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  1 

Quantifying Archaeology     

     If archaeologists do anything, it is count. We count stones, bones, potsherds, seeds, 
buildings, settlements, and even particles of earth  –  virtually everything that con-
stitutes the archaeological record. We also measure essentially everything that we 
touch. Length, weight, thickness, depth, volume, area, color, and height are only 
some of the simplest measurements taken. We are exaggerating only slightly when 
we state that our predilection for counting and measuring ensures fame (if not 
fortune) to anyone who brings to our attention some forgotten or never known 
aspect of the archaeological record that archaeologists should be counting and/or 
measuring. 

 Most archaeologists are in the counting and measuring business not for its own 
sake, but to help us fashion a meaningful perspective on the past. Quantifi cation 
isn ’ t required to back up every proposition that is made about the archaeological 
record, but for some propositions it is absolutely essential. For example, suppose 
we proposed an idea about differences in Hallstatt assemblages in Central Europe 
that could be evaluated by examining ceramic variation. Having observed hundreds 
of the pots, we could merely assert what we felt the major differences and similari-
ties to be, and draw our conclusions about the validity of our original idea based 
upon our simple observations. We might be correct, but no one would take our 
conclusions seriously unless we actually took the relevant measurements and dem-
onstrated that the differences and/or similarities were meaningful in a way that 
everyone agreed upon and understood. Quantifi cation and statistics serve this end, 
providing us with a common language and set of instructions about how to make 
meaningful observations of the world, how to reduce our infi nite database to an 
accurate and understandable set of characterizations, and how to evaluate differ-
ences and similarities. Importantly, statistics do this by using a framework that 
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2 Quantifying Archaeology

allows us to specify the ways in which we can be wrong, and the likelihood that we 
are mistaken. Statistics consequently provide archaeologists with a means to make 
arguments about cause that will ultimately help us construct explanations. 

 Statistical thinking plays an important role in archaeological analysis because 
archaeologists rely so heavily on samples. The archaeological record contains only 
the material remains of human activity that time and the vagaries of the environ-
ment (including human activity) have allowed to be preserved. The artifacts, 
features, and other material manifestations of human behavior that enter the 
archaeological record are only a small subset of those originally produced. Funding 
constraints, time limits, and our emphasis on conserving the archaeological record 
further dictate that archaeologists generally recover only a small subset of those 
materials that have been preserved. Thus, we have a sample of the material remains 
that have been preserved, which is only a sample of all of the materials that entered 
the archaeological record, which is only a sample of all of the materials that humans 
have produced. 

 Archaeologists are consequently forced to understand and explain the past using 
imperfect and limited data. Connecting our sample to a meaningful understanding 
of the past necessitates the application of a statistical framework, even when quan-
titative methods are avoided as part of a purportedly humanistic approach. It is 
only through statistical reasoning, no matter how implicit, that any form of general 
conclusion can be formed from the specifi cs of the archaeological record. Regardless 
of whether an archaeologist studies the social differentiation of Cahokia ’ s residents, 
subsistence shifts during the Mexican colonial occupation of New Mexico, or the 
religious systems of Upper Paleolithic cave dwellers, they are going to employ a 
statistical approach, even if they don ’ t acknowledge it. Quantitative methods allow 
us to make this approach explicit and make our arguments logically coherent and 
thereby facilitate their evaluation. Even the most ardent humanist should appreciate 
this. 

 As important as statistics are, we must remember that they are only tools, and 
subservient to theory. Our theoretical perspectives tell us which observations are 
important to make and how explanations are constructed. Statistics are useful only 
within this larger context, and it is important to remember their appropriate role. 
It is also important to recognize that the use of statistics does not equal science. The 
historical confl uence of events that brought statistics, computers, the hypothetico -
 deductive method, and the theoretical advances of the New Archaeology to our 
discipline in a relatively brief span of time in the 1960s make it appear that they are 
inseparable. Nothing could be farther from the truth. While this might seem self -
 evident, at least one quite popular introductory archaeology textbook overstates 
the relationship, as a discussion of the role of science in archaeology begins with a 
brief discussion of statistics. Not the role of theory, not the scientifi c method, but 
statistics! Statistics do not a science make, and statistical analyses conducted in the 
absence of theory are merely vacuous description. 

 This book approaches quantifi cation and statistics from the perspective that they 
are a simple set of tools that all competent archaeologists must know. Most readers 
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 Quantifying Archaeology 3

will use statistics innumerable times throughout their career. Others may never 
calculate a mean or standard deviation willingly, but at least they will know the 
basics of the statistical tool kit. Choosing not to use a tool is fi ne. Remaining igno-
rant is unfortunate and unnecessary. At the very least, knowledge of statistics is 
needed to evaluate the work of others who do use them. 

 So, why should two archaeologists write a book about statistics when there are 
thousands of excellent statistics books in existence? Here are our reasons in no 
particular order. First, few of us entered archaeology because we wanted to be 
mathematicians. In fact, many archaeologists became interested in archaeology for 
very humanistic (or even romantic) reasons, and many avoided math in school like 
the plague. There defi nitely needs to be a book that is sympathetic to those coming 
from a non - quantitative background. We seek to achieve this goal by presenting 
the clearest description of techniques possible, with math no more complicated 
than simple algebra, but with enough detail that the reader will be able to actually 
understand how each technique operates. 

 Second, most statistics textbooks use examples that are not anthropological, and 
are very hard to relate to the archaeological record. While knowledge of dice exam-
ples is useful when playing craps in Las Vegas, the implications of these examples 
for archaeological studies are often diffi cult to decipher. Our examples are almost 
exclusively archaeological, and we hope that they provide good illustrations of how 
you might approach various archaeological data sets from a statistical perspective. 

 Third, archaeologists do not always need the standard set of statistics that are 
presented in popular textbooks. Some techniques of limited importance to archae-
ology are overemphasized in these texts, while other extremely important statistical 
methods are underemphasized or do not appear at all. 

 Fourth, it is our observation that many degree - granting programs in archaeology 
focus solely on computer instruction in quantitative methods rather than on the 
tried and true pencil and paper method. We have nothing against the use of com-
puters and statistical software, as long as it is done by people who fi rst learn statisti-
cal techniques by putting pencil to paper. However, our experience has shown us 
that when all training is focused on using a statistical package instead of learning a 
statistical method, the computer becomes a magic black box that produces  “ results ”  
that students who don ’ t know what actually happened inside the box are (hopefully) 
trained to interpret. This lack of understanding causes confusion and, more impor-
tantly, embarrassment when insupportable or erroneous conclusions are drawn. 
These students need a friendly text to which they can refer to help clarify how the 
quantitative methods work and how their results should be understood. 

 Finally, many disciplines use samples, but few are as wholly reliant on them as 
is archaeology. This in turn means that the application of quantitative reasoning 
has special signifi cance in archaeological research that needs to be explored if we 
are to produce the best archaeological analyses we can. This consideration is absent 
from statistical texts written for general audiences, but should be central to those 
specifi cally for archaeologists. It certainly will be central to the discussions that 
follow this chapter. 
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4 Quantifying Archaeology

 Ultimately, our goal is to illustrate the utility and structure of a quantitative 
framework to the reader (i.e., you), and to provide a full understanding of each 
statistical method so that you will understand how to calculate a statistical measure, 
why you would want to do so, and how the statistical method works mathemati-
cally. If you understand these issues, you will fi nd each method to be intuitively 
meaningful and will appreciate the signifi cance of its assumptions, limitations, and 
strengths. If you don ’ t understand these factors, your applications will be prone to 
error and misinterpretations, and, as a result, archaeology as a discipline will suffer. 
Hopefully, this text will serve to aid you, gentle reader, as we all work to accomplish 
our collective goals as a discipline. 

           

 Practice Exercises 

    1     Identify fi ve attributes of artifacts or features that archaeologists routinely 
measure. Why do archaeologists fi nd these attributes important? What 
information do they hope to gain from them?  

  2     Identify an archaeological problem that might interest you. What attributes 
of archaeological materials might be useful for your research problem? 
Why would you select these attributes as opposed to any others that might 
be possible?    
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  2 

Data     

     Quantitative methods and statistics are applied to  data . Data are observations, not 
things. Data are not artifacts. They are not pots or stones or bones or any other 
component of the phenomenological world. We build data by making systematic 
observations on pots and stones and bones. What constitutes data is determined by 
our research questions and theoretical perspective. We create data to serve a purpose 
defi ned by a pre - existing intellectual framework. Most certainly, the real world 
exists in terms of various arrangements of matter and energy, but that real world 
is not to be confused with the observations that we make about it. 

 In addition to the theoretical perspective that we bring to bear and the research 
question we address, the tools with which we look at the world also infl uence what 
our data look like. As Gulliver ’ s travels taught us, the world looks very different to 
Lilliputians and Brobdingnags, and the view is very different when the instrument 
we hold to our eye switches from a telescope to a microscope. There is no  “ high 
court ”  of archaeologists that makes the rules about what kind of observations we 
are restricted to make or what tools we use to make them. Data are what we deter-
mine them to be. Certainly, there is a range of observations that many archaeolo-
gists agree are useful for addressing particular problems. Michael Shott ( 1994 : 
79 – 81), for example, outlines a  “ minimum attribute set ”  for fl aked stone debitage 
that archaeologists have found to be consistently useful for answering the questions 
they frequently ask. His list includes the  “ usual suspects ”  of weight, cortex, platform 
angle and raw material, among others. Despite the utility of these attributes for 
addressing certain questions, we, as archaeologists, are by no means restricted to 
looking at the world from a single perspective or using only these attributes. Shott 
 (1994)  in fact discusses how scholars have employed these and other attributes 
using a variety of perspectives to answer many different questions. 
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6 Data

 Because we create our data by making observations of the world, we must ensure 
that we build our data in a systematic manner. Otherwise our data do not measure 
the same thing(s). All measurements and observations must have unambiguous 
defi nitions and they must be consistently recorded in the same way in order to 
eliminate measurement bias, if the resulting data are to be analytically useful (Lyman 
and VanPool,  2009 ). The fi rst step to making systematic observations about the 
world is specifying what  variables  our data measure. A variable is any quality of the 
real world that can be characterized as having alternative states. The color of soil is 
a variable, as is projectile point length. With the former, the color spectrum is 
partitioned arbitrarily into segments with labels. The labels can be commonsensical 
(e.g., reddish brown) or we can use a standardized labeling system with more rigor-
ous defi nitions for each label; archaeologists often use Munsell color charts, with 
standardized labels such as 10YR 4/1. With respect to projectile point length, 
archaeologists typically use the metric system where length is arbitrarily partitioned 
into usefully sized segments. How the measurement used to characterize a variable 
is partitioned depends on our theoretical perspective, methodology, and research 
problem. For example, millimeters might be the perfect sized segment with which 
to measure the height of a ceramic vessel, but likely are inappropriate for measuring 
the size of a settlement or a grain of corn pollen. Furthermore, a different analytic 
framework might not consider ceramic vessels, settlement size, or corn pollen 
worthy of measurement for addressing the same research problem. 

 An individual observation of a variable is called a  variate . If we measure the rim 
angles of 10 ceramic vessels, we have manufactured 10 variates. These variates 
constitute data. Again, note that data are not variables. They are the totality of our 
observations, or variates. Also note that the word  “ data ”  is plural. A single observa-
tion is a variate and multiple variates are data. It is consequently improper to refer 
to data as a singular object; your data  “ are ” .  

  Scales of Measurement 

 A factor that is central to properly constructing data is identifying at what scale we 
should measure data. When we create data our observations can be recorded in one 
of four measurement scales:  nominal ;  ordinal ;  interval ; and  ratio . The statistical tools 
available for analysis differ depending upon which measurement scale is being used. 

  Nominal  l evel  m easurement 

 Nominal levels of measurement exist either when we use numbers as labels (hence 
the term  “ nominal ” ), or when we use numbers to represent the abundance of a 
class of phenomena (i.e., counts). This can be confusing, but the literature refers to 
both uses of numbers as being nominal level measurement, so it is best to under-
stand the distinction. 
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 Data 7

 Using numbers as labels is common in the world; we only need to turn the TV 
channel to ESPN to see numbers as labels on volleyball players, football players, 
fi eld hockey players, horses, racecars and innumerable other rapidly moving objects. 
These numbers constitute labels only, and anyone performing arithmetic opera-
tions on football players ’  jersey numbers is wasting his or her time. The numbers 
simply aren ’ t useful  except  as arbitrary names. The differences among numbers 
don ’ t refl ect an increase or decrease in the specifi c variable. Archaeologists use 
numbers or letters quite frequently as labels to code data. A ceramic analyst might 
use the label  “ 1 ”  to designate partially oxidized sherd cross - sections (sherds that 
exhibit oxidation on their edges but not in the center of the paste),  “ 2 ”  to designate 
sherds that exhibit no oxidation at all, and  “ 3 ”  for sherds that are fully oxidized. 
These labels have no mathematical signifi cance, and to perform meaningful arith-
metic operations on them is impossible. Our fi ctitious analyst could have used 
labels such as Sally and Harry almost as easily. 

 There is a distinction, however, between how our analyst used numbers as labels 
and the use of numbers to label racecars. While there is no analytic utility to con-
sidering the abundance and distribution of racecars labeled  “ 1 ”  through  “ 8 ”  across 
racetracks, a researcher might be interested in the abundance and distribution of 
eight classes of ceramic fi ring attributes across the landscape. This information can 
be used to evaluate ideas about differences in technology and site function. 
Additionally, if variation is present across sites or site components in terms of class 
abundance, most analysts will ultimately seek to explain those differences. 

 A number of good statistical tests exist to determine if differences in such abun-
dances are meaningful, including the chi - square test, which is one of the fi rst sta-
tistical tests used in archaeology (Spaulding,  1953 ). In archaeology, nominal level 
data are typically attributes of qualitative variables. These kinds of variables are 
called  discrete  variables (they are also referred to as  discontinuous  variables, or  mer-
istic  variables) because they refl ect differences that are fi xed in the sense that there 
are only a limited number of mutually exclusive possible outcomes. The analyst 
then determines which of these possible outcomes is applicable for each variate 
(e.g., the species of animal from which a bone originated). Counting is the only 
appropriate arithmetic operation to be used on discrete variables, and the values 
assigned are always whole numbers. For example, we cannot have 5.5 pieces of 
Edwards Plateau Chert on a site, nor can we have 20.3 bison bones. Common dis-
crete variables for different kinds of artifacts include: 

   •      Bone: species, skeletal element (e.g., tibia), presence or absence of burning, type 
of butchering marks.  

   •      Ceramics: temper type, extent of paste oxidation, type of decoration, type of 
paint, presence or absence of design elements, cultural - historical type.  

   •      Ground stone: type of abrasion, direction of abrasion, artifact shape, number of 
used surfaces.  

   •      Flaked stone: raw material type, the presence or absence of edge wear, type of 
edge wear, number of fl ake scars, presence or absence of heat treatment.     
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8 Data

  Ordinal  l evel  m easurement 

 Ordinal levels of measurement imply an observable order or degree along some 
defi ned dimension of a variable. Ordinal measurements are only possible when 
measuring variables that occur along some continuum. For example, length, size, 
and fl oor area are variables that can be measured using a continuum ranging from 
small to large. Ordinal measures divide this underlying continuum into segments 
that are assumed to be asymmetrical. That is, we cannot assume equal values for 
our units of measure. Ordinal measures come with labels like small, medium, large, 
and extra large, where we cannot assume that the difference between large and extra 
large is the same as the difference between small and medium. We either do not 
have the necessary instrument with which to measure the variable in equal incre-
ments or the phenomena we are measuring cannot be (or does not need to be for 
our research question) measured in such a manner. This happens often in archaeol-
ogy, particularly when we are using one kind of data to infer past behavior, or 
another set of data. 

 For example, Grayson ( 1984 : 96 – 111) has argued that counts of faunal specimens 
recovered from archeological sites are ordinal counts, at best. His arguments rest 
on the fact that the abundance of bones is often the only means we have of studying 
the relative contributions of different species of animals to subsistence practices. 
Only in rare circumstances can archaeologists recover all of the bones of all of the 
animals or even a single bone from each animal utilized at a settlement. As a result, 
the analysis of the faunal material can at best only indicate which animals did and 
did not constitute a large portion of the diet, but cannot indicate the absolute 
number of any animal species consumed. Grayson concludes that both commonly 
used procedures for estimating the number of animals from a faunal assemblage 
 –  the minimum number of individuals (MNI) and the number of identifi ed speci-
mens (NISP)  –  produce ordinal measures of abundance. The same holds true for 
both palynological and ethnobotanical measures as well. 

 Settlement hierarchies are another example of ordinal measurement in archaeol-
ogy. For example, Di Peso  et al.   (1974)  argued that Medio period (AD 1200 – 1450) 
sites in northern Mexico could be divided into three tiers refl ecting their relative 
size (Cruz  et al. ,  2004 ). At the top of the settlement hierarchy was the large regional 
center, Paquim é , which was characterized by multistory construction, public and 
ceremonial architecture, platform and effi gy mounds, and craft specialization. Di 
Peso and his colleagues estimated more than 2000 people inhabited Paquim é . 
Subordinate to Paquim é  were  “ second tier sites ”  that were roughly one - half to one -
 third the size of Paquim é  that Di Peso believed were occupied by 500 to 1000 people. 
Di Peso further argued that smaller  “ third tier ”  sites, which he believed were occu-
pied by 100 to 500 people, were subordinate to both Paquim é  and the larger sites. 
The difference between the fi rst, second, and third tier is not uniform, and each tier 
does not refl ect a consistent unit of size. 

 In a similar manner, many researchers use rank orders to measure social com-
plexity. Sahlins and Service ’ s  (1960)  typology of bands, tribes, chiefdoms, and states 
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is one such example. The difference between bands and tribes is not the same as 
the difference between chiefdoms and states. The frequencies of variates (cultures) 
in each class can be counted, and we can orient the classes from  “ More complex ”  
to  “ Less complex ” . We cannot, however, add, subtract, multiply, or divide the 
classes (e.g., a band and a chiefdom cannot be added together to make a state).  

  Interval  l evel  m easurement 

 With interval level measurements our continuum is partitioned symmetrically into 
even increments but with an arbitrary zero value. As we wrote the fi rst draft of this 
paragraph we were in the middle of conducting fi eldwork in the Chihuahuan desert 
near Galeana, Mexico. When the senior author stumbled out of his room in search 
of breakfast he noted that it felt hotter than the previous morning. This was an 
ordinal level observation, as having no thermometer he sensed that it was hotter, 
but he had no idea how much hotter it was. In contrast, a thermometer provides 
an interval level of measurement that is much more useful than the author ’ s impres-
sion of relative coolness. The increments are symmetrical, and the difference 
between 40 degrees and 50 degrees is the same as the difference between 60 degrees 
and 70 degrees. The amount of difference among measurements can thus be 
specifi ed in a way that is not possible when using measurements of an ordinal 
scale such as warmer and colder. 

 Common interval level measurements used in archaeology include: 

   •      Direction using a compass.  
   •      Years AD/BC. Each year refl ects the passage of the same amount of time, thereby 

allowing time to be measured using a consistent measure, but year AD 1 is 
arbitrary in regards to time, and doesn ’ t imply the beginning of time.  

   •      Temperature.     

  Ratio  l evel  m easurement 

 Ratio level measurement is the same as interval level measurement, with one excep-
tion: the addition of a true zero value. In the temperature example presented above, 
zero is an arbitrarily chosen value that does not mean that there is an absence of 
temperature, as illustrated by the differences between zero degrees in the Fahrenheit 
and Centigrade scales. Likewise, zero degrees on a compass does not mean an 
absence of direction. The compass ’ s zero point is arbitrary and could just as easily 
be due south or northwest instead of north. In contrast, zero length of a piece of 
lithic debitage means just that, no length at all. Obviously, any piece of debitage 
measured must have a length value no matter how minute. Zero length represents 
the complete absence of length, though. The presence of a true zero value opens up 
our analysis to a broader assortment of mathematical and statistical procedures. 
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 Consider for example the statement that,  “ a 4   cm long projectile point is twice 
as long as a 2   cm long projectile point. ”  This observation is so obvious that it is trite. 
Replace point length with compass degrees (an interval measurement) so that the 
statement now reads,  “ a compass measurement of 4 degrees is twice as large as a 
compass reading of 2 degrees, ”  and it becomes so obviously incorrect that it is 
laughable. The lack of an absolute zero value prevents interval data from being used 
to refl ect any sort of  “ absolute ”  value or amount, but the presence of a zero value 
that actually refl ects the absence of a trait (e.g., no weight) allows for interval data 
to be compared in such a manner. Nearly all measurements taken using the metric 
system are ratio measurements. Common interval measurements used in archaeol-
ogy include: 

   •      Artifact length, width, thickness, volume, and weight.  
   •      Height and thickness of walls and other architectural features.  
   •      Distance from a datum or other fi xed point.  
   •      Settlement size.     

  The  r elationship  a mong the  s cales of  m easurement 

 We stress that the scale of measurement relates to our observations, not the vari-
ables  per se . We can measure the same variable in different ways at different 
scales of measurement. For example, temperature can be measured on an ordinal 
scale (cold, temperate, hot), an interval scale (degrees Centigrade), and a ratio scale 
(degrees Kelvin, in which 0 refers to  “ absolute zero ”  and indicates the complete 
absence of molecular movement, which is what the variable  “ temperature ”  actually 
measures). Likewise, temporal relationships can be measured using ordinal scale 
measurements such as prehistoric and historic, interval levels of measurement such 
as years AD/BC, and at a ratio level using years BP (before present, defi ned as the 
number of years before 1950). Further, data can be measured at one scale but then 
organized for the purposes of analysis at other scales. Faunal data are typically 
initially recorded using nominal categories (species/genus present), but counts 
within each category can be used to create an ordinal measure (called a rank order) 
of species abundance of each species relative to each other. As mentioned in our 
discussion of Grayson  (1984) , these rank orders are typically ordinal measures, 
although archaeologists do sometimes (incorrectly) treat them as ratio scale data. 
Thus, determining the appropriate scale of measurement for a specifi c analysis 
requires the careful consideration of analytic goals, research methodology, discipli-
nary practices, and data. 

 There is no  “ right ”  scale of measurement, and we encourage you to not think of 
ratio measurements as  “ better ”  than ordinal level measures. The appropriate scale 
of measurement is determined by the research design. Sometimes we may only need 
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to determine whether a site is prehistoric or historic. Other times, we may need 
ratio levels of measurement using years BP. Note though that ratio and interval 
levels of measurement can generally be transformed into ordinal and nominal levels 
of measurement, but it is rarely possible to transform a nominal or ordinal level of 
measurement into interval or ratio measures. It is possible for example to transform 
degree readings of directions taken with a compass into ordinal categories such as 
north and northwest. However, transforming ordinal measurements recorded as 
north, southeast, and so forth into compass degrees isn ’ t possible. Thus it is gener-
ally preferable to take measurements at interval or ratio scales if not prohibitively 
expense or methodologically diffi cult. 

 The importance of the scales of measurement may not be intuitively obvious, 
but it is mathematically (and hence statistically) profound. 

   •      Nominal variables can be counted, but no additional mathematical operations 
can be performed on them. For example, we might be able to count the number 
of known Zuni and Navaho sites in an area, but we cannot subtract, add, divide, 
or multiply categories such as Zuni and Navaho (e.g., a mathematic statement 
such as 3 Zuni  –  2 Navaho    =    1 Hopi doesn ’ t make sense).  

   •      Ordinal measures can be used to discuss the rank order refl ected in data. In other 
words, we can compare the abundances of the various ordinal categories (e.g., 
a comparison of the number of small and large sites in an area), but, again, it is 
not possible to add, subtract, divide, or multiply the categories. We cannot reli-
ably state that a small settlement is half as large as a medium - sized settlement 
and a quarter the size of a large settlement. The scale of measurement doesn ’ t 
allow for such specifi city.  

   •      Interval levels of measurement do allow us to directly compare the magnitude 
of specifi c values, but only in limited ways. The difference between daytime 
temperatures of 100 degrees Fahrenheit and 50 degrees Fahrenheit is 50 degrees, 
but a 100 - degree day is not twice as warm as a 50 - degree day. We can conse-
quently compare magnitudes of differences/similarities using a set scale, but not 
in terms of absolute magnitudes of an attribute.  

   •      Like interval measures, ratio levels of measurement allow the direct comparison 
of the magnitude of difference among variates using a consistent scale, but the 
addition of a true zero value allows even more specifi city. A pot that has a diam-
eter of 10   cm is truly twice as wide as one with a diameter of 5   cm and fi ve times 
as wide as a 2   cm diameter pot.    

 Many statistical applications assume interval and ratio level measurements. 
Unfortunately, archaeologists sometimes ignore the fact that many of their data are 
constructed in terms of ordinal or nominal level measurements, and consequently 
perform inappropriate analyses. This is the point of Grayson ’ s  (1984)  discussion 
that we previously cited. Such analyses are unfortunately fl awed and often meaning-
less, which relates to our next topic:  validity .   
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  Validity 

  Validity  in measurement is ascertained by determining if we are measuring what 
we think we are, which is of course central to producing useful data. One dictionary 
provides this defi nition for valid:  “ well grounded or justifi able; being at once rel-
evant and meaningful. ”  This seems fairly straightforward; we are either measuring 
the volume of a pot or we are not. 

 Yet measuring the validity of data is frequently one of the hardest tasks facing 
archaeologists, because we are often using one variable as a proxy of another (e.g., 
scraper edge angle as a measure of scraper use). Most of our measurements of 
artifacts, features, and other aspects of the archaeological record are really taken 
to tell us about past human behavior, as opposed to being a study of the materials 
themselves. For example, arguments for the presence of social differentiation at 
the Copper Age cemetery at Varna, Bulgaria, are based on variation in grave 
goods, especially the presence of several burials with comparatively large amounts 
of grave goods, some containing hundreds of gold artifacts. Underlying these 
arguments is the premise that grave goods refl ect social status in some way. The 
amount and type of grave goods is consequently being used as a measure of social 
status. Obviously, the validity of this measure must be evaluated, which is not an 
easy or straightforward theoretical and methodological issue (see Rakita and 
Buikstra,  2008 ). 

 Problems with validity can be evident even when trying to study attributes of 
artifacts. A researcher studying the importance of food storage in the Jomon culture 
of Japan might consider using pot frequency and volume as a measure of the impor-
tance of storage, based on the premise that the increased frequency of large 
pots refl ects increased storage. This would require a measurement of changes in the 
number of pots and their volumes used during different time periods and at 
different sites. One way to detect such changes might be to compare the number 
and volumes of all of the whole pots recovered from various time periods, 
which perhaps will tell us during which periods people made and used large ceramic 
pots, presumably for more storage. But, then again, maybe not. Perhaps the 
large vessels are weaker than smaller vessels, and therefore are more likely to 
break. Given that pots from earlier time periods have had longer to break, the 
frequency of large pots in older assemblages may systematically be underrepre-
sented relative to more recent periods. And what if the time periods are of different 
lengths, which might create differences in the numbers of whole pots even if there 
isn ’ t any change in storage behavior? And what if some sites are in plowed fi elds 
while others aren ’ t? Would this impact the frequencies of whole pots that the 
archaeologist would recover? What are the implications of all of these 
considerations? 

 Our point is that determining validity is not quite as simple as it seems. Can pot 
frequency and volume be used as a measure of the importance of storage? That is, 
is it  “ well grounded or justifi able; being at once relevant and meaningful? ”  Many 
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archaeologists think so, and they are probably right, but a logical argument has to 
be made for the validity of the measurement and its application in a specifi c 
archaeological context. Importantly, the establishment of validity is a logical argu-
ment, not a mathematical one, or one made by reference to authority. In many 
instances, especially where we are restricted to surrogate measures of what interests 
us, we have to draw the conclusion that our measures are correlated suffi ciently 
with the variable that really interests us so that we are willing to proceed. A couple 
of more examples may illustrate this issue further. 

 A good example where validity has been carefully evaluated comes from dendro-
climatology and its use in reconstructing past temperature and rainfall patterns. 
There is a well - established correlation in many tree species between tree - ring width 
and specifi c environmental factors such as temperature and the amount of water 
available. Archaeologists can therefore use the widths of the rings of trees recovered 
in archaeological sites and elsewhere as surrogate measures for the environmental 
variables we want to measure. Despite a number of criticisms, enough arguments 
have been presented regarding the validity of dendroclimatology that most archae-
ologists are quite comfortable with it. 

 However, some issues of validity have not been so easy to address. The validity 
of measures used to estimate population size is one such intractable case. 
Archaeologists often wish to know population sizes of the occupants of houses, 
settlements, regions, or even continents, but our populations are generally 
long gone (although archaeologists studying the historic and modern records can 
sometimes rely on census data or direct counts). What surrogate measures can 
we use? A wide variety has been offered including room numbers, site numbers, 
size of habitation areas, and site areas (Paine,  1997 ). Many arguments have 
been made for and against the validity of each of these measures, which is very 
healthy for our discipline; the continued assessment of validity is one of the func-
tions of the scientifi c enterprise. However, no single method has been universally 
accepted. When estimating population size, and indeed when measuring any 
archaeologically relevant variable, the validity of the selected measure must be 
properly established.  

  Accuracy and Precision 

 The battle isn ’ t over, though, just because validity has been ascertained . We must 
focus on the  accuracy  and  precision  of our instruments (Lyman and VanPool,  2009 ). 
We defi ne these terms following Sokal and Rohlf ( 1981 : 13);  “ Accuracy is the close-
ness of a measured or computed value to its true value; precision is the closeness 
of repeated measurements of the same quantity. ”  The terms thus are not synony-
mous. A biased instrument (e.g., a scale that adds 3   g to every measurement) could 
produce precise but inaccurate values. A device that produces random values could, 
at least occasionally, give accurate results, but they will not be replicated through 
repeated measurements. 
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 In general, we wish to attain both accuracy and precision at a level that is consist-
ent with our desire for useful data. For example, a well - functioning electronic 
distance measurer (EDM) provides accurate and precise measures of distance and 
elevation from a given point (a datum). Further, an EDM is both more accurate 
and precise than an optical transit, but we are still quite comfortable with maps 
generated by optical transits, suggesting that error isn ’ t as important here as con-
venience. The EDM simply makes it easier to survey across long distances and 
uneven ground than the optical transit, and automatically calculates true distance 
without putting the users through the horror of remembering high - school trigo-
nometry. It is consequently more precise and accurate than the optical transit, 
which is prone to user error. This implies that the EDM supplies accuracy and 
precision greater than we actually need, which is wonderful unless the greater accu-
racy and precision costs more than it is worth. 

 But how do we ascertain the appropriate level of accuracy and precision? In other 
words, how consistent should our measurements be to be adequately precise? 
And how close do our measurements need to be to the  “ true value ”  to be accurate? 
The answers to these questions depend again on our theoretical and analytic struc-
ture. Returning to our example of the size of a settlement, trying to get accurate 
and precise measurements of the surface area of a site to the nearest square mil-
limeter is probably excessive and costly. Instead, measurements to the nearest 
square meter, or, for extremely large settlements, the nearest square kilometer are 
adequate. In contrast, measurements of the diameter of decorative glass beads used 
in jewelry will require a much smaller unit of measurement to be accurate and 
precise. 

 There is no  “ hard and fast ”  rule about measurement units that allow accurate 
and precise data. The analyst must chose a unit of measurement that will allow 
meaningful variation in the data to be evident, but that is not so detailed as to 
require excessive time and money (which are often the same thing in archaeology) 
to measure. A common rule of thumb is to create measurements in which the 
number of unit steps from the smallest to the largest measurement is between 30 
and 300. For example, imagine we are measuring the weight of projectile points, 
with the heaviest and lightest points weighing 6.3   g and 1.6   g. Measuring the weight 
of the points to the nearest gram will result in a total of fi ve measurements (2   g, 3   g, 
4   g, 5   g, and 6   g), which likely will not give us an adequate understanding of the 
variation we seek to explore. However, if we measure the projectile points to the 
nearest .1   g, we will have a total of 47 unit steps (possible measurements), which is 
 likely  to be more useful for our analysis. When measuring settlement size, square 
millimeters is an inappropriate unit of measurement because it would likely result 
in differences of tens of thousands of square millimeters between sites. These dif-
ferences aren ’ t going to be analytically useful at such a fi ne scale. Likewise, too large 
a scale will result in the loss of meaningful variation within our data. Choosing 
some intermediate value will allow us to effi ciently gather analytically useful data, 
relative to extremely small or excessively large units. We stress, though, that the 30 
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to 300 unit  “ rule of thumb ”  is exactly that, and should never be slavishly followed 
when research questions or theoretical structures demand more or less exact 
measurements.  

  Populations and Samples 

 An additional distinction that is signifi cant when evaluating data is whether they 
represent a population or a sample of a population. A  population  is the totality of 
phenomena about which we wish to draw conclusions. A  sample  is some subset of 
that population. 

 Populations and samples are both fi nite in time and space, and are defi ned by 
the investigator. Ideally, we would like to measure the totality of the phenomena 
about which we wish to draw inferences (i.e., ideally we would like to work with a 
population). This is typically impossible for archaeologists, and, in those rare cases 
where it might be possible, is often expensive and unnecessary. As a result, archae-
ologists typically analyze samples in order to understand the characteristics of the 
population about which they are interested. For example, a researcher may wish to 
draw conclusions about the physical characteristics of Achulean handaxes without 
making observations on the totality ever excavated. We may consider the total 
excavated as the population, and look at only a small subset of them to draw con-
clusions about the population as a whole. We use statistics to analyze information 
gathered on samples to make inferences about the population. Note that we defi ned 
the population as all Achulean handaxes ever excavated. Our imaginary researcher, 
however, is probably interested in more than those excavated. His or her population 
of interest is probably really all Acheulean handaxes ever made, or at least made 
within a region or during a given time period. All of the Acheulean handaxes ever 
excavated is actually a sample of all of the Acheulean handaxes ever made because 
it is unlikely that we have recovered every single Acheulean handaxe. The same is 
true when analyzing houses, pots, or gold earrings. The likelihood that archaeolo-
gists recovered  everything  of  anything  is remote. Therefore, we sample. Thankfully, 
statistical techniques are available that allow us to make useful inferences about the 
population from our sample. Drawing inferences from a sample to characterize a 
population is actually one of the main purposes of statistics. 

 What constitutes an adequate sample size is case - by - case specifi c, and procedures 
will be introduced later on in the book that will help you to make such determina-
tions. In general, however, the more homogeneous the population is, the smaller 
your sample size can be. A physician can draw inferences concerning your blood 
chemistry from a single blood sample because blood is a homogeneous fl uid that 
does not differ from body part to body part. Much of the archaeological record is 
similarly redundant, whereas other segments are extremely heterogeneous. 

 So, how do we work from a sample to a population? This is the subject matter 
of the remainder of the text. 
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 Practice Exercises 

    1     Defi ne and differentiate the following terms:  

  (a)     population and sample.  

  (b)     data, variable, and variate.  

  (c)     validity, accuracy, and precision.    

  2     Briefl y defi ne and differentiate between the four scales of measurement 
(nominal, ordinal, interval, and ratio). Identify potential measurement 
scales for the following commonly measured archaeological variables: site 
age, site size, ceramic type, type and amount of grave goods, number of 
habitation rooms, ceramic vessel form, distance to nearest permanent 
water source, bone length, pot morphology, blade length, obsidian source, 
age at death.  

  3     Determine the commonly used measurement scales for the fi ve attributes 
of artifacts or features you identifi ed for Question 1 from Chapter 1 ’ s 
practice exercises. Can any of the measurements be recorded at more than 
one measurement scale? If so, what are the implications of analyses of the 
attributes based on the use of different measurement scales?  

  4     Determine potentially valid attributes for measuring the characteristics 
you identifi ed as likely useful for addressing an interesting archaeological 
problem in Question 2 of Chapter 1 ’ s practice exercises. 

   (a)     To the best of your ability, logically defend the validity of these 
attributes in regard to addressing your research topic.  

  (b)     Identify possibly useful scales of measurement for the potentially 
useful attributes. What implications does the scale of measurement 
have on the attributes ’  validity, if any? (Would the attribute be a valid 
measure at one scale but less useful if measured at another scale?)  

  (c)     What units would be useful for measuring the potentially valid 
attributes at an appropriate measurement scale?  

  (d)     How would you go about evaluating the accuracy and precision of 
your measurements of the attributes? Do you know of any common 
problems with accuracy and precision that archaeologists have rec-
ognized with the attributes you selected?    
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  5     Find an article from an archaeological journal such as  American Antiquity , 
 Antiquity ,  Journal of Field Archaeology , or  Journal of Archaeological Science  
that utilizes summary tables and statistical analysis of numeric data. Briefl y 
answer the following questions to the best of your ability: 

   (a)     What are the variables being measured by the author(s)?  

  (b)     At what scale are the data measured? Are the data continuous or 
meristic?  

  (c)     Are the data a valid measure of the phenomenon that the author(s) 
wishes to study?  

  (d)     Are the techniques used to gather the data precise and accurate?    

  6     How many unit steps would most likely be useful for measuring the 
cranial capacity of skeletal remains if the smallest specimen has a cranial 
capacity of 1120   cc and the largest specimen has a cranial capacity of 
1420   cc?    

c02.indd   17c02.indd   17 8/26/2010   1:54:18 PM8/26/2010   1:54:18 PM



  3 

Characterizing Data Visually     

       A picture is worth a thousand words.   

 Data are important because they allow ideas about the world to be proven wrong. 
In science, hypotheses are constructed and evaluated using data. While Thomas 
Henry Huxley actually wrote the apt words,  “ The great tragedy of Science  –  the 
slaying of a beautiful hypothesis by an ugly fact, ”  he could have just as easily written 
that,  “ the most elaborate of hypotheses can be brought down by the most modest 
of data. ”  Equally important is the fact that new research questions and hypotheses 
often follow from a careful analysis of data. 

 The acquisition of data begins with a question, and is followed by a series of 
observations that provide us with the information necessary to address the question 
within our theoretical structure. For example, if we wish to know if education infl u-
ences voting patterns, we must gather information on voting patterns and education. 
The same holds true if we wish to know what characteristics of the landscape infl u-
enced people ’ s subsistence strategies, and as a consequence, the artifacts we encoun-
ter as archaeologists; we must gather data on characteristics of the landscape and 
artifacts, features, ecofacts, and other data sources useful in reconstructing subsist-
ence strategies from various locations. The immediate product of our problem -
 driven observations is a simple list of numbers or qualities (i.e., variates) that are 
data. Often, especially with larger sets of data, it is impossible to fully identify trends 
or patterns from the raw data themselves. We must instead characterize them so that 
we can identify trends without having to remember every single variate. 

 The summary or description of the data should take two forms that we see as 
sequential steps to the effective use of data in analysis. The fi rst step is  always  the 
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construction of a visual representation of the data, which is nothing more than the 
creation of an effective graphical summary. The second step is a numerical descrip-
tion of the data, which is the topic of Chapter  4 . Here we focus on the fi rst of these 
steps, the visual characterization of data, because visual representations of the data 
provide information that is useful during the numerical summary, as well as aiding 
our intuitive understanding of the patterns that structure our data. They are also a 
great way to identify simple coding and measurement errors that cause spurious 
data (e.g., failing to add the decimal to a measurement of 1.05   cm) (Lyman and 
VanPool,  2009 ). 

 Let us consider fi rst a situation where data are of a variable that is continuously 
measured, providing us with a simple list of numbers such as those presented in 
Table  3.1 . The data are the depth of features observed on the Carrier Mills archaeo-
logical project (Jefferies and Butler,  1982 ), which was recorded to help determine 
feature function.   

 Do the data make much sense? Can you identify general trends of any sort? 
Probably not. It would be a truly gifted individual who could discern a pattern from 
this jumbled bunch of numbers. As fi ne an instrument as the human brain is, it has 
a diffi cult time organizing these numbers in any meaningful way without help. The 
diffi culty of dealing with data sets is especially illustrated by the fact that there are 
only 91 variates here, many fewer than constitute many archaeological data sets. 

 Some individuals might be tempted to simply run head on into an advanced 
statistical analysis of these data without a second thought. That would be a mistake. 
Each statistical method is developed for specifi c situations and requires its own 
assumptions about the characteristics of the data. While the specifi c assumptions 
associated with each statistical method will be discussed in future chapters, it is 
important to understand that the patterns in the data themselves, in conjunction 

  Table 3.1    Carrier Mills feature depths 

    Original measurements (cm)  

  6    5    22    8    23    11    10  
  8    4    10    6    13    20    24  

  16    13    13    16    19    21    22  
  6    16    3    9    13    6    10  
  5    6    13    9    11    20    11  

  12    11    10    18    24    11    14  
  7    9    9    19    15    22    15  
  6    17    7    4    24    17    10  

  20    9    9    23    10    7    12  
  10    13    10    16    14    20    12  
  14    20    19    15    8    16    17  

  5    22    16    12    11    8    7  
  13    3    8    18    9    9    19  
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with the questions we ask, determine which statistical procedures are useful. 
Statistics are like a fi ne piece of clothing that must be tailor fi tted for an individual. 
How can a suit or dress be altered if you don ’ t know the shape of the individual 
who will wear it? Therefore, the best place to start any statistical analysis is with a 
simple visual description.  

  Frequency Distributions 

 A good starting point for visually representing archaeological data sets measured at 
the ratio or interval scales of measurement is a  frequency distribution . Figure  3.1  is 
a frequency distribution of the data presented in Table  3.1 . The continuous variable 
of feature depth has been divided into 22  classes  (represented in the column with 
the heading  “  Y   ” ) with a  class interval  of 1   cm.   

 In Figure  3.1 ,  Y  represents the variable  “ feature depth ” . Scanning down the 
column, we see that the values range from 3 to 24   cm. Each of these possible values 

     Figure 3.1     Frequency distribution of Carrier Mills feature depths (cm)  

Y Implied limit Tally mark f

3 2.5–3.5 ll 2
4 3.5–4.5 ll 2
5 4.5–5.5 lll 3
6 5.5–6.5 lllll l 6
7 6.5–7.5 llll 4
8 7.5–8.5 lllll 5
9 8.5–9.5 lllll llll 8

10 9.5–10.5 lllll lll 8
11 10.5–11.5 lllll l 6
12 11.5–12.5 llll 4
13 12.5–13.5 lllll ll 7
14 13.5–14.5 lll 3
15 14.5–15.5 lll 3
16 15.5–16.5 lllll l 6
17 16.5–17.5 lll 3
18 17.5–18.5 ll 2
19 18.5–19.5 llll 4
20 19.5–20.5 lllll 5
21 20.5–21.5 l 1
22 21.5–22.5 llll 4
23 22.5–23.5 lll 3
24 23.5–24.5 ll 2

∑f = 91
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is a class. These classes represent the possible values within which the variates that 
comprise our data vary. The values in the column titled  Implied limit  represent the 
resolutions of our measurements. For example, a variate with a value of 3   cm has a 
true depth that is between 2.5 and 3.5   cm. The  Tally marks  represent the number 
of times each value was observed and noted in Table  3.1 . For example, the value 3 
was observed two times. The column under the symbol  f  represents the  frequency  
with which each value was observed and is calculated by summing the tally marks. 
 f  contains the same information as the tally marks, but in a different form. You 
have no doubt noticed the menacing presence of the fi gure  Σ  f  in the lower left 
corner of Figure  3.1 . While the symbol looks intimidating and complicated,  Σ  is 
merely the Greek capital letter sigma, and represents the term for summation. This 
benign symbol will be used throughout the rest of the book.  Σ  f  simply represents 
the summation of all of our frequencies for the variable  Y , or 91 (2    +    2    +    3    +    6 
 …     +    2). 

 The implied limits raise an important point for data collection: when collecting 
data, we round to the closest value we have defi ned. Thus when we say that a feature 
has a depth of 5   cm, we are really saying that its true depth is closer to 5   cm than it 
is to 4   cm or 6   cm. Having a feature that is  exactly  5   cm thick, not a micrometer 
more or less, is unlikely. The implied limits consequently identify the range of actual 
values represented by the data. 

 Understanding implied limits clarifi es the understanding of our data, and pro-
vides analytic fl exibility to represent data at a resolution that is analytically appro-
priate. Sometimes we measure data at a scale that is more exact than we really need, 
and we wish to reduce the numbers of classes considered (e.g., measuring feature 
depth to the nearest millimeter but then deciding that measurements to the nearest 
centimeter are more appropriate for our analysis). In such a case, we can easily 
collapse our old classes into new, larger classes. For example, classes of 1.1 and 
1.2   cm could be collapsed into a single class of 1   cm, which can include everything 
from .5   cm to 1.5   cm. We can round numbers using the implied limits of our new 
classes; values that fall within the implied limits of each new class become members 
of that class. Thus analysts can chose the numbers of classes that they fi nd useful 
and modify their visual representations accordingly while clearly indicating the new 
classes ’  resolution. 

 But what is to be done with a value at the edges of the implied limits between 
classes? For example, into which class would we place a value of 1.5   cm if we were 
rounding to the nearest centimeter? Does it belong to the 1   cm or 2   cm class, given 
that 1.5 is within the implied limits of both classes? When gathering data, the 
problem of such borderline cases causes people to become frustrated, ask for second 
opinions, or go to the bar for a drink. In reality such an intermediary value can be 
placed into either of the two classes because it is equally close to both of them, but 
that still doesn ’ t help us tally class frequencies, given that the variate can only be 
represented in one of the two classes. We could arbitrarily choose one of the two 
possible classes, but this creates the problem of potential bias. Sure, values of 1.5   cm 
and 2.5   cm could be grouped in the class of 2   cm, but consistently assigning these 

c03.indd   21c03.indd   21 8/26/2010   1:54:19 PM8/26/2010   1:54:19 PM



22 Characterizing Data Visually

border values to this class as opposed to 1   cm or 3   cm could artifi cially elevate the 
class ’ s frequency. 

 Statisticians have given considerable thought to this problem and have devised 
the following rule of thumb (Sokal and Rohlf,  1996 : 15). In cases where a digit is 
followed by a 5 that is either standing alone or followed by zeros, it is rounded to 
the nearest even number. For example, if we are rounding to the nearest centimeter, 
the value of 1.49   cm would be rounded to 1   cm, the values of 1.51   cm and 1.50 would 
both be rounded to 2   cm. Likewise, we would round 2.49   cm to 2   cm and 2.51   cm 
to 3   cm, but 2.50   cm would be rounded to 2   cm (just as 1.50   cm was), not 3   cm. This 
approach, often called the Banker ’ s rule, is different than the  “ rounding up ”  rule 
commonly taught in math classes, in which a value of 5 is rounded to the next 
highest value. The Banker ’ s rule is based on the rationale that about half the time 
the number will be rounded up, and half the time it will be rounded down. The 
number of values increasing is therefore roughly equal to the number of values 
decreasing, which will help prevent any distortion to statistical measures such as 
the average. Consistently rounding up in contrast will actually artifi cially elevate 
such measures. 

 The last digit of any variate should always be  signifi cant ; that is, it should always 
indicate that the true range of the variate is halfway above and below the class unit. 
When measuring to the nearest centimeter, our values must be reported as 0   cm, 
1   cm, 2   cm, etc. up to the largest variate, not as 0.0   cm, 1.0   cm, etc. Values such as 
1   cm and 2   cm indicate that their implied limits are .5   cm larger and smaller than 
the classes (e.g., the class 5   cm has an implied limit of 4.5   cm to 5.5   cm). Values such 
as 1.0   cm and 2.0   cm in contrast indicate our data refl ect measurements to the 
nearest millimeter with implied limits .05   cm above and below each class (i.e., a 
class of 1.0   cm has an implied limit of .95   cm to 1.05   cm). In regards to our data, 
2   cm is different than 2.0   cm, which is different than 2.000000   cm, in that each value 
indicates that our data refl ect measurements using progressively smaller units 
(centimeters vs. millimeters vs. micrometers). Adding excess numbers (including 
zeros) onto our data is confusing, and prevents the creation of meaningful 
frequency tables. 

 Returning to Figure  3.1 , the tally marks provide a visual perspective on how the 
data are  distributed  across the variable classes. This perspective is called a  distribu-
tion , and tally marks are one way of creating it. A visual inspection of the distribu-
tion created by the tally marks shows us that the observations (data) cluster toward 
the classes 9 through 13   cm with fewer variates toward the top and bottom of 
the table. 

 Figure  3.2  shows the data in a slightly different manner. Rather than employ a 
class interval of 1   cm, a class interval of 2   cm is used, halving the number of classes. 
The result is a more clearly clustered set of tally marks. The tendency evident in 
Figure  3.1  for most observations to fall toward the center of the distribution and 
fewer toward the extremes is accentuated in Figure  3.2 . Because two values from 
Figure  3.1  are collapsed for each class in Figure  3.2  (e.g., the values of 3 and 4 now 
constitute only one class in Figure  3.2 , where they were two classes in Figure  3.1 ), 
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it is no longer possible only to present these values under the column for the vari-
able  “  Y  ”  as in Figure  3.1 . Instead, the  class mark  is used. The class mark represents 
the midpoint of the values combined into each of the 11 classes. The implied limits 
represent the new levels of accuracy, and the  practical limits  represent the limits of 
actual values that are encountered in Table  3.1 . Once again,  f  represents the fre-
quency of observations for each class, that is, a counting of the tally marks.  Σ  f  
represents the sum of all frequencies in the fi gure. Figure 3.3 is similar to Figures 
 3.1  and  3.2  except that the class interval is 5   cm, and the class marks have been 
changed accordingly.   

 The differences in Figures  3.1 ,  3.2 , and  3.3  show that the number of classes and 
the size of the intervals affect the shape of frequency distributions. Excessive 
numbers of classes tend to spread out the distribution and can obscure interesting 
patterns. Too few classes cause too many variates to be lumped together, which can 

     Figure 3.2     Frequency distribution resulting from grouping depths for Carrier Mills 
features into 11 classes: Interval    =    2   cm  

Practical limit Implied limit Class mark Tally mark f

3–4 2.5–4.5 3.5 llll 4
5–6 4.5–6.5 5.5 lllll llll 9
7–8 6.5–8.5 7.5 lllll llll 9
9–10 8.5–10.5 9.5 lllll lllll lllll l 16

11–12 10.5–12.5 11.5 lllll lllll 10
13–14 12.5–14.5 13.5 lllll lllll 10
15–16 14.5–16.5 15.5 lllll llll 9
17–18 16.5–18.5 17.5 lllll 5
19–20 18.5–20.5 19.5 lllll llll 9
21–22 20.5–22.5 21.5 lllll 5
23–24 22.5–24.5 23.5 lllll 5

∑f = 91

     Figure 3.3     Frequency distribution resulting from grouping depths for Carrier Mills 
features into fi ve classes: Interval    =    5   cm  

Practical limit Implied limit Class mark Tally mark f

3–7 2.5–7.5 5 lllll lllll lllll ll 17
8–12 7.5–12.5 10 lllll lllll lllll lllll lllll lllll l 31

13–17 12.5–17.5 15 lllll lllll lllll lllll ll 22
18–22 17.5–22.5 20 lllll lllll lllll 15
23–27 22.5–27.5 25 lllll l 6

∑f = 91

c03.indd   23c03.indd   23 8/26/2010   1:54:19 PM8/26/2010   1:54:19 PM



24 Characterizing Data Visually

also obscure meaningful patterns. Somewhere between these extremes is an ade-
quate number of classes that will illuminate the characteristics of the distribution 
effectively.   

 Unfortunately, there is no hard and fast rule to determine the ideal number of 
classes. A general rule of thumb is that 10 to 20 classes provide a good representa-
tion of most distributions, although some data sets may be so large and varied that 
many more than 20 classes are needed. Researchers should try a number of class 
intervals to determine which interval best depicts the data. In our example, Figure 
 3.2  is the best. Figure  3.1  is quite spread out, and Figure  3.3  is so clustered that 
useful information is likely obscured. The investigator must consciously evaluate 
the number of classes and the class interval that are most useful, but oftentimes the 
decision is more art than science. While many computer programs use algorithms 
that make good decisions regarding class intervals using a variety of techniques, it ’ s 
best not to slavishly follow their direction. Most good programs allow the analyst 
to manually specify the number of classes. 

 A common way of combining classes when making a frequency table is to reduce 
the number of signifi cant digits. Thus, values such as 1.7   cm and 2.3   cm are col-
lapsed into a single class of 2   cm, which in turn reduces the number of signifi cant 
digits from two to one. Frequency distributions should always refl ect the correct 
number of signifi cant digits so the reader properly understands the exactness with 
which the data are grouped into classes,  even if the original data were measured using 
more exact units . 

 Signifi cant digits may seem self - evident, but they can be strangely confusing to 
people. How many signifi cant digits does 200 have? The answer is,  “ It depends. ”  In 
a data set measured to the nearest hundred (e.g., 100, 200, and 300), it has one 
signifi cant digit, because the zeros trailing the 1 are simply placeholders that don ’ t 
really refl ect the exactness of the measurement (i.e., the value 200 refl ects variates 
ranging from 150 to 250). In contrast, in a data set of 200, 202, and 199, it has three 
signifi cant digits, because the zeroes do refl ect the exactness of the measurement 
(i.e., the value 200 refl ects variates ranging from 199.5 to 200.5). This and other 
 “ ambiguities ”  often cause confusion that leads to muddled analyses and thinking. 

 Why should we care about properly understanding signifi cant digits and keeping 
them constant in a table, graph, or other quantitative context? The reason is that 
numbers with different signifi cant digits are different, even when they superfi cially 
appear the same. For example, if you remember the discussion of implied limits, 
you know that 1 is not the same as 1.0; 1 has implied limits of .5 to 1.5 whereas 1.0 
has implied limits of .95 to 1.05. This is a signifi cant difference, and the careless 
addition of extra zeros changes the implied exactness of a variate. Likewise, need-
lessly eliminating signifi cant digits (e.g., shortening 1.00 to 1)  “ discards ”  informa-
tion that might be meaningful (to the analyst or the reader). 

 Here are some useful rules to keep in mind when dealing with signifi cant digits: 

   •      All non - zero digits are signifi cant, as are zeros appearing between numbers (e.g., 
123 and 103 both have three signifi cant digits).  
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 Characterizing Data Visually 25

   •      All zeros and non - zero numbers appearing to the right of a decimal point are 
signifi cant if there are non - zero numbers to the decimal ’ s left (e.g., 103.04 and 
103.00 both have fi ve signifi cant digits).  

   •      Zeros to the right of a number without a decimal point that are not bracketed 
by non - zero values (typically) are not signifi cant (e.g., 100 has only one signifi -
cant digit, whereas 100.5 has four). We note as previously mentioned that values 
such as 100 could have three signifi cant digits if they actually are measured to 
the nearest digit in the one spot.  

   •      Zeros to the right of a decimal point but to the left of the fi rst non - zero value 
that do not have non - zero values to the left of the decimal point are not signifi -
cant. Thus, .0067 has only two signifi cant digits (the zeros before the 6 aren ’ t 
signifi cant), but 1.0067 has fi ve signifi cant digits. The zeros in .0067 aren ’ t sig-
nifi cant because they are considered  “ placeholders ”  that refl ect the absolute 
magnitude of a value, just like the zeros in 100 do.  

   •      Avoid superfl uous exactness. Dividing numbers can lead to long trails of 
decimals. For example, does a hunter included in an ethnoarchaeological study 
who captures 1100 calories in 1.75 hours of hunting really gain 628.571429 
calories per hour? No, because the exactness of our measurements wouldn ’ t 
allow the researcher to differentiate between 628.571428 and 628.571429 
calories per hour. Instead, a measure of 630 calories per hour more accurately 
refl ects the exactness of our measurements, and will consequently be more 
useful in the analysis and more easily communicated to other researchers. As a 
general rule, don ’ t end up with more signifi cant digits than the original 
measurement.    

 In order to demonstrate how frequency distributions are constructed, Figure  3.4  
presents the framework for the construction of a frequency distribution of 
heights of individuals in your class (assuming you are using this text as a textbook). 
Should your instructor choose to do so, you may construct your own frequency 
distribution.    

  Histograms 

 Another common way of visualizing data is through the construction of a histo-
gram. Histograms graphically represent the frequency of data in various classes by 
listing the class marks on the horizontal axis and class frequencies on the vertical 
axis. A histogram looks similar to tally marks from a frequency table laid on their 
side. Let us use an example of data gathered in the Gallina area of New Mexico to 
illustrate the histogram. 

 Table  3.2  presents 100 measurements of minimum sherd thickness measured to 
examine differences in ceramic technology across settlements in the project area. 
These measurements were taken using 0.5   mm increments. Thus, the value 4.5   mm 
refl ects a sherd with a minimum thickness between 4.25 and 4.75   mm.   
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  Table 3.2    Minimum ceramic sherd thickness (mm) from 
the Gallina region of New Mexico 

  5.0    3.0    5.0    6.0    5.0    5.0    6.0    5.0    4.0    5.0  
  4.5    5.0    4.0    5.5    5.5    5.0    6.0    6.0    4.5    6.0  
  4.0    2.0    4.5    3.0    4.5    4.0    5.5    6.0    5.0    5.0  
  4.5    5.5    5.0    5.0    5.0    4.0    5.0    6.0    3.5    6.0  
  6.0    3.0    5.0    3.0    5.0    5.0    5.0    4.5    7.0    4.0  
  7.0    6.0    5.5    4.0    5.0    5.5    5.0    5.5    4.0    5.0  
  7.5    4.0    5.0    4.5    5.0    5.0    5.5    5.5    5.0    4.0  
  5.0    4.0    3.5    4.0    3.0    5.5    5.0    5.0    5.0    5.0  
  4.5    5.0    4.0    6.0    5.5    7.0    5.0    3.0    6.0    5.0  
  4.0    5.5    4.0    2.0    5.5    2.0    6.5    5.0    4.0    5.0  

     Figure 3.4     Frequency distribution of heights in your class  

Implied limit Y
(inches*)

Tally mark f

57.5–58.5 58
58.5–59.5 59
59.5–60.5 60
60.5–61.5 61
61.5–62.5 62
62.5–63.5 63
63.5–64.5 64
64.5–65.5 65
65.5–66.5 66
66.5–67.5 67
67.5–68.5 68
68.5–69.5 69
69.5–70.5 70
70.5–71.5 71
71.5–72.5 72
72.5–73.5 73
73.5–74.5 74
74.5–75.5 75
75.5–76.5 76
76.5–77.5 77
77.5–78.5 78
78.5–79.5 79
79.5–80.5 80

∑f = 

* 1 inch = 2.54 cm
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 Characterizing Data Visually 27

 Again, patterns in the raw data are diffi cult to identify. To make sense of our 
data, we must fi rst organize them. Figure  3.5  presents a frequency distribution of 
these data. Once a frequency distribution is constructed, it is quite easy to construct 
a histogram  –  a visual that is slightly more aesthetically pleasing (and publishable) 
than the tallies, lines, and numbers in Figure  3.5 . Figure  3.6  is a histogram of the 
data presented in Table  3.2 .   

 For Figure  3.6 , the metric scale of measurement is depicted on the horizontal 
axis of the graph. The number of variates in each class is counted, and the counts 
of variates are depicted using vertical bars called  bins . For example, there are 
35 variates with a minimum sherd width of 5.0   mm. The bin associated with the 
class of 5.0   mm consequently rises to the level associated with a frequency of 35 
variates. This histogram provides an excellent visual presentation of the shape, or 

     Figure 3.5     Frequency distribution of the Gallina ceramic minimum sherd thicknesses 
(mm)  

Implied limit Y Tally mark f

1.75–2.25 2.0 lll 3
2.25–2.75 2.5 0
2.75–3.25 3.0 lllll l 6
3.25–3.75 3.5 ll 2
3.75–4.25 4.0 lllll lllll lllll l 16
4.25–4.75 4.5 lllll lll 8
4.75–5.25 5.0 lllll lllll lllll lllll lllll lllll lllll 35
5.25–5.75 5.5 lllll lllll lll 13
5.75–6.25 6.0 lllll lllll ll 12
6.25–6.75 6.5 l 1
6.75–7.25 7.0 lll 3
7.25–7.75 7.5 l 1

∑f = 100

     Figure 3.6     Histogram of minimum sherd thicknesses  
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28 Characterizing Data Visually

distribution, of the data. We can see that the distribution is roughly symmetrical, 
and that values toward the center are more common than extreme values. By group-
ing the observations into categories of a consistent interval we have been able to 
gain information about the distribution of our variates that could not be obtained 
through a simple visual inspection of the raw data. 

 Visualize how an increase or decrease in the class interval would affect the shape 
of such a distribution. A larger class interval would result in fewer bins (bars), and 
they would tend to have more variates in each, causing higher peaks. A smaller class 
interval would leave many empty bins and result in a more  “ spread out ”  distribu-
tion with few members in each bin. In both cases, the distribution would remain 
roughly symmetrical.  

  Stem and Leaf Diagrams 

 Another useful way to view data is through the construction of a stem and leaf 
diagram. Figure  3.7  is a stem and leaf diagram of the Gallina sherd thickness data 
(Table  3.2 ). The diagram looks complex, but is easy to build and is very informative, 
once you know how it is constructed. The  stem  is the vertical column of numbers 
to the left of the vertical line. The  leaf  refers to those numbers to the right of the 
vertical line. Each leaf, along with the associated stem to its left, refl ects an indi-
vidual variate. In this particular example, the stem represents the number to the 
left of the decimal point in our data. The smallest value is 2.0, and the largest 7.5. 
Therefore, the limits of our stem are 2 (top) and 7 (bottom). The leaf refl ects the 
value to the right of the decimal point in the data. In the Gallina data, the numbers 
to the right of the decimal points are all 0 or 5. We therefore know that each leaf 
will be 0 or 5. By looking at the stem and leaf diagram, we can both reconstruct our 
raw data and look at their distribution. For example, we can tell from the diagram 
that three variates are 2.0   mm, six are 3.0   mm, and two variates have a value of 
3.5   mm.   

 The stem and leaf can be constructed by reading across your data from any 
direction, which results in the leaves being unordered with respect to magnitude, 
as in Figure  3.7 . Reordering the leaves as depicted in Figure  3.8  often makes the 

     Figure 3.7     Stem and leaf diagram of Gallina ceramic data  

2 000
3 00500005
4 505500005000505005050000
5 000505000505005000055000505500050005500000000000
6 0000005000000
7 0500
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diagram easier to use. Regardless of the reordering, the shape of the distribution is 
the same.   

 In the same way that it is useful to change the numbers of classes in a frequency 
distribution, it is sometimes desirable to change the numbers of classes in a stem 
and leaf diagram. Doing so is quite easy and can be accomplished by dividing the 
stems further or collapsing them together. For example, Figure  3.9  is a stem and 
leaf diagram of the Gallina data, but it differs from Figure  3.7  in that each stem is 
repeated twice (there are two 2s, two 3s, two 4s, etc.). The fi rst stem of 2 includes 
all leafs between 2.0 and 2.4, whereas the second 2 refl ects all leafs between 2.5 and 
2.9. The same is true for all of the other number pairs. Leafs that are 0 are conse-
quently grouped with the fi rst in a pair of stems, whereas leafs that are 5 are grouped 
with the second. Using this same principle, we can divide the stem and leaf diagram 
into as many or as few classes as we wish. The only requirement is that each stem 
refl ects the same increment of measurement.   

 Knecht  (1991)  provides an additional set of data with which to construct a stem 
and leaf diagram (Table  3.3 ). These data are maximum thickness measurements of 
a sample of losange - shaped (leaf - shaped) Early Upper Paleolithic projectile point 
bases. Use these data to place the leaves on the two stems provided in Figure  3.10 .      

     Figure 3.8     Ordered stem and leaf diagram of Gallina ceramic data  

2 000
3 00000055
4 000000000000000055555555
5 000000000000000000000000000000000005555555555555
6 0000000000005
7 0005

     Figure 3.9     Stem and leaf diagram created using increments of .5   cm  

2 000
2
3 000000
3 55
4 0000000000000000
4 55555555
5 00000000000000000000000000000000000
5 5555555555555
6 000000000000
6 5
7 000
7 5
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     Figure 3.10     Stems that can be used to create a stem and leaf diagram of data from 
Table  3.3   
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  Table 3.3    Measurements of the maximum thickness of 
losange - shaped Early Upper Paleolithic projectile points 

  6.5    6.6    9.2    9.8    8.9  
  8.0    8.4    7.7    8.7    10.7  
  9.7    9.2    8.3    10.1    10.3  
  6.9    7.4    5.6    10.0    7.9  
  7.3    4.1    10.2    11.2    7.7  
  8.3    7.9    6.1    7.2    9.7  
  5.2    9.3    10.8    8.9    10.0  

  10.8    10.7    11.4    9.3    9.0  
  7.7    10.5    7.4    11.4    9.2  
  9.5    10.3    8.8    10.0    10.7  
  7.7    8.9    10.2    5.7    8.5  

  11.1    10.0    10.5    11.4    7.1  
  5.8    9.0    8.9    9.1    8.4  
  7.4    9.0    6.5    6.2    9.2  
  9.6    6.2    7.9    9.1    7.8  
  4.3    11.6    4.9    5.8    5.8  
  5.9    8.4    6.2          

 Source :   Knecht, Heidi Deborah  (1991) .  Technological Innovation 
and Design during the Early Upper Paleolithic: A Study of Organic 
Projectile Technologies , pp. 628 – 30. Ph.D. Dissertation, Department 
of Anthropology, New York University.
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  Ogives (Cumulative Frequency Distributions) 

 Another kind of frequency distribution that is very useful is the cumulative fre-
quency distribution or ogive. Figure  3.11  is a cumulative frequency distribution for 
the Carrier Mills feature data (Table  3.1 ). It is similar to the previously illustrated 
frequency distribution (e.g., Figure  3.2 ) except that the frequency corresponding to 
a given class is created by summing the frequencies of all of the smaller classes with 
that of the class itself. For example, for  Y     =    4,  f  (cumulative) is equal to the sum of 
its frequency (  f     =    2) added to the frequency for the previous value of  Y     =    3 (  f     =    2). 
Therefore,  f  (cumulative) for  Y     =    4 is equal to 2    +    2    =    4. The  f  (cumulative) for the 
last class, where  Y     =    24, is the sum of all of the class frequencies, or 91. Figure  3.12  
provides a graphic presentation of Carrier Mills feature data (Table  3.1 ). The cumu-
lative frequency distribution is often useful when we want to compare the shapes 
of two distributions by contrasting their cumulative values visually.    

Y f f
(cumulative)

3 2 2
4 2 4
5 3 7
6 6 13
7 4 17
8 5 22
9 8 30

10 8 38
11 6 44
12 4 48
13 7 55
14 3 58
15 3 61
16 6 67
17 3 70
18 2 72
19 4 76
20 5 81
21 1 82
22 4 86
23 3 89
24 2 91

∑f = 91

     Figure 3.11     Cumulative frequency distribution of Carrier Mills feature depths (cm)  
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     Figure 3.12     Plot of the cumulative frequency distribution of Carrier Mills feature depths  
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     Figure 3.13     Plot of a symmetrical, or normal distribution  

     Figure 3.14     Plot of a left - skewed distribution  

  Describing a Distribution 

 There are a number of ways to characterize a distribution. A good place to start is 
by describing its degree of symmetry. Figure  3.13  presents a distribution that is 
perfectly symmetrical. This distribution may be more familiar to you as the  normal  
or  bell - shaped distribution , which we will discuss in greater detail later.   

 Non - symmetrical distributions are described as  skewed . Figure  3.14  presents a 
distribution that is skewed to the left and Figure  3.15  is a distribution skewed to 
the right, a very common distribution in archaeological data. Many people fi nd it 
diffi cult to remember the difference between distributions skewed left and distribu-
tions skewed right. Remember, a distribution is skewed in the direction with the 
longest tail.   

 We may also be concerned with the number of peaks that a distribution has. 
Figures  3.13  through 3.15 all have one peak and are therefore called  unimodal 
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distributions . Figure  3.16  presents a plot of a distribution that is  bimodal , because 
it has two peaks. Distributions that have more than two peaks are typically called 
 multimodal . Note that we are using the word  “ mode ”  in a different way here then 
that with which you may be familiar. A mode can also refer to a statistical measure 
of location, as measured by the class in a distribution with the highest frequency 
(see Chapter  4 ). Here we are using the word to refer to a general assessment of the 
number of peaks a distribution has. This may be confusing at fi rst, but it is impor-
tant to know both usages.   

 A characteristic that archaeologists often overlook when describing distributions 
is their relative heights. Often a distribution will superfi cially look like another 
distribution, but will in fact be more spread out or more narrowly distributed. 
Given similar numbers of variates, a narrow distribution will have a higher peak, 
whereas a more dispersed distribution will have a lower peak. For example, the two 
distributions look similar, but the distribution illustrated in Figure  3.17  has a higher 
peak than the distribution in Figure  3.18 . Of course there are terms used to describe 
these differences. The high peak of the distribution in Figure  3.17  is called  leptokur-
tic , and the fl at peak of the distribution in Figure  3.18  is  platykurtic . The classic 
bell - shaped curve depicted in Figure  3.19  is  mesokurtic . If you use these words at 
parties, your friends will be impressed.    

     Figure 3.15     Plot of a right - skewed distribution  

     Figure 3.16     Plot of a bimodal distribution  

     Figure 3.17     Plot of a leptokurtic distribution  
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  Bar Charts 

 All of the visual representations described to this point are useful for interval or 
ratio scale data, but not ordinal or nominal scale data. A very useful tool in archae-
ology for characterizing ordinal and nominal data is the  qualitative frequency 
distribution , more commonly called a  bar chart . Figure  3.20  provides a bar chart of 
the number of villages during the Early Monongahela period occupation of the 
Allegheny Plateau in several physiographic settings (Hasenstab and Johnson, 
 2001 :6). Bar charts provide abundance information on variables measured at the 
nominal and ordinal scale. As with histograms, the bar chart allows the comparison 
of frequencies among classes. For example, it becomes obvious from Figure  3.20  
that sites in the upland provenience are about four times more common than those 

     Figure 3.18     Plot of a platykurtic distribution  

     Figure 3.19     Plot of a mesokurtic distribution  

     Figure 3.20     Bar chart of the physiographic provenience of villages during the Early 
Monongahela period in the Lower Monongahela and Lower Youghiogheny river basins  
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     Figure 3.21     Bar chart of the frequencies of villages during the Early Monongahela, Middle 
Monongahela, and Late Monongahela periods in various physiographic proveniences  
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on stream terraces, a trend that might not be so clearly evident from the raw data. 
Unlike histograms, though, bar charts cannot be described in terms of symmetry, 
peakedness, or modality, because the order that the data are entered from left to 
right is arbitrary. For example, river terrace sites listed on Figure  3.20  could just as 
easily be placed to the right of stream terrace sites as to their left. Even when using 
bar charts to illustrate the abundance of ordinal scale data, for which the order of 
classes is set, the symmetry, peakedness, or modality of a bar chart cannot be 
described, because the units do not refl ect a consistent amount of variation. A bar 
chart refl ecting a preponderance of  “ medium - sized ”  artifacts could indicate that 
the distribution of artifact size is symmetrical, with fewer large and small artifacts. 
Or it could refl ect that the  “ medium - sized ”  category includes more variation, and 
therefore more variates, than the other size categories. It is important not to confuse 
bar charts with histograms, and one way to keep them distinct is to present gaps 
between the bars in the bar graph (e.g., Figure  3.20 ), and to close the bars together 
in the histogram (e.g., Figure  3.6 ).   

 Bar charts are particularly useful when we wish to compare differences within 
classes for multiple variables. For example, Figure  3.21  is a bar chart with the 
number of villages dating to the Early Monongahela, the Middle Monongahela, and 
the Late Monongahela/Protohistoric periods in different physiographic settings. By 
examining the relative heights of the bars, we might be able to identify changes in 
settlement patterns. For example, upland sites are common in all three time periods, 
but are more common during the Middle Monongahela period when compared to 
the Late Monongahela period, which has about an equal number of villages in the 
upland and stream terrace proveniences. Further, villages on river terraces are 
absent during the Late Monongahela period, which is not the case for the other 
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periods. The statistical signifi cance of such differences can be evaluated using the 
various methods for nominal data analysis discussed later in Chapter  13 .    

  Displaying Data like a Pro 

 Although this chapter has focused on graphs, we also presented tables in the form 
of frequency tables. Archaeologists rely on data tables because our data are too 
numerous and too complicated to present systematically in an understandable 
format without such tools. Interestingly, however, archaeologists rarely consider 
the attributes that make a table more or less useful. Requirements for making 
good tables (i.e., ones that effectively communicate the pertinent information) 
would seem to be commonsense, but even the most casual evaluation of the numer-
ous tables in any given archaeological journal or technical report are likely to 
identify tables that: (i) fail to clearly present the trends/characteristics the author 
wants them to; (ii) undermine the author ’ s argument in that they suggest relation-
ships contrary to the author ’ s description because of some error in the data report-
ing or presentation; and (iii) effectively misrepresent the data in such a way as to 
appear to support the author ’ s argument as a result of some clever (or possibly 
unintentional) error. 

 Archaeology of course is not alone in facing the specter of bad tables. Because 
of their general importance in many disciplines, statisticians have developed several 
rules of thumb to help create good tables. Ehrenberg  (1981)  outlines six useful sug-
gestions for table construction. These are: 

  1     Provide column/row totals or averages as appropriate. These will help the reader 
identify trends more easily than jumbles of numbers listed next to each other.  

  2     Order the rows/columns of a table according to size so that the reader can 
identify trends in the data. Keep the order the same when presenting multiple 
tables with the same (or similar) classes.  

  3     Place digits to be compared into columns, instead of rows.  
  4     Round to two signifi cant digits.  
  5     Organize the table to guide the eye to the pertinent comparisons.  
  6     Give a brief verbal summary of the trends and exceptions that the reader ought 

to identify from the table.    

 Consider Table 3.4, which reports summary information for four sites. What trends 
do you see? We doubt that you don ’ t see any. If you do, we suspect that you had 
to look at the table for a bit and mentally move some numbers around to see if 
some relationship that you suspect might be there actually is. If you have read very 
many archaeological reports or sat through presentations at professional archaeol-
ogy conferences, you have likely seen a table that looks exactly like this. This table 
may accurately report data, but it isn ’ t as effective as it could be if one were to follow 
Ehrenberg ’ s  (1981)   “ commonsense ”  suggestions. 

c03.indd   36c03.indd   36 8/26/2010   1:54:19 PM8/26/2010   1:54:19 PM



 Characterizing Data Visually 37

 Reorganizing the table as Ehrenberg  (1981)  proposes creates Table  3.5 . We 
suspect that the typical reader will fi nd this table much easier to read, and will almost 
immediately notice that villages with larger than average house size also have more 
hearths and storage pits per house. Certainly the typical person will identify this 
relationship more quickly from Table  3.5  as opposed to Table  3.4 . Several features 
make the second table more effective. First, the numbers to be compared are 
arranged in columns with the values arranged from the largest to the smallest. The 
columns also end with the average value from the four sites, which provides the 
reader with a  “ scale ”  to compare against the numbers presented above it. The vari-
ables have been rearranged to further help guide the reader ’ s eye to the pertinent 
relationships, with the average house size being the fi rst variable the reader encoun-
ters, and, as a result, the variable against which the trends in the other data are com-
pared. Further the column and row labels have been clarifi ed and the numbers 
rounded to two signifi cant digits to make the table simpler to read. Mixed with the 
straightforward statement about the relationship between the average house size and 
the other variables, the trends in the data become instantly recognizable. The data in 
Tables  3.4  and  3.5  are the same, but Table  3.5  is much more effective at communicat-
ing them (see Lewis,  1986 : 278 – 82 for a similar exercise with different data).   

 As useful as Ehrenberg ’ s  (1981)  suggestions are, it is important to remember that 
they are rules of thumb and should only be used when they improve the table. At 
times, it might be benefi cial to switch the order of data from table to table, if this 
helps to clarify the patterns that you are illustrating. In other contexts column and 
row averages/totals might not be useful, or even possible if you are dealing with 
individuals or nominal scale data. The construction of a table is as much a matter 
of art as it is quantitative rigor. The goal is to communicate information accurately. 
Whatever form does this best is, by defi nition, the best table. 

  Table 3.5    The reorganized summary feature information 

   Site     Average house 
size (sq. m.)  

   Average number of 
hearths per house  

   Average number of 
storage pits per house  

  Justin Ruin    740    3.3    13.0  
  Agave Junction    640    3.0    7.8  
  Timber Ruin    370    2.5    3.3  
  Casita    160    1.8    1.2  

  Average    480    2.6    6.3  

  Table 3.4    Summary feature information for four sites 

        1     2     3     4  

  Average number of hearths in each house    2.45    3.34    1.79    3.01  
  Average number of storage pits per house    3.32    12.97    1.23    7.81  
  Average house size (sq. m.)    367.34    741.82    157.98    642.80  
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 The purpose of the table can help determine what form might be best in a given 
context. Lewis ( 1986 : 277) defi nes three types of tables commonly used in archaeol-
ogy: formal tables (which communicate research results to the reader); working 
tables (which help the analyst investigate a data set ’ s structure); and reference tables 
(which are an archive of a data set). Formal and working tables are tools used by 
the archaeologist to explore and communicate information relevant to an argu-
ment. Reference tables in contrast are passive storehouses often presented as appen-
dixes that store data for further analysis. Placing numbers to be compared in 
columns is an excellent suggestion for working and formal tables, but might be 
impractical for reference tables, given their size and the fact that the author is not 
trying to draw attention to particular comparisons. Instead of ordering classes 
according to their magnitude, it might be better to present data in reference and 
working tables using other criteria such as specimen number, room block, project 
number, stata, temporal period, or cultural affi liation. Rounding fi gures to two 
signifi cant digits also may be inappropriate for working and (especially) reference 
tables, if it causes the loss of information that would interest those who wish to 
analyze the data from their own perspectives or using other methods. Ehrenberg ’ s 
suggestions should consequently be disregarded if necessary, especially when com-
piling reference tables.  

  Archaeology and Exploratory Data Analysis 

 Frequency tables and the various graphing techniques presented above can be used 
to summarize and present data in order to clarify our thinking about the possible 
relationships among our data and to illustrate patterns we wish to communicate to 
others. These techniques are consequently an ideal starting place in statistical analy-
sis precisely because they summarize data in a useful way that may in fact cause us 
to note possible relationships worth exploring. Inductively identifi ed relationships 
may factor heavily into future analysis, and are in truth the source of some of the 
most signifi cant anthropological insights archaeology has contributed. After all, it 
is exactly this sort of reasoning that led archaeologists such as William Flinders 
Petrie  (1899)  and James A. Ford  (1938, 1962)  to use graphing methods to develop 
frequency and occurrence seriations (O ’ Brien and Lyman,  1999 ). 

 Using graphs to identify otherwise  “ hidden ”  relationships that can become the 
subject of further analysis is an example of a more general statistical approach called 
exploratory data analysis (EDA). In general, quantitative methods can be used in 
two ways. The  “ typical ”  approach, which forms the core of this and most other 
quantitative texts, is called statistical hypothesis testing (or confi rmatory data analy-
sis). This tradition has certainly been the focus of archaeological analysis since the 
introduction of the hypothetico - deductive approach focused on deductively testing 
archaeological propositions, which was central to the New Archaeologists of the 
1960s and 1970s (Watson  et al. ,  1971 ). We will discuss hypothesis testing in great 
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detail in Chapters  6  and  7 , but this framework employs statistical analysis to 
evaluate explicitly defi ned propositions that are presented prior to the application 
of statistical methods. Quantitative analysis then determines if the proposition is 
plausible or not at a given probability level. 

 In contrast, EDA uses quantitative approaches not to evaluate previously defi ned 
relationships, but to defi ne hypotheses to be evaluated. This approach is perhaps 
most commonly associated with John Tukey  (1977) , but it actually has a long 
history in archaeology (e.g., the previously mentioned seriation techniques used by 
cultural historians, Albert Spaulding ’ s  (1953)  proposal that statistical methods can 
be used to inductively defi ne artifact types, and F. Fenenga ’ s  (1953)  use of weight 
to differentiate between arrow and atlatl dart points based on the bimodality evident 
in graphs of projectile point weight). EDA has proven useful in archaeology to help 
maximize insights into complex data sets, determine which variables might be 
important in given cases, and to detect outliers and anomalies that both might 
complicate traditional hypothesis testing and that might refl ect behaviorally mean-
ingful differences in the archaeological record (e.g., Baxter,  1994 ). 

 We will discuss EDA in further detail at various places in this text but we do wish 
to note several of its characteristics here. First, EDA is not a series of unique statisti-
cal methods distinct from those used for hypothesis testing, but is instead a different 
application of the same techniques. Although some methods such as the graphs 
discussed in this chapter are particularly useful for EDA, virtually any statistical 
technique  could  be used if you are suffi ciently clever. 

 Second, EDA is not so much an alternative to hypothesis testing, but is instead 
a means of complimenting it by providing a useful source for possible hypotheses. 
EDA isn ’ t  the  way archaeologists should use quantitative analysis, because archae-
ologists wish to derive and test hypotheses. Likewise, archaeologists should not limit 
their application of quantitative methods only to hypothesis testing, because they 
are interested in discovering previously unknown relationships. Using EDA and 
traditional hypothesis testing in tandem can allow archaeologists to accomplish 
both tasks. Care must be taken to insure, though, that the process of generating and 
testing hypotheses does not become an exercise in circular reasoning. Evaluating a 
hypothesis with the same data from which it was derived using EDA is tautological, 
and may reify relationships that are accidental, as opposed to meaningful. EDA is 
a great place to start, but you must evaluate the signifi cance of relationships identi-
fi ed using EDA with other lines of information and/or data. After all, even randomly 
generated numbers can occasionally create what appears to be a strong relationship. 
The presence of a relationship discovered using EDA does not constitute adequate 
proof that it is in fact meaningful. 

 Finally, EDA, especially when based on graphs, tends to include a subjective 
component resting on the analyst ’ s interpretation of patterns. What one individual 
sees as  “ a clear pattern ”  can be another ’ s  “ ambiguous mess of data. ”  Many archae-
ologists might agree on the presence of some relationships, but it is entirely possible, 
in fact expected, that analysts will disagree at least some of the time when conduct-
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ing EDA. In contrast, if we accept the applicability of a given method and 
analytic framework during hypothesis testing, the statistical outcome should be 
unambiguous and universally accepted in regards to the specifi c hypothesis a 
researcher is evaluating. 

 Now that you know how to characterize basic data visually, let us turn to pro-
cedures that allow archaeologists to make numerical comparison. That is the subject 
of Chapter  4 . 

   Practice Exercises 

    1     Defi ne and differentiate the following terms:  

  (a)     bar charts and histograms  

  (b)     practical limits and implied limits  

  (c)     class interval and class mark  

  (d)     stem and leaf (in the context of a stem and leaf diagram)  

  (e)     skewed and symmetrical distributions  

  (f)     unimodal and multimodal distributions  

  (g)     leptokurtic, platykurtic, and mesokurtic distributions  

  (h)     formal tables, working tables, and reference tables.    

  2     Would the class 2   cm include the value of 1.7   cm? Would the class of 
2.0   cm include the value 1.7? What is the difference between the classes of 
2   cm and 2.0   cm?  

  3     Maximum depths (cm) of archaeological features discovered at 
Charlestown Meadows in Westborough, Massachusetts, are listed below 
(Hoffman,  1993 : 468). 

  20    7    30    10    5    9    13    26  
  15    21    12    7    16    19    37    15  

  5    20    15    18    22    23    7    15  
  5    11    21    17    11    26    15    11  

  20    30    9    5    13    43    10    10  
  40    28    15    8    11    15    34    5  
  13    28    8    11    8    29    25    31  
  29    9    4    20    11    13          
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 Using these data, complete the following tasks: 

   (a)     Create a stem and leaf frequency distribution from these data. Make 
an ordered array from your stem and leaf distribution. Describe the 
distribution.  

  (b)     Construct a frequency distribution. Be sure to include your implied 
limits, practical limits and class marks.  

  (c)     Reduce the number of classes by half and reconstruct the frequency 
distribution.  

  (d)     Double the number of classes and reconstruct the frequency 
distribution.  

  (e)     Identify which of the three frequency tables best illustrates the shape 
of the distribution. Draw a histogram of the best frequency 
distribution.    

  4     Create an ogive from the data used in Question 3.  

  5     Following is a summary of the time periods refl ected at various Paleolithic 
sites discussed by Runnels and  Ö zdo ğ an ( 2001 :72). Prepare a bar chart 
reporting the frequencies of remains from each time period within the 
four regions. Describe any differences you note in the frequencies of 
materials from the three time periods among the regions. 

   Region and site     Lower Paleolithic     Middle Paleolithic     Upper Paleolithic  

   Black Sea Coast (Asia)           
     Kefken     –     X    X  
     Sarisu     –      –     X  
     A ğ va     –     X     –   
     Domali     –     X     –   
   Black Sea Coast (Europe)           
     Domuzdere    X    X    X  
     G ü m ü sdere     –     X     –   
     A ğ a ç li    X    X    X  
   Bosphorus               
     Kemerburgaz     –     X     –   
     G ö ksu    X    X     –   
   Marmara               
     Ak ç aburgaz     –     X     –   
     Eskice Sirti    X    X     –   
     Karababa     –     X     –   
     Davetpa ş a     –     X    v  
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  6     Find fi ve tables from archaeological reports or published works. Based on 
the context in the author ’ s discussion, determine whether each table is a 
formal table, a working table, or a reference table. Next evaluate whether 
the tables follow Ehrenberg ’ s  (1981)  suggestions for creating effective 
tables. Could the tables be improved to be more effective for their stated 
purposes? If so, how?            
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  4 

Characterizing Data Numerically: 
Descriptive Statistics     

     While visual representations of data are very useful, they are only a starting point 
for gaining more information about using the data. Numerical, as opposed to visual, 
characterizations of the data allow a more formal means of both describing a dis-
tribution and comparing two or more distributions. Numerical description ulti-
mately allows us to make the inferences we desire. These numerical characterizations 
are termed either  statistics  or  parameters .  Statistics are descriptions of the character-
istics of a statistical sample, whereas parameters refer to the characteristics of a statisti-
cal population . A  statistical population  is similar to a population as presented in 
Chapter  2  in that it is defi ned in time and space, but differs in that it is composed 
of data (i.e., observations of things) as opposed to the objects themselves. Do not 
confuse statistical populations with the use of the term  “ population ”  in biology, 
physical anthropology, or even in Chapter  2 . Statistical populations are not people, 
animals, rocks, or pots. They are data. 

 For example, the length of Folsom points manufactured during the Paleoindian 
occupation of the New World could be considered a statistical population, but this 
is distinct from the actual population of Folsom points. The weight of thimbles used 
in New York during the Historic period is another possible statistical population. 
As you can see, statistical populations can vary in their scope from data about all 
of a class of objects that ever existed to data for a more limited subset of objects. 
We could even defi ne a statistical population at the scale of a site or component 
(e.g., the cutting dates of wooden beams used during the construction of a historic 
church). 

 A statistical sample is a subset of the data in a statistical population. An impor-
tant point to remember from Chapter  2  is that the archaeologist defi nes populations 
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and samples. When collecting data, the archaeologist also defi nes statistical popula-
tions and statistical samples that correspond with the parent populations or samples 
that interest him or her. Yes, it is confusing to use the terms  “ sample ”  and  “ popula-
tion ”  to refer to both a group of objects and the data that are collected from them, 
so we must take care to defi ne how the terms are being used in each case. Even 
when we defi ne a population, say Mimbres pots from Dana Ana County in New 
Mexico, we have not defi ned the variables we are going to measure, and hence do 
not have a statistical population. Only by defi ning the variables of interest and then 
collecting data about them can we create statistical populations. Our data cannot 
and should not be equated with the empirical objects that we are actually studying. 
Christopher Chippindale ( 2000 : 605) provides an insightful discussion of this fact, 
and argues (tongue in cheek?) that archaeologists should replace the term  “ data ”  
with  “ capta ”  to emphasize that data  “ are captured by the researcher, who seeks to 
grasp from the material record the essentials of some complex and little - known 
phenomenon. ”  

 Any particular group of data could be a statistical sample or population, depend-
ing on the question. For example, the grade point average of undergraduate anthro-
pology majors at Eastern New Mexico University could be considered a population, 
if the group of interest is anthropology majors from that school, or a sample, if we 
are interested in all undergraduates from the institution. 

 Despite the importance of maintaining the distinction between populations/
samples and statistical populations/samples, we, along with most researchers, fi nd 
the repeated use of the terms  “ statistical population ”  and  “ statistical samples ”  irri-
tating. As a result, we will simply shorten these down to population and sample, 
and specify that we are talking about statistical populations and samples from here 
on out, unless otherwise noted. 

 We can describe a population ’ s parameters (e.g., the average value, the maximum 
value, the minimum value) without error, assuming that the data are derived using 
a method that is adequately precise and accurate. These values cannot change for 
the simple reason that the population contains all of the data that is to be consid-
ered; no matter how many times a person calculates the average height of the 2008 
US Olympic basketball team, the outcome will always be the same. Only the units 
of measurement might change (e.g., meters vs. feet). Assuming that the statistical 
population does in fact satisfactorily refl ect the population of objects being studied 
(i.e., the data are properly derived and recorded using appropriate tools), the 
parameter is a perfect (in the sense of not having error) description of some 
attribute of the objects. 

 In an ideal world, archaeologists could always measure their populations of 
interest to derive statistical populations. Typically though, archaeologists can only 
access a sample of their population. This in turn necessitates that they use statistical 
samples to derive statistics that estimate the parameters of the statistical populations 
(which in turn correspond with the populations of interest). For example, we might 
measure the cranial capacity of a sample of Neandertal skulls using one or more 
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statistics, and then use these statistics to estimate population parameters and draw 
inferences regarding the population of Neandertal skulls of interest. In contrast to 
the immutable, unchanging parameters of a population, though, statistics will vary 
as the members in the sample vary (e.g., samples composed of different Neandertal 
skulls will likely provide a slightly different estimate of the population parameters). 
Statistics derived through the analysis of a sample are thus estimates, which can be 
very good or quite poor, of the actual population parameters. Using various quan-
titative methods, we can determine how close these statistics likely are to the popu-
lation parameters that we are trying to measure. 

 Numerical descriptions of distributions can either be parameters or statistics 
depending on whether they describe a population or a sample. By convention, 
population parameters are denoted with Greek letters, and sample statistics by 
Roman letters. Numerical descriptions can also be categorized into two types: 
 measures of central tendency  and  measures of dispersion . Measures of central ten-
dency, as the name suggests, provide a numerical account of the center, or midpoint 
of a distribution. Measures of dispersion provide information about the spread of 
data around a distribution ’ s midpoint.  

  Measures of Central Tendency 

 Measures of central tendency are also called  measures of location , which may actually 
be the better term in that these measures provide a numerical account of the 
location of the center of a distribution. Three measures of central tendency are 
commonly used: the  mean ; the  median ; and the  mode . 

  Mean 

 Everyone is familiar with this measure of central tendency, which is also called 
the arithmetic mean, or the average. The mean is calculated by summing all of 
the values in a data set, and then dividing this sum by the number of 
observations. 

 To illustrate the calculation of the mean, consider the data in Table  4.1  that Jim 
O ’ Connell ( 1987 : 85) collected in an ethnoarchaeological study on the number of 
residents in Alyawara camps. The mean is calculated by following the instructions 
signifi ed by the symbols in Equation  (4.1) .   

  Table 4.1    Number of residents in Alyawara camps 

  21    18    12    31    23    31    44    7  
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  The mean 
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 The formulas look menacing but they are not, once you understand how to 
read them.   μ   (vocalized as  mu ) represents the population parameter of the mean 
of the variable  Y .   Ȳ    (vocalized as  Y - bar ) is the mean of a sample, and is an estimate 
of   μ  . In this case,   Ȳ    refers to the average number of residents of Alyawara camps 
recorded by O ’ Connell from Gurlanda A in August, 1971, and from Bendaijerum 
Ridge in May, 1974, which is a sample of modern Alyawara camps. The Greek 
symbol  Σ  is the friendly symbol for summation introduced in Chapter  3 . What 
might not be familiar is the notation above and below  Σ , and the subscript to the 
right of  Y . 

   Yi

i

i n

=

=

∑
1

 represents the following set of instructions: for the variable  Y , beginning 

with the fi rst value of  Y  (symbolized by  i     =    1), sum all values continuing to the last 
value of  Y  (symbolized by  i     =     n ).  Y i   (vocalized as  Y sub i ) simply refers to all values 
of  Y , each of which can be numbered individually using the data from Table  4.1 , 

as follows:  Y  1     =    21,  Y  2     =    18,  Y  3     =    12,  … ,  Y  8     =    7. For the set of instructions   Yi

i

i

=

=

∑
2

4

 we 

begin summation with  Y  2     =    18, and continue to sum through  Y  4     =    31, or 
18    +    12    +    31    =    61. 

 The left term of the formula for   μ   in Equation  (4.1)  shows the full symbolism 
for the calculation of the mean. The term on the right denotes the same thing, but 
implies all of symbolism associated with the term to the left. Outside of introduc-
tory texts such as this one, people rarely express the formula ’ s full symbolism. 
Instead, people tend to use the abbreviated version for ease. So, when you encounter 
the symbol  Σ  Y i  , it can be assumed that the instructions are to sum all values of  Y , 
beginning with the fi rst, and continuing to the last. 

 The calculation of the mean in our Alyawara example is as follows.

   Y = + + + + + + +21 18 12 31 23 31 44 7

8
 

   Y = 187

8
 

   Y = 23 375.   

 The mean, or average, number of people in Alyawara camps is 23 people.  
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  Median 

 The median of a data set is the variate with the same number of observations of 
greater and lesser value. Consider the following data: 14, 15, 16, 19, 23. The median 
value is 16, because it is bounded on both sides by two variates. Consider an addi-
tional set of variates that consist of an even number: 14, 15, 16, 19. Unlike the 
example above, no single number has an equal number of variates numerically 
greater and lesser than it. Is the median 15 or 16, or does this set of numbers simply 
have no median? No, in this case the median is determined by averaging the two 
values in the middle of the distribution. Here, the median is the average of 15 and 
16, which is 15.5. 

 To determine the median of the Alyawara data, we fi rst make an ordered array 
that presents the data in Table  4.1  from the smallest to the largest variate: 7, 12, 18, 
21, 23, 31, 31, 44. The median value for these data is the average of 21 and 23, which 
is 22 people.  

  Mode 

 The mode is the most popular, or most abundant, value in a data set (i.e., the value 
with the highest frequency). An inspection of Figure  3.7  shows that the most 
popular value in the Gallina ceramic data is 5.0. In the Alyawara data in Table  4.1 , 
the mode is 31. It is possible to have two or more modes, if the most popular classes 
have the exact same number of variates.  

  Which measure of location is best? 

 For the Alyawara data, the average number of people in the camps is 23, the median 
is 22, and the mode is 31. Depending on the situation, all three measures may be 
useful, but oftentimes, one will be preferred over the others. In the Alyawara 
example, the mean and the median provide values that are reasonably close to one 
another, and both constitute good measures of central tendency. The mode in this 
instance, however, is not representative of the distribution ’ s central tendency. 

 When a distribution is perfectly symmetrical, the mode, mean, and median are 
identical. In general, when dealing with a symmetrical distribution, the mean is the 
most useful measure of central tendency, followed by the median, and then the 
mode. The mean ’ s preeminence is because of its utility in the analysis of variance 
and regression analysis, subjects of later chapters. The mean, however, can be inor-
dinately infl uenced by extreme values, typically called  outliers . As a result, its utility 
for describing heavily skewed distributions is questionable, causing many to prefer 
the median in such cases. 

 For example consider again the following values for the Alyawara data: 21, 18, 
12, 31, 23, 31, 44, 7. Let us replace one of the variates of 31 with 100 so that the 
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data are: 21, 18, 12, 31, 23, 100, 44, 7. In comparison with   Ȳ       =    23 for the original 
set of data, the mean of the revised data set is   Ȳ       =    32, a value that is larger than six 
of the eight variates. The mean no longer is  “ in the center ”  of the distribution. The 
median, however, is unaffected by the extreme value, and remains the same. It is 
in such cases where extreme outliers are present that the median becomes a better 
indicator of central tendency than the mean.   

  Measures of Dispersion 

 While measures of central tendency provide important information about a distri-
bution ’ s location along some measurement scale, they offer no information about 
the shape of that distribution. Two distributions might have the same location, but 
not resemble each other at all in terms of shape, or dispersion (e.g., Figure  4.1 ). 

     Figure 4.1     Two distributions with identical means and sample sizes but different shapes  
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Measures of dispersion will help us identify these differences. Three measures of 
dispersion are commonly used: the range; the variance; and the standard 
deviation.   

  Range 

 The range is the difference between the largest and smallest values in a set of data. 
For the Alyawara example: 

  Largest value    44  
  Smallest value    ( − )7  
  Range    37  

 Although the range grants insight into the dispersion of the distribution of a 
sample, the sample range almost always underestimates the population parameter. 
It is unlikely, after all, that both the largest and smallest variates in a population 
will be selected in a sample because samples contain just a portion (and sometimes 
only a small portion) of a population. In archaeological contexts, the range is likely 
to be especially problematic given that imperfect preservation and recovery makes 
the likelihood of recovering the largest and smallest (or oldest and youngest, or 
heaviest and lightest, etc.) artifact or feature quite small. Still, a large sample com-
prising most of a population is more likely to give an accurate estimate of the popu-
lation ’ s range. Regardless of sample size, the range is greatly affected by outliers 
because it only takes into account two variates in the data set, the largest and 
smallest. 

 Despite its simplicity, the range is often a misunderstood statistic because of the 
different use of the verb and noun forms of the word  range . With the Alyawara 
data, it is appropriate to state that the data range (verb form) from 7 to 44. However, 
 the  range (noun form) is 37, not 7 to 44.  

  Interquartile range 

 Interquartile range is a measure of variation that is closely related to the range, 
except that it attempts to measure the variation in variates towards the center of a 
distribution. It is calculated by subtracting the variate demarcating the lower 25% 
of a distribution from the variate demarcating the upper 25% of the distribution. 
This value in turn refl ects the range of the middle 50% or the  “ body ”  of a distribu-
tion. To prevent confusion, the demarcation of the lower 25% of the distribution 
is called the  25th percentile  whereas the demarcation of the upper 25% is called the 
 75th percentile . 

 Using the Alyawara data, 25% of the variates are equal to or less than 18 and 
25% are equal to or greater than 31. Consequently the 25th percentile is 18 and the 

c04.indd   49c04.indd   49 8/26/2010   1:54:27 PM8/26/2010   1:54:27 PM



50 Characterizing Data Numerically

75th percentile is 31. The interquartile range is 31    −    18    =    13. Thus, the variates that 
comprise the middle 50% of the Alyawara data differ by no more than 13 people.  

  Variance and standard deviation 

 The variance and the standard deviation are related statistics used to describe, and 
ultimately compare, the shapes of distributions. The range and interquartile range 
are useful, but they refl ect the spread between only two variates. Given that a dis-
tribution is created by the values of all of the variates, it would be useful to have 
some measure of dispersion that refl ects each of them. But how can such a measure 
be created? 

 One way to do this would be to measure the distance, or variation, of each variate 
from a fi xed point and somehow express this variation in a meaningful way. Broadly 
dispersed distributions would have a large measure of variation whereas tightly 
distributed distributions would have low values. We could even compare the spread 
of the variates in one distribution with the variation present within other distribu-
tions. But what fi xed point should be used? 

 A good choice would be one of the measures of location we just discussed. 
Comparing this central value to the variates would allow us to determine if the 
variates are spread widely or tightly clustered together. This could be very useful 
information for describing the shape of a distribution and comparing different 
distributions with each other. Thus, a useful way to measure the distribution of 
variates is to characterize their distance from the mean, which is a robust (but not 
the only) measure of central location. 

