
Rhinoscript101

 for Rhinoceros 4.0

© 2007 Robert McNeel & Associates • North America • Europe • Latin America • Asia

Rhino3D Home

Rhino3D Wiki

RhinoScript Home

RhinoScript Forum

RhinoScript Wiki

RhinoScript101

http://www.Rhino3d.com
http://www.Rhino3D.com/Wiki
http://www.rhino3d.com/developer.htm#vbs
http://news2.mcneel.com/scripts/dnewsweb.exe?cmd=xover&group=rhino.plug-ins
http://en.wiki.mcneel.com/default.aspx/McNeel/RhinoScript.html
http://www.Rhino3d.com/RhinoScript101

Introduction
You’ve just opened the third edition of the RhinoScript primer. This booklet was originally written as a workshop
handout for the students at the Architecture faculty of the Universität für Angewandte Kunst in Vienna. The
aim of the workshop was to teach them how to program Rhino in no more than four days and, counter all my
expectations, they did. Most of them had never programmed before so I had to make sure the text was suitable
for absolute beginners. I did not expect at the time that this proved to be the most successful aspect of the
primer. After the workshop, a slightly reworked version was made available to the public and it has helped many
non-programmers getting rid of the "non" since. Incidentally, if you do not succeed in learning RhinoScript within
a time-span of four days, do not feel bad about yourself. Remember that those students received additional
lectures and intensive support from someone who took two months to reach the same level.

This new edition essentially caters for two major demands; the release of Rhinoceros 4.0 and the superficiality
of the old edition. RhinoScript has existed for many years, but has recently taken a big leap forward with the
development of Rhino4. Scripters of course want to take advantage of all the new functionality offered by this
release and new programmers don’t want to start learning an outdated language. I have tried to combine the
original aims of the primer with the requests for more in-depth articles, but it is always hard to judge the clarity
of a text when one is highly familiar with its subject matter to begin with. You will have to be the judge. But
always remember that learning programming -though fun- is no laughing matter so to speak. The ancient Greeks
already understood that hubris is a party spoiler and the best way to prevent this learning experience turning
into a classic tragedy, is to take it slow. Do not continue reading if you’re uncomfortable with past paragraphs.
Re-read when in doubt. Ask questions if necessary. Programming is not difficult1, but it requires a certain frame
of mind which some beginners find hard to acquire. I know I did.

The one advantage I enjoy over authors of other programming books, is that I shall be teaching you to program
Rhino. Writing scripts for Rhino means you have an exceptionally powerful geometry kernel at your disposal
which enables you to achieve the most outrageous results with a minimum of code. Instead of boring you with
days-of-the-week and employee-salary-classes examples, I get to bore you with freeform surfaces, evolving
curves and inflating meshes.

Hopefully, this third edition of the RhinoScript primer will help existing scripters get the most out of Rhino4,
while teaching regular human beings how to become scripters in the first place.

Good luck!

 David Rutten
 Robert McNeel & Associates

1 Don't tell anyone...

Table of Contents
Introduction

Table of Contents

1 What's it all about? 2

1.1 Macros 2

1.2 Scripts 3

1.3 Running Scripts 3

2 VBScript Essentials 4

2.1 Language origin 4

2.2 Flow control 5

2.3 Variable data 5

2.3.1 Integers and Doubles 6

2.3.2 Booleans 7

2.3.3 Strings 7

2.3.4 Null variable 8

2.3.5 Using variables 9

3 Script anatomy 12

3.1 Programming in Rhino 12

3.2 The bones 13

3.3 The guts 14

3.4 The skin 14

4 Operators and functions 16

4.1 What on earth are they and why should I care? 16

4.2 Careful… 17

4.3 Logical operators 18

4.4 Functions and methods 20

4.4.1 A simple function example 21

4.4.2 Advanced function syntax 23

5 Conditional execution 26

5.1 What if? 26

5.2 Select case 28

5.3 Looping 29

5.4 Conditional loops 29

5.5 Alternative syntax 32

5.6 Incremental loops 32

6 Arrays 34

6.1 My favourite things 34

6.2 Points and Vectors 37

6.3 An AddVector() example 41

6.4 Nested arrays 42

7 Geometry 46

7.1 The openNURBS™ kernel 46

7.2 Objects in Rhino 46

7.3 Points and Pointclouds 48

7.4 Lines and Polylines 53

7.5 Planes 59

7.6 Circles, Ellipses and Arcs 61

Ellipses 64

Arcs 66

7.7 Nurbs Curves 73

Control-point curves 76

Interpolated curves 78

Geometric curve properties 83

7.8 Meshes 88

Geometry vs. Topology 89

Shape vs. Image 97

7.9 Surfaces 100

Nurbs surfaces 101

Surface Curvature 109

Vector And Tensor Spaces 111

Non-Nurbs surfaces

7.10 Boundary-Representations

7.11 Annotations, lights and whatever else is left

8 User Interface

8.1 The standard Rhino UI

8.2 The command line

8.3 Simple Getters

8.4 Advanced Getters

8.5 Dialog boxes

Single value dialogs

Multiple value dialogs

HTML dialogs

9 Advanced VBScript

9.1 What's that supposed to mean?

9.2 Iteration and recursion

9.3 Optimization

9.3.1 Micro optimization

9.3.2 Macro optimization

9.4 Data storage

9.4.1 Temporary storage

9.4.2 Ini files

9.4.3 Custom files

9.4.4 The registry

9.4.5 Dictionary objects

9.4.6 ADO Databases

9.5 Classes and instances

9.5.1 Class anatomy

9.5.2 Class usage

2

1 What’s it all about?
1.1 Macros

Rhinoceros is based on a command-line interface. This means you can control it by using only the keyboard. You
type in the commands and the program will execute them. Ever since the advent of the mouse, a user interface
which is purely command-line based is considered to be primitive, and rightly so. Instead of typing:

Line 0,0,0 10,0,0

you can equally well click on the Line button and then twice in the viewport to define the starting and ending
points of a line-curve. Because of this second (graphical) interface some people have done away with the
command-line entirely. Emotions run high on the subject; some users are command-line fanatics, others use only
toolbars and menus. Programmers have no emotions in this respect, they are all wedded to the command-line.
It’s no use programming the mouse to go to a certain coordinate and then simulate a mouse click, that is just
plain silly. Programmers pump text into Rhino and they expect to get text in return.

The lowest form of programming in Rhino is using macros. I do not wish to offend those of you who write macros
for a living, but it cannot be denied that it is a very primitive way to automate processes. I shall only briefly
pause at the subject of macros, partly so we know which is which and partly because we might at some point
simulate macros using RhinoScript.

A macro is a prerecorded list of orders for Rhino to execute. The _Line command at the top of this page is an
example of a very simple macro. If your job is to open Rhino files, add a line from 0,0,0 to 10,0,0 to each one
and save the file again, you would probably get very tired very quickly from typing "_Line w0,0,0 w10,0,0" six
times a minute. Enter macros. Macros allow you to automate tasks you would normally do by hand but not by
brain. Macros cannot be made smart, nor do they react to the things they help create. They’re a bit like traffic
wardens in that respect. An example of a more sophisticated macro would be:

_SelNone

_Polygon _NumSides=6 w0,0,0 w10,0,0

_SelLast

-_Properties _Object _Name RailPolygon _Enter _Enter

_SelNone

_Polygon _NumSides=6 w10,0,0 w12,0,0

_SelLast

_Rotate3D w0,0,0 w10,0,0 90

-_Properties _Object _Name ProfilePolygon _Enter _Enter

_SelNone

-_Sweep1 _SelName RailPolygon _SelName ProfilePolygon _Enter _Simplify=None Enter

The above code will create the same hexagonal torus over and over
again. It might be useful, but it's not flexible. You can type the above
text into the command-line by hand, or you can put it into a button. You
can even copy-paste the text directly into Rhino.

Incidentally, the underscores before all the command names are due
to Rhino localization. Using underscores will force Rhino to use English
command names instead of -say- Italian or Japanese or whatever the
custom setting is. You should always force English command names
since that is the only guarantee that your code will work on all copies
of Rhino worldwide.

The hyphen in front of the _Properties and _Sweep1 command is used to suppress dialog boxes. If you take the
hyphens out you will no longer be able to change the way a command works through the command-line.

There’s no limit to how complex a macro can become, you can keep adding commands without restrictions, but
you’ll never be able to get around the limitations that lie at the heart of macros.

3

1.2 Scripts

The limitations of macros have led to the development of scripting languages. Scripts are something
halfway between macros and true (compiled) programs and plug-ins. Unlike macros they can perform
mathematical operations, evaluate variable conditions, respond to their environment and communicate with
the user. Unlike programs they do not need to be compiled prior to running. Rhinoceros implements the standard
‘Microsoft® Visual Basic® Scripting Edition’ language (more commonly known as VBScript) which means that
everything that is true of VBScript is also true of RhinoScript.

Scripts, then, are text files which are interpreted one line at a time. But here’s the interesting part; unlike
macros, scripts have control over which line is executed next. This flow control enables the script to skip certain
instructions or to repeat others. Flow control is achieved by what is called "conditional evaluation" and we must
familiarize ourselves with the language rules of VBScript before we can take advantage of flow control.

VBScript is a very forgiving programming language. ‘Forgiving’ in this sense indicates that the language rules are
fairly loose. The language rules are usually referred to as the syntax and they indicate what is and isn’t valid:

"There is no apple cake here." » valid
"There is here no apple cake" » invalid
"Here, there is no apple cake." » valid
"There is no Apfelstrudel here." » invalid

The above list is a validity check for English syntax rules. The first and third lines are proper English and the
others are not. However, there are certain degrees of wrong. Nobody will misunderstand the second line just
because the word order is wrong. The forth line is already a bit harder since it features a word from a different
language.

Although most of us are smart enough to understand all four lines, a computer is not. I mentioned before that
VBScript is a forgiving language. That means that it can intercept small errors in the syntax. Before we can start
doing anything with Rhino, we must have a good understanding of VBScript syntax.

1.3 Running Scripts

There are several ways to run scripts in Rhino, each has its own (dis)advantages. You could store scripts as
external text files and have Rhino load them for you whenever you want to run them. You could also use Rhino's
in-build script editor which means you can run the Scripts directly from the editor. The last option is to embed
scripts in toolbar buttons, which makes it very hard to edit them, but much easier to distribute them.

Throughout this book, I will use the in-build editor method. I find this to be the best way to work on simple
scripts. (Once a script becomes fairly complex and long, it's probably better to switch to an external editor.)
In order to run a script via the in-build editor, Use the _EditScript command to activate it, then type in your
script and press the Run button:

All the example code in this primer can be copy-pasted directly into the EditScript dialog.

1.
2.
3.
4.

4

2 VBScript essentials
2.1 Language origin

Like conversational languages, programming languages group together in clusters. There are language families
and language generations. VBScript is a member of the BASIC language family which in turn is a third generation
group. ‘Third generation’ indicates that the language was designed to be easy for humans to understand.
First and second generation languages (often referred to as machine-code), are most definitely not easy to
understand. Just so you know the difference between second and third generation code, here is an example of
second generation assembly:

mov [ebx], ecx
add ebx, 4
loop init_loop

push dword FirstMsg
call _puts
pop ecx
push dword 10
push dword array
call _print_array
add esp, 8

Lucky us.

Incidentally, BASIC stands for Beginner’s All-purpose Symbolic Instruction Code and was first developed in 1963
in order to drag non-science students into programming. As you can see above, even assembly already makes
heavy use of English vocabulary but although we are familiar with the words, it is not possible for laymen
to decipher the commands. Assuming that you might be reading these pages without any prior programming
experience whatsoever, I still dare guess that the following example will not give you much problems:

somenumber = Rhino.GetReal("Line length")

line = Rhino.AddLine(Array(0,0,0), Array(somenumber,0,0))

If IsNull(line) Then

 Rhino.Print "Something went wrong"

Else

 Rhino.Print "Line curve inserted"

End If

Of course you might have no conception of what Array(0,0,0) actually means and you might be confused by
Rhino.GetNumber() or IsNull(), but on the whole it is pretty much the same as the English you use at the
grocers:

Ask Rhino to assign a number to something called 'somenumber'.

Tell Rhino to add a line from the world origin to the point on the x-axis indicated by 'somenumber'

If the result of the previous operation was not a curve object,

then print a failure message

otherwise print a success message

Translating VBScript code to and from regular English should not be very difficult, at least not at this featherweight
level. It is possible to convolute the code so that it becomes unreadable, but this is not something you should
take pride in. The syntax resembles English for a good reason, I suggest we stick to it.

As mentioned before, there are three things the syntax has to support, and the above script uses them all:

Flow control » Depending on the outcome of the second line, some lines are not run
Variable data » somenumber is used to store a variable number
Communication » The user is asked to supply information and is informed about the result

1.
2.
3.

5

2.2 Flow control

We use flow-control in VBScript to skip certain lines of code or to execute others more than once. We can also
use flow-control to jump to different lines in our script and back again. You can add conditional statements to
your code which allow you to shield off certain portions. If…Then…Else and Select…Case structures are examples
of conditional statements, but we'll discuss them later. A typical conditional statement is:

You have to be this tall (1.5m) to ride the roller coaster.

This line of ‘code’ uses a condition (taller than 1.5m) to evaluate whether or not you are allowed to ride the
roller coaster. Conditional statements like this can be strung together indefinitely. We could add a maximum
height as well, or a weight limitation, or a ban on spectacles or heart-conditions.

Instead of skipping lines we can also repeat lines. We can do this a fixed number of times:

Add 5 tea-spoons of cinnamon.

Or again use a conditional evaluation:

Keep adding milk until the dough is kneadable.

The repeating of lines is called ‘Looping’ in coding slang. There are several loop types available but they all work
more or less the same. They will be covered in detail later on.

2.3 Variable data

Whenever we want our code to be dynamic we have to make sure it can handle all kinds of different situations.
In order to do that we must have the ability to store variables. For instance we might want to store a selection
of curves in our 3Dmodel so we can delete them at a later stage. Or perhaps our script needs to add a line from
the mouse pointer to the origin of the 3D scene. Or we need to check the current date to see whether or not our
software has expired. This is information which was not available at the time the script was written.

Whenever we need to store data or perform calculations or logic operations we need variables to remember
the results. Since these operations are dynamic we cannot add them to the script prior to execution. We need
placeholders.

In the example on the previous page the thing named "somenumber" is a placeholder for a number. It starts out
by being just a name without any data attached to it, but it will be assigned a numeric value in the line:

somenumber = Rhino.GetNumber("Line length")

Then later on we retrieve that specific value when we add the line curve to Rhino:

curve = Rhino.AddLine(Array(0,0,0), Array(somenumber,0,0))

All the other coordinates that define the line object are hard-coded into the script. There is no limit to how
often a variable can be read or re-assigned a new value, but it can never contain more than one value and
there’s no undo system for retrieving past values. Apart from numbers we can also store other types of data in
variables. For the time being, we’ll restrict ourselves to the four most essential ones, plus a special one which
is used for error-trapping:

Integers
Doubles
Booleans
Strings
Null variable

1.
2.
3.
4.
5.

6

2.3.1 Integers and Doubles

Integers and Doubles are both numeric variable types, meaning they can be used to store numbers.
They cannot store the same kind of numbers, which is why we ended up with more than one type.
Integers can only be used to store whole numbers. Their range extends from roughly minus two-
billion to roughly plus two-billion. Every whole number between these extremes can be represented using an
integer. Integers are used almost exclusively for counting purposes (as opposed to calculations).

Doubles are numeric variables which can store numbers with decimals. Doubles can be used to represent
numbers as large as 1.8×10308 and as small as 5.0×10-324, though in practise the range of numbers which can
be accurately represented is much smaller. Those of you who are unfamiliar with scientific notation need not
to worry, I shall not make a habit out of this. It is enough to know that the numeric range of doubles is truly
enormous.

Integers
0
1
-1
3785
-2000000000

Doubles
0.00
1.5
-34.9372
2.7e40 (2.7×1040)
-6.2e-12 (-6.2×10-12)

« A very big positive number

« A very small negative number

The set of all possible Double and Integer numbers is not continuous; it has gaps. There exists no Integer between
zero and one and there exists no Double between zero and 5.0×10-324. The fact that the size of the gap is so
much smaller with Doubles is only because we’ve picked a number close to zero. As we move towards bigger and
bigger numbers, the gaps between two adjacent Double values will become bigger as well and as we approach
the limits of the range, the gaps are big enough to fit the Milky Way. 2×10300 minus one billion is still 2×10300, so
beware when using extremely large numbers. Normally, we never stray into the regions where 32-bit computing
starts to break down, we tend to restrict ourselves to numbers we can actually cope with.

The VBScript syntax for working with numeric variables should be very familiar:

x = 15 + 26 » x equals 41

x = 15 + 26 * 2.33 » x equals 75.58

x = Sin(15 + 26) + Sqr(2.33) » x equals 1.368

x = 4 * Atn(1) » x equals 3.14159265358979 (Atn stands for ArcTangent)

You can use the Rhino.Print() method to display the result of these computations. Rhino.Print() will display
the value in the command-line:

x = 2 * Sin(15 + 26) + Log(55)
Rhino.Print x

Of course you can also use numeric variables on the right hand side of the equation:

x = x + 1

x = Sin(y) + Sqr(0.5 * y)

The first line of code will increment the current value of x by one, the second line will assign a value to x which
depends on the value of y. If y equals 34 for example, x will become 4.65218831173768.

7

2.3.2 Booleans

Numeric variables can store a whole range of different numbers. Boolean variables can only store two values
mostly referred to as Yes or No, True or False. Obviously we never use booleans to perform calculations because
of their limited range. We use booleans to evaluate conditions... remember?

You have to be taller than 1.5m to ride the roller coaster.

"taller than 1.5m" is the condition in this sentence. This condition is either True or False. You are either taller
than 1.5m or you are not. Since most of the Flow-control code in a script is based on conditional statements,
booleans play a very important role. Let’s take a look at the looping example:

Keep adding milk until the dough is kneadable.

The condition here is that the dough has to be kneadable. Let’s assume for the moment that we added something
(an algorithm) to our script that could evaluate the current consistency of the dough. Then our first step would
be to use this algorithm so we would know whether or not to add milk. If our algorithm returns False (I.e. "the
dough isn’t kneadable") then we will have to add some milk. After we added the milk we will have to ask again
and repeat these steps until the algorithm returns True (the dough is kneadable). Then we will know there is no
more milk needed and that we can move on to the next step in making our Apfelstrudel.

The example on page 5 used a VBScript function which returns a boolean value:

IsNull(ObjectID)

This method requires us to pass in a variable -any variable- and it will return True if that variable contains no
data. If IsNull() returns True it means that Rhino was unable to successfully complete the task we assigned it,
which in turn indicates something somewhere went astray.

In VBScript we never write "0" or "1" or "Yes" or "No", we always use "True" or "False". Please note that there is
no need to compare the result of IsNull() to True or False:

If IsNull(curve) = True Then…

This is unnecessary code. Something which is already True does not need to be compared to True in order to
become really True.

2.3.3 Strings

Strings are used to store text. Whenever you add quotes around stuff in VBScript, it automatically becomes a
String. So if we encapsulate a number in quotes, it will become text:

variable1 = 5

variable2 = "5"

You could print these variables to the Rhino command history and they would both look like 5, but the String
variable behaves differently once we start using it in calculations:

Rhino.Print (variable1 + variable1) » Results in 10

Rhino.Print (variable2 + variable2) » Results in 55

In the first line, the plus-sign recognizes the variables on either side as numerical ones and it will perform a
numeric addition (5 + 5 = 10). On the second line however, the variables on either side are Strings and the
plus sign will concatenate them (I.e. append the one on the right to the one on the left). You must always pay
attention to what type of variable you are using.

8

When you need to store text, you have no choice but to use Strings. Strings are not limited length-wise (well,
they are, but my guess is you will not run into the two-billion characters limit anytime soon). The syntax for
Strings is quite simple, but working with Strings can involve some very tricky code. For the time being we’ll only
focus on simple operations such as assignment and concatenation:

a = "Apfelstrudel" » Apfelstrudel

a = "Apfel" & "strudel" » Apfelstrudel

a = "4" & " " & "Apfelstrudel" » 4 Apfelstrudel

a = "The square root of 2.0 = " & Sqr(2.0) » The square root of 2.0 = 1.4142135623731

Internally, a String is stored as a series of characters. Every character (or 'char') is taken from the Unicode table,
which stores a grand total of ~100.000 different characters. The index into the unicode table for the question
mark for example is 63, lowercase e is 101 and the blank space is 32:

A f e l ? # 1p
65 112 102 101 108 63 32 35 49

1 2 3 4 5 6 7 8 9

Char code

Char

Char #

Further down the road we'll be dealing with some advanced String functions which will require a basic
understanding of how Strings work, but while we are still just using the simple stuff, it's good enough to know it
just works the way you expect it to.

Note that in VBScript we can append numeric values to Strings, but not the other way around. The ampersand
sign (&) is used to join several variables into a single String. You could also use the plus sign to do this, but I
prefer to restrict the usage of + to numeric operations only. When using & you can treat numeric variables as
Strings:

a = 5 + 7 » a equals 12

b = 5 & 7 » b equals 57

Strings are used heavily in RhinoScript since object IDs are always written as strings. Object IDs are those weird
codes that show up in the Object Property Details: D7EFCF0A-DB47-427D-9B6B-44EC0670C573. IDs are designed
to be absolutely unique for every object which will ever exist in this universe, which is why we can use them to
safely and unambiguously identify objects in the document.

2.3.4 Null variable

Whenever we ask Rhino a question which might not have an answer, we need a way for Rhino to say "I don't
know". Using the example on page 5:

curve = Rhino.AddLine(Array(0,0,0), Array(somenumber,0,0))

It is not a certainty that a curve was created. If the user enters zero when he is asked to supply the value
for somenumber, then the startpoint of the line would be coincident with the endpoint. Rhino does not like
zero-length lines and will not add the object to the document. This in turn means that the return value of
Rhino.AddLine() is not a valid object ID. Almost all methods in Rhino will return a Null variable if they fail, this
way we can add error-checks to our script and take evasive action when something goes wrong. Every variable
in a script can become a Null variable and we check them with the IsNull() function:

curve = Rhino.AddLine(Array(0,0,0), Array(somenumber,0,0))
If IsNull(curve) Then
 Rhino.Print "Something went terribly wrong!"
End If

IsNull() will pop up a lot in examples to come, and it is always to check whether or not something went
according to plan.

9

2.3.5 Using variables

Whenever we intend to use variables in a script, we have to declare them first. When your boss asks you to
deliver a package to Mr. Robertson, your first reaction is probably "who on earth is Mr. Robertson?". The VBScript
interpreter is not that different from you or me. It likes to be told in advance what all those words mean you
are about to fling at it. So when we write:

a = "Apfelstrudel"

We should not be surprised when we are asked "what on earth is a?". This line of code assigns a value to a
variable which has not been declared. We normally declare a variable using the Dim keyword. The only
exception to this rule is if we want to declare global variables. But we don't yet.

Whenever a variable is declared, it receives a unique name, a scope and a default value. The name you get
to pick yourself. In the example above we have used a, which is not the best of all possible choices. For one,
it doesn't tell us anything about what the variable is used for or what kind of data it contains. A better name
would be strFood. The str prefix indicates that we are dealing with a String variable here and the Food bit is
hopefully fairly obvious. A widely used system for variable prefixes is as follows:

Variable type Prefix Example
Boolean bln blnSuccess
Byte byt bytNumber
Integer int intAmount
Long lng lngIterations
Single sng sngFactor
Double dbl dblValue
Decimal dec decInput
Currency cur curSalary
Date dtm dtmToday
String str strMessage
Error err errProjection
Variant var varData
Array arr arrNames
Object obj objExplorer

Don't worry about all those weird variable types, some we will get to in later chapters, others you will probably
never use. The scope (sometimes called "lifetime") of a variable refers to the region of the script where it
is accessible. Whenever you declare a variable inside a function, only that one function can read and write
to it. Variables go 'out of scope' whenever their containing function terminates. 'Lifetime' is not a very good
description in my opinion, since some variables may be very much alive, yet unreachable due to being in another
scope. But we'll worry about scopes once we get to function declarations. For now, let's just look at an example
with proper variable declaration:

Dim strComplaint, strNag, strFood

strComplaint = "I don't like "

strFood = "Apfelstrudel. "

strNag = "Can I go now?"

Call Rhino.Print(strComplaint & strFood & strNag)

As you will have noticed, we can declare multiple variables using a single Dim keyword if we comma-separate
them. Though technically you could jam all your variable declarations onto a single line, it is probably a good
idea to only group comparable variables together. Incidentally, the default value of all variables is always
a specially reserved value called vbEmpty. It means the variable contains no data and it cannot be used in
operations. Before you can use any of your variables, you must first assign them a value.

10

Now, high time for an example. We'll be using the macro from page 2, but we'll replace some of the hard coded
numbers with variables for added flexibility. This script looks rather intimidating, but keep in mind that the
messy looking bits (line 10 and beyond) are caused by the script trying to mimic a macro, which is a bit like trying
to drive an Aston-Martin down the sidewalk. Usually, we talk to Rhino directly without using the command-line
and the code looks much friendlier:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Dim dblMajorRadius, dblMinorRadius
Dim intSides

dblMajorRadius = Rhino.GetReal("Major radius", 10.0, 1.0, 1000.0)
dblMinorRadius = Rhino.GetReal("Minor radius", 2.0, 0.1, 100.0)
intSides = Rhino.GetInteger("Number of sides", 6, 3, 20)

Dim strPoint1, strPoint2
strPoint1 = " w" & dblMajorRadius & ",0,0"
strPoint2 = " w" & (dblMajorRadius + dblMinorRadius) & ",0,0"

Rhino.Command "_SelNone"
Rhino.Command "_Polygon _NumSides=" & intSides & " w0,0,0" & strPoint1
Rhino.Command "_SelLast"
Rhino.Command "-_Properties _Object _Name Rail _Enter _Enter"
Rhino.Command "_SelNone"
Rhino.Command "_Polygon _NumSides=" & intSides & strPoint1 & strPoint2
Rhino.Command "_SelLast"
Rhino.Command "_Rotate3D w0,0,0 w1,0,0 90"
Rhino.Command "-_Properties _Object _Name Profile _Enter _Enter"
Rhino.Command "_SelNone"
Rhino.Command "-_Sweep1 _SelName Rail _SelName Profile _Enter _Closed=Yes Enter"
Rhino.Command "_SelName Rail"
Rhino.Command "_SelName Profile"
Rhino.Command "_Delete"

Line Description
1…2 Here we declare three variables. By the looks of it two doubles and one integer (prefixes, prefixes!).

4 This is where we ask the user to enter a number value ("Real" is another word for "Double"). We supply
the Rhino.GetReal() method with four fixed values, one string and three doubles. The string will be
displayed in the command-line and the first double (10.0) will be available as the default option:

We're also limiting the numeric domain to a value between one and a thousand. If the user attempts to
enter a larger number, Rhino will claim it's too big:

5…6 These lines are fairly similar. On line 7 we ask the user for an integer instead of a double.

8 We're declaring two string variables, which will be used to store a text representation of a coordinate.
Since we're going to use these coordinates more than once I thought it prudent to create them ahead
of time so we don't have to concatenate the strings over and over again.

9 …10 On these lines we're creating the strings, based on the values of dblMajorRadius and dblMinorRadius.
If we assume the user has chosen the default values in all cases, dblMajorRadius will be 10.0 and
dblMinorRadius will be 2.0, which means that strPoint2 will look like " w12,0,0".

12 …25 This is the same as the macro on page 3, except that we've replaced some bits with variables and there
are three extra lines at the bottom which get rid of the construction geometry (so we can run the script
more than once without it breaking down).

11

12

3 Script anatomy
3.1 Programming in Rhino

Rhinoceros offers various ways of programmatic access. We've already met macros and scripts, but the plot
thickens. Please invest a few moments of your life into looking at the diagram below, which you will never be
asked to reproduce:

Rhinoceros

External
Application

VB.NET
Scripts

Rhino
Script

C++

C#

openNURBS™

TroutLake

RMAMFCUI

COM
Application

The above is a complete breakdown of all developer tools that Rhino has to offer. I'll give you a brief introduction
as to what this diagram actually represents and although that is not vital information for our primary goal here
("learning how to script" in case you were wondering), you might as well familiarize yourself with it so you have
something to talk about on a first date.

At the very core of Rhino are the code libraries. These are essentially collections of procedures and objects
which are used to make life easier for the programs that link to them. The most famous one is the openNURBS
library which was developed by Robert McNeel & Associates but is competely open source and has been ported
by 3rd party programmers to other operating systems such as Unix and Linux. OpenNURBS provides all the
required file writing and reading methods as well the basic geometry library. Practically all the 3D applications
that support the 3dm file format use the openNURBS library. These code libraries have no knowledge of Rhino at
all, they are 'upstream' so to speak.

Rhino itself (the red blob) is tightly wrapped around these core libraries, it both implements and extends them.
Apart from this obvious behaviour, Rhino also adds the possibility of plugins. Whereas most companies provide
plugin support for 3rd party developers, McNeel has taken a rather exotic approach which elimates several big
problems. The technical term for this approach is "eating your own dogfood" and it essentially boils down to
McNeel programmers using the same tools as 3rd party programmers. Rather than adding code to Rhino itself,
McNeel programmers prefer writing a plugin instead. For one, if they screw up the collateral damage is usually
fairly minor. It also means that the SDK (Software Development Kit, that which is used to build plugins) is
rigorously tested internally and there is no need to maintain and support a separate product. Unfortunately
the result of this policy has made plugins so powerful that it is very easy for ill-informed programmers to crash
Rhino. This is slightly less true for those developers that use the dotNET SDK to write plugins and it doesn't apply
at all to us, scripters. A common proverb in the software industry states that you can easily shoot yourself in the
foot with programming, but you can take your whole leg off with C++. Scripters rarely have to deal with anymore
more severe than a paper-cut.

The orange pimples on Rhino's smooth surface are plugins. These days plugins can be written in C++ and all
languages that support the DotNET framework (VB.NET, CSharp, Delphi, J#, IronPython etc. etc.). One of
these plugins is the RhinoScript plugin and it implements and extends the basic Microsoft Visual Basic Scripting
language at the front end, while tapping into all the core Rhino resources at the back end. Scripts thus gain
access to Rhino, the core libraries and even other plugins through the RhinoScript plugin.

Right, enough fore-play, time to get back to hard core programming.

13

3.2 The bones

Once you run a certain script, either through the in-build editor or as an external file, the VBScript interpreter
will thumb through your script and superficially parse the syntax. It will not actually execute any of the code
at this point, before it starts doing that it first want to get a feel for the script. The interpreter is capable of
finding certain syntax errors during this prepass. If you see a dialog box like this:

before anything has actually taken place, it means the compiler ran into a problem with the syntax and decided
it wasn't worth trying to run the script. If the script crashes while it is running, the Source of the error message
will not be the Microsoft VBScript Compiler. However, even scripts without syntax errors might not function as
expected. In order for a script to run successfully, it must adhere to a few rules. Apart from syntax errors -which
must be avoided- every script must implement a certain structure which tells the interpreter what's what:

*.rvb

Option Explicit area*

Main function call

Main function

Additional functions*

Global variables*

Note that the example script on page 11 did not adhere to these rules. It ran just the same, but it was a bad
example in this respect.

The Option Explicit area is named after the Option Explicit statement which it contains. The Option Explicit
statement is optional, but I highly recommend adding it to every single script you ever write. If you are running
a script in Option Explicit mode, you have to define all your variables before you can use them (see paragraph
2.3.5). If you omit Option Explicit, your variables will be declared for you by the compiler. Although this may
sound as a good thing at first, it is much harder to find problems which are caused by typos in variable names.
Option Explicit will save you from yourself.

In addition to the Option Explicit statement, the Option Explicit area may also contains a set of comments.
Comments are blocks of text in the script which are ignored by the compiler and the interpreter. You can use
comments to add explanations or information to a file, or to temporarily disable certain lines of code. It is
considered good practise to always include information about the current script at the top of the file such as
author, version and date. Comments are always preceded by an apostrophe. Global variables are also optional.
Typically you do not need global variables and you're usually better off without them.

The area of the script which is outside the function declarations is referred to as 'script level'. All script level
code will be executed by the interpreter whenever it feels like it so you're usually better off by putting all the
code into functions and having them execute at your command.

14

3.3 The guts

Every script requires at least one function (or subroutine) which contains the main code of the script. It doesn't
have to be a big function, and it can place calls to any number of other functions but it is special because it
delineates the extents of the script. The script starts running as soon as this function is called and it stops when
the function completes. Without a main function, there is nothing to run.

Functions are not run automatically by the interpreter. They have to be called specifically from other bits of
code. The only way to start the cascade of functions calling functions, is to place a call to the main subroutine
somewhere outside all function declarations. You could put it anywhere, including at the very bottom of the
script file, but I prefer to keep it near the top, just after the Option Explicit statement and just before the
main subroutine begins. Without a main function call your script will be parsed and compiled, but it will not be
executed. Do not get confused by terms such as 'function', 'subroutine', 'procedure' or 'method', at this time they
all pretty much mean the same thing.

A script file may contain any number of additional functions/subroutines/procedures. But since I haven't told
you yet what they are (apart from the fact that they are very similar), we'll skip this bit. For now.
Don't get too comfortable.

Option Explicit « Option Explicit statement

'Script written by David Rutten on 28-08-2006 « Default comments

Public intCount « A Global variable

Call Main() « Main function call

Sub Main() « Main function declaration

 Dim strInfo « Main function start

 strInfo = "This is just a test" •

 Rhino.Print strInfo •

 Rhino.Print "I repeat: " & strInfo •

End Sub « Main function end

3.4 The skin

After a script has been written and tested, you
might want to put it in a place which has easy
access such as a Rhino toolbar button. If you want
to run scripts from within buttons, there's two
things you can do:

Link the script
Implement the script

If you link the script you'll only have to hardcode
the _LoadScript command to point to the script
file on the hard disk. If you want to implement the
script, you'll have to wrap it up into a _RunScript
command. Imagine the script on the previous page
has been saved on the hard disk as an *.rvb file.
The following button editor screenshot shows how
to use the two options:

1.
2.

15

16

4 Operators and functions
4.1 What on earth are they and why should I care?

When we were discussing numeric variables in paragraph 2.3.1, there was an example about mathematical
operations on numbers:

x = 15 + 26 * 2.33

x = Sin(15 + 26) + Sqr(2.33)
x = Tan(15 + 26) / Log(55)

The four lines of code above contain four kinds of code:

Numbers » 15, 26, 2.33 and 55
Variables » x
Operators » =, +, * and /
Functions » Sin, Sqr, Tan and Log

Numbers and variables are well behind us now. Arithmetic operators should be familiar from everyday life,
VBScript uses them in the same way as you used to during math classes. VBScript comes with a limited amount
of arithmetic operators and they are always positioned between two variables or constants (a constant is a fixed
number).

