

Física Aplicada al Diseño Código: AUD20004 Profesor: Iván Gallo

CONTROL N°2

Nombre :	Nota :
1.10111010.	1,011.

Reglas generales

- ★ El prueba está pensada para hacerla con calculadora, no así con apuntes, en un tiempo estimado de 1.5 horas.
- ★ Los resultados deben ir con sus respectivas unidades. Es decir, si su respuesta es 25 para la posición, esta debe ir acompañada por una m (de metros) al costado, siendo su respuesta final 25 m.
- ★ Aproxime sus resultados al primer decimal.
- ★ Sus respuestas finales deben ser claras (y concisas). A estas les deben anteceder un cálculo que las justifiquen en caso de ser una pregunta de desarrollo.

Torpedo Oficial

>	Aceleración de gravedad:	$g \approx 10 \mathrm{m/s^2}$

$$lacktriangle$$
 Trabajo hecho por una fuerza \vec{F} : $W = F\Delta r \cos \theta$

► Ecuación de energía intre un instante inicial y final:
$$E_i + W_{i \rightarrow f} = E_f$$

► Energía cinética:
$$K = \frac{1}{2}mv^2$$

$$lacktriangle$$
 Energía potencial: $U = mgy$

► Energía mecánica total:
$$E = K + U$$

Problema

- **1.** Considere el montaje de la Figura 1, en el cual a un bloque de masa m=4 kg, inicialmente en reposo en A, se le imprime una fuerza F=80 N a lo largo del tramo A-B, sobre el cual **no existe roce**.
 - a) Usando los criterios de Trabajo y Energía, calcule la rapidez del bloque en B.
 - b) Calcule la repidez del bloque en C.
 - *c*) Calcule la repidez del bloque en *D*.
 - *d*) Si la fuerza de roce en el tramo D-E es $F_r = 8$ N, calcule cual debe ser la distancia d para que la masa m se detenga justo en E.
 - e) Si la distancia d fuera 7 m ¿cuál sería la altura máxima h que puede alcanzar el bloque?

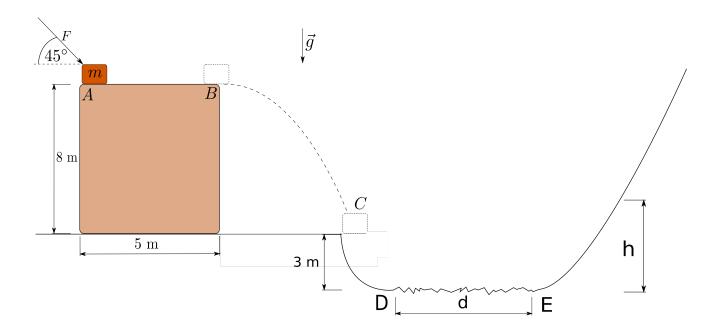


Figura 1: Montaje.