 Again using the Alyawara example, the distance or deviation from the mean for 
 Y  1     =    21 is:

   y Y Y= −1  

   y = −21 23  

   y = −2   

 Note that the lower case  y  is used as the symbol of this deviation, and by conven-
tion, the mean is subtracted from the variate in order to provide the measure of 
distance. 

 Knowing the difference between  Y  1  and   Ȳ    is potentially useful, but we are con-
cerned with the shape of the complete distribution. It comes to mind that perhaps 
if we sum all of the deviations of all variates from the mean, and divide this sum 
by the number of variates, we could create a kind of  “ average ”  deviation. Large 
values would indicate a broadly spread distribution, and small values a narrowly 
spread distribution. Unfortunately, this is not the case, as the sum of all deviations 
from the mean is equal to zero; the amount of deviation is equal on both sides of 
the mean, because of the way it is calculated, causing the deviation of values greater 
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and lesser than the mean to cancel each other out when summed. This fact is illus-
trated in Table  4.2 . As you can see, the sum of  y  is 0.   

 The problem then, is not with the magnitude of the deviation, but with its sign. 
All of the plusses and minuses cancel each other out. One way to circumvent this 
problem is to square each deviation, which results in only positive numbers. This 
is precisely the solution used to calculate the  variance , which is determined using 
Equation  (4.2) : 

  The variance 

   σ 2
2

2
2

1
= =

−
∑ ∑y

n
s

y

n
and     (4.2)   

   σ    2  is the symbol representing the population variance and  s  2  represents the sample 
variance. 

 The variance is useful for many purposes, but remember that it is transformed 
by squaring the deviates before they were summed. Thus, it is not in the original 
units used to measure the distribution and often doesn ’ t make much intuitive sense. 
For example, calculating the variance for the numbers of rooms in prehistoric set-
tlements would result in a unit of  “ rooms 2  ” , which isn ’ t a meaningful unit. Likewise, 
when one calculates the variance of the Alyawara data in Table  4.1 , its units are 
 “ people 2  ” . We know what people are, but people 2  is not a generally acknowledged, 
meaningful unit for anthropological inquiry. 

 By taking the square root of the variance, we can return those squared values to 
their original units, providing another measure of dispersion that makes more 
intuitive sense  –  the standard deviation (  σ   for population parameter and  s  for 
sample statistic). The standard deviation is calculated using Equation  (4.3) . 

  Table 4.2    The sum of  y , where    Ȳ        =    23 people 

   Size of Alyawara settlement 
(people)  

   y   
 ( Y i      −        Ȳ   )  

  21     – 2  
  18     – 5  
  12     – 11  
  31    8  
  23    0  
  31    8  
  44    21  

  7     – 16  

       ∑  y     =    0  
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  The standard deviation 

   σ σ= = = =
−
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n
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n
and     (4.3)   

 Table  4.3  presents in table form the squared deviates used to calculate the sample 
variance and standard deviation for the Alyawara example, where   Ȳ       =    23.375. 
Column 1 of Table  4.3  presents each  Y . Column 2 presents their frequency  f . This 
column is necessary because the frequency of occurrence of a given  Y  may vary (e.g., 
the variate 31 appears twice in these data). If we counted each  Y  with multiple 
occurrences only once, we would incorrectly estimate the true variance. Column 3 
presents  y , which is  Y     −      Ȳ   , the deviation of the variate from the mean. Column 4 
provides a solution to the problem with signs by squaring the deviations created in 
Column 3 as symbolized by  y  2 . Column 5 is the frequency of the occurrence of  Y  
as presented in Column 2 multiplied by the squared deviations calculated in Column 
4. This column is necessary in order to take into account the values of  Y  with more 
than one observation. The sum of Column 5 ( Σ [ fy  2 ]    =    973.9) is also called the  sum 
of squares . Using this value to solve for Equations  (4.2)  and  (4.3)  produces:  

   s
y

n
2

2

1

973 9

7
139 1=

−
= =∑ .

.  

   s
y

n
=

−
= =∑ 2

1
139 1 11 8. .   

 We treated the data from Table  4.1  as a sample of the population of Alyawara camps 
occupied during the time when O ’ Connell conducted his research. You have prob-
ably noticed that the sample statistics are calculated by dividing the sum of squares 

  Table 4.3    Computations of the sample variance and stand-
ard deviation for the number of residents in Alyawara camps 

  (1)    (2)    (3)    (4)    (5)  

   Y     f     y    =    Y    −       Ȳ       y 2      fy 2   

  21    1     − 2.375    5.641    5.641  
  18    1     − 5.375    28.891    28.891  
  12    1     − 11.375    129.391    129.391  
  31    2    7.625    58.141    116.281  
  23    1     − .375    0.141    0.141  
  44    1    20.625    425.391    425.391  

  7    1     − 16.375    268.141    268.141  

       Σ     =    8    0         Σ     =    973.877  
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by  n     −    1, not  n  as is the case when calculating population parameters. Through 
experimentation, it has been determined that dividing by  n  in a sample tends to 
underestimate the true variance and standard deviation, but that dividing by  n     −    1 
provides a better estimate. Therefore, when calculating the population parameters 
of   σ   or   σ   2 , divide the sum of squares by  n , but when calculating  s  or  s  2 , divide the 
sum of squares by  n     −    1. 

 The procedure illustrated in Table  4.3  is a terrifi c but cumbersome means of 
calculating the variance and standard deviation. One of the most pleasant charac-
teristics of quantitative methods is that there are often simple ways to calculate 
otherwise complex calculations. Equation  (4.4)  offers an equivalent method of 
calculating the sum of squares that is less computationally intensive and time con-
suming than Table  4.3 . 

  Calculation formula for the sum of squares 

   y Y
Y

n
2 2

2

∑ ∑ ∑= −
( )     (4.4)   

 For the Alyawara example:

   y2
2

5345
187

8
5345

34969

8
5345 4371 1 973 9∑ = − ( ) = − = − =. .   

 This is the same result we calculated using Table  4.3 . 
 We have chosen to present all arithmetic operations above because of potential 

confusion in reading Equation  (4.4) . The left - hand term of the equation  –   Σ  Y   2   –  is 
an instruction to square each  Y  and then sum the resulting values, which in this 
case sum to 5345. The numerator of the right - hand term  –  ( Σ  Y ) 2   –  is an instruction 
to sum all  Y s, then square the resulting value, which equals 187 squared, or 34,969. 
The difference in notation is subtle, but extremely important. 

 The standard deviation we just calculated ( s     =    11.8 people) is an extremely useful 
measure of dispersion and will form the basis for describing the variation within 
the distribution and for comparing this variation to the variation in other distribu-
tions as will be discussed at length in other chapters. In addition, principles behind 
the calculation of the standard deviation provide extremely important conceptual 
tools for understanding many quantitative methods we will be learning through the 
remainder of this book.   

  Calculating Estimates of the Mean and Standard Deviation 

 Sometimes an archaeologist may want to quickly gain information about the loca-
tion and spread of a distribution (e.g., at a professional presentation where one 
wants to explore some relationship in data being presented or at the start of analysis 
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where one intuitively thinks there might be a difference/similarity worth exploring 
further). A thorough and wise researcher may also wish to quickly check the mean 
and standard deviation calculations for possible errors caused by inevitable blun-
ders created during the measurement or data entry process. Using the following 
procedures, we can calculate a quick estimate of both the mean and the standard 
deviation. 

 To estimate the mean, we can compute the  midrange . The midrange is similar 
to the range except that the largest and smallest values are averaged rather than 
subtracted. In the Alyawara example, the midrange is (44    +    7)/2    =    25.5 people. This 
value is fairly close to the computed mean of 23.4 people and may serve as a reason-
able estimate in a pinch. If the midrange is very different, you may want to recheck 
the mean ’ s computation. 

 While estimates of the mean are easy to come by, a good estimate of the standard 
deviation is a bit more diffi cult. However, the standard deviation can be estimated 
by dividing the range, calculated as described previously, with the appropriate value 
from Table  4.4 . Applying this method to the Alyawara data produces an estimate 
of (37/3)    =    12.3 people, which is not too far off from the computed value of  s     =    11.8 
people.    

  Coeffi cients of Variation 

 Oftentimes archaeologists calculate standard deviations to compare the spread of 
two or more distributions. In such cases distributions with larger variances and 
standard deviations relative to other distributions are thought to refl ect populations 
with greater variation. This assumption seems intuitively obvious but is in fact 
problematic because the variance and standard deviation are strongly infl uenced by 
the size of the objects being measured. For example, Clovis projectile points used 
to hunt mammoth during the Paleoindian occupation of the New World tend to 
be much longer than the proto - historic  “ bird points ”  used for warfare and small 
game hunting by the Pueblo Indians in the American Southwest. Standard devia-
tions are calculated using the sums of deviations of each variate from the group 

  Table 4.4    Denominators for deriving an estimate of the 
standard deviation 

   Sample size     Divide range by  

  5 – 29    3  
  30 – 99    4  

  100 – 499    5  
  500 – 999    6  
  1000 +     6.5  
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mean. The standard deviation for the proto - historic points consequently will always 
be smaller than the corresponding standard deviation for Clovis points because the 
proto - historic points are themselves smaller; each proto - historic point cannot differ 
at the same magnitude from its mean as can a Clovis point. As a result the standard 
deviation and variance are inappropriate for comparing the relative amount of 
variation within groups with signifi cantly different means, because they will tend 
to overestimate the amount of variation in large variables and underestimate the 
amount of variation in smaller variables relative to each other. 

 This problem is resolved by calculating the  coeffi cient of variation . The coeffi cient 
of variation ( CV ) is an expression of the standard deviation as a percentage of the 
mean from the parent distribution. It standardizes the standard deviation so that 
the size of the variable being measured is controlled. Instead of refl ecting the abso-
lute size of the variation from the mean,  CV s refl ect the  proportion  of variation from 
the mean. Thus, a Clovis point and a proto - historic projectile point that are two -
 thirds of their respective mean lengths will demonstrate the same proportional 
variation as refl ected by the  CV . The  CV  therefore allows the variation within dis-
tributions with signifi cantly different means to be compared. The coeffi cient of 
variation is computed using Equation  (4.5) . 

  The coeffi cient of variation 

   CV
s

Y
CV= × = ×100 100

for samples and for populations,
σ

μ
    (4.5)   

 For the Alyawara example:

   CV = × =11 8 100

23 4
50 5

.

.
. %   

 The coeffi cient of variation has meaning only in a comparative sense to other coef-
fi cients of variation. For example, we might be interested in comparing the variation 
in camp sizes of the Alyawara with another group with   Ȳ       =    30 people,  s     =    12 people, 
and  n     =    8 camps. For this second group:

   CV = × =12 100

30
40 0. %   

 50.5    >    40.0, indicating that the variation in the Alyawara residential size is greater 
than that of the second group. The signifi cance of this fi nding is of course contin-
gent on your theoretical perspective, methodological and research design, and 
research questions. 

 Statisticians have determined that the  CV  is a biased estimate of the population 
parameter in small samples, but that this bias can be easily corrected. The corrected 
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coeffi cient of variation (corrected  CV  or  CV  * ) is computed using Equation  (4.6) . 
Obviously, the impact of the correction is minimal for large sample sizes (e.g., for 
samples larger than 25, the corrected  CV  will be less than .01% different than the 
original  CV  value), but it can be signifi cant for extremely small samples ( CV  values 
for samples of fi ve will increase 5%). Of course in archaeological contexts, we will 
frequently wonder if the underlying distribution is accurately refl ected in such small 
samples. 

  Correction formula for the coeffi cient of variation 

   CV
n

CV* = +⎛
⎝

⎞
⎠1

1

4
    (4.6)   

 For the Alyawara example:

   CV * = +
( )

⎛
⎝⎜

⎞
⎠⎟

1
1

4 8
50 5.  

   CV * = 52 0. %   

 For the second group:

   CV * = +
( )

⎛
⎝⎜

⎞
⎠⎟

1
1

4 8
40  

   CV * = 41 25. %   

 Our conclusions regarding the variation in our Alyawara example are the same, 
since 52.0%    >    41.3%, yet we now likely have better estimates of the parametric 
values. 

 Coeffi cients of variation are commonly used for comparing variation in popula-
tions or samples with signifi cantly different means. For example, coeffi cients of 
variation are necessary to compare variation in the skeletal morphology of different 
primate groups that differ in their size. Another common application that is unique 
to archaeology is the use of  CV  *  to evaluate the organization of craft production. 
The  “ standardization hypothesis ”  holds that small coeffi cients of variation suggest 
greater standardization of products, which in turn is indicative of specialized pro-
duction, whereas larger coeffi cients of variation more likely refl ect generalized 
production at the household level (e.g., Arnold and Nieves,  1992 ; Crown,  1995 ; 
Longacre  et al. ,  1988 ; Mills,  1995 ; Sprehn,  2003 ). Crown notes that with respect to 
the manufacture of ceramics, known specialist groups rarely produce ceramics with 
coeffi cients of variation above 10%, causing her to suggest that coeffi cients of vari-
ation smaller than 10% likely refl ect specialized production. Based on this measure, 
she concludes that the large  CV  * s associated with morphological attributes of 
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Salado polychromes in the American southwest refl ect little, if any, standardization 
and subsequently little, if any, specialized production.  

  Box Plots 

 Now that we have an understanding of the median and the range we can return to 
the topic of visual representations of data discussed in the previous chapter and 
introduce an additional means of visually characterizing data  –  box plots. Box plots 
are extremely useful for characterizing multiple distributions at the same time, 
although they can be used to characterize a single distribution, because they provide 
information about the variation and central tendencies of data in a very condensed 
manner (e.g., Figure  4.2 ).   

 Box plots refl ect the median, the interquartile, and the range. They are created 
in three steps. First, calculate the distribution ’ s median and the quartiles. Second, 
plot the location of the median and the two quartiles. Draw a box using the quartiles 
as limits. This box refl ects the distribution of the middle 50% of the data  –  the 
 “ body ”  of the data. Third, draw a line from the lower quartile to the value of the 
smallest variate and from the upper quartile to the value of the largest variate. 

 The utility of box plots can be demonstrated in Figure  4.2 . This fi gure is the 
length of four sets of 12 fl akes made as part of an experiment studying the fl aking 
characteristics of lithic raw materials (Table  4.5 ). The box plots in Figure  4.2  
provide a quick means of describing both the structure of each distribution and the 
differences among them. By simply glancing at the boxes, we can identify 
differences in the central locations and dispersion of the distributions for each raw 
material type.    

     Figure 4.2     Box plots of fl ake length data presented in Table  4.5   
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  Table 4.5    Flake length (cm) by raw material 

   Basalt     Chert     Obsidian     Quartzite  

  7.0    2.9    2.2    5.5  
  7.0    4.8    2.4    5.5  
  7.7    5.3    3.1    7.0  
  8.2    5.8    4.3    7.4  

  10.3    5.8    5.0    7.7  
  10.3    6.2    5.5    7.9  
  10.3    6.5    5.8    8.6  
  10.8    7.7    6.0    8.9  
  11.0    7.7    6.2    9.4  
  13.0    7.9    7.2    9.6  
  13.9    8.9    7.4    10.6  
  14.6    9.6    7.7    10.8  

  Characterizing Nominal and Ordinal Scale Data 

 The measures of dispersion and central tendency discussed above are applicable to 
ratio and interval level data. As people learn how to use them, most are amazed at how 
much information these measures communicate about a distribution. However, the 
measures aren ’ t suitable for ordinal or nominal data. Consider the oddity of averaging 
a distribution of pots equally divided between  “ extremely large ”  and  “ miniature ”  
containers to determine that the  “ average ”  pot is  “ medium - sized. ”  Far from helping 
us understand the distribution of pot sizes, this would clutter our thinking at best. 

 Unfortunately, anthropologists routinely make this mistake. For example, 
ethnographic surveys frequently ask respondents to rank their reaction to some 
question or event on a scale of 1 to 5 or something similar, with 1 refl ecting strong 
approval/desire, 3 refl ecting neutral feelings, and 5 refl ecting disapproval/loathing. 
The data derived using the questionnaire are ordinal, in that the difference between 
a response of 4 (mild loathing) and 5 (extreme loathing) is not quantifi ably com-
parable in the same manner as is the difference between 20 ° C and 40 ° C. Further, 
how can the researcher guarantee that different people  “ mean ”  the same thing when 
marking a particular response (i.e., how does one objectively quantify  “ loathing ” )? 
Unfortunately, ethnologists and other anthropologists using these types of data 
frequently run headlong into the numerical descriptors previously presented, cal-
culating and comparing averages and standard deviations as if they were meaning-
ful. They shouldn ’ t do this. More specifi cally,  you  shouldn ’ t do this. Any analysis 
based on averaging ordinal or nominal data is inherently fl awed; we cannot add, 
subtract, multiply, or divide ordinal or nominal data, even when numbers are used 
as class labels (e.g., miniature vessels    =    1, small vessels    =    2, and so forth). 

 So are there ways to describe the distribution of nominal and ordinal data? Well, 
yes. We can, for example identify the most popular classes, which is sort of like, but 
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not the same as, talking about a distribution ’ s mode. When using ordinal data, we 
can also identify the largest and smallest classes in a distribution, which is sort of 
analogous to maximum and minimum values in ratio and interval scale data. 
However, these are merely  “ commonsense ”  descriptions when compared to the 
quantitative methods used for interval and ratio data. More useful measures are the 
index of dispersion and the index of qualitative variation. 

  Index of dispersion for nominal data and the index of 
qualitative variation 

 The index of dispersion (  D̂  , pronounced D - hat) provides a measure of dispersion 
within data classifi ed using asymmetrical classes whether they are nominal or 
ordinal scale data. It does so by measuring the likelihood that a pair of independ-
ently selected variates will come from different classes. Consider for example the 
distribution of ceramic types in Table  4.6 . What is the probability that a pair of 
randomly selecting vessels will refl ect different classes? Many will intuitively realize 
that it is 3 out of 4, or 75%. If it isn ’ t intuitive, think about it this way: the probability 
of selecting a vessel from any of these classes is 1 in 4. By extension, the probability 
that the fi rst vessel selected will come from the  same  class as the second vessel 
selected is 1 in 4, or 25%. Thus, the likelihood that the fi rst vessel will come from 
a  different  distribution than the second is 3 in 4, or 75%. Although intuitive in Table 
 4.6 , the probability of selecting members of different classes can be formally calcu-
lated using Equation  (4.7) , where  n i   is the count in each class, and  n  is the total 
assemblage size.   

  The index of dispersion for nominal data 

   D̂ n ni= − ( )∑1 2     (4.7)   

 For Table  4.6 ,   D̂   is calculated as follows:

   D̂ = − ( ) + ( ) + ( ) + ( )⎡⎣ ⎤⎦∑1 25 100 25 100 25 100 25 1002 2 2 2  

  Table 4.6    Frequency of ceramic vessels classifi ed using cul-
tural historical types 

   Ceramic type     Frequency  

  Carretas polychrome    25  
  Ramos polychrome    25  
  Villa Ahumada polychrome    25  
  Madera black - on - red    25  
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   ˆ . . . .D = − + + +( )∑1 0625 0625 0625 0625  

   ˆ . .D = − =1 25 75   

 If we convert .75 into a percentage by multiplying it by 100, we fi nd that the prob-
ability of selecting variates from different classes is 75%. (We will discuss the rela-
tionship between probabilities and percentages in detail in Chapter  5 .) Why would 
this bit of information be useful? 

 Compare   D̂   for Table  4.6  with   D̂   for Table  4.7 , which is calculated as: 

  ˆ .D = − ( ) + ( ) + ( ) + ( )⎡⎣ ⎤⎦ =∑1 25 28 1 28 1 28 1 28 202 2 2 2    

 The likelihood of selecting a pair from different classes in Table  4.7  is only 20%. 
Compared with the   D̂   value corresponding with Table  4.6 , this indicates that Table 
 4.7  is less diverse in that some classes are far more common than others (i.e., the 
assemblage is more homogeneous). Looking at Table  4.7  this is certainly the case; 
Carretas polychromes are far more common than the other pottery types. As illus-
trated by this example, the   D̂   value allows us to describe the amount of variation 
within a sample of nominal or ordinal data, and even compare the diversity refl ected 
in different samples. 

 There is a complicating factor when comparing   D̂   values, however. The amount 
of  potential  variation increases as the number of classes increases. Classifying an 
assemblage using six as opposed to three classes actually increases the amount of 
potential variation because the additional categories reduces the average number in 
each of the categories (e.g., 100 vessels divided into 10 categories averages fewer 
members in each category than 100 vessels divided into two categories). The prob-
ability of selecting a pair of variates from the same category will decrease as the 
frequencies within each category decrease. Thus,   D̂   values for assemblages classifi ed 
using many classes are expected to be lower than those using few classes for no 
other reason than differences in the number of classes. 

 The correspondence between the number of classes and   D̂   values is potentially 
signifi cant to archaeologists, who might very much like to compare the dispersion 
in nominal or ordinal data. Consider for example a study of mortuary goods in 
which an archaeologist wishes to determine if there are changes in the diversity of 
grave goods within burial populations through time using published data. If some 
of the data are reported using more categories than others (e.g., sometimes culture 
historical types are used to classify pottery as opposed to a less detailed division 
between plainware, bichromes, and polychromes), then some graves might appear 
to be more diverse (i.e., have higher   D̂   values) for no reason other than the classi-
fi cations used by the investigator. This would complicate the mortuary goods analy-
sis, and potentially cause the analyst to reach erroneous conclusions about grave 
good diversity. 
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 An effective means of solving this problem is calculating the index of qualitative 
variation ( IQV ), which standardizes   D̂   by the total number of categories. It is cal-
culated using Equation  (4.8) , where  I  is the total number of classes present within 
an assemblage.  IQV  values refl ect the variation within nominal or ordinal data 
as a percentage of the  maximum potential  variation that would be possible 
given the number of classes. It thus ranges from 1 (which is equivalent to 100% 
and indicates the maximum potential variation) to 0 (which is possible only when 
all of the variates are classifi ed into a single class, causing there to be no variation 
at all). 

  The index of qualitative variation 

   IQV I I D= −[ ]( )1 ˆ     (4.8)   

 For Table  4.6 ,  IQV  is calculated as  IQV     =    (4 / [4    −    1])    ×    .75    =    1. For Table  4.7 ,  IQV  
is calculated as  IQV     =    (4 / [4    −    1])    ×    .20    =    .27. The  IQV  values thus indicate that 
the data in Table  4.6  is as diverse as it possibly can be given the number of classes 
used in its classifi cation. The  IQV  value of Table  4.7  is .27, indicating that these data 
refl ect 27% of the possible variation given the number of classes.  IQV  values thus 
allow the variation in nominal and ordinal data to be directly compared, even if the 
classifi cation used is very different. Ultimately,   D̂   and  IQV  are potentially very useful 
to archaeologists, who frequently make pronouncements about  “ increased ”  or 
 “ decreased ”  variation in attributes of the archaeological record. Using these meas-
ures, the variation in fl aked stone raw materials, pottery morphology and designs, 
ground stone artifact morphology, faunal assemblages, macrobotanical assem-
blages, settlement types, grave goods, architectural forms, settlement locations, and 
any of the other hundreds of ordinal and nominal scale data that archaeologists 
collect can be quantifi ed. 

 Identifying differences in variation in qualitative data is in fact a great place to 
start exploratory data analysis. Consider a case in which an archaeologist compares 
the diversity in pottery assemblages from various sites in a region using  IQV , and 
fi nds that one appears to be substantially more diverse (i.e., has a large  IQV ) than 
the others. Perhaps this site is an important trading center and the high  IQV  refl ects 

  Table 4.7    A second series of ceramic vessels classifi ed using 
cultural historical types 

   Ceramic type     Count  

  Carretas polychrome    25  
  Ramos polychrome    1  
  Villa Ahumada polychrome    1  
  Madera black - on - red    1  
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trade wares from throughout the region. Perhaps some group of immigrants joined 
a previously existing community, resulting in greater ceramic diversity than is 
typical. Or, perhaps the site was a  “ pilgrimage ”  settlement where people from 
throughout the region met for feasting and other ritual activity. The archaeologist 
might not know which of these or hundreds of other possible scenarios might be 
present, but he or she can start to explore these hypotheses. Thus, being able to 
identify differences in the diversity of ordinal and nominal data will suggest inter-
esting and productive research avenues, in addition to allowing us to present 
straightforward descriptions of the variation in assemblages. 

 We now know how to characterize data visually and numerically. The next step 
is to learn about the role of probability in statistical reasoning. Knowledge of prob-
ability underlies hypothesis testing and the various extremely useful applications 
that fi ll the rest of this book. As a result, we now turn to this topic in the next 
chapter. 

   Practice Exercises 

    1     Defi ne  “ measures of central tendency ” . What are the common measures? 
What information do they provide when characterizing a distribution? 
Which measure is best?  

  2     Defi ne  “ measures of dispersion ” . What are the common measures? What 
information do they provide when characterizing a distribution? Which 
measure is best?  

  3     Following are data for the height of ceramic vessels recovered from a 
Bronze Age site in England: 14.10   cm, 13.86   cm, 14.86   cm, 14.52   cm, 
14.07   cm, 12.01   cm, 13.09   cm, 12.57   cm, 14.00   cm, 13.22   cm.  

  (a)     Determine the mean, median, and mode of the sample.  

  (b)     Determine the sample ’ s range.  

  (c)     Using both the calculation formula presented in Chapter  4  and the 
long method presented in Table  4.3 , determine the sum of squares, 
standard deviation, and variance of the sample.    

  4     If the data presented in Question 3 were considered a population instead 
of a sample, which of the measures of central tendency and dispersal 
would change? What are the new values?  
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  5     The maximum length (cm) of fl akes made using three different reduction 
methods are presented in the following table. 

   Generalized hard 
hammer reduction  

   Generalized soft 
hammer reduction  

   Bifacial 
reduction  

  7.15    4.10    0.91  
  4.89    3.86    2.15  
  4.52    4.86    0.89  
  7.06    4.52    1.44  
  6.94    4.07    1.27  
  5.32    2.01    1.76  
  4.85    3.09    1.48  
  5.86    2.57    1.99  
  6.01    4.00    2.30  
  5.73    3.22    0.98  

   (a)     Determine the mean, range, variance, and standard deviation for 
each sample.  

  (b)     Compare the standard deviations between groups and rank the 
samples in order of the size of their respective standard deviations. 
Do the same for the range.  

  (c)     Compute the coeffi cient of variation and the corrected coeffi cient of 
variation for each sample.  

  (d)     Rank the samples according to the size of their respective corrected 
coeffi cients of variation.  

  (e)     Which reduction method produced the most variation in maximum 
fl ake length? Which produced the least? How do the rankings based 
on the range, standard deviation, and the corrected  CV  compare to 
one another? Which measure is the best for evaluating the differ-
ences in variation in the samples? Write a brief (paragraph or two) 
analysis of any differences present between the rankings based on 
the three measures of dispersion.    
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  6     The length in millimeters of 120 fl akes excavated from a Neolithic site in 
Egypt are presented in the following table. 

  58.9    79.6    23.2    37.6  
  83.4    68.3    58.8    25.6  
  53.2    15.4    35.8    25.9  
  32.1    20.2    17.8    35.4  
  25.0    19.6    13.3    20.6  
  25.5    70.2    45.4    34.2  
  23.6    26.7    50.8    30.1  
  43.0    60.4    73.4    29.2  
  30.0    38.9    15.1    42.5  
  26.1    52.2    15.8    25.4  
  15.2    23.3    15.5    24.5  
  38.1    26.4    23.6    18.5  
  23.0    27.7    16.8    20.0  
  22.0    17.9    13.3    19.9  
  10.1    20.0    40.6    14.5  
  12.1    23.8    41.9    17.3  
  45.3    21.4    11.0    21.3  
  18.9    15.5    30.3    44.1  
  27.1    25.4    36.7    16.9  
  11.7    43.4    11.3    33.0  
  18.9    5.4    31.6    18.8  
  13.9    20.2    27.3    55.6  
  28.9    23.7    21.1    55.1  
  17.9    33.5    17.5    43.6  
  12.2    23.8    14.0    76.0  
  11.8    31.4    14.8    24.8  
  25.1    14.4    20.7    14.2  
  13.4    17.1    11.4    18.3  
  18.2    19.3    14.5    18.7  
  23.8    19.0    27.8    14.8  

   (a)     Determine the sample mean and standard deviation for these data.  

  (b)     Estimate   μ   and   σ   for the data using the midrange and range. How 
similar are the two estimates of   μ   and   σ  ?    

  7     Create a frequency table and histogram describing the distribution of the 
fl ake length data presented in Question 6. Next, calculate the median, the 
mode, the range, the maximum value, and the minimum value of the data. 
Is the median, the mean (determined in Question 6), or the mode the 
better measure of central tendency for this distribution in your opinion? 
Why?  
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  8     Create a box plot of the following data, which are samples of the thickness 
(mm) of differently shaped projectile points from La Ferras, an Upper 
Paleolithic site (Knecht,  1991 : 628 – 31):

   Spindle - shaped simple 
based points  

   Losange - shaped simple 
based points  

  8.1    8.9  
  7.7    9.3  
  7.9    11.4  
  5.4    10.0  
  8.1    11.2  
  6.7    10.7  
  4.8    10.3  
  5.0    10.1  
  5.7    11.4  

 How do the distributions compare to one another based on your graph? 
Compute the corrected coeffi cients of variation for the distributions. How 
do these compare?  

  9     Following are data derived from Crown and Fish ( 1996 :810) refl ecting the 
grave lot values for graves of males and females from the Hohokam culture 
of the American southwest. Using   D̂   and IQV, describe the variation in 
the grave lot values of females and males. Does there seem to be a differ-
ence in their homogeneity? If so, which sex appears to refl ect more grave 
lot diversity? 

   Period and body treatment     Females     Males  

  Pre - Classic    10    90  
  Classic cremations    160    95  
  Classic inhumations    250    520  
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  5 

An Introduction to Probability     

     Probability is a very powerful tool. It starts with the assumption that the world is 
consistent, that knowledge we have gained by observing some portion of the world 
can be used to understand the portion we have not directly observed. Probability 
is the means by which we make inferences about populations from samples. It also 
allows us to make predictions about individual variates based on a sample or a 
population. While probability is very important in making archaeological infer-
ences, its abstract nature is better fi rst illustrated through hypothetical examples 
using coins, dice, and cards. The observant reader will notice that we are reneging 
on our promise not to rely heavily on such  “ Vegas - style ”  discussions. We promise 
that this is merely a brief interlude. Archaeological illustrations of the application 
of probability will be presented once the fundamental principles have been 
outlined.  

  Theoretical Determinations of Probability 

 As you probably have fi gured out by now, quantitative analysis relies on standard-
ized symbolism. This symbolism looks arcane to the uninitiated, which is part of 
the reason why so many people are scared or at least uncomfortable with statistical 
analysis. People look at a statistical procedure/outcome and simply don ’ t under-
stand what it means. It might as well be a foreign language. As a result, they skim 
the statistical discussions, trusting that the analyst knows what he or she is doing, 
and go on to read the parts of the paper that are written in a language they under-
stand. There might be those who like others ’  confusion and use statistics to obscure 
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their reasoning while giving themselves an air of authority and competency, but 
obscuring one ’ s analysis is not the purpose of the symbols used in quantitative 
analysis. Quite to the contrary, the consistent use of symbolism is intended to 
remove any ambiguity about what is being done and how data are being connected 
to specifi c analytic results. Probability in particular is frequently confusing when 
trying to communicate it using standard written language. Any ambiguity in 
wording makes it impossible to accurately communicate probabilities between 
researchers. Unfortunately, colloquialisms, poor wording choices, and simple typos 
ensure at least occasional mistakes. As a result, statisticians and others such as 
archaeologists who deal with probability use a very rigid, formalized notation 
system for explicitly communicating probabilities. You must learn this notational 
system to effectively use probability. 

 Consider the simple fl ip of an unbiased coin. We know that we have two possible 
outcomes: a head or a tail. In quantitative contexts, the specifi c outcome of a coin 
fl ip is called an  event.  As heads and tails are our only possible outcomes, they con-
stitute a  fi nite probability space  (i.e., a limited number of possible outcomes). We 
can symbolize the probability of heads as  P ( H ), and the probability of tails as  P ( T ). 
The fi nite probability space is { H , T }; the result of a coin fl ip must be one or the 
other. Being part of a world of coin fl ippers, we all know that we have a one out of 
two chance of a coin fl ip resulting in the event  “ heads ”  or the event  “ tails. ”  So, the 
probability of heads is 1/2, or expressed as a proportion, .50. 

 Let us express these probabilities with the appropriate symbols:  P ( H )    =    1/2    =    .50 
and  P ( T )    =    1/2    =    .50. (Probabilities are always expressed as fractions or propor-
tions.) Notice that probabilities in the fi nite sample space can vary between 0 and 
1, and must sum to 1 (i.e.,  P ( H )    +     P ( T )    =    .5    +    .5    =    1). The probabilities of  H  and 
 T  were derived theoretically without a single fl ip of a coin, but we intuitively accept 
that they can be used to predict outcomes in the real world. Given our experience 
of fl ipping coins, we realize that this theoretical expectation regarding probabilities 
will be realized empirically within an expected range of error so that we will have 
roughly equal numbers of heads and tails after fl ipping the coin several times. The 
standardized notation makes it possible to communicate this expected empirical 
pattern clearly. 

 Now that we have the basic notation down, let ’ s consider an example where the 
fi nite probability space is more complex than { H , T }  –  the case of rolling two dice. 
Each face of each die is designated with one through six dots. There are a total of 
36 unique combinations between the two dice (if the fi rst die is 1, the second die 
can be 1 to 6; if the fi rst die is 2, the second die can be 1 through 6, and so on). 
There is only one way of rolling a sum of 2: 1 on both dice. The probability of 
rolling a sum of 2 is therefore 1/36 or .03, which is derived by dividing the number 
of ways that an event can occur (in this case 1) by the total number of possible 
outcomes (in this case 36). We can roll a 3 two ways. The fi rst die may be 1 and 
the second 2, or vice versa. And so on for 4, 5, etc. These probabilities are listed in 
Table  5.1  and can be graphed as we do so in Figure  5.1 . Note the perfect symmetry 
of the distribution of probabilities. Given these probabilities, we can determine the 
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  Table 5.1    Probability of rolling a given sum using a pair of 
dice 

   Y      P ( Y ) as a ratio      P ( Y ) as a probability  

  2    1/36    .03  
  3    2/36    .05  
  4    3/36    .08  
  5    4/36    .11  
  6    5/36    .14  
  7    6/36    .17  
  8    5/36    .14  
  9    4/36    .11  

  10    3/36    .08  
  11    2/36    .05  
  12    1/36    .03  

   Σ     36/36    1.00  

     Figure 5.1     The distribution of the probabilities of rolling a sum with a pair of dice  
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likelihood of any given outcome of a roll of dice, a point to which we will return 
presently.      

  Empirical Determinations of Probability 

 People like using theoretically derived probabilities, because they are often intui-
tively meaningful as in the cases above. Sometimes deriving probabilities theoreti-
cally isn ’ t possible, because of the lack of  a priori  knowledge of the pertinent factors. 
This is frequently the case in archaeological contexts. What is the probability that 
large sites are located on fl oodplains instead of highland locations? We can ’ t deter-
mine this theoretically the same way we can when determining the probability of 
getting a head when fl ipping a coin. We might even suspect that the probability 
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changes through time and across space. We can, however, determine probabilities 
empirically in these cases. When doing so, the probability for an event can be deter-
mined using Equation  (5.1) . 

  Calculation of an empirically derived probability 

   P event frequency of the event number of trials( ) =     (5.1)   

 Consider the following example. The University of New Mexico (UNM) has a 
severe parking problem. While a graduate student at UNM, the senior author 
noticed that it was quite easy to fi nd a parking place early in the morning, but that 
it became increasingly diffi cult as the day progressed until it was nearly impossible 
as noon approached. By mid - afternoon parking spaces became easier to fi nd and 
by late afternoon they were abundant until students and faculty began to arrive for 
evening classes and open spaces again became infrequent. 

 Assume that we had the patience, the free time, and the desire to conduct the 
following experiment. For each of the following hours of the day, one of the authors 
tried on 10 different days to fi nd a parking space. These results are presented in 
Table  5.2 . Column 1 depicts the time of day, Column 2 the number of successful 
attempts at obtaining a parking place, Column 3 the number of failures, Column 
4 the number of successes divided by the number of trials (which is the outcome 
of Equation  (5.1) ), Column 5 the number of failures divided by the number of 
trials, and Column 6 the sums of Column 4 and Column 5. Column 4 is the prob-
ability of successfully fi nding a parking place at a given time, whereas Column 5 is 
the probability of being unsuccessful (e.g., a .30 probability or 30% chance of suc-
cessfully fi nding a parking place between 11 and 12, as  P (parking space 11 to 
12)    =    3/10, and a 70% chance of having to park elsewhere). The distribution of the 

  Table 5.2    Probabilities of success or failure of fi nding a parking space at UNM during 
different times of the day 

  1    2    3    4    5    6  

   Time of day     S     F     S/n trials, where 
n trials     =     10  

   F/n trials, where 
n trials     =     10  

    ∑ S/n trials     +     F/n 
trials  

  7am – 8am    10    0    1.0    0.0    1  
  8am – 9am    8    2    0.8    0.2    1  
  9am – 10am    7    3    0.7    0.3    1  

  10am – 11am    2    8    0.2    0.8    1  
  11am – 12pm    3    7    0.3    0.7    1  
  12pm – 1pm    0    10    0.0    1.0    1  

  1pm – 2pm    1    9    0.1    0.9    1  
  2pm – 3pm    2    8    0.2    0.8    1  
  3pm – 4pm    4    6    0.4    0.6    1  
  4pm – 5pm    7    3    0.7    0.3    1  
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     Figure 5.2     Distribution of the probability of fi nding a parking spot in UNM ’ s overcrowded 
parking lot  
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probability of a success is depicted in Figure  5.2 . With empirical cases, larger 
numbers of trials increase the accuracy of the prediction. One hundred trials would 
certainly yield a more reliable predictor than 10 trials.     

 Empirically derived probabilities are very useful, but the assumption of continu-
ity (the idea that the world will behave consistently) is sometimes problematic when 
dealing with them. In the preceding case, the probability of rolling a sum of 2 on 
two dice will hold so long as the dice are unbiased. Assuming that the dice aren ’ t 
 “ fi xed ” , we can calculate the probability of rolling any sum from 2 through 12, and 
these probabilities are expected to hold in the past, right now, and in the future, a 
fact upon which the gambling houses in Las Vegas rely. (They wouldn ’ t be able to 
stay in business if the probability of rolling a 7 while playing craps changed every 
day.) We do not need to roll the dice 100 times and then compute the actual prob-
ability of rolling the sum of 2. Instead, we need only ensure that someone has not 
tampered with the dice. 

 In contrast, the use of empirically derived probabilities requires that we create 
an argument justifying the application of that probability to future and (as is rel-
evant in most archaeological cases) past events. For example, we expect that the 
probability of fi nding a parking spot between 11 and 12 during the spring semester 
is 0.30, but will this probability hold during spring break? Probably not, given that 
many of UNM ’ s students escape Albuquerque and travel to somewhere that has 
water for the week. Many of UNM ’ s staff members also take vacations during spring 
break. As a result, we expect that the probability of fi nding a parking spot between 
11 and 12 is higher during spring break than is typical of the rest of the semester. 
Likewise, the probability of large settlements being built on fl oodplains may have 
changed as ecological and social conditions shifted in the past. 

 Our empirically derived probability is consequently based on underlying factors 
that affect the variable of interest. Ideally we could determine what these factors are 
and adjust our probabilities to take them into account. We could for example 
further refi ne our probability estimates of successfully fi nding parking spots by 
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establishing probabilities for different days of the week, the time of year, the pres-
ence of special events on campus such as high school band competitions, and 
student enrollment, among other variables. The manifestation of each of these vari-
ables could then be factored into our probabilities. 

 In general, theoretical determinations are preferred, as they are not subject 
to sampling vagaries and historical (empirical) contingencies, but empirical 
determinations are common and useful in archaeological contexts. When using 
probabilities determined empirically, you should be very clear on the sample size 
and conditions under which the observations were taken. In general, large numbers 
of observations increase our accuracy of estimating the probability of an event (we 
will return to this issue in future chapters), and our research design must justify 
the use of the probability in the context in which it is used.  

  Complex Events 

 The examples presented above determined probabilities for simple events. At times, 
we seek probabilities for more than one event. Such situations are called complex 
events. To illustrate the difference between complex and simple events, let us con-
sider a deck of playing cards. 

 We know that each deck contains 52 unique cards (discard the jokers) divided 
into four suits: hearts, spades, clubs, and diamonds. Each suit contains 13 cards: 
ace, king, queen, jack, 10, 9, 8, 7, 6, 5, 4, 3, and 2. We know that the probability of 
obtaining any unique card is 1/52. For example,  P (ace of spades)    =    1/52,  P (three of 
diamonds)    =    1/52, and so on. These events are simple events. We also know that 
the probability of drawing a card of a specifi c suit is 13/52, as there are 13 cards in 
each suit. So,  P (heart)    =    13/52,  P (spade)    =    13/52, and so forth. These too are simple 
events. 

 For a particular game, we might be interested in the probability of drawing a 
heart or a diamond. This constitutes a complex event. The probability of such a 
complex event is  P (heart)    +     P (diamond), or 13/52    +    13/52    =    26/52    =    .50. This 
complex event is appropriately symbolized by  P (heart    ∪    diamond)    =    .50, which is 
verbalized as  “ the probability of heart union diamond is equal to .50. ”  This union 
is simply the sum of independent probabilities. Note that the categories  “ hearts ”  
and  “ diamonds ”  are mutually exclusive. A card cannot be both a heart and a 
diamond. This is illustrated with the Venn diagram in Figure  5.3 .   

 What if our probability spaces overlap? We can also create a Venn diagram of 
the possibilities of the intersection of events. Figure  5.4  illustrates one such intersec-
tion, that of obtaining a heart or an ace. The states of being a heart and being an 
ace are not independent in that the ace of hearts is both. As a result we cannot 
simply add the probability of hearts ( P (heart)    =    13/52) with the probability of aces 
( P (aces)    =    4/52) because doing so would count the ace of hearts twice (once as an 
ace and once as a heart). We must therefore eliminate the probability of the co -
 occurrence of events. This set of non - mutually exclusive events is symbolized as: 
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 P (heart    ∪    ace)    =     P (heart)    +     P (ace)    −     P (heart    ∩    ace)    =    (13/52)    +    (4/52)    −    (1/52)    
=    16/52. Here we have controlled for the intersection of the two events (heart and 
ace) represented by the ace of hearts as symbolized by the notation  P (heart    ∩    ace), 
which is read as  “ the probability of heart intersection ace ” . Without controlling for 
this intersection, our calculated probability would be in error.   

 Venn diagrams are incredibly useful, and the calculation of  P (heart    ∪    ace) 
becomes self - evident from looking at the Venn diagram, yet many archaeologists 
don ’ t wish to be bothered drawing  “ silly circles ”  on a scrap of paper. We empathize 
with both students and professional archaeologists who like cutting  “ unnecessary ”  
steps out of their work, but we strongly recommend that everyone draws Venn 
diagrams whenever they are dealing with complex events. Venn diagrams are a 
quick and effective means of clarifying the relationships between various probabili-
ties and preventing confusion and error that can cost time and prestige as one is 
forced to correct  “ silly mistakes ” .  

  Using Probability to Determine Likelihood 

 You probably intuitively already realize it, but we can use the probabilities we have 
discussed to determine the likelihood that a particular event will occur. For example, 

     Figure 5.3     Venn diagram of probabilities of hearts and diamonds  

P (H) = 13/52 = .25 P (D) = 13/52 = .25

     Figure 5.4     Intersection of probabilities of obtaining a heart or an ace  

P (H) = 13/52 P (ace) = 4/52

P (ace of hearts) = 1/52
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as we mentioned at the end of the section on theoretically derived probabilities, we 
can determine the likelihood of an event by understanding the probability of its 
occurrence. When rolling two dice,  P (7)    =    .17, so we expect to roll a seven 17 times 
out of 100 rolls (see Table  5.1 ). Likewise when choosing a random card from a 
complete deck  P (heart)    =    .25, so we expect to draw a heart 25 times out of 100 tries. 
In both cases, the specifi c events would be likely, in the sense that they would be 
common relative to the other possible outcomes. 

 Some events (like winning the lottery) might be unlikely. Consider for example 
the probability of fi nding a parking spot between 1pm and 2pm at UNM. The 
probability of doing so in our contrived example is only .1, which corresponds with 
10 times out of 100 tries. While fi nding a parking spot between 1pm and 2pm isn ’ t 
as unlikely as winning the lottery, we are always pleasantly surprised when we are 
able to do so. If someone fi nds a spot between 1 and 2, then that person is lucky, 
but what about someone who is able to fi nd a spot on two consecutive days? We 
know intuitively that this is even less likely than just simply saying that we ought 
to be able to fi nd a spot twice out of 20 tries, which doesn ’ t imply anything about 
the order of the events. Finding a spot on three consecutive days is even more 
unlikely, as is fi nding a spot four times in a row, and so on. 

 We can even mathematically determine the likelihood of such consecutive  “ suc-
cesses ”  by multiplying the probabilities associated with each event. Consider that 
we know that on Day 1, the probability of fi nding a spot is .10, or 1 out of 10 tries. 
After  “ being lucky ”  enough to fi nd a spot, the probability of fi nding a spot on the 
second day remains .10. These probabilities are independent of each other, such 
that the probability of a success in one trial (a parking attempt) doesn ’ t infl uence 
the probability of success during another trial. Because the probability of parking 
success is independent for each day, we anticipate that only once out of every 10 
times we successfully park will we fi nd a parking spot the next day. The other nine 
times we won ’ t. Thus, only once out of every 100 tries are we expected to fi nd spots 
on two consecutive days. Using this same logic, only once out of 1000 days is it 
likely to fi nd a spot on three consecutive days, only once out of 10,000 days to fi nd 
a spot on four consecutive days, and once out of 100,000 days to fi nd a parking 
spot fi ve days in a row. This relationship can be mathematically expressed as illus-
trated in Equation  (5.2) . 

  Calculation of the probability of repeated events 

   P n nevents frequency of an event number of trials( ) = ( )     (5.2)   

 For the example above,  P (successfully fi nding a parking spot between 1 and 2 on 
three consecutive days)    =     p (successfully fi nding a parking spot between 1 and 
2) 3     =    (1/10) 3     =    .001 or once out of 1,000 trials. 

 We have already discussed how we can add and subtract probabilities in the 
section on complex events, so the idea of using other mathematical processes to 
manipulate probabilities probably isn ’ t that surprising to you. A handy trick to 
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remember is that we add and subtract probabilities when determining the likeli-
hood of an outcome of a single event (e.g.,  P (heart or a spade)    =    .25    +    .25    =    .50) 
and we multiply probabilities when dealing with the outcome of multiple events 
(e.g.,  P (drawing a heart twice in a row)    =    .25    ×    .25    =    .063). 

 Being able to determine the likelihood of a series of events is a very handy skill 
to have when dealing with the world, because it allows us to differentiate between 
co - occurring events that are likely and those that aren ’ t. For example, at some point 
we will become incredulous about someone who is able to consistently fi nd a 
parking spot between 1pm and 2pm, so much so that we will conclude that they 
have the competition for a parking spot rigged in their favor. Perhaps the overly 
successful  “ parker ”  has a reserved parking spot as many administrators do. Perhaps 
he or she has a friend who consistently leaves between 1 and 2 and is willing to wait 
until the successful individual can claim the friend ’ s newly vacant spot. Regardless 
of the mechanism, at some point we come to the conclusion that the individual ’ s 
parking success is so unlikely that his or her probability of succeeding is not the 
same as everyone else ’ s. Archaeologists use this exact same reasoning when talking 
about  “ burials with a disproportionate number of artifacts, ”   “ excessively large set-
tlements, ”   “ faunal assemblages with an overabundance of jackrabbits, ”  or any of 
the other myriad differences we note in the archaeological record. What we are 
really saying is that the preponderance (or lack) of some attribute is so improbable, 
it seems likely that there is some factor underlying this difference that is not appli-
cable to other members of the same class as refl ected elsewhere. 

 But at what probability should we reach such a conclusion? Returning to the 
parking spot example, no outcome of fi nding a spot is impossible. Even fi nding a 
spot 10 times in a row can happen, it just isn ’ t likely. (Using Equation  (5.2) , we can 
determine that the probability is (.1) 10     =    0.0000000001 or 1 in 10,000,000,000 tries.) 
Despite the fact that it is possible to be this lucky, we might reasonably conclude 
that it is more than just blind luck going on, and as a result begin looking for alter-
native explanations. As will be discussed in more detail in the next chapter, archae-
ologists and others often use a probability of .05 as a means of demarcating between 
likely and unlikely events; events that are likely to occur fewer than 5 times out of 
100 tries are considered unlikely enough to prompt us to conclude that they refl ect 
meaningful differences that aren ’ t the product of blind luck. Using likelihood in 
this way forms the core of hypothesis testing, and will be the focus of most of this 
book, but before we explore this further, let ’ s consider the binomial distribution 
and its utility for archaeological research.  

  The Binomial Distribution 

 The binomial distribution is a means of formalizing the previously discussed struc-
ture of probability. It is a means of determining the likelihood of the outcome of 
multiple events in which there are two and only two possible outcomes (hence the 
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name  “ binomial ” ). One of these possible outcomes is designated a  “ success ”  (sym-
bolized as  p ) and the other a  “ failure ”  (symbolized as  q ). Don ’ t read into these labels; 
they are arbitrary, and don ’ t refl ect anything about a desired or preferred outcome; 
unpleasant things like suffering from anemia or dying a violent death might be 
considered successes for the purposes of a binomial analysis. 

 The binomial distribution builds on the principles outlined previously. Our 
introduction to it represents one of the most mathematically intensive discussions 
in this text, so please bear with us. Remember, we are only asking you throughout 
this text to add, subtract, multiply, and divide. If you can do that, then you can 
understand and perform all of the steps we discuss here. 

 Given that there are only two possible outcomes when using the binomial dis-
tribution, we know  P ( p     +     q )    =    1 and that  P ( q )    =    1    −     p . If we defi ne a success 
as drawing a heart from a complete deck of cards, then  P ( p )    =    .25 and 
 P ( q )    =    1    −    .25    =    .75. In one event (i.e., one card draw), the probability of a success 
is  P ( p )    =    .25 and of a failure is  P ( q )    =    .75. But what is the probability of having two 
successes (drawing a heart) in two tries? We can answer this question by multiplying 
the probabilities to determine the likelihood of all possible outcomes: two successes; 
one success and one failure; and two failures. 

 There is only one way to get two successes  –  draw two hearts. Likewise there is 
only one way to get two failures  –  draw two cards of other suits. But there are two 
ways to get one success and one failure  –  draw a heart and then another suit, or 
draw another suit and then a heart. The probability of getting two successes (hearts) 
in consecutive trials is  P ( p     ×     p )    =    .25    ×    .25    =    .0625. The probability of getting 
two failures (non - hearts) is  P ( q     ×     q )    =    .75    ×    .75    =    .5625. Given that there are 
two ways to get a success and a failure, the probability of  P ( p     ×     q  and 
 q     ×     p )    =    2( pq )    =    2(.25    ×    .75) =  .375. (Because [ p     ×     q ] and [ q     ×     p ] are mathemati-
cally equivalent, we can replace them with 2 pq .) Note that  P ( p     ×     p )    +     P ( p     ×     q  and 
 q     ×     p )    +     P ( q     ×     q )    =    .0625    +    .375    +    .5625    =    1.0. These probabilities refl ect all pos-
sible outcomes of drawing two cards. This series of probabilities could be general-
ized for all binomials with two trials as follows:  P ([ p     +     q ]    ×    [ p     +     q ])    =     P ( p     +     q ) 2     =     
p  2     +    2 pq     +     q  2 . The probabilities of each possible outcome (two successes, one success 
and one failure, and two failures) will change as the probability of a success changes, 
but the formula of  p  2     +    2 pq     +     q  2  will always remain the same. 

 Similar binomial formulas are presented for any number of trials to determine 
the probability of any possible outcome, so long as each trial has the same probabil-
ity of a success or failure. For a single event, the probability of all possible outcomes 
can be determined as  P ( p     +     q ). For two events, the probability of all possible out-
comes can be determined as  P ( p     +     q ) 2 . For three events,  P ( p     +     q ) 3 . For four events, 
 P ( p     +     q ) 4 . And so forth, with the power changing according to the number of events. 
This is identical to the structure of Equation  (5.2) , except that we are considering 
the probabilities of all possible events, not just one possible outcome. Thus, the 
binomial distribution is derived from Equation  (5.3)  in which  p  is the probability 
of success,  q  is the probability of failure, and  n  is the number of trials. 
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  The binomial formula 

   P p q n+( )     (5.3)   

 Those who haven ’ t blocked out algebra can solve the formula for any given number 
of trials. Then, we can simply insert the probabilities for  p  and  q  to determine the 
likelihood of a given outcome of events. For example, what is the likelihood of being 
able to fi nd a parking spot between 1 and 2 once out of three days? The binomial 
equation for this is  P ( p     +     q ) 3     =     p  3     +    3 p  2  q     +    3 pq  2     +     q  3 . Reading from the left to the 
right, these values refl ect that there is only one way to get three successes ( p  3 ), there 
are three ways to get two successes and a failure (3 p  2  q ), there are three ways to get 
one success and two failures (3 pq  2 ), and there is only one way to get three failures 
( q  3 ) out of three tries. Since we are interested in  P (one success and two failures), 
3 pq  2     =    3(.10    ×    .90 2 )    =    .243. Using the binomial equation, we can determine the 
probabilities of each possible outcome, and even the likelihood of a range of out-
comes. For example,  P (fi nding a parking spot one or more times)    =     p  3  +  3 p  2  q     +    
3 pq  2     =    .1 3     +    3(.1 2     ×    .9)    +    3(.1    ×    .9 2 )    =    .001    +    .027    +    .243    =    .271. 

 It is important to note that the binomial distribution does not make any assump-
tions about the order of events.  P (two successes and one failure) doesn ’ t specify 
whether the failure is on the fi rst, second, or third trial. It thus is not the same 
as specifying the probability of fi nding parking spots on two consecutive days 
and then failing to fi nd a parking spot, which species an order of events.  P (two 
consecutive successes followed by a failure)    =     p     ×     p     ×     q     =    .1    ×    .1    ×    .9    =    .009.  P (two 
successes and one failure)    =    3 p  2  q     =    .027, which is considerably larger than .009. 
Why the difference? There is only one way to have two successes followed by a 
failure ( p  then  p  then  q ), but there are three ways to have two successes and a failure 
( p  then  p  then  q  AND  p  then  q  then  p  AND  q  then  p  then  p ). As a result, the 
probability of two successes  and  a failure is three times larger than the probability 
of two successes  then  a failure. 

 Unfortunately researchers (and humans in general) frequently get the distinction 
between such ordered and unordered events confused, and in our experience this 
confusion underlies most errors when dealing with probability. A real - world 
example of the foolishness of people, which we call the psychic ’ s trick, can help 
illustrate this point more forcefully. 

  The  p sychic ’ s  t rick 

 One of the most effective parlor tricks for both professional and amateur psychics/
magicians is  “ sensing ”  that two people in a room full of people share the same 
birthday. This trick plays to our perception that the likelihood of someone sharing 
a birthday with someone else is very unlikely, which is true. The probability associ-
ated with one person having the same birthday as another is only 1/365 (excluding 
leap years for simplicity ’ s sake). If someone had the ability to identify people who 
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shared the same birthday without any foreknowledge, then that person truly would 
be psychic. However, that is not the psychic ’ s claim, which is instead that two (or 
more) people in the room share the same birthdays. In a room with two people, 
the probability of two people sharing a birthday is indeed 1/365, but that is not the 
case when a third person enters the room. Assuming the fi rst two don ’ t share a 
birthday, the third person could share a birthday with the fi rst person or the second 
person, which corresponds with  P (sharing a birthday) =  1/365    +    1/365    =    2/365. 
Assuming none of the previous people share birthdays,  P (sharing a birthday) for a 
fourth person would be 3/365, for a fi fth person    =    4/365, and so forth. Although 
we intuitively realize that the odds corresponding with two or more people sharing 
a birthday are considerably larger in a crowded room than they were initially, the 
probability of a match when the twentieth person enters the room still seems 
unlikely ( P (sharing a birthday)    =    19/365). 

 If a psychic could consistently beat odds of 19/365, then he or she truly does 
have a sixth sense. However, the binomial distribution demonstrates that the prob-
ability is not 19/365 as one intuitively thinks, and that the reasoning that led to the 
determination of this probability is wrong despite its intuitive appeal. Instead, in a 
room of 20 people, the fi rst person could share a birthday with the second, third, 
fourth,  …  twentieth person; the second person could share a birthday with the 
third, fourth,  …  twentieth person; the third person could share a birthday with the 
fourth, fi fth,  …  twentieth person; and so on. The probability of at least two people 
sharing a birthday is thus much larger than simply 19/365, despite the fact this is 
counterintuitive to many. Think about it this way; observing that  P (the twentieth 
person entering a room sharing a birthday with someone else)    =    19/365 is true, but 
ignores the probability that two or more of the people already in the room share a 
birthday. The psychic is counting on you not to realize this. 

 Approaching the birthday trick with a room of 21 people from the perspective 
of the binomial, we realize that the probability that any given person shares the 
same birthday with someone else is 20/365. With this knowledge, we can solve for 
one or more successes where  p     =    345/365,  q     =    20/365, and  n     =    20 trials. Here, we 
have chosen to call the absence of a birthday match a success to: (i) emphasize the 
point that  “ success ”  and  “ failure ”  are arbitrary; and (ii) to make the computation 
of the binomial a bit easier for reasons that will be discussed presently. The binomial 
formula ( p     +     q ) 20  will provide the equation that can be used to determine the prob-
ability of each outcome. This is a heck of an algebra problem, and would take some 
time to compute by hand. Given that we have selected the absence of the same 
birthday to be a success, we can fortunately forgo most of the computation for the 
formula; there is only one way for all 21 people to not share a birthday  –  20 
successes. All other possible outcomes include at least two people sharing a 
birthday (i.e., at least one failure). The probability of 20 successes is consequently 
 p  20     =    (345/365) 20     =    .32. Given that the sum of all possible outcomes must be 1, we 
know that  P (at least one failure)    =    1    −    .32. Put another way, the probability that 
there is at least one failure (a match) is 68%. This is pretty good betting odds, and 
is certainly far more likely than 20/365    =    5%. 
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 Increasing the number of people in the room increases the likelihood of a match 
by increasing the  “ number of trials ”  for the binomial while decreasing the likelihood 
that no one shares a birthday. Increasing the number in the room to 31 decreases 
the probability of a success (again, defi ned as no one sharing a birthday) to 335/365, 
while increasing  n  (the number of trials) to 30.  P ( p  30 ) in now only 8%, which means 
that there is a 92% chance that at least two people in the room share a birthday. 
Those are exceptional betting odds. With 41 people in the room,  p  is reduced to 
325/365, and  P ( p  40 ) is only 1%. In a room full of 41 people, it is a near certainty 
that at least two people share a birthday, not 40/365    =    11% as it intuitively seems 
to be. Magicians, fraudulent psychics, and, on occasion, even journalists, econo-
mists, lawyers, and politicians hope that you don ’ t realize that probability works 
this way. The only way to guard against such sophistry (and errors in your own 
thinking) is to be sure that you recognize probabilities refl ecting multiple trials and 
treat them as such, as opposed to treating them as simple events.  

  Simplifying the  b inomial 

 We didn ’ t have to expand the binomial expression ( p     +     q ) 40  because of the way we 
established the analysis of the psychic ’ s trick; there is only one way to get 40 suc-
cesses so the only portion of the expression that interested us was  p  40 . Sometimes 
we won ’ t be able to rig our consideration of binomials to be so easy. Imagine that 
we wanted to determine the probability of three or fewer people sharing a birthday. 
We would have to expand ( p     +     q ) 40  to determine this probability. While ( p     +     q ) 2  is 
easy to expand (if you haven ’ t blocked out a painful college algebra class), comput-
ing ( p     +     q ) 5  is onerous enough that we suspect most archaeologists would mildly 
balk at the idea. Computing ( p     +     q ) 40  would probably be regarded by most as 
madness, or at least a sign of too much time and too little motivation to do some-
thing important. Is there an easier way to determine a binomial equation? 

 The short answer is yes. The long answer requires us to introduce two useful 
techniques. The binomial is composed of three components: the powers to which 
 p  and  q  are raised and the coeffi cient against which they are multiplied. The powers 
for  p  and  q  are easy to determine, and simply refer to the specifi ed number of 
successes and failures. For example, if we are determining the probability of fi ve 
successes and three failures out of eight trials, then  p  will be raised to the power of 
fi ve and  q  will be raised to the power of three. This process can be generalized as 
illustrated in Equation  (5.4) , where  k     =    number of trials and  Y     =    the number of 
successes. 

  Calculation formula for the binomial power terms 

   p qY k Y−     (5.4)   

 Determining the coeffi cient that goes in front of the  p  and  q  terms is the more dif-
fi cult step when computing the binomial. As should be obvious at this point, the 
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coeffi cient refl ects the number of ways we can obtain a given number of successes 
and failures. We know that there is only one way to get all successes or all failures 
given that this requires every event to have the same outcome, so the coeffi cient for 
the fi rst and last terms in the binomial will always be one. However, how many 
ways are there to get two successes and two failures out of four events? We could 
go through and fi gure out all of the possibilities ( ppqq ,  pqpq ,  pqqp ,  qqpp ,  qpqp ,  qppq ) 
to determine that there are six ways, but frankly this will be impractical when 
dealing with fi ve successes and 35 failures. We would be better off just doing the 
algebra associated with ( p     +     q ) 40 . 

 An easier method is to use a table created by Blaise Pascal that is called Pascal ’ s 
triangle, which provides the coeffi cients for the binomial distribution. Pascal ’ s tri-
angle, illustrated in Figure  5.5 , starts with row  “ 0 ”  and can be enlarged to whatever 
size we might want. It works as follows: 

   •      Trace down the left - hand column until the row number equals  k , that is, the 
number of trials.  

   •      The contents of the row starting at the left and moving to the right represent 
the integers that are placed as coeffi cients starting with all successes, then  k     −    1 
successes and 1 failure, then  k     −    2 successes and 2 failures, and so forth until we 
have no successes and all failures.      

 That ’ s it. To illustrate this, consider the computation of the binomial equation 
related to the results of four trials:  P ( p     +     q ) 4 . Here we trace down to row 4 and fi nd 
that Pascal ’ s triangle gives us the values of 1, 4, 6, 4, and 1. These will be the coef-
fi cients, so what are the  p  and  q  terms? By convention, we start with  Y     =    number 
of trials, so, using Equation  (5.4) , our fi rst term is 1( p  4  q  4 − 4 ). 4    −    4    =    0, of course, so 
the  q  term becomes 1 (any non - zero number taken to the power of 0 equals 1). The 
binomial is consequently 1( p  4     ×    1), which can be shortened simply to  p  4 . 
The second term, which corresponds with three successes ( Y     =    3), will be 4( p  3  q  1 ). 

     Figure 5.5     Pascal ’ s triangle  

Number  
of trials

Binomial coefficients

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
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The third term will use the coeffi cient of 6 and  Y     =    2, and will be 6( p  2  q  2 ). Note that 
this is the same coeffi cient we determined when counting the number of possible 
combinations to get two successes and two failures previously. The term for one 
success is 4( pq  3 ) and for no successes is 1( p  0  q  4 ), or, more simply,  q  4 . Using Pascal ’ s 
triangle, we have determined that  P ( p     +     q ) 4     =     p  4     +    4( p  3  q  1 )    +     6( p  2  q  2 )    +    4( pq  3 )    +     q  4 . 
Using the exact same steps, we can quickly determine that  P ( p     +     q ) 7     =     p  7  +  7( p  6  q )    
+    21( p  5  q  2 )    +    35( p  4  q  3 )    +    35( p  3  q  4 )    +    21( p  2  q  5 )    +    7( pq  6 )    +     q  7  without having to bother 
with all of that  “ boring algebra stuff  ” . 

 The version of Pascal ’ s triangle presented here is limited to seven rows, but it 
can be expanded to an infi nite number of rows if need be. This is accomplished 
easily by added the cells immediately above each new cell to derive its integer. 
Remember that the fi rst and last cells in each row are always 1. 

 Even though expanding Pascal ’ s triangle is easier than performing the algebra, 
there is an even easier way to determine a coeffi cient when only a small portion of 
the entire binomial distribution is needed. Returning to our example of wishing to 
determine the probability of three or fewer people sharing a birthday in a room 
with 41 people, we could expand Pascal ’ s triangle to  k     =    40. This is easier than 
expanding the binomial by hand, but that is a lot of work, when all we need is three 
coeffi cients (those associated with 0, 1, and 2 shared birthdays), not all 40 of them. 
An easier way is to use Equation  (5.5)  to determine them. 

  Calculation formula for the binomial coeffi cient 

   C k Y
k

Y k Y
,

!

! !
( ) =

−( )     (5.5)   

 Here,  k  is the number of trials,  Y  is the number of successes (which must be equal 
to or fewer than the number of trials), and  C ( k , Y ) is the binomial coeffi cient cor-
responding with  k  and  Y . You will notice the exclamation marks in the formula. 
Their presence doesn ’ t refl ect some sort of jubilance on our part about this formula, 
but instead represents the factorial mathematic process. When calculating the facto-
rial of a number, take that number and multiply it by all integers between itself and 
1 (e.g., 4!    =    4    ×    3    ×    2    ×    1). 

 To continue our example, we wish to determine  C (40,40),  C (40,39), and  C (40,38). 
We already know that  C (40,40) is 1, because there is only one way to get 

all successes. Equation  (5.5)  confi rms this as   C 40 40
40

40 40 40
,

!

! !
( ) =

−( )
. 0! equals 1  

by defi nition, so  C (40,40) is   
40

40
1

!

!
= .   C 40 39

40

39 40 39
,

!

! !
( ) =

−( ) . Given that 

40!    =    40    ×    39!, the 39! in the denominator will cancel out the 39! in the 

numerator, necessitating that the coeffi cient for   C 40 39
40 39

39
40,

!

!
( ) = × = . Using 

the same process   C 40 38
40

38 40 38

40 39 38

38 2

40 39

2
780,

!

! !

!

!
( ) =

−( )
= × ×

×
= × = . We now 
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know that there are 780 ways to get 38 successes and two failures in a sample of 40 
trials and 40 ways to get 39 successes and one failure. Using these coeffi cients with 
Equation  (5.4) , we determine that the relevant binomial terms are  P (38 or more 
sucesses)    =    (325   /   365) 40     +    40(325   /   365) 39 (40   /   365)    +    780(325   /   365) 38 (40   /   365) 2     
=    .17. Calculating this probability took far less effort than either expanding ( p     +     q ) 40  
or Pascal ’ s triangle would. The inclusion of Equation  (5.5)  also allows us to present 
a unifi ed formula for each binomial term in Equation  (5.6) , where  C ( k , Y ) is the 
product of Equation  (5.5) ,  Y  is the number of successes, and  k  is the number of 
trials. 

  Unifi ed formula for specifi c binomial terms 

   C k Y p qY k Y,( ) −     (5.6)     

  Probability in Archaeological Contexts 

 Now that you are familiar with the basic structure of probability and its manipula-
tion, we can abandon our dice, card, and parking examples and return to 
more relevant (and interesting) aspects of using probability to study the archaeo-
logical record. As good a tool as the human mind is, it tends to make mistakes 
when dealing with probability. An archaeologist must be on guard against these 
lapses. The importance of probability to archaeological research is not often men-
tioned, but it forms a central tenant to most research. Given that archaeologists 
generally deal with samples, whether these are at the level of sites in a region, arti-
facts from a site, or collections of artifacts from a single structure or feature, we are 
constantly faced with the necessity to determine if some perceived or documented 
pattern is similar to, or different than, patterns observed from other samples or 
some theoretically expected outcome. The only means of systematically doing 
this (as opposed to expressing an intuitive, subjective opinion on it) is through 
probability. 

 The binomial is a tremendously useful tool for archaeological analysis, so long 
as we can limit our outcomes to two states. Given that archaeologists often don ’ t 
organize their data into two outcomes (a success and a failure), using the binomial 
might require a bit of creativity on the analyst ’ s part. An easy way to do this might 
be to reclassify variables using a new nominal or ordinal scale taxonomy. For 
example, a faunal collection of many different species might be reduced to deer/not 
deer for use with binomial analysis, a multiplicity of subsistence resources could be 
reduced to high ranked/low ranked resources, and stone artifacts could be classifi ed 
as formal tools/lithic debitage. The usefulness of such classes is contingent on the 
theoretical and analytic structure the researcher is using, but the binomial distribu-
tion can be an extremely easy and effective means of determining if some apparent 
association is likely given random chance or unlikely (and therefore likely refl ecting 
some archaeologically signifi cant relationship). 
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82 An Introduction to Probability

 Consider the following example. In an analysis of decorative icons on Medio 
period Casas Grandes effi gies from northwestern Mexico, Christine VanPool noted 
that bird icons were far more common on women then on men; seven women 
effi gies had bird icons whereas only two male effi gies had bird icons, despite the 
fact that male effi gies were more common (VanPool and VanPool,  2006 ). This 
proportion seems intuitively unlikely if in fact males and females are equally liable 
to be associated with bird images. In fact, the preponderance of bird images on 
females could indicate that women were more closely associated with these images 
than men, which in turn could provide insight into Medio period gender distinc-
tions and other social factors. Yet all of this is based on an  “ intuitive ”  feeling, and, 
as the psychic ’ s trick demonstrates, using our intuition can lead to mistakes when 
dealing with probabilities. Is the ratio of 7 to 2 really improbable, assuming that 
effi gies of males and females are equally likely to be associated with bird icons? The 
binomial distribution will help us answer this question. 

 Here we use a theoretically derived probability of  P (bird icon on woman 
effi gy)    =    .5 and  P (bird icon on male effi gy)    =    .5. Our question is,  “ what is the prob-
ability that birds would be associated with two or fewer males out of a sample of 
nine effi gies with bird icons? ”  For simplicity ’ s sake, we defi ne a success as the asso-
ciation of a bird with a female effi gy. Thus, we seek to determine  P (7 or more 
females) using the binomial ( p     +     q ) 9 . Using Equation  (5.6) , we know that:

   
P p p q p q

p p

7
9

8 9 8

9

7 9 7
9

9 8 7 2

9 8

or more females( ) = +
−( )

+
−( )

= +

!

! !

!

! !
qq p q+ = + + =36 002 018 070 0907 2 . . . .

  

 There is a 9% likelihood that in a sample of nine effi gies with bird icons, seven or 
more of them would be on females, assuming that males and females were equally 
likely to have bird images. While .09 is unlikely, this may not be as improbable as 
some intuitively would suspect, and it may not be suffi ciently improbable to warrant 
an argument about some socially important association between women and birds 
(although some might make the argument anyway). Importantly, though, archae-
ologists have a yardstick by which to measure the probability associated with this 
pattern, as opposed to being forced to argue about the issue from a strictly intuitive, 
commonsensical framework. The same technique could be used to determine 
whether some portion of a graveyard has more members of one sex than would be 
expected by chance, whether some portion of the site has more storage pits than 
expected by chance, or any of a multitude of comparisons that archaeologists might 
fi nd useful. You are limited only by your imagination and ingenuity. Understanding 
probability truly opens up a new world for framing and making comparisons using 
all of the wonderful data archaeologists have generated for over a century. 

 However, as illustrated by the various examples above, understanding probabil-
ity does not allow us to determine the certainty of some association. Improbable 
events happen in the real world every day. Even something that has only a one in 
a million chance of happening is nearly certain to have happened after a million 
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trials. Understanding probability does not mean that we can interpret the implica-
tions of that probability with certainty. Does the 9% probability associated with the 
bird icons on Medio period effi gies determined above refl ect a meaningful associa-
tion of birds and women? We cannot know from the probability itself. Instead, 
this probability must be understood within appropriate theoretical and empirical 
frameworks. Perhaps other lines of evidence support this association, thereby 
helping the argument for an association. Perhaps instead other evidence under-
mines the apparent association, thereby strengthening the position that it is simply 
a product of random chance. Or perhaps the researcher decides to collect more data 
to help determine if some vagary of the sample is either creating or obscuring the 
apparent association. There is no way of determining with certainty which associa-
tions  are  archaeologically meaningful, and which simply refl ect random chance in 
some way. 

 What would be useful to archaeologists (and all other scientists for that matter) 
is some means of clearly assigning signifi cance to various probabilities while explic-
itly identifying the likelihood of making erroneous conclusions. Then we could both 
specify the likelihood that a relationship is meaningful while also specifying the 
likelihood that it isn ’ t. Fortunately there are means of doing so. This process is called 
hypothesis testing, and is the core of the discussion contained in Chapter  7  and 
throughout much of the remainder of this book. But before we discuss hypothesis 
testing, we wish to further explore how we can determine probabilities focusing on 
a specifi c distribution, the normal distribution. 

   Practice Exercises 

    1     Assume you have a normal deck of playing cards:  

  (a)     What is the probability of selecting a heart or a diamond? Draw a 
Venn diagram refl ecting this probability.  

  (b)     What is the probability of selecting a diamond or a queen? Draw a 
Venn diagram refl ecting this probability.  

  (c)     What is the probability of selecting a diamond, a heart, or a queen? 
Draw a Venn diagram refl ecting this probability.  

  (d)     What is the probability of selecting a heart, a diamond, a queen, or 
a jack? Draw a Venn diagram refl ecting this probability.  

  (e)     What is the probability of drawing two hearts in a row, assuming 
that the card from the fi rst draw is reshuffl ed into the deck before 
the second draw (i.e., that the probability of a success doesn ’ t 
change)?  
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  (f)     What is the probability of drawing at least one heart OR jack OR 
diamond in two draws, assuming that the card from the fi rst draw 
is reshuffl ed into the deck before the second draw?    

  2     The following data refl ect the manufacturers of glass bottles recovered 
during an excavation of a historic homestead. 

   (a)     Determine the probability of bottles from each manufacturer at the 
site.  

  (b)     In a random sample of 20 bottles, how many bottles from each 
manufacturer would one expect to recover?  

  (c)     Determine the probability of recovering a bottle from the Nehi 
Bottling Company or the Royal Crown Cola Company. Draw a Venn 
diagram illustrating these probabilities. 

   Bottle company     Number of bottles  

  Nehi Bottling Company    36  
  Royal Crown Cola    49  
  Ritters Bottling    12  
  Phoenic Bottling    32  
  Seven - up Bottling Company    7  

  3     A researcher who excavated a homestead near the historic homestead 
mentioned in Question 2 wishes to determine if there are signifi cant dif-
ferences in the frequencies of bottles from the various manufacturers to 
help identify possible differences in status and consumption patterns. 
Using the probabilities from Question 2, answer the following 
questions. 

   (a)     Would the probability of recovering only one bottle from the Nehi 
Bottling Company in a sample of seven bottles from the nearby 
homestead be less than .05?  

  (b)     What would the probability of recovering three or fewer bottles from 
the Nehi Bottling Company be in the sample of seven bottles?    

  4     Five skulls excavated from a large Pleistocene cave in mainland China had 
the following cranial capacities: 1120   cc, 1140   cc, 1050   cc, 1230   cc, and 
1020   cc. Given this sample, what is the probability of a skull smaller than 
1200   cc? In a sample of three skulls, what is the probability of each possible 
outcome defi ning a success as a skull smaller than 1200   cc (e.g., three suc-
cesses, no failures; two successes, one failure, etc.)?  
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  5     In a historic cemetery, grave stones are made of a locally available lime-
stone and an imported marble, which was known from historic records 
to be more expensive. Across the cemetery, a researcher determines that 
the probability of limestone grave stones is .83 compared to a probability 
of marble gravestones of .17. During the years 1880 and 1890, there seems 
to be an increase in the frequency of marble gravestone ( n     =    5) compared 
to limestone gravestones ( n     =    3), which might refl ect increased wealth 
and/or investment in mortuary ritual within the community during that 
time period. 

   (a)     Determine the statistical likelihood of the apparent increase in the 
frequency of marble gravestones given the general frequencies of 
marble and limestone gravestones. (Do this by determining the like-
lihood of three or fewer limestone gravestones in a sample of eight 
gravestones.)  

  (b)     Based on the resulting probability, does it seem intuitively likely to 
you that the choice in gravestone material is consistent with the 
general pattern refl ected throughout the entire cemetery, or that 
marble gravestones were in fact more commonly used from 1880 
and 1890 than typical during other periods refl ected at the cemetery? 
Justify your conclusion to the best of your ability.              
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  6 

Putting Statistics to Work: 
The Normal Distribution     

     Statistical comparisons are based on probabilities. These probabilities can be used 
to evaluate the likelihood of specifi c propositions (hypothesis testing) or discover-
ing unknown associations that are suggestive of some signifi cant relationship 
(EDA). Prior to the binomial, we discussed various measures of dispersion and 
central tendency that characterize continuous distributions of data measured at an 
interval or ratio level of measurement (see Chapter  4 ). These measures are not 
useful with binomial distributions, but they are central to using probability to evalu-
ate relationships refl ected in many archaeological data. Knowledge of the mean and 
standard deviation might let us identify  “ unusual ”  (i.e., improbable) members of a 
distribution, and thereby identify meaningful differences in artifacts, sites, features, 
bones, or whatever we happen to be evaluating at the moment; help us determine 
similarities and/or cultural continuity where we might not expect it; or simply 
evaluate similarities or differences when we wish to know more about the structure 
of our data. 

 For example, consider the means and other summary statistics of the length of 
unbroken adze rejects from different production locations on the island of Hawaii 
(Table  6.1 ). The production and distribution of adzes has been argued to refl ect 
chiefl y control and specialized production (Bayman and Nakamura,  2001 ). Are 
there signifi cant differences in the adze reject lengths among the production locales? 
Would an interested researcher likely be able to differentiate adzes made at each 
location based on length? Do the adze rejects refl ect a level of standardization 
indicative of specialized production and economic centralization as some authors 
have suggested? With which production locale would an adze 73   mm long be associ-
ated? How about an adze that is 140   mm long? Does the use of only two adze rejects 
from P ō hakuloa impact our ability to characterize the underlying distribution? 

Quantitative Analysis in Archaeology, Todd L. VanPool and Robert D. Leonard 
© 2011 Todd L. VanPool and Robert D. Leonard
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These are all questions that are, at their heart, issues of probability; measuring 
probability will help us determine whether the adzes have similar or different 
lengths, whether adzes from each source can be differentiated according to their 
lengths, and whether the distributions refl ect little or great variation. Probability 
will also help us determine when we can make a conclusion with great certainty 
(i.e., when the probability that our conclusion is correct is high) and when we can ’ t 
(i.e., when the probability is comparatively low).   

 Given that the probabilities associated with any given distribution of archaeo-
logical material differ as refl ected by differences in their means and standard devia-
tions (and other descriptive statistics such as those refl ected in Table  6.1 ), the 
probabilities associated with each distribution must presumably be unique. A pro-
jectile point 5   cm long might be quite likely in an assemblage of atlatl dart points 
with a mean length of 4.7   cm but improbable in an assemblage of arrow points with 
a mean of 2.1   cm. Given that we may have an infi nite number of means as well as 
an infi nite number of standard deviations, ranges, etc. that describe potential dis-
tributions, it seems that measuring probabilities using continuous distributions is 
a daunting task that requires one to determine the characteristics of each individual 
distribution and assign probabilities based on these. With the exception of being 
 “ daunting ” , this is indeed the case. 

 There are two ways probabilities can be determined for continuous distributions. 
First, we can use (re)sampling from a larger distribution to empirically determine 
probabilities. This is called  “ Monte Carlo simulations ” , and is somewhat common 
in archaeology. A second, more traditional (and easier) approach is to cluster the 
unique distributions into different  “ types ”  based on their similarities in important 
characteristics. These groups of similar distributions can be further characterized 
by an ideal (i.e., theoretical) distribution that typifi es the distributions ’  important 
characteristics. Statistics for measuring probabilities can then be developed based 
upon our knowledge of the ideal distribution and applied to the real distributions 
by extension. 

 Archaeologists are of course familiar with the concept of types, and, if it helps, 
we can conceive of these groups of distributions as analogous to artifact types, with 
each type possessing its own defi ning characteristics shared by its members. These 
similarities allow the use of the same techniques to measure probabilities for each 
group of distributions, just as the methods described in Chapter  5  can be used for 

  Table 6.1    Lengths (mm) of unbroken adze rejects from three production locales on Hawaii 

   Locale     Number     Mean     Minimum     Maximum     Range  

  P ō hakuloa    2    82.5    63    102    39  
  Polol ū     19    123.7    90    170    80  
  Mauna Kea    63    176.2    74    349    275  

  Source :   Bayman, James M. and Jadelyn J. Moniz Nakamura  (2001) . Craft specialization and adze 
production on Hawaii Island.  Journal of Field Archaeology ,  28 : 247. 
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all binomial distributions. Perhaps the most important ideal distribution is the 
 “ normal ”  distribution (Figure  6.1 ).   Given its importance in many scientifi c contexts 
and its general familiarity to most social scientists, we will use it to introduce 
the general principles associated with measuring probability using continuous 
distributions.   

 Most people are familiar with the normal distribution, often described as a  “ bell -
 shaped curve. ”  You may have even encountered it as a scale for grading. The bell -
 shaped curve is nothing but a special case of the normal distribution; the words 
 “ bell - shaped ”  describe the general shape of the distribution (it looks sort of like a 
bell), and the word  “ curve ”  is used as a synonym for distribution. While we gener-
ally refer to  the  normal distribution, there are really an infi nite number of normal 
distributions; there are as many different normal distributions as there are possible 
means and standard deviations, both theoretically and in the real world. However, 
all of these normal distributions share fi ve characteristics: 

  1     Symmetry.     If divided into left and right halves, each half is a mirror image of 
the other.  

  2     The maximum height of the distribution is at the mean.     A consequence of this 
and the previous characteristic is that the mean, the mode and the median are 
the same value.  

  3     The area under a normal distribution sums to 1.     This proposition can be said in 
a more obtuse, but more precise, way by saying that the area under the curve 
must sum to unity. This requirement probably doesn ’ t make intuitive sense, but 
it isn ’ t really hard to understand. Consider that the distribution itself refl ects a 
fi nite probability space that corresponds with the frequencies of particular vari-
ates. The mean is the most common variate and as a result is the highest point 
of the distribution. This in turn means that it is the value with the highest prob-
ability of occurring. In contrast, outliers far from the mean are less common 
than variates close to the mean, and, as a result, their frequencies are closer to 
zero as refl ected by the closeness of the distribution ’ s line to the  X  - axis. A con-
sequence of this relationship between the shape of the distribution and the 
likelihood of individual variates is that the distribution can be used to determine 
the probability associated with a variate or range of variates. Given that the 
distribution contains all possible outcomes, then the likelihood of each possible 

     Figure 6.1       The normal distribution  

X-axis (an unspecified variable such as artifact length)

Y
-a

x
is

 (
fr

e
q
u
e
n
c
y
)

c06.indd   88c06.indd   88 8/26/2010   1:54:35 PM8/26/2010   1:54:35 PM



 The Normal Distribution 89

variate can be calculated and the sum of all possible outcomes must be 100% 
(which of course corresponds with a probability of 1). Further, because the 
distribution is symmetrical, half of the possible outcomes and their associated 
probabilities are on either side of the mean.  

  4     Normal distributions are theoretically asymptotic at both ends, or tails, of the dis-
tribution.     Asymptotic is a fancy way of saying that the tails of the distribution 
never actually touch the  X  - axis, but instead become incrementally ever closer 
to zero without ever quite reaching it. This aspect of the normal distribution 
follows from Characteristic 3 above and is necessary because the distribution 
 must  include all possible outcomes; we need to consider every possible variate 
to infi nity. Put another way, every single possible variate can be assigned  some  
probability of occurring, even if it is infi nitesimally small. In practicality, there 
may be limits to the size ranges we observe. For example, a historic beer bottle 
won ’ t have a volume as small as 1 cc, and we don ’ t expect to fi nd the skeletal 
remains of a 9 - foot tall Iron - age woman. However, we can use the normal 
distribution to assign a probability to any possible outcome, even an outcome 
that is a practical impossibility. In other words, we can quantify exactly  how 
unlikely  such fi nds might be.  

  5     The distribution of means of multiple samples from a normal distribution will be 
normally distributed.     Considering this commonality among normal distribu-
tions requires thinking about means somewhat differently. As you know, means 
characterize groups of variates. In this special context we need to consider cal-
culating individual means on repeated samples from the same population, and 
 plotting these means as variates  that collectively create a new distribution. This 
new distribution will be normally distributed.    

 All normal distributions share these fi ve commonalities by defi nition, but they 
can otherwise be quite different from one another. As Figures  3.17 ,  3.18  and  3.19  
illustrate, normal distributions may appear leptokurtic, platykurtic, or mesokurtic 
relative to each other. Additionally, any combination of means and standard devia-
tions is possible, and there is no necessary relationship between the mean and the 
standard deviation for any given distribution. Normal distributions may have dif-
ferent means and the same standard deviation (Figure  6.2 ) or the same means and 
different standard deviations (Figure  6.3 ).   

 If   σ   is large, variates are generally far from the mean. If   σ   is small, most variates 
are comparatively close to the mean. Despite such differences, the underlying shared 
characteristics of normal distributions cause them to share additional attributes 
refl ected in probabilities. Regardless of the standard deviation, variates near the 
mean in a normal distribution are more common (and therefore more probable) 
than variates in the distribution ’ s tails. In fact, regardless of the value of   σ   or   μ  : 

    μ      ±    1  σ   contains 68.26% of all variates  
    μ      ±    2  σ   contains 95.44% of all variates  
    μ      ±    3  σ   contains 99.73% of all variates    
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 This is illustrated in Figure  6.4 , and is true (and is only true) for all normal distri-
butions. It is also possible to express this relationship in terms of more commonly 
used percentages. For example: 

  50% of all variates fall within   μ      ±    .674  σ    
  95% of all variates fall within   μ      ±    1.96  σ    
  99% of all variates fall within   μ      ±    2.58  σ        

 If   μ      ±    1  σ   contains 68.26% of all variates,   μ      ±    2  σ   contains 95.44% of all variates, 
and   μ      ±    3  σ   contains 99.74% of all variates (Figure  6.4 ), we know that values beyond 

     Figure 6.2     Two normal distributions with different means and the same standard 
deviation  
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     Figure 6.3     Two normal distributions with the same mean and different standard 
deviations  
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     Figure 6.4     Percentages of variates within one, two, and three standard deviations from   μ    
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  μ      ±    2  σ   are rare events, expected fewer than fi ve times in 100, and   μ      ±    3  σ   is even 
more rare, expected fewer than one time out of 100. 

 The consistency of normal distributions allows us to consider the probability of 
individual variates occurring within some portion of the distribution. We know 
that the percentages mentioned above may be converted to probabilities such that 
the probability that a variate is within   μ      ±    1  σ   is .6826, within   μ      ±    2  σ   is .9544, and 
within   μ      ±    3  σ   is .9974 (Figure  6.5 ). These probabilities are unchanging for all 
normal distributions regardless of their means or standard deviations. Furthermore, 
probabilities may be calculated for any area under the curve, not just around the 
mean. Assuming a normal distribution, we could calculate the probability of an 
artifact being longer than 10   cm, a feature being between 1 and 3   cm deep, or a 
building being twice as long as one that is of average length. These  “ areas under the 
curve ”  vary depending on the location and the shape of the distribution as described 
by the mean and the standard deviation, but by understanding the characteristics 
of normal distributions, we can calculate the various probabilities that interest us 
 using the same principles .   

 Calculating probabilities using the normal distribution really isn ’ t that much 
different, then, than the binomial distribution we previously discussed, in that the 
underlying similarities among all possible binomial distributions make it possible 
to use the same principles to effectively determine probabilities for each individual 
binomial distribution. Still, given that each normal distribution differs according 
to its mean and standard deviation, how can we determine the probabilities associ-
ated with all of them? The probability that a variate is larger than 10   cm will be 
drastically different for different distributions. It would be easier for us if we were 
dealing with distributions that all had the same means and standard deviations. 
Then we could calculate only one set of probabilities that could be applied to all 
normal distributions. This would seem impossible given that normal distributions 
do in fact differ from one another, but statisticians have created a clever way to 
create a  standardized normal distribution , which makes all normal distributions 
identical. This is done using Equation  (6.1)  to standardize the distribution using 
the relative sizes of the mean and the standard deviation. The result is a normal 
distribution where   μ      =    0 and   σ      =    1 regardless of the original values of   μ   and   σ  . 

     Figure 6.5     Areas under the normal distribution corresponding with the standard 
deviation  
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 Calculation formula for a  Z  - score refl ecting a standardized normal distribution

   
Z

Yi= − μ
σ    

 (6.1)   

 The calculation of a Z - score, the outcome of Equation  (6.1) , establishes the dif-
ference between any variate and the mean ( Y i      −      μ  ), and expresses that difference in 
standard deviation units (by dividing by   σ  ). In other words, the product of the 
equation, called a Z - score, is how many standard deviations  Y i   is from   μ  . This in 
turn creates a new distribution in which the value of each variate is expressed in 
the number of standard deviation units it is from the mean (e.g., a variate that is 
one standard deviation larger than the mean will have a value of 1, a variate that is 
two standard deviation units less than the mean will have a value of  − 2). A conse-
quence of this is that a single set of probabilities can be easily applied to every 
normal distribution using the exact same regularities that allow Figure  6.4  to refl ect 
that 68.26% of the variates lie within 1  σ   of   μ  . Appendix  A  lists probabilities for the 
standard normal distribution as areas under the curve from the mean to a given 
Z - score. The probabilities can be used to determine the exact probabilities under 
the curve between any points we might chose. To illustrate this let us consider the 
following example. 

 Donald K. Grayson, in his analysis of the microfauna from Hidden Cave, Nevada, 
notes that only one species of pocket gopher,  Thomomys bottae , occurs in the area 
today, although it is possible that other species were present in the past. Grayson 
( 1984 :144) presents the following descriptive statistics on mandibular alveolar 
lengths for a population of modern  Thomomys bottae:  μ      =    5.7   mm and   σ      =    .48   mm. 
Archaeological specimen number HC - 215 has a value  Y  1     =    6.4   mm. What is the 
probability of obtaining a value between the mean,   μ      =    5.7   mm, and  Y  1     =    6.4   mm 
(Figure  6.6 )? We can calculate the Z - score as follows:

     Figure 6.6     The relationship between the mean and  Y i      =    6.4   mm  

μ = 5.5 mm Y
i
 = 6.4 mm
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Z

Yi= − = −μ
σ

6 40 5 70

48

. .

.  

   Z = 1 46.     

 The Z - score tells us that  Y i      =    6.4   mm is 1.46 standard deviations from the mean 
  μ      =    5.7   mm. Is this a common or rare event? We know in general it is common, as 
the value lies between one and two standard deviations from the mean. Appendix 
 A , though, allows us to determine the exact probability. To fi nd the probability for 
1.46 standard deviation units, look down the left side of the table until the value 
1.4 is located. Follow this row until it intersects with the column value for .06. At 
that intersection is the value .4279, which represents the probability of a variate 
falling between the mean and  Z     =    1.46. A value in that interval is therefore a 
common event; we expect it to occur about 43% of the time. There is no reason to 
stop with this probability, though. 

 We can also fi nd the probability of having a value greater than and less than 
 Y  1     =    6.4   mm ( Z     =    1.46). Since we know that the total probability represented in the 
curve is equal to 1.0, and that .50 lies on each side of the mean, we can determine 
that the probability of a value less than  Z     =    1.46 is .5    +    .4279    =    .9279. The probabil-
ity of a value greater than  Z     =    1.46 is 1    −    .9279    =    .0721. We can then conclude that 
roughly 93% of the variates should be less than  Y  1     =    6.4   mm, but that larger values 
are relatively rare events in that we would expect them only seven times out of 
100 trials. 

 The above example illustrates fi nding probabilities based on areas under the 
normal curve. It should be noted that we cannot determine exact values that 
represent individual variates (e.g., the probability of having the exact value of 
 Y  1     =    6.4   mm), because this is a point, instead of an area. Unlike the binomial dis-
tribution that provided the probability of specifi c outcomes, the standard normal 
distribution can only be used to fi nd the probability associated with some range of 
possible outcomes (e.g., the probability of a value between the mean and a variate). 
As a result, the way to determine the probability associated with a specifi c value is 
to fi nd the area under the curve that corresponds with the value ’ s implied limits. 
Thus, if we wish to fi nd the probability corresponding with  Y  1     =    6.4   mm, we should 
look for the area under the curve corresponding to Z - scores for 6.35 and 6.45   cm, 
which are the implied limits for  Y i      =    6.4   cm in this case. 

 Note that Appendix  A  only presents values for areas where  Y  1  is greater than the 
mean. What happens if  Y  1  is less than the mean? Let us illustrate this using Grayson ’ s 
gopher data again. What is the probability of an alveolar length between 5.3   mm 
and 6.8   mm (Figure  6.7 )? We can illustrate this probability in the following way:

   P Yi5 3 6 8. .< <{ }  

   
P

Y
Z

Y1 2− < < −{ }μ
σ

μ
σ  
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P Z

5 3 5 7

48

6 8 5 7

48

. .

.

. .

.

− < < −{ }
 

   P Z− < <{ }. .83 2 29     

 Since the normal curve is symmetrical, it is possible to ignore the negative sign 
for  − .83 to use Appendix  A  to fi nd the area between this value and the mean. The 
tabled value for  Z     =    .83 is .2967. The tabled value for  Z     =    2.29 is .4890. Since we 
are interested in the area under the curve between  − .83 and 2.29, we can sum the 
two individual probabilities to determine that the

   P Z− < <{ } = + =. . . . . .83 2 29 2967 4890 7857   

 In this case, we added the areas under the curve. However, we might need to 
subtract areas under the curve to fi nd some probabilities. For example, calculating 
 P (.83    <     Z     <    2.29) requires us to subtract the probability associated with the distance 
from   μ   to  Z     =    .83   mm from the distance between   μ   and  Z     =    2.29   mm. We previously 
talked about adding and subtracting probabilities in Chapter  5 , so mathematically 
manipulating them should be straightforward. However, we can easily make mis-
takes by confusing when we should add or subtract specifi c probabilities. While it 
may seem tedious, it is important that you explicitly write and draw a sketch of 
your probability space. It is a useful and easy way to keep track of the probability 
space you are after while ensuring you do not make a simple mistake. 

 It has probably already occurred to you that being able to measure probability 
using quantitative methods such as the binomial distribution or the standard 
normal distribution can be incredibly useful. For example, we may now conclude 
that specimen HC - 215, a gopher mandible from Hidden Cave, does not differ in a 
signifi cant manner from the sample of modern  Thomomys bottae . If it did, it may 
have led us to suggest that another species of  Thomomys  was present at Hidden 

     Figure 6.7     The area under the standardized normal distribution between  Y  1     =    5.3   mm and 
 Y  2     =    6.8   mm  

5.3 mm 6.4 mmμ

F
re

q
u
e
n
c
y

c06.indd   94c06.indd   94 8/26/2010   1:54:36 PM8/26/2010   1:54:36 PM



 The Normal Distribution 95

Cave in the past  –  a conclusion of signifi cant paleoenvironmental and archaeologi-
cal signifi cance. Here, our conclusion is largely commonsensical based on our 
determination that roughly 7% of the  Thomomys bottae  mandibles should be larger 
than HC - 215, meaning that the mandible is not unusually large for a gopher of this 
species. These sorts of commonsense conclusions can be useful, but they open up 
a lot of room for subjective interpretations, especially given that our  “ common-
sense ”  varies so greatly from person to person and through time. The process of 
using probabilities to evaluate propositions about the world, which are typically 
called hypotheses, can be formalized through statistical hypothesis testing, which is 
the topic of the next chapter.                    

 Practice Exercises 

    1     What are the fi ve characteristics shared by normal distributions? Defi ne 
the following terms: distribution, symmetrical, sum to unity, and 
asymptotic.  

  2     How does  a  normal distribution compare to  the standardized  normal 
distribution? How can a normal distribution be transformed into a stand-
ardized normal distribution?  

  3     Given a population of metates with an average grinding surface width of 
21.2   cm (  μ      =    21.2   cm) and a standard deviation of 4.7   cm (  σ      =    4.7   cm), 
answer the following questions:  

  (a)     What is the probability that a metate has a grinding surface of less 
than or equal to 10.4   cm in width? Draw a diagram of a normal 
distribution illustrating this area.  

  (b)     What is the probability that a metate has a grinding surface of greater 
than or equal to 20   cm in width? Draw a diagram of a normal dis-
tribution illustrating this area.  

  (c)     What is the probability that a metate ’ s grinding surface is between 
15.4 and 25.3   cm wide? Draw a diagram of a normal distribution 
illustrating this area.    

  4     A project director has determined over the years that the average crew 
member of an archaeological excavation team can excavate a 10   cm level 
in a 1 meter square test unit in about 1.5 hours, with a standard deviation 
of 15 minutes. What is the probability that a randomly selected crew 
member will take longer than 1 hour to excavate a 10   cm level? What is 

c06.indd   95c06.indd   95 8/26/2010   1:54:36 PM8/26/2010   1:54:36 PM



96 The Normal Distribution

the probability that the crew member will take less than 2 hours? Draw 
diagrams of a normal distribution illustrating both areas.  

  5     A normally distributed population of masonry stone lengths has   μ      =    50   cm 
and   σ      =    12   cm. There are 250 variates between 45   cm and 69   cm. How 
large is the population?  

  6     McKenzie ( 1970 : 357) has demonstrated that fl uted projectile points from 
the state of Ohio average 27.01   mm in width, with a standard deviation of 
4.28   mm. 

   (a)     What is the probability that a randomly selected point will have a 
width less than 23   mm?  

  (b)     If there are a total of 772 fl uted points from Ohio, about how many 
would you expect to be wider than 28   mm?      
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  7 

Hypothesis Testing  I : An Introduction     

     Hypothesis testing is the heart of science. In its broadest sense, it is the procedure 
used to evaluate our competing ideas about how our world is structured. Statistical 
hypothesis testing is merely one formulation of the more general procedure opera-
tive in science. In archaeology, the ideas subject to evaluation are our ideas about 
how (and why) the archaeological record is structured as it is. 

 It is common for archaeologists, as well as scientists in general, to be interested 
in statistical procedures for hypothesis testing that involve comparisons of one 
kind or another. For example, we are frequently interested in comparing a 
variate to a population mean, a sample mean to a population mean, or two sample 
means to each other. Often the relationships we wish to evaluate are conceptually 
diffi cult and/or linguistically cumbersome to express in common language, yet it 
is crucial to state what we wish to evaluate unambiguously so that others can 
understand our research and so that we do not become confused and make prevent-
able mistakes. As mentioned in Chapter  5 , scientists and statisticians have conse-
quently developed a uniform method of statistical notation to help simplify the 
process. A major portion of this notational language focuses on stating hypotheses 
so that they can be properly understood within and between disciplines. The pro-
cedure is ritualized to ensure consistency and relies on very specifi c notation and 
conceptual structures, which you must master to use or understand quantitative 
methods in your own research or the work of others. Interestingly the cornerstone 
of hypothesis testing is not a statistical issue at all, but is instead the analytically 
central  “ hypothesis of interest ”  that frames our analysis. We will consequently begin 
by discussing it.  