Operator Example

Arithmetic operators:
= Assign a value to a variable x = 5
+ Add two numeric values x = x + 1
- Subtract two values x = 1 - x
* Multiply two values x = x * (x-1)
/ Divide two values x = (x+1) / (2*x + 1)
\ Integer-divide two values x = x \ 10
^ Raise a number to the power of an exponent x = x ^ 2.3 means: x2.3

Mod Divide two numbers and return only the remainder x = x Mod 5

Concatenation operators:
+ Concatenate two String variables x = x + " _Enter"
& Concatenate two String variables x = x & " _Enter"

Comparison operators:
< Less than If x < 5 Then…
<= Less than or equal to If x <= 4 Then…
> Greater than If x > -1 Then…
>= Greater than or equal to If x >= 0 Then…
= Equal to If x = 10.0 Then…
<> Not equal to If x <> 10.0 Then…
Is Compare object variables for equality You didn't see this

Logical and bitwise operators:
And Logical conjunction If A And B Then…
Or Logical disjunction If A Or B Then…
Not Logical negation If A And Not B Then…
Xor Logical exclusion If A Xor B Then…

1.
2.
3.
4.

17

Now, that looks really scary doesn't it? I am always amazed at how good people are in finding expensive words
for simple things. There's nothing to be afraid about though, I'll talk you through the hardest bits and when were
done with this chapter, you can impress the living daylights out of any non-programmer by throwing these terms
into casual conversation.

4.2 Careful…

As you take a closer look at the tables on the opposite page, you'll notice that the + and the = operator occur
twice. The way they behave depends on where you put them, which I can't help but feel was a silly choice to
make, even in 1963. Especially the assignment/equals operator can be confusing. If you want to assign a value
to a variable called x, you use the following code:

x = SomethingOrOther

But if you want to check if x equals SomethingOrOther you use very identical syntax:

If x = SomethingOrOther Then…

In the second line, the value of x will not change. Java and C programmers are always scornful when they see
such careless treatment of the equals operator, and for once they may be right.

Another thing to watch out for is operator precedence. As you will remember from math classes, the addition
and the multiplication operator have a different precedence. If you see an equation like this:

x = 4 + 5 * 2

x = (4 + 5) * 2 » wrong precedence

x = 4 + (5 * 2) » correct precedence

x doesn't equal 18, even though many cheap calculators seem to disagree. The precedence of the multiplication
is higher which means you first have to multiply 5 by 2, and then add the result to 4. Thus, x equals 14. VBScript is
not a cheap calculator and it has no problems whatsoever with operator precedence. It is us, human beings, who
are the confused ones. The example above is fairly straightforward, but how would you code the following?

3
1 2y

x
x x

x
x2

0.5x=
-

+ -
+

^ h

Without extensive use of parenthesis, this would be very nasty indeed. By using parenthesis in equations we
can force precedence, and we can easily group different bits of mathematics. All the individual bits in the
mathematical notation have been grouped inside parenthesis and extra spaces have been inserted to accentuate
transitions from one top level group to the next:

y = (Sqr(x ^ 2 + (x - 1)) / (x - 3)) + Abs((2 * x) / (x ^ (0.5 * x)))

It is still not anywhere near as neat as the original notation, but I guess that is why the original notation was
invented in the first place. Usually, one of the best things to do when lines of code are getting out of hand, is
to break them up into smaller pieces. The equation becomes far more readable when spread out over multiple
lines of code:

Dim A, B, C, D
A = x^2 + (x-1)

B = x-3

C = 2*x

D = x^(0.5* x)

y = (Sqr(A) / B) + Abs(C / D)

18

4.3 Logical operators

I realize the last thing you want right now is an in-depth tutorial on logical operators, but it is an absolute must
if we want to start making smart code. I'll try to keep it as painless as possible.

Logical operators mostly work on booleans and they are indeed very logical. As you will remember booleans can
only have two values, so whatever logic deals with them cannot be too complicated. It isn't. The problem is, we
are not used to booleans in every day life. This makes them a bit alien to our own logic systems and therefore
perhaps somewhat hard to grasp.

Boolean mathematics were developed by George Boole (1815-1864) and today they are at the very core of the
entire digital industry. Boolean algebra provides us with tools to analyze, compare and describe sets of data.
Although George originally defined six boolean operators we will only discuss three of them:

Not
And
Or

The Not operator is a bit of an oddity among operators. It is odd because it doesn't require two values. Instead,
it simply inverts the one on the right. Imagine we have a script which checks for the existence of a bunch of
Block definitions in Rhino. If a block definition does not exist, we want to inform the user and abort the script.
The English version of this process might look something like:

Ask Rhino if a certain Block definition exists

If not, abort this sinking ship

The more observant among you will already have noticed that English version also requires a "not" in order to
make this work. Of course you could circumvent it, but that means you need an extra line of code:

Ask Rhino if a certain Block definition exists

If it does, continue unimpeded

Otherwise, abort

When we translate this into VBScript code we get the following:

If Not Rhino.IsBlock("SomeBlockName") Then
 Rhino.Print "Missing block definition: SomeBlockName"
 Exit Sub
End If

And and Or at least behave like proper operators; they take two arguments on either side. The And operator
requires both of them to be True in order for it to evaluate to True. The Or operator is more than happy with a
single True value. Let's take a look at a typical 'one-beer-too-many' algorithm:

Dim person
person = GetPersonOverThere()

colHair = GetHairColour(person)

If IsGirl(person) And (colHair = Blond Or colHair = Brunette) And (Age(person) >= 18) Then
 Dim neighbour
 neighbour = GetAdjacentPerson(person)

 If Not IsGuy(neighbour) Or Not LooksStrong(neighbour) Then
 Rhino.Print "Hey baby, you like Heineken?"
 Else
 RotateAngleOfVision 5.0

 End If
End If

As you can see the problem with Logical operators is not the theory, it's what happens when you need a lot
of them to evaluate something. Stringing them together, quickly results in convoluted code not to mention
operator precedence problems.

1.
2.
3.

19

A good way to exercise your own boolean logic is to use Venn-diagrams. A Venn diagram is a graphical
representation of boolean sets, where every region contains a (sub)set of values that share a common property.
The most famous one is the three-circle diagram:

A

B CB+C

B+A A+C

A+B+C

Not B
Not C

Not A
Not C

Not A
Not BNot A

Not C Not B

Not A
Not B
Not C

-or-

Every circular region contains all values that belong to a set; the top circle for example marks off set {A}. Every
value inside that circle evaluates True for {A} and every value not in that circle evaluates False for {A}. If you're
uncomfortable with "A, B and C", you can substitute them with "Employed", "Single" and "HomeOwner". By
colouring the regions we can mimic boolean evaluation in programming code:

A Not A A And B A Or B

A Or B Or C (A Or B) And Not C C And Not A And Not B B Or (C And A)

Try to colour the four diagrams below so they match the boolean logic:

(A And B) Or
(B And C) Or (A And C)

((B And C) And Not A) Or
(A And Not B And Not C)

(B And Not C) Or
(C And Not B)

A And B And C

Venn diagrams are useful for simple problems, but once you start dealing with more than three regions it becomes
a bit opaque. The following image is an example of a 6-regional Venn diagram. Pretty, but not very practical:

20

4.4 Functions and Methods

In the end, all that a computer is good at is shifting little bits of memory back and forth. When you are drawing
a cube in Rhino, you are not really drawing a cube, you are just setting some bits to zero and others to one.
At the level of VBScript there are so many wrappers around those bits that we can't even access them anymore.
A group of 32 bits over there happens to behave as a number, even though it isn't really. When we multiply two
numbers in VBScript a very complicated operation is taking place in the memory of your PC and we may be very
thankful that we are never confronted with the inner workings. As you can imagine, a lot of multiplications are
taking place during any given second your computer is turned on and they are probably all calling the same
low-level function that takes care of the nasty bits. That is what functions are about, they wrap up nasty bits of
code so we don't have to bother with it. This is called encapsulation.

A good example is the Sin() function, which takes a single numeric value and returns the sine of that value. If
we want to know the sine of -say- 4.7, all we need to do is type in x = Sin(4.7). Internally the computer might
calculate the sine by using a digital implementation of the Taylor series:

f x] g=
n!

f n^ h a] g
x - a] g

n

n = 0

3

!

In other words: you don't want to know. The good people who develop programming languages
predicted you don't want to know, which is why they implemented a Sin() function. VBScript comes with a
long list of predefined functions all of which are available to RhinoScripters. Some deal with mathematical
computations such as Sin(), others perform String operations such as Trim() which removes all leading
and trailing spaces from a block of text. When a function does not return a value we call it a 'subroutine'
instead for no good reason whatsoever. Both functions and subroutines can be referred to as procedures.
This is all just coding slang, in the end it all boils down to the same thing. My copy of the VBScript helpfile lists
89 native procedures. I won't discuss them here, unless when they are to be used in examples.

Apart from implementing the native VBScript functions, Rhino adds a few extra ones for us to use. The current
RhinoScript helpfile for Rhino4 claims a total number of about 800 additional functions, and new ones are added
frequently. For a special reason which I will not be going into anytime soon, the procedures you get to use
through Rhino are referred to as "methods". They behave exactly the same as VBScript procedures although you
do need to look in a different helpfile to see what they do.

So how do functions, subroutines and methods behave? Since the point of having procedures is to encapsulate
code for frequent use, we should expect them to blend seamlessly into written code. In order to do this they must
be able to both receive and return variables. Sin() is an example of a function which both requires and returns
a single numeric variable. The Now() function on the other hand only returns a single value which contains the
current date and time. It does not need any additional information from you, it is more than capable of finding
out what time it is all by itself. An even more extreme example is the Rhino.Exit() method which does not
accept any argument and does not return any value. There are two scenarios for calling procedures. We either
use them to assign a value or we call them out of the blue:

1. strPointID = Rhino.AddPoint(Array(0.0, 0.0, 1.0)) » Correct

2. Call Rhino.AddPoint(Array(0.0, 0.0, 1.0)) » Correct
2. Rhino.AddPoint(Array(0.0, 0.0, 1.0)) » Wrong

Actually, this is not all there is to it but since the syntax rules for parenthesis and function calls are so
exceptionally horrid, I will not discuss them here. All you need to know to be a successful VBScript programmer
is that you always, always use parenthesis when calling functions and that you have to use the Call keyword if
you're not assigning a value.

If you look in the RhinoScript helpfile and search for Rhino.AddLayer, you'll see the following text:

Rhino.AddLayer ([strLayer [, lngColor [, blnVisible [, blnLocked [, strParent]]]]])

The combined information of procedure name and arguments is called the 'signature'. Rhino.AddLayer() is
capable of taking five arguments, all of which are optional. We can tell they are optional by the fact that they are
encapsulated in square brackets. Optional arguments have a default value which is used when we do not
override it. If we omit to specify the lngColor argument for example the new layer will become black.

21

4.4.1 A simple function example

This concludes the boring portion of the primer. We now have enough information to actually start making useful
scripts. I still haven't told you about arrays and loops, so the really awesome stuff will have to wait till Chapter
5 though. We're going to write a script which uses some VBScript functions and a few RhinoScript methods. Our
objective for today is to write a script that applies a custom name to selected objects. First, I'll show you the
script, then we'll analyze it line by line:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Option Explicit
'This script will rename an object using the current system time

Call RenameObject()
Sub RenameObject()
 Dim strObjectID
 strObjectID = Rhino.GetObject("Select an object to rename", , , True)
 If IsNull(strObjectID) Then Exit Sub

 Dim strNewName
 strNewName = "Date tag: " & CStr(Now())

 Call Rhino.ObjectName(strObjectID, strNewName)
End Sub

This is a complete script file which can be run directly from the disk. It adheres to the basic script structure
according to page 13, but it doesn't use any global variables or additional functions. There is a standard Option
Explicit area which takes up the first two lines of the script.

The Main Function Call can be found on line 4. The main function in this case is not called Main(), since that is
rather nondescript and I prefer to use names that tell me something extra. The main 'function' incidentally is in
fact a main subroutine, it does not return a value since there is nothing to return a value to.

Line 5 contains a standard subroutine declaration. The Sub keyword is used to indicate that we are about to
baptize a new subroutine. The word after Sub is always the name of the subroutine. Function and variable
names have to adhere to VBScript naming conventions or the compiler will generate an error. Names cannot
contain spaces or weird characters. The only non-alphanumeric character allowed is the underscore. Names
cannot start with a number either.

We'll be using two variables in this script, one to hold the ID of the object we're going to rename and one
containing the new name. On line 6 we declare a new variable. Although the "str" prefix indicates that we'll be
storing Strings in this variable, that is by no means a guarantee. You can still put numbers into something that
starts with str, just as you can put malt liquor into a Listerine™ bottle. You're just not supposed to.

The variable strObjectID has been initialized, but it does not contain any data yet. It is still set to vbEmpty.
On line 7 we're assigning a different value to strObjectID. We're using the RhinoScript method GetObject() to
ask the user to select an object. The help topic on GetObject() tells us the following:

Rhino.GetObject ([strMessage [, intType [, blnPreSelect [, blnSelect [, arrObjects]]]]])

Returns:

String » The identifier of the picked object if successful.

Null » If not successful, or on error.

This method accepts five arguments, all of which happen to be optional. In our script we're only specifying the
first and fourth argument. The strMessage refers to the String which will be visible in the command-line during
the picking operation. We're overriding the default, which is "Select object", with something a bit more specific.
The second argument is an integer which allows us to set the selection filter. The default behaviour is to apply
no filter; all objects can be selected whether they be points, textdots, polysurfaces, lights or whatever. We
want the default behaviour. The same applies to the third argument which allows us to override the default
behaviour of accepting preselected objects. The fourth argument is False by default, meaning that the object
we pick will not be actually selected. This is not desired behaviour in our case. The fifth argument takes a bit
more explaining so we'll leave it for now.

22

Note that we can simply omit optional arguments and put a closing bracket after the last argument that we do
specify.

When the user is asked to pick an object -any object- on line 7, there exists a possibility he changed his
mind and pressed the escape button instead. If this was the case then strObjectID will not contain
a valid Object ID, it will be Null instead. If we do not check for variable validity here but simply press
on, we will get an error on line 13 where we are trying to pass that Null value as an argument into the
Rhino.ObjectName() method. We must always check our return values and act accordingly. In the case of this
script the proper reaction to an Escape is to abort the whole thing. The If…Then structure on Line 8 will abort
the current script if strObjectID turns out to be Null. The Exit Sub statement can be used anywhere within
a Subroutine and it will immediately cancel the subroutine and return control to the line of code which was
responsible for calling the sub in the first place.

If strObjectID turns out to be an actual valid object identifier, our next job is to fabricate a new name and to
assign it to the selected object. The first thing we need is a variable which contains this new name. We declare
it on line 10 and assign it a value on line 11.

The name we are constructing always has the same prefix but the suffix depends on the current system time.
In order to get the current system time we use the Now() function which is native to VBScript. Now() returns
a Date variable type which contains information about both the date and the time. Since a Date and a String
are not the same thing, we cannot concatenate them with the ampersand operator. We must first convert the
Date into a valid String representation. The CStr() function is another VBScript native function which is used to
convert non-string variables into Strings. CStr stands for Convert to String and you can use it to turn booleans,
numbers, dates and a whole lot of other things into proper Strings. When I tested this script, the value assigned
to strNewName at line 11 was:

"Date tag: 29/08/2006 22:03:09"

Finally, at line 13, we reach the end of our quest. We tell Rhino to assign the new name to the old object:

Instead of using strNewName to store the name String, we could have gotten away with the following:

Call Rhino.ObjectName(strObjectID, "Date tag: " & CStr(Now()))

This one line replaces lines 10 through 13 of the original script. Sometimes brevity is a good thing, sometimes
not. Especially in the beginning it might be smart not to cluster your code too much; it makes debugging a lot
easier.

On line 14 we tell the script interpreter that our subroutine has ended.

23

4.4.2 Advanced function syntax

The previous example showed a very simple subroutine which did not take any arguments and did not
return a value. In many cases you will need something a bit more advanced. For one, a complex function will
usually require some information and it will often have a return value, if only to indicate whether the function
completed successfully.

Whenever you call a function it always returns a value, even if you do not specifically set it. By default, every
function returns a vbEmpty value, since this is the default value for all variables and functions in VBScript. So if
you want to write a function which returns you a String containing the alphabet, doing this is not enough:

1
2
3
4

Function Alphabet()
 Dim strSeries
 strSeries = "abcdefghijklmnopqrstuvwxyz"
End Function

Although the function actually assigns the alphabet to the variable called strSeries, this variable will go out of
scope once the function ends on line #4 and its data will be lost. You have to assign the return value to the function
name, like so:

1
2
3

Function Alphabet()
 Alphabet = "abcdefghijklmnopqrstuvwxyz"
End Function

Every function has a specific variable which shares its name with the function. You can treat this variable like
any other but the value of this variable is passed back to the caller when the function ends. This is usually called
the "return value". If your function is designed-to-fail (this doesn't mean it is poorly designed), it will crash when
confronted with invalid input. If your function however is designed-not-to-fail, it should return a value which
tells the caller whether or not it was able to perform its duty.

Imagine you want to lock all curve objects in the document. Doing this by hand requires three steps and it will
ruin your current selection set, so it pays to make a script for it. A function which performs this task might fail
if there are no curve objects to be found. If the function is designed-not-to-fail you can always call it without
thinking and it will sort itself out. If the function is designed-to-fail it will crash if you try to run it without
making sure everything is set up correctly. The respective functions are:

1
2
3

Sub LockCurves_Fail()
 Call Rhino.LockObjects(Rhino.ObjectsByType(4))
End Sub

1
2
3
4
5
6
7
8
9

10

Function LockCurves_NoFail()
 LockCurves_NoFail = False 'Set a default return value

 Dim arrCurves
 arrCurves = Rhino.ObjectsByType(4) 'Get all curve object IDs
 If IsNull(arrCurves) Then Exit Function 'At this point the return value is False

 Call Rhino.LockObjects(arrCurves) 'Lock the curves
 LockCurves_NoFail = True 'Set a new return value indicating success
End Function

If you call the first subroutine when there are no curve objects in the document, the Rhino.ObjectsByType()
method will return a Null variable. It returns null because it was designed-not-to-fail and the null
variable is just its way of telling you; "tough luck". However, if you pass a null variable as an argument to the
Rhino.LockObjects() method it will keel over and die, generating a fatal error:

The second function, which is designed-not-to-fail, will detect this problem on line 6 and abort the operation.
As you can see, it takes a lot more lines of code to make sure things run smoothly...

24

A custom defined function can take any amount of arguments between nill and a gazillion. Unfortunately you
cannot define optional arguments in your own functions, nor can you declare multiple functions with the same
name but different signatures (what is called 'overloading' in languages that do support this). The VBScript
helpfile provides the following syntax rules for functions:

[Public | Private] Function name [(arglist)]
 [statements]

 [Exit Function]
 [name = expression]

End Function

To put it in regular English...
Functions can be declared with either Public or Private scope. If you use the Private keyword you will limit
the function to your script only, meaning no one else can call it. If you use the Public keyword all the scripts
which run in Rhino can access your function. This keyword is optional, meaning that when you omit it, Public
is assumed. You also have to provide a unique name which adheres to VBScript naming conventions, this is not
optional. Finally you can declare a set of arguments. Anyone who calls this function must provide a matching
signature or an error will occur. More on the argument list in a bit.

The first line which contains the scope, name and the arguments is called the function declaration. The last
line of a function is always, always an End Function statement, no two ways about it. Everything in between
is called the function body. The function body could technically be empty, though that won't do anybody any
good. In the function body you can declare variables, assign values, call other functions or place a call to
Exit Function, which will terminate the function prematurely and return execution to the line of code which
was responsible for calling this function.

The argument list takes a bit more of explaining. Usually, you can simply comma separate a bunch of arguments
and they will act as variables from there on end:

Public Function MyBogusFunction(intNumber1, intNumber2)

This function declaration already provides three variables to be used inside the function body:

MyBogusFunction (the return value)
intNumber1 (the first argument)
intNumber2 (the second argument)

Let's assume this function determines whether intNumber1 plus 100 is larger than twice the value of intNumber2.
The function could look like this:

1
2
3
4
5

Function MyBogusFunction(intNumber1, intNumber2)
 intNumber1 = intNumber1 + 100
 intNumber2 = intNumber2 * 2
 MyBogusFunction = (intNumber1 > intNumber2)
End Function

Note that we do not need to declare any additional variables, we can get away with the ones that are implied
by the function declaration. Since we cannot specify what kind of variable intNumber1 has to be, there is no
guarantee that it is in fact a number. It might just as well be a boolean or a null or an array or something even
more scary. This function is thus designed-to-fail; it will crash if we call it with improper arguments:

1
2
3
4

Sub Main()
 Dim blnResult
 blnResult = MyBogusFunction(45, "Fruitbat")
End Sub

1.
2.
3.

25

So what if we want our function to manipulate several variables? How do we get around the 'one return value
only' limitation? There are essentially four solutions to this, two of which are far too difficult for you at this
moment and one of which is just stupid... try to guess which is which:

Use global variables
Declare arguments by reference
Return an array
Return a class instance

We'll focus on number two for the time being. (#1 was the stupid option in case you were wondering.)

Arguments in the function declaration can be declared either by value or by reference. By value means that the
variable data will be copied before it enters the function body. This means a function can do whatever it likes
with an argument variable, it will not affect the caller in any way. If you declare an argument to be passed in
by reference however, the function knows where the variable came from and it can change the original value.
Observe what happens if we do this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Call Main()
Sub Main()
 Dim intA, intB, dblC
 intA = 4
 intB = 7
 dblC = AnotherBogusFunction(intA, intB)
 Call Rhino.Print("A:" & intA & ", B:" & intB & ", C:" & dblC)
End Sub

Function AnotherBogusFunction(ByVal intNumber1, ByVal intNumber2)
 intNumber1 = intNumber1 + 1
 intNumber2 = intNumber2 + 2
 AnotherBogusFunction = intNumber1 * intNumber2
End Function

 result:

Since the arguments are passed in by value, intA and intB are left intact when AnotherBogusFunction is
called. Although the function received the values 4 and 7 respectively, it does not know where they came from
and thus when it increments them on lines 11 and 12, the operation only applies to the local variable copies
intNumber1 and intNumber2. However, if we replace the ByVal keywords with ByRef we get the following
result:

10
11
12
13
14

Function AnotherBogusFunction(ByRef intNumber1, ByRef intNumber2)
 intNumber1 = intNumber1 + 1
 intNumber2 = intNumber2 + 2
 AnotherBogusFunction = intNumber1 * intNumber2
End Function

intNumber1 and intA now both point to the exact same section in the computer memory so when we change
intNumber1 we also change the value of intA.

Passing arguments by reference is quite a tricky thing to wrap your head around, so don't feel bad if you don't
get it at first. You can rest assured that in almost all cases we'll be using the ByVal approach which means our
data is simply copied out of harms way.

There is one other reason to use ByRef arguments which has to do with optimization. Whenever you pass an
argument to a function it will be copied in the computer memory. With small stuff like integers, vectors and
shorts strings this doesn't matter, but when you start copying huge arrays back and forth you're wasting memory
and processor cycles. If it turns out your script is running slowly you could consider passing arguments by
reference in order to avoid casual copying. You have to be careful not to change them, or very unpredictable
things will start happening.

It's a bit too early for optimizations though, more on this in Chapter 9.

1.
2.
3.
4.

26

5 Conditional execution
5.1 What if?

What if I were to fling this rock at that bear? What if I were to alleviate that moose from its skin and wear it
myself instead? It's questions like these that signify abstract thought, perhaps the most stunning of all human
traits. It's no good actually throwing rocks at bears by the way, you're only going to upset it and severely diminish
your chances of getting back to your cave by nightfall in one piece. As a programmer, you need to take abstract
though to the next level; the very-very-conscious level.

A major part of programming is recovering from screw-ups. A piece of code does not always behave in a
straightforward manner and we need to catch these aberrations before they propagate too far. At other times we
design our code to deal with more than one situation. In any case, there's always a lot of conditional evaluation
going on, a lot of 'what if' questions. Let's take a look at three conditionals of varying complexity:

If the object is a curve, delete it.

If the object is a short curve, delete it.

If the object is a short curve, delete it, otherwise move it to the "curves" layer.

The first conditional statement evaluates a single boolean value; an object is either is a curve or it is not. There's
no middle ground. The second conditional must also evaluate the constraint 'short'. Curves don't become short
all of a sudden any more than people grow tall all of a sudden. We need to come up with a boolean way of talking
about 'short' before we can evaluate it. The third conditional is identical to the second one, except it defines
more behavioural patterns depending on the outcome of the evaluation.

The translation from English into VBScript is not very difficult. We just need to learn how conditional syntax works.

Problem 1:
If Rhino.IsCurve(strObjectID) Then
 Call Rhino.DeleteObject(strObjectID)
End If

Problem 2:
If Rhino.IsCurve(strObjectID) Then
 If Rhino.CurveLength(strObjectID) < 0.01 Then
 Call Rhino.DeleteObject(strObjectID)
 End If
End If

Problem 3:
If Rhino.IsCurve(strObjectID) Then
 If Rhino.CurveLength(strObjectID) < 0.01 Then
 Call Rhino.DeleteObject(strObjectID)
 Else
 Call Rhino.ObjectLayer(strObjectID, "Curves")
 End If
End If

The most common conditional evaluation is the If…Then statement. If…Then allows you to bifurcate the flow of
a program. The simplest If…Then structure can be used to shield of certain lines of code. It always follows the
same format:

1
2
3
4

If SomethingOrOther Then
 DoSomething()
 DoSomethingElseAsWell()
End If

The bit of code between the If and the Then on line 1 is evaluated and when it turns out to be True, the block
of code between the first and last line will be executed. If SomethingOrOther turns out to be False, lines 2 and
3 are skipped and the script goes on with whatever comes after line 4.

1.

2.

3.

27

In case of very simple If…Then structures, such as the first example on the previous page, it is possible to use a
shorthand notation which only takes up a single line instead of three. The shorthand for If…Then looks like:

If SomethingOrOther Then DoSomething()

Whenever you want to put more than one action into an If…Then block, you have to use the regular notation.
The If…Then…Else syntax has a similar shorthand but you will rarely see it used. It's better to keep the lines of
code short since that will improve readability. Whenever you need an If…Then…Else structure, I suggest you use
the following syntax:

1
2
3
4
5

If SomethingOrOther Then
 DoSomething()
Else
 DoSomethingElse()
End If

If SomethingOrOther turns out to be True, then the bit of code between lines 1 and 3 are executed. This block
can be as long as you like of course. However, if SomethingOrOther is False, then the code between Else and
End If is executed. So in the case of If…Then…Else, one -and only one- of the two blocks of code is put to
work.

You can nest If…Then structures as deep as you like, though code readability will suffer from too much indenting.
The following example uses four nested If…Then structures to delete short, closed curves on Tuesdays.

1
2
3
4
5
6
7
8
9

If Rhino.IsCurve(strObjectID) Then
 If Rhino.CurveLength(strObjectID) < 1.0 Then
 If Rhino.IsCurveClosed(strObjectID) Then
 If WeekDay(Now()) = vbTuesday Then
 Call Rhino.DeleteObject(strObjectID)
 End If
 End If
 End If
End If

When you feel you need to split up the code stream into more than two flows and you don't want to use
nested structures, you can instead switch to something which goes by the name of the If…Then…ElseIf…Else
statement.

As you may or may not know, the _Make2D command in Rhino has a habit of creating some very tiny curve
segments. We could write a script which deletes these segments automatically, but where would we draw the
line between 'short' and 'long'? We could be reasonably sure that anything which is shorter than the document
absolute tolerance value can be removed safely, but what about curves which are slightly longer? Rule #1 in
programming: When in doubt, make the user decide. That way you can blame them when things go wrong.

A good way of solving this would be to iterate through a predefined set of curves, delete those which are
definitely short, and select those which are ambiguous. The user can then decide for himself whether those
segments deserve to be deleted or retained. We won't discuss the iteration part here, for you need to know more
about arrays than you do now. The conditional bit of the algorithm looks like this:

1
2
3
4
5
6
7
8
9

10
11
12

Dim dblCurveLength
dblCurveLength = Rhino.CurveLength(strObjectID)

If Not IsNull(dblCurveLength) Then
 If dblCurveLength < Rhino.UnitAbsoluteTolerance() Then
 Call Rhino.DeleteObject(strObjectID)
 ElseIf dblCurveLength < (10 * Rhino.UnitAbsoluteTolerance()) Then
 Call Rhino.SelectObject(strObjectID)
 Else
 Call Rhino.UnselectObject(strObjectID)
 End If
End If

Saying "that red dress makes your bottom look big" and "that yellow dress really brings out the colour of your
eyes" essentially means the same thing. In VBScript you can also say the same thing in different ways, though in
general the "your bottom looks big" approach is preferable in programming. The above snippet could have been
written as a nested If…Then structure, but then it would not resemble the way we think about the problem.

28

5.2 Select case

Even though the If…Then…ElseIf…Else statement allows us to split up the code stream into any number of substreams,
it is not a very elegant piece of syntax. Even very simple conditional evaluation will look rather complex because
of the repeated comparisons. The Select…Case structure was designed to simplify conditional evaluation which
potentially results in many different code streams. (For those among you who are/were Java or C programmers,
Select…Case in VBScript is the same as switch…case in Java/C). There are a few drawbacks compared to
If…Then…ElseIf…Else statements. For one, a Select…Case can only evaluate equality, meaning you can only check
to see if some variable is equal to 2, not if it is smaller than 2. The syntax for Select…Case looks like this:

1
2
3
4
5
6
7
8
9

10
11
12

Select Case iVariable
 Case 0
 DoSomething()
 Case 1
 DoSomethingElse()
 Case 2
 DoSomethingTotallyDifferent()
 Case 30, 45, 60, 90, 180
 SurpriseMe()
 Case Else
 DoWhateverItIsYouWouldNormallyDo()
End Select

On line 1, the iVariable represents a value which we will be evaluating for equality. In this case the
iVariable has to be a number, but it could equally well be a String. Line 2 lists the first evaluation we'll
perform. Since the Select…Case statement will take care of the comparisons itself, we only have to supply
the value we want to compare to. If iVariable happens to the be same as 0, the bit of code directly beneath
Case 0 (the function call to DoSomething()) is executed. If iVariable equals 45, then the SurpriseMe()
function is called.

You can supply any number of cases and you can add more comparisons to a case by comma separating them (line 8).
If none of the cases you have specified is a match, the Case Else bit will be executed. Case Else is optional,
you do not have to implement it. Now, how about an example?

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Dim intObjectType 'An Integer to store the Rhino Object-Type code
intObjectType = Rhino.ObjectType(strObjectID)
If IsNull(intObjectType) Then Exit Sub 'this probably means the object does not exist; abort

Dim strLayerName 'A String to store a layer name
Select Case intObjectType 'Compare the actual type code with the preset ones
 Case 1, 2 'Points and PointCloud objects
 strLayerName = "Points"
 Case 4 'Curves
 strLayerName = "Curves"
 Case 8, 16 'Surfaces and PolySurfaces
 strLayerName = "(Poly)Surfaces"
 Case 32 'Meshes
 strLayerName = "Meshes"
 Case 256 'Lights
 strLayerName = "Lights"
 Case 512, 8192 'Annotations and TextDots
 strLayerName = "Annotations"
 Case 2048, 4096 'Instanced and Referenced Block definitions
 strLayerName = "Blocks"
 Case Else 'Icky objects such as Layers, Materials and Grips; abort
 Exit Sub
End Select

If Not Rhino.IsLayer(strLayerName) Then 'If the layer we are about to assign does not yet exist…
 Call Rhino.AddLayer(strLayerName) 'Create it.
End If

Call Rhino.ObjectLayer(strObjectID, strLayerName) 'Assign the object to the layer

This snippet of code will check the type of the object which is referenced by the variable strObjectID and it
will assign it to a specific layer. Some object type codes do not belong to 'real' objects (such as grips and edges)
so we need the Case Else bit to make sure we don't try to assign them to a layer. I'm going to be very naughty
right now and not discuss this in detail. The comments should be enough to help you on your way.

29

5.3 Looping

Executing certain lines of code more than once is called looping in programming slang. On page 5 I mentioned
that there are two types of loops; conditional and incremental which can be described respectively as:

Keep adding milk until the dough is kneadable

Add five spoons of cinnamon

Conditional loops will keep repeating until some condition is met where as incremental loops will run a
predefined number of times. Life isn't as simple as that though, and there are as many as eight different syntax
specifications for loops in VBScript, we'll only discuss the two most important ones in depth.

5.4 Conditional loops

Sometimes we do not know how many iterations we will need in advance, so we need a loop which is potentially
capable of running an infinite number of times. This type is called a Do…Loop. In the most basic form it looks
like this:

1
2
3
4

Do
 DoSomething()
 [If (condition is met) Then Exit Do]
Loop

All the lines between the Do keyword and the Loop keyword will be repeated until we abort the loop ourselves.
If we do not abort the loop, I.e. if we omit the Exit Do statement or if our condition just never happens to be
met, the loop will continue forever. This sounds like an easy problem to avoid but it is in fact a very common
bug.

In VBScript it does not signify the end of the world to have a truly infinite loop. Scripts are always run under the
supervision of the RhinoScript plug-in. Jamming the Escape key several times in a row is pretty likely to gut any
script which happens to be running. The following example script contains an endless Do…Loop which can only
be cancelled by the user pressing (and holding) escape.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Option Explicit
'Display an updating digital clock in all viewports

ViewportClock()
Sub ViewportClock()
 Dim strTextObjectID
 strTextObjectID = Rhino.AddText(CStr(Time()), Array(0,0,0), 20)
 If IsNull(strTextObjectID) Then Exit Sub

 Do
 Call Rhino.Sleep(1000)
 Call Rhino.TextObjectText(strTextObjectID, CStr(Time()))
 Loop
End Sub

Rhino Viewport

30

Here's how it works:

Line Description
1 & 2 Option Explicit declaration and comments about who's who and what's what

4 Main Function call

5 Main function declaration

6 We declare a variable which is capable of storing a Rhino object ID

7 We create a new Rhino Text object. The RhinoScript helpfile tells us how to approach this particular
method:

 Rhino.AddText (strText, arrPoint [, dblHeight [, strFont [, intStyle]]])

Five arguments, the last three of which are optional. When adding a text object to Rhino we must
specify the text string and the location for the object. There are no defaults for this. The height of
the text, font name and style do have default values. However, since we're not happy with the default
height, we will override it to be much bigger:

 strTextObjectID = Rhino.AddText(CStr(Time()), Array(0,0,0), 20)

The strText argument must contain a String description of the current system time. We will simply nest
two native VBScript functions to get it. Since these functions are not designed to fail we do not have
to check for a Null variable and we can put them 'inline'. Time() returns a variable which contains only
the system time, not the date. We could also have used the Now() function (as on page 20) in which
case we would have gotten both the date and the time. Time() does not return a String type variable,
so before we pass it into Rhino we have to convert it to a proper String using the CStr() function. This
is analogous with our code on page 20.

