

PROGRAMA DE ASIGNATURA

1. IDENTIFICACIÓN DE LA ASIGNATURA

Componentes	Descripción
Nombre del curso (Nombre oficial del curso o de la actividad curricular según la denominación existente en la escuela o departamento. Debe ser representativo del problemapropósito de la asignatura y coincidir con lo decretado para el programa.)	Diseño, cognición y computación
Nombre del curso en inglés (Nombre de la asignatura en inglés, de acuerdo a la traducción técnica (no literal) del nombre de la asignatura.)	Design, Cognition and Computing
Código del curso Si no cuenta con el código aún, colocar pendiente hasta que sea creado)	
Carácter (Indicar si es obligatorio, electivo o libre)	electivo
Número de créditos SCT (Cantidad de créditos asignados a la actividad curricular usando el SCT – Chile)	
Número de créditos según reglamento (1 crédito equivale a 24 horas)	3
Horas totales directas (N° de horas totales de horas frente al estudiante)	1.5
Horas totales indirectas (N° total de horas de trabajo autónomo del estudiante)	2.5
Total, horas del curso (hrs. directas + hrs. indirectas)	4

FACOLIAD DE AKQUITECTORA I ORDANISMO	T	
Nivel		
(Semestre en que se ubica la		
actividad según el plan de formación)		
Requisitos	No tiene	
(Actividades curriculares aprobadas		
como condición necesaria para el		
curso.)		
Descripción del curso		
•		
(A partir de los objetivos de este		
curso señalar como contribuye a la		
formación del programa y al logro del		
perfil de egreso en el que se		
encuentra inserto. Se explicita el		
sentido de esta actividad curricular y		
cómo contribuye a la formación del		
estudiante. Se señala si es teórico,		
teórico-práctico o solo práctico)		
Palabras claves del curso	Diseño, cognición, computación, proceso de dis	eño,
(Palabras clave del propósito general	Arguitectura.	
de la asignatura y sus contenidos,		
que permiten identificar la temática		
del curso en sistemas de búsqueda		
automatizada; cada palabra clave		
deberá separarse de la siguiente por		
punto y coma)		
Atributos del Perfil de Egreso a	Capacidad de entender la arquitectura como una	
las que contribuye el curso.	práctica cultural, técnica y social compleja. Competencia en el manejo de recursos	
(Margar ann una aruz aguallas	metodológicos y de conocimiento.	
(Marcar con una cruz, aquellos atributos del perfil de egreso con los	Capacidad de generar proyectos innovadores que	
que considera aporta el curso, puede	operan como herramientas de transformación	
ser a más de una)	social	
oor a mas do anaj		

2. PROGRAMA DE LA ASIGNATURA

Componentes	Nombre (s)
Equipo docente que aprueba programa.	Pedro Soza
(Profesores/as participantes en la docencia del curso y responsables de la elaboración del programa de la asignatura)	

2.1. Objetivos (Son un conjunto de enunciados que establecen lo que estudiante "sabe hacer", en términos de procesos mentales o de actuaciones complejas de nivel superior, al finalizar el curso o actividad curricular.

El conjunto de los objetivos debe dar cuenta de lo que es posible aprender y que sea observable el logro de los y las estudiantes. La literatura recomienda que se establezcan entre 3 y 6.)

El profesional estudiante logrará:

- Entender las bases biológicas de la cognición espacial.
- Entender el mecanismo operatorio a nivel cognitivo que comanda la toma de decisión proyectual.
- Familiarizarse con los fundamentos matemáticos del modelamiento de sólidos, paramétricos y BIM.
- Entender las bases de la inteligencia artificial aplicada al proceso de diseño.
- Entender las similitudes y diferencias entre la toma de decisión proyectual computacional y humana.

2.2. Contenidos

- Sesión 1

Introducción y presentación del curso. Syllabus.

Antecedentes históricos e hipótesis de trabajo. Anatomía y segregación funcional.

- Sesión 2

Percepción y sensación. Implicancias para el mundo del diseño.

- Sesión 3

Memoria. Tipos de memoria, sensorial, de trabajo, Largo plazo. Taxonomía del conocimiento.

- Sesión 4

Atención. Tipos de atención. Déficit contralateral espacial. Procesamiento espacial.

- Sesión 5

Resolución de problemas, Control emocional y toma de decisiones.

- Sesión 6

Problemas con la toma de decisiones.

- Sesión 7

Cognición ESD

- Sesión 8

Desarrollo de Expertiz, estado de flujo y medición de creatividad.

- Sesión 9

Historia y evolución del CAD.

Representación y Rendering. Render de alta gamma.

Problemas en la representación.

- Sesión 10

Modelamiento de sólidos. Construcción de geometría de sólidos.

Modelamiento de solidos como herramienta de diseño.

- Sesión 11

Modelamiento paramétrico. Como especificar un modelo paramétrico.

La estructura apropiada de los modelos paramétricos.

- Sesión 12

BIM - Building Information Models

¿Como se estructura el conocimiento de diseño en herramientas BIM?

