Income by Age
50000 -

40000

30000

Income

20000

10000

20 30 46 56 80 70 80
Age

Figure 11.1. Predicted values from quadratic regression

The second modeling technique involves the interactions of categorical and contin-
uous variables, as illustrated in chapter 10. A hypothetical example of & model with
a categorical by continuous interaction is shown in figure 11.2. A person’s income is
predicted by age and whether one is a college graduate, as well as the interaction of
these two variables. The interaciion yields different slopes for the relationship between
income and age depending on whether one is a college graduate. The slope is 250 for
non-college graduates and is 800 for college praduates.
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income by age and coliege graduate
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Figure 11.2. Predicted values from linear by two-level categorical variable model

These two modeling techniques can be blended together, yielding an interaction of
a categorical variable with a continuous variable modeled using a quadratic term. The
fitted values from such a hypothetical model are graphed in figure 11.3. The model
predicts income from age, age squared, and college graduation status {0 = non-college
graduate and 1 = college graduate). The model also includes the interaction of age
with college praduation status, and age squared with college graduation status. The
interaction of age squared with college graduation status permits the degree of curvature
in age to differ for college graduates versus non-college gradaates. In this example, the
quadratic term is —40 for college praduates and is —15 for non-college graduates. This
is reflected in the greater degree of curvature in the relationship between age and income
for the college graduates. Section 11.2.2 provides examples of how to {it these kinds of
models.
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Income by age and college graduate
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Figure 11.3. Predicted values from quadratic by two-level categorical variable model

It is not difficult to extend the maodel illustrated in figure 11.3 to include three
~or more groups. The hypothetical fitted values of such a model with three groups is
illustrated in figure 11.4.

tncome by age and college graduate

seo00{4
40000
[l
g so0004 T ememmeee
g R e P -
£ T
20000 r ’ -
. >
10600 s
T T T T U T T
, 20 3¢ 40, 50 40 70 80
Age
Mon-HS grad —-—-—-- HS grad

weeneeeees GO grad

Figure 11.4. Predicted values from quadratic by three-level categovical variable model

Education is broken up into three groups based on whether one is & non-high school
graduate, a high school graduate, or a college graduate. In this example, the non—
high school gradnates and high school graduates do not differ much with respect to the
quadratic term. The quadratic term for age is —10 for non-high school graduates, is

|
1
i
+
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—15 for high school graduates, and is —35 for college graduates. This is reflected in
the greater curvature in the relationship between age and income for college graduates,
Qection 11.2.3 of this chapter provides examples of how to fit models in which a three-
level categorical variable is interacted with a continnous variable involving a quadratic
term.

11.2.2 Quadratic by two-level categorical

Let’s now use the 085 dataset to £t a model predicting income from age (modeled nsing
a quadratic term), whether one is a college graduate, as weil as the interaction of these
variables. The examples in this section use the gss_ivrm.dta dataset focusing only on
those who are aged 22 to 80.

. use gss_ivrm

. keep if apge»=22 & age<=80
(4541 observations deleted)

Let’s begin by looking at the relationship between age and income using a lowess
simoother. The lowess command is used to create the variable yhat lowess that con-
tains the lowess smoothed values of realrine. The graph comnnand creates a graph
showing the lowess smoothed values across age. The graph (see figure 11.5) shows that
incomes rise with increasing age until around age 50, where incomes peak. As age
increases heyond 50, incomes decline.

. lowess realrinc age, generate(yhat_lowess) nograph
. graph twoway line yhat_lowess age, sort

yhat_lowess
20000 25000 30000
: ; )

15000

10000

20 & i 60 80
age of respondent

Figure 11.5. Lowess smoothed values of income by age
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Let’s create this same kind of graph but separating people based on the variable
cograd, which is coded: 0 = non-college graduate and 1 = college graduate. The
lovess command is issued twice, each with an if specification. The first lowess com-
mand is restricted to people who did not graduate college and generates the variable
yhat. lowess0, representing the lowess smoothied value of income for those who have
not graduated college. The second lowess command creates yhat.lowessi, the lowess
smoothed value of income for those who have graduated college.

. lowess realrinc age if cograd == 0, generate(yhat_lowess0) nograph
- lowess realrinc age if cograd == 1, generate(yhat lowesz1) nograph

'The graph command is then used to create a graph of the lowess smoothed values
of income as a function of age, separately for those who did and for those who did not
graduate college. This graph, shown in figure 11.6, suggests that the degree of curvature
in the relationship between age and income differs based on college graduation status.
The lowess smoothed values for those who graduated college appear to show a greater
degree of curvature than those who did not graduate college.

- graph twoway line yhat lowess{Q yhat_lowessl age, sort
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Figure 11.6. Lowess smoothed values of income predicted from age by college gi'aduation
status .

Based on this visual inspection of the data, a regression model predicting realrine
from age and cograd would not only need to account for the quadr atic trend in age, bul
also the difference in the quadratic trend in age for college graduates versus non-college
graduates.

Let’s fit a model that includes an intercept, age, and age squared for non-college
graduates, and a separate intercept, age, and age squared for college graduates. This
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model is specified using the regress command below. Specifying ibn.cograd with
the noconstant option yiclds separate intercept estimates by college graduation status.
Specifying ibn.cograd#c.age yields separate age estimates by college graduation sta-
tus, and ibn.cogradi#ic.age#ic.age yiclds separate age#tage cstimates by college grad-
uation status.! {(Note that gender is included as a covariate.)

. regress realrinc ibn.cograd ibn,cograd#ic.age ibn.cograd#c.agefic.age
> i.female, noconstant vce(robust)

Linear regression Humber of obs = 30576
F( 7, 30589) = 5127.56
Prob > F = 0,0000
R-squared = (.5088
Root MSE = 248656
Robust
realrinc Coef.  Std. Err. t P>l [95Y% Conf. Intervall
cograd
& ~11096.99 1107.783 -10.02 0.000 -13268.28 -B926 . G686
1 ~-52730.93 3688.047 -14.30 0.000 -69959.66  -45502.21
cograd#c.age
0 15984.873 57.25945 27.88 0.000 1482.642 1707, 104
1 3941.463  194,38691 20.28  0.000 3560.491 4322.434
cograd#
c.age#ic.age
-16.19906  .6617172 -24.48 0.000 ~17.49606  -14.90207
i -37.80665 2.207263 -16.486 0.000 ~42. 30938 -33.30392
1.female -12457.11  278.5685 -44.72  0.000 ~-13003.22 -11911.11

Note! Model shortcut
The previous model can also be specilied as shown below.

. Tegress realrine ibn.cograd ibn.cograd#{c.age c.age#c.age) i.female,
> noconstant vce(robust)

Stata expands the expression ibn.cograd#(c.age c.age#ic.age) to become
ibn.cograd#c.age ibn.cograd#c.agedtc.age, yiclding the same model shown
previously.

‘We can express these results by writing two regression equations: one for those who
did not graduate coliege and one for those who did graduate college.

1. I specified the regress comand in this way for pedagogical reasons. This coding method makes
it easy to write separate regression equations for college graduates and non-college graduates.
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Non-college graduate: realrine = — 11096.99 + 1594.87age 4 —16.20age”
+ —124567 11female

College graduate: realrinc = — 52730.93 4- 3041.46age + —37.81age?
4 —12457.11female

Note the differcnces in the quadratic coefficient for age. This coefficient is —37.81
for those who graduated college and is —16.20 for those who did not graduate college.
Let’s visualize the impact of the differences in these quadratic ceefficients by graphing
the adjusted means as a function of age and college graduation status (that is, cograd),
adjusting for gender. First, we use the margins command to compute the adjusted
means as a function of age and cograd. The margins command below computes the
adjusted means for ages ranging from 22 to 80 (in one-unit increments), separately for
each level of cograd.

. margins cograd, at(age={22(1)80})
(eutput omitted)

The marginsplet command graphs the adjusted means from the margins command;
sec figure 11.7. The graph shows that the college graduates have a greater imverted {J-
shape than the non-college graduates. This arises becanse the quadratic coefficient for
age is more negative for college graduates than for non-college praduates.

. marginsplot, noci recast{(line) scheme(simono)

Variables that uniquely identify margins: age cograd

Predictive Margins of cograd
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Figure 11.7. Fitted values from quadratic by two-level categorical model
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We can ask whethor the degrec of cirvature between college graduates and non-
college graduates is significantly different. The contrast command below tests whether
the quadratic term for non-college graduates is equal to the guadratic term for college
graduates. The output shows the two quadratic coefficients are significantly different
from each other (F = 81.75, p = 0.000}. College graduates show o significantly greater
level of curvatire in the relationship hetween age and income than nen-coliege graduates.

. contrast cograd#ic.agefic.age

Contrasts of marginal linear predictions

Margins : asbalanced
4t F P>F
cograditc.agefic.age 1 B1.75 0.000Q0
Residual 30669

Let's now sce how the margins command can be used to estimate adjusted means
from this model. The margins command below computes the adjusted mean of income
for a 30-year-old who did not graduate college, adjusting for gender. The adjusted mean
for such a person is 16,044.57.

. margins, at(cugrad=0 age=30)

Predictive margins Humber of obs = 0676
Hodel VCE : Robust
Expression : Linear prediction, predict(}
at ! cograd = c
age = . 30
Delta-method
Margin  Std! Err. z P>lz| [956% Conf. Intervall
_cons 16044.57 112.3878 142.76 0.000 16824.3 16264.85

The marging command below estimates the adjusted mean for 40-year-olds, sepa-
rately by the levels of cograd. A coliege graduate who is 40 years old has a predicted
income of $38,311.44, and a non-college graduate who is 40 years old has a predicted
income of $20,653.96.
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. margins cograd, at(age=§0) . margins r.cograd, at(age=30) contrast(nowald effects)

Predictive margins Number of obs = 30576 Contrasts of predictive margins
Model VCE : Robust Model VCE 1 Robust
Expression : Linear prediction, predict() : Expression  : Linear prediction, predict()
at : age = 40 : at T age = 30
Pelta-method . Delta-method
Margin Std. Err. z p>|zt {95Y% Conf. Intervall i Contrast  Std. Err. z P>z {95% Conf. Intervall
cograd : cograd
o] 20663.96  175.1034 117.%5  0.000 20310.76 20997.16 i (1 vs 0) 9316.9  358.4768 26.99  0.000 8614, 299 1001%.5
1 38311.44  B6B.5894 67.38  0.000 37197.03 39425.88 !

The difference in the adjusted means of college graduates and non-college graduates
who are 30 years old is 9,316.9, and that difference is statistically significant. Note how
this corresponds to the difference in the adjusted means at 30 years of age computed

The at{) option allows us to specify multiple ages at once, as shown in the exam-
ple below, This example compubes the adjusted means for ages 30 to 70 (in 10-year

increments) separately for each level of cograd. ; by the previous margins command {that is, 25361.47 — 16044.57 = 9316.9).
t
. marging cograd, at(age=(30(10)70)) vsquish ‘ Let’s repeat the last margins command, but this time specifying multiple ages in the
Predictive margins Humber of obs = 30578 i at () option. The example below compares college graduates with non-college graduates
Model VCE ¢ Rebust

at 30 to 70 years of age in 1 year increments. The dilfference is significant at each of

1
Expression ¢ Linear prediction, predict() | the spe(‘iﬁed ages
1._at :age = 30 t ’ : ’
2. _.at 1 age = 40 ! ; :
3. at : age - 50 | . margins r.cograd, at(age={30(10)70)) contrast(nowald effects} vsquish
4._at ¢ age = 60 ‘L Contrasts of predictive margins
5._at : age = 70 ; Model VCE 1 Robust
f Expression : Linear prediction, predict(}
I b2
Deita-method ; 1..a% 1 age = 30
Margin  Std. Err. z P>z [98% Conf. Intervall [ 2. at 1 age = 40
; 3,.at 1 age = 50
_at#cograd . ; 4. _at 1 age = 60
10 16044.57  112.3878  142.76  ©0.000 15824.3  16264.85 ! 5._a% T age = 70
11 25361.47 340.9874  74.38  ©.000 24693.15 26029.8 .
20 20853.96 176.1034  117.95 0,000 20310.76  20997.16 : Pelta-method
21 38311.44 56B.5894  67.38  0.000 37197.03  39425.86 . Contrast Std. Frr. z  Plzl [95% Conf. Tntervail
30 22023.54  206.4344 106.69  0.000 21618.03  22478.14 : -
31 48700.08  638.665  68.42  0.00D 42448,32  44951.84 : cograd@_at
40 20163.3 269,911 74.67  0.000 19624.28  20682.31 = (tvs0) 1L 9316.0 358.4768  25.99  0.000 8614299 10019.5
41 41527.39  877.7023  47.31 0,000 3980732 43247.66 ' (t vs 0) 2 17657 .48 594.3632 29,71  0.000 16492.56  18822.41
50 15043.25  £00.8186  30.04  0.000 14061.66  16024.83 ; (L va 0) 3 21676.54 671,4589  32.28  0.000 20360.51  22992,58
51 31793.86  1754.301  18.12  0.000 28356 36231.73 E (1vs 0) 4 21374.00  919.4848  23.25  0.000 19571.97  23176.21
; (vs O 5 16750.11  1825.202 9.18  0.000 13172.61  20327.62
The margins commalid can be used to compare the adjusted means of those who did :
and those who did not graduate college ab specified ages. For example, we can compare S Let’s use the margins command to compute the difference between college graduates
the means for college graduates versus non-college graduates for 30-year-olds using the ] and high school graduates for 22- to 80-year-olds in one-year increments so we can then
margins command helow. Specifying r.cograd yields refercnce group comparisons, : graph the differences using the marginsplot command. The graph of the differences

comparing eollege praduates with non-college graduates. and a shaded confidence interval for the differences is shown in figure 11.8.
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. margins r.cograd, at{age=(22(1)80)) contrast(nowald effects)
{outpul omitted )

. marginsplot, yline(0) recast(line) recastci(rarea)
Variables that uniquely identify margins: age

Contrasts of Predictive Margins of cegrad with 95% Cls
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Figure 11.8. Contrasts on college graduation status by age

This graph shows the difference in the adjusted means between college graduates
and non-college graduates. Where the confidence interval exchudes zero, the differcnce
is significant at the 5% level. Only the first two confidence intervals include zero; thus
the difference is significant for those aged 24 to 80. You might notice that the width
of the confidence intervals grows with increasing ape. This is because of both smaller
saumnple sizes and increased variability in incomes for those who ave older.?

11.2.3 Quadratic by three-level categorical

Let’s now consider a quadratic effect that interacts with a three-tevel categorical vari-
able. This builds upon the analysis from the previous section by replacing the variable
cograd with educ3. The variable educ3 is a three-level variable that is coded: 1 =
non-high school graduate, 2 = high school graduate, and 3 = college graduate,

The examples in this section will use the gss_ivrm.dta dataset focusing on those
who are aged 22 to 80.

. use gss_ivrm

. keep if aged=22 & age<=80

{4541 observations deleted)

2. Recall that the vee{robust) option was included wlien fitting the regression model, which accom-
modates heterogeneity of variance (that is, heteroskedasticity].
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Let’s begin our exploration by using the lowess command o penerate variables that
contain the smoothed relationship between realrinc and age, separately for each of the
three levels of educ3. The graph command is then used to graph the lowess smootled
values of income as a function of age, separately for the three levels of educ3. The
resulting praph is shown in figure 11.9,

. louwess realrinc age if educ3 == 1, generate{yhat_lowessl) nograph
. lowess realrinc age if educ3 == 2, generate{yhat_lowess2) nograph
. lowess realrinc age if educ3 == 3, generate{yhat_lowess3) nograph

. graph twoway line yhat_lowessl yhat_lowess2 yhat lowess3 age, sort
> legend{order (]l "Non-HS grad" 2 "HS grad" 3 "GO grad"))
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Figure 11.9. Lowess smoothed values of income by age, separated by three levels of
education

Figure 11.9 shows that the relationship between age and realrinc is curved for
all three levels of educ3. The degree of curvature seens to be strongest for those who
graduated college. The degrees of curvature seem smaller, and similar, for those who
graduated high school and those who did not graduate high school.

Let’s now fit a model that includes a guadratic term for age as well as an interaction
of educ3 and the quadratic term for age. The model is constructed in the same manner
as the model from section 11.2.2, except that cograd is replaced with educ3.
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. regress realrinc ibn.educ3 ibn.educ3#{c.age c.age#c.age) i.female,
> noconstant vce(robust)

Linear regression Humber of obs = = 30576
F( 10, 30566) = 3691.50
Prob > F = 0.0000
R-squared = 0.5129
Root MSE = 24761
Rebust
realrinc Coef . Std. Err. t P>t [96% Conf. Intervall
educd
1 ~8609.968  1907.078 ~4,51  0.000 ~12347.92  -48Y2.01i6
2 -11115.2  1375.928 -8.08 0.000 -13812.07 -8418.325
3 -52656.01 3687.815 -14.25 0.000 ~59784.28 -45327 .74
educd#tc,age
1 1245.109  93,00407 13.39  0.000 1062.818 1427.401
2 16256.585 72.44602 22.44 0,000 1483.687 1767.5382
3 3940.661 194.3347 20.28 0,000 3559.757 4321.666
educ3fic.agedt
c.age
1 ~12,45635 1.004618 -12.40 0.000 -14.42845  -10.49026
2 -16.04013 .8660308 -18.54 0.000 ~17.736682  -14.34463
3 ~37.80793 2.2967Y2 -156.46 0.000 ~42,30958  -33.30626
1,female -12760.67  278.85Y3 -45.72 0.000 ~13297.24 -12204.1

We can express the regression equation for this model as though there are three
equations corresponding to the three different levels of educ3. The regression cquation
is written in this fashion as shown below.

Non-HS graduate: realrinc = — 8609.97 + 1245.11age + —12.46age®
+ —12750.67female
HS pracuate: realring = — 111152 + 1625.59age + ~16.04age®
+ —12750.67female
College graduate: realring = — 52556.01 + 3940.66age + -37.81age?
+ —12750.67female

To help interpret the regression coefficients, let’s use the marging and marginsplot
commands to visualize the adjusted means as a function of age and educ3. Themargins
command is used to estimate the adjusted means for ages 22 to 80 (in one-unit incre-
ments), separately by the levels of educ3. The marginsplot command is used to graph
these adjusted means, creating the graph shown in figure 11.10.

. margins educ3, at(age={22(1)80))
(output omitted)
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. marginsplot, noci recast(iine} scheme{slmeno)

Variables that uniquely identify margins: age educd

Predictive Margins of educ3
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Figure 11.10. Fitted values from age (quadratic) by education level

Let’s relate the quadratic coefficients for age to the degree of the curvature in the
relationship between age and the adjusted means of income shown in figure 11.10. The
coefficient for the quadvatic term is —12.46 for those who did not graduate high school,
—16.04 for those who graduated high school, and —37.81 for those who graduated cotlege.
The college graduates have the most negative coeflicient and that group sbows the
greatest degree of curvature {that is, the sirongest inverted U-shape). The quadratic
coeflicients for the non-high school graduates and high school graduates are similar in
magnitude, and they show a similar level of curvature.

The contrast commnand can be used to compare the guadratic coeflicients among the
educational groups. The contrast commmand helow tests the equality of the quadratic
coeffictent, for all three levels of educ3.

. contrast educ3iic.aged#c.age
Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
educ3fic.agedic.age 2 61.24 0.0000
Residoal 30566

This test is significant, indicating that the quadratic term for age is not equal across
all three groups. Contrast operators can be applied to edue3 in the contrast com-
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mand to perform specific comparisens among the groups. For example, the a. contrast
operator is used below to compare the quadratic terms for adjacent education groups.

. comtrast a.educld¥c.ageftc.age, nowald effacts
Contrasts of marginal linear predictions

Margins : asbalanced

Contrast 8td. Err, t P>t fes¥ Conf. Intervall

educ3iic, ageift

c.age
(1 vs 2) 3.680775 1.325447 2,70  ©.007 .DB2B444 B.178706
(2 vs 3) 21.7678  2.454231 8.87 0.000 16.9674 26.57819

The fivst confrast compares the quadratic coefficient for group 1 (non-high school
graduates) versus group 2 (high school praduates), and this contrast is significant
{r = 0.007). Although the degree of curvature seems similar for high school graduates
{group 2) and non-high school graduates (group 1), the quadratic term for these two
groups are significantly different. The second contrast compares the quadratic coefficient
for group 2 versus 3 {(high school graduates versus college graduates}. The quadratic co-
efficient for high school graduates is significantly different from the quadratic coefficient
for high school graduates (p = 0.000).

Let’s now see how to use the margins command to compute adjusted means. The
margins command below computes the adjusted mean for a college graduate who is 25
years old, adjusting for gender.

. margins, at{educ3=3 age=25)

Predictive margins Number of cbhs = 30676
Model VCE : Robust
Expression : Linear prediction, predict()
at : educd = 3
age = 25
Delta-method
Margin  Std. Err. z Prlzl [95% Conf. Intervall
.cons 16060.73  434.2163 36.99 0,000 15209,68 16911.78

The margins command below computes the adjusted mean holding age constant at
30, separately for each education group.
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. margins educ3, at{age=30)

Predictive margins Number of obs = 30576
Model VCE : Robust
Expression : Linear prediction, pradict()
at i oage = 30
Delta-method
Margin  5td. Err. z P>lz| [95Y Conf. Intervail
educ3
i 11260,07 201.4479 55.90 Q0.000 10866, 24 116564.9
2 16946.4  129.0068 131.36  0.000 16693.556 17199.26
3 26366.86  341.2143 74.34  0.000 24698.09 26035.62

The margins command can be used to make eomparisons among the levels of educ3
at different ages. Let’s compare adjacent levels of educ3 when age is held constant at
30. The ar. contrast operator yields comparisons of adjacent levels of education in
reverse order (that is, group 2 versus 1 and group 3 versus 2).%

. margins ar.educ3, at(age=30) contrast{nowald effects)

Contrasts of predictive margins
Model VCE : Robust

Expression : Linear prediction, predict()

at : age = 30
Delta-method
Contrast  Std. Erx. z P>|zl [95% Conf. Intervall
educd
(2 vs 1) 5686.332 240.60561 23.83 0.000 5214.756 6157.909
{3 vs 2) 8420.458  363.2567 23.18  0.0600 T708.488 9132.428

At 30 years of age, the difference in adjusted means comparing high school graduates
with non-high school graduates (group 2 versus 1) is 5,686.33, and this difference is
significant (z = 23.63, p = 0.000). The comparison of college graduates with high
school graduates {group 3 versus 2) is also significant (2 = 23.18, p = 0.000). At 30
years of age, the adjusted mean for college graduates is 8,420.46 more than the adjusted
mean for high school graduates.

Let’s repeat the above contrasts at each age level ranging from 22 to 80 using the
margins command. We can then use the marginsplot command to graph each of
the contrasts, as shown below. Two graphs are ereated, one for the contrast of group 2
versus 1 and the other for the contrast of group 3 versus 2 (see figure 11.11), Each graph
includes a confidence interval for the contrast—when the confidence interval excludes
zero, the contrast is significant at the 5% level.

. margins ar.educ3, at(age=(22(1)80))
(output omitted)

3. We can select from any of the contrast operators illustrated in chapter 7.
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. marginsplot, bydimension(educ3) yline(0) recast(line) recastci(rarea)
Variables that uniquely identify margins: age educ3d

Contrasts of Predictive Margins of educ3 with 95% Cls

educd: (2 vs 1) educd: (3 vs 2)

20000
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Contrasts of Linear Prediction
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Figure 11.11. Contrasts on education by age, with confidence intervals

The contrast of high school graduates versus non—high school graduates (group 2
versus 1)} shows that high schivol graduates have significantly higher incomes across all
ages. The contrast of college graduates to high school graduates is significant for all
ages except the youngest and oldest.®

11.3. Cubic by categorical interactions

This section describes models that involve interactions of a categorical variable with a
continuous variable where the continuous variable is fit using a cubic polynomial term.
As we saw in section 3.3, cubic terims accounts for two bends in the relationship between
the predictor and outcome. A cubic by categorical interaction allows the groups formed
by the categorical variable to differ in cubie trend.

Let’s" buikd upon the example we saw in section 3.3, where we looked at the year
of a woman’s birth as a predictor of her number of children. In that example, we saw
a cubic relationship between year of birth and number of children. Suppose that we
divided women into two groups, those who graduated college and those who did not

4. Inspecting the output of the margins command (not shown) reveals nonsignificant differences at
ages 22, 23, 79, and 30.

S
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graduate college. Those who graduated college might show a different kind of cubic
trend across years of bivth compared with non-college graduates. Figure 11.12 shows a
graph of hypothetical fitted values lor such a model. The women whe did not graduate
college show a greater cubic trend (a greater rise and fall} over the years of birth than
the women who did graduate college.

Number of children

1920 1930 1940 1850 1080
Year of birik
’ Non-collage graduate ————- Goltege graduale ]

Figurc 11.12. Predicted values from cubic by two-level categorical variable model

Let’s illustrate a cubic by cateporical interaction using the gss_ivrm.dta dataset.
This example will focus on women aged 45 to 55 born between 1920 and 1960.

. use gss_ivrm

. keap if {age>=45 & age<=65) & (yrborn>=1820 & yrborn<=1960} & female==1
(50021 observations deleted)

Let’s begin by visualizing the nature of the relationship between year of hixth and
mumber of children separately for college graduates and non-college graduates. We can
do this using a lowesy smoothed regression relating year of birth to number of children.
The lowess comunand is used twice, once for those who have not graduated college
and again for those who have praduated college. The generate() option is used to
create the variables yhatlowess0 and yhatlowessl, which contain the smoothed value
of children for non-college graduates and college graduates, respectively.

. lowess children yrborn if cograd==0, gemerate{yhatlowess0) negraph
. lowess children yrborn if cegrad==%, generate{yhatlowessl) nograph

The graph command is then used to praph the lowess smoothed values by year of
birth, showing a separate line for non-college graduates and college graduates. This is
shown in figure 11.13,
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. graph twoway line yhatlowessO yhatlowessl yrborn, sort

1620 1930 1940 1950 1950
yaar of birth

yhatiowess  ——-~—- yhanwess1l

Figure 11.13. Lowess smoothed values of number of children by year of birth, separated
by college graduation status

Focus on those who have not graduated college. Note how the relationship between
year of birth and mumber of children has two bends. The number of children increases
until a peak at around 1930, then decreases until around 1952 and then starts to increase
again. This curve secms to exhibit a cubic trend, By contrast, those who have graduaked
college show a decline in the number of children from 1920 to 1950, at which point the
number of children reaches a low. For this group, there secems to much less of a tendency
for a cubic trend relating year of birth to number of children,

The graph in- figure 11.13 suggests that the relationship between year of birth and
number of children may show a cubic trend. Furthermore, the cubic trend may differ
hased on whether the woman graduated cotlege, suggesting an inderaction of the cubic
trend for year of birth and whether the woman graduated college. Let’s fit a model
using a separate slope and sepavate intercept strategy that allows us to compare the
cithic trend in year of birth for college graduates with non-college graduates. Such
a model iy fit using the regress command below. The first term in the model is
ibn.cograd. When specified in combination with noconstant option, the model fits
separate intercepts by college praduation status. The model also includes ibn. cograd
interacted with the linear term for year of birth, the quadratic term for year of birth,
and the cubic tenm for year of birth.” This yiclds separate estimates of these terms by
college graduation status.

5. Note that the centered variable, yrbernd0, is used to represent year of birth to reduce collinearity.
See section 3.3 for more details.
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. regress children ibr.cograd
> ibn.cogradi{c.yrborn4d c.yrborn4Oic.yrbornd0

b ¢.yrborndl#ic. yrbornd0#c. yrbornd0) i.race, noconstant vsquish
Source 33 af Ms Number of obs = 5037
F( 30, 5027) = 1223.60
Model 34370.3789 10 3437.03789 Prob > F = 0.0000
Residual 14120.6211 5027 2.80895585 R-squared = (.,7088
Adj R-squared = @,7082
Total 48491 5037 9,62696048 Root MSE = 1.678
children Coef. Std, Err. + P>t [95Y% Conf. Fnterval]
cograd
0 2.801449 0426759 65.64 0.000 2,717786 2.885112
1 1.961068  .0874233 22.43  0.000 1.78968 2.132456
cograd#
¢.yrbornd0
0 -.0883989 .0068118 -16.21 0.000 ~.,09897926 -, 0770053
1 -.0626683  .0117141 -6.36 0.0G0 ~.0866231  -.03969386
cograd#
c.yrbornd0#
¢. yrbornd0
0 -.0009286  .0002285 -4.07  0.000 -.0013776  -.0004816
1 .0002384 0005872 0.41  0.685 -.0009128 .0013895
cograd#
<.yrbornd(#
¢.yrborndQ#
c.yrbornd(
. 0 0002103 .0000223 9.42 0.000 0001666 . 0002541
i 000819 0000489 1.88 0.060 ~3.88e-08 .0001877
Tace
2 \BBTT7129 0668376 8.49  0.000 4366821 . 6987437
3 6662013 .12659356 5.26 0.000 4180229 LOL143797

We can writle this regression model as though there are two regression equations,
one for those who did not graduate college and one for those who did gradnate college.

Non-college graduate: children = 2.80 + —0.088yrbornd)
+ —0.00093yrborn40? + 0.00021yrborn40®
+ 0.57race2 + 0.67race3
College graduate: children = 1.96 + —0.063yrborn40

+ 0.00024yrborndo? + (.00009yrbornd0®
+ 0.57race2 + (.67race3

Note the differences in the cubic coefficient for yrborn. This coefficient is £.00021 for
those who did not graduate college and is 0.00008 for those who graduated college. To
lLelp interpret these results, let’s create a graph of the fitted values using the margins
and marginsplot commands. The margins command is used to ealeulate the adjusted

means for years of birth from 1920 to 1966 in ene-year increments, separately for college
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graduates and non-college graduates, Then the marginsplot command is used to graph
these adjusted means, as shown in figure 11.14.

. margins cograd, at{yrborn40=(-20(1)20})
(oulput omitted)

. marginsplot, noci recast(line) scheme{slmono)
Variables that uniquely identify margins: yrborn40 cograd

Predictive Margins of cograd

Linear Prediction

-20 1o 0 10 20
Year botn minus 1940
] NOLCO Grad ~———- CO Grad |

Fipure 11.14. Fitted values of cubic by tlwee-level categorical model
[

We can see that the non-college graduates show a greater degree of rising and falling
in the adjusted means across years than the college graduates. The larger cubic term for
the non-college graduates accounts for this greater degree of rising and falling, We can
test the cubic trend for the college graduates compared with the non-college graduates.
The contrast cominand below compares the enbic trend for the college graduates with
the non-college graduates. The cubic trend is significantly different comparing non-
college graduates with college graduates (F = 4.86, p = 0.0276}.

. contrast cograd#c.yrborndfdic, yrborndO#c. yrbornd
Contraste of marginal linear predictions

Margins 1 asbalanced
af F P>F
cograditc. yrborndl#c. yrborndOic. yrborndd 1 4.88 0.0278
Residual 6027

The process of computing and comparing adjusted means is the same for the cubic
model as it is for the quadratic model {sce section 11.2.2). I refer you to that section
for more information on computing and comparing adjusted means.
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Note! Cubic by three-level interaction

The examnple from this section can be easily generalized to an interaction ivolving
a three-level categorical predictor. The example below illustrates such a model,
specifying educ3 as a categorical variable with three levels.

. regress children ibn.educ3
> ibn.educ3#{c.yrbornd¢ c.yrborndOtc.yrborndQ
> c.yrborndO#c,yrborndOfc. yrhorndd) i.race, noconstant

You can graph and dissect this model using the same kinds of technigues illustrated
in section 11.2.3, which illustrated quadratic by three-level models.

11.4 Summary

This chapter has illustrated categorical by polynomial interactions. We saw examples of
categorical by quadratic interactions, in which the curvature of the relationship between
the predictor and outcome varied as a function of the categorical predictor. We also saw
an example of a categorical by cubic interaction, in which one group showed a grealer
tendency to have two bends in the relationship between the predictor and outcome.

For more information about polynomial hy categorical interactions, 1 recommend
Cohen et al. (2003), West, Alken, and Kxrull {1996), and Keppel and Wickens {2004)
for a discussion of such interactions in the context of a designed experiment.
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12.1 Chapter overview

This chapter illusirates how to fit models in which a continuous variable, fit in a piece-
wise manuer, is interacted with a categorical variable. This blends piecewise models
{which were illustrated in chapter 4} with models that involve interactions of categori-
cal and continuous variables {which were illustrated in chapter 10).

In chapter 4, we saw how piecewise models uge two or more ling segments, each
connected by a knot, to model the relationship between the predictor and outcome.

325
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The knot signifies a change in slope and can also signify a change in intercept (jump).
Chapter 4 illustrated such models predicting income from education, modeling education
- in a plecewise manner. This chapter extends these models by introducing a categorical
variable, gender, that is interacted with education.

Figure 12.1 shows a graph of the predicted values from a hypothetical piecewise
model predicting income from education. The educ slope is modeled in two pieces—one
slope for those with fewer than 12 years of education, and another slope for those with
12 or more years of education. The educ slope for those with fewer than 12 years of
education is 500. For those with 12 or more years of education, the educ slope is 3,000.
This model has one knot at 12 years of education that signifies a change in slope.

?
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Tigure 12,1, Piecewise regression with one knot at 12 years of education

Let's now consider a model that includes gender and interacts gender with the ed-
ncation terms (boih before and after the knot). This permits the educ slope to differ
by gender, modeling a different educ slope for men and women before the knot, and
a different educ slope for men and women after the knot. A graph of the predicted
values of such a hypothetical maodel is shown in the left panel of fgure 12.2. The graph
shows one line, for men and another line for women. For men, the educ slope is 600
prior to graduating high school and 4,000 after graduating high school. Among women,
the educ glope is 400 prior to graduating high school, and 2,000 after graduating high
school.
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Figure 12.2. Piecewise model with one knot (left) and two knots (right), each by a
categorical predictor

Suppose that we included two knots with respect to education, one at 12 years
of education (corresponding to graduating high school) and a second at 16 years of
cducation (corresponding to graduating college). The hypothetical results from such a
mode] are depicted in the right panel of figure 12.2. There are two lines: one for men
and one for women, with a change of slope at 12 and 16 years of education. Among
non-high school graduates, the slope is 600 for men and is 400 for women. Among
those with 12-15 years of education (who graduated high school, but not college), the
slope is 2,500 for men and is 1,000 for women. Finally, for college graduates, the slope
is 5,000 for men and is 2,000 for women.

A knot can signify a ehange of intercept as well as a change in slope. A change in
intercept indicates a sudden jump (or drop) in the outcome at the knot. For example,
the left panel of figure 12.3 shows a model where achieving 12 years of education results
in not only a change of slope, but also a sudden jump in income. The jump in income
upon graduating high school is 4,500 for men and is 1,500 for women. The educ slope
for men is 600 prior to graduating high school and 1s 2,500 after graduating high school.
For women, the educ slope is 400 for non—high school graduates and is 2,000 for high
schoo] graduates. -

The right panel of figure 12.3 shows a model with two knots at 12 and 16 years of
education. Both knots result in a change of slope and change of intercept, each of which
are estimated separately for men and women. The educ slope is estimated separately
for non-high school graduates, high school graduates, and college graduates. For men,



328 Chapter 12 Piecewise by categorical interactions

these three slopes are (vespectively} 600, 2,200, and 4,000. For women, these siopes are
400, 1,000, and 2,000. The jump in income due to graduating high scliool and graduating
college are also estimated separately by pender. For men, the jump in income due to
graduating high school is $3,000, aud the jump in income due to graduating college is
$6,000. For women, the jump" in income due to graduating high school is $1,300, and
the jump in income due to graduating college is $2,400.

One knot and one jump

. Two knots and two jumps
6060 4 60000

Male Male
55000 — — = - Female 550004} — ~~—- Female
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45000 45000
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Figure 12,3, Piecewise model with one kot and one jump (left) and two knots and two
Jumps (right), each by a categorical predictor

This chapter illustrates how o fit the models depicted in the left and right panels
of figure 12,3, Each of these models include gender (a categorical predictor) interacted
with education, where education is fit in a piecewise manner and includes a jump at
cach knot. Note I will not be covering the models iHustrated in the left and right panels
of fignre 12.2 (that is, models that do not inclade a jump). Once you see how to fit
models that include a jump, you will easily understand how to fit a model that excludes
a jump.

12.2  One knot and one jump

Consider the example shown in the left panel of figure 12.3. In that example, education
was modeled in a piecewise manner including one knot at 12 years of education. This
knot signifies both a change of slope and change in intercept (jump). Fhe model also
includes gender as a categorical variable and estimates separate slopes and intercepts for
each level of gender (that is, for men and for womnen). T fit this kind of model using the
G55 dataset and the results are depicted in figure 12.4 (we will see the analysis shortly).
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Figure 12.4 shows the adjusted means of incoine as a function of education with
labels for each of the slopes. For men, the slope for non-high school graduates is labeled
Fann and the slope for high school graduates is labeled Syr2. For women, the slope for
non--high schiool graduates is labeled Sy and the slope for high school graduates is
labeled Bpy. The income jump at 12 years of education for men is labeled as apz1. The
corresponding jump at 12 years of education for women is labeled as a;. Note how an
arrow head points to a sudden jump in income at 12 years of education.
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Figure 12.4. Piecewisc regression with one kuot and one jump, labeled with cstimated
slopes

To fit this model, we will use separate slope and separate intercept coding with
respect to the gender groitps.  This means that we will estimnate separate intercept
terms for men and women (this includes separate jumps, ap; and apy). 1t will also
estimate separate slope terms for men (that is, Gar and Fae) and separate slope teyms
for women {that is, Ar) and fFpa).

We first usc the mkspline command to create the variables edl and ed2 with a knot
at 12 years of edueation. The marginal option is omitted, so the variables edl and ed?
will reflect the slopes of the individual line segments before and after the knot. (For
more details, see chapter 4, especially the sections on individual slope coding.)

. use gss_ivrm
. mkspiine edl 12 ed2 = educ

We also need a variable to indicate the jump due to graduating high school. The
dataset already includes the variable hsgrad that is coded 0 if one has not graduated
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kigh schoot and 1 if one has graduated high school. We will use that variable to signify
the jump in income due to graduating high school.

We are now ready to run the piecewise regression mwodel, shown in the regress
commeand below. The regress command includes ibn. female used in combination with
the noconstant option to yield separate estimates of the intercept for each gender. To
estimate separate jumps for men and women, we include ibn.female#i.hsgrad. The
model also includes ibn.female#c.edl to estimate separate educ slopes for the line
segment before the knot and ibn.female#fc.ed2 to estimate separate educ slopes for
the line segment after the knot. Finally, the model includes race as a covariate.

. regress realrinc ibn,female ibn.female#i.hsgrad
> ibn.female#c.edl ibn.femaleffic.ed? i.race, vce(robust) noconstant vsquish

Linear regrassion Number of obs = 32183
F{ 10, 32173} = 3425.59
Prob > F = 0,0000
R-sgnared = 0.4864
Root MSE = 24948
Robust
realring Coef.  Std. Err. t P>t {95% Conf. Intervall
female
0 17144.66  1389.515 12.34 0.000 14421.16 19868.186
1 7326.482  922.5224 7.94  0.000 5517.304 9133.661
female#
hsgrad
01 3382.005 661,647 5.11  0.000 2085.348 4678.662
11 1748.096  389.36356 4.49  0.000 0984.9293 2511.264
femaledc.edl
0 86,70762 151.378 0.57  0.587 -210,001 383.4162
1 241.6081 98.9163 2.44 0.01B 47.72841 435.4878
femalekc, ed2
i 4067.63%  150,3838 26.88  0.060 3762.881 4352, 396
1 2629.647  110.4318 22,91 0.000 2313.097 2745.997
race .
2 -3521,336 246,6606 ~14.28 0.000 ~4004.8 ~3037.872
3 -1946.159  839.7251 ~2.32  0.020 ~3592,062  -300.2662

SRR

12,2 One knot and one jump 331

Note! Model shortcut
The previous model can also be specified, as shown below.

. regress realrinc ibn.female ibn.female#(i.hsgrad c.edi c¢.ed2) i.race,
> vce{robust) noconstant vsquish '

Stata expands the expression ibn.female#(i.hsgrad c.edl c.ed?) Lo become
ibn.female#i.hsgrad ibn.femalef#ic,edl ibn.femalefic.ed?, yielding the same
model we saw before.

Key coeflicients from the regression output are shown and annotated in table 12.1.
The first two columns of the table repeat the name and estimate of the coefficient
from the regress output. The third column shows the symbol used to represent the
coeflicient in figure 12.4, providing a cross reference between the output of the regression
model and figare 12.4. The last columm shows the symbolic name of the regression
coeflicient that we can use with the lincom command for making comparisons among
the coefficients.? Let’s refer to figure 12.4 and table 12.1 to help interpret the cutput of
this model.

Table 12.1. Summary of piecewise regression results with one knot

Coefficient Symbol Symbolic name

female#c.hsgrad
0 3382.0t ®afy
1 1748.10 epry

femaletic,edl

G.female#l hsgrad
1.female#l . hsgrad

0 86.71 P 0.femaleftedl

1 241.61 B 1.femaleffedl
female#fc.ed?2

0 4057 .64 Bria 0.femalo#ed?

1 2529.55 [ 1.femalefted?

Let’s begin by interpreting the change in intercept (jump) terms, The jump in the
adjusted mean of income for men at 12 years of education is 3,382.01, and the corre-
sponding jump for women is 1,748.10. Fach of these jumps is statistically stgnificant.

Let’s now interpret the slopes. Tor men, the educ slope is 86.71 for non-high
school graduates and is 4,057.64 for high school graduates. For women, the slope is
241.61 for non-high school graduates and is 2,529.55 for high school graduates. Aside
from the educ slope for male non-high school graduates {86.71), all of these slopes are
significantly different from 0.

L. You can add the coeflegend option to the regress command to inchide a coefficient legend in the
ouiput. The resubling regression oulput would look similar Lo table 12.1.
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The following four sections will illustrate how make a number of comparisons, show-
ing how to:

e compare slopes between women and men (see section 12.2.1),

e compare slopes across the levels of education, comparing high school graduates
with non-high school graduates (see section 12.2.2),

e compare the changes in slope between men and women due to graduating high
school (see section 12.2.3), :

e compare the jump in income due to graduating high school between men and
women {see scetion 12.2.4).

12.2.1 Comparing slopes across gender

Let’s begin by testing the equality of the educ slopes of women and men who have not
graduated high school. In other words, is S = Far17 To make that comparison, we
can use¢ the contrast comimand, as shown below, The difference in the slope between
women and men before graduating high school is 154.90 but is not statistically significant
{t = 0.86, p = 0.388).

. contrast femaleffc.edi, pveffects nowald
Contrasts of marginal linear predictions

Margins : asbalanced

Contrast  Std. Err. t P>|t|

female#c.edl
(1 vs base) 164.9005  179.3207 0.86 0,388

Now let’s compare the educ slopes of men and women for those who graduated high
school by {esting whether Sre = fua. The contrast command below perforins this
test.

. contrast female#c.ed2, pveffects nowald
Contrasts of marginal linear predictions
Margins 1 ashalanced

Contrast Std. Err. t P>l

feraledc.ed?2

(1 vs base) | -1528.082 187.0884  -8.17 0,000

For those who graduated high school, the education slope is significantly lower for
women than men. The difference in the slopes (women versus men) is —1,728.09. For
every year of education heyond the 12th year, the income for men increases by $1,528.00
more than for women.

i
!
H
i
|
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12.2.2 Comparing slopes across education

This section focuses on comparing the education slopes before and after graduating high
school. First, let’s examine the chiange in slope between high school graduates and non—
high school graduates for men. Put another way, is Sare = Far1 7 As shown in table 12.1,
the symbolic names for these coefficients are 0. female#ted? and 0. femaie#edl. We can
compare these coefficients using the lincom command, as shown below.

. lincom O.femaleifc.ed2 - 0.femalefic.edl
{ 1) - Obn.femaledic.edl + Obn.femalefic.ed? = 0

realring Coef . Std. Exr. t P>t [95% Conf. iIntervall

(1} 3970.931 212.6975 18.67  0.000 3554.036 4387.826

Men show a significantly higher slope after graduating high school than men who
liave not graduated high school. The difference (comparing high school graduates with
non-high school graduates) is 3,970.93. For men, each additional year of education is
worth $3,970.93 more for high school graduates than for non-high school graduates.

We can formulate the same kind of test for women, comparing the educ slope for
high school graduates with that for non—high school graduates. Referring to table 12.1,
we can ask if Spg = Fpq using the lincom command below.

. lincom i.femaleftc.ed2 ~ 1.femaledtc.edl
(1) -~ §,femaleftc,edl + 1.femaledlc.ed2 = O

realrinc Coef. Std. Err. t Prit| [95% Conf. Intervail

(1) 2287.939  147.2609 i6.64  0.000 1999.302 2676.676

The result of this test is significant. For women who have completed 12 or more
years of education, incone rises by $2,287.94 per additional year ol education compared
with women who have nol completed 12 years of education.

12.2.3 Difference in differences of slopes

The previous section showed that, for men, the educ slope alter graduating high school
minus the slope before graduating high school equals 3,970.93. Let’s call this the gain
in slope due to graduating high school. For women, the gain in slope due to graduating
high school is 2,287.94. We might ask if the gain in slope due to graduating high school
differs by gender. The Lincom command below tests the gain in slope for men compared
with the gain in slope for women.
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. lincom (0.femalefic.ed2 ~ O.female#c.edl) - (i,femaleftc,ed? - 1.femaledc,edi)
(1) - Obn.femaled#c.edl + 1.female#c.edl + Obn.femaleic.ed2 ~ 1.femalefic.ed2

= 0
realrine Coef. Std, Brr. t P>t [95% Conf. Intervall
(1) 1682.992 259,2855 6.49 0.000 1i74.783 2191.,201

The lincom command shows that the gain in siope for men, compared with women,
is 1,682.99, and this is statistically significant. The gain in slope due to graduating high
school for men is significantly higher than the gain in slope for women.

