

MAQUETA DE PRELLENADO PROGRAMA DE ASIGNATURA (COMPETENCIAS)

1. NOMBRE DE LA ASIGNATURA (Nombre oficial de la asignatura según la normativa del plan de estudios vigente o del organismo académico que lo desarrolla. No debe incluir espacios ni caracteres especiales antes del comienzo del nombre).

Didáctica General y Prácticas Pedagógicas

2. NOMBRE DE LA ASIGNATURA EN INGLÉS (Nombre de la asignatura en inglés, de acuerdo a la traducción técnica (no literal) del nombre de la asignatura)

General Teaching and Pedagogical Practices

3. TIPO DE CRÉDITOS DE LA ASIGNATURA (Corresponde al Sistema de Creditaje de diseño de la asignatura, de acuerdo a lo expuesto en la normativa de los planes de estudio en que esta se desarrolla):

SCT/

4. NÚMERO DE CRÉDITOS (Indique la cantidad de créditos asignados a la asignatura, de acuerdo al formato seleccionado en la pregunta anterior, de acuerdo a lo expuesto en la normativa de los planes de estudio en que esta se desarrolla)

3

5. HORAS DE TRABAJO PRESENCIAL DEL CURSO (Indique la cantidad de <u>horas semanales</u> (considerando una hora como 60 minutos) de trabajo presencial que requiere invertir el estudiante para el logro de los objetivos de la asignatura; si requiere convertir las horas que actualmente utiliza a horas de 60 minutos, utilice el convertidor que se encuentra en el siguiente link: [http://www.clanfls.com/Convertidor/])

1,5	horas
-----	-------

6. HORAS DE TRABAJO NO PRESENCIAL DEL CURSO (Indique la cantidad de <u>horas semanales</u> (considerando una hora como 60 minutos) de trabajo no presencial que requiere invertir el estudiante para el logro de los objetivos de la asignatura; si requiere convertir las horas que actualmente utiliza a horas de 60 minutos, utilice el convertidor que se encuentra en el siguiente link: [http://www.clanfls.com/Convertidor/])

1 hora

7. PROPÓSITO GENERAL DE LA ASIGNATURA (A partir de las competencias a las que este curso contribuye (considerando el nivel de logro) y el dominio del perfil de egreso en el que se encuentra inserto, el equipo docente explicita el sentido de esta actividad curricular y el cómo contribuye a la formación del profesional / licenciado de la carrera o programa).

Elaborar diseños didácticos, fundamentados teórico y metodológicamente desde los marcos epistemológicos y las tendencias de investigación de la Didáctica de las Ciencias Experimentales, relacionando de manera innovadora diferentes componentes que posibiliten la enseñanza-aprendizaje-evaluación de algún conocimiento específico de Física o Matemática en la Educación Media.

- 8. RESULTADOS DE APRENDIZAJE (Son un conjunto de enunciados que establecen lo que estudiante "sabe hacer" en términos de procesos mentales o de actuaciones complejas de nivel superior al finalizar la asignatura. El conjunto de los Resultados de Aprendizaje deben dar cuenta del propósito la asignatura en términos de ser posibles de aprender y evidenciar su logro. A su vez, éstos se convierten en el compromiso formativo de excelencia de la unidad académica y del propio docente, en el sentido de propiciar su desarrollo y logro en TODOS sus estudiantes. La literatura recomienda que se establezcan entre 3 y 6 resultados de aprendizaje)
- 1. Comprender los propósitos, desafíos y perspectivas de la educación científica chilena en la actualidad.
- 2. Diseñar actividades innovadoras que integren conocimientos científicos para la enseñanza de las ciencias en la educación media.
- 3. Implementar y evaluar clases de ciencias teniendo en cuenta sus conocimientos científicos y competencias didáctico pedagógicas que

permitan una mirada reflexiva sobre y acerca de su práctica docente.