Estándares BIM.

¿Qué es IFC?

Desarrollo de esquemas IFC.

- Sesión 13

Introducción a la I.A. en diseño arquitectónico.

Ontología Función, Estructura y Comportamiento.

Estudio de casos de ontología FEC en diseño.

- Sesión 14

Diseño generativo. Principales algoritmos y su implementación. Discusión frente a la toma de decisión proyectual. Presentación de casos de estudio.

- Sesión 15

Shape grammars. El uso del lenguaje lógico proposicional como set de representaciones de conocimiento de diseño.

- Sesión 16.

Redes neuronales. Presentación de casos de estudio.

Cierre del curso

2.3. Metodología

(Principales estrategias metodológicas que se desplegarán en el curso, pertinentes para alcanzar los objetivos (por ejemplo: clase expositiva, lecturas, resolución de problemas, estudio de caso, proyectos, etc. Indicar situaciones especiales en el formato del curso, como la presencia de laboratorios, talleres, salidas a terreno, ayudantías de asistencia obligatoria, entre otras)

Metodología: LEDC (Lectura - Exposición – Debate – Consolidación)

- Lecturas:
- Depende de los estudiantes y es clave para poder participar del curso. Los estudiantes deben completar cada semana las lecturas asignadas a dicha semana.

Tras completar las lecturas, los estudiantes deberán desarrollar discusiones en clase y presentaciones, las que serán mediadas por el equipo docente.

- Exposición:
- El equipo docente presentara material en forma expositiva en las clases designadas para el desarrollo de aquella actividad. Al respecto, se espera la participación en clase por parte de las y los estudiantes, lo que es clave para dominar los contenidos propuestos en el curso.
- · Debate:
- Los grupos de estudiantes llevaran a cabo debates de ideas fundamentados en las lecturas asignadas y en los contenidos entregados en las exposiciones. Los debates eran evaluados.
- Consolidación:
- Cada sesión culminará con la presentación de un proyecto de arquitectura vinculante con las temáticas tratadas en la sesión del día. Con posterioridad a ello se desarrollará un ciclo de conversación sobre lo aprendido en la sesión.
- **2.4. Evaluación** (Principales herramientas y situaciones de evaluación que den cuenta de lo que han logrado los estudiantes, como aprendizaje del curso.)
 - Participación en clases y Debates grupales: (33%)

La participación en el curso es clave para la asimilación de los contenidos de este. Así, la participación es evaluada mediante los debates y tiene un 33 % de la calificación final del curso.

• Reportes de lectura: (33%)

Al finalizar cada unidad del curso los alumnos desarrollaran un reporte escrito revisando críticamente las lecturas de la unidad y posibles temas de investigación a partir del escrutinio de ellas. Entre todos, los reportes de lecturas promediarán un 33% de la calificación final del curso.

• Trabajo final (Individual): (34%)

Al finalizar el curso cada estudiante entregara un trabajo individual consistente en una propuesta de investigación a partir de alguna de las materias vistas en el curso. Este trabajo tendrá una ponderación de un 34% de la calificación final del curso.

2.5. Requisitos de aprobación (Elementos normativos para la aprobación establecidos por el reglamento. Si no tiene requisito indicar "No Aplica")

Asistencia (indique %): Según reglamento

Nota de aprobación mínima (escala de 1.0 a 7.0): Según reglamento

Requisitos para presentación a examen: Según reglamento

Otros requisitos: Según reglamento

2.5. Bibliografía (Textos de referencia (obligatorios y sugeridos) a ser consultados por los estudiantes, incluye base de datos, según corresponda. Se sugiere la utilización del sistema de citación APA, y además que se indiquen los códigos ISBN de los textos. CADA TEXTO DEBE IR EN UNA LÍNEA DISTINTA)

2.5.1. Bibliografía obligatoria

Aish, R. (2005). From Intuition to Precision.

Akin, Ö., & Weinel, E. F. (1982). Representation and Architecture. Information Dynamics

Amabile, T. M. (1982). The social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43, 997–1013

Anderl, R., & Mendgen, R. (1996). Modelling with constraints - theoretical foundation and application. Computer Aided Design, 28 (3), 155-168.

Bafna, S. (2008). How architectural drawings work — and what that implies for the role of representation in architecture. The Journal of Architecture, 13(5), 535–564.

Barker, S. M. (1995). Towards a topology for computational geometry. Computer Aided Design, 27 (27), 311-318.

Bouma, W., Fudos, I., Hoffmann, C., Cai, J., & Paige, R. (1995). Geometric constraint solver. Computer Aided Design, 27 (27), 487-501.

Dorst, K., & Cross, N. (2001). Creativity in the design process: co-evolution of problem—solution. Design Studies, 22(5), 425–437.

Eastman, C. (1969). Cognitive processes and ill-defined problems: a case study from design. International Joint Conference on Artificial Intelligence (pp. 669-690). Washington D.C.: Donald E. Walker, Lewis M. Morton.