12.2.4 Comparing changes in intercepts

-Let’s now ask whether the jump in income at 12 years of education is equal for men and
women. As shown in figure 12.4, the income for men jumps by $3,382.01 at 12 years of
education, whereas the corresponding jump for women is $1,748.10. Are these jumps
equal? In other words, is aps = apa? This is tested using the contrast cormumand
below. ’

. contrast femaledthsgrad, pveffects nowald
Contrasts of marginal linear predictions

Margins 1 asbalanced
Contrast  5td. Exrr. t Prlt|

female#hsgrad
{1 vs base) {1 vs base} -1633,908  766.9848 -2.13  0.033

This jump in income due to graduating high school for women versus men is
—5$1,633.91, and this difference is statistically significant. In other words, the jump
in income for women due to graduating high school is $1,633.91 less than the jump for
men due to graduating high school.

Some people might find that this test is inore intuitive if performed using the follow-
ing lincom command below. This yields the same results as the contrast command.

» lincom 1,.femalef#l.hsgrad ~ O.femala#!l.hsgrad
(output omitted )

12.2,5 Computing and comparing adjusted means

Let's now turn our attention to how we can compute adjusted mesns for this regression
model. Before we can compute adjusted means with respect to education (that is, educ),
we need to know how to express the level of education in terms of hsgrad, edl, and
ed2. The showcoding command (which you can download, see section 1.3) shows the
correspondence between educ and the values of hsgrad, edi, and ed2.
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. showcoding educ hsgrad edl ed2

educ  hsgrad edl ed2
0 0 i} 0
1 0 i 0
2 0 2 0
3 o 3 0
4 0 4 0
5 ¢ 5 0
6 0 6 a
7 0 7 0
8 0 8 0
9 ¢ b4 0
10 0 10 0
11 0 i1 0
12 1 12 0
13 1 12 1
14 1 12 2
15 1 12 3
16 i 12 4
17 i 12 8
18 1 12 6
19 1 12 7
20 1 12 8

"The variable hsgrad contains 0 for those with fewer than 12 years of education, and
1 for those with 12 or more years of education. The variable edl containg the number
of years of education for those with 12 or fewer years of education, and contains 12 for
those with more than 12 years of eduecation., The variable ed2 contains 0 for those with
12 or fewer years of education, and contains educ minus 12 for those with more than
12 years of education.

Let’s use this information to estimate the adjusted mean for a male who has 10 years
of education. Note we code female as  to indicate a male. We indicate 10 years of
education by specifying that hsgrad equails 0, ed1 equals 10, and ed2 equals §. This
adjusted mean is 17,443.44.

. marging, at{female=0 hsgrad=0 ed1=10 ed2=0}

Predictive margins Number of obs = 32183
Model VCE : Robust
Expression : Linear prediction, predict()
at : female =
hsgrad = 0
edl = 10
ed2 = 0
Delta-method
Margin  Std. Err. z P>zt [85% Conf. Intervall
_cons 17443.44  389.9b41 44.73 0.000 16679.14 18207.73
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Let’s now estimate the adjusted mean for a female with 15 years of education, as
shown below. To indicate 15 years of education, we specify that hsgrad equals 1, edl
equals 12, and ed2 equals 3.

. margins, at(female=1 hsgrad=1 edi=12 ed2=3)

Predictive margins Number of ocbs = 32183
Model VCE - : Robust
Expression : Linear prediction, predict()
at 1 female = 1
hsgrad = 1
adl = 12
edl = 3
Delta-mathod
Margin  8td. Err. Z Prizi [95% Conf. Interwvall
_cons 18993.22 234,1696 81.11 0.060 18534.28 19452.19

We can estimate the adjusted mean of income for men and women with 15 years of
education using the margins command helow.

. margins female, at(hsgrad=t edl=12 ed2=3)

Predictive margins Number of obs = 32183
Model VCE : Robust
Expression : Linear prediction, predict(}
at : hsgrad = 1
edl = 12
ed?2 = 3
Delta-method
HMargin  Std. Err, z Pzl {96% Conf. Intervall
female
0 33171.77 351,092 94,48 0.000 32483.65 33859.9
i 18993.22  234.16%6 8i.11 0.000 18534, 26 194562.19

Let’s compare the adjusted means between men and women from the previous
margins command. Specilying the r. contrast operator indicates we want 1o use ref-
erence group comparisons; comparing the adjusted mean of income for women versus
men.
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. margins r.female, at(hsgrad=i edi=12 ed2=3) contrast{nowald effects)
Contraste of predictive margins

Model VCE 1 Robust
Expression : Linear prediction, predict()
at 1 hsgrad = 1
adl = 12
ad2 = 3
Delta-method
Contrast  Std. Err, z P>zl [95% Conf. Intervall
famale
(1 vs B -14178.55 422.0654 -33.59 0.000 -16006.77  ~13361.34

At 15 years of education, the difference in the adjusted mean of income for women
and that for men is —14,178.55, and this difference is significant. Note how this dif-
ference corresponds to the difference in the adjusted means for men and women we
previously computed (18993.22 — 33171.77 = —14178.55), This same technique can be
used to compare the adjusted means between men and women at any level of education.

12.2.6 Graphing adjusted means

Let’s graph the adjusted means as a function of education and gender. To make this
graph, we need to compute the adjusted means separately for men and women with 0
years of education, 12 years of education (assuming the absence and presence of a high
schaol diploma), and 20 years of education.? The margins command for computing
these adjusted means is shown below.

2. Obtaining the adjusted mean assuming the absence and presence of a high school diploma at 12
years of education illustrates the jump in izncome due to graduating high school.
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. margins female, at(hsgrad=0 adi=0 ed2=0)

> at (hsgrad=0 edl=12 ed2=0)
> at (hsgrad=1 edl=12 ed2=0)
> at(hsgrad=1l edl=12 ed2=8)
Predictive margins Number of oebs = 32183
Hodel VCE : Robust
Expression ¢ Linear prediction, predics()
i._at : hsgrad = 4]
edl = 0
ed2 = [¢]
2._at : hsgrad = Y
ad? = 12
ed2 = o
3._at 1 hsgrad = 1
adi = 12
ad2 = [y
4, at : hsgrad = i
edl = 12
ed2 = 8
Delta-method
Margin  Std. Err, z P>zt [95% Conf. Intervall
_at#female
10 16576.36  1384.618 11.97  0.000 13862.56 19290.16
11 6757.187 910.6287 7.42 0.000 4972.388 8641.987
20 17616.85  590.7778 29.82 0,000 16468.95 18774.76
21 9656,485  345,8282 27.92  0.000 8975.674 10334.3
30 20098.86  297.4975 70.58  0.000 20415.77 21581.94
31 11404.68  179.7706 63.44  0.000 11062.24 11756, 92
40 53459.97  1042.022 51.30  0.000 51417.64 55502.29
41 31640.96  761.6903 41.54  0.000 30148,07 33133.84

We can then manually input the adjusted means into a dataset. The graph command
is used to graph the adjusted means, as shown below.® The resulting graph is shown in
figure 12.5. '
. praserve
. clear
» input educ yhatm yhatf

aeduc yhatm yhatf
1. 0 1657Y6.36 6757.187
2, 12 17616.86 96566,485
3. 12 20998.86 11404.68
4, 20 53459.97 31640.96
6. end

. graph twoway line yhatm yhatf educ, xline(12)
> ‘legend(label{t "Men") label(2 "Women")} xtitle(Education) ytitie(Adjusted mean)

. Trestore

l

. 3. The graphs created by the marginsplot comunand are not very usefl when graphing adjustad
means from piecewise models. This is illustrated in section 4.9,
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Figure 12.5. Fitted values from piecewise model with one knot and one jump at
edue = 12

We can automate the creation of this graph by extending the strategy we saw in
section 4.10. First, we use the matrix command to create a matrix named yhat that
contains the adjusted means computed by the margins command,

. * store the adjusted means in a matrix named -yhat-
. matrix yhat = r(b) -

Now we encounter a twist becanse the adjusted means are computed as a function
two variables (education and gender), whereas the example in section 4.10 computed
the adjusted means as a function of one variable {educ). Looking at the output of the
margins command, let’s focus on the order in which the adjusted means are displayed
with respect o education and pender. Eight adjusted means are shown, corresponding
to the following levels of educ, hsgrad, and female:

educ=0, hsgrad=0, female=0

educ=0, hsgrad=0, female=1i

educ=12, hsgrad=0, female=0
educ=12, hsgrad=0, female=1
educ=12, hsgrad=1, female=0
educ=12, hsgrad=1, female=1
educ=20, hsgrad=1, female=0
educ=20, hsgrad=1, female=1

@ & © &8 © & 8 @
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The matrix command is used to create a matrix named educ that reflects the levels
of education shown in the bulleted list above. The matrix command is used again, this
tite to create a matrix called female that contains the levels of gender shown in the
bulleted list above.

, * store levels of education in a matrix named -educ-
. matrix educ = {0\ 0 N\ 12 N 12\ 12 \ 12\ 20 \ 20}

. * store levels of female in matrix a named -female—
. matrix female = (0N 1 NONTNONTINCGYN D)

The svymat command is then used three thimes, to save the matrices named yhat,
educ, and female to the current dataset. The 1list command is then used to show the
variables yhat1, educt, and femalel for the first 10 observations of the dataset. The
variable yhat1 contains the adjusted means, educt contains the corresponding values for
education, and femalel contains the corresponding values for gender. These variables
contain valid data for the first eight observations of the dataset, and the rest of the
observations are missing,

. svmat yhat // save the matrix -yhat- to the current dataset

. svmat educ // save the matrix ~educ~ to the current dataset

. svmat female // save the matrix —female- to the current dataset
. list yhatl educl femalei in 1/10, sep(2)

yhatl educl femalel
1. | 16676.36 0 0
2, | B757.188 0 1
3. | i7618.85 12 0
4, | 8655.484 12 1
5. | 20998.86 12
6. 11404,58 12 1
7. 53458, 96 20 0
8. | 31640.96 20 1
9.
10,

We are now ready to use the graph command to graph the adjusted means as a
function of education and gender. The graph command below produces the same graph
85 the one displayed in figure 12.5.

. graph tuwoway (line yhatl educl if femalei==0)

(line yhati educl if femalei==1),
> xline{i2) legend(label{i "Men®) label(2 "Homen"))
> xtitle(Education} ytitle{Adjusted mean)
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Note! Omitting the jump

Say that you wanted to fit this model but exclude the jump in income at 12
years of education. You can simply omit hsgrad from the model. The way that
you interpret the model remains the same except for the omission in the jump in
income at the knot.

This section has illusirated a model with one knot where there was both a ciiange in
slope and change in intercept (jump) at the knot. The next section illustrates a model
with two knots, with a change in slope and intercept at each knot.

12.3 Two knots and two jumps

This section covers piecewise regression models with two knots and two jumps interacted
with a categorical variable. An example of such a model was shown in the right panel
of Hgure 12.3 in which income was predicted from education modeled in a piecewise
fashion with two knots and two jumps at 12 and 16 years of education. Farthermore,
these piecewise terms were interacted with gender. I ran an analysis for this kind of
model using the GSS dataset and created a graph of the adjusted means as a function of
education and gender (see figure 12.6). The graph also shows the slope for each piece
of the mode}, labeling the slope for male non-high school graduates as a1, male high
school graduates as Sare, and male college graduates as Fyrs. The corresponding slapes
for women for these three educational groups ave labeled Bpy1, fro, and Grs.
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Slopes
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Figure 12.6. Piccewise regression with two knots and two jumps, labeled with estimated
slopes

Note! High school and college graduates

In this section, 1 use the term high school graduate to refer to someone with 12 to
15 years of education, college graduate to refer to someone with 16 to 20 years of
education, non-high school graduate to refer to someone with 11 or fewer years of
education.

Figure 12,7 also shows the adjusted means but includes labels showing the jump
{change in intercept) ab each knot for men and women. The jump at 12 years of
ecucation for men is labeled as aps1. The jump ab 16 years of education for men is
labeled as 72 These corresponding jumps for women are labeled ap and aps.
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Figure 12.7. Piecewise regresston with two knots and two jumps, labeled with estimated
intercepts

Let’s now illustrate how to perform this analysis. First, the mkspline command is
used to create the variables ed1, ed2; and ed3 based on the knots that are specified at
12 and 16 years of educatlion. Like the analysis from the previous section, the marginal
option is omitted.

. use gss_ivem
. mkspline edl 12 ed2 16 edd = educ

To account for the change in intercept (that is, jump in income) at 12 and 16 years
of education, we need two dummy variables—one that indicates graduating high school,
and one that indicates graduating college. The variables hsgrad and cograd already
exist in the dataset and can be used to model the jump in income due to graduating
high school and the jump in income due $o graduating college.

The variables are now ready to run the piecewise regression model. The regress
command, shown below, includes ibn . female used in combination with the noconstant
option. This models separate infercepts for men and women. The model alse includes
the interaction of ibn.female with i.hsgrad and i.cograd. This models the jump
in income due to graduating high school and graduating college separately for mep
and women. Finally, the model includes the interaction of ibn.female with c.edd,
c.ed2, and c.ed3. This models the educ slope for non-high school graduates, high
school graduates, and college graduates, estimating these slopes separ at,aly for men and
women. The variable i.race is included as a covariate.
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. regress realrinc ibm.female
> ibn,female#(hsgrad cograd c.edi c.ed2 c.ed3) i.race,
> voe(robust) noconstant vsguish

Linear regression Number of obs = 32183
F{ 14, 32169} = 2602.08
Prob > F = 0.0000
R-squared = 0.4886
Root MSE = 24897
Robust
realrinc Coef. 8td. Err. + P>l%| {95% Conf. Intervall
female ’
0 17084,37 1389.704 12,26 0.G00 14360.5 19808.24
t 7262.505  921.9029 7.88 0.000 5456.54 9069 .469
femalet#
hagrad
01 4927.632  6b5,3309 7.52  0.000 3643.059 6212.005
11 2400.894  372.209b6 6.45  0.000 1671.349 3130.439
female# :
cograd
01 9230.717  1224.498 T.64  0.000 6830.654 11630.78
i1 1615.195 789.62 2.05  0.041 67.50952 3162.88
femaledc.edl
4} 89.38533 151.3973 0.58 0.656 ~207.3491 386.1358
1 243.6431  98.84487 2,46  0.014 49.90339 437.3827
femalefic.ed?2
4] 1692 .636 255.81 6.23 0.000 1091.238 2094.033
1 1724.742 1B2.7012 9.44  0.000 1366.641 2082.843
fomaledc.ed3
Q 4279.368 521.8313 B.20  0.000 3256.549 5302. 187
1 3608.45 496 .9856 7.26 0.000 2634 .34 4582.661
race
2 -3381.238 246 . 8406 -13.82 0.000 ~-384E5,065 -2877.421
3 -1813.494  840.4705 -2,16  0.031 ~3460.848  -166.1398

The key coefficients from the regression output are shown and annotated in ta-
ble 12.2. The first two columns of this table repeat the description and value of the
regression coefficient from the regress command. The third column shows the symbol
used to represent the coefficient in figures 12.6 and 12.7 (to help show the correspon-
dence between the figures and the output of the regression model). The last column
shows the symbolic name of the regression coefficient that we will use later with the
lincom comnand for making comparisons among the coefficients.
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Table 12.2, Summary of piecewise regression results with two knots

Coef. Symbol Symbolic name

female#c.hsgrad

0 4927 .53 apri O.female#! . hsgrad
1 2400.89 ap i.female#l.hsgrad
female#c.cograd

0 9230.72  amez 0.female#l.cograd

1 1615.20 ¢ g 1.femalefl.cograd
female#tc.edl

0 89.40 Sy 0.femaleftedl

1 243.64 fm 1.femaleffedl
female##c.ed2 -

0 1692.64  fag 0.female#tad?2

1 1724.74 B 1. female#ed?
female#c.ed3d

0 4279.38 Bais 0.female#ed3

1 3608.45 - fIpg i.female#ed3

Let's refer to figures 12.6 and 12.7 and table 12.2 to help interpret the output of
this model, beginning with the coefficients agsociated with the (jump) in income at 12
and 16 years of education (see figure 12.7}. The jump in income for men at 12 years
of education is 4,927.53, and the jump in income for women at 12 years of education
is 2,400.89. The jump in income for men at 16 years of education is 9,230.72, and the
jump in income for women at 16 years of education is 1,615.20. Each of these jumps is
significantly different from 0. For example, the jump in income due to pradusting high
school for a female is 2,400.89 and is significant (¢ = 6.45, p = 0.000).

Let’s interpret the slope coefficients by referring to figure 12.6. The educ slope is
89.40 for men who have not graduated high school and is 243.64 for such women. Note
that the slope for men is not significantly different from 0 (¢ = 0.59, p = 0.5558), but
the slope is significantly different from zero for women {§ = 2.46, p = (1.014). For high
school graduates, the educ slope for men is 1,592.64 and for women is 1,724.74. Both of
these coeflicients are significantly different from 0. For college graduates, the educ slope
for men is 4,279.36 and for women is 3,608.45. Both of these slopes are significantly
different from 0. Focusing on the last result, each additional year of education (beyond
the 16th year) is worth an additional $4,279.36 of income for men and is worth an
additional $3,608.45 of income for women.
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Let's now see how to form comparisons amoug these coefficients. Specifically, let’s
learn how to:

e compare slopes between men and women {see section 12.3.1),

o compare slopes across the levels of education, comparing college graduates, high
school graduates, and non~high school graduates (see section 12.3.2),

e compare changes in slope between men and women due to graduating high school
and due to graduating college (see section 12.3.3),

e conipare changes in intercept {the jumps in income due to graduating high school
and college) by gender (see section 12.3.4),

e compare changes in intercept (the jumps in income due to graduating high school
and college) across levels of education (see section 12.3.5).

12.3.1 Comparing slopes across gender

Let’s begin by testing the equality of the slopes between women and men who have
not graduated high school-—testing whether 8p = a1, We can use the following
contrast command to perform this test. The difference in the educ slope between
women and men before graduating high school is 154.25. However, this difference is not
statistically significant. In other words, prior to graduating high school, the educ slope
is not sipnificantly different for men and women.

. contrast femaleftc,edl, pveffects nowald
Contrasts of marginal linear predictions

Margins : asbalanced

Contrast  Std. Err. t Prit]

Temaletic,edl .
(1 vs base) 154.2477  179.2953 0.86 0.380

Now let’s compare the slopes of women and men for those who have graduated high
school, testing whether frz = Buara. Using the contrast command below, we see that
the difference in these slopes for women versus men is 132.11, but this difference is not
statistically significant.

- contrast female#c.ed?, pveffects nowald
Contrasts of marginal linear predictions
Margins : asbalanced

Contrast  Std., Err, t P>|t]

female#c.ed2
{1 vs base) 132.1086  314,0413 0.42 0.674
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Finally, let’s compare the slopes of women versus men for those who have gradu-
ated college. This asks the question: is frz = Ffars? The contrast command below
shows difference in the slopes (women versus men) is —670.91, but this difference is not
statistically significant. In other words, among college graduates, the educ slope is not
significantly different for women compared with men.

. contrast female#c.ed3, pveffects nowald
Contrasts of marginal linear predictions
Margins 1 asbalancad

Contrast Std, Brr. t Prit]

femaletic.ed3
{1 vs base)} -870.9077 721.07 -0.93  0.3b62

The lincom command also works for performing these tests. For example, results of
the previous contrast command could have been performed uging ¢he following 1incom
command.

. lincom 1,female##c.ed3 ~ O.female#c.edd
{output omitted)

12.3.2 Comparing slopes across education

This section focuses on comparisons of the educ slopes, within gender, before and after
each knot in education. Let’s begin by comparing the slopes for high school graduates
with non-high school graduates, starting with men. Expressed in terms of the slopes
from figure 12.7, we are testing whether e = fpr1. This comparison is shown below.

. kincom O.female#c.ed2 - O.femalet#c.edl
( 1) - Obn.female#ic.ed! + Obn.female#fc.ed2 = 0

realring Coef. Std. Brr. t P>iti [95% Conf. Intervall

(1) 1603.24  297.i316 5.06 0.000 920.8612 2085,629

After graduating high school, each additional year of education is associated with «
greater increase in income compared with those who have not graduated high school.
The difference (comparing high school graduates with non-high school graduates) is
1,5(3.24 and this is significant.

We can formulate the same kind of test for women—testing whether gy = Br1.
This comparison is shown below.
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. lincom 1.female#c.ed2? - 1.female#c.edl
(1) - 1.femalefic.edl + 1.femaleffc.ad2 = 0

realrinc Coaf, 8td. Err. t P>t [95% Conf. Intervall]

(1) 1481.099  208.81356 7.09  ©0.000 1071.817 1890.381

This test is statistically significant. For female high school graduates, income rises
by $1,481.10 more per additional year of education compared with female non—high
school graduates.

Let’s now compare the education slope for college graduates with high school grad-
uates. These comparisons are shown below for men and for women.

. % men: cograd vs., hsgrad
. lincom 0.female#fc.ed3 - O.female#ic.ed2

( 1) - Obn,female#c,ed2 + Obn.female#ic.ed3 = O

realriac Coef.  B5id. Err, t P>t [96% Conf. Intervall

(1) 2686.722 581.2696 4.62  0.000 1647.412 3826.033

. ¥ women: cograd vs. hsgrad
. lincom i.femalefic.add - 1,femaleftc,ed2

{ 1) - i.female#fc.ed? + 1.femalefic.edd = (

realring Coef. Std. Err. t P>t [95% Conf. Interval]

(1) 1883.708 530.2042 3.55  0.000 844.4879 2922.928

Both of these tests ave significant. Among male college graduates, an additional year
of education is worth $2,686.72 more than an additional year of education for a high
school graduate.. For females, an additional year of education is worth $1,883.71 more
than an additional yenr of education for college graduates than high school graduates.

12.3.3 Difference in differences of slopes

Ini the previous section, we compared the education slope for male high school graduates
with male non-high school graduates. To form this comparison, we estimated the
difference between fpre and Gusy, which equaled 1,503.24. Let’s call $his the gain in
slope due to graduating high school for males. We also estimated the gain in slope
due to graduating high school for females (that is, Sra versus Smy), which equaled
$1,481.10. Let’s now test the gain in slope due to graduating high school for men
compared with the gain in slope due to graduating high school for women, which is
(Barz ~ Ban) ~ (Bra — Bp1). This is computed using the 1incom command below. (Note
the importance of the parentheses.} This shows that the gain in the slope for men due
to graduating high school is 22.14 units more than the gain in slope for women due to
graduating high school. However, this is not statistically significant.
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. lincom {0.femaliei#c.ad? - O.female##c.edl) - (1.female#c.ed? - 1.femalef#c.edl)
{ 1} - Obn.femalefic.edl + i.female#c.edl + Obn.femalefic.ed2 - 1.female#c.ed2

=0
realring Coef.  5td. Err. t P>l [95% Conf. Tntervall
(&) 22.14114 361,966 0.06 ¢.951 -687.3268 731.6082

We can also compute the gain in the slope due to graduating college (compared
with high school graduates) for men versus women. This difference is 803.01 but is not
statistically significant.

. lincom (0.femalefic,ed3 - 0,female#c.ed2) - (1l.female#c.edd - 1.femalefic.ed2)

( 1) - Obn.female#c.ad2 + 1.female#ic.ed? + Gbn.femaledc.sedd - 1.femaleitc.ed3

=0 .
realrisc Coef. Std. Err. t P>it] [95), Conf. Intervall
(1) 803.0143 786.6449 1.02 0.307 -738.8393 2344.868

12.3.4 Comparing changes in intercepis by gender

Let's now ask whether the jump in income at 12 years of education is the same for
men and women. As shown in figure 12.7, the income for women jumps by $2,400.89
ab 12 years of education, whereas the corresponding jump for men is $4,927.53. Let’s
test whether these jumps are equal (whether apy = apri). This is tested using the
contrast copunand below. The jump in income that women receive due to graduating
high school is $2,626.64 less than the jump that men receive, and this is significant
{t = —3.36, p = 0.001).

. contrast femalefhsgrad, pveffects nowald
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. i P>1tl
femalefthsgrad
(1 vs base) (1 vs base) -2526.638  752.5331 ~3.36 0.00%

Lel’s now compare the jump in income due to pgraduating college for women versus
men. As shown in figure 12.7, the income for women jumps by $1,615.20 at 16 years
of education, whereas the corresponding junp for men is $9,230.72. Are these jumps
equal (that is, is orpe = apre)7? Using the contrast command below, we see that the
difference in the jump in income due to graduating high school for women versus men
is -$7,615.52 and this difference is statistically significant (¢t = -5.23, p = 0.600).
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. contrast female#cograd, pveffects nowald
Contrasts of marginal linear predictiens

Margins : asbalanced
Contrast  Std. Exrr, t P>t

femaleffcograd
{1 vs base) (1 vs base) ~7816.523  1455,047 -5.23  0.000

The lincom command could also have been used for these tests. For example, the
previous test could have been performed using the following 1incom command.

« lincom 1,female#i.cograd - 0.female#l.cograd
(output omitted)

12.3.5 Comparing changes in intercepts by education

We have scen that, for men, the jump in Income at 12 years of education is $4,927.53,
and at 16 years of education the jump is $9,230.72. We might ask whether the jump
due to graduating college ($9,230.72) is equal to the jump due to graduating high school
(84,927.53). In terms of figure 12.7, this asks whether ape = arpyy. Using the lincom
command (below), we see that the jump in income men receive due to graduating college
is $4,303.19 greater than the jump they receive due to graduating high school. This
difference is statistically significant.

- lincom Q.female#l.cograd - O.female#l.hsgrad
(1) - Obn.female#l.hsgrad + Obn.female#l,cograd = O

realrinc Coef.  Std. Err. t P>zl [95% Conf. Intervall

1 4303.185  1327.654 3.24  0.001 1700.934 6906.436

Let’s now male the same comparison for women. Looking at figure 12.7, we are ask-
ing whether apg = ap;. As shown in the lincom command below, the jmnp in income
women receive due to graduating college is $785.70 less than the jump they receive for
graduating high school. This difference, however, is not statistically significant.

. lincom 1.female#l.cograd - i.female#l.hsgrad
(1) - 1.female#l.hsgrad + 1.female#l.cograd = ¢

realrinc Coef. Std. Err. & P>t [96% Conf. Intervall

(1) -785.6994  831,2172 ~0.95  0.34b -2414.917  843.5177
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12.3.6 Computing and comparing adjusted means

Let’s now see how to compute adjusted means in the context of this model. Fo compute
adjusted means with respect to education, we need to express education in terms of
hagrad, cograd, edl, ed2, and ed3. Below we can see the correspondence between
educ and the values of hsgrad, cograd, edi, ed2, and ed3.

. showcoding educ hsgrad cograd edi ed2 ed3

educ  hsgrad cograd edl ed2 ed3
0 0 ¢ 0 ¢ 0
i 0 o 1 G 0
2 0 4] 2 Y] 0
3 0 [¢] 3 4] 0
4 0 ] 4 ¢ 0
5 o] o & Q 0
8 0 o 6 Q 0
7 0 ] 7 ¢ 0
8 0 ¢} 8 ¢ 0
9 0 0 9 ¢ 0
10 0 ] 10 o 0
11 0 ¢ 11 ¢ 0
12 1 ¢ 12 Y 0
13 1 o] 12 1 0
14 1 ¢ 12 2 0
15 1 ¢ 12 3 0
16 1 1 12 4 0
17 1 1 12 4 i
18 1 1 12 4 2
19 1 1 12 4 3
20 1 1 12 4 4

We can use the output of the showcoding command o compute the adjusted mean
for any given level of education. For example, let’s compute the adjusted mean for a
male who has 10 years of education. Note we code female as () to indicate a male,
and the rest of the values with respect to education are drawn from the showcoding
command corresponding o educ=10. The margins command below shows that the
adjusted mean for a man with 10 years of education is $17,438.20,
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. margins, at(female=0 hsgrad=0 cogred=0 edi=10 ed2=0 ed3=0)

Predictive margins

Number of obs = 318

Model VCE Robust
Expression  : Linear prediction, predict(}
at 1 female = o
hsgrad = 4
cograd = g
edi = 10
ed2 = 0
edd = 0
Delta-method }
Margin  Std. Err. z P>z [95% Conf. Intervall
.cons 17438.2 390.0421 44,71 0.000 16673.73 18202.67

Using the margins command below, we estimate the adjusted mean for a female
with 15 years of education as $17,221.21,

. margins, at{female=1 hsgrad=1 cograd=0 edi=i2 ed?=3 ed3=0)

Predictive margins

: Robust
: Linear prediction, predict()
1 female =

Model VCE

Expression
at

Number of obs = 32183

hsgrad =
cograd =
edl =
edz2 =
ed3 =

-
S WD P e

Delta-method

Margin  Std. Err. % P>zl [96% Conf. Intervall

-cons

17221.21  4B8.6276 35.26 0.000 16263.72 18178.71

We can estimate the adjusted mean for men and women (separately) in one marging
cormmand. The example below computes the adjusted mean for men and women, holding
education constant at 15 years of education.

12.3.6  Computing and coniparing adfusted means

. margins female, at(hsgrad=1 cograd=0 edi=12 ed2=3 ed3=0)
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Predictive margins Number of obs = 32183
Model VCE : Robust
Exprassion : Linear prediction, predict()
at + hsgrad = i
cograd = 0
edi = 12
edZ2 = 3
i ed3 = 0
i Deita-method
: Margin  Std. Err. z P>z [88Y Conf. Intervall
|
i female
! ¢ 27322.43  662.7206 41.86  0.000 26043.12 28601.73
! 1 17228.21  488.5278 35,25 0.000 16263,72 18178.71

Lelt’s now use the margins command to compare the adjusted mean of income for
women versus men among those with 15 years of education. Specifying the r. contrast
operator indicates we want to use reference group comparisons. The difference in this
adjusted mean for women and men with 15 years of education is —10, 101.21, and this

{ difference is significant. Thus, at 15 years of education, the adjusted mean of income

for men is $10,101.21 higher than for women.

> contrast(nowald effects)
! Contrasts of predictive margins

. margins r.female, at(hsgrad=1 cograd=0 edl=12 «d2=3 ed3=0)

i Model VCE  : Hobust
: Expression  : Linear predicticn, predict{)
; at ¢ hsgrad = 1
i cograd = 0
' adl = i2
ad2 = 3
ed3 = 0
Delta-method
Contrast  Std. Err. z B> |z| [96% Conf. Intervall
| female
(1 vs 0) -10101.21  813.7234 -12.41 0.060 -11696.08 -8506.344
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12.3.7 Graphing adjusted means E . preserve
. clear

In figure 12.6, we showed a graph of the adjusted means for this model as a function of

. input educ yhatm yhatf
educ and female. Let’s show how to malke such a graph, We first need to compuie the FHpHE odue yhath yha

m
adjusted means separately for men and women for the following levels of education— 1.0 16222?24 6722:;7 yhatt
@, 12 (assuming the absence and presence of a high school diploma), 16 (assuming the 2. 12 17616.99 9646.094
absence and presence of a college degree), and 20.4 These adjusted means are computed Z' 12 ggg’;;gg 1‘;2::‘22
using the margins command, as shown below. The noatlegend option is used to save 5. 16 38145 78 20861 15
space. 6. 20 55263.21 34994,95
| 7. end
. margins female, at(hsgrad=0 cograd=0 edi=0 ed2=0 ed3=0) i . graph twoway line yhatm yhatf educ, x1abel{0(4)20} xline(12 18)
> at(hsgrad=0 cograd=0 edi=12 ed2=0 ed3=0) :
> at(hsgrad=1 cograd=0 ed1=12 ed2=0 ed3=0) !  Testore
> at(hsgrad=1 cograd=0 edi=12 ed2=4 ed3=0)
> at(hsgrad=1 cograd=1 ed1=12 ed2=4 ed3=0) 8
> at(hsgrad=1 cograd=1 ed1=i2 ed2=4 ad3=4) vsquish noatlegend %k
Pradictive margins ¥umber of ohs = 32183 ) g
Hodel VCE : Robust : 2
Expression  : Linear prediction, predict() :
§_
Delta-method . M -
argin = Std. Err. z  Prlzi [95% Conf. Intervall : g | L
s -
_atfifemale o / -~
10 16644.24  1384.772  11.95 0,000 13830.14  19258.35 g o
it 6722.377  909.9192 7.39  0.000 4938.968  8505.786 & e
20 17616.9%  590,8879 29.81 0.0060 18458.87 18775.11 g -
21 9646.004  345.6314 27.91 0.0C0 8968, 669 10323,562 81 e =
30 22544.52  282,6604  79.76  0.000 21990.52  23098.52 : ) Siaint ; ; .
31 12046.99  142.2014  B4.72  0.000 11768,28 12325.7 : ¢ 4 g ‘ 12 % 2
40 26016.06  £96.2038 32,26  0.000 97158.53  BOGVL.59 : : e
41 18945.96 667.0764  28.40 0.000 17638.51 20253.4 : i yhatm ——--—- yhat ]
§0 38145.78 830.9111  46.91  0.000 36517.22  39774.33
51 20561.15 422.3496  48.68 0.000 19733.36  21388.94
60 66263.21  1736.329  31.83  0.000 E1860.07  58666.35 - . . . ] . .
61 34904.95  1760.662 19.88  0.000 31544.12  38445.79 : Figure 12.8. Fitted values from piecewise model with two knots and two jumps

j With some extra effort, we can automate the creation of the graph shown in fig-
wre 12.8. Using the strategy from section 12.2.6, the matrix and svmat commands
are used, followed by the graph command to graph the adjusted means as a function
of education and pender. These commands create the same graph that is shown in
figure 12.8.

We can then manually input these adjusted means into a dataset and graph them,
as shown below. The resulting graph is shown in figure 12.8. !

. *% store the adjusted means in a matrix named -yhat-
. matrix yhat = r{b}"

. % store levels of education in a matrix named -educ-
Comatrix educ = (0N 0N 12 N 22\ 12\ 12 N 16 N 16 \ 16 \ 168 \ 20 \ 20)

i . % store levels of gender in a matrix named ~female-
»matrix female = (0 V1 VO N1MNOVTIANONEINONLINON )

. swmat yhat // save the matrix -yhat- to the current dataset

4. Obtaining the adjusted mean for 12 years of education assaming the absence and presence of a higl
school dipioina illustrates the jump in income due to graduating high school. Similarly, computing
the adjusted mean at 16 years of education assuming the absence and presence of a college degree
illustrates the income jump due to graduating college, . svmat female // save the matrix -female- to the current dataset

. svmat educ // save the matrixz -educ- to the current dataset
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. graph twoway (line yhatl educl if femalel==0)

> (line yhatl educl if femalel==1},
> ¥1line(12 16} legend(labei(l "Men") label(2 "Women"})
> xtitle(Education) ytitle(Adjusted mean)

This section has illustrated a piecewise model with two knots, with a change in slope
and change in intercept at each knot. This example (as well as all previous examples
in this chapter) have used a separate intercept and separate slope coding scheme. The
next section illustrates other possible coding schemes that can be used for these models.

12.4 Comparing coding schemes

This chapter has focused on one coding scheme for fitting models that interact a cate-
gorical variable and a continnous variable fit in a piecewize manner. I have focused on
a coding scheme that I believe is the easiest to use, but there are other coding schemes
that you could use. Depending on your research question, another coding scheme might
be more useful. This section illustrates four coding schemes that can be used to fit the
model illustrated in section 12.2. The coding scheme uged in section 12.2 is repeated
and will be called coding scheme #1. Then three additional coding schemes wiil be
illustrated.

12.4.1 Coding scheme #1

Let’s begin by repeating the analysis from section 12.2. This coding scheme will be called
coding scheme #1. (The noheader option is used in this and subsequent examples to
save space.)
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. * Coding scheme #1,
. use gss_ivrm

. mkapline edl 12 ed2 = educ

. regress realrinc ibn.female ibn.femalei#(i.hsgrad c.edi c.ed2} i.race,
> vce(robust) noconstant vsquish noheader

Robust
realrinc Coef., Std. Err. t P>t f95% Conf. Intervall
female
4} 17144.66  1389.515 12.34  0.000 14421.16 19868. 18
1 7325.482  922.5224 7.94  0.000 55417.304 9133.661
femaledt
hsgrad
01 3382.005 661.547 5,11  0.000 2085.348 4678.662
.11 1748.098 389.3636 4.49 0.000 984.9283 2611,264
femaletic.edl
0 BB.70762 161.379 0.57 0.567 ~210.0601 383.4162
1 24%,6081 95,9183 2.44 0.015 47 .72841 435.4878
female#c.ed2
0 40B7.639 150, 3836 26.98 0.000 3762.881 4352.396
1 2529,.547  1i0.4318 22.91 0.000 2313.097 2745.997
TACS
2 -3521.336 246.6606 -14.28 0.000 ~4004.8  -3037.872
3 ~1946. 159 839.72861 -2.32 Q.020 -3692.0862 ~300.2662

Figure 12.9 shows a graph of the adjusted means as a function of education and
gender. Labels are included showing the key coefficients from the regression output.
For example, the intercept for males is 17,145 and is labeled aps;. The jump in income
due to graduating high school for males is 3,382 and is labeled 9. For males, the
educ slope before graduating high school is labeled Fasq, and the education slope after
graduating high school is labeled Fpre. The figure also inchudes coefficients associated
with females, labeled am, aps, Fr1, and Bpa.
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. * Coding scheme #2

Slopes : . use gss_ivim
60000 Male : . mkspline edim 12 ed2m = educ, marginal
550004} — e - Femate regress realrinc ibn.female ibn.female#{i.hsgrad c.edim c¢.ed2m) i.race,
50008 > vcel{robust) noconstant vsquish noheader
" 45000+ :
40000 Z Robust
realrinc Coef.  Std, Err. t et (95Y% Conf. Interval}
o 35000 ;
E
g 30000+ female
= 25000 3 : 0 i7144.68 1389.515 12.34 0.000 14421.16 19868, 16
Jomi=17145 Op=3382,, i 1 7325.482  922.5224 7.94  0.000 5517.304  9133.661
20000 "M, ‘
150060~ B P . female#
- M1= = : hsgrad
10000-| “F§7325 _________ Gr=1748 ! 01 3382.005  661.547 5.11  0.000 2085.348  4678.662
5000 -] T Beye242 i 11 1748,096  389.3635 4.45 0,000 084.9293  2511,264
0 ' femaleit
T T T T T T T T T T i c.edim
0 2 4 6 3] 0 12 i4 16 8 20 '
Education in years 0 86.70762  161.379  0.67 0,667  -210.001  383.4162
i 241.6081 98,9163 2.44 0.015 47 . 72841 435,4878
femalel
. c,ad2m
Flgute 12.9. Intercept and slope coefficients from piecewise regression fit using coding P 3970.931  212.6975 18.67  0.000 3564.036  4387.826
scheme #1 1 1 2087.939  147.2608  15.54  0.000 1999.302  2576.576
i race
2 -3521.336 246.6606 ~14.28 0.000 -4004.8  -3037.872
3 -1946.159 839.7261 -2.,32 0.020 -3592.0562 -300.2862

12.4.2 Coding scheme #2

Table 12.3 summarizes the key results using coding scheme #1 and coding scheme
#2. It shows the name of the coefficient, the value of the coefficient, and the meaning of
the coefficient, expressed in tertns of the labels shown in figure 12.9. This illustrates the
difference in the meaning of the coeflicients when using coding scheme #1 versus coding
scheme #2. You can see that the only difference is in the final row of the table. Coding
i scheme #1 estiinates Gz and fFry, whmeas coding scheme #2 estimates 2 — Ban
| and Fpo — Br1.

Let’s now fit a model using what 1 eall coding scheme #2. This coding scheme is the
same as coding scheme #£1, except that the marginal option is used on the mkspline
comumand.
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Table 12.3. Surnmary of regression results and meaning of coefficients {or coding schemes
#1 and #2

Coding scheme #1

Coding scheme #2

Coef. Name Value § Meaning | Coel. Name Value Meaning
female female
0 | 17144.66 e 0 | 17144.686 Qg
1 7325.48 ap 1 7326.48 o
female# female#
c.hsgrad ¢.hsgrad
0 3382.01 &prn ] 3382.0% aAr2
1 1748.10 Qpo 1 1748.10 Qo
female# female#
¢.edl c.edlm
0 86.71 B a 86.71 Bl
1 241.61 B 1 241.61 Br
female# female#
c.ad2 c.ed2m
0 4057.64 Brra 0 3970.93 | Bmz — B
1 2529.55 Bra 1 2287.94 | fBre — Bm

12.4.3 Coding scheme #3

Let’s now consider a third coding scheme. This coding scheme is like coding scheme #£1,
im that the marginal option is omitted from the mkspline command. Unlike coding
scheme #1, coding scheme #3 specifies 1.female (instead of ibn.female) and omits
the noconstant option. )
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. * Coding scheme #3
. use gss_ivrm
. mkspline edl 12 ed2 = ednc

. regress realrinc i.female##{i.hsgrad c.edl c.ed?) i.race,
> vee(robust) vsquish noheader

Robust
realring Coef, Std. Err. & P>it] {95% Conf, Intervall
i,female -9819.174 1638.656 ~-5.89 0.000 -13030.81 -6607,542
1.hagrad 3382.005 661.647 5.1t 0,000 2085, 348 4678.662
edi 86.70762 151.379 0.57 0.667 -210.001 383.4162
ed2 4067.639  150.3836 26.98 0.000 ar62.881 4352.396
female#
hsgrad
11 -1633.9208 766.9848 -2.13 0.033 -3137.228 -130.6893
female#c.edl
1 154,9005 179, 3207 0.86 0.3688 ~196,5749 506.3758
femalelic.ed?
1 - -1528.092  187.0884 ~8.17  0.000 -1894.792 -1161.39:
race
2 -3621.336 246.6606 -14.28 0.000 -4004.8  -3037.872
3 ~-1946.169 839.7251 -2.32 9.020 -3592.062 -300,2662
_cons 17i44.66 1389.515 12.34  0.000 14421 .16 19868, 16

The key coefficients of coding scheme #3 are summarized in table 12.4. This il-
lustrates the interpretation of the coefficients with respect to the symbols illustrated
in figure 12.9. Let’s now consider a fourth coding scheme, and then we can compare
coding schemes #3 and #4.

12.4.4 Coding scheme #4

Finally, let’s consider & fourth coding scheme. This coding scheme is like coding scheme
#3, except that the marginal option is included on the mkspline command.
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. * Coding scheme #4
. use gss_ivrm

. mkspline edim 12 ed2m = educ, marginal

. regress realrinc i.female##{i.hsgrad c.edim c.ed2m) i.race,
»> vee(robuat) waquish noheader

Robust
realrinc Coef. Std. Err. t Prit| [96% Conf. Intervall
1.female ~5819.174 1638,656 -5.99 0.000 ~13030.81 ~8607.542
1.hsgrad 3382.005 861,647 5.11 0.000 2085.348 4678.662
adim 86.70782 151,379 0.57 0.567 -210.,001, 383.4182
ed2m 3970.931 212.6975 18.67 0.000 3554.036 4387.826
female#
hsgrad
11 -1633.908 766.9848 -2.13 0.033 -3137.228 -130.5893
female#
c.adlim
1 154,9006. 179.3207 0.86 0.388 ~196.5749 B06.3758
female# ’
c,ed2m
1 ~1682.992 2509.2855 -6.49 0,000 - -2191.201 ~1174,783
race | °
2 ~3621.336 246,6606 ~14.28 0.600 ~4004.8 -3037.872
3 ~-1946, 169 839,7261 ~2.32 0.020 ~3592.052 ~300.2662
_cons 17144.66 1389.615 12.34 0.000 14421.16 19868.16

The key coefficients of coding schemes #3 and #4 are summarized in table 12.4,
This shows the name of the coeflicient for these two coding schemes, the value of the
coeflicient, and the meaning of the coefficient expressed in terms of the Jabels shown
in figure 12.9. The cocfficients are ordered differently than the output of the regress
commiand to group related coeflicients and to facilitate comparisons between tables 12.3
and 12.4,
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Table 12.4. Summary of regression results and meaning of coefficients for coding schemes
#3 and #4

Coding scheme #3 Coding scheimne #£4

Coel. Name Value | Meaning | Coef. Name Value Meaning
_cons 17144.686 Opdt cons i7144.66 pd1
i.female ~9819.17 QFl — G 1.female -0819.17 Qp] — Al
1 .hsgrad 3382.01 Gpso 1.hsgrad 3382.01 Cad2
female# female#
hsgrad -1633.91 Qg — Qpf2 1.hsgrad -1633.91 g — Opfs
edl 86.71 B edim 86.71 B
female# female#
edi 154,91 ,6'[4'] - ﬁm1 edlm 154.91 ,617'1‘— ﬁM’l
ed2 4057 .64 Bara ed2m 3670.93 Bara — Ban
femaled# female#
ed2 | ~1528.09 | Bry — Bur ed2m | ~1682.99 | (Bps — Br1)—
(Baez — Braz)

In comparing coding schemes #3 and #4, the oaly difference is in the final row of
the table. Coding scheme #3 estimates fu2 and fr2 — Bare. By comparison, coding
scheme #4 estimates Bara — Ban and (Bro — Br1) = (Baz — Ban)-

12.4.5 Choosing coding schemes

Now that we understand how the results produced by these four coding schemes differ,
we can deliberately choose the coding scheme that might make the most sense given
our research question.

Say that the emphasis of your research study was to test gender differences in
the educ slope among high school graduates (that is, Bz ~ Barz). In that case,
coding scheme #3 might be the most useful, because the coefficient assoeinted with
female#ted2 directly estimates this difference {Bpa — far2). Had you chosen coding
scheme #1, you could still estimate this difference, but would need to also use the
contrast femaleffc.edl command to compute this difference.

Instead, imagine that your research question focused on gender differences in the
educ slope for high school graduates versus non—high school graduates. Tn that case,
coding system #4 might be the most useful because the coefficient associated with
female#ed?m directly estimates this difference (Bp2 — Br1) — (Barz — Bas1).
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12.5 Summary

This chapter has illustrated models that invelve the interaction of a categorical variable
with a continuous variable modeled in a piecewise manner. This included a piecewise
model with ene knot and one jump (in seetion 12.2) and two knots and two jumps : o

(in section 12.3). For simplicity, the examples showed a categorical variable that had 13 COﬁtﬂUOUS by CORUI‘EL&OHS by
two levels. However, these examples can be gencralized to cases where the categorical i

varisble has three or more levels categorical interactions

For move information, I highly recommend Singer and Willett {2003), who provide
examples and additional details about inferactions of a categorical variable with a con-
tinuous piecewise variable.