Quantitative Analysis in Archaeology, Todd L. VanPool and Robert D. Leonard 
© 2011 Todd L. VanPool and Robert D. Leonard
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98 Hypothesis Testing I: An Introduction

  Hypotheses of Interest 

 Statistical hypothesis testing is a mathematical means of calculating the probability 
that some relationship we posit is correct. This relationship refl ects our hypothesis 
of interest. A hypothesis of interest can be any empirical statement. Perhaps a 
researcher thinks that copper bells made in West Mexico are smaller than those 
made elsewhere in Mesoamerica because of some difference in manufacturing 
techniques. This hypothesis of interest provides a clear statement of the suspected 
relationship between classes of objects that can be evaluated with data collected 
using appropriate theoretical, empirical, and methodological tools. Hypotheses of 
interest can posit specifi c expectations regarding possible differences such as  “ West 
Mexican bells are smaller ” , but they don ’ t have to. A common hypothesis of interest 
for archaeologists is whether or not two sites are contemporaneous, a statement 
that might not include any presupposition about which site is older or the duration 
of any temporal difference that might be present. The point is that the hypothesis 
of interest states the relationship that an archaeologist wishes to consider about 
the world. 

 Most archaeologists, especially those who argue for  “ hypothesis testing ”  as a key 
to scientifi c archaeology, hold that it is better to form your hypothesis of interest 
before collecting data (Binford,  1964 ; Black and Jolly,  2002 ). There are several 
reasons why this is true: 

   •      Having a previously existing hypothesis of interest allows us to more reliably 
collect the right information to generate meaningful data for our analysis. There 
is nothing more irritating than returning from the fi eld and realizing that there 
was some important piece of information necessary to analyze a signifi cant 
hypothesis of interest that was not properly collected. Anyone who has tried to 
use excavated collections created by someone else realizes the signifi cance of the 
relationships between what we seek to study and the collection and reporting of 
information and artifacts. Otherwise interesting hypotheses of interest might 
have to be discarded from the analysis for no other reason than the data neces-
sary to evaluate them don ’ t exist and can ’ t be generated. Clearly stating your 
hypothesis of interest  before data collection  can help minimize this problem.  

   •      Granting and permitting agencies/clients often take the research design into 
account when deciding if archaeological research will be supported. Clearly 
defi ned and meaningful hypotheses of interest may consequently be a prerequi-
site to conducting archaeological research, especially in cultural resource man-
agement where the hypotheses of interest address relationships central to the 
Section 106 compliance process or similar legal frameworks.  

   •      Clear hypotheses of interest can save time and money, and promote the archaeo-
logical record ’ s conservation by allowing us to concentrate on collecting data 
from the applicable portions of the archaeological record. There is no reason to 
excavate the post - Classic Maya site if your interests are focused on the nearby 
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early pre - Classic village, or to record the volume of pots when your interest is 
their paint composition. While this may seem obvious, we have been awestruck 
several times by the amount of extraneous data some archaeologists generate 
with no apparent connection to their research questions. Thinking about your 
hypotheses of interest before conducting the research can save months, if not 
years, of work while improving the ultimate quality of the research.  

   •      A clearly stated hypothesis of interest clarifi es the appropriate theoretical and 
methodological frameworks an archaeologist should use at a given point of time. 
This will in turn lead to a more coherent integration between our empirical and 
conceptual tools and will help prevent problems arising from incorrectly gath-
ered data or incompatible methods and interests.    

 Still, there will be times when a hypothesis of interest may arise only after data 
are collected. This can be tremendously signifi cant in archaeological contexts as we 
identify associations or differences that haven ’ t previously occurred to us. EDA with 
its rich history in archeological analysis is in fact a formalized method of fi nding 
these associations. There is nothing analytically or conceptually wrong with EDA 
as a means of identifying hypotheses of interest, but relying on it exclusively increases 
the likelihood of wasted effort collecting unnecessary data, incompatibility between 
data and theoretical/methodological structures, and investing resources investigat-
ing chance associations that initially appear meaningful but aren ’ t. Having at least 
some idea of your hypotheses of interest is a good place to start, even when using 
EDA techniques. 

 Another key element to a good statistical analysis is realizing that a single analysis 
can have implications for several integrated hypotheses of interest. Although there 
are exceptions, archaeologists rarely have a single hypothesis of interest when con-
ducting research. More commonly they wish to evaluate a series of propositions that 
may overlap considerably. Testing multiple competing hypotheses is a straight-
forward example, but certainly not the only case in which hypotheses of interest can 
inform on one another. The utility of quantitative analyses can be greatly improved 
if the researcher takes the articulation among hypotheses of interest into account. 

 Shifting the consideration of hypotheses of interest down from an abstract level 
to an empirical application, our discussion of the normal distribution in the previ-
ous chapter employed a hypothesis of interest focused on evaluating the similarity 
of a variate to a population mean in that we used the Z - score to determine the 
likelihood that a prehistoric gopher mandible was from a member of the species 
 Thomomys bottae  based on its length. Another common archaeological hypothesis 
of interest is the function of ceramic vessels. Imagine that researchers in a particular 
culture area have argued that performance requirements cause the maximum wall 
thickness of water storage pots and cooking pots to be different. An archaeologist 
investigating this relationship might have two related hypotheses of interest: 

  1     to determine if the average maximum wall thickness of vessels identifi ed as 
cooking pots (  μ   1 ) based on archaeological context, residue analysis, sooting, etc. 
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is meaningfully different than the average maximum wall thickness of vessels 
identifi ed as water storage pots (  μ   2 ) based on archaeological context, porosity, 
and other lines of evidence; and if so,  

  2     to determine if newly excavated pots are likely water storage or cooking vessels 
based on their maximum wall thickness ( Y  1 ,  Y  2 ,  …  ,  Y n  ).    

 Let us imagine that we do fi nd a difference between   μ   1  and   μ   2  (using techniques 
that will be introduced in Chapter  8 ), and then use a Z - score to determine that two 
variates,  Y  1  and  Y  2 , are 0.73  σ   and 3.5  σ   from   μ   1  but 3.1 and  − .62 from   μ   2 . We know 
that an individual variate does not differ very much from a population mean if it 
is less than 1  σ   away from   μ  . In fact, variates that are within  ± 1  σ   of a mean are very 
common in a population, but those more than  ± 3  σ   away from   μ   are unlikely (more 
than 99.84% of the variates in a normal distribution are closer than  ± 3  σ   to the 
mean). We therefore recognize that it is extremely unlikely that  Y  1  was drawn from 
population   μ   2 , but is quite consistent with population   μ   1 ; and  Y  2  likely isn ’ t a 
member of   μ   1 , but could be a member of   μ   2 . We may intuitively conclude that  Y  1  
is probably a cooking pot and that  Y  2  is more likely a water storage pot based on 
the proximity of each variate to the means, but this is just a commonsense conclu-
sion at this point. Placing our commonsense argument within a statistical frame-
work using formal hypothesis tests of these hypotheses of interest will clarify our 
reasoning and make their evaluation and communication to others easier.  

  Formal Hypothesis Testing and the Null Hypothesis 

 While we might be satisfi ed with intuitive interpretations when the probabilities 
associated with the variates are as extreme as the previous example, we will likely 
fi nd it dissatisfying in most circumstances. A subjective, intuitive approach leaves 
us with questions such as:  “ What values differentiate variates that probably aren ’ t 
from a population from those that might be? ”  and  “ What relationship are we really 
addressing? ”  To answer such questions, statisticians have developed a system of 
formal hypothesis testing that is designed to ensure the statistical hypotheses under 
consideration are clearly defi ned, the terms of rejecting them are understood, and 
the outcome of our hypothesis testing is unambiguously presented. This system 
works by taking a hypothesis of interest, no matter how it is phrased, and trans-
forming it into a statement that assumes there is no difference between the things 
being compared. The hypothesis comparing the size of a gopher mandibular alveo-
lar length to  Thomomys bottae  mandibles can be more formally stated as  H  0    :    Y i      =      μ  . 
 H  0  is by convention the symbol for the  null hypothesis ; the hypothesis of no differ-
ence. As you know,  Y i   represents our variate and   μ   represents the population mean. 

 In plain English, the null hypothesis can be summarized as the statistical proposi-
tion that there is no difference between a variate  Y i   and the population parameter 
  μ  . With respect to hypothesis testing, the presentation of the null hypothesis is the 
basic statement formalizing our intent to compare, which can produce two possible 
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outcomes. The fi rst is of course support for  H  0   –  that there is no difference between 
the two things being compared. The second possible outcome is that there is indeed 
a difference. This outcome is symbolized by the alternative hypothesis,  H   a  . After all, 
if the relationship specifi ed in the null hypothesis is unlikely, then some other rela-
tionship must be true (i.e.,  Y i   must be from a different population). Therefore, once 
a null hypothesis is defi ned, an alternate hypothesis has been defi ned too. In this 
example, the alternate hypothesis is simply the inverse of the null hypothesis  –  
 H   a     :    Y i      ≠      μ   (i.e., the alveolar length of the prehistoric gopher mandible is signifi cantly 
different than the average length of  Thomomys bottae  mandibles). So, the general 
terminology is as follows: 

   •       H  0    :    Y i      =      μ   constitutes the null hypothesis specifying no difference; and  
   •       H   a     :    Y i      ≠      μ   constitutes the alternative hypothesis where there is indeed a 

difference.    

 An astute reader will notice that the null hypothesis (there is no difference 
between the alveolar length) states exactly the opposite of our hypothesis of interest 
(that there is a difference, which could indicate the presence of gopher species other 
than  Thomomys bottae  in the past) and that the alternate hypothesis agrees with the 
hypothesis of interest. That is true. Null hypotheses are statistical propositions that 
specifi cally state the statistical relationship we will evaluate, not necessarily the 
specifi c relationship that interests us. This is part of the reason why we must take 
care to clarify exactly what relationships are being evaluated at each stage of the 
analysis.   By convention, the null hypothesis states that there is no difference, and it is 
this relationship that the statistical test directly evaluates. We must then tie the results 
of this analysis to our hypotheses of interest in order to give our statistical analysis 
analytic meaning. 

 We now have a null hypothesis that we can evaluate, in this case with a Z - score. 
Although we use the Z - score in this example, the relationship between the null and 
alternate hypotheses described above and illustrated below characterizes all hypoth-
esis testing. The actual statistical test used to evaluate competing hypotheses is 
dictated by the data and the nature of the hypotheses themselves, but the philosophy 
of hypothesis testing remains the same. 

 As you learned in the previous chapter, the Z - score (like a great many statistical 
tests) is designed to determine the probability of the occurrence of a set of observa-
tions (variates) as defi ned by an area under a specifi c distribution (in this case the 
normal distribution). How do we connect these probabilities to a null hypothesis 
so that it can be evaluated? We do so by defi ning a specifi c probability at which we 
hold it is more likely that the alternate hypothesis is true as opposed to the null 
hypothesis. In this case, we will select a probability at which we conclude it is 
unlikely that a variate came from a member of  Thomomys bottae , the population 
specifi ed in the null hypothesis. If it is unlikely to have a value as far or farther from 
the mean as a particular  Y i  , then we can conclude that it is unlikely that the null 
hypothesis is correct. Let us clarify how this works further. 
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 In Chapter  6  we considered the likelihood of specimen number HC - 215 
( Y  1     =    6.4   mm) being drawn from the population of where   μ      =    5.7   mm and 
  σ      =    .48   mm. We can formalize this test as an evaluation of the null hypothesis 
 H  0    :    Y  1     =      μ  , and an alternative hypothesis  H   a     :    Y  1   ≠    μ  . Consider our null hypothesis, 
 H  0    :    Y  1     =      μ  . We of course know that 6.4   mm does not exactly equal   μ      =    5.7   mm. 
What we are really assessing is whether or not 6.4   mm is  close enough  to   μ   to likely 
be from the population that the mean describes. 

 We concluded in the previous chapter that it was very likely to get a variate that 
is smaller than 6.4   mm ( p     =    .93) and somewhat unlikely to get one larger ( p     =    .07), 
but this doesn ’ t constitute a test of the null hypothesis. Instead, we merely con-
cluded that it is perhaps somewhat unlikely to observe a  Thomomys bottae  alveolar 
length of 6.4   mm given that only 7% of the variates will be longer. Based on the 
probabilities we calculated, which hypothesis  –  the null or the alternate hypothesis 
 –  is likely correct? There is no cut and dry answer to this question. Instead, the 
researcher must specify the probability at which he or she will reject the null 
hypothesis of no difference in a given situation based on his or her research design 
and knowledge of the relationships under consideration. This rejection value is 
always arbitrary, in that some other value  could  be chosen. For whatever reason, 
archaeologists and many other scientists generally use a probability of .05 as the 
cutoff mark. Probabilities greater than .05 are taken as supporting a null hypothesis 
whereas probabilities less than .05 are interpreted as supporting the alternate 
hypothesis. We will discuss why we shouldn ’ t blindly use the .05 demarcation value 
presently, but we will use it now for the sake of simplicity. 

 Using .05 as a cutoff mark, we will  reject H  0  in favor of the alternate hypothesis 
if the probability of  Z     <    .05 (i.e., we will conclude that  H  0  is unlikely to be true if 
the probability for obtaining a value of  Z  or greater is smaller than .05). By statistical 
convention, this cutoff value is now called our  alpha value , and is symbolized as   α  . 
In this case,   α      =    .05, and is illustrated in Figure  7.1 . Note that the  “ area of rejection ”  
in Figure  7.1  is split between the portions of the distribution greater than and less 

     Figure 7.1       Areas of rejection associated with   α      =    .05  

μ
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than the mean. The reason for this is that our null hypothesis states that  Y  1  equals 
  μ .  There are two ways this could not be the case:  Y  1  can be greater than   μ   or less 
than   μ  . As a result, the probability of rejecting the null hypothesis must be equally 
divided between both sides of the distribution. Given that our alpha value is .05, 
the area of rejection must be .025 (half of .05) in both tails of the distribution.   

 After specifying the alpha value, the hypothesis testing continues by 
calculating  Z :

   Z
Y= −1 μ

σ
 

   Z = −6 40 5 70

48

. .

.
 

   Z = 1 46.   

 When  Z  was calculated in the previous chapter, we went to Appendix  A  to fi nd the 
probability of a variate falling between   μ   and  Z . That probability is .4279, which is 
larger than .05. Does this mean that we do not reject the null hypothesis? Well, no, 
because the value of .4279 refl ects the area between the mean and the variate. To 
test the null hypothesis, we are really interested in the probability of an event as 
large as  Z  or greater, not the probability of a variate between the mean and  Z . The 
probability that interests us can be calculated using the tabled value, though. It is 
equal to the area under the curve to the right of  Z     =    1.46, which is calculated as 
1    −    (.5    +    .4279)    =    .0721. Figure  7.2  graphically illustrates these areas. The 1 refl ects 
the entire area under the curve (i.e., unity). .5 refl ects the area to the left of the 
mean, which includes half of the total area under the curve. .4279 is the area 
between the mean and  Z     =    1.46, which we determined from the table. Adding .5 to 
.4279 defi nes the probability of a variate smaller than  Z     =    1.46, which is .9279. 
Given that we seek to determine the probability of a variate larger than  Z , we can 

     Figure 7.2     The areas under the normal distribution associated with  Z     =    1.46  

μ 6.4 mm

p = .5 p = .4279 p = .0721

c07.indd   103c07.indd   103 8/26/2010   1:54:37 PM8/26/2010   1:54:37 PM
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subtract this value from 1 to determine that the probability of a variate larger than 
 Y  1     =    6.4   mm is .0721. This is a relatively rare event (again, about seven times out of 
100), but is not smaller than our level of rejection. Because our area of rejection is 
split between the two halves of the distribution, we cannot reject  H  0  unless the 
probability is less than .025. Therefore, we must conclude that  Y  1     =    6.4   mm is not 
signifi cantly different than   μ      =    5.7   mm. Our analysis indicates that the null hypoth-
esis is plausible and that  Y  1  could be from the  Thomomys bottae  population.   

 While using the standardized normal distribution to calculate the specifi c prob-
ability of a given test is useful, it is not always necessary. An alternative strategy is 
to simply determine the Z - score associated with a particular alpha value. You will 
recall from Chapter  6  that the   μ      ±    2  σ   roughly corresponds with 95% of the variates 
in a normal distribution; the exact value associated with 95% is actually 1.96  σ  . As 
a result, evaluating the hypothesis  H  0    :    Y i      =      μ   can be streamlined by using the Z - score 
of 1.96 as a  critical value . Critical values are the values that mark the cutoff line that 
describes the point demarcating the areas of rejection in which we reject the null 
hypothesis. We know that Z - scores greater than 1.96 or less than  − 1.96 represent 
variates that are outside of the area containing 95% of the distribution and Z - scores 
refl ecting variates between 1.96 and  − 1.96 represent variates that are common in 
the distribution. In this example  Z     =    1.46 is between 1.96 and  − 1.96, indicating that 
the probability associated with the Z - score must be greater than .05. We can there-
fore conclude, without bothering to calculate the specifi c probability associated 
with it, that the variate  Y  1     =    6.4   mm is common enough in this distribution that we 
cannot reject the null hypothesis. 

 You will notice, of course, that we used the clumsy phrase  cannot reject the null 
hypothesis  throughout the previous discussion instead of the more elegant phrase 
 accept the null hypothesis . This is a result of the nature of hypothesis testing. If a 
value is close (say within 1  σ  ) to the mean, it has a high probability of occurring 
within the distribution associated with   μ  . However, can we conclude with certainty 
that it is a member of the population represented by   μ   as opposed to some other 
population? No. It could be a member of population   μ   2 ,   μ   3 , or another population, 
yet still be close to   μ  , depending on the differences between the populations. This 
point can be illustrated using the Alyawara settlement size data presented in Chapter 
 4 . Based on our sample of settlement sizes, we determined that the average Alyawara 
settlement has a mean of 23 individuals with a standard deviation of 11.8 people. 
If we found a village with 23 individuals can we conclude the village is an Alyawara 
settlement? Of course not. The village could be anywhere in the world with residents 
of any number of ethnic groups. While the number of residents in our hypothetical 
village is not signifi cantly different from the average number of residents in an 
Alyawara camp, we cannot conclude that it  is  an Alyawara settlement. 

 In contrast, we are able to use the phrase  reject the null hypothesis  because a 
variate that is suffi ciently far from the mean is unlikely to be part of the parent 
distribution. A village with 1,230 residents likely  is  not an Alyawara camp, assuming 
our sample of Alyawara settlements is representative of the population of Alyawara 
settlements. Using hypothesis testing, then, we can often conclude a null hypothesis 
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is false (i.e., unlikely), but we cannot conclude it is true. When we do fail to reject 
the null hypothesis, we can merely conclude that the null hypothesis may be true, 
and consequently remains plausible. Establishing that the relationship actually is 
present requires us to provide logical arguments, not statistical analyses, to justify 
its validity. 

 The discussion above should have driven one point home; hypothesis testing in 
a statistical framework is not a magical gateway to  “ the truth. ”  This disappoints 
some people, who hope (or have been told) that statistics is a way to prove whether 
a relationship is true or not. It isn ’ t. Statistics merely provides a framework to assess 
the probability that a relationship is or is not present. One might even say statistics 
merely reveals to us which of our educated guesses are plausible and which are not. 
Even then, we may be wrong. This leads us to our next topic of discussion: errors 
in hypothesis testing.  

  Errors in Hypothesis Testing 

 Because hypothesis testing is based on the assessment of probabilities, we are never 
certain that any specifi c conclusion derived from our statistical analyses is neces-
sarily correct. There are two correct and two incorrect decisions that can be made 
during hypothesis testing, as illustrated in Table  7.1 . The two correct decisions are 
that we may fail to reject the null hypothesis when it is in fact true, and reject the 
null hypothesis when it is in fact false. Likewise, two kinds of errors may be made. 
We may reject the null hypothesis when it is indeed true (thereby making a Type I 
or alpha ( α ) error), or we may accept (fail to reject) the null hypothesis when it is 
indeed false (a Type II or beta ( β ) error).   

 In general, Type I errors are easier to understand. An analyst sets the probability 
of making such errors each time he or she sets  α . This alpha level specifi es the 
probability of rejecting the null hypothesis when it is in fact true, and is properly 
determined before we begin the quantitative analysis. Setting  α  at .05 means that 
5% of the time, we will  incorrectly  conclude that a member of a population is more 
likely a member of an alternate population. Thus, we expect to commit a Type I 
error once out of every 20 statistical analyses. When evaluating 20 or more statistical 
propositions, it is not really a question of  if  we are going to commit a Type I error, 
given that we are almost certain to do so. Instead, the question is determining which 

  Table 7.1    Possible outcomes of hypothesis testing 

   Null hypothesis is:     Results of statistical analysis cause null 
hypothesis to be:  

   Accepted     Rejected  

  True    Correct decision    Type I error ( α )  
  False    Type II error ( β )    Correct decision  
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differences are spurious, refl ecting Type I errors, and which are meaningful refl ec-
tions of real differences. Likewise, setting  α  at 0.10 necessitates that we will commit 
a Type I error 10% of the time whereas an  α  of .01 reduces the probability to one 
out of every 100 tests. When expressed as a percentage, the alpha value is known 
as a  signifi cance level . 

 The importance of the alpha level and Type I error is illustrated by Figure  7.3 , 
which presents the distribution of the  Thomomys bottae  alveolar lengths previously 
discussed. It is composed of a distribution of individual alveolar lengths normally 
distributed around   μ  . In this fi gure, the areas of rejection for   α      =    0.50 and   α      =    0.05 
are illustrated. When evaluating the null hypothesis  H  0    :    Y i      =      μ   using an   α   of 0.50, 
we will expect to incorrectly reject the null hypothesis (i.e., conclude the variate 
is not representative of a  Thomomys bottae  when in fact it is) 50% of the time. 
Likewise, when evaluating the null hypothesis with   α      =    0.05 we will expect to incor-
rectly reject the null hypothesis 5% of the time. As illustrated by this fi gure, the 
larger  α  is, the more often we expect to commit a Type I error.   

 As mentioned previously, many researchers use   α      =    .05 by convention. The 
general selection of   α      =    .05 is more or less done out of laziness, and partly from the 
fact that a probability of .05 generally seems intuitively small to us. There is neither 
any particular reason for choosing this value as opposed to any other, nor a rule of 
thumb dictating what   α   is the most useful value for any given situation. The inves-
tigator simply needs to decide how frequently he or she is comfortable with rejecting 
the null hypothesis when it is indeed true after fully considering the consequence 
of this decision. 

 The natural inclination when people realize that   α   corresponds to the likelihood 
of committing a Type I error is to make   α   as small as possible. After all, if an   α   of 
0.05 suggests we will incorrectly reject a null hypothesis when it is true 5% of the 
time and an   α   of 0.001 suggests we will reject a null hypothesis when it is true only 

     Figure 7.3     Areas of a normal distribution of  Thomomys bottae  alveolar lengths associated 
with   α      =    .05 and   α      =    .01  
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0.1% of the time (i.e., one time out of 1000), why not minimize our error and make 
the   α   level 0.00001 or even 0.0000000001? 

 The answer is that doing so would make it more likely that we will incorrectly 
fail to reject a null hypothesis when it is in fact false and another hypothesis is true 
(i.e., commit a Type II error). By reducing   α   we are making it more likely that we 
will not identify cases when the null hypothesis  is not  true. That means in this case 
that we will not readily differentiate when variates are drawn from another popula-
tion of alveolar lengths. After all, the only way to be sure of never committing an 
alpha error is to never reject the null hypothesis. Yet if we do this, we are guaranteed 
to incorrectly conclude that the variates from all other possible distributions are 
possibly members of the distribution associated with   μ   1 . Coming to this conclusion 
guarantees that we will commit  β  errors when dealing with variates from alternate 
distributions. Therefore, when setting our   α   level, we must consider how willing 
we are to commit a  β    error. 

 Oddly enough, archaeologists seldom determine  β . It seems to us that this is the 
result of three factors. First, archaeologists seldom compare hypotheses that are 
mutually exclusive. As a result, the potential for  β  (or Type II) errors is extreme 
and potentially damaging to any number of otherwise useful arguments. 
Archaeologists therefore fi nd it convenient to ignore the possibility of  β  errors 
instead of trying to justify their conclusions further. Second, the probability of 
committing a  β  error must actually be calculated instead of being arbitrarily set as 
is the case with   α  . Calculating  β  frequently is a labor - intensive process for individu-
als with little statistical or mathematical background. Finally, there has been a 
common misperception that  β  errors cannot be calculated at all. Regardless of the 
reasons, the failure of archaeologists to consider  β  is unfortunate, as it is only with 
the determination of  β  that we are able to determine the  power  of a hypothesis test. 
We will return to this issue and demonstrate how the probability of committing a 
 β  error can be calculated in Chapter  9 . First, though, we need to understand the 
role of  confi dence limits  and their  critical regions  in evaluating hypotheses. These are 
the subjects of Chapter  8 . 

   Practice Exercises 

    1     Defi ne Type I errors, Type II errors, and   α  . What are the correct decisions 
that can be made when evaluating a null hypothesis?  

  2     Differentiate between a hypothesis of interest and a null hypothesis. Defi ne 
three hypotheses of interest that might interest you.  
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  (a)     Defi ne null hypotheses that correspond with them.  

  (b)     To the best of your ability, consider the implications of making a 
Type I and a Type II error while evaluating the null hypotheses you 
defi ned. How would either of these impact the evaluation of the 
hypotheses of interest?    

  3     Evaluate the null hypothesis that a fl uted projectile point 18.45   mm wide 
is a member of the population of Ohio fl uted projectile points introduced 
in Question 5 from Chapter  6  (  μ      =    27.01   mm and   σ      =    4.28   mm) using 
  α      =    .05. Retest the null hypothesis using   α      =    .01. Did changing the alpha 
level alter your conclusion concerning the null hypothesis? How did 
changing the alpha level affect the likelihood of committing a Type I error 
while evaluating the null hypothesis? How did changing the alpha level 
affect the likelihood of committing a Type II error while evaluating the 
null hypothesis?  

  4     As part of an ethnoarchaeological analysis, Shott and Sillitoe ( 2004 : 346) 
report the steel axes used by the Wola people of highland New Guinea 
have a use life of 12.47 years with a standard deviation of 8.35 years. 

   (a)     What is the probability that a steel axe will have a use life between 
10 and 14 years?  

  (b)     Using   α      =    .10, test the null hypothesis that the use lives of each of 
the following fi ve axes are consistent with the population described 
by Shott and Sillitoe: 2.1 years, 37.3 years, 7.5 years, 16.9 years, and 
20.3 years.  

  (c)     Which of your conclusions regarding the hypotheses tested in Part 
(b) could refl ect a Type I error? Which could refl ect a Type II error?              
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Hypothesis Testing  II : 
Confi dence Limits, the t - Distribution, 

and One - Tailed Tests     

     As illustrated in Chapter  7 , we can evaluate a null hypothesis by calculating a specifi c 
probability and comparing it to an alpha value, or by comparing a Z - score (or any 
of the other statistical measures discussed later in the book) to a critical value. These 
two methods produce identical results when evaluating the plausibility of a null 
hypothesis, but they can be cumbersome when testing a number of closely related 
null hypotheses, say,  H  0    :    Y i      =      μ   for 200 variates. If we were comparing the alveolar 
lengths of 200 gopher mandibles with the average alveolar lengths of  Thomomys 
bottae  to determine which mandibles are likely members of that species, we 
could calculate probabilities for each variate using a standardized normal distribu-
tion as illustrated in Chapter  7 . Doing so would be time consuming, though, 
given that probabilities would have to be independently calculated for each 
variate, which would require us to calculate 200 Z - scores and then determine the 
corresponding probabilities using Appendix  A . Comparing the Z - scores to a critical 
value (say  ± 1.96 for   α      =    .05) could save time given that it would eliminate the need 
to calculate individual probabilities for all 200 null hypotheses, but would still 
require us to calculate all 200 Z - scores using Equation  (6.1) . This seems like a lot 
of work for archaeologists who didn ’ t choose their fi eld out of a love of mathemat-
ics. There is a third option, confi dence limits, which is widely used in archaeology 
and other statistics - using disciplines. This method produces the same result as 
previous methods described, but has the advantage of giving a result that can be 
directly compared to our raw data as opposed to transforming the data using a 
formula. Consequently we would need to perform only a single set of calculations 
instead of calculating 200 Z - scores, which can save a lot of time and computational 
effort. 

Quantitative Analysis in Archaeology, Todd L. VanPool and Robert D. Leonard 
© 2011 Todd L. VanPool and Robert D. Leonard
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110 Hypothesis Testing II

 In a nut shell, confi dence intervals work by identifying the real - world values that 
correspond with the critical values. These values defi ne the upper and lower bound-
aries of the region of acceptance (i.e., the values that differentiate between when a 
null hypothesis will and when it won ’ t be rejected). Using the  Thomomys bottae  
alveolar length example again, we previously evaluated the null hypothesis  H  0    :    Y i      =      μ   
using a critical value of  ± 1.96 associated with   α      =    0.05. If the Z - value is equal to or 
between  − 1.96 and 1.96, we failed to reject the null hypothesis. If  Z  is less than  − 1.96 
or greater than 1.96, we rejected the null hypothesis and concluded that the speci-
men probably was not from a  Thomomys bottae . Underlying this test is the recogni-
tion that 95% of the variates are contained within   μ      ±    1.96  σ  . Using this same 
relationship, we can determine which variates aren ’ t within the region of acceptance 
by simply identifying what values correspond with   μ      ±    1.96  σ   for the distribution 
of  Thomomys bottae . Here,   μ      =    5.7   mm,   σ      =    0.48   mm, and   α      =    .05 (which corre-
sponds with  Z     =     ± 1.96). The confi dence limits are: 

   L  1     =      μ      −    1.96  σ    
   L  1     =    5.7    −    (1.96    ×    .48)  
   L  1     =    4.76   mm  
   L  2     =      μ      +    1.96  σ    
   L  2     =    5.7    +    (1.96    ×    .48)  
   L  2     =    6.64   mm    

 The  confi dence interval  around the mean, defi ned as the area between  L  1  and  L  2 , 
is thus 4.76   mm to 6.64   mm, with  L  1  representing the  lower confi dence limit  and  L  2  
the  upper confi dence limit  of the mean. Using our knowledge of probability, we 
know that 95% of the variates in the distribution represented by   μ      =    5.7   mm should 
be between 4.76   mm and 6.64   mm (Figure  8.1 ). We will consequently fail to reject 
the null hypothesis for any variate within the confi dence interval and will reject the 
null hypothesis for all variates outside of it. For  Y  1     =    5.7   mm (the variate specifi ed 
when we fi rst introduced the example in Chapter  6 ) we would fail to reject the null 
hypothesis, but we would reject the null hypothesis for  Y  2     =    7.7   mm, which exceeds 

     Figure 8.1     Illustration of the confi dence limits and critical region of  Thomomys bottae  
alveolar length distribution  
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the upper confi dence limit. The exact same evaluation could be completed for as 
many variates as we might have, all without needing to calculate individual Z - scores 
or probabilities for each variate.   

 You now know three different ways to evaluate the same null hypothesis  H  0    :    Y i      =      μ   
using the standardized normal distribution: determining a specifi c probability; 
using a critical value; or establishing a confi dence interval. Any of these can be used 
in any given situation, and the results of each of them are identical. The choice of 
technique is up to you. Some fi nd using probabilities most useful, because it allows 
the reader to directly compare the test ’ s result to a specifi ed alpha value. (Probabilities 
are the most common output for quantitative software.) Others fi nd determining 
probabilities too cumbersome and prefer to use either critical values or confi dence 
limits, because of their comparative simple calculations. These individuals are often 
especially fond of confi dence intervals because they defi ne the region of rejection 
using intuitively meaningful real - world values as opposed to values on the stand-
ardized normal distribution. You may of course select whichever style you like best, 
but you do need to be comfortable with all three approaches because they are all 
used in archaeological contexts. 

 The three approaches to hypothesis testing can be applied to testing a variety of 
other hypotheses. Archaeologists do frequently compare variates to a population 
mean ( H  0    :    Y i      =      μ  ), but we also evaluate a host of other hypotheses too. These 
include  H  0    :    Y i      =      Ȳ    (a variate to a sample mean),  H  0    :     Ȳ       =      μ   (a sample mean to a 
population mean), and  H  0    :     Ȳ   i      =      Ȳ    2  (two sample means to each other). All three of 
these hypotheses deal with sample means, which are estimates of the population 
parameter   μ  . A fundamental tool in understanding the relationship between these 
sample means and their corresponding population mean is a statistical proposition 
called the  central limit theorem , which stipulates that: 

  1     regardless of sample size  n,  the means of samples from a non - normally distrib-
uted population are normally distributed; and  

  2     as sample size gets larger, the means of samples drawn from a population of any 
distribution will more closely approximate the population parameter.    

 The central limit theorem is quite straightforward but it does require a subtle 
shift in our thinking. As mentioned in Chapter  6 , we are accustomed to considering 
means and standard deviations as summary information about the distribution of 
variates. The central limit theorem calls for us to think about means themselves as 
variates. If we calculate means from multiple samples of a population, then we could 
plot them as variates, thereby building a distribution of means. This distribution 
will have its own mean (called a  grand mean ) as well as its own variance and 
standard deviation. 

 The central limit theorem states that regardless of the shape of the original dis-
tribution, a new distribution built out of sample means from the same population 
will be normally distributed. If you are like us when we fi rst started studying quan-
titative methods, this doesn ’ t make intuitive sense; it seems as if the shape of the 
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distribution of sample means should be the same shape as the original distribution 
from which they are drawn. The reason why sample means from non - normal dis-
tributions will be normally distributed is actually quite simple, however. Statistically 
valid sample means are calculated from each sample of a population using ran-
domly selected variates. The population mean by defi nition is the center point for 
the probabilities on each side of the distribution, such that 50% of the area under 
the distribution ’ s curve is on each side of the mean regardless of the distribution ’ s 
shape. As a result,  each half  of the distribution is expected to be refl ected equally in 
a sample, even though the number of variates on each side of the mean may not be 
the same in heavily skewed distributions. Variation between sample means is 
expected, though, as different variates are selected. Sample means will consequently 
cluster around   μ   differing from it only as a result of the randomness of each sam-
ple ’ s composition, with the mean, median and mode of the sample means equaling 
  μ  . Further, the frequency of sample means will decrease as we move further away 
from   μ   regardless of the shape of the parent distribution, because of the unlikeli-
hood that one - half of the distribution will be disproportionately refl ected in any 
given sample. The result of this is a normal distribution, regardless of the original 
distribution ’ s shape. The larger the sample size of each sample, the less likely it is 
that one side of the distribution will be underrepresented in a sample. As a result, 
the accuracy of the sample means as an estimate of   μ   will increase with sample size, 
and the distribution of the sample means will become more tightly constrained 
around   μ  . 

 Let us illustrate the central limit theorem with the maximum lengths of 166 fl akes 
recorded during the survey of the Medio period Casas Grandes site of Timberlake 
Ruin in southern New Mexico (Figure  8.2 ). The distribution is unimodal as is the 
normal distribution, but it is skewed to the right. Treating this distribution as a 
population, the mean (  μ  ) equals 3.1   cm and the standard deviation (  σ  ) is 1.5   cm.   

     Figure 8.2     The distribution of 166 maximum fl akes lengths  
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 We took 15 samples of three variates each and calculated their means, which are 
graphed on Figure  8.3 . Notice how the means cluster around   μ      =    3.1   cm. The dis-
tribution only loosely resembles a normal distribution, but if we were to take many 
more samples, the distribution would eventually be perfectly normally distributed. 
Now let ’ s sample the population again, only this time increasing the size of our 
samples to  n     =    10 for 20 samples (Figure  8.4 ). This refl ects an increase in both the 
number of variates in each sample and an increase in the number of samples. The 
distribution more closely matches the shape of a normal distribution and is even 
more tightly constrained around   μ   than the previous distribution. Finally, let ’ s 
increase our sample size to 30 samples of  n     =    20 fl akes (Figure  8.5 ). Here, the dis-
tribution is indeed normally distributed, and refl ects even less variation from 
  μ      =    3.1   cm than Figure  8.4 . These three fi gures perfectly demonstrate the central 
limit theorem. As the size of the samples increased, the means clustered more closely 
around   μ  . Further, as the number of samples increased, their distribution more 
closely resembled a normal distribution, despite the underlying distribution ’ s shape.   

 The central limit theorem is important because it allows us to use the normal 
distribution to make statistical inferences about means even if the original distribu-
tions are not normally distributed. In other words, the normal distribution is  always  

     Figure 8.3     Distribution of the mean maximum fl ake lengths for 15 samples of three fl akes  
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     Figure 8.4     Distribution of the mean maximum fl ake lengths for 20 samples of 10 fl akes  
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     Figure 8.5     Distribution of the mean maximum fl ake lengths for 30 samples of 20 fl akes  
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applicable to the distribution of sample means, assuming that they are from ran-
domly selected samples. This fact greatly simplifi es the evaluation of hypotheses 
such as  H  0    :     Ȳ       =      μ   and  H  0    :     Ȳ    1     =      Ȳ    2 , because it allows them to be evaluated using a 
consistent set of tools appropriate for normal distributions. These tools share sub-
stantial similarities to the Z - score previously introduced, but there are a few differ-
ences. Primary among these is the difference between the standard deviation (which 
characterizes the variation of variates around a mean) and the standard error 
(which characterizes the variation of sample means around   μ  ), the topic to which 
we now turn.  

  Standard Error 

 In considering a distribution of sample means, we can calculate a variance and a 
standard deviation in addition to the grand mean (the average of the means). As 
illustrated by the differences between Figures  8.3 ,  8.4 , and  8.5 , the measures of 
dispersion will decrease as the size of our samples increases. Samples of 50 variates 
will provide more precise and accurate estimates of   μ   than samples of fi ve. The 
distribution of sample means will consequently be much more tightly constrained 
around   μ   for the larger samples. As  n  increasingly gets closer to  N  (the population 
parameter for the size of a population), the standard deviation of the sample means 
approaches zero (less variation). In addition to this, the spread of sample means 
will be a product of the variation in the parent populations. Samples of a widely 
spread population will tend to have greater variation among them than samples 
from a tightly clustered population. 

 For clarity ’ s sake, the standard deviation of a distribution of means is called the 
 “ standard error ”  and is represented by the symbol  σ    Ȳ    . Standard deviations describe 
the spread of variates around a mean whereas standard errors describe the spread 
of sample means around the population parameter   μ  . They are otherwise identical, 
but using different terms helps ensure that the analyst and his or her audience 
understand what is being measured. 
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 When comparing sample means to other sample means or   μ  , understanding 
their expected spread will allow us to identify means that likely don ’ t refl ect the 
same population parameter, just as knowledge of the spread of variates can help us 
determine which variates might be part of a different population than the others. 
There are a couple of ways to determine the measures of dispersion for sample 
means. One is to literally take a bunch of sample means and calculate the standard 
error for them using a modifi ed form of Equation  (4.3) , the standard deviation. 
The only difference would be substituting   Ȳ   i   for  Y i  , and remembering the  n  now 
stands for the number of samples, not the size of each sample. This is a viable 
option, and underlies some  “ Monte Carlo ”  - style analyses. However, in most 
archaeological circumstances we can more easily calculate an  expected value  of the 
standard error based on the variation of the parent population and the sample size. 
This estimate is calculated using   σ   from the original distribution and  n  (sample 
size) from our sample. It perfectly approximates the values we would obtain if we 
were to take a bunch of samples from the same population and calculate the stand-
ard error for them. This estimate of standard error is calculated using the following 
equation, where   σ   is the population ’ s standard deviation and  n  is the sample size 
of our sample. 

 The standard error

   σ σ
Y

n
=     (8.1)   

 Consider for a moment the distributions in Figures  8.3 – 8.5 . Summary statistics 
for them are presented in Table  8.1 . All three of the distributions provide reasonable 
estimates of   μ   (3.1   cm). Note also that the distributions ’  standard errors get 
smaller as the size of the samples increases. Further note that values obtained using 
Equation  (8.1)  very closely approximate the actual values calculated from the 
samples.

   n Y= = =3
1 5

3
866,

.
.σ  

  Table 8.1    Summary statistics for the three series of samples of the Timberlake Ruin fl ake 
lengths 

   Sample     Grand mean (  Y ) 
 (cm)  

   Calculated 
standard error 

 (cm)  

   Standard error derived 
using Equation  (8.1)  

 (cm)  

  15 samples of 3    3.1    .87    .87  
  20 samples of 10    3.0    .38    .34  
  30 samples of 20    3.1    .28    .27  
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   n Y= = =10
1 5

20
335,

.
.σ  

   n Y= = =20
1 5

30
274,

.
.σ     

 If we continued to draw random samples from the population of fl ake lengths 
an innumerable number of times, the standard error calculated from the samples 
will exactly match the standard error determined using Equation  (8.1) . This means 
that if we know the standard deviation of a population and the size of our samples, 
we can determine the standard error without directly computing it from a group 
of samples. But why bother? Why not just calculate the standard error directly from 
the means of multiple samples? Well, the most obvious reason is that using Equation 
 (8.1)  saves us the trouble of trying to obtain multiple samples from the same popu-
lation. Sometimes we may not have the money, time, opportunity, or interest to 
obtain 10 or 20 samples of the same population. There are also times when we may 
wish to use published summary information collected by other researchers for 
which it may be impossible to collect comparable data. A site can only be dug once, 
and it may be impossible to obtain multiple samples of its attributes. Finally, 
Equation  (8.1)  provides a more accurate estimate of the true standard error when 
compared to an estimate based on a series of samples. As with all samples, the 
samples used to calculate standard error will vary from the true population param-
eter to varying degrees. Equation  (8.1)  determines the population parameter  σ    Ȳ    , 
whereas the standard error estimates of the standard error in Table  8.1  only approx-
imate it. Thus, the results of Equation  (8.1)  are both superior to and easier to cal-
culate than directly determining the standard error from a series of samples. The 
utility of  σ   Ȳ   , whether it is calculated from a sample of means or using Equation 
 (8.1) , is most clear when we consider the use of standard errors in hypothesis testing 
through the establishment of confi dence limits.  

  Comparing Sample Means to   μ   

 The central limit theorem makes it easy to evaluate hypotheses such as  H  0    :     Ȳ       =      μ   
using the standard error and the standardized normal distribution. This can be 
done using all three of the methods for hypothesis testing outlined in Chapter  7  
and above: direct determination of a probability, critical values, and confi dence 
intervals. We will illustrate how this is done using a contrived example. Let us 
assume that maximum wall thickness does indeed refl ect pottery use and that we 
wish to evaluate the proposition that 25 pots found in a store room are not mean-
ingfully different from pottery used for storing food found in households through-
out a very large site. The null hypothesis corresponding with this hypothesis of 
interest is  H  0    :     Ȳ       =      μ  , where   Ȳ    is the average of the sample of 25 pots stockpiled in 
the storeroom and   μ   is the average maximum wall thickness for household food 
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storage pots from the site. The alpha level is set at .05, and the alternate hypothesis 
is  H a     :     Ȳ        π       μ  .   Ȳ       =    6.2   mm, and the population parameters are   μ      =    7   mm and 
  σ      =    2.3   mm. 

 We can construct 95% confi dence limits around the parameter   μ   in the 
following way: 

   L  1     =      μ      −    1.96  σ   Ȳ      
   L  2     =      μ      +    1.96  σ   Ȳ       . 

 The value 1.96 refl ects the critical value of the standardized normal distribution 
associated with   α      =    0.05. To complete the calculations, we need to calculate   σ   Ȳ     as 
follows:

   σ σ
Y

n
= = =2 3

25
46

.
. .mm   

 We can now calculate the confi dence interval of the mean by calculating the upper 
and lower confi dence limits.

   L1 7 1 96 46 6 10= − ( ) =. . . mm  

   L2 7 1 96 46 7 90= + ( ) =. . . mm   

 The interval 6.10   mm to 7.90   mm contains the value of   Ȳ       =    6.2   mm. We therefore 
fail to reject the null hypothesis; the mean maximum wall thickness of the 
pottery from the store room is not signifi cantly different than that from the site as 
a whole. 

 But what if there was a second store room with 25 pots that produced a mean 
of   Ȳ    2     =    5.9   mm? Would this mean be encompassed by the confi dence interval 
around   μ  ? No, the interval 6.10   mm to 7.90   mm does not contain   Ȳ    2     =    5.9   mm, so 
we would reject the null hypothesis. How about a 99% confi dence interval around 
  μ  ? We know before any calculations are completed that a 99% confi dence interval 
will be broader than a 95% interval; after all, all possible values for   Ȳ    i  contained in 
the 95% confi dence interval will invariably be contained in the 99% confi dence 
limit as well. Here is the calculation for the 99% confi dence intervals:

   L1 7 2 576 46 5 82= − ( ) =. . . mm  

   L2 7 2 576 46 8 18= + ( ) =. . . mm   

 This broad confi dence interval does indeed contain   Ȳ    2 , causing us to be unable to 
reject the null hypothesis for   α      =    .01 despite the fact that we did reject it when 
  α      =    .05. 

 Given that sample means are normally distributed as specifi ed by the central 
limit theorem, the Z - score can also be used to evaluate the null hypothesis  H  0    :     Ȳ       =      μ  , 
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just as it could be used to evaluate the null hypothesis  H  0    :    Y i      =      μ  . We accomplish 
this by modifying Equation  (6.1)  as indicated in Equation  (8.2) . 

 The Z - score comparing a sample mean to  μ 

   Z
Y Y

nY

= − −μ
σ

μ
σ

, which can also be stated as     (8.2)   

 Equations  (6.1)  and  (8.2)  differ in that   Ȳ    is substituted for  Y i   and the standard 
error (  σ   Ȳ    ) replaces   σ  , but both equations provide Z - scores that correspond with 
the standard deviation units of the standard normal distribution. Once we specify 
a level of rejection, we can test the null hypothesis  H  0    :     Ȳ   i      =      μ   using the probabilities 
in Appendix  A . 

 Using the previous pottery example, the Z - score can be calculated as:

   Z
Y

Y

= − μ
σ

 

   Z = −6 2 7

46

.

.
 

   Z = −1 74.   

 The negative sign refl ects that   Ȳ    is less than the mean, and can simply be compared 
to the critical value of  ± 1.96 for   α      =    .05. Given that  − 1.74 is more than  − 1.96, we 
again cannot reject  H  0    :     Ȳ   i      =      μ   and we must conclude that the mean maximum wall 
thickness of the pottery in the store room does not signifi cantly differ from   μ   for 
the entire site. The structure of these hypothesis tests perfectly mimic the structure 
we presented for evaluating the null hypothesis  H  0    :    Y i      =      μ   except that   σ   Ȳ     is used 
instead of   σ  . Remember, sample means are distributed according to   σ   Ȳ     whereas 
variates are distributed according to   σ .  If you remember this, you will fi nd evaluat-
ing both the null hypotheses  H  0    :     Ȳ   i      =      μ   and  H  0    :    Y i      =      μ   very straightforward.  

  Statistical Inference and Confi dence Limits 

 Having illustrated how confi dence limits can be used as a means of hypothesis 
testing, we now want to discuss how they can be used to determine the accuracy of 
our statistics as estimates of population parameters. This use focuses on the process 
of  statistical inference , which is using statistics describing samples to make inferences 
about population parameters. When population parameters are unknown, it is 
often useful to know how reliable our sample statistics are. For example, an archae-
ologist might wish to use a sample of atlatl dart points to characterize the maximum 
shoulder width for dart points in an effort to demarcate between dart, arrow, and 
thrusting spear points. The average maximum dart shoulder width provides an 
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estimate of   μ  , but it should be obvious from Figures  8.3  through 8.5 that the sample 
mean probably will not be  exactly  equal to   μ  . We will therefore want to know what 
a reasonable range would be for the parameter that the statistic is estimating. 
Assessing this would intuitively seem to require us to already know what   μ   is, which 
would make the whole exercise of using   Ȳ    to estimate   μ   moot. Fortunately, though, 
we can use the standard error to determine confi dence limits that refl ect the likely 
placement of   μ  . 

 The central limit theorem states that sample means will be normally distributed 
around   μ  . Recall that in a normal distribution: 

  50% of all deviates fall between   μ      ±    .674  σ    
  95% of all deviates fall between   μ      ±    1.96  σ    
  99% of all deviates fall between   μ      ±    2.58  σ      

 Since the means of repeated samples are normally distributed, the same relationship 
holds except that the standard error will replace   σ   : 

  50% of all sample means fall between   μ      ±    .674  σ   Ȳ      
  95% of all sample means fall between   μ      ±    1.96  σ   Ȳ      
  99% of all sample means fall between   μ      ±    2.58  σ   Ȳ        

 Using the standard error, then, we can place confi dence limits around   μ   to deter-
mine the range in which most sample means will fall (e.g., 95% of the sample means 
will be between   μ      ±    1.96  σ   Ȳ    ). The inverse of this relationship is also true, such that 
  μ   will be contained by   Ȳ       ±    1.96  σ   Ȳ     for 95% of the sample means. We can express 
this relationship symbolically as  P (  Ȳ       −    1.96  σ   Ȳ        ≤      μ      ≤      Ȳ       +    1.96  σ   Ȳ    )    =    .95, which 
indicates that the probability is .95 that   Ȳ       −    1.96  σ   Ȳ     is less than or equal to   μ   and 
that   Ȳ       +    1.96  σ   Ȳ     is greater than or equal to   μ  . This being the case, our lithic analyst 
could derive a  “ very good estimate ”  (i.e., 95%, 99%, or whatever probability the 
archaeologist selects) of the range that encompasses the true population parameter 
  μ   for the maximum shoulder widths of dart points using the sample mean she or 
he determines. 

 It is important to fully understand what we mean by saying we are 95% certain 
the confi dence limits encompass   μ  .   μ   is a population parameter that does not 
change. It is fi xed, and refl ects the totality of the population defi ned. Sample means, 
however, change as the composition of the sample is altered. In the example pre-
sented above, 95% of the confi dence intervals placed around the mean of a sample 
of atlatl darts will include this fi xed point corresponding with   μ  , but 5% will not. 
As a consequence, it is inaccurate to state that   μ   is  “ 95% likely to fall within the 
confi dence limits ”  given that it is the confi dence limits that change, not   μ  . This is 
a subtle, yet important, distinction. 

 Confi dence intervals can refl ect whatever alpha value is appropriate. If we desire 
confi dence intervals that are 99% certain to encompass   μ  , 2.58 would be used 
instead of 1.96. Since 2.58 is a larger number than 1.96, multiplying   σ   Ȳ     by 2.58 
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would yield a larger value, and our confi dence limits would be broader. With 99% 
confi dence limits, we would be more certain that   μ   is within the confi dence interval, 
but we would be less certain of the exact value of   μ   because the confi dence intervals 
would be over 30% broader. Given the implications of the central limit theorem, 
we can use the values in Appendix  A  for the standardized normal distribution to 
derive whatever probability is useful. 

 In most archaeological analyses, a 95% confi dence interval is just fi ne, but 
researchers can change this level of confi dence as they see fi t given their theoretical 
and analytic structure. Typically, though, archaeologists would like to have the best 
estimate of   μ   that they can. There are several ways to make the confi dence interval 
smaller. Consider that confi dence intervals corresponding with an alpha of .05 are 
calculated as:

   L Y
n

1 1 96= − .
σ

 

   L Y
n

2 1 96= + .
σ

  

 If we wish to decrease the confi dence intervals, then we must make the term 

  1 96.
σ
n

 smaller. One way to do this would be to increase the alpha value, which 

in turn reduces the reliability of our estimate. If we decrease the confi dence intervals 
from 95% to say 50% certainty, we would substitute .674 for 1.96 and thereby 
decrease the size of our confi dence intervals by over 60%. While this does substan-
tially narrow the confi dence intervals, it also decreases the reliability of our esti-
mated range for   μ  . We would now expect that there is only a one in two chance 
that the confi dence intervals actually encompass   μ  , instead of a 95% chance. Fifty 
percent odds aren ’ t particularly good betting odds, and most archaeologists would 
fi nd this unsatisfactory. We can live with being wrong 5% of the time, but being 
wrong 50% of the time has obvious drawbacks for most analyses, especially given 
that errors can compound throughout an analysis as one incorrect conclusion 
justifi es more erroneous conclusions. Simply choosing whatever probability 
produces superfi cially appealing narrow confi dence limits is analytically fl awed, to 
be charitable. 

 Two other more useful options remain. First, even small increases in the sample 
size ( n ) can decrease the confi dence limits ’  size by decreasing the standard error. 
As illustrated in Table  8.1 , increasing our sample size from 3 to 10 led to a 61% 
decrease in the standard error (which in turn would cause the area encompassed 
by the confi dence limits to decrease by 61%). Second, a reduction of   σ   will also 
tighten our confi dence limits. This may seem like an odd statement, given that   σ   is 
a population parameter and is therefore fi xed. However, at times it may be possible 
to redefi ne our hypothesis of interest so as to reduce a population to a more 
restricted number of individuals that may refl ect less variation. For example, instead 
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of treating atlatl dart points as a population, an archaeologist might redefi ne the 
population of interest to the dart points of a specifi c region or of a specifi c point 
type. This might cause   σ   to be reduced without sacrifi cing any aspect of the analy-
sis ’ s integrity. Another example is faunal analyses of sexually dimorphic species. 
The great overlap in size between males and females often creates a dispersed uni-
modal distribution, but the distributions of males and of females are narrower when 
considered in isolation. Redefi ning a population to differentiate between males and 
females of a given species might in turn create two tighter distributions with smaller 
standard deviations, instead of a single distribution with a large   σ  .  

  The  t  - Distribution 

 In the example above, our knowledge of the normal distribution allows us to predict 
with 95% certainty (or whatever probability we might select) the location of   μ   using 
confi dence limits around a sample mean, but this requires us to know   σ   in order 
to calculate   σ   Ȳ    . Rarely in the real world, however, do archaeologists have knowledge 
of   σ   when they don ’ t also know   μ  . Typically a researcher either is able to determine 
all of the population parameters, which makes estimating them unnecessary, or the 
archaeologist is forced to use a sample to approximate the parameters, which means 
he or she won ’ t be able to calculate   σ   Ȳ     using   σ  . Given that the standard deviation 
( s ) is an estimate of   σ  , would it be possible to use it to estimate   σ   Ȳ     so that we can 
go ahead and determine a range for   μ   even if we don ’ t know   σ  ? Yes, we can sub-
stitute  s  in the equation for standard error to derive an estimate of   σ   Ȳ     as illustrated 
in Equation  (8.3) . 

 The standard error for a sample

   s
s

n
Y =     (8.3)   

  s  Ȳ    , the sample standard error, is the best estimator of the standard error   σ   Ȳ     avail-
able when using a sample to estimate the population parameters. Unfortunately 

though, it is a biased estimate of   σ   Ȳ    . While repeated samples of   
Y

Y

− μ
σ

 are 

distributed normally, repeated samples of   
Y

sY

− μ
 are not. The reason for this is 

actually quite simple. Given that   σ   Ȳ     is a population parameter based on   σ  , it is a 
constant. The central limit theorem tells us that the means of unbiased samples are 
normally distributed, so subtracting   μ   (another constant) from   Ȳ    and dividing by 
the constant   σ   Ȳ     doesn ’ t change the shape of the distribution. After all, adding, 
subtracting, dividing, and multiplying values from all the members of any distribu-
tion doesn ’ t change the shape of the distribution, it just changes the magnitude of 
the values. 
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 As an estimate of   σ   Ȳ     based on a sample, the value of  s  Ȳ     varies from sample to 
sample to varying degrees. Thus,  s  Ȳ     isn ’ t a constant any more than   Ȳ    is; they will 

both change depending on each sample ’ s variates. The relationship between   
Y

sY

− μ
 

will consequently change because of the variation in   Ȳ   and s  Ȳ    , causing the resulting 
distribution to not be normally distributed. The result is a distribution called 
Student ’ s t - distribution that shares many characteristics with the standardized 
normal distribution. Like the standardized normal distribution, the t - distribution 
is symmetrical and asymptotic at both ends to infi nity. However, it is somewhat 
more dispersed at the tails, and somewhat fl atter (platykurtic) on top when com-
pared to the standardized normal distribution (Figure  8.6 ). The consistency in 
shape, however, allows the distribution to be modeled statistically in a manner 
similar to the standardized normal distribution with one exception  –  the shape of 
the t - distribution is determined by the degrees of freedom, or   ν   (pronounced  “ nu ” ).   

  Degrees of  f reedom and the  t  -  d istribution 

 We will discuss the degrees of freedom here in the context of the t - distribution, but 
it is an important statistical concept that is pertinent to a great many quantitative 
methods. The degrees of freedom are required by the mathematical nature of sta-
tistics, because of the fact that many distributions change as the sample size changes 
(as illustrate by Figures  8.3  through 8.5). While the following defi nition is not 
necessarily intuitively meaningful, the degrees of freedom are defi ned as the number 
of quantities under consideration that are free to vary. In this case, this is  n     −    1. 
The implications of this defi nition, and the mathematical necessity of the degrees 
of freedom, can be illustrated using the Alyawara example initially presented in 
Chapter  4 . 

 In Chapter  4 , we determined that the average settlement size of the eight Alyawara 
camps is 23.4 people. We now know that the average of our eight variates is an 
estimate of   μ   and therefore it must, according to probability, equal (some value 
close to) that parameter. Thus, our eight variates must produce   Ȳ       =    23.4 people, 
which by extension necessitates that the sum of the variates must equal (23.4    ×    8) 

     Figure 8.6     Comparisons of the t - distribution and the normal distribution  

Normal

t-Distribution
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or 187. If we want to fi nd eight variates that sum to 187, seven of the variates ( Y  1  
through  Y  7 ) are completely free to vary. The fi nal variate,  Y  8 , however, must be a 
variate that forces the sum of the eight variates to equal 187. In other words, it is 
mathematically necessary that  Y  8  be the correct value such that the sum of the vari-
ates is equal to 187. Seven variates can vary, but the value of one variate is math-
ematically fi xed. Therefore, the degrees of freedom in this case are  n     −    1, which is 
7. Don ’ t worry too much if this doesn ’ t make sense. Another, more intuitive 
way to think of degrees of freedom is that they refl ect the number of variates that 
can vary. A sample of one doesn ’ t have any variation at all. A sample of two 
refl ects variation caused by one variate (i.e., one degree of freedom), given that there 
must be one variate present before any variation can be present. A sample of three 
refl ects two degrees of freedom, and so on. Only  n     −    1 of the variates are in fact 
free to vary. 

 Neither of these simple formulations are entirely adequate but both are defen-
sible. They are certainly superior for most archaeologists when compared to the 
more statistically appropriate statement that degrees of freedom are  “ differences in 
dimensionalites of parameter spaces ”  (Good,  1973 : 227). The point is that the shape 
of the t - distribution changes as a result of the impact of the sample size on both 
the variation in   Ȳ    and  s  Ȳ     (again as illustrated in Figures  8.3  through 8.5). The way 
we control this variation is through the degrees of freedom. When using most dis-
tributions including the t - distribution, the degrees of freedom is calculated using 
Equation  (8.4) , where  n  is the sample size. 

 The degrees of freedom

   ν = −n 1     (8.4)   

 As previously discussed, sample means become more accurate and precise predic-
tors of   μ   as sample size ( n ) increases. This is also true for  s  as an estimate of   σ  . As a 
result,  s  Ȳ     becomes a better estimate of the population parameter   σ   Ȳ     as  n  increases, 

which in turn causes   
Y

sY

− μ
 (i.e., the t - distribution) to better approximate   

Y

Y

− μ
σ

 

(i.e., the standardized normal distribution) as the sample size  n  becomes close to 
the population size  N . When  n  grows to be  N ,  s  Ȳ     is in fact   σ   Ȳ     because it refl ects 
the entire population. Predictably, then, the t - distribution varies the most from the 
standardized normal distribution when   ν      =    1, and is indistinguishable from 
the standardized normal distribution when   ν      =    infi nity. For our purposes, when 
  ν      >  120, the t - distribution and standardized normal distribution are identical. 
Therefore, whenever we use  s  Ȳ     to estimate   σ   Ȳ     and when sample sizes are less 
than 121 variates, we should use the t - distribution to construct confi dence 
intervals instead of the normal distribution. Figure  8.7  illustrates the different 
shapes of the t - distribution as determined by   ν  . Critical values corresponding with 
various probability levels are presented in Appendix  B  for degrees of freedom up 
to   ν      =    120.     
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  Hypothesis Testing Using the  t  - Distribution 

 The t - distribution can be used to place confi dence intervals around   Ȳ    to estimate 
the likely placement of   μ  , but it is also useful for evaluating hypotheses such as 
 H  0    :    Y i      =      Ȳ   ,  H  0    :     Ȳ   i      =      Ȳ    2 , and  H  0    :     Ȳ       =      μ   using  s  to estimate   σ  . We will consider the 
comparatively complicated evaluation of  H  0    :     Ȳ    1     =      Ȳ    2  in detail in Chapter  9 , but 
 H  0    :    Y i      =      Ȳ    and  H  0    :     Ȳ       =      μ   can be evaluated using either confi dence intervals or criti-
cal values. Using critical values is accomplished by calculating a t - score using a 
modifi ed version of the Z - score introduced in Equations  (6.1)  and  (8.2) . For the 
hypothesis  H  0    :    Y i      =      Ȳ    the t - score is calculated using Equation  (8.5)  (compare with 
Equation  (6.1) ) and for  H  0    :     Ȳ       =      μ   it is calculated using Equation  (8.6)  (compare 
with Equation  (8.2) ). The differences between Equations  (8.5)  and  (8.6)  hinge on 
whether the variation being considered is between a variate and   Ȳ   , which is quanti-
fi ed using  s , or between   μ   and   Ȳ   , which is quantifi ed using  s  Ȳ    . Again, simply remem-
ber that standard deviations quantify the variation in variates, whereas standard 
errors quantify the variation in sample means. If you do this, you will always be 
certain which of these two equations to use. 

 The t - score comparing a sample mean to a variate

   t
Y Y

s
i= −

    (8.5)   

 The t - score comparing a sample mean to   μ   using  s  Ȳ     to approximate   σ   Ȳ    

   t
Y

sY

= − μ
    (8.6)   

 The null hypothesis  H  0    :    Y i      =      Ȳ    is a common comparison in archaeological con-
texts, perhaps the most common comparison involving means. It is the question 
being asked whenever an archaeologist wonders if a particular variate is substan-
tially different from the others in a sample. Does Burial 5 have more pots than the 
other burials? Is Room 3 - B signifi cantly larger than the other rooms in the struc-
ture? Is the pot found in the plaza larger than is typical of the other pots on the 
site? Questions such as these all focus on  H  0    :    Y i      =      Ȳ   . 

     Figure 8.7     Different shapes of the t - distribution as determined by   ν    

Normal = t (∞)

t (20)

t (5)
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 Consider for example the analysis of a fl uted point from Sheriden Cave, Ohio, 
presented by Redmond and Tankersley  (2005) . Morphological comparisons intui-
tively suggested to the researchers that this point resembled the small fl uted 
Paleoindian points recovered from the nearby Gainey Site. The researchers wanted 
to evaluate this hypothesis of interest using quantitative methods to determine if 
the point ’ s length, basal width, and other measurements were statistically similar 
to the Gainey Site sample (Redmong and Tankersley 2005:518). This involved 
evaluating the null hypothesis  H  0    :    Y  Sheriden     =      Ȳ    Gainey  for these various measurements. 
To illustrate this process, we consider the maximum length measurement, which 
for the Sheriden Cave point is 35.6   mm and for the Gainey Site sample ( n     =    9) is 
  Ȳ       =    47.8   mm with  s     =    6.5   mm. The alpha value is set at .05. Because we do not have 
  σ  , we will need to use the t - distribution to evaluate this hypothesis. 

 Using Equation  (8.5) , we can determine a t - score as:

   t
Y Y

s
i= −

 

   t = −36 5 47 8

6 5

. .

.
 

   t = −1 738. .   

 The negative sign indicates that the Sheriden point is smaller than the average 
Gainey Site small fl uted point, but is this difference statistically signifi cant? We can 
determine this using Appendix  B  to identify the critical value. Determining critical 
values using Appendix  B  is quite different from the table in Appendix  A  for the 
standard normal distribution. Appendix  A  provided areas under a single curve that 
allows us to calculate probabilities. This is possible because the standard normal 
distribution truly is a single distribution. However, the t - distribution is actually a 
bunch of similar, but slightly different distributions based on the degrees of freedom. 
As a result, the probabilities under the curve differ as   ν   changes, meaning that it 
would be necessary to create a different probabilities table for  ν     =    1,   ν      =    2,   ν      =    3, 
and so forth until   ν      >    120, when we could simply revert to the standardized normal 
distribution. 

 Listing 120 different tables for the t - distribution seems excessive, so a more 
useful alternative is simply to provide the critical values for the t - score that corre-
spond to given probabilities and degrees of freedom. This is what Appendix  B  does. 
Various alpha values are listed at the top of the table. Values for the degrees of 
freedom are listed on the left - hand side. The critical value for a given test is the 
value that corresponds with the degrees of freedom determined using Equation 
 (8.4)  and the appropriate   α   value. For this example,   α      =    .05 and   ν      =    9    −    1    =    8. The 
corresponding critical value displayed in Appendix  B  is 2.306. As with the Z - score, 
the negative sign for our t - score refl ects only the direction of difference, so we can 
discard it when comparing it to a critical value. Our calculated t - score of 1.738 
is less than the critical value of 2.306, meaning that we cannot reject the null 
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hypothesis. There is no statistically signifi cant difference between the maximum 
length of the Sheriden Cave point and the average maximum length of the small 
fl uted points from the Gainey Site, a conclusion that supports Redmond and 
Tankersley ’ s  (2005)  hypothesis of interest. The authors then build on this relation-
ship to make various conclusions concerning the Paleoindian occupation of Ohio. 

 The null hypothesis can also be easily evaluated using confi dence intervals. The 
upper and lower confi dence intervals for evaluating  H  0    :    Y i      =      Ȳ    are calculated as 
  Ȳ       ±     t  [    α   , ν ]   s . The term  t  [    α   , ν ]   simply means the t - value for a given alpha value and 
degrees of freedom. In this case,  t  [.05,8]  equals 2.306, so  L  1     =    47.8    −    (2.306    ×    6.5)    =    
32.8   mm and  L  2     =    47.8    +    (2.306    ×    6.5)    =    62.8   mm. Given that  Y  Sheriden     =    35.6   mm 
falls between these two limits, we again cannot reject the null hypothesis and con-
sequently conclude that the Sheriden fl uted point ’ s maximum length is consistent 
with the small fl uted points from the Gainey Site. 

 Archaeologists also perform comparisons between a sample mean and   μ   using 
 s  Ȳ     to approximate   σ   Ȳ    , typically when they are predicting some   μ   value based on 
their knowledge of the world or are using previously derived means (especially from 
published reports based on unpublished data). In these cases, the archaeologist 
wishes to determine whether   Ȳ    is substantially different than   μ  , but will need to 
evaluate this proposition using  s  Ȳ     for the sample because   σ   Ȳ     is not known. (Of 
course, when we know   σ   Ȳ    , we can simply calculate a Z - score as outlined above.) 

 We will illustrate such a case using Nelson  et al.  ’ s  (2006)  analysis of Mimbres 
sites from southwestern New Mexico. Nelson and her colleagues wished to study 
residential mobility strategies by examining differences in room use and repair 
through time. They present evidence concerning the density of postholes in rooms, 
as well as other variables that they argue refl ect the presence and extent of room 
modifi cation and repair (Nelson  et al.   2006 :416 – 17). Posthole density for the 
Classic Mimbres rooms ( n     =    30 rooms) averaged 1.16 postholes per m 2  with a 
standard deviation of .73 postholes per m 2 . They are interested in determining if 
this is signifi cantly different than the later Reorganization Phase rooms that aver-
aged .78 postholes per m 2 . Treating the Reorganization Phase sample as a popula-
tion, this hypothesis of interest can be evaluated using the null hypothesis 
 H  0    :     Ȳ    Mimbres     =      μ   Re organization . In this case, the t - score can be calculated using Equation 
 (8.6)  as:

   t
Y

sY

= − μ
 

   t = −
( )
1 16 78

73 30

. .

.
 

   t = 2 851.   

 The degrees of freedom for this comparison are 30    −    1    =    29. The critical value 
(again from Appendix  B ) is  t  [.05,29]     =    2.045. The computed t - value is larger than the 
critical value, so we reject the null hypothesis, just as Nelson and her colleagues did. 
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There are in fact differences between the time periods in regards to room repair 
and modifi cation. Nelson  et al.   (2006)  use this information to construct arguments 
about changing settlement and movement patterns through time. 

 Of course, the null hypothesis could also be evaluated using confi dence limits, 
determined as   Ȳ       ±    t   [    α , ν    ]  s  Ȳ    . Here,  L  1     =    1.16    −    (2.045    ×    .133)    =    .89 postholes per m 2  
and  L  2     =    1.16    +    (2.045    ×    .133)    =    1.43 postholes per m 2 . This range does not encom-
pass   μ      =    .78 postholes per m 2 , again prompting us to reject the null hypothesis. 

 Note that we treated both of the Mimbres examples as two - tailed tests (see Figure 
 8.1 ), that is, as evaluating whether the mean of the Mimbres period rooms was 
signifi cantly larger or smaller than   μ   for the Reorganization Phase. Appendix  B  is 
in fact organized for two - tailed tests, which are most common. However, the table 
can be easily adapted for one - tailed hypotheses tests, the topic to which we 
now turn.  

  Testing One - Tailed Null Hypotheses 

 Often the archaeologist ’ s hypothesis of interest is focused on whether two or more 
properties are equal to one another. In these cases there is no initial concern about 
the direction of the difference and null hypotheses such as  H  0    :     Ȳ       =      μ   are appropri-
ate. As just mentioned, such tests are two - tailed tests as illustrated in Figure  8.1 . On 
occasion, though, an archaeologist may have a hypothesis of interest that specifi es 
the direction of difference that is considered analytically signifi cant. The null 
hypothesis will therefore need to consider whether a difference in one direction is 
present. For example, an archaeologist proposes that habitations built in elevated 
portions of the site are high status as refl ected by larger room sizes. The null hypoth-
esis  H  0    :     Ȳ       =      μ   is no longer adequate, because it does not refl ect the hypothesis of 
interest, which instead focuses on whether   Ȳ    for the elevated rooms is  larger  than 
  μ  , not  different  than   μ  . Rephrasing the null hypothesis as  H  0    :     Ȳ       ≤      μ   better refl ects 
the hypothesis of interest, in that the failure to reject the null hypothesis invalidates 
the hypothesis of interest, whereas rejecting the null hypothesis lends support to 
the archaeologist ’ s hypothesis. This means though, that probabilities on only one 
side of the mean will be considered signifi cant for rejecting the null hypothesis. 
Thus, instead of having areas of rejection in both tails of the distribution, the area 
of rejection is concentrated in only one tail (compare Figure  8.1  with Figure  8.8 ).   

 There is a problem using the critical values listed in Appendix  B  to evaluate the 
revised null hypothesis, however. This (and most such tables) assume that the 
hypothesis is a two - tailed test. As a result, the table actually reports a value corre-
sponding to a probability that is  half  of the actual alpha value (again, consult Figure 
 8.1 ). How can the critical values be changed to refl ect a one - tailed test, in which 
the entire area of rejection is focused in a single tail of the distribution? Quite easily, 
in that all we need to do is double the actual alpha value when consulting the table. 
Thus, the critical values for two - tailed tests with   α      =    .10 in Appendix  B  correspond 
exactly with the critical values for one - tailed tests with   α      =    .05. 
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 Using the Mimbres posthole analysis to demonstrate a one - tailed test, imagine 
that Nelson  et al.   (2006)  were interested in determining if there was  an increase  in 
the number of postholes in the Reorganization Phase relative to the Mimbres Phase. 
The null hypothesis would become  H  0    :     Ȳ       ≥      μ  . Rejecting this null hypothesis would 
support the hypothesis of interest, whereas failing to reject the null hypothesis 
would undermine the hypothesis of interest. We would go about calculating the 
t - score just as we did above, again concluding that the value was 2.851. However, 
the null hypothesis now specifi es a direction of difference, refl ecting a one - tailed 
test. Here, it will only be rejected if   μ   is greater than   Ȳ   , meaning that the critical 
t - Value  must  be negative (Figure  8.9 ). Further, all of the region of rejection must 
now be focused in that lower tail of the distribution. Thus, the critical value for 
  α      =    .05 with   ν      =    29 corresponds to the listed critical value of   α      =    .10 with   ν      =    29 
in Appendix  B . The corresponding critical value is thus  − 1.699. The t - value of 2.851 
is larger than  − 1.699, preventing us from rejecting the null hypothesis, despite the 
fact that we did reject in for  H  0    :     Ȳ       =      μ   (see Figure  8.9 ).   

 As the above example illustrates, the devil does indeed live in the statistical 
details, and the difference between rejecting and not rejecting a null hypothesis 
often is contingent on how the hypothesis is phrased. Every analyst should take the 
time to clearly state the hypothesis of interest and then be certain that their null 

     Figure 8.8     Region of rejection for a one - tailed test corresponding with  H  0    :     Ȳ       ≤      μ    
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     Figure 8.9     Critical value and area of rejection for  H  0    :     Ȳ       ≥      μ    
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hypothesis adequately refl ects it. Only by doing this can you be certain of the rigor 
of your quantitative analysis and thereby use this powerful tool to help build the 
archaeologically relevant argument you seek to pursue. In the next chapter, we will 
further expand on some of these themes, especially as they relate to the concept of 
power. 

   Practice Exercises 

    1     Defi ne and differentiate between the following:  

  (a)     standard deviation and standard error  

  (b)     the grand mean,   μ  , and   Ȳ   .  

  (c)     standardized normal distribution and the t - distribution  

  (d)     confi dence limits and critical values  

  (e)     one - tailed and two - tailed tests.    

  2     When would you wish to use the t - distribution instead of the standardized 
normal distribution? When would you wish to use the standard error 
instead of the standard deviation?  

  3     Determine whether you should use the standard error or the standard 
deviation to evaluate the following null hypotheses: 

   (a)      H  0    :    Y i      =      μ    

  (b)      H  0    :     Ȳ       =      μ    

  (c)      H  0    :    Y i      =      Ȳ       

  4     Determine whether you should use the standardized normal distribution 
or the t - distribution to evaluate the following null hypotheses: 

   (a)      H  0    :    Y i      =      μ   where you know   σ    

  (b)      H  0    :     Ȳ       =      μ   where you are using  s  to estimate   σ    

  (c)      H  0    :    Y i      =      μ   where you are using  s  to estimate   σ    

  (d)      H  0    :     Ȳ       =      μ   where you know   σ    

  (e)      H  0    :    Y i      =      Ȳ    where you are using  s  to estimate   σ      
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  5     Prasciunas  (2007)  presents the results of an experimental comparison of 
the effi ciency in terms of the amount of usable cutting edges for fl akes 
produced using bifacial and generalized cores. Below is the data for the 
bifacial cores. 

   (a)     Evaluate the null hypothesis (  α      =    .05) that the average weight of an 
exhausted bifacial core is statistically identical to the average weight 
of exhausted generalized cores (  μ   gen     =    57.65).  

  (b)     Evaluate the null hypothesis (  α      =    .05) that the average weight of an 
exhausted bifacial core is equal to or greater than the average weight 
of exhausted generalized cores (  μ   gen.     =    57.65).  

  (c)     How did shifting the null hypothesis from a two - tailed to a one -
 tailed test impact the outcome? 

   Core     End weight  

  B1    131.41  
  B3    150.35  
  B4    125.41  
  B5    110.32  
  B6    170.27  
  B7    131.88  
  B8    160.69  
  B9    135.66  
  B10    132.48  
  B11    150.44  

  6     Evaluate the null hypothesis that a historic settlement where the average 
house size for 11 homes is   Ȳ       =    312   m 2  and  s     =    43   m 2  is consistent with a 
mean house size of 325   m 2  using a critical value derived from the 
t - distribution (  α      =    .05). Re - evaluate the null hypothesis using confi dence 
intervals. Did you reach the same conclusion in both cases?  

  7     A sample of 13 ceramic pipes has an average weight of 43   g with a standard 
deviation of 4   g. Using confi dence intervals (  α      =    .05), determine which of 
the following ceramic pipes are consistent with the sample: 29   g, 50   g, 47   g, 
64   g, 22   g, 33   g, and 56   g.            
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  9 

Hypothesis Testing  III : Power     

     Now that you understand the fundamentals of hypothesis testing, it is possible to 
fully examine the relationship between Type I and Type II errors. As previously 
discussed in Chapter  7 ,  β  or Type II errors occur when we fail to reject the null 
hypothesis when it is false and another hypothesis is true. A clear relationship exists 
between Type I and Type II errors. As we reduce the probability of committing a 
Type I error by expanding our confi dence limits, we increase the probability of 
accepting a null hypothesis when it is false  –  making a Type II error. Likewise, if 
we decrease the probability of making a Type II error by shrinking our confi dence 
limits, we increase the probability of rejecting a null hypothesis when it is true  –  a 
Type I error. This relationship will be easier to understand with an example. 

 Let us begin with two hypothetical distributions of maximum rim thickness for 
pots, both of which have   σ      =    0.5   mm but one which has   μ   1     =    7   mm and the other 
  μ   2     =    8   mm. Given   μ   1     =    7   mm, let ’ s say we wish to evaluate the null hypothesis 
 H  0    :    Y i      =      μ   1 , where the alternate hypothesis is  H a     :    Y i      =      μ   2 . The null hypothesis can 
be tested by placing confi dence limits around   μ   1  as follows: 

  Lower confi dence limit    =      μ   1     −    1.96  σ      =    7    −    1.96(.5)    =    6.02   mm  
  Upper confi dence limit    =      μ   1     +    1.96  σ      =    7    +    1.96(.5)    =    7.98   mm    

 Ninety - fi ve percent of the distribution associated with   μ   1     =    7   mm falls within this 
range, but what about the alternate hypothesis  H a     :    Y i      =      μ   2 ? As illustrated in Figure 
 9.1 , there is a considerable amount of the distribution corresponding with   μ   2     =    8   mm 
in the acceptance region for  H  0    :    Y i      =      μ   1 . This means that it is very likely that we will 
not reject the null hypothesis when  H a     :    Y i      =      μ   2  is true. The area of the distribution 
  μ   2  inside the confi dence limits of  H  0    :    Y i      =      μ   1  is  β , the probability of failing to reject 
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     Figure 9.1        β  associated with  H a     :    Y i      =      μ   2   
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     Figure 9.2     Illustration of  β  decreasing as  α  increases  
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the null hypothesis when it is false and  H a     :    Y i      =      μ   2  is true (Figure  9.1 ). When reject-
ing the null hypothesis, we would conclude that  Y i   is associated with some alternate 
distribution such as   μ   2 , so the probability of committing a  β  error doesn ’ t matter. 
However, if we fail to reject  H  0    :    Y i      =      μ   1 , then we must be concerned about the likeli-
hood that  Y i   is actually a part of some alternate distribution (in this case   μ   2     =    8   mm) 
but happens to fall within the region of acceptance by chance. As illustrated in 
Figure  9.1 , there is indeed a pretty good chance that we will not reject the null 
hypothesis when it is actually false and  H a     :    Y i      =      μ   2  is true. Of course, saying that 
there is  “ a pretty good chance ”  of committing a Type II error is ambiguous, and 
we will demonstrate how we can determine this probability directly.   

 It should be clear, though, that the probability of committing a Type II error is 
a signifi cant issue. Just because we fail to reject the null hypothesis doesn ’ t mean it 
is true. One way to decrease  β  is of course to increase  α  so that the confi dence limits 
are narrower. This will decrease the area of overlap between the second distribution 
and the acceptance region (Figure  9.2 ). Increasing  α  also makes it more likely to 
commit a Type I error, though, which presents its own problem in evaluating null 

c09.indd   132c09.indd   132 8/26/2010   1:54:49 PM8/26/2010   1:54:49 PM



 Hypothesis Testing III: Power 133

hypotheses. Thus, we are caught between the proverbial  “ rock ”  and the  “ hard 
place ” ; setting  α  so that we have a good probability of not rejecting a null hypothesis 
when it is true increases the likelihood of mistakenly failing to reject the null 
hypothesis when in fact it is false. Setting  α  so as to decrease the likelihood of mis-
takenly failing to reject a null hypothesis increases the likelihood that we will reject 
the null hypothesis when it is true. Which is better, minimizing  α  or  β ? There is no 
good rule of thumb. It depends on the research design and the implications that 
making each of these errors has on the analysis. Ideally, we would like the probabil-
ity of making either a Type I or Type II error to be quite small. However, this is 
not always possible. We must therefore weigh the results of making both types of 
errors within the context of our specifi c analysis.   

 An additional point to keep in mind is that  β  is unique for each alternate hypoth-
esis. While each null hypothesis has only one alpha level,  β  must be considered for 
each and every alternate hypothesis. For example, there may be a large amount of 
overlap between the acceptance region for  H  0    :    Y i      =      μ   1  and the alternate hypothesis 
 H  1    :    Y i      =      μ   2 , but little overlap between the null hypothesis and  H  2    :    Y i      =      μ   3 , where 
  μ   3     =    16   mm and   σ      =    .5   mm.  β  then may be very large between  H  0    :    Y i      =      μ   1  and 
 H  1    :    Y i      =      μ   2 , but almost non - existent between  H  0    :    Y i      =      μ   1  and  H  2    :    Y i      =      μ   3  (Figure 
 9.3 ). In fact, the only reason we consider it only  “ almost ”  non - existent is because 
the two distributions are hypothetically asymptotic to infi nity  –  an assumption of 
the normal distribution.    

  Calculating  β  

 Calculating  β  is simple, once the null hypothesis ’ s region of acceptance and one or 
more specifi c alternate hypotheses have been defi ned. To calculate  β , use the stand-
ardized normal distribution or the t - distributions to determine the area of the 
alternate distribution that falls within the confi dence limits. For example, all three 
of our hypothetical distributions above (  μ   1   = 7   mm,   μ   2     =    8   mm, and   μ   3   = 16   mm) 
have standard deviations of 0.5   mm. As demonstrated, we can calculate the upper 
and lower confi dence limits for  H  0    :    Y i      =      μ   1  using   α      =    0.05 as 7    ±    1.96  σ  , which pro-
duces a lower limit of 6.02   mm and an upper limit of 7.96   mm. Figure  9.3  illustrates 

     Figure 9.3      β  associated with evaluating  H  0    :    Y i      =      μ   1  where  H  1    :    Y i      =      μ   2  and  H  2    :    Y i      =      μ   3   
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these confi dence limits, and their relationships to the means of the other two dis-
tributions being considered. We now have both   α   (specifi ed at .05) and the area of 
acceptance for  H  0    :    Y i      =      μ   1 . 

 To determine our two  β  values for  H  1    :    Y i      =      μ   2  and  H  2    :    Y i      =      μ   3  we must identify 
the areas of the distributions associated with   μ   2  and   μ   3  that fall within the accept-
ance region for the null hypothesis. This can be calculated by computing the Z - score 
for each distribution corresponding with the upper and lower limits of the accept-
ance region of  H  0    :    Y i      =      μ   1 .  β  will be the area under the two alternate distributions 
between the two values. 

 For  H  1    :    Y i      =      μ   2 , the Z - scores are:

   Z
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Z= − = − = − = − = − = −2 1or and or
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 For  H  2    :    Y i      =      μ   3 , the Z - scores are:

   Z Z= − = − = − = −7.98
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 Remember that positive and negative Z - values refl ect only whether the variates are 
greater or lesser than   μ  . Using Appendix  A  (areas under the normal distribution), 
we fi nd that the tabled values of  − .04 and  − 3.96 correspond to areas under the curve 
of .016 and .500, respectively. These values refl ect the distance from   μ   2     =    8   mm, so 
 β , the distance between them, is calculated as  β     =    .50    −    .016    =    .486 (Figure  9.4 ). 
This value refl ects that 48.6% of the variates drawn from the population   μ   2     =    8   mm 
will be in the acceptance region, which makes them indistinguishable from the 
variates that are members of   μ   1     =    7   mm when evaluating the null hypothesis 
 H  0    :    Y i      =      μ   1  using  α     =    .05. Put another way, we will fail to reject the null hypothesis 
roughly 49% of the time we encounter a member of distribution   μ   2     =    8   mm. If we 

     Figure 9.4     Calculation of  β  for the alternate hypothesis  H  1    :    Y i      =      μ   2   
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fail to reject  H  0    :    Y i      =      μ   1 , then it is possible that  Y i   is from the population   μ   1     =    7   mm 
 or    μ   2     =    8   mm.   

 In contrast, for  H  2    :    Y i      =      μ   3 , the values from Appendix  A  both correspond to .500. 
This means that  β     <    .001, and the small portion of the asymptotic left tail that does 
fall within the acceptance region for  H  0    :    Y i      =      μ   1  is too small to meaningfully measure 
for our purposes. The likelihood of accepting the null hypothesis  H  0    :    Y i      =      μ   1  when 
in fact  H  2    :    Y i      =      μ   3  is true is extremely small. 

 What do the  β  values mean in real - world terms? Well, archaeologists are often 
interested in both differences and similarities within their data. When a null hypoth-
esis is rejected, then it can be concluded, at a previously specifi ed level of certainty, 
that  Y i  is not  a member of the distribution specifi ed in the null hypothesis. But if 
we  “ accept ”  the null hypothesis, can we conclude that  Y i  is  a member of the distri-
bution specifi ed in the null hypothesis? In this case, we can be quite certain that 
 H  2    :    Y i      =      μ   3  is unlikely to be true, given that very few members of   μ      =    16   mm fall 
within the region of acceptance. However, nearly half of the distribution associated 
with   μ   2     =    8   mm does. This means that a poorly trained or lazy archaeologist who 
simply does accept that  H  0    :    Y i      =      μ   1  is true every time he or she fails to reject the null 
hypothesis will be wrong 48.6% of the time when  H  1    :    Y i      =      μ   2  is actually true. 
We don ’ t know about you, but that is a higher level of error than we fi nd comfort-
able when making statements in press. Failing to acknowledge and measure 
the probability of committing a Type II error will lead (and has led) fellow archae-
ologists to make the mistake of concluding that all variates within the acceptance 
region are members of the same population when they likely are not, which in 
turn can lead to poor reasoning and faulty conclusions as analytically distinct 
distributions are collapsed into each other. Again,  “ failing to reject ”  the null hypoth-
esis does not indicate that the null hypothesis is true, but simply indicates it remains 
plausible. We should also determine which alternate hypotheses are also plausible. 
While the example above used the Z - score, power can just as easily be determined 
using many of the other distributions such as the t - distribution we introduce in 
this text. 

 Returning to our measurements of  β , we found that  β  for  H  2    :    Y i      =      μ   3  is effectively 
zero, but that  β  for  H  1    :    Y i      =      μ   2  is roughly 49%. It intuitively seems that testing 
 H  0    :    Y i      =      μ   1  is a powerful means of differentiating between the members of the dis-
tributions   μ   1  and   μ   3 , but isn ’ t a powerful test for differentiating between   μ   1  and   μ   2 . 
Further, knowing the power of the test could be analytically useful when our 
hypothesis of interest is phrased such that some differences between means are 
important, but others aren ’ t. For example, if the three means refl ect some attribute 
of cultural historical types, there could easily be a situation where the archaeological 
context and other temporally diagnostic materials indicate that  H  2    :    Y i      =      μ   3  is a 
plausible alternate hypothesis but that  H  1    :    Y i      =      μ   2  is not. This in turn means that 
our analysis of  β  indicates that the signifi cant overlap between distributions associ-
ated with  H  0    :    Y i      =      μ   1  and  H  1    :    Y i      =      μ   2  is in practicality insignifi cant. Statisticians and 
other scientists have recognized this aspect of  β , and have consequently developed 
a formalized means of stating a test ’ s  power , which will be illustrated below.  
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  Statistical Power 

 The power of a statistical test is derived using the formula: Power    =    1    −     β , and is a 
probabilistic statement of the ability of a particular statistical test to correctly dif-
ferentiate between two distributions, samples, or populations. Formally, the power 
of the test is defi ned as  the probability of rejecting the null hypothesis when it is false 
and the alternate hypothesis is true . The greater the power, the more certainty there 
is that a statistical test can accurately differentiate between the members of the dif-
ferent distributions. 

 The preceding example considering  H  0    :    Y i      =      μ   1  and  H  1    :    Y i      =      μ   2  illustrates the 
relationship between  β  and power (Figure  9.5 ). Using the formula Power    =    1    −     β , 
we fi nd that the power between the hypotheses  H  0    :    Y i      =      μ   1  and  H  1    :    Y i      =      μ   2  is .514. 
Given that  β     <    .001, the power between the hypotheses  H  0    :    Y i      =      μ   1  and  H  2    :    Y i      =      μ   3  
is  > .999. Thus, we can accurately differentiate only 51.6% of the variates belonging 
to the distribution   μ   2     =    8   mm when evaluating the null hypothesis  H  0    :    Y i      =      μ   1 . The 
rest of the time we will be unable to determine if the variates belong to   μ   1     =    7   mm 
or   μ   2     =    8   mm. In contrast, we can easily differentiate between effectively all of the 
variates associated with   μ   1     =    7   mm and   μ   3     =    16   mm.   

  Increasing the  p ower of a  t est 

 As you can see from the example, if the degree of the overlap of the two distribu-
tions is large, the power of a statistical test differentiating between the alternate 
hypotheses is small (e.g.,  H  0    :    Y i      =      μ   1  and  H  1    :    Y i      =      μ   2 ). If the degree of the overlap of 
the two distributions is small, the power of a statistical test differentiating between 
the alternate hypotheses is large (e.g.,  H  0    :    Y i      =      μ   1  and  H  2    :    Y i      =      μ   3 ). 

 Ideally, we would like our tests to be as powerful as possible. A test ’ s power can 
be increased using the same means for tightening our confi dence limits as previ-

     Figure 9.5     Power for the null hypothesis  H  0    :    Y i      =      μ   1  relative to  H  1    :    Y i      =      μ   2   
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ously discussed, because the test ’ s power is directly controlled by the size of the 
confi dence limits. The easiest way is to increase  α , but this solution has the disad-
vantage of increasing the frequency of Type I errors. Another useful strategy, espe-
cially when dealing with distributions of means, is to increase the sample size, which 
often results in a tighter distribution. As a result, the alternate distributions will 
include less overlap, which in turn increases the power of the test. We can also 
occasionally increase a test ’ s power by redefi ning the null hypothesis (e.g., differ-
entiating between sexes for sexually dimorphic species). However, it is always 
important to remember that the null hypothesis must be clearly related to the 
hypothesis of interest. Redefi ning a null hypothesis so that it results in a powerful 
test, but no longer refl ects the hypothesis of interest, doesn ’ t provide any analytic 
benefi t at all.   

  Calculating Power: An Archaeological Example 

 An archaeological example will help demonstrate the utility of the concept of power 
and the impact that  β  can have on archaeological research. Anthropologists have 
noted a relationship between the organization of craft production and various 
cultural attributes related to political and economic complexity (e.g., Costin and 
Hagstrum,  1995 ). Craft production in politically complex groups tends to be domi-
nated by specialists making items for use by people outside of their immediate 
household. Craft production in politically simple groups tends to be dominated by 
generalized, household production. Likewise, ethnoarchaeologists have found that 
the products of specialists tend to be highly morphologically standardized when 
compared with the products of generalized (non - specialist) producers. This rela-
tionship, dubbed the standardization hypothesis, allows archaeologists to study the 
organization of craft production using measures of morphological and composi-
tional variation in artifact assemblages. 

 The following table (Table  9.1 ) provides a list of the coeffi cient of variation ( CV ) 
for the maximum ceramic vessel diameter in samples from ethnographically studies 
of modern groups with specialized and generalist ceramic production (Crown, 
 1995 : 150 – 1). These data have been used to argue that ceramics produced by spe-
cialists will be morphologically characterized by attributes producing  CV s equal to 
or smaller than 10% whereas generalized producers manufacture ceramics charac-
terized by morphological attributes associated with  CV s larger than 10% (e.g., 
Benco,  1988 ; Crown,  1994 : 116, 1995: 148 – 9; Longacre  et al. ,  1988 ). This 10% 
breaking point does seem intuitively meaningful; most pottery samples made by 
specialists have coeffi cients of variation less than 10% while those made by non -
 specialists tend to have coeffi cients of variation greater than 10%. Sill, how certain 
are archaeologists about our conclusions derived using this rule of thumb? What is 
the likelihood that the researcher is incorrect about the organization of production? 
We don ’ t know by simply looking at the table. It  looks like  the 10% cutoff is very 
powerful for differentiating between the two groups of potters, but there are obvious 
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  Table 9.1    Coeffi cients of variation for ceramics produced by specialists and 
non - specialists 

   Corrected  CV  of maximum 
diameter  

   Group     Form  

  Specialists  
  .04    Paradijon    Small – medium cooking vessels  
  .03    Paradijon    Medium cooking vessels  
  .04    Paradijon    Medium – large cooking vessels  
  .11    Paradijon    Small fl ower pots  
  .10    Paradijon    Medium fl ower pots  
  .08    Paradijon    Large fl ower pots  
  .07    Paradijon    Extra large fl ower pots  
  .15    Amphlett Island    Small household cooking vessels  
  .08    Amphlett Island    Ceremonial cooking vessels  
  .06    Amphlett Island    Ceremonial cooking vessels  
  .18    Amphlett Island    Large household cooking vessels  
  .15    Sacoj Grande    Medium cooking vessels  
  .06    Sacoj Grande    Medium cooking vessels  
  .07    Sacojito    Medium water containers  
  .05    Sacojito    Large water containers  
  .02    Durazno    Small water containers  
  .03    Durazno    Medium – large water containers  
  .05    Duranzo    Medium – large water containers  
  .14    Ticul    Plant pots  
  .06    Ticul    Decorative vessels  
  .18    Ticul    Small food bowl  

  Generalist (household production)  
  .12    Kalinga    Medium vegetable pots  
  .10    Kalinga    Medium rice bowls  
  .13    Goodenough Island    Small cooking vessels  
  .12    Goodenough Island    Small cooking vessels  
  .12    Goodenough Island    Small cooking vessels  
  .16    Shipibo - Conibo    Small cooking vessels  
  .22    Shipibo - Conibo    Medium cooking vessels  
  .12    Shipibo - Conibo    Large cooking vessels  
  .16    Shipibo - Conibo    Water containers  
  .18    Shipibo - Conibo    Water containers  
  .18    Shipibo - Conibo    Water containers  

  Source :   Crown, Patricia  (1995) . The production of the Salado polychromes in the American 
Southwest. In B.J. Mills and P.L. Crown (eds.),  Ceramic Production in the American Southwest  
(pp. 150 – 1). Tucson: The University of Arizona Press. 
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exceptions in Table  9.1 . Thus, we know that there is at least some likelihood that 
assemblages made by generalists and specialists will be misclassifi ed when using 
10% as a demarcation. Shouldn ’ t archaeologists using these data to help determine 
the organization of production know what this likelihood is? An error created while 
studying the nature of craft specialization can lead to errors in reconstructing 
a culture ’ s social differentiation, political complexity, economic organization, 
resource distribution, class distinctions, and so forth. The likelihood of committing 
a Type II error when using the standardization hypothesis consequently is not a 
trivial issue. Archaeologists using this methodology need to take the time to calcu-
late  β  in order to ascertain the probability that they incorrectly classify a sample 
made by specialists as the product of non - specialists and vice versa.   

 We can easily determine the probability of committing a  β  error using the 
Z - score. The  β  error is the portion of the distribution of specialists with a  CV  greater 
than 10% and the proportion of generalized producers with a  CV  equal to or less 
than 10% (i.e., the area of each distribution in the acceptance region of the other 
distribution). For ceramics made by specialists, the average  CV  is 8.33% (  μ   spec   =  
8.33%) and the standard deviation is 4.97% (  σ   spec   =  4.97%). For generalized pro-
ducers,   μ   gen     =    14.63% and   σ   gen     =    3.64%. The relationships between the two distri-
butions and the 10% cutoff value is depicted in Figure  9.6 .   

 To use the Z - score to calculate the power of the tests, let us begin with the null 
hypothesis  H  0    :    Y i      =      μ   spec  where  H   a     :    Y i      =      μ   gen . Determining  β  requires that we deter-
mine the probability of concluding that a ceramic was made by specialists, when in 
actuality it had been made by generalized producers (Figure  9.7 ). To do so, we use 
the Z - score to calculate the proportion of the generalist producer distribution that 
is below 10%. The Z - score is calculated as:

   Z
Yi=

−
= − = −

μ
σ

gen.

gen.

10 14 63

3 64
1 27

.

.
.     

     Figure 9.6     Distribution of coeffi cients of variation associated with pottery assemblages 
made by specialists and generalized producers  
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 Appendix  A  shows us that a Z - score of  − 1.27 corresponds to an area of 0.3980. 
 β  is therefore 0.5    −    0.398    =    0.102. The power of the test is 1    −     β     =    1    −    0.102    =    0.898 
(Figure  9.7 ). Clearly, the cutoff point of a  CV  of 10% is fairly powerful when dis-
tinguishing specialist from non - specialist production. Only 10% of the time will 
pottery produced by generalists be incorrectly identifi ed as the product of specialists 
meaning that 90% of the time the test will properly reject the null hypothesis when 
in fact it is false. Is this power suffi cient? That is up to the investigator conducting 
the analysis, but 90% odds is pretty good, and we suspect that most archaeologists 
would feel comfortable with this result. At least now the researcher can directly 
address the issue. 

 But what about the power for the null hypothesis  H  0    :    Y i      =      μ   gen  where  H   a     :    Y i      =      μ   spec . 
We can also use the Z - score to determine the probability of concluding that a 
ceramic was made by generalist producers, when in actuality it had been made by 
specialists. Now we use the Z - score to determine the portion of the distribution of 
ceramics manufactured by specialists with a coeffi cient of variation greater than 
10% (i.e., the area of the specialist distribution in the acceptance region of the 
generalized producers) (Figure  9.8 ). The Z - score is calculated as:

   Z =
−

= − =
10

0 34
%

.
μ

σ
spec.

spec.

10 8.33

4.97
    

 This Z - score corresponds to an area of 0.1331 from the mean. 
 To determine the area in the distribution of specialists that is greater than 10% 

then we must subtract 0.1331 from 0.5. The resultant  β  error, 0.3669, is the prob-
ability of incorrectly concluding that generalized producers made a sample of pots 
when they were actually manufactured by specialists. In other words, 36.7% of the 
time we would expect to incorrectly conclude ceramic vessels made by specialists 
were made by generalists. The power of the test is 1    −     β     =    1    −    0.3669    =    0.6331 

     Figure 9.7     Illustration of  β  and the power associated with determining that an assemblage 
was made by specialists ( H  0    :    Y i      =      μ   spec. )  
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(Figure  9.8 ). Only about 63% of the time will we correctly conclude that specialists 
were responsible for the assemblages they indeed did produce. In this instance, we 
suspect that many archaeologists would fi nd this test not suffi ciently powerful for 
drawing substantial conclusions about past craft organization. 