9. COMPETENCIAS (Competencias y/o sub-competencias a cuyo desarrollo esta asignatura contribuye)

- Demuestra dominio en las habilidades y metodologías científicas propias de la física y en las habilidades de razonamiento y lógica matemática
- Presenta contenidos de su especialidad desde distintos enfoques para una mejor comprensión de éstos.
- Demuestra actitudes investigativas en física y matemática.
- Organiza e implementa espacios didácticos considerando la naturaleza histórica y epistemológica de la disciplina que enseña.
- Considera el entorno social, el contexto y las características (cognitivas y personales) del estudiantado en la planificación, diseño e implementación y evaluación de estrategias didácticas y evaluativas.
- Propone modelos que presentan situaciones reales, para explicar conceptos y procedimientos propios de la matemática y la física.
- **10. SABERES / CONTENIDOS** (Corresponde a los saberes / contenidos pertinentes y suficientes para el logro de los Resultados de Aprendizaje de la Asignatura; debe ingresarse un saber/contenido por cada línea)
- 1 Concepciones sobre Ciencia y Educación Científica

Fundamentos epistemológicos de la Ciencia y su enseñanza-aprendizaje evaluación

Educación Científica en el contexto nacional e internacional. Retos y desafíos

Pruebas internacionales de evaluación científica (PISA y TIMSS)

Pruebas nacionales de evaluación (SIMCE y PSU)

2. Indagación Científica en el aula

Prácticas docentes en la enseñanza de las ciencias

Regulación y autorregulación de los aprendizajes científicos

Estrategias de enseñanza-aprendizaje y evaluación

Enseñanza de las Ciencias Basada en la Indagación ECBI.

Modelo de las 5E

Ciclo constructivista de aprendizaje

3. Análisis y evaluación de prácticas docentes para la enseñanza de las

ciencias en la Educación Media

11. METODOLOGÍA (Descripción sucinta de las principales estrategias metodológicas que se desplegarán en el curso, pertinentes para alcanzar los Resultados de Aprendizaje (por ejemplo: clase expositiva, lecturas, resolución de problemas, estudio de caso, proyectos, etc.). Indicar situaciones especiales en el formato del curso, como la presencia de laboratorios, talleres, salidas a terreno, ayudantías de asistencia obligatoria, etc.)

La metodología de enseñanza utilizada será de carácter participativa, mediante el análisis y la discusión argumentada de artículos y documentos de literatura especializada; así como de las experiencias vividas en la práctica pedagógica. Se potenciará el trabajo colaborativo, el intercambio de experiencias e ideas, así como la elaboración de diseños didácticos, implementación y evaluación de actividades fundamentadas desde la Didáctica de las Ciencias Naturales. Se propone además, generar espacios metacognitivos que le permitan a las y los participantes reflexionar acerca de cómo poner en juego en la práctica docente sus conocimientos y competencias didáctico – pedagógicas.

12. METODOLOGÍAS DE EVALUACIÓN (Descripción sucinta de las principales herramientas y situaciones de evaluación que den cuenta del logro de los Resultados de Aprendizaje (por ejemplo: pruebas escritas de diversos tipos, reportes grupales, examen oral, confección de material, etc.)

Revisión Bibliográfica

Revisión de secuencias didácticas en libros de texto chilenos Fundamentación teórica y metodológica de un Diseño didáctico Diseños didácticos desde modelo como 5E, ECBI y CAC Informe de evaluación y análisis de sus clases de ciencias

13. REQUISITOS DE APROBACIÓN (Elementos normativos para la aprobación establecidos por el reglamento, como por ejemplo: Examen, calificación mínima, asistencia, etc. Deberá contemplarse una escala de evaluación desde el 1,0 al 7,0, con un decimal.)

ASISTENCIA (indique %): 75%

NOTA DE APROBACIÓN MÍNIMA (Escala de 1.0 a 7.0): 4.0

REQUISITOS PARA PRESENTACIÓN A EXÁMEN:

OTROS REQUISITOS:

14. PALABRAS CLAVE (Palabras clave del propósito general de la asignatura y sus contenidos, que permiten identificar la temática del curso en sistemas de búsqueda automatizada; cada palabra clave deberá separarse de la siguiente por punto y coma (;)).