13.1 Chapteroverview . . . . . . . . . v v i it e 365

i ‘ 13.2 TLinear by bnear by categorical interactions. . . . .. ... .. 366
13.2.1 Fitting separate models for males and females . . ... ... 366
‘ 13.2.2 Fitting a combined model for males and females . . . . . . 368
13.2.3 Interpreting the interaction focusing in the age slope . . . 370
' 13.2.4 TInterpreting the interaction focusing on the educ stope . . 372
13.2.5 Ilistimasing and comparing adjusted means by gender . . . 374

13.3 Linear by quadratic by categorical interactions . . . ... .. 376

13.3.1 Fitting separate models for males and females . . . . . . . 376

13.3.2 Fitting a common model for males and females . . ., . .. 378

13.3.3 Interpreting the inferaction .. .. ... ... ... .... 379

13.3.4 Estimating and comparing adjusted means by gender . . . 380

134 Summary . . . oo oo e e e e e 382

13.1 Chapter overview

"This chapter explores models that include a categorical variable interacted with two
continuous variables. This can be viewed as an extension of chapter 5 which illustrated
interactions of two continuous variables. In fact, the examples shown in this chapter
mirror those shown in chapter 5 but add a eategorical variable to the interaction.

The examples shown in section 13.2 illustrate a continuous linear by continuous
linear by categorical interaction. The example is an extension of the exampile from
f section 5.2, which showed an interaction of age and educ in the prediction of realrinc.
| The example in section 13.2 will show how the size of the interaction of these two
continuous vaviables differs by a categorical variable, namely, female.

The examples illustrated in section 13.3 show a continuous linear by continuous
quadratic by categorical interaction. This builds upon the example from section 5.3,
which showed an inleraction of educ and age in the prediction of realrinc, where educ
wag modeled linearly and age was modeled using a quadratic term. The example in
section 13.3 will examine whether the size of this interaction differs by gender.

365
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13.2 Linear by linear by categorical interactions focuses on the slope in the direction of age by placing age on the 2 axis, with separate

_ ‘ i ) i . : lines for educ. This is visualized i figure 13.1, showing males in the icft panel and

In section 5.2, we saw an interaction of two continuous variables, age and educ, in the femnales in the right panel. (I will show how to make this kind of graph later in this
prediction of realrinc. In this section, we will explore whether the size of the age#educ chapter.)

interaction depends on gender. As with the analysis in section 5.2, this example will :
use the ges_ivrm.dta datases, focusing on those who are aged 22 to 55 and who have f

at least 12 years of education. 2 Males 8 Females
< =g,
f=] (=3
o o

. use gss_ivrm

. keep if (age>=22 & age<=65) & (educ>=12)
{25024 observations deleted)

60000
'
60000
L

13.2.1 Fitting separate models for males and females

Linear Prediction
40000
Linear Predlction
40000

To get a general sense of the size of the age#educ interaction separately for males
and females, let’s fit separate models for males and females. The following regress
command precicts realrine from age, edue, and the interaction of these two variables, i
doing so separately for each level of female by including the by female, sort: prefix. o 4 .

20000
|

20000
- i

: SOTE Are 1S : : s first sqults 22 65 2 3
(The vequish and noheader options are used to save S]?acc.} :I‘hg first set o‘f results ; age of respondent —
is restricted fo analyzing only males, and the second set is restricted to analyzing only ‘ v - -
females. We can use this as a warm-up analysis to see whether it looks like the size of : —o— edue=12  — — educ=14 o educ=12  — — educ=14
the age#educ interaction differs for males and fernales. T eduel e educe1d T edueel§ 4 pduc-13
—eteene - aduc=20 s edue=20
. by female, sort: regress realrinc c.agel#ic.educ, vce(robust) vsquish ncheader
-> female = Male i Figure 13.1. Fitted values for age by education interaction for males (left) and females
Robust (“ght)
realrinc Coef. Std. Err. t P>jt} [95% Conf. Intervall
age | -1002,287 195.7435  -5.58  0.000  -1475.921 ~708.6537 ‘ Looking at figure 13.1, we can see that, for both males and females, the age slope
educ | -1831.065 526.0086  -3.48  0.001  -2861.136  -~799.9943 | . grows as educ increases. We can also see that the degree of this growth is greater
c.ageftc, edug 134.4611  14.35327 9.37 0.000 106.3261 162.596 : ! . o . s = L K
cons 05275.91  T7128.772 3.55  0.000 11302.24  39049.58 for males than for females. As we learned in section 5.2, the age#feduc coefficient is
- the degree to which the age slope increases for every one-unit increase in educ. This
quantifies the increase in the age slope for every one-year increase in educ for males
-> female = Femala : : and females. Among males, the age slope increases by 134.46 units [or every one-year
. Tobust increase in educ. Among females, the age slope increases by 87.95 units for every
realrine Coef.  Std. Err. & Prltl [95% Conf. Intervall one-year increase in educ.
age | -876.5621 158.2391  -5.64 0.000  -1186.738  -566.386 ; We can visualize the age#teduc interaction another way, focusing on the educ slope by
educ | ~966.1149 426.7839  -2.26 0.024  -1802.686 -129.5442 ‘ placing educ on the  axis, with separate lines for age. This is visualized in figure 13.2,
¢.agefic.educ 87.94522  11.97366 7.34 0,000 64.47496  11%.4155 : o . . .o .
cone 17090.7  BE61.946 301 0.003 5992.301 98119, 1 : showing males in the left panel and females in the right panel. (T will show how to make
| this kind of graph later in this chapter.)

The agefieduc interaction is 134.46 for males and is 87,95 for fomales. Let’s visualize
the difference in the size of the age#teduc interaction for males and females. We can
visnalize this in two different ways, by focusing on the slope in the direction of age or
by foensing on the stope in the direction of educ. Let's begin by making a graph that
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Migure 13.2. Fitted values for age by education interaction for males (left) and females
(right} with education on the 7 axis

Looking at figure 13.2, we can see that for both males and females the educ slope
grows as age increases. We can also see that the degree of this growth ts greater for males
than for females and can quantify this using the coefficient for the age#teduc interaction.
For males, the educ slope increases by 134.46 units for every one-year increase in age.
For females, the educ slope increases by 87.95 units for every one-year increase in age.

To summarize, the coefficient for age#teduc is 134.46 for males and is 87.95 for
fermales. This suggests that the size of the agetfeduc coefficient may be significantly
greater for males than for females. Let's test this by analyzing males and females
together in & single model,

13.2.2 Fitting a combined model for males and females

We now create a regression model that includes both males and females and predicts
realrinc from age, educ, and the interaction of these two continuous variables. ‘The
regress command {shown below) is constructed to provide separate estimates for the in-
tercepts for males and females, as well as separate estimates for age, educ, and age#educ
by gender, By specifying ibn.female in conjunction with the noconstant option, the
model fits separate intercepts by gender. By specifying the interaction of ibn.female
with ¢.age, with ¢.educ, and with c.age#c.educ, the model fits separate estimates of
age, educ, and age#teduc by gender. The model also includes i.race, which is treated
as a covariate.
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., regress realrinc ibm.female ibn.female#(c.age c.educ ¢.age#c.educ)
> i.race, vee(robust} noconstant vsquish

Linear regression ’ Number of ohs = 22367
F( 10, 22357) = 3126.19
Prob > F = 0.0000
R-gguared = 0.,5339
Root MSE = 24543
Robust
realrinc Coef.  Std. Err. t P>t [95% Conf. Intervall
female
0 27044 .09 7125.42 3.8¢ 0.000 13077.77 41010.42
1. 19020,31  5695.437 3.34 0.00% T866.849 30183.76
female#c.age
0 -1116.23%  196.4296 -5.71  0.000 ~1459,294 -733.1832
i1 -903.4975  158.7b96 -5.68  {.000 ~1214 877  -592,3176
female#
¢.educ
0 ~1928.04 526.0811 -3.67 0.000 -2060.196  ~-B97.8838
1 ~1063.649  428.2508 ~2.48 0.013 ~1902.95  ~224,1472
female#
c.agefic.educ
4 136.0001 14,34342 9.48 0,000 107.886 164.1142
1 89.51634 12.00574 7.46 0,000 65.98424 113.0484
race
2 -3067.108  305.0699 -10.06  ©.000 ~3665.067 -2469.151
3 493.0117  1192.162 0.41 0.679 ~1843.71 2829.733

We can express these results as two though there are two regression equations, one
for males and one for females.

Males: realrinc = 27044.09 + —1116.2dage + —1929.04educ
+ 136.00age*educ + —3067.11race2 4+ 493.0irace3
Females: realrinc = 18020.31 4+ —903.50age + —1063.55educ
+ 89.52agexeduc + —3067.1irace2 4 493.01raced

The estimate of the age#educ interaction is 136.00 for males and is 89.52 for females.
Let’s now test the difference of the age#educ interaction for females versus males using
the contrast command below.

. contrast female##c.age#c.educ, nowald pveffects
Contrasts of marginal linear predictions
Margins : ashalanced

Contrast  Std. Err. t Pt

femalefc.agedfc.educ
(1 vs base) -46.48377 18.706 -2.48 - 0.013
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This test is significant. It compared the size of the age#teduc for group 1 with the
base group (that is, comparing females with males). This means that the age#educ in-
teraction is significantly lower for females than for males. Let’s explore how to interpret
this interaction.

Note! What about the lower order effects?

We have been focusing on the female#age#educ interaction, but you might won-
der about the lower order effects, such as female#age or female#educ. It is
important to include these effects in the model to preserve the interpretation of
the female#agefteduc interaction. However, there is little to gain by trying to
interpret these effects.

13.2.3 Interpreting the interaction focusing in the age stope

To help interpret this interaction, let’s visualize it by making a graph that {ocuses on
the age slope. We do this using the margins and marginsplot comands, as shown
below. The resulting graph is shown in figure 13.3.
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. margins female, at{age=(22 56) aduc=(12(2)20))
{output omitied)

. marginsplot, bydimension(famale) plotdimension{educ, allsimple)
> legend(subtitle(Education) rows(2)) noci

Variables that uniguely identify margins: age educ female

Predictive Margins of female
Male Female

Linear Predicticn
20000 40000 8000C 80000

L

ol

22 55 22 55
age of respondent
Education
—_—— 2 — — 14 —5— 18
2 18 20

Figure 13.3. Fitted values by age (7 axis), education (separate lines), and gender (sep-
arate panels)

Figure 13.3 resembles the graph that was created in figure 13.1, which resulted from
the models which analyzed males and females separately. We see that the age slope
increases more rapidly with increases in education for males than for females. For males,
the age slope increases by 136.00 units for every one-unit increase in education. For
females, the age slope increases by 89.52 units for every one-unit increase in education.
The test of the femaleffage#educ effect represents the difference in these interaction
terms and this graph shows one way to visualize this.

The margins command can be used to show the size of the age slope by specifying
the dydx(age) option. Let's use the margins command to estimate the age slope for
each of the levels of education expressed as a separate line in figure 13.3. In other words,
let's estimate the age slope for those with 12, 14, 16, 18, and 20 years of education,
separately for males and females,
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. margins female, at{educ={12(2)20)) dydx(age) vsquish

Average marginal effects Humber of obs = 22367

Model VCE : Robust

Expression : Linear prediction, predict()

dy/dx w.r.t. .: age

1. _at : aeduc = 12

2,_at ¢ educ = 14

3. .at 1 educ = 16

4. _at 1 educ = 18

5, at 1 educ = 20

Delta-method
dy/dx  Std. Frr. Z Priz| [95% Conf. Intervall
age
.at#female

10 515.7626  34.60047 14.90 0.000 447,9293 583,6959
11 170.6985 19.55676 8.73 0.000 132.3663 209,0307
20 787.7628  28.15217 27.98 0.004 732.6855 842,94
21 349.7312 16.77319 20.85 0.0060 316.8564 382.6061
30 1069.763  46.08038 23.50  0.000 971.3875 1148.139
31 528.7639 36.51414 14.48 0,000 457, 1975 600.3303
4 0 1331.763  70.13993 18.99  0.0G0 1194.281 1469.235
41 707.7966  59,48384 11,90  0.000 591,2104 824.3827
50 1603.763  97.22112 16.50  0.000 1413.214 1794.313
51 886.8202  B83.04501 10.68 0.060 724.064 1049594

The age slope for a male with 12 years of education is 515.76. For a female with 12
years of education, the age slope is 170.70. At 20 years of education, the age slope is
1,603.76 for males and is 886.83 for females.

13.2.4 Interpreting the interaction focusing on the educ slope

Now let’s visualize this interaction by making a graph that focuses on the educ slope.
We do this using the margine and marginsplot commands, as shown below. The
resulting graph is shown in figure 13.4.
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. margins female, at(age=(25(10)55) educ=(12 20))
{output omitted }

+ marginsplot, bydimension{female) xdimension(educ) noci legend{rows{(2)
> subtitle(Age))

Variables that uniquely identify margins: age educ female

Pradictive Margins of fematle
Male : S

Female

80000
' .

Linear Prediction
20000 40000 60000
o

u]

12 20 12 20
highest year of school completed

Age
& 25 35
i 45 dh &5

Figure 13.4. Fitted values by education (% axis), age (separate lines), and gender (sep-
arate panels)

Figure 13.4 resembles the graph thal was created in fgure 13.2, which resulted from
the models that analyzed meles and females separately. We see that the educ slope
increases more rapidly with increases in age for males than for females. For males, the
educ slope increases by 136.00 units for every one-unit increase in age. For females,
the educ slope increases by 89.52 units for every one-unit ineresse in age. This graph
iliustrates the female#tage#educ interaction by showing how the educ slope increases
more rapidly as a function of age for males than for females,

The dydx(educ) option can be used with the margins command to compute the
educ slope for each of the lines displayed in figure 13.4, as shown below.
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. margins femaie, at{age=(25(10}55)) dydx{educ) vsquish

Average marginal effects Number of obs = 22367

Model VCE : Robust

Expression : Linear prediction, predict{)

dy/dx w.r.t. : educ

i._at : age = 25

2._at : age = 35

3. .at 1 age = 45

4. _at t age = b5

Delta-method
dy/dx  Std. Err. z P>zl [96% Conf. Intervall
educ
_atfifemale

10 i470.963  206.1865 7.13 0.000 106G, 847 1875.079
il 1174.36 155.3249 7.56 0.000 860.9283 1478.791
20 2830. 964 144.2003 19.62  0.000 2648.186 3113.768
21 2069.523 104.2348 19.85 0.000 1865.226 2273.818
30 419G.966 200.683 20.88 0.900 3797.634 4584,297
31 2064 .686 182.8777 18.24 0.000 2646.04 3283.333
40 B560.966  317.6072 17,48 0.000 4928,468 6173.465
41 3859.86 266.131 14.50 0.000 3338.243 438%.457

The educ slope is 1,470.96 for & male who is 25 years old and is 1,174.36 for a female
whe is 25 years old. The educ slope is 5,550.97 for a male who is 55 years old and is
3,350.85 for a fernale who is 55 years old.

13.2.5 Estimating and comparing adjusted means by gender

The difference in the adjusted means by gender varies as a function of age and educ due
to the interaction of female with agef#feduc. Thus any comparisons by gender should
be performed by specifying & particular value of age and educ. For instance, let’s begin
by estimating the adjusted means for males and femates who have 16 years of education
and are 30 years old.

. margins female, at(educ=16 age=30}

Predictive margins Number of obs = 22367
Model VCE ; Robust
Expreassion : Linear predictien, predict()
at ¢ age = 30
" educ = 16
Deita-method
Margin  Std. Err. z P>zl f95Y% Conf. Imtervall
female
0 27599.71  480.2542 57.47  0.000 26658.42 28540.99
1 17493.8 332.3472 52.64 0.000 16842, 41 18146,.18

13.2.5 Estimating and comparing adjusted means by gender 375

After adjusting for race, males with 16 years of education and 30 years of age are
estimated o have an income of $27,509.71, compared with $17,493.80 for such females.
By adding the r. contrast operator to female, we see an estimate of the difference
between these adjusted means {females versus males). For this combination of age
and education, the difference between the adjusted means for females and for nales is
—10,105.91 and is significant.

. margins r.female, at(educ=16 age=30) contrast(nowald effects)
Contrasts of predictive margins

Model VCE : Robust
Expression | Linear prediction, predict()
at : age = 30
educ = 16
Delta-method
Contrast  Std. Err. z Pr|zi [95% Conf. Intervall
female
(1 vs 0) -10106.91 6586.8291 -17.22 0.000 -11266.07 ~8955.744

Note! More than two levels of the categorical variable?

Had there been more than two levels of the categorical variable, you could specify
any of the contrast operators illustrated in chapter 7. For example, if the categor-
ical variable had four levels, the a. contrast operator would provide comparisons
of each level with the next level {that is, comparing groups 1 versus 2, 2 versus 3,
and 3 versus 4)

The size of the difference (as well as the significance of the difference) between males
and females depends on hoth educ and age. You could repeat the margins commands
above Lo obtain comparisons hetween mmales and females for a variety of values of age
and educ. Or, you can specify multiple values, at once, within the margins command.
For example, the marging command below estimates the adjusted mean for males and
females for the combinations of 12, 15, and 20 years of education and 3@, 40, and 50
years of age (the output is omitted to save space).

. margins female, at{educ={12 16 20) age=(30 40 50})
(output omitted )

This margins command adds the r. confrast operator, comparing females with
males for these nine combinations of edue and age. This output is also omitted.

. margins r.female, at(educ={12 16 20) age=(30 40 50)}
(output omitted )

Now that we have explored models with categorical by linear by lnear interactions,
let’s turn to a model that involves a categorical by linear by quadratic interaction.
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13.3 Linear by quadratic by categorical interactions

In section 5.3, we included an interaction of educ with the quadratic term for age in
the prediction of realrinc. In this section, we will explore whether the size of the
educlage#tage interaction depends on gender. As with the analysis in section 5.3, this
example will use the gss_ivrm.dta dataset, focusing on those who are aged 22 to 80
and who have at least 12 years of education.

. use gsa_ivrm

. keep if (age>=22 & age<=80)} & (educ>=12}
(15934 observations deleted)

13.3.1 Fitting separate models for males and females

Let’s begin by fitting a model that estimates the educ#age#age interaction in two
separate models, one fit for males and another fit for females. This is performed by using
the by female, sort: prefix before the regress command that predicts realrinc
from c.educi##c.ageft#ic.age. This shorteut expands to include the interaction of all
of these variables, as well as all two-way interactions and main effects. (The vsquish
and noheader options are included to save space.}

. by female, sort: regress realrinc c.educ#ic.age#iic.age, vce{robust)
> vsquish noheader
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Let’s focus on the educ#age#age interaction. For males, this coefficient is —6.21 and
is significant. For females, this coefficient is —3.57 and is also statistically significant.
This suggests that the size of this interaction might be more negative for males than
for females. Before pursuing whether this difference is significant, let’s first visnalize
the educ#tage#age interaction by gender to gain a further understanding of what this
interaction means. Figure 13.5 shows the adjusted means graphed as a function of age
and educ, with age on the x axis and using separate lines for educ. The left panel
shows the results for males, and the right panel shows the results for females.

~» female = Male

Robust
realrine Coef., Std. Err. t el [95% Conf. Intervall
educ ~124920, 54 1306.492 -9,81 0.600 -14979.5 -9861.5679
aga ~6160.363 876.5618 ~7.03 0.000 ~7878.6584 -4442,172
c.educiic.age 661.988 65.00427 16.18 0.000 534 .57 789.4059
c.agelc.age - 56.95601  9.962637 5.72 0.000 37.42776 76.48425
c,
educ#
c.age#ic.age| -6.211378  .7370351 -8.43 0.00C -7 .656076 -4,76668
.cons 131388.6 17570,69 7.48 0.000 96947 .42 1656829.8
~>» female = Famale
Robust
realrinc Coaf. Std. Err. t P>t [95% Conf. Intervall
educ ;6103,4 867 .4264 ~7.04 0.000 ~-7803.682 -4403.118
age' | -3703.102 599 .4866 -6.18 ©.000 -4878.183 ~2628.021
c.educfc. age 366.2879  4b5,81099 8.00 ©0.000 276,4917 456,084t
c.ageffc.age 35.82633 T7.231316 4.5  0.000 21,6519 50.00076
c.
educ#
c.agefic.age -3.573265 . 5556728 -6.43  0.000 -4,662268 -2.48426%1
_cons 69969.52 114086 .57 6,13 0.000 47600,98 92318.06
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Figure 13.5. Fitted values for education by age squared interaction for males (left) and
females (right)

The coeflicient for the educ#age#age interaction term is —6.21 for males and —3.57
for females. As we saw in section 5.3, a more negative coefficient for this interaction
term reflects a greater curvature in the relationship between age and realrinc with
increasing levels of educ. Because males have a more negative coefficient {621}, they
exhibit a greater increase in the curvature in the relationship between age and income
as a function of education than do females.

Let's test whether the educ#agettage interaction is significantly different for males
versus females. To do this, we fit a combined model that includes both males and
females to permit a statistical test of educ#age#age by gender.
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13.3.2 Fitting a common model for males and females

Male: realrine = 133605 + —12550.64educ + —6202.10age
4 665.21educ*age -+ 57.18age? + —6.23educ*age”
+ —3474.03race2 + —299.12race3
Female: realrinc = 73711.44 + —6329.01educ -+ —38009.82age

Let’s fit one model for males and females together using a separate intercept and separate
stopes coding system that provides separate intercept and slope estimates for males
and females. Separate intercepts by gender are obtained by specifying ibn.female in
conjunction with the noconstant option. Then the model uses the shortcut notation to
interact ibn,female with each term created by ¢.educ##c.age#ic.age. This model is
shiown below with i.race included as a covariate.

. regress realrinc ibn.female
ibn, female# (c.eductific.agelific. age) i.race,
vce (robust) noconstant vsquish

>
>

+ 374.24educkage + 36.76age? + --3.65educrage’
+ —3474.03race2 + —299.12race3

The coefficient, for the educt#age#age interaction is —6.23 for males and is ~3.65

Li i Number of obs = 26964 ! e 3
inear regression F( 14, 25960) = 2544.34 i for females. We can compare these coefficients using the contrast command, as shown
Prob > F = 0.0000 ‘ below.
R-squared = 0.5263
Root NSE = 25748 . contrast femalefc.educHc.agetc.age, nowald pveffects
Contrasts of marginal linear predictions
Robust . Marmi .
realrinc Coef. Std. Err. t P>it| [98% Conf. Intervall argins : asbalanced
female Contrast  Sid. Err. t Prit]
o 133606  17648.76 7.61  ©0.000 99208.43  168001.5 |
i 737i1.44 114321 6.46 0.000 51343.08  96079.79 femalefic.educHc. agetc.age
fomale# (1 vs base) 2.683793  .9233154 2.80  0.005
c.educ ‘
0 -12650.64 1305.364  -9.61 0.000  -15109.22  -9882.05 ;
1 -6329.009  867.974  -7.29 0.000  -B030.286 —4627.732 ' This tests the interaction of female#teduckagetiage and is statistically significant
female#c.age — I LV PR, - [N Thie Savfestee eod
o —6207.103  B75.0618 700 0.000 _7917.973  -4486.933 (p = 0.005). Let’s interpret the meaning of this interaction.
1 -3809.816 598.9512  ~6.36 0.000  -4983.872  -~2635.76
female# i
c.educkc.age : .
o 665.2086 64.93261  10.24  0.000 537.987  792.4801 ; Note! Including all lower order effects
.2358  45.78202 8.17  0.000 284.4987  463.9728 . ‘ )
femaia# 374.23 | In this example, we have focused on the femalef#feduc#agefage interaction. We
c.agedc.age : ; have included several lower ovder effects in the model as well, such as femalefteduc
57.18022  9.946567 5.76  ¢.000 37.6843%  T6.67004 i or femalefage. It is important to include all of these lower order effects, significant
1 36.76597  7.223002 5.09  0.000 22.59848  50.91345 ! ! i : . \ ; .
fenaled | or not, fo preserve the interpretation of the femalef#teduc#age#tage inleraction.
c.
educ# :
c.ageffc.age
0 -6.233645 . 7361518 —8.47  0.000 ~7T.676543  -4.780747 {
- . -6.58  0.000  -4.737676 -2.562028 : . . .
T ; 13.3.3 Interpreting the interaction
‘2 -3474,026 291.3494 -11.82  0.000 -4045.087  -2802.965 : - o ]
3 ~299.115  1110.196  -0.27 0.788  -2475.161  1876.931 Yo help us understand this interaction, let’s visualize it by making a graph showing

We can express
shown below.

results as separate regression equations for males and females, as

the educH#tage#age interaction separately for males and females. First, the margins
command is used to compute adjusted means for ages 22 to 80 (in one-year increments)
and for 12 40 20 years of education (in two-year increments), separately for males and
females.

. margins female, at(age=(22(1)80) educ=(12(2)20))
{output amitied)
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Then the marginsplot command is used to graph these adjusted means. The
bydimension(female) option is used to create the graphs separately for males and
females. The xdimension(age) option is used to enswre that age is graphed on the x
axis. The resulting graph is shown in figure 13.6.

. marginsplot, bydimension(female) xdimension{age) noci
> plotdimension(educ, alisimple) legend(subtitle(Education) rows(1))
> recast(line} scheme(slmono} .

Variables that uniquely identify margins: age educ female

Pradictive Margins of female

Male Female

Linear Prediction
40000 60000 80600
1 il 1,
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Figure 13.6. Fitted values by age (v axis), education (separate lines}, and gender (sep-
arate panels) ' P

Figure 13.6 illustrates the femaleffeduc#fagefiage interaction term. We see a sim-
ilar pattern for both males and females; as educ increases, the inverted U-shape for
the relationship between income and age becomes more pronounced. However, this el
fect appears stronger for males than for females. This is confirmed by the significant
femalefteducHagetage interaction. In other words, this interaction shows that the de-
gree to which the quadratic effect of age changes as a function of educ is stronger for
males than it is for females.

13.3.4 Estimating and comparing adjusted means by gender

The difference in income for males and females depends on both age and gender. The
marging command can be used to compute estimates of, and differences in, the adjusted
mneans by gender. First, let’s use the margins command to estimate the adjusted mean
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of incone for those with 16 years of education and 30 years of age, separately for males
and females.

. margins female, at(educ=16 age=30)

Predictive margins Number of obs = 26964
Model VCE : Robust
Expression : Linear prediction, predict()
at 1 educ = 16
age = 30
Delta-method
Margin  Std. Err. z P>zl 196Y% Conf. Intervall
female
0 27288.24  430.8355 63.34 0,000 26443.82 28132.67
1 17867.2  303.5242 68.87  0.000 17272.3 1B462.1

After adjusting for race, males who are 30 years old with 16 years of education are
estimated to have an income of $27,288.24, compared with $17,867.20 for such females.
By adding the r. contrast operator to female, we estimate the difference in these
adjusted means, comparing females with males. This difference is significant.

. margins r.female, at{educ=16 age=30) contrast(nowald effects)

Contrasts of predictive margins
Model VCE : Robust

Expression : Linear prediction, predict()
at : educ = 16
age = 30
Belta-method
Contrast  Std., Err. z px|z| [95% Conf. Intervall
female
(1 vs 0) ~9421.044  B29.9201 -17.78 0.000 -10459.67 ~-8382.42

The size and significance of the difference in the means between males and females
depends on both educ and age. We can specify multiple values in the at {} option to
estimate the mean For males and Females for various combinations of age and educ. The
margins command below estimates the mean for males and females for the combinations
of 12, 16, and 20 years of education and 30, 40, and 50 years of age. This yields adjusted
means at nine combinations of age and educ for males and females. (The output is
omitted to save space.)

. margins female, at(educ=(12 18 20) age=(30 40 50))
{output omitted)

The following margins command adds the r. contrast operator, comparing females
with males for these nine combinations of educ and age.
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. margins r.female, at(educ=(12 16 20) age={(3C 40 50))
{output omitted )

Had there been more than two levels of the categorical variable, you could specify
any of the contrast operators illustrated in chapter 7 to perform the comparisons of
your choosing,.

13.4 Summary

This chapter has illustrated models that involve interactions of a categorical variable
with two continuous variables. Section 13.2 illustrated a categorical by linear by linear
interaction using gender as the categorical variable and age and education as the linear
variables. This analysis showed that males exhibit a stronger age by education inter-
action than do females. This was interpreted two ways, by focusing on the age slope
and by focusing on the educ slope. Focusing on the age slope, males showed a greater
increase in the age slope with increasing levels of education than females, Focusing on
the educ slope, males showed a greater increase in the educ slope with increasing levels
of age than females.

In section 13.3, we saw an example of a categorical by Hnear by quadratic inter-
action. This involved the variables gender (categorical) by education (linear) by age
{quadratic). The three-way interaction of these three variables was statistically sig-
nificant. Visualizing the three-way interaction showed that the quadratic effect of age
increased more as a function of education for males than for females.

For maore information, I recommend West, Aiken, and Krull (1996), who provide an
excellent imtroduction to models involving the interaction of cateporical and continuous
variables and include an example of a continuons by continuous by categorical interac-
tion,
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14.1 Chapter overview

This chapter considers models that involve the interaction of two categorical predic-
tors with a linear continuous predictor. Such models blend ideas from chapter 10 on
categorical by continuous interactions and ideas from chapter 8 on categorical by cate-
gorical interactions. As we saw in chapter 10, interactions of categorical and continuous
predictors describe how the slope of the continuous variable differs as a function of the
calegorical variable. In chapter 8, we saw models that involve the interaction of two
categorical variables. This chapter blends these two modeling techniques hy exploring
how the slope of the continuous variable varies as a function of the interaction of the
two categorical variables.

Let’s consider a hypothetical example of a model with income as the outcome vari-
able. The predictors include gender (a two-level categorical variable), education (treated
as a three-level catlegorical variable), and age (a continuous variable}). Income can be
modeled as a function of each of the predictors, as well as the interactions of all the
predictors. A throe-way interaction of age by gender by education would imply that the
effect of age interacts with gender by education. One way to visualize such an interac-
tion would be to graph age on the x axis, with separate lines for the levels of education
and separate graphs for gender. Figure 14.1 shows such an example, illustrating how
the slope of the relationship between income and age varies as a function of education
and gender.

383
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Figure 14.1. Fitted values of income as a function of age, education, and gender

The graph can be augmented by a table that shows the age slope broken down by
education and gender. Such a table is shown in 14.1. The age slope shown in cach cell
of table 14.1 reflects the slope of the relationship between incomwe and age for each of
the lines jllustrated in figure 14.1. For example, B3ps represents the age slope for male
college graduates, and this slope is 1,300.

Table 14.1. ‘Fhe age slope by level of education and gender

Non-H5 grad HS grad Cco grad
Male frag =400 Bapy =600 fap = 1,300
TFemale ,B]F =150 ﬂgp = 250 ﬂgp = {00

The age by education by gender interaction described in table 14.1 can be under-
stood and dissected like the two by three interactions illustrated in chapter 8. The key
difference is that table 14.1 is displaying the slope of the relationship between income
and age, and the three-way interaction refers to the way that the slope varies as a
function of education and gender.! -

If there were no three-way interaction of age by gender by education, we would expect
(for example) that the gender difference in the age slope would be approximately the

1. More precisely, how the slope varies as a function of the interaction of age and gender.

i
]
I
i
|
§
i
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same at each level of education. But, consider the differences in the age slopes between
females and males at each level of education. This difference is —250 (150 — 400} for
non—high school graduates, whereas this difference is —350 {250 — 600} for high school
graduates, and the difference is —700 (600 —1300) for college graduates. The difference in
the age slopes between females and males seems to be much larger for coliege graduates
than for high school graduates and non—high school graduates. This patiern of results
appears consistent with a three-way interaction of age by education by gender.

Let’s explore this in more detail with an example using the GSS dataset. To focus
on the linear effect of age, we will keep those who are 22 to 55 years old.

. use gss_ivrm

. keep if age»=22 & age<=65
(18936 observations deleted)

In this example, let’s predict income as a function of gender {female), a three-ievel
version of education (educ3), and age. The regress command below predicts realrine
from i.female, i.edue3, and c.age (25 well as all interactions of the predictors). The
variable i.race is also included as a covariate. ‘

. regress realrinc i.femalel#i,educ3iftc.age i.race, vce{robust) vsquish

Linear regression Kumber of obs =  267i8
F( 13, 26704} = 411.30
Prob > F = 0,0000
R-squared = 0,1839
koot HMSE = 23656
Robust
realrinc Coef.,  Std, Err, t P>itl [95% Conf. Intervall
1.female 1337.1256  1693.694 0.79  0.430 -1982.61 4656.861
educ3d
2 560,476  1782.,192 (.31 0,787 -2942,721 4043.673
3 ~11156.1 2618.976 ~4.26 0.0060 ~16289.44 -6022.756
femalefieduc3
12 783.0991  2021.654 0.39 0.698 ~3179,457 4745 .865
i3 TBET.90T  3164.209 2.42  0.018 1455.763 13860.11

age 413.8695 46.62015 9.07  0.000 324.45156 503.2876
femaleftc.age

1 -264,9842 50.65695 -5.23 0.000 ~364.2746  -165.6937
educ3iic.age
2 175.8497 54,7504 3.21  0.00i 68.53584 283.1636
3 897.3326 77.47101 11,58 0.000 745,4861 1049.18
femaled
educ3#c.age .
12 ~-80.30646  60.94575 -1.32 0.188 ~189.7625 35%.16165
13 -414,6662  93.267i4 -4.45  0.000 -597.465  -231.8473
race
2 ~2036.138 273.3204 -10.74 0.000 ~3470.879  -~2399.397
3 185.3956 956.338 0.19 0.846 -1689.081 2069.872
.cons 2691.23  1495.778 1.80 0.072 ~240,5797 5623.038
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Let’s test {he interaction of gender, education, and age using the contrast comnmand
below.

Chapter 14 Continuous by categorical by categorical interactions

The three-way interaction is significant.

. contrast i.female#i.educ3¥c.age

Contrasts of marginal linear predictions

Margins : asbalanced
1 df F P>F
female#teduc3ilc.age 2 10.17 0.0000
Residual 25704

To begin the process of imterpreting the three-way interaction, let’s create a graph
of the adjusted means as a function of age, education, and gender. T'irst, the margins
command below is used to compute the adjusted means by gender and education for
ages 22 and 55 (the output is omitted to save space), Then the marginsplot command
is used to graph the adjusted means, as shown in figure 14.2.

Linear Prediction

. margins femalefleduc3, at(age=(22 B5)}

{output omitted )

. marginsplot, bydimension(femala) noci

Variables that uniquely identify margins: age female educd

Predictive Margins of female#educ3
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3
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Figure 14.2. Fitted values of income as a function of age, education, and gender
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The graph in figure 14.2 illustrates how the age slope varies as a function of gender
and education. Let’s compute the age slope for each of the lines shown in this graph.
The margins command is nsed with the dydx(age) and over () options to compute the
age slopes separately for each combination of gender and education.

. margins, dydx(age)} over{female educd)

Average marginal effects Number of obs = 25718
Meodel VCE 1 Robust
Expressior  : Linear prediction, predict{)
dy/dx w.r.t. : age
over 1 female educ3
belta-method
dy/dx  Std. Err. z P>zt [95% Conf. Intervall
age
female#teducd
01 413,.8696  45.62015 9.0Y 0.000 324, 4557 503,2834
02 589.7192 30.37993 19.41 0.000 530.1757 649.2628
03 1311.202  §2,88374 20.85  0.000 1187.962 1434.4562
11 148.88564 22.08037 6.74 0.000¢ 106,589 192.1817
12 244 ,4296 15,25412 i6.02  0.000¢ 214.5321 274.,3272
13 631.5618  46.90854 13.46  0.000 53%.6227 723.5008

Let’s reformat the output of the marging cominand to emphasize how the age slope
varies as a function of the interaction of gender and education (see table 14.2). Each
cell of table 14.2 shows the age slope for the particular combination of gender and
education. For example, the age slope for males with a college degree is 1,311.20 and
is labeled as By,

Table 14.2. The age slope by level of education and gender

Non-H$ grad HS grad CO grad
Male fipr = 41387 [Fapr = 589,72 Bapy = 1,31L.20
Female fip = 14889 fop = 24443 Bar = 631.56

We can dissect the three-way interaction iflustrated in table 14.2 using the techniques
from section 8.3 on two by three models. Specifically, we can use simple effects analysis,
simple contrasts, and partial interactions.

14.2 Simple effects of gender on the age slope

We can use the contrast command to test the simple eflect of gender on the age slope.
This is illustrated below.



388 Chapter 14 Continuous by categorical by categorical interactions

. contrast femaledc.age®educ3, nowald pveffects

Contrasts of marginal linear predictions

Haxrgins 1 asbalanced
Contrast  Std. Err. t P>t}
femaie@educ3iic.age
(1 vs base) 1 -264.9842  50.65685 -5.23  0.000
(1 vs base) 2 -345.2896 33.98931 -10.16 0,000
{1 vs base) 3 ~679.6404 78.4488 ~8.66  .000

Each of these tests represents the comparison of females versus males in ferms of
the age slope. The first test compares the age slope for females versus males among
non-high school praduates. Referring to table 14.2, this test compares fir with Fiar.
The difference in these age slopes is —264.98 (148.89 — 413.87), and this difference is
significant. The age slope for females who did not graduate high schooi is 264.98 units
smalier than the age slope for males who did not graduate high school. The second
test is shmilar to the first, except the comparison is made among high school graduates,
comparing Bop with Bap from table 14.2. This test is also significant. 'The third test
compares the age slope between females and males among college graduates (that is,
comparing fap with Baar). This test is also significant. In summary, the comparison of
the age slope for females versus males is significant at each level of education.

14.3 Simple effects of education on the age slope

We can also look at the simple effects of education on the age slope at each level of
gender. This test is performed using the contrast command below.

. sontrast educdfic,age@femaie
Contrasts of -marginal linear predictions

Margins : asbalanced
daf F P>F
educ3@femaleffc.age
Q 2 T0.96 0.0000
1 2 43,37 0.0000
Joint 4 57.21 (. G000
Residual 25704

The first test compares the age slope among the three levels of education for males.
Referring to'table 14.2, this tests the following null hypothesis,

Hy: By = foyr = Bam

“T'his test is sipnificant. The age slope significantly differs as a funetion of education
anmong males.
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The second test is like the first test, except that the comparisons are made for
ferales. This tests the following null hypothesis.

Hy: Bip = fhar = far

This test is also significant. Among females, the age slope significantly differs among
the three levels of education.

14.4 Simple contrasts on education for the age slope

We can further dissect the simple effects tested above by applying contrast coeflicients
to the education factor. For example, say that we used the ar. contrast operator to
form reverse adjacent group comparisons. This would yield comparisons of group 2
versus 1 {high school graduates with non-high school graduates) and group 3 versus 2
(college graduates with high school graduates). Applying this contrast operator yields
simple contrasts on education at each level of gender, as shown below.

. contrast ar.educ3#c.age@female, nowald pveifects
Contrasts of marginal linear predictions

Margins ¢ asbalanced

Contrast  Std. Err. t P>t

educ3@femalelic,age

2vs 1) 0 i76.8497 64,7504 3.21 0.001
(2wvs 1) 1 95.54426  26.83611 3.56  0.000
(Bwvs 2) 0 721.4829  69.74939 10.34  0.000
(3wvs 2) 1 387.1322  49.38976 7.84 0.000

The first test compares the age slope for male high schiool graduates with the age
slope for males who did not graduate high school. In terms of table 14.2, this is the
comparison of fapy with f1py. The difference in these age slopes is 175.85 and i
significant. The second test is the sarme as the first test, except the comparison is made
for females, comparing fop with 8. The difference is 95.54 and is significant. The
third and fourth tests compare college graduates with high school graduates. The third
test forms this comparison among males and is significant, and the fourth test forms
this comparison among females and is also significant.

14.5 Partial interaction on education for the age slope

The three-way interaction can be dissected by forming contrasts on the three-level cat-
cgorical varinble. Say that we use reverse adjacent group comparisons on edueation,
which compares high school graduates with non—high school graduates and college grad-
uates with high school graduates. We can interact that contrast with gender and age,
as shown in the margins command below. '
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. contrast ar.educ3#r.female¥c.age, nowald pveffects
Contrasts of marginal linear predictions

Margins : asbalanced

Contirast 5td. Err. t P>itl

educ3iifemaleftc, age
(2 vs 1) (1 vs 0} -80.30645  60.94575 -1.32  0.188
(3 vs 2) {1 vs 0} -334,3007 85.48932 ~3.81 0.000

The first comparison tests the interaction of the contrast of high school graduates
versus non—high school graduates by gender by age. The difference in the age slope
between high school graduates and non-high school graduates for females is 244.43
minus 148.89 (95.54). For males, this difference is 589.72 minus 413.87 (175.85). The
difference in these differences is —80.31, which is not significant (sce the first comparison
from the margins command). The difference in the age slope comparing high school
graduates with non—high school graduates is not significantly different for inales and
females,

The second test forms the same kind of comparison, but compares college graduates
with high school graduates. The difference in the age slope comparing ferale college
graduates with female high school graduates is 631.56 minus 244.43 {387.13). This
difference for males is 1,311.20 minus 589.72 (721.48). The difference of these differences
is —334.35 and is statistically significant (see the second comparison from the margins
output). The increase in the age slope comparing college graduates with high schoo
graduates is greater for males than it is for females,

14.6  Summary

This chapter has illustrated models that involve the interaction of a continmous variable
with two categorical variables. When such an interaction is significant, the siope as-
sociated with the continuous variable varies as a function of the interaction of the two
categorical variables. As we saw, the interaction can be dissected and understood using
the methods covered in chapter 8 on categorical by eategorical interactions, forming
contrasts with respect to the slope term.

I am not aware of any books that directly cover this kind of interaction, so I rec-
ommend the references provided in chapter 1¢ (lincar by categorical interactions) and
chapter 8 {categorical by categorical interactions).

i

Part IV

Beyond ordinary linear regression

Chapter 15 Multilevel models

Chapter 16 Time as a continuous predictor
Chapter 17 Time as a categorical predictor
Chapter 18 Nonlinear models

Chapter 18 Complex survey data

This part covers models that go heyond ordinary linear regression. These nclude
multilevel models, longitudinal models, nonlinear models, and the analysis of complex
survey data,

Chapter 15 covers multilevel models (also known as hierarchical linear models), such
as models where students are nested within classrooms.

Chapters 16 and 17 cover longitudinal models that involve multiple observations over
time. Chapter 16 [ocuses on models in which time is treated as a continuous predictor,
and chapter 17 covers imodels where time is treated as a categorical predictor.

Chapter 18 covers nonlinear models. This includes examples illustrating binary lo-
gistic regression, multinomial logistic regression, ordinal logistic regression, and Poisson
models.

Chapter 19 iliustrates how to use the commands margins, marginsplet, contrast,
and pwcompare with complex survey data.
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15.1 Chapter overview

Multilevel models are deseribed using a variety of names, including hierarchical lin-
ear models, nested models, mixed models, and random-coefficient models. One of the
key features of such models is the nesting of observations, for example, the nesting of
students within classroomns. In such an example, students are the level-1 variable and
classrooms are the level-2 variable. Variables that describe students are called level-1
variables, and variables that describe classrooms are level-2 variables.

One of the unigue features of multilevel models is the ability to study cross-level
interactions—the interactions of a level-1 variable with a level-2 variable. Such in-
teractions allow you to explore the extent to which the effect of a level-1 variable is
moderated by a level-2 variable. But we should not let the fact that these effects are
called cross-level interactions distract us from the fact that they are interactions and
can be interpreted and visualized like any interaction. In fact, my goal in writing this
chapter is to show that cross-level interactions from multilevel models can be interpreted
and visualized using the same techniques illustrated in chapters 5, 8, and 10. With this
limited focus, the chapter is written assuming you ave familiar with multilevel models
and are also familiar with how to fit such models using Stata. References are provided
at the end of this chapter describe resources for learning multilevel modeling as well as

* how to fit multilevel models using Stata.

This chapter contains four examples, all illustrating multilevel models where stu-
dents are nested within schools. Fach example focuses on the cross-level interaction
of a student-level (level-1) variable with a school-level (level-2) variable. In the first
two examples, the student-tevel variable is a continuous variable, socioeconomic status.
In the next two examples, the student-level variable is a two-level categorical variable,
gender. The first and third examples focus on a school-fevel variable that is continuous,

393
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and the second and fourth examples focus on a school-level variable that is categorical.
These four examples provide the opportunity to explore four kinds of cross-level inter-
actions: continuous by contimious (example 1), continuous by categorical (example 2),
categorical by continuous (example 3}, and categorical by categorical (example 4). All
of these examples are completely hypothetical and have been constructed to simplify
the interpretation and visualization of the results.

15.2 Example 1: Continuous by continuous interaction

Consider a two-level multilevel model where students are nested within schools. One
lmndred schools were randomly sampled from a population of schools, and students
were randomly sampled from each of the schools. Two student-level variables were
measured: socioeconomic status (ses) and a standardized writing test score (write),
Furthermore, a school-level variable was measured; the number students per computer
within the school, stucomp.

To familiarize ourselves with this dataset, summary statistics and a listing of the

first five observations are shown helow.

. use school _write

. summarize

Variable Dbs Mean Std. Dev. Min Max
schoolid 3026 B0.71481 29.0:184 1 00
stuid 3026 17.08824 10.8i501 i 52
urite - 3026 542.1326 191.3663 Q 1200
ses 3026 49,783562 10.18169 14.1897  85.06909
stucomp 3026 5.,857068 3.633295 1.149443 16.50701
. list in 1/5, abbreviate{(30)
schoolid stuid write ses stucomp
i 1 i 553 © 55.38129  3.35005%
2 1 2 530  61.13126  3.3b60GOBY
3 1 3 604  47.61407  3.350059
4 1 4 433  48.26278  3.360069
B i ] 370 A7 .9T62 3.350059

The vartable schoolid umiquely identifies each school, and the variable stuid
uniquely identifies each student within each school. The variable write contains the
score on the standardized writing test. The writing scores range from 0 to 1200. The
variable ses is a continuous measure of socioeconomic status of the student, which
ranges from 14,19 to 85.07. Finally, the variable stucomp is the ratio of the number of
students to computers (measured at the school level) and ranges from 1.15 to 16.51.