 Taking the powers we calculated above, the implications for the use of coeffi -
cients of variation to differentiate between ceramics made by specialists and gener-
alists are quite straightforward. First, we are 90%   certain given these data that a 
coeffi cient of variation below the cutoff point of 10% represents ceramics made by 
specialists. Most archaeologists would likely fi nd this to be an appreciable, but 
acceptable, likelihood for error, and would be willing to accept the argument that 
assemblages with CVs less than 10% were made by specialists. This argument would 
become even more persuasive if there were additional lines of evidence indicating 
craft specialization (e.g., craft barrios, expansive workshops). We are far less certain 
that ceramics with coeffi cients of variation greater than 10% were made by general-
ized producers, though. This area does contain 90% of the generalized producers 
but it also includes 37% of the assemblages manufactured by specialists. Thus, we 
expect to misclassify roughly two - fi fths of the assemblages made by specialists. This 
large  β  error is probably greater than most researchers would fi nd acceptable, and 
would probably cause many archaeologists to have little confi dence when conclud-
ing that generalists made an assemblage. At the least, a rigorous argument would 
need additional lines of evidence supporting generalized craft production (e.g., kilns 
within individual households). 

 In addition to relying on corroborating, independent evidence, researchers inter-
ested in using the standardization hypothesis to identify the presence of generalized 
production could potentially construct a more powerful test in a number of ways. 
First, we could increase the cutoff value from 10% to some higher number such as 
12%. This would increase the power of the test for determining generalized produc-
tion, but it would decrease the power of the test when evaluating specialists ’  pro-
duction considerably. In other words, increasing the cutoff point would decrease 
the probability that we would incorrectly conclude ceramics made by specialists 

     Figure 9.8     Illustration of  β  and the power associated with determining that an assemblage 
was made by generalists ( H  0    :    Y i      =      μ   gen. )  
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were made by generalists, but would increase the probability of incorrectly conclud-
ing ceramics made by generalists were made by specialists. 

 We could also defi ne an  “ indeterminate ”  area of CV values that may represent 
either specialist or generalist production. For example, we could continue to use a 
10% cutoff to classify assemblages as the product of specialists, but classify assem-
blages with CVs of between 10% and 14% as  “ uncertain ”  or  “ indeterminate ”  in that 
they cannot be defi nitively associated with either specialists or non - specialists. 
Ceramic assemblages with CVs greater than 14% could then be classifi ed as the 
products of generalists. Doing so would maintain the power of the test when con-
cluding that ceramics were made by specialists at 10%, but would increase the 
power of the test when concluding that ceramics were made by generalists to 87%, 
which is a considerable improvement over the original 63%. However, this would 
cause about 24% of the distribution associated with specialists and 33% of the 
generalist distribution to be considered indeterminate (i.e., 24% of the specialist 
distribution and 33% of the generalist distribution fall between 10% and 14%). (We 
didn ’ t bother including the Z - score calculations for the numbers presented above, 
but you can calculate them easily, if you care to do so.) 

 Either of these alternatives are reasonable, and we will leave it to individual 
researchers to decide how best to maximize the power of their statistical tests. 
However, the consideration of the rigor associated with the 10% cutoff is only pos-
sible when the power of the statistical test is determined. Archaeologists (and all 
social scientists) should include such considerations as a general feature of their 
quantitative analyses. In this example, the consideration of power is quite straight-
forward, given that there are two, and only two, competing hypotheses (a ceramic 
assemblage was made by specialists, or it was made by generalists). What do we do 
when no alternate hypotheses are explicitly defi ned? In such cases, power curves, 
our next topic, are useful.  

  Power Curves 

 Quantitative methods are an essential tool for archaeological comparisons, so much 
so that archaeologists give tremendous stock to arguments based on quantitative 
comparisons. If you really want to show archaeologists that site density didn ’ t 
change between two periods, or that projectile points A and B really are functionally 
equivalent, or that bedrock mortars throughout a region were used to process the 
same resource, the surest way to build an argument that others will accept is to use 
quantitative methods to demonstrate similarities. This approach is especially per-
suasive when there are explicit alternate hypotheses that can be considered (e.g., 
projectile points A and B are similar to each other and different from projectile 
point C). However, in archaeology, explicitly defi ned alternate hypotheses are not 
always known, especially given that something like projectile point morphology or 
settlement density can vary substantially  within analytic groups . This variation can 
be as much as or more than the variation  among analytic groups . Thus, quantitative 
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comparisons showing similarities can be useful, but what if the range of variation 
was so great that it is impossible to reliably differentiate between members of dif-
ferent distributions? The lack of power prevents any meaningful conclusions about 
similarity because of the excessive probability of committing a Type II error. For 
example, what if a projectile point type is so broadly defi ned that virtually every 
corner notched point, whether it is long or short, wide or narrow, could fi t within 
it? Can an archaeologist put much stock in a quantitative analysis demonstrating 
that point A ’ s length is statistically consistent with the typical length of the type? 
Probably not, given that this result would be expected for nearly every  “ typically 
sized ”  projectile point. The failure to reject the null hypothesis just means that point 
A  could  be classifi ed as a member of the type, not that it is more similar to that type 
than other possible types. 

 Unfortunately, archaeologists rarely consider such factors, and it seems to us 
often draw rather sweeping conclusions about similarities when in reality it would 
be very diffi cult to detect actual differences that might be present. This is funda-
mentally a problem of power, in that the tests used to evaluate the null hypotheses 
are not adequately powerful to justify the archaeologists ’  conclusions. In the example 
provided above, we could directly determine the power, which in turn suggested 
problems with the uncritical application of the standardization hypothesis. Is it 
possible to do something similar when considering a null hypothesis without clear 
alternatives? Yes, it is. Even in these cases power can provide insight into the sen-
sitivity and usefulness of our statistical tests. Using  hypothetical  alternate distribu-
tions, archaeologists can calculate a  power curve  that describes the relationship 
between the null hypothesis being tested and a range of plausible alternate hypoth-
eses. This is extremely useful, especially when dealing with certain types of data that 
have realistic limits to the values that are possible. 

 We will illustrate power curves using the rim thickness example presented above 
where  H  0    :    Y i      =      μ   1 ;   μ   1     =    7   mm,   σ   1     =    .5   mm, and  α     =    .05. We have already determined 
that  β  may be a signifi cant issue for alternate hypotheses such as  H   a     :    Y i      =      μ   2  where 
  μ   2     =    8   mm. As a result, we can ask whether evaluating  H  0    :    Y i      =      μ   1  is analytically 
useful at all, given the realistic limits on the average rim thickness of pottery assem-
blages. Regardless of any specifi c alternate hypotheses, it is unlikely that a pottery 
assemblage in most archaeological cultures would produce an average maximum 
rim thickness less than 2   mm or signifi cantly larger than 30   mm. Although we 
suppose it is possible to have assemblages exceed these limits, we doubt that they 
are common. We could ask, then, given the range of generally plausible alternate 
hypotheses (which are somewhere between   μ      =    2   mm and   μ      =    30   mm), could 
we reliably identify when  H  0    :    Y i      =      μ   1  is true, as opposed to some alternate 
hypothesis? 

 Table  9.2  presents the power for alternate hypotheses between   μ      =    2   mm and 
  μ      =    30   mm for every whole millimeter. The power for each of the contrived alter-
nate values is computed using the Z - score as outlined above. Because the alternate 
means are simply invented, we do not have a standard deviation for each to use in 
the equation. We can expect, however, that the variation in other assemblages will 
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  Table 9.2    Power curve for   H   0    :     Y   i       =       μ    1 , where    σ       =    .5   mm 

     μ   alt  (mm)     Derivation     Z - value       β       Power (1    −      β  )  

  2    (6.02    −      μ    a  )/  σ      8.04    0.00    1.00  
  3    (6.02    −      μ    a  )/  σ      6.04    0.00    1.00  
  4    (6.02    −      μ    a  )/  σ      4.04    0.00    1.00  
  5    (6.02    −      μ    a  )/  σ      2.04    0.02    0.98  
  6    (6.02    −      μ    a  )/  σ      0.04    0.49    0.51  
  7    (6.02    −      μ    a  )/  σ   

AND 
 (7.98    −      μ    a  )/  σ    

   − 1.96 
 AND 
 1.96  

  0.95    0.05  

  8    (7.98    −      μ    a  )/  σ       − 0.04    0.49    0.51  
  9    (7.98    −      μ    a  )/  σ       − 2.04    0.02    0.98  

  10    (7.98    −      μ    a  )/  σ       − 4.04    0.00    1.00  
  11    (7.98    −      μ    a  )/  σ       − 6.04    0.00    1.00  
  12    (7.98    −      μ    a  )/  σ       − 8.04    0.00    1.00  
  13    (7.98    −      μ    a  )/  σ       − 10.04    0.00    1.00  
  14    (7.98    −      μ    a  )/  σ       − 12.04    0.00    1.00  
  15    (7.98    −      μ    a  )/  σ       − 14.04    0.00    1.00  
  16    (7.98    −      μ    a  )/  σ       − 16.04    0.00    1.00  
  17    (7.98    −      μ    a  )/  σ       − 18.04    0.00    1.00  
  18    (7.98    −      μ    a  )/  σ       − 20.04    0.00    1.00  
  19    (7.98    −      μ    a  )/  σ       − 22.04    0.00    1.00  
  20    (7.98    −      μ    a  )/  σ       − 24.04    0.00    1.00  
  21    (7.98    −      μ    a  )/  σ       − 26.04    0.00    1.00  
  22    (7.98    −      μ    a  )/  σ       − 28.04    0.00    1.00  
  23    (7.98    −      μ    a  )/  σ       − 30.04    0.00    1.00  
  24    (7.98    −      μ    a  )/  σ       − 32.04    0.00    1.00  
  25    (7.98    −      μ    a  )/  σ       − 34.04    0.00    1.00  
  26    (7.98    −      μ    a  )/  σ       − 36.04    0.00    1.00  
  27    (7.98    −      μ    a  )/  σ       − 38.04    0.00    1.00  
  28    (7.98    −      μ    a  )/  σ       − 40.04    0.00    1.00  
  29    (7.98    −      μ    a  )/  σ       − 42.04    0.00    1.00  
  30    (7.98    −      μ    a  )/  σ       − 44.04    0.00    1.00  

be (more or less) comparable to that in the assemblage specifi ed in the null hypoth-
esis, so we estimate   σ      =    .5   mm for the range of alternate hypotheses. For hypotheti-
cal means less than the lower confi dence limit for  H  0    :    Y i      =      μ   1 , we use the lower limit 
( L  1     =    6.02   mm) when calculating power, because  β  will be the area of the hypotheti-
cal distribution that is greater than the lower acceptance limit. For values larger 
than the upper confi dence interval, we use  L  2     =    7.98   mm because  β  will be the area 
of the distribution that is smaller than this value. Both of these are straightforward 
applications of the methods we presented in the previous section, as illustrated in 
Figures  9.9  and  9.10 . But what about alternate means that fall within the confi dence 
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     Figure 9.9      β  and power for alternate means (  μ   alt ) less than the lower confi dence limit  

L1 = 6.02 mm L2 = 7.98 mm

Region of
Acceptance

Power

μalt μ1

β

intervals (Figure  9.11 )? This creates a more complicated issue that we wish to 
explore in more detail.     

 The reason why the calculation of power becomes more complicated when the 
alternate mean is within the region of acceptance is that the area corresponding 
with  β  includes areas on both sides of the alternate distribution ’ s mean. As a result, 
we must calculate two Z - scores to quantify this area. Further, power continues to 
be calculated as 1    −     β , but the region corresponding with power also includes sub-
stantial areas on both sides of the confi dence limits (Figure  9.11 ). Again, we encour-
age you to draw the relationships between your distributions every time you 
calculate power or otherwise calculate areas under the normal or t - distributions. 

 The calculations of all of the powers for the alternate distributions are presented 
in Table  9.2 . Please take the time to draw the relationship between several of these 
alternate hypotheses and the power of  H  0    :    Y i      =      μ   1  to be sure you understand both 
how power is calculated and how the values in Table  9.2  are derived. The results of 
the power calculations indicate that the evaluation of  H  0    :    Y i      =      μ   1  is quite powerful, 

     Figure 9.10      β  and power for alternate means (  μ   alt ) larger than the upper confi dence limit  
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except for alternate distributions with means between 5   mm and 9   mm. Within this 
range, but especially between 6   mm and 8   mm, the test ’ s power is quite low. These 
results are graphically represented in Figure  9.12 . Are these results good? It depends 
on the analytic context. If we can reasonably expect that the most likely alternate 
distributions will have mean rim thickness less than 5   mm or greater than 9   mm, 
then we can make a compelling argument that the failure to reject  H  0    :    Y i      =      μ   1  is 
meaningful in that it indicates  Y i   likely is a member of the distribution characterized 
by   μ   1 . However, if there are likely alternate distributions that fall within the range 
characterized by low power, we should not conclude that  H  0    :    Y i      =      μ   1  is true simply 
because we failed to reject the null hypothesis. Doing so will likely result in a Type 
II error.   

 The power curve provides valuable insights into the strength of our statistical 
tests. If a test is weak over the entire range of probable alternate hypotheses, then 
the test is prone to Type II errors and is consequently analytically suspect. Failing 

     Figure 9.12     The power curve for the hypothetical alternative distributions to  H  0    :    Y i      =      μ   1   
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     Figure 9.11      β  and power for an alternate mean (  μ   alt ) contained within the confi dence limits  
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to reject a null hypothesis is not signifi cant evidence that the null hypothesis is true, 
because the variate could be a member of many different distributions other than 
the one specifi ed in the null hypothesis. This won ’ t be a problem if the null hypoth-
esis is rejected, but does seriously hamper any attempt to identify similarities in the 
archaeological record. If the power is weak, we can again increase the test ’ s power 
in three ways: increase the sample size; redefi ne the null hypothesis; or increase the 
alpha level (with the associated consequences of increasing the likelihood of com-
mitting a Type I error).  

  Putting It All Together: A Final Overview of Hypothesis Testing 

 Understanding the relationship between probability, the null hypothesis, and Type 
I and Type II errors provides all of the tools necessary to effi ciently evaluate hypoth-
eses. The process of using these tools and reporting their results can be broken into 
six steps as follows: 

  Steps to  h ypothesis  t esting 

    1     State the statistical hypothesis in English, and as a formal statistical hypothesis. 
Be clear in the presentation of what is being measured, how it is being measured, 
and the validity of the measurement. Be sure to clearly specify the relationship 
between the hypothesis of interest and the statistical hypothesis.  

  2     Consider the consequences of making Type I and Type II errors and the rela-
tionship of these errors to power. With these in mind, set alpha.  

  3     Select the appropriate statistical procedure.  
  4     Defi ne the region of rejection, or critical value.  
  5     Perform the computations and make the appropriate statistical decision (reject 

or fail to reject the null hypothesis).  
  6     State the decision regarding the null hypothesis in statistical terms and in 

English. If you fail to reject the null hypothesis, assess the power of the test. If 
the test is not powerful, come to no conclusions regarding the original hypoth-
esis being tested, other than they are plausible.     

  Evaluating  c ommon  h ypotheses 

 You are now able to complete powerful statistical analyses. Below are common 
hypotheses that archaeologists test, and the calculation formula used to do so. This 
summary builds on the discussions in the preceding three chapters, and is intended 
as a quick reference guide to aid you in your work. 

  H  0    :    Y i      =      μ  .  Determining if a single observation comes from a population  
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 To test if a single observation  Y i   comes from a normally distributed population with 
a mean of   μ  , use the familiar formula to calculate a Z - score:

   Z
Yi=

− μ
σ

  

  H  0    :    Y i      =      Ȳ   .  Determining if a single observation comes from a sample  
 If   σ   is known, use a Z - score to evaluate this null hypothesis:

   Z
Y Yi=

−
σ

  

 If   σ   isn ’ t known, substitute  s  for   σ   to calculate a t - score as follows:

   t
Y Y

s
i=
−

  

  H  0    :     Ȳ       =      μ  .  Determining if a sample mean comes from a population  
 When   σ   is known, calculate   σ   Ȳ     and use a Z - score to evaluate the null hypothesis as 
follows:

   Z
Y

Y

= − μ
σ

  

 If the population parameter   σ   Ȳ     is unknown, substitute  s  Ȳ     and use the t - distribution:

   t
Y

sY

= − μ
  

  H  0    :     Ȳ    1     =      Ȳ    2 .  Comparing two sample means  
 The comparison of two sample means is a common statistical comparison in 
archaeology, and is commonly called the t - test, although (as we have seen) we can 
use the t - distribution to evaluate other relationships as well. It is a bit more com-
plicated than simply using the formula for the t - score presented in Equation  (8.6) , 
so we will discuss it in more detail here. 

 Because   σ   is rarely known when dealing with samples,  s  is typically used to esti-
mate it. However, there typically are two sample standard deviations, which cor-
respond with the two sample means. We can use  s  to estimate   σ   for calculating the 
standard error   σ   Ȳ    , but which of these standard deviations is a better estimate of the 
population parameter   σ   ? Simply put, there is no  a priori  way to know. As a result, 
the best approach is to  “ pool ”  them into a single measure of dispersion called the 
 “ pooled standard error ”  symbolized as   sY Y1 2− . The pooled standard error is based 
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on a pooled standard deviation, symbolized as  s p  . Substituting these terms into 
Equation  (8.6)  results in the following formula:

   t
Y Y

sY Y

= −

−

1 2

1 2

 

where

   S
s

n

s

nY Y

p p

1 2

2

1

2

2
− = +  

and

   s
y y

n np =
+

+ −
∑ ∑1

2
2
2

1 2 2
  

 Please remember from Chapter  4  that   y2∑  is the sum of squares for a distribution 
calculated as   Y Yi −( )∑ 2

. The value for  n  is simply the sample size of the respective 
sample. 

  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3     =      Ȳ   n    …  .  Comparing multiple sample means using paired t - tests 
and the Bonferroni correction  
 We will discuss this in the next chapter, but ANOVA (analysis of variance) is the 
best means of evaluating this null hypothesis. However, many archaeologists (and 
researchers in other fi elds) use a technique called paired t - tests, which, while not 
inherently fl awed, has signifi cant drawbacks that are typically overlooked. Paired 
t - tests work by reducing null hypotheses such as  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3  into a series of 
binary comparisons such as  H  0    :     Ȳ    1     =      Ȳ    2 ,  H  0    :     Ȳ    1     =      Ȳ    3 , and  H  0    :     Ȳ    2     =      Ȳ    3 . Each of these 
are evaluated independently using the formula of comparing sample means pre-
sented above, with the original null hypothesis  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3  being rejected if 
any of the subsidiary hypotheses are rejected. Although it can be made to work, this 
is a fundamentally fl awed way to evaluate the parent null hypothesis, because it 
exponentially increases the likelihood of committing a Type I error. The t - test is 
designed to determine if there is a signifi cant difference between two means. While 
the likelihood of committing a Type I error (incorrectly rejecting the null hypoth-
esis) in an individual t - test perfectly corresponds with alpha, the probability of 
committing a Type I error increases as the number of tests increases. This means 
that you are more likely to commit at least one Type I error when evaluating three 
null hypotheses when compared to evaluating a single null hypothesis with the same 
alpha level. This is the same process that we illustrated using the Psychic ’ s trick. 
You could commit a Type I error when evaluating the fi rst null hypothesis, and the 
second one, and the third one. Thus, the true probability of committing a Type I 
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error when using paired t - tests does not correspond with .05 or whatever alpha level 
you specifi ed  –  you are much more likely to commit a Type I error when evaluating 
the null hypothesis  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3     =      Ȳ   n   using paired t - tests then the stated alpha 
level indicates. 

 Table  9.3  illustrates the rapid distortion of the true error rate for 
 H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3     =      Ȳ   n   by calculating the increasing probability of making at least 
one Type I error for at least one of the derivative paired t - tests. (You can replicate 
these results using a binomial analysis if you care to. Set  p     =    1    −      α   and then solve 
for all successes.) If we compare two means at   α      =    .05, the true probability of 
making a Type I error is fi ve times out of 100, which is what we would expect. 
However, if we test three means, two at a time, the number of paired t - tests is three 
and the probability of committing a Type I error increases to .14. By the time 20 
means are compared, we are evaluating 190 different paired t - tests, causing us to 
be virtually assured of committing a Type I error even when using a conservative 
alpha value of .02 (the cumulative probability of committing a Type I error is .98). 
Regardless of whether  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3     =      Ȳ   n   is true or not, we are likely to reject it 
for no other reason than a Type I error. At the very least, the likelihood of doing 
so is not the same as the alpha that was selected.   

 One solution to the problem of compounding Type I error rate (also called the 
familywise error rate) is called the Bonferroni correction. It is a simple, yet effective 
solution created by dividing the alpha by the number of paired t - tests (  α  / n  tests). 
When used to evaluating the difference between three means ( H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3 ) at 
a  cumulative alpha  of .05, the alpha level for the three paired t - tests ( H  0    :     Ȳ    1     =      Ȳ    2 , 
 H  0    :     Ȳ    1     =      Ȳ    3 , and  H  0    :     Ȳ    2     =      Ȳ    3 ) is .05/3    =    .0167. This allows the cumulative alpha to 
be constant so that the familywise error rate is in fact our stated   α  . Although the 
Bonferroni correction allows archaeologists to use paired t - tests, ANOVA, which is 
the subject of the next chapter, is a much easier and methodologically eloquent 
approach. We would never dream of forbidding people from using pair t - tests, but 
we recommend that you take care to consider the familywise error rate and use 
them properly. 

  Table 9.3    The true probability of committing a Type  I  error using paired  t  - tests 

    Number 
of means   

    Number of 
paired t - tests   

    Stated  α  level   

   0.2     0.1     0.05     0.02     0.01     0.001  

  2    1    0.20    0.10    0.05    0.02    0.01    0.00  
  3    3    0.49    0.27    0.14    0.06    0.03    0.00  
  4    6    0.74    0.47    0.26    0.11    0.06    0.01  
  5    10    0.89    0.65    0.40    0.18    0.10    0.01  

  10    45    1.00    0.99    0.90    0.60    0.36    0.04  
  20    190    1.00    1.00    1.00    0.98    0.85    0.17  
   ∞      ∞     1.00    1.00    1.00    1.00    1.00    1.00  
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   Practice Exercises 

    1     What is the relationship between Type I errors, Type II errors, and power? 
How can we increase the power of a test?  

  2     Please answer the following questions:  

  (a)     How much of a distribution is contained in the area of acceptance 
when using confi dence limits refl ecting   α      =    .05?  

  (b)     What is the likelihood of committing a Type I error when   α      =    .05?  

  (c)     How much of a distribution is outside of the area of acceptance when 
using confi dence limits refl ecting   α      =    .10?  

  (d)     What is the change in the likelihood of committing a Type I error if 
a researcher increases   α   from .05 to .10?    

  3     A sample of ceramic vessels has a mean opening diameter of 12   cm, 
 s     =    4   cm,  n     =    10. Another sample of ceramic vessels has a mean diameter 
of 19   cm,  s     =    3   cm,  n     =    7. Use a t - test to determine if the sample means 
are signifi cantly different.  

  4     Treat both distributions mentioned in Question 3 above as populations. 
Using   α      =    .05, determine if a vessel with an opening 17   cm in diameter is 
consistent with the population with an average opening diameter of 12   cm. 
Treat the second distribution (  μ      =    19   cm) as an alternate distribution and 
determine the power of the test. How does knowledge of the power impact 
the interpretation of the hypothesis test?  

  5     In a study of weasels from archaeological faunal materials, Lyman  (2004)  
compares the mandible lengths of long - tailed weasels with a sample of the 
modern ermine living in the central Columbia Basin of northeast United 
States. Evaluate the following hypotheses: 

   (a)     The long - tailed weasels have an average mandible length of 5.16   mm 
with a standard deviation of .48   mm ( n     =    30). The ermine have an 
average mandible length of 4.47   mm with a standard deviation of .33 
( n     =    20). Determine if the means of the two samples are the same.  
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152 Hypothesis Testing III: Power

  (b)     Following are mandible lengths for weasels of unknown species from 
various archaeological assemblages: 4.88   mm, 4.80   mm, 4.66   mm, 
4.64   mm, 4.62   mm, and 4.56   mm. Determine which are consistent 
with the sample of long - tailed weasels (  α      =    .10). Determine if these 
same individuals are consistent with the ermine (  α      =    .10). Which, if 
any, of the individuals can be clearly assigned to either group?  

  (c)     Does the probability of committing a Type II error pose a signifi cant 
problem in determining the species of any of the archaeological 
specimens?               
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  10 

Analysis of Variance and 
the  F  - Distribution     

     Given archaeology ’ s comparative nature, it is not surprising that archaeologists 
often wish to determine if there are meaningful differences in the central tendencies, 
especially means, of more than two samples. Does the mean room size in a Hallstatt 
village (  Ȳ    1 ) differ signifi cantly from an earlier Urnfi eld culture village (  Ȳ    2 ) and a 
later La T è ne settlement (  Ȳ    3 )? Given a suitable analytic and theoretical approach, 
this could be an interesting question that could further our understanding of social 
differentiation, corporate group size, craft production, household organization, and 
a host of other variables. We would like to test the null hypothesis about the average 
room size  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3 , and its alternate hypothesis  H a     :     Ȳ    1     ≠      Ȳ    2     ≠      Ȳ    3 . Such 
comparisons are at the core of archaeological analysis. 

 As described at the end of Chapter  9 , we could use paired t - tests to evaluate null 
hypotheses such as  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3 , but, for the reasons outlined there, doing so 
is problematic. The ANalysis Of VAriance (ANOVA) is a much easier and robust 
alternative. ANOVA is one of the most powerful tools in the statistician ’ s toolkit, 
yet it hasn ’ t been applied as widely as it deserves to be in archaeological analysis. 
This is unfortunate, given that it is mathematically quite simple and its eloquent 
structure allows you to think about and examine the organization of the world in 
new and exciting ways. Further, ANOVA is built on the F - distribution, which is 
useful in a variety of additional contexts. 

 One of the strengths of ANOVA is its conceptual structure. It isn ’ t just a math-
ematical formula, but is instead a conceptually explicit framework for deriving 
meaning from the comparison of means. ANOVA can be used for EDA to induc-
tively identify differences and similarities that otherwise might go unnoticed in 
analyses, but ANOVA ’ s real strength is its potency for evaluating well - defi ned 
hypotheses of interests. When there are some empirical or theoretical reasons for 
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expecting that either the null hypothesis ( H  0    :     μ   1     =      μ   2     =      μ   3     =      μ  n  ) or the alternate 
hypothesis ( H a     :     μ   1     ≠      μ   2     ≠      μ   3     ≠      μ  n  ) is true, ANOVA can be used to test the underly-
ing models and premises. There are two basic contexts for doing this, which are 
codifi ed as  fi xed effects ANOVA (Model I)  and  random effects ANOVA (Model II) . 
These ANOVA models differ conceptually, not computationally; they are calculated 
using the same formulas, but the implications of the results are different. In short, 
the two models refl ect how the source of variation among the means is explained. 

 In Model I, the sources of variation are introduced (generally experimentally) 
by the investigator, and the ANOVA analysis determines whether or not the inves-
tigator ’ s treatment results in a signifi cant difference in means. For example, imagine 
that an archaeologist wants to conduct an experiment to determine if the surface 
treatments of pots impact heat transfer to the pots ’  contents. Using the same clay 
and temper, the researcher makes morphologically identical vessels that differ only 
in their surface treatment. Some are corrugated, some are slipped, and some are 
plain. The archaeologist then subjects them to the same heat, and measures the time 
it takes to bring water to a boil. Given that all other variables are held constant, the 
only factor that should create differences in heat transfer is differences in the pots ’  
surface textures. Thus, differences in the time to reach boiling refl ect the variation 
introduced by the researcher (i.e., the researcher ’ s fi xed effects). This being the case, 
the ANOVA quantifi es the impacts of the analytically introduced variation, and 
thereby  explains  the differences in the means (e.g., corrugated surface treatment 
increases the rate of thermal transfer). 

 In Model II ANOVA, the investigator wants to explain differences that can be 
observed, but the source of variation among means is beyond the investigator ’ s 
direct control. Except in experimental studies, this is typical of most archaeological 
research given that human behavior (especially past human behavior) is outside of 
the researcher ’ s direct control. (We frequently hear archaeologists wish it were 
otherwise.) The sources of variation refl ected in differences among means could be 
the result of taphonomic processes, differences in artifact/feature composition and 
construction, differences in artifact/feature use or discard, different symbolic or 
conceptual associations, or any of the host of factors archaeologists invoke to 
explain the variation we observe. Unlike Model I ANOVA, in which identifying the 
differences allowed them to be clearly linked to previously specifi ed, explanatorily 
relevant variation, identifying differences using Model II ANOVA is a starting point 
for the identifi cation of the factors that underlie differences. To consider the dif-
ferences in Model I and Model II ANOVA, consider the following archaeological 
examples.  

  Model  II   ANOVA : Identifying the Impacts of Random Effects 

 We start by outlining Model II ANOVA, given that its application will be more 
intuitive for most archaeologists. Table  10.1  presents the maximum length in mil-
limeters of ten unbroken fl akes of four raw material types recovered from Cerro 
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del Diablo, a Late Archaic site in northern Chihuahua, Mexico. It also presents  Σ  Y i   
(the sum of the individual variates calculated within each group),   Ȳ    (the mean for 
each group),  Σ  Y  2  (the sum of all of the squared variates within each group),  Σ  y  2  
(the sum of the squared deviations of each variate from its group mean), and   Y  
(the grand mean of all members of all four groups). These values will be used below 
to calculate the ANOVA.   

 Table  10.1  represents a sample of the fl aked stone artifacts from Cerro del Diablo 
that can be used to estimate   μ   and   σ   2 . A quick glance at the data causes us to suspect 
that the average length of fl akes differs according to raw material (the average length 
of rhyolite fl akes is over twice that of obsidian fl akes), which could refl ect differ-
ences in fl aked stone reduction, use, and discard. We can test the hypothesis of 
interest that there are differences in fl ake length according to raw material type 
using the null hypothesis  H  0    :     Ȳ    obs     =      Ȳ    chert     =      Ȳ    rhy     =      Ȳ    sw , but the way we will do so 
may seem counterintuitive. As the name analysis of  variance  suggests, we will actu-
ally be comparing various estimates of   σ    2 , the population variance. These are then 
tied to   μ   through a cleaver (yet simple) mathematical relationship. To illustrate how 
this can be done, consider the various estimates of   σ   2  that can be calculated using 
the data in Table  10.1 . 

 The most obvious estimates of   σ   2  are  s  2  for each group. With four groups, A 
(obsidian), B (chert), C (rhyolite), and D (silicifi ed wood), we can calculate four 

  Table 10.1    Maximum fl ake length (mm) for 40 fl akes from Cerro del Diablo, Chihuahua, 
Mexico 

        Obsidian     Chert     Rhyolite     Silicifi ed wood  

      30    41    135    113  
      53    110    141    111  
      45    73    138    97  
      34    52    175    70  
      105    176    143    117  
      102    61    132    48  
      51    69    130    134  
      47    40    109    115  
      71    64    125    103  
      58    48    120    106  

          596    734    1348    1014  

    Ȳ       59.6    73.4    134.8    101.4  

          8603.62    8520.31    8573.22    8656.87  

          6012.4    15396.4    2743.6    5598.4  

     Y = 92 3.                    

Y
n

∑

Y
n

2∑
y

n
2∑

c10.indd   155c10.indd   155 8/26/2010   1:55:13 PM8/26/2010   1:55:13 PM



156 Analysis of Variance and the F-Distribution 

estimates   sA
2 ,   sB

2 ,   sC
2 , and   sD

2  where we use our usual formula (Equation  (4.2) ) for 

the sample variance:   s
y

n
2

2

1
=

−
∑ . 

 Our estimates are as follows:

   sA
2 6012 4

9
668 0= =.

. mm  

   sB
2 15396 4

9
1710 7= =.

. mm  

   sC
2 2743 3

9
304 8= =.

. mm  

   sD
2 5598 4

9
622 0= =.

. mm   

 Assuming that the null hypothesis is correct, the starting assumption of all statistical 
analyses, each of these is an estimate of   σ   2 , but which is the best estimate? We don ’ t 
know, so instead we can calculate a pooled estimate using (Equation  (10.1) ), where 
the numerator is the sum of the sum of squares for each raw material group, and 
the denominator is the sum of the degrees of freedom for each group. 

 The pooled variance

   s
y y y y

n n n n
A B C D

A B C D

2
2 2 2 2

1 1 1 1
=

+ + +
−( ) + −( ) + −( ) + −( )
∑ ∑ ∑ ∑     (10.1)   

 For our example:

   s2 6012 4 15396 4 2743 3 5598 4

9 9 9 9
826 5= + + +

+ + +
=. . . .

. mm   

 This value is called the average variance within groups, or more commonly, the 
 variance within groups , because the sum of squares is calculated  within  the groups 
(i.e., using the difference from each variate to its own group ’ s mean). If the four 
groups are drawn from the same population (i.e., if the null hypothesis is true), 
probability suggests that the average variance within groups will be a better estimate 
of the population variance than would any single group variance. 

 Another estimate of the population variance   σ   2  can be calculated using   sY
2  to 

estimate   σY
2  (the variance among means, which is the squared standard error 

discussed in Chapter  8 ). The variance among means is calculated using the 
variation of the four group means   Ȳ   i   from the grand mean   Y  as indicated in 
Equation  (10.2) . 
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 The variance among means

   
s

Y Y

aY

i
n

n a

2

2

1

1
=

−( )
−

=

=

∑     (10.2)   

  a  is the number of groups, in this case the four raw material types, and   Y Yi −( )∑
2
 

is called the  sum of squares of means . We can calculate the sum of squares of means 
by literally subtracting the grand mean from each sample mean, squaring these 
values, and then adding them together as indicated by Equation  (10.2) , but it can 
also be calculated using Equation  (10.3) . 

 Calculation formula for the sum of squares of means

   Y
Y

a
i2

2

∑ ∑−
( )     (10.3)   

 Equation  (10.3)  is computationally equivalent to   Y Yi −( )∑
2

 but often is easier 

to calculate. Using the data from Table  10.1 , the sum of squares of means is:

   
Y

Y

an

n a
n

n a

2

1

1

2

37392 72
136308 60

4
3315 56

=

=
=

=

∑
∑

−

⎛
⎝⎜

⎞
⎠⎟ = − =.

.
. mm2   

 After the sum of squares of means is calculated, we can calculate   sY
2  (the variance 

among means) as follows:

   
s

Y Y

aY
n

n a

2

2

1 2

1

3315 56

3
1105 19=

−( )
−

= ==

=

∑ .
. mm

  

 Our goal in calculating   sY
2  is to provide an estimate of   σ   2 , but one is the squared 

standard error, refl ecting the variation of means around the grand mean, whereas 
the other is a variance, refl ecting the variation in variates around their means.  

They aren ’ t equivalent;   σ
μ2

2

=
−( )∑ Y

n
i  whereas   s

Y Y

aY
2

2

1
=

−( )
−

∑
. Given that 

  Y

n

Y Y

a
i i−( )

≠
−( )

−
∑ ∑μ 2

2

1
 how can we use   sY

2  to derive  s  2  so that we can 

estimate   σ   2 ? Recall Equation  (8.1) , which presents the relationship between the 

standard error and the standard deviation as   σ σ
Y n

= . Squaring both sides of the 

equation causes it to be   σ σ
Y n
2

2

= . Multiplying both sides of the equation by  n  we 
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obtain:   n Yσ σ2 2= . This same relationship holds for   sY
2  and  s  2 , given that they are 

simply estimates of   σY
2  and   σ   2 . Thus,   s n sY

2 2= ( ). Given this relationship, once 
we have calculated the variance among means   sY

2 , multiplying this value by  n  pro-
vides us with  s  2 , an additional estimate of our population parameter   σ   2 . For our 
example:

   s n sY
2 2 210 1105 19 11051 9= ( ) = ( ) =. . mm   

 This estimate of the population variance   σ   2  is called the  variance among groups , 
because it refl ects the variation of the group means from the grand mean. 

 We now have created two independent estimates of the population variance   σ    2 : 
 variance within groups     =    826.4   mm, and  variance among groups     =    11,051.9. Here is 
the core of ANOVA: assuming the null hypothesis is true, these estimates of   σ    2  
ought to be (roughly) the same, because they are likely equally good estimates of 
the  same  population parameter. In other words, if  H  0    :     Ȳ    obs     =      Ȳ    chert     =      Ȳ    rhy     =      Ȳ    sw  
is indeed true, then both approaches to estimating   σ    2  should produce (roughly) 
identical results. In contrast, if  H  0    :     Ȳ    obs     =      Ȳ    chert     =      Ȳ    rhy     =      Ȳ    sw  is not true, then the 
estimates of   σ   2  will likely differ appreciably. Compare the distributions refl ected in 
Figures  10.1  and  10.2 .   

 Figure  10.1  refl ects the expected spread of distributions if the null hypothesis 
 H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3     =      Ȳ    4  were true. The four distributions have very similar spreads, 
indicating that their variances ( s  2 ) are similar. The within - group variance thus 
should be an excellent estimate of   σ    2 . Likewise, the sample means are closely clus-
tered as would be expected if they refl ected the same population. Their distribution 
is consistent with the expected variation of sample means around   μ   as measured 
by the standard error (  σ   Ȳ    ). As a result, the estimate  s  2  calculated from the variance 
among groups should be an excellent estimate of   σ    2  and should be roughly equal 
to the within - group variance. 

 Figure  10.2  is quite different, in that one of the distributions is distant from the 
others. In this case, all four distributions have similar spreads, causing the within -
 group variance to be very close to  s  2  for each of the individual distributions. 

     Figure 10.1     Distribution of means in which the  among - group variance  is comparable to 
the  within - group variance   

Y1Y2Y3 Y4
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However, the difference between   Ȳ    1  and the other three means will result in a com-
paratively large variance among means that will refl ected by a large   sY

2 . The subse-
quently derived estimate of  s  2  will be considerably larger than the variance within 
groups. ANOVA is based on comparing the variance estimates. If the among - group 
variance and within - group variances are similar, then the null hypothesis 
 H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ    3     =      Ȳ    4  is plausible (i.e., it cannot be rejected). However, if the 
among - group variance is considerably larger than the within - group variance, the 
sample means are more widely disbursed than expected according to the standard 
error, and the null hypothesis is unlikely to be true. Thus, even though we are 
comparing measures of variance, we are testing the relationship among the means. 

 Calculating the actual ANOVA comparison is quite easy, but by now you know 
that statistical analysis relies upon precise and straightforward notation. We con-
sequently need to introduce some additional symbolism. To begin with, we need 
symbols to represent the location of individual observations as members of each 
group. Table  10.2  presents only the data from Table  10.1 . Table  10.3  shows that 
each observation can be specifi ed by the group to which it belongs ( j ), and which 
observation it is within that group ( i ). In Table  10.2 ,  Y  1,1     =    30   mm and  Y  2,4     =    111   mm.   

 Integrating the previously outlined conceptual structure with Table  10.3 , the 
variance within groups can be symbolized as illustrated in Equation  (10.4) . The 

     Figure 10.2     Distribution of means in which the variance among means exceeds the vari-
ance within means  

  Table 10.2    Maximum fl ake lengths (mm) of four raw 
materials from Cerro del Diablo, Chihuahua, Mexico 

   Obsidian     Chert     Rhyolite     Silicifi ed wood  

  30    41    135    113  
  53    110    141    111  
  45    73    138    97  
  34    52    175    70  

  105    176    143    117  
  102    61    132    48  

  51    69    130    134  
  47    40    109    115  
  71    64    125    103  
  58    48    120    106  

Y
1

Y
2
Y

3
Y

4
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inclusion of the double summation   
i

i n

j

j a

=

=

=

=

∑∑
11

 makes this formula look peculiar, but 

the formula remains straightforward; it says to subtract the group mean from each 
individual variate, square the resulting values, sum them, and then divide the total 
by the degrees of freedom ( n     −    1 for each group). This formula is merely an 
expanded form of the standard variance presented in Chapter  4  calculated as

  s

Y Y

n

i
i

i n

2

2

1

1
=

−( )
−

=

=

∑
 to include multiple groups instead of just one. 

 Variance within groups

   s
a n

Y Yi j j
i

i n

j

j a

within
2 2

11

1

1
=

−( )
−( )

=

=

=

=

∑∑ ,     (10.4)   

 The variance  among  groups can be calculated using Equation  (10.5) . These 
instructions state to subtract the grand mean from each group mean, square these 
values, sum them, multiply the summed value by the number of variates in each 
group, and then divide by the degrees of freedom.  Note that n here refers to the 
number of variates in each group (assuming equal sample sizes for all groups), in our 
example 10, not to the total number of variates for all groups.  

 Variance among groups

   s
n

a
Y Yj

j

j a

among
2

2

11
=

−
−( )

=

=

∑     (10.5)   

 Returning to our example of the Cerro del Diablo fl aked stone assemblage, we 
need to test whether   samong

2  and   swithin
2  refl ect the same population parameter   σ   2 . 

The F - distribution provides the means of evaluating this. It is built on the 

relationship created by dividing one sample variance by another, i.e.,   F
s

ss = 1
2

2
2 . 

  Table 10.3    Matrix illustrating   Y   ij    

         a  groups ( j )  

    1       2       3       4   

      1    1,1    1,2    1,3    1,4  
      2    2,1    2,2    2,3    2,4  
   n  items ( i )    3    3,1    3,2    3,3    3,4  
      4    4,1    4,2    4,3    4,4  
      5    5,1    5,2    5,3    5,4  
      6    6,1    6,2    6,3    6,4  
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Obviously dividing   σ   2  by itself will produce a result of 1 because   σ    2  never changes. 

It is a population parameter defi ned in time and space that cannot change;   
σ
σ

2

2
 

always equals 1. However,  s  2  should be close to the   σ   2  it estimates, but most likely 
varies a bit from the true value. Taking two variances that estimate the same   σ   2  and 
dividing one by the other will produce a value close to but probably not exactly 1, 
but probability also implies that sometimes  s  2  will vary quite a bit from   σ    2 . Thus, 

although we expect   F
s

ss = 1
2

2
2  to be (roughly) equal to 1, when the numerator is by 

happenstance substantially larger and/or the denominator is substantially smaller 
than   σ   2 , the F - value will be quite a bit larger than 1. Likewise, if the numerator is 
smaller and/or the denominator is larger than expected,  F s   will be considerably 
smaller than 1 although it must always be larger than 0. The resulting distribution 
of sample variances divided by each other produces the F - distribution which has 
an average of 1, a lower limit almost but never equal to 0, and an asymptotic upper 
tail causing it to be skewed to the right (Figure  10.3 ).   

 As with the standardized normal distribution or the t - distribution, the 
F - distribution allows us to measure probabilities, in this case probabilities associ-
ated with the relationship between two sample variances. We can consequently use 
the F - distribution to determine if the ratio of two variances is larger than expected 
assuming they estimate the same parameter. If the two sample variances   samong

2  and 
  swithin

2  estimate the same parameter, the values of each should be approximately 

equal and the ratio   
s

s
among

within

2

2
 should be roughly equal to 1. If   samong

2  is considerably 

larger than   swithin
2 , the ratio will be larger than 1, suggesting that the various sample 

means do not refl ect the same   μ  . The F - distribution allows us to determine if the 
ratio deviates suffi ciently from 1 to cause the null hypothesis to be rejected at a 
given   α  . By convention,   samong

2  is always placed in the numerator and can be symbol-
ized as   sa

2.   swithin
2  is the denominator and can be symbolized as   sw

2 . 

     Figure 10.3     The F - distribution  

0 2 3 4μ = 1
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 The shape of the F - distribution changes depending on the degrees of freedom, 
because the accuracy of  s  2  as an estimate of   σ   2  improves as the sample size increases. 

Thus,   F
s

ss
a

w

=
2

2  should be constrained much closer to 1 if both sample variances 

are based on large samples than if one or both are based on smaller samples. Since 
there are two sample variances, there are also two degrees of freedom: one associ-
ated with the numerator and one for the denominator. Appendix  C  presents critical 
values of the F - distribution for various degrees of freedom for   ν   1  (numerator) and 
  ν   2  (denominator). 

 For the Cerro del Diablo example   F
s

ss
a

w

= = =
2

2

11051 9

826 4
13 37

.

.
. , where 

  ν   1     =     a     −    1    =    4    −    1    =    3 degrees of freedom, and   ν   2     =     a ( n     −    1)    =    4(10    −    1)    =    36 
degrees of freedom. Using   α      =    .05 and Appendix  C , the critical value for F is 2.87. 
Given that 13.37    >    2.87, we reject the null hypothesis and instead conclude that 
 H  0    :     Ȳ    obs     =      Ȳ    chert     =      Ȳ    rhy     =      Ȳ    sw  is unlikely to be true. The variation among the means 
is much greater than would be expected if in fact the average fl ake length did not 
differ as a result of lithic raw material. 

 What caused the differences among the means? This is a Model II ANOVA. We, 
as researchers, did not in any way control the variation in fl ake length according to 
lithic raw material, so we know the source of the variation lays elsewhere. Several 
possible reasons for the observed variation come quickly to mind. Given that fl aked 
stone modifi cation is a reductive technology, it is physically impossible to produce 
large fl akes from a small cobble. Perhaps the raw materials differ in their original 
core size, allowing large fl akes of some raw materials but only small fl akes of other 
raw materials. The raw materials also differ in the sharpness and durability of their 
edges with obsidian and fi ne - grained chert producing sharper but less durable edges 
than the silicifi ed wood and rhyolite. These differences could have prompted past 
peoples to use them for different purposes, which might have caused them to 
produce differently sized fl akes. Or perhaps some materials are from more distant 
sources, and therefore are represented by smaller, more heavily reduced cores that 
produced smaller fl akes. A host of other possibilities could be suggested; the results 
of the ANOVA give us the impetuous to pursue relevant explanatory variables (in 
conjunction with our theoretical and analytic structures). Put another way, it gives 
us a great starting point to refi ne our understanding of the archaeological record.  

  Model  I   ANOVA : The Analysis of Treatment Effects 

 To illustrate Model I ANOVA, consider a study of inter - observer measurement error 
performed by the senior author and his colleague, R. Lee Lyman at the University of 
Missouri (Lyman and VanPool,  2009 ). Archaeologists have long noted the potential 
of inter - observer variation when recording data from artifacts and features (e.g., 
Fish,  1978 ). This is an especially pressing issue when an archaeologist wishes to 
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compare data collected by different people from different assemblages using differ-
ent tools. Various studies have shown that problems of consistency can be severe 
(Fish,  1978 ; Gnaden and Holdaway,  2000 ), especially when using classifi cations to 
type artifacts (Whittaker  et al. ,  1998 ). Lyman and VanPool  (2009)  seek to evaluate 
the signifi cance of this problem when taking and comparing  “ simple ”  dimensional 
measurements of artifacts and bones. As part of the study, the authors independently 
measured attributes of the same 30 projectile points twice, thereby creating four data 
sets refl ecting the same artifacts. At least one month passed between the times when 
the analysts remeasured the points, and VanPool used two different calipers to intro-
duce possible variation related to measurement tool accuracy and precision. 

 Table  10.4  presents the data for projectile point length from the study. Given 
that the points measured for each sample are the same, the only source of variation 
between samples should be differences introduced because of analyst error (e.g., 
failure to measure an attribute consistently (intraobserve error) or systematic dif-
ferences between the analysts in how they measured the attributes (interobserver 
error)) or instrument error. If there is no substantial analyst or instrument 
error, then we should not be able to reject the null hypothesis  H  0    :     Ȳ    L1     =      Ȳ    L2     =     
 Ȳ    VP1     =      Ȳ    VP2 . In contrast, the rejection of the null hypothesis will indicate the pres-
ence of signifi cant analyst/instrument error. This is a perfect Model I ANOVA, in 
that any differences that might be present among the measurements are attributable 
to the fi xed effects introduced by the researchers (e.g., different measurement tools, 
different researchers taking the measurements).   

 To evaluate if the variation among groups exceeds the variation within groups, 
we proceed with our ANOVA by calculating the variance  within groups  as follows:

   s
a n

Y Yw ij j
i

i n

j

j a
2 2

11

1

1
=

−( )
−( )

=

=

=

=

∑∑  

   sw
j

j a
2

1

1

4 30 1
2238 78 2259 24 2062 61 2252 20=

−( )
+ + +( )

=

=

∑ . . . .  

   sw
2 8812 83

116
75 97= =.

. mm2   

 We do not bother to show the actual values for each ( Y ij      −      Ȳ   j  ) 2 , but you can check 
our work, if you wish. 

 We next calculate the values required to calculate the sum of squares of means 
(Equation  (10.3) ). These are:

   Yj∑ =104 10. mm  

   Y = 26 025. mm  

   Yj
2 2709 221∑ = . mm2   
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 Putting these values into Equation  (10.3) , we can calculate the mean sum of squares as:

   Y Y Y
Y

aj j
j−( ) = −

( )
= − ( ) =∑ ∑ ∑2

2

2 2

2709 221
104 10

4
0188.

.
.   

 The  variance among means  can then be calculated as:

   s
Y Y

aY
2

2

1
=

−( )
−

∑  

  Table 10.4    Measurements of the length of the same 30 points measured independently 
four times 

   Specimen     Lyman 1     Lyman 2     VanPool 1     VanPool 2  

  1    23.78    23.76    23.84    23.77  
  2    20.42    20.40    20.88    20.43  
  3    20.88    20.86    20.44    20.86  
  4    24.96    24.94    24.95    24.95  
  5    17.06    16.94    17.02    16.99  
  6    15.40    15.46    15.69    15.54  
  7    19.04    19.00    20.01    19.06  
  8    23.10    23.08    22.92    23.05  
  9    25.18    25.24    25.18    25.20  

  10    21.54    21.52    21.40    21.56  
  11    17.66    17.66    17.64    17.66  
  12    16.94    16.92    16.92    16.83  
  13    13.58    13.56    13.53    13.56  
  14    18.00    17.94    17.26    17.28  
  15    14.68    14.66    14.66    14.59  
  16    21.70    21.60    22.09    21.44  
  17    23.26    23.24    23.24    23.07  
  18    42.38    47.36    47.36    47.34  
  19    42.34    42.30    42.28    42.26  
  20    27.86    27.82    27.84    27.83  
  21    29.94    29.96    29.88    29.80  
  22    30.92    30.90    30.90    30.90  
  23    25.92    25.90    26.34    25.94  
  24    33.54    33.52    33.52    33.74  
  25    33.60    33.60    33.61    33.02  
  26    30.26    30.24    30.25    30.24  
  27    27.54    27.52    27.54    27.50  
  28    37.04    37.02    37.04    36.89  
  29    38.00    37.94    37.76    37.97  
  30    41.04    41.04    41.08    41.20  
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   sY
2 0188

3
006= =.

.   

 The  variance among groups  is derived as:

   s n sa Y
2 2 30 006 18= ( ) = ( ) =. .   

 Now we can examine the relationship between the variance among groups and 
the variance within groups by using the F - distribution:

   F
s

ss
a

w

= = =
2

2

18

75 97
002

.

.
.   

 This ratio shows that the variance among groups is considerably less than the vari-
ance refl ected in the groups. Looking up the critical value corresponding with our 
degrees of freedom (  ν    a      =    4    −    1    =    3 and   ν    w      =    4(30    −    1)    =    116) in Appendix  C  for 
  α      =    .05, we see that the critical value is 2.68. Obviously, .002 is smaller than 2.68, 
so we cannot reject the null hypothesis. There is no evidence that the differences in 
the analyst or the instruments used systematically introduced variation into the 
measurement of the points ’  lengths. This indicates that the measurements are 
precise, even when different researchers record the data using different tools. 
Archaeologists wishing to compare different samples using point length should be 
pleased by this result. 

 Let us revise this example using a contrived situation. As mentioned above, 
VanPool 2 was taken using a different set of calipers than the other measurements. 
Suppose that the calipers were biased such that they systematically produce meas-
urements that were 6   mm too large, a small difference that might not be noticed by 
a rushed analyst. The revised data are illustrated in Table  10.5 . The variance within 
groups will remain exactly the same; the difference between the original and the 
contrived data is the change in magnitude of a single group, but the variance  within 
each group  isn ’ t changed at all. Each variate maintains the same relationship with 
its group mean that it had before.   

 However, the  variance among groups  increases substantially. It is calculated as 
follows:

   Yj∑ =110 10. mm  

   Y = 27 53. mm  

   Yj
2 3057 41∑ = . mm2   

 Using Equation  (10.3) , we can calculate the sum of square of means as:
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   Y Y Y
Y

aj j
j−( ) = −

( )
= − ( ) =∑ ∑ ∑2

2

2 2

3057 41
110 10

4
26 91.

.
. mm2   

 The  variance among means  can then be calculated as:

   s
Y Y

aY
2

2

1

26 91

3
8 97=

−( )
−

= =∑ .
. mm2   

  Table 10.5    Contrived measurements of the length of the 30 points listed in Table  10.4  

   Specimen     VanPool 1     Modifi ed VanPool 2 
(VanPool 2  + 6   mm)  

   Lyman 1     Lyman 2  

  1    23.84    29.77    23.78    23.76  
  2    20.88    26.43    20.42    20.40  
  3    20.44    26.86    20.88    20.86  
  4    24.95    30.95    24.96    24.94  
  5    17.02    22.99    17.06    16.94  
  6    15.69    21.54    15.40    15.46  
  7    20.01    25.06    19.04    19.00  
  8    22.92    29.05    23.10    23.08  
  9    25.18    31.20    25.18    25.24  

  10    21.40    27.56    21.54    21.52  
  11    17.64    23.66    17.66    17.66  
  12    16.92    22.83    16.94    16.92  
  13    13.53    19.56    13.58    13.56  
  14    17.26    23.28    18.00    17.94  
  15    14.66    20.59    14.68    14.66  
  16    22.09    27.44    21.70    21.60  
  17    23.24    29.07    23.26    23.24  
  18    47.36    53.34    42.38    47.36  
  19    42.28    48.26    42.34    42.30  
  20    27.84    33.83    27.86    27.82  
  21    29.88    35.80    29.94    29.96  
  22    30.90    36.90    30.92    30.90  
  23    26.34    31.94    25.92    25.90  
  24    33.52    39.74    33.54    33.52  
  25    33.61    39.02    33.60    33.60  
  26    30.25    36.24    30.26    30.24  
  27    27.54    33.50    27.54    27.52  
  28    37.04    42.89    37.04    37.02  
  29    37.76    43.97    38.00    37.94  
  30    41.08    47.20    41.04    41.04  
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 The  variance among groups  is:

   s n sa Y
2 2 30 8 97 269 07= ( ) = ( ) =. .   

 The new F - value is:

   F
s

s
a

w

= = =
2

2

269 07

75 97
3 54

.

.
.   

 This value exceeds the critical value for  F  [.05,3,116]     =    2.68, prompting us to reject the 
null hypothesis in this contrived example. In this case, our biased instrument 
did introduce a signifi cant treatment effect that caused the null hypothesis 
 H  0    :     Ȳ    L1     =      Ȳ    L2     =      Ȳ    VP1     =      Ȳ    VP2  to no longer be true. While this did not happen in 
Lyman and VanPool ’ s  (2009)  study, it does demonstrate how biased measurements, 
even when the bias might intuitively appear small (about half a centimeter), can 
lead to serious problems of accuracy that can undermine quantitative analyses. This 
again illustrates how quantitative methods are only meaningful in the context of 
a larger analytic structure that must account for factors such as measurement 
accuracy and precision, the clear defi nition of variables measured, and consistent 
measurement methods. 

 The impact that the treatment effect had on the point length measurements can 
be mathematically (and conceptually) understood by realizing that the ratio between 
the two variance estimates (variance within groups and variance among groups) 

actually estimates the following parameters in Model I ANOVA:   
s

s
a

w

2

2  estimates 

  
σ α

σ

2

2

+
 where   α   in the numerator represents the treatment effects (not Type I 

error). If there are no treatment effects,   
s

s
a

w

2

2  estimates the ratio   
σ
σ

2

2
 because   α      =    0. 

However, if there are signifi cant treatment effects as was the case in our contrived 

example,   α      ≠    0 causing   
s

s
a

w

2

2  to quickly become larger than 1 as their magnitude 

grows.  

  A Final Summary of Model  I  and Model  II   ANOVA  

 The preceding examples lay the utility of and differences between Model I and 
Model II ANOVA in sharp relief while also refl ecting their potential for archaeologi-
cal analysis. The results of the Model I ANOVA allow us to determine if the 
treatment effects had an impact on samples that otherwise refl ect the same popula-
tion. The presence of a difference is therefore directly attributable to the experi-
mentally introduced (fi xed) effect, and hence the difference (or lack thereof) is 
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directly tied to the experimental design. The experimental design thus  explains  the 
results of the Model I ANOVA when the null hypothesis is rejected. Others may 
repeat our experiment, verify our conclusions, and establish to their satisfaction 
that we have adequately  explained  the differences in means through our 
treatments. 

 In contrast, the results of the Model II ANOVA indicate whether a difference 
that is beyond the researcher ’ s direct control is present. This difference may or may 
not be expected. If there is some theoretical or empirical reason to expect a particu-
lar outcome (either rejecting or failing to reject the null hypothesis), Model II 
ANOVA tests whether the underlying conceptual or empirical structure is plausible. 
This can be a very powerful tool for evaluating our understanding of the factors 
shaping the archaeological record. At the very least, rejecting the null hypothesis 
helps archaeologists detect differences worthy of additional investigation. However, 
the explanation of the differences relies on factors outside of the researcher ’ s direct 
control, and their explanation will therefore require the detailed theoretical and 
empirical frameworks that connect the ANOVA analysis to other causal factors. 
Any differences that are present are  random effects  (relative to the researcher) as 
opposed to the  fi xed effects  associated with Model I ANOVAs. Model II ANOVAs 
are consequently generally a starting point for continued analysis as researchers 
attempt to understand the nature of any random effects that structure the variation 
between means, whereas Model I ANOVAs are the ending point that links observed 
differences to the experimental design.  

   ANOVA  Calculation Procedure 

 Now that you understand how ANOVA works, we provide you with a more rapid 
but less intuitive way to calculate them. Also, unlike the methods presented above, 
which are applicable only for groups with the same sample size, this computational 
method remains the same regardless of whether the sizes of each sample are the 
same. We use the data in Table  10.4  to illustrate this computation. 

  Quantity 1.     The grand total, which is calculated by adding all  Y ij   values.

   Yij
i

i n

j

j a

=

=

=

=

∑∑ = + + + =
11

783 07 780 47 777 56 781 90 3123. . . . mm    

  Quantity 2.     The sum of the squared individual observations, which is calculated 
by squaring all of the  Y ij   values then adding them together.

   Y
i

i n

j

j a
2

11

22678 73 22563 69 22215 93 22631 12 90089
=

=

=

=

∑∑ = + + + =. . . . ..47 2mm    
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  Quantity 3.     The sum of the squared group totals, each divided by its sample size.

   
Y

n
i

ij

j a ∑∑ ( )
= ( ) + ( ) + ( ) +

=

= 2

1

2 2 2783 07

30

780 47

30

777 56

30

781 90. . . .(( ) =
2

2

30
81276 64. mm    

  Quantity 4.     The grand total squared and divided by the total sample size. This is 
also called the  correction term , or CT.

   CT mm=

⎛

⎝
⎜

⎞

⎠
⎟

= ( ) ==

=

=

=

=

=

∑∑

∑

Y

n

n

n i

j

j a

i
j

j a

11

2

1

2
23123

120
81276 07.    

  Quantity 5.     The total sum of squares.

   SS CTtotal = −
=

=

=

=

∑∑ Yi
n

n i

j

j a
2

11

 

   SS Quantity Quantity total = − = − =2 4 90089 47 81276 08 8813 39. . .    

  Quantity 6.     The group sum of squares.

   SS CTgroups = ( ) −∑∑
=

= Y

n
i

ij

j a

1

 

   SS Quantity Quantity groups = − = − =3 4 81276 64 81276 07 57. . .    

  Quantity 7.     The sum of squares within.

   SS SS SSwithin total groups= −  

   SS Quantity Quantity within = − = − =5 6 8813 39 57 8812 82. . .      

 Although less intuitive than the equations for the variance among and within 
groups we originally presented, these quantities produce exactly the same results. 
The calculations ’  results are then customarily presented in an ANOVA table that 
shows the sources of variation, the associated degrees of freedom, the sum of 
squares, the mean squares, and  F S   (Table  10.6 ). The complete ANOVA analysis for 
the projectile point data is presented in Table  10.7 .   

 The ANOVA table contains all of the information necessary to evaluate whether 
there is a difference in group means using the comparison of the variation  among  
groups and  within  groups. Let us examine the ANOVA table in some detail. 
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  Table 10.6    Generalized  ANOVA  table 

   Source of variation     SS      df      MS        F S  

     

 Among group  
  Quantity 6     a   –  1  

     
Quantity 6

1a −
        

MS

MS
groups

within

   

   Y     −      Ȳ    
 Within group  

  Quantity 7  
     n ai

j

j a

−
=

=

∑
1

   
     

Quantity 7

1

n ai
j

j a

−
=

=

∑    
    

     

 Total  
  Quantity 5  

     ni
j

j a

−
=

=

∑ 1
1

   
        

Y Y−

Y Y−

  Table 10.7     ANOVA  analysis comparing the mean length of 
the 30 projectile points presented in Table  10.4  

   Source of variation     SS      Df      MS        F S  

    Y Y−  

 Among group  
  .56    3    .18    .002  

   Y     −      Ȳ    
 Within group  

  8812.82    116    75.97      

    Y Y−  

 Total  
  8813.39    119      

    

In Tables  10.6  and  10.7  you will notice a new term, the total sum of squares. This 
is a new source of variation, one that demonstrates the sum of the squared devia-
tions of each variate from the grand mean. Notice that the among - group sum of 
squares and the within - group sum of squares are additive to the total sum of 
squares. As a result, we have the following sources of variation: 

    Y Y−   among groups : the variation attributed to the differences of the group means 
from the grand mean.  

   Y     −      Ȳ   within groups : the variation attributed to the differences of each variate from 
its own mean.  

    Y Y−   total : the variation attributed to the differences of each variate from the grand 
mean.    

 Each of these sources of variation has an associated degrees of freedom. The degrees 
of freedom are necessary to calculate a variance, or a mean square (i.e., the specifi c 
estimate of   σ    2 ). The among - group degrees of freedom and within - group degrees 
of freedom are additive to the total degrees of freedom. 

 Each source of variation also has a  sum of squares  (SS), the sum of the deviations 
squared. The sum of squares is also necessary to calculate the variance, or mean 
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square. As is true for the degrees of freedom, the among - group sum of squares and 
the within - group sum of squares are additive to the total sum of squares. 

 The  mean square  (MS) for each source of variation is the sum of squares for each 
source of variation divided by the appropriate degrees of freedom. The  among - group 
mean square  describes the dispersion of the group means around the grand mean. If 
there are no random or fi xed effects, it estimates   σ   2 . If there are random or fi xed 
effects, the  among - group mean square  estimates   σ    2  plus the infl uence of the random 
or fi xed effects. The  within - group mean square  describes the average dispersion of the 
observations in each group around the group ’ s mean. The  within - group mean square  
estimates   σ   2  if the groups are representative samples from the same population. 

 The relationship among the three sums of squares can be illustrated as 

  Y Y Y Y Y Y−( ) + −( ) = −( ) . Consider the variate  Y  3,2  in Table  10.4 , which is 20.86 

where   Ȳ    2     =    26.06 and   Y = 26 02. . Placing these values into the equation 

  Y Y Y Y Y Y−( ) + −( ) = −( )  produces:

   26 06 26 02 20 86 26 06 20 86 26 02. . . . . .−( ) + −( ) = −( )  

   . . .04 5 2 5 16+ −( ) = −  

   − = −5 16 5 16. .   

 Why do we care about this relationship? The reason is that it demonstrates the 
additive effects of the deviation that are the foundation of ANOVA. A careful con-
sideration of this equation illustrates that the value of each variate  Y i   is caused by   Y  
plus the difference between   Y  and   Ȳ    plus the difference between   Ȳ    and the variate 
 Y i  . ANOVA, especially when presented in the format of Table  10.7 , identifi es each of 
these sources of variation and is in fact a formal comparison of them. If the variation 
between each group ’ s   Ȳ    and the individual variates is greater than the variation 
refl ected between   Y  and the sample means, then the variance within groups is larger 
than the variance among groups, and we will not be able to reject the 
null hypothesis. However, if the variance between the sample means and   Y  is greater, 
then one or more fi xed effects (Model I) or random effects (Model II) are contribut-
ing disproportionately to the total variation between the individual variates and   Y . 

 We can consequently build a straightforward model of the sources of variation 
using ANOVA. If there was no variation, then all   Y Yij =  (which would actually be 
  μ  ). In the real world we do expect variation within a population for a whole host 
of reasons. In archaeological contexts, variation in artifact data can be caused by 
differences in artifact life history, a plethora of taphonomic processes, differential 
breakage and repair, imprecise cultural transmission, isochrestic variation in manu-
facture, and measurement error, just to name a few possibilities. Some of these 
differences will be systematic, and will therefore be uniform within a sample. These 
are the fi xed effects in Model I ANOVA or the random effects in Model II ANOVA. 
We can symbolize this relationship as  Y ij      =      μ      +     a j   for Model I ANOVA and 
 Y ij      =      μ      +     A j   for Model II ANOVA. We use the lower case  a  and capital  A  to 
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differentiate between fi xed and random effects in order to clearly differentiate 
between the two ANOVA models. For Model I ANOVA,  a  is controlled by the 
researcher whereas  A  in Model II refl ects factors outside the researcher ’ s control. 

 Adding the fi xed/random effects refl ects the addition of the variation among 
groups that impacts the value of  Y ij  , but if this was all of the variation present 
within a data set, every  Y ij   would equal its group mean. As just mentioned, archae-
ologists expect variation within our samples for various reasons such as various 
taphonomic processes, differences in preservation, variation in the original 
artifact morphology, differences in use and repair, etc. Some of these sources of 
variation will not uniformly impact all members of a sample the same way, meaning 
that they create variation  within  the sample. (If they had a uniform impact on all 
members of the sample, they would be random or fi xed effects). The infl uence of 
such variables is symbolized as  e ij  , which refl ects all sources of variation (typically 
considered  “ error ”  or  “ noise ” ) that are not the result of the random/fi xed effects. 
This  “ error ”  constitutes the within - group variation, which is then compared with 
the fi xed/random effects to determine if they contribute disproportionately to the 
total variation. This conceptual link between within - group variation and the idea 
of error is why some statisticians refer to the  within - group MS  as the  error MS . The 
model for Model I ANOVA is thus  Y ij      =      μ      +     a j      +     e ij   and for Model II ANOVA is 
 Y ij      =      μ      +     A j      +     e ij  . 

 When rejecting the null hypothesis  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ   a  , the analyst is formally 
concluding that random or fi xed effects are different for the various samples. To 
put it another way, ANOVA is actually a means of testing for differences in treat-
ment effects. We could therefore just as easily have phrased the null hypothesis as 
 H  0    :    a  1     =     a  2     =     a n   for Model I ANOVA and  H  0    :    A  1     =     A  2     =     A n   for Model II ANOVA 
(i.e., are the effects impacting each sample the same). 

 Given the nature of the  “ random ”  (with respect to the fi xed/random effects) 
error, plots of  e ij   from the same sample should approximate the normal distribution. 
If the distribution is not normal, the variation is likely non - random (with 
respect to the fi xed/random effects) and we likely have an additional treatment 
effect that needs to be identifi ed and controlled by redesigning the experiment 
or through using one of the more advanced forms of ANOVA presented in 
Chapter  14  that consider multiple treatment effects. More signifi cantly, 
ANOVA analysis requires two assumptions related to this random error. First, the 
variances within each group must be roughly comparable. If there are vast 
differences, then it is not reasonable to assume that the variances of each group 
estimate the same   σ    2 . Second, all of the samples considered in the ANOVA analysis 
must be roughly normally distributed. Heavily skewed distributions produce large 
variances relative to normal distributions because the difference between the mean 
and its outliers is large. As a result, the variances within groups will be dispropor-
tionately large when one or more of the distributions is heavily skewed. When either 
of these assumptions is not met, we encourage you to use the Median Test intro-
duced in Chapter  13  or the Kruskal - Wallis nonparametric ANOVA discussed in 
Chapter  14 .  
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  Identifying the Sources of Signifi cant Variation in Model  I  and 
Model  II   ANOVA  

 In many cases, the exact source of signifi cant variation may be evident when reject-
ing the null hypothesis  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ   a  . For example, a quick glance at the sample 
means associated with Table  10.5  will indicate that the average for VanPool 2 is 
quite different from the other three averages and is consequently the main source 
of the variance among groups. However, it is often not so clearly cut and dry, and 
the researcher will want to formally establish which means are different. This can 
be done in a variety of ways, but the easiest method is to use paired t - tests. Yes, we 
know that we just got through trying to convince you that paired t - tests were meth-
odologically fl awed at the end of Chapter  9 , but hear us out for a moment. The 
problem with paired t - tests is that they make it increasingly likely that we will incor-
rectly reject the null hypothesis  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ   a   as the number of paired tests 
increases. However, once a difference has been identifi ed using ANOVA, this 
problem is less severe, given that  a difference already has been established at the stated 
 α  level . Using the paired t - tests consequently won ’ t cause us to reject the entire null 
hypothesis based on a Type I error. Further, if the Bonferroni method (discussed 
at the end of Chapter  9 ) is used to control for the impact on   α  , then we will be less 
prone to make Type I errors for the individual comparisons. 

 Consider the data for the maximum sherd thickness of ceramic types presented 
in Table  10.8 . These three ceramic types are quite prominent in archaeological sites 
in western New Mexico and eastern Arizona from the 12th and 13th centuries. We 
know that they are different in one way  –  two are polychromes and the third is a 
bichrome. Intrigued that they co - occur so commonly, we may ask the question, 
 “ Do these ceramics serve similar or different functions? ”  If similar, we would expect 
there to be no signifi cant differences in mean ceramic width. If dissimilar, we expect 
there may be differences. Our null hypothesis is  H  0    :     Ȳ    wingate     =      Ȳ    tularosa     =      Ȳ    St.Johns  and 
the alternative hypothesis is  H a     :     Ȳ    wingate     ≠      Ȳ    tularosa     ≠      Ȳ    St.Johns . Table  10.9  presents the 
results of our Model II ANOVA. (In case you are wondering why we do not present 
all of the individual variates, the answer is that we don ’ t need to. We are instead 
using the reported standard deviation to determine the sums of squares ( Σ  y  2 ) for 
each sample, which in turn let us calculate the variance within the groups. You can 

  Table 10.8    Summary information for the maximum sherd 
thickness of a sample of three southwestern pottery types 

   Pottery type      n        Ȳ        Standard deviation  

  Wingate polychrome    25    5.6   mm    .661   mm  
  Tularosa bichrome    25    5.0   mm    .924   mm  
  St. Johns polychrome    25    5.8   mm    .707   mm  

c10.indd   173c10.indd   173 8/26/2010   1:55:14 PM8/26/2010   1:55:14 PM



174 Analysis of Variance and the F-Distribution 

do the same with published summary statistics even when you may not have the 
raw data, so long as you know the sample size.)   

 Using Appendix  C  to determine that the critical value for  F  [.05,2,72]     =    3.12 prompts 
us to reject the null hypothesis. There is a signifi cant difference among the 
means.   This is of course a Model II ANOVA given that the variation in the prehis-
toric pottery is out of our control. As a result, an interested ceramic analyst would 
likely wish to determine which mean(s) are different so that the random effects 
underlying the differences can be explored. This can be done easily by calculating 
confi dence intervals around each mean to determine which encompass the means 
of the other samples. These confi dence limits are presented in Table  10.10 . We use 
the Bonferroni correction to maintain our   α   level at .05. In this case, the corrected 
signifi cance level is   α  /3    =    .05/3    =    .0167;  t  [.0167,24]     =    2.57.   

 Inspecting the means and confi dence intervals, we conclude that the polychromes 
are statistically indistinguishable, given that their confi dence intervals encompass 
each other ’ s mean. However, the Tularosa bichrome mean lies outside of the other 
confi dence intervals, and its confi dence intervals do not encompass the other 
means. We therefore conclude that the large among - group variation is a result of 
the small mean value for the Tularosa ceramics. We now must seek to explain the 
random effects contributing to the thinner Tularosa sherds (or thicker polychrome 
sherds). Given that the variation is outside of the researcher ’ s control, answering 
this question will likely require the evaluation of a number of other hypotheses 
using various lines of additional evidence (e.g., archaeological context, residue 
analysis, etc.).  

  Table 10.9     ANOVA  analysis comparing the sherd thickness 
of three pottery types 

   Source of variation     SS      dF      MS        F S  

    Y Y−  

 Among group  

  8.67    2    4.33    7.26  

   Y     −      Ȳ    
 Within group  

  43.00    72    .597      

    Y Y−  

 Total  
  51.67    74          

  Table 10.10    Confi dence intervals for the maximum sherd thickness of three pottery types 

   Pottery type      n        Ȳ        Standard error     Lower limit     Upper limit  

  Wingate polychrome    25    5.6    0.13    5.26    5.94  
  Tularosa bichrome    25    5.0    0.18    4.52    5.48  
  St. Johns polychrome    25    5.8    0.14    5.45    6.16  
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  Comparing Variances 

 There is a fi nal use of the F - distribution we wish to introduce before turning our 
attention to regression analysis in the next chapter. It is the comparison of sample 
variances. Archaeologists are often interested in comparing the amount of variation 
within assemblages or samples as well as their central tendencies. Roux  (2003)  for 
example uses ethnoarchaeological data of pottery production to evaluate the inten-
sity of craft production in Mesopotamia. She reports the standard deviations for 
pottery assemblages produced by several different potters from Andhra Pradesh, 
India, but notes that some attributes appear to be more standardized than others 
for the same potter depending on the use of the pots. For example the mean aper-
ture size for  pedda baba  (storage jars) and  ralla catti  (vegetable cooking vessels) are 
comparable (  Ȳ    pedda baba     =    17.02   cm and   Ȳ    ralla catti     =    16.93   cm) but the variances intui-
tively seem different (  spedda baba

2 cm= 2 37.  and   sralla catti
2 cm=1 54. ) (Roux  2003 :777). 

She suggests that such variation refl ects emic conceptions of acceptable variation, 
which in turn impacts archaeologists ’  ability to use variation to monitor craft 
production. 

 The hypothesis of interest regarding the potential difference between variances 
can be evaluated using the F - distribution, given that it is based on the comparison 
of variances. An F - score can be calculated by dividing the larger variance by the 
smaller one to derive an F value. This is called an F - test, which is presented in 
Equation  (10.6) . The null hypothesis is   H s s0

2: pedda baba ralla catti
2= , and the alternate 

hypothesis is   H s sa : pedda baba ralla catti
22 ≠ . Here,  F     =    2.37/1.54    =    1.54. The sample of 

 pedda baba  vessels is based on 84 vessels whereas the  ralla catti  sample used 166 
vessels. The degrees of freedom are thus 83 and 165, respectively. There is a bit of 
a difference in determining the critical value in this case. ANOVA as outlined above 
is a one - tailed test, in that we are testing to see if the variance among groups is larger 
than the variance within groups. The null hypothesis   H s s0

2: pedda baba ralla catti
2=  is a 

two - tailed test, however, given that   spedda baba
2  could be larger or smaller than   sralla catti

2

. The probabilities in Appendix  C  are for one - tailed tests, so the correct critical value 
for the two - tailed test will be the value listed for   α  /2; the critical value for a two -
 tailed test at   α      =    .05 is the value listed for .025. The critical value of  F  [.05,83,165]     =    1.44. 
Given that 1.54 is larger than the critical value, we reject the null hypothesis and 
conclude that the variation in aperture size is different for the two functional groups 
of artifacts. 

 The  F  - test

   F
s

s
s = 1

2

2
2

    (10.6)   

 The F - test can be used to compare any two variances so long as two general 
assumptions are met. First, the means must be roughly equal. As noted during the 
discussion of the corrected  CV , the size of the standard deviation (and hence the 
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variance) correlates with the size of the distribution ’ s mean. If the means are sig-
nifi cantly different, the variance corresponding with the large mean will naturally 
be larger. An overly conservative but useful rule of thumb is that if there is no 
statistical difference between the means, then the variances can be compared. 
However, statistically different means can be compared so long as the differences 
between them are not too great. 

 Second, the underlying distributions must be normally distributed. As previously 
mentioned when outlining the assumptions of ANOVA, heavily skewed distribu-
tions produce large variances relative to normal distributions. They therefore 
cannot be compared to other distributions using the F - distribution. Distributions 
that are clearly not normally distributed should not be compared using an F - test. 

   Practice Exercises 

    1     Explain why an ANOVA analysis is preferable to a series of paired t - tests 
for evaluating the null hypothesis  H  0    :     Ȳ    1     =      Ȳ    2     =      Ȳ   a  . What are the assump-
tions of an ANOVA analysis?  

  2     Differentiate between a Model I and Model II ANOVA. Provide an 
example of a potential Model I ANOVA analysis that might interest an 
archaeologist. Provide an example of a potential Model II ANOVA analy-
sis that might interest an archaeologist. How would the difference between 
the models impact the interpretation of the results?  

  3     Data for the posthole spacing (cm) for circular structures at the Oak Hill 
village site are presented below (Perttula and Rogers  2007 :77). Use an 
ANOVA analysis to evaluate the null hypothesis that the average posthole 
spacing among the groups is the same (  α      =    .05). Is this a Model I or Model 
II ANOVA? 

   Structure group  

   A     G     E  &  H  

  56    70    50  
  41    88    67  
  55    60    59  
  73    60    49  
  67    61    61  
  65    80    53  
  50    52    51  

c10.indd   176c10.indd   176 8/26/2010   1:55:15 PM8/26/2010   1:55:15 PM



 Analysis of Variance and the F-Distribution  177

  4     Following is the maximum thickness (mm) of Middle Archaic projectile 
points from the Ryan site in Alabama (Baker and Hazel  2007 :47).  

  (a)     Use an ANOVA to evaluate the null hypothesis that all of the average 
thicknesses of the points are the same (  α      =    .01). If they differ, use 
paired t - tests to determine which means are different.  

  (b)     Is this a Model I or Model II ANOVA? 

   Benton knife/spear burial 
offerings  

   Benton projectile 
points/darts  

   Side notched projectile 
points  

  9.4    6.3    6.5  
  9.5    6.2    5.1  
  9.7    8.1    5.4  
  8.7    8.5    7.2  

  5     Below are data for the diameters (m) of pit structure clustered into three 
spatially distinct groups. 

   (a)     Use paired t - tests (  α      =    .05) without using the Bonferroni correction 
to control for familywise error (see the end of Chapter  9 ) to evaluate 
the null hypothesis that the three groups have the same average 
diameter.  

  (b)     Re - evaluate the null hypothesis using paired t - tests modifi ed using 
the Bonferroni correction for a cumulative error of   α      =    .05.  

  (c)     Re - evaluate the null hypothesis using an ANOVA (   α      =    .05). Did the 
results of your analysis change? Which method(s) are preferable and 
why? 

   Cluster 1     Cluster 2     Cluster 3  

  6.8    8.3    7.2  
  7.5    8.2    6.8  
  9.5    9.0    8.0  
  7.8    7.5    6.7  
  9    8.2    8.7  
  9.5    7.5    7.1  
  6.7    8.0    6.5  

  6     Crawford ( 1993 : 9) presents the blade length of 27 British and Irish Iron 
Age swords. The standard deviation for the British swords is 10.07   cm 
( n     =    11) while the standard deviation of the Irish swords is 4.51   cm 
( n     =    10). Use the F - distribution to determine if the variation in the two 
distributions is signifi cantly different (  α      =    .05).            
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Linear Regression and 
Multivariate Analysis     

     As useful as measures of central tendency and dispersion are, they cannot character-
ize all of the relationships that interest archaeologists. We may ask questions about 
the structure of a single variable of an assemblage (e.g., rim angles of different 
pottery types), but archaeological analysis often focuses on the relationships among 
two or more variables. Does rim angle change as maximum vessel height changes? 
Are longer projectile points also wider, or does the hafting element constrain a 
point ’ s maximum width? Do settlements in an area get bigger through time? Do 
they get bigger moving down slope towards river fl ood plains? All of these questions 
might be interesting to an archaeologist, but they require the analyst to consider 
the relationships evident among two or more variables. As helpful as the mean, 
standard deviation, and other measurements we have discussed thus far are, they 
are not adequate for such tasks. The analyst needs additional statistical tools that 
can be called, as a group, multivariate analyses. 

 Perhaps the simplest and most straightforward multivariate method is linear 
regression, a technique that is one of the most widely used in archaeological (and 
other) analyses. Most people are familiar with it, at least in an abstract sense. It is 
useful in so many different contexts that we fi nd it impossible to read the news-
paper, a fi nancial report, or listen to the daily news without encountering it (or at 
least the newsworthy results of its application). As common as it is, however, it does 
have certain limitations and assumptions, which are unfortunately often ignored, 
leading to hidden, but severe, analytic diffi culties. Still, it is a powerful and fl exible 
tool that is indispensible for archaeological analysis. 

 Simply put, linear regression allows us to examine the relationship between two 
continuously measured variables where we believe one variable infl uences the 
values of another. For example, we might expect the absolute number of hearths to 
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increase in large habitation sites relative to small sites simply because more hearths 
are needed for cooking and heating in larger settlement. If this is so, then settlement 
size and hearth frequency share a  functional relationship , in the sense that one of 
the variables (number of hearths) is  dependent  on the other (site size). As a tool, 
regression offers several benefi ts to archaeologists. It can be used to determine the 
presence and shape of functional relationships, which are often central to archaeo-
logical explanations of both similarities and differences in the archaeological record. 
We can also use the knowledge of the functional relationship to predict specifi c 
outcomes for cases where data are missing or to identify  “ odd ” , incongruent results 
that are atypical when compared to other cases. 

 In mathematical terms, the functional relationship allows us to use the independ-
ent variable (symbolized as  X ) to predict the values of the dependent variable 
(symbolized by the letter  Y ). Such relationships are expressed as  Y     =     f ( X ), which 
simply reads as  Y  is a function of  X . Be sure to understand, though, that this is not 
an equal relationship of codependence between the two variables; the value of the 
independent variable ( X ) is not determined in any way by the value of the depend-
ent variable ( Y ), but  Y  is at least to some degree controlled by  X . Using our previous 
example, settlement size controls the number of hearths, not the other way around. 

 The simplest form of a functional expression is  Y     =     X . The number of tree rings 
as a refl ection of a tree ’ s age is an excellent example of this relationship, as illustrated 
in Figure  11.1 . Trees typically add a single ring every year they grow. We can there-
fore count the number of tree rings to determine a tree ’ s age, an insight that remains 
crucial to dendrochronology. A more common and more complex relationship is 
 Y     =     bX , where the coeffi cient  b  is a  slope  factor. If in our hypothetical example there 

     Figure 11.1       The relationship between a tree ’ s age and number of tree rings  

0

12

10

8

6

4

2

0

Age (years)

N
um

be
r 

of
 R

in
gs

2 4 6 8 10 12

c11.indd   179c11.indd   179 8/26/2010   1:55:27 PM8/26/2010   1:55:27 PM



180 Linear Regression and Multivariate Analysis 

tends to be one hearth for every fi ve habitation rooms, then the relationship between 
hearth and room frequencies would be  Y     =    .2 X .   

 As previously stated, regression is used when and only when there is a reason to 
believe (to hypothesize) that there is a relationship such that the variable  X  actually 
causes the value associated with  Y  to change. Let us take a moment to explore the 
structure of this causality. Is it fair to say that there is a causal connection between 
age and tree rings as illustrated in Figure  11.1  such that age causes the number of 
tree rings? The answer seems to us to be,  “ yes. ”  Tree rings refl ect the growing cycle 
of rapid growth during warm seasons and slow growth during winter dormancy. 
This cycle is measured as a year, so the causal connection between years and tree 
rings is clear. But what about the relationship between the exchange rates of the US 
dollar and the Mexican peso illustrated in Figure  11.2 ?   

 In the spring of 2010, the exchange rate was around 9.5 pesos for every US dollar 
( Y     =    9.5 X ). The relationship follows the form of  Y     =     f ( X ) and looks like the relation-
ship illustrated in Figure  11.1 , but is it truly a functional relationship? Put another 
way, is the value of the Mexican peso  determined  by the value of the US dollar? The 
Mexican and US economies are certainly integrated with each other, but no, the 
dollar does not directly control the peso. Instead, variation in the value of each, 
which refl ects underlying economic factors, causes them to correspond with each 
other at a fl uctuating rate. Such nonfunctional correlations will be the subject of 
the next chapter, but regression requires a stronger causal relationship than such 
interdependency provides. For regression to work, the independent variable must 
in fact  control  the variation in the dependent variable in some way. 

     Figure 11.2     The relationship between the US dollar and Mexican peso in the spring of 2010  
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 Let us consider a non - archaeological but intuitively meaningful example to 
further illustrate both the mathematical and conceptual structure of regression. 
Figure  11.3  illustrates the relationship between age and the average diastolic blood 
pressure in humans. Given our knowledge of human physiology and the effects of 
aging, we might very well expect there to be some relationship between age and 
blood pressure such that an individual ’ s age affects his or her blood pressure. This 
hypothesis appears to be supported in Figure  11.3 , in which the average blood pres-
sure increases according to the individuals ’  ages.   

 While increases in  X  and  Y  in Figure  11.1  were uniformly linear, notice that this 
is not the case in Figure  11.3 . Notice also that in Figure  11.1 , when  X     =    0, then also 
 Y     =    0. That is not the case here. As illustrated in Figure  11.4 , we can draw a line 
through the data points toward the  y  - axis to estimate that it would  intercept  the 
 y  - axis near 60. This makes sense; newborns have blood pressure. A regression line 
(the line illustrating the functional relationship) has both an  intercept  (the point at 
which it crosses the  y  - axis) and a  slope  (the rate at which  Y  changes in accordance 
with  X ). For any given relationship we can have a potentially infi nite number of 
intercepts and slopes. These relationships take the form  Y     =     a     +     bX . This formula 
is called the general linear regression equation;  a  is the  intercept , and  b  is the  regres-
sion coeffi cient  or  slope . Using our knowledge of age ( X ), the intercept ( a ), and the 
regression coeffi cient ( b ), we can predict an individual ’ s blood pressure (a value 
of  Y ).   

 Data points are typically scattered about the regression line as illustrated in 
Figure  11.4  as opposed to falling on it perfectly as illustrated in Figure  11.1 . As with 
the variation around means discussed in the last chapter, this variation from 
the regression line can be a product of measurement error, differences in artifact 

     Figure 11.3     Average diastolic blood pressure of humans of various ages  
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manufacture and use, differences in preservation and recovery, and the infl uence 
of other factors impacting the dependent variable. Consider the data in Figure  11.5 , 
which refl ect the maximum length and weight of a random sample of 10 projectile 
points from Ventana Cave, Arizona (VanPool,  2003 ). It seems intuitive that there 
should be a causal relationship between point length and weight, in that a point ’ s 
weight is controlled by its length. Figure  11.5  supports this self - evident proposition 
with the weight of points increasing with maximum length. However, the relation-
ship is not perfect. Sometimes longer points weigh less than shorter points. Why?   

 The reason is that weight is also affected by maximum width, maximum thick-
ness, basal width, basal thickness, raw material type, notch size, and a host of other 
morphological attributes. Maximum length does impact weight, but so do other 
variables meaning that only a portion of the variation in weight can be  explained  
by variation in point length. The infl uence of the other variables also will be 
refl ected in the weight values. Does this mean that regression is inappropriate for 
analyzing these data? Fortunately, no. Regression requires that  Y  be a product of  X , 
but it does not require that  Y  be a product of  only X . Other variables can affect the 
dependent variable too. As a result, the functional relationship between  X  and  Y  
does not necessitate that the value of  Y must  be exactly equal to  a     +     bX , but rather 
that the  mean  of  Y  for a given value of  X  is at  a     +     bX . There will be variation in the 
data as a result of any other factors that infl uence the dependent variable. As a result, 
a regression line only refl ects the average value of  Y  for a given  X  (which is, after 

     Figure 11.4     Regression line describing the relationship between age and diastolic blood 
pressure  
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     Figure 11.5     Scatter plot of the maximum length compared with weight for 10 projectile 
points from Ventana Cave, Arizona  
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all, the most likely value for  Y ), not the actual value that  Y  will take. (See, even here, 
the measures of central tendency and dispersion remain important.) 

 Realizing that regression analysis focuses on the average value of  Y  helps eluci-
date the reasons for the four assumptions that are required for regression analysis. 
These assumptions are: 

  1      X  is measured without error, or, in fancy statistical terms, it is fi xed. It must be 
directly measured using adequately precise and accurate tools, and cannot be 
something like an average value or an estimate (e.g., it can ’ t be something like 
a radiocarbon date). Otherwise, the relationship between the dependent and 
independent variables cannot be adequately quantifi ed to allow the distribution 
of the mean values of the dependent variable to be represented by the regression 
line.  

  2     The expected (mean) values for  Y  fall on a straight (as opposed to curvilinear) 
line. Using more complicated jargon, this means that they can be described by 
the linear function   μ  Y      =     α     +     β  X .  

  3     For any given value of  X  (here symbolized as  X i  ), each  Y  value is independent 
of other  Y  values. This means that the value of one particular  Y  (e.g., a projectile 
point ’ s weight) doesn ’ t infl uence the values of other  Y s (other point weights). 
Archaeological data typically meet this assumption, but there are cases where 
the value of one  Y i   will infl uence other values. For example, the length of walls 
in square - shaped rooms are not free to vary independent of each other in that 
the length of one helps to determine the length of the others.  

  4     For each  X i  , the distribution of  Y  is: (i) normally distributed and (ii) homo-
scedastic (meaning that they have similar variances such that the amount of 
variation in  Y  around the regression line cannot increase or decrease as the value 

c11.indd   183c11.indd   183 8/26/2010   1:55:27 PM8/26/2010   1:55:27 PM



184 Linear Regression and Multivariate Analysis 

of  X  increases). These related premises are essential for both reliably construct-
ing a regression line and for using it to make accurate predictions. Figure  11.6  
represents data that meet the four assumptions presented here. A sample of 
these data will facilitate the creation of a useful estimate of the underlying 
regression relationship. Compare this with Figures  11.7  and  11.8 , which refl ect 
data that are not homoscedastic or normally distributed. A sample from these 
data would quite likely produce regression lines that are quite different from 

     Figure 11.6     An example of a functional relationship that meets the assumptions necessary 
for regression analysis  
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     Figure 11.7     The effect on the likely range of regression lines as the inconsistent variation 
resulting from non - homoscedastic data allows the analysis to stray excessively from the 
mean for each  X i    

Independent Variable (X)

D
e
p
e
n
d
e
n
t 
V

a
ri

a
b
le

 (
Y

)

c11.indd   184c11.indd   184 8/26/2010   1:55:27 PM8/26/2010   1:55:27 PM



 Linear Regression and Multivariate Analysis  185

the  “ true ”  regression line characterizing the means. Further, predictions for  Y  
at each  X i   based on samples from these populations would be very poor indeed.      

 If you understand these assumptions, you will fi nd regression an easy tool to use 
and interpret. If not, you will be forever uncertain whether you should be using 
regression analysis, correlation analysis (discussed in the next chapter), or some 
other technique all together. 

 When all four assumptions are met, the formula for the average  Y i   at a given  X i   is 
 Ŷ     =     a     +     b  X i  , but this will likely differ from the observed  Y i   values at each  X  by some 
small degree. ( Ŷ (vocalized as  Y  - hat) is used to symbolize the average  Y i   at a given  X i   
instead of   Ȳ    in order to prevent confusing the average of all of the values for  Y i   (  Ȳ   ) 
with the average  Y  at a give  X i  .)  Ŷ  is an excellent estimate for  Y i  , in that the mean value 
is the most common value in a normally distribution, but it cannot account for the 
infl uences of additional independent variables or other sources of error. From the 
perspective of  X i  , this infl uence will be random (hence the assumption of a normal 
distribution). As a result, each  Y i   is a product of  Y i      =     a     +     bX i      +     e i  , where  e i   is the error 
term refl ecting variation caused by factors other than  X  (this should remind you of 
the conceptual model for ANOVA). In the dendrochronology example we used at 
the start of this chapter,  e i   is virtually zero, given that the number of tree rings is 
nearly perfectly controlled by the years a tree has been growing. (We say  “ nearly ”  
because on occasion harsh environmental conditions can disrupt the growing cycle 
and cause a tree to put on two or more rings in a single year or produce no ring at 
all.) In other cases,  e i   may be comparatively large, as illustrated in Figure  11.5 . Now 
let ’ s turn our attention towards actually completing a regression analysis.  

     Figure 11.8     An example of the effect on the likely range of regression lines resulting from 
skewed distributions  
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  Table 11.1    Information for the regression analysis of 10 projectile points from Ventana Cave, Arizona 

      1    2    3    4    5    6    7    8    9    10    11    12  
  Proj. 
point  

  Total 
length  

  weight     x      y     x 2      xy     y 2      Yˆ     d Y * X              yˆ      yˆ  2   

        X     Y     X i     −     X̄       Y i     −     Ȳ       (X i     −     X̄  ) 2      (Sum of 
products)  

   (Y i     −     Ȳ  ) 2           (Deviation 
of Y i  at X i )  

   (Unexplained 
sum of 

squares)  

    Ŷ     −     Ȳ       (Explained 
sum of 

squares)  

  1    4.2    5.2    1.21    2.51    1.46    3.03    6.30    4.66    0.54    0.29    1.97    3.88  
  2    3    2.5    0.01     − 0.19    0.00    0.00    0.04    2.70     − 0.20    0.04    0.01    0.00  
  3    2.5    2     − 0.49     − 0.69    0.24    0.34    0.48    1.89    0.11    0.01     − 0.80    0.64  
  4    3.5    2.2    0.51     − 0.49    0.26     − 0.25    0.24    3.52     − 1.32    1.74    0.83    0.69  
  5    2.6    2.8     − 0.39    0.11    0.15     − 0.04    0.01    2.05    0.75    0.56     − 0.64    0.41  
  6    3.1    3.8    0.11    1.11    0.01    0.12    1.23    2.87    0.93    0.87    0.18    0.03  
  7    2.97    2.3     − 0.02     − 0.39    0.00    0.01    0.15    2.65     − 0.35    0.13     − 0.04    0.00  
  8    2.21    0.7     − 0.78     − 1.99    0.61    1.56    3.96    1.41     − 0.71    0.51     − 1.28    1.63  
  9    2.39    2.1     − 0.60     − 0.59    0.36    0.36    0.35    1.71    0.39    0.15     − 0.98    0.96  

  10    3.45    3.3    0.46    0.61    0.21    0.28    0.37    3.44     − 0.14    0.02    0.75    0.56  

   Σ     29.92    26.9    0.00    0.00    3.31    5.40    13.13    26.90    0.00    4.33    0.00    8.80  

dY X∗
2
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 Linear Regression and Multivariate Analysis  187

  Constructing a Regression Equation 

 Given that the regression equation is  Y     =     a     +     bX , we must determine  a  and  b  to 
solve for  Y  at a given  X i  . To begin fi guring out these values, we need the average for 
both the dependent and independent variables. For the Ventana Cave projectile 
point data,   X̄       =    2.99   cm and   Ȳ       =    2.69   g. We also need the information presented in 
Table  11.1 . Much of this will look familiar to you. For example  x ,  y ,  x  2 , and  y  2  are 
the exact same deviations and squared deviations we would calculate when comput-
ing the standard deviation for  X  and  Y .   

 The multiplication of the deviations of  x  and  y  in Column 4 to form  xy  may 
seem a bit odd at fi rst glance, but it is actually quite easily understood. Squaring  y  
gives  y  2  (i.e., [ Y i      −      Ȳ   ]    ×    [ Y   i      −      Ȳ   ]) that you will recall is used to determine the sums 
of squares, which refl ects how much variation there is between   Ȳ    and  Y i  . (If you 
don ’ t recall this, please refer back to the discussion of the standard deviation in 
Chapter  4 .) This is useful for quantifying the variation in variable  Y , but with regres-
sion we are interested in the covariance between variables  X and Y , not just the 
variation in variable  Y or X . Taking  y  and multiplying it by  x  (i.e., [ Y   i      −      Ȳ   ]    ×    [ X   i      −      X̄   ]) 
actually provides a measure of the variation in variables  X  and  Y  relative to each 
other. If  Y   i      −      Ȳ    gets larger as X  i      −      X̄    get larger, then we know that they positively 
covary (Figure  11.9 ). If  Y   i      −      Ȳ    gets smaller as  X   i      −      X̄    gets larger, then we know that 
the variables negatively covary (Figure  11.10 ). If  Y   i      −      Ȳ    does not reliably get larger 
or smaller as  X    i     −     X̄   increases, then variables  X  and  Y  do not covary at all (Figure 
 11.11 ). Thus, using  xy  as refl ected in Column 6, we can determine the degree of 
covariance between the two variables.   

 The amount of covariance between the dependent and independent variables in 
turn allows us to determine the amount of variation in variable  Y  that is  explainable  

     Figure 11.9     A relationship in which ( X    i     −     X̄  ) and ( Y   i      −     Ȳ  ) positively covary, in that as 
X  i      −     X̄   becomes large, so does  Y   i      −     Ȳ    
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     Figure 11.10     A relationship in which ( X   i      −     X̄  ) and ( Y   i      −     Ȳ  ) negatively covary, in that as 
 X   i      −     X̄   becomes larger,  Y    i     −     Ȳ   becomes smaller  
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in terms of  X , that is, how much of the variation in  Y  is caused by the change in  X . 
The portion of the variation in  Y  that cannot be explained by  X  is  unexplainable  in 
terms of  X  and is the result of the infl uence of other variables or measurement error 
previously discussed. While building our regression equation, we will consequently 
also build an explained sum of squares, which measures the portion of the variation 
in  Y  caused by  X , and an unexplained sum of squares, which measures the variation 
in  Y  caused by all other sources. 

     Figure 11.11     A relationship in which ( X    i     −     X̄  ) and ( Y    i     −     Ȳ  ) do not covary, in that as 
 X  i       −    X̄    becomes larger,  Y   i      −     Ȳ   does not consistently become larger or smaller  
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 Linear Regression and Multivariate Analysis  189

 Calculating the regression equation and the explained/unexplained sums of 
squares is illustrated in Table  11.1  and is completed as follows: 

  Columns 1 and 2 refl ect the maximum length and weight of the 10 Ventana Cave 
projectile points.  

  Column 3 presents  x , the deviation of each  X i   from its mean. Notice that this sums 
to zero.  

  Column 4 presents  y , the deviation of each  Y i   from its mean. This too sums to zero.  
  Column 5 presents the sum of squares for  x , which is used in the denominator of 

the calculation of the regression coeffi cient presented in Equation  (11.1) . 

  The regression coeffi cient 

   b xy x= ∑ ∑ 2     (11.1)    

  Column 6 presents the sum of products, that is, the product of  x  and  y  discussed 
in the preceding paragraphs. The sum of these products is used in the numerator 
of our calculation of the regression coeffi cient (Equation  (11.1) ).  

  Column 7 presents the sum of squares for  y .  
  Column 8 presents our predicted value of  Y i   for each  X i  . Remember that this value in 
fact refl ects the expected average of all  Y i   at a given  X i  . Again, to help prevent confu-
sion between this predicted value and actual observed values (or   Ȳ    for that matter), 
the predicted value is represented by   Ŷ  . The line connecting all of the expected values 
is the regression line. Remember that   Ŷ  always  refers to the average value of  Y  at a 
given  X i  , and never to an actual observed  Y i  . As Figure  11.4  illustrates, it is not neces-
sary for even a single  Y i   to fall perfectly on the regression line.    