The arrPoint argument requires an array of doubles. We haven't done arrays yet, but it essentially
means we have to supply the x, y and z coordinates of the text insertion point. Array(0,0,0) means
the same as the world origin.

The default height of text objects is 1.0 units, but we want our clock to look big since big things look
expensive. Therefore we're overriding it to be 20 units instead.

8 I don't think there's anything here that could possibly go wrong, but it never hurts to be sure. Just in
case the text object hasn't been created we need to abort the subroutine in order to prevent an error
later on.

10 We start an infinite Do…Loop, lines 11 and 12 will be repeated for all eternity.

11 There's no need to update our clock if the text remains the same, so we really only need to change the text
once every second. The Rhino.Sleep() method will pause Rhino for the specified amount of milliseconds.
We're forcing the loop to take it easy, by telling it to take some time off on every iteration.
We could remove this line and the script will simply update the clock many times per second. This kind
of reckless behaviour will quickly flood the undo buffer.

12 This is the cool bit. Here we replace the text in the object with a new String representing the current
system time.

13 End of the Do…Loop, tells the interpreter to go back to line 10

14 End of the Subroutine. This line will never be called because the script is not capable of actually
breaking out of the loop itself. Once the user presses the Escape key the whole script will be cancelled.
We still need to add it since every single Sub statement needs to have a matching End Sub.

31

A simple example of a non-endless loop which will terminate
itself would be an iterative scaling script. Imagine we need a
tool which makes sure a curve does not exceed a certain length
{L}. Whenever a curve does exceed this predefined value it must
be scaled down by a factor {F} until it no longer exceeds {L}.
This approach means that curves that turn out to be longer
than {L} will probably end up being shorter than {L}, since we
always scale with a fixed amount. There is no mechanism to
prevent undershooting. Curves that start out by being shorter
than {L} should remain unmolested.

A possible solution to this problem might look like this:

Input curve

Result curve

Rhino Viewport

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Option Explicit
'Iteratively scale down a curve until it becomes shorter than a certain length

FitCurveToLength()
Sub FitCurveToLength()
 Dim strCurveID
 strCurveID = Rhino.GetObject("Select a curve to fit to length", 4, True, True)
 If IsNull(strCurveID) Then Exit Sub

 Dim dblLength
 dblLength = Rhino.CurveLength(strCurveID)

 Dim dblLengthLimit
 dblLengthLimit = Rhino.GetReal("Length limit", 0.5 * dblLength, 0.01 * dblLength, dblLength)
 If IsNull(dblLengthLimit) Then Exit Sub

 Do
 If Rhino.CurveLength(strCurveID) <= dblLengthLimit Then Exit Do

 strCurveID = Rhino.ScaleObject(strCurveID, Array(0,0,0), Array(0.95, 0.95, 0.95))
 If IsNull(strCurveID) Then
 Call Rhino.Print("Something went wrong...")
 Exit Sub
 End If
 Loop

 Call Rhino.Print("New curve length: " & Rhino.CurveLength(strCurveID))
End Sub

Line Description
1…6 This should be familiar by now

7 Prompt the user to pick a single curve object, we're allowing preselection.

11 Retrieve the current curve length. This function should not fail, no need to check for Null.

14 Prompt the user for a length limit value. The value has be chosen between the current curve length and
1% of the current curve length. We're setting the default to half the current curve length.

17 Start a Do…Loop

18 This is the break-away conditional. If the curve length no longer exceeds the preset limit, the Exit Do
statement will take us directly to line 26.

20 If the length of the curve did exceed the preset limit, this line will be executed. The Rhino.ScaleObject()
method takes four arguments, the last one of which is optional. We do not override it. We do need to
specify which object we want rescaled (strCurveID), what the center of the scaling operation will be
(Array(0,0,0); the world origin) and the scaling factors along x, y and z (95% in all directions).

25 Instructs the interpreter to go back to line 17

27 Eventually all curves will become shorter than the limit length and the Do…Loop will abort. We print out
a message to the command line informing the user of the new curve length.

32

5.5 Alternative syntax

Do…Loops are almost always conditional. The infinite loop example of the viewport clock is a rare exception. If
the condition for the continuation of the loop is fairly complicated we will probably want to do it ourselves. In
simple cases we could use one of the alternative loop syntax rules, which has the conditional evaluation baked in:

1
2
3

Do While SomeCondition
 DoSomething()
Loop

This kind of loop syntax will abort the loop when SomeCondition is no longer True. In light of the curve scaling
example, we could have put the curve length condition in the loop definition itself, like so:

17
18
19
20
21
22
23

Do While Rhino.CurveLength(strCurveID) > dblLengthLimit
 strCurveID = Rhino.ScaleObject(strCurveID, Array(0,0,0), Array(0.95, 0.95, 0.95))
 If IsNull(strCurveID) Then
 Rhino.Print "Something went wrong..."
 Exit Sub
 End If
Loop

We can still add any number of additional evaluations inside the body of the loop if we want, but the syntax
above will behave exactly the same as the original code on the previous page.

If we want the loop to terminate when a condition becomes True instead of False, we can use the Until keyword
instead of the While keyword. This is just a syntactic trick, using Until is exactly the same as using While with
an additional Not operator:

1
2
3

Do Until SomeCondition
 DoSomething()
Loop

The problem you might have with both these options is that the body of the loop might not be executed at all.
If the curve which is indicated by strCurveID is already shorter than dblLengthLimit to begin with the entire
loop is skipped. If you want your loop to run at least once and evaluate itself at the end rather than at the
beginning, you can put the While/Until conditional after the Loop keyword instead:

1
2
3

Do
 DoSomething()
Loop While SomeCondition

Now, you are guaranteed that DoSomething will be called at least once.

5.6 Incremental loops

When the number of iterations is known in advance, we could still use a Do…Loop statement, but we'll have
to do the bookkeeping ourselves. This is rather cumbersome since it involves us declaring, incrementing and
evaluating variables. The For…Next statement is a loop which takes care of all this hassle. The underlying idea
behind For…Next loops is to have a value incremented by a fixed amount every iteration until it exceeds a preset
threshold:

1
2
3
4

Dim i
For i = A To B [Step N]
 AddSpoonOfCinnamon()
Next

The variable i starts out by being equal to A and it is incremented by N until it becomes larger than B. Once i > B
the loop will terminate. The Step keyword is optional and if we do not override it the default stepsize of 1.0 will
be used. In the example above the variable i is not used in the loop itself, we're using it for counting purposes
only.

If we want to abort a For…Next loop ahead of time, we can place a call to Exit For in order to short-circuit
the process.

33

Creating mathematical graphs is a typical example of the usage of For…Next:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Option Explicit
'Draw a sine wave using points

DrawSineWave()
Sub DrawSineWave()
 Dim x, y
 Dim dblA, dblB, dblStep

 dblA = -8.0
 dblB = 8.0
 dblStep = 0.25

 For x = dblA To dblB Step dblStep
 y = 2*Sin(x)

 Call Rhino.AddPoint(Array(x, y, 0))
 Next
End Sub

Rhino Viewport

The above example draws a sine wave graph in a certain numeric domain with a certain accuracy. There is no
user input since that is not the focus of this paragraph, but you can change the values in the script. The numeric
domain we're interested in ranges from -8.0 to +8.0 and with the current stepsize of 0.25 that means we'll be
running this loop 65 times. 65 is one more than the expected number 64 (64 = dblStep-1 × (dblB - dblA)) since
the loop will start at dblA and it will stop only after dblB has been exceeded.

The For…Next loop will increment the value of x automatically with the specified stepsize, so we don't have to
worry about it when we use x on line 14. We should be careful not to change x inside the loop since that will
play havoc with the logic of the iterations.

Loop structures can be nested at will, there are no limitations, but you'll rarely encounter more than three. The
following example shows how nested For…Next structures can be used to compute distributions:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Sub TwistAndShout()
 Dim z, a
 Dim pi, dblTwistAngle
 pi = Rhino.Pi()
 dblTwistAngle = 0.0

 Call Rhino.EnableRedraw(False)
 For z = 0.0 To 5.0 Step 0.5
 dblTwistAngle = dblTwistAngle + (pi/30)

 For a = 0.0 To 2*pi Step (pi/15)
 Dim x, y
 x = 5 * Sin(a + dblTwistAngle)
 y = 5 * Cos(a + dblTwistAngle)
 Call Rhino.AddSphere(Array(x,y,z), 0.5)
 Next
 Next
 Call Rhino.EnableRedraw(True)
End Sub

Rhino Viewport

The master loop increments the z variable from 0.0 to 5.0 with a default step size of 0.5. The z variable is used
directly as the z-coordinate for all the sphere centers. For every iteration of the master loop, we also want
to increment the twist angle with a fixed amount. We can only use the For…Next statement to automatically
increment a single variable, so we have to do this one ourselves on line 9.

The master loop will run a total of eleven times and the nested loop is designed to run 30 times. But because
the nested loop is started every time the master loop perform another iteration, the code between lines 11 and
17 will be executed 11×30 = 330 times. Whenever you start nesting loops, the total number of operations your
script performs will grow exponentially.

The Rhino.EnableRedraw() calls before and after the master loop are there to prevent the viewport from updating
while the spheres are inserted. The script completes much faster if it doesn't have to redraw 330 times. If you
comment out the Rhino.EnableRedraw() call you can see the order in which spheres are added, it may help
you understand how the nested loops work together.

34

6 Arrays
6.1 My favourite things

We've already been using arrays in examples and I've always told you not to worry about it. Those days are
officially over. Now is the time to panic. Perhaps it's best if we just get the obvious stuff out of the way first:

An array is a list of variables

That's really all there is to it. Sometimes -in fact quite often- you want to store large or unknown amounts of
variables. You could of course declare 15,000 different variables by hand but that is generally considered to
be bad practise. The only thing about arrays which will seem odd at first is the way they count. Arrays start
counting at zero, while we are used to start counting at one. Try it by counting the number of fingers on your
right hand. Chances are you are someone who has just counted to five. Arrays would disagree with you, they
would only have counted to four:

It helps to refer to numbers as 'indices' when you use the zero-based counting system just to avoid confusion.
So when we talk about the 'first element' of an array, we actually mean 'the element with index 0'. I know this
all sounds like Teaching Granny To Suck Eggs, but zero-based counting systems habitually confuse even the most
die-hard programmer.

Arrays are just like other variables in VBScript with the exception that we have to use parenthesis to set and
retrieve values:

'Normal variable declaration, assignment and retrieval

Dim intNumber
intNumber = 8

Call Rhino.Print(intNumber)

'Array declaration, assignment and retrieval

Dim arrNumbers(2)
arrNumbers(0) = 8

arrNumbers(1) = -5

arrNumbers(2) = 47

Call Rhino.Print(arrNumbers(0) & ", " & arrNumber(1) & ", " & arrNumbers(2))

The example above shows how to declare an array which is capable of storing 3 numbers (indices 0, 1 and 2). In
cases like this (when you know in advance how many and which numbers you want to assign) you can also use a
shorthand notation in which case you have to omit the parenthesis in the variable declaration:

Dim arrNumbers
arrNumbers = Array(8, -5, 47)

The Array() function in VBScript takes any number of variables and turns them into an array. It is a bit of an
odd function since it has no fixed signature, you can add as many arguments as you like. Note that in the above
example there is nothing special about the array declaration, it could be any other variable type as well.

35

This paragraph is called "My favourite things" not because arrays are my favourite things, but because of the
example below which will teach you pretty much all there is to know about arrays except nesting:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Sub MyFavouriteThings()
 Dim strPrompt, strAnswer
 Dim arrThings()
 Dim intCount
 intCount = 0

 Do
 Select Case intCount
 Case 0
 strPrompt = "What is your most favourite thing?"
 Case 1
 strPrompt = "What is your second most favourite thing?"
 Case 2
 strPrompt = "What is your third most favourite thing?"
 Case Else
 strPrompt = "What is your " & (intCount+1) & "th most favourite thing?"
 End Select

 strAnswer = Rhino.GetString(strPrompt)
 If IsNull(strAnswer) Then Exit Do

 ReDim Preserve arrThings(intCount)
 arrThings(intCount) = strAnswer
 intCount = intCount+1
 Loop

 If intCount = 0 Then Exit Sub

 Call Rhino.Print("Your " & UBound(arrThings)+1 & " favourite things are:")
 For i = 0 To UBound(arrThings)
 Call Rhino.Print((i+1) & ". " & arrThings(i))
 Next
End Sub

Line Description
3 We do not know how many favourite things the user has, so there's no way we can set the array to a

certain size in advance. Whenever an array is declared with parenthesis but without any number, it will
be made dynamic. This means we can resize it during runtime.

4…5 We'll be using this variable for bookkeeping purposes. Although we could technically extract all
information from the array itself, it's easier to keep an integer around so we can always quickly find the
number of elements in the array.

22 We've just asked the user what his/her Nth favourite thing was, and he/she answered truthfully. This
means we're going to have to store the last answer in our array, but it is not big enough yet to store
additional data so the first thing we must do is increase the size of arrThings. We can change the size
(the number of possible items it can store) of an array in four different ways:

 ReDim arrThings(5)
 ReDim Preserve arrThings(5)
 arrThings = Array(0.0, 5.8, 4.2, -0.1)
 Erase arrThings

The first option will set the array to the indicated size while destroying its contents. To flog a horse
which, if not at this point dead, is in mortal danger of expiring; an array with a size of five is actually
capable of storing six elements (0,1,2,3,4,5). If you wish to retain the stored information -as we do in
our example-, then you must add the keyword Preserve between ReDim and the array variable name.

By simply assigning another array to the variable, you will also change the contents and size. This only
works though if the array in question was declared without parenthesis.

And finally, if you want to reset an array, you can use the Erase keyword. This will destroy all the stored
data and dynamic array size will be set to zero. The array cannot contain any elements after an erase,
you must first ReDim it again. If you erase a fixed size array, only the data will be destroyed.

1.
2.
3.
4.

36

Line Description
23 Straightforward array assignment using an index between parenthesis. If you were to try to assign a

value to an array at a non-existing index you will get a fatal error:

Unfortunately the message doesn't tell us anything about which array was queried and what its size is.
We do know what index generated the error (number: 6).

24 We increase the bookkeeping integer since the array is now one larger than before.

27 It is possible the user has not entered any String. If this is the case the intCount variable will still have
a value of zero which we assigned on line 5. There is nothing for us to do in this case and we should
abort the subroutine.

29 After the loop has completed and we've made certain the array contains some actual data, we print all
the gathered information to the command history. First we will tell the user how many favourite things
he/she entered. We could again use the intCount variable to retrieve this information, but it is also
possible to extract that data directly from the array itself using the UBound() function. UBound is short
for "Upper bound", which is the terminology used to indicate the highest possible index of an array.
If the array is empty the upper bound is technically -1. However, if we attempt to use the UBound()
function on an array which cannot contain any elements, there will be a fatal error:

Dim arrList()
Call Rhino.Print(UBound(arrList))

The above will fail.

30 This is a typical usage of the For…Next loop. Whenever we want to iterate through an array using index
values, we use something like the following:

For i = 0 To UBound(arrData)
 …

Next

It is customary to use a short variable name for iteration variables. This clashes with the prefix rules
as defined on page 9 and is to be treated as a special case. Typically, for simple iteration variables
i, j and k are used:

For i = 1 To UBound(arrData)
 For j = 0 To i-1
 For k = 0 To UBound(arrDifferentData)
 …

 Next
 Next
Next

31 Standard array value retrieval.

37

6.2 Points and Vectors

In RhinoScript, coordinates are defined as arrays of three numbers. Element 0 corresponds with x, element 1
with y and element 2 with z. This notation is used for both points and vectors.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Sub PointSpiral()
 Dim arrPoint(2)
 Dim t, pi
 pi = Rhino.Pi()

 'Call Rhino.EnableRedraw(False)
 For t = -5 To 5 Step 0.025

 arrPoint(0) = t * Sin(5*t)
 arrPoint(1) = t * Cos(5*t)
 arrPoint(2) = t

 Call Rhino.Print(Rhino.Pt2Str(arrPoint, 3))
 Call Rhino.AddPoint(arrPoint)
 Next
 'Call Rhino.EnableRedraw(True)
End Sub

Point = Array(-0.66, 4.96, 5.00)

Point = Array(-1.27, 4.81, 4.98)

Point = Array(-1.84, 4.59, 4.95)Rhino Viewport

The variable arrPoint is declared as a fixed size array on line 2 and the elements are assigned different values
on lines 9 to 11 inside the body of the loop. On line 13 the array is converted to a String using the RhinoScript
method Rhino.Pt2Str(). Pt2Str and Str2Pt (abbreviations for PointToString and StringToPoint respectively) can
be used to convert points into Strings and vice versa. The regular VBScript function CStr() for casting variables
into Strings will not work on arrays and cannot be used. The additional benefit of Pt2Str is that it takes optional
formatting arguments.

Vectors are a new concept in RhinoScript for Rhino4. Those
of you who are familiar with the essentials of geometrical
mathematics will have no problems with this concept...
in fact you probably all are familiar with the essentials of
geometrical mathematics or you wouldn't be learning how to
program a 3D CAD platform.

Vectors are indistinguishable from points. That is, they are
both arrays of three doubles so there's absolutely no way of
telling whether a certain array represents a point or a vector.
There is a practical difference though; points are absolute,
vectors are relative. When we treat an array of three doubles
as a point it represents a certain coordinate in space, when we
treat it as a vector it represents a certain direction. You see,
a vector is an arrow in space which always starts at the world
origin (0.0, 0.0, 0.0) and ends at the specified coordinate.

3.0 2.0

2.5

(3.0, 2.0, 2.5)

(3.0, 2.0, 2.5)

2.5

2.03.0

-3.0

-4.0

-3.5

(-3.0, -4.0,-3.5)

t

Rhino Viewport

The picture on the right shows two vector definitions; a purple and a blue one. The blue one happens to have all
positive components while the purple one has only negative components. Both vectors have a different direction
and a different length. When I say vectors are relative, I mean that they only indicate the difference between
the start and end points of the arrow, i.e. vectors are not actual geometrical entities, they are only information.
The blue vector could represent the tangent direction of the black curve at parameter {t}. If we also know the
point value of the curve at parameter {t}, we know what the tangent of the curve looks like; we know where in
space the tangent belongs. The vector itself does not contain this information; the orange and the blue vector
are identical in every respect.

The addition of vector definitions in RhinoScript is accompanied by a whole group of point/vector related
methods which perform the basic operations of 'vector mathematics'. Addition, subtraction, multiplication, dot
and cross products and so on and so forth. The table on the following page is meant as a reference table, do not
waste your time memorizing it.

38

I will be using standard mathematical notation:
A lowercase letter represents a number
A lowercase letter with a dot above it represents a point
A lowercase letter with an arrow above it represents a vector
Vertical bars are used to denote vector length

Notation Implementation Description Example

d = op - or Distance(Pt1, Pt2) Compute the distance between two points.

or = a $ op PointScale(Pt1, dblA)
Multiply the components of the point by the specified factor.
This operation is the equivalent of a 3DScaling around
the world origin.

or = a
op

PointDivide(Pt1, dblA)
Divide the components of the point by the specified
factor. This is the equivalent of PointScale(Pt1,
a-1).

? or = op ! t PointCompare(Pt1, Pt2, dblT)
Check to see if two points are more or less identical. Two
points are identical if the length of the vector between
them is less than the specified tolerance.

or = op $ M PointTransform(Pt1, arrM) Transform the point using a linear transformation matrix.
See paragraph {X.X} about transformations.

w =
v

1
e o $ v VectorUnitize(Vec1)

Divide all components by the inverse of the length of the
vector. The resulting vector has a length of 1.0 and is
called the unit-vector. Unitizing is sometimes referred
to as "normalizing".

l = v VectorLength(Vec1)
Compute the square root of the sum of the squares of
all the components. Standard Pythagorean distance
equation.

w =-v VectorReverse(Vec1) Negate all the components of a vector to invert the
direction. The length of the vector is maintained.

? w = v ! t VectorCompare(Vec1, Vec2, dblT) Check to see if two vectors are more or less identical.
This is the equivalent of PointCompare().

w = a $ v VectorScale(Vec1, dblA) Multiply the components of the vector by the specified factor.
This operation is the equivalent of PointScale().

•
•
•
•

39

Notation Implementation Description Example

w = a
v VectorDivide(Vec1, dblA) Divide the components of the vector by the specified

factor. This is the equivalent of PointDivide().

or = op + v PointAdd(Pt1, Vec1)
Add the components of the vector to the components of
the point. Point-Vector summation is the equivalent of
moving the point along the vector.

or = op - v PointSubtract(Pt1, Vec1)
Subtract the components of the vector from the components
of the point. Point-Vector subtraction is the equivalent
of moving the point along the reversed vector.

v = op - or VectorCreate(Pt1, Pt2)
Create a new vector by subtracting Pt2 from Pt1. The
resulting vector can be visualized as the arrow starting
at Pt2 and ending at Pt1.

u = v + w VectorAdd(Vec1, Vec2) Add the components of Vec1 to the components of
Vec2. This is equivalent to standard vector summation.

u = v - w VectorSubtract(Vec1, Vec2)
Subtract the components of Vec1 from the components
of Vec2. This is equivalent of VectorAdd(Vec1,
-Vec2).

a = v $ w
VectorDotProduct(Vec1, Vec2)
-or-
VectorMultiply(Vec1, Vec2)

Calculate the sum of the products of the corresponding
components. In practical, everyday-life the
DotProduct can be used to compute the angle between
vectors since the DotProduct of two vectors
v and w equals: |v||w| cos(a)

n = v # w VectorCrossProduct(Vec1, Vec2) The cross-product of two vectors v and w, is a third
vector which is perpendicular to both v and w.

w

u = v $ \a] gw VectorRotate(Vec1, dblA, VecA) Rotate a vector a specified number of degrees around
an axis-vector.

You probably feel like you deserved a break by now. It's not a bad idea to take a breather before we dive into the
next example of vector mathematics. Not that the math is difficult, it's actually a lot easier than the above table
would lead you to believe. In fact, it is so laughingly easy I thought it a good idea to add something extra...

RhinoScript has no method for displaying vectors which is a pity since this would be very useful for visual
feedback. I shall define a function here called AddVector() which we will use in examples to come. The
function must be able to take two arguments; one vector definition and a point definition. If the point array is
not defined the vector will be drawn starting at the world origin. Since this is a function which we will be using
extensively we must make sure it is absolutely fool-proof. This is not an easy task since it could potentially
choke on eleven different culprits. I'm not going to spell them all out since we'll be using a naughty trick to
prevent this function from crashing.

40

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Function AddVector(ByVal vecDir, ByVal ptBase)
 On Error Resume Next
 AddVector = Null

 If IsNull(ptBase) Or Not IsArray(ptBase) Then
 ptBase = Array(0,0,0)
 End If

 Dim ptTip
 ptTip = Rhino.PointAdd(ptBase, vecDir)
 If Not (Err.Number = 0) Then Exit Function

 AddVector = Rhino.AddLine(ptBase, ptTip)
 If Not (Err.Number = 0) Then Exit Function
 If IsNull(AddVector) Then Exit Function

 Call Rhino.CurveArrows(AddVector, 2)
End Function

ptBase

vecDir

Rhino Viewport

Line Description
1 Standard function declaration. The function takes two arguments, if the first one does not represent

a proper vector array the function will not do anything, if the second one does not represent a proper
point array the function will draw the vector from the world origin.

2 This is the naughty bit. Instead of checking all the variables for validity we'll be using the VBScript error
object. The On Error Resume Next statement will prevent the function from generating a run-time
error when things start to go pear-shaped. Instead of aborting (crashing) the entire script it will simply
march on, trying to make the best of a bad situation. We can still detect whether or not an error was
generated and suppressed by reading the Number property of the Err object.

Using the On Error Resume Next statement will reset the error object to default values.

3 Right now we're assigning the Null value to the function in case we need to abort prematurely. We
want our function to either return a valid object ID on success or Null on failure. If we simply call
the Exit Function statement before we assign anything to the AddVector variable, we will return a
vbEmpty value which is the default for all variables.

5…7 In case the ptBase argument does not represent an array, we want to use the world origin instead.

9…10 Declare and compute the coordinate of the arrow tip. This will potentially fail if ptBase or vecDir are
not proper arrays. However, the script will continue instead of crash due to the error trapping.

11 Since we just passed a dangerous bump in the code, we have to check the value of the error number. If
it is still zero, no error has occurred and we're save to continue. Otherwise, we should abort.

13 Here we are calling the RhinoScript method Rhino.AddLine() and we're storing the return value
directly into the AddVector variable. There are three possible scenarios at this point:

The method completed successfully
The method failed, but it didn't crash
The method crashed

In the case of scenario 1, the AddVector variable now contains the object ID for a newly added line
object. This is exactly what we want the function to return on success.
In case of scenario #2, the AddVector will be set to Null. Of course it already was Null, so nothing
actually changed. The last option means that there was no return value for AddLine() and hence
AddVector will also be Null. But the error-number will contain a non-zero value now.

1.
2.
3.

14…15 Check for scenario 2 and 3, abort if we find either one of them occurred.

17 Add an arrow-head to the line object.

18 Complete the function declaration. Once this line is executed the value of AddVector will be returned,
whatever it is.

41

6.3 An AddVector() example
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Option Explicit
'This script will compute a bunch of cross-product vector based on a pointcloud

VectorField()
Sub VectorField()
 Dim strCloudID
 strCloudID = Rhino.GetObject("Input pointcloud", 2, True, True)
 If IsNull(strCloudID) Then Exit Sub

 Dim arrPoints : arrPoints = Rhino.PointCloudPoints(strCloudID)
 Dim ptBase : ptBase = Rhino.GetPoint("Vector field base point")
 If IsNull(ptBase) Then Exit Sub

 Dim i
 For i = 0 To UBound(arrPoints)
 Dim vecBase
 vecBase = Rhino.VectorCreate(arrPoints(i), ptBase)

 Dim vecDir : vecDir = Rhino.VectorCrossProduct(vecBase, Array(0,0,1))

 If Not IsNull(vecDir) Then
 vecDir = Rhino.VectorUnitize(vecDir)
 vecDir = Rhino.VectorScale(vecDir, 2.0)

 Call AddVector(vecDir, arrPoints(i))
 End If
 Next
End Sub

Rhino Viewport

Line Description
10a We can use the colon to make the interpreter think that one line of code is actually two. Stacking lines

of code like this can severely damage the readability of a file, so don't be overzealous. Personally, I only
use colons to combine variable declaration/assignment on one line.

10b The arrPoints variable is an array which contains all the coordinates of a pointcloud object. This is an
example of a nested array (see paragraph 6.4).

17 arrPoints(i) contains an array of three doubles; a standard Rhino point definition. We use that point
to construct a new vector definition which points from the Base point to arrPoints(i).

19 The Rhino.VectorCrossProduct() method will return a vector which is perpendicular to vecBase and
the world z-axis. If you feel like doing some homework, you can try to replace the hard-coded direction
(Array(0,0,1)) with a second variable point a la ptBase.

21 Rhino.VectorCrossProduct() will fail if one of the input vectors is zero-length or if both input
vectors are parallel. In those cases we will not add a vector to the document.

22…23 Here we make sure the vecDir vector is two units long. First we unitize the vector, making it one unit
long, then we double the length.

25 Finally, place a call to the AddVector() function we defined on page 40. If you intend to run this script,
you must also include the AddVector() function in the same script.

42

6.4 Nested arrays

I wonder why, I wonder why.
I wonder why I wonder.
I wonder why I wonder why.
I wonder why I wonder.

-Richard P. Feynman-

Before we begin with nested arrays we need to take care of some house-
keeping first:

Nested arrays are not the same as two-dimensional arrays. Up to and including
Rhino2, point lists in RhinoScript were stored in two-dimensional arrays. This
system was changed to nested arrays in Rhino3. The only methods which still use
two-dimensional arrays are the intersection and matrix methods.

Now then, nested arrays. There's nothing to it. An array becomes nested when it
is stored inside another array. The VectorField example on the previous page deals
with an array of points (an array of arrays of three doubles). The image on the right
is a visualization of such a structure. The left most column represents the base
array, the one containing all coordinates. It can be any size you like, there's no
limit to the amount of points you can store in a single array. Every element of this
base array is a standard Rhino point array. In the case of point-arrays all the nested
arrays are three elements long, but this is not a requisite, you can store anything
you want into an array.

0

1

2

3

4

5

6

7

N

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2
N

N

N

N

N

N

N

N

N

0.3 -1.5 4.9

Accessing nested arrays follows the same rules as accessing regular arrays. Using the VectorField example:

Dim arrSeventhPoint, arrLastPoint
arrSeventhPoint = arrPoints(6)

arrLastPoint = arrPoints(UBound(arrPoints))

This shows how to extract entire nested arrays. Assuming the illustration on this page represents arrPoints,
arrSeventhPoint will be identical to Array(0.3, -1.5, 4.9). If we want to access individual coordinates
directly we can stack the indices:

Dim dblSeventhPointHeight
dblSeventhPointHeight = arrPoints(6)(2)

The above code will store the third element of the nested array stored in the seventh element of the base array
in dblSeventhPointHeight. This corresponds with the orange block.

Nested arrays can be parsed using nested loops like so:

1
2
3
4
5
6

Dim i, j
For i = 0 To UBound(arrPoints)
 For j = 0 To 2
 Call Rhino.Print("Coordinate(" & i & ", " & j & ") = " & arrPoints(i)(j))
 Next
Next

43

Remember the scaling script from page 31? We're now going to take curve-length adjustment to the next level
using nested arrays. The logic of this script will be the same, but the algorithm for shortening a curve will be
replaced with the following one (the illustration shows the first eight iterations of the algorithm):

2
3

4

1

56
78

Original curve

p

pprev

pnextvA

vM

pM

Every control-point or 'vertex' of the original curve (except the ones at the end) will be averaged with its
neighbours in order to smooth the curve. With every iteration the curve will become shorter and we will abort
as soon a certain threshold length has been reached. The curve can never become shorter than the distance
between the first and last control-point, so we need to make sure our goals are actually feasible before we start
a potentially endless loop. Note that the algorithm is approximating, it may not be endless but it could still take
a long time to complete. We will not support closed or periodic curves.

We're going to put the vector math bit in a separate function. This function will compute the {vM} vector given
the control points {pN-1; p; pN+1} and a smoothing factor {s}. Since this function is not designed to fail, we will not
be adding any error checking, if the thing crashes we'll have to fix the bug. Instead of using VBScript variable
naming conventions, I'll use the same codes as in the diagram:

1
2
3
4
5
6
7
8
9

10
11
12
13

Function SmoothingVector(ByVal P, ByVal Pprev, ByVal Pnext, ByVal s)
 Dim Pm(2), i

 For i = 0 To 2
 Pm(i) = (Pprev(i) + Pnext(i)) / 2.0
 Next

 Dim Va, Vm
 Va = Rhino.VectorCreate(Pm, P)
 Vm = Rhino.VectorScale(Va, s)

 SmoothingVector = Vm
End Function

Line Description
4…6 We'll use this loop to iterate through all the coordinates in the point arrays.

5 Compute the average value of the two components.
{pm} is the halfway point between {pprev} and {pnext}.

9 Create the {va} vector.

10 Depending on the value of {s}, the smoothing will occur quickly or slowly. When {s} has a value of 1.0,
it will have no effect on the algorithm since {vM} will be the same length as {vA}. Values higher than
1.0 are likely to make the smoothing operation overshoot. A value of 0.0 will stop the smoothing from
taking place at all since {vM} will become a zero-length vector. Values lower than 0.0 will invert the
smoothing.

When we use this algorithm, we must make sure to set s to be something sensible, or the loop might
become endless: 0.0 1 {s} # 1.0

44

We'll also put the entire curve-smoothing algorithm in a separate function. Since it's fairly hard to adjust existing
objects in Rhino, we'll be adding a new curve and deleting the existing one:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Function SmoothCurve(ByVal strCurveID, ByVal s)
 Dim arrCP : arrCP = Rhino.CurvePoints(strCurveID)
 Dim arrNewCP : arrNewCP = arrCP

 Dim i
 For i = 1 To UBound(arrCP) - 1
 Dim Vm
 Vm = SmoothingVector(arrCP(i), arrCP(i-1), arrCP(i+1), s)
 arrNewCP(i) = Rhino.PointAdd(arrCP(i), Vm)
 Next

 Dim arrKnots : arrKnots = Rhino.CurveKnots(strCurveID)
 Dim intDegree : intDegree = Rhino.CurveDegree(strCurveID)
 Dim arrWeights: arrWeights = Rhino.CurveWeights(strCurveID)

 SmoothCurve = Rhino.AddNurbsCurve(arrNewCP, arrKnots, intDegree, arrWeights)
 If IsNull(SmoothCurve) Then Exit Function

 Call Rhino.DeleteObject(strCurveID)
End Function

Line Description
2 Retrieve the nested array of curve control points.

3 We'll need a copy of the arrCP array since we need to create a new array for all the smoothed points
while keeping the old array intact.

6 This loop will start at one and stop one short of the upper bound of the array. In other words, we're
skipping the first and last items in the array.

8 Compute the smoothing vector using the current control point, the previous one (i-1) and the next
one (i+1). Since we're omitting the first and last point in the array, every point we're dealing with has
two neighbours.

9 Set the new control point position. The new coordinate equals the old coordinate plus the smoothing
vector.

12…14 We'll be adding a new curve to the document which is identical to the existing one, but with different
control point positions. A nurbs curve is defined by four different blocks of data: control points, knots,
weights and degree (see paragraph 7.7 Nurbs Curves). We just need to copy the other bits from the
old curve.

16 Create a new nurbs curve and store the object ID in the function variable.

19 Delete the original curve.

The top-level subroutine doesn't contain anything you're not already familiar with:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Sub IterativeShortenCurve()
 Dim strCurveID : strCurveID = Rhino.GetObject("Open curve to smooth", 4, True)
 If IsNull(strCurveID) Then Exit Sub
 If Rhino.IsCurveClosed(strCurveID) Then Exit Sub

 Dim dblMin, dblMax, dblGoal
 dblMin = Rhino.Distance(Rhino.CurveStartPoint(strCurveID), Rhino.CurveEndPoint(strCurveID))
 dblMax = Rhino.CurveLength(strCurveID)
 dblGoal = Rhino.GetReal("Goal length", 0.5*(dblMin + dblMax) , dblMin, dblMax)
 If IsNull(dblGoal) Then Exit Sub

 Do Until Rhino.CurveLength(strCurveID) < dblGoal
 Call Rhino.EnableRedraw(False)
 strCurveID = SmoothCurve(strCurveID, 0.1)
 If IsNull(strCurveID) Then Exit Do
 Call Rhino.EnableRedraw(True)
 Loop
End Sub

45

46

7 Geometry
7.1 The openNURBS™ kernel

Now that you are familiar with the basics of scripting, it is time to start with the actual geometry part of
RhinoScript. To keep things interesting we've used plenty of Rhino methods in examples before now, but that was
all peanuts. Now you will embark upon that great journey which, if you survive, will turn you into a real 3D geek.