The aim of this hypothetical study is to determine if the greater availability of
computers at a school reduces the strength of the relationship between socioeconomic
status and writing test scores. In other words, the goal is to determine if there is a
cross-level interaction of ses and stucomp in the prediction of write.
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The xtmixed command predicts write from ¢.ses, ¢.stucomp, and the interaction
c.stucomp#c.zes. The random-effects portion of the model indicates thal ses is a
random effect across levels of schoolid. The covariance{un) option permits the ran-
dom intercept and ses slope to be correlated. (In this and afl subsequent examples in
this chapter, the nolog and noheader options are used to save space. These oplions
suppress the iteration log and the header information.)

. xtmixed write c.stucomph#c.ses | schoolid: ses, covariance(un) nolog
> nrcheader

write Coef. Std. Err, z P>|z] [95% Conf. Intervall
stucomp -26.74603 2.687083 -%.96 0.000 -32,01162 ~ -21.47845
ses .3583319 6772738 0.53 0.597 -, 8691003 1.685764

¢, stucomph

c.s8s .2367494 .1036246 2.28 0.023 .0326489 43884599
_Cons 602,2904  18.18306 33.12  0.000 B66.6623 637.9286
Random-effects Parameters Estimate  Std. Err. {96% Conf. Intervall

schoolid: Unstructured

sd{ses) 2.9385096 .2903759 2.487917 3.613074

sd{_cons) 19.29625  31.86448 . 7583303 491.0069

corr(ses,_cons) .3331653 1.04563 -.9610056 . 9900983

sd{Residual) 99.10039 1.317481 96.55153 101.7165

LR test vs. linear regression: chi2(3) = 3253.82 Prob > c¢hi2 = 0.0C00

Hote: LR test is conservative and provided omly for referance.

Note! Fixed and random effects

When using swltilevel modeling commands like xtmixed {or xtmelogit or
xtmepoisson), the command has two portions, the ixed-cffect and random-effect
portions. (Note that in the context of multilevel modeling, fixed effects has a
different meaning than in econometrics.) The fixed effects are specified after the
dependent variable and before the |1, The random effects are specified after the
|l. For the lixed-effect portion of the model, you can generally use what we
learned in previous chapters for specifying the predictors and interpreting the out-
put. The key difference for multilevel models is the random-effects portion. In
these examples, I will not interpret or discuss the random effects.
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As expected, the stucomp#ises interaction is significant. The prediction was that
increasing availability of computers (that is, lower values of stucomp) would be associ-
ated with a diminished relationship between ses and write. We can use the margins
command below with the dydx(ses) option to compute the ses stope for schools that
have between one and eight students per computer.

. margins, dydx(ses) at(stucomp=(1(1)8)) vsquish

Average marginal effects lumbexr of obs = . 3026

Expression : Linear prediction, fixed portion, predict(}

dy/dx w.r.t. : ses

1, at : stacomp = 1

2, _at : stucomp = 2

3._at ¢ stucomp = 3

4. _at ¢ stucomp = 4

5._at ¢ stucomp = 5

6._at ¢ stucomp = [

7._at : stucomp = 7

8._at 1 stucomp = 8

Deita-method
dy/dx  Std. Err. z Doz [65% Conf. Intervall
ses
~at

i .5940814 . BBOBY3T 1.01  ¢,316 -, 5640008 1.762173
2 .B298308  .51089208 1.62  0.104 -, £71B561 1.8312%7
3 1.06568  .4409354 2.42  0.016 2013628 1.529798
4 1,30133 .3863733 3.37 0.001 644062 2.058607
6 1.537079  .3544302 4.34 0,000 . 8424087 2.23175
6 1.772829 .3b613308 5.06 0.000 1.084233 2.461424
7 2.008578 3777867 5.32 0.000 1.268132 2.749024
8 2.,244328 .4283636 5.24 0.000 1.40477 3.083885

We can see that as the number of students per computer increases (that is, as the
availability of computers decreases), the ses slope increases. In fact, for schools that
have two (or fewer) students per computer, the ses slope is not significantly different
from zero.

We can visualize the stucompiises interaction using the margins and marginsplot
commands below. The graph created by the marginsplot conunand shows the relation-
ship between socioeconomic status and standardized writing test scores, with separate
lines corresponding to the different levels of students per computer (see figure 15.1).
This graph illustrates how the ses slope increases as the number of students per com-
puter increases.

The output of the previous margins command shows the slope of each of the lines
displayed in figure 15.1. For example, when the number of students per computer is
one, the ses slope is 0.59, and when the number of students per computer is eight, the
sea slope is 2.24.
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. margins, at{stucomp={1(1)8) ses=(20(5)80})
(output omitted) :

. marginsplot, noci xdimension{ses) plotdimensicn(stucomp, allsimple)
> legend(subtitle(Students per computer) rows(2)) recast(line) scheme(stmono)

Variables that uniquely identify margins: stucomp ses

Adjusted Predictions
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Figure 15.1. Writing score by socioeconomic status and students per computer

You can further explore the stucomp by ces interaction using the techniques iltus-
trated in chapter 5 about continuous by continuous interactions.

15.3 Example 2: Continuous by categorical interaction

Like the first example, this example also involves students nested within schools (al-
though not the same students or schools). One hundred schools were randomly sampled,
and then students were randomly sampled within the schools. In this study, standard-
ized reading scores were measured as well as the socioeconomic status of the student.
Of the 100 schools, 35 were private (non-Catholic), 35 were public, and 30 were Catholic
schools.

The summary statistics for this dataset are shown below along with a listing of the
first five observations. The variable schoolid is the school identifier and stuid is the
student identifier. The standardized reading scoves range from 0 to 1485, with a mean
of 705.33. The mean of ses is 49.77, and it ranges from 13.87 to 85.81. The variable
schtype is the type of school, coded: 1 = private, 2 = public, and 3 = Catholic.
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. use school_read f - xtmixed read i.schtype##c.ses || schoolid: ses, covariance(un} nolog ncheader
. summarize
Variable Obs Hean 8td. Dev. Min Max : . read Coef . Std. Exr. z 23]z [95% Conf. Intervall
schoolid 2973 51.43592 28.77028 1 100 . schtype
ctuid 2073 17.95193  11.33727 1 61 i -2 41.98651  23.26979 1.80  0.071 -3.64144  87.57447
read 2073 705.3266  214.8079 0 1485 : 3 162.4776  23.78712 6.41  0.000 105.8556  199.0994
ses 2973 49.7658  ©.845242  13.86614  85.81158
schtype | - 2973  1.964346  .8021297 1 3 : ses 4.042064  .6734825 §.00  0.000 2.722043  B,362085
) schtype#
. list in 1/5, abb(30) c.ses
: 2 -1.240951  .951214%  -1.30 0.192  -3.105296  .6233947
schoolid stuid read ses  schtype : 3 ~3.3688 . 9865231 -3.41  0.001 -5.30235 -1.4352561
¥
1 1 1 728 51.10166 Private _cons 619,2829  16.57457 31,33  0.000 483.7974  551.7686
2 1 2 696  54.53889 Private ;
3 1 3 676 57.86998 DPrivate |
4 1 4 722 46.70633 Private f Random-effects Parameters Estimate  Std. Err. [958% Conf. Intervalj
5 1 5 766 651.34241 Private ‘
gchoolid: Unstructured
) ) . . ! sd(ses) 3.483202  .305581 2.933026  4.136793
The goal of this hypothetical study is to examine the relationship between socioeco- ‘ sd{_cons)} 2.217321  16.670268 8.84e-07 5563254
nomic status {ses) and reading scores (read), and to determine if the strength of that : corr(ses,_cons) -8748135  5.801707 -1 1
relationship varies as a function of the type of school (private, publie, or Cathohc) ‘This ! sd(Residual) 106.0783  1.320243 97.52385  102.699T
invelves examining the cross-level interaction of ses and schtype. i
i LR test vs. linear regressiom: chi2(3) = 4052.81 Prob > chi2 = (.0000

The xtmixed command for performing this analysis is shown below. The variable
read is predicted from ses, schtype, and the interaction of these two variables. The :
variable ses is specified as a randow coefficient, that varies across schools. i The contrast command is used below to test the overall schtype#c . ses interaction.
This tests the following null hypothesis:

Ho: By =fa=fh

‘r where [ is the average ses slope for private schools, 32 is the average ses slope
| for public schools, and F; is the average ses slope for Catholic schaols. This test is
significant, indicating that the ses slopes differ by schtype.

i Note: LR test is conservative and provided only for reference.

. contrast schtypeilc.ses
Contrasts of marginal linear predictions

. Margins : asbalanced
; df chi2  Pochi2
f raad

schtype#c.ses 2 11.82 0.0027

| Let’s create a graph that illustrates the ses slopes by schtype. We do this using
l" {he margins command to compute the adjusted means of reading scores as a function
‘ of the socioeconomic status and the type of school, and then praphing these adjusted
means using the marginsplot command {see figure 15.2). This graph shows that the
ses slope is steepest for private schools and is weakest for Catholic schools.
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. margins schtype, at(ses={20(5)80))
{output omitted )

. marginsplet, noci
Variables that uniquely identify margins: ses schtype

Adjusted Predictions of schiype
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Figure 15.2. Reading score by socioeconomic status and school type

Let’s now use the margins command combired with the dydx(ses) option to esti-
mate the ses slope for each of the three different types of schools. The ses slope is
4.04 for private schools (group 1), and this slope is significantly different from 0. The
ses slope is 2.80 for public schools (group 2), and this sfope is also significantly differ-
ent from 0. The ses slope is 0.67 for Catholic schools {group 3), but this slope is not
significantly dilferent from 0.

. margins, dydx(ses) over(schtype) vsquish

Average marginal effects Number of obs = 2973
Expression  : Linear prediction, fixed portion, predict()
dy/dx w.r.t. : ses
over 1 schtype
Delta-method )
dy/dx  Std. Err. z P>lz| [96Y Conf. Intervall
ses
schtype

i 4, 042064 .67345256 6.00 0.000 2.722043 5.362085

2 2.801114 6717262 4,17 0.000 1.484555 4.117673

3 .6732639 LT208577 0.93 0.360 -. 73965912 2.086119

Leb’s now use the contrast command to form contrasts among the ses slopes for the
three different school types. Let’s compare the ses slope for each group with group 2:
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private schools with public schools (1 versus 2) and Catholie scliools with public schools
(3 versus 2). These tests are computed using the contrast command bhelow. Note the
rb2. contrast operator compares each group with group 2.

. contrast rb2.schtype#fc.ses, effects nowald

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. z P>z {95%, Conf. Intervall
read
schiypeit
G.5es
(1 vs 2) 1.240851  .9512141 1.30  0.182 -.6233947 3.105296
(3 vs 2) -2.12785  .9853181 -2.16 0.031 ~4.069038 -, 1566617

The comparison of the ses slope for private versus public schoels {1 versus 2} is not
significant (p = 0.192). However, the test comparing the ses slope of Catholic versus
public achools (3 versus 2) is significant (p = 0.031).

See chapter 10 for further details about interpreting categorieal by continuous inter-
actions.

15.4 Example 3: Categorical by continuous interaction

This example also involves a study of 100 randomly chosen schools, from wlhich students
were randomly sampled. A standardized math score was measured for each student
(math}. The aim of this study is to look at gender differences in math performance
and to determine if smaller class sizes ave associated with smaller gender differences in
math scores. In other words, the aim is to determine if there is a cross-level interaction
between gender (a level-1 predictor) and class size (a level-2 predictor).

The dataset for this study is named school math.dta. The summary statistics for
this dataset are shown below along with a listing of the first five observations.

. use school_math

. summarize
Variable Dbs Mean S5td. Dev. Min Max
schoolid 2926 51.70813 28.564301 1 100
stuid 2926 16.65584 10.73641 1 52
math 2926 412.7519 104,0544 24 788
female 2926 .BOT5188 5000289 o 1
clsize 2926 24.41871 8.53494 9.853713 48.90636
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. list in 1/6
schoolid stuid wmath female clsize
1 1 1 417 1 24.187i1t
2 1 2 3560 1 24.18711
3 1 3 425 G 24.1871%
4 1 4 448 1 24.18711
B 1 B 375 o 24,1871t

The variable schoolid is the identifier for each school, and stuid is the ideutifier for
each student within a school. The standardized math scores have a mean of 412.75 and
range from 24 to 788. The variable female is coded: 0 = male and 1 = female. The
variable clsize is the average class size at the school level and ranges from 9.85 to
48.91.

The xtmixed command is used to predict math from female, clsize, and the in-
teraction of these variables. The variable female is specified as a random coefficient at
the school level.

. xtmixed math i,female#f#fc.clsize || schoolid: female, covariance{un) nolog
> noheader
nath Coef.  Std. Err. 4 P>zl [95% Conf. Intervall
1.female 13.83252 12,4097 i.11 Q.265 ~10.49003 38,15608
clsize -3.338499 ,3223871 ~4.15 Q.000 ~1.970366 -, 7066318
female#
¢.clsize
1 -1.103568 .4793638 ~2.30 Q.01 -2.043115 -.164044
_cons 451.5378 8.342066 54.18 Q.000 436 .56877 468.288
Random-effects Parameters "Estimate  Std. Err. [95% Conf. Intervall

schoolid: Unstructured

sd(female) 15.64575  7.396714 6.184135 39.51955

' 5d{_cons) 5.9566232 8.,087663 .41583 86.2B874

corr(female, _cons) 8476114 2.36192 -1 1
sd(Residual) 101.357v8  1.366809 98.71403 104.0725

LR test vs. linear regression: chiZ(3} = 16.08 Prob > ¢hi2 = 0.0018

Note: LR test is conservative and provided only for refaerence.

The i.female##c.clsize interaction is significant (p = 0.021). To help interpret
this effect, we can graph the results using the margins and marginsplot commands
below (see figure 15.3).
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. margins female, at(clsize={156(5}40))
{output omitted )

. margingplot, noci
Variables that uniquely identify margins: clsize female

Adjusled Predictions of female
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Figure 15.3. Math scores by gender and average class size

TFocusing on the gender differences, we see that the gender differences increase as a
funetion of class size. For a class size of 15, the math scores for females are close to the
math scores for males. For a class size of 40, the difference is much greater, In fact,
let’s assess the significance of the gender difference for class sizes ranging from 15 to 40
in five-sludent increments using the margins command below.

. margins r.female, at{clsize=(15(5)40)} centrast(effects nowald)} vsquish
Contrasts of adjusted predictions
Expression ! Linear prediction, fixed pertion, predict()

1._at : clsize = 15
2,.at : clsize = 20
3._at : clsize = 26
4, _at : ¢glsize = 30 ..
5._at t clsize = 35
6._at 1 clsize = 40
Delta-method
Contrast  Std. Err. z P>zl [95% Conf. Intervall
femaled_at

(1 ws 03 1 ~2.721172  6.1012587 -0.46 0.656 -14.67942 9.237072
(1vs0) 2 ~8.23907  4.612941 -1.79  0.074 ~17.28027 802128
(1 vs 0) 3 -13.75697  4.101536 -3.35 0.00%1 -21.79583 -B5.71B108
(1 va 0) 4 -19.27487  4.884204 -3.95 0.000 -28.84773  -9.702004
(Lvs Q) B 2479277 6,509822 ~3.81  0.000 -37.56178  -12,03376
(1 vs 0) 6 -30.31066 8.508207 -3.56 0,000 . -46,98644 -13.63488
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The gender difference in math scores is not significant for schools with an average
of 15 students per class (p = 0.656), and the gender difference reruains vonsignificant
for schools with an average of 20 students per class (p = 0.074). However, for schools
with an average of 25 students (or more) per class, female math scores ave significansty
lower than male math scores.

The margins command is repeated below for 15 to 40 students per class in one-
student increments {the output is omitted to save space). The marginsplot command
Is then used fo visealize the gender differences (with a confidence interval) across the
entire spectrum of class sizes (see figure 15.4). Where the confidence interval includes
0, the gender differences ave not sipnificant at the 5% level. '

. margins r.female, at{clsize=(15(1)40)) contrast(affects)
(outpitt omitted }

. marginsplot, recastci(rarea) yline(0)

Variables that uniquely identify margins: clsize

Gonirasts of Adjusted Prediclions of female with 95% Cls

20
L

¢

Contrasts of Linear Prediction, Fixed Partion
—40 -20
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-80
.

15 20 25 30 35 ' 40
Average class size ai school

Figure 15.4. Gender difference in reading score by average class size

This example has illustrated how you can interpret a cross-level interaction that in-
volves a categorical level-1 variable interacted with a continuocus level-2 variable. Chap-
tor 1) provides more details about the interpretation of such interactions, as well as
exampies that involve a three-level categorical variable interacted with a continuous
variable.

15.5 Example 4: Categorical by categorical interaction

‘This last example also involves 100 randomly sampled schools, with students randenly
sampled within the schools, This study focuses on gender differences in standardized

I

15.5 Exawple 4: Catogorical hy categorical inferaction 406
g Y 8

science scores, and whether such differences vary by school size. In this study, each
school is classified into one of three sizes: small, medium, or large. Thus the focus of
this study is on the cross-level interaction of gender by schiool size, where both gender
and school size are categorical variables.

The dataset for this example is wsed below. The summary statistics are shown for
the variables in the dataset, along with a listing of the Arst five observations.

. use school_science

. summarize

Variable Obs Hean Std. Dev. Min Max
schoolid 2764 45.80246 26.6763 1 90
stuid 2764 17.18247 10.8886 1 54
science 2764 409,1914 102.4861 88 779
famale 2764 4916787 5000212 ¢} 1
schsaize 2764 2,017004 .8279852 1 3

. list in 1/5

schoolid stuid science female  schsize

1. 1 1 312 ¢ 1
2. i 2 B56 1 1
3. i 3 372 g 1
4. i 4 333 0 1
5, 1 5 408 0 1

As with the previous examples, the variable schid identifies schools and the variable
stuid identifies students within the schools. The standardized science score is called
science, which has & mean of 408.19 and ranges from 88 to 779. The variable femals
is coded: ¢ = male and 1 = female. The variable schsize is a three-level catogorieal
variable describing the size of the school and is coded: 1 = small, 2 = medium, and 3
== Jarge.

The xtmixed connnand below is used to predict science from female, schsize,
and female#schsize. This last term represents the cross-level interaction of gender by
school size. The variable female is included as a random effect.
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. xtmixed science i.female##i.schsize || schoolid: female, covariance(un)
> nolog noheader
science Coef. Std. Err. z P>lz]| [95% Conf. Intervall
i.female ~19.84777 6.64678 -2.86 0.003 -32.67522 -6.62032
schsize }
2 18.56062  7.360262 2.52  0.012 4,134774 32.98647
3 40.16295  7.1964256 5.68  0.000 26.06821 654.26768
femalal
schsize
12 1.469645  9.540647 0.15 0.878 -17.22978 20.16887
13 22.24119 9.291424 2.3 0,017 4.03033 40,45204
_cons 394.8727  5.136907 76.89  0.Q00 384.9045 405.0408

Random-effects Parameters Estimate Std. Err. [95% Conf, Intervall

schoclid: Unstructured

ad(female} 6.,206287 16,53497 ,0334993 1i49.8t3

sd{_cons} 12.48107 4.,64229 §.020744 25.87338

corr{female,_cons) .2261316  2,213261 -, 98096612 . 999865

sd (Resldnal) 98.85493 1.372873 96.20139 101.5817

LR test vs. linear regression: chi2{3) = 12.15 Prob > chi2 = 0.0089

llote: LR test is conservative and provided only for reference.

The contrast command is used to test the overall female#schsize interaction,
This test is significant.

. contrasgt femaleftschsize

Contrasts of marginal linear predictions

Hargins : asbalanced

df chi2 P>chi2
science
female#schsize 2 7,47 0.0278

To help interpret this interaction, we can use the margins command to display the
adjusted mean of science scores as a function of female and schsize, as shown below.
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. margins schsize#female, vsquish

Adjusted predictions Number of obs = 2764
Expression  : Linear prediction, fixed portion, predict()
Delta-method
Margin  Std. Err. 1 P>zt [956% Conf. Intervall
schaize#
female .
10 394,9727  5.136907 76.89  0.000 384.9045 405.0408
11 375.3249  5.462731 68.71  {.000 364.6182 386.0317
20 413.6333 5.27121 78.45 0.000 403.201¢ 423,8647
21 395.3661  5.562012 7:.08  0.000 384.4537 406.2564
30 435.1356  5.030813 86.34  0.000 425,2576 445,0137
31 437.7291  b5,.357087 B1.71  0.000 427.2294 448,2287

We can create a graph of these adjusted means using the marginsplot command.
This creates the graph shown in figure 15.5.

. marginsplot, noci

Variables that uniquely identify margins: schsize femals

Adjusted Predictions of schsize#female
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Figure 15.5. Science scores by gender and schoal size

One way to further understand this inferaction is by testing the simple effect of
female for each school size. This is performed using the contrast command, as shown
below. The adjusted mean of science scores for females is significantly lower for females
in small schools (p = 0.003) and in mediwm schools (p = 0.008). This difference is not
significant for females in large schools (p = 0.690).
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- contrast female@schsize, novald pveffects of level-1 and level-2 variables, they can be visualized and interpreted using the same

Contrasts of marginal linear predictions techniques ilhustrated in chapters 5, 8, and 10.

Margins . asbalanced )
1 recommend that you consult your favorite hook abont umltilevel modeling for
Coptrast  Std. Err. z  P>lz] mnore background about this modeling technique. If you are new to muitilevel model-
i ing, you might prefer an introductory book rather than some of the advanced books.
::;f]ﬁzschsize For an introduction to multilevel modeling, T recommend Kreft and De Lecuw (1998),
{1 ve base) 1 T19.64777 - 6.64678  -2.96  0.003 Raudenbush and Bryk (2002), and Snijders and Bosker {1999). Rabe-Hesketl and Skro-
8 :: ::::; § H;%;;Zf? Sﬁgégl _g:ig g:ggﬁ g;laé (2012) provide advanced details about multilevel modeling with examples using

ata.

We can also further probe the interaction by using partial interaction fests. Let’s
apply the ar. contrast operator to school size (comparing each group with the previous
group) and interact that with gender. These partial interactions are tested using the
contrast command, as shown below.

. contrast female#ar.schsize, nowald pveffects

Contrasts of marginal linear predictions

Hargins : asbalancaed
Contrast  Std., Err. z Prlz]
science
femaleffschsize
(1 vs basa} (2 vs 1) 1.469545  9.540647 6.15 ©.878
(1 vs basa) (3 vs 2) 20.77164  9,433723 2.20 0.028

'Fhe interaction of the comparison of medium schools with sinall schools {group 2
versus 1) with gender is not significant (p = 0.878). This is illnstrated in figure 15.5
wliere we can see that the difference in the adjusted means for medhnn versus small
schools is roughiy the same lor males and feinales,

The interaction of the comparison of large schools with medium schools (group 3
versus 2) with gender is significant (p = 0.028). In figure 15.5, we can see how the i
difference in adjusted means for large schools versus medinm schools for feinales is
substantially greater than the corresponding difference for males. In fact, the outpat of
the contrast command tells ug that the female science scores increase by 20,77 points
more than male science scores when comparing large with mediwn schools.

This section has Hlustrated some of the ways that you can interpret a cross-level
interaction involving two categorical variables. Sec chapter 8 for more information
about how to dissect and understand interactions involving two calegorical variables.

15.6 Summary

This chapter has shown four examples illustrating how to interpret cross-level inferac- |
tions from a multilevel model. Although cross-level interactions involve a comhbination i




16 Time as a continuous predictor

16.1 Chapfer overview . . . . . . . .., . 411
16.2 Example I: Linear effect of time . . . .. . ... ... ... . 412
16.3 FExample 2: Linear effect of time by a categorical predictor . . 416
16.4 Example 3: Piecewise modeling of time . . . . . . . .. .. .. 421
16.5 Example 4: Piecewise effects of time by a categorical predictor 426
16.5.1 DBaselinesiopes .. .. ... .. . . 430
16.6.2  Change in stopes: Treatment versus baseline’, . . . . . .. 431
16.5.3 Jumpat treatment . . ., ... ... L. L L., 432
16.5.4 Comparisons among groups . . . . . . v v v e L 433
166 Summary . . .. .. ... o 434

16.1 Chapter overview

This chapter considers models involving the analysis of longitudinal data. Such designs
involve participants that are observed at mmore than one time point and time is generally
treated as one of the important predictors in the model. Like any predictor, we need to
ask ourselves how we want to model the relationship between time and the onteome. A
key distinction is whether time will be treated as a continuous variable or as a categorical
variable. This chapter includes four examples of modeling time where time is treated
as a continuous variable, and chapter 17 shows examples where time is treated as a
categorical variable.

The four examples in this chapter illustrate modeling of time as a linear predictor
(see section 16.2), modeling an interaction of the lincar cffect of time with a categorical
predictor (sec section 16.3), modeling time using a piecewise model {see section 16.4),
and modeling the piecewisc effects of time interacted with a categorical predictor (see
section 16.5).

There are several approaches that can be used for edeling longitudinal data, includ-
ing repeated-measwnes analysis of variance (ANOVA), generalized estimating equations
{GEE}, and multilevel modeling. This chapter will focus on using multilevel modeling
for analyzing longitudinal models where time is treated as level 1 and the person will
be treated as level 2. In such a model, characteristics that change as a function of time
are level-1 predictors and characteristics that are a property of the person that do not
change over time are level-2 predictors.

411
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This chapter assumes that you are already familiar with multilevel modeling as well
as application of sueh models for the analysis of longitudinal data. (To gain such knowl-
edge, I would highly recommend Singer and Willeti [2003].) This chapter aims to build
upon that knowledge by illustrating how to fit such models using Stata. Furthennore,
the chapter aims to relate the fitting of longitudinal models to techniques illustrated in
previous chapters {especially chapters 10 and 12).

16.2 Example 1: Linear effect of time

Let’s begin by considering a simple model in which we look at, the linear effect of thue on
the outcome variable. For example, let’s consider a study in which we are locking at the
number of minutes people sleep at night over a seven-week period. In this hypothetical
example, 75 people were enrolled and each person’s nightly sleep time (in minutes) was
recorded on eight occasions; approximately once every seven days.

The dataset for this study is organized in a long format, with one observation per
person per night of observation. There are 75 people who were each observed eight
times; thus the dataset has 600 observations. Let’s look at the first five observations in
the dataget.

. use sleep_conlin
+ list in 1/6

id obsday sleep

1. 1 1 382
2. 1 6 382
3. 1 13 390
4, 1 21 378
5. i 27 401

The day of observation is stored in the variable obsday. The first person slept 382
minutes on day 1. When observed on day §, the person again slept 382 minutes. When
observed on day 13, the person slept 390 minutes.

Let’s now look at the summary statistics for the variables in this dataset.

. summarize

Variable | Dbs Hean Std. Dev. Min Hax
id 800 38 21.66677 1 75
obsday 600 - 23.585 14.82854 i 52
sleep 800 360.785 48,13086 175 528

The variable id identifies each person and ranges from 1 to 75, representing the 75
people in this study. ‘The variable obsday indicates the day of observabion and ranges
from 1 to 52. The variable sleep represents the number of minutes the person slept on
a particular night, The average of this variable is 360.79, with a minimum of 175 and
a maximmun of 528,
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If there were no repeated observations in the dataset (that is, the residuals were
independent), we could examine the linear relationship between time {obsday) and the
number of minutes of sleep (sleep) using the linear regression methods described in
chapter 2. Instead, we can fit a randon-intercept model that accounts for the noninde-
pendence of the residuals within each person. Such a model is fit below frst using the
xtset command to specify that id is the panel variable and obsday is the time variable.
We can then use the xtreg command to fit a random-intercept modet predicting sleep
from obsday.

. xtset id obsday
panel variable: id (weakly balanced)
time variable: obsday, 1 to 52, but with gaps
delta: 1 unit

. ¥treg sleep obsday

Random-effects GLS regression

Number of obs = 600

Group variable: id Number of groups = 78
R-sq: within = 0.1652 bGbs per group: min = 8
betwesn = Q,0062 avg = 8.0
overall = 0.0218 max = 8

Wald chi2(i) = 103.56

corr(u i, X} = 0 (assumed) Prob » chi2 = 0. 0000
sleep Coef. Std. Err. z P>lz] [95% Conf. Intervall

obsday .508B4382 .0499837 10.18 0.000 4106821 LB0G6144

_cons 348.7987 5.311844 65.66 0.000 338.3877 359.2097

sigma_u 44, 412437
sigma_e 18.061717
rho .85821678 (fraction of variance due to u_i)}

The hterpretation of the obaday coeflicient is straightforward, For each additional
day in the study, the number of nightly iniuutes of sleep is predicted to increase by 0.51.
Multiplying this by seven yields perhaps a simpler interpretation. For cach additional
week in the study, participants slept, on average, an additional 3.6 minutes per night.
This coefficient describes the trajectory of sleep durations across the days of the study.

Terminology! Slopes

In this chapter, I will refer to the obsday coefficient in two different ways. TFor
example, I will eall it the obsday slope, indicating that it is the slope associated
with the day of observation. Sometimes, for simplicity, I will refer to this as the
slope.
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In this model, the coeflicient for obsday is treated as a fixed effect. The model fits
one fixed trajectory of sleep durations across days. The model recognizes that people
randomly vary in terms of the average quality of their sleep {represented by the random
intercept). But perhaps people also vary individually in trajectory of their sleep pattern
across the weeks of the study. By adding obsday as a random coeflicient (that is, a
random slope), the model can account for both individual differences in the average
quality of sleep {that is, a random ntercept) and individual differences in the sleep
trajectory across the weeks of the study (that is, a random slope for obsday). We can
fit such a model using the xtmixed command, shown below. (Note that the nolog
option is used to suppress the iteration log to save space.)

. xtmixed sleep obsday 1! id: obsday, covariance{un) nolog

Mixed-effects ML regression ¥umber of obs = 600
Group variable: id ¥umbexr of groups = 75
Obs per group: min = 8

avg = 8.0

max = a8

Wald chi2{i) = 20.54

_ Log likelihood = -2488.5378 Prob > chi2 = 0.0000
sleep Coef, Std. Err. z P>zl [96% Conf. Intervall

obsday . 51044986 1126409 4,53 ©.000 .2B9BTT4 \ 7312217

.cong 348.8206  3.308517 106.43  0.000 342.3359 365,305
Randem-effects Parameters Estimate Std. Err. [95% Conf. Intervall

id: Unstructured

sd{obsday) . 9448007 .0821818 7867094 1.120419

sd(_cons) 27.856383 2.407667 23.51307 32.98617

corr{obsday, cons) . 5432602 . 0924904 3377754 . 6993008

sd (Residual) - 10.06109 . 3352223 5.425063 10.74004

LR test vs. linear regression: chi2{3) = 1360.i1 Prob > chi2 = 0.0000

Hote: LR tast is conservative and provided only for reference.

The slope of the relationship between sleep duration and observation day is signifi-
cant (z = 4.53, p = 0.000). For cach additional day in the study, the participants slept
an additional 0.51 minutes. (Note that this estimate is not much different from the
coefficient estimated by the xtreg command.)

This model added a random effect for obsday, which we sec reflected in the es-
timate of sd(obsday) in the random-effect portion of the cutput. This represents
the degree to which the sleep trajectories vary between individuals. As described in
Singer and Willett (2003), we can form a simple one-sided z test to determine if this
value is significantly greater than 0. We can compute a z statistic by dividing the es-
timate (0.9448) by its standard ervor (0.0822), which yields a z-value of 11.50. This
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value well exceeds 1.645 (the 5% cutoff for a one-sided # test), suggesting that there is
significant variation in the skeep trajectories among individuals.?

We might be interested in estimating the predicted mean wumber of minutes slept at
night across the weeks of the study. Let’s estimate this {or the first 50 days of observation
in 7-day increments. These predicied means are computed using the margins command
below.

- . margins, at{cbsday=(1(7)50)} vsquish

Adjusted predictions Number of cbs = 600

Expression : Linear predictior, fixed portiom, predict()

1. at 1 cbsday =

2. at ¢ obeday = 8

3, _at ; obaday = 15

4, _at ¢ obsday = 22

5. _at : ohsday = 28

6. _at i obsday = 36

T, at ¢ obsday = 43

8. _at ¢ obsday = 80

Delta-method
Margin Std. Err. z Py |z| [95¥ Conf. TIntervall

_at
1 349,3309 3.362049 103.9C 0.000 342,7414 355.9204
2 352.9041  3.809664 92,63 0,000 345.4373 360.3709
3 356.4772  4.365127 81,85  0.000 347.2413 365.0131
4 360.0504  4.966301 72,860 0.000 360.3166 369.7841
& 363.6235 5.621796 64,68  0.000 352.605 374,642
6 367.1867 6.307808 58.21 0.000 364,8336 379.5597
7 370.7698  7.015392 52,86  0.000 367.0199 384.56197
8 374.343  7.738632 48.37  0.000 369, 1766 389.5104

The predicted mean of sleep for the first day of the study (obsday = 1) is 349.33
minutes. The 95% confidence interval for this estimate is 342.74 to 355.92. On the
H0th day of the study, the predicted mean of gleep is 374.34 miites, We canr graph the
predicted mean sleep duration by the day ol observation using the marginsplot com-
mand (shown below). The graph, shown in figure 16.1, also includes a 95% confidence
interval for the predicted mean for the days specified in the at () option of the margins
comumnand.

1. Singer and Willett {2003) note that although this is a simple test to perform, there is disagrcement
over its appropriateness and it is probably best treated as a guick, but imprecise, test. They
provide a useful discugsion of the concerns surrounding this test and provide an alternative test
that may be more preferable. The most appropriate method for performing such tests appears to
be an unsettied question and the topic of continued research. |
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. marginsplot
Variables that uniguely identify margins: obsday

Adjusted Predictions with 95% Cis
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Figure 16.1. Minutes of sleep at night by time

This model could have included covariates at the person level (for example, gender
or education) and could have included covariates at the time level (for example, day of
week or number of hours worked before going to bed}. The margins command would
have estimated the effect of the day of observation after holding the covariates constant,
and you could have used the at () option to hold the covariates constant at a specifiad
level.

Let's next consider an example that builds npon this niwodel, adding a categorical
predictor. )

16.3 Example 2: Linear effect of time by a categorical pre-

dictor

Let’s consider an extension of the previous rypothetical sleep study and suppose that
participants were randomly assigned to one of three different treatments to increase the
number of minutes of sleep at night. The three different treatments were 1) control
group (no treatment), 2) medication group (where a sleep medication is given), or 3)
education group (where the participantis receive education about how to sleep better
and longer).

In the previous example, we noted that people differed in their sleep trajectories
across the weeks of the study. This study will explore whether the sleep trajectories
vary as a funclion of trealment group assigmment. For example, the average sleep

\
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trajoctory for the medication group might be stecper than the sleep trajectory for the
control group.

This mode] involves a combination of a continwous predictor (thne) and a three-
level categorical predictor (freatment proup). This is akin to the model we saw in
section 10.4 in which age was treated as a continuous predictor and the three-level
srouping of education was treated as a categorical variable. Although we will use
the xtmixed command instead of the regrass conunand, the logic, interpretation, and
postestimation commands for understanding the results of the model are much the same
as we saw in section 10.4. {The rest of this section may make mare sense il your revisit
section 10.4.)

Let’s begin by using the dataset for this example and listing the first five observations
and showing summary statistics for the variables in the dataset.

. use sleep _cat3conlin, clear
. list in &/B5

id . group  cbsday sleep
1. 1 Centrol 1 370
2. 1 Control 7 asz
3. 1 Control 13 arv
4, 1 Control 18 408
5. 1 Control 24 385
. summarize
Variable Gbs Mean Std. Dev. Min Max
id 600 38 21.66677 1 75
group 600 2 LBI717T8 i 3
obsday 500 20.18833 12.76994 i 46
sleep 600 358.5433 52. 49158 225 504

We can sec that the variable id identifics the person. The variable group refieets
the person’s treatment group assigniment, coded: 1 = control, 2 = medication, and
3 = education. The variable obsday is the day in which the person’s sleep was obsorved.
This represents time in terms of the munber of days from the beginning of the study. Fhe
variable sleep is the number of minutes they slept for the particular day of observation
(that is, the sleep duration). Note that the treatnent group assigniment is a property
of the person, making it a level-2 variable, and observation day is a level-1 variable.

We can fit a model that predicts sleep from the observation day, the group assign-
ment, and the inferaction of these two variables using the xtmixed command shown
below. Note that the random-effects portion of the model specifies that obsday is a
random effect. [Thinking in terins of a multilevel model, group#obsday is a cross-level
interaction of a level-2 variable (group) with a level-1 variable (obsday).]
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- xtmixed sleep i.group##c.obsday {| id: obsday, covariance(un) nclog

Hixed-effects ML regression Number of obs = 60O

Group variable: id Number of groups = 75

Obs per group: min = 8

avg = 8.0

max = 8

Wald <hi2(B) = 66,55

Log likelihcod = -2482.6017 Prob > chi2 = 0.0000

sleep Coa¥.  Std. Err. z Prizl [95% Conf. Intervall
group

2 3b.48106  9.498675 3.74  0.000 16.86399 54,08812

3 5.562734 9.499246 0.58 0.5569 --13.068545 24,17092

ohsday ~-.0667762  .1798984 -0.37 0.715 —. 4183707 . 2868183

group#

<.cbsday

2 .1815398  .2539227 0.71  0.475 ~.3161396 6792191

3 .8307836 2541045 3.27  0.001 332748 1.328819

..cons 339.4458 6.717216 50.53  0.000 326.2803 362.6113

Randem-effects Parametars Estimate Std. Err. [98% Conf. Intervall

id: Unstructurad

sd{ob=day} . 8480781 Q777974 .7085196 1,0161286

sd(_cons) 32,856583  2.802788 27.79714 38.83513

corr{obsday, _cons) . 8081957 .OBT7T7369 66165241 .8953146
sd(Residual} 10.40992 . 3467126 0.752078 11.11213

LB test vs. linear regression: chi2(3) = 1425.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We can interpret the results of this model using the same tools and technigues il-
lustrated in section 10.4. Let’s begin by making a graph of the predicted means as
a function of time and treatment group. We first use the margins command to esti-
mate the predicted means by group at sclected values of obsday. We follow that with
the marginsplot command to graph the predicted means computed by the margins
command. Figure 16.2 shows the graph of the predicted means produced by the
marginsplet command. :
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. margins group, at(cbsday=(0 45))
(output emitted)

. marginsplot, neci

Variables that uniquely identify margins: obsday group

Adjusted Predictions of group

-

380 370 . 380
L X L

Linear Prediction, Fixed Portion
350
\

j=]
7
«©r (’R
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0 45
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—&— Contral - - Medication
i Edurcation

Figure 16.2, Mimites of sleep at night by thne and treatment group

Let’s focus on the slope of the relationship between sleep durations and day of obser-
vation. ‘The slope appears to be slightly negative for the control group. In other words,
their sleep durations appear to mildly decrease as a linear function of the observabion
day. For the medication group, the slope appears to be stightly positive. By contrast,
sleep durations increase as a linear function of time for the education group. Tn other
words, the obsday slope is positive for the education group.

Let’s use the margins comnmand o estimate the three slopes depicted in figure 16.2.
This is computed using the margins command, including the dydx (obsday) option to
estimate the obsday slope.

. margins, dydx(obsday} over(group) vsquish
Number of chs = 600

Expression  : Linear prediction, fixed portion, predict()
dy/dx w.r.t. : obsday

Average marginal effects

over t group
Delta-method
dy/dx  Std. Err. z P>z} [95% Conf. Intervall
obsday
group
1 -, (657762 1798984 -0.37 0.715 ~.4183707 .2868183
2 . 1157638 .1792018 0.85 0.518 —-.2354655 .466992T7
3 LTBEG0T4 1794593 4.26 0.000 . .4132737 1.116741
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The obsday slope for the control group (group 1) depicted in figwre 16.2 is —0.07
but is not significantly different from 0. The slope for the medication group (group 2)
i3 0.12 and is also not significantly diffevent from 0. For the education group (group 3),
the obsday slope is 0.77 and is significantly diffevent from 0. This is consistent with
the positive slope for the education group illustrated in figure 16.2. For the education
proup, sleep durations increased {on average) by 0.77 minutes for every additional day.

Let’s now form comparisons of these slopes, comparing the slope for each group
against group 1 (the control group). The r. contrast operator is applied to group to
form reference group comparisons.

. margins r.group, dydx(ebsday) contrast(effects nowald)
Contrasts of average marginal effects

Expression ! Linear prediction, fixed portien, predict()
dy/dx w.r.t. : obsday

Contrast Delta-method
dyfdx  Std. Err. 2 P>zl [95% Conf. Interval]
obsday
group
(2 vs 1) .1815398 2539227 0.71 0.475 -.3161395 .6792181
(3 vs 1 .B307836 .2541045 3.27  0.001 . 332748 1.328819

The first test compares the obaday slope for the medication group with the control
group (2 versus 1), The difference in these slopes is 0.18 and is not significant. This is
cohsistent with what we saw in figure 16.2 in which the slopes for the medication group
and control group were not very different.

The second test compares the slope for the education group with the siope for the
controi group (3 versus 1), The difference in these slopes is 0.83 and is significant. The
stope for the education group is significantly steeper than tha slope for the control group
(see figure 16.2). For every additional day in the study, the educalion group sleeps an
additional 0.83 more minutes than the control group.

Say thal we wanted to compare the predicted mean of sleep duration for each group
with the control group across all days of cbservation. The margins command can be
combined with the marginsplot command to create a graph that compares each group
with the control group at each of the days of ohservation (1 to 45 days). The graph
creabed by the marginsplot command, shown in figure 16.3, shows the medication group
cornpared with the control group (2 versus 1) in the left panel and the comparison of the
education group with the control group (3 versus 1) in the right panel. The confidence
interval for each comparison is shown with a reference line at zero. Where the confidence
interval excludes zero, the difference is significant at the 5% level.

e

-}

16.4  Example 3: Piecewise modeling of time 421

. margins r.group, at{obsday=(1(1)45))
{output amitted)

. marginsplot, bydimension(group) yline{0} xzlabei{1(7)45)
> recast(iine} recastci{rarea)

Variables that uniquely identify margins: obsday group

Conirasts of Adjusted Predictions of group with 95% Cls
group: {2 vs 1) group: (3vs 1)

100
L

50
I

Contrasts of Lingar Prediction, Fixed Portion

Day of observation
Figure 163, Minutes of sleep at night by tine and treatment group

Looking at the left pancl of figure 16.3, the confidence intervals always exelude zero.
"This indicates that for every day of abservation (that is, from 1 to 45 days), we are 95%
confident that the mean number of minutes slept by the medication group is greater
than that of the control group. In the vight panel, comparing the education group
with the countrol group, the confidence intervals do not exclude zero from day 1 to
day 31. Beginning with day 32, the confidence intorval excludes zero. We can say with
95% confidence that the education group slept more minutes than the control group
beginning on the 32nd day.?

16.4 Example 3: Plecewise modeling of time

Let’s consider an example similar to the one illustrated in example 1 in section 16.2
carlier in this chapter. Like that example, this example studies sleep over time with
75 participants whose sleep at night is measured approximately every seven days for a

2 1 you run margins command for yourself 1o see the output that was omitted, you would see the
p-value for each comparison. This shows that the dillerence hetween the education group and the
control group is significant on the 32nd day and every day thercafter.
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total of eight observations. The difference is that in this study, the first 30 days are
considered a baseline period during which sleep is simply observed, beginning on the
31st day, participants are given medication aimed to increase their minutes of sleep.

Time can be modeled in a piecewise fashion by breaking up the days of observation
into the baseline phase and the treatment phase. This study can be analyzed and
interpreted using a model similar to the one illustrated in section 4.5. (This section
may make more sense if you revisit section 4.3.) That example showed how income
could be modeled as a function of education, where education was divided into two
phases, before and after high school graduation. That analysis allowed us to assess the
stope of the relationship between education and income at each phase and to also assess
the effect of graduating high school on income.

In this example, we can assess the slope of the relationship between sleep duration
and time (obsday) during the baseline and treatment phases. We can also test for
a sudden jump in sleep duration on the 31st day, corresponding to the start of the
treatment phase.

Let's begin by looking at the first five observations from the dataset, as well as

sununary statistics for the variables in the dataset. /“

. use sleep_conpw, clear
. list in 1/5, sepby(id}

id  obsday sleep
1 1 1 286
2 1 <] 283
3 i 10 267
4 1 17 266
5 1 23 288
. summarize
Yariable Obs Mean S5td. Dev. Min Max
id 800 38 21.66677 i 75
obsday 600 23.81667 15,10474 i 55
slaep 600 355,095 103.3013 110 6h4

The variable id is the identifier for each person. The variable obsday reflects the
day of observation, ranging from 1 to 85. The variable sleep is the duration of sieep
(in minutes) for the given day of observation. The mean number of minutes of sleep is
355 and ranges from 110 to 654.

We need to create some variables to prepare for the piecewise analysis. First, we
use the mkspline command to create the variables named obsdayim and obsday2m,
placing the knot at 31 days (corresponding to the start of the treatment phase). The
marginal option is used, so the coefficient for obsdayim will represent the slope during
the baseline phase, and the coefficient for obsday2m will represent the slope during the
treatment phase minus the slope during the bascline phase,
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. mkspline obsdayim 31 obsday2m = obsday, marginal

Next we create the variable trtphase that is coded 0 for the baseline phase (where
obsday was 1 to 30) and coded 1 during the treatment pliase (where obsday is 31 or
mare).

. generate triphase = 0 if obsday <= 30
{224 missing valnes generated)

. replace trtphase = 1 if obaday »>= 31 & Imissing(obsday)
{224 real changes made)

We are now ready to run a piecewise model that predicts sleep from obsdayim,
obsday2m, and trtphase. In this example, obsdayim, obsday2m, and trtphase are
also included as random effects.® This model is fit using the xtmixed command below.