  Ŷ  is calculated in the following manner. First, calculate the regression coeffi cient 
(or slope) using Equation  (11.1) .

   b xy x= ∑ ∑ 2  

   b = 5 40 3 31. .  

   b = 1 63.   

 Now plug the slope into the regression equation and solve for  a . We know that 
 Y     =     a     +     b X. Calculating  a  therefore simply requires us to choose appropriate values 
for  Y  and  X . There are a couple of ways to do this, but the most common method, 
which is associated with the  “ least squares ”  regression method we introduce here, 
is to use the values for   X̄    and   Ȳ   . We will briefl y discuss the differences between least 
squares regression and its alternatives at the end of this chapter, but it is necessary 
to note here that this method mathematically requires the regression line to pass 
directly through   X̄    and   Ȳ   , so these values are ideal for determining  a . Thus,  a  is 
calculated as follows.
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   Y a bX= +  

   a Y bX= −  

   a = − ( )2 69 1 63 2 99. . .  

   a = −2 19.   

 The fact that  a  is a negative number isn ’ t a problem. 
 Now that we know  a , we can present the regression line as  Ŷ     =     − 2.19    +    1.63( X i  ). 

We can then solve for the expected values in Column 8 of Table  11.1 . As we would 
expect, these values are close to, but not identical to, the observed values  Y i   for each 
given  X i   (Figure  11.12 ). We can even calculate a measure of the variation between 
 Ŷ  and  Y i   using the difference between them, as refl ected in Column 9. This  residual  
is the deviation from the point on the regression line and the actual value of  Y  for 
each  X i   illustrated in Figure  11.4 . Column 10 is the square of the residuals in 
Column 9, which creates a sum of squares for the variation between  Ŷ  and  Y i  . This 
is the variation that  is not  explained by the variation in variable  X , and is therefore 
called the  unexplained sum of squares .   

 All of the variation in  Y i   that is not refl ected in the unexplained sum of squares 
is in fact the variation that is controlled by the independent variable (variable  X ). 
This probably sounds confusing unless you have a good mathematical background, 
so think about it this way. All of the variation in  Y i   can be quantifi ed using  Y   i      −      Ȳ    
as we do when calculating the variance. If a regression relationship exists, some of 
this variation will refl ect the infl uence that the independent variable exerts over the 
dependent variable. Some of it will be caused by the infl uence of other variables or 
factors such as measurement error. This  “ extra ”  variation is the variation between 
 Y i   and  Ŷ , which is what is measured using the unexplained sum of squares. The 

     Figure 11.12     Regression line for the projectile point data presented in Table  11.1   
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remaining portion of the variation refl ected in  Y   i      −      Ȳ    is the result of the infl uence 
of the independent variable. It can be easily quantifi ed using the variation 
between   Ȳ    and  Ŷ   i   (Column 11). Squaring these values in Column 12 provides a new 
sum of squares called the explained sum of squares. This term directly refl ects the 
variation in the dependent variable (in this case, point weight) caused by the infl u-
ence of independent variable (maximum point length). Notice that the explained 
sum of squares and the unexplained sum of squares do in fact equal the total sum 
of squares refl ected in Column 7. 

 Figure  11.13  summarizes all of the sources of variation discussed above. It is 
critical to understand the relationships presented there, so humor us as we explore 
the various sources of variation one last time. The deviation of an individual obser-
vation ( X i  ,  Y i  ) from   Ȳ    is calculated as ( Y i      −      Ȳ   ), and is symbolized by  y . These are 
the deviations represented by the total sum of squares. Some of this deviation can 
be explained by the infl uence of variable  X . This explainable variation is the differ-
ence between   Ȳ    and the expected value for  Y i  , which is  Ŷ . Thus, the explained sum 
of squares is based on ( Y i      −      Ȳ   ), which is symbolized as  ŷ . The remainder of the 
variation is not the result of the infl uence of variable  X , and is therefore unex-
plained. This variation is the difference between the expected value and the cor-
responding  y i  , which is quantifi ed as ( Y i      −     Ŷ ) and is symbolized as  d Y    *    X   (the deviation 
of  Y  at  X ).  d Y    *    X   is used to calculate the unexplained sum of squares, which refl ects 
the infl uence of other variables and measurement error. By comparing the explained 
and the unexplained sum of squares, we can determine if variable  X  really has a 
signifi cant infl uence on variable  Y  (refl ected by a large explained sum of squares) 
or not. Thus, calculating the regression line is just the fi rst step. The next is quan-
tifying the strength of the association between a dependent and independent vari-
able. We illustrate how to do this in the following section.    

     Figure 11.13     Sources of variation at  X i  ,  Y i    
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  Evaluating the Statistical Signifi cance of Regression 

 Here we will use data provided by Dohm  (1990)  to illustrate the application of 
regression analysis and its use to quantify both the explained and unexplained 
variation in archaeological data. Archaeologists often would like to know the demo-
graphic structure of the people who once occupied the settlements that we study. 
This often requires us to develop population estimates using some archaeologically 
measurable attribute (e.g., size of habitation area, number of rooms, etc.). Dohm ’ s 
 (1990)  study focuses on understanding the effects of population nucleation and 
dispersion on settlement size in American Southwest. She quite reasonably proposes 
that the number of rooms and total roofed area in a settlement should be a function 
of the number of people who lived there, and measures this relationship using a 
regression analysis. However, she then goes on to explore the unexplained portion 
of the variation in the number of rooms to identify the impact of other factors such 
as regional population density on the number of rooms in a community. Dohm 
 (1990)  consequently perfectly illustrates the utility of using regression to identify the 
explanatory importance of a particular variable, and how this knowledge can help 
focus our research to provide a deeper understanding of the archaeological record. 
For this example, we wish to focus only on the fi rst portion of Dohm ’ s analysis, the 
relationship between population and the number of rooms in a settlement. 

 More people will need more rooms to live in and conduct all of their activities, 
all other variables being equal, and therefore the number of rooms should refl ect 
past population size. Expressed more formally, this functional relationship can be 
written in the form of  Y     =     f ( X ) as (number of rooms)    =     f  (the number of people in 
a settlement). 

 Dohm ’ s premise seems intuitively reasonable, and should be applicable to the 
prehistoric record, but archaeologists unfortunately don ’ t know the independent 
variable (the number of people who once occupied a settlement). Dohm solves this 
problem by using historical and ethnographic evidence of settlement room frequen-
cies and population size to: (i) establish that there is a relationship between popula-
tion size and the number of rooms, and (ii) develop a means of estimating population 
sizes using architectural information. She recognizes that there is tremendous diver-
sity in the way that different cultures use the built environment, so she used infor-
mation from groups who are historically related to the people she is studying 
archaeologically (the Pueblo Indians of the American Southwest). She chose these 
groups because they live in similar buildings to those she is studying and they 
conduct many of the same activities as refl ected in the archaeological and ethno-
graphic records, suggesting that their use of built space may be similar. 

 Dohm ’ s data are presented in Table  11.2  and Figure  11.14 . There does intuitively 
appear to be a relationship between the two variables such that as  X  increases, so 
does  Y . This suggests that population size does infl uence the number of rooms in 
a settlement. However, for archaeologists to be able to use this relationship to esti-
mate the relationship between population size and room totals effectively, they will 
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  Table 11.2    Historic pueblo room counts 

   Pueblo     Map date     Total population     Total rooms  

  Acoma    1948    879    387  
  Cochiti    1952    444    225  
  Isleta    1948    1470    804  
  Jemez    1948    883    459  
  Laguna    1948    711    189  
  Nambe    1948    155    34  
  Picuris    1948    130    59  
  San Felipe    1948    784    276  
  San Ildefonso    1948    170    207  
  San Ildefonso    1973    413    189  
  San Juan    1948    768    176  
  Sandia    1948    139    80  
  Santa Ana    1948    288    136  
  Santa Ana    1975    498    152  
  Santa Clara    1948    573    144  
  Santo Domingo    1948    1106    500  
  Shipaulovi    1882    113    131  
  Shongopavi    1882    216    253  
  Sichomovi    1882    104    105  
  Taos    1948    907    543  
  Taos    1973    1463    627  
  Tesuque    1948    160    116  
  Tewa Village    1882    175    158  
  Walpi    1882    270    363  
  Zia    1948    267    126  

    Source :   Dohm, K. (1990). Effect of population nucleation on house size for pueblos in the American 
Southwest.  Journal of Anthropological Archaeology ,  9 : 201 – 39.   

need to be sure that population size exerts a substantial control over the number 
of rooms. If total population is only one of many variables that weakly infl uence 
the dependent variable of number of rooms, then any explanation for differences 
in settlement size based on population estimates derived from room frequencies 
will be quite poor.     

 The least squares regression line illustrated in Figure  11.15  was calculated by 
solving for  a  and  b  using the method illustrated previously (Table  11.3 ).    

   n = 25  

   X = 523 44.  

   Y = 257 56.   
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     Figure 11.14     The relationship between site population and the total number of rooms  
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     Figure 11.15     Regression relationship between population size and the total number of 
rooms  
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 The regression coeffi cient is:

   b
xy

x
= = =∑

∑ 2

1698469

4146532
41.   

 The  Y  intercept is:

   a Y b X= − ( ) = − ( ) =257 56 41 523 44 42 95. . . .   
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  Table 11.3    Regression analysis of historic pueblo population size compared to room counts 

  Pueblo    Total 
population  

  Total 
rooms  

   x      y     x 2      xy     y 2      Yˆ     d Y * X     
      

   ŷ       ŷ   2   

    X       Y      X i     −     X̄       Y i     −     Ȳ       (X i     −     X̄  ) 2      (Sum of 
products)  

   (Y i     −     Ȳ  ) 2           (Deviation 
of Y i  at X i )  

   (Unexplained 
sum of 

squares)  

    Yˆ     −     Ȳ      (Explained 
sum of 

squares)  

  Acoma    879    387    355.56    129.44    126422.91    46023.69    16754.71    403.20     − 16.20    262.49    145.64    21211.48  
  Cochiti    444    225     − 79.44     − 32.56    6310.71    2586.57    1060.15    225.02     − 0.02    0.00     − 32.54    1058.82  
  Isleta    1470    804    946.56    546.44    895975.83    517238.25    298596.67    645.28    158.72    25191.33    387.72    150328.52  
  Jemez    883    459    359.56    201.44    129283.39    72429.77    40578.07    404.84    54.16    2933.30    147.28    21691.41  
  Laguna    711    189    187.56     − 68.56    35178.75     − 12859.11    4700.47    334.39     − 145.39    21137.32    76.83    5902.36  
  Nambe    155    34     − 368.44     − 223.56    135748.03    82368.45    49979.07    106.64     − 72.64    5276.95     − 150.92    22776.06  
  Picuris    130    59     − 393.44     − 198.56    154795.03    78121.45    39426.07    96.40     − 37.40    1398.93     − 161.16    25971.80  
  San Felipe    784    276    260.56    18.44    67891.51    4804.73    340.03    364.29     − 88.29    7794.85    106.73    11390.97  
  San 

Ildefonso  
  170    207     − 353.44     − 50.56    124919.83    17869.93    2556.31    112.79    94.21    8876.13     − 144.77    20959.29  

  San 
Ildefonso  

  413    189     − 110.44     − 68.56    12196.99    7571.77    4700.47    212.32     − 23.32    543.94     − 45.24    2046.43  

  San Juan    768    176    244.56     − 81.56    59809.59     − 19946.31    6652.03    357.73     − 181.73    33027.49    100.17    10034.97  
  Sandia    139    80     − 384.44     − 177.56    147794.11    68261.17    31527.55    100.09     − 20.09    403.56     − 157.47    24797.18  
  Santa Ana    288    136     − 235.44     − 121.56    55431.99    28620.09    14776.83    161.12     − 25.12    631.06     − 96.44    9300.48  
  Santa Ana    498    152     − 25.44     − 105.56    647.19    2685.45    11142.91    247.14     − 95.14    9051.52     − 10.42    108.59  
  Santa Clara    573    144    49.56     − 113.56    2456.19     − 5628.03    12895.87    277.86     − 133.86    17918.60    20.30    412.10  
  Santo 

Domingo  
  1106    500    582.56    242.44    339376.15    141235.85    58777.15    496.18    3.82    14.57    238.62    56941.17  

  Shipaulovi    113    131     − 410.44     − 126.56    168460.99    51945.29    16017.43    89.44    41.56    1727.33     − 168.12    28264.70  
  Shongopavi    216    253     − 307.44     − 4.56    94519.35    1401.93    20.79    131.63    121.37    14730.94     − 125.93    15858.64  
  Sichomovi    104    105     − 419.44     − 152.56    175929.91    63989.77    23274.55    85.75    19.25    370.47     − 171.81    29517.85  
  Taos    907    543    383.56    285.44    147118.27    109483.37    81475.99    414.67    128.33    16468.40    157.11    24683.78  
  Taos    1463    627    939.56    369.44    882772.99    347111.05    136485.91    642.41     − 15.41    237.62    384.85    148113.32  
  Tesuque    160    116     − 363.44     − 141.56    132088.63    51448.57    20039.23    108.69    7.31    53.43     − 148.87    22162.08  
  Tewa 

Village  
  175    158     − 348.44     − 99.56    121410.43    34690.69    9912.19    114.83    43.17    1863.23     − 142.73    20370.47  

  Walpi    270    363     − 253.44    105.44    64231.83     − 26722.71    11117.59    153.75    209.25    43786.41     − 103.81    10776.94  
  Zia    267    126     − 256.44     − 131.56    65761.47    33737.25    17308.03    152.52     − 26.52    703.26     − 105.04    11033.58  

   Σ     13086    6439    0.00    0.00    4146532.16    1698468.84    910116.16    6439.00    0.00    214403.14    0.00    695713.02  

dY X∗
2
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196 Linear Regression and Multivariate Analysis 

 The explained sums of squares is:

   ˆ .y2 695713 02∑ =   

 The unexplained sum of squares is:

   dY X∗∑ =2 214402 14.   

 If variable  X  (population size) controls much of the variation in variable  Y  
(number of rooms), then the explained sums of squares should refl ect much more 
of the total variation than the unexplained sums of squares. Think back to Chapter 
 10  ’ s discussion of ANOVA in which we used the F - distribution to evaluate the ratio 
between two variances to determine if the variance among groups was substantially 
larger than the variance within groups. With regression we are faced with solving 
a similar problem, in that we wish to compare whether the explained variance is 
substantially larger than the unexplained variance. Fortunately, the F - distribution 
can be used in this context too. 

 Table  11.4  presents the test of signifi cance of the regression relationship using 
the F - distribution in a manner that is directly comparable to an ANOVA table. Here 
we take the various sums of squares, transform them into mean sum of squares by 
dividing the sums of squares by their degrees of freedom, and then divide the 
 MS  explained  by the  MS  unexplained  to create an F - value. If the F - value is signifi cant, then 
the independent variable does control the dependent variable in a meaningful way.   

 As with ANOVA, the null hypothesis being tested doesn ’ t have an intuitive con-
nection with the comparisons of variances. With this regression table, we are actu-
ally testing the null hypothesis  H  0    :    b     =    0 (the slope of the regression line is zero). 
The connection between the null hypothesis and the comparisons between the 
explained and unexplained sums of squares rests on the realization that the only 
way the explained mean sum of squares can be substantially larger than the unex-
plained mean sum of squares is if the regression coeffi cient is signifi cantly different 
than zero (i.e., if the variables covary). As illustrated in Figure  11.11 , if the slope is 
zero, then the dependent variable varies irrespective of the independent variable 
producing a small value for the covariance based on  xy . As a result, the explained 
mean sum of squares will not be larger than the unexplained mean sum of squares. 

  Table 11.4    Test of signifi cance for  H  0    :    b   Y  *  X      =    0 

   Source of variation     df     SS     MS     F s   

  Explained due to linear regression    1    695713    695713    74.63  
  Unexplained, the error around the regression line    23    214403    9322      

  Total    24    910116          
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If the  MS  explained  is signifi cantly larger than the  MS  unexplained , then there must be posi-
tive (Figure  11.9 ) or negative (Figure  11.10 ) covariance between the two variables. 
If this is the case, then there is necessarily a relationship between  X  and  Y  such that 
 b     ≠    0. 

 To complete the statistical analysis refl ected in Table  11.4 , we will use   α      =    .05. 
The degrees of freedom for the unexplained error equals  n     −    2. We lose one degree 
of freedom for each variable. The degrees of freedom for the explained variation is 
 a     −    1, which is always 1. The critical value for the F - distribution is again found in 
Appendix  C . In this example, the critical value is  F  [.05,1,23]     =    4.28, which is consider-
ably less than the test ’ s F - value of 74.63. We reject the null hypothesis, and conclude 
that in fact the number of inhabitants affects the number of rooms in a settlement. 
Thus Dohm ’ s proposition is supported in the historical record. 

 Another common way to present the signifi cance of the result is to present the 
explained sums of squares as a proportion of the total sums of squares. This will 
identify the proportion of the total variation in the dependent variable that is 
explained by the independent variable. The value is called the  coeffi cient of determi-
nation , and is symbolized as  r  2  (verbalized as r - squared).  r  2  is calculated using 
Equation  (11.2) . 

  The coeffi cient of determination 

   r
SS

SS
2 = explained

total

    (11.2)   

 Here,   r
SS

SS
2 695 713

910 116
76= = =explained

total

,

,
. . This means that 76% of the total variation

in the number of rooms is explained by the infl uence of population size. As we 
would expect given that  r  2  is a proportion, it can range from zero to one, with larger 
values refl ecting a higher proportion of the total variation explained by the inde-
pendent variable. 

 Archaeologists love using  r  2 , but it is a notoriously diffi cult statistic to interpret. 
At its base,  r  2  refl ects the  goodness of fi t  between the regression line and the observed 
data. If all of the data points fall directly on the regression line such that the expected 
and observed values are identical, then the goodness of fi t between the data and 
regression line is perfect and  r  2     =    1. In contrast, we can have a signifi cant linear 
relationship in which there is a great deal of variation around the regression line, 
causing  r  2  to be quite low. 

 In this case,  b     ≠    0, but the goodness of fi t between the data and the regression 
line indicates variables other than population size determine roughly 24% of the 
variation in the dependent variable. This in turn complicates the interpretation of 
the relationship between the dependent and independent variables. Does an  r  2  value 
of .76 indicate that enough variation in total room count is explainable by total 
population to allow it to be meaningfully predicted by archaeologists using the total 
population? Perhaps, but there really isn ’ t a clear cutoff between a  “ good fi t ”  and 
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a  “ not so good fi t. ”  Determining what is  “ good ”  or  “ not ”  rests on your analytic 
structure, theoretical structure, and instincts; sometimes it is enough to show that 
there is some relationship, even if it isn ’ t exceptionally strong whereas other times 
our analytic structure may require a demonstration that the relationship is so strong 
that no other variables signifi cantly impact the dependent variable. An  r  2     =    .76 
seems pretty good to us here, in that a single variable seems to account for 76% of 
the variation in room counts. Others might disagree. If an  r  2  seems too low, then 
you may want to consider the infl uence of additional variables, or rethink whether 
all of the data included in the analysis refl ect a coherent group or whether the vari-
able chosen as the independent variable is the ideal variable. In regards to formally 
presenting the test ’ s results, you can ’ t go wrong presenting both a regression table 
of the sort illustrated in Table  11.4  and the  r  2  value, but the  r  2  by itself  does not  
constitute a meaningful statistical evaluation of the strength of the regression 
relationship.  

  Using Regression Analysis to Predict Values 

 Archaeologists will fi nd it useful to know that there is a relationship between popu-
lation size and the total number of rooms in a pueblo, especially since the regression 
analysis allows them to predict the size of a pueblo necessary to house a given 
population. For example, various models of community size and organization have 
been proposed for various parts of the American Southwest (Ruscavage - Barz, 
 1999 ). Areas such as Mesa Verde in southern Colorado have excellent chronological 
control allowing archaeologists to have outstanding estimates of the numbers of 
rooms inhabited through time. Based on the variation in settlement size and loca-
tion, it has been suggested that local communities of about 600 people aggregated 
together when the environment allowed excellent agricultural returns, but then 
dispersed during environmental contexts that were less favorable (Cordell,  1997 ). 
An archaeologist using the regression analysis we presented could determine an 
estimate for the total number of rooms likely required to house a community of 
600. In this case  Ŷ     =    43    +    .41( X )    =    43    +    .41(600)    =    289 rooms. This number can 
then be compared to the number of rooms in aggregated communities to determine 
if a community size of 600 is plausible. Of course, our knowledge of probability 
tells us that it is unlikely that a community of 600 will have  exactly  289 rooms, even 
if the functional relationship specifi ed in the regression analysis holds. The use of 
the regression ’ s predicted value to evaluate the hypothesis of interest thus would be 
strengthened if there was a means of placing a confi dence interval around the pre-
dicted value, such that we could evaluate whether a specifi c observed number was 
 “ close enough ”  to 289 rooms to support the proposition. Given that  Ŷ  is actually a 
mean for  Y i   at  X i  , such confi dence intervals are easily derived, but they take a slightly 
different form than might initially be suspected. We illustrate how to compute 
various confi dence intervals in the following sections. 
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  Placing  c onfi dence  i ntervals around the  r egression  c oeffi cient 

 Given that we have only a single  Y i   value from each  X i   value in Table  11.2 , and no 
actual observed  Y i   values for the  X i   value that interests us in this case ( X     =    600 
people), our confi dence intervals around each  Ŷ  will not be based on the standard 
deviation of a directly observed sample of individual  Y i   values that surround  X     =    600 
people. Instead, the confi dence interval will be based on the variation of the observed 
dependent values around the whole of the regression line. This probably makes 
intuitive sense to you, but it complicates the creation of confi dence intervals around 
the regression line for a couple of reasons. First, the regression coeffi cient ( b ) is a 
statistic that estimates the true population parameter. This means that we can (and 
indeed should) compute confi dence intervals around this measure to quantify the 
likely range containing the parameter. However, as we mentioned previously 
the regression line must go through the point (  X̄   ,   Ȳ   ). This means that the slope of 
the regression line will pivot on this point, making the confi dence intervals around 
the slope larger at the regression line ’ s ends and smaller near (  X̄   ,   Ȳ   ) (Figure  11.16 ). 
The upshot of this is that we are more confi dent about the accuracy of  Ŷ  as an 
estimate of the true   μYi  as  X i   approaches   X̄   , but are less confi dent for more distant 
 X i   values. Our confi dence intervals must consequently account for: (i) the variation 
in the distribution of  Y i   around  Ŷ  and (ii) the variation in the placement of  Ŷ  result-
ing from variation in the regression coeffi cient. A useful fi rst step, then, is to quan-
tify the potential variation in the placement of  Ŷ  resulting from the variation in the 
regression coeffi cient.   

 So how do we go about calculating confi dence intervals around  b ? Given that 
the regression coeffi cient refl ects the placement of means, the appropriate measure 

     Figure 11.16     The range of regression coeffi cients that likely encompass the true regression 
coeffi cient  

X,Y

Likely range
of the true

regression
coefficient

Independent Variable (X)

D
e
p
e
n
d
e
n
t 
V

a
ri

a
b
le

 (
Y

)

c11.indd   199c11.indd   199 8/26/2010   1:55:29 PM8/26/2010   1:55:29 PM



200 Linear Regression and Multivariate Analysis 

of dispersion will be the standard error, which is calculated using Equation  (11.3) . 
  sY X∗

2  is derived using Equation  (11.4) , which corresponds with the  MS  unexplained  from 
the ANOVA analysis illustrated in Table  11.4 . 

  Standard error for a regression coeffi cient 

   s
s

x
b

Y X= ∗

∑
2

2
    (11.3)   

  Calculation of the variance of  Y  at  X  

   s
d

n
Y X

Y X

∗
∗=

−
∑2

2

2
    (11.4)   

 Using Dohm ’ s data, the standard error for  b  is calculated as

   s
s

x
b

Y X= = =∗

∑
2

2

9322

4146532
047.   

 Once we have the standard error of the regression coeffi cient, we can build con-
fi dence limits using the t - distribution where the degrees of freedom equal  n     −    2. 
(We lose one degree of freedom for both the  X  and the  Y  variables.) For 95% con-
fi dence intervals, the limits are:

   t sb. . . .05 23 2 069 047 098[ ] = ( ) =  

   L b t sb1 05 23 410 098 312= − = − =[ ]. . . .  

   L b t sb2 05 23 410 098 508= + = + =[ ]. . . .   

 Thus, we are 95% certain that the true regression coeffi cient lies somewhere between 
 b     =    .312 and  b     =    .508 (Figure  11.17 ). This information can be useful in several 
contexts. First, it provides another way to formally test the null hypothesis  H  0    :    b     =    0. 
If the null hypothesis is true, then the confi dence interval should encompass zero. 
Although this approach does not provide as much information as the ANOVA - style 
regression analysis illustrated in Table  11.4 , it might be useful in some contexts. 
Second, it can be used to compare the slopes of two or more functional relationships 
( H  0    :    b  1     =     b  2 ). Consider for example a researcher who wishes to evaluate if the 
regression coeffi cient determined using Dohm ’ s data also characterized other 
groups who lived in above - ground, contiguous structures. A regression analysis 
could be performed for the other groups, and then compared to the slope deter-
mined here. If one or both of the confi dence intervals encompassed the other dis-
tribution ’ s regression coeffi cient, then the null hypothesis cannot be rejected; it is 
possible that the relationship holds across different cultures. If neither of the con-
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fi dence intervals encompass the other regression coeffi cient, then the null hypoth-
esis can be rejected, causing us to conclude that the relationship in Dohm ’ s data 
may not be widely applicable to other groups. Be sure to use the Bonferroni method 
to control for the problem of compounding alpha errors when comparing more 
than two slopes. Also, be sure that you understand that the slopes of two functional 
relationships may be the same, yet the regression lines may not overlap with one 
another, if the intercepts are different (i.e., differing intercepts will produce parallel 
lines when the slopes are identical). Whether differences in the intercepts are impor-
tant depends on your analytic problem and theoretical structure.   

 For completeness, we wish to present one fi nal means of evaluating the null 
hypothesis  H  0    :    b     =    0 sometimes used in archaeology. It is based on the t - distribution, 
using a modifi ed version of the t - score (Equation  (8.6) ). The equation is changed 
by substituting the regression coeffi cient (b, formally symbolized here as  b  X * Y ) for 
  Ȳ   , 0 for   μ   (based on the fact that we specify   μ   is 0 in the null hypothesis), and the 
standard error of the regression coeffi cient for the standard error. This produces 
Equation  (11.5) , where the degrees of freedom are  n     −    2. 

  t - test evaluating H 0     :   b    =     0 

   t
b

s
s

X Y

b

= −∗ 0
    (11.5)   

 For this example:

   t s = =.

.
.

410

047
8 641   

     Figure 11.17     Confi dence intervals for the regression coeffi cient illustrated in Figure  11.15   
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 Using an alpha value of .05,  t  [.05,23]     =    2.096. Given that 8.641 is larger than 2.096, we 
reject the null hypothesis, and for the third time conclude that there is a signifi cant 
functional relationship between total population and the number of rooms in a 
pueblo. Which of the three methods presented for evaluating  H  0    :    b     =    0 is the best? 
In our opinion, the analysis of variance illustrated in Table  11.4  provides the most 
information given that it quantifi es the amount of explained and unexplained vari-
ation in the dependent variable. We encourage you to use this approach. However, 
the other two methods (confi dence intervals around the regression coeffi cient and 
the t - test presented in Equation  (11.5) ) are perfectly acceptable, if you wish to use 
them instead.   

  Confi dence Limits around  Ŷ  for a Given  X i   

 Let ’ s return to the issue that we originally wished to address, which is placing con-
fi dence limits around  Ŷ  to determine if a particular observation is different than 
expected (i.e.,  H  0 :  Y i      =     Ŷ ). Evaluating this null hypothesis will allow us to determine 
if a specifi c variate likely does not refl ect the same functional relationship underly-
ing a signifi cant regression relationship. In cases where the null hypothesis is 
rejected, the analyst might fi nd it useful to consider alternate explanatory factors. 
Considering this null hypothesis might even be useful when we do not have a spe-
cifi c  Y i   value to compare to  Ŷ , in that it may be useful to know the range of likely 
values represented by the line. Depending on the research design, analytic structure, 
and theoretical system, our conclusions might be very different if there is a wide 
range of likely variation instead of a very narrow range. 

 Confi dence limits are most easily calculated around the sample mean   Ȳ   , which, 
as previously mentioned, is the anchor point through which the least squares regres-
sion line must pass. Calculating the confi dence limits requires a standard error for 
 Ŷ , which should not be confused with the standard error for b ( S b  ; Equation  (11.3) ). 
In the special case of the sample mean   Ȳ   , we can calculate the standard error by 
simply modifying the general standard error formula (Equation  (8.1) ) using the 
 MS  unexplained  (Equation  (11.4) ) for the variance. In this case, the standard error of the 
predicted value at   Ȳ    is:

   s
s

n
Y

Y X= = =∗
2 9322

25
19 31. rooms   

 95% confi dence limits for the mean are thus:

   t . , .05 23 2 069[ ] =  

   L Y t sY1 05 23 257 56 2 069 19 31 217 61= − ( ) = − ×( ) =[ ]. , . . . . rooms 

   L Y t sY2 05 23 257 56 2 069 19 31 297 51= + ( ) = + ×( ) =[ ]. , . . . . rooms  
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 Thus, the average size of settlements with 523 people is between 218 and 298 
rooms 95% of the time, according to the regression analysis. Great, except what we 
really want are confi dence limits around  Ŷ     =    289 rooms at  X     =    600 people. As previ-
ously mentioned, calculating confi dence intervals around this and any other  Ŷ  value 
that is not exactly   Ȳ    is complicated by the uncertainty associated with our estimate 
of the regression coeffi cient. The standard error must take this additional variation 
into account, which is accomplished through changes in the formula for the stand-
ard error for   Ŷ   (Equation  (11.6) ). 

  The standard error of   Ŷ   for a given  X  i  

   s s
n

X X

xY Y X
i

ˆ = +
−( )⎛

⎝
⎜

⎞

⎠
⎟∗ ∑

2

2

2

1
    (11.6)   

 Notice that this value will increase exponentially as the distance between  X i   and   X̄    
increases. For  X i      =    600:

   sŶ .= + −( )⎛
⎝⎜

⎞
⎠⎟

=9322
1

25

600 523

4146532
19 65

2

rooms   

 Now this value is ideal for placing confi dence limits around   Ŷ  i   for  X i      =    600, but 
it is a standard error term. This, of course, means that it refl ects the distribution of 
means, not variates. As a consequence, confi dence intervals created using the 
t - distribution will refl ect the likely range of the means, specifi cally the likely place-
ment of   μYi , the population parameter estimated by   Ŷ  i  . Knowing the likely place-
ment of   μYi  could be useful, especially when evaluating whether empirically derived 
samples from  X i   produce a mean consistent with the functional relationship speci-
fi ed in the regression analysis (e.g., an analyst considering the Ventana Cave point 
data presented earlier in this chapter might wish to evaluate whether fi ve projectile 
points with the same maximum length produce an average weight consistent with 
the regression analysis as a means of testing whether the functional relationship 
identifi ed using the sample of 10 points is generally applicable to the entire 
assemblage). 

 Here we are interested in the distribution of individual variates, so we must 
transform the standard error into a standard deviation term. This can be done using 
Equation  (11.7) . 

  The standard deviation of  Y i   around   Ŷ  i   at a given  X i   

   ŝ s
n

X X

x
Y Y X

i= + +
−( )⎛

⎝
⎜

⎞

⎠
⎟∗ ∑

2

2

2
1

1
    (11.7)   
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  ŝ  Y  for  Ŷ   i   at  X i      =    600 is calculated as:

   ˆ .sY = + + −( )⎛
⎝⎜

⎞
⎠⎟

=9322 1
1

25

600 523

4146532
98 53

2

rooms   

 Using this value, we can determine that the 95% confi dence intervals for   Ŷ  i   at 
 X i      =    600 are:

   Ŷ = 298 rooms  

   L Y t sY1 05 23 289 2 069 98 53 85 14= − = − ×( ) =[ ]
ˆ ˆ . . .. , rooms  

   L Y t sY2 05 23 289 2 069 98 53 492 86= + = + ×( ) =[ ]
ˆ ˆ . . .. , rooms   

 Even a cursory glance at these limits suggests that there is a substantial range in 
the predicted values: pueblos housing 600 people are expected to differ by up to 
408 rooms, a tremendously substantial number given the typical size and structure 
of Southwestern pueblos. The range of variation is directly attributable to the rela-
tively large amount of unexplained variation within the regression analysis. There 
are many variables impacting the total number of rooms in addition to total popu-
lation, which was the point of Dohm ’ s  (1990)  original analysis. Our predictions for 
the size of pueblos will consequently be relatively poor until these factors are con-
trolled. In cases where the explained variation comprises a greater proportion of 
the total variance (i.e., when  r  2  is larger), the confi dence limits for  Y i   around   Ŷ  i   will 
be substantially smaller.  

  Estimating  X  from  Y  

 In most (experimental) sciences, the predictive power of regression is tremendously 
useful. It allows scientists to make predictions that can be compared to observa-
tions, which can in turn be used to evaluate competing ideas of how the world is 
structured. Archaeology can use this, but we are in the somewhat unusual position 
of often being more interested in reconstructing the independent variables, typically 
cultural or behavioral phenomena, using the dependent variables, which are some 
aspect of the archaeological record. It might be useful to predict the number of 
rooms based on hypothesized community sizes, but archaeologists would fi nd it 
even more useful to predict population size based on variables such as room counts 
(Hassan,  1981 ). 

 The nature of the functional relationship makes it  seem  as if this can be easily 
done. After all, if a total population of 600 people corresponds with an estimated 
room total of 289, then shouldn ’ t a pueblo with 289 rooms lead to a predicted 
population level of 600 people? Sadly, no. Using the  dependent  variable to estimate 
the  independent  variable violates two assumptions of regression: 
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  1     The dependent variable is not measured without error. It refl ects the operation 
of any additional independent variables that affect  Y , and is consequently only 
an estimate of   μ     Ȳ     at  X i  . As an analytic fact, it has error relative to variable  X  even 
when measured with accurate and precise methods.  

  2     The independent variable is not normally distributed or homoscedastic (or 
necessarily independent) at any given   μ     Ȳ    . To the contrary, the independent 
variable isn ’ t distributed in  any way  with respect to the dependent variable. It 
is the dependent variable that varies with respect to the independent variable.    

 The result of predictions of a dependent variable obtained by simply putting a value 
for  Y  into the equation formula to determine  X  is quite poor, and refl ects little more 
than  “ an educated guess ” . 

 Despite the diffi culties, though, it is indeed possible to estimate the independent 
variable using the dependent variable by means of confi dence limits through a 
process called  inverse prediction . It begins with Equation  (11.8)  to create  X̂  (pro-
nounced X - hat), an initial estimate of the independent variable using the dependent 
variable. This formula is simply derived from the functional equation of 
  Ŷ      =     a     +     b Y * X ( X i  )  

  The estimate of   X̂   at  Y i   

   X̂
Y a

b
i

i

Y X

= −( )
∗

    (11.8)   

 This estimate is not particularly reliable for the reasons outlined above, but it 
serves as an anchor point for establishing a possible range that likely does include 
the true value for  X i  . Creating a confi dence interval around this prediction is more 
complicated than establishing the previously illustrated confi dence intervals. It 
requires the calculation of two terms:  D  (Equation  (11.9) ) and  H  (Equation  (11.10) ). 

  Calculation of  D , one of the terms necessary to estimate    X̂  

   D b t sY X n b= −∗ −[ ]
2

2
2 2
α ,     (11.9)   

  Calculation of  H , one of the terms necessary to estimate   X̂   

   H
t

D
s D

n

Y Y

x

n
Y X

i= +⎛
⎝

⎞
⎠ +

−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−[ ]
∗ ∑

α , 2 2

2

2
1

1
    (11.10)   

 Applying these equations to  Y i      =    289 rooms for   α      =    .05, produces the following 
results:

   ˆ .

.
Xi = −( ) =289 43 15

41
600 people  
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   D = ( ) − ( ) ( ) =. . . .41 2 069 047 1592 2 2  

   H = +⎛
⎝

⎞
⎠ + −( )⎡

⎣
⎢

⎤

⎦
⎥ =2 069

159
9322 159 1

1

25

289 257 56

4146532
51

2.

.
.

.
11 8. people   

 These values can then be used to calculate confi dence limits using Equations  (11.11)  
and  (11.12) . 

  Lower confi dence interval for estimate of   X̂   at  Y i   

   L X
b Y Y

D
H

Y X i
1 = +

−( )
−∗     (11.11)   

  Upper confi dence interval for estimate of   X̂   at   Y i  

   L X
b Y Y

D
H

Y X i
2 = +

−( )
+∗     (11.12)   

 Note that the value specifi ed in Equations  (11.11)  and  (11.12)  is   X̄   , not   X̂  . This 
is counterintuitive, but is necessary given the problems with the regression 
assumptions associated in inverse prediction. Again, applying these equations to 
estimating   X̂   for  Y i      =    289 rooms produces the following results:

   L1 523 44
41 289 257 56

159
511 8 92 85= + −( ) − =.

. .

.
. . people  

   L2 523 44
41 289 257 56

159
511 8 1116 53= + − + =.

. ( . )

.
. . people   

 These confi dence limits do encompass   X̂  , but are not quite symmetrical around it. 
We are 95% confi dent that the true value for  X i   falls within these limits. Of course, 
this is a very expansive confi dence interval, because of the uncertainty caused by the 
confounding infl uence of variables other than  X  on the dependent variable. A 
stronger relationship between variables  X  and  Y  would result in narrower confi dence 
intervals. However, this approach provides a much more meaningful refl ection of the 
true likely location of  X i   than simply estimating it at 600 people. Simply using   X̂   would 
leave the underlying uncertainty hidden and possibly lead us to erroneous conclu-
sions. We know that these formulas are not particularly intuitive, but using them to 
place confi dence intervals around    X̂   is far preferable than simply using    X̂   by itself.  

  The Analysis of Residuals 

 There is an additional set of tools that is useful for archaeologists using regression 
analysis: the analysis of residuals. One of the things archaeologists frequently try to 
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do is identify  “ odd ”  cases that deviate from the  “ typical ”  pattern. These cases are 
often behaviorally signifi cant. They are the excessively large  “ ceremonial rooms ”  
used for community integration, elite burials that show the development of social 
complexity through the abundance of grave goods, the expansive aggregated sites 
that serve as regional capitals, the enormous pots made by specialists for commu-
nity feasting, etc. Part of the reason why archaeologists use a comparative approach 
is to identify the extraordinary. Being able to identify what is extraordinary (or 
ordinary for that matter), and where/when it occurs can be invaluable to under-
standing past behavior. 

 Regression provides a formal means of identifying individuals (however defi ned) 
that are atypical in a data set by comparing the difference (called the residual) 
between each actual observation ( Y i  ) and its predicted value ( Ŷ ) for each  X i  . This is 
of course the same residual value used to calculate the unexplained sum of squares 
( Y i      −      Ŷ  ) (see Tables  11.1  and  11.3 ), but in this case, we are using them individually 
instead of squaring and summing them. 

 Atypical variates may refl ect the exceptional, the important, the individuals 
central to describing and explaining the archaeological record. They could also 
refl ect analytic blunders or inconsistencies in measurement protocol (e.g., a pot 
whose volume was entered into the database incorrectly, differing defi nitions of 
 “ maximum fl ake length ” ). Solving these methodological problems may consider-
ably improve the strength of the regression and other statistical analyses. 

 Residuals for Dohm ’ s pueblo room example are presented in Table  11.5  and 
illustrated in Figure  11.18 . The residual plot (Figure  11.18 ) is quite easy to make, 
with the  x  - axis refl ecting the value of the independent variable, and the  y  - axis 
refl ecting the magnitude of the residual. Put another way, the  y  - axis refl ects the 
variation around the regression line (which is, after all, just the line formed by all 
of the expected values).     

 The residual plot can be informative in and of itself. For example, it can be used to 
ensure that the assumption of homoscedasticity is met in the data. Consistently 

     Figure 11.18     Regression residuals for the pueblo room data  
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  Table 11.5    Residuals   dY   *  X    calculated as   Y    –    Ŷ   

   Pueblo     Date     Observed value     Predicted Y     Residuals  

  Acoma    1948    387    403     − 16  
  Cochiti    1952    225    225    0  
  Isleta    1948    804    645    159  
  Jemez    1948    459    405    54  
  Laguna    1948    189    334     − 145  
  Nambe    1948    34    107     − 73  
  Picuris    1948    59    96     − 37  
  San Felipe    1948    276    364     − 88  
  San Ildefonso    1948    207    113    94  
  San Ildefonso    1973    189    212     − 23  
  San Juan    1948    176    358     − 182  
  Sandia    1948    80    100     − 20  
  Santa Ana    1948    136    161     − 25  
  Santa Ana    1975    152    247     − 95  
  Santa Clara    1948    144    278     − 134  
  Santo Domingo    1948    500    496    4  
  Shipaulovi    1882    131    89    42  
  Shongopavi    1882    253    132    121  
  Sichomovi    1882    105    86    19  
  Taos    1948    543    415    128  
  Taos    1973    627    642     − 15  
  Tesuque    1948    116    109    7  
  Tewa Village    1882    158    115    43  
  Walpi    1882    363    154    209  
  Zia    1948    126    153     − 27  

increasing or decreasing distance from zero as the value of the independent variable 
increases indicates unequal variances (or heteroscedasticity), which is a violation of 
the assumptions of regression as discussed at the start of this chapter (Figure  11.19 ). 
Similarly, residuals also refl ect problems with the assumption of linearity (Figure 
 11.20 ). Curvilinear relationships such as Figure  11.21  will be refl ected by residual 
plots similar to Figure  11.22 . Runs of individuals on either side of the line indicate 
that the assumption of the linear model is not met. In these cases, a curvilinear regres-
sion model will be more appropriate than the linear regression model described here.   

 As useful as graphs of such  raw residuals  are, residuals can be made even more 
useful by calculating two variants:  leverage coeffi cients  and  standardized residuals . 
Leverage coeffi cients provide a measure of the relative impact that each individual 
variate has on the regression line. In some cases, the placement of even two variates 
may produce a  “ signifi cant relationship ”  even when there isn ’ t one. Consider Figure 
 11.23 . This distribution will produce a regression coeffi cient that is not equal to 
zero, but that in truth refl ects the relationship between two points, one on each end 
of the distribution. Without these variates,  b     =    0, given that the remaining variates 
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are scattered randomly around   Ȳ   . A prudent analyst looking at the graph might 
suggest that these data do not satisfy the assumption of a linear relationship, but 
then again, perhaps not. We have certainly seen presentations at the Society for 
American Archaeology Annual Meetings and other professional contexts in which 
people conducted regression analysis of data distributed very much like this. It is 
questionable that a relationship based on these two  “ outliers ”  should be used to 
describe the relationships among the remaining data. Even in less extreme cases 
where the assumption of a linear relationship is more clearly met, it would be 
worthwhile to know whether the regression coeffi cient is refl ecting a general pattern 
in the data, or is primarily the result of a limited number of variates. Leverage coef-
fi cients are the means of determining this.   

     Figure 11.19     A heteroscedastic distribution  
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     Figure 11.20     Residual pattern indicative of heteroscedasticity with increasing variance as 
 X i   increases  
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 Leverage coeffi cients are calculated using Equation  (11.13) . The values range 
from 0 to 1, and refl ect the  “ leverage ”  that a given  X i   has on the regression coeffi -
cient. In effect,  h i   is a measure of the amount of variation a particular  X i   contributes 
to the squared deviations of  X i      −      X̄   . As illustrated in Figure  11.23 , the farther an  X i   
is from   X̄   , the greater its leverage is. Evaluating the leverage coeffi cients allows us 
to determine whether there is comparatively good representation of many data 
points in these outlying edges, or if there are only a handful of points that are con-
trolling the entire regression analysis. If there are a few dominant points, the analyst 
should seriously consider whether these points are representative of the underlying 
distributions, and if the subsequently identifi ed relationship is applicable to the 
entire data set in general. 

     Figure 11.21     A curvilinear, as opposed to linear, distribution  
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     Figure 11.22     A residual pattern indicative of a curvilinear distribution  
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  Calculation of the leverage coeffi cient 

   h
n

X X

x
i

i= +
−( )

∑
1

2

2
    (11.13)   

 Table  11.6  and Figure  11.24  report the leverage coeffi cients for the pueblo data 
in Table  11.2 . The smallest leverage coeffi cient is .04, not surprisingly associated 
with  X i   values near   X̄   , and the largest coeffi cients are .25 and .26, associated with 
the comparatively large pueblos of Isleta and Taos. The results are encouraging in 
that most of the variates do contribute something to the regression analysis, but the 
largest variates do overwhelm the others by a large magnitude. They are roughly 
three times larger than the average leverage coeffi cient, which is .08. We don ’ t see 
anything in these leverage coeffi cients that cause us to suggest that the regression 
analysis characterizes the relationship among just these few points, but the larger 
contribution of the large pueblos might cause a researcher to review these data to 
ensure that they are analytically and theoretically comparable with the remaining 
data. As a rule of thumb, you should always be leery of using regression analysis 
when there are a small number of excessively distant outliers for the independent 
variable (i.e., a few individuals with large  h i   values). These outliers will by mathe-
matical necessity largely dictate the regression relationship.     

 Standardized residuals allow us to identify those observations that are statistically 
outside of the range expected for a given   Ŷ  i  . This enables us to statistically differenti-
ate which values are exceptional at a given alpha level relative to the other variates. 
The standardized residual is calculated using Equation  (11.14) , which creates a 
t - score for each  Y i  . These can then be compared to a critical value from the 
t - distribution for a given  α  and  n     −    2 degrees of freedom. 

     Figure 11.23     A scatter plot in which the two end points contribute disproportionately to 
the regression relationship  

D
e
p
e
n
d
e
n
t 
V

a
ri

a
b
le

 (
Y

)

Independent Variable (X)

c11.indd   211c11.indd   211 8/26/2010   1:55:30 PM8/26/2010   1:55:30 PM



     Figure 11.24     The leverage coeffi cients reported in Table  11.6   
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  Table 11.6    Leverage coeffi cients for the data reported in Table  11.2  

   Pueblo     Map date     Total population     h i   

  Acoma    1948    879    0.07  
  Cochiti    1952    444    0.04  
  Isleta    1948    1470    0.26  
  Jemez    1948    883    0.07  
  Laguna    1948    711    0.05  
  Nambe    1948    155    0.07  
  Picuris    1948    130    0.08  
  San Felipe    1948    784    0.06  
  San Ildefonso    1948    170    0.07  
  San Ildefonso    1973    413    0.04  
  San Juan    1948    768    0.05  
  Sandia    1948    139    0.08  
  Santa Ana    1948    288    0.05  
  Santa Ana    1975    498    0.04  
  Santa Clara    1948    573    0.04  
  Santo Domingo    1948    1106    0.12  
  Shipaulovi    1882    113    0.08  
  Shongopavi    1882    216    0.06  
  Sichomovi    1882    104    0.08  
  Taos    1948    907    0.08  
  Taos    1973    1463    0.25  
  Tesuque    1948    160    0.07  
  Tewa Village    1882    175    0.07  
  Walpi    1882    270    0.06  
  Zia    1948    267    0.06  
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  The standardized regression residual 

   SR
d

s h

Y X

Y X i

=
−( )

∗

∗ 1
    (11.14)   

  d Y    *    X   is simply the raw residuals calculated as  Y i      −     Ŷ  we described at the beginning of 
this section (Table  11.5 ; see also Table  11.3 ).  s Y    *    X   is the square root of the value calcu-
lated using Equation  (11.4) , which is also the  MS  Unexplained  from Table  11.4 .  h i   is the 
leverage coeffi cient we just calculated. The standardized residuals for the pueblo data 
are presented in Table  11.7  and Figure  11.25 . The critical value for  t  [.05,23]  is 2.069. 
Thus, any standardized residual larger than 2.069 or smaller than  − 2.069 refl ects a 
statistically signifi cant departure from the regression ’ s functional relationship. Only 
one standardized residual exceeds the critical value, the measurement for Walpi, 
which had 209 more rooms than expected given its population of 270 people (Table 
 11.5 ). The remaining deviations fell within the expected range of the regression line, 

  Table 11.7    Standardized residuals for the pueblo data 

    Pueblo       Map date       Total 
population   

    Total rooms      d Y * X      h i       Standardized 
residual   

  Acoma    1948    879    387     − 16    0.07     − 0.17  
  Cochiti    1952    444    225    0    0.04    0.00  
  Isleta    1948    1470    804    159    0.26    1.91  
  Jemez    1948    883    459    54    0.07    0.58  
  Laguna    1948    711    189     − 145    0.05     − 1.54  
  Nambe    1948    155    34     − 73    0.07     − 0.78  
  Picuris    1948    130    59     − 37    0.08     − 0.40  
  San Felipe    1948    784    276     − 88    0.06     − 0.94  
  San Ildefonso    1948    170    207    94    0.07    1.01  
  San Ildefonso    1973    413    189     − 23    0.04     − 0.24  
  San Juan    1948    768    176     − 182    0.05     − 1.94  
  Sandia    1948    139    80     − 20    0.08     − 0.22  
  Santa Ana    1948    288    136     − 25    0.05     − 0.27  
  Santa Ana    1975    498    152     − 95    0.04     − 1.00  
  Santa Clara    1948    573    144     − 134    0.04     − 1.42  
  Santo Domingo    1948    1106    500    4    0.12    0.04  
  Shipaulovi    1882    113    131    42    0.08    0.45  
  Shongopavi    1882    216    253    121    0.06    1.30  
  Sichomovi    1882    104    105    19    0.08    0.20  
  Taos    1948    907    543    128    0.08    1.38  
  Taos    1973    1463    627     − 15    0.25     − 0.18  
  Tesuque    1948    160    116    7    0.07    0.08  
  Tewa Village    1882    175    158    43    0.07    0.46  
  Walpi    1882    270    363    209    0.06    2.23  
  Zia    1948    267    126     − 27    0.06     − 0.29  
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     Figure 11.25     Standardized residuals for the residuals reported in Table  11.5   
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suggesting that the functional relationship it specifi ed fi ts these data well. An inter-
ested researcher could now begin to explore the behavioral, historical, cultural, or 
analytical factors contributing to Walpi ’ s excessive number of rooms.     

 In archaeology, it typically is not a  “ problem ”  when there are signifi cant stand-
ardized residuals, given that these specifi c  Y i   values are likely to be interesting in 
many research contexts. Although not the case here, the exception is when values 
with exceptionally high leverage coeffi cients are also signifi cant. These values likely 
impact the regression analysis such that it does not refl ect the functional relation-
ship among most of the data effectively. (Walpi had a leverage coeffi cient of only 
.06, so it is not exerting undue infl uence on the regression analysis.) The analyst 
will want to give special consideration to the analytical implications of these indi-
viduals and address whether they truly should be included with the other data. 
Perhaps these signifi cant outliers are not truly part of the population containing 
the other variates (e.g., including a more recent  “ pueblo - like ”  dorm complex built 
by the Federal Government to house students attending a reservation school would 
almost certainly produce an outlier, because of the substantial differences in the use 
and organization of space). In such cases, refi ning the sample would likely improve 
the overall analysis. If the analyst is satisfi ed that the sample truly is homogeneous, 
then the outlier might refl ect some behaviorally or taphonomically signifi cant dis-
tinction among the variates included in the sample. Our theoretical and analytical 
frameworks will then help provide meaning to the observed differences.  

  Some Final Thoughts about Regression 

 Now that you understand the basics of regression, let us take a moment to address 
a few miscellaneous issues that are likely to arise as you use (or evaluate other ’ s use 
of) regression analysis. 

c11.indd   214c11.indd   214 8/26/2010   1:55:30 PM8/26/2010   1:55:30 PM



 Linear Regression and Multivariate Analysis  215

  Selecting the  r ight  r egression  m odel 

 There are several different varieties of regression analysis. The  least squares linear 
regression  (LSLR) that we presented here is by far the most commonly used method 
in science, but other methods are available. LSLR is typically preferred because it 
maximizes the explained sums of squares using the regression equation, which is 
an ideal strategy when using regression to evaluate the strength of the relationship 
between the dependent and independent variables or when predicting values for 
the dependent variable. However, it suffers from the  “ drawbacks ”  that it may not 
actually pass through any of the observed points (e.g., Figure  11.4 ) and is excessively 
impacted by outliers. Other methods (e.g., nonparametric regression, regression 
minimizing absolute deviations, quartile regression) will seek to create regression 
equations based on other criteria, such as creating a line that maximizes the number 
of observed points through which it passes. This method will be less prone to being 
pulled by outliers, but it does not maximize the amount of variation explained using 
the regression coeffi cient. We won ’ t outline these alternate approaches, but be 
aware that there are alternatives to the least squares linear regression method 
described here.  

  Do not  e xtrapolate beyond the  b oundaries of the  o bserved  d ata 

 Regression is useful for predicting  Y i   for a given  X i  , because of the presence of the 
functional relationship  Y i      =     a     +     b ( X i  ). If the assumptions outlined at the start of this 
chapter are met, then the use of regression for prediction is justifi ed. However, it 
cannot be assumed that the functional relationship identifi ed during the regression 
analysis extends outside of the observed data range. It is always possible that there 
is some sort of threshold phenomenon that occurs as a variable becomes increas-
ingly large or small. The functional relationship between the dependent and inde-
pendent variable can then shift, making the previous regression analysis a very poor 
predictor of the dependent variable. For example, increasing political complexity 
associated with urbanism and populations larger than 5,000 people might lead to 
a very different regression coeffi cient describing the relationship between popula-
tion size and the total number of rooms than calculated using the pueblo data. As 
a result, you should not predict values for the dependent variable for  X i   outside of 
the observed range.  

  Use the  r ight  m ethods when  c reating  r everse  p redictions 

 Archaeologists love to use reverse prediction, but they seldom consider the inherent 
diffi culties this entails. This is an unfortunate mistake. Using the dependent variable 
to predict the independent variable leads to a very poor prediction that can be 
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improved using the methods outlined above. Building arguments on   X̂   alone, 
however, provides a false sense of accuracy and can lead to preventable mistakes, 
as it is built upon a faulty analytic foundation. When using reverse prediction, take 
the time to consider the range that likely includes the true value of  X i  . It will 
strengthen your analytic foundation while clarifying the implications of your sta-
tistical analysis.  

  Be  a ware of the  a ssumptions for  r egression  a nalysis 

 To serve as a handy reference, we relist the four assumptions of regression analysis 
here: 

  1      X  is measured without error.  
  2     The expected (mean) values for  Y  fall on a straight (as opposed to curvilinear) 

line.  
  3     For any given  X i  , each  Y  value is independent of other  Y  values.  
  4     For each  X i  , the distribution of  Y i   is (i) normally distributed and (ii) 

homoscedastic.    

 If your data do not meet these requirements, regression is not an appropriate 
quantitative tool. More signifi cantly, it is incumbent on the researcher to demon-
strate that these assumptions are met. It is always wise to use the analysis of residuals 
to look for problems with these assumptions.  

  You may be able to  t ransform your  d ata to  c reate a  l inear  r elationship 
from a  c urvilinear  r elationship 

 Curvilinear functional relationships are fairly common in the natural world and in 
archaeological contexts, but they cannot be characterized using LSLR because they 
violate Assumption 2 above. One possible strategy for analyzing such distributions 
is to transform them using a function, often  logarithmic transformation . This is 
appropriate when percentage changes in the dependent variable vary directly with 
changes in the independent variable to create an exponential - based relationship 
(e.g., Figure  11.26 ). Logarithmically transforming these data produces the relation-
ship in Figure  11.27 . While LSLR is obviously inappropriate for the data in Figure 
 11.26 , the transformed data in Figure  11.27  do meet the requisite assumption. 
When faced with a curvilinear relationship, you may transform either or both of 
the independent and dependent variables. Be sure to include the transformation in 
your regression equation (e.g.,   Ŷ      =    log ( a )    +     b (log [ X i  ]) when the independent vari-
able is transformed) and transform your data back into the original units if you use 
the regression for prediction.    
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     Figure 11.26     A curvilinear relationship based on exponential growth  

0 2

D
e
p
e
n
d
e
n
t 
V

a
ri

a
b
le

4 6

1200

1000

800

600

400

200

0

Independent Variable
8 10 12

     Figure 11.27     The logarithmical transformed relationship illustrated in Figure  11.26   
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  Use the  r ight  c onfi dence  l imits 

 Confi dence intervals are tremendously useful for linear regression, in large part 
because the line itself refl ects the distribution of means. We presented a plethora 
of confi dence limits used to estimate various attributes that were each associated 
with their own measure of dispersion. It is easy to confuse the various confi dence 
limits with each other. We suspect that at least some readers will join us in fi nding 
it hard to keep them all straight. However, mixing them up and using the wrong 
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confi dence limits will invalidate your analysis. For your convenience, we present a 
summary of the confi dence limits and their error terms in Table  11.8 .   

 We have now covered the basics of regression. When we wish to examine the nature 
of a relationship between two continuously measured variables where an argument of 
cause cannot be made, we turn to correlation, the subject of the next chapter. 

  Table 11.8    Summary of confi dence limits and measures of dispersion used in regression 
analysis 

   Purpose     Measure of dispersion     Basic formula  

  Confi dence 
intervals around 
the regression 
coeffi cient ( b   Y  *  X  )  

  Standard error for regression 
coeffi cient (Equation  (11.3) ) 
     

   L  1     =     b     −     t  [ α , n  − 2]  s   b   
  L  2     =     b     +     t  [ α , n  − 2]  s   b    

  Confi dence 
intervals for means 
around   Ȳ    (useful 
for determining 
the likely range of 
  μ  Y   at   X̄   )  

  Standard error of the regression 
coeffi cient at   Ȳ    
     

   L  1     =      Ȳ       −     t  [ α , n  − 2] ( s    Ȳ    ) 
  L  2     =      Ȳ       +     t  [ α , n  − 2] ( s    Ȳ    )  

  Confi dence 
intervals for means 
around   Ŷ   when it 
is not   Ȳ    (useful for 
determining the 
likely range of   μ  Y   
at  X i  )  

  Standard error of   Ŷ   for a given  X i   
(Equation  (11.6) ) 
     

   L  1     =      Ŷ      −     t  [ α , n  − 2] ( s    Ȳ    ) 
  L  2     =      Ŷ      +     t  [ α , n  − 2] ( s    Ȳ    )  

  Confi dence 
intervals for 
variates around   Ŷ   
(useful for 
determining the 
likely range of  Y i   at 
 X i  )  

  The standard deviation of  Y i   around   Ŷ    i   
at a given  X i   (Equation  (11.7) ) 
     

   L  1     =      Ŷ      −     t  [ α , n  − 2] (  ŝ    Y  ) 
  L  2     =      Ŷ      +     t  [ α , n  − 2] (  ŝ    Y  )  

  Confi dence 
intervals for  X i   
around   X̄    (useful 
for reverse 
prediction of 
independent 
variable using the 
dependent 
variable)  

  Two necessary terms (Equations  (11.9)  
and (11.10))
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   Practice Exercises 

    1     What are the assumptions of regression analysis? Explain why each is 
necessary.  

  2     In an experimental study evaluating the potential use of gourds as fl oats 
for fi shing nets, Hart  et al.  ( 2004 : 145) present the following data concern-
ing gourd diameter and the weight supported by the fl oat. Presumably 
there is a causal relationship between these two variables, such that larger 
gourds will support more weight.  

  (a)     Create a scatter plot of the data and evaluate whether the assump-
tions for regression analysis appear to be met.  

  (b)     Perform a regression analysis (  α      =    .05). Is there a signifi cant rela-
tionship between gourd diameter and the weight the fl oat can 
support?  

  (c)     Calculate the regression coeffi cient and the coeffi cient of determina-
tion. How much of the variation in the weight supported can be 
explained by changes in the gourd diameter?  

  (d)     Draw the regression line on the scatter plot you created in part (a) 
of this question.  

  (e)     Predict the weight that a gourd 6.0   cm in diameter could support. 
Place confi dence intervals around this prediction. 

   Float     Maximum diameter (cm)     Weight supported by fl oat (g)  

  Gourd 1    6.1    90  
  Gourd 2    5.8    90  
  Gourd 3    6.2    120  
  Gourd 4    6.4    120  
  Gourd 5    6.5    150  

  3     Use the following data to test the hypothesis that there is no linear rela-
tionship between the height of a ceramic vessel (independent variable) 
and the average thickness of the vessel wall (dependent variable). Predict 
the average wall thickness that you would expect for a pot 19   cm tall. Place 
95% confi dence intervals for  Y i   around this predicted mean. Use reverse 
prediction to estimate the expected pot height associated with a sherd that 
is 2.1   cm thick. 
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   Pot height (cm)     Average thickness (cm)  

  25    3.2  
  10    1.0  
  14    1.7  
  20    2.9  

  9    1.2  
  9    .09  

  18    2.0  
  17    2.2  
  12    1.5  
  14    1.8  

  4     Foster and Cohen ( 2007 : 42) present the following data from the Hite 
Bowl site in the southeastern US refl ecting the depth of palynological 
samples and their excess  210 Pb concentrations, which can be used to date 
the samples and determine sedimentation rates. Presumably depth (time) 
controls the amount of  210 Pb. 

   (a)     Prepare a scatter plot refl ecting these data. Do they appear to meet 
the requirements for regression analysis?  

  (b)     Perform a regression analysis on the data (  α      =    .05). Is there a sig-
nifi cant relationship? If so, is it positive or negative?  

  (c)     Draw the regression line on the scatter plot created in part (a) of this 
exercise.  

  (d)     Conduct an analysis of the regression residuals. Draw a plot of the 
residuals. What does the plot indicate about the appropriateness of 
the assumption of a linear relationship? 

   Depth (cm)     Excessive  210 Pb  

  1    13.66  
  3    13.30  
  5    13.17  
  7    6.54  
  9    4.19  

  11    3.56  
  13    2.53  
  15    1.45  
  17    1.27  
  19    0.73  
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Correlation     

     Correlation is so similar to regression that they are occasionally confused with one 
another, but there is a very signifi cant difference  –  regression is used to explore the 
relationship between an  independent  variable and a  dependent  variable, whereas 
correlation is used to consider a relationship between two  dependent  variables. To 
illustrate this difference, consider the relationships between stature, femur length, 
and humerus length of 10 men from the University of New Mexico ’ s documented 
skeletal collection (Table  12.1 ). Given that stature is, at least in part, a function of 
femur length, regression can be used to explore the relationship between femur 
length (the independent  X  variable) and stature (the dependent variable  Y ). Figure 
 12.1  presents this relationship graphically, as well as the regression equation and  r  2 .     

 What about the relationship between stature and humerus length? Figure  12.2  
seems to indicate that there is some sort of relationship between the two variables 
such that stature increases as humerus length increases, but can this relationship be 
modeled using regression? The answer is no, because the assumption of a causal 
relationship required for regression is not met; stature as it is typically defi ned is 
not a function of the length of an individual ’ s upper arm. Still, it seems reasonable 
to suggest that tall people might have longer arms than shorter people, and that 
stature might  correlate  with humerus length, even if humerus length does directly 
control stature. The two variables may correspond with each other as a result of the 
infl uence of the same genetic predispositions or environmental factors such as 
nutrition. That is to say, both stature and humerus length may be dependent vari-
ables that are at least in part controlled by the same independent variables. The 
more important the shared independent variables are in determining the two 
dependent variables, the greater the correspondence between them will be.   

Quantitative Analysis in Archaeology, Todd L. VanPool and Robert D. Leonard 
© 2011 Todd L. VanPool and Robert D. Leonard
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 Still, why can ’ t we go ahead and apply regression analysis when there is a strong 
correspondences between variables, even though there may be no direct causal link 
between them? The reason is that neither of the variables is measured without error. 
Remember that regression requires that the independent variable be measured 
without error. This means more than simply using a tool that is adequately precise 
and accurate to take a good measurement, but is instead the assumption that the 
measurement refl ected in the independent variable represents a specifi c value (that 
is, a point) as opposed to an estimate of a specifi c value (that is, a distribution 

     Figure 12.1     The regression relationship between femur length and stature for 10 males 
from the University of New Mexico ’ s skeletal collection  
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  Table 12.1    Stature and long bone lengths of 10 males from 
the  UNM  documented skeletal collection 

   Stature (cm)     Femur length (cm)     Humerus length (cm)  

  176.8    47.9    34.6  
  172.7    45.6    31.4  
  158.8    43.7    31.4  
  166.4    46.9    34  
  182.9    48.7    35  
  167.6    43.8    31.3  
  170.2    46.1    33.9  
  167.6    44    32.3  
  171.5    46.2    33.6  
  175.3    47.5    33.5  

c12.indd   222c12.indd   222 8/26/2010   1:55:38 PM8/26/2010   1:55:38 PM



 Correlation 223

around a mean) relative to the dependent variable. In this case, the values for both 
variables refl ect the infl uence of all of the underlying independent variables, some 
or all of which may be shared. This in turn means that the values for both variables 
are estimates of the average value expected given the various states of the independ-
ent variables and their interaction (i.e., both variables refl ect a relationship based 
on  Y i      =     a     +     bX i      +     e i  , which explicitly does include an error term). Hence, neither 
variable is measured  “ without error ” . The result of this codependence is that any 
model of the  “ linear relationship ”  in Figure  12.2  must account for variation in both 
variables (Figure  12.3 ), which is not the case for Figure  12.1 . Variation in both 
variables makes it impossible to mathematically fi x a predictive, linear line to the 
relationship, as is done with regression (compare Figures  11.6  and  12.3 ).   

 To deal with variables linked to shared independent variables, archaeologists 
need a mathematical and analytic model that will allow them to determine the 
degree to which the shared independent variable(s) infl uence the dependent vari-
ables. This would allow the variation in seemingly distinct variables to be linked to 
the same underlying factors, and would be a very useful tool for archaeologists who 
frequently use multiple lines of evidence to argue for the presence or absence of 
some underlying environmental or behavioral attribute. Fortunately for archaeolo-
gists, correlation is useful in these situations. Unlike regression, correlation  does not  
allow for the direct prediction of one variable from the other or measure how much 
of the variation in one attribute is caused by variation in the other. It instead esti-
mates the degree to which both variables are the product of one or more shared 
independent variables. The most common correlation method used for interval or 
ratio scale data is the Pearson ’ s product - moment correlation coeffi cient.  

     Figure 12.2     A scatter plot depicting the relationship between humerus length and stature 
for 10 males from the University of New Mexico ’ s skeletal collection  
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     Figure 12.3     95% confi dence intervals illustrating the variation in both dependent 
variables  
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  Pearson ’ s Product - Moment Correlation Coeffi cient 

 The best way to start any analysis using Pearson ’ s product - moment correlation 
coeffi cient (which is commonly shortened to Pearson ’ s correlation coeffi cient or 
even the correlation coeffi cient) is to prepare a scatter plot such as Figure  12.2 . Here 
we arbitrarily place stature on the horizontal axis, but it doesn ’ t matter which vari-
able is selected for the  x  - axis or  y  - axis given that they are both dependent variables. 
We will discuss a couple of important things to look for in the graph after we have 
explored the assumptions of correlation analysis a bit, but Pearson ’ s correlation 
coeffi cient may be appropriate if there appears to be a linear, more or less continu-
ous distribution of points. It should not be applied to cases where there are extreme 
outliers, a curvilinear relationship, or tight clusters of data. Spearman ’ s rank order 
coeffi cient, which we also outline below, is superior in these contexts. 

 Pearson ’ s correlation coeffi cient is determined using Equation  (12.1) , which is 
most easily calculated using the following nine quantitative steps (Table  12.2 ). 

  Quantity 1:   Y1 1709 8∑ = . cm   

  Quantity 2:   Y1
2 2292732 2∑ = .  cm   

  Quantity 3:   Y2 331∑ = cm   

  Quantity 4:   Y2
2 210973 48∑ = . cm   

  Quantity 5:   Y Y1 2
256649 57∑ = . cm   
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  Table 12.2    Calculation of sums used to compute a Pearson ’ s correlation coeffi cient 

   Specimen number     Stature (cm)     Humerus length (cm)      Y  1  Y  2   

    Y  1         Y1
2        Y  2         Y2

2    

     1    176.8    31258.24    34.6    1197.16    6117.28  
     2    172.7    29825.29    31.4    985.96    5422.78  
     3    158.8    25217.44    31.4    985.96    4986.32  
     4    166.4    27688.96    34.0    1156.00    5657.60  
     5    182.9    33452.41    35.0    1225.00    6401.50  
     6    167.6    28089.76    31.3    979.69    5245.88  
     7    170.2    28968.04    33.9    1149.21    5769.78  
     8    167.6    28089.76    32.3    1043.29    5413.48  
     9    171.5    29412.25    33.6    1128.96    5762.40  
  10    175.3    30730.09    33.5    1122.25    5872.55  

   Σ     1709.8    292732.20    331.0    10973.48    56649.57  

  Quantity 6, the sum of squares of  Y  1 :
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Quantity 7, the sum of squares of  Y  2 :
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Quantity 8, the sum of products:

    

y y Y Y
Y Y

n
1 2 1 2

1 2∑ ∑ ∑∑= −
( )( )

= −Quantity 5

  
Quantity Quantity 
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1 3
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n
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  Pearson ’ s product - moment correlation coeffi cient 

   r
y y

y y
1 2

1 2

1
2

2
2 6 7

55 1
,

.= =
( )( )

=∑
∑ ∑

Quantity 8

Quantity Quantity 

99

390 596 17 38
67

. .
.

( )( )
=     (12.1)   

 The notation for these quantities should be familiar from the least squares regres-
sion method introduced in Chapter  11 , because Pearson ’ s correlation coeffi cient 
also uses the covariance (see Quantity 8) to measure the degree of shared variance 
in the two variables. Also, like regression analysis, the correlation coeffi cient uses a 
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term ( r , as opposed to regression ’ s  r  2 ) to refl ect the amount of covariance. These 
two coeffi cients ( r  and  r  2 ) are even connected such that the square of Pearson ’ s 
correlation coeffi cient ( r ) equals regression ’ s coeffi cient of determination ( r  2 ) cal-
culated for the same data. However, Pearson ’ s correlation coeffi cient can range 
from  − 1 (a perfect negative correlation in which one variable decreases as the other 
increases) to 1 (a perfect positive correlation), whereas a regression coeffi cient of 
determination (a squared value) must be a positive value varying between 0 and 1. 
Also as with regression ’ s coeffi cient of determination, Pearson ’ s correlation coef-
fi cients close to zero indicate that there is no correspondence between the two vari-
ables of interest. 

 But how close must Pearson ’ s  r  be to 0 to conclude that there isn ’ t a signifi cant 
correlation between the variables? The most common signifi cance test for Pearson ’ s 
correlation coeffi cient uses a t - test (Equation  (12.2) ) to evaluate the null hypothesis 
 H  0  :   ρ      =    0, where   ρ   (vocalized as rho or roe) is the population parameter estimated 
by the correlation coeffi cient,  r . If  r  is close to 0, then the null hypothesis that   ρ      =    0 
cannot be rejected, and it is possible that the two dependent variables are not sig-
nifi cantly determined by the same underlying variables. In contrast, if  r  is signifi -
cantly different from 0, then we can reject the null hypothesis and conclude that 
there is a signifi cant correlation. 

 The t - test ’ s formula (Equation  (12.2) ) is derived from Equation  (8.6)  by replac-
ing   μ   with 0 (which is the specifi c value of   ρ   we wish to evaluate),   Ȳ    with  r , and 
the standard error  s  Ȳ     with the correlation coeffi cient ’ s standard error  s r  , which is 
calculated using Equation  (12.3) . 

  The t - test for evaluating the signifi cance of Pearson ’ s correlation coeffi cient 

   t
r

sr

= − 0
    (12.2)   

  The standard error of the Pearson ’ s correlation coeffi cient 

   s
r

n
r = −

−
1

2

2

    (12.3)   

 Applying these equations to the example above produces:

   
t

r

r

n

r
n

r
= −

−
−

= −
−

= −
−

=0

1

2

2

1
67

10 2

1 45
2 56

2 2
.

.
.

  

 Comparing the t - score to the critical value of  t  .05[8]     =    2.306, we reject  H  0  and con-
clude that there is a signifi cant correlation between stature and humerus length, 
just as we would suspect. 
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 It is also possible to complete an ANOVA analysis to evaluate the null hypothesis 
 H  0  :   ρ      =    0 by calculating an explained and unexplained sums of squares using 
Equations  (12.4)  and  (12.5) . It doesn ’ t matter which variable is selected to be  Y  1 . 
The results will be the same. An ANOVA table (Table  12.3 ) can even be created, 
although for whatever reason this is rarely done when using Pearson ’ s correlation 
coeffi cient. If you don ’ t wish to bother with the ANOVA table, simply divide 
 SS  explained  and  SS  unexplained  by their degrees of freedom to create the explained and 
unexplained means sums of squares, and then divide  MS  explained  by the  MS  unexplained . 
Note that both  SS  explained  and  SS  unexplained  contain   y1

2∑ , the sums of squares for the 
selected variable (compare Equations  (12.4)  and  (12.5) ). When dividing  MS  explained  
by  MS  unexplained , this term will cancel out, reducing the formula for the F - score to 
Equation  (12.6) .   

  Explained sums of squares for Pearson ’ s product - moment correlation coeffi cient 

   SS r yexp = ( ) ×∑2
1
2     (12.4)   

  Unexplained sums of squares for Pearson ’ s product - moment correlation coeffi cient 

   SS r yUnex. = −[ ]( )×∑1 2
1
2     (12.5)   

  F - score comparing the explained and unexplained sums of squares for Pearson ’ s 
product - moment correlation coeffi cient 

   
F

r

r

n

r n

r
= ( )

−[ ]( )
−( )

= ( ) × −( )
−[ ]( )

2

2

2

21

2

2

1     (12.6)   

 Illustrating the application of these equations using humerus length as  Y  1  pro-
duces the following results:

  Table 12.3     ANOVA  table for Pearson ’ s correlation coeffi cient 

   Source of variation      SS       df       MS       F S    

  Explained             a   –  1                  

  Unexplained    
      

   n   –  2    
      

    

  Total    
      

   n   –  1    
      

    

r y( ) ∗∑2
1
2 r y( ) ∗∑2

1
2

1

MS

MS
explained

unexplained

1 2
1
2− [ ]( )∗∑r y 1

2

2
1
2− [ ]( )∗

−
∑r y

n

y1
2∑ y

n

1
2

1
∑

−
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   SSexp . . .= ( ) × =67 390 60 175 342 2cm  

   SSUnex cm. . . .= −[ ]( )× =1 67 390 60 215 262 2  

   F = ( ) × −( )
− ( )

=.

.
.

67 10 2

1 67
6 52

2

2   

 These same results are refl ected in Table  12.4 . Using an alpha of .05, the critical 
value for  H  0  :   ρ      =    0 is  F  .05[1,8]     =    5.32. Given that 6.52 is greater than the critical value, 
we again reject the null hypothesis and conclude that there is a signifi cant correla-
tion between humerus length and total stature.   

  The assumptions of Pearson ’ s product - moment correlation coeffi cient 

 As with all quantitative methods, there are assumptions that must be met for 
Pearson ’ s correlation coeffi cient to be effectively used. These are: 

  1     There should be no known causal relationship between the two variables such 
that one is dependent on the other. If there is, use regression. The correlation 
analysis won ’ t be wrong  per se  if this assumption is violated, but it won ’ t prop-
erly model the strength of the causal relationship. Although the correlation 
coeffi cient and regression coeffi cient of determination are mathematically 
linked such that ( r ) 2  equals  r  2 , the two measures actually refl ect different popula-
tion parameters. Using a correlation coeffi cient when regression analysis is 
warranted will not properly refl ect the strength of the causal relationship 
between the variables, while using the regression analysis when a correlation 
analysis is warranted will underplay the infl uence shared among the two depend-
ent variables. Using the right tool for the right job will help archaeologists better 
understand the relationships between the variables being considered.  

  2     The measurements must be independent of one another such that one measure-
ment doesn ’ t determine another. For example, the correlation of wall lengths 
of opposing walls in rectangular rooms is not a valid use for Pearson ’ s correla-
tion coeffi cient, because the lengths are interdependent.  

  Table 12.4     ANOVA  analysis of the correlation between the 
humerus length and stature of 10 skeletons from  UNM  ’ s 
skeletal collection 

   Source of variation      SS       df       MS       F S    

  Explained    175.34    1    175.34    6.52  
  Unexplained    215.26    8    26.91      
  Total    390.60    9    43.40      
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     Figure 12.4     An example of data that are consistent with a bivariate normal distribution 
without signifi cant outliers  
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  3     The distributions of both variables should be normally distributed, and their 
bivariate (combined) distribution should be normal as well. We can evaluate 
this assumption by using graphical methods. Simple histograms can help deter-
mine if the distributions of both variables are normally distributed. A scatter 
plot such as illustrated in Figure  12.2  will help determine if the combined dis-
tribution in normally distributed. If it is, the points will be spread relatively 
uniformly throughout the distribution with variates becoming more frequent 
towards the center of the distribution (Figure  12.4 ). Extreme outliers should be 
absent. When extreme outliers are present, a nonparametric correlation analysis 
should be used. In cases where there are obvious gaps in the distribution (Figure 
 12.5 ), other quantitative methods such as cluster analysis will be more useful 
for understanding the relationship between the two dependent variables and 
the underlying independent variable(s).      

 Archaeological data often meet the fi rst two assumptions. The archaeological 
record is replete with cases in which two or more mechanically distinct attributes 
are determined by the same independent variable. For example, wall thickness and 
rim thickness of ceramic pots may correlate with each other, despite the mechanical 
independence of these two variables, because they are both controlled in part by 
vessel size. Likewise, original cobble size may impact both the length of lithic debit-
age and the size of the resulting tool in certain fl aked stone technologies. The third 
assumption requiring normality is frequently more problematic given that archaeo-
logical assemblages often produce skewed data distributions. The outliers in skewed 
distributions will exert an inordinate infl uence on the measures of covariance used 
to determine Pearson ’ s correlation coeffi cient, possibly producing spurious results. 
When there is any question about whether one or both of the distributions are too 
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     Figure 12.5     An example of clustered data for which Pearson ’ s correlation coeffi cient is 
inappropriate  
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heavily skewed to be normally distributed, use Spearman ’ s rank order correlation 
coeffi cient instead.   

  Spearman ’ s Rank Order Correlation Coeffi cient 

 Spearman ’ s correlation coeffi cient is a powerful nonparametric test that can be used 
when ratio or interval data are too heavily skewed to allow for the Pearson ’ s correla-
tion coeffi cient, or for ordinal data. It is tremendously robust, and can also be 
applied to any data that Pearson ’ s correlation coeffi cient can. Unlike Pearson ’ s cor-
relation coeffi cient, it is not based on the measurement of covariance but is instead 
derived by comparing the ranking of variates between the two variables. The under-
lying idea is quite straightforward. If a positive correlation is present, the largest/
highest ranked individual will produce the largest variates for both variables, the 
next largest individual will produce the second largest variates for both variables, 
etc. If a negative correlation is present, then the individual producing the largest 
variate for one variable will produce the smallest variate for the other, the individual 
producing the second largest variate for the fi rst variable will produce the second 
smallest variate for the other, etc. If there is no correlation between the variables, 
the ranks will be independent, in that highly ranked variates of one distribution will 
not consistently correspond with high or low ranked members of the other distribu-
tion. The variation in the rank order of the two variables can consequently be 
measured to determine if the rankings of the two variables are signifi cantly 
correlated. 
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 Consider the data presented in Table  12.5 . These are rank order fi sh bone abun-
dances from two sites in the lower Illinois Valley (Styles,  1985 : 42). These data 
refl ect the percentage of the NISP, the  n umber of  i dentifi able  sp ecimen, of the total 
assemblage composed of each fi sh species, which is a notoriously problematic 
measure of abundance. Different sizes of fi sh, different processing strategies, and 
differences in bone preservation, among other factors, make it diffi cult to tie NISP 
to the actual number of individual animals represented in an assemblage. This 
means that Pearson ’ s correlation coeffi cient cannot be applied to these data, because 
they are not in reality measured at a ratio or interval scale (see Lyman,  2008 ). 
However, we might be willing to accept NISP as a relative measure of abundance, 
such that a higher proportion of the NISP refl ects the presence of more fi sh than a 
lower percentage of the NISP, even if we don ’ t claim to know  exactly  how many 
fi sh are represented by either percentage. We can consequently use NISP to create 
an ordinal ranking of the abundance of each fi sh species, even if we don ’ t know 
exactly how many fi sh were consumed. Such a ranking is all that Spearman ’ s cor-
relation coeffi cient requires.   

 As is typical of faunal remains, understanding fi sh choice could provide informa-
tion about subsistence patterns, seasonality, past environments, and a host of other 
archaeologically important attributes. A researcher might wish to compare the two 
sites to determine if their inhabitants were consuming the same fi sh (refl ecting 
similarities in underlying attributes such as settlement patterns and environmental 
setting) or were consuming different fi sh (refl ecting differences in the underlying 
variables). To be clear, the question is not whether the inhabitants consumed the 

  Table 12.5    The ranking of fi sh species by their abundance at the Newbridge and Carlin 
settlements 

   Taxon     Newbridge 
(%)  

   Newbridge 
rank ( R  1 )  

   Carlin 
(%)  

   Carlin 
rank ( R  2 )  

   ( R  1     −     R  2 )     ( R  1     −     R  2 ) 2   

  Bullhead    33.96    1    11.27    3     − 2    4  
  Bowfi n    21.05    2    16.67    2    0    0  
  Buffalo    12.90    3    10.29    4.5     − 1.5    2.25  
  River 

Catfi sh  
  10.53    4    19.12    1    3    9  

  Bass    6.11    5    10.29    4.5    .5    .25  
  Sunfi sh    4.41    6    0.98    9     − 3    9  
  Pike    3.40    7    3.92    8     − 1    1  
  Redhorse    3.06    8    5.88    7    1    1  
  Freshwater 
Drum  

  2.38    9    9.80    6    3    9  

  Crappie    .51    10    0.49    10    0    0  

  Total                        35.50  
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same  amounts  of fi sh, but rather, did the inhabitants utilize the same kinds of 
fi sh? 

 To evaluate this hypothesis of interest, we will evaluate the null hypothesis 
 H  0  :  r s      =    0, where  r s   refl ects Spearman ’ s rank order correlation coeffi cient (Equation 
 (12.7) ). As with Pearson ’ s correlation coeffi cient, values of Spearman ’ s  r  range from 
1 (perfect positive correlation) to  − 1 (prefect negative correlation) with values close 
to 0 indicating that there is no correlation between the two variables. 

  Spearman ’ s rank order correlation coeffi cient 

   r
R R

n n
s = −

−( )
−( )

∑
1

6

1

1 2
2

2
    (12.7)   

 In Equation  (12.7) ,  R  1     −     R  2  is simply the difference between the rankings for each 
variate, and  n  is the sample size. Don ’ t worry about the origin of the  “ 6 ” . It is a 
constant in the equation that never changes. It also doesn ’ t matter which variable 
is selected for  R  1  or  R  2 , or if the ranking is organized from smallest to largest or vice 
versa. The results won ’ t change. In cases where there are two or more variates with 
the same value, their ranking is determined by averaging the ranks they would 
otherwise occupy (e.g., if two variates with the same value are in line to be ranked 
7 and 8, they both are ranked 7.5; see the Carlin site rankings for Bass and Buffalo 
in Table  12.5  for another example). For samples larger than 10, the signifi cance of 
Spearman ’ s  r  can then be evaluated using Equation  (12.2) , the t - test presented 
above for evaluating Pearson ’ s correlation coeffi cient. Critical values for smaller 
samples are listed in Table  12.6 .   

 We demonstrated the ranking process and the calculation of  R  1     −     R  2  in Table 
 12.5 . Applying these data to Equation  (12.7)  produces the following result:

  Table 12.6    Critical values for Spearman ’ s  r  when sample 
size is equal to or smaller than 10 

    n      Signifi cance level 
(one - tailed test)  

   .05     .01  

     4    1.000      
     5    .900    1.000  
     6    .829    .943  
     7    .714    .893  
     8    .643    .833  
     9    .600    .783  
  10    .564    .746  
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   r
R R

n n
s = −

−( )
−( ) = − ( )

−( )
= − =∑

1
6

1
1

6 35 5

10 100 1
1

213

990
78

1 2
2

2

.
.   

 Given that our sample size is 10, we use Table  12.6  to determine that the critical 
value for   α      =    .05 is .56, which is considerably smaller than .78. We reject the null 
hypothesis and conclude that the ranking of the fi sh species is correlated between 
the Newbridge and Carlin sites. 

 For fun, let ’ s apply the same process to compare the ethnobotanical remains 
from the Newbridge site and a third site, the Weitzer site (Table  12.7 ; Styles,  1985 : 
52). The null hypothesis is again set at  H  0  :  r     =    0 and the level of rejection (  α  ) is set 
at .05. Table  12.7  lists the rankings of various types of plant resources, as well as 
 R  1     −     R  2 . Spearman ’ s  r  is:

   r
R R

n n
s = −

−( )
−( ) = − ( )

−( )
= − =∑

1
6

1
1

6 21

7 49 1
1

126

336
375

1 2
2

2
.     

 This Spearman ’ s  r  is much closer to 0 than was the  r s   for the Newbridge and 
Carlin fi sh assemblages. Comparing it to the critical value of .714 listed in Table 
 12.6  for  n     =    8 indicates that we cannot reject the null hypothesis. The ethnobotani-
cal remains between the two settlements differ with oily cultivated plants ranking 
much higher at the Newbridge settlement that at the Weitzer settlement. Such dif-
ferences could refl ect variation in subsistence strategies, settlement location, envi-
ronmental conditions, or various other factors. With a proper theoretical and 
analytical framework, this (and similar) differences may become key insights to 
quantifying and explaining differences in the archaeological record.  

  Table 12.7    Paleobotanical information from the Newbridge and Weitzer sites 

   Seed group     Newbridge 
(%)  

   Newbridge 
rank ( R  1 )  

   Weitzer 
(%)  

   Weitzer 
rank ( R  2 )  

   ( R  1     −     R  2 )     ( R  1     −     R  2 ) 2   

  Starchy 
cultivated 
(?)  

  84.82    1    26.67    2     − 1    1  

  Miscellaneous    10.75    2    48.33    1    1    1  
  Oily cultivated    2.80    3    0    6.5     − 3.5    12.25  
  Starchy non - 

cultivated  
  1.41    4    6.67    4.5     − .5    .25  

  Sumac    .09    5    11.67    3    2    4  
  Fleshy fruits    .08    6    6.67    4.5    1.5    2.25  
  Weed seeds    .07    7    0    6.5    .5    .25  
  Number of 

seeds  
  15009        2868              

  Total                        21  
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  Some Final Thoughts (and Warnings) about Correlation 

 It is an oft - stated truism in the philosophy of science, statistics, and even as a clich é  
in daily life, that correlation does not equal causation. We encourage you to keep 
this in mind. A signifi cant regression relationship does equal (an argument for) 
causation, but a signifi cant correlation at most supports the proposition that 
there are underlying shared causal factors affecting both dependent variables. 
These underlying factors can be central to scientifi c explanations, but they can also 
be relatively trite. Statisticians talk about  “ nonsense correlations ” , a classic example 
of which is that the number of Baptist ministers and the total amount of 
liquor consumed correlate quite strongly in communities larger than 10,000 
throughout the United States. Such correlations aren ’ t really nonsense so much as 
they are analytically meaningless. They  do  refl ect shared independent variables, 
but these are so broadly formed as to provide little insight. The number of 
Baptist ministers and the amount of alcohol consumed correlate well with each 
other because they are both the product of population size, not because Baptist 
ministers drink lots of alcohol. We are confi dent that the number of hardware 
stores, McDonald ’ s restaurants, fi re hydrants, and automobile dealerships will all 
correlate with the number of Baptist ministers (and alcohol consumed), for the 
exact same reason. Yet such a relationship doesn ’ t provide signifi cant insight into 
any of the correlated variables. The mere presence of a correlation can never be 
considered proof of a causal relationship between the two variables, and may not 
even be signifi cant to the analysis at all. The archaeological record is necessarily 
replete with nonsense correlations based on attributes such as population size, the 
presence/absence of certain taphonomic processes, age of deposits, excavation 
methods, etc. It is not surprising for example that the frequency of iron 
artifacts increases in more recent historic settlements relative to older historic set-
tlements. This simply refl ects the reality that iron rusts. It would be a mistake to 
uncritically interpret this pattern as necessarily refl ecting an increase in the use of 
iron through time. 

 Remember also that it is always possible to commit Type I and Type II errors 
when conducting any hypothesis testing. A Type I error in the context of a correla-
tion would lead to the conclusion that a correlation is present when in fact the two 
variables are not the product of shared underlying independent variables. Given 
enough correlation analyses, any researcher is guaranteed to identify spurious cor-
relations. Likewise, it is possible to commit Type II errors, and incorrectly conclude 
that there is not a signifi cant correlation when in fact there is. This is especially 
common when two variables share some but not all of their underlying causal 
attributes. As   ρ   gets closer to 0, it will become increasingly likely to fail to identify 
weak correlations that really do exist. A useful, but not foolproof, way to help miti-
gate this is through large samples that will tend to more robustly refl ect any correla-
tion that is present. When you expect that two variables share some but not all 
underlying independent variables, be sure to keep in mind the likelihood of 
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committing a Type II error and maximize the sample size as best as is possible. Still, 
weak correlations will always be susceptible to Type II errors. 

 Finally, the presence of a correlation refl ects that the two dependent variables 
share one or more underlying independent variables, but the relationships between 
these variables can be complex. Figure  12.6  refl ects a couple of the innumerable 
possible relationships underlying signifi cant correlations. In the simplest possible 
relationship, both variables could refl ect the operation of one and only one shared 
variable (Figure  12.6 (a)). More complex forms could include a number of shared 
independent variables that all contribute to both dependent variables (Figure 
 12.6 (b)). In even more complex relationships, the dependent variables could be the 
product of some shared attributes but also refl ect the operation of other unique 
variables (Figure  12.6 (c)). Determining the relationship underlying correlations 
will require a clearly defi ned analytic and theoretical structure.   

     Figure 12.6     Examples of possible relationships that can result in signifi cant correlations  

(a) 

(b) 

(c) 

Dependent variable 1 

Dependent variable 2 

Independent variable 1

Independent variable 2

Independent variable 3

Dependent variable 1 

Dependent variable 2 

Independent variable 1

Dependent variable 1 

Dependent variable 2 

Independent variable 2

Independent variable 3

Independent variable 4

Independent variable 5

Independent variable 1

   Practice Exercises 

    1     What are the assumptions of correlation analysis? How do these differ 
from regression analysis ’ s assumptions?  

  2     Identify three examples where two or more archaeologically relevant 
dependent variables might be controlled by the same independent 
variable(s). Use your imagination to derive three possible  “ nonsense ”  cor-
relations. Briefl y discuss why the archaeologically relevant examples you 
selected are different than a nonsense correlation.  
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  3     Following are the length and width measurements for various lithic tools 
from different periods of occupation at the White Paintings Rock Shelter 
in Botswana (Donahue  et al. ,  2002 – 2004 : 158). Treat the entire data set as 
a single sample.  

  (a)     Create a scatter plot refl ecting the two variables. Intuitively, does 
there appear to be a relationship between them? If so, is it positive 
or negative?  

  (b)     Perform a Pearson ’ s product - moment correlation analysis to deter-
mine if the variables correspond with each other (  α      =    .10). If so, 
what is the strength of the shared variation? What is the underlying 
variable that is likely causing any correspondence you identify? 

   Culture     Artifact type     Length (cm)     Width (cm)  

  Late Stone Age    Double - backed 
Point  

  14    5  

  Middle Holocene 
Late Stone Age  

  Burin    21    10  

  Late Pleistocene Late 
Stone Age  

  Blade    19    14  

  Early Late Stone Age    Blade    63    24  
  Middle Stone Age    Point    28    25  
      Blade    36    16  
      Blade    40    19  
      Point    30    20  
      Multipurpose tool    27    18  
      Point    34    28  
      Point    21    16  

  4     Bustard ( 1996 : 292 – 3) presented the fl owing data for the numbers of 
above ground rooms and pit structures for small sites in Chaco Canyon, 
New Mexico. Which correlation method (Pearson ’ s or Spearman ’ s 
Correlation Coeffi cient) would be best to evaluate whether there is a rela-
tionship between these variables? Use the appropriate method to deter-
mine if there is a correlation between the number of above ground rooms 
and pit houses (  α      =    .05).  
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   Site number     Above ground rooms     Pit structures  

  Bc 50    20    4  
  Bc 51    45    6  
  Bc 53    17    4  
  Bc 54    4    3  
  Bc 57    9    4  
  Bc 58    13    1  
  Bc 59    14    5  
  Bc 126    5    2  
  Bc 192    11    1  
  BC 236    9    1  
  Bc 362    18    2  

  5     Following are data related to the minimum number of individuals for 
various artifact assemblages grouped by use categories/associations from 
various historic households (Van Bueren and Wooten,  2009 : 120). Use a 
Spearman ’ s rank order correlation to determine if the frequencies of the 
items correlate with one another (  α      =    .05). 

   Type     All male 
households  

   Family dwellings  

  Male items    50    40  
  Health items    22    106  
  Alcohol    76    378  
  Tobacco    61    11  
  Other personal    366    189  
  Household    176    1000 +   
  Hunting    131    68  
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Analysis of Frequencies     

      “ Within recent years there appears to have been an increasing awareness on the 
part of archaeologists that certain statistical techniques offer economical methods 
of extracting information of cultural signifi cance from archaeological data ”  
(Spaulding,  1953 ). With this opening sentence, Albert Spaulding introduced a now 
commonly used statistical procedure to archaeology called chi - square analysis. 
Spaulding was dissatisfi ed by archaeological classifi cation procedures, and sought 
to make typology rigorous, replicable, and scientifi c. At the time, archaeologists 
typically created archaeological types by laying artifacts out on a table, and then 
putting similar objects together in a pile. What constituted  “ similar ”  was up to the 
individual building the piles. Of course, what one individual determined to be 
similar differed from what another might see. This led (and continues to lead) to 
no end of problems (Whittaker  et al. ,  1998 )  –  one of the most signifi cant being that 
a select group of individuals who originally created types in a region became the 
 “ experts ”  on the types they created. As a consequence, if a student didn ’ t learn types 
at the feet of the Master (or one of the Master ’ s apprentices), his or her work was 
forever suspect. 

 Spaulding sought to put an end to this procedure, and offered numerical tax-
onomy (the use of statistical methods to create analytic units) as an alternative. He 
proposed that by demonstrating non - random associations between attributes of 
artifacts, archaeologists would be able to  “ discover ”  the meaningful emic types that 
the original makers had in mind and consistently produced. Although there were 
many alternatives to accomplish this task, the rather straightforward method that 
Spaulding suggested was to use the chi - square test to compare the frequencies of 
various associations. His idea was that artifact types would be characterized by the 
consistent co - occurrence of attributes as people consistently made the tools they 
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desired. A test of abundance such as the chi - square test would allow archaeologists 
to see which associations were particularly common, and would thereby allow 
archaeologists to discover the underlying types that structured past human technol-
ogy. Spaulding ’ s  (1953)  proposal was critiqued at the time (Ford, 1954) and was 
never generally accepted by archaeologists, although some continue trying to 
develop methods of numerical taxonomy to fulfi ll Spaulding ’ s original goal (e.g., 
Benfer and Benfer,  1981 ; Christenson and Read,  1977 ; Cowgill,  1990 ; Phagan, 
 1988 ). However, chi - square analysis continues to be a mainstay of archaeological 
quantifi cation. 

 Let us consider the calculation and utility of the chi - square test using Spaulding ’ s 
example. Table  13.1  presents two hypothetical variables that Spaulding sought to 
use to discover ceramic types based on sherd frequencies. These data create a matrix 
in which the correspondence of two or more variables is refl ected. In this example 
there are an equal number of sherds refl ected in each cell, which is the expected 
pattern if there is no association between temper type and surface treatment. Here, 
the two variables are distributed independently relative to each other such that a 
smooth surfaced vessel is as likely to have grit temper as shell temper and a grit 
tempered vessel is as like to have a stamped surface as a smooth surface. Contrast 
this with Table  13.2 , which presents a perfect association between temper type and 
surface treatment. Here, grit temper is always associated with a stamped surface and 
shell temper with a smooth surface. To Spaulding, such non - random associations 
would constitute emic types that refl ect the will of the potters involved in making 
the original ceramics.   

 The non - overlapping associations in Table  13.2  are quite unambiguous, and an 
archaeologist really wouldn ’ t need to use any statistical test to determine that there 

  Table 13.1    Pottery sherds classifi ed by their surface treat-
ment and temper type 

   Surface texture     Grit temper     Shell temper     Total  

  Stamped surface    25    25    50  
  Smooth surface    25    25    50  

  Total    50    50    100  

  Table 13.2    Sherds classifi ed by their surface treatment and 
temper type in which there is a strong association between 
the two variables 

   Surface texture     Grit temper     Shell temper     Total  

  Stamped surface    50    0    50  
  Smooth surface    0    50    50  

  Total    50    50    100  
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is a difference in the temper of smooth surfaced and stamped surface pottery. 
However, archaeologists also realize that the archaeological record rarely refl ects 
such nice, neat associations (which was Ford ’ s (1954) point in his debate with 
Spaulding). Archaeologists more commonly deal with data that looks something 
like Table  13.3 . There may be a strong positive association between stamped surface 
pottery and shell temper, and between smooth surfaced pottery and grit temper, 
but are these associations beyond what would be expected due to chance if the 
variables varied independent of each other? Well, thinking about it, if there isn ’ t an 
association, we would expect that an equal percentage of grit tempered ceramics 
would have stamped surfaces as have smooth surfaces. Grit tempered pottery makes 
up 59.6% of the total pottery assemblage (234 grit tempered sherds/392 total 
sherds), so 59.6% of the 146 stamped surface sherds (or 87.2 sherds) and the 256 
smooth surface sherds (or 146.8 sherds) would be expected to have grit temper by 
chance (Table  13.4 ). Given that 40.4% of the assemblage has shell temper ( n     =    158 
sherds), we would expect that 40.4% of the stamped pottery (58.8 sherds) and the 
smooth surfaced pottery (99.2 sherds) would have shell temper (Table  13.4 ). These 
values refl ect the expected values if there is no relationship between pottery surface 
texture and temper type. Again, intuitively there seems to be a big difference 
between the observed values (Table  13.3 ) and the expected values (Table  13.4 ), but 
we would naturally expect some variation between the observed and expected 
values. Are the differences between the observed and expected values so large that 
they indicate a non - random association between smooth surface pottery and grit 
temper and between stamped pottery and shell temper? A chi - square test, repre-
sented using the symbol   χ   2 , is ideal for answering this question. It does so by directly 
comparing the observed frequencies with the expected frequencies using Equation 
 (13.1) , where  O  is the observed frequency and  E  is the expected frequency of an 

  Table 13.3    An additional set of hypothetical frequencies of 
sherds classifi ed by their surface treatment and temper type 

   Surface texture     Grit temper     Shell temper     Total  

  Stamped surface    12    134    146  
  Smooth surface    222    24    246  

  Total    234    158    392  

  Table 13.4    Expected frequencies for the sherds in Table  13.3  
assuming that there is no association between surface treat-
ment and temper type 

   Surface texture     Grit temper     Shell temper     Total  

  Stamped surface    87.2    58.8    146  
  Smooth surface    146.8    99.2    246  

  Total    234.0    158.0    392  
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association. Note that a chi - square value is calculated for each cell in a table like 
Table  13.3 , but that the chi - square test will refl ect the difference between all of the 
observed and expected values in the matrix.   