Didáctica, Ciencias, Práctica Pedagógica

- **15. BIBLIOGRAFÍA OBLIGATORIA** (Textos de referencia a ser usados por los estudiantes. Se sugiere la utilización del sistema de citación APA, y además que se indiquen los códigos ISBN de los textos. CADA TEXTO DEBE IR EN UNA LÍNEA DISTINTA)
- Cátala, Mireira et al. (2002) "Las ciencias en la escuela" Teorías y prácticas. Editorial Laboratorio Educativo GRAO Barcelona
- Cofré, H. (Ed.) (2010). Cómo mejorar la educación científica en Chile: perspectivas internacionales para desafíos nacionales. Chile: Ediciones Universidad Católica Silva Henríquez.
- Couso, D. (Comp).(2003). *Unidades didácticas en ciencias y matemáticas*. Barcelona: Departamento de Didáctica de las Matemáticas i les Ciencies Experimentals. Universidad Autónoma de Barcelona.
- Ericsson, I. (Ed) (2008). *Science Education in the 21st Century.* New Cork: Nova Science Publishers.
- Harlen,W.(1998) "Enseñanza y Aprendizaje de las ciencias" Ed. Morata España 2ª edición
- Jiménez, M.P. (Coord). (2007). Enseñar ciencias. Barcelona: Grao
- Jorba, J. y Casellas, E. (eds). (1997). Regulación y Autorregulación de los aprendizajes. Madrid: Síntesis.
- Katzkowicz, R. y Salgado, C. (2006). Construyendo ciudadanía a través de la educación científica. Argentina: OREALC/UNESCO y Fundación YPF

- Kaufman, M et al. (2000). Enseñar ciencias naturales. Reflexiones y propuestas didácticas Argentina: Ed. Paidos.
- Liguori,L. y Noste,M´. (2005)"Enseñar a Enseñar Ciencias Naturales" Ed. Homo Sapiens Argentina
- Merino, C., Gómez, A. y Adúriz-Bravo, A. (2008). Áreas y estrategias de Investigación en la Didáctica de las Ciencias Experimentales. Bellaterra: Universidad Autónoma de Barcelona.
- Perales y Cañal (2000). Didáctica de las Ciencias Experimentales. Teoría y práctica de la enseñanza de las ciencias. España: Marfil.
- Sanmartí, N. (2007). 10 ideas clave. Evaluar para aprender. Colección Ideas Clave. Serie Didáctica y Diseño Curricular. Barcelona: Graó.
- Soussan, Georges (2003) "Enseñar las ciencias experimentales" Didáctica y Formación UNESCO Stgo.
- **16. BIBLIOGRAFÍA COMPLEMENTARIA** (Textos de referencia a ser usados por los estudiantes. Se sugiere la utilización del sistema de citación APA, y además que se indiquen los códigos ISBN de los textos. CADA TEXTO DEBE IR EN UNA LÍNEA DISTINTA)
- Abell, S.; Lederman, N. (2007). Handbook of Research on science education. United States of America: Lawrence Erlbaum Associates.
- Behrendt, H.; Dahneke, H. (Ed.) (2001). Research in Science Education Past, present, and Future. USA: Kluwer.
- Boersma, K.; De Jong, O.; Eijkelhof, H. (2005). Research and the quality of Science Education. Netherlads: Srpinger
- Fraser, B.J. et al. (eds). (2012). Second International Handbook of Science Education.. Dordrecht, The Netherlands: Springer.
- Gil, D.; Macedo, B.; Martínez Torregrosa, J.; Sifredo, C.; Valdés, P.; Vilches, A. (2005). Chile: OREALC/UNESCO Santiago
- **17. RECURSOS WEB** (Recursos de referencia para el apoyo del proceso formativo del estudiante; se debe indicar la dirección completa del recurso y una descripción del mismo; CADA RECURSO DEBE IR EN UNA LÍNEA DISTINTA)

http://ensciencias.uab.es Enseñanza de las Ciencias es una revista dirigida a profesores e investigadores del campo de la didáctica de las ciencias y de las matemáticas.

http://www.grao.com/revistas/alambique Alambique es una revista dedicada a reflexiones, recursos y experiencias para educación primaria y secundaria para la enseñanza de las ciencias y las matemáticas.

http://reec.uvigo.es La Revista Electrónica de Enseñanza de las Ciencias (REEC) es una revista científica cuatrimestral a través de la red dedicada a la investigación sobre la enseñanza y el aprendizaje de las ciencias experimentales en los diferentes niveles educativos (infantil, primaria, secundaria, universidad).