. xtmixed sleep obsdaylm obsday2m trtphase || id: obsdayim obsday2m trtphase,
> covariance{un} nolog

Mixed-effects ML regression Number of obs = 600
Group variable: id Number of groups = 75
Obs per group: min = 8

avg = 8.0

max = 8

Wald chiz(3) = 70.48

Log likelihood = ~2601,8889 Prob > chi2 = 0.0000
slieep GCoef.  Std, Err, z P>zl {95% Conf. Iaterval}l
obsdayim -.005795 1193362 -0.05 0,961 ~. 2396896 2280997
obaday2m .6434219 . 1663013 3.2 0.001 L2174773 . BGY3GEE
triphase 11,13768  1.941483 5.74 0.000 7.332444 1494202
..cons 342.6109 10.6413 32.80 0.000 328,1543 369.8674
Random-effects Parameters Estimate Std. Err, {95} Conf. Imtervall

jd: Unstructured

sd (obsdayim) . 9004662 096832 . 7386509 1.419785

sd (obsdayZm) 8322822 . 2009094 .5186643 1,338817
sd(trtphase) 7.71666  3.169023 3.440641 1725773

sd(_cons) 91.79007  7.554249 78.11645 107.8571
corr(obsdaylm,obsday2m) -.4855233  .1829304 -.7613048 -. 060985
corr(obsdayim,trtphase) -.2194769 2633348 -.6442193 3087293
corr {obsdaylm,_cons) 3936655 1171713 1432767 .BOGE3TT
corr{obsday2m, trtphase) 4419133 .53B1864 -.6811901 .9447536
corr (obsday2m,_cons) ~.0679099  .2028779 -.4361693 .3198331
corr{trtphase,_cons) ~-.1886818  .2601614 -.6167236 3264764
ad{Residual) 10.09236 . 3899251 9.338181 1¢.90744

1R test vs. linear regression: chi2(10) = 2057.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

3. See Singer and Willet (2003} for a detailed discussion of liow to select the appropriate random
effects.
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To help with the interpretation of this wodel, let’s begin by graphing the predicted
means as a function of observation day. We need to express observation day in ternis of
obsdayim and obsday2m. First, let’s look at the coding for obsdayim and obsday2m at,
three key days in the study, when observation day is 1, 31, and 49, These corresposnd
to the heginning of the study, the start of the treatment phase, and the approximate
end of the study.

. showcoding obsday obsdaylm obsdayZm if inlist{obsday,1,31,4%)

obsday  obsdaylm  obsday2m

1 1 0
31 31 0
49 49 18

We can then use the margins command to compute the pradicted means for these
key days. When obsday equals 31, we esthmate the predicted mean assuming trtphase
is 0 and 1, to estimale the juup in the fitted values due to the start of the treatment

plinse, (The noatlegend option is included to save space. ’
E

. margins, at(obsdaylm = 1 obsday2m = 0 trtphase=0)

> at (obsdaylm = 31 obsday®m = 0 trtphase=0)
> at (obsdaylm = 31 obsday2m = 0 trtphase=1)
> at (obsdaylm = 49 obsday2m = 18 trtphase=l} noatlegend
Adjusted predictions Number of obs = 600
Expression ¢ Linear prediction, fixed poxrtion, predict()
Delta-method
HMargin Std. Err. z prizi [85% Conf. Interval]
_at
1 349.0051  10.87386 32.68 0.000 328.074% 368,8362
2 348.8312  12.30066 28.36 (.000 324.7224 372.9401
3 358.9689 12.15626 29.61  £.000 336.1431 383.7847
4 369.6462 13.11127 28.18 0.000 343.9486 305.3438

Using the techniques from scction 4.10, we save the predicted means to the current
dataset.

. matrix yhat = r(b}”

. matrix day = (1 \ 31 \ 31\ 49}
. svmat yhat

. svmat day
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. list yhatl dayl in 1/4

yhati  dayl
1. 349.0051 1
2. | 348.8312 31
3. 369.9689 31
4. | 369.6462 49

We can now graph the fitted values. The praph is shown in figure 16.4.

. graph twoway line yhatl dayl, sort x1ine(31) xlabel{1(7)49 31)

yhat1
380 385 370
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Figure 16.4. Minutes of sleep at night by time

Let's now relate the graph in figure 16.4 to the results from the xtmixed command.
The cocflicient for obsdayim represents the slope during the baseline phase. This value
is —0.01 and is not significantly different from 0. We see this in figure 16.4 as a nearly
Hat line from day 1 to 31. The coefficient for obsday2m reflects the change in the slope
for the treatment phase minus the bageline phase. The difference in these slopes is
0.543 and is significant. We can estimate the slope during the treatment phase using
the lincom command.

. lincom obsdaylm + obsday2m
( 1) [sleeplobsdayim + [sleeplobsdayZm = 0

sleep Coef.  Std. Err. z Prlz| [95% Conf. Intervall

(1) .5376269 1607347 3.3¢  0.001 2295028 8526611
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During the treatment phase, each additional day of observation is associated with
sleeping 0.538 additional minutes of sleep per night,

Finally, consider the coefficient for trtphase. This represents the jump in sleep at
the start of the treatment phase (when observation day is 31). This coefficient is 11.1
and is statistically significant. We can see this 11.1 minute jump in sleep that occurs
when observation day is 31 in figure 16.4.

This example has illustrated the application of a piecewise model with one knot and
one jump for a longitudinal model with a treatment phase and a control phase. Chap-
ter 4 illustrates other kinds of piecewise models that could be applied to the analysis of
longitudinal data. However, it is important to cavefully select the appropriate random
effects for such models (see Singer and Willett [2003] for gnidance).

16.5 Example 4: Piecewise effects of time by a categorical
predictor. '

Let’s consider an extension of the previous example that includes a baseline and treat-
ment phase, but where participants are divided into different groups and receive differ-
ent kinds of treatiments during the treatment phase. Like the previous example, sleep
is measured approximately once a week for a total of cight measurements. However,
participants are randomly assigned to one of three groups: a control group, a medication
group, or a sleep education group.

The first 30 days of the study are a baseline period during which the sleep is observed,
but no treatment is administered to any of the groups. Starting on the 31st day, the
medication group receives sleep medication, the sleep education group receives education
about, how to lengthen their sleep, and the contro! group receives nothing. The first
phase of the study (days 1 $o 30} is called the bascline phase, and the second phase
{day 31 until the end of the study) is called the treatment phase.

In this study, time can be modeled in a piecewise fashion, one piece being the baseline
phase and the other piece being the treatment phase. We can study the slope of the
relationship between sleep duration and time during each of these phases, as well as
the chiange (jump or drop) in sleep that occurs at the transition from baseline to the
treatment phase. Purtherimore, we can investigate the impact of the treatment group
assignment (control, medication, and education) on the slope in each phase, as well as
the jump or drop in sleep due to the start of the treatinent phase.

The data for this example are stored in the dataset named sleep_cat3PW.dta. Let’s
begin by using this dataset, listing the first five observations, and showing summmary
statistics for the variables.
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. use sleep_cat3pw, clear
. list in 1/8, sepby(id)

ig group obsday  sleep
1. i Control 1 353
2. 1 Control 9 345
3. 1 Control 15 340
4., i Control 21 337
5. i Control 26 324
. summarize
Variable Obs Hean Std. Dev. Min Max
id 600 38 21.66677 1 75
group 800 2 8171778 i 3
obsday 600 23.815 15.02877 i b4
sleep 600 362.4817 39.72333 207 531

The variable id identifies cach person and ranges from 1 to 75. The variable group
identifies the group assignmient, coded: 1 = control, 2 = mnedication, or 3 == education.
The variable obsday is the day of observation, ranging from 1 to 54. The variable sleep
is the duration of sleep {in minutes) and ranges from 207 to 531.

The analysis strategy illustrated in section 12.2 can be useful for analyzing this
dataset. Imagine the educational periods (before high school gradnation and after high
school graduation) being replaced with the baseline and treatinent phases. Also, imagine
gender (male and female) being replaced with treatment group assignment (control,
medication, and education).

Before we can run the piecewise analysls, we need to create some variables, First, the
mkspline connmand is used to create the variables obsdayim and cbaday2m, specifyiug
31 as the knot. By including the marginal option, obsdayim will represent the slope
for the baseline period and obsday2m will represent the change in the slope for the
treatment period compared with the baseline period.

. mkspline obsdaylm 31 obsday2m = obsday, marginal

To account for the jump in sleep at the start of the treatiment phase, we use the
generate and replace commands to create the variable triphase that is coded: 0 =
bageline and 1 = treatment.

. generate irtphase = Q0 if obsday < 31
(222 missing values generated)

. replace trtphase = 1 if obsday >= 31 & Imissing(obsday)
(222 real changes made}
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Now the variables are ready for running the piecewise model. Let’s fit a piecewise
model like the one described in section 12.2. Specifically, let’s use the modeling strategy
described as coding scheme #4 from section 12.4.4.% In this example, the categorical
variable group takes the place of female., The variable trtphase takes the place of
hsgrad, and obsdayim and obsday2m take the place of edim and ed2m. The xtmixed
conunand for fitting this model is shown below. Note the variables trtphase, obsdayim,
and obsday2m are specified as random effects. The nolog, noheader, and noretable
ophtions are used to suppress the iteration log, header, and randomn-eflfects table to save
space.

. xtmixed sleep i.groupi#(i.trtphase c.obsdaylm c.obsday2m),
> i id: trtphase obsdaylm obsdayZm, covariance{un) nolog noheader noretable

sleep Coef. Std. Err, z P>|z) {95% Conf. Intervall
group
2 ~2.072872 3.411818 -0.81 0.543 -8.759912 4.614168
3 16.31454  3.41037L 4.78  0.000 9.630336 22.90875
1.trtphase ~4,2038563  2.783214 ~1.5% 0.132 ~8.678451 1.2707456
obsdayim -.0415024  .2098389 ~-0.14  0.890 ~.6291758 L5461711
obsday2m -. Q966278 .BO77213 -0.18  0.849 -1.091743 .89584879
group#
trtphase
21 34.28463  3,997248 8.68  0.000 26.45016 42.11909
31 1.647258  3.973666 0.41 0,678 -6.140983 9.4355
group#
c.obsdaylm
2 .4016104 . 4238518 0.5 0.343 -.4291239 1.232345
3 -.1437658  .4240338 -0.34 0.735 ~. 9748667 6873261
groupd
¢, obsday2m
2 ~-.2913187 7196831 ~0.40 0.686 -1.701891 1.119254
3 2,478031  ,T1T6661 3.45 0.001 1.071433 3.884629
cons 351.3643 2.414271 145.54 0.000 346,6324 356.0962

Note! More on the random effects

Thinking in terins of a multilevel model, the variables trtphase, obsdayim, and
obaday2m arve level-1 variables. The variable group is a level-2 (person level)
variable. Cross-level interactions are formed by interacting group with trtphase,
obsdayim, and obsday2m.

4. T chose this coding scheme because [ want to 1) focus on the comparison of the trcatment phase
with the baseline phase and 2) focus on the comparison of each group with the reference group {the
control group).
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The results from this model can be interpreted in the same manner as the results
from coding scheme #4 from section 12.4.4. But hefore we interpret the rosults, let’s
graph the predicted means as a fumction of observation day and group. However, we
need to express observation day in terms of obsdayim and obsday2m. Below we see the
coding of obsdayim and obsday2m for thivee particular days, the first day of the study
{when observation day is 1), the first day of the treatment phase (when observation day
is 31}, and the 49th day of the study (the approximate end of the study).

. showcoding obsday obsdayim obsday2m trtphase 1f inlist{obsday,1,31,49)

obhsday  obsdayim  obsday2m  triphase

1 1 0 0
31 31 0 1
49 49 i8 i

We can now use the margins command to compute the predicted mean of sleep
for each group at four key points—Ior the heginning of the study, the first day of the
treatment phase (with and without treatment), and the 49th day of the study. (The
noatlegend is used to save space.)

. margins group, at{obsdayim = 1 obsday2m = 0 trtphase=0}

> at (obadayim = 31 obsday2m = 0 trtphase=0}
> at{obsdaylm = 31 obsday2m = 0 +trtphase=1}
> at{obsdaylm = 49 obsday2m = 18 triphase=1} noatlegend

Adjusted predictions Number of obs = 600

Expression ¢ Linear prediction, fixed portion, predict()
Delta-method
Margin  Std. Frr. z Prlat [95% Conf. Intervall]
_at#group

11 351.3228 2.362294 148.72  0.000 346.6928 355,9528
12 340.6516  2,.359361  148.20  (.000 345.0273 354.2768
13 367.4936  2.357004 16B.91 0,000 362.8738 372.1134
21 350.0778 9.0411456 38.72 0.000 332,35674 367.7981
22 360.4648  5.037426 39.88  0.000 342.7418 378.1678
23 361.9356 9.0434 40.02  0.000 344.2108 379.6603
31 345.8739  9.052168 38,21 0.000 328,132 363.6108
32 390.5366  9.075722 43.03 0,000 372.7475 408.3237
33 359.379 9.058832 39.67 0.000 341.624 377.134
41 343.3876 11.2604 30.5¢ 0,000 321.3176 386.4575
4 2 390.0345  11.28474 34.62  0.000 367 .956 412,113
43 398.9094 11.25101 35.46 0.000 376.8578 420,961

Using the lricks from section 4.10, we can graph the estimates from the margins
command, creating the graph shown in figure 16.5.
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. * save predicted means as a watrix named -yhat-

. matrix yhat = r{b)”

. * save the day number in a matrix named -day-

.omatxix day = (0N O N O N 31N 31 %31 N 31\ 310\ 31\ 49\ 49\ 49)
. % save the group in a matrix named -gp-

smatrix gp o= (DN 2A3ININZANINEIN2ANBINENZNS)

. * Save the cantents of the matrices to the current dataset

. symat yhat

. svmat day

. symat gp

. graph twoway (line yhatl dayl if gpl==1} (line yhatl dayi if gpl==2)}
> (line yhatl dayl if gpl==3), xline{31) xlabel(1(7)49 30}

> legend(title(Treatment group)

> label(l “Control") label(2 "Medication®) label (3 "Fducation®} rows(1))
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Figure 16.5. Minutes of sleep at night by time and group

Looking at figure 16.5, we gee that the sleep durations for the controf group remain
much the same across the entire study with a tiny (but trivial} drop in sleep at the
start of treatment. For the inedication group, their sleep durations remain fairly steady
during the baseline phase, then jump at the start of treatment, and then remain steady.
The sleep durations for the education group are {airly steady during the haseline phase,
and then show a small dip at the start of treatment but a substantial increase in slope
during the treatment phase. Let’s relate the pattern of results we sec in figure 16.5 fo
the output from the xtmixed command.

16.5.1 Baseline slopes

The coelflicient for obsdaylm represents the slope refating observation day to sleep du-
ration during the haseline phase for the control group {(group 1). This coeflicient is
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—0.04 and is not significant. The coefficient labeled groupfobsdayim 2 compares the
basetine slope for the medication group with the control group. This difference is not
significant. The coefficient labeled group#obsdayim 3 compares the haseline slope for
the education group with the control group. This difference is also not significant. We
could test the equality of all the baseline slopes using the contrast command below.
This test is not significant.

. contrast group#c.obsdaylm
Contrasts of marginal linear predictions

Hargins : asbalanced

df chi?2 P>chi2
sleep
groupfic. obsdayln 2 1.78 0.4108

You can estimate the baseline slope for each group using the margins command
below. None of these tests are significant. For example, the baseline slope for group 1
is estimated as —0.04 and is not significantly different from 0.

. margins, dydu{obsdayim) over{group)

Average marginal effects Number of obs = 600
Expression : Linear prediction, fixed portion, predict()
dy/dx w.r.t. : obsdaylim
over t group
Delta—method
dy/dx  Std. Err. 2 P> |zi [95% Conf. Intervall
obsdaylm
group

i -.0415024 , 2098389 -0.14 0.880 ~.6291768 .5461711

2 .360108 .299578 1.20 0.229 -, 2270542 9472702

3 —.1852682 2098354 -0.62 0.837 -. 7729347 .4023984

16.5.2 Change in slopes: Treatment versus baseline

Beeause we included the marginal option (using coding scheme #4), the slopes asso-
ciated with obsday2m reflect the change in the obsday slope for the treatment period
minug the baseline period. TFor simplicity, let’s call this the change in slope. The
obaday2m coefficient is the change in slope for the control group. This coeflicient is
—0.10 and is not significant. The slope coefficient is not significantly different during
the treatment phase than during the baseline phase for the control group. The co-
efficient labeled group#obsday2m 2 compares the change in slope for the medication
group with the control group. This effect is not significant {p = 0.686). The coeflicient
labeled group#obsday2m 3 comparcs the change in slope for the education group with
the controf group. This effect is significant (p = 0.001). Referring ta figure 16.5, we can
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see that the change in slope for the education group is preater than the change in the

siope for the control group.

You can test the equality of the changes in slope coefficients for all three groups
using the contrast command below. This test is significant.

Chapter 16 Tihne as a continnous predictor

. contrast groupitc,obsdayZm

Contrasts of marginal linear predictions

Margins 1 asbalanced

af chi2 Prchi2
sleap
group#c.obsday2n 2 17.96 0.0001

You can estimate the change in slope for each group using the margins command
below. The change in slope for the control group amd medication group (groups t and
2} is not significant, For the education group (group 3), the slope during the treatment,

phase is significantly greater than the slope during the baseline phase,

. margins, dydx(obsday2m) over{group)

Average marginal effects

Number of obs = 600

Expression : Linear prediction, fixed portion, predict()
dy/dx w.r.t. : obsday2m
aver : group
Delta-method
dy/dx  Std. Err. z P>zl [95% Conf. Intervall
obsday2m
group

i -.0966276 5077213 -0.19 0,849 -1.091743 . 8984879

2 -.3879464 5100767 -0.76  0.447 -1,387675 . 6117837

3 2.381403 .5072103 &, 70 0. 000 1.38729 3.3758517

16.5.3 Jump at treatment

The coefficient for trtphase represents the jump {or drop) in sleep coinciding with
the start of the treatment phase for the control group. This coefficient is —4.20 but
is not significant. As we can see in figure 16.5, there is a slight drop in sleep at the
start of the treatment phase for the control group. The group#trtphase 2 1 coeffi-
cient is the difference in the jump or drop for the medication group compared with the
control group. For the medication group compared with the control group, sleep dura-
tions jump by 34.3 minutes at the start of the treatment phase and this is significant.
The group#triphase 3 1 coefficient shows the difference in the jump or drop for the
education group compared with the control group. This difference is 1.65 and is not

significant.

16.
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We can test the equality of the jump or drop for all three groups using the contrast
command below. This test is significant.,

. contrast groupHtrtphase

Contrasts of marginal linear predictions

Margina : asbalanced

daf chi2 P>chi2
sleep
group#trtphase 2 92,68 &, 0000

We can estimate the size of the jump or drop in sleep durations at the start of the
treatment phase for each group using the contrast command below. FHor the control
and education groups {groups 1 and 3), there is a drop in the sleep duration at the start
of the treatment phase, but neither of these drops ave significant. For the medication
group {group 2), sleep duration jumps by 30.1 minutes at the start of the treatment
phase and that jump is significant.

. contrast trtphasedgroup, pveffects nowald
Contrasts of marginal linear predictions

Margins 1 asbalanced

Contrast  Std. Err. =z P>z
sleep
triphasedgroup
(1 vs base) 1 ~-4.203853  2,793214 -1.61 0,132
(1 vs base) 2 30,08077  2,859362 i0.652  0.000
(1 vs base) 3 -2.55659%  2,826301 -0.90 0,366

5.4 Comparisons among groups

We can make comparisons among the groups at particular days within the study. Let’s
focus on the day before the start of the treatment (when observation day is 30), as well
as the days that correspond o the ohservation day of 35, 40, and 45. The showcoding
command is used to show the values of obsdaylm and obaday2m for these days.

. showcoding obsday obsdaylm obsday2m triphase if inlist{obsday,30,35,40,45)

obsday obsdaylm obsday2m  trtphase

30 30 0 G
35 35 4 1
40 40 9 1
45 48 14 1
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for inkerpreting and visnalizing the results (the margins, marginsplot, and contrast

Lel’s now nse the margins command to compare each group with the control group
commands} were the same whether the model was longitudinal or nonlongitudinal.

at each of these days. (The noatlegend is used to save space.)

I recommend Singer and Willett (2003} for more information about the use of mul-

- margins r.group, at{obsdayim=30 obsday2m=0 trtphase=0) tilevel models for the analysis of Jongitudinal data. In addition, Richter (2006) provides

> at (obsdayim=35 obsday2m=4 trtphase=1) N A L \ . N . .
> at(obsdayin=40 obeday2u=8 trtphasesi) ) a. tutorial illustrating the application of multilevel models using reading time data.
> at (obsdayim=45 obsday2m=14 trtphase=1)
> contrast(nowald effects) noatlegend
Contrasts of adjusted pradictions
Expression ¢ Linear prediction, fixed portion, predict()
Delta-methed
Contrasi Std. Err. z P>z [85% Conf. Intervall
group@_at

(Zvs 1)1 9.97544 12.,37464 0.81 0.420 ~14.27842 34.2293

(2va 1) 2 45,10284  12.87497 3.50 0.000 19.86837 7(.33732

(2 vs 1) 3 45,6543  13.50462 3.38 0.001 19.18573 72.12288

{2 va 1) 4 46,20676  14.67722 3,15 0.002 17.43895 T4.972567

{3 vs 1} 1 12.00167  12.37867 0.97 0.332 -12.26017 36.26331

(3 va 1) 2 22.84212 12.86972 1.77  0.078 ~-2.382066 48.06631

(Bvs1) 3 34.51345  13.50243 2,66  0.011 8.049169 60.97772

(3vs 1) 4 46.18477  14,67266 3.85 0.002 17.42709 T4.584245

Focusing on the comparison of the medication group with the control group (2 versus
1), the difference is not significant when observation day is 30 (p = 0.420) prior to the
treatment phase. However, the difference is significaut at each of the time points tested
during the treatment phase, when observation day is 35, 4}, and 45 (p = 0.000, 0.001,
and (1002, respectively).

Shifting our attention to the comparison of the education group with the control
group (3 versus 1), the comparison is not significant when observation day is 30 (p =
0.332) prior to the start of the treatment phase. The difference remains nongignificant
early in the treatment phase when observation day is 35 (p = 0.076) but is significant
later in the treatment phase when observation day is 40 (p = 0.011) and 45 (p = 0.002).

This example focuged on a model in which time was broken up into two phases
(where there was one knot) and was interacted witk a categorical variable. For more
details about this kind of modcl, see section 12.2, If you have a model with three phases
(for example, baseline, treatment, and retwrn to baseline), see section 12.3 for more
details about that kind of model,

16.6 Summary

This chapter has illustrated four different examples of longitudinal models where time
was treated as a continuous variable. Instead of using the regress command, these
models used the xtmixed command. The fixed-effects portion of the xtmixed mod-
els {that is, the part before the 1) was specified the same whether the model was
longitudinal or noulongitudinal. Furthermore, the postestimation conmmands we used
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17.1 Chapter overview

The previous chapter {chapter 16) treated time as a continuous variable. However,
there are sitnations when it might be more advantageous to treat time as a categorical
variable. For example, when you have a small number of fixed time points, treating
time as a categorical variable facilitates comparisons among the different time points.
This chapter considers models where time is treated as a categorical variable, using three
examples. The first example includes timme (treated as a calegorical variable) as the only
predictor in the model (see section 17.2). The second example illustrates the interaction
of time with a two-level categorical variable (see section 17.3}, and the third example
illustrates time interacted with a three-level categorical variable (sec section 17.4).

The models presented in this chapter will use the xtmixed command to it a model
that is a hybrid of a traditional repeated-imeasures analysis of variance {ANOVA) and
a mixed model. Like the repeated-measures ANOVA, there will be one fixed infercept
(rather than having random intercepts that we commonly see when using the xtmixed
cormmand). By specifying the noconstant option in the random-cffects portion of the
xtmixed command, a fixed intercept will be estimated.

To account for the nonindependence of residuals across time points, we will use
the residuals () option within the randomi-effects portion of the xtmixed command.
This allows us to model the structure of the residual covariances across time points.
The following examples will use an unstructured residual covariance, which estimates a
separate residual variance for each time point and a separate residual correlation among
cach pair of the time points. Section 17.5 provides more details aboui the natwre of
residual covariance structures and will deseribe how you can select among different
covariance structures, i
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17.2 Example 1: Time treated as a categorical variable

Like the examples from the previous chapter, this example studies how many min-
utes people sleep at night. One hundred people were included in this study, and their
sleep was measured once a month for three months (that is, month 1, month 2, and
montl 3). The measueements at month 1 were a baseline measurement, in that no
specific treatment was applied. Prior to the measurement in month 2, participants were
given a sleep medication o lengthen their sleep, and the use of this medication contin-
ted during month 3. In summary, sleep was measured at three time points, the first
a control (baseline) condition and the second and third measurements while taking a
sleep medication. :

There are two aims of this study. The first aim is to assess the initial impact of sleep
medication on duration of sleep. It is predicted the people will sleep longer in month 2
(while on the sleep medication) than in month 1 {before they started the medication).
Fven if the medication is effective in the second month, there might be a concern of
whether it sustains its effectiveness, So, the second aim is the assess the sustained
effectiveness of the medication on sleep, comparing the amount of sleep in the second
andt third months,

Let’s begin by looking at the first six observations from this dataset as well as the
sumnnary statistics for the variables in the dataset.

. use sleep_cat3, clear
list in 1/6, sepby{id}

id month sleep
1. i 1 303
2. 1 2 349
3. 1 3 382
4. 2 1 331
B, 2 2 380
6. 2 3 350

. summarize

Variable Obs Mean Std. Dev. Min Hax
id 306 50.5 28.9143 i 100

month 300 2 .8178608 i 3
sleep 300 361. 4067 31.21017 276 468

The dataset for this example is in a long [ormat, with one observation per person per
month. The variable id identifies the person and ranges from 1 to 100, corresponding
to the 100 participants. The variable month identifies the month in which sleep was
observed and ranges from 1 to 3. The variable sleep contains the number of minutes
the person slept at night and ranges [rom 276 Lo 466 minutes.
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Note! Wide and long datasets

Data for this kind of study might be stored with one observation per person and
three variables representing the different time points, Sometimes this is callod a
multivariate format, and Stata would call this & wide format, If your dataset is
in that kind of form, you can use the reshape command to convert it to a long
format.

Let’s now use the xtmixed command to predict steep froin month, treating month
as a categorical variable. Specifying |1 id: introduces the randon-effects part of the
model and indicates that the observations are nested within id. Next the noconstant
option is specified in the random-effects options so only one fixed intercept is fit. For-
thermore, the residuals(} option is included 1o specify covariance structure of the
residuals between months (within each level of the person’s D). The residuals() op-
tion specifies an mstructured residual covariance among the different months within
each persorn.! This accounts for the nonindependence of the ohservations among time
points {or each person.

L. The unstructured residual type specified within the residual() option specifies an uastructured
covariance matrix, and the t(month) suboption specifies that observations are repeated across
months. Section 17.5 provides more information about how to select among residual covariance
structures.
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. xtmixed sleep i.month || id:, noconstant residuals(unstructured, t{menth)) nolog
Mixed-effects Mi. regression Humber of obs = 300
Group variable: id Kumber of groups = 100
Obs per group: min = 3
avg = 3.0
max = 3
Wald chi2(2) = 35.94
Log likelihood = -1437.3712 Prob > chi2 = 0.0000
sleap Coef.  8td. Exr. z P>z} [95% Conf. Intervall
month
2 21.07 3.8331 5.50 0,000 13.55726 28.58274
3 18.43 3.807288 4,84 0.000 10.96785 26.892156
_cons 348.24 3.144903 110,73 0.060 342.076% 354.,4039
Random-effects Parameters Estimate Std. Err. [95Y% Conf. Intervall
id: (empty)
Residual: Unstructured
sd{el) 31.44903 2.223783 27.37904 36.12404
sd{e2) 30.47219 2.15471 28.52862 35.00193
sd(ae3) 27.04369 1.812277 23,54382 31.06383
corr(el,e2) .2339147 0945283 0423054 4089277
corr(el,a3) .1592351 0974643 -.0383797 . 3422139
corr{e2,e3) . 1307182 .0982912 -, 0644364 .3162427
LR test vs, linear regression: chi2(g) = 11.61  Prob » c¢hiZ = 0,0408%

Note: The reportad degrees of freedom assumes the nall hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative,

Before we interpret the coeflicients from this model, let’s use the margins command
to compute the predicted mean of sleep for each level of month, as shown below. The
predicted mean of sleep is 348.24 in month 1, 369.31 in month 2, and 366.67 in month 3.

. margins month

Adjusted predictions Number of obs = 300
Expression  : Linear prediction, fixed portion, predict{)
Delta-method
Margin  Std. Err. z P>zl [95% Conf. Intervall
month
i 348.24  3.144803  110.Y3 0,000 342,0761 354.403%
2 369.31 3.047219 121.20  0.000 363.3376 a75.2824
3 366.67 2.704369 135.58 0.000 361.3695 371.9705
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We can use the marginsplot command create a graph showing the predicted mean
of sleep across the three months, as shown in figure 17.1,

. marginsplot
Variables that uniquely identify margins: month

Adjusled Predictions of month with 95% Cls

380
L

370
I
i —

Linear Prediction, Fixed Portion
350 360
L t

340
L

2
Month of sbsarvation

Figure 17,1, Estimated minutes of sleep at night by month

Looking at the predicted means from the margins and marginsplot coinmands, it
looks like sleep increased from month 1 to month 2 and showed little difference between
month 2 and month 3. Before making those specific tests, let’s test the overall null
hypothesis that the average number of minutes of sleep is equal across all three months.
This is tested using the contrast command below. This test is significant, indicating
that the average munber of minutes of sleep is not equal across all wmonths.

. contrast month

Contrasts of marginal linear predictions

Margins ¢ asbalanced
af chi2 P>chi2
sleep
month 2 35.94 0. 0000

Now let’s use the contrast command to perform the specific comparisons of interest.
Let’s compare the amount of sleep in the second month with the first month to test
the initial impact of the sleep medication. Let's also compare the third month with
the second month to assess the extent to which any impact was sustained between the
second and third month. These comparisons are made using the contrast conunangd,
applying the ar . contrast $o month.
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. contrast ar.month, nowald effects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast 5td. Err. z Prlzi [95% Conf. Intervail
sleep
month
(2vs 1) 21.07 3.8331 5.50  0.00G0 13.66726 28.58274
(3 va 23 -2.64 3.80062 ~-0.69  0.487 -10.08908 4,809078

The first test is significant. Tn the second month, participants slept (on average)
21.07 minutes Jonger than in the first month. The second test is not significant. The
predicted mean of sleep in the third month was not significantly different from the
second month. The effectiveness of the medication did not significantly diminish in the
third month compared with the second month.

H we wanted a comparison of every pair of months, we can use the pwcompare
commasd.

. pwcompare month, effects

Pairwise comparisons of marginal linear predictions

Margins : asbalanced
Unadjusted Unadjusted
Contrast  Std. Err. = priz| [95% Conf. Intervall
sleep
month
2 ys i 21.07 3.8331 5.50 0.000 13.56726 28.58274
Jva i 18.43 3.807288 4.84 0,000 10.96785 25.892156
3 vs 2 -2.64 3.80062 ~0.69 Q0.487 -10.08908 4.809078

The pucompare comiand shows that the comparison of month 2 versus 1 is signifi-
cand, the comparison of month 3 versus 1 is significant, but the comparison of month 3
versus 2 is not significant,

Before concluding this example, let’s look back at the random-effects portion of
the output produced by the xtmixed command. The output shows that the residual
standard deviation at month 1 is 31.45, at month 2 is 30.47, and at month 3 is 27.04.
The output also shows the estimate of the covvelation of the residuals between each
pair of time points. For example, the correlation of the residuals at month 1 with
month 2 is 0.23. This residual covariance structure is called an unstructured covariance
and was requested specifying the unstructured residual type within the residuals()
option. Section 17.5 provides more information aboul ways to select and compare
residual covariance structures.
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Note! Why not use repeated-measures ANOVA?

Some readers might be asldng why this analysis (and the subsequent analyses) are
not performed using a traditional repeated-measures analysis of variance. The
xtmixed command is more flexible and powerful than a traditional repeated-
measures ANOVA. First, a repeated-measures ANOVA oitits any observation with
missing data (by using listwise deletion). The xtmixed conunand retains subjects
who might have missing data and performs the estimation on the time observations
that are present. Second, a traditional repeated-measures ANOVA is restricted to
only two different types of covariance structures, exchangeable (compound sym-
metry) and unstructured (wwultivariate}. There are many situations where an ex-
changeable structure is overly simple and untenable, and the unstructured covari-
ance is overly complicated and estimates too many superfluous parameters. By
contrast, the xtmixed command permits you to choose from a variety of covari-
ance structures such as banded, autoregressive, or foeplitz, as described in sec-
tion 17.5. Although the output looks a little bit different, the xtmixed cominand
cowbined with the residuals{) option offers all the features from a repeated-
measures ANOVA, with the added benefit of retaining subjects who have missing
time poiits and the ability to estimate additional residual covariance structures.

The example in this study had three time points; however, this could be extended
to four or nore time points. As illustrated in this example, the contrast command
can be used to test the overall equality of the means at the different time points, as
well as form specific comparisons among the time points. This is a generalization of the
principles illustrated in chapter 7, and youn can borrow and generalize from the tools
illnstrated in that chapter,

17.3 Example 2: Time (categorical) by two groups

in the previous examnple, sleep was measured at three time points (month 1, month 2,
and month 3). The first month was a baseline mensurement, whereas participants
received sleep medication during the second and third months. We found that sleep was
significantly longer in the second wonth than in the fivst month., Furthermore, there
was no significant change in sleep comparing the second and third month.

We ean augment thal design by including a control group that is measured at each
of the three months but receives no treatment. Using such a design, let’s focus on two
main questions., The first question concerns the initial effect of the sleep medication.
This would be assessed by comparing the change in sleep from month 1 to month 2 for
the treatment group with that for the control group. The second ¢uestion concerns the
sustained effect of the medication. This would be assessed by comparing the change in
sleep from mouth 2 to month 3 for the treatinent group with that for the control group.
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This study includes 100 participants in the treatment group and 100 participants
in the control group. The main predictors for this example are group (a two-level
categorical variable) and month (a three-level categorical variable), We can draw upon
the logie illustrated in section 8.3 showing how to interpret the results [rom a two by
three design.

Let’s look at the first six observations in dataset for this study and the summary
stalistics for the variables in this dataset.

. use sleep_catcat23, clear
. list in 1/8, sepby(id}

id month group  sleep
1. i 1 Control 315
2. 1 2  Control 379
3. 1 3 Control 320
4, 2 1 Control 392
5. 2 2 Control 369
6. 2 3 Control 314
. summarize
Variabie Obs Mean Std. Dev. Min Hax
id 600 100.5 57.78248 1 200
month 600 2 LB171778 1 3
group 800 1.5 .5004172 1 2
sleep 600 354.49 31.36286 256 448

The variable 1d identifies the participant and ranges from 1 to 200. The variable
month indicates the month in which sleep was measured (month 1, 2, or 3). The variable
group is coded: 1 = control and 2 = medication. The variable sleep is the number of
minutes of sleep and ranges from 256 to 448.

Like the previous example, the analysis is conducted using the xtmixed command
and uses the residuals () option o specify an unstructured residual type. The predic-
tors in the model are group (with two levels) and month (with three levels). These two
terms are entered along with their interaction.
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. xtmixed sleep i.group#fi.month || id:, noconstant residuals(un, t{month))
> nolog
Mixed-effects ML regression Number of obs = 800
Group variable: id Humber of groups = 200
Obs per group: min = 3
avg = 3.0
max = 3
Wald chi2(5) = 68. 47
Log likelihood =  -2878.78 Prob > chi2 = 0,0000
sleep Coef. Std. Err. z P>|z| [98% Conf. Intervall
2.group -7.08 4.378767 -i.62 0.106 ~15.66223 1,502226
month
2 -3.73  3.746771 -1.00 0.319 -11.07354 3.613535
3 =867 4.267200 ~0.13 0.893 ~8.9141562 T.7741562
grouptimonth
22 28.06 5.298734 5.30 0.000 17 .67467 38.44633
23 24.94  §.020729 4.14¢  0.000 13.13956%9 36.74041
.censg 3B0.63  3.006266  113.24  0.000 344.5615 356.6985
Random-effects Parameters Estimate  Std. Err. [958} Conf. Intervall
id: {empty)
Residual: Unstructured
sd(el) 30.96256 1.54813 28.07222 34.15040
sd(e2) 26.85699  1.342849 24,3499 29.62221
sd(e3) 31.30903  1.565451 28.38635 34.53263
corr{el,a?) .1660425 . 0687611 0289958 .2969619
corr{al,a3) 0652337 0704097 ~.073133 ,20113686
corr{a2,e3) 1423749 L08B27T73 047584 . 2746988
LR test vs. linear regression: chiz(5) = 15.70  Prob > chi2 = 0.0078

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

We can estimate the mean sleep by group and month using the margins cormand
below. This is followed by the marginsplot connnand to graph the means computed
by the margins command (shown in figure 17.2).
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. margins menth#group

Adjusted predictions Kumber of cbs = 600
Expression : Linear predictien, fixed portion, predict()
Delta~method
Margin 5td. Err. z P>iz] [85% Conf. Intervall
monthitgroup
11 350.63 3.096256 113.24  0.000 344.5615 366.6985
12 343.556  3.006256 116.96  0.000 337.4815 349.6185
21 346,9 2.685699 129,17  0.000 341.8361 362.1639
z22 367.88 2.68b699 136.98 0.000 362.6161 373.1439
31 360.06 3.130903 111.81  0.000 343.9236 356.1965
32 367.92 3.130903 117.51 0.000 361.7835 374.0885

. marginsplot, noci

VYariables that uniquely identify margins: month group

Adjusted Predictions of monthitgroup

370
L

355 380 385
1 1 L

Linear Prediction, Fixed Portion
330

T 7

345

Monlh of observaiion

L———:J—— Contrel  —— — Medication | .

Figure 17.2. Estimated sleep by month and treatment group

The pattern of means shown in fgwre 17.2 appears to show that the medication
increases sleep in month 2 compared with month 1, and that the effect is sustained in
month 3. By contrass, the sleep in the control group remnains rather steady at cach of
the three time points,

Before testing owr two main guestions of interest, let’s assess the overall interaction
of group by month using the contrast command below. The overall interaction is
sighificant.
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. contrast groupimonth

Contrasts of margina} linear predictions

Margins 1 asbalanced

df chi2 Prchi2
slaep
groupimonth 2 30,21 0.0000

Now to test our questions of interest regarding the initial effect of medication and
the sustained effect of medication, we can apply the ar. contrast operator to month and
interact that with group as shown below.

. contrast ar.month#fgroup, nowald pveffects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. z P>z
sleep
monthilgroup
(2 vs 1) (2 vs base) 28.06  5.298734 5.30 0.000
{3 vs 2) (2 vs base) ~3.12  5.407618 -0.58 0.564

The first, conbrast compares the ¢hange in sleep in month 2 versus month 1 for the
treatment group versus the control group. This test is significant. The change in sleep
for the medication group was 28.06 minutes more than the change for the control group.
This is consistent with what we saw in figare 17.2.

The second contrast compares the change for month 3 versus month 2 for the treat-
ment group versus the control group. This comparison is not significant.

For more information about how to dissect a three by two interaction, see section 8.3.

17.4 Example 3: Time (categorical) by three groups

Tet’s consider one fival example that extends the previous example by including a third
type of treatment, sleep education. The design for this example now includes three
treatinent groups {control, medication, and education) and three time points (month 1,
month 2, and month 3). Month 1 is a baseline period during which no treatment is
administered to any of the groups. During months 2 and 3, the medication group
receives sleep medication, and the education group receives slecp education aimed to
ingrease their sleep.



448 Chapter 17 ‘Time as a categorical predictor ‘ 17.4  Example 3: Time {calegorical) by three gronps 449

This study includes 300 participants, 100 assipned to each of the three treatment : . xtmixed sleep i.groupf#i.month {| id:, noconstant residuals(un, t{month))
groups. This main variables of interest in this study are treatiment group (with three > nolog
levels) and month (with three levels). We can borrow from the logic and methods of Hixed-effects ML regrassion Nunber of obs = 900
. . . s . Group variable: id Number of groups = 300
nterpretation that were illustrated in section 8.4.

Obs per group: min = 3
Let’s use the dataset for this hypothetical study, and lot’s list the frst six observa- avg = 3-g
max =

tions and show the swnmary statistics for the variables in the dataset.

Wald chi2(8) = 284.84
. use sleep_catcatd3, clear Log likelihood = ~4318.4068 Prob > chi2 = 0.0000
. list in 1/6, sepby(id)
sleep Coef.  Std. Err. z Prlz] [95% Conf, Intervall
id  month group  sleep group
2 2.6 4.246231 0.61 0.540  -5.722458  10.92246
1. 1 1 Control 305
3 . .246231 . 455  -5.1524 49246
o L 2 contenl 313 3.17  4.24623 0.7 0 59 11.492
3 i 3  Control 351 momth
2 8.06  3.7i971 2.17  0.030 . 7695018 15,3506
4. 2 1 Control 295
. . .29 001 . .
5 5 5 control 259 3 13.35  4,063031 3.29  0.00 5.386605  21.31339
8. 2 3  Contrel 37& groupfinonth
22 21.88  5.260466 4,16  0.000 11.56068  32.19032
. summarize 23 18,22  5.745094 3.17  0.002 6.95806%  29.48194
Variable Dbs Mean  Std. Dev. Min Max 32 7.11  5.260465 1,35 0477 -3.20032% 17.42032
33 34,49  5.745994 6.00 0.000 23.22806  45.75194
id 900 150.5  86.65021 1 300
month 200 o 8169506 1 3 _cons 344.7  3.002538 114.80  0.000 338.81561 360.5849
group 900 2 .8169506 1 3
sleap 900  362.8378  34,06564 260 479
Random-effects Parameters Estimate  Std. Err. [95% Conf. Intervall
The variable id identifics the person, and month indicates the month in which sleep ia- (enpty)
was observed (1, 2, or 3}, The variable group is coded: 1 = control, 2 = medication,
and 3 = cducation. The variable sleep contains the numnber of minutes of sleep, and Residual: Unstructured :
e o g sd{el) 30.02538  1.225782 27.7165  32.52661
ranges 0.
ranges from 260 to 479 sd(e2) | 28.91807  1.180675 26.69431  31,32704
. - : . i I : . 237216 27.97607  32.83004
e xt : wand for analyzing this example is the same as previons ex- sd{ed) 30.30543  1.23
‘ T mixed comang analyzing this example is the same as the | 18 corr(et, o) 2090408 0553376 0034095 3095063
ample. corr(el,ad) 0929321 0572364 -.0199648 .2034793
corr(e2,e3) .1831158 .065799 .0719219 .2898139
LR test vs. linear regression: chiz{(5) = 24,71  Prob > chiZ = 0.0002

Wote: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the paramster space. If this is not true, then the
reported test is consarvative.

The margins and marginsplot commands are nsed befow to estimate the predicted
mean of sleep by group and month and to graph the results. The graph is shown in
figare 17.3.
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. margins month#group

Adjusted predictions

Chapter 17 Time as a categorical predictor

Number of obs = 0o

Expression  : Linear prediction, fixed portion, predict()
Delta-method
Margin  Std. Err. z P>z [96Y% Conf. Intervall
month#group
11 344.7 3.002538 i14.80 0.000 338.8151 350.5849
12 347.3  3.002538 115.87  0.000 341.4161 383,1849
13 347.87 3.002538 115.86 0.000 341.9851 353, 7549
21 352.76  2.891807 121.99  0.000 347.0922 368,4278
22 377.24  2.891807 130.45 0.000 371.86722 382.9078
23 363.04  2.891807 125.54 0,000 367.3722 368.7078
31 358,05 3.03064% 118.15  0.000 362.1192 363.9898
32 378.87 3.030B4% 125.02 0.000 372.9302 384.,8098
33 365.71  3.03064%  130.57 0.000 389.7702 401.6498

. marginsplot, noci

Variables that uniquely identify margins: month group

Linear Prediction, Fixed Portion
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Let’s now use the contrast comumand {o test the group by month interaction. This
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ovorall interaction is significant.
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. contrast groupimonth

Contrasts of marginal linear predictiens

Hargins : asbalanced

af chi2 P>chi2
slaep
groupfmonth 4 62,08 0.0000

Let’s form an interaction contrast in which we apply reference group contrasts to
treatment group (r.group) and reverse adjacent group contrasts to month (ar .month).
The r.group contrast compares the medication group with the control group and the
education group with the control gronp. The ar.month contrast compares month 2
versus 1 and month 3 versus 2.

. contrast ar.moathftr.group, nowald pveffects

Contrasts of marginal linear predictions

Margins : asbalanced

Contrast Std. Err. z P>iz|
sleep

month#group

(2 vs 1) (2 vs 1) 21.88 5, 260465 4,16 G.000
(2 vs 1) (3 vs 1) 7.11  5.260485 1.36  0.177
(3 vs 2) (2vs 1) -3.68 5.3564849 -0.68 0.494
(2 vs 2) (3 vs 1) 27.38  5.354849 5.11 0,000

The first two contrasts focus on the comparison of month 2 versus 1. The frst
contrast shows that the gain in slecp comparing month 2 with menth 1 for the medication
group is significantly greater (by 21.88 minutes) than the gain for the control group.
The second contrast makes tlie same kind of comparison, but focuses on the comparison
of the education group with the control group. The gain in sleep in month 2 versus
1 for the education group is 7.11 minutes more than for the control group but is not
significant,

The third and fourth contrasts focus on the comparison of meoth 3 versns 2. The
third contrast shows that the change in sleep comparing month 3 with month 2 is not
significantly different for the medication group than for the control group. The fourth
contrast shows that the change in sleep comparing month 3 with month 2 is significantly
greater for the education group than for the coutrol group.