  The chi - square test 

   χ2

2

=
−( )∑ O E

E

ij ij

ij

    (13.1)   

 Table  13.5  reports the chi - square test derived from the observed values (Table 
 13.3 ) and the expected values (Table  13.4 ) in our example. This   χ   2  value can be 
compared to critical values from the chi - square distribution to determine if the 
differences are greater than expected by chance. The formal hypothesis being tested 
is  H  0  :  O ij      =     E ij  , where  O ij   refl ects the observed values and  E ij   refl ects the expected 
values. The chi - square test uses the chi - square distribution, which is a unimodal 
distribution heavily skewed to the right (Appendix  D ). Like the t and the F distribu-
tions, the chi - square distribution changes shape depending on the degrees of 
freedom, but the degrees of freedom for this distribution are based on the number 
of character states for each variable, not actual sample size. This is best understood 
by thinking about the data in the form of a data matrix.   

 Table  13.3  is a matrix with four cells that each refl ects the frequency of the 
co - occurrence of the variable states represented as rows (surface texture) and 
columns (temper type). Temper type has two character states (grit temper and 
shell temper), which results in two columns. Surface texture likewise has two char-
acter states (stamped and smooth surfaces), resulting in two rows. This creates a 
2    ×    2 data matrix, regardless of the actual number of sherds in each cell (e.g., Tables 
 13.2  and  13.3  both are 2    ×    2 data matrixes despite the differences in total sherds 
refl ected in the table). The degrees of freedom are calculated based on the size of 
the data matrix as illustrated in Equation  (13.2) , where  R  is the number of rows in 
a matrix and  C  is the number of columns. In the example above (Table  13.3 ), there 
are two columns and two rows. The degrees of freedom consequently are 
(2    −    1)    ×    (2    −    1)    =    1. This is true for all 2    ×    2 data matrixes, regardless of the 
number of observed values. 

  Table 13.5    Chi - square test of the data presented in Table  13.3  

   Texture/Temper     Observed     Expected     ( O     −     E )     ( O     −     E ) 2      ( O     −     E ) 2 / E   

  Stamped grit    12    87.2     − 75.2    5647.52    64.80  
  Smooth grit    222    146.8    75.2    5647.52    38.46  
  Stamped shell    134    58.8    75.2    5647.52    95.96  
  Smooth shell    24    99.2     − 75.2    5647.52    56.96  

  Total    392    392.0    0    22590.08      χ   2     =    256.18  
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  Degrees of freedom for the chi - square test 

   ν = −( )× −( )R C1 1     (13.2)   

 Using the degrees of freedom, the critical value for the chi - square test can be 
determined from Appendix  D . The critical value for   X. .05 1

2 3 84[ ] = , which is much 
smaller than the calculated chi - square value of 256.18. We therefore reject the null 
hypothesis and conclude that the observed sherd frequencies are different than 
those expected by chance if there was no association between surface texture and 
temper type. This of course means that certain combinations (smooth surfaced grit 
tempered sherds and stamped shell tempered sherds) are more frequent than 
expected, which is why the chi - square test is considered a  “ test of abundance ” . Once 
the analyst knows which cells have more than expected and which have fewer, the 
signifi cance of these differences can be understood based on the analytic design and 
theoretical structure a researcher employs. 

 Let ’ s take a moment to think about a couple of characteristics of the chi - square 
test. First, the chi - square test uses nominal scale data. The data are divided into 
categories, and the counts within each cell of the matrix are compared to expected 
values. There is no assumption about the differences between the various categories, 
beyond simply that they are mutually exclusive. Even when the data are measured 
at the ordinal scale (e.g., small, medium, large), the chi - square test does not assume 
any order or ranking in the categories. Switching the order of ordinal data in a 
matrix so that small follows large instead of medium will have no impact on the 
chi - square analysis. Further, chi - square analysis of data measured at the interval or 
ratio scales is only possible if these data are divided into distinct categories. 

 Second, the chi - square test does not test to determine if there are differences in 
the frequencies of two character states. Rather, it is a means of determining if the 
distributions of the various character states are random with respect to (i.e., inde-
pendent of) the other variable. This is unfortunately an easily confused point, and 
it is easy to misstate what the results of a chi - square test indicate. To understand 
this point, consider that Table  13.6  has many more smooth surfaced sherds than 
stamped sherds, but that the distribution of grit tempered and shell tempered sherds 
is the same as refl ected in Table  13.1  (i.e., 50% of the sherds from each texture 
category are grit tempered and 50% are shell tempered). Performing a chi - square 
test on Table  13.6  will not lead to the rejection of the null hypothesis  H  0  :  O ij      =     E ij  , 

  Table 13.6    A matrix of sherd frequencies in which the number of smooth surfaced sherds 
greatly outnumber the stamped surfaced sherds 

   Surface texture     Grit temper     Shell temper     Total  

  Stamped surface    25    25    50  
  Smooth surface    250    250    500  

  Total    275    275    550  
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  Table 13.7    Chi - square test of the data presented in Table  13.6  

   Texture/Temper     Observed     Expected     ( O     −     E )     ( O     −     E ) 2 / E   

  Stamped grit    25    25    0    0  
  Smooth grit    250    250    0    0  
  Stamped shell    25    25    0    0  
  Smooth shell    250    250    0    0  

  Total    550    550         χ  2     =    0  

despite the large differences in the number of smooth surfaced and stamped sherds 
(Table  13.7 ). The chi - square test is designed to take as a given that there will be 
differences in the frequencies of the various character states, but will determine if 
the various categories are distributed evenly given these differences.   

 Finally, it is possible to calculate the expected values as we intuitively did for 
Tables  13.5  and  13.6 , but Equation  (13.3)  provides an easier way to do so, especially 
when dealing with large matrixes. 

  The expected values for the chi - square test 

   E
RT CT

GT
= ×

    (13.3)   

 The equation provides the expected value for each cell of the matrix based on the 
cell ’ s row total ( RT ) and column total ( CT ), and the matrix ’ s grand total ( GT ). To 
illustrate this, consider the cell for stamped, grit tempered pottery in Table  13.3 . 
The expected value for this cell can be calculated by taking the sum of all of 
the cells in the fi rst row (the cells refl ecting sherds with stamped surfaces, which 
equals 146), the sum of all of the cells in the fi rst column (grit tempered sherds, 
which equals 234), and the sum of all of the sherds from all of the cells (total sample 
size, which is 392 sherds). These values are then placed into Equation  (13.3)  as 
follows:

   E
RT CT

GT
= × = × =146 234

392
87 2. sherds   

 This is exactly the same value we determined in Table  13.4  using the intuitive 
method that the cell should hold 59.6% of the stamped surface sherds. 
Using Equation  (13.3)  is frequently easier, however, especially when analyzing 
larger data sets using statistical software or spreadsheets, because it allows the 
expected value for each cell to be calculated without fi rst calculating the various 
percentages associated with each column. This eliminates a step when determining 
the expected values, thereby saving time and helping to eliminate simple calculation 
mistakes.  
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  Determining the Source of Variation in a Chi - Square Matrix 

 As previously mentioned, the chi - square test refl ects the combined total of all of 
the chi - square values created by comparing the observed and expected values. 
Rejecting the null hypothesis indicates that at least some of the expected and 
observed values are signifi cantly different, but it doesn ’ t specify exactly which ones 
these are. In Table  13.5  it is fairly obvious which cells have more and which have 
fewer sherds than expected, but this often is not the case, especially when dealing 
with large matrixes. Researchers will need to use a test of association to determine 
which cells contribute signifi cantly to the signifi cant   χ   2  value when it isn ’ t obvious. 
Consider Table  13.8 , which presents the frequencies of fl aked stone artifacts recov-
ered from three room blocks and a plaza area at Galeana, a large pueblo - like 
settlement in northwestern Mexico, during our initial survey of the site. We are 
interested in determining whether there are any differences in the frequencies of 
fl aked stone artifacts grouped by their raw material, which could in turn refl ect 
possible differences in activities performed at each location.   

 A quick examination of the table indicates that there are differences in the fre-
quencies of fl aked stone artifacts. For example, 39 chalcedony artifacts were recov-
ered from Room Block 2 but only 13 were recovered from the plaza, despite the fact 
that the plaza produced more fl aked stone artifacts. Are this and other differences in 
frequencies greater than expected given chance and the general differences in fl aked 
stone frequency from each provenience? We can evaluate this hypothesis of interest 
using the chi - square test as illustrated in Table  13.8 . We determined the expected 
values using Equation  (13.3)  and the chi - square value using Equation  (13.1) . The 
level of signifi cance is set at .05. The chi - square value from the test is 49.10, which 
exceeds the critical value of 21.03 for 12 degrees of freedom (Table  13.9 ).   

 We reject the null hypothesis and conclude that at least some of the raw materials 
are present in different relative frequencies at each provenience. But which ones? 
The matrix has 20 cells, any or all of which could be refl ecting a signifi cant differ-
ence between the expected and observed values. Is there more chert than expected 
at Room Block 2? Well, yes; 86 chert artifacts were recovered but only 80.7 were 

  Table 13.8    Frequencies of fl aked stone artifacts grouped by provenience and raw 
material 

   Raw material     Room Block 2     Room Block 3     Room Block 4     Plaza     Total  

  Chert    86    21    38    97    242  
  Chalcedony    39    10    12    13    74  
  Obsidian    4    3    3    8    18  
  Quartzite    16    8    7    6    37  
  Igneous    217    63    81    353    714  

  Total    362    105    141    477    1085  
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  Table 13.9    Chi - square test comparing the frequencies of lithic raw materials from four 
areas of Galeana, Chihuahua, Mexico 

   Provenience     Raw material     Observed     Expected     ( O     −     E ) 2 / E   

  Room Block 2    Chert    86    80.7    0.34  
      Chalcedony    39    24.7    8.29  

  Obsidian    4    6.0    0.67  
  Quartzite    16    12.3    1.08  
  Igneous    217    238.2    1.89  

  Room Block 3    Chert    21    23.4    0.25  
      Chalcedony    10    7.2    1.13  

  Obsidian    3    1.7    0.91  
  Quartzite    8    3.6    5.45  
  Igneous    63    69.1    0.54  

  Room Block 4    Chert    38    31.4    1.36  
      Chalcedony    12    9.6    0.59  

  Obsidian    3    2.3    0.19  
  Quartzite    7    4.8    1.00  
  Igneous    81    92.8    1.50  

  Plaza    Chert    97    106.4    0.83  
      Chalcedony    13    32.5    11.73  

  Obsidian    8    7.9    0.00  
  Quartzite    6    16.3    6.48  
  Igneous    353    313.9    4.87  

               X  2     =    49.10  
                    χ. .05 12

2 21 03[ ] =

expected. Does this difference refl ect a statistically signifi cant difference between 
the expected and observed values? We can ’ t tell by looking at Table  13.9 . All of the 
observed and expected values differ somewhat, some by very little and some by a 
bit more. Which of these differences are signifi cant? 

 We could reason (correctly) that the largest differences are likely responsible for 
the statistical difference refl ected in the   χ   2  value. After all, the largest differences 
between the observed and expected values do produce the largest   χ   2  values, which 
in turn result in a larger cumulative   χ   2  value for the chi - square test. For example, 
the difference between the observed and expected frequencies of chert at Room 
Block 2 produced a   χ   2  value of only .34, which seems small when compared to the 
  χ   2  values associated with chalcedony artifacts from the plaza (11.73) or quartzite 
from Room Block 3 (5.45). However, we don ’ t really know at what point the dif-
ferences shift from being small to signifi cant. We could guess (e.g., everything above 
2 is considered signifi cant), but that seems too arbitrary. 

 Instead of guessing, we would ideally like to be able to calculate some sort of 
standardized measure of variation for each cell ’ s   χ   2  value, which in turn would allow 
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us to determine whether the observed and expected values differed signifi cantly at 
some signifi cance level. Fortunately, and as you have probably already surmised, 
there is such a measure. It is called the chi - square residual (Equation  (13.4) ). 

  The chi - square residual 

   e O E Eij ij ij ij= −( )     (13.4)   

 The chi - square residual is the mathematical equivalent of the square root of the 
chi - square value with the exception that it can be either positive or negative. Positive 
values indicate that the observed frequency was greater than expected whereas nega-
tive values indicate there were fewer than expected. Once  e ij   has been calculated, it 
can be compared to critical values from the standardized normal distribution (e.g., 
 ± 1.96 for   α      =    .05; see Appendix  A ). A residual greater than the critical value (e.g., 
 e ij      >    1.96) or less than the negative version of the critical value (e.g.,  e ij      <     − 1.96) 
indicates a signifi cant difference. Unfortunately, the chi - square residual has been 
demonstrated to be biased such that it tends to underestimate the signifi cance of 
differences for small samples (i.e., it is prone to Type II errors in which differences 
that are real aren ’ t identifi ed). As a result, it is best to calculate the adjusted residual 
using Equation  (13.5) .  CT ,  RT , and  GT  again stand for the column total, row total, 
and grand total for a given value in the matrix. 

  The adjusted chi - square residual 
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 To illustrate the calculation of the adjusted residual, consider Table  13.10 , which 
presents the observed and expected values from the Galeana survey. The residual 
for the fi rst cell ( i     =    1,  j     =    1) in the matrix is calculated as:
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 Because .81 is not larger than 1.96 or smaller than  − 1.96 (the critical  Z  - values for 
  α      =    .05), we conclude that the difference between the observed and expected fre-
quencies of chert artifacts from Room Block 2 is not signifi cant. 
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 The adjusted residuals for the rest of the cells in Table  13.10  can be calculated 
in the same way. Table  13.11  presents the chi - square test previously reported in 
Table  13.9  with the addition of the adjusted residuals. Bolded values indicate 
adjusted residuals corresponding with differences signifi cant at   α      =    .05. Using the 
adjusted residuals, we now can conclude that more chalcedony artifacts were recov-
ered from Room Block 2, more quartzite artifacts from Room Block 3, and 
more crystalline ingenious artifacts from the plaza than expected. We likewise 
collected fewer igneous artifacts from Room Blocks 2 and 4, and fewer chalcedony 
and quartzite artifacts from the plaza than expected. Based on the differences 
among the raw materials, we can further conclude that the materials used in the 
plaza tended to be more crystalline (the igneous material), which produce more 
durable tools with dull edges when compared to the other raw materials that are 
more common in the room blocks. Furthermore, differences between the room 
blocks might provide additional information about changes in raw material selec-
tion through time, differences in the use of raw materials, and differences in access 
to raw materials among the inhabitants of Galeana. These differences then could 
(and did) help frame our research questions and fi eld research (VanPool  et al. , 
 2000 ).   

 We note that although the adjusted residual is very useful when the chi - square 
test results in the rejection of the null hypothesis, it should not be used when a 
signifi cant difference is not present (i.e., when the null hypothesis is not rejected). 
When   χ   2  is not signifi cant, we can conclude that  none  of the differences between 
the expected and observed values in the table were signifi cantly larger than expected 
by chance. Using adjusted residuals to try to identify signifi cant differences when 
they aren ’ t present will lead to Type I errors and the heartbreak of faulty 
conclusions.  

  Table 13.10    Observed and expected values for the Galeana data 

   Raw material     Room Block 2     Room Block 3     Room Block 4     Plaza     Total 
observed  

  Chert     O     =    86     O     =    21     O     =    38     O     =    97    242  
   E     =    80.7     E     =    23.4     E     =    31.4     E     =    106.4  

  Chalcedony     O     =    39     O     =    10     O     =    12     O     =    13    74  
   E     =    24.7     E     =    7.2     E     =    9.6     E     =    32.5  

  Obsidian     O     =    4     O     =    3     O     =    3     O     =    8    18  
   E     =    6.0     E     =    1.7     E     =    2.3     E     =    7.9  

  Quartzite     O     =    16     O     =    8     O     =    7     O     =    6    37  
   E     =    12.3     E     =    3.6     E     =    4.8     E     =    16.3  

  Igneous     O     =    217     O     =    63     O     =    81     O     =    353    714  
   E     =    238.2     E     =    69.1     E     =    92.8     E     =    313.9  

  Total observed    362    105    141    466    1085  
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  Assumptions of Chi - Square Analysis 

 The chi - square test is extremely powerful and can be very useful to archaeologists, who 
frequently deal with counts of artifacts, features, and other materials. It does have 
assumptions that must be met before it can be used, however. Two of these assump-
tions are obvious. First, the chi - square test requires that data be organized at the 
nominal or ordinal scale. Although ordinal and interval level data can be transformed 
into nominal scale data, it is seldom worthwhile to do so. Very powerful statistical tools 
such as the t - test, ANOVA, and correlation are available for use with these data. 
Second, the data must be independent of each other. This is true for the categories 
within each variable and for the variables themselves. For example, it would be 
improper in the Galeana example presented above to compare the frequency of crys-
talline, cryptocrystalline, and noncrystalline artifacts by raw material. The coarseness 
of fl aked stone artifacts is a direct product of the stone ’ s raw material. These variables 
are not independent, and are therefore inappropriate for the chi - square test. 

  Table 13.11    Adjusted residuals for the chi - square analysis of fl aked stone raw materials 
recovered from Galeana, Mexico 

   Provenience     Raw material     Observed     Expected     Chi - square 
values  

   Adjusted 
residuals  

  Room Block 2    Chert    86    80.7    0.34    0.81  
      Chalcedony    39    24.7    8.29     3.66   

  Obsidian    4    6.0    0.67     − 1.01  
  Quartzite    16    12.3    1.08    1.30  
  Igneous    217    238.2    1.89      − 2.88   

  Room Block 3    Chert    21    23.4    0.25     − 0.60  
      Chalcedony    10    7.2    1.13    1.16  

  Obsidian    3    1.7    0.91    1.01  
  Quartzite    8    3.6    5.45     2.50   
  Igneous    63    69.1    0.54     − 1.32  

  Room Block 4    Chert    38    31.4    1.36    1.42  
      Chalcedony    12    9.6    0.59    0.85  

  Obsidian    3    2.3    0.19    0.47  
  Quartzite    7    4.8    1.00    1.09  
  Igneous    81    92.8    1.50      − 2.24   

  Plaza    Chert    97    106.4    0.83     − 1.38  
      Chalcedony    13    32.5    11.73      − 4.74   

  Obsidian    8    7.9    0.00    0.04  
  Quartzite    6    16.3    6.48      − 3.46   
  Igneous    353    313.9    4.87     5.04   

    
           X  2     =    49.10      

                        χ. .05 12
2 21 03[ ] =
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 The third assumption refl ects the nature of the chi - square distribution, upon 
which the chi - square test is built. The shape of the distribution changes according 
to the degrees of freedom, but it can also change a bit with sample size. The distri-
bution is stable (i.e., doesn ’ t change much) for large samples, but statisticians realize 
that with a small enough sample size, the chi - square distribution will lose its char-
acteristic shape and would begin to resemble a normal distribution. When this 
happens, the values from the   χ   2  distribution will no longer accurately measure the 
probability space, and the results of a chi - square test will be spurious. The point at 
which this happened was unknown when the chi - square test came into common 
usage but a commonly accepted convention, called the rule of fi ve, was developed 
that guaranteed the validity of the chi - square test. 

 The rule of fi ve holds that at least 80% of the expected frequencies must be fi ve 
or more before chi - square analysis is appropriate. This rule was agreed upon as a 
 “ safe bet ”  based on the fact that statisticians were sure that the chi - square test would 
be applicable under these conditions (Cochran  1954 ). It was widely accepted in the 
1950s and has been enshrined in statistics books ever since. However, it is unneces-
sarily conservative. More recent research such as Larntz  (1978) , Lewontin and 
Felsenstein  (1965) , Roscoe and Byars  (1971) , Slakter  (1966) , and Yarnold  (1970)  
have demonstrated that the chi - square test is generally applicable even if a signifi -
cant proportion of the expected values are less than fi ve (see also Everitt,  1992 : 
13 – 14, 39). Lewontin and Felsenstein ( 1965 : 31) in fact argued based on the results 
of a simulation consisting of 1,500 chi - square values derived using randomly created 
data that the chi - square statistic will be correctly distributed as long as all of the 
expected values are one or greater, and, by extension, that the chi - square test will 
produce valid statistical results with these small samples (see also Roscoe and Byars, 
 1971 : 758). However, traditions die hard. Most archaeologists (and others) con-
tinue to apply the rule of fi ve, and look very skeptically at chi - square tests applied 
to samples with small expected values. 

 It is reasonable to question whether small samples do in fact accurately refl ect 
the parent archaeological population, but the research noted above indicates that 
the chi - square test is as appropriate for these small samples as are the other statisti-
cal methods such as Fisher ’ s exact test that are proposed as alternatives. We there-
fore note that you will wish to seriously consider whether a small sample resulting 
in many expected values less than fi ve accurately refl ects the parent population. If 
you decide that it does and if the expected values are all above one, then the chi -
 square test is likely as good as any of the commonly used alternatives. However, we 
present the Fisher ’ s exact test and the Yate ’ s continuity correction below, which are 
the most common alternatives used for small samples in archaeological contexts. 
You may use either of these instead. 

 If you don ’ t feel comfortable with your small expected frequencies, there are 
several ways that you may be able to improve them. The fi rst and perhaps easiest 
way is to eliminate categories represented by small samples. For example, when 
analyzing pottery frequencies of sites where a particular trade ware occurs infre-
quently, it might be worthwhile to eliminate it from the analysis so long as this 
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doesn ’ t undermine the hypothesis of interest. A second possibility is to collapse 
categories. For example, instead of having several different trade wares that occur 
in small quantities, it might be better to collapse them into a single category. This 
would increase their frequencies and would thereby increase the expected values. 
Again, care must be taken to ensure that this doesn ’ t undermine the hypothesis of 
interest. Finally, increasing the sample size through additional observations will 
increase the frequencies of even rare categories. It may not always be possible to 
increase the sample size given the realities of the archaeological record and funding 
constraints, but this is often the best solution. After all, as sample size increases, so 
does our certainty that our sample accurately refl ects the population we are trying 
to study. Increasing sample size thus has the benefi t of improving both the strength 
of the statistical test and our confi dence in the conclusions derived through the test.  

  The Analysis of Small Samples Using Fisher ’ s Exact Test and 
Yate ’ s Continuity Correction 

 The most commonly used alternative for the chi - square test when dealing with 
small sample sizes is Fisher ’ s exact test. It is not based on the chi - square distribu-
tion, and is in truth one of the least intuitive tests we discuss in this text. We won ’ t 
bother trying to explain the mathematics underlying it, but it is calculated using 
Equation  (13.6)  when dealing with a 2    ×    2 table. Although statistical packages such 
as SAS can calculate a Fisher ’ s exact probability for large matrixes, the equation 
becomes prohibitively complex to calculate by hand (Everitt,  1992 : 39). 

  Fisher ’ s exact probability for 2     ×     2 tables 

   P
a b a c c d b d

a b c d N
= +( ) +( ) +( ) +( )! ! ! !

! ! ! ! !
    (13.6)   

 The terms  a ,  b ,  c , and  d  refl ect the counts in each of the four cells when they are 
arranged as illustrated in Table  13.12 . The numerator of Equation  (13.6)  can be 
more simply understood as the factorials for the two row totals and the two column 
totals.  N  in the denominator stands for the sum of all cells, which is of course the 
total sample size.   

  Table 13.12    Matrix explaining the symbolism for Fisher ’ s exact probability test 

        Character state A     Character state B     Total  

  Character state 1     a      b      a     +     b   
  Character state 2     c      d      c     +     d   

  Total     a     +     c      b     +     d      N   
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 Let us provide an archaeological example to illustrate the application of Fisher ’ s 
exact probability test. Alzualde  et al.   (2007)  provide an analysis of status and ances-
try refl ected in the Aldaieta cemetery, which was used in the Basque region of Spain 
during the sixth and seventh century AD. They are interested in understanding the 
impact that the larger and more complex groups in post - Roman Europe had on 
this genetically distinct population. Part of their analysis focuses on the difference 
in grave goods between males and females. Table  13.13  reports the frequency of 
males ( n     =    31) and females ( n     =    12) associated with weapons and domestic utensils. 
Do males and females differ in their association with these goods? A Fisher ’ s exact 
probability can be used to evaluate this hypothesis of interest.   

 Unlike most of the other methods presented here, the Fisher ’ s exact probability 
test does not provide a value that is matched with an underlying distribution to 
determine a probability. Instead, it provides an actual probability value that can be 
directly compared to   α  . A consequence of this is that the null hypothesis can be 
directly stated in terms of the hypothesis of interest, without referencing a specifi c 
statistical term. The null hypothesis is thus  H  0  : men    =    women. Applying Equation 
 (13.6)  to the data from Table  13.13  produces the following result.

   P = × × ×
× × × ×

=39 27 9 21

24 15 3 6 48
09

! ! ! !

! ! ! ! !
.   

 Given that .09 is greater than .05, we fail to reject the null hypothesis, and con-
clude that despite the absolute differences in the quantities of grave goods, weapons 
and utilitarian utensils such as serving dishes are not differentially distributed 
according to gender in this sample. A fewer number of women were buried with 
grave goods, but the proportions of weapons and utilitarian goods among those 
with grave goods was similar to the burials of men. (The same conclusion would 
have been reached using a chi - square test, even though the expected values violate 
the rule of fi ve discussed above.) 

 There are a couple of issues to keep in mind when using the Fisher ’ s exact prob-
ability test. First, unless you are working with a 2    ×    2 table, you will need to rely on 
a statistical package to calculate the result. Second, Fisher ’ s exact probability has 
been demonstrated to be an overly conservative test that does not measure probabil-

  Table 13.13    Frequency of burials from Aldaieta cemetery, 
Spain, associated with weapons and utilitarian utensils 

        Buried with 
weapons  

   Buried with domestic, 
utilitarian utensils  

   Total  

  Men    24    15    39  
  Women    3    6    9  

  Total    27    21    48  
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ity at the stated   α   level and is prone to Type II errors when dealing with small 
sample sizes (which is of course when archaeologists are most likely to use it). This 
means that the test will consistently fail to identify statistically signifi cant differences 
at a given   α   level, when in truth they are present. Everitt ( 1992 :18 – 19) reports that 
even a moderately large difference of 30% in the probability of having a given trait 
with a sample size of 20 in each category has a power of only .53. Thus, given 
repeated samples of 20 men and 20 women in which men were 30% more likely to 
have weapons than women, we would still fail to detect the real difference in burial 
good associations nearly half of the time using a Fisher ’ s exact probability test. To 
be honest, we suspect that we likely committed a Type II error when evaluating the 
data in Table  13.13 . Roughly 75% of the men but only 25% of the women are 
associated with weapons, whereas both 50% of the men and 50% of the women are 
associated with utilitarian utensils. This difference strikes us as likely refl ecting a 
differential association between gender and the presence of weapons, even though 
it is not statistically signifi cant. Increased sample size or comparisons with other, 
similar burial sets would be needed to determine if the failure to reject the null 
hypothesis really is an error. Third, the Fisher ’ s exact probability as presented above 
is a one - tailed test that refl ects the probability of having differences equal to or 
greater than those observed among the cells. It is possible to use a two - tailed version 
would include the probability of having excessive uniformity in the cells as well. In 
such cases, the area of rejection will be split evenly between both ends of the dis-
tribution (e.g., the regions of rejection for  a     =    .05 will be defi ned as  < .025, which 
marks cases where the differences among the categories are greater than expected 
by chance, and  > .975, which marks cases where the differences are less than expected 
by chance). Although potentially useful in some contexts, this is incidental to its 
typical use to evaluate archaeological hypotheses. 

 While some argue that the Fisher ’ s exact probability test is better for small sample 
sizes than the chi - square test, it is an imperfect tool at best (Everitt,  1992 : 18 – 19). 
Further, it is diffi cult to imagine very many archaeological contexts in which small 
samples really provide a good understanding of the underlying phenomenon. 
Ultimately, there is nothing wrong with applying the Fisher ’ s exact probability test 
(or the chi - square test for that matter) to relatively small samples, but we encourage 
you to carefully consider whether you really should conduct any statistical analysis 
at all if the sample is that small. If you do perform the analysis, keep in mind the 
high probability of incorrectly failing to reject the null hypothesis. 

 You can also choose to use Yate ’ s continuity correction (also called Yate ’ s cor-
rection for continuity) for the chi - square test when evaluating 2    ×    2 matrixes with 
small sample sizes. Yate ’ s continuity correction modifi es the chi - square test slightly 
in order to correct for a problem caused by using the continuous chi - square distri-
bution to approximate the probability of the discrete number of observed frequen-
cies (Everitt,  1992 : 13; see also Sokal and Rahlf, 1995: 695 for a discussion of the 
underlying disjuncture between the  “ chi - square test ”  and the actual chi - square 
distribution). This creates a slight difference in the actual and calculated probabili-
ties that is generally inconsequential for large samples and large matrixes, but can 
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be signifi cant for small samples in a 2    ×    2 matrix. This difference can be corrected 
by subtracting .5 from positive values for  O ij      −     E ij   and adding .5 to negative values 
for  O ij      −     E ij  . This is actually easier than it sounds, in that one simply uses Equation 
 (13.7)  instead of Equation  (13.1)  to determine the chi - square value for each cell of 
the matrix. The  “ brackets ”  around | O ij      −     E ij  | stand for  “ the absolute value ” , which 
means to change the value into a positive value even if it would otherwise be nega-
tive (e.g., |2    −    4|    =    2, not  − 2). 

  Yate ’ s continuity correction 

   χ2

2
0 5

=
− −( )∑ O E

E

ij ij

ij

.
    (13.7)   

 Statisticians are mixed about the utility of Yate ’ s continuity correction (e.g., 
Everitt,  1992 : 13 – 14, 17 recommends it strongly whereas Sokal and Rohlf, 1995: 
737 suggest it is nearly always unnecessary). What is true is that the Yate ’ s continuity 
correction frequently causes the results of the chi - square test with excessively small 
samples to be virtually identical to Fisher ’ s exact probability when it is modifi ed for 
a two - tailed test as Everitt ( 1992 : 17) describes. This also means that Yate ’ s continu-
ity correction produces an overly conservative result that misstates the true   α   level 
and is prone to Type II errors. 

 Again, comparing frequencies with small samples is problematic, and you should 
carefully weigh your options. No one will raise an eyebrow if you use Fisher ’ s exact 
probability test or Yate ’ s continuity correction, but it is unclear that these are sub-
stantially superior to the standard chi - square test in many cases. We recommend 
that you carefully evaluate the implications of making Type I and Type II errors in 
your analysis. If making Type I errors is a more signifi cant problem, then the 
Fisher ’ s exact probability test or Yate ’ s continuity correction are ideal. (Yate ’ s con-
tinuity correction is typically applied to a 2    ×    2 matrix whereas Fisher ’ s exact prob-
ability can be calculated for any sized matrix, with the help of a good statistical 
package.) If making a Type II error is more signifi cant, then using the chi - square 
test when all of the expected values are greater than one is the more defensible 
decision.  

  The Median Test 

 In Chapter  10 , we introduced ANOVA, a very powerful method for comparing the 
central tendencies of multiple data sets. While useful for archaeologists, it does have 
the severe drawback of being a  parametric  test, which requires each sample to be 
normally distributed with roughly equal variances. (We will discuss the differences 
between parametric and nonparametric tests in detail in the next chapter.) Yet 
archaeological data such as measurements of length, width, thickness, and weight 
are frequently skewed, because of the presence of a few large (or small) artifacts, 
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features, elements, or whatever we are measuring. Also sometimes archaeological 
samples are too small to be certain of the shape of the underlying distribution (e.g., 
it may be hard to assess whether a sample of the volume of 10 ceramic vessels is 
normally distributed). Using the chi - square distribution, it is possible to compute 
a nonparametric ANOVA utilizing the median values as measures of central ten-
dency for distributions of ratio or interval data. The test is also often called the 
median test (e.g., Conover,  1980 : 171), which is the term we adopt here. The null 
hypothesis for the comparison is  H  0  :  M  1     =     M  2     =     …     =     M i  , where  M  (the Greek 
letter) is the population parameter for the median of each group. Unlike the mean, 
which is heavily impacted by outliers, the median is a robust measure of a distribu-
tion ’ s central tendencies in skewed distributions, because it is impervious to the 
absolute size of outliers. The comparison of medians will therefore still refl ect a 
reliable assessment of the similarity of the central tendencies within skewed distri-
butions, whereas the comparison of means may not. 

 The medians of two or more groups can be compared using the chi - square test 
is a straightforward way. Start by determining the median of all of the data pooled 
together. This is the grand median. If the medians of each sample are the same, 
then the grand median will be close to or the same as the medians of the groups, 
causing roughly half of the variates in each group to be larger than and half to be 
smaller than the grand median. If the null hypothesis is not true, then one or more 
of the samples must contain values that are consistently larger or smaller than the 
grand median. Using a chi - square test, the presence of groups that tend to be 
smaller or larger than the grand median can be detected. 

 Consider the data in Table  13.14 , which are the length measurements of four 
classes of arrow points from the Hohokam period occupation of Ventana Cave. We 
might be interested in determining if any of the classes tend to be longer than the 
others. We could accomplish this by comparing the means of each sample of points. 

  Table 13.14    Length measurements (cm) for four classes of arrowheads from Ventana 
Cave, Arizona  

   Side - notched     Corner - notched     Straight stemmed     Triangular  

  1.98    2.71    2.10    2.31  
  2.20    2.08    3.07    2.01  
  2.39    2.55    2.25    2.57  
  2.61    2.45    2.40    2.80  
  2.40    2.25    2.81    2.40  
  2.59    2.98    2.27    3.00  
  3.28    2.61    2.72    2.40  
  3.41        3.02    2.89  
  3.81        3.72    2.82  
  2.81            3.32  
  2.55              
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Is the parametric form of ANOVA introduced in Chapter  10  appropriate for analyz-
ing these data? A quick glance at a frequency table derived from the data (Table 
 13.15 ) indicates that it probably is not. At least two and perhaps three of the dis-
tributions appear to be skewed (side - notched, corner - notched, and, perhaps, 
triangular - shaped points). Though ANOVA is probably not appropriate for these 
data, the median remains an excellent measure of the distributions ’  central tenden-
cies. The median test is consequently a better choice to evaluate the hypothesis of 
interest.   

 To evaluate the hypothesis, we defi ne the null hypothesis as  H  0  :  M  sn     =     
M  cn     =     M  stemmed     =     M  tri , and set the level of rejection at .05. The fi rst step in calculating 
the median test is to determine the grand median of all 37 variates in Table  13.14 , 
which is 2.59   cm, the 19th largest value. The next step is to determine how many 
variates in each group are larger and how many are smaller than 2.59   cm. The 
magnitude of the difference is unimportant; only the direction matters. Table  13.16  
provides this information. Note that the number of plus and minus signs must be 
(roughly) equal through the entire matrix, because there must be an equal number 
of variates above and below the grand median by defi nition. The variate(s) that 
directly correspond with the median are excluded.   

 Table  13.17  presents the counts for each class. If the null hypothesis is true and 
the medians are equal, than each class should have an equal number of variates 
greater than and less than the group median. This proposition can be evaluated 
with a chi - square test (Table  13.18 ). The chi - square value of .025 is not greater than 
the critical value of 7.81 for   α      =    .05 and three degrees of freedom. As a result we 
cannot reject the null hypothesis and we conclude that there are no signifi cant dif-
ferences in the median point lengths among the four groups. We would have 
reached the same conclusion using an ANOVA analysis, but we are certain that we 
are not violating any critical assumptions by using the median test here.   

 The median test does not make any assumptions about the shape of the underly-
ing distribution, but it does require interval or ratio level data, which are necessary 

  Table 13.15    Frequency distributions of the Ventana Cave projectile points 

   Class mark (cm)     Side - notched     Corner - notched     Straight stemmed     Triangular  

  2.0    I    I        I  
  2.2    I    I    III      
  2.4    II    I    I    III  
  2.6    III    II        I  
  2.8        I    II    III  
  3.0        I    II    I  
  3.2    I              
  3.4    I            I  
  3.6                  
  3.8    I        I      
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  Table 13.16    The direction of difference between each variate listed in Table  13.14  and the 
grand median ( “  +  ”  indicates that the variate is greater than the grand median, whereas  “  −  ”  
indicates it is smaller) 

   Side - notched     Corner - notched     Straight stemmed     Triangular  

   −      +      −      −   
   −      −      +      −   
   −      −      −      −   
   +      −      −      +   
   −      −      +      −   
  NA     +      −      +   
   +      +      +      −   
   +          +      +   
   +          +      +   
   +              +   
   −               

  Table 13.17    Number of variates greater than and less than the median 

        Side - notched     Corner - notched     Straight stemmed     Triangular  

  Great than median    5    3    5    5  
  Less than median    5    4    4    5  

  Table 13.18    Chi - square test comparing the frequencies of observed and expected values 
of arrow points that are greater than and less than the grand median 

   Direction of difference     Point class     Observed     Expected     Chi - square value  

  Larger    Side - notched    5    5    0.00  
      Corner - notched    3    3.5    0.07  

  Straight stemmed    5    4.5    0.06  
  Triangular    5    5    0.00  

  Smaller    Side - notched    5    5    0.00  
      Corner - notched    4    3.5    0.07  

  Straight stemmed    4    4.5    0.06  
  Triangular    5    5    0.00  

    
           X  2     =    0.25  

                    χ. .05 3
2 7 81[ ] =

to calculate medians. When dealing with ordinal scale data, the chi - square test can 
be used to compare the frequencies of the size categories in each group, but this is 
not a test of  H  0  :  M  1     =     M  2     =     M  3     =     M i   and is not a median test. It is more properly 
considered a special application of the chi - square test. 
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 Let ’ s evaluate another projectile point assemblage, this time from Paleolithic sites 
in Europe. Knecht  (1991)  analyzes bone and antler projectile points dating to the 
Upper Paleolithic occupation of France, Belgium, and Germany to study techno-
logical innovation. Table  13.19  presents the maximum length of a sample of 11 
points from four projectile types. As was the case for the Ventana Cave projectile 
points, the distributions of at least two of these types (split based points and 
Gravettian single - beveled points) appear to be skewed (Table  13.20 ). As a result, 
the median test is ideal for comparing the central tendencies of the distributions. 
The null hypothesis is  H  0  :  M  split     =     M  simple     =     M  single - beveled     =     M  lateral - beveled , and   α      =    .05.   

 The grand median for Table  13.19  is 91.5   mm. The frequency of variates greater 
than and less than the grand median is presented in Table  13.21 . The chi - square 
test comparing these frequencies is presented in Table  13.22 . Unlike the Ventana 
Cave example, the chi - square value of 10.55 exceeds the critical value of 7.81. We 

  Table 13.19    Maximum length (mm) of Upper Paleolithic bone points 

   Split - based points     Losange - shaped 
simple - based points  

   Gravettian single - 
beveled points  

   Gravettian lateral - 
beveled points  

     45    99    116    110  
     45    101    138    116  
     52    37    59    96  
  130    106    51    130  
     39    96    135    91  
  125    117    58    98  
     91    92    108    106  
     59    148    86    68  
     76    137    90    66  
     29    69    67    36  
     56    159    33    161  

  Table 13.20    Frequency distribution of the maximum lengths of the Upper Paleolithic bone 
points 

   Class marks 
(mm)  

   Split - based 
points  

   Losange - shaped 
simple - based 

points  

   Gravettian 
single - beveled 

points  

   Gravettian 
lateral - beveled 

points  

     30    II    I    I    I  
     50    IIIII        III      
     70    I    I    I    II  
     90    I    III    II    III  
  110        III    II    III  
  130    II    I    II    I  
  150        II          
  170                I  
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  Table 13.21    The number of Upper Paleolithic points greater than and less than the grand 
median 

        Split - based 
points  

   Losange - shaped 
simple - based 

points  

   Gravettian 
single - beveled 

points  

   Gravettian 
lateral - beveled 

points  

  Greater than 
median  

  2    9    4    7  

  Less than median    9    2    7    4  

  Table 13.22    Chi - square test comparing the frequencies of observed and expected values 
of Upper Paleolithic bone points that are greater than and less than the grand median 

   Direction of 
difference  

   Point type     Observed     Expected     Chi - square 
Value  

   Adj. residuals  

  Greater than 
median  

  Split - based 
points  

  2    5.5    2.23      − 2.44   

      Simple - based 
points  

  9    5.5    2.23     2.44   

  Single - beveled 
points  

  4    5.5    0.41     − 1.04  

  Lateral - beveled 
points  

  7    5.5    0.41    1.04  

  Less than 
median  

  Split - based 
points  

  9    5.5    2.23     2.44   

      Simple - based 
points  

  2    5.5    2.23      − 2.44   

  Single - beveled 
points  

  7    5.5    0.41    1.04  

  Lateral - beveled 
points  

  4    5.5    0.41     − 1.04  

    
               X  2     =    10.55      

                            χ. .05 3
2 7 81[ ] =

therefore reject the null hypothesis, and conclude that there are signifi cant differ-
ences among the medians. The adjusted residuals indicate that simple based points 
tend to be larger than the grand median and the split based points tend to be smaller 
than the grand median. This of course indicates that the medians for these groups 
are different. The signifi cance of this fi nding can be derived using an appropriate 
analytic and theoretical framework.   

 Now that you have added the analysis of frequencies to your quantitative tool 
kit, you have mastered the basics of archaeological quantifi cation. There are a wide 
variety of additional quantitative methods that are used on occasion, but most of 
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them are some variant or sibling of the methods outlined here and in the preceding 
12 chapters. With your knowledge, you should be able to master them easily. In the 
next chapter, we will introduce some of these related methods that are (or should 
be) commonly used in archaeological contexts. 

   Practice Exercises 

    1     What are the assumptions of the chi - square test? What are various solu-
tions and their relative advantages/disadvantages to potential problems 
associated with small expected frequencies? What statistical method(s) 
should archaeologists use when encountering a 2    ×    2 data matrix with a 
small sample size?  

  2     Abbott  et al.   (2006)  report the following data concerning temper and 
pottery types from various settlements. Perform a chi - square analysis to 
determine if there is an association between the two variables (  α      =    .10). 
If so, use the adjusted residuals to determine which associations deviate 
signifi cantly from the expected frequencies.  

   Assemblage     Temper type  

   South Mt. 
Granodiorite  

   Estrella Gneiss     Mica Schist  

  Las Canopas Plain ware    244    19    5  
  Pueblo Viejo Plain ware    429    14    17  
  Pueblo Viejo Red - slipped 

ware  
  171    9    8  

  Farmstead Plain Ware    62    64    2  

  3     Below is the sex distribution of two samples of adult burials of the Reigh 
site collection from the Great Lakes Region studied by researchers during 
different studies (Pfeiffer,  1977 : 105). Subsequent researchers evaluating 
and comparing the results might wish to determine if the differences in 
the proportions of each sex are statistically signifi cant, which might impact 
their comparability if there are sex - based differences.  

  (a)     Use the chi - square test to evaluate whether there is a signifi cant dif-
ference in the sex distribution considered by the two researchers 
(  α      =    .01).  

  (b)     Use the Yate ’ s continuity correction for the chi - square test. Did it 
signifi cantly impact the results?  
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260 Analysis of Frequencies

  (c)     What are the advantages and drawbacks of using or not using the 
Yate ’ s continuity correction? 

   Researcher     Males     Females  

  Hsu    26    7  
  Pfeiffer    13    16  

  4     Use the Fisher ’ s exact probability test to evaluate whether there are sig-
nifi cant differences in hand placement between the Early and Middle 
Period burials at St. Mary ’ s City Cemetery (Riordan,  2009 : 90).  

   Period     Pelvis     Side  

  Early    6    5  
  Middle    8    1  

  5     Data regarding the number of dog burials oriented in different directions 
is presented below. 

   (a)     Evaluate whether there are signifi cant differences between the 
observed and expected frequencies using a chi - square analysis 
(  α      =    .05).  

  (b)     Reevaluate the null hypothesis using Yate ’ s continuity correction for 
the chi - square analysis. Did your conclusion change?  

  (c)     Use a Fisher ’ s exact probability test to test for differences. Did your 
conclusion change?  

  (d)     Which of the three tests is/are preferable in this situation? Why? 
Defend your answer to the best of your ability. 

   Site     Oriented N – S     Oriented E – W  

  Perry site    3    7  
  Ferb site    5    3  

  6     Following is data reporting the diameters (cm) for postholes from three 
structures, one with two occupations. Perform a median test to evaluate 
whether the medians of the four samples are different (  α      =    .01). If so, 
which are different? 
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   House 1A     House 1B     House 2     House 3  

  12.3    11.4    12.9    12.5  
  10.5    12.1    14.6    9.8  
  11.0    10.8    17.4    13.1  
  12.6    12.2    13.3    11.1  
  10.9    10.7    15.7    10.3  
  10.8    9.9    15.2    10.7  
  11.3    12.4    12.6    11.0  
  12.0    10.1    14.5    10.5  
  10.2    11.3    13.4    10.8  
  11.2    10.6    16.9    12.1  
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An Abbreviated Introduction 
to Nonparametric and 
Multivariate Analysis     

     Our previous discussion of the Spearman ’ s correlation coeffi cient and median test 
introduced the idea of  nonparametric tests , which are also called  distribution - free 
methods  (e.g., Gibbons,  1985 : 3). These techniques do not require the data to 
conform to a given distribution, but instead are useful with a wide range of differ-
ently shaped distributions. Most of these approaches focus on rankings or some 
other method of indicating the relationship between variates instead of character-
izing distributions using measures of central tendency and dispersion to estimate 
population parameters. As a result, these methods make fewer or no assumptions 
about the structure of the underlying data. Many of these nonparametric techniques 
are also relatively easy to compute, which may lead one to wonder why archaeolo-
gists and other researchers even bother with the parametric tests. The reason is that 
when the assumptions are met, parametric tests tend to provide more powerful tests 
in the sense of accurately measuring   α   and helping to reduce Type II errors (Sokal 
and Rohlf, 1995: 423). Further, most of the parametric tests are relatively robust to 
departures from the expected distribution (most commonly the normal distribu-
tion) so long as the shape is approximately right (distributions are symmetrical and 
unimodal without major outliers). Although skewed distributions are common 
in archaeology, so are normal distributions, especially when dealing with means 
because of the central - limit theorem. As a result, the parametric tests are often 
the better, and more familiar, analytic tools. Still, nonparametric methods are 
very useful when the assumptions for parametric methods clearly are not met, or 
when dealing with ordinal data, which cannot be analyzed using parametric 
methods. Here we introduce two commonly used nonparametric tests: the Wilcoxon 
two - sample test, which is a nonparametric alternative to the t - test; and the Kruskal –
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 Wallis nonparametric ANOVA analysis. Many other nonparametric tests exist 
(see Conover,  1980  and Gibbons,  1985  for detailed descriptions of many of them), 
but these two tests are commonly used by archaeologists, have proven to be robust 
and useful quantitative tools, and are comparatively easy to compute and 
interpret.  

  Nonparametric Tests Comparing Groups 

  Wilcoxon two - sample test 

 The Wilcoxon two - sample test is a nonparametric test for comparing two samples 
of ordinal, interval, or ratio scale data. Because it is nonparametric, it is used in 
archaeological contexts to compare samples when people are uncomfortable with 
the assumptions of a t - test because of a sample ’ s skewedness or size. It can also be 
used when an order is known, but the exact difference among the variates is not 
(i.e., with ordinal data). The test ’ s null hypothesis is formally  H  0  :  R  1     =     R  2 , where  R  
is a sum of ranks for each sample. This null hypothesis is not intuitively meaningful 
to many people, causing some to state that the Wilcoxon two - sample test compares 
the medians of the two samples. This is unfortunately incorrect in that the Wilcoxon 
two - sample test does not employ  any  measure of central tendency. Instead, the 
sums of the rankings within each group are being compared. 

 While the hypothesis may be easily misunderstood, the idea underlying the 
Wilcoxon two - sample test is quite intuitive. Imagine you ranked the data in two 
samples from the smallest variate (ranked #1) to the largest variate (ranked # N ) and 
then summed the rankings within each sample. Obviously, if one of the distribu-
tions is consistently larger than the other, then the sums of the ranks of the larger 
distribution will be much larger than the other, given that it will contain the largest 
variates with the highest ranks. Tremendously different sums in the ranks will 
indicate, then, that the two distributions likely do not represent the same parent 
population. If two distributions do refl ect the same parent population, then neither 
of them should be consistently larger or smaller than the other, and the sum of their 
rankings should be roughly identical. Comparing the rankings between the distri-
butions will therefore provide a means of determining if the distributions are more 
or less similar. 

 Consider the following data that Cory Hudson and Matt Boulanger collected on 
the friction coeffi cient of pottery with various surface treatments (Table  14.1 ). 
Archaeologists from around the world have proposed explanations for the presence 
and nature of surface treatment on pottery, including that the rougher surfaces of 
stamped or corrugated pottery help their users hold onto vessels without dropping 
them. Hudson and Boulanger (2007) wished to evaluate the plausibility of this 
hypothesis by determining if there is a meaningful difference in vessel wall friction 
caused by the surface treatments. To complete their analysis, they produced pottery 
test tiles with various surface treatments and then measured the friction coeffi cients 
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for the pottery. The data in Table  14.1  refl ect the resulting friction coeffi cients for 
the smoothed surface pottery (the control sample) and rectangular dentate pottery, 
which has a rough surface caused by scoring with a sharp stick to form a series of 
close parallel lines. Here, our hypothesis of interest is whether there is a signifi cant 
difference between the friction coeffi cients of the two surface treatments. This 
would be a perfect case for using a t - test, but the frequency distributions of the data 
presented in Table  14.2  suggest that rectangular dentate pottery might not be nor-
mally distributed. The distribution isn ’ t too far from the expected shape, but the 
small sample size prevents us from being completely certain that it is normal. As a 
result, the Wilcoxon two - sample test is a reasonable choice to evaluate the hypoth-
esis of interest.   

 If there is no difference in the friction coeffi cient for the two samples of test tiles, 
then the sums of their rankings should be roughly equal. If the surface treatment 
does produce a signifi cant difference, then the variates of one of the distributions 
will be consistently larger, meaning that the sum of the rankings will be larger. The 

  Table 14.1    Friction coeffi cients of test tiles with differing 
surface treatments 

   Smoothed     Rectangular dentate stamped  

  0.69    0.96  
  0.72    0.97  
  0.84    1.04  
  0.85    1.07  
  0.88    1.08  
  0.95    1.09  
  0.95    1.10  
  1.04    1.13  
  1.09    1.18  
  1.12    1.18  

  Table 14.2    Frequency distribution for the friction coeffi -
cients of pottery test tiles with different surface treatments 

   Class mark     Smoothed     Rectangular dentate stamped  

  0.65    I      
  0.75    I      
  0.85    III      
  0.95    II    II  
  1.05    II    IIII  
  1.15    I    IIII  
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 U  value that is calculated using the Wilcoxon two - sample test can be used to deter-
mine if the difference between the rankings of the two samples is signifi cantly 
different. 

 The fi rst step in calculating the Wilcoxon  U  value is to rank the data. An easy 
way to accomplish this is illustrated in Table  14.3 , which is an ordered array of the 
data from Table  14.1  with the ranking of each variate indicated in parentheses. As 
before, ties are dealt with by averaging the ranks of the tied variates (e.g., two tied 
variates that would be ranked sixth and seventh are both ranked 6.5). Now sum the 
ranks in each column to determine  R  (Table  14.3 ). These values refl ect the differ-
ences in rankings between each sample. For  “ Smoothed ”  surface treatments  R     =    70, 
and for  “ Rectangular dentate stamped ”  surface treatments  R     =    140. The Wilcoxon 
 U  value is calculated by taking the  smaller  of the  R  values and calculating  U  using 
Equation  (14.1) , where  n  is the sample size of the sample corresponding with the 
smaller  R  value. (We can compute a  U  value for both samples (i.e., calculate  U  Smoothed  
and  U  Rectangular Dentate ), but only the smaller  U  statistic is important for evaluating the 
null hypothesis.)   

  Table 14.3    Ranking of the pottery test tile data 

        Smoothed     Rectangular dentate  

      0.69 (1)      
      0.72 (2)      
      0.84 (3)      
      0.85 (4)      
      0.88 (5)      
      0.95 (6.5)      
      0.95 (6.5)      
          0.96 (8)  
          0.97 (9)  
      1.04 (10.5)      
          1.04 (10.5)  
          1.07 (12)  
          1.08 (13)  
      1.09 (14.5)      
          1.09 (14.5)  
          1.10 (16)  
      1.12 (17)      
          1.13 (18)  
          1.18 (19.5)  
          1.18 (19.5)  

  Summed rankings    70    140  

c14.indd   265c14.indd   265 8/26/2010   1:55:53 PM8/26/2010   1:55:53 PM



266 An Abbreviated Introduction to Nonparametric & Multivariate Analysis

  The Wilcoxon two - sample test 

   U R
n n= − +( )1

2
    (14.1)   

 In this case,  n     =    10 and  R     =    70. Solving for  U  produces the following result:

   Usmoothed = − +( ) =70
10 10 1

2
15   

 The  U  value literally represents the difference between the observed sum of rankings 
and the lowest possible sum of rankings for that variable. In other words, the lowest 
possible sum of rankings for the smoothed surface sherds is (1    +    2    +    3    +     
 …     +    10)    =    55, which is 15 less than 70. If there is no difference between the distri-
butions, the smaller of the two  R  values should still be somewhat larger than the 
smallest possible  R  value (i.e.,  U  should be comparatively large). If the distributions 
are different, then the smaller  R  should be pretty close to the lower limit of  R , 
necessitating that  U  is a value somewhat close to 0. 

 The question then is whether  U     =    15 is close enough to 0 to indicate that the 
distribution of smoothed surfaced test tiles is different than the stamped test tiles. 
Unlike most quantitative methods where a null hypothesis is rejected if the com-
puted value exceeds the critical value,  the null hypothesis for the U test is rejected if 
the value is smaller than the critical value . Critical values for the  U  test when both 
samples sizes are 20 or less are presented in Appendix  E . Because this is a nonpara-
metric test, there are no degrees of freedom  per se , but the probabilities do change 
according to the size of the samples. Here  U  Smoothed     =    15 is  smaller  than the critical 
value of 23 associated with  n  1     =    10 and  n  2     =    10 for   α      =    .05, prompting us to  reject  
the null hypothesis. By convention,  n  1  is considered the sample used for determin-
ing the pertinent  U  value. We therefore conclude that the two samples are different 
with the rough surfaced rectangular dentate test tiles producing a higher friction 
coeffi cient. This in turn lends support to the suggestion that the pottery with a 
stamped surface was easier for people to hold without dropping, which may help 
explain the independent development of texturing around the necks and bodies of 
jars and bowls in early pottery traditions from around the world. 

 The values in Appendix  E  will be slightly conservative if there are ties in data set, 
meaning that the actual   α   level of the test will be slightly less than stated. Fortunately 
the impact of ties tends to be analytically unimportant unless there are a great many 
of them, which is unlikely if both sample sizes are equal to or less than 20. Still, if 
nearly all of your data refl ect ties, then you might consider whether the data are 
measured with adequate precision and accuracy to identify any differences that 
might be present. 

 If either of the samples is larger than 20 (or if you don ’ t have ready access to 
Appendix  E ), you can test the signifi cance of the  U  test by converting  U  to a  Z  - score 
using Equation  (14.2) . You can then use Appendix  A  to directly determine a prob-
ability or to identify a critical value. 
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  Approximating  U  using the normal distribution 

   Z
U

n n

n n n n
U =

− ⎛
⎝

⎞
⎠

+ +( )

1 2

1 2 1 2

2

1

12

    (14.2)   

 For this example,

   ZU =
− ×( )⎛

⎝⎜
⎞
⎠⎟

×( ) + +( )
= −

15
10 10

2
10 10 10 10 1

12

2 64.   

 The value of  − 2.64 is smaller than the critical  Z  - score for   α      =    .05, which is of course 
 ± 1.96. As a result, we again reject the null hypothesis, and conclude that the rectan-
gular dentate produces higher friction coeffi cients than does a smoothed surface. 
Again, the presence of ties has a small but generally negligible impact on the  Z  - score. 
The four ties in Table  14.1  produce a difference of less than .0001 in the actual prob-
ability associated with the  Z  - score determined above (i.e., instead of being .05,   α   
truly equaled slightly more than .0499). This is a trivial difference in most analyses. 

 We wish to emphasize that the Wilcoxon two - sample test can be used for ordinal 
data, which means it is unnecessary to quantify distributions compared with the 
Wilcoxon two - sample test beyond their ranking. Given that archaeologists can 
often derive sequences even when they don ’ t have detailed knowledge of the differ-
ences among their data, this can be invaluable. For example, if an archaeologist is 
able to order the occupation of sites in a river valley and an adjacent upland area 
based on the presence of diagnostic artifacts, radiocarbon dates, stratigraphic asso-
ciations, and all of the other absolute and relative dating methods at our disposal, 
then he or she can perform a Wilcoxon two - sample analysis to see if either of these 
groups of sites tend to predate the other, even in the absence of secure absolute 
dates. This can provide useful information about settlement patterns and land use, 
even if the archaeologist has no idea of the actual magnitude of the differences in 
the dates among the sites. Building sequences, grave lot values, demographic vari-
ables, and a whole host of other data can be evaluated the same way, so long as the 
variates can be ranked relative to each other. Of course, archaeologists often have 
more than two groups they wish to compare. The Kruskal – Wallace nonparametric 
ANOVA is an excellent tool in such cases.  

  Kruskal – Wallis nonparametric  ANOVA  

 Like the Wilcoxon two - sample test, the Kruskal – Wallis is a ranking - based test. Its 
calculation begins by ranking the pooled variates from all of the groups from the 

c14.indd   267c14.indd   267 8/26/2010   1:55:53 PM8/26/2010   1:55:53 PM



268 An Abbreviated Introduction to Nonparametric & Multivariate Analysis

smallest to the largest. Tied variates are again averaged according to the ranks they 
would otherwise occupy. The ranks are then substituted for the variates in the 
groups. Once this is done, the average ranking for each group and for the combined 
groups is calculated and used to solve Equation  (14.3) . 

  The Kruskal – Wallis test 

   H
N N

R

n
N

i

i

a

=
+( )

( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− +( )∑∑12

1
3 1

2

    (14.3)   

 Equation  (14.3)  is a rather daunting looking formula, but is actually easier to 

calculate than it looks.  N  is the combined sample size of all of the groups.   
R

n

i

i

a ∑∑ ( )2

 

are instructions to divide the squared sum of ranks for each group by the group ’ s 
sample size, and then add these values together. As with the Wilcoxon two - sample 
test ’ s  U  value,  H  refl ects whether the rankings are similar between groups. The null 
hypothesis is consequently  H  0  :  R  1     =     R  2     =     R  3     =     R a  , where  R  again refl ects the sum of 
the rankings in each group. We won ’ t try to explain the derivation of the equation, 
but its resulting  H  is distributed according to the chi - square distribution as   χ a−[ ]1

2 , 
where  a  is the number of groups being compared. In this case,  H  must exceed the 
critical value to reject the null hypothesis. 

 To illustrate the use of the Kruskal – Wallis test, consider the data for the ratio of 
ash of burned bone compared to the bone ’ s total weight before burning presented 
in Table  14.4 . These data were collected by Miller Wieberg ( 2006 : 28) during an 
experimental archaeological study of the breakage patterns of green bone. She 
buried fresh pig bones, and then retrieved samples at 28 - day increments for a period 
of 141 days. The recovered bones were then broken, and differences in breakage 
patterns were recorded. The goal of the study was to determine if bones broken 

  Table 14.4    Ratio of ash to original bone weight for burned bone 

   6/19/2005     7/17/2005     8/14/2005     9/11/2005     10/9/2005     11/6/2005  

  14.67    36.16    30.01    41.96    39.32    29.28  
  15.35    37.07    30.31    43.49    42.39    34.00  
  15.41    38.13    30.44    44.28    44.75    37.45  
  15.64    38.20    37.38    44.45    45.12    38.14  
  15.75    38.99    38.48    44.77    45.66    42.21  
  16.61    39.89    38.50    45.67    47.21    44.61  
  16.88    40.37    42.59    50.10    48.46    44.98  
  18.19    41.70    45.15    50.16    52.41    46.24  
  19.94    44.71    45.25    50.17    52.93    47.36  
  21.26    45.79    45.39    53.71    55.02    49.16  
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immediately before or at death could be differentiated from those broken somewhat 
shortly after death as a result of burial practices, scavengers, and other taphonomic 
processes. The ash to total weight ratio refl ects the moisture in the bone, and is 
therefore an excellent measure of how  “ green ”  (or fresh) the bone is.   

 It is of course known that bone dries over time, but 141 days is not a particularly 
long period. Looking at the frequency distributions for the data (Table  14.5 ), the 
ratios clearly change after the fi rst 28 days (ending 6/19/2005), but it is less clear 
that they change substantially after that. As a result, an interested researcher might 
wish to determine if there is a signifi cant difference in the ash to total weight ratio 
for bones collected between July 17 and November 6 in 2005.   

 Table  14.6  presents the rankings for the period from July 17 through November 
6, 2005. The null hypothesis is that  H  0  :  R  7/17     =     R  8/14     =     R  9/11     =     R  10/9     =     R  11/6 , where each 

  Table 14.5    Frequency tables for the ash to total weight ratio for the various time periods 

   Ash to total 
weight ratio  

   6/19/2005     7/17/2005     8/14/2005     9/11/2005     10/9/2005     11/6/2005  

  Less than 
22.00  

  IIIIIIIIII                      

  30.5            III            I  
  33.5                        I  
  36.5        II    I            I  
  39.5        IIIII    II        I    I  
  42.5        I    I    II    I    I  
  45.5        II    III    IIII    III    III  
  48.5                    II    II  
  51.5                III    II      
  54.5                I    I      

  Table 14.6    Rankings for the ash to total weight ratios 

        7/17/2005     8/14/2005     9/11/2005     10/9/2005     11/6/2005  

      6    2    20    16    1  
      7    3    24    22    5  
      10    4    25    29    9  
      12    8    26    32    11  
      15    13    30    36    21  
      17    14    37    40    27  
      18    23    44    42    31  
      19    33    45    47    39  
      28    34    46    48    41  
      38    35    49    50    43  

   Σ  R     170    169    346    362    228  
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subscript refl ects the date the bone was collected. Using these data to solve for 
Equation  (14.3)  yields the following results:  

   H
a

=
+( )

+ + + +⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤∑12

50 50 1

170

10

169

10

346

10

362

10

228

10

2 2 2 2 2

⎦⎦⎥
− +( ) =3 50 1 16 51.   

 The critical value for   χ. .05 4
2 9 49[ ] = . Given that 16.51 is greater than 9.49, we reject 

the null hypothesis and conclude that the rankings are different. Looking at the 
cumulative rankings, the ash to total bone weight 9/11/2005 and 10/9/2005 are 
indeed larger than the earlier periods, although the fi nal period ending at 11/6/2005 
has a lower cumulative ranking. Miller Wieberg  (2006)  suggests rain the day before 
the bone was collected produced the decrease associated with 11/6/2005. Ultimately, 
the results indicate that the bones did dry appreciably, if not uniformly, during the 
period. Miller Wieberg  (2006)  was able to tie these patterns to the differences she 
identifi ed in her breakage study, in which she found that she could begin to identify 
breaks as postmortem only after they had weathered about four months after death, 
a fi nding that may be important to archaeologists looking at variables such as cause 
of death or the likelihood of violent death. 

 Now that we have considered some nonparametric methods for comparing 
distributions, let ’ s turn to some powerful parametric methods for multivariate 
analysis and the comparisons of groups.   

  Multivariate Analysis and the Comparison of Means 

 Given the complexity of human - related phenomena, archaeologists can reasonably 
expect that the causal factors infl uencing the archaeological record refl ect complex 
interactions of many different variables. For example, both the length of the growing 
season and the average rainfall might impact farming and settlement strategies in 
an area. The length of lithic debitage may refl ect the original size of the core, the 
raw material, the reduction technology, the stage or intensity of reduction, and 
the morphology of the desired tool. Quantitative methods such as ANOVA and the 
t - test are excellent for comparing variation resulting from any of these variables 
(e.g., comparing the length of debitage of different raw materials), but they are 
fundamentally limited to examining the operation of these variables one at a time. 
This isn ’ t necessarily a bad thing, given that we could compare the various attributes 
that have been demonstrated to refl ect lithic reduction technology and use among 
fl aked stone assemblages to gain insight into the assemblage (e.g., Andrefsky,  2005 ; 
Shott,  1994 ). This  “ one - dimensional ”  approach is useful, in that at the end of all 
of the independent analyses, the archaeologist will know a lot more about the 
archaeological record than when he or she started. 

 However, sometimes archaeologists need to understand the interaction of the 
variables above and beyond what can be learned by looking at them in isolation. 
We have already explored this somewhat in Chapters  11  and  12  when discussing 
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regression and correlation, which are means for evaluating the relationship  between  
variables. The same thing is true for the chi - square test discussed in Chapter  13 , 
which is a formal means of determining if two variables vary independently of each 
other. These tests are  multivariate  tests, in the sense that they consider the action 
and interaction of more than one variable. Similar multivariate analyses are avail-
able for comparing the means of groups. These take the form of more complex 
ANOVAs. Given the importance of the mean in characterizing and comparing 
distributions in archaeological analyses, these methods hold a special potential for 
the clever archaeologist. We begin this discussion by reviewing several important 
conceptual issues related to ANOVA that will be central to understanding the 
methods we describe, and then introduce the two - way ANOVA and the nested 
ANOVA. 

  A review of pertinent conceptual issues 

 ANOVA allows us to examine the sources of variation in a data set. In a standard 
ANOVA, these are broken down as follows: 

    Y Y−   among groups : the variation attributed to the differences from the group 
means to the grand mean. This can refl ect fi xed effects (treatment effects) in 
Type I ANOVA or random effects in Type II ANOVA.  

    Y        −         Ȳ      within groups : the variation attributed to the differences of each  Y i   from its 
mean. This is assumed to be random in ANOVA analysis, and is the result of the 
infl uence of other unspecifi ed variables, random chance, and measurement error.  

    Y Y−   total : the variation attributed to the differences of each  Y i   from the grand 
mean. The total variation is equal to the variation among groups and within 
groups, i.e.,   Y Y Y Y Y Yij j ij j−( ) = −( ) + −( ). It therefore refl ects the variation 
among groups attributable to random or fi xed effects and the variation within 
groups caused by the action of unspecifi ed variables and measurement error.    

 The relationship among the various sources of variation can be expressed in a 
slightly different manner as  Y ij      =      μ      +     a  Ȳ    j       +       ε    ij   where  a  refl ects a specifi c treatment 
effect impacting   Ȳ   j   when dealing a Type I ANOVA, or  Y ij      =      μ      +     A Ȳ   j      +      ε    ij   where  A  
refl ects a random effect for Type II ANOVA. The impact of  A Ȳ   j   or  a Ȳ   j   will be 
refl ected in the variation measured among groups and   ε    ij   will be refl ected in the 
variation within groups. There can be more than a single variable impacting vari-
ation among groups, though. Imagine for example a case in which a researcher 
wanted to compare the average stature of two groups of humans who live under 
very different ecological conditions to determine if there are adaptive differences. 
The height of an individual refl ects many factors including but certainly not limited 
to age, sex, nutrition, general health, and ancestry. Further, these variables might 
interact with one another such that the ecological conditions might impact the 
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degree of sexual dimorphism through factors such as nutrition, parasite infections, 
and disease. Because of these confounding issues, the conceptual model of 
the  “ one - way ”  ANOVA we previously introduced isn ’ t complete, in that it 
doesn ’ t account for the interaction of multiple variables  at the same time . Two - way 
ANOVA does.  

  Two - way  ANOVA  

 The two - way ANOVA partitions the variation resulting from two variables and 
their interaction in a mathematically and conceptually elegant manner to evaluate 
the null hypothesis  H  0  :   Ȳ    1     =      Ȳ    2     =      Ȳ    3     =      Ȳ   a  . Let ’ s say that the researcher interested 
in comparing the stature of various groups limits his or her study to adults, thereby 
eliminating one confounding variable (age), and wishes to control for the infl uence 
of sexual dimorphism and geography/ecology on stature. A more satisfactory con-
ceptual model would then be  Y ij      =      μ      +     A Ȳ   j      +     B Ȳ   j      +    ( AB )  Ȳ   j      +      εi  j  , where  A  refl ects 
the impacts of sexual dimorphism,  B  refl ects ecological conditions, and  AB  refl ects 
the interaction between the two variables, both of which are random effects since 
they aren ’ t under the researcher ’ s control. This model refl ects a Model II two - way 
ANOVA. If both variables were under the control of the researcher, then the con-
ceptual model would be  Y ij      =      μ      +     a Ȳ   j      +     b Ȳ   j      +    ( ab )  Ȳ   j      +      ε  ij  , where  a  and  b  refl ect two 
different treatment effects and  ab  refl ects their interaction (a Model I two - way 
ANOVA). This model can of course be extended to a  “ mixed effects ”  ANOVA 
in which one variable is fi xed and the other is random (i.e.,  Y ij      =      μ      +     a Ȳ   j      +     B Ȳ   j      +    
( aB )  Ȳ   j      +      ε  ij  ). In each of the models, the variation in the variates is conceived as 
refl ecting the population mean, plus the effects of two fi xed or random effects  and  
their interaction, plus random error caused by the infl uence of other variables, 
measurement error, etc. This conceptual model is much more likely to fi t many 
analytic situations that archaeologists encounter than any model specifying the 
action of a single variable in isolation. It will also provide a much better understand-
ing of the variation in  Y ij  , given that the variation attributable to the second fi xed/
random effect and its interaction with the fi rst fi xed/random effect would otherwise 
be lumped into the error term (resulting in larger within - group variation). Being 
able to control this variation will consequently reduce the amount of unexplained 
variation in the archaeologist ’ s study, and allow the identifi cation of signifi cant 
relationships that might otherwise be obscured. 

 To illustrate the calculation of the two - way ANOVA, consider the cranial 
lengths for two samples of males and females from geographically distinct cultures 
(Table  14.7 ). We wish to evaluate the null hypothesis  H  0  :   Ȳ    Nrs.male     =      Ȳ    Nrs.female     =   
   Ȳ    And.male     =      Ȳ    And.female  at   α      =    .05. Table  14.8  provides the summary statistics for the 
four samples, and the following quantities allow us to calculate a one - way ANOVA 
(Table  14.9 ) as discussed in Chapter  10 . 

    Q sum of all observations1 1 872 1 768 1 676 1 584 6= = = + + + =∑Yij , , , , ,9900mm   
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  Table 14.7    Cranial length for samples of Norse and 
Andaman Islander populations (mm) 

        Norse     Andaman  

   Male     Female     Male     Female  

     1    189    182    168    151  
     2    182    170    161    159  
     3    191    180    165    161  
     4    191    177    163    159  
     5    178    180    169    164  
     6    194    180    169    159  
     7    186    176    171    159  
     8    186    172    178    158  
     9    189    180    165    156  
  10    186    171    167    158  

  Table 14.8    Summary statistics for the data presented in 
Table  14.7  

   Group      N        Ȳ         s  2       s  Ȳ          

  Norse males    10    187.2    22.0    1.5  
  Norse females    10    176.8    19.1    1.4  
  Andaman males    10    167.6    22.5    1.5  
  Andaman females    10    158.4    11.2    1.1  

  Table 14.9     ANOVA  analysis comparing the cranial lengths 
of Norse and Andaman Islander populations 

   Source of variation      SS     df         MS         F S  

  Between groups    4574    3    1524.67    81.68  
  Within groups    672    36    18.67      

  Total    5246    39          

    Q sum of squared observations2 1 195 496
2= ( ) = =∑ Yij , ,   

    Q sum of each sample s total squared divided by3

2

=
( )

=
∑∑ Y

n

i

j

’   the sample size

=
( ) + ( ) + ( ) + ( )

=∑ 1872 1768 1676 1584

10
1 194

2 2 2 2

, ,,824

  

    Q Correction Term
Q

4
1 6 900

40
1 190 250

2 2

= = ( ) = ( ) =
∑nj

,
, ,   
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  Q5    =     SS  Total     =    Sums of Squares Total    =    Q2    −    Q4    =    5,246  
  Q6    =     SS  subgroup     =    Q3    −    Q4    =    4,574  
  Q7    =     SS  within     =    Q5    −    Q6    =    672      

 In this case,  F s      =    81.7, which exceeds the critical value of 2.9 for an alpha level 
of .05. We consequently reject the null hypothesis, and conclude that there are dif-
ferences between the means. But what is causing these differences? Is it because 
males and females are different because of sexual dimorphism? Or is it because 
Andaman and Norse populations are different because of their ancestry and somatic 
adaptation to different ecological settings? Or is it a product of some combination 
of the two? A two - way ANOVA will allow us to answer these questions. 

 To demonstrate the rest of the computation, we reorganize Table  14.7  as illus-
trated in Table  14.10  so that it is now analogous to a two - by - two matrix with sex 
as the variable listed in the rows and culture/ecology listed in the columns. This 

  Table 14.10    The data in Table  14.7  reorganized to more 
clearly differentiate between the variables sex and culture area 

        Norse     Andaman  

  Female    182    151  
  170    159  
  180    161  
  177    159  
  180    164  
  180    159  
  176    159  
  172    158  
  180    156  
  171    158  

  Male    189    168  
  182    161  
  191    165  
  191    163  
  178    169  
  194    169  
  186    171  
  186    178  
  189    165  
  186    167  

c14.indd   274c14.indd   274 8/26/2010   1:55:53 PM8/26/2010   1:55:53 PM



 An Abbreviated Introduction to Nonparametric & Multivariate Analysis 275

  Table 14.11    Two - by - two matrix refl ecting the sums of the 
data presented in Table  14.10  

        Norse     Andaman  

  Female    1768    1584  
  Male    1872    1676  

reorganization is then carried further in Table  14.11 , which refl ects the sums of the 
variates in each group. Computation of the two - way ANOVA continues using the 
following steps. 

    Q rows8
2

= = −( )∑SS cn R Y
r

. Multiply the squared difference between the row 

mean and grand mean by the sample size and the number of columns, 
and sum these values for all of the rows. Here,  SS rows   is the  SS  due to sex: 

  CN R Y
r

−( ) = ∗ ∗ −[ ]( ) + ∗ ∗ −[ ]( ) =∑
2 2 210 2 167 6 172 5 10 2 177 4 172 5 960. . . . ..4   

    Q columns9
2

= = −( )∑SS rn C Y
C

. Multiply the squared difference between the column 

mean and grand mean by the sample size and the number of rows, and sum these 
values for all of the columns. Here  SS  columns  is  SS  due to culture area/ecological 

setting:   rn C Y
C

−( ) = ∗ ∗ −[ ]( ) + ∗ ∗ −[ ]( ) =∑
2 2 210 2 182 172 5 10 2 163 172 5 3610 0. . .   

  Q10    =     SS  interaction     =     SS  refl ecting the interaction between sex and culture area    =    Q6    
−    Q8    −    Q9    =    4574    −    960.4    −    3610.0    =    3.6      

 The two - way ANOVA table is then constructed as illustrated in Table  14.12 . 
Applying this to the quantities calculated above produces Table  14.13 . The critical 
value for the  F  statistics is identifi ed using Appendix  C  according to   α   and the 

  Table 14.12    The structure of a two - way  ANOVA  table 

   Source of 
variation  

    df       SS       MS       F   

     
 Between rows  

   r     −    1     SS  rows  (Q8)     SS  rows  / df      MS r  / MS w    

     
 Between columns  

   c     −    1     SS  columns  (Q9)     SS  columns / df      MS c  / MS w    

     
 Interaction  

  ( r     −    1)( c     −    1)     SS  interaction  (Q10)     SS  interaction / df      MS i  / MS w    

   Y ij      −      Ȳ    
 Within (error)  

   rc ( n     −    1)     SS  within  (Q7)     SS  within / df       

Y Ya −

Y Yb −

Y Y Y Yab a b− − +
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degrees of freedom for the terms, as outlined in Chapter  10 . Using   α      =    .05, the 
critical values for all three  F  statistics are  F  .05[1,36]     =    4.11. We reject the null hypoth-
esis for the variation between rows (sex) and between columns (culture area), but 
not for the variation attributable to the interaction of the rows and columns. From 
this we conclude that the average cranial length of males and females differ (pre-
sumably due to sexual dimorphism) and that the Andaman Islanders and Norse 
groups differ (presumably due to ancestry and ecological conditions), but that there 
is no interaction between these variables causing sexual dimorphism to vary dif-
ferentially according to the culture area. What is also very signifi cant is that a two -
 way ANOVA allows us to directly determine the proportion to the total variation 
attributable to the interaction of each variable. Using the sums of squares from 
Table  14.13  and the total sums of squares from Table  14.9 , we can tell that sexual 
dimorphism accounts for 18% of the total variation (960.4/5246), ancestry and 
ecological conditions accounts for 69% of the variation (3610/5246), the interaction 
of these two variables accounts for less than 1% of the total variation (3.6/5246), 
and 13% of the variation remains unexplained within the groups resulting from 
measurement error and the operation of other variables that do not affect all of the 
members in a sample equally (672/5246). Thus, differences in ancestry and ecologi-
cal conditions control a majority of the variation between the means, differences in 
sex controls some, their interaction controls effectively none, and there is still a bit, 
about 13% of the variation, that is attributable to causes we haven ’ t identifi ed (e.g., 
class differences within the culture, variation in subsistence strategies within the 
culture, variation in ecological conditions within each geographic area, etc.). 
Understanding how much of the total variation is explained by each variable and 
their interactions, and how much of the variation is attributable to the operation 
of other, unspecifi ed variables and other sources of error, can be tremendously 
important to archaeologists grappling with the operations and signifi cance of 
various variables. The two - way ANOVA gives us a means of knowing what portion 

  Table 14.13    Two - way  ANOVA  comparing the mean values for Norse and Andaman 
Islander males and females 

   Source of variation      df       SS       MS       F   

     
 Between rows  

   r     −    1    =    1    960.4    960.4    51.45  

     
 Between columns  

   c     −    1    =    1    3610.0    3610.0    193.39  

     
 Interaction  

  ( r     −    1)( c     −    1)    =    1    3.6    3.6    0.19 (not signifi cant)  

   Y ij      −      Ȳ    
 Within (error)  

   rc  ( n     −    1)    =    2    ×    2    ×    
(10    −    1)    =    36  

  672.0    18.7      

Y Ya −

Y Yb −

Y Y Y Yab a b− − +
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of the variation we can explain, and what proportion of the variation remains to 
be explored.   

 Obviously, the conceptual models for two - way ANOVA can be expanded to 
include any number of additional variables (e.g., a three - way ANOVA, a fi ve - way 
ANOVA, a ten - way ANOVA). The general mathematical process of calculating 
ANOVAs can likewise be expanded (Sokal and Rohlf, 1995: 369 – 88), although the 
computational structures quickly exceed most archaeologists ’  patience to directly 
compute. Various statistical software packages are available that will allow such 
comparisons. Their interpretation proceeds in exactly the same manner as illus-
trated here. We believe that once you begin to use these quantitative tools, you will 
fi nd them invaluable. Let ’ s now turn to a related method that directly builds on the 
desire of researchers to understand the variation that may be caused by unknown 
or hidden variables: the nested ANOVA.  

  Nested  ANOVA  

 The two - way ANOVA is ideal for situations where an archaeologist has measured 
two variables that he or she suspects impact some aspect of the archaeological 
record. There will be times, however, when an archaeologist is concerned that some 
(possibly unspecifi ed) variables that aren ’ t consistent across a data set might con-
tribute to variation within samples. This is especially common when using multiple 
samples of data derived at different times, by different researchers, or from different 
places. For example, an archaeologist studying variation in point morphology might 
want to compare the average length of several types of projectile points to see if 
they differ. This seems like the perfect case for a one - way ANOVA, which it is. But 
what if the assemblages of points come from different sites? Archaeologists know 
that the length of points can refl ect the initial size of the parent stone nodule, the 
degree of core reduction (which in turn can refl ect factors such as the distance from 
the raw material ’ s source), the presence and degree of repair and reworking, iso-
chrestic variation refl ecting local traditions, and so on. These variables can and 
often do vary from site to site based on access to raw material sources, site use, and 
cultural differences in isochrestic or emblemic expressions. Do projectile points of 
the same type from different sites really refl ect a homogeneous population? Are 
there other random (with respect to the point type) factors that contribute signifi -
cantly to variation within types? And if other factors are contributing to the varia-
tion, what is their signifi cance to the variation among the projectile point types? 
The archaeologist might chose to simply perform a one - way ANOVA regardless of 
the potential diffi culties, and hope that any intersite variation within the types is 
limited when compared to the variation between types, but this  “ compute and hope 
you ’ re right ”  approach to statistical analysis can (and has) led to some unfortunate 
errors. The archaeologist is effectively ignoring the potential of committing a Type 
II error, which weakens any analysis as discussed in Chapter  9 . A better way to 
address this problem of intersample variation is with a nested ANOVA. 
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 People frequently confuse nested ANOVAs with two - way ANOVAs, which is an 
understandable but preventable mistake. Two - way ANOVAs evaluate the variation 
resulting from two variables and their interaction across samples of data such that 
the variables are held constant for the entire data set. In the cranial length example 
used above, each skeleton was assigned to the classes of Female/Male, and Andaman/
Norse without exception. The two - way ANOVA thus allows the evaluation of the 
relationship between these variables. The variation within these variables can be 
random effects (Model II), or fi xed effects (Model I), depending on whether they 
are controlled by the archaeologist or not. In contrast, the nested ANOVA is focused 
on variation that is not consistent across the entire data set. To illustrate this, let ’ s 
modify the preceding example such that we are comparing the average cranial 
capacity of multiple samples of Norse males and females from different burial 
contexts as refl ected in Table  14.14 . This could be approached as a one - way ANOVA 
or even a t - test in which the samples are combined into the classes of females and 
males, regardless of their provenience. However, the researcher might legitimately 
be concerned whether the samples themselves are internally homogeneous. Perhaps 
differences in time, location, status, or measurement methods have contributed to 
variation among samples of the same sex. Collapsing the samples together into 
 “ female ”  and  “ male ”  samples would subsume this variation, and might lead to a 
larger within - group variation than necessary that refl ects the operation of unspeci-
fi ed difference between the samples. The archaeologist would legitimately want to 
know that these differences exist, and explore the data to determine their source. 
Perhaps the researcher will even choose to exclude one or more samples because 
they are not analytically comparable with the others, and thereby improve the 
power of the test to evaluate the hypothesis of interest.   

 A nested ANOVA is designed to help researchers faced with such cases where 
they are concerned that variation within the groups may be artifi cially elevated 

  Table 14.14    The cranial lengths for three samples each of Norse males and females (mm) 

   Female     Male  

   Sample 1     Sample 2     Sample 3     Sample 1     Sample 2     Sample 3  

  172    182    183    189    189    180  
  170    170    177    182    189    192  
  181    180    173    191    191    193  
  177    177    183    191    187    185  
  181    180    181    178    185    193  
  175    180    174    194    194    193  
  175    176    175    186    183    194  
  178    172    182    186    185    184  
  178    180    178    189    193    194  
  171    171    180    186    180    193  
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because of differences among the samples. It is effectively a means of evaluating the 
statistical power of the test to help determine the likelihood of committing a 
Type II error  –  failing to identify differences when in fact they are present. Unlike 
the two - way ANOVA, the nested ANOVA organizes variation hierarchically, such 
that it examines the differences within samples of groups that are then compared 
against one another. The model can be conceptually presented as  Y ijk      =      μ      +     A j  Ȳ   j      +     
B jk  Ȳ   jk      +      ε  ijk  , where  A j  Ȳ   j   refl ects a random effect between groups (that is, the highest 
level of classifi cation, which in this case is sex),  B jk  Ȳ   jk   refl ects random effects acting 
upon samples within the groups, and   ε  ijk   refl ects the random variation of variates 
within the samples caused by measurement error, chance, and the operation of 
other variables. Of course, the effects affecting the groups could be fi xed 
effects under the control of an archaeologist conducting some sort of experiment. 
This would produce the model  Y ijk      =      μ      +     a j  Ȳ   j      +     B jk  Ȳ   jk      +      ε  ijk  . However, the effects 
operating at the lower hierarchical level must  always  be random. Otherwise, a 
researcher should complete a standard one - way ANOVA to examine the effects of 
the treatments. The assumption here, then, is that there are no random effects 
operating below the level of the group, and that samples  within  the same group 
should be statistically identical, even if the groups differ from one another. Nested 
ANOVA is a means of determining if this is the case (i.e., if  B  in the term  B jk  Ȳ   jk   
equals 0). 

 The conceptual model for nested ANOVA superfi cially looks like the two - way 
ANOVA, except it is missing the interaction term  AB ij  . The interaction term is 
unnecessary because  B jk   is subsumed  within  each individual  A j   and presumably 
differs across groups, in that the random effects impacting samples in one group 
need not be the same random effects impacting samples in other groups. For our 
examples, the random effects creating differences among samples of females may 
be different than the random effects creating differences among male samples, and 
the random effects impacting projectile point morphology may differ among pro-
jectile point types. These random effects are therefore not consistent across the 
entire data set, and there structurally cannot be consistent interactions between the 
random effects affecting individual samples and the random or fi xed effects impact-
ing the higher level groups. Note also that the nested ANOVA can be extended for 
any number of hierarchical levels (i.e., samples within samples within samples, etc.) 
so long as we can reasonably assume that the samples at each level are normally 
distributed. Here we will illustrate the nested ANOVA using the simplest possible 
structure of two levels. 

 Like the one - way ANOVA, nested ANOVA evaluates the null hypothesis 
 H  0  :   Ȳ    1     =      Ȳ    2     =      Ȳ    3     =      Ȳ   a  . To understand the calculation procedure, keep in mind that 
 “  a  ”  refers to the highest level (in this case, sex) and  “  b  ”  refers to the lower level (in 
this case, the unknown variables that might be impacting the samples within each 
sex). To facilitate the computation, Table  14.15  presents the sums and averages for 
each sample presented in Table  14.14 . Computing the nested ANOVA begins by 
calculating the following four quantities: 
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  Table 14.15    Summary statistics of samples of Norse females and males presented in 
Table  14.14  

  (Level a)     Female     Male  

   (Level b)     Sample 1     Sample 2     Sample 3     Sample 1     Sample 2     Sample 3  

   ∑  Y ij      1758    1768    1786    1872    1876    1901  
    Ȳ   j      175.8    176.8    178.6    187.2    187.6    190.1  

  Q1.   Y

Y

abn

i

nba

= =
∑∑∑

Grand  mean: 
  
Y = + + + + +

× ×
1758 1768 1786 1872 1876 1901

2 3 10  
  = 182 7.

  

  Q2.   SS nb Y Yj

a

among = −( )∑
2

. Multiply the sum of the squared differences between 

each group (defi ned at the highest hierarchical level) and the grand mean by the 
number of samples in each group and the sample size for each sample. In this case, 
this means multiplying the sum of the squared differences between the two sexes and 
the grand mean by the number of samples within each sex (3) and the number in 

each sample (10):   SSamong = × × −[ ] + −[ ]( ) =∑10 3 177 0 182 7 188 3 182 7 1892 82 2. . . . . .   

  Q3.   SS n Y Yb a

ba

subgr = −( )∑∑ 2
. The sum of squares subgroup is a new term that 

refers to the variation within each of the groups. In this case, it is the variation of the 
samples within the group  “ Females ”  and within the group  “ Males ” . The term is 
calculated by multiplying the number in each sample by the sums of the summed 
squared difference between the means of each sample and the associated group mean: 

  SSsubgr = −[ ] + −[ ] + + −[ ]( )10 175 8 177 1 176 8 177 1 190 1 188 32 2 2. . . . . .�
bba

∑∑ = 89 7.   

  Q4.   SS Y Yi b

nba

within = −( )∑∑∑ 2
. Here, the sum of squares within refers to the 

variation within each sample of males and females. It is calculated by 
summing the squared differences between each  Y ijk   and its sample mean: 
  SSwithin = + + + + +( ) =∑ 137 6 171 6 126 4 197 6 178 4 232 9 1044 5. . . . . . .       

 The ANOVA table is then constructed using these quantities and their degrees of 
freedom as illustrated in Tables  14.16  and  14.17 .   

 Interpreting the results of the ANOVA table starts with considering the variation 
among the samples (i.e., the lowest level in the hierarchy) and then moving upward. 
Signifi cant variation between samples suggests that the variation within groups is 
excessively large because of one or more random effects differentially impacting the 
samples. If there is signifi cant subgroup variation, then the variation among groups 
must be evaluated with care, because the variation within groups will be excessively 
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  Table 14.16    The construction of a nested  ANOVA  table 

        Source of variation      df       SS       MS        F S   

          Among groups     a     −    1    Q2                  

    Ȳ    B     −      Ȳ    A     Among subgroups 
within groups  

   a ( b     −    1)    Q3  
     

Q3

1a b −( )    
        

   Y i      −      Ȳ    B     Within subgroups     ab ( n     −    1)    Q4              

          Total     abn     −    1    Q2    +    Q3    +    Q4      
    

Y YA − Q2

1a −
MS

MS
among

subgr

MS

MS
subgr

within

Q4

1ab n −( )
Y Yi −

  Table 14.17    Results of the nested  ANOVA  analysis comparing the cranial lengths of 
samples of Norse males and females 

   Source of variation      df       SS       MS        F S   

  Among groups    2    −    1    1892.8    1892.8    84.5  
  Among subgroups within groups    2(3    −    1)    89.7    22.4    1.2 (ns)  
  Within subgroups    2    ×    3(10    −    1)    1044.5    19.3      

  Total    (2    ×    3    ×    10)    −    1    3027.0          

large. This means that real differences among the groups might be obscured by the 
action of random effects creating differences between the samples within the groups. 
This in turn leads to a high probability of committing a Type II error. 

 Looking at the results of the nested ANOVA (Table  14.17 ), we fi nd that the 
variation within subgroups (i.e., the variation among the samples of the groups) is 
not signifi cant at   α      =    .05.  F S   is equal to 1.2, which is smaller than the critical 
value of  F  .05[4,54]     =    2.54. From this we conclude that the samples  within the 
groups  are consistent with each other such that they refl ect the same population. 
This in turn indicates that the comparison between the males and females is not 
complicated by inconsistent samples within them. We can be assured that the 
comparison of means among the groups will be as powerful as the size of the 
samples and the strength of any differences among the groups allows (i.e., we are 
not prone to committing an excessive number of Type II errors, relative to the 
inherent likelihood of these errors given the structure of the underlying data). Given 
this, we can feel comfortable continuing to the evaluation of the null hypothesis 
itself. The  F  value of 84.5 for the comparison among groups (Table  14.17 ) does 
exceed the critical value of  F  .05[1,54]     =    4.02. As a result, we reject the null hypothesis 
and conclude that the cranial length of the samples of Norse females and males 
differ. 
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 What if, unlike this example, the subgroup variation was signifi cant? A t - test or 
other test of association can be used to determine exactly where the differences lie. 
The archaeologists can then modify the analytic design to identify and account for 
the random effect(s), to eliminate the inconsistent samples, or defi ne new groups 
that better divide the samples into meaningful units. Defi ning new analytic groups 
and eliminating inconsistent samples must be done with care after considering the 
impact of the changes given the hypothesis of interest, the research design, and the 
theoretical foundation for the research, however. Otherwise, the archaeologist runs 
the danger of  “ cooking the data ”  to produce a specifi c outcome by choosing the 
data that  “ fi ts ”  and eliminating contrary samples that might refl ect real differences 
(e.g., perhaps poorly defi ned pottery types do not refl ect a homogeneous 
population). 

 The power of quantitative analyses for examining the infl uence and interaction 
of multiple variables on archaeological data should now be clear. In the case of 
two - way ANOVA, the variables are specifi cally defi ned, but, as illustrated by the 
nested ANOVA, it is possible to control for sources of differences that are unknown 
and/or inconsistent throughout the samples of the groups. A multitude of multidi-
mensional methods are available to the interested researcher, although their math-
ematical complexity may make them a bit more daunting to many archaeologists. 
In the next chapter, we turn to a more general (and less mathematically intensive) 
consideration of factor analysis and principal component analysis, other multivari-
ate techniques that have proven useful in archaeological analyses, especially for 
exploratory data analysis. 

   Practice Exercises 

    1     Compare and contrast the conceptual models of the one - way ANOVA 
(discussed in Chapter  10 ), the two - way ANOVA, and the nested ANOVA. 
How are they similar? How do they differ from one another? Under what 
circumstances would you select each of them? Provide an example in 
which a researcher might use each of them to evaluate an archaeologically 
relevant issue.  

  2     In an experimental study focused on bronze casting, Ottaway and Wang 
( 2004 :18) examine the microhardness of the resulting metal using the 
Vickers scale (HV). The analysts control the way that the bronze cast is 
cooled (air - cooled and water - quenched) and the bronze ’ s composition 
(presence or absence of lead). Perform a two - way ANOVA to evaluate 
whether there are differences and interactions between the average hard-
ness resulting from the two variables (  α      =    .10). Is this an example of a 
Model I, Model II, or Mixed Model two - way ANOVA?  
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   Air - cooled     Water - quenched  

   Added lead     No lead     Added lead     No lead  

  58.5    62.9    57.9    64.1  
  54.3    77.7    57.1    74.8  
  54.5    99.9    55.2    104.0  
  74.5    126.8    84.2    153.0  
  69.6    249.4    68.0    263.6  

  3     Weights (g) for samples of two types of Greek coins are presented below 
(data gleaned from Ireland  2000 ). Given that each type of coin was minted 
at a single mint, the weights of the coins should be consistent within each 
type, but possibly different between the types. Use a nested ANOVA to 
evaluate whether the average weight is different between the coin types 
(  α      =    .05). What is the signifi cance of the variation within subgroups on 
your conclusion?  

   Helmeted head of Athena with 
Perseus holding Medusa head on 

the reverse side  

   Gorgon ’ s head with Nike 
holding palm on the reverse 

side  

   Sample 1     Sample 2     Sample 1     Sample 2  

  18.12    18.69    7.05    6.52  
  18.55    17.83    7.67    7.36  
  19.14    17.75    7.42    6.83  
  18.61    19.13    6.89    6.87  
  19.53    18.46    7.81    6.46  
  18.84    19.04    9.64    7.61  
  19.01    19.01    5.28    6.86  
  19.32    18.62    7.25    6.06  

  4     Following is the maximum width (mm) of two  “ types ”  of Benton points 
from the Middle Archaic period Ryan site in Alabama (Baker and Hazel, 
 2007 : 47). Use the Wilcoxon two - sample test to evaluate if the assemblages 
differ (  α      =    .01). Reevaluate the null hypothesis using a t - test to compare 
the means. Do the results differ? Which test is more appropriate? Defend 
your answer.  
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   Benton knife/spear 
burial offerings  

   Benton projectile 
points/darts  

  41.7    25.6  
  42.0    25.7  
  48.4    30.4  
  31.0    21.9  
  32.4      

  5     Di Peso  et al.  ( 1974 : 5) present wall lengths (m) for rooms in several 
architectural clusters. Use a Kruskal – Wallis nonparametric ANOVA to 
evaluate whether there are signifi cant differences in the wall lengths 
(  α      =    .05). 

   Unit 11     Unit 12     Unit 14     Unit 16     Unit 22  

  7.28    4.22    3.10    5.58    2.65  
  14.35    4.26    4.99    4.51    1.90  
  11.50    4.28    6.35    5.38    7.08  
  10.60    5.00    6.08    4.65    1.95  

  7.85    5.00    6.78    5.49    1.98  
  7.20    4.08    4.75    4.82    2.75  
  7.40    4.08    4.28    4.70    3.54  
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Factor Analysis and Principal 
Component Analysis     

     In all of the previous chapters, we present both the interpretive and mathematical 
structure of the methods we discuss. The importance of both aspects are self -
 evident; without understanding the interpretative side of a given statistical method, 
the analyst can ’ t properly interpret the results, but without understanding the 
mathematical side of the method, the analyst cannot understand the assumptions, 
structure, and limitations of a given approach. A good analyst needs to understand 
both of these aspects to use any particular quantitative method to its fullest. 
However, we are going to eschew this approach in this chapter because of the com-
putational complexity of most multivariate techniques. We promised to hold our 
discussion to a level that requires no greater background than simple algebra. We 
also doubt that most archaeologists really are interested enough in matrix algebra 
and the other mathematical structures that underlie these methods to bother 
reading a detailed discussion of their computation. We will instead focus only on 
the conceptual underpinnings and proper interpretation of methods such as factor 
analysis, but encourage the interested reader to consult texts such as Jolliffe  (2002) , 
which will give more detail concerning the computational procedures. 

 Using regression analysis, the archaeologist can demonstrate the degree to which 
one variable controls the form of a second variable. This is useful because it estab-
lishes the strength of a causal relationship. Correlation is likewise useful because it 
refl ects the degree to which two dependent variables are controlled by one or more 
shared independent variables. Imagine a case where three variables were all depend-
ent on a single independent variable (i.e., three variables correlated strongly with 
each other and are characterized by a regression relationship with a fourth variable). 
By controlling the single independent variable, the archaeologist could explain 
much of the variation in the three dependent variables. If the relationship was 

Quantitative Analysis in Archaeology, Todd L. VanPool and Robert D. Leonard 
© 2011 Todd L. VanPool and Robert D. Leonard
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strong enough, the three dependent variables could even be collapsed into the single 
independent variable, allowing the archaeologist to shift from trying to measure 
and account for the variation in all four variables to working with a single independ-
ent variable whose effects on other variables is known. This process is called  dimen-
sional scaling , in that the variation in multiple dimensions (variables) is reduced to 
a smaller number of independent variables that control the remainder of the vari-
ation. This is useful because it clarifi es causal relationships, reduces the amount of 
data the analyst needs to manage, and allows the interaction of causal relationships 
to be more easily studied. 

 Two types of dimensional analysis are commonly used in archaeology: principal 
component analysis and the closely related factor analysis. Principal component 
analysis and factor analysis are generic names given to a class of multivariate 
approaches used to quantify the structure underlying data matrices. They both seek 
to defi ne a set of common underlying dimensions that structure the data. These 
methods are effectively exploratory data analyses, in that they do not explicitly 
evaluate previously defi ned null hypotheses. Instead, they look at shared variation 
among a set of variables that can be mathematically modeled. They then produce 
a measure of the amount of shared variation that can be tied to hypotheses of inter-
est given an appropriate analytic and theoretical structure, but that are not formal 
statistical tests in and of themselves. 

 The conceptual structure of the methods is really quite easily understood. 
Imagine that an analyst has measured various attributes of prehistoric pottery 
including pot volume, pot height, and pot width. These three variables are likely 
interconnected, such that a large pot will tend to be taller and wider than a small 
pot. A scatter plot of the three variables would likely indicate a reasonably tight 
correspondence, indicating considerable redundancy in the variation (i.e., the vari-
ation in the three variables is linked). It intuitively seems obvious that we could 
defi ne a mathematical model, rather like a regression line, that could capture the 
 “ essence ”  of this linked variation. This single  new  variable (as opposed to previously 
defi ned variable), which could be called  “ pot size ” , could then effectively summarize 
and even replace the other three variables in the analyst ’ s efforts to explain the 
variation in the data, communicate the structure of the data to others, and perform 
additional analyses. Of course, the analyst didn ’ t measure this newly defi ned vari-
able directly, but it captures the relationship between the variables he or she meas-
ured in a way that is explanatorily useful. 