As already mentioned in Chapter 3, Rhinoceros is build upon the openNURBS™ kernel which supplies the bulk
of the geometry and file I/O functions. All plugins that deal with geometry tap into this rich resource and the
RhinoScript plugin is no exception. Although Rhino is marketed as a "NURBS modeler for Windows", it does have
a basic understanding of other types of geometry as well. Some of these are available to the general Rhino
user, others are only available to programmers. As a RhinoScripter you will not be dealing directly with any
openNURBS™ code since RhinoScript wraps it all up into an easy-to-swallow package. However, programmers
need to have a much higher level of comprehension than users which is why we'll dig fairly deep.

7.2 Objects in Rhino

All objects in Rhino are composed of a geometry part and an attribute part. There are quite a few different
geometry types but the attributes always follow the same format. The attributes store information such as
object name, colour, layer, isocurve density, linetype and so on and so forth. Not all attributes make sense for
all geometry types, points for example do not use linetypes or materials but they are capable of storing this
information nevertheless. Most attributes and properties are fairly straightforward and can be read and assigned
to objects at will.

Rhino Object

Object Data
Geometry

Attributes

Preview meshes

Render meshes

Grips

Analysis modes

Wireframe curves

Selection flags

State flags

History

Object Attributes
UUID

Name

Layer

Group list

Url

Material source & index

Rendering attributes

Color source & value

Isocurve density

Linetype source & style

Display mode

Arrowheads

Plotcolor source & value

Plotweight source & value

<Custom user data>

Object Geometry
Geometry

BoundingBox

Sub objects

Type

<Custom user data>

This table lists most of the attributes and properties which are available to plugin developers. Most of these
have been wrapped in the RhinoScript plugin, others are missing at this point in time and the custom user data
element is special. We'll get to user data after we're done with the basic geometry chapters, but those of you
who migrated from Rhino3 scripting might like to know that it is now possible to add user data to both the
geometry and the attributes of objects.

47

The following procedure displays some attributes of a single object in a dialog box. There is nothing exciting
going on here so I'll refrain from providing a step-by-step explanation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Sub DisplayObjectAttributes(ByVal strObjectID)
 Dim arrSource : arrSource = Array("By Layer", "By Object", "By Parent")

 Dim strData : strData = "Object attributes for :" & strObjectID & vbCrLf

 strData = strData & "Description: " & Rhino.ObjectDescription(strObjectID) & vbCrLf
 strData = strData & "Layer: " & Rhino.ObjectLayer(strObjectID) & vbCrLf
 strData = strData & "LineType: " & Rhino.ObjectLineType(strObjectID) & vbCrLf

 strData = strData & "LineTypeSource: " & _
 arrSource(Rhino.ObjectLineTypeSource(strObjectID)) & vbCrLf

 strData = strData & "MaterialSource: " & _
 arrSource(Rhino.ObjectMaterialSource(strObjectID)) & vbCrLf

 Dim strName
 strName = Rhino.ObjectName(strObjectID)
 If IsNull(strName) Then
 strData = strData & "<Unnamed object>" & vbCrLf
 Else
 strData = strData & "Name: " & strName & vbCrLf
 End If

 Dim arrGroups
 arrGroups = Rhino.ObjectGroups(strObjectID)
 If IsArray(arrGroups) Then
 Dim i
 For i = 0 To UBound(arrGroups)
 strData = strData & "Group(" & i & "): " & arrGroups(i) & vbCrLf
 Next
 Else
 strData = strData & "<Ungrouped object>" & vbCrLf
 End If

 Call Rhino.EditBox(strData, "Object attributes", "RhinoScript¹º¹")
End Sub

48

7.3 Points and Pointclouds

Everything begins with points. A point is nothing more than a list of values called a coordinate. The number of
values in the list corresponds with the number of dimensions of the space it resides in. Space is usually denoted
with an R and a superscript value indicating the number of dimensions. (The 'R' stems from the world 'real'
which means the space is continuous. We should keep in mind that a digital representation always has gaps (see
paragraph 2.3.1), even though we are rarely confronted with them.)

Points in 3D space, or R3 thus have three coordinates, usually referred to as {x,y,z}. Points in R2 have only two
coordinates which are either called {x,y} or {u,v} depending on what kind of two dimensional space we're talking
about. Points in R1 are denoted with a single value. Although we tend not to think of one-dimensional points as
'points', there is no mathematical difference; the same rules apply. One-dimensional points are often referred
to as 'parameters' and we denote them with {t} or {p}.

R3 world space R2 parameter space R1 parameter space

X

Y

Z

O

1
2

3
4

5
6

7
8

9
10

9

9

9

9

9

8

8

8

8

8

7

7
7

7

7

6

6

6
6

6

5

5
5

5

5

4

4
4

4

4

3

3 3

3

3

2

2 2

2

2

1

1 1

1

1

10

10

75

6

(5.0, 7.0, 6.0)

U

V 0.1
0.2

0.3 0.4
0.5 0.6 0.7

0.8
0.9

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

O

(0.2, 0.4)

T

O

0.05

0.1

0.15

0.2

0.25

0.9

0.35

0.4
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.95

1.0

0.3

(0.73)

The image on the left shows the R3 world space, it is continuous and infinite. The x-coordinate of a point in this
space is the projection (the red dotted line) of that point onto the x-axis (the red solid line). Points are always
specified in world coordinates in Rhino, C-Plane coordinates are for siss... ehm users only.

R2 world space (not drawn) is the same as R3 world space, except that it lacks a z-component. It is still continuous
and infinite. R2 parameter space however is bound to a finite surface as shown in the center image. It is still
continuous, I.e. hypothetically there is an infinite amount of points on the surface, but the maximum distance
between any of these points is very much limited. R2 parameter coordinates are only valid if they do not
exceed a certain range. In the example drawing the range has been set between 0.0 and 1.0 for both {u} and {v}
directions, but it could be any finite domain. A point with coordinates {1.5, 0.6} would be somewhere outside
the surface and thus invalid.

Since the surface which defines this particular parameter space resides in regular R3 world space, we can always
translate a parametric coordinate into a 3d world coordinate. The point {0.2, 0.4} on the surface for example
is the same as point {1.8, 2.0, 4.1} in world coordinates. Once we transform or deform the surface, the R3
coordinates which correspond with {0.2, 0.4} will change. Note that the opposite is not true, we can translate
any R2 parameter coordinate into a 3D world coordinate, but there are many 3D world coordinates that are not
on the surface and which can therefore not be written as an R2 parameter coordinate. However, we can always
project a 3D world coordinate onto the surface using the closest-point relationship. We'll discuss this in more
detail later on.

If the above is a hard concept to swallow, it might help you to think of yourself and your position in space. We
usually tend to use local coordinate systems to describe our whereabouts; "I'm sitting in the third seat on the
seventh row in the movie theatre", "I live in apartment 24 on the fifth floor", "I'm in the back seat". Some of these
are variations to the global coordinate system (latitude, longitude, elevation), while others use a different
anchor point. If the car you're in is on the road, your position in global coordinates is changing all the time, even
though you remain in the same back seat 'coordinate'.

49

Let's start with conversion from R1 to R3 space. The following script will add 500 coloured points to the
document, all of which are sampled at regular intervals across the R1 parameter space of a curve object:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Sub Main()
 Dim strCurveID
 strCurveID = Rhino.GetObject("Select a curve to sample", 4, True, True)
 If IsNull(strCurveID) Then Exit Sub

 Dim t
 Call Rhino.EnableRedraw(False)
 For t = 0.0 To 1.0 Step 0.002
 Call AddPointAtR1Parameter(strCurveID, t)
 Next
 Call Rhino.EnableRedraw(True)
End Sub

Function AddPointAtR1Parameter(strCurveID, dblUnitParameter)
 AddPointAtR1Parameter = Null

 Dim crvDomain : crvDomain = Rhino.CurveDomain(strCurveID)
 If IsNull(crvDomain) Then Exit Function

 Dim dblR1Param
 dblR1Param = crvDomain(0) + dblUnitParameter * (crvDomain(1) - crvDomain(0))
 Dim arrR3Point : arrR3Point = Rhino.EvaluateCurve(strCurveID, dblR1Param)
 If Not IsArray(arrR3Point) Then Exit Function

 Dim strPointID : strPointID = Rhino.AddPoint(arrR3Point)
 Call Rhino.ObjectColor(strPointID, ParameterColour(dblUnitParameter))
 AddPointAtR1Parameter = strPointID
End Function

Function ParameterColour(dblParam)
 Dim RedComponent : RedComponent = 255 * dblParam
 If (RedComponent < 0) Then RedComponent = 0
 If (RedComponent > 255) Then RedComponent = 255

 ParameterColour = RGB(RedComponent, 0, 255 - RedComponent)
End Function

Rhino Viewport

For no good reason whatsoever, we'll start with the bottom most function:

Line Description
30 Standard out-of-the-box function declaration which takes a single double value. This function is

supposed to return a colour which changes gradually from blue to red as dblParam changes from zero
to one. Values outside of the range {0.0~1.0} will be clipped.

31 The red component of the colour we're going to return is declared here and assigned the naive value of
255 times the dblParam. Colour components must have a value between and including 0 and 255. If we
attempt to construct a colour with lower or higher values, a run-time error will spoil the party.

32…33 Here's where we make sure the party can continue unimpeded.

35 Compute the colour gradient value. If dblParam equals zero we want blue (0,0,255) and if it equals one
we want red (255,0,0). So the green component is always zero while blue and red see-saw between 0
and 255.

50

Now, on to function AddPointAtR1Parameter(). As the name implies, this function will add a single point in
3D world space based on the parameter coordinate of a curve object. In order to work correctly this function
must know what curve we're talking about and what parameter we want to sample. Instead of passing the
actual parameter which is bound to the curve domain (and could be anything) we're passing a unitized one.
I.e. we pretend the curve domain is between zero and one. This function will have to wrap the required math
for translating unitized parameters into actual parameters.

Since we're calling this function a lot (once for every point we want to add), it is actually a bit odd to put all the
heavy-duty stuff inside it. We only really need to perform the overhead costs of 'unitized parameter + actual
parameter' calculation once, so it makes more sense to put it in a higher level function. Still, it will be very quick
so there's no need to optimize it yet.

Line Description
14…15 Function declaration and default return value (Null in case things get fluffed and we need to abort).

17…18 Get the curve domain and check for Null. It will be Null if the ID does not represent a proper curve
object. The Rhino.CurveDomain() method will return an array of two doubles which indicate the
minimum and maximum t-parameters which lie on the curve.

21 Translate the unitized R1 coordinate into actual domain coordinates.

22 Evaluate the curve at the specified parameter. Rhino.EvaluateCurve() takes an R1 coordinate and
returns an R3 coordinate.

25 Add the point, it will have default attributes.

26 Set the custom colour. This will automatically change the color-source attribute to By Object.

The distribution of R1 points on a spiral is not very enticing since it approximates a division by equal length
segments in R3 space. When we run the same script on less regular curves it becomes easier to grasp what
parameter space is all about:

Curve structure R1 points at equal parameter intervals

A standard (degree=3) nurbs curve with identical distances between control points. Although you might
intuitively expect the points to be distributed evenly across the parameter space, there is a significant
stretching of R1 space near the ends. This is due to the 'clamping' of nurbs objects to their cage; a nurbs
curve prefers to have control points on both sides so we have to 'force' it to go the extra mile towards the
ends of the control polygon. More on clamping in the paragraph on Nurbs curves.

Once control points start to cluster, the parameter space has a tendency to contract. This can be countered
up to a point by setting custom knot values, but the default behaviour is visible here.

Weighted control points also collapse the parameter space in their vicinity in a very conspicuous fashion.
(The large dots are the weighted ones in case you missed the point).

51

Let's take a look at an example which uses all parameter spaces we've discussed so far:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Sub Main()
 Dim strSurfaceID
 strSurfaceID = Rhino.GetObject("Select a surface to sample", 8, True)
 If IsNull(strSurfaceID) Then Exit Sub

 Dim strCurveID
 strCurveID = Rhino.GetObject("Select a curve to measure", 4, True, True)
 If IsNull(strCurveID) Then Exit Sub

 Dim arrPts : arrPts = Rhino.DivideCurve(strCurveID, 500)
 Dim i

 Call Rhino.EnableRedraw(False)
 For i = 0 To UBound(arrPts)
 Call EvaluateDeviation(strSurfaceID, 1.0, arrPts(i))
 Next
 Call Rhino.EnableRedraw(True)
End Sub

Function EvaluateDeviation(strSurfaceID, dblThreshold, arrSample)
 EvaluateDeviation = Null

 Dim arrR2Point
 arrR2Point = Rhino.SurfaceClosestPoint(strSurfaceID, arrSample)
 If IsNull(arrR2Point) Then Exit Function

 Dim arrR3Point : arrR3Point = Rhino.EvaluateSurface(strSurfaceID, arrR2Point)
 If IsNull(arrR3Point) Then Exit Function

 Dim dblDeviation : dblDeviation = Rhino.Distance(arrR3Point, arrSample)
 If dblDeviation <= dblThreshold Then
 EvaluateDeviation = True
 Exit Function
 End If

 Call Rhino.AddPoint(arrSample)
 Call Rhino.AddLine(arrSample, arrR3Point)
 EvaluateDeviation = False
End Function

This script will compare a bunch of points on a curve to their
projection on a surface. If the distance exceeds one unit, a
line and a point will be added.

First, the R1 points are translated into R3 coordinates so we can
project them onto the surface, getting the R2 coordinate {u,v}
in return. This R2 point has to be translated into R3 space as
well, since we need to know the distance between the R1
point on the curve and the R2 point on the surface. Distances
can only be measured if both points reside in the same number
of dimensions, so we need to translate them into R3 as well.

Told you it was a piece of cake...

Rhino Viewport

Line Description
10 We're using the Rhino.DivideCurve() method to get all the R3 coordinates on the curve in one go.

This saves us a lot of looping and evaluating.

24 Rhino.SurfaceClosestPoint() returns an array of two doubles representing the R2 point on the
surface (in {u,v} coordinates) which is closest to the sample point.

27 Rhino.EvaluateSurface() in turn translates the R2 parameter coordinate into R3 world coordinates

30…38 Compute the distance between the two points and add geometry if necessary. This function returns
True if the deviation is less than one unit, False if it is more than one unit and Null if something went
wrong.

52

One more time just for kicks. We project the R1 parameter coordinate on the curve into 3D space (Step A),
then we project that R3 coordinate onto the surface getting the R2 coordinate of the closest point (Step B). We
evaluate the surface at R2, getting the R3 coordinate in 3D world space (Step C), and we finally measure the
distance between the two R3 points to determine the deviation:

Ok, that's it for now, time to go out and have a stiff drink.

53

7.4 Lines and Polylines

You'll be glad to learn that (poly)lines are essentially the same as point-arrays. The only difference is that we
treat the points as a series rather than an anonymous collection, which enables us to draw lines between them.
There is some nasty stuff going on which might cause problems down the road so perhaps it's best to get it over
with quick.

There are several ways in which polylines can be manifested in openNURBS™ and thus in Rhino. There is a
special polyline class which simply lists an array of ordered points. It has no overhead data so this is the simplest
case. It's also possible for regular nurbs curves to behave as polylines when they have their degree set to 1. In
addition, a polyline could also be a polycurve made up of line segments, polyline segments, degree=1 nurbs
curves or a combination of the above. If you create a polyline using the _Polyline command, you will get a
proper polyline objects as the Object Properties Details dialog on the left shows:

The dialog claims an "Open polyline with 8 points". However, when we drag a control-point Rhino will
automatically convert any curve to a Nurbs curve, as the image on the right shows. It is now an open nurbs
curve of degree=1. From a geometric point of view, these two curves are identical. From a programmatic point
of view, they are anything but. For the time being we will only deal with 'proper' polylines though; arrays of
sequential coordinates. For purposes of clarification I've added two example functions which perform basic
operations on polyline point-arrays.

Compute the length of a polyline point-array:

1
2
3
4
5
6
7

Function PolylineLength(ByRef arrVertices)
 PolylineLength = 0.0
 Dim i
 For i = 0 To UBound(arrVertices)-1
 PolylineLength = PolylineLength + Rhino.Distance(arrVertices(i), arrVertices(i+1))
 Next
End Function

Subdivide a polyline by adding extra vertices halfway all existing vertices:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Function SubDividePolyline(ByRef arrV)
 Dim arrSubD() : ReDim arrSubD(2 * UBound(arrV))
 Dim i

 For i = 0 To UBound(arrV)-1
 'copy the original vertex location
 arrSubD(i * 2) = arrV(i)
 'compute the average of the current vertex and the next one
 arrSubD(i * 2 + 1) = Array((arrV(i)(0) + arrV(i+1)(0)) / 2.0, _
 (arrV(i)(1) + arrV(i+1)(1)) / 2.0, _
 (arrV(i)(2) + arrV(i+1)(2)) / 2.0)
 Next

 'copy the last vertex (this is skipped by the loop)
 arrSubD(UBound(arrSubD)) = arrV(UBound(arrV))
 SubDividePolyline = arrSubD
End Function

I'm using the ByRef statement not because I want to tinker with the original point-arrays, but to avoid copying
them whenever these functions are called.

54

No rocket science yet, but brace yourself for the next bit...

As you know, the shortest path between two points is a straight
line. This is true for all our space definitions, from R1 to RN.
However, the shortest path in R2 space is not necessarily the
same shortest path in R3 space. If we want to connect two
points on a surface with a straight line in R2, all we need to
do is plot a linear course through the surface {u,v} space.
(Since we can only add curves to Rhino which use 3D world
coordinates, we'll need a fair amount of samples to give
the impression of smoothness.) The thick red curve in the
adjacent illustration is the shortest path in R2 parameter
space connecting {A} and {B}. We can clearly see that this is
definitely not the shortest path in R3 space.

A

B

Rhino Viewport

We can clearly see this because we're used to things happening in R3 space, which is why this whole R2/R3 thing
is so thoroughly counter intuitive to begin with. The green, dotted curve is the actual shortest path in R3 space
which still respects the limitation of the surface (I.e. it can be projected onto the surface without any loss of
information). The following function was used to create the red curve; it creates a polyline which represents
the shortest path from {A} to {B} in surface parameter space:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Function GetR2PathOnSurface(strSurfaceID, intSegments, strPrompt1, strPrompt2)
 GetR2PathOnSurface = Null

 Dim ptStart, ptEnd
 ptStart = Rhino.GetPointOnSurface(strSurfaceID, strPrompt1)
 If IsNull(ptStart) Then Exit Function

 ptEnd = Rhino.GetPointOnSurface(strSurfaceID, strPrompt2)
 If IsNull(ptEnd) Then Exit Function
 If (Rhino.Distance(ptStart,ptEnd) = 0.0) Then Exit Function

 Dim uvA : uvA = Rhino.SurfaceClosestPoint(strSurfaceID, ptStart)
 Dim uvB : uvB = Rhino.SurfaceClosestPoint(strSurfaceID, ptEnd)

 Dim arrV() : ReDim arrV(intSegments)
 Dim i, t, u, v
 For i = 0 To intSegments
 t = i / intSegments
 u = uvA(0) + t*(uvB(0) - uvA(0))
 v = uvA(1) + t*(uvB(1) - uvA(1))

 arrV(i) = Rhino.EvaluateSurface(strSurfaceID, Array(u, v))
 Next

 GetR2PathOnSurface = arrV
End Function

Line Description
1 This function takes four arguments; the ID of the surface onto which to plot the shortest route, the

number of segments for the path polyline and the prompts to use for picking the A and B point.

5 Prompt the user for the {A} point on the surface.

8 Prompt the user for the {B} point on the surface.

12…13 Project {A} and {B} onto the surface to get the respective R2 coordinates uvA and uvB.

15 Declare the array which is going to store all the polyline vertices.

17 Since this algorithm is segment-based, we know in advance how many vertices the polyline will have
and thus how often we will have to sample the surface.

18 t is a value which ranges from 0.0 to 1.0 over the course of our loop

19…20 Use the current value of t to sample the surface somewhere in between uvA and uvB.

22 Rhino.EvaluateSurface() takes a {u} and a {v} value and spits out a 3D-world coordinate. This is just
a friendly way of saying that it converts from R2 to R3.

55

We're going to combine the previous examples in order to make a real geodesic path routine in Rhino. This is a
fairly complex algorithm and I'll do my best to explain to you how it works before we get into any actual code.

First we'll create a polyline which describes the shortest path between {A} and {B} in R2 space. This is our base
curve. It will be a very coarse approximation, only ten segments in total. We'll create it using the function on
page 54. Unfortunately that function does not take closed surfaces into account. In the paragraph on nurbs
surfaces we'll elaborate on this.

Once we've got our base shape we'll enter the iterative part. The iteration consists of two nested loops, which
we will put in two different functions in order to avoid too much nesting and indenting. We're going to write four
functions in addition to the ones already discussed in this paragraph:

The main geodesic routine
ProjectPolyline()
SmoothPolyline()
GeodesicFit()

The purpose of the main routine is the same as always; to collect the initial data and make sure the script
completes as successfully as possible. Since we're going to calculate the geodesic curve between two points on
a surface, the initial data consists only of a surface ID and two points in surface parameter space. The algorithm
for finding the geodesic curve is a relatively slow one and it is not very good at making major changes to dense
polylines. That is why we will be feeding it the problem in bite-size chunks. It is because of this reason that our
initial base curve (the first bite) will only have ten segments. We'll compute the geodesic path for these ten
segments, then subdivide the curve into twenty segments and recompute the geodesic, then subdivide into 40
and so on and so forth until further subdivision no longer results in a shorter overall curve.

The ProjectPolyline() function will be responsible for making sure all the vertices of a polyline point-array
are in fact coincident with a certain surface. In order to do this it must project the R3 coordinates of the polyline
onto the surface, and then again evaluate that projection back into R3 space. This is called 'pulling'.

The purpose of SmoothPolyline() will be to average all polyline vertices with their neighbours. This function
will be very similar to the example on page 44, except it will be much simpler since we know for a fact we're
not dealing with nurbs curves here. We do not need to worry about knots, weights, degrees and domains.

GeodesicFit() is the essential geodesic routine. We expect it to deform any given polyline into the best
possible geodesic curve, no matter how coarse and wrong the input is. The algorithm in question is a very naive
solution to the geodesic problem and it will run much slower than Rhinos native _ShortPath command. The
upside is that our script, once finished, will be able to deal with self-intersecting surfaces.

The underlying theory of this algorithm is synonymous with the simulation of a contracting rubber band, with
the one difference that our rubber band is not allowed to leave the surface. The process is iterative and though
we expect every iteration to yield a certain improvement over the last one, the amount of improvement will
diminish as we near the ideal solution. Once we feel the improvement has become negligible we'll abort the
function.

In order to simulate a rubber band we require two steps; smoothing and projecting. First we allow the rubber
band to contract (it always wants to contract into a straight line between {A} and {B}). This contraction happens
in R3 space which means the vertices of the polyline will probably end up away from the surface. We must then
re-impose these surface constraints. These two operations have been hoisted into functions #2 and #3.

The surface

The original polyline

The illustration depicts the two steps which compose a single iteration of the geodesic routine. The black
polyline is projected onto the surface giving the red polyline. The red curve in turn is smoothed into the green
curve. Note that the actual algorithm performs these two steps in the reverse order; smoothing first, projection
second.

1.
2.
3.
4.

56

We'll start with the simplest function:

1
2
3
4
5
6
7
8
9

10

Sub ProjectPolyline(ByRef arrVertices, strSurfaceID)
 Dim arrProjPt, i

 For i = 1 To UBound(arrVertices)-1
 arrProjPt = Rhino.BRepClosestPoint(strSurfaceID, arrVertices(i))
 If Not IsNull(arrProjPt) Then
 arrVertices(i) = arrProjPt(0)
 End If
 Next
End Sub

Line Description
1 Since we're going to deform the polyline which is passed to us, we might as well deform the original.

That is why the arrVertices argument is declared ByRef. We will be changing the vertices directly.
This sub is designed to fail, but if it crashes something is wrong elsewhere and we need to fix the bug
there.

4 Since this is a specialized sub which we will only be using inside this script, we can skip projecting the
first and last point. We can safely assume the polyline is open and that both endpoints will already be
on the curve.

5 We ask Rhino for the closest point on the surface object given our polyline vertex coordinate. The
reason why we do not use Rhino.SurfaceClosestPoint() is because BRepClosestPoint() takes
trims into account. This is a nice bonus we can get for free. The native _ShortPath command does not
deal with trims at all. We are of course not interested in aping something which already exists, we
want to make something better.

6 If BRepClosestPoint() returned Null something went wrong after all. We cannot project the vertex in
this case so we'll simply ignore it. We could of course short-circuit the whole operation after a failure
like this, but I prefer to press on and see what comes out the other end.

7 The BRepClosestPoint() method returns a lot of information, not just the R2 coordinate. In fact it
returns an array of data, the first element of which is the R3 closest point. This means we do not have
to translate the uv coordinate into xyz ourselves. Huzzah! Assign it to the vertex and move on.

1
2
3
4
5
6
7
8
9

10

Sub SmoothPolyline(ByRef arrVertices)
 Dim arrCopy : arrCopy = arrVertices

 Dim i, j
 For i = 1 To UBound(arrVertices)-1
 For j = 0 To 2
 arrVertices(i)(j) = (arrCopy(i-1)(j) + arrCopy(i)(j) + arrCopy(i+1)(j)) / 3.0
 Next
 Next
End Sub

Line Description
1 Since we need the original coordinates throughout the smoothing operation we cannot deform it

directly. That is why we need to make a copy before we start messing about with coordinates. This code
is fairly fool-proof so we're not even bothering to inform the caller whether or not it was a success. No
return value means we'll have to use a subroutine instead of a function.

7 We iterate through all the internal vertices and also through the x,y and z components. Writing smaller
functions will not make the code go faster, but it does means we just get to write less junk. Also, it
means adjustments are easier to make afterwards since less code-rewriting is required.

What we do here is average the x, y and z coordinates of the current vertex ('current' as defined by i)
using both itself and its neighbours.

57

Time for the bit that sounded so difficult on the previous page, the actual geodesic curve fitter routine:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Sub GeodesicFit(ByRef arrVertices, strSurfaceID, dblTolerance)
 Dim dblLength : dblLength = PolylineLength(arrVertices)
 Dim dblNewLength

 Do
 Call SmoothPolyline(arrVertices)
 Call ProjectPolyline(arrVertices, strSurfaceID)

 dblNewLength = PolylineLength(arrVertices)
 If (Abs(dblNewLength - dblLength) < dblTolerance) Then Exit Do

 dblLength = dblNewLength
 Loop
End Sub

Line Description
1 Hah... that doesn't look so bad after all, does it? You'll notice that it's often the stuff which is easy

to explain that ends up taking a lot of lines of code. Rigid mathematical and logical structures can
typically be coded very efficiently.

Again, ByRef for the actual coordinate array since we're mucking about with the thing directly. No use
copying lists of points all over the place and back again.

You'll notice this is a subroutine and thus lacks a return value which is perhaps a little odd. It certainly
looks complex enough to deserve a return value. Still, since we're writing this script in one go we know
that the function which uses this particular sub does not rely on return values. It simply evaluates
the length of the polyline prior to and after calling this sub and decides where to go from there. If
this subroutine completely and utterly fails, the polyline will not be changed which results in zero-
difference lengths. That is the cue for the caller to abort anyway.

This is arguably not a very good approach at writing code, since specialized functions like these are
harder to re-use in other projects. I never blindly re-use any code ever, so this is does not concern me
as an individual. But there is nothing that says I'm right and others are wrong. You are learning this from
me and thus you are learning it my way. That's the best I can offer.

2…3 We'll be monitoring the progress of each iteration and once the curve no longer becomes noticeably
shorter (where 'noticeable' is defined by the dblTolerance argument), we'll call the 'intermediate
result' the 'final result' and return execution to the caller. In order to monitor this progress, we need to
remember how long the curve was before we started; dblLength is created for this purpose.

5…13 Whenever you see a Do…Loop without any standard escape clause you should be on your toes. This is
potentially an infinite loop. I have tested it rather thoroughly and have been unable to make it run
more than 120 times. Experimental data is never watertight proof, the routine could theoretically fall
into a stable state where it jumps between two solutions. If this happens, the loop will run forever.

You are of course welcome to add additional escape clauses if you deem that necessary.

6…7 Place the calls to the functions on page 56. These are the bones of the algorithm.

9 Compute the new length of the polyline.

10 Check to see whether or not it is worth carrying on.

12 Apparently it was, we need now to remember this new length as our frame of reference.

58

The main subroutine takes some explaining. It performs a lot of different tasks which always makes a block of
code harder to read. It would have been better to split it up into more discrete chunks, but we're already using
seven different functions for this script and I felt we are nearing the ceiling. Remember that splitting problems
into smaller parts is a good way to organize your thoughts, but it doesn't actually solve anything. You'll need a
find a good balance between splitting and lumping.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Option Explicit

Call GeodesicCurve()
Sub GeodesicCurve()
 Dim strSurfaceID
 strSurfaceID = Rhino.GetObject("Select surface for geodesic curve solution", 8, True, True)
 If IsNull(strSurfaceID) Then Exit Sub

 Dim arrV
 arrV = GetPolylineOnSurface(strSurfaceID, 10, _
 "Start of geodesic curve", "End of geodesic curve")

 If IsNull(arrV) Then Exit Sub

 Dim dblTolerance : dblTolerance = Rhino.UnitAbsoluteTolerance() / 10
 Dim dblLength : dblLength = 1e300
 Dim dblNewLength : dblNewLength = 0.0

 Do
 Call Rhino.Prompt("Solving geodesic fit for " & UBound(arrV) & " samples")

 Call GeodesicFit(arrV, strSurfaceID, dblTolerance)
 dblNewLength = PolylineLength(arrV)
 If (Abs(dblNewLength - dblLength) < dblTolerance) Then Exit Do
 If (UBound(arrV) > 1000) Then Exit Do

 arrV = SubDividePolyline(arrV)
 dblLength = dblNewLength
 Loop

 Call Rhino.AddPolyline(arrV)
 Call Rhino.Print("Geodesic curve added with length: " & dblNewLength)
End Sub

Line Description
5…7 Get the surface to be used in the geodesic routine.

9…13 Declare a variable which will store the polyline vertices. Even though this is an array, we do not declare
it in that way, since the return value of GetPolylineOnSurface() is already an array so the conversion
will happen automatically.

15 The tolerance used in our script will be 10% of the absolute tolerance of the document.

16…17 This loop also uses a length comparison in order to determine whether or not to continue. But instead
of evaluating the length of a polyline before and after a smooth/project iteration, it measures the
difference before and after a subdivide/geodesicfit iteration. The goal of this evaluation is to decide
whether or not further elaboration will pay off. dblLength and dblNewLength are used in the same
context as on the previous page.

20 Display a message in the command-line informing the user about the progress we're making. This script
will run for quite some time so it's important not to let the user think the damn thing has crashed.

22 Place a call to the GeodesicFit() subroutine.

23…24 Compare the improvement in length, exit the loop when there's no progress of any value.

25 A safety-switch. We don't want our curve to become too dense.

27 A call to SubDividePolyline() will double the amount of vertices in the polyline. The newly added
vertices will not be on the surface, so we must make sure to call GeodesicFit() at least once before
we add this new polyline to the document.

31…32 Add the curve and print a message about the length.

59

7.5 Planes

Planes are not genuine objects in Rhino, they are used to define a coordinate system in 3D world space. In fact,
it's best to think of planes as vectors, they are merely mathematical constructs. Although planes are internally
defined by a parametric equation, I find it easiest to think of them as a set of axes:

X

Y

Z

O

A plane definition is an array of one point and three vectors, the point marks the origin of the plane and the
vectors represent the three axes. There are some rules to plane definitions, I.e. not every combination of points
and vectors is a valid plane. If you create a plane using one of the RhinoScript plane methods you don't have to
worry about this, since all the bookkeeping will be done for you. The rules are as follows:

The axis vectors must be unitized (have a length of 1.0).
All axis vectors must be perpendicular to each other.
The x and y axis are ordered anti-clockwise.

The illustration shows how rules #2 and #3 work in practise.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Call PlaneExample()
Sub PlaneExample()
 Dim ptOrigin : ptOrigin = Rhino.GetPoint("Plane origin")
 If IsNull(ptOrigin) Then Exit Sub

 Dim ptX : ptX = Rhino.GetPoint("Plane X-axis", ptOrigin)
 If IsNull(ptX) Then Exit Sub

 Dim ptY : ptY = Rhino.GetPoint("Plane Y-axis", ptOrigin)
 If IsNull(ptY) Then Exit Sub

 Dim dX : dX = Rhino.Distance(ptOrigin, ptX)
 Dim dY : dY = Rhino.Distance(ptOrigin, ptY)
 Dim arrPlane : arrPlane = Rhino.PlaneFromPoints(ptOrigin, ptX, ptY)

 Call Rhino.AddPlaneSurface(arrPlane, 1.0, 1.0)
 Call Rhino.AddPlaneSurface(arrPlane, dX, dY)
End Sub

You will notice that all RhinoScript methods that require
plane definitions make sure these demands are met, no
matter how poorly you defined the input.

The adjacent illustration shows how the
Rhino.AddPlaneSurface() call on line 16 results in the
red plane, while the Rhino.AddPlaneSurface() call on
line 17 creates the yellow surface which has dimensions
equal to the distance between the picked origin and axis
points.

1

2

3
Rhino Viewport

1.
2.
3.

60

We'll only pause briefly at plane definitions since planes, like vectors, are usually only constructive elements.
In examples to come they will be used extensively so don't worry about getting the hours in. A more interesting
script which uses the Rhino.AddPlaneSurface() method is the one below which populates a surface with
so-called surface frames:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Call WhoFramedTheSurface()
Sub WhoFramedTheSurface()
 Dim idSurface : idSurface = Rhino.GetObject("Surface to frame", 8, True, True)
 If IsNull(idSurface) Then Exit Sub

 Dim intCount : intCount = Rhino.GetInteger("Number of iterations per direction", 20, 2)
 If IsNull(intCount) Then Exit Sub

 Dim uDomain : uDomain = Rhino.SurfaceDomain(idSurface, 0)
 Dim vDomain : vDomain = Rhino.SurfaceDomain(idSurface, 1)
 Dim uStep : uStep = (uDomain(1) - uDomain(0)) / intCount
 Dim vStep : vStep = (vDomain(1) - vDomain(0)) / intCount

 Dim u, v
 Dim pt
 Dim srfFrame

 Call Rhino.EnableRedraw(False)
 For u = uDomain(0) To uDomain(1) Step uStep
 For v = vdomain(0) To vDomain(1) Step vStep
 pt = Rhino.EvaluateSurface(idSurface, Array(u, v))
 If Rhino.Distance(pt, Rhino.BrepClosestPoint(idSurface, pt)(0)) < 0.1 Then
 srfFrame = Rhino.SurfaceFrame(idSurface, Array(u, v))
 Call Rhino.AddPlaneSurface(srfFrame, 1.0, 1.0)
 End If
 Next
 Next
 Call Rhino.EnableRedraw(True)
End Sub

Frames are planes which are used to indicate geometrical directions. Both curves, surfaces and textured meshes
have frames which identify tangency and curvature in the case of curves and {u} and {v} directions in the case
of surfaces and meshes. The script above simply iterates over the {u} and {v} directions of any given surface and
adds surface frame objects at all uv coordinates it passes.