In addition to comparing each treatment {education and medication) with the control
group, we may also be interested in comparing education with medication. Lel’s test the
interaction of treatment (education versus medication) by month, but now lets compare
each month with the baseline mouth: month 2 versus 1 and month 3 versns 1. This is
obtained by interacting the comparison of group 3 versus group 2 (ar3.group) by each
month compared with monuth { (r.month}. This is tested using the contrast command,
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contrast ar3.group#r.menth, nowald pveffects

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  5td. Err. z P>zl
sleep
group#month
(3 vs 2) (2 vs 1) ~14.77  5.260465 -2.81  0.005
(3 vs 2) (3 vs 1) i16.27 B,745984 2:83 0.005

The first test is significant. The estimate is —14.77, indicating that the gain in sleep
comparing month 2 with month 1 for the education group was 14.77 minutes less than
the gain for the medication group. In other words, the gain for the medication group
was 14.77 minutes greater than the gain for the education group.

The second test is also significant, but in the opposite direction. The estimate is
16.27, indicating that the gain in sleep comparing month 3 with month 1 was 16.27
mimtites more for the education group than the gain for the medication group.

These results indicate that at the scecond month of the study, medication is superior
to educakion in increasing sleep. However, by the third montl, education surpasses
medication in increasing sleep.

See section 8.4 for more details abont how to analyze and disscet interactions from
three by three models.

17.5 Comparing models with different residual covariance

structures

The examples ilustrated in this chapter all modeled the residual covariances using an
unstruciured covariance matriz. However, Stata allows you to fit a vartely of residual
covariance structures. The selection of the covariance structure impacts the estimates
of the standard errors of the coefficients, but not the point estimates of the coelficients.

When you have only three time points, an uustructured covariance ¢an be a pgood
choice. However, as the number of time poinds inereases, the number of variances and
covariances estimated by an unstructured covariance matrix inereases dramatieally, For
example, if you have five time points, an unstructured covariance estimates five variances
and 10 covariances {a total of 15 parameters). In such cases, you might consider more
parsimonions covariance structures, such as the exchangeable, ar (autoregressive), or
banded residual types.?

2. See [XT] xtmixed for a list of all available covariance structures you can choose within the
residnals(} option. Farthermore, chapter 7 of Singer and Willett (2003) provides additional de-
scriptions of these residual covariance structures including information to help you choose among
the different structures. .
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This leads to the question of how to choose among models using different covariance
structures. My first recommendation would be to select a residual covariance structure
that is grounded in theory or suggested by previous research. However, such information
may be scarce or nonexistent. In such cases, you can fit different covariance sgruetures
seeking the residual covariance structure that combines the fewest parameters with the
best measure of fit——using, for example, Akaike information criterion {AIC) or Bayesian
information criterion (BIC). Stata makes this process easy, as illustrated below.

Using the dataset from example 1, models are fit using three dilerent covariance
structures: unstructured, exchangeable, and ar 1. After fitting each model, the
estimates store conunand is used to store the estiinates from the respective model.

. use sleep_catd, clear

. ¥tmixed sleep i.month || id:, noconstant residuals(unstructured, t(month))
(output omitted )

estimates store m_un

. xtmixed sleep i.month }| id:, noconstant residuals(exchangeable, t(month))
{ouiput omitied)

. estimates store m_ex

. xtmixed sleep i.menth }j id:, neconstant residuals(ar 1, t{month))}
(output owitted )

. estimates store m_ari

Now {he estimates stats command can be used to show a table of the fit indices
for each of the models.

. estimates stats m_un m_arl m_ex

Hodel Gbs 11(null) 11 (megel) df AIC BIC
m_un 300 . -1437.371 @ 2892742 2926.076
m_ari 300 . ~1439.674 B 2589, 348 2907 .867
m_ex 300 . -1438.879 5 2887.768 2906.277

Note: N=Obs used in calculating BIC; see [R] BIC note

Remember that when it comes to AIC and BIC, smaller is better. The ar 1 and
exchangeable models have lower (better) fit indices than the wnstructured model.
These models also have the added benefit of including four fewer residual covariance
parameters (b versus 9). The ar 1 or exchangeable covariance structure appears to
provide a betler At than the unstructured covariance structure.

For the examples in this chapter, the differences in the results are trivial. You
can fit the models for yoursell and see that the standard errors are similar using the
different residual covariance structures. However, if there were more time points and
the differences in the covariance structures were more striking, the impact of the choice
of the residual covariance structure on the standard errors could be greater.
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Warning! Likelihood-ratio test

It is tempting to ask whether the difference in covariance structures is significantly
different and to want to use a cominand like Lrtest to test whether one covariance
structure fits significantly better than another. A key assamption of a likelihood- "
ratio test is that ene model is nested within another model, where one model can 1 8 N@HEH@@Y Mo d@ES
created from the other by omitting one or more parameters. In mauy (or perhaps
most) cases, the models formed by comparing two different residual covariance
structures are not nested within each other and the likelihood-ratio test is not

valid. However, the AIC and BIC indices can be used even when models are not 18.1 Chapter overview . . ... ..o 455
nested within each other, 18.2 Binary logistic regression .. . . . . . ... .. oL 456

18.2.1 A logistic model with one categorical predictor . . . . . . 4586

18.2.2 A logistic model with one continunous predictor . . . . . . 463

18.2.3 A logistic model with covariates . . . . . .. ... .. ... 465

17.6 Summary 18.3  Multinomial logistic regression . . . .. ... .. ... 470
This chapter has illustrated three diflerent exanples in which time was treated as a 7 184 Ordinal logistic regression . . .. .. ... 475
categorical variable. These models nsed the xtmixed command combined with the 185 DPoisson regression . . . . . . .. ..o 478
residuals() option to account for the residual covariances across times. The fixed- . 18.6 More applications of nonlinear models . . . . ., ... ... 481

effects portion of the xtmixed models (that is, the part before the | |) was specified the

c s . 18.6.1 Categorical by cateporical interaction . . . . .. .. . ... 481
same whether the model was longitudinal or nonlongitudinal. Furthermore, the postes- . . : . .
s s . . y . 18.6.2 Catepgorical by continuous interaction . . . . .. . ... .. 487
timation commands we used for interpreting and visualizing the results (the margins,
marginsplot, and contrast commands) were the same whether the model was longi- 18.6.3  Piccewise modeling - .« oe 42
tudinal or nonlongitudinal. 187 Sunmunavy .. .. ... e e 498
For more information about traditional longitudinal models where time is treated
categorically, I reconmmend Keppel and Wickens (2004), Cohen et al. (2003), and
Maxwelt and Delaney (2004). Singer and Willett (2003) illustrate longitudinal anal- 18.1 Chapt@r QVeIview
ysis using the more general multilevel framework, and include more information about
residual covariance structures and how to select among them. The methods that have heen illustrated for constructing linear models {that is, with the

regress and anova commands) can also e applied to nonlinear models, such as logistie,
\ maltinomial logistic, ordinal logistic, and Poisson models. For example, vou can apply
the techniques from chapter 7 to fit a logistic regression using a categorical predictor,
usc what we learned in chapter 4 to fit a piecewise multinomial regression model, or use
the techniques [rom chapter 10 to model continuous by categorical interackions involving
an ordinal logistic regression model.

You ean also nge the margins, marginsplot, contrast, and pwcompare cormmands
to interpret and visualize the results from such models. However, for nonlinear models,
we need to be attentive to the metric of the outcome. For the contrast and pwcompare
commands, the comparisons are made in the same metric as the estimation model.
For example, when using the contrast command following a logistic regression, the
comparisons are made in the log-odds (logit) metrie, the metric in which the model
is fit. By coutrast, the margins command can produce predictive margins in the log-
odds metric, in the odds metric, or i the probability metrie. The relationship between
the predictor and predictive margins is linear in the jog-odds metric (but the log-odds
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metric is more difficult to understand). 1t can be easior to understand predictive margins
expressed in the probability metric, but the model is not linear in that metric.

The issues in fitting and interpreting such nonlinear models are covered in this chap-
ter. The chapter begins with a discussion of logistic regression models (see section 18.2).
This section is the most detailed in this chapter, both because logistic models are comn-
mon and because some issues arise when fitting nonlinear models. Then examples are
provided illustrating the analysis and interpretation of multinomial logistic models (sec
section 18.3), ordinal logistic models (see section 18.4), and Poisson models (see sec-
tion 18.5). The intent of these sections is to introduce the particular issues involved
in using the margins, marginsplot, contrast, and pwcompare commands with these
kinds of models. Section 18.8 illustrates further applications of nonlinear models, pro-
viding examples that apply modeling strategies illustrated in previcus chaplers to a
nonlinear model (specifically, a logistic regression model). Three examples are pro-
vided, showing a categorical by categorical interaction (see section 18.6.1}, a categorical
by continuous interaction (see section 18.6.2), and a piecewise mode] with two knots
{see section 18.6.3).

18.2 Binary logistic regression

18.2.1 A logistic model with one categorical predictor

Let’s constder a simple logistic regression model that, predicts whether a person smokes
(smoke) Ly the person’s self-reported social class {class), The variable class is a
categorical variable that is coded: 1 = lower class, 2 = working class, 3 = middle class,
and 4 = upper class. Let's use the G8S dataset and fit a logistic regression model
predicting smoking by social class.

. use gss_ivrm

. logit smoke i.class, nolog

Logistic regression ) Mumber of obs = 15464
LR chi2({3) = 198,45
Prob > chi2 = 0.6000
Log likelihood = —-9904.5707 Pseudo R2 = 0.0099
smoke Coef, Std. Err. z P>zl [98% Conf. Interval]
class
2 -.318B63  .0720422 -4.37  0.000 -.4615271  -,1755989
3 -.7201353  .0734895 -9.80 0.000 ~,B64172  ~.B760885
4 -, 5199668 . 1219929 -7.54 0.000 ~1.1568059 ~.6808562
.cong ~,1272302 0687383 ~1.85 0.064 ~.2619547 .0074944

The regression coefficients are presented in the log-odds (logit) metric using a dummy
coding scheme with gronp 1 as the reference group. So, for example, the coefficient for
the third level of class (—0.72) shows the difference in the log odds of smoking when
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the social class is 3 compared with when the social class is 1 (that is, middie class versus
jower class).

We can interpret and visualize the results of this model using the contrast,
pwcompare, marginsg, and marginsplot commands, as described in the following sec-
tions.

Using the contrast command

If we want to test the overall equality of the four social class groups in terms of their log
odds of smoking, we can use the contrast command, as shown below, This test shows
that the four social class groups are not all equal in terms of their log odds of smoking.

, coatrast class

Contrasis of marginal linear predictions

Margins : ashalanced
df chi? P>chi2
class 3 196.71 0.0000

We can also apply contrast operators to form specific comparisons among the levels
of the social clags. Using the ar. contrast operator compares each level of class with
the adjacent (previous) level of class.

. contrast ar.class, nowald effacts

Contrasts of marginal linear predictions

largins : asbalanced
Contrast  Std. Err. z P>lzl t95% Conf. Intervall
class
(2 va 1) -.318563 0729422 -4.37 0.000 -.4615271 ~. 1766989
(3 va 1) ~.4015723 L0366662 -11.26  0.000 ~.47145872 ~.3316874
(4 va 3) ~.1998216 .104082 -1,92  0.065 -.4038187 .0041754

The differenice in the log odds of smoking for group 2 is different {rom group 1
{z = —4.37, p = 0.000), as is the difference for group 3 versus 2 {z = —11.26, p = $.000).
However, the log odds of smoking for group 4 is not significantly different from group 3
(# = —1.92, p = (L.055).

We can add the eform option to the contrast command to display the results in
exponentiated form (that is, showing odds ratios). The statistical tests are identical;
however, the results can now be interpreted using odds ratios. For example, the odds of
a middle class person sinoking is 6.669 times the odds of a working class person smoking
{class 3 versus 2).
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. contrast ar.class, nowald effects eform

Contrasts of marginal linear predictions

Margins : asbalanced
exp(b)  Std, Err. z P>iz| [95% Conf. Interval]
class
(2 vz 1) L7271933 .0530431 -4 .37 0,000 .6303204 . 8389544
(3 vs 2) (6892669 0238635 -11.26 0,000 . 6240922 LFITTLAT
(4 vs 3) . 8188768 0852304 ~1.92 0,085 \BETTE62 1.004184

Using the pwcompare command

We can also use the pwcompare command to form comparisons among the levels of the
social clags. Like the contrast commmand, these comparisons are made in the log-odds
metrie. Five of the six pairwise comparisons are statistically significant. The comparison
of class 4 versus 3 is not significant {z = —1.92, p = 0.055).

. pwcompare class, effects

Pairwise comparisons of marginal linear predictions

Margins 1 asbalanced
Unad justed Unadjusted
Contrast  Std. Err. z p>lz| [95% Conf. Intervall
snoke
class
2ws 1 ~.318563 0729422 -4.37 0.000 —.4616271 =, 1755989
3vs 1 -.7201353 0734898 -9,80 0.000 -.864172 ~. 6760985
4 vys 1 -.,9189669 -,1219929 -7.54 0.000 ~1.159069 ~. 6808562
3 vs 2 ~ . 4016723 .03565662 ~1%.26 0.000 —.4714572 ~.3316874
4 ys 2 ~.6013539 .1036963 ~-56.80 0.000 -.804635 ~.3881528
4 vs 3 ~.1998216 . 104082 -1.92 0.055 -.4038187 .0041764

The eform option can also be added to the pucompare command to express the
results as expenentiated coeflicients {that is, odds ratios).

18.2.1 A logistic model with one categorical predictor 459

. pwcompare class, effects eform

Pairwise comparisens of marginal linear predictions

Margins 1 asbalanced
Unad justed Unadjusted
exp(b)  Std. Err. z P> |z| [95% Conf, Intervall
smoke
class
2vs 1 .7271933  .0530431 -4,37 0,000 6303204 .8389544
3vsl 4866864 0357663 ~8.80 0.000 4214003 .5620871
4 vs 1 .3986362  .0486186 -7.54  0.000 .3137814 5061839
3 vs 2 .66926692  ,0238635 -11.26 0.000 . 6240922 LT1TTRLT
4 vs 2 5480472  .0568306 -5.80  0.000 4472511 6715694
4 vs 3 8188768  .0852304 -1.92 0.0865 -G677652 1.004184

The pucompare command, like the contrast command, perforins its comparisons
using the natural metric of the model.

Using the margins and marginsplot commands

Unlike the contrast and pwcompare commands, the margins command allows us to
choose the metric in which estimates are computed, as illustrated in the following ex-
amples.

Let’s use the margins conunand to show the predictive margin for the probability
of smolking separated by c¢lass. This shows, for example, that the predictive margin
for the probability of smoking for people who describe themsclves as lower class is 0.47.

. marging class

Adjusted predictions Number of obs = 16464
Model VCE ¢ OIM
Expression  : Pr{smoke), predict()
Delta-method
Margin  Std. Err. z P>zl [95% Conf. Interval]
class
1 4682363 ,01711562 27.36  0.000 4346901 .BQ17805
2 .3903614 0058079 §7.21  0.9000 .378978% .4017448
3 .2999858 0064589 54.95  0.000 . 2892866 .310685
4 . 2697656 .0193794 13.4C  0.000 .2217827 2077486
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Note! Predictive margins

When discussing linear models, the term adjnsted mean was used to describe the
predicted mean of the outcome after adjusting for the covariates in the model. A
predictive margin is a generalization of an adjusted mean applied to a nonlinear
model (such as a logistic regression model).

We can use the marginsplot command to make a graph of these predictive margins
as a function of class. This resulting graph is shown in figure 18.1.

. marginsplot, xlabel{, angle{45))
Variables that uniguely identify margins: class

Adjusted Predictions of class with 95% Cls
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TFigure 18.1. Predictive margins for the probability of smoking by social class

Suppose we apply the ar . contrast coeflicient to class using the margins command.

This forms adjacent group comparisons on class, comparing each class group with the

previous class.
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. margins ar,class, contrast{nowald effects)

Contrasts of adjusted predictions
Model VCE HE

Expression  : Pr(smoke}, predict()

Pelta-method
Contrast  Std. Err. z Prizl| [95% Conf. Intervall
class
(2 vs 1) -.0778738  .0180738 ~-4.31  0.000 -.1132979  -.0424408
(3 va 2} -, 0903766  .0079706 -11.34  0.000 -.1059978 -.0T47636
(4 va 3) ~.0402202  .0201336 -2.00 0.048 -.0796812  -.0007551

Looking al the contrast of class 2 versus 1, we see thal the predictive margin for
the probability of smoking is 0.08 lower than for working class versus lower class., This
contrast is significant (z == —4.31, p = 0.000).

it might be tempiing to think that the significance tests produced by the contrast
ar.class conmmand would be identical to themargins ar.class command. Comparing
the results of the margins ar.class command with the contrast ar.class command,
we see {hat the z-values and p-values are similar, but not identical. For example, the
p-value is 0.0565 for the comparison of group 4 versus 3 {rom the contrast cormnand
and is 0.046 for the same comparison from the margins command. This underscores the
fact that the contrast command performed its test using the log-odds metric whereas
the margins command used the probability metric.

You can use the predict(xb) option with the margins command to request the
use of the linear {log-odds) metrie, as itlustrated below. The results from the following
margins command are identical to the previous resulis using the contrast command
hecause both are using the log-odds metric.

. marging &r.class, conbrast(nowald effects) predict{xb)

Contrasts of adjusted predictions
Model VCE : OIM

Expression : Linear prediction (leg odds), predict(xb)

Delta-method
Contrast Std, Err. 2 Pzl [95% Conf. Intervall
class
(2 vs 1) -.318563 L0720422 -4.37 0.000 -.461527% -, 1755989
(3 vs 2) -.4015723 . 0356662 -11,28  0.000 -.4714572 -.3316874
(4 vs 3) ~.1998218 .104082 ~1.92 0.055 - . 4038187 .0041784
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Note! The default metric for the margins command

The margins command uses the same default metric as the predict commane.
For example, following a logistic regression, the predict command, by default,
creates predicted probabilities. Thus the margins command will also, by defanlt,
produce predicted probabilities. We can discover the default prediction metric for
the logit command by typing help logit postestimation, and then clicking
on the Jump To button and selecting Options for predict. This shows us that the
delault prediction is pr, the predicted probability of the outcome. It also shows ns
that we can specify xb to obtain the linear prediction (that is, the logit). You can
use this strategy for discovering the default prediction for the margins conunand
following any estimation command, as well as discovering other metrics you can
use for the margins command. Note that some of the options listed for the predict
command {for example, stdp) are not appropriate for the margins command.

Using the margins comimand with the pwcompare option

The margins commmand can be combined with the pwcompare option to hring you the
combination of features provided by the margins and pwcompare commands. This al-
lows you to form pairwise comparisons it any of thie metrics supported by the margins
command.! The pwcompare option is added to the margins command below to re-
quest pairwise comparisons among the four class groups in terms of their probability of

smoking,

. margins class, pwcompare

Pairwise comparisons of adjusted predictions

Model VCE : OIM
Expression : Pr(smoke}, predict{)
Delta-méthod Unadjusted
Contrast  Std. Err. {95% Conf. Intervall
class
2 vs i -.Q778738 0180738 -.113297% -.0424498
3 vs it ~-.16824856 0179647 —-.2034506 ~.1330384
4 vs 1 ~.2084697 . 02586562 ~.259145 -. 1577944
3 wvs 2 -.0903756 .0079706 ~.1089578 ~.07476356
4 vs 2 -.13065958 .020231 -, 1702478 -.,0909438
4 vs 3 -.0402202 .0201336 -.Q756812 -.0007691

To include the significance tests of the pairwise comparisons, we can add the
pwcompare (effects) option. Note that effects is specified as a suboption to the
pwcompare () option. All six of the pairwise comparisons among the levels of class are
statistically significant in the predicted probability metric.

1. Compare this with the pwcompare connnand that was limited only to the natural metric of the
madel. In the case of logistic regression, it is limited only to the log-ordds metric.

18.22 A logistic model with one continmous predictor

. margins class, pwcompare{effects)

Pairwise comparisons of adjusted predictions

Model VCE + 0IM
Expression i Pr{smoke), predict(}
Daita-method Unad justed Unadjusted
Contrast Std, Err. z p>iz| [96% Conf. Interval]
class
2vs 1 -.0778738 .0180738 ~-4.31 0,000 —-.1132979  -.0424498
3 wvs 1 -, 1682495 0179647 -2.37  0.000 ~. 2034896 -.1330394
4 wvs 1 -, 2084697 .0268552 -8.06  0.000 —-.269145  -.1577944
3 ws 2 ~.0803766 0079706 -11.34 £.000 -, 1059978 -, 0747536
4 vs 2 -.13059568 .02023% -6.46 0.000 -, 170247¢  ~.0009438
4 vs 3 -.0402202 0201336 -2.060 0.048 -,0796812 -.0007591

You can request that the table be sorted by the size of the difference in the contrast

by adding the sort suboption within the pwcompare() option, as illustrated below.

. margins class, pwcompare{effects sort)

Pairwise comparisons of adjusted predictions

Model VCE : DIM
Expression : Pr(smoke}, predict{)
Delta-method Unadjusted Unadjusted
Contrast  Std. Err. z P>|z] {954 Conf, Intervall
class
4 vs 1 -. 2084697 .02568552 ~-8.06 0.000 ~,259146 -, 1577944
3vs t -.1682495 0179647 ~-8.,37 0.000 ~.2034596 -.1330394
4 ys 2 -.13059568 .020231 ~6.46 0.000 —-. 1702479 ~.0909438
Jvs 2 -.0903756 0078706 -11.34  0.000 —-. 1059978 -, 0747535
2vs 1 ~.0778738 0180738 4,31 0.000 ~.1132979 -.0424498
4 vs 3 -.0402202 .0201336 -2.00 0.048 -.0786812  -.0007591

Having considered a logistic model with a categorical predictor, let’s turn to a logistic

model with a continuous predictor.

18.2.2 A logistic model with one continuous predictor

Let’s now briefly consider a model with one continuous predictor, predicting whether a

person smokes (smoke)} rom his or her education level. This model is fit below.
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. use gss_ivrm education and the predictive margin for the probability of smoking. We can see that

. logit smoke educ, nolog the probability of smoking decreases as education increases. Although it may be difficult

Logistic regression Number of obs = 16332 to see, this relationship is not linear.
LR chi2(1) = 174.04
Prob > chiZ2 = ¢.0000 . margins, at{educ=(5(1)20))
Log likelihood = -10483.854 Pseude R2 = 0.0082 {output omitted )
. marginsplot
smoke Coef.  Std. Err. z P>z [95% Conf. Intervall i . . . .
Variables that uniquely identify margins: educ
educ -.06856603 ,0052334  -13.10  0.000 -.0788177 ~. 058303
.cons .2216819 0858944 3.36  0.001 .0926312 .3508326 .

Let's use the margins and marginsplot commands to visualize the relationship
between education ind the log odds of smeking. (Note the inclusion of the predict (xb)
option on the margins command to specify the use of the log-odds metric.} The graph
created by the marginsplet conunand is shown in fgure 18.2. Note how the relationship
between education and the log odds of smoking is linear. For every additional year of

education, the log odds of smoking decreases by 0.07.

. margins, at{educ={(5(1)20}) predict{xb}
{output omitted )

. marginsplot

Variables that uniquely identify margins: educ
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Tigure 18.2. Log odds of smoking by education level

Let’s now visualize this relationship i berms of the probabilily of smoking. The

margins and marginspiot commands are used to graph this relationship.

{Note the

absence of the predict() option on the margina command, resulting in the use of
the predicted probability metric.} The graph created by the marginsplot command

is shown in figure 18.3. This shows the relationship between the munber

of years of
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. logit smoke i.class educ age yrint, nolog

Chapter 18

Noulinear models

Logistic regression Number of cbas = 15375
LR chi2(6) = 742.33
Prob > chi2 = 0.0000
Log likelihood = -9680.0723 Pseudo R2 ©.0373
smoke Coef, Std. Err. z P>zl [98% Conf. Intervall
class .
2 -.2604145 .0T49733 -3.47 0.001 -. 4073595 -,1134896
a -.485007  .OTTR2007 ~-5.8%  0.000 ~-.6063176  ~.3036965
4 -.5234883 .1274959 ~4,11 0.000 ~. 733757 -.27368009
educ -, 0878902 .0063326 -13.88 ¢.000 ~.1003016 ‘—.0754787
age -, (1958398 .0010949 -18.12 Q.000 ~.0219869 -.0176839
yring -.0321324 .0033889 -8.48 0.000 ~.0387746 -.0264902
..cons 65.45743 6.718824 9.74 0.000 52.28877 78.62608

Let’s use the contrast command io test the overall effect of class. This test is

significant.

. contrast class

Contrasts of marginal linear predictions

Margins : asbalanced
df chi2 P>chi2
class 3 49,68 0.0000

We can use the margins command to help us interpret this effect by computing the

predictive margins of the probability of smoking by chass, as shown below. These predic-
tive margins account for the covariates by averaging across all values of the covariates.

. margins class

Predictive margins fumber of obs = 15375

Model VCE 1 DIM

Expression : br(smoke), predict{)
Delta~method
Margin  Std. Err, % P>zl [96% Conf. Interval)
class

1 .4262118 . 01674564 25.456 0.000 .3933914 .4580323
2 .3665092 0056573 64.78 0.000 .3664211 .3776974
3 . 3242303 0067422 56.46 0,000 .31297568 .3354847
4 . 3099447 .0215208 14.40 0.060 L2677647 .3521246

We can use marginsplot command to graph these predictive margins, as shown in
figure 18.4.
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. marginsplot, xlabel{, angle(45)}
Variables that uniquely identify margins: class

Pradictive Margins of class with 95% Cls
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Figure 18.4, The predictive marginal probability of smoking by class

In the predicted probability metric, the size of the elfect of a variable can {and will)
vary as a function of the value of the covariates. By comparison, in the logit metric
{like any linear model), the size of the effect of a variable remains constant regardless of
the values of the covariate. Let's explore this point by using the contrast comnand o
cstimate the eflect of class. For example, let’s use the contrast command to compare
each level of class with the previous level of class.

. contrast ar.class, nowald effects

Contrasts of marginal linear predictions

Margins + asbalanced
Contrast Std. Erx. z pP>izl [96% Conf. Intervall
class
(2 vs 1) -.2604145 .OT49733 ~3.47  0.001 ~.4073596  ~. 1134696
(3 va 2) -, 1945928 .0378278 -5.14  ©.000 -.2687336 -.1204514
(4 vs 3) -.0684813 L 1071814 ~0.64 0.b23 ~, 2785529 .1416803

After adjusiing for education, age, and year of interview, the difference between
groups 2 and 1 is significant, as is the difference between groups 3 and 2. The difference
between groups 4 and 3 is not significant. These diflevences are computed and expressed
in the log-odds metric, the natural (linear) wnetric for the model. The magnitucde of
these group differences and their significance wounld remain constant at any level of the
covariates.
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Let’s form these same comparisons but instead using the margins command, forming
the comparisons using the predicted probability metric. This shows the difference in
the predictive margins for the probability of smoking between adjacent levels of class,
averaging across ali values of the covariates in the dataset. {This is often called the
average marginal effect.)

. margins ar.class, contrast{nowald effects)

Contrasts of predictive margins

Model VCE : OTH
Expression : Pr(smoke), predict()
Delta-method
Contrast  Std, Err. Z P>zl [96% Conf. Intervall
class
(2 vs 1) -, 0597026 .0174984 -3.41 0.001 ~.0939988 ~. 0254064
(3 vs 2) -.0422789 .0082295 -6.14 G.000 ~-.0684085 ~.0261494
(4 vs 3) -.0142856 .022129 -0.85 ¢.619 -, O0bT857T . 0290865

Let’s repeat this command but specify that we want to estimate the effects at two
different values of education, at 7 and 18 years of education.

. margins ar.class, centrast(nowald effects) at(educ=(7 18))
Contrasts of predictive margins

Hodel VCE : 0IM

Expression  : Pr{smoke}, predict()

1,_at 1 educ = 7

2,_at : educ = 18

Deita-method
Contrast  Std. Err. -4 Prlzl [95% Conf. Interval]
class@_at

{2 ys 1) 1 -.0626576 0179638 ~3.49 0.000 -. 0978659 ~-.0274493
(2vs 1) 2 ~.0519208  .0156562 -3,32  0.001 -.0826064 -.0212353
3vs 2) 1 ~-.0464919 .0090132 ~-b.18 0.000 -.0641576 -.0288263
(3 va 2) 2 ~.0361111 0070012 ~-5.02 0.000 ~.0488333 -,021389
4 vs 3) 1 -.0161284 . .0261274 -0.64 0.521 ~.0653771 .0331203
(4 vs 3) 2 -.0116633 0178226 ~0.85 Q.516 ~.046495 .0233683

Let’s focus on the comparison of group 2 versus 1 (working class versus lower class).
Holding education constant at seven, the effect, of comparing group 2 versus 1 iz —0.063
with a z-value of —3.49. The results are slightly different when we hold education
constant at 18—the effect of comparing group 2 versus 1 is —0.052 with a z-value of
—3.32. Purthermore, looking at the previcus margins command (where we averaged
across all values of the covariates), this difference is —0.06 with a 2z-value of —3.41.
Although these results are similar, they are not identical.

Although it can be more intuitive to interpret results using probabilities, the effect
of any variable can increase or decrease depending on the values of the covariates. Let's
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assess the contrasts on class, but this time doing so when the covariates education, age,
and year of interview are held constant at the 25th percentile. Then let’s perform the
same contrasts, holding these covariates each at the H0th percentile and at the 75th
percentile. These tests are perfored using the margins command below.

. margins ar.class, contrast(nowald effects}
> at((p2B) educ age yrint) .

> at((ps0) educ age yrint)

> at((p75) educ age yrint)

Contrasts of adjusted predictions
Modal VCE : DIM

Expression  : Pr(smoke), predicg()

1._at : educ = 11 {p2B)

aga = 30 {p25)

yrint = 1980 (p25)

2._at 1 educ = 12 (ps0)

age = 41 (pB0O)

yrint = 1986 (ps0)

3._at 1 educ = 14 (p75)

age = 5¢ (p78)

yrint = 1989 (p75)

Delta—method
Contrast  Std. Err. E2 P>izi [96% Conf. Intervall
class@_at

(Zvs 1 -.0646819 .0184355 -3.51 0.000 -.1008147 ~-.0285491
(2 wva 1) 2 —-.0630039% .0184179 -3.42 0.001 -.0991024 -. 0269065
(2vs 1) 3 -. 0515222 0155656 -3.31 0.001 -.0820108 -.02103537
3wve 21 —~.04856233 . 0094069 -5.16  0.000 -.0669606 -,0300861
(3vs 2) 2 ~. 0447057 .00865563 ~-5.17 0.000 ~.0616699 ~-.0277416
(3 vs 2) 3 ~. 0343771 .0067872 -5.06 ¢.000 ~. 0476799 ~.0210744
(4 vs 3) 1 -.0169205 .0263901 ~0.64 0.821 -.0686441 .034803
(4 vs 3) 2 -.0161053 .0233927 —-0.656 0.518 -.0609541 .0347435
(4 va 3} 3 ~-,0112338 0172794 -0.656 0.518 -, 0461007 0226332

The first three lines of output show the contrast of class 1 versus 2 at the 25th, 50th,
and 75th percentiles. We can see that the size of the contrast iy similar, as is the z
test of the contrast. We see similar resulis for the contrast of classes 2 versus 3 and 3
versus 4.

As we have seen in these examples, the at{) option allows us to easily explore the
extent to which the effect of class (in the probability metric) differs as a function of the
value of the covariates.
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: f . use gss_ ivrm
Note! The margins command and the pwcompare option 5

. mlogit haprate i.female i.class educ yrint, nolog
You can use the margins conmuand and the at() option combined with the

Multinomial logistic regression Humber of obs = 48409
pucompare option to obtain pairwise comparisons of predicted probabilitics while ;R ghiz(i?; = 23726%
. . e . T e Yo chi = .
holding pu.(hc,tm.‘? constant at the values spn'eczf}ed by the lat_() option. For ex Log 1ikelihood = ~44799.143 pseudo K2 - 0.0228
ample, the following command computes pairwise comparisons among the class
groups for the predicted probability of smoking when education is held constant haprate Coef. Std. Err. z  Prlzl [96% Conf. Intervall

at 7 years.
not_too_ha~y

. . 0.67 0,502  ~-.037T66T6  .0769032

. margins class, pwcompare(effects) at(aduc=T7) 1.female 0186178 .0252278

class

We could Auther specify that education is to be held constant at 7 years and the 2 -.9806612  .0480355 -20.60 0.000  ~1.08380% -.8955133
rariable fermale be held constant at 1 {representing w 3 -1.19037  .0510237 -23.33 0,000  -1.290374 —1.080385
variable female be held constant at 1 {representing women). A onoons tomas1s 6.6 0.000  -1.087785  -.6860262
- margins class, pucompare(effects) at(educ=7 female=1) . educ | -.076872  .0047666 -16.13  0.000  -.0862122  -.067TH319
yrint .0034042 0013375 2.65  0.0il L0007827 0060257
_cons ~5.38401  2.654168  ~2.41 0.016  -11,58608 -1.181936

pretty_happy {base outcome)

18.3 Multinomial logistic regression

very happy
1.female .0713498 0206565 3.47  0.001 .0310587 .1116399

Let’s now consider a multinpmial logistic regression model, focusing on how the con- N

= . 3 g ¢lags

mands contrast, pucompare, margins, and marginsplot can be used alfter fifting such 2 3317B57  .O5T0264 5.82  0.000 . 2199859 4235254
a maodel. For this example, let’s use the variable haprate as the outcowe variable. This 3 7403293 0673407 12,91 0.000 . 6279435 .BB27151
variable contains the happiness rating of the respondent on a three point scale: 3 = 4 1.17829  .0772802 15,25 0.000 1.026804 . 1.329776
very happy, 2 = pretty happy, and 1 = not too happy.2 Tet’s predict this happiness educ | -.0001465  .0034639  -0.04 0.966  —.0069386  .0066427
rating from gender, class, education, and year of interview. This is performed using yrint | -.0062441  .0009482  -6.58 0.000  -.0081025  -.0043857
the mlogit command shown below. The miogit commnand chooses the most {requent ~cons 11.27073  1.581358 5.9 0.000 7.683332  14.95812

outcome (which was the second outcome, pretty happy) as the base outcome.

I am going to skip interpreting the coefficients and instead quickly ilusirate how
the contrast, pucompare, marging, and marginsplot comumands can be used to help
interpret the results of this model.

We can use the contrast command to obtain the overall effect of class. By defanit,
this tess is performed for the first equation (that is, for cuteome 1, not too happy). This
test is significant.

. contrast class
Contrasts of marginal linear predictions

Margins 1 asbalanced

df chi2 P>chil

not_too_ha-y
class 3 558.71 0.0000

2. For the sake of llustraiion, this ordered outcome will be analyzed wsing a wmltinonial logistic
wocdel. In the following section, this outcome will he analyzed using an ordinal logistic model.




472 Chapter 18 Nonlinear models
Adding the equation(3) option performs the contrast with respect to the third
outcome (that is, very happy). This test is also significant.

. contrast class, equation(3)

Contrasts of marginal linear predictions

Margins : asbalanced
daf chi2 P>chi?2
vary_happy
class 3 564,28 0.0000

The atequations option can be used to apply the contrast command with respect
to all the equations, The output of this command matches what we saw i the previous
two contrast commands,

. contrast class, atequations

Contrasts of marginal linear predictions

Margins : asbalanced
daf chiZ2 P>chi2

not_too_ha-~y

class 3 558,71 0.0000
pretty_happy

class {omitted}
very_happy

class 3 564,26 0.0000

We can use contrast operators with the contrast comimand to make specific compar-
isons among groups. In the example below, the ar. contrast operator is used to compare
adjacent levels of clags lor the third equation. Bach of these contrasts is significant.

. contrast ar,.class, equation{3) nowald effects

Contrasts of marginal linear predicticns

Margins : ashalanced
Contrast  Std., Err. z P>z (95 Conf. Intervall
very_happy
class
(2 vs 1) .3317557 0570264 5.82  0.000 2199859 4435264
(3 vs 2) 4085737 .0218213 18,72 0.000 . 3658047 - 4513426
(4 va 3 .4373606 .05515626 7.94 0.000 .3268635  .B46QB77

18.3 Multinomial logistic regression ' A73

The pwcompare commnand can be used to obtain pairwise comparisons among the
four class groups. The equation (3} option specifies thal these pairwise compatisons
should be made for the third equatiown.

., pwcompare class, equation{(3) effects

Pairuise comparisons of marginal linear predictions

Hargins 1 asbalanced
Gnadjusted Unadjusted
Contrast  Std., Err. z Priz! [95% Conf. Intervall
very_happy
class
2vs 1 L8317557  .0670264 5.82  0.060 .2199859 4435254
3 vs 1 . 7403293 .0573407 12.91 G, 000 -G279435 8627151
4 vs 1 1.17829  .0772902 15.26  0.000 1.026804 1.329776
3 vs 2 .4085737  .0218213 18.72  ©.000 . 3658047 4513426
4 vs 2 .8465343  .0559839 16.12  0.000 . 7368077 9562608
4 vs 3 , 4379606  ,0BBE1626 7.4 0.000 . 3298635 5460577

When using the margins command, the defanlt is to compute the predicted prob-
ability for the fivst equation. (For more information, see {R{ margins.) The margins
command helow computes the predictive margin of the probability of being not too
happy (that is, outcome 1) by class.

. marging class

Predictive margins Number of obs = 48409
todel VCE~ . OIM
Expression : Prihaprate==not_too_happy), predict(}
Deita-metheod
Margin  Std. Err. z P>zl [95% Conf, Intervall
class
i .3006533 0087292 34.44 D.000 .2835443 .3177623
2 .1283142 .002215 657.03 0,000 .1239728 . 1326556
3 .0944107 .00204566 46.15 0.000 .0904013 .09842
4 .1034631 0080951 i2.78 0.000 087597 .1193292

It might be more interesting to compute the predictive margin of being very happy
(the third outcome). The margins command below includes the predict (outcome (3))
to compute the predictive margin of the probability of being very happy by class.
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. margins class, predict(outcome(3))

Predictive margins Number of obs = 48409
Model VCE : DIM
Expression Pr (haprate==very_happy) ., predict (outcome(3))
Delta-method
Margin  Std. Err. z Priz| [95% Conf. Intervall
ciass
1 .1720693 .0074623 23.06 . 0.00G Li5744306 .18669b61
2 L2724164 003024 90.08  0.000 . 2664894 . 2783433
3 L3677148 0033127 1i1.0¢0  0.000 .361222 3742078
4 LAB610564 .0126678 36.40 0.000 LA362277 .438885

The marginsplos command is used below to graph the results of the previous
margins command. The graph, shown in fipure 18.5, shows the predictive margin
of being very happy by class.

. marginsplot, xlabel(, angle(45})
Variables that uniquely identify margins: class

Prediclive Margins of class with 95% Cls
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Figure 18.5. Probability of being very happy by social clags

The margins command bélow is used to compute the predictive margin of ¢he prob-
ability of being pretty happy (the second outcome) for those with 5 to 18 years of
education. The marginsplot command is ther used to graph the resulés. The praph is
shown in figure 18.6.
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. margins, predict(outcome(2)) at{educ=(5(1)18))
(outpul omilled)

. marginsplot
Variables that uniquely identify margins: educ

Predictive Margins with 95% Cls
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Figure 18.6. Probability of being pretty happy by education

e

18.4 Ordinal logistic regression

Let’s use the variable haprate from the previcus section as tlhe outcome, but now model
it using an ordinal logistic regression. Let’s use the olegit command to predict the
three-level variable haprate (1 = not too happy, 2 = pretty happy, and 3 = very happy)
[rom gender, class, education, and year of inlerview.
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. uge gss_ivim

. clogit haprate i.female i.class educ yrint, nolog

Drdered logistic regression Number of obs = 48409

LR chiz(6) = 1799.46

Prob > chi2 = 0.0000

Log likelihood = -44837.445 Pseudo RZ = 0.0186

haprate Coef. . 8td. Err. z P>|z1 [98% Conf. Intervall

1.famale .0598592 .0172433 3.34 0.001 . 024691 .0950273
class

2 .9575904 ,0413674 23.16  0.000 8765118 1.038669

3 1,380766 . 0423593 32,12 0.000 1.277743 1.44373%

q 1.663033 0645844 26,76 0.000 1.53645 1.789618

educ 0320956 0030435 10,65 0.006 0261304 0380607

yrint -, 0085063 .0008239 ~7.84  0.000 -, 0081329  ~.0048797

Jfenti ~13.41488  1.647082 -16.64311  ~10.18666

/eut2 ~10,59686  1.646575 ~13.82408  -T,369634

As T did in the previous section, I will bypass interpreting the coefficients and hriefly
illustrate the use of the contrast, pucompare, margins, and marginsplot connnands.
First, let’s consider the contrast comnmand, The contrast command below fests

the overall effect of class. This shows that the overall test of class is significant (p =
0.0000).

. contrast class

Contrasts of marginal linear predictions

Hargins : asbalanced
daf chiZ P>chi2
haprate
class 3 1286.31 0.0000

We can further dissect the overall effect of class through the nuse of contrast operators.
The contrast conunand below uses the ar. contrast operator to compare each level of
class with the previous level.

18.4  Ordinal logistic regression A77

. contrast ar.class, nowald effects

Contrasts of marginal linear predictions

Margins i asbalanced
Contrast  Std. Err. z P>lzj [95% Cenf. Intervall
haprate
class
(2 vs 1) L9575904 0413674 23.15 0,000 LB765118 1.038669
(3 vs 2) .40317686 .0192442 20,95  0.000 . 3654577 . 4408936
(4 va 3) . 302267 051545 5.86 0.000 2012406 . 4032033

We can also use the pwcompare command to obtain pairwise comparisons among the
four class groups, as shown below.

. pwcompare class, effects

Pairvise comparisons of marginal linear predictions

Margins 1 asbalanced
Y
Unad justed Unadjusted
Contrast  Std. Err, z Prlzl [96% Conf. Intervail
haprate
class
2vs 1 .9576904 ,0413674 23,156 0.000 .8765118 1.038669
3vs 1 1.360766 0423693 32.12  0.000 1.277743 1.443789
4 vs 1 1.663033 .0646844 25.75 Q.000 1.53648 1.789616
3vs 2 4031756 0192442 20.95  0.000 . 3654577 4408936
4 vs 2 . 7054426 .0B20753 13.556  G.000 . 6033769 . BOT5083
4 vs 3 . 302267 .061645 5.86 0.000 . 2012406 4032933

When using the margins command, the default is to compute the predicted prob-
ability for the first equation. The margins command below computes the predictive
margin of the probability of being not very happy by class.

. margins class

Predictive margins Humber of obs = 48400
Hodel VCE HERALL )
Expression : Pr(haprate==1), predict(}
Delta-method
Margin Std. Err. 2 prlzi [95% Conf. Intervall
class
1 .2888176 .C08044 35.80  0.000 . 2730517 . 3046835
2 .1350919 0019585 68.98 0.000 . 1312534 . 1389304
3 .0945507 0015586 60.67  0.000 .091496 0976064
4 .0716742 .0034455 20.80  0.000 0649211 0784273

The margins command below is used to compute the predictive margin of the pfoh—
ability of being very happy (the third outcome} for those with 5 to 18 years of education.
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The marginsplot command is then used to graph the vesults. The graph is shown in

figure 18.7.

. margins, predict{outcome{3}) at{educ=(5(1)18))
(outpiit omitted)

. marginsplot
Variables that uniquely identify marginsg: educ

Predictive Margins with 95% Cls
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Figure 18.7. FProbability of being very unhappy by edueation

18.5 Poisson regression

Let’s now briefly consider a Poisson motdel, showing the use of the contrast, pwcompare,
margins, and marginsplot commands following the use of the poisson command. Let’s
fit a model predicting the number of children a person has from gender, class, edueation,

and year of interview.

18.5 Poisson regression

. use gss_ivrm
. poisson children i.female i.class educ yrint

Iteratien 0: iog likelihood = ~85914.71

Iteration 1:

log likelihood = -95914.709

Peisson regression Number of chs = 51417

LR chi2(8) = 5773.21

Prob > ¢hi2 = 0.0000

Log likelihwod = ~95914.709 Pseudo R2 = 0,0202

children Coef.,  Std. Err. 2 P>z [95% Conf. Intervall

1.female | ~ 1317294 0064358 20.47  0.000 .1191154 .1443433
class

] ~-.0926702 0129119 ~7.18  0.000 -.1179771  ~.0673633

3 -, 0472048 0131897 -3.58 0.000 -.0730682 -.0213536

4 L061697 ,0214595 2.87 0.004 .0196372 .1036568

educ —-. 06893717 .0010093 -68.73 0.000 -.0713498  -.0673936

yrint -, 0010904 .Q002509 -3.75 0.000 -.0018606  -.0005203

_cons 3.684001 LBT73908 6.38 0.000 2,552336 4.815667

475

As we have seen before, the contrast conunand can be used to test the overall effect
of class. This test is significant (p = 0.0000).