 Factor analysis and principal component analysis are closely related means of 
identifying  “ new ”  dimensions that capture the  “ essence ”  of the correspondence 
among the original variables. These new dimensions, which are called  “ common 
factors ”  or just  “ factors ”  in factor analysis and  “ components ”  in principal compo-
nent analysis, allow the analyst to determine how much of the variation in each 
variable is shared with the other variables and to postulate the mechanisms that 
link the variables together. This information can then be used to summarize the 
data such that a much smaller number of dimensions can be used to characterize 
the associations underlying the data when compared to the original list of variables. 
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In effect, a larger number of linked variables can be replaced by a single factor (in 
factor analysis) or component (in principal component analysis) that refl ects the 
relationship between the various independent and dependent variables. We can 
even go so far as to substitute the scores derived from each factor or principal 
component for the original variate data to simplify the data set (e.g., get rid of dif-
ferent units of measurement and number magnitudes) and facilitate further math-
ematical analysis through a process called  data reduction . 

 The use of newly defi ned  “ factors ”  or  “ principal components ”  in an analysis can 
be a bit intimidating to those who do not have a strong quantitative background. 
We remember a colleague at a Society for American Archaeology Annual meeting 
who privately confi ded that she worried that our factors  “ were made up ”  and don ’ t 
correspond to any  “ real variable that we measured. ”  In a sense this is true, but the 
factors refl ect the correspondence among  “ the real variables. ”  As a result, they let 
us look at the underlying structure of the data without trying to remember the exact 
degree to which each variable corresponds with all other variables at the same time. 
Consider for example the dissertation research of the senior author, which included 
measuring 21 metric traits of 424 points recovered by Emil Haury  (1975)  from 
Ventana Cave, Arizona (Table  15.1  and Figure  15.1 ). Many of these variables are 

     Figure 15.1       Examples of Ventana Cave projectile points and the measured variables  
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directly linked (e.g., base length has an obvious correspondence with total point 
length), but trying to remember how each variable corresponds with all of the other 
variables is an impossible task. Using factor analysis, however, it is possible to 
quantify and easily communicate such relationships.     

 Factor and principal component analysis may superfi cially sound like regression 
analysis, where an independent variable is identifi ed and used to predict the state 
of one or more dependent variables, but they are quite different. In principal com-
ponent and factor analysis, the dimensions do not correspond with any single vari-
able within a matrix, but refl ect an underlying variable that may be quite specifi c 
(e.g., projectile point size), more general (e.g., pot use), and possibly unknown (e.g., 
unrecognized ethnic or idiosyncratic differences). In effect, all of the variables are 
treated as dependent variables, and the dimensions are newly defi ned independent 
variables. Further, factor analysis and principal component analysis do not seek to 

  Table 15.1    Metric variables measured for projectile points 
from Ventana Cave, Arizona 

  Weight  
  Total length  
  Maximum width  
  Maximum thickness  
  Blade length  
  Maximum blade width  
  Width at blade midpoint  
  Maximum blade thickness  
  Thickness at blade midpoint  
  Basal length  
  Maximum basal width  
  Minimum basal width  
  Maximum basal thickness  
  Width of widest notch  
  Depth of widest notch  
  Width of thinnest notch  
  Depth of thinnest notch  
  Depth of largest stem indentation  
  Depth of smallest stem indentation  
  Depth of basal indentation  
  Average number of serrations  

    Note :   Notch measurements were recorded for corner - notched and 
side - notched projectile points whereas stem indentation depths 
were recorded for stemmed projectile points.  
   Source :   VanPool, Todd L.  (2003) .  Explaining Changes in Projectile 
Point Morphology: A Case Study from Ventana Cave, Arizona . Ph.D. 
Dissertation, Department of Anthropology. University of New 
Mexico, Albuquerque.   
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maximize the ability to allow the variates of an individual variable to be predicted 
as is the case with regression, but instead seek to maximize the amount of the data 
that can be  extracted  (effectively summarized) in the entire assemblage, irrespective 
of the predictive power for any given variable. They are thus  interdependence  
(identifi cation of structure) techniques as opposed to  dependence  (predictive) 
techniques. 

 Principle component and factor analysis are very similar but differ in the way 
they measure variation (Jolliffe,  2002 : 180 – 96). From the perspective of both tech-
niques, there are three possible  “ types ”  of variation in a data set: common, specifi c, 
and error. Common is defi ned as variation that is shared among multiple variables 
in a data set (e.g., all of the measured variables increase as artifact size increases). 
Specifi c variance is limited to a single variable within the data set and typically 
refl ects the operation of other infl uences that do not impact the other variables 
(e.g., wall thickness in a pottery assemblage may increase with temper size, an 
unmeasured variable, but it is the only variable that refl ects this variation). Error is 
variation within a single variable resulting from measurement errors. Both factor 
analysis and principal component analysis are excellent means of measuring 
common variance, but they differ in their treatment of specifi c variance and error. 
Because of the way that factor analysis organizes the underlying data matrix, it 
measures and only measures common variance (Hair  et al. ,  1995 : 375 – 6). This is 
why factors are commonly called  “ common factors ” . As a result, factor analysis 
structurally cannot account for specifi c or error variation, and refl ects  only  the 
underlying dimensions that structure the common variation within the data. All 
 “ common ”  factors must refl ect  “ common variance ” . 

 In contrast, principal component analysis doesn ’ t mathematically discard the 
specifi c variance and error as factor analysis does. The components can refl ect any 
of these sources, meaning that they can refl ect relationships specifi c to a variable as 
opposed to characteristics of the entire data set. This can be useful, in that a relation-
ship contained within a single variable that might be obscured in factor analysis can 
become evident when using principal component analysis. However, the analyst 
must be careful to correctly determine what variation is being refl ected in the results, 
or face the possibility of incorrectly concluding that some infl uence is a general infl u-
ence instead of a specifi c relationship (Jolliffe,  2002 :180 – 196). This can be a signifi -
cant error when using principal component analysis for dimensional scaling, so 
signifi cant in fact that various authors have concluded that,  “  …  principal compo-
nent analysis should not be used if a researcher wishes to obtain parameters refl ect-
ing latent constructs or factors ”  and  “ at best, PCA [principal component analysis] 
provides an approximation to what is truly required ”  (Jolliffe  2002 : 161). Perhaps it 
isn ’ t necessary to go so far as to say one should never use principal component analy-
sis, but it is fair to say that it should only be used when the researcher can be reason-
ably sure that specifi c variance and error is small. We discuss the application of both 
methods, but focus our discussion primarily on factor analysis. 

 Mechanically, factor analysis and principal component analysis both allow 
 variance maximizing rotation , a fancy way of saying that they allow the data to be 
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structured around the components that explain the most variation. (In truth, vari-
ance maximization rotation in principal component analysis isn ’ t really part of the 
method, but is based on a  “ borrowing ”  of the technique from factor analysis 
(Jolliffe,  2002 : 166). Still, it is mathematically defensible and virtually all statistical 
software packages will perform variance maximizing rotation for components.) 
Consider Figure  15.2 , a simple scatter plot organized using  X  and  Y  axes. A regres-
sion line drawn through the scatter plot is still defi ned according to the two original 
axes, despite the fact that the original axes do not explain any of the variation in 
and of themselves. To the contrary, the axes are really arbitrary structures used to 
organize the data, typically defi ned by the value zero for each variable. Zero is a 
great number with intuitive meaning, especially when dealing with ratio scale data, 
but in regards  to the relationship being considered , it is no more meaningful than 
any other number. Instead of using an arbitrary number like zero that produces 
arbitrary axes in regards to any relationship between variables that might be present, 
we could use the regression line itself as an axis. This would shift the focus from 
arbitrarily defi ned axes to a meaningful data structure in which the variation in the 
scatter plot is refl ected by the variation in variates around the regression line (Figure 
 15.3 ). It would also simplify the data, in that two axes (one for each variable) are 
replaced by the regression line. Continuing this process for a multidimensional 
scatter plot composed of many additional variables, new regression lines could be 
created that effectively replace the arbitrary  x  and  y  axes with axes that are organized 
according to the relationships within the data. This is exactly what happens with 
variance maximizing rotation. The factors/components refl ect the new axes and are 
rotated so as to maximize the difference with other factors while minimizing the 
spread of the variates around them.   

 The fi rst factor/component defi ned is the one that summarizes the most varia-
tion in the entire data set. The second is the one that maximizes the amount of the 

     Figure 15.2     A traditional regression line organized using an  x  -  and  y  - axis value of 0  

V
a
ri

a
b
le

 2

Variable 1
0

0

c15.indd   290c15.indd   290 8/26/2010   1:55:56 PM8/26/2010   1:55:56 PM



 Factor Analysis and Principal Component Analysis 291

remaining variation that is summarized. The third, fourth, and subsequent factors 
continue to maximize the amount of the remaining variation they summarize until 
all of the variation is accounted for. Thus, the  “ placement ”  of each previous factor 
impacts the placement of all of the subsequent factors. The fi rst factor is the single 
best summary of linear relationships in the data; the second is the single best 
summary of the linear relationships remaining after the fi rst factor, and so forth. 
The results of the factor analysis or principal component analysis will then report 
the amount of the variation in each variable accounted for by each factor/component, 
so that we can easily determine which meaningfully summarize the various variables 
and how the variables relate with one another. We will illustrate this using the 
Ventana Cave data previously mentioned, but must fi rst consider a few additional 
issues before we are ready to  “ number crunch ” .  

  Objectives of Principal Component and Factor Analysis 

 As with any quantitative method, the starting point for factor analysis and principal 
component analysis is articulating an appropriate research objective using appro-
priate theoretical and methodological approaches. This is sometimes diffi cult, given 
that it is easy to lose sight of what these methods do. Their general utility is to reduce 
a data set into a smaller number of composite dimensions (components) assumed 
to underlie the original variables (i.e., to reduce the number of relationships we 
must consider to characterize and potentially explain the variation within a larger 
data set). If the research objective doesn ’ t focus on this goal, then these methods 
aren ’ t the right techniques and a more appropriate statistical tool should be selected 
(e.g., use multiple linear regression if you really want to predict the values of certain 

     Figure 15.3     The scatter plot illustrated in Figure  15.1  reorganized using the regression line 
as the axis  
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variates). Further, there are several types of principal component and factor analy-
ses that are used to analyze data in different ways. This is especially true for factor 
analysis, which typically is divided into two  “ types ”  (e.g., Hair  et al. ,  1995 ). The 
most common variant is  R factor analysis , which analyzes a set of variables to iden-
tify the dimensions that underlie their correspondences. This approach has been 
the implicit focus of our discussion to this point. 

 The results of the R factor analysis can be used for several purposes. First, the 
dimensions can form the basis for explaining the variation within a matrix. For 
example, the dimension  “ artifact size ”  might control the variation in many varia-
bles. Identifying this as an underlying factor might focus the analyst on explaining 
the general forces operating on the size of a set of artifacts, as opposed to trying to 
explain changes in artifact length, width, thickness, weight, etc. independently. 
Second, the identifi ed dimensions can be used as a means of reducing the number 
of variables considered for presenting the research results. Instead of having to 
discuss the variation in a whole host of variables, the analyst can simply identify 
the underlying dimensions and describe the variation in them. Finally, the factor 
analysis can be used to replace the larger number of variables in the original data 
with a smaller number of variables (the factors) that can then be compared with 
one another using additional statistical techniques. 

 The other type of factor analysis is  Q factor analysis , which divides the population 
of objects being considered into different groups (factors) based on the correspond-
ence in the data. This approach is used in archaeology, especially in sourcing studies, 
but it is computationally diffi cult and often inferior to the various sorts of cluster 
analyses that are available (Hair  et al. ,  1995 : 371). We bring it up here only in the 
interest of completeness, but will not discuss it further.  

  Designing the Principal Component/Factor Analysis 

 In setting up the principal component or factor analysis, the researcher will need 
to consider both the number of variables to be included, and their structure. 
Variables used in these analyses are generally assumed to be metric measurements 
measured at a ratio or interval scale, although there are special methods useful for 
interval and even ordinal scale data (e.g., Boolean factor analysis). The number of 
variables depends on the principal component ’ s or factor analysis ’ s purpose. If the 
researcher wishes to evaluate some proposed structure that may characterize the 
data, then the pertinent variables should be included. If instead, the analyst is con-
ducting exploratory data analysis, the list of variables may be more expansive. 
However, the inclusion of additional variables increases the likelihood of including 
variables that do not meaningfully correspond with any other variables, meaning 
that the principal component or factor analysis will not provide useful data reduc-
tion for them. Sample size is also important, with samples of 50 or more preferable. 
Smaller samples will not allow the identifi cation of meaningful but weak corre-
spondences while also increasing the likelihood of identifying spurious correlations. 
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A common general rule of thumb is to have at least fi ve times as many observations 
as there are variables to be analyzed. Some propose this should be increased to a 
ratio of 10 to 1 or even 20 to 1 when possible (e.g., Hair  et al. ,  1995 : 373), but such 
large samples may not always be possible in archaeological contexts.  

  Assumptions and Conceptual Considerations of Factor Analysis 

 Principal component and factor analysis both have the assumptions of normality, 
homoscedasticity, and the presence of linear relationships for the same reasons 
these assumptions are required in regression analysis. Distributions don ’ t have to 
be perfectly normal, but outliers will signifi cantly impact the location of compo-
nents and factors. Heteroscedastic data and non - linear relationships will result in 
weak components/factors that don ’ t summarize the data well. Departure from these 
assumptions doesn ’ t necessarily undermine an analysis, but it does weaken its 
effectiveness. The critical underlying assumptions of principal component and 
factor analysis are more conceptual than mathematical, however. 

 To begin with, we ought to have a reason to expect some interconnectedness 
within the data. As a practical matter, visual inspections of scatter plots of the 
various variables ought to suggest at least some meaningful correlations. Some 
software packages even have specifi c tests such as  Bartlett ’ s test of sphericity  to evalu-
ate whether there are enough apparent correlations to justify using factor analysis 
(see also Vierra and Carlson,  1981 ). Even better is if there is some theoretical, 
methodological, or empirical reason to propose relationships. This will make inter-
preting the results easier and more interesting. 

 The analyst should also seek to have a homogeneous population relative to the 
research question. For example, performing a factor analysis of characteristics for 
archaeological sites from different time periods when it is previously known that 
the pertinent characteristics differ between them is inappropriate. The resulting 
analysis of the combined data will be a poor summary of the underlying structure 
of each group relative to two separate analyses that divide between them. Thus, 
when it is known that there are two or more subgroups within a sample that differ 
in regards to the relationships among variables being analyzed, it is better to sepa-
rate them and perform multiple principal component or factor analyses as opposed 
to combining them into a single analysis.  

  An Example of Factor Analysis 

 Let ’ s return to our projectile point example. As previously stated we have a series 
of metric measurements for 424 points. We are interested in understanding the 
structure of variation in point morphology, which we are certain is mechanically 
linked in many ways, and communicating this effectively to others. Principal com-
ponent analysis and, especially, factor analysis are ideal means of doing this. 
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 In keeping with our recommendations above, we start by considering the appro-
priateness of each variable. We eliminated largest and smallest stem depth and the 
average number of serrations from the analysis because of stem depths ’  small 
sample size and because the lack of direct links between the average number of 
serrations and other variables cause us to suspect it will be dominated by specifi c, 
as opposed to common, variance. Table  15.2  indicates the amount of the variation 
in each variable accounted for in the factors defi ned using the factor analysis pro-
cedure generated using SPSS, a common statistical software package. (Other pack-
ages will present the results in nearly identical manners.) This represents the amount 
of variation in each variable held in common within the data set, as opposed to 
refl ecting specifi c variation or error. These results please us, in that none of the 
variables are wholly or even largely independent of the others. Our factors should 
provide a useful description of the correspondence among the variables. Still, not 
all of the variation of each variable is accounted for in the factor analysis (e.g., 27% 
of the variation in midpoint blade width is not accounted for by the factors). The 
remaining variation is a product of specifi c variance caused by infl uences not shared 
with the other 17 variables considered here and measurement error.   

 Table  15.3  presents the actual information for each factor.  Eigenvalues  (also 
called the  latent root ) are mathematical measures computed using matrix algebra 
that refl ect the amount of variation each factor describes. Each variable contributes 
variation to a data set such that the total variation in a data set is a product of the 

  Table 15.2    The amount of the variation in each variable 
extracted through the factor analysis 

   Variable     Initial     Extraction  

  Weight    1    0.95  
  Total length    1    0.96  
  Maximum width    1    0.88  
  Maximum thickness    1    0.90  
  Blade length    1    0.92  
  Maximum blade width    1    0.85  
  Maximum blade thickness    1    0.92  
  Width at blade midpoint    1    0.73  
  Thickness at blade midpoint    1    0.94  
  Basal length    1    0.63  
  Maximum basal width    1    0.93  
  Minimum basal width    1    0.89  
  Maximum basal thickness    1    0.81  
  Width of widest notch    1    0.78  
  Depth of widest notch    1    0.83  
  Width of thinnest notch    1    0.73  
  Depth of thinnest notch    1    0.96  
  Depth of basal indentation    1    0.77  
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variation in each variable. An eigenvalue of 1 refl ects all of the variation contained 
within a single variable such that the total of all eigenvalues added together will 
equal the total number of variables, in this case 18. The eigenvalues on Table  15.3  
thus refl ect the proportion of the total amount of variation in all of the variables 
described by each factor. The fi rst factor corresponds with an eigenvalue of 6.73, 
which is roughly 37% of the total variation among all of the variables. Adding all 
of the eigenvalues together produces a sum of 18, which represents the total common 
variation within all of the variables. It is always the case that the maximum number 
of factors that can be defi ned is the same as the number of variables considered, in 
this case 18. The fi rst factor has the largest eigenvalue, indicating that it is the single 
best line summarizing the variation in the data set. The next factor will be the best 
line summarizing the remaining variation. It will also be  orthogonal  to the fi rst, 
meaning that in addition to being derived from the proportion of the variance 
remaining after the fi rst factor is extracted, it must be kept at an angle of 90 degrees 
to the fi rst factor. This ensures that the two factors are independent of (as opposed 
to being correlated with) each other. The third factor will be orthogonal to the fi rst 
two factors, and so on until all of the variance in the data set has been extracted. 
The fi rst factor can be viewed as the single best summary of a linear relationship 
within the data, but all subsequent factors are defi ned only in relationship with the 
preceding factors.   

  Table 15.3    Total variance explained in the factor analysis of the Ventana Cave projectile 
points 

   Factor     Eigenvalues     % of variance     Cumulative %  

     1    6.72    37.34    37.34  
     2    2.63    14.60    51.94  
     3    2.11    11.73    63.67  
     4    1.56    8.68    72.35  
     5    1.27    7.07    79.42  
     6    1.11    6.14    85.56  
     7    0.80    4.45    90.01  
     8    0.54    3.01    93.02  
     9    0.43    2.40    95.43  
  10    0.33    1.85    97.27  
  11    0.23    1.27    98.54  
  12    0.14    0.75    99.30  
  13    0.06    0.35    99.65  
  14    0.04    0.20    99.85  
  15    0.02    0.10    99.95  
  16    0.01    0.05    100  
  17    Less than .005    0    100  
  18    Less than .005    0    100  
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 As is likely evident from Table  15.3 , not all of the factors will be analytically or 
descriptively meaningful. Each factor is the best description of the variation remain-
ing in the data set after the previous factors, but it is possible, in fact almost certain, 
that the meaningful relationships will be summarized in the fi rst handful of the 
factors, with the remaining factors effectively describing weak or accidental rela-
tionships that are limited to a small number of variables. In our example, the fi rst 
seven factors summarize 90% of the common variation in the data set, with the 
fi nal eleven factors summarizing the remaining 10% (Table  15.3 ). This suggests that 
the fi rst seven factors may usefully describe the most meaningful and analytically 
useful relationships among the variables but that the last eleven will be far less 
useful. Unfortunately, there is no cut and dry means of determining which factors 
are signifi cant. Most approaches for evaluating their signifi cance use the eigenval-
ues. A common rule of thumb is the  latent root criterion , which holds that factors 
with eigenvalues greater than one are likely signifi cant while those less than one 
probably are not. The underlying rationale is that a factor should account for at 
least the variation in one variable to be considered signifi cant. However, this rule 
of thumb can be overly conservative when dealing with small numbers of variables, 
say 18 or fewer as is the case here. Still it is a good, and perhaps generally the best, 
starting point. Applied to our example, this would indicate that fi rst six factors are 
signifi cant. 

 Another common approach is the  a priori  method of determining the number 
of signifi cant factors before the analysis is performed. This is most common when 
there is a theoretical or empirical reason to expect that a limited number of relation-
ships are present. The results of the factor analysis (or principal component analy-
sis) can then be used to evaluate if the limited number of factors (or components) 
does really capture most of the variation. Most software packages allow one to 
specify the number of factors/components extracted. 

 Other approaches for determining signifi cant factors include the  percentage of 
variance criterion , the  scree plot , and the  heterogeneity of respondents . The percentage 
of variance criterion employs the cumulative percentage of the variation as the basis 
for evaluating factor signifi cance. A common cutoff is 95%, in which all of the 
factors necessary to account for 95% of the total variation are considered signifi cant. 
In our example, the fi rst nine factors would be considered signifi cant, despite the 
fact that factors 8 and 9 both account for only about 3% of the total variation. There 
is nothing magical about the 95% cutoff, though. Much smaller cumulative per-
centages can be used (e.g., a 75% cutoff would consider only the fi rst four factors 
signifi cant). There is no generally accepted demarcation that should be used 
slavishly. 

 The scree plot is a simple graphical means of measuring the specifi c variation 
characterized by a factor. Remember that factor analysis is designed to measure 
common variation, as opposed to specifi c variation or error. Each factor refl ects a 
relationship among the variables, but the later components will likely be dominated 
by relationships between two variables, as opposed to general relationships among 
larger variable groups. A scree plot helps determine at what point this happens. It 
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is constructed by making a plot of the eigenvalues against the number of the com-
ponent (Figure  15.4 ). The initial drop in eigenvalues is likely to be sharp, but at 
some point the eigenvalues will plateau, causing the plot to approximate a straight 
line. The point where the curve begins to level is typically considered the spot where 
most of the common variation has been summarized and more restrictive relation-
ships become dominant. In our case, it seems to us that factor 8 is a good dividing 
line, although one could defensibly go as low as factor 12. In general, the scree plot 
tends to include more signifi cant factors that the latent root criterion.   

 The heterogeneity of respondents approach is less a means of determining how 
many components should be considered signifi cant, and more of a means of deter-
mining if there are variables that are diluting the utility of the factor or principal 
component analysis. This is especially true for principal component analysis. Given 
that the principal component analysis includes specifi c variation, a variable that 
does not correlate with other variables will be poorly refl ected in the initial series 
of components but will likely be largely or even entirely summarized by one of the 
ending components. Examining the  factor loadings  (which we will discuss in a 
moment) to detect if there are later components that account for nearly all of the 
variation in a single variable will help detect these  “ rogue ”  variables (Table  15.4 ). 
They can then be eliminated from the analysis, which may help clarify trends and 
simplify the selecting of meaningful factors/components. This will be less signifi cant 
for factor analysis, given that it is limited to considering variation among the vari-
ables, but it is also likely that two variables that correspond with each other, but 
not the other variables in the data set, will have poor loadings on early factors while 
being almost entirely summarized by a later factor. The analyst may want to con-
sider whether these variables should be kept in the analysis.   

 Ultimately, it is probably best to consider more than one criterion for selecting 
signifi cant factors, although it seems that the latent root criterion is most common. 
There are negative consequences to selecting too many or too few components as 

     Figure 15.4     Scree plot for the factor analysis evaluating the Ventana Cave projectile point 
data  
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  Table 15.4    Factor loadings for the fi rst six factors 

   Variable     Factor  

   1     2     3     4     5     6  

  Weight    0.90     − 0.31     − 0.13    0.09     − 0.03    0.13  
  Total length    0.77     − 0.44     − 0.19    0.24     − 0.01    0.30  
  Maximum width    0.74    0.55    0.12     − 0.01     − 0.07     − 0.10  
  Maximum thickness    0.66     − 0.27    0.00     − 0.29    0.10     − 0.54  
  Blade length    0.72     − 0.40     − 0.34    0.13    0.03    0.32  
  Maximum blade width    0.62    0.33    0.15    0.12     − 0.56    0.05  
  Maximum blade thickness    0.78     − 0.39     − 0.09     − 0.30    0.05     − 0.25  
  Width at blade midpoint    0.41    0.38     − 0.29     − 0.30    0.30    0.39  

  Thickness at blade midpoint    0.71    0.57    0.19     − 0.03     − 0.25    0.10  
  Basal length    0.47     − 0.30    0.36    0.41     − 0.10    0.06  
  Maximum basal width    0.47    0.11    0.75     − 0.12    0.25     − 0.26  
  Minimum basal width    0.42    0.04    0.80    0.03     − 0.05    0.27  
  Maximum basal thickness    0.46     − 0.48    0.19     − 0.55    0.09    0.13  
  Width of widest notch    0.62     − 0.01    0.02    0.26    0.58     − 0.01  
  Depth of widest notch    0.72    0.36     − 0.28    0.23    0.03     − 0.22  
  Width of thinnest notch     − 0.17    0.23    0.16    0.59    0.53     − 0.04  
  Depth of thinnest notch    0.62    0.44     − 0.56    0.07     − 0.05     − 0.25  
  Depth of basal indentation    0.05    0.60     − 0.02     − 0.48    0.29    0.30  

signifi cant. Selecting too few can obscure the correct structure of the data causing 
important dimensions to be left out of the analysis. Too many components, though, 
make the results hard to interpret and summarize for others. In our case, it seems 
to us that the fi rst six factors summarize most of the variation with the remaining 
factors being less useful in achieving our goal of characterizing the trends in our 
data. While this is a defensible decision in our opinion, it remains arbitrary in that 
other researchers might have chosen to limit the signifi cant components to the fi rst 
four or might have expanded them to the fi rst 10 or so. 

 Interpreting the meaning of a factor is based on the previously mentioned  factor 
loadings , which refl ect the correlation of each variable and the factor (Table  15.4 ). 
These values are identical to Pearson ’ s correlation coeffi cients and refl ect the pro-
portion of the variation in a variable summarized by the factor. They can range 
from 1 to  − 1, with positive numbers indicating a positive relationship between the 
factor and the variable and negative values refl ecting a negative relationship (i.e., a 
variable with the negative loading gets smaller as the other variables get larger). As 
loadings increase to 1 or decrease to  − 1, the amount of the variation in a variable 
summarized by the factor increases, whereas values close to zero indicate that the 
variable and the factor are largely independent. Squaring them creates the equiva-
lent of a regression coeffi cient ( r  2 ), which identifi es the portion of the total variation 
in the variable described by the factor (e.g., factor 1 describes (.9) 2  or .81 of the 
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common variation in weight). The squared factor loadings are directly refl ected in 
the eigenvalues we used to evaluate the signifi cance of the factors (Table  15.3 ). The 
eigenvalues are the sum of the squared factor loadings for each factor. This relation-
ship is illustrated in Equation  (15.1) , where   λ  i   is the eigenvalue for a particular factor 
and   Lij

2  is the squared factor loading for a given variable. 

  The eigenvalue 

   λi ijL= ∑ 2     (15.1)   

 Table  15.5  presents the squared factor loadings from Table  15.4 . The sum for each 
factor produces the eigenvalues listed on Table  15.3 . This connection between the 
factor loadings and the eigenvalues explains why we are able to use the eigenvalues 
to determine the amount of variation in the dataset a factor describes.   

 Let ’ s turn our attention to the signifi cance of each of the six factors we identifi ed 
as meaningful. The fi rst factor in Table  15.4  is a good summary of much of the 
variation in most of the variables. Only seven variables  –  width at blade midpoint, 
basal length, maximum basal width, minimum basal width, maximum basal thick-
ness, width of the thinnest notch, and depth of basal indentation  –  have factor 
loadings below .5. This single dimension, which we could call point size, indicates 

  Table 15.5    The squared factor loadings of each variable for the fi rst six factors 

   Variable     Factor  

   1     2     3     4     5     6  

  Weight    0.81    0.10    0.02    0.01    0.00    0.02  
  Total length    0.59    0.19    0.04    0.06    0.00    0.09  
  Maximum width    0.55    0.30    0.01    0.00    0.00    0.01  
  Maximum thickness    0.44    0.07    0.00    0.08    0.01    0.29  
  Blade length    0.52    0.16    0.12    0.02    0.00    0.10  
  Maximum blade width    0.38    0.11    0.02    0.01    0.31    0.00  
  Maximum blade thickness    0.61    0.15    0.01    0.09    0.00    0.06  
  Width at blade midpoint    0.17    0.14    0.08    0.09    0.09    0.15  
  Thickness at blade midpoint    0.50    0.32    0.04    0.00    0.06    0.01  
  Basal length    0.22    0.09    0.13    0.17    0.01    0.00  
  Maximum basal width    0.22    0.01    0.56    0.01    0.06    0.07  
  Minimum basal width    0.18    0.00    0.64    0.00    0.00    0.07  
  Maximum basal thickness    0.21    0.23    0.04    0.30    0.01    0.02  
  Width of widest notch    0.38    0.00    0.00    0.07    0.34    0.00  
  Depth of widest notch    0.52    0.13    0.08    0.05    0.00    0.05  
  Width of thinnest notch    0.03    0.05    0.03    0.35    0.28    0.00  
  Depth of thinnest notch    0.38    0.19    0.31    0.00    0.00    0.06  
  Depth of basal indentation    0.00    0.36    0.00    0.23    0.08    0.09  

  Sum (eigenvalues)    6.72    2.63    2.11    1.56    1.27    1.11  
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that most of the variables are linked with each other to some degree and that many 
of them are closely connected. However, many of the variables refl ecting basal 
morphology have comparatively poor loading scores suggesting that they refl ect the 
operation of attributes other than point size. The second factor has high loadings 
for the depth of basal indentation, maximum width, and thickness at blade mid-
point. The factor also has a comparatively high negative loading for maximum basal 
thickness, indicating that it gets smaller as the others increase. This factor indicates 
to us that there is a relationship between the width of points and the depth of basal 
indentations such that wider points tend to have deeper indentations, but that 
points with deep indentations often have thinner bases. The third factor has com-
paratively high loadings for maximum basal width, minimum basal width, and, to 
a lesser degree, basal length. It also has a high negative loading for the depth of the 
smaller notch on notched points and a weaker negative loading for maximum blade 
length. These variables refl ect the size of the point base, indicating that points with 
long, wide bases tend to be associated with less pronounced notching elements and 
shorter blades relative to other points with similar point lengths. It certainly makes 
sense that the minimum width of a point ’ s base will be larger for a point with 
shallow notches relative to a similarly sized point with deep notches. Likewise, the 
larger the base, the smaller the blade must be for similarly sized points. 

 The remaining three factors all show positive or negative loadings on a limited 
number of variables (factor 4, positive loading with the width of the thinnest notch 
and negative loadings with basal indentation depth and maximum basal thickness; 
factor 5, positive loadings with the width of both notches and a negative loading 
with maximum blade width; factor 6, negative correspondence with maximum 
thickness but weak positive correspondences with width at blade midpoint, 
maximum blade length, the depth of the basal indentation, total length, and 
minimum basal width). Factor 4 appears to refl ect a relationship between notch 
depth such that deeper notches correspond with thinner bases and more shallow 
basal indentations. These traits are mechanically linked such that a point with deep 
notches can ’ t have a deep basal indentation without breaking (or at least greatly 
weakening) the base. Factor 5 summarizes a relationship between the width of the 
two notches for notched projectile points such that the width of both notches tend 
to get larger together, but (and somewhat counterintuitively) that points with wide 
bases tend to have narrower notches. It would seem intuitively that points with wide 
bases could have more pronounced notches without harming the structural integ-
rity of the point. Factor 6 seems to refl ect a negative relationship between maximum 
point thickness and various size measurements, such that larger points tend to be 
thinner than smaller points. If you know anything about fl int knapping, the rela-
tionships refl ected in factors 5 and 6 are perhaps counterintuitive. It is much more 
diffi cult to make a large, thin biface than a large, thick biface, because the knapper 
has to make longer but thinner fl akes to thin the large biface. Doing so takes con-
siderable skill, suggesting that both factors 5 and 6 refl ect the skill of the fl int 
knapper, in that skilled knappers can make large, thin points with narrow, well -
 defi ned notches, whereas less skilled artisans tend to make smaller, thicker points 
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with more pronounced (less well - defi ned) notches. These six dimensions effectively 
summarize the most signifi cant portion of the variation refl ected in the data for the 
original 18 variables. 

 Discussing the six dimensions would be easier and likely more meaningful to 
our audience than trying to talk about the interrelationships among the 18 original 
variables. In short we have learned that the overall size of the points, the size and 
morphology of the basal elements, and the skill of the fl int knapper appear to be 
the major determinants of the variation in the Ventana Cave assemblage. Of the 
total common variation in all of the variables, the eigenvalues on Table  15.3  indicate 
that roughly 37% is controlled by general point size (factor 1), 35% is controlled 
by the various relationships in basal morphology (factors 2, 3, and 4), and 13% 
appears to be controlled by the skill of the fl int knapper (factors 5 and 6). 
Such insight would have been diffi cult to derive using a series of ANOVAs, regres-
sion analyses, and correlations, which would require tens if not hundreds of direct 
comparisons to begin to illustrate. It is certainly much easier to communicate to 
others using the factor analysis. When evaluating the signifi cance of the factors, 
please don ’ t forget common sense. If the factors don ’ t make sense, don ’ t force your 
theoretical and analytic framework to accommodate them. Just as there can be 
spurious correlations, there can be spurious factors even in randomly generated 
data (Vierra and Carlson,  1981 ). Inadequate sample sizes can cause meaningful 
relationships to be obscured and incidental relationships to appear meaningful. As 
always, the more representative your sample is, the more effective your quantitative 
methods will be. 

 In addition to simplifying the presentation of trends in the data, the factor analy-
sis can serve as a useful tool for structuring additional analyses through the process 
of data reduction. For example, surrogate variables can serve as effective summaries 
for the trends the factors refl ect. This reduces the number of variables that must be 
considered in further analyses. A variable used as a surrogate should have very high 
(positive or negative) loadings for the factor, preferably over .9. For factor 1 in Table 
 15.3 , weight, which has a loading of .901, could serve as a surrogate variable for 
point size, meaning that the close correspondence between this variable and the 
factor allows the variable to be used to characterize the factor for additional analy-
ses. In other words, the correspondences in variation summarized by factor 1, which 
is the single best summary of variation within the data set, can be estimated using 
weight alone. Correspondence analyses such as correlation can consequently use 
weight to refl ect this underlying pattern for subsequent comparisons. Of course, 
surrogate variables should make sense to you in that there is some empirical or 
theoretical link between what the underlying structure the component represents 
and the specifi c variable. We identifi ed factor 1 as refl ecting artifact size, so weight 
(which is a direct product of artifact size) does seem intuitively to be a reasonable 
surrogate variable. In contrast even if a variable such as depth of basal indentation 
had a good factor loading value, we wouldn ’ t use it as a surrogate because of the 
lack of an empirical basis for expecting basal indentation depth to be tightly linked 
to point size. 
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 It is not uncommon, though, for a meaningful factor to not have any single 
variable with an adequately large factor loading to justify its use as a surrogate. In 
such cases, it is possible to use a  summated scale  to develop a composite value for 
a set of variables that do correspond reasonably well with the factor. A summated 
scale is simply an average value for the variables, calculated as (Variable 1    +    Variable 
2    +     …  Variable  A )/ N , where  N  is the number of variables. For factor 3, maximum 
basal width and minimum basal width both show a good, but not ideal, factor 
loading. It is consequently possible to create a composite surrogate value by averag-
ing the values for the variables for each individual point (i.e., [Max. Basal 
Width    +    Min. Basal Width] / 2). This composite will likely better approximate the 
factor than either variable alone will. Note though that variables used for creating 
summated scales must be uniformly positively or negatively correlated with the 
factor, not both. 

 If no group of variates has particularly high loadings, it may not be possible to 
create surrogates using a summated scale. For example, none of the variables seem 
to correspond satisfactorily with factor 6 to calculate a composite variable. Here 
instead of using summated scales, we can calculate  factor scores  in which values 
derived using the factor are used. We won ’ t go through the process of calculating 
these, but instead note that any software package that allows the calculation of 
principal components and factor analysis will also calculate component and factor 
scores. 

 We could of course always calculate factor scores for all of the factors, instead 
for bothering with surrogate variables. Using surrogate variables and factor scores 
are alternatives that each have their advantages and disadvantages. Factor scores: 
(i) can always be calculated, even when there are no clear choices for surrogate 
variables; and (ii) refl ect the composite loading of all variables on the component, 
whereas surrogate variables refl ect only a single variable (or when using summated 
scales, a handful of variables). As a result, factor scores are generally applicable and 
refl ect more information than does a surrogate variable,  but  this includes informa-
tion about variables that are poorly correlated with the component. They can 
therefore be conceptually poor representations of the underlying relationships. 
Factor scores are also diffi cult to compare between different analyses, in that the 
composition of the factors will change with different data sets. For example, factor 
1 for our analysis will certainly be different than factor 1 for another projectile point 
assemblage analyzed using the same variables and factor analysis, because each 
factor is a synthetic summary refl ecting the specifi c values of each sample. 

 In comparison, surrogate variables may continue to be useful surrogates for 
signifi cant factors in different analyses, even if the factors themselves change some-
what (e.g., weight may continue to be a good proxy for factors refl ecting point size 
in multiple data sets). This can facilitate comparisons based on multiple factor/
principal component analyses. Also, the relationship refl ected by the surrogate vari-
able is often conceptually clear (e.g., weight has an obvious connection to point 
size, whereas factor scores do not). However, surrogate variables do not refl ect the 
component perfectly (unless the factor loading is 1 or  − 1). Thus, if you wish to 
perfectly describe the factor/component, then factor scores are ideal. If instead you 
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wish to maintain conceptual clarity and/or facilitate comparisons with other 
variables/data sets, then surrogate variables are typically better choices.  

  Factor Analysis vs. Principal Component Analysis 

 As previously mentioned, the single most signifi cant difference between factor 
analysis and principal component analysis is how they consider specifi c variation 
and error. Factor analysis does not consider it at all, being limited instead to the 
common variance by its mathematical structure. The subsequent factors therefore 
do not describe all of the variation in a data set. We could even see this by adding 
the squared factor loadings for a given variable across all of the factors. Given that 
these values are analogous with the regression coeffi cient, their sums across all of 
the factors should equal 1, if all of the variation was held in common with other 
variables. However, many, perhaps all, variables will not share all of their variation 
in common. The proportion of the specifi c variation and error in the variable will 
be refl ected by the difference in the summed square loadings and 1, which can be 
considerable if there are distinct independent variables impacting only a single vari-
able in a data set. In contrast, principle component analysis includes this variation, 
such that the components refl ect all of the variation in all of the variables, even if 
that variation is unique to only one of them. 

 As mentioned previously, many authors see this as a drawback, given that the 
point of the analysis is describing the common variation for data reduction and 
descriptive purposes. However, insight can also be gained through principal com-
ponent analysis, in that components that have high component loadings for only 
one variable refl ect this specifi c variation in the context of the common variation 
held among the other variables. This will allow the researcher to identify which 
variables are largely or completely independent of the other variables (i.e., do not 
share common variation). Of course this same insight could be gained (although 
perhaps not as easily) using factor analysis: variables refl ecting specifi c variation will 
have poor factor loadings across all of the factors. Most statistical packages that 
perform a factor analysis will also allow you to calculate  communality scores , which 
is just the sum of the squared factor loadings for a single variable. Communality 
scores for our example are refl ected in Table  15.2 . In our case, we do not see any 
variables that do not have substantial common variation. We might wish to con-
sider whether variables with communality scores less than .60 should be included 
in the factor analysis at all. Such variables have a high level of specifi c variation and 
typically are not well represented by any of the factors. 

 This intentionally brief introduction to factor analysis and principal component 
analysis will give you the basis for using and evaluating these quantitative tools. 
They are very useful, and can save you time, money, and effort in helping to identify 
which variables are descriptively and explanatorily meaningful. If you fi nd them to 
be central to your analyses, we encourage you to investigate these methods further. 
An excellent choice for this is Hair  et al.   (1995) . We now turn our attention to some 
fi nal consideration related to sampling in the next chapter. 
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   Practice Exercises 

    1     Defi ne the following terms:  

  (a)     dimensional scaling and data reduction.  

  (b)     factor analysis and principal component analysis.  

  (c)     factor loading score, eigenvalues, and communality scores.  

  (d)     common variance and specifi c variance.    

  2     Imagine an archaeological data set that you might fi nd useful to study any 
subject matter. What ratio and interval scale variables might you include 
in your data set? Which of these might share common variation with each 
other? Which would be appropriate for inclusion in a factor or principal 
component analysis?  

  3     Following are factor loadings for fi ve factors used to analyze a pottery 
assemblage. 

   (a)     Calculate eigenvalues from the factor loading scores.  

  (b)     Determine which factors likely provide useful information using the 
latent root criterion, a percentage of variance criterion using a per-
centage of 85%, and a scree plot.  

  (c)     Calculate communality scores using the factor loading scores. What 
are the implications of the communality scores? Do any of the vari-
ables seem to have a signifi cant amount of specifi c variation?  

  (d)     Describe in the most general terms which variables load with the 
factors you identifi ed as being most likely useful. Can you see any 
connection that might explain the associations identifi ed in the 
factors?      

   Variable     1     2     3     4     5  

  Vessel height    .86     – .38    .33    .00    .000  
  Vessel diameter    .94     – .03    .02     – .12     – .215  
  Rim thickness    .66     – .37     – .52    .00    .376  
  Rim angle    .30    .72    .41     – .35    .308  
  Opening diameter    .47    .63    .02    .57    .125  
  Maximum wall thickness    .92    .10    .01     – .14     – .219  
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Sampling, Research Designs, and 
the Archaeological Record     

     We have noted throughout the previous chapters that properly integrating our 
intellectual frameworks with our data is central to effectively using quantitative 
methods. In this concluding chapter we wish to return to this theme and discuss 
the importance of samples. Samples have been central to most of the material we 
have presented. We have illustrated how sample statistics can be used to estimate 
parameters such as population means, regression coeffi cients, and standard devia-
tions. We have discussed the improved accuracy of large samples relative to small 
samples, and we have even discussed means of quantifying this using confi dence 
intervals. Sampling at its most basic form is a means of using information from a 
part of a population to make inferences about the whole population. It has been 
central to archaeology from its inception. From the earliest days of culture historical 
research, archaeologists extrapolated information about artifacts, sites, and regions 
from smaller subsets of the archaeological record. Often the population being char-
acterized was broadly and vaguely defi ned (e.g., the Desert Culture, which was a 
general term for the pre - agricultural people living in the Arid West and Southwest 
of North America (Jennings  1956 )), and the sample of sites/artifacts/areas consid-
ered was arbitrarily drawn based on the archaeologist ’ s interests, perception of what 
was important, logistical capabilities, and access. The use of arbitrary samples mixed 
with often vague classifi cation systems of various phases, periods, cultures, compo-
nents, etc. would seem to call into question the adequacy of the samples and their 
interpretations, yet the knowledge created from this research continues to frame 
and facilitate archaeological research. However, increasing attention to the impor-
tance and structure of sampling has caused it to become a topic of intense interest 
and occasional controversy (Binford  1964 , Hole  1980 , Mueller  1975 , Nance  1983 , 
Orton  2000 , Wobst  1983 ). This increased emphasis refl ects in part the increasing 
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importance of explicitly quantitative analysis in archaeology and the desire to 
ensure sample selection doesn ’ t bias the subsequent statistical analyses. 

 As mentioned back in Chapter  1 , the materials that enter into the archaeological 
record are just a portion of the material culture used and produced by humans. 
The artifacts and other things archaeologists collect are a sample of those that 
originally entered into the archaeological record. Further, because of time and 
money constraints (as well as the effectiveness of sampling to describe the materials 
we collect), archaeologists often only analyze a portion of the artifacts and other 
objects they discover during their research. Sampling is simply part of the archaeo-
logical reality. 

 Hopefully the materials that enter the archaeological record are satisfactory 
representations of the materials produced through human action. Likewise, the 
materials that are preserved enough to allow their recovery are hopefully satisfac-
tory representations of the materials entering the archaeological record. And, the 
materials recovered by archaeologists are hopefully representative of the materials 
that were preserved. We know that the archaeological record does not always meet 
these ideal situations, though. No matter how much we might wish it were other-
wise, for example, the sample of recovered organic materials from Pleistocene 
contexts will never adequately refl ect those used and produced by humans. Despite 
our best efforts to develop increasingly effective means of recovering information 
(e.g., phytolith analysis, residue analysis), too much time has passed for these mate-
rials to be preserved in large abundances. Worrying about the unsatisfactory nature 
of our sample of Pleistocene age organics is a good thing, in that it can help prevent 
mistaking the absence of perishable materials in the archaeological record as evi-
dence that they were not used in the past, but rectifying this problem is ultimately 
out of our control as archaeologists. Aside from our inventiveness in fi nding new 
lines of evidence, such inadequacies in the archaeological record can only be dealt 
with in a general, conceptual way. Simply put, we can postulate what sorts of arti-
facts, features, ecofacts, etc.  should  be present in the archaeological record, but there 
is no way to quantify what we can ’ t recover. Thus, our sampling strategies cannot 
account for whether the extant archaeological record allows reliable inferences 
about past behavior, the degree to which the archaeological record refl ects various 
aspects of past behavior, or even if it is representative of the materials that originally 
entered into the archaeological record. These are ultimately theoretical and meth-
odological issues. 

 When  “ taking a sample ”  the only issues we typically hope to control quantita-
tively are: (i) how we can use a portion of the archaeological record to make reliable 
inferences about the whole of the extant archaeological record; and (ii) how we can 
use a portion of the material collected to characterize all of the material we have 
collected. The fi rst is important in contexts such as regional surveys and limited 
excavation of a site, in which archaeologists wish to use knowledge of a portion of 
an area to characterize a larger area. The second is important in contexts in which 
archaeologists don ’ t have the time or money to analyze everything they recovered, 
or when destructive analysis might discourage the archaeologist from submitting 
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all possible samples. Although much smaller issues than worrying about the ade-
quacy of the archaeological record as a whole, trying to create adequate samples of 
the extant archaeological record and the materials we recovered are daunting tasks. 
The principles underlying sampling are fortunately the same in both of these cases. 
We outline these issues in the following discussion, beginning with the methods of 
sample selection.  

  How to Select a Sample 

 Imagine that we have 300 obsidian artifacts recovered from fi ve sites that we wish 
to submit for chemical sourcing analysis using Neutron Activation Analysis (NAA). 
We could potentially submit all of them, but NAA costs money and is a destructive 
technique that requires a sample to be cut from each artifact. We might not wish 
to invest so much money and damage all of the artifacts if a smaller sample could 
provide the information we desire. The crux of the issue is how can we select a 
sample that is  representative , that is, that refl ects the variation within the entire 
population without causing a particular part of it to be overrepresented or 
underrepresented? 

 One approach would be to select an  arbitrary sample , say the 30 largest artifacts. 
Many archaeologists are suspicious of arbitrary samples, but there is nothing inher-
ently wrong with them. Arbitrary samples can accurately refl ect the variation in the 
underlying distribution, especially when the attributed used to select the sample is 
random  relative to the underlying population of interest . Would a sample of the 30 
largest artifacts be random relative to the obsidian source? Or would artifact size 
and source be correlated in some way such that certain sources might be overrep-
resented among the largest artifacts? There is no obvious connection between arti-
fact size and raw material source, so the sample might be representative of the 
underlying population. But then again, perhaps not. Different raw material sources 
might have different initial cobble sizes, which in turn could impact the size of the 
subsequent artifacts. Or, differences in artifact types among the site might cause the 
large artifacts to come from a single site. If the sites ’  inhabitants differed in their 
access to the various sources, this could cause certain raw materials to be overrep-
resented relative to the entire population of projectile points. We could of course 
select the sample based on different criteria (the smallest 30 artifacts, artifacts that 
are already broken and won ’ t be signifi cantly damaged when the NAA samples are 
removed, a particular class of artifacts such as scrapers, etc.). These samples might 
even be representative, but issues similar to those that might cause the 30 largest 
artifacts to be a biased sample might also be present, causing some portion of the 
population to be systematically overrepresented or underrepresented. 

 An alternative to arbitrary sampling that would alleviate the inherent diffi culties 
would be a  simple random sample . Simple random samples are defi ned as ones in 
which each member of the population has the same probability of being selected as 
all other members. To take a random sample of the 300 artifacts, we would merely 
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number them from 1 to 300 and then randomly select 30 of them. The numbers 
could be drawn randomly from a hat, the  “ old - fashioned ”  way of generating random 
numbers that is still often used to select bingo numbers and lottery results. Another 
possibility is to use a random number table, which can be found on the World Wide 
Web and in many statistics books. For illustrative purposes, we have reproduced a 
small table of random number (Table  16.1 ). To use these values to select the 30 
artifacts in our hypothetical sample, randomly select a starting place. An easy way 

  Table 16.1    A random numbers table 

  22268    71761    18011    00658    67574    84537    29338    64595    67104  
  18416    60755    65910    91590    42890    18510    10364    80384    07485  
  32048    11960    66409    57622    42147    68268    12145    03582    09146  
  69243    23553    35280    40193    27188    19606    22088    99136    70600  
  90923    76504    53468    85859    64682    60698    98085    60288    53213  
  30468    58549    02576    41781    74755    82953    59022    36830    72286  
  75297    43662    44592    87076    81593    21495    22719    69933    29484  
  67996    45174    59578    45151    31894    93965    04713    95535    91965  
  92513    58291    08398    91912    80389    39105    57454    86535    34165  
  56305    56188    99235    81324    88307    94990    70924    86842    73895  
  79306    62686    59479    12683    15883    54232    87962    28155    36024  
  27024    58768    01949    83543    80139    66129    67276    67582    67697  
  70276    08662    26334    90350    95587    78588    45862    62337    23125  
  84328    42326    67073    83655    55504    73612    06662    76554    91215  
  01469    72013    68684    31619    32289    46940    30176    74260    21114  
  65775    41648    91735    58567    09016    35829    23547    69881    78301  
  48165    13611    10467    55997    54010    02011    03100    73460    43651  
  94951    42869    04277    90338    32820    17824    78402    28547    91627  
  10340    13066    03775    76505    63356    68357    70351    49734    65705  
  42297    62018    13920    08372    17592    58600    23638    92161    75515  
  82858    71966    49603    47021    16882    37970    04715    48698    24357  
  07998    53398    05186    09661    82667    05934    77813    13877    70076  
  90875    11985    00079    28194    93309    91229    70132    11486    54909  
  42918    82016    14801    77746    47762    62511    20903    75600    12072  
  43740    53042    88570    26717    30481    11051    30050    68592    37181  
  13076    03243    29885    38339    09791    19946    54667    69698    33908  
  79558    05394    26016    80053    49841    20830    91366    32718    52280  
  47277    13243    53327    60390    33789    92623    25503    16098    76501  
  36833    79218    38867    25493    16801    20787    37938    62283    30631  
  61642    10812    27497    45842    92763    66612    39565    18694    77063  
  35974    06817    35969    13173    83546    41030    10425    05215    31376  
  10481    06768    05114    81421    24515    17531    46839    06659    93158  
  15808    23336    40326    67604    92158    90336    31693    57999    07730  
  65186    38277    18546    47617    91716    62183    09983    46484    39435  
  31494    72562    01877    28028    71765    51632    06221    85816    27831  
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to do this is by closing your eyes and putting your fi nger on a number. Start with 
the number you select, and then move consistently up, down, to the left, or to the 
right. Look at the fi rst or last three numbers in the random number sequence. In 
this case, we are interested in numbers between 001 and 300. As we encounter a 
value within this range, we select the artifact corresponding to the number. All other 
numbers are discounted. When we have selected 30 artifacts, we stop. Be sure to 
use a different starting place when obtaining two or more samples as opposed to 
always starting from the same location, say the upper left corner. Otherwise, your 
numbers are arbitrary, not truly random. Of course they may be random  in respect 
to the underlying distribution , so the samples could still be representative. But the 
samples become arbitrary, as opposed to random, samples just the same.   

 Random numbers can also be generated using computers, but be careful with 
this method. Depending on the software package, the numbers can refl ect a pre-
programmed random number sequence (and thus always be an arbitrary sample of 
the same numbers) or be based on an algorithm that gives the appearance of ran-
domness but truly isn ’ t. Often these non - random  “ random ”  algorithms are based 
on factors such as how long the computer has been on, so that the  “ start point ”  for 
multiple sequences may be non - random with respect to each other. This is a 
common problem for those who use agent - based modeling and similar methods, 
in that a series of multiple runs may not be random at all. 

 An issue that arises when taking random samples is whether we should sample 
 with replacement  or  without replacement . The difference between these sampling 
techniques lies in whether the same individual can be selected more than once in 
the sample. Sampling with replacement places each selected individual back into 
the sampling pool before each new sample member is drawn, whereas sampling 
without replacement deliberately withholds previously selected individuals from the 
sampling pool. Sampling with replacement is the conceptually and mathematically 
easier system, in that the probability of selecting any individual always remains the 
same throughout the entire selection process. In contrast, sampling without replace-
ment causes the probabilities of selecting an individual to change during the sam-
pling process. Consider for example that when we select the very fi rst artifact for 
our obsidian artifact sample, each artifact in our population of 300 has a 1 in 300 
chance of being selected. If we are sampling with replacement, the artifact fi rst 
selected will again be placed into the sample pool, meaning that each artifact will 
have a 1 in 300 chance of being selected when the second, third, fourth, and sub-
sequent members of the sample are selected. The probability of an individual arti-
fact being selected will consequently always remain 1 in 300 (or .0033) throughout 
the selection of the entire sample. In contrast, if we sample without replacement, 
the fi rst artifact selected is not returned to the sampling pool when drawing subse-
quent sample members. The probability associated with selecting any given artifact 
next is now only 1 in 299. Obviously this isn ’ t a signifi cant change with such a large 
population, but by the 30th artifact, the probability of selecting a given artifact has 
risen to 1 in 271. The difference between the probabilities of 1 in 300 (.0033) 
and 1 in 271 (.0036) is small, but still meaningful. Taking large samples of small 
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populations would result in even more drastic changes in probability (e.g., the 
probabilities associated with a sample of 30 individuals without replacement from 
a population of 50 individuals changes from 1 in 50 (.02) to 1 in 21 (.05) by the 
end of the sampling process). 

 Sampling with replacement is fairly common in ethnology, but archaeologists 
and physical anthropologists tend to sample without replacement. Ethnologists 
studying a variable such as  “ hours a day spent hunting ”  may randomly select a 
hunter to accompany each day, and will not be bothered by the reoccurrence of a 
particular hunter multiple times. The amount of effort invested in hunting might 
change day to day, and including the same hunter will provide valuable information 
about such variation. In archaeology and physical anthropology, though, we typi-
cally deal with items that do not change over the course of a study. Including the 
same artifact in our sample of 30 obsidian artifacts seems odd, given that the 
artifact ’ s determined source shouldn ’ t differ between measurement events. If it 
does, then we ought to reconsider the validity, accuracy, and precision of our 
measurements. 

 Now there is nothing wrong  per se  with using sampling with replacement in 
archaeological contexts, even when the same set of measurements will be included 
twice. The goal of random sampling is to provide a characterization of the underly-
ing population without systematically over representing or under representing 
some part of it. Including the same set of measurements more than once doesn ’ t 
hurt this goal at all, so long as the redundancy is random, as opposed to systematic. 
Further, there are various quantitative methods such as the binomial that require 
consistent probabilities through multiple events. Some methods even require sam-
pling with replacement, because of the consistency in probabilities (see Orton  2000  
for a discussion of many of these). However, we and most other archaeologists fi nd 
it odd and unnecessarily redundant to include the same measurements of a pot, 
skull, house, shell, or any other object more than once in a sample when additional 
items could be selected and analyzed. 

 Another alternative to an arbitrary sample is a  systematic sample . The systematic 
sample starts from a given spot/item and then selects the remaining members of a 
sample at consistent increments. For the obsidian artifacts, a systematic sample 
might start by numbering each of the artifacts from 1 to 300 as was done when 
creating the random sample, and then selecting number 10, number 20, number 
30, and so forth at increments of 10 until 30 artifacts are selected. This will produce 
a useful sample of 30 artifacts that is random  relative to the underlying population , 
so long as the underlying population is randomly distributed relative to the assigned 
numbers. 

 Systematic samples can also be used when the underlying population is not 
randomly distributed relative to the assigned numbers, though. Let ’ s say that in our 
example of 300 artifacts, Site A produced 100 artifacts and the remaining sites each 
produced 50 artifacts. By happenstance, a random sample might include many 
more (or too few) artifacts from Site A than expected. If the sites differ in regards 
to raw material sources, this  “ accidental ”  overrepresentation of Site A might bias 
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the sample. A systematic sample could help prevent this, if the artifacts from each 
site are numbered consecutively (i.e., Site A ’ s artifacts are numbered 1 through 100, 
Site B ’ s artifacts are numbered 101 through 150, etc.). The systematic sample would 
ensure that ten artifacts were selected from Site A, and fi ve artifacts were selected 
from each of the remaining sites, thereby eliminating one possible form of bias. Of 
course, the sample will not be representative if the numbers are assigned so as to 
favor some part of the population (e.g., whole, large projectile points are intention-
ally assigned numbers corresponding to those that will be selected during the sam-
pling). If a researcher is going to do this, he or she would be better off just selecting 
an arbitrary sample and defending it on that basis. 

 Systematic samples are perhaps most commonly used in the United States for 
initial site and area surveys to reduce the cost and time for infi eld analysis. For 
example, archaeologists starting surveys along linear tracks such as roads or rail 
lines will sometimes conduct a systematic pedestrian survey to get an idea of site 
density before scheduling crews and making logistical arrangements. The systematic 
survey can be as simple as surveying 100   m along a road right of way, driving 1   km 
down the road, surveying another 100   m, and then repeating the process. This 
 “ leapfrog ”  survey will help the fi eld director fi gure out where signifi cant archaeo-
logical remains are likely to be encountered. Similar systematic sampling strategies 
are sometimes used during surveys in which infi eld artifact analysts walk a certain 
number of paces, analyze or collect the artifacts within 5   m or some other set dis-
tance of their stopping point, and then repeat the process by walking the same 
number of paces. In our experience, these  “ dog - leash surveys ”  (so named because 
the archaeologist collecting and/or analyzing artifacts in a circumscribed area is like 
a dog on a leash at each stopping spot) are especially common in areas where 
plowing and other disturbances make it diffi cult to defi ne site boundaries and 
identify spatially distinct features. 

 Systematic surveys do have the advantage that they are often easy to select (at 
the very least, we don ’ t have to bother with a random numbers table or similar 
device). However, we must also be careful to ensure that the underlying population 
does not have some regularity that corresponds with the systematic unit we are 
using. If, for example, the geology of an area has led to a consistent ridge and 
fl oodplain pattern in which the ridges are roughly 1   km apart, a systematic survey 
focusing on 100   m every 1   km will not provide an unbiased refl ection of the area ’ s 
archaeology. Depending on where we start, we will instead consistently survey ridge 
tops or fl oodplains, without covering the entire range of topographic locations, 
which in turn can lead to a skewed view of the area ’ s archaeology. 

 Another sampling alternative is the  stratifi ed random sample , which combines the 
best features of simple random samples and systematic samples in some ways. With 
stratifi ed random samples, we identify some underlying infl uence that is expected to 
structure the population, divide the population according to this infl uence, and then 
randomly sample within each group. In our obsidian artifact example, we identifi ed 
several variables that might affect the sources represented at each site (e.g., access to 
sources, requisite artifact typology, differences in cobble size). Randomly selecting 
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30 artifacts from the combined sample of 300 artifacts might lead to the overrepre-
sentation of a particular site(s), simply by chance. If so, the sourcing study might not 
adequately refl ect the variation in sources among the sites and the population as a 
whole. To control for the possibility of over representing or under representing any 
particular site in the sourcing study, divide the 300 artifacts into fi ve groups accord-
ing to site, and then randomly select the same proportion of points from each group. 
Thus, we would randomly select ten artifacts from the 100 obsidian objects from Site 
A, and fi ve artifacts each from Sites B through E, which would help ensure that the 
infl uence of variables creating differences and similarities between sites can be 
detected, while also helping to prevent systematic bias caused by factors that might 
infl uence the variation within sites. (A systematic sampling strategy would also 
produce a proportionally consistent sample from each site, assuming they were 
numbered consecutively, but the sample for each site would be selected systemati-
cally as opposed to randomly as is the case here.) 

 So which sampling strategy should archaeologists use? All four of the possibilities 
we outline here have been and will continue to be useful in archaeological research. 
Arbitrary samples do not need to be rejected out of hand. Arbitrary samples can be 
representative when they are selected using criteria that is not causally tied to the 
variables of interest. For example, researchers working with museum collections 
often are in truth dealing with arbitrary samples refl ecting other peoples ’  percep-
tions of what is  “ worth ”  keeping/donating, but they generally treat their collections 
as representative samples of more broadly defi ned populations based on the assump-
tion that the museum ’ s collection refl ects the general population of artifacts. This 
is often a reasonable assumption, but it should be evaluated. Museum collections 
often include donations from collectors and researchers who might have a specifi c 
interest in certain artifacts or gathered their materials from specifi c areas, which 
could introduce signifi cant bias. 

 Arbitrary samples can also be ideal when the archaeologist has detailed knowl-
edge about the underlying sources of variation. For example, obsidians that are 
macroscopically distinct can be well represented in an arbitrary sample, which 
might be preferable to hoping that members of each distinct obsidian group are 
selected by random chance. By the same token, both New World and Old World 
culture historians often chose samples to refl ect the variation in populations of 
interest based on their perceptions of that variation, and the continued support of 
many of their conclusions and characterization indicates their samples were not 
inordinately biased. In fact, an archaeologist with a good understanding of the 
material record  may  be as effective in determining a representative sample as any 
of the methods presented here. However, arbitrary samples can improperly rein-
force an archaeologist ’ s preconceived notions when the variation is constrained 
around that which the archaeologist already has identifi ed. The fundamental issue 
is that it is generally impossible to  ensure  that an arbitrary sample isn ’ t biased. This 
becomes a very signifi cant issue when we begin to describe samples visually or use 
various methods to quantify measures of central tendency and dispersion. Sometimes 
the  “ typical ”  is not well refl ected in arbitrary samples because researchers become 
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fascinated by the atypical and unusual. The inordinate concentration on outliers 
can greatly infl uence measures such as the mean and the standard deviation, as well 
as graphical methods of illustrating distributions. We recommend in general that 
researchers focus on using one of the other sampling methods when they can be 
applied. Using these approaches, you may not necessarily get all of the cool or 
unusual stuff, but the sample should be a good refl ection of the general character-
istics of the population. 

 By the same token, though, do not consider results derived using random samples 
as  “ right. ”  Random samples can, by chance, produce a less than perfect refl ection 
of the entire population. This possibility was in fact implicitly acknowledged in our 
discussion of confi dence intervals, in which we discussed that there is a possibility 
that a parameter is farther away from our statistic than we expect. Using 95% con-
fi dence intervals around a sample mean only ensures that the true mean is within 
the confi dence intervals 95% of the time. For the remaining 5% of the cases, our 
sample mean is farther away from   μ   than we expect. The reason for this is because, 
by happenstance, the underlying population was not properly refl ected in the 
sample. If the sample is derived randomly, this means that some portion of the 
population has been overrepresented relative to the other portions by chance. Be 
sure to remember that evaluating the adequacy of the sample is a continual process, 
as opposed to something performed only when initially choosing the sample. 
Accidental bias may not be evident until we learn more about our materials. We 
can of course always increase the size of the sample to improve the certainty that 
the statistic is a good estimate of the population parameter. This brings us to our 
next topic, sample size.  

  How Big a Sample  i s Necessary? 

 In general, larger samples are much better representations of the underlying popu-
lations than are smaller samples. Assuming that they are drawn in a way that allows 
the creation of a representative sample, large samples will better refl ect the entire 
variation within a population, including the rare or unusual members. However, 
even small samples can provide excellent estimates of many population parameters. 
Exactly what sample size is acceptable for characterizing the underlying population 
but not so excessively large that it wastes time and money is not an easy issue to 
determine. Various rules of thumb have been suggested, including samples between 
5% and 10% are often adequate to accurately refl ect measures of central tendency 
and dispersion, but these are just guesses. In a large, homogeneous population with 
little variation, a 10% sample may be unnecessarily large. In a very diverse popula-
tion, it may not adequately refl ect the underlying variation that might interest 
the researcher. Further, in many archaeological cases we may not be certain exactly 
how large the population is (e.g., the number of Middle Woodland ceramic vessels 
curated in museums throughout the world), making it impossible to determine 
what a 10% sample would be. 
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 When estimating means, one possible approach is to determine the desired error 
range  a priori . For example, imagine that we were taking metric measurements of 
300 obsidian points, and we wished to determine the likely range of the mean using 
95% confi dence intervals that are no larger than 2   cm from the upper to the lower 
confi dence interval. Using Equation (8.3) and the information presented in Chapter 

 8 , we know that   L Y t
s

n
1 [.05,df]= −  and   L Y t

s

n
2 05= + [ ]. ,df  for 95% confi dence 

intervals. In this case we want the value provided by   t
s

n
. ,05 df[ ]  to equal 1   cm, 

which would provide confi dence intervals 2   cm wide. To solve this, we must have 
at least a rough estimate of the standard deviation. We could just guess what the 
standard deviation might be, but that seems unsatisfactory. There are several more 
secure means of getting estimates. We could use previously calculated standard 
deviations from other assemblages as estimates, based on the assumption that the 
range of variation will likely be similar across assemblages. We could also estimate 
the standard deviation using the range and Table  4.4 , if we could quickly identify 
the largest and smallest individuals. A third alternative, which we prefer, is to start 
by taking a small sample of a population to determine a preliminary estimate of the 
standard deviation. Of course, these are not incompatible alternatives, in that they 
all can be applied to determine a consistent estimate. Let ’ s pretend that we do take 
a 5% sample of the points, and fi nd a standard deviation of 2.3   cm. Using this value 
and starting with a sample of 15 (the 5% sample we already collected), we can create 
a table illustrating the anticipated spread of the confi dence intervals (Table  16.2 ). 
The table indicates that we reach our desired level of certainty at a sample of 23 
points. We can then evaluate whether this sample is in fact adequate using the 
improved estimate of the standard deviation derived from the larger sample of 
 n     =    23. We can continue resampling as necessary until we have the confi dence 
intervals we desire.    

  Table 16.2    Changing confi dence intervals as sample size increases 

   Sample size     t - value     Standard error     Size of confi dence interval (cm)  

  15    2.13    0.59    1.27  
  16    2.12    0.58    1.22  
  17    2.11    0.56    1.18  
  18    2.10    0.54    1.14  
  19    2.09    0.53    1.10  
  20    2.09    0.51    1.07  
  21    2.08    0.50    1.04  
  22    2.07    0.49    1.02  
  23    2.07    0.48    0.99  
  24    2.06    0.47    0.97  
  25    2.06    0.46    0.95  
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  Some Concluding Thoughts 

 At this point, we are confi dent that you, the reader, have the requisite background 
and knowledge to successfully use quantitative methods in your own research, and 
to evaluate quantitative applications encountered in other researchers ’  work. We 
have not discussed every possible quantitative method that has been or could be 
applied in archaeology. However, with the knowledge you have gained through this 
text, you do have the background to research, learn, and implement all of the addi-
tional methods that are available. We do want to end with a few parting cautionary 
notes and words of encouragements. 

 To begin with, please trust your instincts when applying and interpreting quan-
titative methods. The approaches outlined here are outstanding ways to evaluate 
ideas about how the archaeological record is structured and to help us identify 
relationships we might otherwise overlook. Still, the likelihood of incorrectly iden-
tifying a difference when there isn ’ t one (a Type I error) or failing to detect a dif-
ference when there is (a Type II error) is always present. Statistical methods are not 
an infallible means of getting the  right  answer, but are instead useful tools for 
gauging the likelihood of certain relationships. If your quantitative analysis identi-
fi es a difference when you think there shouldn ’ t be one, based on previous research 
and theoretical grounds, don ’ t necessarily reject your previous ideas. Stop and 
investigate what could be driving the aberrant result. Remember, when using a 
critical level of .05, we expect to incorrectly reject a null hypothesis once for every 
20 tests we complete. By the same token, when there isn ’ t a statistically signifi cant 
difference when you think there ought to be one, stop and seriously consider the 
probability of committing a Type II error. Could you really differentiate between 
alternate distributions if they were present? If not, then your results likely provide 
little or no insight into the archaeological record. Additional lines of evidence, 
including the statistical analyses of other materials, may be used to support or refute 
the statistical result. Regardless, remember that statistical methods are expected to 
provide spurious results at least some of the time. If the results don ’ t make sense, 
investigate the issue more before discarding potentially useful ideas and theories. 

 On a related note, the .05 critical level is arbitrary and may not be appropriate 
in all contexts. .05 represents good betting odds, but there may be cases where we 
are more concerned about committing a Type II error, and need to increase it to 
.10 or even more. By the same token, there may be cases when a researcher feels 
that .05 is too high a likelihood of committing a Type I error, and would prefer to 
lower it to .01 or even .001. You should carefully think about the implications of 
committing Type I and Type II errors, and adjust your critical value accordingly. 

 Also, don ’ t confuse statistical signifi cance with some sort of strength of associa-
tion. When evaluating a null hypothesis using a critical level of .05, a resulting 
probability of .004 is no more signifi cant than a probability of .04. Both indicate a 
statistically signifi cant difference. It would be improper to consider the difference 
refl ected by .004 as stronger than that refl ected by .04. Both results could be Type 
I errors at the selected level of signifi cance. Further, you shouldn ’ t change the level 
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of rejection after the analysis is complete so as to appear to minimize the probability 
of making a Type I error. Using a critical value corresponding with .05 to reject a 
hypothesis when the probability is .04 but then switching to a critical value corre-
sponding with .01 for a probability of .004 misstates the likelihood of committing 
a Type I error. In truth, the critical value is really .05, which indicates you will likely 
make an error once every 20 comparisons. An erroneous result corresponding with 
a probability of .004 is still an error. Changing the probability after the fact to make 
the error appear less likely doesn ’ t change the fact. Remember Gregg Easterbrook ’ s 
famous warning that,  “ Torture numbers, and they ’ ll confess to anything. ”  Be honest 
about what you are comparing, how and why the data are organized as they are, 
and the likelihood of being wrong, and you will be far more likely to produce useful 
analyses that will withstand the scrutiny and continued evaluation that goes along 
with archaeology as a growing science. 

 Finally, remember that quantitative methods rely on our theoretical and meth-
odological frameworks to be meaningful. Without a strong conceptual framework, 
the importance of any quantitative analysis will be limited to vacuous descriptions 
of the world (e.g., Variables 1 and 2 might be correlated). Although such relation-
ships can be useful for inductively deriving propositions for future consideration, 
they do not and cannot provide satisfactory explanations or even descriptions of the 
archaeological record. The use of quantitative methods is essential to current archae-
ology, but nothing can replace a rigorous theoretical and analytic framework. 

   Practice Exercises 

    1     Defi ne and differentiate between a sample, a statistic, a population, and a 
population parameter (see Chapter  4 ). Defi ne and differentiate between 
arbitrary samples, random samples, systematic samples, and stratifi ed 
random samples.  

  2     Identify three examples in the archaeological literature where archaeolo-
gists use samples. Answer each of the following questions for the examples 
you found.  

  (a)     What is the underlying population being estimated by the sample?  

  (b)     How was the sample selected? How large was the sample?  

  (c)     To the best of your ability, evaluate whether the sample seems ade-
quate in terms of its size and its composition for the author ’ s 
arguments.    

  3     Following are 60 measurements (mm) of the anterior breadth of the distal 
trochlea of the distal humeri of deer ( Odocoileus  sp.) presented by Lyman 
( 2006 : 1258). 
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   (a)     Calculate the mean and standard error using all of the measurements.  

  (b)     Select an arbitrary sample of 12 measurements based on whatever 
means you care to use. Calculate a mean and standard error.  

  (c)     Randomly select a sample of 12 measurements. Calculate a mean and 
standard error.  

  (d)     Select a systematic sample of every fi fth measurement. Calculate a 
mean and standard error.  

  (e)     Select a stratifi ed random sample on the basis of deer species so that 
you have three individuals from  O. virginianus  and nine individuals 
from  O. hemionus . Combine the samples and calculate a mean and 
standard error.  

  (f)     How do each of the sample means you calculated from your samples 
compare to the population mean you determined from all 60 vari-
ates? Which method seems better to you in this case? Defend your 
answer to the best of your ability.      

   Taxon     Anterior 
breadth  

   Taxon     Anterior 
breadth  

   Taxon     Anterior 
breadth  

   O. virginianus     25.36     O. hemionus     29.56     O. hemionus     26.08  
   O. virginianus     26.28     O. hemionus     27.36     O. hemionus     28.46  
   O. virginianus     28.04     O. hemionus     28.76     O. hemionus     28.06  
   O. virginianus     24.18     O. hemionus     29.04     O. hemionus     25.32  
   O. virginianus     23.92     O. hemionus     26.80     O. hemionus     28.28  
   O. virginianus     28.90     O. hemionus     27.24     O. hemionus     25.50  
   O. virginianus     24.84     O. hemionus     29.74     O. hemionus     26.34  
   O. virginianus     25.70     O. hemionus     25.56     O. hemionus     25.90  
   O. virginianus     25.26     O. hemionus     26.28     O. hemionus     27.90  
   O. virginianus     26.70     O. hemionus     24.80     O. hemionus     27.26  
   O. virginianus     26.32     O. hemionus     24.48     O. hemionus     25.66  
   O. virginianus     26.76     O. hemionus     26.46     O. hemionus     28.12  
   O. virginianus     27.30     O. hemionus     27.62     O. hemionus     25.70  
   O. virginianus     25.12     O. hemionus     28.40     O. hemionus     27.06  
   O. virginianus     26.68     O. hemionus     26.40     O. hemionus     27.70  
   O. virginianus     26.16     O. hemionus     28.46     O. hemionus     24.78  
   O. virginianus     26.68     O. hemionus     27.76     O. hemionus     29.60  
   O. hemionus     27.22     O. hemionus     26.80     O. hemionus     28.52  
   O. hemionus     25.70     O. hemionus     24.86     O. hemionus     29.80  
   O. hemionus     28.28     O. hemionus     26.78     O. hemionus     28.04  

c16.indd   317c16.indd   317 8/26/2010   1:55:59 PM8/26/2010   1:55:59 PM



 References     

       Abbott ,  D. R.  ,   S. E.   Ingram  , and   B. G.   Kober   ( 2006 ).  Hohokam exchange, and Early Classic 
Period organization in Central Arizona: Focal villages or linear communities?   Journal 
of Field Archaeology ,  31 :  285  –  306 .  

    Alzualde ,  A.  ,   N.   Izagirre  ,   S.   Alonso  ,   N.   Rivera  ,   A.   Alonso  ,   A.   Azkarate  , and   C.   de la   R ú a   
( 2007 ).  Infl uence of the European kingdoms of late antiquity on the Basque Country: 
An ancient - DNA study .  Current Anthropology ,  48 :  155  –  62 .  

    Andrefsky ,  W. ,  Jr  . ( 2005 ).  Lithics: Macroscopic Approaches to Analysis . Cambridge Manuals 
in Archaeology.  Cambridge :  Cambridge University Press .  

    Arnold ,  D.   and   A. L.   Nieves   ( 1992 ).  Factors affecting ceramic standardization . In   G.J.   Bey  
 III   and   C.A.   Pool   (eds.),  Ceramic Production and Distribution: An Integrated Approach  
(pp.  93  –  113 ).  Boulder, CO :  Westview Press .  

    Baker ,  G.   and   C.M.   Hazel   ( 2007 ).  Ryan (40RD77), a Late Middle Archaic Benton 
culture cemetery in Tennessee ’ s Central Basin .  Journal of Alabama Archaeology ,  53 : 
 1  –  84 .  

    Baxter ,  M.J.   ( 1994 ).  Exploratory Multivariate Analysis in Archaeology .  Edinburgh :  Edinburgh 
University Press .  

    Bayman ,  J.M.   and   J.J.   Moniz Nakamura   ( 2001 ).  Craft specialization and adze production 
on Hawaii Island .  Journal of Field Archaeology ,  28 :  239  –  52 .  

    Benco ,  N.L.   ( 1988 ).  Morphological standardization: An approach to the study of craft spe-
cialization . In   C.C.   Kolb   and   L.M.   Lackey   (eds.),  A Pot for All Reasons: Ceramic Ecology 
Revisited  (pp.  57  –  72 ).  Philadelphia :  Temple University .  

    Benfer ,  R.A.   and   A.N.   Benfer   ( 1981 ).  Automatic classifi cation of inspectional categories: 
Multivariate theories of archaeological data .  American Antiquity ,  46 :  381  –  96 .  

    Binford ,  L.R.   ( 1964 ).  A consideration of archaeological research design .  American Antiquity , 
 29 :  425  –  41 .  

    Black ,  S.L.   and   K.   Jolly   ( 2002 ).  Archaeology by Design .  Walnut Creek, CA :  AltaMira Press .  
    Bustard ,  W.   ( 1996 ).  Space as Place: Small and Great House Spatial Organization in 

Chaco Canyon, New Mexico, A.D. 1000 – 1150 . Unpublished Ph.D. dissertation, 
Department of Anthropology, University of New Mexico, Albuquerque, New 
Mexico.  

bref.indd   318bref.indd   318 8/26/2010   1:54:16 PM8/26/2010   1:54:16 PM



 References 319

    Chippindale ,  C.   ( 2000 ).  Capta and data: On the true nature of archaeological information . 
 American Antiquity ,  65 :  605  –  12 .  

    Christenson ,  A.   and   D.W.   Read   ( 1977 ).  Numerical taxonomy, R - mode factor analysis and 
archaeological classifi cation .  American Antiquity ,  42 :  163  –  79 .  

    Cochran ,  W.G.   ( 1954 ).  Some methods for strengthening the common chi - square tests . 
 Biometrics ,  10 :  417  –  51 .  

    Conover ,  W.J.   ( 1980 ).  Practical Nonparametric Statistics ,  2nd edition .  New York :  John Wiley 
& Sons .  

    Cordell ,  L.S.   ( 1997 ).  Archaeology of the Southwest .  New York :  Academic Press .  
    Costin ,  C.L.   and   M.B.   Hagstrum   ( 1995 ).  Standardization, labor investment, skill, and organ-

ization of ceramic production in Late Pre - Hispanic Highland Peru .  American Antiquity , 
 60 :  619  –  39 .  

    Cowgill ,  G.   ( 1982 ).  Clusters of objects and associations between variables: Two approaches 
to archaeological classifi cation . In   R.   Whallon   and   J.A.   Brown   (eds.),  Essays on 
Archaeological Typology  (pp.  30  –  55 ).  Evanston, IL :  Center for American Archeology 
Press .  

    Cowgill ,  G.   ( 1990 ).  Artifact classifi cation and archaeological purposes . In   A.   Voorrips   (ed.), 
 Mathematics and Information Science in Archaeology: A Flexible Framework  (pp.  61  –  78 ). 
 Bonn :  Holos Verlag .  

    Crawford ,  G.T.   ( 1993 ).  A Quantitative Analysis and Catalog of British and Irish Iron - Age 
Swords . Unpublished MA Thesis, Department of Anthropology, University of Missouri, 
Columbia.  

    Crown ,  P.   ( 1994 ).  Ceramics and Ideology: Salado Polychrome Pottery .  Albuquerque :  University 
of New Mexico Press .  

    Crown ,  P.   ( 1995 ).  The production of the Salado polychromes in the American Southwest . 
In   B.J.   Mills   and   P.L.   Crown   (eds.),  Ceramic Production in the American Southwest  (pp. 
 142  –  66 ).  Tucson :  University of Arizona Press .  

    Crown ,  P.   and   S.K.   Fish   ( 1996 ).  Gender and status in the Hohokam Pre - Classic to Classic 
transition .  American Anthropologist ,  98 :  803  –  17 .  

    Cruz Antill ó n ,  R.  ,   R.D.   Leonard  ,   T.D.   Maxwell    et al.  ( 2004 ).  Galeana, Villa Ahumada, and 
Casa Chica: Diverse sites in the Casas Grandes region . In   G.E.   Newell   and   E.   Gallaga   
(eds.),  Surveying the Archaeology of Northwest Mexico  (pp.  149  –  76 ).  Salt Lake City : 
 University of Utah Press .  

    Di Peso ,  C.C.  ,   J.B.   Rinaldo  , and   G.J.   Fenner   ( 1974 ).  Casas Grandes: A Fallen Trading Center 
of the Gran Chichimeca , Volumes  2  and  5 .  Dragoon, AZ :  Amerind Foundation .  

    Dohm ,  K.   ( 1990 ).  Effect of population nucleation on house size for pueblos in the American 
Southwest .  Journal of Anthropological Archaeology ,  9 :  201  –  39 .  

    Donahue ,  R.E.  ,   M.L.   Murphy  , and   L.H.   Robbins   ( 2002 – 2004 ).  Lithic microwear analysis of 
Middle Stone Age artifacts from White Painting Rock Shelter, Botswana .  Journal of 
Field Archaeology ,  29 :  155  –  64 .  

    Ehrenberg ,  A.S.   ( 1981 ).  The problem of numeracy .  The American Statistician ,  35 :  67  –  71 .  
    Everitt ,  B.S.   ( 1992 ).  The analysis of contingency tables .  Monographs on Statistics and Applied 

Probability  45.  New York :  Chapman and Hall .  
    Fenenga ,  F.   ( 1953 ).  The weights of chipped stone points: A clue to their functions . 

 Southwestern Journal of Anthropology ,  9 :  309  –  23 .  
    Fish ,  P.R.   ( 1978 ).  Consistency in archaeological measurement and classifi cation: A pilot 

study .  American Antiquity ,  43 :  86  –  9 .  

bref.indd   319bref.indd   319 8/26/2010   1:54:16 PM8/26/2010   1:54:16 PM



320 References

    Ford ,  J.A.   ( 1938 ).  A chronological method applicable to the Southeast .  American Antiquity , 
 3 :  260  –  4 .  

    Ford ,  J.A.   ( 1962 ).  A quantitative method for deriving cultural chronology .  Pan American 
Union, Technical Manual ,  1 .  

    Foster ,  H.T.   and   A.D.   Cohen   ( 2007 ).  Palynological evidence of the effects of the deerskin 
trade on forest fi res during the eighteenth century in southwestern North America . 
 American Antiquity ,  72 :  35  –  51 .  

    Gibbons ,  J.D.   ( 1985 ).  Nonparametric Statistical Inference .  New York :  M. Dekker .  
    Gnaden ,  D.   and   S.   Holdaway   ( 2000 ).  Understanding observer variation when recording 

stone artifacts .  American Antiquity ,  65 :  739  –  47 .  
    Good ,  I.J.   ( 1973 ).  What are degrees of freedom?   The American Statistician ,  27 :  227  –  8 .  
    Good ,  I.J.   ( 1985 ).  The paleontology of Hidden Cave: Birds and mammals . In   D.H.   Thomas   

(ed.),  The Archaeology of Hidden Cave, Nevada  (pp.  125  –  61 ). American Museum of 
Natural History Anthropological Papers 66(1).  

    Grayson ,  D.K.   ( 1984 ).  Quantitative Zooarchaeology: Topics in the Analysis of Archaeological 
Faunas . Studies in Archaeological Science.  Orlando :  Academic Press .  

    Hair ,  J.F. ,  Jr  .,   R.E.   Anderson  ,   R.L.   Tatham  , and   W.C.   Black   ( 1995 ).  Multivariate Data 
Analysis .  Englewood Cliffs, NJ :  Prentice Hall .  

    Hart ,  J.P.  ,   R.A.   Daniels  , and   C.J.   Sheviak   ( 2004 ).  Do  Cucurbita Pepo  gourds fl oat fi shnets?  
 American Antiquity ,  69 :  141  –  8 .  

    Hasenstab ,  R.J.   and   W.C.   Johnson   ( 2001 ).  Hilltops of the Allegheny Plateau: A preferred 
microenvironment for Late Prehistoric horticulturalists . In   L.P.   Sullivan   and   S.C.  
 Prezzano   (eds.),  Archaeology of the Appalachian Highlands  (pp.  3  –  18 ).  Knoxville : 
 University of Tennessee Press .  

    Hassan ,  F.A.   ( 1981 ).  Demographic Archaeology .  New York :  Academic Press .  
    Haury ,  E.W.   ( 1975 ).  The Stratigraphy and Archaeology of Ventana Cave .  Tucson :  University 

of Arizona Press .  
    Hoffman ,  C.   ( 1993 ).  Close - interval core sampling: Tests of a method for predicting internal 

site structure .  Journal of Field Archaeology ,  20 :  461  –  74 .  
    Hole ,  B.L.   ( 1980 ).  Sampling in archaeology: A critique .  Annual Review of Anthropology ,  9 : 

 217  –  34 .  
    Ireland ,  S.   ( 2000 ).  Greek, Roman, and Byzantine Coins in the Museum of Amasya (Ancient 

Amaseia), Turkey . Royal Numismatic Society Special Publication No. 33/British 
Institute of Archaeology at Ankara Monograph No. 27, London.  

    Hudson ,  C.M.   and   M.T.   Boulanger   ( 2008 ).  Assessing the  “ Grip - ability ”  of Ceramic Surface 
Treatments in the American Northeast . Poster presented at the 73rd Annual Meeting of 
the Society for American Archaeology, April 2008. Vancouver, British Columbia.  

    Jefferies ,  R.W.   and   B.M.   Butler   ( 1982 ).  The Carrier Mills Archaeological Project: Human 
Adaptations in the Saline Valley, Illinois .  Carbondale, IL :  Center for Archaeological 
Investigations, Southern Illinois University .  

    Jennings ,  J.D.   ( 1956 ).  The Desert Culture . In   R.   Wauchope   (ed.),  The American Southwest: 
A Problem in Cultural Isolation  (pp.  59  –  127 ).   Memoirs of the Society for American 
Archaeology 11  .  Salt Lake City .  

    Jolliffe ,  I.T.   ( 2002 ).  Principal Component Analysis .  New York :  Springer .  
    Knecht ,  H.D.   ( 1991 ).  Technological Innovation and Design during the Early Upper Paleolithic: 

A Study of Organic Projectile Technologies . Ph.D. Dissertation, Department of 
Anthropology, New York University.  

bref.indd   320bref.indd   320 8/26/2010   1:54:16 PM8/26/2010   1:54:16 PM



 References 321

    Larntz ,  K.   ( 1978 ).  Small - sample comparison of exact levels for chi - square goodness - of - fi t 
statistics .  Journal of the American Statistical Association ,  73 :  253  –  63 .  

    Lewis ,  R.B.   ( 1986 ).  The analysis of contingency tables in archaeology . In   M.B.   Schiffer   (ed.), 
 Advances in Archaeological Method and Theory , Volume  9  (pp.  277  –  310 ).  Orlando : 
 Academic Press .  

    Lewontin ,  R.C.   and   J.   Felsenstein   ( 1965 ).  The robustness of homogeneity tests in 2    ×     N  
tables .  Biometrics ,  21 :  19  –  33 .  

    Longacre ,  W.A.  ,   K.L.   Kvamme   and   M.   Kobayashi   ( 1988 ).  Southwestern pottery standardiza-
tion: An ethnoarchaeological view from the Philippines .  The Kiva ,  53 :  101  –  12 .  

    Lyman ,  R.L.   ( 2004 ).  Identifi cation and paleoenvironmental signifi cance of late - quaternary 
ermine ( Mustela erminea ) in the central Columbia Basin, Washington, Northwestern 
USA .  The Holocene ,  14 :  553  –  62 .  

    Lyman ,  R.L.   ( 2006 ).  Identifying bilateral pairs of deer (Odocoileus sp.) bones: How 
symmetrical is symmetrical enough?   Journal of Archaeological Science ,  33 :  1256  –  65 .  

    Lyman ,  R.L.   ( 2008 ).  Quantitative Paleozoology .  Cambridge :  Cambridge University Press .  
    Lyman ,  R.L.   and   T.L.   VanPool   ( 2009 ).  Metric data in archaeology: A study of intra - analyst 

and inter - analyst variation .  American Antiquity ,  74 :  485  –  504 .  
    McKenzie ,  D.H.   ( 1970 ).  Statistical analysis of Ohio fl uted points .  The Ohio Journal of Science , 

 70 :  352  –  64 .  
    Miller Wieberg ,  D.A.   ( 2006 ).  Establishing the Perimortem Interval: Correlation between Bone 

Moisture Content and Blunt Force Trauma Characters . MA Thesis, Department of 
Anthropology, University of Missouri, Columbia.  

    Mills ,  B.J.   ( 1995 ).  The organization of Protohistoric Zuni ceramic production . In   B.J.   Mills   
and   P.L.   Crown   (eds.),  Ceramic Production in the American Southwest  (pp.  200  –  30 ). 
 Tucson :  University of Arizona Press .  

    Mueller ,  J.W.   ( 1975 ).  Sampling in Archaeology .  Tucson :  University of Arizona Press .  
    Nance ,  J.D.   ( 1983 ).  Regional sampling in archaeological survey: The statistical perspective . 

In   M.B.   Schiffer   (ed.),  Advances in Archaeological Method and Theory , Volume  6  (pp. 
 289  –  356 ).  New York :  Academic Press .  

    Nelson ,  M.C.  ,   M.   Hegmon  ,   S.   Kulow  , and   K.G.   Schollmeyer   ( 2006 ).  Archaeological and 
ecological perspectives on reorganization: A case study from the Mimbres region of the 
U.S. Southwest .  American Antiquity ,  71 :  403  –  32 .  

    O ’ Brien ,  M.J.   and   R.L.   Lyman   ( 1999 ).  Seriation, Stratigraphy, and Index Fossils: The Backbone 
of Archaeological Dating .  New York :  Kluwer Academic Press .  

    O ’ Connell ,  J.F.   ( 1987 ).  Alyawara site structure and its archaeological implications .  American 
Antiquity ,  52 :  74  –  108 .  

    Orton ,  C.R.   ( 2000 ).  Sampling in Archaeology .  Cambridge :  Cambridge University Press .  
    Ottaway ,  B.S.   and   Q.   Wang   ( 2004 ).  Casting Experiments and Microstructure of Archaeologically 

Relevant Bronzes .   BAR International Series 1331  .  Oxford :  Archaeopress .  
    Paine ,  R.R.   (ed.) ( 1997 ).  Integrating Archaeological Demography: Multidisciplinary Approaches 

to Prehistoric Populations .  Carbondale, IL :  Center for Archaeological Investigations, 
Southern Illinois University at Carbondale .  

    Perttula ,  T.K.   and   R.   Rogers   ( 2007 ).  The evolution of a Caddo community in Northeastern 
Texas: The Oak Hill village site (41RK214), Rusk County, Texas .  American Antiquity , 
 72 :  71  –  94 .  

    Petrie ,  W.M.F.   ( 1899 ).  Sequences in prehistoric remains .  The Journal of the Anthropological 
Institute of Great Britain and Ireland ,  29 ( 3/4 ):  295  –  301 .  

bref.indd   321bref.indd   321 8/26/2010   1:54:16 PM8/26/2010   1:54:16 PM



322 References

    Pfeiffer ,  S.   ( 1977 ).  The skeletal biology of archaic populations of the Great Lakes 
Region .  Archaeological Survey of Canada , No. 64.  Ottawa :  National Museums of Canada .  

    Phagan ,  C.J.   ( 1988 ).  Projectile point analysis, part I: Production of statistical type and sub-
types . In   E.   Blinman  ,   C.J.   Phagan  , and   R.H.   Wilshusen   (eds.),  Dolores Archaeological 
Program: Supporting Studies: Additive and Reductive Technologies  (pp.  9  –  86 ).  Denver, 
CO :  United States Department of the Interior, Bureau of Reclamation, Engineering and 
Research Center .  

    Prasciunas ,  M.M.   ( 2007 ).  Bifacial cores and fl ake production effi ciency: An experimental 
test of technological assumptions .  American Antiquity ,  72 :  334  –  48 .  

    Rakita ,  G.F.M.  , and   J.E.   Buikstra   ( 2008 ).  Introduction . In  Interacting with the Dead: 
Perspectives on Mortuary Archaeology for the New Millennium , edited by   G.F.M.   Rakita  , 
  J.E.   Buikstra  ,   L.A.   Beck  , and   S.R.   Williams  , pp.  1  –  11 .  University Press of Florida , 
 Gainsville .  

    Redmond ,  B.G.   and   K.B.   Tankersley   ( 2005 ).  Evidence of Early Paleoindian bone modifi ca-
tion and use at the Sheriden Cave Site (33WY252), Wyandot County, Ohio .  American 
Antiquity ,  70 :  503  –  26 .  

    Riordan ,  T.B.   ( 2009 ).   “ Carry me to Yon Kirk Yard ” : An investigation of changing burial 
practices in the seventeenth - century cemetery at St. Mary ’ s City, Maryland .  Historical 
Archaeology ,  43 :  81  –  92 .  

    Roscoe ,  J.T.   and   J.A.   Byars   ( 1971 ).  An investigation of the restraints with respect to sample 
size commonly imposed on the use of the chi - square test .  Journal of the American 
Statistical Association ,  66 :  755  –  9 .  

    Roux ,  V.   ( 2003 ).  Ceramic standardization and intensity of production: Quantifying degrees 
of specialization .  American Antiquity   68 :  768  –  82 .  
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 Appendix A   

Areas under a Standardized 
Normal Distribution     

     Values refl ect the area from the mean to the specifi c  Z  - score, calculated as
 

  
Z

Yi= −( )μ
σ

. 