On lines 9 to 12 we determine the domain of the surface
in u and v directions and we derive the required stepsize
from those limits.

Line 19 and 20 form the main structure of the two-
dimensional iteration. You can read such nested For…Next
loops as "Iterate through all columns and inside every
column iterate through all rows".

Line 21 and 22 do something interesting which is not
apparent in the adjacent illustration. When we are dealing
with trimmed surfaces, those two lines prevent the script
from adding planes in cut-away areas. By comparing the
point on the (untrimmed) surface to it's projection onto
the trimmed surface, we know whether or not the {uv}
coordinate in question representsan actual point on the
trimmed surface.

Rhino Viewport

The Rhino.SurfaceFrame() method returns a unitized frame whose axes point in the {u} and {v} directions of
the surface. Note that the {u} and {v} directions are not necessarily perpendicular to each other, but we only add
valid planes whose x and y axis are always at 90º, thus we ignore the direction of the v-component.

61

7.6 Circles, Ellipses and Arcs

Although the user is never confronted with parametric objects in Rhino, the openNURBS™ kernel has a certain set
of mathematical primitives which are stored parametrically. Examples of these are cylinders, spheres, circles,
revolutions and sum-surfaces. To highlight the difference between explicit (parametric) and implicit circles:

Shape Description

R=2.3

The image on the left represents the openNurbs circle definition (better known as ON_Circle)
which is used with gay abandon throughout Rhino. Circles -and their derivatives- occur
everywhere in geometry so it is no surprise that a parametric version was implemented
in openNURBS. An ON_Circle is defined by a plane and a radius. The plane defines the
orientation, the radius defines the size.

When you draw a circle in Rhino it is in fact an ON_Circle, but the parametric data has no
frontend. I.e. if you turn on the circle control-points you do not get access to the explicit
values. Instead you see the structure on the left. This is the nurbs equivalent of a perfect
circle. Unfortunately it is impossible for a nurbs curve to manifest itself as a perfect circle,
but with the trickery of weighted control-points we can get very close indeed.

If we do not endulge ourselves with exotic nurbs properties but instead stick to the standard
degree=3, non-weighted curve, it is also possible to simulate a circle, even though it takes
a lot of control points to get an accurate approximation. In the case of four control points,
the resulting curve deviates from the perfect circle by nearly 3%.

When the point count is increased to five, the deviation is reduced to nearly 1%. Still, this is
way above typical CAD accuracy thresholds and the curve is even visually off.

Nearly 0.5% deviation in the case of six control points.

And less than .003‰ with 20 control-points.

When adding circles to Rhino through scripting, we can either use the Plane+Radius approach or we can use a
3-Point approach (which is internally translated into Plane+Radius). Now then, high time for a bit of math. Those
of you who have not yet successfully repressed any childhood memory regarding math classes will remember
that circles are tightly linked with sines and cosines; those lovable, undulating waves. We're going to create a
script which packs circles with a predefined radius onto a sphere with another predefined radius. Now, before
we start and I give away the answer, I'd like you to take a minute and think about this problem.

Relax... take your time.

The most obvious solution is to start stacking circles in horizontal bands and simply to ignore any vertical nesting
which might take place. If you reached a similar solution and you want to keep feeling good about yourself I
recommend you skip the following two sentences. This very solution has been found over and over again but
for some reason Dave Rusin is usually given as the inventor. Even though Rusin's algorithm isn't exactly rocket
science, it is worth discussing the mathematics in advance in order to prevent -or at least reduce- any confusion
when I finally confront you with the code.

Rusin's algorithm works as follows:

Solve how many circles you can evenly stack from north pole to south pole on the sphere.
For each of those bands, solve how many circles you can stack evenly around the sphere.
Do it.

1.
2.
3.

62

No wait, back up. The first thing to realize is how a sphere actually works. Only once we master spheres can be
start packing them with circles. In Rhino, a sphere is a surface of revolution, which has two singularities and a
single seam:

The north pole (the black dot in the left most image) and the south pole (the white dot in the same image)
are both on the main axis of the sphere and the seam (the thick edge) connects the two. In essence, a sphere
is a rectangular plane bend in two directions, where the left and right side meet up to form the seam and the
top and bottom edge are compressed into a single point each (a singularity). This coordinate system should
be familiar since we use the same one for our own planet. However, our planet is divided into latitude and
longitude degrees, whereas spheres are defined by latitude and longitude radians. The numeric domain of the
latitude of the sphere starts in the south pole with -½π, reaches 0.0 at the equator and finally terminates with
½π at the north pole. The longitudinal domain starts and stops at the seam and travels around the sphere from
0.0 to 2π. Now you also know why it is called a 'seam' in the first place; it's where the domain suddenly jumps
from one value to another, distant one.

We cannot pack circles in the same way as we pack squares in the image above since that would deform them
heavily near the poles, as indeed the squares are deformed. We want our circles to remain perfectly circular
which means we have to fight the converging nature of the sphere.

Assuming the radius of the circles we are about to stack is sufficiently smaller than
the radius of the sphere, we can at least place two circles without thinking; one on
the north- and one on the south pole. The additional benefit is that these two circles
now handsomely cover up the singularities so we are only left with the annoying seam.
The next order of business then, is to determine how many circles we need in order to
cover up the seam in a straightforward fashion. The length of the seam is half of the
circumference of the sphere (see yellow arrow in adjacent illustration).

The total number of circles that fit between and including the two poles is the length
of the seam divided by the diameter of the circles. This division however may yield a
non-integer value and since we are not interested in stacking quarter circles, we need to
round that value down to the nearest integer. This in turn probably means that we will
not be able to cover up the seam entirely, but rest assured; if this was in fact the best
of all possible worlds you would probably not be reading this primer to begin with. The
image on the left shows the circles we've been able to stack so far and as you can see
the seam and the poles are all covered up.

Home stretch time, we've collected all the information we need in order to populate
this sphere. The last step of the algorithm is to stack circles around the sphere, starting
at every seam-circle. We need to calculate the circumference of the sphere at that
particular latitude, divide that number by the diameter of the circles and once again find
the largest integer value which is smaller than or equal to that result. The equivalent
mathematical notation for this is:

()Cos
R

R
N

2
2

count
circle

sphere

$
$ $r z

= < F

in case you need to impress anyone…

63

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Call DistributeCirclesOnSphere()
Sub DistributeCirclesOnSphere()
 Dim SphereRadius
 SphereRadius = Rhino.GetReal("Radius of sphere", 10.0, 0.01)
 If IsNull(SphereRadius) Then Exit Sub

 Dim CircleRadius
 CircleRadius = Rhino.GetReal("Radius of packing circles", _
 0.05 * SphereRadius, _
 0.001, 0.5 * SphereRadius)
 If IsNull(CircleRadius) Then Exit Sub

 Dim VerticalCount, HorizontalCount
 VerticalCount = Int((Rhino.Pi * SphereRadius) / (2 * CircleRadius))

 Dim phi, theta
 Dim CircleCenter, CircleNormal, CirclePlane

 Call Rhino.EnableRedraw(False)
 For phi = -(0.5 * Rhino.Pi) To (0.5 * Rhino.Pi) Step (Rhino.Pi / VerticalCount)
 HorizontalCount = Int((2 * Rhino.Pi * Cos(phi) * SphereRadius) / (2 * CircleRadius))
 If HorizontalCount = 0 Then HorizontalCount = 1

 For theta = 0 To (2 * Rhino.Pi - 1e-8) Step ((2 * Rhino.Pi) / HorizontalCount)
 CircleCenter = Array(SphereRadius * Cos(theta) * Cos(phi), _
 SphereRadius * Sin(theta) * Cos(phi), _
 SphereRadius * Sin(phi))

 CircleNormal = Rhino.PointSubtract(CircleCenter, Array(0,0,0))
 CirclePlane = Rhino.PlaneFromNormal(CircleCenter, CircleNormal)
 Call Rhino.AddCircle(CirclePlane, CircleRadius)
 Next
 Next
 Call Rhino.EnableRedraw(True)
End Sub

Line Description

1…11 Collect all custom variables and make sure they make sense. We don't want spheres smaller than 0.01
units and we don't want circle radii larger than half the sphere radius.

14 Compute the number of circles from pole to pole. The Int() function in VBScript takes a double and
returns only the integer part of that number. Hence it always rounds downwards as opposed to the
CInt() (Convert to Integer) which rounds double values to the nearest integer.

16 phi and theta (Φ and Θ) are typically used to denote angles in spherical space and it's not hard to see
why. I could have called them latitude and longitude respectively as well.

17 CircleCenter will be used to store the center point of the circles we're going to add.
CircleNormal will be used to store the normal of the plane in which these circles reside.
CirclePlane will be used to store the resulting plane definition.

20 The phi loop runs from -½π to ½π and we need to run it VerticalCount times.

21 This is where we calculate how many circles we can fit around the sphere on the current latitude. The
math is the same as before, except we also need to calculate the length of the path around the sphere:
2π·R·Cos(Φ)

22 If it turns out that we can fit no circles at all at a certain latitude, we're going to get into trouble since
we use the HorizontalCount variable as a denominator in the stepsize calculation on line 24. And even
my mother knows you cannot divide by zero. However, we know we can always fit at least one circle.

64

Line Description
24 This loop is essentially the same as the one on line 20, except it uses a different stepsize and a different

numeric range ({0.0 <= theta < 2π} instead of {-½π <= phi <= +½π}). The more observant among you will
have noticed that the domain of theta reaches from nought up to but not including two pi. If theta
would go all the way up to 2π then there would be a duplicate circle on the seam. The best way of
preventing a loop to reach a certain value is to subtract a fraction of the stepsize from that value, in
this case I have simply subtracted a ludicrously small number (1e-8 = 0.00000001).

25 This is mathematically the most demanding line, and I'm not going to provide a full proof of why and
how it works. This is the standard way of translating the spherical coordinates Φ and Θ into Cartesian
coordinates x, y and z.

Further information can be found on MathWorld.com

29 Once we found the point on the sphere which corresponds to the current values of phi and theta, it's
a piece of proverbial cake to find the normal of the sphere at that location. The normal of a sphere at
any point on its surface is the inverted vector from that point to the center of the sphere. And that's
what we do on line 29, we subtract the sphere origin (always (0,0,0) in this script) from the newly
found {x,y,z} coordinate.

30…31 We can construct a plane definition from a single point on that plane and a normal vector and we can
construct a circle from a plane definition and a radius value. Voila.

Ellipses

Ellipses essentially work the same as circles, with the difference that you have to supply two radii instead of
just one. Because ellipses only have two mirror symmetry planes and circles possess rotational symmetry (I.e. an
infinite number of mirror symmetry planes), it actually does matter a great deal how the base-plane is oriented
in the case of ellipses. A plane specified merely by origin and normal vector is free to rotate around that vector
without breaking any of the initial constraints.

The following example script demonstrates very clearly how the orientation of the base plane and the ellipse
correspond. Consider the standard curvature analysis graph as shown on the left:

It gives a clear impression of the range of different curvatures in the spline, but it doesn't communicate the
helical twisting of the curvature very well. Parts of the spline that are near-linear tend to have a garbled
curvature since they are the transition from one well defined bend to another. The arrows in the left image
indicate these areas of twisting but it is hard to deduce this from the curvature graph alone. The upcoming
script will use the curvature information to loft a surface through a set of ellipses which have been oriented
into the curvature plane of the local spline geometry. The ellipses have a small radius in the bending plane of
the curve and a large one perpendicular to the bending plane. Since we will not be using the strength of the
curvature but only its orientation, small details will become very apparent.

http://mathworld.wolfram.com/SphericalCoordinates.html

65

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Call FlatWorm()
Sub FlatWorm()
 Dim crvObject : crvObject = Rhino.GetObject("Pick a backbone curve", 4, True, False)
 If IsNull(crvObject) Then Exit Sub
 Dim intSamples : intSamples = Rhino.GetInteger("Number of cross sections", 100, 5)
 If IsNull(intSamples) Then Exit Sub
 Dim dblBendRadius : dblBendRadius = Rhino.GetReal("Bend plane radius", 0.5, 0.001)
 If IsNull(dblBendRadius) Then Exit Sub
 Dim dblPerpRadius : dblPerpRadius = Rhino.GetReal("Ribbon plane radius", 2.0, 0.001)
 If IsNull(dblPerpRadius) Then Exit Sub

 Dim crvDomain : crvDomain = Rhino.CurveDomain(crvObject)
 Dim t, N

 Dim arrCrossSections(), CrossSectionPlane
 Dim crvCurvature, crvPoint, crvTangent, crvPerp, crvNormal

 N = -1
 For t = crvDomain(0) To crvDomain(1) + 1e-9 Step (crvDomain(1)-crvDomain(0))/intSamples
 N = N+1
 crvCurvature = Rhino.CurveCurvature(crvObject, t)

 If IsNull(crvCurvature) Then
 crvPoint = Rhino.EvaluateCurve(crvObject, t)
 crvTangent = Rhino.CurveTangent(crvObject, t)
 crvPerp = Array(0,0,1)
 crvNormal = Rhino.VectorCrossProduct(crvTangent, crvPerp)
 Else
 crvPoint = crvCurvature(0)
 crvTangent = crvCurvature(1)
 crvPerp = Rhino.VectorUnitize(crvCurvature(4))
 crvNormal = Rhino.VectorCrossProduct(crvTangent, crvPerp)
 End If

 CrossSectionPlane = Rhino.PlaneFromFrame(crvPoint, crvPerp, crvNormal)
 ReDim Preserve arrCrossSections(N)
 arrCrossSections(N) = Rhino.AddEllipse(CrossSectionPlane, dblBendRadius, dblPerpRadius)
 Next
 If N < 1 Then Exit Sub
 Call Rhino.AddLoftSrf(arrCrossSections)
 Call Rhino.DeleteObjects(arrCrossSections)
End Sub

Line Description
15 arrCrossSections() is an array where we will store all our ellipse IDs. We need to remember all the

ellipses we add since they have to be fed to the Rhino.AddLoftSrf() method. CrossSectionPlane
will contain the base plane data for every individual ellipse, we do not need to remember these planes
so we can afford to overwrite the old value with any new one.
You'll notice I'm violating a lot of naming conventions from paragraph [2.3.5 Using Variables]. If you
want to make something of it we can take it outside.

16 crvCurvature will be used to store all curvature data we receive from Rhino.
crvPoint will be the point (R3) on the curve at the specified parameter t.
crvTangent will be the tangent vector to the curve at t.
crvPerp will be the vector that points in the direction of the curve bending plane.
crvNormal will be the cross-product vector from crvTangent and crvPerp.

18 The variable N ("N" is often used as an integer counting variable) starts at minus one. This is a personal
preference. Many programmers prefer to start N at zero and increment the value at the end of the
loop, I prefer to start at -1 and increment at the start of the loop. My method is not better, or faster
or less likely to crash. The only difference with the Start-With-Zero approach is that once the loop
completes my N will indicate the upper-bound of the array rather than the upper-bound-plus-one.

19 We'll be walking along the curve with equal parameter steps. This is arguably not the best way, since we
might be dealing with a polycurve which has wildly different parameterizations among its subcurves.
This is only an example script though so I wanted to keep the code to a minimum. We're using the same
trick as before in the header of the loop to ensure that the final value in the domain is included in the
calculation. By extending the range of the loop by one billionth of a parameter we circumvent the
'double noise problem' which might result from multiple additions of doubles.

20 We're setting up N to be the correct upperbound indicator for our arrCrossSections array.

66

Line Description
21 The Rhino.CurveCurvature() method returns a whole set of data to do with curvature analysis.

However, it will fail on any linear segment (the radius of curvature is infinite on linear segments).

23…27 Hence, if it fails we have to collect the standard information in the old fashioned way. We also have
to pick a crvPerp vector since none is available. We could perhaps use the last known one, or look at
the local plane of the curve beyond the current -unsolvable- segment, but I've chosen to simply use a
z-axis vector by default.

28…32 If the curve does have curvature at t, then we extract the required information directly from the
curvature data.

35 Construct the plane for the ellipse.

36…37 Enlarge the array and store the new ellipse curve ID in the last element.

40…41 Create a lofted surface through all ellipses and delete the curves afterwards.

Arcs

This section is called 'Circles, Ellipses and Arcs', which means we're still only two thirds of the way there.
Medieval biblical triptychs typically depicted Paradise on the left, Earth in the middle and Hell on the right and
the parallel is so overwhelming I cannot refrain from pointing it out. The bit about circles was about perfect
(Paradise) stacking, the bit on ellipses was about finding imperfections (Earth) in curvature and the bit about
arcs is going to be very hot indeed. We've reached that point in the process where words like "dotproduct" and
"arccosine" can be found sharing the same sentence.

Since the topic Arcs isn't much different from the topic Circles, I thought it would be a nice idea to drag in
something extra. This something extra is what we programmers call "recursion" and it is without doubt the
most exciting thing in our lives (we don't get out much). Recursion is the process of self-repetition. Like loops
which are iterative and execute the same code over and over again, recursive functions call themselves and
thus also execute the same code over and over again, but this process is hierarchical. It actually sounds harder
than it is. One of the success stories of recursive functions is their implementation in binary trees which are
the foundation for many search and classification algorithms in the world today. I'll allow myself a small detour
on the subject of recursion because I would very much like you to appreciate the power that flows from the
simplicity of the technique. Recursion is unfortunately one of those things which only become horribly obvious
once you understand how it works.

Imagine a box in 3D space which contains a number of points within its volume. This box exhibits a single
behavioural pattern which is recursive. The recursive function evaluates a single conditional statement: {when
the number of contained points exceeds a certain threshold value then subdivide into 8 smaller boxes, otherwise
add yourself to the document}. It would be hard to come up with an easier If…Then…Else statement. Yet,
because this behaviour is also exhibited by all newly created boxes, it bursts into a chain of recursion, resulting
in the voxel spaces in the images below:

Threshold 5000 Threshold 500 Threshold 100 Threshold 10

The input in these cases was a large pointcloud shaped like the upper half of a sphere. There was also a
dense spot with a higher than average concentration of points. Because of the approximating pattern of the
subdivision, the recursive cascade results in these beautiful stacks. Trying to achieve this result without the use
of recursion would entail a humongous amount of bookkeeping and many, many lines of code.

67

Before we can get to the cool bit we have to write some of the supporting functions, which -I hate to say it- once
again involve goniometry (the mathematics of angles).

The problem: adding an arc using the start point, end point and start direction. As you will be aware there is a
way to do this directly in Rhino using the mouse. In fact a brief inspection yields 14 different ways in which arcs
can be drawn in Rhino manually and yet there are only two ways to add arcs through scripting:

Rhino.AddArc(Plane, Radius, Angle)
Rhino.AddArc3Pt(Point, Point, Point)

The first way is very similar to adding circles using plane and radius values, with the added argument for sweep
angle. The second way is also similar to adding circles using a 3-point system, with the difference that the
arc terminates at the first and second point. There is no direct way to add arcs from point A to point B while
constrained to a start tangent vector. We're going to have to write a function which translates the desired Start-
End-Direction approach into a 3-Point approach. Before we tackle the math, let's review how it works:

A

B

D We start with two points {A} & {B} and a vector definition {D}. The arc we're
after is the red curve, but at this point we don't know how to get there yet. Note
that this problem might not have a solution if {D} is parallel or anti-parallel to
the line from {A} to {B}. If you try to draw an arc like that in Rhino it will not
work. Thus, we need to add some code to our function that aborts when we're
confronted with unsolvable input.

C

M

Baseline

We're going to find the coordinates of the point in the middle of the desired arc
{M}, so we can use the 3Point approach with {A}, {B} and {M}. As the illustration
on the left indicates, the point in the middle of the arc is also on the line
perpendicular from the middle {C} of the baseline.

Bi
se

cto
r

|D|

|Baseline|

The halfway point on the arc also happens to lie on the bisector between {D}
and the baseline vector. We can easily construct the bisector of two vectors in
3D space by process of unitizing and adding both vectors. In the illustration on
the left the bisector is already pointing in the right direction, but it still hasn't
got the correct length.

We can compute the correct length using the standard "Sin-Cos-Tan right triangle
rules":

The triangle we have to solve has a 90º angle in the lower right corner, a is the
angle between the baseline and the bisector, the length of the bottom edge of
the triangle is half the distance between {A} and {B} and we need to compute
the length of the slant edge (between {A} and {M}).

The relationship between a and the lengths of the sides of the triangle is:

?
.Cos D0 5

=a] g » .
?

Cos D
1

0 5
=

a] g »
. ?

Cos
D0 5

=
a] g

We now have the equation we need in order to solve the length of the slant edge. The only remaining problem
is cos(a). In the paragraph on vector mathematics (6.2 Points and Vectors) the vector dotproduct is briefly
introduced as a way to compute the angle between two vectors. When we use unitized vectors, the arccosine
of the dotproduct gives us the angle between them. This means the dotproduct returns the cosine of the angle
between these vectors. This is a very fortunate turn of events since the cosine of the angle is exactly the thing
we're looking for. In other words, the dotproduct saves us from having to use the cosine and arccosine functions
altogether. Thus, the distance between {A} and {M} is the result of:

(0.5 * Rhino.Distance(A, B)) / Rhino.VectorDotProduct(D, Bisector)

If you're really serious about this primer, it might be a good idea to try and write this function yourself before
you sneak a peek at my version… just a thought.

1.
2.

68

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Function AddArcDir(ByVal ptStart, ByVal ptEnd, ByVal vecDir)
 AddArcDir = Null

 Dim vecBase : vecBase = Rhino.PointSubtract(ptEnd, ptStart)
 If Rhino.VectorLength(vecBase) = 0.0 Then Exit Function
 If Rhino.IsVectorParallelTo(vecBase, vecDir) Then Exit Function

 vecBase = Rhino.VectorUnitize(vecBase)
 vecDir = Rhino.VectorUnitize(vecDir)

 Dim vecBisector : vecBisector = Rhino.VectorAdd(vecDir, vecBase)
 vecBisector = Rhino.VectorUnitize(vecBisector)

 Dim dotProd : dotProd = Rhino.VectorDotProduct(vecBisector, vecDir)
 Dim midLength : midLength = (0.5 * Rhino.Distance(ptStart, ptEnd)) / dotProd
 vecBisector = Rhino.VectorScale(vecBisector, midLength)

 AddArcDir = Rhino.AddArc3Pt(ptStart, ptEnd, Rhino.PointAdd(ptStart, vecBisector))
End Function

Line Description
1 The ptStart argument indicates the start of the arc, ptEnd the end and vecDir the direction at

ptStart. This function will behave just like the Rhino.AddArc3Pt() method, it takes a set of arguments
and returns the identifier of the created curve object if successful. If no curve was added the function
returns Null.

2 Set the return value to Null, in case we need to abort.

4 Create the baseline vector (from {A} to {B}), by subtracting {A} from {B}.

5 If {A} and {B} are coincident, no solution is possible. Actually, there is an infinite number of solutions
so we wouldn't know which one to pick.

6 If vecDir is parallel (or anti-parallel) to the baseline vector, then no solution is possible at all.

8…9 Make sure all vector definitions so far are unitized.

11…12 Create the bisector vector and unitize it.

14 Compute the dotproduct between the bisector and the direction vector. Since the bisector is exactly
halfway the direction vector and baseline vector (indeed, that is the point to its existence), we could
just as well have calculated the dotproduct between it and the baseline vector.

15 Compute the distance between ptStart and the center point of the desired arc.

16 Resize the (unitized) bisector vector to match this length.

18 Create an arc using the start, end and midpoint arguments, return the ID.

We need this function in order to build a
recursive tree-generator which outputs trees
made of arcs. Our trees will be governed
by a set of five variables but -due to the
flexible nature of the recursive paradigm- it
will be very easy to add more behavioural
patterns. The growing algorithm as
implemented in this example is very simple
and doesn't allow a great deal of variation.

The five base parameters are:

Propagation factor
Twig length
Twig length mutation
Twig angle
Twig angle mutation

1.
2.
3.
4.
5.

69

The propagation-factor is a numeric range which indicates the minimum and maximum number of twigs that
grow at the end of every branch. This is a totally random affair, which is why it is called a "factor" rather than
a "number". More on random numbers in a minute. The twig-length and twig-length-mutation variables control
the -as you probably guessed- length of the twigs and how the length changes with every twig generation. The
twig-angle and twig-angle-mutation work in a similar fashion.

The actual recursive bit of this algorithm will not concern itself with the addition and shape of the twig-arcs.
This is done by a supporting function which we have to write before we can start growing trees. The problem we
have when adding new twigs, is that we want them to connect smoothly to their parent branch. We've already
got the plumbing in place to make tangency continuous arcs, but we have no mechanism yet for picking the
end-point. In our current plant-scheme, twig growth is controlled by two factors; length and angle. However,
since more than one twig might be growing at the end of a branch there needs to be a certain amount of random
variation to keep all the twigs from looking the same.

The adjacent illustration shows the algorithm we'll be using for
twig propagation. The red curve is the branch-arc and we need
to populate the end with any number of twig-arcs. Point {A} and
Vector {D} are dictated by the shape of the branch but we are
free to pick point {B} at random provided we remain within the
limits set by the length and angle constraints. The compete set
of possible end-points is drawn as the yellow cone. We're going
to use a sequence of Vector methods to get a random point {B} in
this shape:

Create a new vector {T} parallel to {D}
Resize {T} to have a length between {Lmin} and {Lmax}
Mutate {T} to deviate a bit from {D}
Rotate {T} around {D} to randomize the orientation

1.
2.
3.
4. A

D

BLmin

Lmax

Branch

Twig

1
2
3
4
5
6
7
8
9

10
11
12
13

Function RandomPointInCone(ByVal Origin, ByVal Direction, _
 ByVal MinDistance, ByVal MaxDistance, ByVal MaxAngle)
 Dim vecTwig
 vecTwig = Rhino.VectorUnitize(Direction)
 vecTwig = Rhino.VectorScale(vecTwig, MinDistance + Rnd() * (MaxDistance-MinDistance))

 Dim MutationPlane
 MutationPlane = Rhino.PlaneFromNormal(Array(0,0,0), vecTwig)

 vecTwig = Rhino.VectorRotate(vecTwig, Rnd() * maxAngle, MutationPlane(1))
 vecTwig = Rhino.VectorRotate(vecTwig, Rnd() * 360, Direction)
 RandomPointInCone = Rhino.PointAdd(Origin, vecTwig)
End Function

Line Description
1 Origin is synonymous with point {A}.

Direction is synonymous with vector {D}.
MinDistance and MaxDistance indicate the length-wise domain of the cone.
MaxAngle is a value which specifies the angle of the cone (in degrees, not radians).

3…5 Create a new vector parallel to Direction and resize it to be somewhere between MinDistance and
MaxDistance. I'm using the Rnd() function here which is a VBScript pseudo-random-number frontend.
It always returns a random value between zero and one.

7…8 In order to mutate vecTwig, we need to find a parallel vector. since we only have one vector here we
cannot directly use the Rhino.VectorCrossProduct() method, so we'll construct a plane and use its
x-axis. This vector could be pointing anywhere, but always perpendicular to vecTwig.

10 Mutate vecTwig by rotating a random amount of degrees around the plane x-axis.

11 Mutate vecTwig again by rotating it around the Direction vector. This time the random angle is
between 0 and 360 degrees.

12 Create the new point as inferred by Origin and vecTwig.

70

One of the definitions Wikipedia has to offer on the subject of recursion is: "In order to understand recursion,
one must first understand recursion." Although this is obviously just meant to be funny, there is an unmistakable
truth as well. The upcoming script is recursive in every definition of the word, it is also quite short, it produces
visually interesting effects and it is quite clearly a very poor realistic plant generator. The perfect characteristics
for exploration by trial-and-error. Probably more than any other example script in this primer this one is a lot of
fun to play around with. Modify, alter, change, mangle, rape and bend it as you see fit and please send me any
results you come up with.

There is a set of rules to which any working recursive function must adhere. It must place at least one call to
itself somewhere before the end and must have a way of exiting without placing any calls to itself. If the first
condition is not met the function cannot be called recursive and if the second condition is not met it will call
itself until time stops (or rather until the call-stack memory in your computer runs dry).

Lo and behold!
A mere 21 lines of code to describe the growth of an entire tree.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Sub RecursiveGrowth(ByVal ptStart, ByVal vecDir, ByVal Props(), ByVal Generation)
 If Generation > Props(2) Then Exit Sub
 Dim ptGrow, vecGrow, newTwig
 Dim newProps : newProps = Props

 newProps(3) = Props(3) * Props(4)
 newProps(5) = Props(5) * Props(6)
 If newProps(5) > 90 Then newProps(5) = 90

 Dim N, maxN
 maxN = CInt(Props(0) + Rnd() * (Props(1) - Props(0)))

 For N = 1 To maxN
 ptGrow = RandomPointInCone(ptStart, vecDir, 0.25*Props(3), Props(3), Props(5))
 newTwig = AddArcDir(ptStart, ptGrow, vecDir)
 If Not IsNull(newTwig) Then
 vecGrow = Rhino.CurveTangent(newTwig, Rhino.CurveDomain(newTwig)(1))
 Call RecursiveGrowth(ptGrow, vecGrow, newProps, Generation+1)
 End If
 Next
End Sub

Line Description
1 A word on the function signature. Apart from the obvious arguments ptStart and vecDir, this function

takes an array and a generation counter. The array contains all our growth variables. Since there are
seven of them in total I didn't want to add them all as individual arguments. Also, this way it is easier
to add parameters without changing function calls. The generation argument is an integer telling the
function which twig generation it is in. Normally a recursive function does not need to know its depth in
the grand scheme of things, but in our case we're making an exception since the number of generations
is an exit threshold, which bring us to line #2.

2 Indeed so. If the current generation exceeds the generation limit (which is stored at the third element
in the properties array) this function will abort without calling itself. Hence, it will take a step back
on the recursive hierarchy. The properties array consists of the following items:

Index Type Description
0 Integer Minimum number of twigs per branch
1 Integer Maximum number of twigs per branch
2 Integer Maximum number of allowed generations
3 Double Maximum twig length
4 Double Twig length mutation per generation
5 Double Maximum twig angle
6 Double Twig angle mutation per generation

mailto:david@mcneel.com

71

Line Description
3 Declare a bunch of variables we'll be needing. ptGrow will store the end point of a particular twig.

vecGrow will store the tangent at ptGrow for that new twig-arc and newTwig will store the ID of the
newly added arc curve.

4 This is where we make a copy of the properties. You see, when we are going to grow new twigs, those
twigs will be called with mutated properties, however we require the unmutated properties inside this
function instance.

6…8 Mutate the copied properties. I.e. multiply the maximum-twig-length by the twig-length-mutation
factor and do the same for the angle. We must take additional steps to ensure the angle doesn't go
berserk so we're limiting the mutation to within the 90 degree realm.

11 maxN is an integer which indicated the number of twigs we are about to grow. maxN is randomly picked
between the two allowed extremes (Props(0) and Props(1)). The Rnd() function generates a number
between zero and one which means that maxN can become any value between and including the
limits.

14 This is where we pick a point at random using the unmutated properties. The length constraints we're
using is hard coded to be between the maximum allowed length and a quarter of the maximum allowed
length. There is nothing in the universe which suggests a factor of 0.25, it is purely arbitrary. It does
however have a strong effect on the shape of the trees we're growing. It means it is impossible to
accurately specify a twig length. There is a lot of room for experimentation and change here.

15 We create the arc that belongs to this twig.

16 If the distance between ptStart and ptGrow was 0.0 or if vecDir was parallel to ptStart » ptGrow
then the arc could not be added. We need to catch this problem in time.

17 We need to know the tangent at the end of the newly created arc curve. The domain of a curve
consists of two values (a lower and an upper bound). Rhino.CurveDomain(newTwig)(1) will return the
upper bound of the domain. This is the same as calling:

Dim crvDomain : crvDomain = Rhino.CurveDomain(newTwig)
vecGrow = Rhino.CurveTangent(newTwig, crvDomain(1))

18 Awooga! Awooga! A function calling itself! This is it! We made it!
The thing to realize is that the call is now different. We're putting in different arguments which means
this new function instance behaves differently than the current function instance.

Well, that's it. The show is over. You don't have to go home but you can't stay here. Oh, one last thing. It would
have been possible to code this tree-generator in an iterative (using only For…Next loops) fashion. The tree
would look the same even though the code would be very different (probably a lot more lines). The order in
which the branches are added would very probably also have differed. The trees below are archetypal, digital
trees, the one on the left generated using iteration, the one on the right generated using recursion. Note the
difference in branch order. If you look carefully at the recursive function on the previous page you'll probably
be able to work out where this difference comes from...

72

A small comparison table for different setting combinations. Please note that the trees have a very high random
component.

Tree generator examples

Standard settings, medium twig length
reduction, medium twig angle reduction.

Strong angle reduction with every generation.

Strong angle multiplication with every generation. High branching factor, low angle.

Low branching limit. Default settings without twig length reduction.

Low twig angle. Strong twig length reduction.

73

7.7 Nurbs-curves

Circles and arcs are all fine and dandy, but they cannot be used to draw freeform shapes. For that you need
splines. The worlds most famous spline is probably the Bézier curve, which was developed in 1962 by the French
engineer Pierre Bézier while he was working for Renault. Most splines used in computer graphics these days are
variations on the Bézier spline, and they are thus a surprisingly recent arrival on the mathematical scene. Other
ground-breaking work on splines was done by Paul de Casteljau at Citroën and Carl de Boor at General Motors.
The thing that jumps out here is the fact that all these people worked for car manufacturers. With the increase
in engine power and road quality, the automobile industry started to face new problems halfway through the
twentieth century, one of which was aerodynamics. New methods were needed to design mass-production cars
that had smooth, fluent curves as opposed to the tangency and curvature fractured shapes of old. They needed
mathematically accurate, freely adjustable geometry. Enter splines.

Before we start with NURBS curves (the mathematics of which are a bit too complex for a scripting primer) I'd
like to give you a sense of how splines work in general and how Béziers work in particular. I'll explain the de
Casteljau algorithm which is a very straightforward way of evaluating properties of simple splines. In practice,
this algorithm will rarely be used since its performance is worse than alternate approaches, but due to its visual
appeal it is easier to 'get a feel' for it.

Subsequent steps of the de Casteljau algorithm

A

B

C

D On the left you see a standard (cubic) Bezier curve. The curve
begins at {A} and ends at {D}. The direction of the vectors {AB}
and {DC} control the tangents at the end points.