. contrast class

Contrasts of marginal linear predictions

Margins 1 asbalancad
df chi2 P>chi2
clasas 3 129.31 0.0000

The ar. contrast operator is used to compare adjacent levels of class, comparing
each class with the previous class. Each of these tests is significant,

. contrast ar.class, nowald effects

Contrasts of marginal linear predictions

Margins : asbalanced
fontrast  Std, Frr. z P>zl {95% Conf. Intervall
class
2 vs 1) -. 0826702 .0128119 -7.18 0.000 -, 1179771 -.0673633
(3 vs 2) 0454653 .0068 6.69 0.00C .0321376 .058793
{4 vs 3) . 1088019 018121 6.00 0.00¢ .0732854 .1443184

We can use the pwcompare command to forn pairwise comnparisons among the four

class proups.
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. puwcompare class, effects

Pairwise comparisons of marginal linear predictions

Margins . asbalanced
Unadjusted Unadjusted
Contrast Std. Err. z >zl [95% Conf., Interval]
children
class
2vs t ~.0926702 .0129119 -7.18 0.000 ~, 1179771 -. 0673633
3vs t ~. 0472049 .0131897 -3.58 0,000 ~.0730562 -.0213536
4 vs 1 L0B1597 . 0214595 2.87  0.004 .0196372 1036568
3vs 2 . 0454663 . 0068 6,69 0,000 .0321376 .0b8753
4 vs 2 .1542672 0181821 8.48 0.000 .1186309 1898034
4 vs 3 .1088019 .018121 6,00 0.000 .0732854 .1443184

When using the margins command, the default is to compute the predicted number
of events. The margins command below computes the predicted number of children by
class,

. margins class

Predictive margins Number of obs = 51417
Model VCE H ]

Expression : Predicted number of events, predict()

Delta-method
targin  Std. Err. z P>|z| [96% Cont. Intervall
class
i 2.075177 026154 82.50 0,000 2.026876 2.124478
2 1.891511 0088545 213.62 0.000 1.874157 1,908866
3 1.979494 00956966 206,27 0.000 1.960685 1.998303
4 2,20702 .0386825 57.0% 0.000 2.131204 2.282837

The margins command is used t6 compute the predicted nwmber of children for
those with 5 to 18 years of education. The marginsplot command is then used to
graph the results, as shown in figure 18.8.
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. margins, at(educ=(5(1)18))
(output omitted)

. marginsplot
L
Variables that uniquely identify margins: educ

Predictive Margins with 85% Cls

Predicted Number Of Events
2 2.5
¢ P

I

1.5

9 10 11 12 13 14 {5 15 17 18
highest year of schoel compleled

fo|
wm

-~
oo

Figure 18.8. Predicted number of children by education

18.6 More applications of nonlinear models

The previous sections have illustrated, using basic models, the ways in which you can
use commands lilke contrast, pwcompare, margins, and marginsplot to interpret the
results of noniinear modeling commands like logit, mlogit, ologit, and poissen. This
section illustrates how you can use the modeling techniques that have been illustrated
in parts I, IT, and IIT with these kinds of nonlinear models. Three examples are shown
illustrating a calegorical by categorical interaction (see section 18.6.1), » categorical by
continnous imteraction (see section 18.6.2), and a piecewise model with two knots (sce
section 18.6.3).

18.6.1 Categorical by categorical interaction

This section illustrates a categorical by categorical interaction using a logistic regression.
‘We saw the application of such interactions in the context of a linear model in chapter 8
on categorical by categorical interactions.

Tor this example, let’s use the variable fepol as the outcome variable. The respon-
dent was asked if they believed that women are not suited for politics. The variable
fepol is coded: 1 = yes and 0 = no. Thus using fepol as our outcome, we are predicting
endorsement of the statement that women are not suited for politics. Two categorical
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predictors are included: a two-level measure of gender (female) and a three-level mea-
sure of aducation (educ3). This analysis is restricted to interviews conducted between
1972 and 1980.

Let’s begin by using the dataset and restricting the sample to the interviews that
occurred i 1980 and earlicr. We then use the Togit command to predict fepol from
educ3, female, and the interaction of these two categorical variables. The variable age
is also included as & control variable.

. use gss_ivrm

. keep if yrint <= 18980
(42967 observations deleted)

. logit fepol i.educ3##female age, nolog

Logistic regression Number of obs = 5014
LR chi2(6} = 310.52
Prob > chi2 = 0. 0000
Log likelihcod = -3313.743b Pseudo R2 = 0.0448
fepol Coef.  Std. Brr. z P>zl [95% Conf. Intervall
educ3
2 -, 2276576  .1008946 -2.26 0.024 -, 4254473  -.0299479
3 -,B852108  .1308B074 -4.99  0.000 -,9084859  -.3957302
1.female .1947732 .100224 1.4 0.062 ~-.0016622 ., 3512087
educ3iifenale
21 ©-.1378429 . 12068 -1.06 0.287 ~.3918151 .1161293
31 -.5742612 .1932399 ~2.97  0.003 ~-, 9530045 -.195518
age ,02058419  .0017888 11.48  0.000 .0170359 024048
_cons -,8368332  .1196262 -6.9%  0.000 -1.070296  ~.6013702

The contrast command is used to test the overall interaction of educ3 by female.
This interaction is significant,

. contrast educ3itfemale

Contrasts of marginal linear predictions

Margins : asbalanced
df chi2 P>chi2
aduc3ifemale 2 R85 0.0120

To help understand this interaction, let’s use the margins command $o estimate the
log odds of believing that women are not suited for politics by educ3 and female. Then
let’s make a graph of these predicted logits using the marginsplot command. This
creates the graph shown in figure 18.0.

18.6.1 Categotical by categorical interaction : 483

. margins educ3#female, predict(xb}

Predictive margins Nunmber of obs = 5014
Medel VCE : DIM
Fxpression : Linear prediction {log odds), predict{xb}
Delta-method
Margin  Std. Err. z P>jz| [95% Conf. Intervall
educ3#female
10 .0724204 .0763154 .95 0.343 ~.07716b1 . 2219959
i1 2671936 L0B73103 3.97  0.000 1352678 ,3991196
20 ~.1BB2772 0640951 -2.42  0.01b -.2809013 -, 02065631
21 —-.098346% 06237356 ~-1.88  0.080 ~.2009971 .0043034
30 —~.B796876 . 1058136 ~5.48 0.600 -. 7870783 ~.3722968
31 ~.9591766 . 126885 -7.66 0.000 ~1.207866 ~. 71048586

. marginsplot, legend(subtitle(Gender))
Variables that uniquely identify margins: educ3 female

Predictive Margins of educ3#female with 95% Cls
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Figure 18.9. Predicted log odds of believing women are not suited for politics by gender
and education

The graph in figure 18.9 shows the log odds of believing that women are not suited
for politics by gender and education. This graph illnstrates that the log odds of agreeing
with this statement declines with increasing education, and that this decline appears
to be stronger for femmales than for males. Let’s test this by interacting gender with
comparisons of adjacent education levels (that is, college graduates with high school
graduates, and high schoo! graduates with non—high school graduates). We can test
this partial interaction by applying the ar. contrast operator to educ3 and interacting
that with female.
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. contrast ar.educ3#female

Contrasts of marginal linear predictions

Margins 1 ashalanced
daf chi2 P>chi2
educ3#female
(2 vs 1) (joint) 1 1.3 0.2874
(3 vs 2) (jointg) 1 5.60 G.0180
Joint 2 8.856 ¢.0120

The first contrast estimates the interaction of the comparison of high school gradu-
ates with non—high schoot graduates by gender. This test is not significant {p = 0.2874).
The second contrast, which interacts the comparison of coliege graduates to high school
graduates by gender, is significant (p = 0.018). As we can see in figure 18.9, the log
adds of agreeing that women are not suited for politics decreases more for females than
for males when comparing college graduates with high schoal graduates.

Let's now assess the gender difference at eacl level of education. We can do this
by testing the simple effect of gender at each level of education using the contrast
command below.

. contrast female@educd

Contrasts of marginal linear predictions

Margins : asbalanced
df chi2 P>chi2
female@educ3
i 1 3.78 0.0520
2 1 0.48 0.4878
3 1 5.28 0.0216
Joint 3 9.64 0.0230

For non—high school graduates, the gender difference is not significant {p = 0.0520).
For high school graduates, the gender difference is also not significant (p = 0.4878). For
college graduates, the gender difference is significant {p = (1.0216). We can interpret the
direction of this significance by looking at figure 18.9, which helps us see that the log
odds of agreeing that women are not suited for polities is significantly lower for females
versus males.

We can use the margins command to estimate the predictive margin of the proba-
bility of believing that women are not suited for politics by education and gender. The
marginsplot command is then used to graph these values (see figure 18.10).

Al
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. margins educd#female

Predictive margins Number of obs = 5014
Hodel VCE : 0IN

Expression : Pr(fepol), predict()

Delta-method
Margin  S5td. Exr. z P>|zi {95% Conf. Interval)
educ3ffenale

10 5171847 .0185122 27.94  0.000 4809015 .553468
11 . 5640704 ,016138 34.96  0.000 .Ba24444 .5956963
20 . 4620812 .0154578 29.89  0.000 4317845 402378
21 .475823 . 0126666 37.57  0.G00 4509969 .5006491
30 , 3627282 .0237663 15.26  0.000 .3161471 LA093094
31 2824397 . 0260628 11.27  0.000 .233218 .3315613

., marginsplot, legend(subtitle(Gender))
Variables that uniquely identify margins: educ3 female

Predictive Margins of educ3#female with 95% Cls_
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Figure 18.10. Predicted probability of believing women are not suited for politics Ly
gender and education

The pattern of the interaction illustrated in the probability metric in figure 18.10
is similar to the pastern of the interaction shown in the log-odds metric in figure 18.9.
However, the pattern of the interaction in the probability metric could vary as a function
of the covariates. In this case we have only one covariate, age. Let's make two graphs
showing the pattern of this interaction in the probability metric, one where age is held
constant at 30 and another where age is held constant at 50. The margins command
helow computes the predictive margins by education and gender for 30-year-olds and 50-
year-otds. The marginsplot command graphs these two sets of results {see figure 18.1 1).
The pattern of the interaction looks similar at each level of age.
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. margins educ3#female, at{age=(30 50))

Adjusted predictions Number of obs = 5014

Model VCE : DIM

Expression ; Pr(fepol), predict()

1. at 1 age = 30

2._at . age = 50

Delta-method
Margia Std. Err. z P>z} {96% Conf. Intervall
_at#educ3i

fenale
i10 4453267 .3209418 21.26  Q.000 4042807 4863708
141 4937999 0189311 26.08 0.000 .AbB69B5 5308042
120 .3900094 01661567 24,98  0.000 .3594032 4206166
121 4036349 .51326895 30.37 0.000 . 377588 4296818
13¢ ,2949042 .0224732 13.12  0.000 2508576 . 33895608
131 .2224975 .3223342 9.95 0.000 .1787232 .2662718
210 B4ATBTOT .0186031 29.44  0.000 .5112083 .6841321
211 .5053283 .3159992 37.2%1 0.000 .5639706 . 6266861
220 .49089256 0165718 28,62  0.000 . 4584124 . BR3ITAT
221 .5055£239 0136667 36.96 0.000 .4783376 .5318103
230 . 3867866 . (0262905 16.28  0.000 .3372172 4363564
231 .3014648 0268349 i1.23 0.600 . 2488693 . 3640603

. marginsplot, bydimension(age) legend{subtitle(Gender))
Variables that uniquely identify margins: age educ3 female

Adjusted Predictions of educ3#female with 95% Cls
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Figure 18.11. Predicted probability of believing women are not suited for politics by
gender and education with age held constant at 30 and 50
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You could also assess the partial intoraction of ar.educ#female, in the probability
metric, for those at different ages. The example below assesses this partial interaction
at ages 30 and 50,

. margins ar.educ3#female, at(age={30 50}) contrast{nowald pveffects)
Contrasts of adjusted predictions

Model VCE ¢ OIH

Expression ¢ Prifepol), predict{)

i._at . age = 30
2._at i age = &0

Delta-method

Contrast Std. Errx. 2 P>jz|

educ3tfifenale@_at
(2 vs 1} (1 va base) & ~-.(348486  .0316967 ~1.10  0.272
(2 va 1} {1 vs base) 2 -.0334262  ,0319873 ~1.04 0,296

(3 vs 2} {1 vs base) i
(3 va 2} (1 ve base) 2

0860322, 0367553 ~2.34  0.019
,0996522  .0419946 -2.371  0.018

The interaction of gender by education {group 2 versus 1) is not significant whether
age is lreld constant at 30 or 50. The interaction of gender by education (group 3 versus
2} is significant whether age is held constant at 30 or 50.

18.6.2 Categorical by continuous interaction

This section illustrates a categorical by continuous interaction using a binary logistic
vegression. This analysis draws upon the concepts illustrated in chapter 10. The out-
come for this example is the variable fepres, which is coded: 1 == would vole for a
wornan president, and 0 = would not vote for a woman president. Let’s predict this as
a function of time (that is, year of interview) and education to see if the linear change
in this attitude over time differed by education level. With respect to the year ol inter-
view, this question was asked in 17 different years ranging from 1972 to 1998, then it
was asked again in 2008 and 2010. Because of the large 10-year gap between 1998 and
2008, we will omit the data for 2008 onward. With respect to oducation, lei’s use the
three-level categorical variable educ3, which is coded: 1 = non-high school graduate,
2 = high school graduate, and 3 = college graduate.

The dataset is used below and the observations for the year 2008 and onward are
dropped.

. use gss_ivrm

. drop if yrint>=2008
{4067 observations deleted)

Let’s begin by assessing the trend in the log odds of the outcome across years. In
doing so, let’s look at each education group separately so-we can assess the trend for
each education group. Based on the strategy llustrated in section 2.4.4, we first fit a
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model using fepres as the outcome predicted by 1. yrint72##educ3 as well as age and
female.

. logit fepres i.yrint72##educ3 age female
{output omitted)

We then use the margins command to compute the predicted outcome in the log-
odds metric followed by the marginsplot command to graph the results. The graph
of the log odds of willingness to vote for a womnan president by year and education is
shown in figure 18.12,

. marging yrint728educ3, predict(xb)
{output omitted)

. marginsplot, noci

Variables that uniguely identify margins: yrint72 educ3

Predictive Margins of yrint72#educ3
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Figure 18.12. Predicted log odds of voting for a woman president by year of interview
and education

As we might expect, there are some bumps across time, but the trends seemn rea-
sonably linear for each group. We can test for differences in the linear effect of year by
education using the contrast command below. The pl contrast operator indicates to
test for the linear effect of yrint72. This test is significant.

18.6.2 Categorical by contimious interaction

. contrast pl.yrint72#educ3

Contrasts of marginal limear predictions

Margins

: asbalanced

df

chi2

P>chi2

yrint72#educd

2

6.70

0,0352

We can test for differences in the quadratic effect of yrint72 using the contrast
cotnmand below. This test is not significant.

. contrast p2.yrint72#educ3
Contrasts of marginal linear predictions
Margins : asbalanced

df chi2 P>chi2

yrint72#educd 2 0.59 0.7436

We could further explore the nature of the relationship between time and the out-
come for additional degrees of trend (for example, cubic or quartic), but let’s instead
proceed fitting & model where we treat yrint72 as a continuous variable and interacting
it with educ3. The variables age and female are also included as covariates.

. logit fepres c,yrintT2##educd age female, nolop

Logistic regression Humber of obs = 23926
LR chiz(7) = 1754.77
Prob > chi2 = 0.0000
Log likelihood = -8803.3423 Pseudo R2 = 0. 0906
fepres Coef.  Std. Err. z Prizl [95% Conf. Intervall
yrint¥2 . 0435104 . 0039697 10.96  0.000 (357298 0512909
educ3
2 3372813 . 0702906 4,80 0,000 .1995143 4750483
3 . 9055769 .1205486 T.51 0.000 . 669306 1.141848
educ3#
¢.yrint72
2 01469462 0062977 2,76 0.0086 0042128 , 0249795
3 .016982 .008434 2.00 G.045 .0003636 .0336804
age ~.0262412 .0011221 ~23.39 3.0C0 —~.0284404 ~.024042
female -.0204508 .039451 ~-0.52 0.604 -. 0977734 0668718
..cons 2.143351 .080775 26.83 0,000 1.985035 2.301667

We can test the overall interaction of c¢.yrint72#educ3 using the contrast com-
mane. This test is significant. The linear trend in the relationship between the log odds
of the outecome and the year of interview differs by a threc-level measure of education.
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. contrast c.yrint72#educ3
Contrasts of marginal linear predictions

Margins : asbalanced

df chi2

P>chi2

educl#c.yrintT2 2 8.83

0.0121

Chapter 18 Nonlinear models

Let's use the pwcompare command to forin palrwise comparisons of the eflect of

yrint72 among the three levels of education.

. pwcompare c.yrint72#educ3d, effects

Pairwise comparisons of marginal linear predictions

Margins : asbalanced
Unadjusted Unadjusted
GContrast Std. Err. z P> |z} [96% Conf. Intervall
fepres
aduc3#
c.yrint72
2wvs 1 .0145962 ., 00B2O7T 2.76  0.008 .G042128 5248796
Jvs 1 016882 .0084384 2.00 0.04h 0003636 .0336104
3 vs 2 . 00238868 . 00829156 0.29 0.774 -.(138661 .0186368

The test comparing the effect of the year of interview for group 2 versus 1 (high school
graduates versus non-high school graduates) is significant, and the test comparing the
effect of the year of mmterview for gronp 3 versus 1 {college praduates versus non-—-high
school graduates) is also significant. The last test of group 3 versus 2 (college graduates

versus Ligh school graduates) is not significan

t.

We can visualize the predicted log odds of the willingness to vote for a woman
president by year and education using the margins and marginsplot commands shown

below. This creates the graph shown in figure

18.13.

18.6.2 Categorical by contimious interaction

. margins educ3, at(yrint72=(0{1)26)) predict{xb}
(output omitied)

. marginsplot, noci

Variables that uniquely identify margins: yrint72 educ3

Predictive Mar_gir:s of educ3
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Figure 18.13. Predicted log odds of willingness o vote for a woman president by year

of interview and education

If we prefer, we can estimate and graph these results in the predicted probability
metric using the margins and marginsplot commands below. The graph produced by

the margins command iy shown in figure 18.14.
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. margins educ3, at(yrint72=(0(1)26))
{output omitted)

. marginsplot, noci
Variables that uniquely identify margins: yrint72 educ3

Predictive Margins of educ3
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Figure 18.14. Predictive margin of the probability of being willing to vote for a woman
president by year of interview and education

This section has illustrated how a cateporical by continuons interaction can be fit
using a logistic regression model, nsing the modeling techniques ilustrated in chapter 10,
You could use other techniques ilustrated in that chapter, such as forming comparisons
among education groups at different time points.

18.6.3 Piecewise modeling

This section illustrates modeling a continucus predictor fit using piecewise modeling
in the context of a logistic regression model. This analysis draws upon the concepts
illustrated in chapter 4. The outcome for this example is the variable smoke, which
measures whether the person smokes, coded: 1 = yes and 0 = no. Let’s model smoking
as a function of education, modeling education in a piecewise mauner as illustrated in
section 4.6,

Let's bepin by inspecting the nature of the relationship between education and smaok-
ing status. Based on the techmiques illustrated in section 2.4.4, we first fit a model
predicting smoking status from education, treating education as a categorical variable.
Age is also included in the model as a covariate. The output of the logit command ig
omitted to save space.
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. use gss_ivrm

. logit smoke i.educ age
(output omitted)

Let’s now make a graph that shows the predicted logit of smoking as a function of
education, adjusting for age. This is done using the margins command (the output is
omitted to save space) followed by the marginsplot command. The resulting graph is
shown in figure 18.15.

- margins aduc, predict(xb)
(cutput omitted)
. marginsplet, xline(12 18)
Variables that uniquely identify margins: educ

Predictive Margins of educ with 95% Cis
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Figure 18.15. Log odds of smoking by education

The graph in figure 18.15 includes vertical lines at 12 and 16 years of education,
These junctures seem like excellent candidates for the placement of knots where there
is a change in slope and a change in intercept. As we did in section 4.6, let’s model
education using a piecewise model with two knots at 12 and 16 years of education. Let’s
fit such a model below.
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. mkspline edprehsm 12 edhsm 16 edcom = educ, marginal

. logit smoke c.edprehsm c.edhsm c.edcom hsgrad cograd age, nolog . graph twoway line yhatl educi, xline{i2 18) title("Piecewise Model")
Logistic regression Number of obs = 16274
LR ¢hi2(6} = 806.95 , .
Prob > chi2 = 0.0000 Piecewise Model
Log likeliheod = -10136.225 Pseudo A2 = 0.0283 o
smoke Coef. Std. Err. z Priz| [95% Conf. Intervall
edprehsm 0540074 0146957 3.68  0.000 .0262044 .0828105 @
edhsm | ~.1571181  .0269648  ~5.83 0.000  ~.2099681 —.1042682 [
edcom .0G89168  ,0420088 1,40 ©0.161  ~-,0234189 . 1412526 =
hsgrad -.599279 .062408  -9.60 0.000  -.7215984 —.4T69697 g
cograd | -.3026172 0953092  -3.i18 0.001  ~-.4854197 —.1158147
age | ~.0201919 .001057  -19,10° 0.000¢  -.0222636 -.0i81202 -
_cons 2709492 . 1535817 1.76  0.078  —.0300655 .571D638
Before interpreting the results, let’s create a graph of the predicted log odds of o \
smoking as a function of education. This is done using the same techniques illustrated T —6 r - s A
in section 4.10. This produces the graph shown in figure 18.16. educt
. margins, )
> at(edprehsm=0 ednsn=0 edcom=0 hsgrad=0 cograd=0) Figure 18.16. Predicted log odds of smoking from education. fit using a piecewise model
>  at(edprehsm=12 edhsm=0 edcom=0 hsgrad=0 cograd=0) R . ’
>  at(edprehsm=12 edhsm=0 edcom=0 hsgrad=1 cograd=0) with two knots
> at(edprehsm=16 ediasm=4 edcom=0 hsgrad=1 cograd=0)
>  at(edprehsm=16 edhsm=4 edcom=0 hsgrad=1 cograd=1) ) . s T S oy RN
>  at(edprehsm=20 edhsn=8 edcom=4 hsgrad=1 cograd=1) predict(xb) noatiegend ' We can use the graph of the predlf;ted l()gitbl from Hpure 18.16 to hel[? us interpret the
Predictive margins Number of obs - = 16974 results from the logit conunand. First, let’s h}cu§ on the slope coefﬁcz.lents (edp}:eh?m,
Model VCE ¢ 01 edham, and edcom). The coeflicient for edprehsm is the educ slope prior to graduating
Exprsssion ! Linear predictionr {log odds), predict(xh) high school. The coeflicient for edhsm is the change in the slope due to graduating high
school, and edcom is the change in the slope due to graduating college. The coefficient
. Delta~methad for edprehsm is 0,054 and is significant (z = 3.68, p = 0.000). Prior to graduating high
tiargin  S5td. Err, z P>zl [95% Conf. Intervall . : . . . L ] . S L
. school, a one-year increase in education increases the predicted log odds of smoking by
-at : 0.054 units. The coefficient for edham is ~0.16 and is significant {z = --5.83, p == 0.000).
t 76360931 1339623 -4.76  0.000  -.5986348 - 373BA15 Upon graduating high school, the slope relating education to the log odds of smoking
2 0119862  .0660904 0.21  ©.831 -, 097939 1219318 st by 0.16. The coefficiont for s 0.06 bub is 1ot simmificant (z — 1.40
3 ~ .G872828 .0278267 -91.11 0.000 - . 5418901 ~.5327435 dem ¢cases By 1.16. e coellicient for edcom i5 O, ')l] . 15 Il()-‘blglll ALY (Z = . f
4 ~.9997256  .0792405 -12.62 0,000  ~-1,1556034  -.844417 p = 0.161). Upon graduating college, the slope relating education to the log odds of
5 ~1.302348 0542245 -24.02  0.000  -1.408621  -1.196065 smoking does not significantly change.
6 ~1.479118  .1183285 ~-12.50 0.000  -1.711038 -%.247199
The hsgrad cocflicient shows the change in the log odds of simoking upon graduating
" . mat yhat = r{(b}"

high school, showing a significant decrease (portrayed as the sudden drop 12 years in
-mat educ = (0 A 124 12\ 16 A 16 \ 200 figure 18.16). Upon graduating high school, the log odds of smoking is predicted to
+ svmat yhat drop by 0.60 wmits (z = —9.60, p = 0.000). Likewise, the cograd coefficient reflects the
+ svmat educ change in the log odds of smoking upon graduating college. As we see in figure 18.16, the
log odds of smoking substantially decreases upon graduating college. The log odds of
smoking drop by 0.30 units upon graduating college, a significant decrease (z = ~3.18,
p = 0.001).

To assess how well the piecewise model acconunodates the relationship between the
log edds of smoking and education, let’s visualize figures 18.15 and 18.16 side by side.
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It appears that the piecewise model shown in the right panel of figure 18.17 models the
observed data [rom the left panel of fipure 18.17 in a parshinonions wmanuer.

Predictive Margins of educ with 85% Gls Piecewise Modet
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18.6.3 Piecowise modeling
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. margins,

>  at(edprehsm=6 adhsm=0 edcom=0 hsgrad=0 cograd=0)

>  at(edprehsm=$2 edhsm=0 edcom=0 hsgrad=0 cograd=0}

>  at{edprehsm=12 edhsm=0 edcom=0 hsgrad=1 cograd=0)

>  at{edprehsm=16 edhsm=4 edcom=0 hsgrad=1 cograd=0)

>  at(edprehsm=16 edhsm=4 edcom=0 hsgrad=1 cograd=1)

>  at(edprehsm=20 edhsm=8 edcom=4 hsgrad=1 cograd=1) noatlegend

Predictive margins Number of obs 16274

Model VCE 1 OIM

Expression  : Pr(smoke), predict()

Delta-method
Margin  Std. Err. P>zl [98% Conf. Intervall
_at

1 .4125338 .0163917 26.80 0.000 . 3823663 4427008
2 5033372 .0136031 37.03  0.000 4766962 5299792
3 .3615623 .0G62035 58.28 0.000 3494037 .373720%9
4 2747184 .0153683 17.88 0.000 .2445971 . 3048387
& .2197516  .0090636 24.26  (.000 .2019871 .2376169
6 .1914397 0180026 16.63  0.000 .16615652 .2267242

. mat prsmoke = r(b)-

mat xeduc =

(BN 12\ 12 \ 16 \ 16 \ 20}

. svmat pramoke

. svmat xeduc

Figure 18.17. Log odds of smoking treating education ag a categovical variable (left
panel) and fitking education using a piecewise model (right panet)

Let's use the margins command to create the predictive margin of the probability of
smoking as a function of education, averaging across the covariate age. The predictive
marging are computed using the margins command below and then they are graphed
as a function of education using the graph twoway command. The resulting graph is
shown in figure 18.18.%

3. Note that this graph portrays each piece of the regression model finearly, which is not quite accurate
given that the results are graphed in the probabiity metric. For the most accurate graph, the
predictive margin should be computed at each level of education ranging from § to 20.

. graph twoway line prsmokei xeducl, xline(12 18) name{g3, replace)

premoke

\

n 4

xeduct

20

Figure 18.18. Probability of smoking treating by education ({it using a piecewise model)
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The predictive margins in fignre 18.18 are easier to interpret than the predicted
log odds shown in figure 18.16, however we need to remember thab the pattern using
probabilities eould change as a function of the covariates. We could further explore this
by creating graphs at different levels of the covariate, age.

18.7 Summary

This chapter lhas illustrated the use of the contrast, pwcompare, margins, and
marginsplot commands following nenlinear esthmation commands like logit, mlogit,
ologit, and poisson, Furthermore, section 18.6 provided examples showing how the
modeling techniques from parts T, 1T, and 11T can he applied to nonlinear models. This
ilinstrates the gencrality of these modeling techniques, showing that the modeling tech-
niques from parts I, T1, and 11 are not restricted to only linear models but can also
be applied to nonlinear models as well, If we interpret the results using the natural
metric of the model {for example, using log odds from a logistic regression model}, then
the effect of any given predictor remains the same regardless of the value of any of the
covariates. However, if we interpret the results in a different metric (for example, using
probabilities from a logistic regression modet), we need to be mindful that the effect of a
predictor can (and will) change depending on the values of the covariates. Such results
can be more intuitive, but also may vary as a function of the values of the covariates.

For more information about logistic regression, see Kleinbaum and Klein (2010),
Hosmer and Lemeshow (2000), Menard (2002), Long (1997), and Hilbe (2009), as well as
Long and Freese {2006), who include examples using Stata. Also see Gould (2000) for an
excellent tutorial regarding the interpretation of logistic models. For more information
about interaction effects in logistic regression models, see Jaccard (2001) and Hilbe
{2009).

19 Complex survey data

Slata has extensive capabilities with respect to the analysis of datasets that arise from
complex survey designs. In such cases, the svyset command is nsed to declare the st
vey sampling design, and the svy prefix is supplied before an estimation command (for
example, svy: regress). You wiil be glad to know that, even when you have conplex
swrvey data, you can still use the margins, marginsplot, contrast, and pwcompare
commands to hterpret your results, The chapter briefly iHlustrates the mechanics of
using these commands in the context of a complex survey.

The examnple dataset used in this chapter is the nhanes?.dta dataset. This is one
of the Stata example datasets and i used via the Internet with the wvebuse command,
shown below,

. webusze nhanes2

The foliowing svyset comunand declares the design for this survey, naming the
primary sampling unit, the person weight, and the strata. The particular design for
this survey is not relevant.

. svyset psu [pw=finalugt], strata(strata)

pueight: finalugt
VCE: linearized
Single unit: missing
Strata 1: strata
SU 1: pan
FPC 1: <zero>

Let's now perform o regression analysis nsing this dataset. Let's predict systolic
blood pressure from the person’s age (in six age groups), sex, and weight. We nse the
svy prefix before the regress command to account for the survey design as specified
by the svyset command.

499
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. BVy: regress bpsystol i.apgegrp 1.sex ¢.weight
(running regress on estimation sample}

Survey: Linear regression

Number of strata = 31 Rumber of obs = 10351
Number of PSys = 62 Populatior size = 117157513
Dasign df = 31
F( 7, 25) = 328.186
Prob > F = ©.0000
R-squared = ©.3087
linearized
bpsystol Coef.  8td. Err. t P>t [95% Conf. Intexvall
agegrp
2 1.204372 .5704928 2.11 ¢.043 . 0408442 2.3679
3 6.881622 L7192608 $.57  0.000 5.41468 8.348563
4 16.03707 . 7148093 22.44 . GO0 14.57921 17.49493
5 23.38473 LT72895 30.26 0.000 2% .B084 24,96106
1 30.28196 .8950843 33.83 0. 000 28.46643 32,1078
2.88x -.B48672 . 5405893 -1.20 0.239 -1.761211 . 453867
weight .4267484 .0171314 24.85 0.000 . 3908086 LAB06881
_cons 88.06503 1.324402 66.49 0.000 85.3638% 90,76618

We can use the contrast, pwcompare, margins, and marginsplot commands to
interpret these resulls. The use of these commands are briefly iHustrated below.

The contrast command can be used to make comparisons among the groups formed
by a factor variable. The contrast command below tests the equality of the adjusted
menans for the six age groups. The test shows that the average systolic blood pressure
is not equal amoung the six age groups.

. contrast agegrp

Contrasts of marginal linear predictions

Design df = 31
Margins ¢ asbalanced
daf F P>F
agegrp b 297 .86 0.0G600
Design 31

Note: F statistics are adjusted for the survey
design.

The output of the contrast command indicates the ' test is adjusted for the survey
design. If you wanted to omit the adjustment for the design degrees of freedom, you
could add the nosvyadjust option, as shown below. {See [R] contrast for more details
about this option.)
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. contrast agegrp, nosvyadjust

Contrasts of wmarginal linear predictions

Design df = a1
Margins ¢t asbalanced
df F P>F
agegrp 5 341.99 . G000
Design 3i

The pwcompare command can also be used to form pairwise comparisons among the
different age groups. In the example below, the mcompare(sidak} option is included
to adjust for multiple comparisons. The results show that all the pairwise comparisons
are significant except for the comparison of group 1 with group 2.

. pwcompare agegrp, effects mcompare(sidak)

Pairwise comparisons of marginal linear predictions

Design df = 31
Hargins : asbalanced

Number of

Comparisons

agegrp ib

Sidak Sidak
Contrast  Std. Err. t P>ltl {95Y% Conf. Intervall
agegrp

2vsl 1.204372  .6704928 2.1t 0.482 -.6045508 3.013304
3vs i 6.881622  .7192606 9.57  0.000 4,600974 9.16227
4 vs 1 16.03707 7148093 22.44  0.00C 13.7705b4 18.3036
5 vs 1l 23.38473 712895 30.26  {.000 20,93401 25.83544
6 vs 1 30.28196 8950843 33.83 0.000 27.44381 33.12012
3 vs 2 5.67725 .648312 8.76  0.000 3.621667 7.732832
4 ys 2 14,8327 . 7601836 19.51  0.000 12.42229 17.24311
B vs 2 22.18036 .8176811 27,13 0.000 19.58763 2477308
6 vs 2 29.07759  1,000489 24.06 ©.000 25.90522 32.24996
4 vs 3 9,15544%  .8885720 10.30 0.000 6.337942 11,97296
5 vs 3 18,50311 L9525501 17.33  0.000 13.48274 1952347
6 vs 3 23.40034 9574325 24,44  Q.000 20.36449 26.43619
5 vs 4 7.3476567 .8645896 8.60 0.000 4.637905 10.05741
6 vs 4 14.,24489 . T4T2841 19.06  0.000 11.87639 16.6144
6 vs B 6.897234  1.020149 6,76  0.000 3.662623 10.134195

We can use the margins command to estimate the adjusted means by agegrp, as
shown below.
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. margins agegrp

Predictive margins Number of obs = 10351
Hodel VCE ¢ Linearized
Expression : Linear prediction, predict(}
Delta-methed
Margin  Std. Err, z P>zl [95% Conf. Intervall
agegrp
1 118.3389 .6076831 194.74 Q.000 117.1478 11,5299
2 119.5432 .5875508 203.48 0.000 118.3917 120,6948
23 125, 2205 . 7666829 163.34 Q.000 123.7179 126.7231
4 134.3759 .9100827 147,65 Q.000 132,5922 136.1597
5 141,7236 .8937048 168,568 Q.000 139,972 143.47562
6 148.6208 1.07722% 137.97 0.000 1486, 5095 160.7322

You can include the vce(unconditional) option to account for the sampling of
covariates not fixed with the at () option. The estimates of the adjusted means remain
the same, but the standard errors are somewhat diflerent, as they accouns for the fact
that the values of the covariates were randomly sampled, (See [R} margins for more
details alhont this option.)

. margins agegrp, vce(unconditional)

Predictive margins Humber of obas = 10351
Expression : Linear prediction, predict()
Linearized
Margin Std. Err. t P>|tE [96% Conf. Interval]
agegrp
1 118.3389 .B090258 154.31 0.000 117.0968 119,581
2 119,5432 .5807545 202.36 0.000 118.3384 120,7481
3 125,22056 LTTATTS 161,62 0,000 123.6403 126.8007
4 134,3759 . 8099662 147.87 0,000 132.5201 136,2318
5 141,7236 8799832 igl1.06 0.000 139.9289 143.5183
6 148,6208 1.08863 i36.52 0.000 146.4006 150.8411

The marginsplot command can be used to graph the adjusted moeans and confidence
intervals computed by the wargins conunad. Figure 19.1 shows the adjusted means
(with confidence intervals) by age group as computed by the most recent margins
commail.
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. marginsplot

Variables that uniquely identify margins: agegrp

Predictive Margins of agegrp with 95% Cls
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Figure 19.1. Adjusted means of systolic blood pressure by age group

As we have seen i this chapter, the contrast, pucempare, margins, and
marginsplot cornmancs can be used to interpret the results from the analysis of complex
survey data. When you use the svy prefix with an estiimation cominand, the contrast,
pucompare, and margins commands compube appropriate estimates and standard erross
hased on the survey design. For more informalion, see [SVY] svy.



Part V

Appendices

Appendix A The margins command
Appendix B The marginsplot command
Appendix C The contrast command

Appendix D The pwecompare command

These appendices take a command-centered focus, illustrating additional options
that can be used with the margins, marginsploet, contrast, and pwcompare commands.

Appendix A covers additional features of the margins command.

Appendix B covers the marginsplot, emphasizing how to customize the look of the
graphs created by the marginsplot command.

Appendix C illustrates additional options used with the contrast command, em-
phasizing how you can customize the output.

Appendix D covers the pucompare command, including more details regarding the
different adjustments that can be used for multiple comparisons as well as how to
custornize the output of the pucompare command.



A The margins command

This appendix illustrates some of the options that you can use with the margins com-
mand. In particular, this appendix illustrates the predict{() and expression() oplions
(see section A.1}, the at () option (see section A.2), computing margins with factor vari-
ables (see section A.3), computing margins with factor variables and the at() option
(see section A.4), and the dydx () and related options (see section A.5). For complete
details about the margins command, see [R] margins.

A1l The predict() and expression{) options

Consider the example below that uses a logistic regression model to predict whether a
person is a smoker based on the person’s self-reported social class, education, age, and
year of interview.

. use gss_ivrm

. logit smoke i.class educ age yrint

log likelihood = -9951.2382
log likelihood = -9582.9808
log likelihood = -9580.0732
log likelihood = -9580,0723

Iteration 0:
Iteration 1:
Iteration 2:
Iteration 3:

Logistic regression Namber of obs = 15375
LR chi2(6) = 742.33
Prob > chi2 = 0.0000
Log likelihood = -85B0.0723 Psaudo R2 = 0.0372
smoke Coef, Std. Err. z Prizl {gb% Conf. Intervall
class
2 —-.26041456 .0749733 ~3.47 0.001 -.4Q73555 -.1134696
3 - 455007 L OT72007 -5.88  0.000 -.6063176  -.3036965
4 ~.B5234883 1274959 ~4.11  0.000 - 7733767 -.273600%
educ -, 0878902  .0063325 -13.,88 0.00Q - 1003016  -.0754797
age -.019839% . 0010949 -18.12 0.000 ~.0219868 -.017693%
yrint ~-,0321324 . 0033889 -9.48  0.000 ~.0387748 -.0254902
_cons 65.45743 6.7i8824 9.74 0.000 52.28877 78.62608

Suppose we specify the margins conunand shown below. This computes the pre-
dictive margin holding age constant at 40, adjusting for all the other covariates. The
portion of the output titled Expression: tells us that the predictive margin is computod
in terms of the probability of smoking. The predictive marginal probability of smoking
for a 40-year-old is 0.368.
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. margins, as(age=40)

Pradictive margins Number of obs = 16376
Model VCE : OIM
Expression : Pr(smoke), predict()
at .t age = 40
Delta-method
Margin  Std. Err. 2 Priz| f96% Conf. Intervall
. _cons 3684519 .00399%1 92.32 0.000 . 3606294 .3762743

Say that we add the predict(xb) option to the margins command. The output

below shows that the predictive margin is computed in terms of the log odds of the

oud

-0,

the

come. The log odds of a 40-year-old smoking, adjusting for all other covariates, is
558.

. margins, at(age=40) predict(xb)

Predictive margins Number of obs = 15375
Model VCE : IM
Expression : Linear prediction (log odds), predict(xb)
at 1 age = 40
Pelta-method
Margin  S5td. Err. z P> | =zl [95% Conf. Intervall
_cons ~.bb76398 .OLT77666 -31.3¢ 0.000 ~.5924618 -, 5228179

Instead of the predict () option, you can specify the expression() option to specify
metric used by the margins command. Let's first consider a few basic examples

using the expression() option. For example, the expression() option below is used
to compute the predicted probability of a 40-year-oid smoking, adjusting for all other
covariates. This is equivalent to specifying the predict (pr) option.

. marging, at(age=40) expression{predict(pr})

Predictive margins Number of obs = 16375
Model VCE t OIM
Expression ! Pr{smoke), predict(pr)
at : age = a0
Delta-method
Margin  Std. Err. 1 prizi [95% Conf. Intervall
_cons ,3684619  .0038911% 92.32  0.000 .3606294 J3762743

The following example shows the predicted log odds of a 40-year-old smoking, ad-

justing for all other covariates. This is equivalent to using the predict (xb) option.

Al
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. margins, at(age=40) expression(predict{xb}}

Predictive margins Number of obs = 15375
Model VCE : BIM
Expression : Linear prediction (log odds), predict(xb)

at . age = 40

Delta-method

Margin  Std. Err. z Prizl {95% Cont. Intervall

_cons -, B5T6398 .0177666 -31.39 0.000 -.5924618  -.52281rs

The expression() option is more flexible than the predict () option because we can

specify an expression. Imagine we wanted to compute the odds of a 40-year-old smoking,
adjusting for all other covariates. The odds of a person smoking can be computed by
taking the exponential of the log odds of smoking. We can compute this by specifying
exp(predict(xb))! within the expression() opiion, as shown below. The predictive
marginal odds of smoking for a 40-year-old is 0.620.

. margins, at{age=40) expression(exp{predict(xb)})

Predictive margins Humber of obs = 16375
Model VCE ; OIW
Expression : exp(predict(xb})
at 1 age = 40
Delta-method
Margin  Std. Err. z Prlz| {95% Conf. Intervall
.cons 6196325 0117561 52.71  0.000 , 5965909 642674

We also could have specified the odds of smoking by taking the probability of smoking

divided by the probability of not smoking. The margins command below specifies
predict(pr)/(i-predict{pr)) within the expression() option. Note this yields the
same predictive margin as the previous margins command.

. marginz, at(age=40) expression(predict{pr)/(1l-predict(pr}))

Predictive margins Humber of obs = 16376
Model VCE 1 OIH
Expression : predict(pr)/{(i-predict{pr})
at P oage = 40
Delta-method
Margin  Std. Err. z P>lz} [95Y% Conf. Intervall
.cons L6196328 .0117561 52,71  0.Q00 5865909 .B42674

1

That is, the exponential of the predicted log odds,
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As you c¢an see, the expression{(} option allows us to specily the metric of the
predictive margin in a more general way than the predict() option. The examples
illustrated in chapter 18 provide mnore details about the predict () option in the context
of nonlinear models.

A.2 The at{) option

The at () option allows us to specity the values of covariates when computing the
margins, For example, we can estimate the probability of smoking for a person who
described themselves as upper class (that is, c¢lass=4), has 15 years of education, is
40 years old, and was interviewed in 1980, using the at() option shown below. For
someone with these characteristics, the conditional probability of sinoking is 0.310.

. margins, at{class=4 educ=15 age=40 yrint=1980)

Adjusted predictions Humber of obs = 15375
Model VCE ¢ OEM
Expression : Pr(smoke), predict(}
at : class = 4
educ = 15
age = 40
yrint = 1980

Delta-method
Margin  Std. Err. z P>zl [98% Conf. Intervall

_cons . 3099763 .0226373 i3.75 0.000 . 2658039 .3541486

Suppose we want to compute the predictive marginal probability of smoking at 20
to 80 years of age in 10-year incremends, while adjusting for all other covariates. We can
compute this using the at () option shown in the following margins command. (Tle
vaquish option is ncluded to suppress the display of empty lines in the output.)
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. margins, at(age=(20 30 40 6O 60 70 80)) vsquish

Predictive margins Number of obs = 163756

Hodel VCE HE R

Expressien : Pr{smcke), predict{)

t._at toage = 20

2._at ! age = 30

3..at ! age = 40

4._at . age = 50

5. _at ! age = GO

6._at : age = 7O

7. at 1 age = 80

Deita-method
Hargin  Std. Err. Z P>lzt [95Y% Conf. Intervall
~at

i .4610941 .0073886 G2.41  0.000 V4466128 LATEETES
2 4140318 .0063163 77.88 0.000 . 403612 4244617
3 . 3684519 .3038911 92.32 0.060 . 3606294 , 3762743
4 3260497 0039668 81.94 0.000 .3172748 3328245
5 . 2843881 .0049038 67.99  0.0G0 L2T4T768 . 2939905
6 2468764 . 0060491 40.81  0.000 .2350203 . 25873258
T .2127847 0070367 30.24  0.000 .1989749 . 2265545

Rather than typing the values 20 30 40 50 60 70 80, we can specify 20(10) 80, as
shiown in the example helow.

. margins, at{age=(20(10}80))
{ontput omitted )

Rather than specifying an exact age, we can specify that we want age held constant
at the 26th percentile using the at () option shown below.

. margins, at((p25) age) vsquish

Predictive margins Humber of obs = 15375
Hodel VCE ¢ OIM

Expression  ; Px(smoke}, predict{)

at ¢ age = 30 (p25)

Delta-method
Margin  Std. Err. z P>zl [96% Conf. Intervall

_cons 4140318 063163 77.88 0.000 LA03612 4244517

In place of p26, we could specify any value ranging from pl (the first percentile) to
p99 (the 99th percentile). We can also specify min, max, or mean,

The at () option below holds the variables age and educ constant at the 25th per-
centile and the year of interview at 1990.
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. margins, at((p26) age educ yrint=1690) vsquish

Predictive margins MNumber of obs = 16375
Model VCE 1 OIM
Expression : Pr(smoke), predict()
at 1 educ = 11 (p25)
age = 30 (p25)
yrint = 1990
Delta-method
Margin  Std. Err. z P>z [95Y% Conf. Intervall
_cons . 4036987 . 0076903 52.49 0.000 .38862569 4187716

We can specify the at() option multiple times to compute predictive margins for
different combinations of covariate values. For example, the margins command below
computes the predictive margin once holding age constant at 20 and education constant
at 10 and then again holding age constant at 50 and education constant at 15.

. margins, at{age=20 educ=iC) at(age=50 educ=15} vsquish

Predictive margins Number of obs = 15375
Hodel VCE : 0IM
Expression : Pr{smoke}, predict{)
1, at 1 educ = 10
age = 20
2, _at 1 educ = 15
age = 50
Delta-method
Margin  Std. Erx. z Prizl [95% Conf. Tntervall
_at
1 .5123491 .0094082 64.48 0.000 .4939004 .5307888
2 . 2739494 ,005451 50.26 0.000 .2632656 2846333

The legend describing the at() values can take up a lot of space. We can suppress
the display of this with the noatlegend option, as shown below.

. margins, at(age=20 educ=10) at(age=50 sduc=185) vsquish noatlegend

Predictive margins Humber of obs = 16375
Hodel VCE : DIY
Expression : Pr(smoke), predict(}
Delta~method
Margin  Std. Err. z P>iz| [98% Conf. Intarvall
-at
1 .5123491 0084082 64.46 0.000 4933094 .B307888
2 .2735494 .005461 50.26  0.060 . 2632656 2846333

A3 Margins with factor varfables
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The example below computes predictive margins holding the variables educ, age,
and yrint constant at the 25th percentile, at the 50th percentile, and at the 75th

percentile.

. margins, at{{p28)} educ age yrint)

> at((p50) educ age yrint)
> at({p76} educ age yrint) noatlegend vsquish
Predictive margins Number of obs = 16376
Model VCE : GIM
Expression : Pr{smoke), predict{)
Delta-method
Margin  Std. Err. z P>zt {95% Conf. Intervall
-at
i .4824943 0073814 66.37  0.000 L4GB02T 4969618
2 .361934 0041778 86.63 0.000 3837457 .3701224
3 .2326308 0056269 41,33  0.000 , 2215023 . 24365692

Instead of specilying educ age yrint, we can specify the keyword _continuocus,

which refers to all continuous variables in the model.