Eastman, C. M., Lee, G., & Sacks, R. (2003). Parametric 3D modeling in building construction with examples from precast concrete. Automation in Construction , 13, 291–

Eggink, D., Do, E., & Gross, M. (2001). Smart Objects: Constraints and behaviors in a 3D design environment. eCAADe.

Ericsson, K. A., & Chamess, N. (1994). Experts' performance: Its Structure and Acquisition. American Psychologist.

Ericsson, K. A., Krampe, R. T., Tesch-romer, C., Ashworth, C., Carey, G., Grassia, J., ... Schneider, V. (1993). The Role of Deliberate Practice in the Acquisition of Expert Performance. Psychological Review, 100(3), 363–406.

Gentry;, A. R. (2009). Rich Knowledge Parametric Tools for Concrete Masonry Design.

Gero, J., & Kelly, N. (2009). Constructive Interpretation in Design Thinking. eCAADE, (pp. 97-104).

Goel, V., Dissociation of design knowledge. In C. Eastman, W. Newstetter and M. McCracken.

Design knowing and learning: Cognition in design education. Elsevier. 1998.

Goldschmidt, G. (1991). The Dialectics of Sketching. Creativity Research Journal, 1(2), 123–143

Gourtovaial, A. M. (2003). Towards Integrated Performance-Based Generative Design Tools.

Gross, M. (1978). Design as Exploring Constraints. MIT.

Heisserman, J. (1994). Generative Geometric Design. Computer Graphics and Applications , 14:2, 37-45.

Heisserman, J., Callahan, S., & Mattikalli, R. (2000). A Design representation to support automated design generation. In J. Gero (Ed.)., (pp. 545-566).

Hoffmann, C., & Kim, K. J. (2001). Towards valid parametric CAD models. Computer Aided Design, 33, 81±90.

Hutchins, E. (1993). Learning to navigate. In S. Chaiklin & J. Lave (Eds.), Understanding practice: Perspectives on activity and context. Cambridge, Mass.

Kalay, Y. (1999). Performance-Based Design. Automation in Construcction, 8, 395-409.

Kannengiesser, J. U. (2004). The situated function—behaviour—structure framework. Design Studies , 25, 373–391.

Keller, C. M., & Keller, J. D. (1996). Cognition and Tool Use: The Blacksmith at Work. Cambridge University Press

Kilian, A. (2005). Design Innovation through constraint modeling. eCAADe, (pp. 671-678).

M., C. C. (1995). On editability of feature-based design. Computer Aided Design , 27 (12), 905-914.

Martini, K. (1995). Hierarchical geometric constraints for building design. Computer Aided Design, 27, 181-191.

Medjdoub, B. (1999). Interactive 2D Constraint-Based Geometric Construction System.

Meiden.;, A. v. (2010). Tracking topological changes in parametrics models. Computer Aided Geometric Design, 27, 281-293.

Menezes, A., & Lawson, B. (2006). How designers perceive sketches. Design Studies, 27(5), 571–585.

Niedderer, K. (2007). Mapping the meaning of knowledge in design research. Design Research Quarterly.

Ramin;, R. A. (2009). Physics-Based Generative Design.

Rittel, H., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155–169.

Sacks;, G. R. (2005). Specifying Parametric Building Object Behavior (BOB) for a Building Information Modeling System. Automation in Construction, 15, 758 – 776.

Shelden, J. D. (2004). A parametric strategy for free-form glass structures using quadrilateral planar facets. Automation in Construction, 13, 187–202.

Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence, 4(3–4), 181–201.

Thabet;, K. W. (2003). Building assembly detailing using constraint-based modeling. Automation in Construction, 12, 365–379.

W., E. B. (1999). Solving Form-Making Problems Using Shape Algebras and Constraint Satisfaction., (pp. 620-625).

Wright;, S. D. (2000). From on-line sketching to 2D and 3D geometry: a system based on fuzzy knowledge. Computer Aided Design , 32, 851-866.

Xiao-Shan, G., & Shang-Ching, C. (1998). Solving geometric constraint systems. I. A Global propagation approach. Computer Aided Design, 30 (1), 47-54.

Yeon-suk;, J.-m. J. (2009). Automatic rule-based checking of building designs. Automation in Construcction , 18, 1011-1033.

2.5.2. Recursos web

^					
٠.۲	Inform	ISCIAN	W2	ria	nia
J.		Iacivii	va	ııa	DIE

3.1. Profesor/es que dictarán el curso el año 2022:					
3.2. Día y l	horario progi	ramado de cla	ses:		

3.3. Evidencias del aprendizaje, y actividades o situaciones de evaluación

(Las evidencias de aprendizaje son aquellas pruebas o respaldo que genera el estudiante y que dan cuenta de que los objetivos de aprendizaje que han sido logrados. Las actividades y situaciones de evaluación son aquellas acciones o instancias especialmente diseñadas, que se realizarán al interior del proceso formativo, para generar las evidencias sobre el aprendizaje logrado. Esta evidencia puede ser solicitada para autoevaluaciones del programa)