Given only the coordinates {A; B; C; D} a ruler and a pencil, you
can contruct a fair approximation of the red spline by finding a
number of points on the spline and then connecting them with
straight segments. Here's how it works:

1
3

2
3

2
3

2
3

1
3

1
3

Let us say we want to find the Point {P} which is one third of
the way between {A} and {D}. Note that this is not a third of the
distance along the spline, but a third of the parameter domain. A
curve like this has a parameter domain from 0.0 to 1.0, regardless
of its actual dimensions.

The first order of business is to find the coordinates on the
control-polygon which are one third between all adjacent control
points.

1
3

1
3

2
3

2
3

We started with 4 control points, now we have three subdivision
coordinates (on segments {AB}, {BC} and {CD}). We perform the
same trick once more, now reducing the number of coordinates
to 2. As you can see, the line connecting these two points already
intersects with the spline. (This line segment incidentally
describes the tangent of the spline at t = 1/3)

1
3

2
3

P

One final iteration gets rid of the last line segment and we are
left with point {P}, which is ON the spline, at parameter 1/3 .

The de Casteljau algorithm is an easy way to evaluate spline
points and tangents. The math gets a lot more complicated from
here on out, and although some of it is essential information (like
knots and periodicy), we will not discuss NURBS evaluators.

74

Splines limited to four control points were not the end of the revolution of course. Soon, more advanced spline
definitions were formulated one of which is the NURBS curve. (Just to set the record straight; NURBS stands for
Non-Uniform Rational [Basic/Basis] Spline and not Bézier-Spline as some people think. In fact, the Rhino help
file gets it right, but I doubt many of you have read the glossary section, I only found out just now.) Bézier splines
are a subset of NURBS curves, meaning that every Bézier spline can be represented by a NURBS curve, but not
the other way around. Other curve types still in use today (but not available in Rhino) are Hermite, Cardinal,
Catmull-Rom, Beta and Akima splines, but this is not a complete list. Hermite curves for example are used by
the Bongo animation plug-in to smoothly transform objects through a number of keyframes.

In addition to control point locations, NURBS curves have additional properties such as the degree, knot-vectors
and weights. I'm going to assume that you already know how weight factors work (if you don't, it's in the Rhino
help file under [NURBS About]) so I won't discuss them here. Instead, we'll continue with the correlation between
degrees and knot-vectors.

Every NURBS curve has a number associated with it which represents the degree. The degree of a curve is always
a positive integer between and including 1 and 11. The degree of a curve is written as DN. Thus D1 is a degree one
curve and D3 is a degree three curve. The table on the next page shows a number of curves with the exact same
control-polygon but with different degrees. In short, the degree of a curve determines the range of influence of
control points. The higher the degree, the larger the range.

Degrees may be easy to understand, but I vividly remember having a hard time with the knot-vector concept
when I first started programming. The first clear moment was when I realized that the knot-vector isn't a vector
at all, it's in fact an array of numbers. The terminology is confusing, especially to non-math-PhDs, so whenever
you see "knot vector" don't think "twisted-arrows-in-space", but think "list-of-numbers".

As you will recall from the beginning of this section, a quadratic Bézier curve is defined by four control points. A
quadratic NURBS curve however can be defined by any number of control points (any number larger than three
that is), which in turn means that the entire curve consists of a number of connected pieces. The illustration
below shows a D3 curve with 10 control points. All the individual pieces have been given a different colour. As
you can see each piece has a rather simple shape; a shape you could approximate with a traditional, four-point
Bézier curve. Now you know why NURBS curves and other splines are often described as "piece-wise curves".

0 1
2

3

4
5
6

7
8

11

10
9

A

B

C D

The shape of the red piece is entirely dictated by the first four control points. In fact, since this is a D3 curve,
every piece is defined by four control points. So the second (orange) piece is defined by points {A; B; C; D}. The
big difference between these pieces and a traditional Bézier curve is that the pieces stop short of the local
control polygon. Instead of going all the way to {D}, the orange piece terminates somewhere in the vicinity of
{C} and gives way to the green piece. Due to the mathematical magic of spline curves, the orange and green
pieces fit perfectly, they have an identical position, tangency and curvature at point 4.

As you may or may not have guessed at this point, the little circles between pieces represent the knot-vector of
this curve. This D3 curve has ten control points and twelve knots (0~11). This is not a coincidence, the number
of knots follows directly from the number of points and the degree:

KN = PN + (D - 1)

Where {KN} is the knot count, {PN} is the point count and {D} is the degree.

75

In the image on the previous page, the red and purple pieces do in fact touch the control polygon at the
beginning and end, but we have to make some effort to stretch them this far. This effort is called "clamping",
and it is achieved by stacking a lot of knots together. You can see that the number of knots we need to collapse
in order to get the curve to touch a control-point is the same as the degree of the curve:

NURBS curve knot vectors as a result of varying degree

A D1 nurbs curve behaves the same as a polyline.
It follows from the knotcount formula that a D1
curve has a knot for every control point. Thus,
there is a one-to-one relationship.

A D2 nurbs curve is in fact a rare sighting. It always
looks like it is over-stressed, but the knots are
at least in straightforward locations. The spline
intersects with the control polygon halfway each
segment. D2 nurbs curves are typically only used
to approximate arcs and circles.

D3 is the most common type of nurbs curve and
-indeed- the default in Rhino. You are probably
very familiar with the visual progression of the
spline, eventhough the knots appear to be in
odd locations.

D4 is technically possible in Rhino, but the math
for nurbs curves doesn't work as well with even
degrees. Odd numbers are usually preferred.

D5 is also quite a common degree. Like the D3
curves it has a natural, but smoother appearance.
Because of the higher degree, control points
have a larger range of influence.

D7 and D9 are pretty much hypothetical degrees.
Rhino goes all the way up to D11, but these
high-degree-splines bear so little resemblance
to the shape of the control polygon that they
are unlikely to be of use in typical modeling
applications.

A clamped curve always has a bunch of knots at the beginning and end (periodic curves do not, but we'll get
to that later). If a curve has knot clusters on the interior as well, then it will touch one of the interior control
points and we have a kinked curve. There is a lot more to know about knots, but we're already dangerously close
to permanent brain injury so I suggest we continue with some simple nurbs curves and let Rhino worry about
the knot vector for the time being.

Actually, this would be a good time to get hammered/some sleep/a smoke/Chinese take-away. All this theory
you have just been dredged through is not easy and you shouldn't blame yourself for not getting it right away.
Luckily, you are unlikely to be confronted face-to-face with knot vectors in daily practise but if you're like me
(even if only a little bit) you might be more comfortable working with nurbs if you understand the essentials...

76

Control-point curves

The _FilletCorners command in Rhino puts filleting arcs across all sharp
kinks in a polycurve. Since fillet curves are tangent arcs, the corners have
to be planar. All flat curves though can always be filleted as the image to
the right shows.

The input curve {A} has nine G0 corners (filled circles) which qualify for
a filleting operation and three G1 corners (empty circles) which do not.
Since each segment of the polycurve has a length larger than twice the
fillet radius, none of the fillets overlap and the result is a predictable
curve {B}.

Since blend curves are freeform they are allowed to twist and curl as
much as they please. They have no problem with non-planar segments.
Our assignment for today is to make a script which inserts blend corners
into polylines. We're not going to handle polycurves (with freeform curved
segments) since that would involve quite a lot of math and logic which
goes beyond this simple curve introduction. This unfortunately means we
won't actually be making non-planar blend corners, but such is life. Full of
disappointments. Especially for programmers.

The logic of our BlendCorners script is simple:

A

B

Iterate though all segments of the polyline.
From the beginning of the segment {A}, place an extra control point {W1} at distance {R}.
From the end of the segment {B}, place an extra control point {W2} at distance {R}.
Put extra control-points halfway between {A; W1; W2; B}.
Insert a D5 nurbs curve using those new control points.

Or, in graphic form:

0 1 2 3 4 5

0
1

2
3

4
5

6

A W1 W2 B

The first image shows our input curve positioned on a unit grid. The shortest segment has a length of 1.0, the
longest segment a length of 6.0. If we're going to blend all corners with a radius of 0.75 (the circles in the second
image) we can see that one of the edges has a conflict of overlapping blend radii.

The third image shows the original control points (the filled circles) and all blend radius control points (the empty
circles), positioned along every segment with a distance of {R} from its nearest neighbour. The two red control
points have been positioned 0.5 units away (half the segment length) from their respective neighbours.

Finally, the last image shows all the control points that will be added in between the existing control points.
Once we have an ordered array of all control points (ordered as they appear along the original polyline) we can
create a D5 curve using Rhino.AddCurve().

1.
2.
3.
4.
5.

77

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Sub BlendCorners()
 Dim idPolyline : idPolyline = Rhino.GetObject("Polyline to blend", 4, True, True)
 Dim arrV, newV() : arrV = Rhino.PolylineVertices(idPolyline)
 Dim dblRadius : dblRadius = Rhino.GetReal("Blend radius", 1.0, 0.0)

 Dim A, B, W1, W2, i, N : N = -1
 Dim vecSegment

 For i = 0 To UBound(arrV)-1
 A = arrV(i)
 B = arrV(i+1)

 vecSegment = Rhino.PointSubtract(B, A)
 vecSegment = Rhino.VectorUnitize(vecSegment)

 If dblRadius < (0.5*Rhino.Distance(A, B)) Then
 vecSegment = Rhino.VectorScale(vecSegment, dblRadius)
 Else
 vecSegment = Rhino.VectorScale(vecSegment, 0.5 * Rhino.Distance(A, B))
 End If

 W1 = Rhino.VectorAdd(A, vecSegment)
 W2 = Rhino.VectorSubtract(B, vecSegment)

 ReDim Preserve newV(N+6)
 newV(N+1) = A
 newV(N+2) = Between(A, W1)
 newV(N+3) = W1
 newV(N+4) = Between(W1, W2)
 newV(N+5) = W2
 newV(N+6) = Between(W2, B)
 N = N+6
 Next

 ReDim Preserve newV(N+1)
 newV(N+1) = arrV(UBound(arrV))

 Call Rhino.AddCurve(newV, 5)
 Call Rhino.DeleteObject(idPolyline)
End Sub

Function Between(ByVal A, ByVal B)
 Between = Array((A(0)+B(0))/2, (A(1)+B(1))/2, (A(2)+B(2))/2)
End Function

Line Description
2…4 I've removed all IsNull() checks to reduce the number of coded lines. Only I (David Rutten) am

allowed to be this careless.

6 Declare all variables that will be used to store control point locations and indices. Names are identical
to the images on the previous page. i and N are iteration variables.

7 vecSegment is a scaled vector that points from A to B with a length of dblRadius.

9 Begin a loop for each segment in the polyline.

10…11 Store A and B coordinates for easy reference.

13…20 Calculate the vecSegment vector. Typically this vector has length dblRadius, but if the current polyline
segment is too short to contain two complete radii, then adjust the vecSegment accordingly.

22…23 Calculate W1 and W2.

25…32 Resize the newV() array and store all points (except B).

35…36 Append the last point of the polyline to the newV() array. We've omitted B everywhere because the
A of the next segment has the same location and we do not want coincident control-points. The last
segment has no next segment, so we need to make sure B is included this time.

38 Create a new D5 nurbs curve.

42…44 A utility function which averages two 3D point coordinates.

Curvature comparison between
fillet {A} and blend {B} corners.

A B

78

Interpolated curves

When creating control-point curves it is very difficult to make them go through specific coordinates. Even when
tweaking control-points this would be an arduous task. This is why commands like _HBar are so important.
However, if you need a curve to go through many points, you're better off creating it using an interpolated
method rather than a control-point method. The _InterpCrv and _InterpCrvOnSrf commands allow you to create
a curve that intersects any number of 3D points and both of these methods have an equivalent in RhinoScript.

To demonstrate, we're going to create a script that creates iso-distance-curves on surfaces rather than the
standard iso-parameter-curves, or "isocurves" as they are usually called. If you're an old-time Rhino user you
might recall that before Rhino3 "isocurves" were referred to as "isoparms" which is short for "isoparameters"
("iso" originates from the Greek (Isos) and it means "equal", as in isotherm: equal temperature, isobar: equal
pressure and isochromatic: equal colour). Isocurves thus connect all the points in surface space that share a
similar u or v value. Because the progression of the domain of a surface is not linear (it might be compressed
in some places and stretched in others, especially near the edges where the surface has to be clamped), the
distance between isocurves is not guaranteed to be identical either.

The description of our algorithm is very straightforward, but I promise you that the actual script itself will be
the hardest thing you've ever done.

Enough foreplay.

A B C D

Our script will take any base surface (image A) and extract a number of isocurves (image B). Then, every isocurve
is trimmed to a specific length (image C) and the end-points are connected to give the iso-distance-curve (the
red curve in image D). Note that we are using isocurves in the v-direction to calculate the iso-distance-curve
in the u-direction. This way, it doesn't matter much that the spacing of isocurves isn't distributed equally. Also
note that this method is only useful for offsetting surface edges as opposed to _OffsetCrvOnSrf which can offset
any curve.

We can use the RhinoScript methods Rhino.ExtractIsoCurve() and Rhino.AddInterpCrvOnSrf() for steps B
and D, but step C is going to take some further thought. It is possible to divide the extracted isocurve using a
fixed length, which will give us a whole array of points, the second of which marks the proper solution:

Start
End

5.0
5.0

5.0

5.0

5.0

5.0 5.0

5.0

5.0

5.0 5.0

5.0

In the example above, the curve has been divided into equal length segments of 5.0 units each. The red point
(the second item in the collection) is the answer we're looking for. All the other points are of no use to us,
and you can imagine that the shorter the distance we're looking for, the more redundant points we get. Under
normal circumstances I would not think twice and simply use the Rhino.DivideCurveLength() method and
damn the expense. However, these are not normal circumstances and I've got a reputation to consider. That is
why I'll take this opportunity to introduce you to one of the most ubiquitous, popular and prevalent algorithms
in the field of programming today: binary searching.

79

Imagine you have an array of integers which is -say- ten thousand items long and you want to find the number
closest to sixteen. If this array is unordered (as opposed to sorted) , like so:

{-2, -10, 12, -400, 80, 2048, 1, 10, 11, -369, 4, -500, 1548, 8, … , 13, -344}

you have pretty much no option but to compare every item in turn and keep a record of which one is closest
so far. If the number sixteen doesn't occur in the array at all, you'll have to perform ten thousand comparisons
before you know for sure which number was closest to sixteen. This is known as a worst-case performance, the
best-case performance would be a single comparison since sixteen might just happen to be the first item in the
array... if you're lucky.

The method described above is known as a list-search and it is a pretty inefficient way of searching a large
dataset and since searching large datasets is something that we tend to do a lot in computational science,
plenty research has gone into speeding things up. Today there are so many different search algorithms that
we've had to put them into categories in order to keep a clear overview. However, pretty much all efficient
searching algorithms rely on the input list being sorted, like so:

{-500, -400, -369, -344, -10, -2, 1, 4, 8, 10, 11, 12, 13, 80, … , 1548, 2048}

Once we have a sorted list it is possible to improve our worst case performance by orders of magnitude. For
example, consider a slightly more advanced list-search algorithm which aborts the search once results start to
become worse. Like the original list-search it will start at the first item {-500}, then continue to the second item
{-400}. Since {-400} is closer to sixteen than {-500}, there is every reason to believe that the next item in the
list is going to be closer still. This will go on until the algorithm has hit the number thirteen. Thirteen is already
pretty close to sixteen but there is still some wiggle room so we cannot be absolutely sure ({14; 15; 16; 17; 18}
are all closer and {19} is equally close). However, the next number in the array is {80} which is patently a much,
much worse result than thirteen. Now, since this array is sorted we can be sure that every number after {80} is
going to be worse still so we can safely abort our search knowing that thirteen is the closest number. Now, if the
number we're searching for is near the beginning of the array, we'll have a vast performance increase, if it's near
the end, we'll have a small performance increase. On average though, the sorted-list-search is twice as fast as
the old-fashioned-list-search.

Binary-searching eats sorted-list-searching algorithms for breakfast. Let us return to our actual problem to
see how binary-searching works; find the point on a curve that marks a specific length along the curve. In the
image below, the point we are looking for has been indicated with a small yellow tag, but of course we don't
know where it is when we begin our search. Instead of starting at the beginning of the curve, we start halfway
between {tmin} and {tmax} (halfway the domain of the curve). Since we can ask Rhino what the length is of a
certain curve subdomain we can calculate the length from {tmin} to {1}. This happens to be way too much, we're
looking for something less than half this length. Thus we divide the bit the between {tmin} and {1} in half yet
again, giving us {2}. We again measure the distance between {tmin} and {2}, and see that again we're too high,
but this time only just. We keep on dividing the remainder of the domain in half until we find a value {6} which
is close enough for our purposes:

This is an example of the simplest implementation of a binary-search algorithm and the performance of binary
searching is O(log n) which is a fancy way of saying that it's fast. Really, really fast. And what's more, when
we enlarge the size of the collection we're searching, the time taken to find an answer doesn't increase in a
similar fashion (as it does with list-searching). Instead, it becomes relatively faster and faster as the size of the
collection grows. For example, if we double the size of the array we're searching to 20.000 items, a list-search
algorithm will take twice as long to find the answer, whereas a binary-searcher only takes ~1.075 times as long.
More on algorithm performances in the chapter on optimization.

80

The theory of binary searching might be easy to grasp (maybe not right away, but you'll see the beauty eventually),
any practical implementation has to deal with some annoying, code-bloating aspects. For example, before we
start a binary search operation, we must make sure that the answer we're looking for is actually contained
within the set. In our case, if we're looking for a point {P} on the curve {C} which is 100.0 units away from the
start of {C}, there exists no answer if {C} is shorter than 100.0 itself. Also, since we're dealing with a parameter
domain as opposed to a list of integers, we do not have an actual array listing all the possible values. This array
would be too big to fit in the memory of your computer. Instead, all we have is the knowledge that any number
between and including {tmin} and {tmax} is theoretically possible. Finally, there might not exist an exact answer.
All we can really hope for is that we can find an answer within tolerance of the exact length. Many operations
in computational geometry are tolerance bound, sometimes because of speed issues (calculating an exact
answer would take far too long), sometimes because an exact answer cannot be found (there is simply no math
available, all we can do is make a set of guesses each one progressively better than the last).

At any rate, here's the binary-search script I came up with, I'll deal with the inner workings afterwards:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Function BSearchCurve(ByVal idCrv, ByVal Length, ByVal Tolerance)
 BSearchCurve = Null

 Dim crvLength : crvLength = Rhino.CurveLength(idCrv)
 If crvLength < Length Then Exit Function

 Dim tmin : tmin = Rhino.CurveDomain(idCrv)(0)
 Dim tmax : tmax = Rhino.CurveDomain(idCrv)(1)

 Dim t0, t1, t
 t0 = tmin
 t1 = tmax

 Dim dblLocalLength
 Do
 t = 0.5 * (t0+t1)

 dblLocalLength = Rhino.CurveLength(idCrv, , Array(tmin, t))
 If Abs(dblLocalLength - Length) < Tolerance Then Exit Do

 If dblLocalLength < Length Then
 t0 = t
 Else
 t1 = t
 End If
 Loop

 BSearchCurve = t
End Function

Line Description
1 Note that this is not a complete script, it is only the search function. The complete script is supplied in

the article archive. This function takes a curve ID, a desired length and a tolerance. The return value
is Null if no solution exists (i.e. if the curve is shorter than Length) or otherwise the parameter that
marks the desired length.

2 Set the default return value.

4 Ask Rhino for the total curve length.

5 Make sure the curve is longer than Length. If it isn't, abort.

7…8 Store the minimum and maximum parameters of this curve domain. If you're confused about me calling
the Rhino.CurveDomain() function twice instead of just once and store the resulting array, you may
congratulate yourself. It would indeed be faster to not call the same method twice in a row. However,
since lines 7 and 8 are not inside a loop, they will only execute once which reduces the cost of the
penalty. 99% of the time spend by this function is because of lines 16~25, if we're going to be zealous
about speed, we should focus on this part of the code.

10 t0, t1 and t will be the variables used to define our current subdomain. t0 will mark the lower bound
and t1 the upper bound. t will be halfway between t0 and t1.

11…12 We need to start with the whole curve in mind, so t0 and t1 will be similar to tmin and tmax.

81

Line Description
15 Since we do not know in advance how many steps our binary searcher is going to take, we have to use

an infinite loop.

16 Calculate t (always exactly in the middle of {t0, t1}

18 Calculate the length of the subcurve from the start of the curve (tmin) to our current parameter (t).

19 If this length is close enough to the desired length, then we are done and we can abort the infinite loop.
Abs() -in case you were wondering- is a VBScript function that returns the absolute (non-negative)
number. This means that the Tolerance argument works equally strong in both directions, which is
what you'd usually want.

21…25 This is the magic bit. Looks harmless enough doesn't it?
What we do here is adjust the subdomain based on the result of the length comparison. If the length
of the subcurve {tmin, t} is shorter than Length, then we want to restrict ourself to the lower half of
the old subdomain. If, on the other hand, the subcurve length is shorter than Length, then we want
the upper half of the old domain.
Notice how much more compact programming code is compared to English?

28 Return the solved t-parameter.

I have unleashed this function on a smooth curve with a fairly well distributed parameter space (i.e. no sudden
jumps in parameter "density") and the results are listed below. The length of the total curve was 200.0 mm and
I wanted to find the parameter for a subcurve length of 125.0 mm. My tolerance was set to 0.0001 mm. As you
can see it took 18 refinement steps in the BSearchCurve() function to find an acceptable solution. Note how
fast this algorithm homes in on the correct value, after just 6 steps the remaining error is less than 1%. Ideally,
with every step the accuracy of the guess is doubled, in practise however you're unlikely to see such a neat
progression. In fact, if you closely examine the table, you'll see that sometimes the new guess overshoots the
solution so much it actually becomes worse than before (like between steps #9 and #10).

I've greyed out the subdomain bound parameters that remained identical between two adjacent steps. Just like
the image on page 79 you can see that sometimes multiple steps in the same direction are required.

Step t0 t1 t Subdomain length

1 0.0 21.0 10.5 109.83205 mm (87.86 %)

2 10.5 21.0 15.75 155.05862 mm (124.0 %)

3 10.5 15.75 13.125 127.30634 mm (101.8 %)

4 10.5 13.125 11.8125 119.60544 mm (95.69 %)

5 11.8125 13.125 12.46875 122.89926 mm (98.32 %)

6 12.46875 13.125 12.796875 124.78833 mm (99.83 %)

7 12.796875 13.125 12.9609375 125.94784 mm (100.8 %)

8 12.796875 12.9609375 12.87890625 125.34600 mm (100.3 %)

9 12.796875 12.87890625 12.837890625 125.06200 mm (100.0 %)

10 12.796875 12.837890625 12.8173828125 124.92392 mm (99.94 %)

11 12.8173828125 12.837890625 12.82763671875 124.99264 mm (99.99 %)

12 12.82763671875 12.837890625 12.832763671875 125.02724 mm (100.0 %)

13 12.82763671875 12.832763671875 12.8302001953125 125.00992 mm (100.0 %)

14 12.82763671875 12.8302001953125 12.8289184570313 125.00128 mm (100.0 %)

15 12.82763671875 12.8289184570313 12.8282775878906 124.99696 mm (100.0 %)

16 12.8282775878906 12.8289184570313 12.8285980224609 124.99912 mm (100.0 %)

17 12.8285980224609 12.8289184570313 12.8287582397461 125.00020 mm (100.0 %)

18 12.8285980224609 12.8287582397461 12.8286781311035 124.99996 mm (100.0 %)

82

Now for the rest of the script as outlines on page 78:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Sub EquiDistanceOffset()
 Dim idSrf : idSrf = Rhino.GetObject("Pick surface to offset", 8, True, True)
 If IsNull(idSrf) Then Exit Sub

 Dim dblOffset : dblOffset = Rhino.GetReal("Offset distance", 1.0, 0.0)
 If IsNull(dblOffset) Then Exit Sub

 Dim uDomain
 uDomain = Rhino.SurfaceDomain(idSrf, 0)

 Dim uStep, u, t
 uStep = (uDomain(1) - uDomain(0)) / 50 'This means we'll create 50 isocurves

 Dim arrOffsetVertices()
 Dim VertexCount
 VertexCount = -1

 Dim idIsoCurves, idIsoCurve

 Call Rhino.EnableRedraw(False)

 For u = uDomain(0) To uDomain(1) + (0.5*uStep) Step uStep
 'Rhino.ExtractIsoCurves() returns an array, but in our case it is always just one item
 idIsoCurves = Rhino.ExtractIsoCurve(idSrf, Array(u, 0), 1)

 If Not IsNull(idIsoCurves) Then
 idIsoCurve = idIsoCurves(0) 'Use only the first curve in the set
 t = BSearchCurve(idIsoCurve, dblOffset, 0.001) 'Call our binary searcher

 If Not IsNull(t) Then 'If we have a solution, append it to the vertex-array
 VertexCount = VertexCount+1
 ReDim Preserve arrOffsetVertices(VertexCount)
 arrOffsetVertices(VertexCount) = Rhino.EvaluateCurve(idIsoCurve, t)
 End If

 'Clean up the isocurves
 Call Rhino.DeleteObjects(idIsoCurves)
 End If
 Next

 If VertexCount > 0 Then 'If we have more than one point, we can add a curve
 Call Rhino.AddInterpCrvOnSrf(idSrf, arrOffsetVertices)
 End If

 Call Rhino.EnableRedraw(True)
End Sub

If I've done my job so far, the above shouldn't
require any explanation. All of it is out-of-the-box,
run-of-the-mill, garden-variety, straight-laced
scripting code.

The image on the right shows the result of the
script, where offset values are all multiples of
10. The dark green lines across the green strip
(between offsets 80.0 and 90.0) are all exactly
10.0 units long.

83

Geometric curve properties

Since curves are geometric objects, they possess a number of properties or characteristics which can be used
to describe or analyze them. For example, every curve has a starting coordinate and every curve has an ending
coordinate. When the distance between these two coordinates is zero, the curve is closed. Also, every curve
has a number of control-points, if all these points are located in the same plane, the curve as a whole is planar.
Some properties apply to the curve as a whole, others only apply to specific points on the curve. For example,
planarity is a global property while tangent vectors are a local property. Also, some properties only apply to
some curve types. So far we've dealt with lines, polylines, circles, ellipses, arcs and nurbs curves:

Line Polyline Circle Ellipse Arc Nurbs curve Poly curve

The last available curve type in Rhino is the polycurve, which is nothing more than an amalgamation of other
types. A polycurve can be a series of line curves for example, in which case it behaves similarly to a polyline.
But it can also be a combination of lines, arcs and nurbs curves with different degrees. Since all the individual
segments have to touch each other (G0 continuity is a requirement for polycurve segments), polycurves cannot
contain closed segments. However, no matter how complex the polycurve, it can always be represented by a
nurbs curve. All of the above types can be represented by a nurbs curve.

 The difference between an actual circle and a nurbs-curve-that-looks-like-a-circle is the way it is stored. A nurbs
curve doesn't have a Radius property for example, nor a Plane in which it is defined. It is possible to reconstruct
these properties by evaluating derivatives and tangent vector and frames and so on and so forth, but the data
isn't readily available. In short, nurbs curves lack some global properties that other curve types do have. This is
not a big issue, it's easy to remember what properties a nurbs curve does and doesn't have. It is much harder to
deal with local properties that are not continuous. For example, imagine a polycurve which has a zero-length
line segment embedded somewhere inside. The t-parameter at the line beginning is a different value from the
t-parameter at the end, meaning we have a curve subdomain which has zero length. It is impossible to calculate
a normal vector inside this domain:

This polycurve consists of five curve segments (a nurbs-curve, a zero-length line-segment, a proper line-segment,
a 90° arc and another nurbs-curve respectively) all of which touch each other at the indicated t-parameters.
None of them are tangency continuous, meaning that if you ask for the tangent at parameter {t3}, you might
either get the tangent at the end of the purple segment or the tangent at the beginning of the green segment.
However, if you ask for the tangent vector halfway between {t1} and {t2}, you get nothing. The curvature data
domain has an even bigger hole in it, since both line-segments lack any curvature:

Impossible to evaluate

Impossible to evaluate

84

When using curve properties such as tangents, curvature or perp-frames, we must always be careful to not
blindly march on without checking for property discontinuities. An example of an algorithm that has to deal with
this would be the _CurvatureGraph in Rhino. It works on all curve types, which means it must be able to detect
and ignore linear and zero-length segments that lack curvature.

One thing the _CurvatureGraph command does not do is insert the curvature graph objects, it only draws
them on the screen. We're going to make a script that inserts the curvature graph as a collection of lines and
interpolated curves. We'll run into several issues already outlined in this paragraph.

In order to avoid some G continuity problems we're going to tackle the problem span by span. In case you haven't
suffered left-hemisphere meltdown yet; the shape of every knot-span is determined by a certain mathematical
function known as a polynomial and is (in most cases) completely smooth. A span-by-span approach means
breaking up the curve into its elementary pieces, as shown on the left:

A

B

C

D

F

G

E

This is a polycurve object consisting of seven pieces; lines {A; C; E}, arcs {B; D} and nurbs curves {F; G}. When
we convert the polycurve to a nurbs representation we get a degree 5 nurbs curve with 62 pieces (knot-spans).
Since this curve was made by joining a bunch of other curves together, there are kinks between all individual
segments. A kink is defined as a grouping of identical knots on the interior of a curve, meaning that the curve
actually intersects one of its interior control-points. A kink therefore has the potential to become a sharp crease
in an otherwise smooth curve, but in our case all kinks connect segments that are G1 continuous. The kinks have
been marked by white circles in the image on the right. As you can see there are also kinks in the middle of the
arc segments {B; D}, which were there before we joined the curves together. In total this curve has ten kinks,
and every kink is a grouping of five similar knot parameters (this is a D5 curve). Thus we have a sum-total of 40
zero-length knot-spans. Never mind about the math though, the important thing is that we should prepare for a
bunch of zero-length spans so we can ignore them upon confrontation.

The other problem we'll get is the property evaluation issue I talked about on the previous page. On the
transition between knots the curvature data may jump from one value to another. Whenever we're evaluating
curvature data near knot parameters, we need to know if we're coming from the left or the right.

I'm sure all of this sounds terribly complicated. In fact I'm sure it is terribly complicated, but these things should
start to make sense. It is no longer enough to understand how scripts work under ideal circumstances, by now,
you should understand why there are no ideal circumstances and how that affects programming code.

85

Since we know exactly what we need to do in order to mimic the _CurvatureGraph command, we might as well
bite the bullet and start at the bottom. The first thing we need is a function that creates a curvature graph on a
subcurve, then we can call this function with the knot parameters as sub-domains in order to generate a graph
for the whole curve:

t0

t1

C

Our function will need to know the ID of the curve in question, the subdomain {t0; t1}, the number of samples it
is allowed to take in this domain and the scale of the curvature graph. The return value should be a collection
of object IDs which were inserted to make the graph. This means all the perpendicular red segments and the
dashed black curve connecting them.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Function AddCurvatureGraphSection(ByVal idCrv, ByVal t0, ByVal t1, ByVal Samples, ByVal Scale)
 AddCurvatureGraphSection = Null
 If (t1 - t0) <= 0.0 Then Exit Function

 Dim arrA() : ReDim arrA(Samples)
 Dim arrB() : ReDim arrB(Samples)
 Dim arrObjects : ReDim arrObjects(Samples+1)

 Dim cData, cVector
 Dim t, tStep, N
 N = -1

 tStep = (t1-t0) / Samples
 For t = t0 To (t1 + (0.5*tStep)) Step tStep
 If (t >= t1) Then t = (t1 - 1e-10)
 N = N+1

 cData = Rhino.CurveCurvature(idCrv, t)
 If IsNull(cData) Then
 arrA(N) = Rhino.EvaluateCurve(idCrv, t)
 arrB(N) = arrA(N)
 arrObjects(N) = ""
 Else
 cData(4) = Rhino.VectorScale(cData(4), Scale)
 arrA(N) = cData(0)
 arrB(N) = Rhino.VectorSubtract(cData(0), cData(4))
 arrObjects(N) = Rhino.AddLine(arrA(N), arrB(N))
 End If
 Next

 arrObjects(Samples+1) = Rhino.AddInterpCurve(arrB)
 AddCurvatureGraphSection = arrObjects
End Function

Line Description
3 Check for a null span, this happens inside kinks.

5…6 arrA() and arrB() will hold the start and end points of the perpendicular segments.

7 arrObjects() will hold the IDs of the perpendicular lines, and the connecting curve.

13 Determine a step size for our loop (Subdomain length / Sample count)

14 Define the loop and make sure we always process the final parameter by increasing the threshold with
half the step size.

15 Make sure t does not go beyond t1, since that might give us the curvature data of the next segment.

20…22 In case of a curvature data discontinuity, do not add a line segment but append an empty ID instead.

24…27 Compute the A and B coordinates, append them to the appropriate array and add the line segment.

86

Now, we need to write a utility function that applies the previous function to an entire curve. There's no rocket
science here, just an iteration over the knot-vector of a curve object:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Function AddCurvatureGraph(ByVal idCrv, ByVal SpanSamples, ByVal Scale)
 Dim allGeometry, tmpGeometry
 Dim i, K

 allGeometry = Array()

 K = Rhino.CurveKnots(idCrv)
 For i = 0 To UBound(K)-1
 tmpGeometry = AddCurvatureGraphSection(idCrv, K(i), K(i+1), SpanSamples, Scale)

 If Not IsNull(tmpGeometry) Then
 allGeometry = Rhino.JoinArrays(allGeometry, tmpGeometry)
 End If
 Next

 Call Rhino.AddObjectsToGroup(allGeometry, Rhino.AddGroup())
 AddCurvatureGraph = allGeometry
End Function

Line Description
2 allGeometry will be a list of all IDs generated by repetitive calls to AddCurvatureGraphSection()

3 K is the knot vector of the nurbs representation of idCrv.

5 Since we're going to append a bunch of arrays to allObjects, we must make sure that it is an empty
array before we start.

8 We want to iterate over all knot spans, meaning we have to iterate over all (except the last) knot in
the knot vector. Hence the minus one at the end.

9 Place a call to AddCurvatureGraphSection() and store all resulting IDs in tmpGeometry.

11 If the result of AddCurvatureGraphSection() is not Null, then append all items in tmpGeometry to
allGeometry using Rhino.JoinArrays().

16 Put all created objects into a new group.

The last bit of code we need to write is a bit more extensive then we've done so far. Until now we've always
prompted for a number of values before we performed any action. It is actually far more user-friendly to present
the different values as options in the command line while drawing a preview of the result.

UI code tends to be very beefy, but it rarely is complex. It's just irksome to write because it always looks exactly
the same. In order to make a solid command-line interface for your script you have to do the following:

Reserve a place where you store all your preview geometry
Initialize all settings with sensible values
Create all preview geometry using the default settings
Display the command line options
Parse the result (be it escape, enter or an option or value string)
Select case through all your options
If the selected option is a setting (as opposed to options like "Cancel" or "Accept") then display a prompt for
that setting
Delete all preview geometry
Generate new preview geometry using the changed settings.

1.
2.
3.
4.
5.
6.
7.

8.
9.