. margings, at((p25) _continuous)

> at ((p50) _continuocus)
> at ({p?5) _continuous) noatlegend vsquish
Predictive margins Number of obs = 16375
Mecdel VCE + OIM
Expression : Pr{smoke}, predict(}
Pelta-method
Margin  Std. Err. = P>z} [95{ Conf. Intervall
-at
1 .4824943 0073814 66.37 0.600 .468027 .4869616
2 . 361934 0041778 86.63 0.000 . 3537457 , 3701224
3 . 2325308 0056269 41,33 0.000 .2216023 , 2435592

A.3 Margins with factor variables

Suppose we want to compute the predictive margin of the probability of smoking for
the four levels of class, while adjusting for all the other covariates. We could compute

this using the following margine command.
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. margins, at(class=(1 2 3 4)} vsquish

Predictive margins Number of obs = 16376
Hodel VCE : DIM
Expression 1 Pr(smoke), predict()
1, _at : class = i
2, at ! class = 2
3._at : class = 3
4, _at ¢ class = 4
Delta-method
Margin  Std. Err. 2 P>zl [95% Conf. Intervall
.at
1 .4062118 . 01674564 25.45  Q.000 .3933914 LAB90323
2 .3665092 0066873 64.78 0.000 .3664211 .3776974
3 .3242303 0057422 h6.46  0.000 .3129758 . 3354847
4 .3000447 0215208 14.40 0.000 L26T77E4T . 3521246

Beeanse class is a factor variable, we can move easily compute this as shown helow.
This relieves us of the need to manualty specify the levels of class.

. margins class

Predictive margins ¥umber of obs = 15375
Hodel VCE RO ]
Expression : Pr{smoke), predict(}
Dalta-method
Margin  Std. Err. 1 P>zl [95% Conf. Intervall
class
i 4262118 0167454 25.45 0,000 .3933914 4690323
2 . 36656092 00566573 84.78 0.000 .3554211 L3TTEOT4
3 . 3242303 .0057422 56.46  0.000 .3129758 .3354847
. 4 .3099447 215208 i4.40 ©.000 L267T7647 .3521248

We can apply contrast operators to factor variables, For example, the ar. contrast

operator computes reverse adjacent group contrasts.

Note that these contrasts are

performed in the predicted probabilily metric, adjusting for all the covariates.

. margins ar.class

Contrasts of predictive margins

Model YCE : 0TI
Expression : Pr(smoke), predict{)
df chi2 P>chil2
class
{2 vs 1) 1 1i.64 0.0006
{3 vs 2) 1 26.39 0.0000
{4 vs 3) 1 0.42 0.5186
Joint 3 48,49 0.0000

A3 Margins with factor variables

Delta-method
Contrast  Std. Frr. {95% Conf. Intervall
class
(2 vs 1) ~. 0697026 .0174984 -.0939988 -.0264064
(3 vs 2) ~.0422789 0082295 -.0584085 ~-.0261494
(4 vs 3) -.0142858 022129 -. 0678577 . 0290866

o

&t

We can include the option contrast(effects) to modify the output to include
both confidence intervals and significance tests. (We could instead specify the option

contrast{pveffects) to obtain significance values without confidence intervals.)

. margins ar.class, contrast (effects)

Contrasts of predictive margins

Model VCE : OIM
Expression : Pr{smoke), predict()
df chiz P>chil2
class
{2 vs 1} i 11.64 0.0006
{3 vs 2) i 26.39 . 0000
{4 vs 3) 1 0.42 0.5186
Joint 3 48.40 ©.0000
Delta-method
Contrast  Std. Err. z P>lzl [95% Conf, Intervall
class
(2 vs 1) -.0B8T7026 0174984 -3.41 G.001 —.08308988 ~.0254064
(3 vs 2) -.0422789 0082295 ~5.14  ©.000 -.0584085 -.0261494
(4 vs 3) -.0142868 .022129 -0.65 0.519 ~.0678B77 .0290865%

The upper portion of the cutput now is unnecessary because we can see the signil-

icance tests in the lower portion of the output. We can suppress the upper portion of

the output by adding contrast{}’s nowald argument.

. margins ar.class, contrast(nowald effects)
Contrasts of predictive margins

Model VCE : OFH
Expression : Pr(smoke}, predict()
Delta-method
Contrast  Std. Err. z izt {96% Conf. Intervall
class
{2 vs 1} -.0597026 0174084 -3.41 0.001 —-.0939988 -,0254084
(3 vs ) -. 0422789 0082205 -5.14 0.000 ~.0bB408% -,0261494
(4 vs 3) -.(142856 .022128 -0.656 Q.519 -.0B76577 .02968865

K
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Specifying the contrast(nowald effects) option yields a compact output that
is informative, including the point estimate of the contrast, the standard error of the
contrast, a test of whether the contrast is significant, and a confidence interval for the
contrast. The contrast(nowald effects) option is frequently added to the margins
comimand in this boolk.

Using the contrast{(pveffects) option displays the significance test of the contrast
in lieu of the confidence interval for the contrast. When combined with contrast()’s
nowald argument (as shown below), compact output is produced that includes the point
estimate, standard error, and significance test of the contrast.

. margins ar.class, contrast{newald pveffects)

Contrasts of predictive margins

Model VCE 1 DIM
Expression  : Pr(smoke}, predict()
Delta-method
Contrast 5td. Err. 2z P>|=z|
class
(2 vs 1) ~, 0597026 .0174984 ~3.41 0.001
(3 vs 2) ~,0422789 . 0082295 ~5.14 0.G00
(4 vs 3) ~,0142856 022129 -0.65 0.518

For some of the margins commands in this book, the contrast (nowald pveffects)
aption is used.

The mcompare () option can be used to adjust the displayed significance values to
account for multiple comparisons. You can specily bonferroni, sidak, or scheffe
within mcompare()} to obtain Bonferroni’s, Sidal’s, or Scheffé’s method of adjustment,
respectively. The example below illustrates using the mcompare(sidak) option.

. margins ar.class, contrast(nowald effects) mcompare(sidak)
Contrasts of predictive margins

Model VCE : DIM
Expression : Pr(smoke), predict()
Nuaber of
Comparisons
class 3
Delta-method Sidak Sidak
Contrast  Std. Err. z P>|z] [95% Conf. Intervall
class
(% ws 1) -, 0597026 0174984 -3.41 0.002 ~.1014842 -.0179211
3 vs 2) -.0422789 0082295 ~5.i4  0.000 ~.0619289 —-.022629
(4 vs 3) ~. 0142856 (22129 ~0.65 0.888 -.06871239 .038B527
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A.4 Margins with factor variables and the at() option

We can specify both factor variables and the at () option on the margins command.
The example below estimates the predicted probability of simoking for each level of
social class holding age constant at 30 and then again at 50, averaging across all other
covariates.

. margins class, at{age=(30 50)}) vsquish

Predictive margins Nusber of obs = 16376

Model VCE + OIM

Expression : Pr{smoke), pradict()

1. _at 1 age = 30

2._at : age = 50

Delta-method
Margin  8td. Err. z Prlz] [85% Conf. Intervall
_at#class

11 48659834 0175386 28.28 0.4000 .4616085 .5303684
12 433064 . 006578 65.84 0.000 4201715 . 4459566
13 . 3872891 .007514 51.54 0.000 .3725619 .4020163
14 .3716911 0242008 15.35 0.000 .3241408 L4190414
21 .4008165 0169446 23,79 0.000 .3678016 ,4338314
22 ,341714 0059379 57.55  0.000 .3300769 353362
23 . 3003918 006597 53,67 0.000 .2894219 L3113617
24 . 2865633 0207909 13.78 0.060 . 24878386 .3272823

The first four lines of cutput correspond to the predictive margins for the four levels
of class when age is held constant at 30. The second four lines (5 to 8) of the output
show the predictive margins for the four levels of class when age is held constant at 50.

The example below shows the predicted probability of smoking by social class at

three different covariate values, holding the continuous covariates at the 25th, 50th, and
75th percentiles.
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> at ((p50) _continuous)

> at((p75) _continuous) noatlegend vsquish

Adjusted predictions Number of obs = 153756

Modal VCE : OIH

Expression : Pr(smoke), predict()

Delta-method
Margin  Std. Err. z p>izl [95% Conf. Intervail
_ati#class

11 5678827 0181575 31,28 0,000 .5322047 .B8034707
12 5032008 0081471 61.76 0,000 4872327 5191688
13 .4b4677h 0095224 47,76 0.000 4360138 .473341
14 4377569 0267364 16.37  0.000 . 3653548 4801593
21 4438118 .017806 26.35  0.000 . 4095026 L4781211
22 . 3808079 . 0059641 63.96  0.000 .3691381 . 3924777
23 . 3361022 . 0083346 53.06  0.000 .3236866 . 3486178
24 . 3209969 . 0228608 14.04  0.000 2761903 . 3868035
a1 . 2083846 0163392 18.26  0.000 . 2663603 . 3304089
32 2468625 Q072841 33.89 0.000 . 2326869 .261139
33 .2124853 0068149 36.54 0.000 .2010883 2238824
34 .2012616 . 0169463 11.88 0.000 .1680373 . 2344658
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versus 2 is significant at the 25¢h, 50th, and 75th percentiles of the covariates. The
comparison of class 4 versus 3 is not significant when holding the covariates at the 25th,
56th, and 7hth percentiles.

A.5 The dydx(} and related options

Let's consider a linear regression model in which we predict education from the education
of the respondent’s father, the education of the respondent’s mother, the respondent’s
age, and the respondent’s gender,

. regress educ paeduc maeduc age i.female

Let’s repeat the previous margins conumaid, but add the ar. contrast operator to

class, performing reverse adjacent contrasts on class, The margins command com-

putes the marginal cilect of reverse adjacent comparisons on class with the continuous

covarintes held at the 25th, 50th, and 75th percentiles.

. margins ar.class, at({p25) _continuous)

> at{{p50) _continuous)
> at((p7B) _continuous)
> noatlegend vsquish contrast(nowald pveffecis)
Contrasts of adjusted predictions
Model VCE : DIM
Expression  : Pr(smoke), predict()
Delta-method
Contrast  Std. Err. % P>zl
class@_at
2vs 11 -.0646819  .0184355  -3.51  0.000
(2 vs 1) 2 ~. 0630039 .0184179 -3.42 0.001
(2 vs i) 3 -.0515222 , 01555566 -3.31 0.001
(3 vs 2} 1 ~.0485233 0094069 -5.16  0.000¢
(3vs 2) 2 -,0447057 . 0088553 -5.17  0.000
3vs 2) 3 -.0343771 .CDBT8T2 -6.06 0.000
(avs 1 -.0169206  .0263901 ~0.64  0.521
(4 vs 3) 2 ~.0161063  .0233927 -0.65 0.518
(4 vs 3) 3 -.0112338  .0172794 -0.66 0.516

This shows that the cffect of comparing

clags 2 versus 1 is significant when holding
the covariates at the 25th, 50th, and 75th percentiles. Likewise, the effect of class 3

Scurce S8 af MS Number of obs = 36004
F( 4, 35809) = 3527.52

Model 92963.8807 4 23240.9702 Prob > F = 0.0000
Residunal 237178.642 35999 6.58847863 R-squared = 0.2816
Adj R-squared = 0.2818

Total 330142.523 36003 9.16966148 Root MSE = 2.5668
aduc Coef. Std. Err. t Pritl [95% Conf. Intervall
paeduc . 2136448 .0043286 49.36 0.000 .2061607 .2221289
maeduc . 2335704 . 0051067 45.75 0.000 .223563 L24357T8
age .007092 .0008733 8.12 0.000 .00b3804 .0088036
1.female ~. 1876547 0271978 ~6.90 0.000 -.2400632 ~-.1343462
_cons 2,280247 .069885 118.48 0,000 8,14327 §.417223

Suppose we nse the margins conunand with the dydx(paeduc) optimi. This gives
us the same coefficient that we saw from the regress output. This shows us that for
a one-unit increase in the father’s education, the respondent’s education is expected to
increase by 0.214, after adjusting for all other predictors in the model.

. margins, dydx(paeduc)

Average marginal effects Humber of obs = 36004
Model VCE ; DL8
Expression ! Linear prediction, predict()
dy/dx w.r.t. : paeduc
Delta-method
dy/ % Std. Err. z P>z [95% Conf. Intervall
paeduc .2136448 .00432868 49,36 0.000 .206161 . 2221286

We can compute the marginal cffect of paeduc as an elasticity by specilying the
eyex() option, as shown below. This shows how a proportion change in paeduc is
related to a proportion change in educ.
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. margins, eyex(paeduc)

Average marginal effects Number of obs = 36004
lModel VCE t LS
Expression : Linear prediction, predict()
ey/ex w.r.t. : paeduc
Delta-method
eyfex Std. Err. z p>|z] [96% Conf. Intervail
paeduc 1649226 .0033082 49,86  0.000 . 1584385 . 1734065

We can specify the eyex{.continuous) option to see elasticities for all continuous

variables.

. margins, eyex(_continuous}

Average marginal effects Number of obs = 36004
Hodel VCE : OLS
Expression : Linear prediction, predict()
ey/ex w.r.t. : paeduc maeduc age
Dalta-method
ey/ex  Std. Err. z P>zl [95% Conf. Intervall
paeduc . 1649225 .Q033082 49,85 0.000 .1584385 1714065
naeduc . 1849259 . 0040085 46,13 0.000 1770693 .1927826
age .0242473 .0028771 8.14 0.000 .0184121 .0300822
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You can use the eydx(} option to compute the marginal effects in terms of a pro-
portion change in the outcome for a umit change in the predictor. Because the predictor
is in its natural metric, we can specify eydx(_all) to display this marginal effect for
all predictors. For the factor variable female, the marginal effect is computed as the
discrete change from the base level (that is, male).

. margins, eydx{_all)

Average marginal effacis Number of obs = 36004
Model VCE 1 OL8
Expression  : Linear prediction, predict(}
ey/dx w.r.t. : paeduc maeduc age i.female
Delta-method
ey/dx  Std. Err. z P>[z} [85% Conf. Intexvall
paeduc .0163641 003336 49.02  0.000 L018T002 L017008
maedus .0178794 0003936 45.43  0.000 017108 . 0186609
age .0005429 0000669 8.12  0.000 .0004118 0006739
i.female -.0143537 .002079 -6.90 0.000 -.0184283 -.010279

Kote: ey/dx for factor levels is the discrete change from the base level.

Before concluding this section, let’s consider an example using a nonlinear model.
Let’s consider the following logistic regression that predicts whether a person smokes
based on the person's self-reported social class, education, age, and year of interview.

. logit smoke i.class educ age yrint

Tteration O: log likelihkood = -9851.2382
Iteration 1: log likelihood = -9582.9808

[

It you want to express the coefficients in texms of a proportion
predictor as it relates to the outcome, you can specify the dyex () opti

al change in the
on. The example

below shows the marginal effect of all continuous predictors showing how a proportion

change in the predictor relates to a unit change in the outcome.

. margins, dyex(_continuous)

Average marginal effects Number of obs = 36004
Model VCE ¢ OLS
Exprassion : Linear prediction, predict(}
dy/ex w,r.t. : paeduc maeduc age
Delta-method
dy/fex Std. Err, % Prlzl [95% Conf. Intervall
paeduc 2,266644 0459234 49.38  0.000 2.178638 2.358652
maeduc 2.521833 , 0651261 456.76  0.000 2.413788 2.629878
age 3122683 0384502 8.12  0.000 L 2369072 . 3876203

Iteration 2: log likelihood = -9580.0732

Iteration 3: log likelihood = -9580.0723
Logistic regression Number of obs = 15375
1R’ chi2{(6) = 742,33
Prob > chi2 = ¢.0000
Log likelihood = ~B580.0723 Pseudo R2 = 0.0373
smoka Coef. Std. Err. z P>zl [95% Conf. Intervall

class

2 -.2604145 .0749733 -3.47  0.001 -, 4073596  —.1134696
3 -.456007 Q772007 -5.88  0.000 ~-.6063176  -.3036865
4 -.5234883 .1274959 ~4.11  0.000 —. 7733767  -.2736009
educ ~.0878902 .00633256 -13.88 0.000 ~. 1003016  ~.07b4787
age -.0198395% .0010949  -18.12 0.000 -.0219868 ~.0176939
yring ~. 0321324 .0033889 -9.48 0.000 -.0387746  —.0254902
_cons 65.4b743 6.718824 8.74  0.000 52.28877 78.62608
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Tet’s consider the onbput of the margins command using the dydx{educ) option.

. margins, dydx(educ)

Average marginal effects Fumber of obs - 15378
Model YCE : OIH
Expression : Pr(smoke), predict{)

dy/dx w.r.t, : aduc

Delta-method
dy/dx  Std. Err. z P>zl [95% Conf. Interval]

educ -,0190423 0013418 ~-14.19  0.000 ~.021672 -.0164128

This computes the average marginal ellect of education (in the predicted probability
metric). The average marginal effect of education is —0.019.

We can explore how the size of the average marginal effect varies as a function of
the covariates. The example below computes the marginal effect of education when age
is held constant at 20 and when age is held constant at 80.

. margins, dydx{educ) at(age=(20 80))
Average marginal effects Number of ohs = 156375 )
lfodel VCE : DI

Expression  : Pr(smoke), predict(}
dy/dx w.r.t. : educ

1. _at ! age = 20
2, _at : age = a0
Delta-method
dy/dx  Std. Err. z P>lz| [95% Conf. Interval]
educ
at
i -.0210625 .0014889 ~14.17 0.000 ~. 0239767 -.0181482
-.01443383  .0009606 -14.93  0.000 -.016221  -.0124555

At 20 vears of age, the average marginal effect of education is —-0.021, but at 80
years of age, the average marginal effect of education is ~0.014.

The marginsplot command

The body of the book has shown numerous examples using the marginsplet command,
but those examples have focused on creating utilitarian graphs without much regard for
customizing the look of the graphs. This appendix illustrates some of the options you can
use to customize the appearance of grapls ereated by the marginsplot command. Some
of the options are specific to the marginsplot command, the other options supported
by the graph twoway command. You can see [G-2] graph twoway for more information
about such options, as well as Mitchell (2012).

Consider the multiple regression model that we saw in section 2.3 that predicts the
education of the respondent from the father’s education, mother’s education, and age
of the respondent. The margins command is then used to compute the adjusted means
wlen the father’s education ranges from 0 to 20. The marginsplot command can then
be used to graph the adjusted means computed by the margins command.

. use gss_ivim

. keep if female==0 & yrint==2008
(54157 observations deleted)

. regress educ paeduc maeduc age
(output omitted )

. margins, at(paeduc={0{1)20})
{output omitted )
marginsplot

This shows the adjusted means as a
function of the father’s education. 2.
The following examples illustrate
how you can use options to
customize this graph.

Predictive Margins with 95% Cls

1%

H
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e
o] 1 /}/H

I

Ly S S o Sy ey S MR A At AL A A Sk S Ay st S
0 1 2 3 4 5 8 7 8 9 1031 5213 141516 17 18 19 20
highest year school completad, father

Linear Prediction
14

I
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marginsplot, title(Title) subtitle(Subtitle) xtitle(X title)
ytitle(Y title) note(Note) caption{Caption)

e You can add titles to the graph
Subtille using the title(), subtitle(},
* xtitle(}, and ytitle() options.
The note{) and caption(} options

7 ﬂgf{/hl/{ can also be used to annotate the

v graph.
r&vi/ﬁ/&

Y title
14

12
P

. , ey
S 1 2 3 4 5 & 7 8 6 101112 13 14 15 16 17 18 19 20
X lile

Nake
Gaplion

marginsplot, xlabel{0(5)20) ylabel(i0(1}18, angle(0})

Pradiclive Masging with 95% Cls Fh(? xlabel(} and Y}'abel O
18 options can be used to change the
174 labeling of the » and y axes.

goss

Linear Prediction
=
3

|
{Jﬂ

T T
[} ]

T e

10 15
higliesat year school comptelad, father

marginsplot, xscale{range{-1 21)) yscale(range{(8 20))

The xscalef) and yscala()
options can be used to expand the
scale of the x and y axes.

Prediclive Margins wilh 95% Cls

18

16

et

Linear Pradietion
12 14
L

10

81 2 A A & & 7 8 % 10111213 14151617 1819 20
highes! year school campleied, kather

525
marginsplot, plotopts(clwidth(thick) msymbol(Dh} msize(large))
The plotopt s.() option allows you Prediciive Margins with 95% Cls
to include options that control the 2
look of the line and markers. The
ciwidth() suboption is used to w | ’%,%
malke the fitted line thick, and the 5 & "}
. 5
msymbol{) and msize() suboptions %, e
are used to draw the markers as 5 g%
i /é/?
large hollow circles. . W,%"%
2
ﬁ_éiés'&él‘sifﬁé1'01'11'21'31'41'51'61'71'81'950

highesi year school compieted, lather

marginsplot, ciopts(lwidth{vthick) msize(huge))

The ciopts() option allows you to
include options that control the
look of the confidence interval. The
lwidth() suboption makes the lines
for the confidence intervals thick,
and the msize () suboption makes
the caps of each confidence interval
huge.

Prediclive Margins with 5% Cls

18

Lingar Prediction
1

1% 3 4 5 8 7 8 B 1011 12 13 14 15 16 17 18 19 20
lifghest year sthool complated, father

marginsplot, recast{line) recastci(rarea)

The recast{line) option specifies
that the fitted line be drawn like a ®
twoway line graph. The
recastci(rarea) specifies that the »
confidence interval be drawn like a
twoway rarea graph.

Predictive Margins with $5% Cls

Linear Preciction
4
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.
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1

012 34656 7 8 9 10111213 141516 17 18 15 20
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marginsplot, mnect

The noci option suppresses the
display of the confidence interval.

Predictive Margins

14 15 16
L L .

Linear Prediction
13

D { 2 3 4 5 6 7 6 8 16 11 1213 14 15 16 17 18 18 20
highest year scheol completed, father

marginsplot, noci addplot{scatter educ paesduc, msymbol(o)})

Predictive Margins The addplot () option can be used
& R : N - to overlay a new praph onto the
: ’ : w_n graph created by the margins

P S M"“”" : command. T this case, it overlays a
g c,_v_c—«-—ff-*’*”“‘r—( e scatterplot of educ and paeduc.
8o _ : oo )
&e ‘
i
5

4

o]

G 1 5 3 4 6 6 7 & 9 (0111213 1415 15 17 18 19 20
highast year school compleled, father

[———n— 1 = highesl year of school compleled i

marginsplot, scheme{economist)

The scheme() option can be used
to change the overall Jook of the
graph. In this example, the
); economist scheme is used.

218

Predictive Margins with 95% Cls

%
=
Lingar Prediction
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highest year school compleled, father

827

Let’s now consider another example, this one based on the three by three design
illustrated in section 8.2. The commands below use the dataset, run the anova com-
mand, and usc the margins command to obtain the mean of the outcome by treat and
depstat. The output of these commmands is omitted to save space. The marginsplot
command can then be used to graph the results of the interaction as computed by the
margins conmand.

. use opt-3by3

. anova opt treat#f#fdepstat
(output omitted)

. margins treat#fidepstat
(output amitted)

marginsplot

This shows the graph created by
the marginsplot command. The £
following examples illustrate how to

Adiusted Predictions of treatifdepstal wilk §5% Cls

o
customize this graph, focusing on .
the plot dimension and the legend g
associated with the plot dimension. %
§
Eo
p=13

30

Con 17 HT
Treatment group

marginsplot, xdimension{depstat)
The xdimension() opiion controis

which variable is placed on the = £
axis. This option is used to graph

Adjusled Pradictions of freatfidepstat with 95% Cts

g |
depstat on the x axis, st hence £
treat is graphed as separate lines. %B,
a
5
Eol
52

3o

Non Miki Sew
Depression group

T —p— ;|
i
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marginsplot, plotdimension{depstat)

Adjusted Pradictions of lreat#depstal with 85% Cls The plotd:L‘mensa.c?n() (‘)ptwn
=R controls which variable is graphed
using the plot. dimension——graphed

o
g using separate lines. In this
ig example, depstat is graphed using
& . .
5 separate lines, and thus treat is
Ea .
3% placed on the 2 axis.

Con kel HT
Tieatmanl group

—— Nor;_: — Mild
e Spv

marginsplot, plotdim(depstat, labels("Nondep" "Mild dep" "Sev. dep"))

Adjusted Predictions of lreatfdepslal with 95% Cls The labels() suboption within the

21 plotdimension(} option changes
. tlie labels used for the plot
5| 1 dimension.
3%- : !
& /£ !
8 Y A
o b I
o i/.k
o1l I
b

Gon T HT
Treaiment group

—o—— Nondep  —.— Mild dep
——t— Sev. dep

marginsplot,

plotdim(depstat, elabels{l “"Nondepressed" 3 "Severely depressed"))
Using the elabels() suboption,
you can selectively modify the
labels of your choice. This example

Adjusted Predictions of treat¥dapstal wilh 95% Cls

70

,EPD modifies the labels for the first and
ia. third group, leaving the label for

% the second group unchanged.

5¢

U
Treakmen! grovp

——— Nondepressed e Rlild
—r—— Sevarely depressed

marginsplot, plotdim{depstat, nosimplelabels)

Adding the nosimplelabels
suboption changes the plot label to
the variable name, an equal sign,
and the value label for the group.

Adjusled Predictions of treaifdepstal with 95% Cls

70
s

Linear Pradiction
30 40 50 (=03

Gon 5] HT
Trealment group

—— depslal=Non  —— —- dopslat=Mild
— —— depslal-Sev

marginsplot, plotdim(depstat, nolabels)

Adding the nolabels subopiion

Adjusted Predictions of irealffdepstat with 95% Cls

changes the plot label to the =3
variable nmne, an equal sign, and
. o2 ]
the muneric value for the group. e’
&
g |
—a%
/}\
a4l |
1
T - - T i
Con ™ HT
Treatment group
st EPAIAL=T e e depsml:;
— —— dupslal=3

marginsplot, pletdim(depstat, allsimplelabels)

Using the allsimplelabels
suboption yields a label that is
composed solely of the value label
for each group.

Adjusted Prediclions of ireatidapsial with 95% Cls

70

Linear Prediction
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/
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marginsplot, plotdim(depstat, allsimpleliabels nolabels)

Adjusted Prediclions of reatiidepstat with 85% Cls
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Linear Prediction
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]

Using the allsimplelabels and
nolabels suboptions displays a
label that is composed solely of the
numeric value for each group.

marginsplot, legend(subtitle("Treatment") rows(1})

Adjustad Predictions of depslatiireat with 95% Cls
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This example includes the legend ()
option o customize the display of
the legend, add a subtitle, and
display the legend keys in one row.

marginsplot, legend(subtitle(” Treatment") rows(1) ring(0) position(11))

Adjusted Prediciions ef depslat#tireal with 95% Cls
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Depression group

The ring() and position{)
suboptions are added o the
legend () option to display the
legend within the graph in the 13
o'clock position.
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marginsplot, xlabel{l "Control" 2 “Traditional” 3 "Happiness")

The xlabel() option is used to
condrol the Inbeling of the x axis. £
The next example illustrates how to
address the issue of the

“Happiness” label being cut off.

Adjusted Predictions ol lrealfidepsial wilh 95% Cls
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X/

40

Linear Prediction
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H
. T —
Control Fraditional Happiness

“Treaiment g roup

i Non = Wit
Seu

marginsplot, xlabel(i "Comtrol® 2 "Traditional" 3 “Happiness")
xscale(range(.75 3.25))

The xscale{range()) option is
used to expand the range of the 2
axis to make more room for the
fonger z-axis labels.

Adjusted Predictions of treatiidepslal with 95% Cls
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Leb's now consider an example where the marginsplot command involves by-groups
as an additional dimension. This example predicts smoking from education, marital
status (mearried or nonmarried), gender, and a'] interactions formed among these vari-
ablas. It also includes age as a covariate. The ¢.eductimarried#fumale interaction is
sigpificant. The margins command is used to compute the predictive margin of the
probability of smoking as a function of gender, marital status, and education. (The
output is omitted to save space.)

Linear Prediction
a9 B

30

. use gss_ivrm

. logit smoke c¢.educ#fmarried#fifemale age
(output omitted)

. marging femalefimarried, at(educ={0{1)20))
(output omitied )
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marginsplot, noci

Prediclive Margins of femaleg#imarried
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marginsplot, noci bydimension(female)

Predictive Margins of femaleffmarried
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The marginsplot command graphs
the predicted probabilitics
computed by the margins
comimand. The noci option is used
to suppress the confidence intervals.
The following examples customize
the graph, focusing on issues related
to the by-dimension.

The bydimension() oplion is used
to specify that separate graphs
should be made by female (that is,
gender),

marginsplot, noci bydimension(female, label(*Men™ “"Women")})

Prediclive Margins of femaled#married
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The Label() suboption can be used
to control the labeling of each
grapl. You can control the labeling
of the by-dimension using the
bydimension() option in the same
manner that we controlled the plot
dimension using the
plotdimension() optiou.
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marginsplot, noci bydimension(female) byopts{cols(l) ixaxes}

The byopts O Upti()n allows you toy Predictive Margins of femate#imarried

specify subaptions that control the Wit
way that the separate graphs are ° i
combined. In this example, the “ T ——
cols(1} and ixaxes suboptions are _ e
specified to display the graphs in § PRSI RS AR h AR RE kb
one column, each with its own 2 Fa Femsie
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marginsplot, noci bydimension(female)
byopts(title(Title) subtitle(Subtitle) note(Note) caption(Caption))

The byopts () option can be used Tille
to control the overall title, subtitle, Subills
s hal Femal
note, and caption for the graph. By o - emale
placing such options within the \‘m
byopts (3 option, these options = T, \\\
N . - 3 ~ L
impact the overall title, subtitle, g, T T,
. . = - Sy
note, and caption for the graph. & “ R
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marginsplot, noci bydimension(female)
title(Title) subtitle(Subtitle) note(Mote) caption{Caption)

By placing these options outside the Predictive Margins of female#maried

byopts (O option, these options Tile Title
. ' 1ot Sublitle
control the title, subtitle, note, and « S v
caption for each graph. %"\\%
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This appendix has ilustrated some of the ways that you can customize graphs ereated
by the marginsplot command. For more information, see [R] marginsplot, [G-2] graph
twoway, and Mitchell (2012).

C The contrast command

This appendix discusses additional details about the contrast comunand, focusing on
options that control the display of the output. Let’s hegin using an example from
section 7.5 that predicted happiness from marital status. The dataset for this example
is uged below., Then the Tegress command is used to predict happiness from marital
status.

. use pgss_ivim, clear

. regress happy7 i.marital

Source 55 df b Number of obs = 1160

F( 4, 1158) = 11.86

Model 43,9299172 4 10,9824793 Prob > F = 0.0000

Residual 1062.44163 11565 .926023493 R-squared = 0.0396

Adj R-squared = 0.0361

Total 1113.37165 1159 .960631192 Root MSE = 96226

happy7 Coef.  Std. Err. t P>it) {95% Conf. Intervall
marital

2 -.2912429 .1108942 ~2.63 0.009 -.5080133 ~.0736724

3 ~.4878643 .(796345 ~5.13 0.000 -.6441094 ~-.331619%

4 ~.BE7OTTL . 1690952 -3.28  0.001 ~-.89156112 ~.2244431

5 -.2453868 LQ701012 -3.50 0. 000 -, 3829269 ~.1078468

_cons 5.705036 . 0408085 139.80 0.000 5.624969 5.7856103

The contrast command can be used Lo test the overall effect of a factor variable.
For example, the contrast command below tests the overall effect of marital.!

. contrast marital
Contrasts of marginal linear predictions

Hargins : asbalanced
df ¥ P>F
marital 4 11.86 0.0000
Residual 11565

1. Had we used the anova conumand, the main effect of marital from the anova outpué would have
matched the contrast results.

o
]
ot
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The contrast command can also be used to apply contrast operators to factor
variables to dissect main effects or interactions. Consider the output we obtain from
the contrast command when we apply a contrast coefficient, such as r.marital.

. contrast r.marital
Contrasts of marginal linear predictions

Hargins : asbalanced
daf F P>F
marital
2 vs 1) 1 6.89 0.0088
3 vs= 1) 1 37.53 0.0000
(4 vs 1) 1 10.77 0.0011
(5 vs 1) 1 12.25 0.0005
Joint 4 11.868 G.0000
Residual 1155
Contrast  Std. Err. [95% Conf. Intervall
marital
(2 vs 1) ~,2912429 .110942 ~.5089133 -.0736724
(8 vs 1} ~. 4878643 .0796349 -.6441094  -.3316191
(4 va 1) -.b679771 . 1699952 -.8915112  ~.2244431
5 vs 1) ~. 2453868 .0701012 -.3829269%  -.1078468

The output is divided into two portions. The top portien shows F' fests of the
specified contrast. The second portion of the output shows the estimates of the contrast,
standard orror, and confidence interval.

If we wanted to suppress the second portion of the output, we could specify the

noeffects option, as shown helow.

. contrast r.marital, noeffects

Contrasts of marginal linear predictions

Margins : ashalanced

af F PrF
marital

{2 vs 1) i 5.89 0.0088
{3vs 1) 1 37.53 .0000
(4 vs 1) 1 10.77 0.0011
(5 vs 1) 1 12.28 0.0005
Joint 4 11.88 0.6000

Residual 1165

We can suppress the first portion of the output with the nowald option, as shown
below.

. contrast r.marital, nowald

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Btd. Err. [95% Cont. Intervall
narital
(2 vs 1) ~.2812429 110942 ~-.b5089133 -.0735724
(3 vs 1) ~.4878643 . 0796349 ~.6441094 -.3316191
(4 vs 1) -.BETOT7L 1699952 -,8915112  -.2244431
(5 vs 1) -.2453868 0701012 ~.3829269 -.107B8468

In lieu of displaying the confidence intervals, we can instead display the p-values
associated with each contrast by specifying the pveffects option,

. contrast r.marital, nowald pveffects
Contrasts of marginal linear predictions

Margins : asbalanced
Contrast Std. FBrr. + P>t
marital
(2 vs 1) -. 2912479 L110842 -2.63 0.009
(3 vs 1) -.4878643  ,0796349 ~-8,13  0.000
(4 vs 1) -.BETOTTL (1699952  -3.28  0.004
(6 vs 1) -.2453868  ,0701012 ~3.50 0,000

By specilying the effects option, we see both the confidence interval and p-values
associated with each contrast. This combination of options is often nsed throughout
the book becanse it provides compact output with key information about the eontrast,
standard error, significance, and cenfidence interval.

. contrast r.marital, nowald effects
Contrasts of marginal linear predictions

Margins : ashalancad
Gontrast  Std. Err. t P>|t] {95% Conf, Intervall
marital
(2 va 1) ~.2912429 .110842 ~2.63 0,008 -.5089133 ~.0736724
(3 vs 1) -.4878643 0796349 -6.13 0.000 -.6441094 -.3316191
{4 vs 1} -, 5B79771 , 1698862 -3.28 0.001 -.891b6112  -,2244431
(6 va 1} -.2453868  .0701012 -3.50  0.000 -.3829269 -.1078468

The contrast command can adjust the significance levels to account for multiple
comparisons using the mcompare () option. You can specify the bonferroni, sidak, or
scheffe method within mcompare () to obtain Bonferroni’s, Siddk’s, or Scheffé’s method
of adjustment, respectively. The example below illustrates using mcompare(scheffe).
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. contrast r.marital, nowald effects mcompare{scheife)

Contrasts of marginal linear predictlons

Margins : asbalanced

Number of

Comparisons

marital 4

Scheffe Scheffe
Contrast  Std. Err. t P>lt] {95% Conf. Intervall
marital

(2 vs 1) -.2012429 .110942 -2.63 0.143 -, 6335226 .0B610368
(3 vs 1) -.4878643 .0796349 -6.83  0.000 -,.7335648  -.2421738
{4 vs 1} -.EBT9TT1 . 1699952 ~3.28  0.030 ~1.082449  -,033B067
(5 vs 1) -, 2453868 0701012 -3.60 0.018 -.4616641  -,0291086

By default, 95% confidence intervals arc displayed. You can use the level () option
to specily a different confidence level. The exampie below illustrates a 99% confidence
interval.

. contrast r.marital, nowald effects level (99)

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Exr. t P>t [09% Conf. Interval]
marital
(2 vs 1) —.2912429 .110842 -2.63 0.009 -, 5774835 -, 0050022
(3 vs 1) ~-,4878643 . 0796349 ~6.13 0.00C ~.6833296 -,2823589
(4 va 1) -, 5579771 . 1699952 -3.28 0.001 - . 5965306 -.,1193737
(5 va 1) -, 2453868 0701012 -3.50 0.000 -.4262646 —.0645191

This appendix has certainly not covered all the features of the contrast command,
For mwore information about the contrast copumand, see (8] contrast.

D The pwcompare command

This appendix covers additional details about the pwcompare connnand. Tl pucompare
command allows yon to make pairwise comparisons between means from a factor vari-
able.

The mcompare{) option permits you to select a method for adjusting for multiple
comparisons. The defanlt -method is to perform no adjusément for wmultiple compar-
isons. Three methods are provided that can be used with balanced or unbalanced data:
Bonferroni’s method, Siddlk’s method, and Seheffé’s method. These can be selected by
specilying bonferroni, sidak, or scheffe within the mcompare () option. Four addi-
tional methads are provided but require halanced data and car be used only afler a
linear modeling command (anova, manova, regress, or mvreg). These are the Tukey,
Student—Newmnan-Keuls, Duncan, and Dunnett methods, and they can be selected by
specifying tukey, snk, duncan, or duanett within the meompare (3 option.

Let's consider an example using nnhalaneced data, predicting happivess from marital
status.

. anova happy7 i.educd c.age

Bumber of obs = 1183 R-squared = 0.0124

Root MBE = .976216 hdj R-sguared = 0.0089

Source Partial 58 df HS F Prob > F
Model 13.6941583 4  3.42353957 3.60 0.0063

educd 10.5995604 3 3,b3318679 3.72 0.0142

age 4,00917539 1 4,00917539 4.22 0.0403

Residual 1091,80107 1148 .95104823

Total 1105.49523 1152 .959631276

The pwcompare command performs pairwise comparisons of the means {after adjust-
ing for age). The default outpus includes the difference in the means (in the Contrast
column) and a confidence interval for the difference. When the confidence interval
exchuces zero, the difference is significant.
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. pwcompare odncd
Pairwise comparisoms of marginal linear predictions

Margins : asbalanced

Unadjusted

Contrast  Std. Err. [95% Conf. Intervall

educs
2vs 1 .2406146 . 2202704 ~.1915631 6727922
3vs 1 4447997 . 2073503 0379717 .8516277
4 va 1 .4093586 .2115241 .0843414 .9143758
3vs 2 .2041851 L0918713 . 0239306 .3844396
4 vs 2 .258744 .1012196 .080148 4573401
4 vs 3 . 0545588 . 0675454 ~. Q779674 .18708b3

We can use the effects option to also include the significance test of the difference
in the means. We could instead specify pveffects to show the significance tests in
liew of the eonfidence intervals. The resulls show that all the pairwise comparisons are
ditferens except for the comparisons of group 2 versus 1 and group 4 versus 3.

. pucompare educd, effects

Pairwise comparisoms of marginal linear predictions

Margins 1 asbalanced
Unadjusted Unadjusted
Contrast  Std. Err, t Pl [95% Conf. Intervall
educd

2wvs 1 .2406146 2202704 1.09 0.278 ~.1816631 LG727822
3 ws 1 .4447997 . 2073503 2,18 0.032 L0379717 .8516277
4 vs 1 . 4993686 .2115241 2,36  0.018 .0B43414 .9143758
3wvs 2 2041851 .0918713 2.22  0.028 0239306 3844396
4 vs 2 .268744  .1012196 2.6 0.011 .080148 LABT3401
4 vs 3 .0545589  .0BT5454 0.81 0.418 -. Q779674 . 18708563

By including the cimargins option as well, you get not only the pairwise comparisons
of the means, but also an estimate of each of the means with a confidence interval.

. pwcompare educd, effects cimargins

Pairwise comparisons of marginal linear predictions

Margins : asbalanced
Unad justed
Margin  Std. Err. {95% Conf. Intervall
educd
1 4.940267 . 223449 4.501842 5.378671
2 5.180871 .1169722 4.951368 5.410376
3 5,385066 .0B844101 5.219441 5.550672
& 5.439615 . 0966675 5.24995 5,62928
Unadjusted Unadjusted
Contrast  Std. Err. t P>ltl [95% Conf. Intervall
aducd
2vs it .2406148 L. 2202704 1.09 0.275 -,1915631 .6727922
3vs i . 4447997 ,2073503 2.15 0.032 L0379717 .8616277
4wys 1 .4993686 .2116241 2.36 0.018 0843414 .9143758
3 wvws 2 .2041856% .0918713 2.22 0.026 .0238306 3844396
4 vs 2 . 258744 ,1012196 2.66 0.011 060148 4573401
4 vs 3 .0b45589 0675454 .81 0.418 ~.0779674 .1870853

Specifying the groups option displays group codes that signify groups that are not
significantly different from each other. This output indicates that groups I and 2 are
not significantly different (because both belong to group A), and groups 3 and 4 are

ot significantly different (because both belong to group B). This provides a conhcise

summary of which pairwise differences are significant and which ones are nonsignificant.

. pwcompare educd, groups

Pairwise compariscns of marginal linear predictions

Margins : asbalanced

Unadjusted

Margin  Std. Err. Groups

aducd

1 4, 940257 L 223449 A

2 5,180871 .1168722 A

3 5.385058 0844101 B

4 5.439615 0966675 B

Mote: Margins sharing a letter in the group label
are not significantly different at the B%
level.

So far, these pairwise comparisons have not adjusted for multiple comparisons.
Let’s adjust for multiple comparisons by adding the meompare (sidak) option. After
malking this adjustment, none of the pairwise comparisons are significant. (Using the
mcompare (bonferroni) and mcompare (scheffe} options yield similar results, showing
all comparisons to be nonsignificant.)
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. pucompare educd, effects mcompare (sidak)

Pairyise comparisons of marginal linear predictions

lMargins : asbalanced

Number of

Comparisons

educd 8

Sidak Sidak
Contrast  Std. Err, t P>t f95Y% Conf. Intervall
edncd

2vs 1 . 2406146 L 2202704 1.09 0.855 —-.3390287 .8211558
3wvs i . 4447997 . 2073503 2.16  0.i78 —-.,1018896 . 9912889
4 vs 1 4993586 V2116241 2.36 0.:05 -.0581311 1.056848
3vs 2 .2041851 0918713 2.22 0.149 —-.03794956 4463197
4 vys 2 .258744 .i0i2198 2.56 0.063 ~. 0080287 .b256168
4 vs 3 . 0545688 .06754b4 0.81 ¢.962 -.1234628 . 2325807

Finally, let’s consider an example using balanced data, in which all groups have
cqual cell sizes. Let’s use the example from section 7.7 that looked at pain rabings as
a function of medication dosage group {dosegrp), whicli was coded as 1 = 0 mg, 2 =
50 mg, 3 = 100 mg, 4 == 150 mg, 5 = 200 mg, and 6 = 250 mg. The anova command
predicting pain from dosegrp is shown helow,

. use pain

. anova pain dosegrp

Number of obs = 180 R-sguared = 0.4602

Root MHE = 10,4724 Ahdj R-sgquared = (.4447

Source Partial S8 df M5 F Prob > F
HModel 16271.6544 £ 3254.3388% 29,67 0.0000
dosegrp 16271.6944 b 3254.33889 29.67 0.0000

Residual 19082.6333 174 109,670307

Total 35364.3278 179 187.510211

Lef’s use the pycompare command to form pairwise comparisons of all dosage groups,
using Tukey’s method of adjustment for muitiple comparisons. Furthermore, let’s sort
the results hased on the size of diflerence in means, show the significance levels, and
include a table of groups that are not significantly different.

. pucompare dosegrp, mcompare{tukey) sort effects groups

Pairwise comparisons of marginal linear predictions

Margins : asbalanced
Number of
Comparisons
dosegrp 15

Tukey
Margin Std., Err. Groups
dosegrp
8 48.3 1.911982
5 54,7 1.811982 B
4 70.4 1.911982 A
2 70.6  1.911982 A
1 71.83333 1.911982 A
3 72.13333  1.911982 A

Wote: Margins sharing a letter in the group
label are not significantly different at
the 5% level.

Number of
Comparisons
dosegrp 15
Tukey Tukey
Contrast  Std. Err. t P>t [95% Conf. Intervall
dosegrp
6 va 3 -23,83333 2.7039562 ~-8.81 0.000 ~31.62543  -16.04124
6 vs 1 ~23.63333  2.703952 ~-8.70 0.000 ~31.32543 -15.74124
6 vs 2 -22.3  2.7039562 -8.26 0,000 ~30.09200  -14.50791
6 vs 4 ~22.1 2.703952 -8.17 0.000 -29,.89209 -14.30791
5 vs 3 ~17.,43333  2.7039862 -6.45  0.000 -25,22643  —-9.641239
Ewys 1 -17.13333  2.703952 -6.34  0.000 —24,92643  -9,341239
5 vs 2 -15,9  2.703952 ~5.88  (.000 ~-23.69209  -B.107908
5 vs 4 -15.7  2.703952 -5.81 0.0G00 -23.49208  -7.907308
B vs b ~6.4  2.703952 ~2.37  0.174 ~14,19209 1.392094
4 vys 3 -1.733333 2.703952 ~0.64  0.988 ~-9,625427 6.068761
4 vs 1 -1.433333  2.703952 -0.63 0.996 -9.,225427 6,358761
2 ws 1 -1.233333  2.703952 ~0.46  0.997 -9.,025427 6.558761
4 vs 2 -.2  2,703952 -0.07  1.000 -7.992094 7.5082094
3 vs 1 3 2.703962 0.11 1.000 =7, 492004 8,092094
3 vs 2 1.533333  2.7033562 0.5 0,993 -6,258761 9.325427

[0

O

3
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"The output shows that groups 5 and 6 both belong to group B and are not signifi-
cantly different. Also, groups 1, 2, 3, and 4 all belong to group A and are not si gnificantly
different. This is reflected in the more detailed output that shows these groups to be
not significantly different, For this example with balanced data, the Student—Newman-—
Keuls, Duncan, or Dunnett methods could have been selected by specilying the snk,
duncan, or dunnett method instead of the tukey method.

You ean find more information about the pwcompare command in [R] pweompare.
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