87

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Sub CreateCurvatureGraph()
 Dim idCurves : idCurves = Rhino.GetObjects("Curves for curvature graph", 4, False, True, True)
 If IsNull(idCurves) Then Exit Sub

 Dim bResult, i
 Dim intSamples : intSamples = 10
 Dim dblScale : dblScale = 1.0

 Dim arrPreview() : ReDim arrPreview(UBound(idCurves))

 Do
 Call Rhino.EnableRedraw(False)
 For i = 0 To UBound(arrPreview)
 If IsArray(arrPreview(i)) Then Rhino.DeleteObjects(arrPreview(i))
 Next

 For i = 0 To UBound(arrPreview)
 arrPreview(i) = AddCurvatureGraph(idCurves(i), intSamples, dblScale)
 Next
 Call Rhino.EnableRedraw(True)

 bResult = Rhino.GetString("Curvature settings", "Accept", _
 Array("Samples", "Scale", "Accept"))
 If IsNull(bResult) Then
 For i = 0 To UBound(arrPreview)
 If IsArray(arrPreview(i)) Then Rhino.DeleteObjects(arrPreview(i))
 Next
 Exit Sub
 End If

 Select Case UCase(bResult)
 Case "ACCEPT"
 Exit Do
 Case "SAMPLES"
 bResult = Rhino.GetInteger("Number of samples per knot-span", intSamples, 3, 100)
 If Not IsNull(bResult) Then intSamples = bResult
 Case "SCALE"
 bResult = Rhino.GetReal("Scale of the graph", dblScale, 0.01, 1000.0)
 If Not IsNull(bResult) Then dblScale = bResult
 End Select
 Loop
End Sub

Line Description
2 Prompt for any number of curves, we do not want to limit our script to just one curve.

6…7 Our default values are a scale factor of 1.0 and a span sampling count of 10.

9 arrPreview() is an array that contains arrays of IDs. One for each curve in idCurves.

11 Since users are allowed to change the settings an infinite number of times, we need an infinite loop
around our UI code.

13…15 First of all, delete all the preview geometry, if present.

17…19 Then, insert all the new preview geometry.

22 Once the new geometry is in place, display the command options. The array at the end of the
Rhino.GetString() method is a list of command options that will be visible.

24…29 If the user aborts (pressed Escape), we have to delete all preview geometry and exit the sub.

31…40 If the user clicks on an option, bResult will be the option name. It's best to use a Select…Case
statement to determine which option was clicked.

32 In the case of "Accept", all we have to do is exit the sub without deleting the preview geometry.

34…36 If the picked option was "Samples", then we have to ask the user for a new sample count. If the user
pressed Escape during this nested prompt, we do not abort the whole script (typical Rhino behaviour
would dictate this), but instead return to the base prompt.

88

7.8 Meshes

Instead of Nurbs surfaces (which would be the next logical step after nurbs curves), this chapter is about meshes.
I figured you could use a break from t-parameters, knots and degrees so I'm going to take this opportunity to
introduce you to a completely different class of geometry -officially called "polygon meshes"- which represents
a radically different approach to shape.

Instead of treating a surface as a deformation of a rectangular nurbs patch, meshes are defined locally, which
means that a single mesh surface can have any topology it wants. A mesh surface can even be a disjoint (not
connected) compound of floating surfaces, something which is absolutely impossible with Rhino nurbs surfaces.
Because meshes are defined locally, they can also store more information directly inside the mesh format, such
as colours, texture-coordinates and normals. The tantalizing image below indicates the local properties that we
can access via RhinoScript. Most of these properties are optional or have default values. The only essential ones
are the vertices and the faces.

Vertex

Face

Face Normal2

Vertex Normal1

Vertex Colour2

Texture Coordinate2

1. Defaults available
2. Optional property

It is important to understand the pros and cons of meshes over alternative surface paradigms, so you can make
an informed decision about which one to use for a certain task. Most differences between meshes and nurbs
are self-evident and flow from the way in which they are defined. For example, you can delete any number of
polygons from the mesh and still have a valid object, whereas you cannot delete knot spans without breaking
apart the nurbs geometry. There's a number of things to consider which are not implied directly by the theory
though.

Coordinates of mesh vertices are stored as single precision numbers in Rhino in order to save memory
consumption. Meshes are therefore less accurate entities than nurbs objects. This is especially notable
with objects that are very small, extremely large or very far away from the world origin. Mesh objects go
hay-wire sooner than nurbs objects because single precision numbers have larger gaps between them than
double precision numbers (see page 6).
Nurbs cannot be shaded, only the isocurves and edges of nurbs geometry can be drawn directly in the
viewport. If a nurbs surface has to be shaded, then it has to fall back on meshes. This means that inserting
nurbs surfaces into a shaded viewport will result in a significant (sometimes very significant) time lag while
a mesh representation is calculated.
Meshes in Rhino can be non-manifold, meaning that more than two faces share a single edge. Although it
is not technically impossible for nurbs to behave in this way, Rhino does not allow it. Non-manifold shapes
are topologically much harder to deal with. If an edge belongs to only a single face it is an exterior edge
(naked), if it belongs to two faces it is considered interior.

1.

2.

3.

89

Geometry vs. Topology

As mentioned before, only the vertices and faces are essential components of the mesh definition. The vertices
represent the geometric part of the mesh definition, the faces represent the topological part. Chances are you
have no idea what I'm talking about... allow me to explain.

According to MathWorld.com topology is "the mathematical study of the properties that are preserved through
deformations, twistings, and stretchings of objects." In order words, topology doesn't care about size, shape
or smell, it only deals with the platonic properties of objects, such as "how many holes does it have?", "how
many naked edges are there?" and "how do I get from Paris to Lyon without passing any tollbooths?". The field
of topology is partly common-sense (everybody intuitively understands the basics) and partly abstract-beyond-
comprehension. Luckily we're only confronted with the intuitive part here (more on topology in the chapter on
B-Rep objects).

A B C D E

If you look at the images above, you'll see a number of surfaces that are topologically identical (except {E})
but geometrically different. You can bend shape {A} and end up with shape {B}; all you have to do is reposition
some of the vertices. Then if you bend it even further you get {C} and eventually {D} where the right edge has
been bend so far it touches the edge on the opposite side of the surface. It is not until you merge the edges
(shape {E}) that this shape suddenly changes its platonic essence, i.e. it goes from a shape with four edges to a
shape with only two edges (and these two remaining edges are now closed loops as well). Do note that shapes
{D} and {E} are geometrically identical, which is perhaps a little surprising.

The vertices of a mesh object are an array of 3D point coordinates. They can be located anywhere in space and
they control the size and form of the mesh. The faces on the other hand do not contain any coordinate data,
they merely indicate how the vertices are to be connected:

Vertex array Face array Resulting mesh
0 = {0.0, 0.0, 0.0}
1 = {1.0, 0.0, 0.0}
2 = {2.0, 0.0, 0.0}
3 = {3.0, 0.0, 0.0}
4 = {0.0, 0.8, 0.3}
5 = {1.0, 0.8, 0.3}
6 = {2.0, 0.8, 0.3}
7 = {3.0, 0.8, 0.3}
8 = {0.0, 1.4, 0.9}
9 = {1.0, 1.4, 0.9}

10 = {2.0, 1.4, 0.9}
11 = {3.0, 1.4, 0.9}
12 = {0.0, 2.0, 1.5}
13 = {1.0, 2.0, 1.5}
14 = {2.0, 2.0, 1.5}
15 = {3.0, 2.0, 1.5}

A = { 0, 1, 5, 4}
B = { 1, 2, 6, 5}
C = { 2, 3, 7, 6}
D = { 4, 5, 9, 8}
E = { 5, 6,10, 9}
F = { 6, 7,11,10}
G = { 8, 9,13,12}
H = { 9,10,14,13}
I = {11,10,14,15}

Here you see a very simple mesh with sixteen vertices and nine faces. Commands like _Scale, _Move and _Bend
only affect the vertex-array, commands like _TriangulateMesh and _SwapMeshEdge only affect the face-array,
commands like _ReduceMesh and _MeshTrim affect both arrays. Note that the last face {I} has its corners
defined in a clockwise fashion, whereas all the other faces are defined counter-clockwise. Although this makes
no geometric difference, it does affect how the mesh normals are calculated and one should generally avoid
creating meshes that are cw/ccw inconsistent.

http://mathworld.wolfram.com/Topology.html

90

Now that we know what meshes essentially consist of, we can start making mesh shapes from scratch. All we
need to do is come up with a set of matching vertex/face arrays. We'll start with the simplest possible shape, a
mesh plane consisting of a grid of vertices connected with quads. Just to keep matters marginally interesting,
we'll mutate the z-coordinates of the grid points using a user-specified mathematical function in the form of:

, , ,f x y f=H D_ i

Where the user is allowed to specify any valid mathematical
function using the variables x, y, Θ and Δ. Every vertex in
the mesh plane has a unique combination of x and y values
which can be used to determine the z value of that vertex
by evaluating the custom function (Θ and Δ are the polar
coordinates of x and y). This means every vertex {A} in the
plane has a coordinate {B} associated with it which shares
the x and y components, but not the z component.

We'll run into four problems while writing this script which
we have not encountered before, but only two of these
have to do with mesh geometry/topology:

A

B

A-
A+

B-
B+

Bx = Ax

By = Ay

Bz = f (Ax , Ay)

It's easy enough to generate a grid of points, we've done similar looping already on page 33 where a nested
loop was used to generate a grid wrapped around a cylinder. The problem this time is that it's not enough to
generate the points. We also have to generate the face-array, which is highly dependent on the row and column
dimensions of the vertex array. It's going to take a lot of logic insight to get this right, and I don't mind telling
you that I can never solve this particular problem without making a schematic of the mesh. First, let us turn to
the problem of generating the vertex coordinates, which is a straightforward one:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Function CreateMeshVertices(ByVal strFunction, ByVal fDomain(), ByVal iResolution)
 Dim xStep : xStep = (fDomain(1) - fDomain(0)) / iResolution
 Dim yStep : yStep = (fDomain(3) - fDomain(2)) / iResolution
 Dim V(), N
 N = -1

 Dim x, y, z
 For x = fDomain(0) To fDomain(1) + (0.5*xStep) Step xStep
 For y = fDomain(2) To fDomain(3) + (0.5*yStep) Step yStep
 z = SolveEquation(strFunction, x, y)
 N = N+1
 ReDim Preserve V(N)
 V(N) = Array(x, y, z)
 Next
 Next

 CreateMeshVertices = V
End Function

Line Description
1 This function is to be part of the finished script. It is a very specific function which merely combines the

logic of nested loops with other functions inside the same script (functions which we haven't written
yet, but since we know how they are supposed to work we can pretend as though they are available
already). This function takes three arguments:

A String variable which contains the format of the function {f(x,y,Θ,Δ) = …}
An array of four doubles, indicating the domain of the function in x and y directions
An integer which tells us how many samples to take in each direction

1.
2.
3.

2…3 The fDomain() argument has four doubles, arranged like this:
(0) Minimum x-value
(1) Maximum x-value
(2) Minimum y-value
(3) Maximum y-value
We can access those easily enough, but since the step size in x and y direction involves so much math,
it's better to cache those values.

8 Begin at the lower end of the x-domain and step through the entire domain until the maximum value
has been reached. We can refer to this loop as the row-loop.

91

Line Description
9 Begin at the lower end of the y-domain and step through the entire domain until the maximum value

has been reached. We can refer to this loop as the column-loop.

10 This is where we're calling an -as of yet- non-existent function. However, I think the signature is
straightforward enough to not require further explanation now.

11…13 Do all the necessary bookkeeping to append the new vertex to the V() array. Note that vertices are
stored as a one-dimensional array, which makes accessing items at a specific (row, column) coordinate
slightly cumbersome.

Once we have our vertices, we can create the face array that connects them.
Since the face-array is topology, it doesn't matter where our vertices are in
space, all that matters is how they are organized. The image on the right is the
mesh schematic that I always draw whenever confronted with mesh face array
logic. The image shows a mesh with twelve vertices and six quad faces, which
has the same vertex sequence logic as the vertex array created by the function
on the previous page. The vertex counts in x and y direction are four and three
respectively (Nx=4, Ny=3).

Now, every quad face has to link the four vertices in a counter-clockwise fashion. You may have noticed already
that the absolute differences between the vertex indices on the corners of every quad are identical. In the case
of the lower left quad {A=0; B=3; C=4; D=1}. In the case of the upper right quad {A=7; B=10; C=11; D=8}. We
can define these numbers in a simpler way, which reduces the number of variables to just one instead of four:
{A=?; B=(A+Ny); C=(B+1); D=(A+1)}, where Ny is the number of vertices in the y-direction. Now that we know
the logic of the face corner numbers, all that is left is to iterate through all the faces we need to define and
calculate proper values for the A corner:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Function CreateMeshFaces(ByVal iResolution)
 Dim Nx : Nx = iResolution
 Dim Ny : Ny = iResolution
 Dim F() : ReDim F(Nx * Ny - 1)
 Dim N : N = -1
 Dim baseIndex
 Dim i, j

 For i = 0 To Nx-1
 For j = 0 To Ny-1
 N = N+1

 baseIndex = i*(Ny+1) + j
 F(N) = Array(baseIndex, baseIndex+1, baseindex+Ny+2, baseIndex+Ny+1)
 Next
 Next
 CreateMeshFaces = F
End Function

Line Description
2…3 Cache the {Nx} and {Ny} values, they are the same in our case because we do not allow different

resolutions in {x} and {y} direction.

4 We know exactly how many faces we're going to add when we start this function, so there's no need
to ReDim the array whenever we're adding a new one. The iResolution indicates the number of faces
along each axis (not the number of vertices), so the total number of faces in the mesh will be the
resolution in the x-direction times the resolution in the y-direction and since these are the same that
amounts to the resolution squared.

9…10 These two nested loops are used to iterate over the grid and define a face for each row/column combo.
I.e. the two values i and j are used to define the value of the A corner for each face.

13 Instead of the nondescript "A", we're using the variable name baseIndex. This value depends on the
values of both i and j. The i value determines the index of the current column and the j value
indicates the current offset (the row index).

14 Define the new quad face corners using the logic stated above.

92

Writing a tool which works usually isn't enough when you write it for other people. Apart from just working, a
script should also be straightforward to use. It shouldn't allow you to enter values that will cause it to crash
(come to think of it, it shouldn't crash at all), it should not take an eternity to complete and it should provide
sensible defaults. In the case of this script, the user will have to enter a function which is potentially very
complex, and also four values to define the numeric domain in {x} and {y} directions. This is quite a lot of input
and chances are that only minor adjustments will be made during successive runs of the script. It therefore
makes a lot of sense to remember the last used settings, so they become the defaults the next time around.
There's a number of ways of storing persistent data when using scripts, each with its own advantages:

Type Pros Cons
Global variables Quick, local solution. Are destroyed when the script-engine reinitializes.

Difficult to declare.
Document User-Data For document related information. Can only store Strings.
Object User-Data Data is linked to specific objects, survives most

object modifications.
Can only store Strings.

*.ini file format Non document bound storage. Easy access through
RhinoScript.

Can only store Strings. May suffer from Vista
incompatibility depending on file path.

Custom file format Non document bound storage. Extremely extensible
storage capacity.

Involves lots of coding. May suffer from VirusScanner
intervention.

Registry Non document bound storage. Windows standard. Involves lots of coding. May suffer from VirusScanner
intervention.

We'll be using the *.ini file to store our data since it involves very little code and it survives a Rhino restart. An
*.ini file is a textfile (with the extension "ini" (short for "initialization") instead of "txt") which stores a number of
Strings in a one-level hierarchical format. This means that every setting in the *.ini file has a name, a category
and a value. The registry works in much the same way, with the exception that you can nest categories and
thus get a much more intricate settings structure. RhinoScript offers a number of methods that allow you to
write and read *.ini settings without having to manage your own file objects. Writing data to an *.ini file works
as follows:

1
2
3
4
5
6
7
8
9

10

Sub SaveFunctionData(ByVal strFunction, ByVal fDomain(), ByVal Resolution)
 Dim iSettingFile : iSettingFile = Rhino.InstallFolder() & "MeshFunction_XY.ini"

 Call Rhino.SaveSettings(iSettingFile, "Function", "format", strFunction)
 Call Rhino.SaveSettings(iSettingFile, "Domain", "xMin", fDomain(0))
 Call Rhino.SaveSettings(iSettingFile, "Domain", "xMax", fDomain(1))
 Call Rhino.SaveSettings(iSettingFile, "Domain", "yMin", fDomain(2))
 Call Rhino.SaveSettings(iSettingFile, "Domain", "yMax", fDomain(3))
 Call Rhino.SaveSettings(iSettingFile, "Domain", "Resolution", Resolution)
End Sub

Line Description
1 This is a specialized function written specifically for this script. The signature consists only of the data

it has to store. Internally this function is using the *.ini calls, but that is unknown to whatever function
is calling this one. This is another example of encapsulation, we could change this function later on to
use the registry for example, and the script would keep on running.

2 Since an *.ini file is an actual file on the harddisk, it needs a path. We need to know this path if we
intent to append settings. In our case we're using the Rhino.InstallFolder() method to get a folder
for the file. Generally it is better to pick a location which is available to non-administator users, but
that would involve a lot more code.

4…9 Write all settings successively to the file. As you can see each setting has a category and name
property.

The contents of the *.ini file will look like this:

Category »
Value »

Category »
Value »
Value »
Value »
Value »

[Function]
format=Sin(x) + Sin(y)
[Domain]
xMin=-10
xMax=10
yMin=-10
yMax=10
Resolution=200

*.ini

93

Reading data from an *.ini file is slightly more involved, because there is no guarantee the file exists yet. Indeed,
the first time you run this script there won't be a settings file yet and we need to make sure we supply sensible
defaults:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sub LoadFunctionData(ByRef strFunction, ByRef fDomain(), ByRef Resolution)
 Dim iSettingFile : iSettingFile = Rhino.InstallFolder() & "MeshFunction_XY.ini"

 strFunction = Rhino.GetSettings(iSettingFile, "Function", "format")
 If IsNull(strFunction) Then
 strFunction = "Cos(Sqr(x^2 + y^2))"
 fDomain(0) = -10.0
 fDomain(1) = +10.0
 fDomain(2) = -10.0
 fDomain(3) = +10.0
 Resolution = 50
 Exit Sub
 End If

 fDomain(0) = CDbl(Rhino.GetSettings(iSettingFile, "Domain", "xMin"))
 fDomain(1) = CDbl(Rhino.GetSettings(iSettingFile, "Domain", "xMax"))
 fDomain(2) = CDbl(Rhino.GetSettings(iSettingFile, "Domain", "yMin"))
 fDomain(3) = CDbl(Rhino.GetSettings(iSettingFile, "Domain", "yMax"))
 Resolution = CInt(Rhino.GetSettings(iSettingFile, "Domain", "Resolution"))
End Sub

Line Description
1 Since this function has to set a whole bunch of values, using the single return value isn't going to be

enough. Rather, we pass in all variables by reference and have them set directly.

2 Obviously we need the exact same path to the *.ini file.

4 This is where we read the function string from the *.ini file. If the file doesn't exist (or if the category/
name isn't found) then strFunction will be Null.

6…11 If strFunction is Null we can safely assume that the other settings won't be there either. So these will
be our defaults.

15…19 If strFunction was read correctly, we can read the other settings as well. Note that our approach here
is not entirely safe. If the *.ini file has become corrupted this function might not work properly.

We've now dealt with two out of four problems (mesh topology,
saving and loading persistent settings) and it's time for the big
ones. In our CreateMeshVertices() procedure we've placed a call
to a function called SolveEquation() eventhough it didn't exist
yet. SolveEquation() has to evaluate a user-defined function for a
specific {x,y} coordinate which is something we haven't done before
yet. It is very easy to find the answer to the question:

"What is the value of {Sin(x) + Sin(y)} for {x=0.5} and {y=2.7} ?"

However, this involves manually writing the equation inside the script and then running it. Our script has
to evaluate custom equations which are not known until after the script starts. This means in turn that the
equation is stored as a String variable. VBScript does not execute Strings, they are inert. If we want to treat a
String variable as a bit of source code, we have to use a little-known feature which is so exotic it doesn't even
appear in the VBScript helpfile (though you can find it online of course).

The Execute statement runs a script inside a script. It isn't even a proper function or subroutine, it is instead
referred to as a Statement, much like the Dim statement or the Erase statement. The Execute statement takes
a single String and attempts to run it as a bit of code, but nested inside the current scope. That means that you
can refer to local variables inside an Execute. This bit of magic is exactly what we need in order to evaluate
expressions stored in Strings. We only need to make sure we set up our x, y, Θ and Δ variables prior to using
Execute.

http://msdn2.microsoft.com/en-us/library/03t418d2.aspx

94

The fourth big problem we need to solve has to do with nonsensical users (a certain school of thought popular
among programmers claims that all users should be assumed to be nonsensical). It is possible that the custom
function is not valid VBScript syntax, in which case the Execute statement will not be able to parse it. This could
be because of incomplete brackets, or because of typos in functions or a million other problems. But even if the
function is syntactically correct it might still crash because of incorrect mathematics.

For example, if you try to calculate the value of Sqr(-4.0), the script crashes with the "Invalid procedure call
or argument" error message. The same applies to Log(-4.0). These functions crash because there exists no
answer for the requested value. Other types of mathematical problems arise with large numbers. Exp(1000) for
example results in an "Overflow" error because the result falls outside the double range. Another favourite is the
"Division by zero" error. The following table lists the most common errors that occur in the VBScript engine:

Code Name Description

5 Invalid procedure call or argument Could mean anything. The function that was called determined it is not possible to
parse the input and decided to throw an exception (raise an error) instead.

6 Overflow This is what happens when you start dealing with numbers too big to be properly
represented.

9 Subscript out of range Trying to access an element in an array that doesn't exist.
10 Array fixed or temporarily locked Trying to ReDim an array which is static or currently in use.
11 Division by zero Well...
13 Type mismatch Some function needed a string, yet you gave it something else, like a Boolean.
35 Sub or Function not defined Trying to call a function that does not exist.
28 Out of stack space Your functions are nested too deep, this usually only happens during recursion.
94 Invalid use of Null Trying to read the contents of a Null variable.

438 Object does not support this
property or method Trying to call a function on an object (such as the Rhino. object) that does not exist.

449 Argument not optional You called a function with too few arguments.

450 Wrong number of arguments or
invalid property assignment Calling a function while supplying a wrong signature.

451 Object not a collection Trying to iterate through a variable that does not support such an action.
500 Variable is undefined Trying to use an undeclared variable.
5008 Illegal assignment Trying to change a read-only variable or identifier.
1001 Out of memory Out of luck.
1002 Syntax error You wrote something that does not adhere to VBScript language rules.

1003
∙∙∙

1028
Expected {symbol, statement, keyword}

Some symbols or keywords require a matching one further down the script. If for
example requires an End If. An opening bracket requires a closing bracket. you
have failed to comply to this requirement.

1014 Invalid character Tried to use a character in the source that falls outside the allowed Unicode set.
1041 Name redefined You're declaring a variable that already exists.

1044 Cannot use parentheses
when calling a Sub

You're calling a subroutine or function without using the Call keyword or return
value but you are using parenthesis to encapsulate the parameters.

As you can see there's quite a lot that can go wrong. We should be able to prevent this script from crashing,
even though we do not control the entire process. We could of course try to make sure that the user input is
valid and will not cause any computational problems, but it is much easier to just let the script fail and recover
from a crash after it happened. We've used the error catching mechanism on page 40, but back then we were
just lazy, now there is no other solution.

As soon as we use the On Error Resume Next statement though, debugging becomes much harder because
there are no more crashes. If the script fails to function in a manner expected, where do we start looking for
the error? So it is always a good idea to write your scripts in such a way so as to make it easy to temporarily
disable any error catching.

Once the On Error Resume Next statement is executed by the script, the error data is wiped from the system
(i.e. clean slate). Then, once an error occures that would otherwise have caused the script to crash, the error
data will be filled out. We thus need to actively check whether or not an error has occured whenever something
might have gone wrong. We can retieve the error data through the Err object, which is available at all times:

95

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Function SolveEquation(ByVal strFunction, ByVal x, ByVal y)
 Dim z
 Dim D, A, AngleData

 D = Rhino.Hypot(x, y)
 AngleData = Rhino.Angle(Array(0,0,0), Array(x,y,0))
 If IsNull(AngleData) Then
 A = 0.0
 Else
 A = Rhino.ToRadians(AngleData(0))
 End If

 On Error Resume Next
 Execute("z = " & strFunction)

 If err.Number = 0 Then
 SolveEquation = z
 Else
 SolveEquation = 0.0
 End If
End Function

The amount of stuff the above bit of magic does is really quite impressive. It converts the {x;vy} coordinates
into polar coordinates {A; D} (for Angle and Distance), makes sure the angle is an actual value, in case both {x}
and {y} turn out to be zero. It solves the equation to find the z-coordinate, and sets {z} to zero in case a the
equation was unsolvable. Now that all the hard work is done, all that is left is to write the overarching function
that provides the interface for this script, which I don't think needs further explanation:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Sub MeshFunction_XY()
 Dim zFunc, fDomain(3), iResolution
 Call LoadFunctionData(zFunc, fDomain, iResolution)

 zFunc = Rhino.StringBox("Specify a function f(x,y[,D,A])", zFunc, "Mesh function")
 If IsNull(zFunc) Then Exit Sub

 Dim strPrompt, bResult
 Do
 strPrompt = "Function domain " & _
 "x{" & fDomain(0) & ", " & fDomain(1) & "} " & _
 "y{" & fDomain(2) & ", " & fDomain(3) & "} " & _
 "@ " & iResolution

 bResult = Rhino.GetString(strPrompt, "Insert", Split("xMin;xMax;yMin;yMax;Res;Insert", ";"))
 If IsNull(bResult) Then Exit Sub

 Select Case UCase(bResult)
 Case "XMIN"
 bResult = Rhino.GetReal("X-Domain start", fDomain(0))
 If Not IsNull(bResult) Then fDomain(0) = bResult
 Case "XMAX"
 bResult = Rhino.GetReal("X-Domain end", fDomain(1))
 If Not IsNull(bResult) Then fDomain(1) = bResult
 Case "YMIN"
 bResult = Rhino.GetReal("Y-Domain start", fDomain(2))
 If Not IsNull(bResult) Then fDomain(2) = bResult
 Case "YMAX"
 bResult = Rhino.GetReal("Y-Domain end", fDomain(3))
 If Not IsNull(bResult) Then fDomain(3) = bResult
 Case "RES"
 bResult = Rhino.GetInteger("Resolution of the graph", iResolution)
 If Not IsNull(bResult) Then iResolution = bResult
 Case "INSERT"
 Exit Do
 End Select
 Loop

 Dim V : V = CreateMeshVertices(zFunc, fDomain, iResolution)
 Dim F : F = CreateMeshFaces(iResolution)

 Call Rhino.AddMesh(V, F)
 Call SaveFunctionData(zFunc, fDomain, iResolution)
End Sub

96

The default function Cos(Sqr(x^2 + y^2)) is already quite pretty, but here are some other functions to play
with as well. Note that you can use all VBScript and RhinoScript functions and you don't even have to prepend
Rhino. in front of the function call if you don't want to:

Mathematical notation VBScript notation Result

Cos x y2 2+` j Cos(Sqr(x^2 + y^2))

Sin x Sin y+^ ^h h Sin(x) + Sin(y)

Sin D A+^ h Sin(D+A)

Atn x y2 2+` j

Atn(x^2 + y^2)

 -or-

Atn(D)

x Sin y
16

+ ^ h Sqr(Abs(x))+Sin(y)^16

,Sin Min x y2 2^a hk Sin(Min(Array(x^2, y^2))^0.5)

Sin x Sin y x y+ + +^ ^h h8 B CInt(Sin(x) + Sin(y) + x + y)

.Log Sin x Sin y 2 01+ +^ ^_ h h i Log(Sin(x) + Sin(y)+2.01)

97

Shape vs. Image

The vertex and face arrays of a mesh object define its form (geometry and topology) but meshes can also have
local display attributes. Colours and Texture-coordinates are two of these that we can control via RhinoScript.
The colour array (usually referred to as 'False-Colors') is an optional mesh property which defines individual
colours for every vertex in the mesh. The only Rhino commands that I know of that generate meshes with false-
color data are the analysis commands (_DraftAngleAnalysis, _ThicknessAnalysis, _CurvatureAnalysis and so on
and so forth) but unfortunately they do not allow you to export the analysis meshes. Before we do something
useful with False-Color meshes, let's do something simple, like assigning random colours to a mesh object:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Sub RandomMeshColours()
 Dim idMesh : idMesh = Rhino.GetObject("Mesh to randomize", 32, True, True)
 If IsNull(idMesh) Then Exit Sub

 Dim V : V = Rhino.MeshVertices(idMesh)
 Dim F : F = Rhino.MeshFaceVertices(idMesh)
 Dim C() : ReDim C(UBound(V))

 Dim i
 For i = 0 To UBound(V)
 C(i) = RGB(Rnd*255, Rnd*255, Rnd*255)
 Next

 Call Rhino.AddMesh(V, F, , , C)
 Call Rhino.DeleteObject(idMesh)
End Sub

Line Description
7 The False-Color array is optional, but there are rules to using it. If we decide to specify a False-Color

array, we have to make sure that it has the exact same number of elements as the vertex array, after
all, every vertex needs its own colour. We must also make sure that every element in the False-Color
array represents a valid colour. Colours in VBScript are defined as integers which store the red, green
and blue channels. The channels are defined as numbers in the range {0; 255}, and they are mashed
together into a bigger number where each channel is assigned its own niche. The advantage of this is
that all colours are just numbers instead of more complex data-types, but the downside is that these
numbers are usually meaningless for mere mortals:

Colour RGB Channels Integer value

Black1 {0, 0, 0} 0

White2 {255, 255, 255} 16777215

Red {255, 0, 0} 255

Green {0, 255, 0} 65280

Blue {0, 0, 255} 16711680

Orange {255, 155, 0} 39935

1 Lowest possible value
2 Highest possible value

98

Random colours may be pretty, but they are not useful. All the Rhino analysis commands evaluate a certain
geometrical local property (curvature, verticality, intersection distance, etc), but none of them take surroundings
into account. Let's assume we need a tool that checks a mesh and a (poly)surface for proximity. There is nothing
in Rhino that can do that out of the box. So this is actually going to be a useful script, plus we'll make sure that
the script is completely modular so we can easily adjust it to analyze other properties.

We'll need a function who's purpose it is to generate an array of numbers (one for each vertex in a mesh) that
define some kind of property. These numbers are then in turn translated into a gradient (red for the lowest
number, white for the highest number in the set) and applied as the False-Color data to a new mesh object. In
our case the property is the distance from a certain vertex to the point on a (poly)surface which is closest to
that vertex:

A

B

C

DA
Acp

Vertex {A} on the mesh has a point associated with it {Acp} on the box and the
distance between these two {DA} is a measure for proximity. This measure is
linear, which means that a vertex which is twice as far away gets a proximity
value which is twice as high. A linear distribution is indicated by the red line in
the adjacent graph. It actually makes more intuitive sense to use a logarithmic
scale (the green line), since it is far better at dealing with huge value ranges.
Imagine we have a mesh whose sorted proximity value set is something like:

{0.0; 0.0; 0.0; 0.1; 0.2; 0.5; 1.1; 1.8; 2.6; … ; 9.4; 1000.0}

As you can see pretty much all the variation is within the {0.0; 10.0} range,
with just a single value radically larger. Now, if we used a linear approach, all
the proximity values would resolve to completely red, except for the last one
which would resolve to completely white. This is not a useful gradient. When
you run all the proximity values through a logarithm you end up with a much
more natural distribution:

0

1

2

3

4

5

6

7

-1

-2

-3

1 2 3 4 5 6 7

Values { P = D } 0.0 0.0 0.0 0.1 0.2 0.5 1.1 1.8 2.6 9.4 1000.0
Gradient

Values { P = Log(D) } -∞ -∞ -∞ -1 -0.7 -0.3 0.1 0.3 0.4 1.0 3.0
Gradient

Values { P = Log(D+1.0) } 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.6 1.0 3.0
Gradient

There is just one snag, the logarithm function returns negative numbers for input between zero and one. In
fact, the logarithm of zero is minus-infinity, which plays havoc with all mathematics down the road since infinity
is way beyond the range of numbers we can represent using doubles. And since the smallest possible distance
between two points in space is zero, we cannot just apply a logarithm and expect our script to work. The
solution is a simple one, add 1.0 to all distance values prior to calculating the logarithm, and all our results are
nice, positive numbers.

99

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Function VertexValueArray(ByVal pts, ByVal id)
 Dim arrD() : ReDim arrD(UBound(pts))
 Dim i

 For i = 0 To UBound(pts)
 arrD(i) = DistanceTo(pts(i), id)
 Next

 VertexDistanceArray = arrD
End Function

Function DistanceTo(ByVal pt, ByVal id)
 DistanceTo = Null
 Dim ptCP : ptCP = Rhino.BrepClosestPoint(id, pt)

 If IsNull(ptCP) Then Exit Function
 Dim D : D = Rhino.Distance(pt, ptCP(0))
 D = Log(D + 1.0)

 DistanceTo = D
End Function

Line Description
1…8 The VertexValueArray() function is the one that creates a list of numbers for each vertex. We're

giving it the mesh vertices (an array of 3D points) and the object ID of the (poly)surface for the
proximity analysis. This function doesn't do much, it simply instantiates a new array and then fills it up
using the DistanceTo() function.

10…19 DistanceTo() calculates the distance from pt to the projection of pt onto id. Where pt is a single 3D
coordinate and id if the identifier of a (poly)surface object. It also perform the logarithmic conversion,
so the return value is not the actual distance.

And the master Sub containing all the frontend and colour magic:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Sub ProximityAnalysis()
 Dim idMesh, idBRep

 idMesh = Rhino.GetObject("Target mesh for proximity analysis", 32, True, True)
 If IsNull(idMesh) Then Exit Sub

 idBRep = Rhino.GetObject("(Poly)surface for proximity analysis", 8+16, False, True)
 If IsNull(idBRep) Then Exit Sub

 Dim arrV, arrF, arrD
 arrV = Rhino.MeshVertices(idMesh)
 arrF = Rhino.MeshFaceVertices(idMesh)
 arrD = VertexValueArray(arrV, idBRep)

 Dim minD : minD = Rhino.Min(arrD)
 Dim maxD : maxD = Rhino.Max(arrD)
 Dim proxFactor, i
 Dim arrC() : ReDim arrC(UBound(arrV))

 For i = 0 To UBound(arrV)
 proxFactor = (arrD(i) - minD) / (maxD - minD)
 arrC(i) = RGB(255, 255 * proxFactor, 255 * proxFactor)
 Next

 Call Rhino.AddMesh(arrV, arrF, ,, arrC)
 Call Rhino.DeleteObject(idMesh)
End Sub

Line Description
15…16 Find the lowest and highest values in the arrD array.

18 Create the False-Color array.

21 Calculate the position on the {Red~White} gradient for the current value.

22 Cook up a colour based on the proxFactor.

100

7.9 Surfaces

At this point you should have a fair idea about the strengths and flexibility of mesh based surfaces. It is no
surprise that many industries have made meshes their primary means of surfacing. However, meshes also have
their disadvantages and this is where other surfacing paradigms come into play.

In fact, meshes (like nurbs) are a fairly recent discovery whose rise to power depended heavily on demand
from the computer industry. Mathematicians have been dealing with different kinds of surface definitions for
centuries and they have come up with a lot of them; surfaces defined by explicit functions, surfaces defined
by implicit equations, minimal area surfaces, surfaces of revolutions, fractal surfaces and many more. Most
of these types are far too abstract for your every-day modeling job, which is why most CAD packages do not
implement them.

Schwarz D surface, a triply periodic minimal surface which divides all of space between here and the edge of
creation into two equal chunks. Easy to define mathematically, hard to model manually.

Apart from a few primitive surface types such as spheres, cones, planes and cylinders, Rhino supports three
kinds of freeform surface types, the most useful of which is the Nurbs surface. Similar to curves, all possible
surface shapes can be represented by a Nurbs surface, and this is the default fall-back in Rhino. It is also by far
the most useful surface definition and the one we will be focusing on.

Sphere primitive
{Plane; Radius}

Cylinder primitive
{Plane; Radius; Height}

Plane primitive
{Plane; Width; Height}

Cone primitive
{Plane; Radius; Height}

101

Nurbs Surfaces
Nurbs surfaces are very similar to Nurbs curves. The same algorithms
are used to calculate shape, normals, tangents, curvatures and other
properties, but there are some distinct differences. For example, curves
have tangent vectors and normal planes, whereas surfaces have normal
vectors and tangent planes. This means that curves lack orientation
while surfaces lack direction. This is of course true for all curve and
surface types and it is something you'll have to learn to live with. Often
when writing code that involves curves or surfaces you'll have to make
assumptions about direction and orientation and these assumptions will
sometimes be wrong.

In the case of NURBS surfaces there are in fact two directions implied by
the geometry, because NURBS surfaces are rectangular grids of {u} and {v}
curves. And even though these directions are often arbitrary, we end up
using them anyway because they make life so much easier for us.

But lets start with something simple which doesn't actually involve NURBS surface mathematics on our end.
Luckily this something simple has a really difficult sounding name so you won't have to feel bad about yourself
when people find out what it is you've been up to in your spare time. The problem we're about to be confronted
with is called Surface Fitting and the solution is called Error Diffusion. You have almost certainly come across
this term in the past, but probably not in the context of surface geometry. Typically the words "error diffusion"
are only used in close proximity to the words "color", "pixel" and "dither", but the wide application in image
processing doesn't limit error diffusion algorithms to the 2D realm.

The problem we're facing is a mismatch between a given surface and a number of points that are supposed to
be on it. We're going to have to change the surface so that the distance between it and the points is minimized.
Since we should be able to supply a large amount of points (and since the number of surface control-points is
limited and fixed) we'll have to figure out a way of deforming the surface in a non-linear fashion (i.e. translations
and rotations alone will not get us there). Take a look at the images below which are a schematic representation
of the problem:

For purposes of clarity I have unfolded a very twisted nurbs patch so that it is reduced to a rectangular grid of
control-points. Actually, I'm making this up as I go along, I haven't really unfolded anything but I need you to
realize that the diagram you're looking at is drawn in {uvw} space rather than world {xyz} space. The actual
surface might be contorted in any number of ways, but we're only interested in the simplified {uvw} space.

The surface has to pass through point {S}, but currently the two entities are not intersecting. The projection
of {S} onto the surface {S'} is a certain distance away from {S} and this distance is the error we're going to
diffuse. As you can see, {S'} is closer to some control points than others. Especially {F} and {G} are close, but
{B; C; J; K} can also be considered adjacent control points. Rather than picking a fixed number of nearby control
points and moving those in order to reduce the distance between {S} and {S'}, we're going to move all the points,
but not in equal amounts. The images on the right show the amount of motion we assign to each control point
based on its distance to {S'}.

102

You may have noticed a problem with the algorithm description so far. If a nurbs surface is flat, the control-points
lie on the surface itself, but when the surface starts to buckle and bend, the control points have a tendency to
move away from the surface. This means that the distance between the control points {uvw} coordinate and
{S'} is less meaningful. So instead of control points, we'll be using Greville points. Both nurbs curves and nurbs
surfaces have a set of Greville points (or "edit points" as they are known in Rhino), but only curves expose this in
the Rhino interface. As scripters we also get access to surface Greville points, which is useful because there is
a 1:1 mapping between control and Greville points and the latter are guaranteed to lie on the surface. Greville
points can therefore be expressed in {uv} coordinates only, which means we can also evaluate surface properties
(such as tangency, normals and curvature) at these exact locations.

The only thing left undecided at this point is the equation we're going to use to determine the amount of motion
we're going to assign to a certain control point based on its distance from {S'}. It seems obvious that all the
control points that are "close" should be affected much more than those which are farther away. The minimum
distance between two points in space is zero (negative distance only makes sense in certain contexts, which
we'll get to shortly) and the maximum distance is infinity. This means we need a graph that goes from zero to
infinity on the x-axis and which yields a lower value for {y} for every higher value of {x}. If the graph ever goes
below zero it means we're deforming the surface with a negative error. This is not a bad thing per se, but let's
keep it simple for the time being.

Our choices are already pretty limited by these constraints, but there are still some worthy contestants. If this
were a primer about mathematics I'd probably have gone for a Gaussian distribution, but instead we'll use an
extremely simple equation known as a hyperbola. If we define the diffusion factor of a Greville point as the
inverse of its distance to {S'}, we get this hyperbolic function:

f y
x
1

=^ h

As you can see, the domain of the graph goes from zero to infinity, and for every higher value of {x} we get a
lower value of {y}, without {y} ever becoming zero. There's just one problem, a problem which only manifests
itself in programming. For very small values of {x}, when the Greville point is very close to {S'}, the resulting {y}
is very big indeed. When this distance becomes zero the weight factor becomes infinite, but we'll never get even
this far. Even though the processor in your computer is in theory capable of representing numbers as large as
1.8 × 10308 (which isn't anywhere near infinity by any stretch of the imagination), when you start doing calculations
with numbers approaching the extremes chances are you are going to cross over into binary no man's land and
crash your pc. And that's not even to mention the deplorable mathematical accuracy at these levels of scale.
Clearly, I'd be giving you good advice if I told you to steer clear of very big and very small numbers altogether.

It's an easy fix in our case, we can simply limit the {x} value to the domain {+0.01; +∞}, meaning that {y} can
never get bigger than 100. We could make this threshold much, much smaller without running into problems.
Even if we limit {x} to a billionth of a unit (0.00000001) we're still comfortably in the clear.

103

I think that's about enough psychobabble for one chapter
introduction, high time for some coding. The first thing we need
to do is write a function that takes a surface and a point in {xyz}
coordinates and translates it into {uvw} coordinates. We can use
the Rhino.SurfaceClosestPoint() method to get the {u} and {v}
components, but the {w} is going to take some thinking.

First of all, a surface is a 2D entity meaning it has no thickness and
thus no "real" {z} or {w} component. But a surface does have normal
vectors that point away from it and which can be used to emulate a
"depth" dimension. In the adjacent illustration you can see a point
in {uvw} coordinates, where the value of {w} is simply the distance
between the point and the start of the line. It is in this respect that
negative distance has meaning, because negative distance denotes a
{w} coordinate on the other side of the surface.
Although this is a useful way of describing coordinates in surface space, you should at all times remember
that the {u} and {v} components of such a coordinate are expressed in surface parameter space while the
{w} component is expressed in world units. We are using mixed coordinate systems which means that we
cannot blindly use distances or angles between these points because those properties are meaningless now.

In order to find the coordinates in surface {S} space of a point {P}, we need to find the projection {P'} of {P} onto
{S}. Then we need to find the distance between {P} and {P'} so we know the magnitude of the {w} component
and then we need to figure out on which side of the surface {P} is in order to figure out the sign of {w} (positive
or negative). Since our script will be capable of fitting a surface to multiple points, we might as well make our
function array-capable:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Function ConvertToUVW(ByVal idSrf, ByRef pXYZ())
 Dim pUVW() : ReDim pUVW(UBound(pXYZ))

 Dim Suv, Sxyz, Snormal
 Dim Sdist, dirPos, dirNeg
 Dim i

 For i = 0 To UBound(pXYZ)
 Suv = Rhino.SurfaceClosestPoint(idSrf, pXYZ(i))
 Sxyz = Rhino.EvaluateSurface(idSrf, Suv)
 Snormal = Rhino.SurfaceNormal(idSrf, Suv)

 dirPos = Rhino.PointAdd(Sxyz, Snormal)
 dirNeg = Rhino.PointSubtract(Sxyz, Snormal)

 Sdist = Rhino.Distance(Sxyz, pXYZ(i))

 If (Rhino.Distance(pXYZ(i), dirPos) > Rhino.Distance(pXYZ(i), dirNeg)) Then
 Sdist = -Sdist
 End If

 pUVW(i) = Array(Suv(0), Suv(1), Sdist)
 Next

 ConvertToUVW = pUVW
End Function

Line Description
1 pXYZ() is an array of points expressed in world coordinates. It is passed ByRef to avoid copying.

9…11 Find the {uv} coordinate of {P'}, the {xyz} coordinates of {P'} and the surface normal vector at {P'}.

13…14 Add and subtract the normal to the {xyz} coordinates of {P'} to get two points on either side of {P'}.

18…20 If {P} is closer to the dirNeg point, we know that {P} is on the "downside" of the surface and we need
to make {w} negative.

104

We need some other utility functions as well (it will become clear how they fit into the grand scheme of things
later) so let's get it over with quickly:

1
2
3
4
5
6
7
8
9

10
11

Function GrevilleNormals(ByVal idSrf)
 Dim uvGreville : uvGreville = Rhino.SurfaceEditPoints(idSrf, True, True)
 Dim srfNormals() : ReDim srfNormals(UBound(uvGreville))

 Dim i
 For i = 0 To UBound(uvGreville)
 srfNormals(i) = Rhino.SurfaceNormal(idSrf, uvGreville(i))
 Next

 GrevilleNormals = srfNormals
End Function

This function takes a surface and returns an array of normal vectors for every Greville point. There's nothing
special going on here, you should be able to read this function without even consulting help files at this stage.
The same goes for the next function, which takes an array of vector and an array of numbers and divides each
vector with the matching number. This function assumes that Vectors and Factors are arrays of equal size.

1
2
3
4
5
6

Sub DivideVectorArray(ByRef Vectors, ByRef Factors)
 Dim i
 For i = 0 To UBound(Vectors)
 Vectors(i) = Rhino.VectorDivide(Vectors(i), Factors(i))
 Next
End Sub

The next subroutine isn't so straightforward, mostly because we are now using the ByRef keyword to accomplish
something different. Our eventual algorithm will keep track of both motion vectors and weight factors for each
control point on the surface (for reasons I haven't explained yet), and we need to instantiate these arrays with
default values. Even though that is pretty simple stuff, I decided to move the code into a separate procedure
anyway in order to keep all the individual procedures small. The problem is that we need to instantiate 2 arrays
with default values and a function can only return a single blob of data. Instead of making 2 functions (one for
each array), I made a single subroutine which does not return a value, but which takes to ByRef arguments
instead. ByRef means this procedure gets to poke the variables in some other procedure directly. So instead of
assigning the return value of a function to a variable, we now give a pre-existing variable to a function and allow
it to change it. This way, we can mess around with as many variables as we like.

1
2
3
4
5
6
7
8
9

10

Sub InstantiateForceLists(ByRef Forces(), ByRef Factors(), ByVal Bound)
 ReDim Forces(Bound)
 ReDim Factors(Bound)
 Dim i

 For i = 0 To Bound
 Forces(i) = Array(0,0,0)
 Factors(i) = 0.0
 Next
End Sub

Line Description
1 Forces and Factors are ByRef arguments and they have also been declared as arrays. Bound is just a

single integer indicating the size of both arrays. We are not interested in changing the value of Bound
which is why it is passed ByVal.

2…3 Resize both referenced arrays. At this point, both arrays will have the proper length but they are both
filled with Empty values.

6…9 Iterate through both arrays and assign default values (a zero-length vector in the case of Forces and
zero in the case of Factors)

We've now dealt with all the utility functions. I know it's a bit annoying to deal with code which has no obvious
meaning yet, and at the risk of badgering you even more I'm going to take a step back and talk some more about
the error diffusion algorithm we've come up with. For one, I'd like you to truly understand the logic behind it
and I also need to deal with one last problem...

105

If we were to truly move each control point based directly on the inverse of its distance to {P'}, the hyperbolic
diffusion decay of the sample points would be very noticeable in the final surface. Let's take a look at a simple
case, a planar surface {Base} which has to be fitted to four points {A; B; C; D}. Three of these points are above
the surface (positive distance), one is below the surface (negative distance):

S T

The four hyperbolas that have to be added in order to get the
final error diffusion field.

A section through the surface containing the four points.

On the left you see the four individual hyperbolas (one for each of the sample points) and on the right you
see the result of a fitting operation which uses the hyperbola values directly to control control-point motion.
Actually, the hyperbolas aren't drawn to scale, in reality they are much (much) thinner, but drawing them to
scale would make them almost invisible since they would closely hug the horizontal and vertical lines.

We see that the control points that are close to the projections of {A; B; C; D} on {Base} will be moved a great
deal (such as {S}), whereas points in between (such as {T}) will hardly be moved at all. Sometimes this is useful
behaviour, especially if we assume our original surface is already very close to the sample points. If this is not
the case (like in the diagram above) then we end up with a flat surface with some very sharp tentacles poking
out.

Lets assume our input surface is not already 'almost' good. This means that our algorithm cannot depend on the
initial shape of the surface which in turn means that moving control points small amounts is not an option. We
need to move all control points as far as necessary. This sounds very difficult, but the mathematical trick is a
simple one. I won't provide you with a proof of why it works, but what we need to do is divide the length of the
motion vector by the value of the sum of all the hyperbolas.

Have a close look at control points {S} and {T} in the illustration above. {S} has a very high diffusion factor (lots
of yellow above it) whereas {T} has a low diffusion factor (thin slivers of all colours on both sides). But if we
want to move both {S} and {T} substantial amounts, we need to somehow boost the length of the motion vector
for {T}. If you divide the motion vector by the value of the added hyperbolas, you sort of 'unitize' all the motion
vectors, resulting in the following section:

which is a much smoother fit. The sag between {B} and {C} is not due to the shape of the original surface, but
because between {B} and {C}, the other samples start to gain more relative influence and dragging the surface
down towards them. Let's have a look at the code:

106

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Function FitSurface(ByVal idSrf, ByRef Samples(), ByRef dTranslation, ByRef dProximity)
 Dim P : P = Rhino.SurfacePoints(idSrf)
 Dim G : G = Rhino.SurfaceEditPoints(idSrf, True, True)
 Dim N : N = GrevilleNormals(idSrf)
 Dim S : S = ConvertToUVW(idSrf, Samples)

 Dim Forces(), Factors()
 Call InstantiateForceLists(Forces, Factors, UBound(P))

 Dim i, j
 Dim LocalDist, LocalFactor, LocalForce

 dProximity = 0.0
 dTranslation = 0.0

 For i = 0 To UBound(S)
 dProximity = dProximity + Abs(S(i)(2))

 For j = 0 To UBound(P)
 LocalDist = (S(i)(0) - G(j)(0))^2 + (S(i)(1) - G(j)(1))^2
 If (LocalDist < 0.01) Then LocalDist = 0.01
 LocalFactor = 1 / LocalDist

 LocalForce = Rhino.VectorScale(N(j), LocalFactor * S(i)(2))

 Forces(j) = Rhino.VectorAdd(Forces(j), LocalForce)
 Factors(j) = Factors(j) + LocalFactor
 Next
 Next

 Call DivideVectorArray(Forces, Factors)

 For i = 0 To UBound(P)
 P(i) = Rhino.PointAdd(P(i), Forces(i))
 dTranslation = dTranslation + Rhino.VectorLength(Forces(i))
 Next

 Dim srf_N : srf_N = Rhino.SurfacePointCount(idSrf)
 Dim srf_K : srf_K = Rhino.SurfaceKnots(idSrf)
 Dim srf_W : srf_W = Rhino.SurfaceWeights(idSrf)
 Dim srf_D(1)
 srf_D(0) = Rhino.SurfaceDegree(idSrf, 0)
 srf_D(1) = Rhino.SurfaceDegree(idSrf, 1)

 FitSurface = Rhino.AddNurbsSurface(srf_N, P, srf_K(0), srf_K(1), srf_D, srf_W)
End Function

Line Description
1 This is another example of a function which returns more than one value. This function properly returns

the identifier of the surface it creates, but the last two arguments dTranslation and dProximity are
ByRef and will be changed. When this function completes, dTranslation will contain a number that
represents the total motion of all control points and dProximity will contain the total error (the sum
of all distances between the surface and the samples). Since it is unlikely our algorithm will generate
a perfect fit right away, we somehow need to keep track of how effective a certain iteration is. If it
turns out that the function only moved the control points a tiny bit, we can abort in the knowledge we
have achieved a high level of accuracy.

2…5 P, G, N and S are arrays that contain the surface control points (in {xyz} space), Greville points (in
{uv} space), normal vectors at every greville point and all the sample coordinates (in {uvw} space).
You have every right to be outraged by the names of the variables I've chosen, they're ludicrous. But
they're short.

8 The function we're calling here has been dealt with on page 104.

16 First, we iterate over all Sample points.

19 Then, we iterate over all Control points.

20 LocalDist is the distance in {uv} space between the projection of the current sample point and the
current Greville point.

107

Line Description
21 This is where we limit the distance to some non-zero value in order to prevent extremely small numbers

from entering the algorithmic meat-grinder.

22 Run the LocalDist through the hyperbola equation in order to get the diffusion factor for the current
Control point and the current sample point.

24 LocalForce is a vector which temporarily caches the motion caused by the current Sample point. This
vector points in the same direction as the normal, but the magnitude (length) of the vector is the size
of the error times the diffusion factor we've calculated on line 22.

26 Every Control point is affected by all Sample points, meaning that every Control point is tugged in a
number of different directions. We need to combine all these forces so we end up with a final, resulting
force. Because we're only interested in the final vector, we can simple add the vectors together as we
calculate them.

27 We also need to keep a record of all the Diffusion factors along with all vectors, so we can divide them
later and unitize the motion (as discussed on page 105).

31 Divide all vectors with all factors (function explained on page 104)

33…36 Apply the motion we've calculated to the {xyz} coordinates of the surface control points.

38…45 Instead of changing the existing surface, we're going to add a brand new one. In order to do this, we
need to collect all the NURBS data of the original such as knot vectors, degrees, weights and so on and
so forth.

The procedure on the previous page has no interface code, thus it is not a top-level procedure. We need
something that asks the user for a surface, some points and then runs the FitSurface() function a number of
times until the fitting is good enough:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Sub DistributedSurfaceFitter()
 Dim idSrf : idSrf = Rhino.GetObject("Surface to fit", 8, True, True)
 If IsNull(idSrf) Then Exit Sub

 Dim pts : pts = Rhino.GetPointCoordinates("Points to fit to", False)
 If IsNull(pts) Then Exit Sub

 Dim N, nSrf
 Dim dProx, dTrans

 For N = 1 To 1000
 Call Rhino.EnableRedraw(False)
 nSrf = FitSurface(idSrf, pts, dTrans, dProx)
 Call Rhino.DeleteObject(idSrf)
 Call Rhino.EnableRedraw(True)

 Call Rhino.Prompt("Translation = " & Round(dTrans, 2) & " Deviation = " & Round(dProx, 2))

 If (dTrans < 0.1) Or (dProx < 0.01) Then Exit For
 idSrf = nSrf
Next

Call Rhino.Print("Final deviation = " & Round(dProx, 4))
End Sub

Line Description
11 Rather than using an infinite loop (Do…Loop) we limit the total amount of fitting iterations to one

thousand. That should be more than enough, and if we still haven't found a good solution by then it
is unlikely we ever will. The variable N is known as a "chicken int" in coding slang. "Int" is short for
"Integer" and "chicken" is because you're scared the loop might go on forever.

12…15 Disable the viewport, create a new surface, delete the old one and switch the redraw back on

17 Inform the user about the efficiency of the current iteration

19 If the total translation is negligible, we might as well abort since nothing we can do will make it any
better. If the total error is minimal, we have a good fit and we should abort.

108

The diagrams and graphs I've used so far to illustrate the workings of this algorithm are all two-dimensional and
display only simplified cases. The images on this page show the progression of a single solution in 3D space. I've
started with a planar, rectangular nurbs patch of 30 × 30 control points and 36 points both below and above the
initial surface. I allowed the algorithm to continue refining until the total deviation was less than 0.01 units.

This image is recognizable as a 3D version of the
diagrams you've seen before. Every point has a small
summit pointing towards it. This is the result of the first
iteration of our algorithm. Total deviation is still 63mm
(measured as total distance between all red points and
their projection onto the surface).

The first iteration started with a flat surface, with all
the normals pointing directly upwards. However, after
the control-points were adjusted, the surface is far from
planar. Since we restrict Control Point motion along the
normal of the Greville Point, the surface now starts to
bulge horizontally as well. Deviation reduced to 34mm.

Third iteration; not quite there yet. Total deviation
equals 19mm.

Fourth iteration; closer, but no cigar. Eleven millimeters
remaining...

Fifth iteration; steadily decreasing deviation and motion.
Seven millimeters still unaccounted for.

Deviation < 0.01 after 40 iterations.

109

Surface Curvature

Curve curvature is easy to grasp intuitively. You simply fit a
circle to a short piece of curve as best you can (this is called
an osculating circle) and the radius and center of this circle
tell you all you need to know about the local curvature. We've
dealt with this already on page 84.

Points {A; B; C; D; E} have a certain curvature associated with
them. The radius of the respective circles is a measure for the
curvature (in fact, the curvature is the inverse of the radius),
and the direction of the vectors is an indication of the curve
plane.

If we were to scale the curve to 50% of its original size the curvature circles also become half as big, effectively
doubling the curvature values. Point {C} is special in that it has zero-curvature (i.e. the radius of the osculating
circle is infinite). Points where the curvature value changes from negative to positive are known as inflection
points. If we have multiple inflection points adjacent to each other, we are dealing with a linear segment in the
curve.

Surface curvature is not so straightforward. For one, there are multiple definitions of curvature in the case
of surfaces and volumes which one suits us best depends on our particular algorithm. Curvature is quite an
important concept in many manufacturing and design projects, which is why I'll deal with it in some depth. I
won't be dealing with any script code until the next section, so if you are already familiar with curvature theory
feel free to skip ahead to page 111.

The most obvious way of evaluating surface curvature would be to slice it with a straight section through the
point {P} we are interested in and then simply revert to curve curvature algorithms. But, as mentioned before,
surfaces lack direction and it is thus not at all clear at which angle we should dissect the surface (we could use
{u} and {v} directions, but those will not necessarily give you meaningful answers). Still, this approach is useful
every now and again and it goes under the name of normal curvature. As you can see in the illustration below,
there are an infinite number of sections through point {P} and thus an infinite number of answers to the question
"what is the normal curvature at {P}?"

Base surface Subset of all possible normal curvatures Principal curvatures

However, under typical circumstances there is only answer to the question: "what is the highest normal curvature
at {P}?". When you look at the complete set of all possible normal curvatures, you'll find that the surface is most
flat in one direction and most bent in another. These two directions are therefore special and they constitute
the principal curvatures of a surface. The two principal curvature directions are always perpendicular to each
other and thus they are completely independent of {u} and {v} directions ({u} and {v} are not necessarily
perpendicular).

Actually, things are more complicated since there might be multiple directions which yield lowest or highest
normal curvature so there's a bit of additional magic required to get a result at all in some cases. Spheres for
example have the same curvature in all directions so we cannot define principal curvature directions at all.

110

This is not the end of the story. Starting with the set of all normal curvatures, we extracted definitions of the
principal curvatures. Principal curvatures always come in pairs (minimum and maximum) and they are both
values and directions. We are more often than not only interested in how much a surface bends, not particularly
in which direction. One of the reasons for this is that the progression of principal curvature directions across
the surface is not very smooth:

The illustration on the left shows the directions of the maximum principal curvatures. As you can see there are
threshold lines on the surface at which the principal direction suddenly makes 90º turns. The overall picture
is chaotic and overly complex. We can use a standard tensor-smoothing algorithm to average each direction
with its neighbours, resulting in the image on the right, which provides us with an already much more useful
distribution (e.g. for texturing or patterning purposes), but now the vectors have lost their meaning. This is why
the principal curvature directions are not a very useful surface property in every day life.

Instead of dealing with the directions, the other aforementioned surface curvature definitions deal only with the
scalar values of the curvature; the osculating circle radius. The most famous among surface curvature definitions
are the Gaussian and Mean curvatures. Both of these are available in the _CurvatureAnalysis command and
through RhinoScript.

The great German mathematician Carl Friedrich Gauss figured out that by multiplying the principal curvature
radii you get another, for some purposes much more useful indicator of curvature:

min maxGauss $= l lJ

Where JGauss is the Gaussian curvature and lmin and lmax are the principal curvatures. Assuming you are completely
comfortable with the behaviour of multiplications, we can identify a number of specific cases:

Cases: A. B. C. D.

Case Curvaturemin Curvaturemax Case description

A. zero zero If both principal curvatures are zero, the surface is locally flat
(planar).

B. zero non-zero If one of the principal curvatures is zero, the product of both must
also be zero. Hence, we've got a cylindrical surface.

C. positive positive If both principal curvatures have the same sign, the product of both
must be positive and we have a spherical (synclastic) surface.

D. positive negative If the principal curvatures have opposing signs, the product of both
must be negative and we have a hyperbolic surface (anticlastic).

111

From this we can conclude that any surface which has zero Gaussian curvature everywhere can be unrolled into
a flat sheet and any surface with negative Gaussian curvature everywhere can be made by stretching elastic
cloth.

The other important curvature definition is Mean curvature ("mean" equals "average" in mathspeak), which is
essentially the sum of the principal curvatures:

2
min max

Mean = +l lJ

As you know, summation behaves very different from multiplication, and Mean curvature can be used to analyze
different properties of a surface because it has different special cases. If the minimum and maximum principal
curvatures are equal in amplitude but have opposing signs, the average of both is zero. A surface with zero Mean
curvature is not merely anticlastic, it is a very special surface known as a minimal or zero-energy surface. It is
the natural shape of a soap film with equal atmospheric pressure on both sides. These surfaces are extremely
important in the field of tensile architecture since they spread stress equally across the surface resulting in
structurally strong geometry.

Vector and Tensor spaces

On the previous page I mentioned the words "tensor", "smoothing" and "algorithm" in one breath. Even though
you most likely know the latter two, the combination probably makes little sense. Tensor smoothing is a useful
tool to have in your repertoire so I'll deal with this specific case in detail. Just remember that most of the
script which is to follow is generic and can be easily adjusted for different classes of tensors. But first some
background information...

Imagine a surface with no singularities and no stacked control points, such as a torus or a plane. Every point
on this surface has a normal vector associated with it. The collection of all these vectors is an example of a
vector space. A vector space is a continuous set of vectors over some interval. The set of all surface normals is
a two-dimensional vector space (sometimes referred to as a vector field), just as the set of all curve tangents
is a one-dimensional vector space, the set of all air-pressure components in a turbulent volume over time is a
four-dimensional vector space and so on and so forth.

When we say "vector", we usually mean little arrows; a list of numbers that indicate a direction and a magnitude
in some sort of spatial context. When things get more complicated, we start using "tensor" instead. Tensor is a
more general term which has fewer connotations and is thus preferred in many scientific texts.

For example, the surface of your body is a two-dimensional tensor
space (embedded in four dimensional space-time) which has many
properties that vary smoothly from place to place; hairiness,
pigmentation, wetness, sensitivity, freckliness and smelliness
to name just a few. If we measure all of these properties in a
number of places, we can make educated guesses about all the
other spots on your body using interpolation and extrapolation
algorithms. We could even make a graphical representation of
such a tensor space by using some arbitrary set of symbols.

We could visualize the wetness of any piece of skin by linking
it to the amount of blue in the colour of a box, and we could
link freckliness to green, or to the width of the box, or to the
rotational angle.

All of these properties together make up the tensor class. Since we can pick and choose whatever we include
and ignore, a tensor is essentially whatever you want it to be. Let's have a more detailed look at the tensor class
mentioned on the previous page, which is a rather simple one...

112

I created a vector field of maximum-principal curvature directions over the surface (sampled at a certain custom
resolution), and then I smoothed them out in order to get rid of the sudden jumps in direction. Averaging two
vectors is easy, but averaging them while keeping the result tangent to a surface is a bit harder.

In this particular case we end up with a two-dimensional tensor space, where the tensor class T consist of a
vector and a tangent plane:

Since we're sampling the surface at regular parameter intervals in {u} and {v} directions, we end up with a
matrix of tensors (a table of rows and columns). We can represent this easily with a two-dimensional array. We'll
need two of these in our script since we need to store two separate data-entities; vectors and planes.

Base surface, slight deformation of a planar
patch. No singularities, no creases.

Height contour sections of this surface with
highlighted local maxima.

Vector space with all maximum principal
curvature directions. Very sharp transitions
between vector clusters.

Single smoothing operation. 5 smoothing operations. 10 smoothing operations.

50 smoothing operations. 100 smoothing operations. 500 smoothing operations.

This progression of smoothing iterations clearly demonstrates the usefulness of a tensor-smoothing algorithm; it
helps you to get rid of singularities and creases in any continuous tensor space.

113

I'm not going to spell the entire script out here, I'll only highlight the key functions. You can find the complete
script (including comments) in the Script folder.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Sub SurfaceTensorField(ByVal idSrf, ByVal Nu, ByVal Nv, ByRef T, ByRef K)
 Dim uDomain : uDomain = Rhino.SurfaceDomain(idSrf, 0)
 Dim vDomain : vDomain = Rhino.SurfaceDomain(idSrf, 1)

 ReDim T(Nu, Nv)
 ReDim K(Nu, Nv)
 Dim localCurvature

 Dim i, j, u, v
 For i = 0 To Nu
 u = uDomain(0) + (i/Nu)*(uDomain(1) - uDomain(0))

 For j = 0 To Nv
 v = vDomain(0) + (j/Nv)*(vDomain(1) - vDomain(0))

 T(i,j) = Rhino.SurfaceFrame(idSrf, Array(u,v))
 localCurvature = Rhino.SurfaceCurvature(idSrf, Array(u,v))

 If (IsNull(localCurvature)) Then
 K(i,j) = T(i,j)(1)
 Else
 K(i,j) = Rhino.SurfaceCurvature(idSrf, Array(u,v))(3)
 End If
 Next
 Next
End Sub

Line Description
1 This procedure has to create all the arrays that define our tensor class. In this case one array with

vectors and an array with planes. Since we cannot return more than one value from a function, we
need to use ByRef arguments again.

5…6 Since we know exactly how many tensors we need to make, we can resize the arrays directly. There's
no need for a ReDim statement inside the loop.

11 This looks imposing, but it is a very standard piece of logic. The problem here is a common one: how to
remap a number from one scale to another. We know how many samples the user wants (some whole
number) and we know the limits of the surface domain (two doubles of some arbitrary value). We need
to figure out which parameter on the surface domain matches with the Nth sample number. Observe
the diagram below for a schematic representation of the problem:

Our sample count (the topmost bar) goes from {A} to {B}, and the surface domain includes all values
between {C} and {D}. We need to figure out how to map numbers in the range {A~B} to the range {C~D}.
In our case we need a linear mapping function meaning that the value halfway between {A} and {B} gets
remapped to another value halfway between {C} and {D}.

Line 11 (and line 14) contain an implementation of such a mapping algorithm. I'm not going to spell
out exactly how it works, if you want to fully understand this script you'll have to look into that by
yourself.

16 Retrieve the surface Frame at {u,v}. This is part of our Tensor class.

17 Retrieve all surface curvature information at {u,v}. This includes principal, mean and Gaussian curvature
values and vectors.

20 In case the surface has no curvature at {u,v}, use the x-axis vector of the Frame instead.

22 If the surface has a valid curvature at {u,v}, we can use the principal curvature direction which is
stored in the 4th element of the curvature data array.

114

This function takes two ByRef arrays (both arrays together are a complete description of our Tensor class) and
it modifies the originals. The return value (a boolean indicating success or failure) is merely cosmetic. This
function is a typical box-blur algorithm. It averages the values in every tensor with all neighbouring tensors
using a 3×3 blur matrix.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Function SmoothTensorField(ByRef T, ByRef K)
 SmoothTensorField = False
 Dim K_copy : K_copy = K

 Dim Ub1 : Ub1 = UBound(T, 1)
 Dim Ub2 : Ub2 = UBound(T, 2)
 Dim i, j, x, y, xm, ym
 Dim k_dir, k_tot

 For i = 0 To Ub1
 For j = 0 To Ub2
 k_tot = Array(0,0,0)

 For x = i-1 To i+1
 xm = (x+Ub1) Mod Ub1

 For y = j-1 To j+1
 ym = (y+Ub2) Mod Ub2
 k_tot = Rhino.VectorAdd(k_tot, K_copy(xm,ym))
 Next
 Next

 k_dir = Rhino.PlaneClosestPoint(T(i,j), Rhino.VectorAdd(T(i,j)(0), k_tot))
 k_tot = Rhino.VectorSubtract(k_dir, T(i,j)(0))
 k_tot = Rhino.VectorUnitize(k_tot)
 K(i,j) = k_tot
 Next
 Next

 SmoothTensorField = True
End Function

Line Description
3 Since we'll be modifying the original, we need to make a copy first. We do this to prevent using already

changed values in our averaging scheme. We're only changing the vectors in the K array, so we don't
have to copy the planes in the T array as well.

10…11 Since our tensor-space is two-dimensional, we need 2 nested loops to iterate over the entire set.

14…18 Now that we're dealing with each tensor individually (the first
two loops) we need to deal with each tensors neighbours as
well (the second set of nested loops). We can visualize the
problem at hand with a simple table graph.

The green area is a corner of the entire two-dimensional tensor
space, the dark green lines delineating each individual tensor.
The dark grey square is the tensor we're currently working on.
It is located at {u,v}. The eight white squares around it are
the adjacent tensors which will be used to blur the tensor at
{u,v}.

We need to make 2 more nested loops which iterate over the
9 coordinates in this 3×3 matrix. We also need to make sure
that all these 9 coordinates are in fact on the 2D tensor space
and not teetering over the edge. We can use the Mod operator
to make sure a number is "remapped" to belong to a certain
numeric domain.

19 Once we have the mx and my coordinates of the tensor, we can add it to the k_tot summation vector.

23…26 Make sure the vector is projected back onto the tangent plane and unitized.