 

Z-score

Tabled
probability

µ = 0    
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   Standard deviation units     0     0.01     0.02     0.03     0.04     0.05     0.06     0.07     0.08     0.09  

   0.0     0.0000    0.0040    0.0080    0.0120    0.0160    0.0199    0.0239    0.0279    0.0319    0.0359  
   0.1     0.0398    0.0438    0.0478    0.0517    0.0557    0.0596    0.0636    0.0675    0.0714    0.0753  
   0.2     0.0793    0.0832    0.0871    0.0910    0.0948    0.0987    0.1026    0.1064    0.1103    0.1141  
   0.3     0.1179    0.1217    0.1255    0.1293    0.1331    0.1368    0.1406    0.1443    0.1480    0.1517  
   0.4     0.1554    0.1591    0.1628    0.1664    0.1700    0.1736    0.1772    0.1808    0.1844    0.1879  

   0.5     0.1915    0.1950    0.1985    0.2019    0.2054    0.2088    0.2123    0.2157    0.2190    0.2224  
   0.6     0.2257    0.2291    0.2324    0.2357    0.2389    0.2422    0.2454    0.2486    0.2517    0.2549  
   0.7     0.2580    0.2611    0.2642    0.2673    0.2704    0.2734    0.2764    0.2794    0.2823    0.2852  
   0.8     0.2881    0.2910    0.2939    0.2967    0.2995    0.3023    0.3051    0.3078    0.3106    0.3133  
   0.9     0.3159    0.3186    0.3212    0.3238    0.3264    0.3289    0.3315    0.3340    0.3365    0.3389  

   1.0     0.3413    0.3438    0.3461    0.3485    0.3508    0.3531    0.3554    0.3577    0.3599    0.3621  
   1.1     0.3643    0.3665    0.3686    0.3708    0.3729    0.3749    0.3770    0.3790    0.3810    0.3830  
   1.2     0.3849    0.3869    0.3888    0.3907    0.3925    0.3944    0.3962    0.3980    0.3997    0.4015  
   1.3     0.4032    0.4049    0.4066    0.4082    0.4099    0.4115    0.4131    0.4147    0.4162    0.4177  
   1.4     0.4192    0.4207    0.4222    0.4236    0.4251    0.4265    0.4279    0.4292    0.4306    0.4319  

   1.5     0.4332    0.4345    0.4357    0.4370    0.4382    0.4394    0.4406    0.4418    0.4429    0.4441  
   1.6     0.4452    0.4463    0.4474    0.4484    0.4495    0.4505    0.4515    0.4525    0.4535    0.4545  
   1.7     0.4554    0.4564    0.4573    0.4582    0.4591    0.4599    0.4608    0.4616    0.4625    0.4633  
   1.8     0.4641    0.4649    0.4656    0.4664    0.4671    0.4678    0.4686    0.4693    0.4699    0.4706  
   1.9     0.4713    0.4719    0.4726    0.4732    0.4738    0.4744    0.4750    0.4756    0.4761    0.4767  

bapp01.indd   325
bapp01.indd   325

8/26/2010   1:54:06 P
M

8/26/2010   1:54:06 P
M



326 
A

reas under a Standardized N
orm

al D
istribution 

   Standard deviation units     0     0.01     0.02     0.03     0.04     0.05     0.06     0.07     0.08     0.09  

   2.0     0.4772    0.4778    0.4783    0.4788    0.4793    0.4798    0.4803    0.4808    0.4812    0.4817  
   2.1     0.4821    0.4826    0.4830    0.4834    0.4838    0.4842    0.4846    0.4850    0.4854    0.4857  
   2.2     0.4861    0.4864    0.4868    0.4871    0.4875    0.4878    0.4881    0.4884    0.4887    0.4890  
   2.3     0.4893    0.4896    0.4898    0.4901    0.4904    0.4906    0.4909    0.4911    0.4913    0.4916  
   2.4     0.4918    0.4920    0.4922    0.4925    0.4927    0.4929    0.4931    0.4932    0.4934    0.4936  

   2.5     0.4938    0.4940    0.4941    0.4943    0.4945    0.4946    0.4948    0.4949    0.4951    0.4952  
   2.6     0.4953    0.4955    0.4956    0.4957    0.4959    0.4960    0.4961    0.4962    0.4963    0.4964  
   2.7     0.4965    0.4966    0.4967    0.4968    0.4969    0.4970    0.4971    0.4972    0.4973    0.4974  
   2.8     0.4974    0.4975    0.4976    0.4977    0.4977    0.4978    0.4979    0.4979    0.4980    0.4981  
   2.9     0.4981    0.4982    0.4982    0.4983    0.4984    0.4984    0.4985    0.4985    0.4986    0.4986  

   3.0     0.4987    0.4987    0.4987    0.4988    0.4988    0.4989    0.4989    0.4989    0.4990    0.4990  
   3.1     0.4990    0.4991    0.4991    0.4991    0.4992    0.4992    0.4992    0.4992    0.4993    0.4993  
   3.2     0.4993    0.4993    0.4994    0.4994    0.4994    0.4994    0.4994    0.4995    0.4995    0.4995  
   3.3     0.4995    0.4995    0.4995    0.4996    0.4996    0.4996    0.4996    0.4996    0.4996    0.4997  
   3.4     0.4997    0.4997    0.4997    0.4997    0.4997    0.4997    0.4997    0.4997    0.4997    0.4998  

   3.5     0.4998    0.4998    0.4998    0.4998    0.4998    0.4998    0.4998    0.4998    0.4998    0.4998  
   3.6     0.4998    0.4998    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999  
   3.7     0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999  
   3.8     0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999    0.4999  
   3.9     0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000  
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 Appendix B   

Critical Values for the Student ’ s 
 t  - Distribution     

     This table assumes a two - tailed test. Critical values for one - tailed tests would cor-
respond to the listed value for an   α   twice as large. For example, the critical value 
for a one - tailed test for   α      =    .01 corresponds to the listed value here for   α      =    .02. 
Values not listed on the table can be  interpolated  using the values above and below 
the desired degrees of freedom. The process is not particularly intuitive but works 
as illustrated in the following examples. The critical value for  α     =    .05 for 43 degrees 
of freedom can be determined using the tabled values of  t  [.05,40]     =    2.021 and 
 t  [.05,60]     =    2.000. Begin by dividing 120 by the degrees of freedom (120/43    =    2.791). 
Focus only on the portion of value to the right of the decimal point (.791 in 
this case). Place the value into the following equation  t  [.05,43]     =    (.791    ×    2.021)    +    
[(1    −    .791)    ×    2.000]    =    2.017. To illustrate this process again, the critical value of 
 t  [.05,68]  is calculated using the crucial values of  t  [.05,60]     =    2.000 and  t  [.05,120]     =    1.980. 
Dividing 120 by 68 degrees of freedom produces (120/68    =    1.765). Placing .765 
into the interpolation formula produces  t  [.05,68]     =    (.765    ×    2.000)    +    [(1    −    .765)    ×    
1.980]    =    1.995. 
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   Degrees of freedom      α   

   0.4     0.35     0.3     0.25     0.2     0.15     0.1     0.05     0.02     0.01     0.001  

     1    1.376    1.632    1.963    2.414    3.078    4.165    6.314    12.706    31.821    63.657    636.619  
     2    1.061    1.210    1.386    1.604    1.886    2.282    2.920    4.303    6.965    9.925    31.599  
     3    0.978    1.105    1.250    1.423    1.638    1.924    2.353    3.182    4.541    5.841    12.924  
     4    0.941    1.057    1.190    1.344    1.533    1.778    2.132    2.776    3.747    4.604    8.610  

     5    0.920    1.031    1.156    1.301    1.476    1.699    2.015    2.571    3.365    4.032    6.869  
     6    0.906    1.013    1.134    1.273    1.440    1.650    1.943    2.447    3.143    3.707    5.959  
     7    0.896    1.001    1.119    1.254    1.415    1.617    1.895    2.365    2.998    3.499    5.408  
     8    0.889    0.993    1.108    1.240    1.397    1.592    1.860    2.306    2.896    3.355    5.041  
     9    0.883    0.986    1.100    1.230    1.383    1.574    1.833    2.262    2.821    3.250    4.781  

     10    0.879    0.980    1.093    1.221    1.372    1.559    1.812    2.228    2.764    3.169    4.587  
     11    0.876    0.976    1.088    1.214    1.363    1.548    1.796    2.201    2.718    3.106    4.437  
     12    0.873    0.972    1.083    1.209    1.356    1.538    1.782    2.179    2.681    3.055    4.318  
     13    0.870    0.969    1.079    1.204    1.350    1.530    1.771    2.160    2.650    3.012    4.221  
     14    0.868    0.967    1.076    1.200    1.345    1.523    1.761    2.145    2.624    2.977    4.140  

     15    0.866    0.965    1.074    1.197    1.341    1.517    1.753    2.131    2.602    2.947    4.073  
     16    0.865    0.963    1.071    1.194    1.337    1.512    1.746    2.120    2.583    2.921    4.015  
     17    0.863    0.961    1.069    1.191    1.333    1.508    1.740    2.110    2.567    2.898    3.965  
     18    0.862    0.960    1.067    1.189    1.330    1.504    1.734    2.101    2.552    2.878    3.922  
     19    0.861    0.958    1.066    1.187    1.328    1.500    1.729    2.093    2.539    2.861    3.883  
     20    0.860    0.957    1.064    1.185    1.325    1.497    1.725    2.086    2.528    2.845    3.850  
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   Degrees of freedom      α   

   0.4     0.35     0.3     0.25     0.2     0.15     0.1     0.05     0.02     0.01     0.001  

     21    0.859    0.956    1.063    1.183    1.323    1.494    1.721    2.080    2.518    2.831    3.819  
     22    0.858    0.955    1.061    1.182    1.321    1.492    1.717    2.074    2.508    2.819    3.792  
     23    0.858    0.954    1.060    1.180    1.319    1.489    1.714    2.069    2.500    2.807    3.768  
     24    0.857    0.953    1.059    1.179    1.318    1.487    1.711    2.064    2.492    2.797    3.745  
     25    0.856    0.952    1.058    1.178    1.316    1.485    1.708    2.060    2.485    2.787    3.725  

     26    0.856    0.952    1.058    1.177    1.315    1.483    1.706    2.056    2.479    2.779    3.707  
     27    0.855    0.951    1.057    1.176    1.314    1.482    1.703    2.052    2.473    2.771    3.690  
     28    0.855    0.950    1.056    1.175    1.313    1.480    1.701    2.048    2.467    2.763    3.674  
     29    0.854    0.950    1.055    1.174    1.311    1.479    1.699    2.045    2.462    2.756    3.659  
     30    0.854    0.949    1.055    1.173    1.310    1.477    1.697    2.042    2.457    2.750    3.646  

     31    0.853    0.949    1.054    1.172    1.309    1.476    1.696    2.040    2.453    2.744    3.633  
     32    0.853    0.948    1.054    1.172    1.309    1.475    1.694    2.037    2.449    2.738    3.622  
     33    0.853    0.948    1.053    1.171    1.308    1.474    1.692    2.035    2.445    2.733    3.611  
     34    0.852    0.948    1.052    1.170    1.307    1.473    1.691    2.032    2.441    2.728    3.601  
     35    0.852    0.947    1.052    1.170    1.306    1.472    1.690    2.030    2.438    2.724    3.591  

     36    0.852    0.947    1.052    1.169    1.306    1.471    1.688    2.028    2.434    2.719    3.582  
     37    0.851    0.947    1.051    1.169    1.305    1.470    1.687    2.026    2.431    2.715    3.574  
     38    0.851    0.946    1.051    1.168    1.304    1.469    1.686    2.024    2.429    2.712    3.566  
     39    0.851    0.946    1.050    1.168    1.304    1.468    1.685    2.023    2.426    2.708    3.558  
     40    0.851    0.946    1.050    1.167    1.303    1.468    1.684    2.021    2.423    2.704    3.551  

bapp02.indd   329
bapp02.indd   329

8/26/2010   1:54:08 P
M

8/26/2010   1:54:08 P
M



330 
C

ritical V
alues for the Student’s t-D

istribution

   Degrees of freedom      α   

   0.4     0.35     0.3     0.25     0.2     0.15     0.1     0.05     0.02     0.01     0.001  

     45    0.850    0.944    1.049    1.165    1.301    1.465    1.679    2.014    2.412    2.690    3.520  
     50    0.849    0.943    1.047    1.164    1.299    1.462    1.676    2.009    2.403    2.678    3.496  
     55    0.848    0.943    1.046    1.163    1.297    1.460    1.673    2.004    2.396    2.668    3.476  
     60    0.848    0.942    1.045    1.162    1.296    1.458    1.671    2.000    2.390    2.660    3.460  
     65    0.847    0.941    1.045    1.161    1.295    1.457    1.669    1.997    2.385    2.654    3.447  

     70    0.847    0.941    1.044    1.160    1.294    1.456    1.667    1.994    2.381    2.648    3.435  
     75    0.846    0.940    1.044    1.159    1.293    1.454    1.665    1.992    2.377    2.643    3.425  
     80    0.846    0.940    1.043    1.159    1.292    1.453    1.664    1.990    2.374    2.639    3.416  
     85    0.846    0.940    1.043    1.158    1.292    1.453    1.663    1.988    2.371    2.635    3.409  
     90    0.846    0.939    1.042    1.158    1.291    1.452    1.662    1.987    2.368    2.632    3.402  

     95    0.845    0.939    1.042    1.157    1.291    1.451    1.661    1.985    2.366    2.629    3.396  
  100    0.845    0.939    1.042    1.157    1.290    1.451    1.660    1.984    2.364    2.626    3.390  
  105    0.845    0.939    1.042    1.157    1.290    1.450    1.659    1.983    2.362    2.623    3.386  
  110    0.845    0.939    1.041    1.156    1.289    1.450    1.659    1.982    2.361    2.621    3.381  
  115    0.845    0.938    1.041    1.156    1.289    1.449    1.658    1.981    2.359    2.619    3.377  
  120    0.845    0.938    1.041    1.156    1.289    1.449    1.658    1.980    2.358    2.617    3.373  

   ∞     0.842    0.935    1.036    1.150    1.282    1.440    1.645    1.960    2.326    2.576    3.291  
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 Appendix C   

Critical Values for the F - distribution     

     To fi nd a critical value for  F , select the number corresponding to the degrees of 
freedom for the numerator (across the top of the tables), the degrees of freedom 
for the denominator (along the left side of the table), and the specifi c  α  value. 
Critical values not listed can be interpolated using the processes illustrated in 
Appendix B. To interpolate the critical value for  F  [.05,3,116] , you must interpolate 
between the critical values of  F  [.05,3,100]     =    2.70 and  F  [.05,3,120]     =    2.68. The value for 
120/116 is 1.034. Placing this into the formula introduced in Appendix B produces 
the following value  F  [.05,3,116]     =    (.034    ×    2.70)    +    [1    −    .034)    ×    2.68]    =    2.68. 
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332 Critical Values for the F-distribution

    df       α      Degrees of freedom (numerator mean squares)  

  1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16  

     1    0.50    1.00    1.50    1.71    1.82    1.89    1.94    1.98    2.00    2.03    2.04    2.06    2.07    2.08    2.09    2.09    2.10  

     1    0.25    5.83    7.50    8.20    8.58    8.82    8.98    9.10    9.19    9.26    9.32    9.37    9.41    9.44    9.47    9.49    9.52  

     1    0.10    39.86    49.50    53.59    55.83    57.24    58.20    58.91    59.44    59.86    60.19    60.47    60.71    60.90    61.07    61.22    61.35  

     1    0.05    161.45    199.50    215.71    224.58    230.16    233.99    236.77    238.88    240.54    241.88    242.98    243.91    244.69    245.36    245.95    246.46  

     1    0.01    4052.18    4999.50    5403.35    5624.58    5763.65    5858.99    5928.36    5981.07    6022.47    6055.85    6083.32    6106.32    6125.86    6142.67    6157.28    6170.10  

     1    0.001    405284.07    499999.50    540379.20    562499.58    576404.56    585937.11    592873.29    598144.16    602283.99    605620.97    608367.68    610667.82    612622.01    614302.75    615763.66    617045.18  

     2    0.50    0.67    1.00    1.13    1.21    1.25    1.28    1.30    1.32    1.33    1.35    1.35    1.36    1.37    1.37    1.38    1.38  

     2    0.25    2.57    3.00    3.15    3.23    3.28    3.31    3.34    3.35    3.37    3.38    3.39    3.39    3.40    3.41    3.41    3.41  

     2    0.10    8.53    9.00    9.16    9.24    9.29    9.33    9.35    9.37    9.38    9.39    9.40    9.41    9.41    9.42    9.42    9.43  

     2    0.05    18.51    19.00    19.16    19.25    19.30    19.33    19.35    19.37    19.38    19.40    19.40    19.41    19.42    19.42    19.43    19.43  

     2    0.01    98.50    99.00    99.17    99.25    99.30    99.33    99.36    99.37    99.39    99.40    99.41    99.42    99.42    99.43    99.43    99.44  

     2    0.001    998.50    999.00    999.17    999.25    999.30    999.33    999.36    999.37    999.39    999.40    999.41    999.42    999.42    999.43    999.43    999.44  

     3    0.50    0.59    0.88    1.00    1.06    1.10    1.13    1.15    1.16    1.17    1.18    1.19    1.20    1.20    1.21    1.21    1.21  

     3    0.25    2.02    2.28    2.36    2.39    2.41    2.42    2.43    2.44    2.44    2.44    2.45    2.45    2.45    2.45    2.46    2.46  

     3    0.10    5.54    5.46    5.39    5.34    5.31    5.28    5.27    5.25    5.24    5.23    5.22    5.22    5.21    5.20    5.20    5.20  

     3    0.05    10.13    9.55    9.28    9.12    9.01    8.94    8.89    8.85    8.81    8.79    8.76    8.74    8.73    8.71    8.70    8.69  

     3    0.01    34.12    30.82    29.46    28.71    28.24    27.91    27.67    27.49    27.35    27.23    27.13    27.05    26.98    26.92    26.87    26.83  

     3    0.001    167.03    148.50    141.11    137.10    134.58    132.85    131.58    130.62    129.86    129.25    128.74    128.32    127.96    127.64    127.37    127.14  

     4    0.50    0.55    0.83    0.94    1.00    1.04    1.06    1.08    1.09    1.10    1.11    1.12    1.13    1.13    1.13    1.14    1.14  

     4    0.25    1.81    2.00    2.05    2.06    2.07    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08  

     4    0.10    4.54    4.32    4.19    4.11    4.05    4.01    3.98    3.95    3.94    3.92    3.91    3.90    3.89    3.88    3.87    3.86  

     4    0.05    7.71    6.94    6.59    6.39    6.26    6.16    6.09    6.04    6.00    5.96    5.94    5.91    5.89    5.87    5.86    5.84  

     4    0.01    21.20    18.00    16.69    15.98    15.52    15.21    14.98    14.80    14.66    14.55    14.45    14.37    14.31    14.25    14.20    14.15  

     4    0.001    74.14    61.25    56.18    53.44    51.71    50.53    49.66    49.00    48.47    48.05    47.70    47.41    47.16    46.95    46.76    46.60  

     5    0.50    0.53    0.80    0.91    0.96    1.00    1.02    1.04    1.05    1.06    1.07    1.08    1.09    1.09    1.09    1.10    1.10  

     5    0.25    1.69    1.85    1.88    1.89    1.89    1.89    1.89    1.89    1.89    1.89    1.89    1.89    1.89    1.89    1.89    1.88  

     5    0.10    4.06    3.78    3.62    3.52    3.45    3.40    3.37    3.34    3.32    3.30    3.28    3.27    3.26    3.25    3.24    3.23  

     5    0.05    6.61    5.79    5.41    5.19    5.05    4.95    4.88    4.82    4.77    4.74    4.70    4.68    4.66    4.64    4.62    4.60  

     5    0.01    16.26    13.27    12.06    11.39    10.97    10.67    10.46    10.29    10.16    10.05    9.96    9.89    9.82    9.77    9.72    9.68  

     5    0.001    47.18    37.12    33.20    31.09    29.75    28.83    28.16    27.65    27.24    26.92    26.65    26.42    26.22    26.06    25.91    25.78  

     6    0.50    0.51    0.78    0.89    0.94    0.98    1.00    1.02    1.03    1.04    1.05    1.05    1.06    1.06    1.07    1.07    1.08  

     6    0.25    1.62    1.76    1.78    1.79    1.79    1.78    1.78    1.78    1.77    1.77    1.77    1.77    1.77    1.76    1.76    1.76  

     6    0.10    3.78    3.46    3.29    3.18    3.11    3.05    3.01    2.98    2.96    2.94    2.92    2.90    2.89    2.88    2.87    2.86  

     6    0.05    5.99    5.14    4.76    4.53    4.39    4.28    4.21    4.15    4.10    4.06    4.03    4.00    3.98    3.96    3.94    3.92  

     6    0.01    13.75    10.92    9.78    9.15    8.75    8.47    8.26    8.10    7.98    7.87    7.79    7.72    7.66    7.60    7.56    7.52  

     6    0.001    35.51    27.00    23.70    21.92    20.80    20.03    19.46    19.03    18.69    18.41    18.18    17.99    17.82    17.68    17.56    17.45  

     7    0.50    0.51    0.77    0.87    0.93    0.96    0.98    1.00    1.01    1.02    1.03    1.04    1.04    1.05    1.05    1.05    1.06  

     7    0.25    1.57    1.70    1.72    1.72    1.71    1.71    1.70    1.70    1.69    1.69    1.69    1.68    1.68    1.68    1.68    1.68  

     7    0.10    3.59    3.26    3.07    2.96    2.88    2.83    2.78    2.75    2.72    2.70    2.68    2.67    2.65    2.64    2.63    2.62  

     7    0.05    5.59    4.74    4.35    4.12    3.97    3.87    3.79    3.73    3.68    3.64    3.60    3.57    3.55    3.53    3.51    3.49  

     7    0.01    12.25    9.55    8.45    7.85    7.46    7.19    6.99    6.84    6.72    6.62    6.54    6.47    6.41    6.36    6.31    6.28  

     7    0.001    29.25    21.69    18.77    17.20    16.21    15.52    15.02    14.63    14.33    14.08    13.88    13.71    13.56    13.43    13.32    13.23  

     8    0.50    0.50    0.76    0.86    0.91    0.95    0.97    0.99    1.00    1.01    1.02    1.02    1.03    1.03    1.04    1.04    1.04  

     8    0.25    1.54    1.66    1.67    1.66    1.66    1.65    1.64    1.64    1.63    1.63    1.63    1.62    1.62    1.62    1.62    1.62  

     8    0.10    3.46    3.11    2.92    2.81    2.73    2.67    2.62    2.59    2.56    2.54    2.52    2.50    2.49    2.48    2.46    2.45  

     8    0.05    5.32    4.46    4.07    3.84    3.69    3.58    3.50    3.44    3.39    3.35    3.31    3.28    3.26    3.24    3.22    3.20  

     8    0.01    11.26    8.65    7.59    7.01    6.63    6.37    6.18    6.03    5.91    5.81    5.73    5.67    5.61    5.56    5.52    5.48  

     8    0.001    25.41    18.49    15.83    14.39    13.48    12.86    12.40    12.05    11.77    11.54    11.35    11.19    11.06    10.94    10.84    10.75  

     9    0.50    0.49    0.75    0.85    0.91    0.94    0.96    0.98    0.99    1.00    1.01    1.01    1.02    1.02    1.03    1.03    1.03  

     9    0.25    1.51    1.62    1.63    1.63    1.62    1.61    1.60    1.60    1.59    1.59    1.58    1.58    1.58    1.57    1.57    1.57  

     9    0.10    3.36    3.01    2.81    2.69    2.61    2.55    2.51    2.47    2.44    2.42    2.40    2.38    2.36    2.35    2.34    2.33  

     9    0.05    5.12    4.26    3.86    3.63    3.48    3.37    3.29    3.23    3.18    3.14    3.10    3.07    3.05    3.03    3.01    2.99  

     9    0.01    10.56    8.02    6.99    6.42    6.06    5.80    5.61    5.47    5.35    5.26    5.18    5.11    5.05    5.01    4.96    4.92  

     9    0.001    22.86    16.39    13.90    12.56    11.71    11.13    10.70    10.37    10.11    9.89    9.72    9.57    9.44    9.33    9.24    9.15  
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 Critical Values for the F-distribution 333

  17    18    19    20    25    30    35    40    45    50    60    70    80    90    100    110    120  

  2.11    2.11    2.11    2.12    2.13    2.15    2.15    2.16    2.16    2.17    2.17    2.18    2.18    2.18    2.18    2.18    2.18  

  9.53    9.55    9.57    9.58    9.63    9.67    9.70    9.71    9.73    9.74    9.76    9.77    9.78    9.79    9.80    9.80    9.80  

  61.46    61.57    61.66    61.74    62.05    62.26    62.42    62.53    62.62    62.69    62.79    62.87    62.93    62.97    63.01    63.04    63.06  

  246.92    247.32    247.69    248.01    249.26    250.10    250.69    251.14    251.49    251.77    252.20    252.50    252.72    252.90    253.04    253.16    253.25  

  6181.43    6191.53    6200.58    6208.73    6239.83    6260.65    6275.57    6286.78    6295.52    6302.52    6313.03    6320.55    6326.20    6330.59    6334.11    6336.99    6339.39  

  618178.43    619187.70    620092.29    620907.67    624016.83    626098.96    627590.73    628712.03    629585.61    630285.38    631336.56    632088.51    632653.07    633092.54    633444.33    633732.32    633972.40  

  1.38    1.39    1.39    1.39    1.40    1.41    1.41    1.42    1.42    1.42    1.43    1.43    1.43    1.43    1.43    1.43    1.43  

  3.42    3.42    3.42    3.43    3.44    3.44    3.45    3.45    3.45    3.46    3.46    3.46    3.46    3.46    3.47    3.47    3.47  

  9.43    9.44    9.44    9.44    9.45    9.46    9.46    9.47    9.47    9.47    9.47    9.48    9.48    9.48    9.48    9.48    9.48  

  19.44    19.44    19.44    19.45    19.46    19.46    19.47    19.47    19.47    19.48    19.48    19.48    19.48    19.48    19.49    19.49    19.49  

  99.44    99.44    99.45    99.45    99.46    99.47    99.47    99.47    99.48    99.48    99.48    99.48    99.49    99.49    99.49    99.49    99.49  

  999.44    999.44    999.45    999.45    999.46    999.47    999.47    999.47    999.48    999.48    999.48    999.49    999.49    999.49    999.49    999.49    999.49  

  1.22    1.22    1.22    1.23    1.23    1.24    1.24    1.25    1.25    1.25    1.25    1.26    1.26    1.26    1.26    1.26    1.26  

  2.46    2.46    2.46    2.46    2.46    2.47    2.47    2.47    2.47    2.47    2.47    2.47    2.47    2.47    2.47    2.47    2.47  

  5.19    5.19    5.19    5.18    5.17    5.17    5.16    5.16    5.16    5.15    5.15    5.15    5.15    5.15    5.14    5.14    5.14  

  8.68    8.67    8.67    8.66    8.63    8.62    8.60    8.59    8.59    8.58    8.57    8.57    8.56    8.56    8.55    8.55    8.55  

  26.79    26.75    26.72    26.69    26.58    26.50    26.45    26.41    26.38    26.35    26.32    26.29    26.27    26.25    26.24    26.23    26.22  

  126.93    126.74    126.57    126.42    125.84    125.45    125.17    124.96    124.79    124.66    124.47    124.32    124.22    124.14    124.07    124.01    123.97  

  1.14    1.15    1.15    1.15    1.16    1.16    1.17    1.17    1.17    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18  

  2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08    2.08  

  3.86    3.85    3.85    3.84    3.83    3.82    3.81    3.80    3.80    3.80    3.79    3.79    3.78    3.78    3.78    3.78    3.78  

  5.83    5.82    5.81    5.80    5.77    5.75    5.73    5.72    5.71    5.70    5.69    5.68    5.67    5.67    5.66    5.66    5.66  

  14.11    14.08    14.05    14.02    13.91    13.84    13.79    13.75    13.71    13.69    13.65    13.63    13.61    13.59    13.58    13.57    13.56  

  46.45    46.32    46.21    46.10    45.70    45.43    45.23    45.09    44.97    44.88    44.75    44.65    44.57    44.52    44.47    44.43    44.40  

  1.10    1.11    1.11    1.11    1.12    1.12    1.13    1.13    1.13    1.13    1.14    1.14    1.14    1.14    1.14    1.14    1.14  

  1.88    1.88    1.88    1.88    1.88    1.88    1.88    1.88    1.88    1.88    1.87    1.87    1.87    1.87    1.87    1.87    1.87  

  3.22    3.22    3.21    3.21    3.19    3.17    3.16    3.16    3.15    3.15    3.14    3.14    3.13    3.13    3.13    3.12    3.12  

  4.59    4.58    4.57    4.56    4.52    4.50    4.48    4.46    4.45    4.44    4.43    4.42    4.41    4.41    4.41    4.40    4.40  

  9.64    9.61    9.58    9.55    9.45    9.38    9.33    9.29    9.26    9.24    9.20    9.18    9.16    9.14    9.13    9.12    9.11  

  25.67    25.57    25.48    25.39    25.08    24.87    24.72    24.60    24.51    24.44    24.33    24.26    24.20    24.15    24.12    24.09    24.06  

  1.08    1.08    1.08    1.08    1.09    1.10    1.10    1.10    1.11    1.11    1.11    1.11    1.11    1.11    1.11    1.12    1.12  

  1.76    1.76    1.76    1.76    1.75    1.75    1.75    1.75    1.75    1.75    1.74    1.74    1.74    1.74    1.74    1.74    1.74  

  2.85    2.85    2.84    2.84    2.81    2.80    2.79    2.78    2.77    2.77    2.76    2.76    2.75    2.75    2.75    2.74    2.74  

  3.91    3.90    3.88    3.87    3.83    3.81    3.79    3.77    3.76    3.75    3.74    3.73    3.72    3.72    3.71    3.71    3.70  

  7.48    7.45    7.42    7.40    7.30    7.23    7.18    7.14    7.11    7.09    7.06    7.03    7.01    7.00    6.99    6.98    6.97  

  17.35    17.27    17.19    17.12    16.85    16.67    16.54    16.44    16.37    16.31    16.21    16.15    16.10    16.06    16.03    16.00    15.98  

  1.06    1.06    1.06    1.07    1.07    1.08    1.08    1.08    1.09    1.09    1.09    1.09    1.09    1.09    1.10    1.10    1.10  

  1.67    1.67    1.67    1.67    1.67    1.66    1.66    1.66    1.66    1.66    1.65    1.65    1.65    1.65    1.65    1.65    1.65  

  2.61    2.61    2.60    2.59    2.57    2.56    2.54    2.54    2.53    2.52    2.51    2.51    2.50    2.50    2.50    2.49    2.49  

  3.48    3.47    3.46    3.44    3.40    3.38    3.36    3.34    3.33    3.32    3.30    3.29    3.29    3.28    3.27    3.27    3.27  

  6.24    6.21    6.18    6.16    6.06    5.99    5.94    5.91    5.88    5.86    5.82    5.80    5.78    5.77    5.75    5.75    5.74  

  13.14    13.06    12.99    12.93    12.69    12.53    12.41    12.33    12.26    12.20    12.12    12.06    12.01    11.98    11.95    11.93    11.91  

  1.05    1.05    1.05    1.05    1.06    1.07    1.07    1.07    1.07    1.07    1.08    1.08    1.08    1.08    1.08    1.08    1.08  

  1.61    1.61    1.61    1.61    1.60    1.60    1.60    1.59    1.59    1.59    1.59    1.59    1.59    1.59    1.58    1.58    1.58  

  2.45    2.44    2.43    2.42    2.40    2.38    2.37    2.36    2.35    2.35    2.34    2.33    2.33    2.32    2.32    2.32    2.32  

  3.19    3.17    3.16    3.15    3.11    3.08    3.06    3.04    3.03    3.02    3.01    2.99    2.99    2.98    2.97    2.97    2.97  

  5.44    5.41    5.38    5.36    5.26    5.20    5.15    5.12    5.09    5.07    5.03    5.01    4.99    4.97    4.96    4.95    4.95  

  10.67    10.60    10.54    10.48    10.26    10.11    10.00    9.92    9.86    9.80    9.73    9.67    9.63    9.60    9.57    9.55    9.53  

  1.04    1.04    1.04    1.04    1.05    1.05    1.06    1.06    1.06    1.06    1.07    1.07    1.07    1.07    1.07    1.07    1.07  

  1.57    1.56    1.56    1.56    1.55    1.55    1.55    1.54    1.54    1.54    1.54    1.54    1.54    1.53    1.53    1.53    1.53  

  2.32    2.31    2.30    2.30    2.27    2.25    2.24    2.23    2.22    2.22    2.21    2.20    2.20    2.19    2.19    2.19    2.18  

  2.97    2.96    2.95    2.94    2.89    2.86    2.84    2.83    2.81    2.80    2.79    2.78    2.77    2.76    2.76    2.75    2.75  

  4.89    4.86    4.83    4.81    4.71    4.65    4.60    4.57    4.54    4.52    4.48    4.46    4.44    4.43    4.41    4.41    4.40  

  9.08    9.01    8.95    8.90    8.69    8.55    8.45    8.37    8.31    8.26    8.19    8.13    8.09    8.06    8.04    8.02    8.00  
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334 Critical Values for the F-distribution

    df       α      Degrees of freedom (numerator mean squares)  

  1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16  

     10    0.50    0.49    0.74    0.85    0.90    0.93    0.95    0.97    0.98    0.99    1.00    1.01    1.01    1.02    1.02    1.02    1.03  

     10    0.25    1.49    1.60    1.60    1.59    1.59    1.58    1.57    1.56    1.56    1.55    1.55    1.54    1.54    1.54    1.53    1.53  

     10    0.10    3.29    2.92    2.73    2.61    2.52    2.46    2.41    2.38    2.35    2.32    2.30    2.28    2.27    2.26    2.24    2.23  

     10    0.05    4.96    4.10    3.71    3.48    3.33    3.22    3.14    3.07    3.02    2.98    2.94    2.91    2.89    2.86    2.85    2.83  

     10    0.01    10.04    7.56    6.55    5.99    5.64    5.39    5.20    5.06    4.94    4.85    4.77    4.71    4.65    4.60    4.56    4.52  

     10    0.001    21.04    14.91    12.55    11.28    10.48    9.93    9.52    9.20    8.96    8.75    8.59    8.45    8.32    8.22    8.13    8.05  

     11    0.50    0.49    0.74    0.84    0.89    0.93    0.95    0.96    0.98    0.99    0.99    1.00    1.01    1.01    1.01    1.02    1.02  

     11    0.25    1.47    1.58    1.58    1.57    1.56    1.55    1.54    1.53    1.53    1.52    1.52    1.51    1.51    1.51    1.50    1.50  

     11    0.10    3.23    2.86    2.66    2.54    2.45    2.39    2.34    2.30    2.27    2.25    2.23    2.21    2.19    2.18    2.17    2.16  

     11    0.05    4.84    3.98    3.59    3.36    3.20    3.09    3.01    2.95    2.90    2.85    2.82    2.79    2.76    2.74    2.72    2.70  

     11    0.01    9.65    7.21    6.22    5.67    5.32    5.07    4.89    4.74    4.63    4.54    4.46    4.40    4.34    4.29    4.25    4.21  

     11    0.001    19.69    13.81    11.56    10.35    9.58    9.05    8.66    8.35    8.12    7.92    7.76    7.63    7.51    7.41    7.32    7.24  

     12    0.50    0.48    0.73    0.84    0.89    0.92    0.94    0.96    0.97    0.98    0.99    0.99    1.00    1.00    1.01    1.01    1.01  

     12    0.25    1.46    1.56    1.56    1.55    1.54    1.53    1.52    1.51    1.51    1.50    1.49    1.49    1.49    1.48    1.48    1.48  

     12    0.10    3.18    2.81    2.61    2.48    2.39    2.33    2.28    2.24    2.21    2.19    2.17    2.15    2.13    2.12    2.10    2.09  

     12    0.05    4.75    3.89    3.49    3.26    3.11    3.00    2.91    2.85    2.80    2.75    2.72    2.69    2.66    2.64    2.62    2.60  

     12    0.01    9.33    6.93    5.95    5.41    5.06    4.82    4.64    4.50    4.39    4.30    4.22    4.16    4.10    4.05    4.01    3.97  

     12    0.001    18.64    12.97    10.80    9.63    8.89    8.38    8.00    7.71    7.48    7.29    7.14    7.00    6.89    6.79    6.71    6.63  

     13    0.50    0.48    0.73    0.83    0.88    0.92    0.94    0.96    0.97    0.98    0.98    0.99    1.00    1.00    1.00    1.01    1.01  

     13    0.25    1.45    1.55    1.55    1.53    1.52    1.51    1.50    1.49    1.49    1.48    1.47    1.47    1.47    1.46    1.46    1.46  

     13    0.10    3.14    2.76    2.56    2.43    2.35    2.28    2.23    2.20    2.16    2.14    2.12    2.10    2.08    2.07    2.05    2.04  

     13    0.05    4.67    3.81    3.41    3.18    3.03    2.92    2.83    2.77    2.71    2.67    2.63    2.60    2.58    2.55    2.53    2.51  

     13    0.01    9.07    6.70    5.74    5.21    4.86    4.62    4.44    4.30    4.19    4.10    4.02    3.96    3.91    3.86    3.82    3.78  

     13    0.001    17.82    12.31    10.21    9.07    8.35    7.86    7.49    7.21    6.98    6.80    6.65    6.52    6.41    6.31    6.23    6.16  

     14    0.50    0.48    0.73    0.83    0.88    0.91    0.94    0.95    0.96    0.97    0.98    0.99    0.99    1.00    1.00    1.00    1.01  

     14    0.25    1.44    1.53    1.53    1.52    1.51    1.50    1.49    1.48    1.47    1.46    1.46    1.45    1.45    1.44    1.44    1.44  

     14    0.10    3.10    2.73    2.52    2.39    2.31    2.24    2.19    2.15    2.12    2.10    2.07    2.05    2.04    2.02    2.01    2.00  

     14    0.05    4.60    3.74    3.34    3.11    2.96    2.85    2.76    2.70    2.65    2.60    2.57    2.53    2.51    2.48    2.46    2.44  

     14    0.01    8.86    6.51    5.56    5.04    4.69    4.46    4.28    4.14    4.03    3.94    3.86    3.80    3.75    3.70    3.66    3.62  

     14    0.001    17.14    11.78    9.73    8.62    7.92    7.44    7.08    6.80    6.58    6.40    6.26    6.13    6.02    5.93    5.85    5.78  

     15    0.50    0.48    0.73    0.83    0.88    0.91    0.93    0.95    0.96    0.97    0.98    0.98    0.99    0.99    1.00    1.00    1.00  

     15    0.25    1.43    1.52    1.52    1.51    1.49    1.48    1.47    1.46    1.46    1.45    1.44    1.44    1.43    1.43    1.43    1.42  

     15    0.10    3.07    2.70    2.49    2.36    2.27    2.21    2.16    2.12    2.09    2.06    2.04    2.02    2.00    1.99    1.97    1.96  

     15    0.05    4.54    3.68    3.29    3.06    2.90    2.79    2.71    2.64    2.59    2.54    2.51    2.48    2.45    2.42    2.40    2.38  

     15    0.01    8.68    6.36    5.42    4.89    4.56    4.32    4.14    4.00    3.89    3.80    3.73    3.67    3.61    3.56    3.52    3.49  

     15    0.001    16.59    11.34    9.34    8.25    7.57    7.09    6.74    6.47    6.26    6.08    5.94    5.81    5.71    5.62    5.54    5.46  

     16    0.50    0.48    0.72    0.82    0.88    0.91    0.93    0.95    0.96    0.97    0.97    0.98    0.99    0.99    0.99    1.00    1.00  

     16    0.25    1.42    1.51    1.51    1.50    1.48    1.47    1.46    1.45    1.44    1.44    1.43    1.43    1.42    1.42    1.41    1.41  

     16    0.10    3.05    2.67    2.46    2.33    2.24    2.18    2.13    2.09    2.06    2.03    2.01    1.99    1.97    1.95    1.94    1.93  

     16    0.05    4.49    3.63    3.24    3.01    2.85    2.74    2.66    2.59    2.54    2.49    2.46    2.42    2.40    2.37    2.35    2.33  

     16    0.01    8.53    6.23    5.29    4.77    4.44    4.20    4.03    3.89    3.78    3.69    3.62    3.55    3.50    3.45    3.41    3.37  

     16    0.001    16.12    10.97    9.01    7.94    7.27    6.80    6.46    6.19    5.98    5.81    5.67    5.55    5.44    5.35    5.27    5.20  

     17    0.50    0.47    0.72    0.82    0.87    0.91    0.93    0.94    0.96    0.96    0.97    0.98    0.98    0.99    0.99    0.99    1.00  

     17    0.25    1.42    1.51    1.50    1.49    1.47    1.46    1.45    1.44    1.43    1.43    1.42    1.41    1.41    1.41    1.40    1.40  

     17    0.10    3.03    2.64    2.44    2.31    2.22    2.15    2.10    2.06    2.03    2.00    1.98    1.96    1.94    1.93    1.91    1.90  

     17    0.05    4.45    3.59    3.20    2.96    2.81    2.70    2.61    2.55    2.49    2.45    2.41    2.38    2.35    2.33    2.31    2.29  

     17    0.01    8.40    6.11    5.18    4.67    4.34    4.10    3.93    3.79    3.68    3.59    3.52    3.46    3.40    3.35    3.31    3.27  

     17    0.001    15.72    10.66    8.73    7.68    7.02    6.56    6.22    5.96    5.75    5.58    5.44    5.32    5.22    5.13    5.05    4.99  

     18    0.50    0.47    0.72    0.82    0.87    0.90    0.93    0.94    0.95    0.96    0.97    0.98    0.98    0.99    0.99    0.99    1.00  

     18    0.25    1.41    1.50    1.49    1.48    1.46    1.45    1.44    1.43    1.42    1.42    1.41    1.40    1.40    1.40    1.39    1.39  

     18    0.10    3.01    2.62    2.42    2.29    2.20    2.13    2.08    2.04    2.00    1.98    1.95    1.93    1.92    1.90    1.89    1.87  

     18    0.05    4.41    3.55    3.16    2.93    2.77    2.66    2.58    2.51    2.46    2.41    2.37    2.34    2.31    2.29    2.27    2.25  

     18    0.01    8.29    6.01    5.09    4.58    4.25    4.01    3.84    3.71    3.60    3.51    3.43    3.37    3.32    3.27    3.23    3.19  

     18    0.001    15.38    10.39    8.49    7.46    6.81    6.35    6.02    5.76    5.56    5.39    5.25    5.13    5.03    4.94    4.87    4.80  
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  17    18    19    20    25    30    35    40    45    50    60    70    80    90    100    110    120  

  1.03    1.03    1.03    1.03    1.04    1.05    1.05    1.05    1.05    1.06    1.06    1.06    1.06    1.06    1.06    1.06    1.06  

  1.53    1.53    1.53    1.52    1.52    1.51    1.51    1.51    1.50    1.50    1.50    1.50    1.50    1.49    1.49    1.49    1.49  

  2.22    2.22    2.21    2.20    2.17    2.16    2.14    2.13    2.12    2.12    2.11    2.10    2.09    2.09    2.09    2.08    2.08  

  2.81    2.80    2.79    2.77    2.73    2.70    2.68    2.66    2.65    2.64    2.62    2.61    2.60    2.59    2.59    2.58    2.58  

  4.49    4.46    4.43    4.41    4.31    4.25    4.20    4.17    4.14    4.12    4.08    4.06    4.04    4.03    4.01    4.00    4.00  

  7.98    7.91    7.86    7.80    7.60    7.47    7.37    7.30    7.24    7.19    7.12    7.07    7.03    7.00    6.98    6.96    6.94  

  1.02    1.02    1.03    1.03    1.04    1.04    1.04    1.05    1.05    1.05    1.05    1.05    1.05    1.06    1.06    1.06    1.06  

  1.50    1.50    1.49    1.49    1.49    1.48    1.48    1.47    1.47    1.47    1.47    1.46    1.46    1.46    1.46    1.46    1.46  

  2.15    2.14    2.13    2.12    2.10    2.08    2.06    2.05    2.04    2.04    2.03    2.02    2.01    2.01    2.01    2.00    2.00  

  2.69    2.67    2.66    2.65    2.60    2.57    2.55    2.53    2.52    2.51    2.49    2.48    2.47    2.46    2.46    2.45    2.45  

  4.18    4.15    4.12    4.10    4.01    3.94    3.89    3.86    3.83    3.81    3.78    3.75    3.73    3.72    3.71    3.70    3.69  

  7.17    7.11    7.06    7.01    6.81    6.68    6.59    6.52    6.46    6.42    6.35    6.30    6.26    6.23    6.21    6.19    6.18  

  1.02    1.02    1.02    1.02    1.03    1.03    1.04    1.04    1.04    1.04    1.05    1.05    1.05    1.05    1.05    1.05    1.05  

  1.47    1.47    1.47    1.47    1.46    1.45    1.45    1.45    1.44    1.44    1.44    1.44    1.44    1.43    1.43    1.43    1.43  

  2.08    2.08    2.07    2.06    2.03    2.01    2.00    1.99    1.98    1.97    1.96    1.95    1.95    1.94    1.94    1.93    1.93  

  2.58    2.57    2.56    2.54    2.50    2.47    2.44    2.43    2.41    2.40    2.38    2.37    2.36    2.36    2.35    2.34    2.34  

  3.94    3.91    3.88    3.86    3.76    3.70    3.65    3.62    3.59    3.57    3.54    3.51    3.49    3.48    3.47    3.46    3.45  

  6.57    6.51    6.45    6.40    6.22    6.09    6.00    5.93    5.87    5.83    5.76    5.71    5.68    5.65    5.63    5.61    5.59  

  1.01    1.01    1.02    1.02    1.03    1.03    1.03    1.04    1.04    1.04    1.04    1.04    1.04    1.05    1.05    1.05    1.05  

  1.45    1.45    1.45    1.45    1.44    1.43    1.43    1.42    1.42    1.42    1.42    1.41    1.41    1.41    1.41    1.41    1.41  

  2.03    2.02    2.01    2.01    1.98    1.96    1.94    1.93    1.92    1.92    1.90    1.90    1.89    1.89    1.88    1.88    1.88  

  2.50    2.48    2.47    2.46    2.41    2.38    2.36    2.34    2.33    2.31    2.30    2.28    2.27    2.27    2.26    2.26    2.25  

  3.75    3.72    3.69    3.66    3.57    3.51    3.46    3.43    3.40    3.38    3.34    3.32    3.30    3.28    3.27    3.26    3.25  

  6.09    6.03    5.98    5.93    5.75    5.63    5.54    5.47    5.41    5.37    5.30    5.26    5.22    5.19    5.17    5.15    5.14  

  1.01    1.01    1.01    1.01    1.02    1.03    1.03    1.03    1.03    1.04    1.04    1.04    1.04    1.04    1.04    1.04    1.04  

  1.44    1.43    1.43    1.43    1.42    1.41    1.41    1.41    1.40    1.40    1.40    1.39    1.39    1.39    1.39    1.39    1.39  

  1.99    1.98    1.97    1.96    1.93    1.91    1.90    1.89    1.88    1.87    1.86    1.85    1.84    1.84    1.83    1.83    1.83  

  2.43    2.41    2.40    2.39    2.34    2.31    2.28    2.27    2.25    2.24    2.22    2.21    2.20    2.19    2.19    2.18    2.18  

  3.59    3.56    3.53    3.51    3.41    3.35    3.30    3.27    3.24    3.22    3.18    3.16    3.14    3.12    3.11    3.10    3.09  

  5.71    5.66    5.60    5.56    5.38    5.25    5.17    5.10    5.04    5.00    4.94    4.89    4.86    4.83    4.81    4.79    4.77  

  1.01    1.01    1.01    1.01    1.02    1.02    1.03    1.03    1.03    1.03    1.03    1.04    1.04    1.04    1.04    1.04    1.04  

  1.42    1.42    1.41    1.41    1.40    1.40    1.39    1.39    1.39    1.38    1.38    1.38    1.37    1.37    1.37    1.37    1.37  

  1.95    1.94    1.93    1.92    1.89    1.87    1.86    1.85    1.84    1.83    1.82    1.81    1.80    1.80    1.79    1.79    1.79  

  2.37    2.35    2.34    2.33    2.28    2.25    2.22    2.20    2.19    2.18    2.16    2.15    2.14    2.13    2.12    2.12    2.11  

  3.45    3.42    3.40    3.37    3.28    3.21    3.17    3.13    3.10    3.08    3.05    3.02    3.00    2.99    2.98    2.97    2.96  

  5.40    5.35    5.29    5.25    5.07    4.95    4.86    4.80    4.74    4.70    4.64    4.59    4.56    4.53    4.51    4.49    4.47  

  1.00    1.00    1.01    1.01    1.02    1.02    1.02    1.03    1.03    1.03    1.03    1.03    1.03    1.04    1.04    1.04    1.04  

  1.41    1.40    1.40    1.40    1.39    1.38    1.38    1.37    1.37    1.37    1.36    1.36    1.36    1.36    1.36    1.36    1.35  

  1.92    1.91    1.90    1.89    1.86    1.84    1.82    1.81    1.80    1.79    1.78    1.77    1.77    1.76    1.76    1.75    1.75  

  2.32    2.30    2.29    2.28    2.23    2.19    2.17    2.15    2.14    2.12    2.11    2.09    2.08    2.07    2.07    2.06    2.06  

  3.34    3.31    3.28    3.26    3.16    3.10    3.05    3.02    2.99    2.97    2.93    2.91    2.89    2.87    2.86    2.85    2.84  

  5.14    5.09    5.04    4.99    4.82    4.70    4.61    4.54    4.49    4.45    4.39    4.34    4.31    4.28    4.26    4.24    4.23  

  1.00    1.00    1.00    1.01    1.01    1.02    1.02    1.02    1.03    1.03    1.03    1.03    1.03    1.03    1.03    1.03    1.03  

  1.39    1.39    1.39    1.39    1.38    1.37    1.37    1.36    1.36    1.36    1.35    1.35    1.35    1.34    1.34    1.34    1.34  

  1.89    1.88    1.87    1.86    1.83    1.81    1.79    1.78    1.77    1.76    1.75    1.74    1.74    1.73    1.73    1.72    1.72  

  2.27    2.26    2.24    2.23    2.18    2.15    2.12    2.10    2.09    2.08    2.06    2.05    2.03    2.03    2.02    2.02    2.01  

  3.24    3.21    3.19    3.16    3.07    3.00    2.96    2.92    2.89    2.87    2.83    2.81    2.79    2.78    2.76    2.75    2.75  

  4.92    4.87    4.82    4.78    4.60    4.48    4.40    4.33    4.28    4.24    4.18    4.13    4.10    4.07    4.05    4.03    4.02  

  1.00    1.00    1.00    1.00    1.01    1.02    1.02    1.02    1.02    1.02    1.03    1.03    1.03    1.03    1.03    1.03    1.03  

  1.38    1.38    1.38    1.38    1.37    1.36    1.35    1.35    1.35    1.34    1.34    1.34    1.33    1.33    1.33    1.33    1.33  

  1.86    1.85    1.84    1.84    1.80    1.78    1.77    1.75    1.74    1.74    1.72    1.71    1.71    1.70    1.70    1.69    1.69  

  2.23    2.22    2.20    2.19    2.14    2.11    2.08    2.06    2.05    2.04    2.02    2.00    1.99    1.98    1.98    1.97    1.97  

  3.16    3.13    3.10    3.08    2.98    2.92    2.87    2.84    2.81    2.78    2.75    2.72    2.70    2.69    2.68    2.67    2.66  

  4.74    4.68    4.63    4.59    4.42    4.30    4.22    4.15    4.10    4.06    4.00    3.95    3.92    3.89    3.87    3.85    3.84  
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336 Critical Values for the F-distribution

    df       α      Degrees of freedom (numerator mean squares)  

  1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16  

     19    0.50    0.47    0.72    0.82    0.87    0.90    0.92    0.94    0.95    0.96    0.97    0.97    0.98    0.98    0.99    0.99    0.99  

     19    0.25    1.41    1.49    1.49    1.47    1.46    1.44    1.43    1.42    1.41    1.41    1.40    1.40    1.39    1.39    1.38    1.38  

     19    0.10    2.99    2.61    2.40    2.27    2.18    2.11    2.06    2.02    1.98    1.96    1.93    1.91    1.89    1.88    1.86    1.85  

     19    0.05    4.38    3.52    3.13    2.90    2.74    2.63    2.54    2.48    2.42    2.38    2.34    2.31    2.28    2.26    2.23    2.21  

     19    0.01    8.18    5.93    5.01    4.50    4.17    3.94    3.77    3.63    3.52    3.43    3.36    3.30    3.24    3.19    3.15    3.12  

     19    0.001    15.08    10.16    8.28    7.27    6.62    6.18    5.85    5.59    5.39    5.22    5.08    4.97    4.87    4.78    4.70    4.64  

     20    0.50    0.47    0.72    0.82    0.87    0.90    0.92    0.94    0.95    0.96    0.97    0.97    0.98    0.98    0.99    0.99    0.99  

     20    0.25    1.40    1.49    1.48    1.47    1.45    1.44    1.43    1.42    1.41    1.40    1.39    1.39    1.38    1.38    1.37    1.37  

     20    0.10    2.97    2.59    2.38    2.25    2.16    2.09    2.04    2.00    1.96    1.94    1.91    1.89    1.87    1.86    1.84    1.83  

     20    0.05    4.35    3.49    3.10    2.87    2.71    2.60    2.51    2.45    2.39    2.35    2.31    2.28    2.25    2.22    2.20    2.18  

     20    0.01    8.10    5.85    4.94    4.43    4.10    3.87    3.70    3.56    3.46    3.37    3.29    3.23    3.18    3.13    3.09    3.05  

     20    0.001    14.82    9.95    8.10    7.10    6.46    6.02    5.69    5.44    5.24    5.08    4.94    4.82    4.72    4.64    4.56    4.49  

     21    0.50    0.47    0.72    0.81    0.87    0.90    0.92    0.94    0.95    0.96    0.96    0.97    0.98    0.98    0.98    0.99    0.99  

     21    0.25    1.40    1.48    1.48    1.46    1.44    1.43    1.42    1.41    1.40    1.39    1.39    1.38    1.37    1.37    1.37    1.36  

     21    0.10    2.96    2.57    2.36    2.23    2.14    2.08    2.02    1.98    1.95    1.92    1.90    1.87    1.86    1.84    1.83    1.81  

     21    0.05    4.32    3.47    3.07    2.84    2.68    2.57    2.49    2.42    2.37    2.32    2.28    2.25    2.22    2.20    2.18    2.16  

     21    0.01    8.02    5.78    4.87    4.37    4.04    3.81    3.64    3.51    3.40    3.31    3.24    3.17    3.12    3.07    3.03    2.99  

     21    0.001    14.59    9.77    7.94    6.95    6.32    5.88    5.56    5.31    5.11    4.95    4.81    4.70    4.60    4.51    4.44    4.37  

     22    0.50    0.47    0.72    0.81    0.87    0.90    0.92    0.93    0.95    0.96    0.96    0.97    0.97    0.98    0.98    0.99    0.99  

     22    0.25    1.40    1.48    1.47    1.45    1.44    1.42    1.41    1.40    1.39    1.39    1.38    1.37    1.37    1.36    1.36    1.36  

     22    0.10    2.95    2.56    2.35    2.22    2.13    2.06    2.01    1.97    1.93    1.90    1.88    1.86    1.84    1.83    1.81    1.80  

     22    0.05    4.30    3.44    3.05    2.82    2.66    2.55    2.46    2.40    2.34    2.30    2.26    2.23    2.20    2.17    2.15    2.13  

     22    0.01    7.95    5.72    4.82    4.31    3.99    3.76    3.59    3.45    3.35    3.26    3.18    3.12    3.07    3.02    2.98    2.94  

     22    0.001    14.38    9.61    7.80    6.81    6.19    5.76    5.44    5.19    4.99    4.83    4.70    4.58    4.49    4.40    4.33    4.26  

     23    0.50    0.47    0.71    0.81    0.86    0.90    0.92    0.93    0.95    0.95    0.96    0.97    0.97    0.98    0.98    0.98    0.99  

     23    0.25    1.39    1.47    1.47    1.45    1.43    1.42    1.41    1.40    1.39    1.38    1.37    1.37    1.36    1.36    1.35    1.35  

     23    0.10    2.94    2.55    2.34    2.21    2.11    2.05    1.99    1.95    1.92    1.89    1.87    1.84    1.83    1.81    1.80    1.78  

     23    0.05    4.28    3.42    3.03    2.80    2.64    2.53    2.44    2.37    2.32    2.27    2.24    2.20    2.18    2.15    2.13    2.11  

     23    0.01    7.88    5.66    4.76    4.26    3.94    3.71    3.54    3.41    3.30    3.21    3.14    3.07    3.02    2.97    2.93    2.89  

     23    0.001    14.20    9.47    7.67    6.70    6.08    5.65    5.33    5.09    4.89    4.73    4.60    4.48    4.39    4.30    4.23    4.16  

     24    0.50    0.47    0.71    0.81    0.86    0.90    0.92    0.93    0.94    0.95    0.96    0.97    0.97    0.98    0.98    0.98    0.99  

     24    0.25    1.39    1.47    1.46    1.44    1.43    1.41    1.40    1.39    1.38    1.38    1.37    1.36    1.36    1.35    1.35    1.34  

     24    0.10    2.93    2.54    2.33    2.19    2.10    2.04    1.98    1.94    1.91    1.88    1.85    1.83    1.81    1.80    1.78    1.77  

     24    0.05    4.26    3.40    3.01    2.78    2.62    2.51    2.42    2.36    2.30    2.25    2.22    2.18    2.15    2.13    2.11    2.09  

     24    0.01    7.82    5.61    4.72    4.22    3.90    3.67    3.50    3.36    3.26    3.17    3.09    3.03    2.98    2.93    2.89    2.85  

     24    0.001    14.03    9.34    7.55    6.59    5.98    5.55    5.23    4.99    4.80    4.64    4.51    4.39    4.30    4.21    4.14    4.07  

     25    0.50    0.47    0.71    0.81    0.86    0.89    0.92    0.93    0.94    0.95    0.96    0.97    0.97    0.98    0.98    0.98    0.98  

     25    0.25    1.39    1.47    1.46    1.44    1.42    1.41    1.40    1.39    1.38    1.37    1.36    1.36    1.35    1.35    1.34    1.34  

     25    0.10    2.92    2.53    2.32    2.18    2.09    2.02    1.97    1.93    1.89    1.87    1.84    1.82    1.80    1.79    1.77    1.76  

     25    0.05    4.24    3.39    2.99    2.76    2.60    2.49    2.40    2.34    2.28    2.24    2.20    2.16    2.14    2.11    2.09    2.07  

     25    0.01    7.77    5.57    4.68    4.18    3.85    3.63    3.46    3.32    3.22    3.13    3.06    2.99    2.94    2.89    2.85    2.81  

     25    0.001    13.88    9.22    7.45    6.49    5.89    5.46    5.15    4.91    4.71    4.56    4.42    4.31    4.22    4.13    4.06    3.99  

     26    0.50    0.47    0.71    0.81    0.86    0.89    0.91    0.93    0.94    0.95    0.96    0.96    0.97    0.97    0.98    0.98    0.98  

     26    0.25    1.38    1.46    1.45    1.44    1.42    1.41    1.39    1.38    1.37    1.37    1.36    1.35    1.35    1.34    1.34    1.33  

     26    0.10    2.91    2.52    2.31    2.17    2.08    2.01    1.96    1.92    1.88    1.86    1.83    1.81    1.79    1.77    1.76    1.75  

     26    0.05    4.23    3.37    2.98    2.74    2.59    2.47    2.39    2.32    2.27    2.22    2.18    2.15    2.12    2.09    2.07    2.05  

     26    0.01    7.72    5.53    4.64    4.14    3.82    3.59    3.42    3.29    3.18    3.09    3.02    2.96    2.90    2.86    2.81    2.78  

     26    0.001    13.74    9.12    7.36    6.41    5.80    5.38    5.07    4.83    4.64    4.48    4.35    4.24    4.14    4.06    3.99    3.92  

     27    0.50    0.47    0.71    0.81    0.86    0.89    0.91    0.93    0.94    0.95    0.96    0.96    0.97    0.97    0.98    0.98    0.98  

     27    0.25    1.38    1.46    1.45    1.43    1.42    1.40    1.39    1.38    1.37    1.36    1.35    1.35    1.34    1.34    1.33    1.33  

     27    0.10    2.90    2.51    2.30    2.17    2.07    2.00    1.95    1.91    1.87    1.85    1.82    1.80    1.78    1.76    1.75    1.74  

     27    0.05    4.21    3.35    2.96    2.73    2.57    2.46    2.37    2.31    2.25    2.20    2.17    2.13    2.10    2.08    2.06    2.04  

     27    0.01    7.68    5.49    4.60    4.11    3.78    3.56    3.39    3.26    3.15    3.06    2.99    2.93    2.87    2.82    2.78    2.75  

     27    0.001    13.61    9.02    7.27    6.33    5.73    5.31    5.00    4.76    4.57    4.41    4.28    4.17    4.08    3.99    3.92    3.86  
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  17    18    19    20    25    30    35    40    45    50    60    70    80    90    100    110    120  

  1.00    1.00    1.00    1.00    1.01    1.01    1.02    1.02    1.02    1.02    1.02    1.03    1.03    1.03    1.03    1.03    1.03  

  1.37    1.37    1.37    1.37    1.36    1.35    1.34    1.34    1.34    1.33    1.33    1.33    1.32    1.32    1.32    1.32    1.32  

  1.84    1.83    1.82    1.81    1.78    1.76    1.74    1.73    1.72    1.71    1.70    1.69    1.68    1.68    1.67    1.67    1.67  

  2.20    2.18    2.17    2.16    2.11    2.07    2.05    2.03    2.01    2.00    1.98    1.97    1.96    1.95    1.94    1.93    1.93  

  3.08    3.05    3.03    3.00    2.91    2.84    2.80    2.76    2.73    2.71    2.67    2.65    2.63    2.61    2.60    2.59    2.58  

  4.58    4.52    4.47    4.43    4.26    4.14    4.06    3.99    3.94    3.90    3.84    3.79    3.76    3.73    3.71    3.69    3.68  

  0.99    1.00    1.00    1.00    1.01    1.01    1.01    1.02    1.02    1.02    1.02    1.02    1.03    1.03    1.03    1.03    1.03  

  1.37    1.36    1.36    1.36    1.35    1.34    1.33    1.33    1.33    1.32    1.32    1.32    1.31    1.31    1.31    1.31    1.31  

  1.82    1.81    1.80    1.79    1.76    1.74    1.72    1.71    1.70    1.69    1.68    1.67    1.66    1.65    1.65    1.65    1.64  

  2.17    2.15    2.14    2.12    2.07    2.04    2.01    1.99    1.98    1.97    1.95    1.93    1.92    1.91    1.91    1.90    1.90  

  3.02    2.99    2.96    2.94    2.84    2.78    2.73    2.69    2.67    2.64    2.61    2.58    2.56    2.55    2.54    2.53    2.52  

  4.44    4.38    4.33    4.29    4.12    4.00    3.92    3.86    3.81    3.77    3.70    3.66    3.62    3.60    3.58    3.56    3.54  

  0.99    0.99    1.00    1.00    1.01    1.01    1.01    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.03    1.03    1.03  

  1.36    1.36    1.35    1.35    1.34    1.33    1.33    1.32    1.32    1.32    1.31    1.31    1.30    1.30    1.30    1.30    1.30  

  1.80    1.79    1.78    1.78    1.74    1.72    1.70    1.69    1.68    1.67    1.66    1.65    1.64    1.63    1.63    1.63    1.62  

  2.14    2.12    2.11    2.10    2.05    2.01    1.98    1.96    1.95    1.94    1.92    1.90    1.89    1.88    1.88    1.87    1.87  

  2.96    2.93    2.90    2.88    2.79    2.72    2.67    2.64    2.61    2.58    2.55    2.52    2.50    2.49    2.48    2.47    2.46  

  4.31    4.26    4.21    4.17    4.00    3.88    3.80    3.74    3.69    3.64    3.58    3.54    3.50    3.48    3.46    3.44    3.42  

  0.99    0.99    1.00    1.00    1.00    1.01    1.01    1.01    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.03  

  1.35    1.35    1.35    1.34    1.33    1.32    1.32    1.31    1.31    1.31    1.30    1.30    1.30    1.29    1.29    1.29    1.29  

  1.79    1.78    1.77    1.76    1.73    1.70    1.68    1.67    1.66    1.65    1.64    1.63    1.62    1.62    1.61    1.61    1.60  

  2.11    2.10    2.08    2.07    2.02    1.98    1.96    1.94    1.92    1.91    1.89    1.88    1.86    1.86    1.85    1.84    1.84  

  2.91    2.88    2.85    2.83    2.73    2.67    2.62    2.58    2.55    2.53    2.50    2.47    2.45    2.43    2.42    2.41    2.40  

  4.20    4.15    4.10    4.06    3.89    3.78    3.69    3.63    3.58    3.54    3.48    3.43    3.40    3.37    3.35    3.33    3.32  

  0.99    0.99    0.99    1.00    1.00    1.01    1.01    1.01    1.01    1.02    1.02    1.02    1.02    1.02    1.02    1.02    1.02  

  1.35    1.34    1.34    1.34    1.33    1.32    1.31    1.31    1.30    1.30    1.30    1.29    1.29    1.29    1.29    1.28    1.28  

  1.77    1.76    1.75    1.74    1.71    1.69    1.67    1.66    1.64    1.64    1.62    1.61    1.61    1.60    1.59    1.59    1.59  

  2.09    2.08    2.06    2.05    2.00    1.96    1.93    1.91    1.90    1.88    1.86    1.85    1.84    1.83    1.82    1.82    1.81  

  2.86    2.83    2.80    2.78    2.69    2.62    2.57    2.54    2.51    2.48    2.45    2.42    2.40    2.39    2.37    2.36    2.35  

  4.10    4.05    4.00    3.96    3.79    3.68    3.60    3.53    3.48    3.44    3.38    3.34    3.30    3.28    3.25    3.24    3.22  

  0.99    0.99    0.99    0.99    1.00    1.01    1.01    1.01    1.01    1.01    1.02    1.02    1.02    1.02    1.02    1.02    1.02  

  1.34    1.34    1.33    1.33    1.32    1.31    1.31    1.30    1.30    1.29    1.29    1.28    1.28    1.28    1.28    1.28    1.28  

  1.76    1.75    1.74    1.73    1.70    1.67    1.65    1.64    1.63    1.62    1.61    1.60    1.59    1.58    1.58    1.57    1.57  

  2.07    2.05    2.04    2.03    1.97    1.94    1.91    1.89    1.88    1.86    1.84    1.83    1.82    1.81    1.80    1.79    1.79  

  2.82    2.79    2.76    2.74    2.64    2.58    2.53    2.49    2.46    2.44    2.40    2.38    2.36    2.34    2.33    2.32    2.31  

  4.02    3.96    3.92    3.87    3.71    3.59    3.51    3.45    3.40    3.36    3.29    3.25    3.22    3.19    3.17    3.15    3.14  

  0.99    0.99    0.99    0.99    1.00    1.00    1.01    1.01    1.01    1.01    1.02    1.02    1.02    1.02    1.02    1.02    1.02  

  1.33    1.33    1.33    1.33    1.31    1.31    1.30    1.29    1.29    1.29    1.28    1.28    1.28    1.27    1.27    1.27    1.27  

  1.75    1.74    1.73    1.72    1.68    1.66    1.64    1.63    1.62    1.61    1.59    1.58    1.58    1.57    1.56    1.56    1.56  

  2.05    2.04    2.02    2.01    1.96    1.92    1.89    1.87    1.86    1.84    1.82    1.81    1.80    1.79    1.78    1.77    1.77  

  2.78    2.75    2.72    2.70    2.60    2.54    2.49    2.45    2.42    2.40    2.36    2.34    2.32    2.30    2.29    2.28    2.27  

  3.94    3.88    3.84    3.79    3.63    3.52    3.43    3.37    3.32    3.28    3.22    3.17    3.14    3.11    3.09    3.07    3.06  

  0.99    0.99    0.99    0.99    1.00    1.00    1.01    1.01    1.01    1.01    1.01    1.02    1.02    1.02    1.02    1.02    1.02  

  1.33    1.33    1.32    1.32    1.31    1.30    1.29    1.29    1.28    1.28    1.28    1.27    1.27    1.27    1.27    1.26    1.26  

  1.73    1.72    1.71    1.71    1.67    1.65    1.63    1.61    1.60    1.59    1.58    1.57    1.56    1.56    1.55    1.55    1.54  

  2.03    2.02    2.00    1.99    1.94    1.90    1.87    1.85    1.84    1.82    1.80    1.79    1.78    1.77    1.76    1.75    1.75  

  2.75    2.72    2.69    2.66    2.57    2.50    2.45    2.42    2.39    2.36    2.33    2.30    2.28    2.26    2.25    2.24    2.23  

  3.86    3.81    3.77    3.72    3.56    3.44    3.36    3.30    3.25    3.21    3.15    3.10    3.07    3.04    3.02    3.00    2.99  

  0.99    0.99    0.99    0.99    1.00    1.00    1.01    1.01    1.01    1.01    1.01    1.02    1.02    1.02    1.02    1.02    1.02  

  1.33    1.32    1.32    1.32    1.30    1.30    1.29    1.28    1.28    1.28    1.27    1.27    1.26    1.26    1.26    1.26    1.26  

  1.72    1.71    1.70    1.70    1.66    1.64    1.62    1.60    1.59    1.58    1.57    1.56    1.55    1.54    1.54    1.53    1.53  

  2.02    2.00    1.99    1.97    1.92    1.88    1.86    1.84    1.82    1.81    1.79    1.77    1.76    1.75    1.74    1.74    1.73  

  2.71    2.68    2.66    2.63    2.54    2.47    2.42    2.38    2.35    2.33    2.29    2.27    2.25    2.23    2.22    2.21    2.20  

  3.80    3.75    3.70    3.66    3.49    3.38    3.30    3.23    3.18    3.14    3.08    3.04    3.00    2.98    2.96    2.94    2.92  
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338 Critical Values for the F-distribution

    df       α      Degrees of freedom (numerator mean squares)  

  1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16  

     28    0.50    0.47    0.71    0.81    0.86    0.89    0.91    0.93    0.94    0.95    0.96    0.96    0.97    0.97    0.98    0.98    0.98  

     28    0.25    1.38    1.46    1.45    1.43    1.41    1.40    1.39    1.38    1.37    1.36    1.35    1.34    1.34    1.33    1.33    1.32  

     28    0.10    2.89    2.50    2.29    2.16    2.06    2.00    1.94    1.90    1.87    1.84    1.81    1.79    1.77    1.75    1.74    1.73  

     28    0.05    4.20    3.34    2.95    2.71    2.56    2.45    2.36    2.29    2.24    2.19    2.15    2.12    2.09    2.06    2.04    2.02  

     28    0.01    7.64    5.45    4.57    4.07    3.75    3.53    3.36    3.23    3.12    3.03    2.96    2.90    2.84    2.79    2.75    2.72  

     28    0.001    13.50    8.93    7.19    6.25    5.66    5.24    4.93    4.69    4.50    4.35    4.22    4.11    4.01    3.93    3.86    3.80  

     29    0.50    0.47    0.71    0.81    0.86    0.89    0.91    0.93    0.94    0.95    0.96    0.96    0.97    0.97    0.98    0.98    0.98  

     29    0.25    1.38    1.45    1.45    1.43    1.41    1.40    1.38    1.37    1.36    1.35    1.35    1.34    1.33    1.33    1.32    1.32  

     29    0.10    2.89    2.50    2.28    2.15    2.06    1.99    1.93    1.89    1.86    1.83    1.80    1.78    1.76    1.75    1.73    1.72  

     29    0.05    4.18    3.33    2.93    2.70    2.55    2.43    2.35    2.28    2.22    2.18    2.14    2.10    2.08    2.05    2.03    2.01  

     29    0.01    7.60    5.42    4.54    4.04    3.73    3.50    3.33    3.20    3.09    3.00    2.93    2.87    2.81    2.77    2.73    2.69  

     29    0.001    13.39    8.85    7.12    6.19    5.59    5.18    4.87    4.64    4.45    4.29    4.16    4.05    3.96    3.88    3.80    3.74  

     30    0.50    0.47    0.71    0.81    0.86    0.89    0.91    0.93    0.94    0.95    0.96    0.96    0.97    0.97    0.97    0.98    0.98  

     30    0.25    1.38    1.45    1.44    1.42    1.41    1.39    1.38    1.37    1.36    1.35    1.34    1.34    1.33    1.33    1.32    1.32  

     30    0.10    2.88    2.49    2.28    2.14    2.05    1.98    1.93    1.88    1.85    1.82    1.79    1.77    1.75    1.74    1.72    1.71  

     30    0.05    4.17    3.32    2.92    2.69    2.53    2.42    2.33    2.27    2.21    2.16    2.13    2.09    2.06    2.04    2.01    1.99  

     30    0.01    7.56    5.39    4.51    4.02    3.70    3.47    3.30    3.17    3.07    2.98    2.91    2.84    2.79    2.74    2.70    2.66  

     30    0.001    13.29    8.77    7.05    6.12    5.53    5.12    4.82    4.58    4.39    4.24    4.11    4.00    3.91    3.82    3.75    3.69  

     40    0.50    0.46    0.71    0.80    0.85    0.89    0.91    0.92    0.93    0.94    0.95    0.96    0.96    0.97    0.97    0.97    0.97  

     40    0.25    1.36    1.44    1.42    1.40    1.39    1.37    1.36    1.35    1.34    1.33    1.32    1.31    1.31    1.30    1.30    1.29  

     40    0.10    2.84    2.44    2.23    2.09    2.00    1.93    1.87    1.83    1.79    1.76    1.74    1.71    1.70    1.68    1.66    1.65  

     40    0.05    4.08    3.23    2.84    2.61    2.45    2.34    2.25    2.18    2.12    2.08    2.04    2.00    1.97    1.95    1.92    1.90  

     40    0.01    7.31    5.18    4.31    3.83    3.51    3.29    3.12    2.99    2.89    2.80    2.73    2.66    2.61    2.56    2.52    2.48  

     40    0.001    12.61    8.25    6.59    5.70    5.13    4.73    4.44    4.21    4.02    3.87    3.75    3.64    3.55    3.47    3.40    3.34  

     60    0.50    0.46    0.70    0.80    0.85    0.88    0.90    0.92    0.93    0.94    0.94    0.95    0.96    0.96    0.96    0.97    0.97  

     60    0.25    1.35    1.42    1.41    1.38    1.37    1.35    1.33    1.32    1.31    1.30    1.29    1.29    1.28    1.27    1.27    1.26  

     60    0.10    2.79    2.39    2.18    2.04    1.95    1.87    1.82    1.77    1.74    1.71    1.68    1.66    1.64    1.62    1.60    1.59  

     60    0.05    4.00    3.15    2.76    2.53    2.37    2.25    2.17    2.10    2.04    1.99    1.95    1.92    1.89    1.86    1.84    1.82  

     60    0.01    7.08    4.98    4.13    3.65    3.34    3.12    2.95    2.82    2.72    2.63    2.56    2.50    2.44    2.39    2.35    2.31  

     60    0.001    11.97    7.77    6.17    5.31    4.76    4.37    4.09    3.86    3.69    3.54    3.42    3.32    3.23    3.15    3.08    3.02  

     80    0.50    0.46    0.70    0.80    0.85    0.88    0.90    0.91    0.93    0.93    0.94    0.95    0.95    0.96    0.96    0.96    0.97  

     80    0.25    1.34    1.41    1.40    1.38    1.36    1.34    1.32    1.31    1.30    1.29    1.28    1.27    1.27    1.26    1.26    1.25  

     80    0.10    2.77    2.37    2.15    2.02    1.92    1.85    1.79    1.75    1.71    1.68    1.65    1.63    1.61    1.59    1.57    1.56  

     80    0.05    3.96    3.11    2.72    2.49    2.33    2.21    2.13    2.06    2.00    1.95    1.91    1.88    1.84    1.82    1.79    1.77  

     80    0.01    6.96    4.88    4.04    3.56    3.26    3.04    2.87    2.74    2.64    2.55    2.48    2.42    2.36    2.31    2.27    2.23  

     80    0.001    11.67    7.54    5.97    5.12    4.58    4.20    3.92    3.70    3.53    3.39    3.27    3.16    3.07    3.00    2.93    2.87  

  100    0.50    0.46    0.70    0.79    0.84    0.88    0.90    0.91    0.92    0.93    0.94    0.95    0.95    0.96    0.96    0.96    0.97  

  100    0.25    1.34    1.41    1.39    1.37    1.35    1.33    1.32    1.30    1.29    1.28    1.27    1.27    1.26    1.25    1.25    1.24  

  100    0.10    2.76    2.36    2.14    2.00    1.91    1.83    1.78    1.73    1.69    1.66    1.64    1.61    1.59    1.57    1.56    1.54  

  100    0.05    3.94    3.09    2.70    2.46    2.31    2.19    2.10    2.03    1.97    1.93    1.89    1.85    1.82    1.79    1.77    1.75  

  100    0.01    6.90    4.82    3.98    3.51    3.21    2.99    2.82    2.69    2.59    2.50    2.43    2.37    2.31    2.27    2.22    2.19  

  100    0.001    11.50    7.41    5.86    5.02    4.48    4.11    3.83    3.61    3.44    3.30    3.18    3.07    2.99    2.91    2.84    2.78  

  120    0.50    0.46    0.70    0.79    0.84    0.88    0.90    0.91    0.92    0.93    0.94    0.95    0.95    0.95    0.96    0.96    0.96  

  120    0.25    1.34    1.40    1.39    1.37    1.35    1.33    1.31    1.30    1.29    1.28    1.27    1.26    1.26    1.25    1.24    1.24  

  120    0.10    2.75    2.35    2.13    1.99    1.90    1.82    1.77    1.72    1.68    1.65    1.63    1.60    1.58    1.56    1.55    1.53  

  120    0.05    3.92    3.07    2.68    2.45    2.29    2.18    2.09    2.02    1.96    1.91    1.87    1.83    1.80    1.78    1.75    1.73  

  120    0.01    6.85    4.79    3.95    3.48    3.17    2.96    2.79    2.66    2.56    2.47    2.40    2.34    2.28    2.23    2.19    2.15  

  120    0.001    11.38    7.32    5.78    4.95    4.42    4.04    3.77    3.55    3.38    3.24    3.12    3.02    2.93    2.85    2.78    2.72  
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 Critical Values for the F-distribution 339

  17    18    19    20    25    30    35    40    45    50    60    70    80    90    100    110    120  

  0.98    0.99    0.99    0.99    1.00    1.00    1.00    1.01    1.01    1.01    1.01    1.01    1.02    1.02    1.02    1.02    1.02  

  1.32    1.32    1.31    1.31    1.30    1.29    1.28    1.28    1.27    1.27    1.27    1.26    1.26    1.26    1.25    1.25    1.25  

  1.71    1.70    1.69    1.69    1.65    1.63    1.61    1.59    1.58    1.57    1.56    1.55    1.54    1.53    1.53    1.52    1.52  

  2.00    1.99    1.97    1.96    1.91    1.87    1.84    1.82    1.80    1.79    1.77    1.75    1.74    1.73    1.73    1.72    1.71  

  2.68    2.65    2.63    2.60    2.51    2.44    2.39    2.35    2.32    2.30    2.26    2.24    2.22    2.20    2.19    2.18    2.17  

  3.74    3.69    3.64    3.60    3.43    3.32    3.24    3.18    3.13    3.09    3.02    2.98    2.94    2.92    2.90    2.88    2.86  

  0.98    0.99    0.99    0.99    1.00    1.00    1.00    1.01    1.01    1.01    1.01    1.01    1.01    1.02    1.02    1.02    1.02  

  1.32    1.31    1.31    1.31    1.30    1.29    1.28    1.27    1.27    1.27    1.26    1.26    1.25    1.25    1.25    1.25    1.25  

  1.71    1.69    1.68    1.68    1.64    1.62    1.60    1.58    1.57    1.56    1.55    1.54    1.53    1.52    1.52    1.51    1.51  

  1.99    1.97    1.96    1.94    1.89    1.85    1.83    1.81    1.79    1.77    1.75    1.74    1.73    1.72    1.71    1.70    1.70  

  2.66    2.63    2.60    2.57    2.48    2.41    2.36    2.33    2.30    2.27    2.23    2.21    2.19    2.17    2.16    2.15    2.14  

  3.68    3.63    3.59    3.54    3.38    3.27    3.18    3.12    3.07    3.03    2.97    2.92    2.89    2.86    2.84    2.82    2.81  

  0.98    0.99    0.99    0.99    1.00    1.00    1.00    1.01    1.01    1.01    1.01    1.01    1.01    1.02    1.02    1.02    1.02  

  1.31    1.31    1.31    1.30    1.29    1.28    1.28    1.27    1.27    1.26    1.26    1.25    1.25    1.25    1.25    1.24    1.24  

  1.70    1.69    1.68    1.67    1.63    1.61    1.59    1.57    1.56    1.55    1.54    1.53    1.52    1.51    1.51    1.50    1.50  

  1.98    1.96    1.95    1.93    1.88    1.84    1.81    1.79    1.77    1.76    1.74    1.72    1.71    1.70    1.70    1.69    1.68  

  2.63    2.60    2.57    2.55    2.45    2.39    2.34    2.30    2.27    2.25    2.21    2.18    2.16    2.14    2.13    2.12    2.11  

  3.63    3.58    3.53    3.49    3.33    3.22    3.13    3.07    3.02    2.98    2.92    2.87    2.84    2.81    2.79    2.77    2.76  

  0.98    0.98    0.98    0.98    0.99    0.99    1.00    1.00    1.00    1.00    1.01    1.01    1.01    1.01    1.01    1.01    1.01  

  1.29    1.28    1.28    1.28    1.26    1.25    1.25    1.24    1.23    1.23    1.22    1.22    1.22    1.21    1.21    1.21    1.21  

  1.64    1.62    1.61    1.61    1.57    1.54    1.52    1.51    1.49    1.48    1.47    1.46    1.45    1.44    1.43    1.43    1.42  

  1.89    1.87    1.85    1.84    1.78    1.74    1.72    1.69    1.67    1.66    1.64    1.62    1.61    1.60    1.59    1.58    1.58  

  2.45    2.42    2.39    2.37    2.27    2.20    2.15    2.11    2.08    2.06    2.02    1.99    1.97    1.95    1.94    1.93    1.92  

  3.28    3.23    3.19    3.14    2.98    2.87    2.79    2.73    2.68    2.64    2.57    2.53    2.49    2.47    2.44    2.43    2.41  

  0.97    0.97    0.98    0.98    0.98    0.99    0.99    0.99    1.00    1.00    1.00    1.00    1.00    1.00    1.00    1.01    1.01  

  1.26    1.26    1.25    1.25    1.23    1.22    1.21    1.21    1.20    1.20    1.19    1.19    1.18    1.18    1.18    1.17    1.17  

  1.58    1.56    1.55    1.54    1.50    1.48    1.45    1.44    1.42    1.41    1.40    1.38    1.37    1.36    1.36    1.35    1.35  

  1.80    1.78    1.76    1.75    1.69    1.65    1.62    1.59    1.57    1.56    1.53    1.52    1.50    1.49    1.48    1.47    1.47  

  2.28    2.25    2.22    2.20    2.10    2.03    1.98    1.94    1.90    1.88    1.84    1.81    1.78    1.76    1.75    1.74    1.73  

  2.96    2.91    2.87    2.83    2.67    2.55    2.47    2.41    2.36    2.32    2.25    2.21    2.17    2.14    2.12    2.10    2.08  

  0.97    0.97    0.97    0.97    0.98    0.99    0.99    0.99    0.99    0.99    1.00    1.00    1.00    1.00    1.00    1.00    1.00  

  1.25    1.24    1.24    1.23    1.22    1.21    1.20    1.19    1.19    1.18    1.17    1.17    1.16    1.16    1.16    1.15    1.15  

  1.55    1.53    1.52    1.51    1.47    1.44    1.42    1.40    1.39    1.38    1.36    1.34    1.33    1.33    1.32    1.31    1.31  

  1.75    1.73    1.72    1.70    1.64    1.60    1.57    1.54    1.52    1.51    1.48    1.46    1.45    1.44    1.43    1.42    1.41  

  2.20    2.17    2.14    2.12    2.01    1.94    1.89    1.85    1.82    1.79    1.75    1.71    1.69    1.67    1.65    1.64    1.63  

  2.81    2.76    2.72    2.68    2.52    2.41    2.32    2.26    2.21    2.16    2.10    2.05    2.01    1.98    1.96    1.94    1.92  

  0.97    0.97    0.97    0.97    0.98    0.98    0.99    0.99    0.99    0.99    1.00    1.00    1.00    1.00    1.00    1.00    1.00  

  1.24    1.23    1.23    1.23    1.21    1.20    1.19    1.18    1.18    1.17    1.16    1.16    1.15    1.15    1.14    1.14    1.14  

  1.53    1.52    1.50    1.49    1.45    1.42    1.40    1.38    1.37    1.35    1.34    1.32    1.31    1.30    1.29    1.29    1.28  

  1.73    1.71    1.69    1.68    1.62    1.57    1.54    1.52    1.49    1.48    1.45    1.43    1.41    1.40    1.39    1.38    1.38  

  2.15    2.12    2.09    2.07    1.97    1.89    1.84    1.80    1.76    1.74    1.69    1.66    1.63    1.61    1.60    1.58    1.57  

  2.73    2.68    2.63    2.59    2.43    2.32    2.24    2.17    2.12    2.08    2.01    1.96    1.92    1.89    1.87    1.85    1.83  

  0.97    0.97    0.97    0.97    0.98    0.98    0.99    0.99    0.99    0.99    0.99    1.00    1.00    1.00    1.00    1.00    1.00  

  1.23    1.23    1.22    1.22    1.20    1.19    1.18    1.18    1.17    1.16    1.16    1.15    1.14    1.14    1.14    1.13    1.13  

  1.52    1.50    1.49    1.48    1.44    1.41    1.39    1.37    1.35    1.34    1.32    1.31    1.29    1.28    1.28    1.27    1.26  

  1.71    1.69    1.67    1.66    1.60    1.55    1.52    1.50    1.47    1.46    1.43    1.41    1.39    1.38    1.37    1.36    1.35  

  2.12    2.09    2.06    2.03    1.93    1.86    1.81    1.76    1.73    1.70    1.66    1.62    1.60    1.58    1.56    1.55    1.53  

  2.67    2.62    2.58    2.53    2.37    2.26    2.18    2.11    2.06    2.02    1.95    1.90    1.86    1.83    1.81    1.78    1.77  
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 Appendix D   

Critical Values for the Chi - Square 
Distribution     

     To determine a critical value identify the number corresponding with the degrees 
of freedom and the applicable  α  level. 

             

    df       α   

   0.5     0.1     0.05     0.025     0.01     0.001  

     1    0.455    2.706    3.841    5.024    6.635    10.828  
     2    1.386    4.605    5.991    7.378    9.210    13.816  
     3    2.366    6.251    7.815    9.348    11.345    16.266  
     4    3.357    7.779    9.488    11.143    13.277    18.467  
     5    4.351    9.236    11.070    12.833    15.086    20.515  
     6    5.348    10.645    12.592    14.449    16.812    22.458  
     7    6.346    12.017    14.067    16.013    18.475    24.322  
     8    7.344    13.362    15.507    17.535    20.090    26.124  
     9    8.343    14.684    16.919    19.023    21.666    27.877  
  10    9.342    15.987    18.307    20.483    23.209    29.588  
  11    10.341    17.275    19.675    21.920    24.725    31.264  
  12    11.340    18.549    21.026    23.337    26.217    32.909  
  13    12.340    19.812    22.362    24.736    27.688    34.528  
  14    13.339    21.064    23.685    26.119    29.141    36.123  
  15    14.339    22.307    24.996    27.488    30.578    37.697  
  16    15.338    23.542    26.296    28.845    32.000    39.252  
  17    16.338    24.769    27.587    30.191    33.409    40.790  
  18    17.338    25.989    28.869    31.526    34.805    42.312  
  19    18.338    27.204    30.144    32.852    36.191    43.820  
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 Critical Values for the Chi-Square Distribution 341

    df       α   

   0.5     0.1     0.05     0.025     0.01     0.001  

  20    19.337    28.412    31.410    34.170    37.566    45.315  
  21    20.337    29.615    32.671    35.479    38.932    46.797  
  22    21.337    30.813    33.924    36.781    40.289    48.268  
  23    22.337    32.007    35.172    38.076    41.638    49.728  
  24    23.337    33.196    36.415    39.364    42.980    51.179  
  25    24.337    34.382    37.652    40.646    44.314    52.620  
  26    25.336    35.563    38.885    41.923    45.642    54.052  
  27    26.336    36.741    40.113    43.195    46.963    55.476  
  28    27.336    37.916    41.337    44.461    48.278    56.892  
  29    28.336    39.087    42.557    45.722    49.588    58.301  
  30    29.336    40.256    43.773    46.979    50.892    59.703  
  31    30.336    41.422    44.985    48.232    52.191    61.098  
  32    31.336    42.585    46.194    49.480    53.486    62.487  
  33    32.336    43.745    47.400    50.725    54.776    63.870  
  34    33.336    44.903    48.602    51.966    56.061    65.247  
  35    34.336    46.059    49.802    53.203    57.342    66.619  
  36    35.336    47.212    50.998    54.437    58.619    67.985  
  37    36.336    48.363    52.192    55.668    59.893    69.346  
  38    37.335    49.513    53.384    56.896    61.162    70.703  
  39    38.335    50.660    54.572    58.120    62.428    72.055  
  40    39.335    51.805    55.758    59.342    63.691    73.402  
  41    40.335    52.949    56.942    60.561    64.950    74.745  
  42    41.335    54.090    58.124    61.777    66.206    76.084  
  43    42.335    55.230    59.304    62.990    67.459    77.419  
  44    43.335    56.369    60.481    64.201    68.710    78.750  
  45    44.335    57.505    61.656    65.410    69.957    80.077  
  46    45.335    58.641    62.830    66.617    71.201    81.400  
  47    46.335    59.774    64.001    67.821    72.443    82.720  
  48    47.335    60.907    65.171    69.023    73.683    84.037  
  49    48.335    62.038    66.339    70.222    74.919    85.351  
  50    49.335    63.167    67.505    71.420    76.154    86.661  
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 Appendix E   

Critical Values for the Wilcoxon 
Two - Sample U - Test     

     The following table refl ects the critical values for the U - distribution for alpha values 
of .05 and .01. Remember that this is a special case in which the null hypothesis is 
rejected if the calculated value is  smaller  than the critical value. If the desired critical 
value is not listed on this table, use the  Z  - score approximation instead (Equation 
(14.2)). 

     
             

    α     =    .05 (One - tailed test:  α     =    .025)  

  Smallest 
sample 
size  

   Largest sample size  

   5     6     7     8     9     10     11     12     13     14     15     16     17     18     19     20  

     3    0    1    1    2    2    3    3    4    4    5    5    6    6    7    7    8  
     4    1    2    3    4    4    5    6    7    8    9    10    11    11    12    13    14  
     5    2    3    5    6    7    8    9    11    12    13    14    15    17    18    19    20  
     6        5    6    8    10    11    13    14    16    17    19    21    22    24    25    27  
     7            8    10    12    14    16    18    20    22    24    26    28    30    32    34  
     8                13    15    17    19    22    24    26    29    31    34    36    38    41  
     9                    17    20    23    26    28    31    34    37    39    42    45    48  
  10                        23    26    29    33    36    39    42    45    48    52    55  
  11                            30    33    37    40    44    47    51    55    58    62  
  12                                37    41    45    49    53    57    61    65    69  
  13                                    45    50    54    59    63    67    72    76  
  14                                        55    59    64    67    74    78    83  
  15                                            64    70    75    80    85    90  
  16                                                75    81    86    92    98  
  17                                                    87    93    99    105  
  18                                                        99    106    112  
  19                                                            113    119  
  20                                                                127  
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 Critical Values for the Wilcoxon Two-Sample U-Test  343

    α     =    .01 (One - tailed test:  α     =    .005)  

  Smallest 
sample 
size  

   Largest sample size  

   5     6     7     8     9     10     11     12     13     14     15     16     17     18     19     20  

     3    0    0    0    0    0    0    0    1    1    1    2    2    2    2    3    3  
     4    0    0    0    1    1    2    2    3    3    4    5    5    6    6    7    8  
     5    0    1    1    2    3    4    5    6    7    7    8    9    10    11    12    13  
     6        2    3    4    5    6    7    9    10    11    12    13    15    16    17    18  
     7            4    6    7    9    10    12    13    15    16    18    19    21    22    24  
     8                7    9    11    13    15    17    18    20    22    24    26    28    30  
     9                    11    13    16    18    20    22    24    27    29    31    33    36  
  10                        16    18    21    24    26    29    31    34    37    39    42  
  11                            21    24    27    30    33    36    39    42    45    46  
  12                                27    31    34    37    41    44    47    51    54  
  13                                    34    38    42    45    49    53    56    60  
  14                                        42    46    50    54    58    63    67  
  15                                            51    55    60    64    69    73  
  16                                                60    65    70    4    79  
  17                                                    70    75    81    86  
  18                                                        81    87    92  
  19                                                            93    99  
  20                                                                105  
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Index

Useful Rules of Thumb

Adequate accuracy and precision 14
Assumptions of ANOVA 172
Assumptions of factor analysis 293
Assumptions of regression analysis 183–5
Assumptions of the chi-square test 248–9
Assumptions of the F-test 176
Assumptions of the median test 255–6
Determining signifi cant digits 24–5
Determining the proper formula to use 

when using the t-test and Z-score 
to evaluate common 
hypotheses 147–50

Determining the right error term to create 
regression confi dence limits 218

Determining when to use the standard 
error vs. the standard deviation 119

Estimating the mean and standard 
deviation 54

Number of classes for a frequency 
distribution 24

Rounding numbers 22
Rules for using regression 215–16
Sample size requirements for factor/

principal component analysis 293
Steps to hypothesis testing 147
Table construction 36

Index

absolute value 253
accuracy, see measurement, accuracy and 

precision

Aldaieta cemetery, Spain 251–2
Allegheny plateau 34–5
alpha error

appropriateness of .05, 106–7, 120, 
315; defi ned, 102–3, 105; 
calculation of, 106–7; familywise, 
150

Alyawara 45–7, 49–54, 55–6, 104, 122
Alzualde, A. 251
Andaman Islanders 272–7
Andhra Pradesh, India 175
ANOVA

assumptions, 172; compared to multiple 
t-tests, 149, 173; degrees of 
freedom, 162, 171; distinction 
between two-way and nested, 278; 
linkage between variance and 
means, 155–9, 161, 171–2; mixed 
effects, 272; Model I, 154, 167–8, 
171–2; Model II, 154, 162, 168, 
171–2; nested, 277–82; random 
effects, 168, 171–2, 272; sources of 
variation, 271–2; table, 169–70; 
treatment effect, 167, 168, 171–2, 272; 
two-way, 272–7; unequal sample 
sizes, 168

average, see mean

bar charts 34–6
Bartlett’s test of sphericity 293
beta error

calculation, 107, 131–5; defi ned, 105, 
131–2; relationship to nested 
ANOVA, 278–9, 281–2
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 Index 345

bimodal distribution 33, 39
binomial distribution 74–6, 77–83, 150
bins, defi ned 27
Bonferroni correction 149, 173–4, 201
Boulanger, Matthew 263–4
box plots 57

capta 44
Carlin site, Illinois 231, 232–3
Carrier Mills archaeological project 19, 20, 

21, 23, 31, 32
central limit theorem 111–12, 116, 119–20, 

262
central tendency, measures of 45–8, 58, 

178, 183, 254
Cerro del Diablo, Mexico 154–5, 160
Chippindale, Christopher 44
chi-square distribution 241, 249, 252, 268

relationship to the chi-square test, 249, 
252; relationship to the Kruskal–
Wallis test, 268

chi-square test 240–2, 252
adjusted residual, 246–7, 248; 

assumptions, 248–9; degrees of 
freedom, 241–2; expected values, 240, 
243, 249–50; relationship to the 
Kruskal–Wallis nonparametric 
ANOVA, 268; relationship to the 
median test, 254–6; required scales of 
measurement, 242; residual, 246–7, 
248; rule of 5, 249–50, 251, 253; tests 
of association, 244–6; Yate’s 
continuity correction, 252–3

class interval 20, 22–4
class mark, defi ned 23
class, defi ne 20–1
coeffi cient of determination, 

regression 197–8
coeffi cient of variation 55, 137, 139–41

corrected, 55–6
common variation, defi ned 289
complex event, defi ned 71–2
components, defi ned 286
confi dence intervals

defi ned, 110; and inverse regression 
prediction, 206, 218; and power 
curves, 144–5

confi dence limits
and regression, 218; and statistical 

inference, 118–21; and the calculation 
of power, 133, 136–7; and Type II 
error, 131, 132; around a mean, 
116–17, 118–21; around a regression 
coeffi cient, 199–201, 218; around Ŷ, 
202–4, 218; calculated using a 
Z-score, 110; evaluation of null 
hypothesis, 109–10, 111

confi rmatory data analysis 38–9
correlation 221–2

assumptions, 221, 223, 224, 228–30, 
234; compared with regression, 221, 
225–6, 285; dependent variables, 
221–3, 234–5; nonsense, 234–5; 
Pearson’s product-moment 
correlation coeffi cient, 224–30, 298; 
relationship to ANOVA, 227; 
Spearman’s rank order correlation 
coeffi cient, 230–3

covariance 187–8, 225
critical region, defi ned 110
critical value, defi ned 104
Crown, Patricia 56
culture historical types 238–9
cumulative frequency 31

data 43, 44, 98–9
defi ned, 5–6; initial analysis of, 18–19

data reduction 287, 291–2
degrees of freedom 122–3

ANOVA, 170; chi-square test, 241–2; 
correlation analysis, 227; 
F-distribution, 162; nested 
ANOVA, 281; regression, 196, 200; 
standardized regression residual, 211; 
t-test, 123; two-way ANOVA, 276; 
Wilcoxon two-sample test, 266

dependent variable 179–80, 182, 183, 187, 
190–1

prediction of, 198
deviates, normal 51, 119
Di Peso, Charles 8
diagram, Venn 71–2
dimensional scaling, defi ned 286
discontinuous variable 7
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346 Index

discrete variable 7
distribution

bimodal, 33; defi ned, 22; graphical 
description of, 32–3; leptokurtic, 33; 
mesokurtic, 33; multimodal, 33; 
platykurtic, 33; relationship to 
degrees of freedom, 122–3; 
skewed, 32, 33, 47; unimodal, 
32–3

distribution-free methods, see 
nonparametric tests

Dohm, K. 192–6, 204

Ehrenberg, A. 36, 37
eigenvalues 294–5, 299
error

as a source of variation, 172, 183, 185, 
191, 196, 205, 222–3, 271, 272, 289; 
difference between regression and 
correlation analysis, 222–3; in 
hypothesis testing, 106; in population 
parameters, 44

events 67, 71, 72–3, 75; complex, 71–2, 
73, 74, 77; defi ned, 67; ordered, 76

exploratory data analysis 38–40, 61–2, 86, 
99, 153, 286, 292

factor analysis 286
assumptions, 293; common 

variation, 289, 294, 303; communality 
scores, 303; data reduction, 301–2; 
difference with principal component 
analysis, 289, 303–4; eigenvalues, 
294–5, 296; error, 289, 294, 303; 
factor loadings, 297, 298–9; factor 
scores, 302; heterogeneity of 
respondents, 296, 297; identifying 
signifi cant factors, 296; latent root 
criterion, 296; objectives, 291–2; 
percentage of variance criterion, 296; 
Q factor analysis, 292; R factor 
analysis, 292; relationship to 
correlation, 298; scree plot, 296–7; 
specifi c variation, 289, 294, 303; 
summated scale, 302; surrogate 
variable, 301, 302–3; variance 
maximizing rotation, 289–91

factors, defi ned 286
F-distribution 160–1, 196–7, 227
fi nite probability space 67
Fisher’s exact test 249, 250–2

one-tailed vs. two-tailed, 252; Type II 
errors, 252

frequency distributions 20–5
cumulative, see ogives

F-test 175–6

Galeana, Mexico 9, 244–8
Gallina, New Mexico 25, 26, 27, 28–9, 

47
grand mean 111
grand median 254
graph

bar chart, 34–6; histogram, 25–8; in 
exploratory data analysis, 38, 39; 
ogives, 31–2; stem and leaf, 28–31; 
suggestions for constructing, 
36–8

grave goods 12, 60, 251–2, 267
Grayson, D. 8, 10, 11, 92, 93

h (leverage coeffi cient) 211–12
Haury, Emil 287
Hawaii 86–7
heteroscedasticity 208, 209, 293
Hidden Cave, Nevada 92, 94–5
histograms 25, 27–8
homogeneity, measuring 60
homoscedasticity 183–4, 205, 207, 214, 

216, 293
Hudson, Cory 263–4
hypothesis test 38–9, 74, 86, 97–107, 

109–11, 147
alternate, 101, 102, 105, 131–47, 153–4, 

175; multiple competing, 99; of 
interest, 98–100, 120–1, 127, 137, 147, 
250, 282, 286

hypothetico-deductive method 2, 38–9

implied limits 20, 21–3, 24, 27
independence

in contingency tables, 239, 240, 242; 
statistical, 59, 71, 73, 149, 216, 228, 
295
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 Index 347

independent variable
correlation, 221–3, 229, 230, 234–5, 

285; factor analysis, 286–7, 294, 295, 
303; predicting, 204–6; regression, 
179, 180, 183, 187, 190–1, 196, 
197, 198, 204–6, 211, 215, 216, 221–2, 
248

index of dispersion 59–60
index of qualitative variation 59, 61
interval data 6, 9, 10, 11, 58–9, 86, 223, 

231
graph of, 20, 34

Knecht, H. 29–30, 257
Kruskal–Wallis nonparametric 

ANOVA 172, 267–70

least squares regression 189, 193
leptokurtic distribution 33, 89
Lewis, R. 38
linear regression 178–81

assumptions, 183–5, 204–5, 216, 222–3; 
calculation, 187, 189–91; coeffi cient 
of determination, 197–8; compared 
with factor analysis and principal 
component analysis, 288–9, 290, 
298–9; confi dence limited around 
predicted values for Y, 202, 218; 
confi dence limits around regression 
coeffi cients, 199–201, 218; data 
transformation, 216, 217; defi nition 
of a functional relationship, 179, 182; 
dependent vs. independent 
variable, 179–80, 182, 222; explained 
sums of squares, 188, 191; general 
equation, 181, 185; inverse 
prediction, 204–6, 215–16, 218; 
leverage coeffi cients, 208–11, 212, 
214; measure of covariance, 187–8; 
prediction, 181; relationship to 
ANOVA, 196–7; residual, 190–1; 
residuals, 207–8, 209, 210, 211, 213; 
standard deviation of Ŷ at a given 
Xi, 203, 218; standard error for Ŷ at a 
given Xi, 202–3, 218; standard error 
of regression coeffi cient, 200, 218; 
standardized residuals, 208, 211, 

213–14; unexplained sums of 
squares, 188, 190–1

logarithmic transformation 216–17
Lower Monongahela river basin 34–5
Lower Youghiogheny river basin 34–5
Lyman, R. Lee 162, 163, 167

matrix 239, 241
2 × 2 table, 250, 252–3

mean 45–6, 47–8, 55, 56, 57, 87, 88–92, 
93

comparison of multiple sample 
means, 149–50, 153–4; comparison to 
a variate, 89–91, 99–100, 103, 104, 
110–11, 147–8; confi dence interval for 
a population parameter, 116–20; 
confi dence interval for µ around a 
sample statistic, 124–7; confi dence 
limit for variates, 110–11; distribution 
of sample means, 111–20; estimating, 
54; population parameter, 46, 
147–8; relationship to variance 
and the standard deviation, 50–1, 
55; statistic, 46, 147–8; see also 
grand mean; central limit 
theorem

measurement bias/error, 6, 19, 44, 54, 
162–3, 167, 306

measurement
accuracy and precision, 13–15, 44, 266; 

validity, 12–13, 266
measures of central tendency 45, 47–8, 57, 

182–3
measures of dispersion 45, 48–53, 54–7, 

182–3
measures of location, see measures of 

central tendency
median 45, 47–8, 57, 88, 112, 254–5, 256, 

258, 263
relationship to the Wilcoxon two-sample 

test, 263
median test 254–8
merestic variable, see variable, discrete
mesokurtic distribution 33, 34, 89
midrange 54
Miller Wieberg, D. 268, 270
Mimbres 126–7, 128
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minimum number of individuals 8
mode 45, 47, 59, 88, 112
Monongahela period 34–5
Monte Carlo simulations 87, 115
multivariate statistics 178, 271–2, 286

negative relationship 187, 188, 197, 226, 
230, 232, 300, 301, 302

Nelson, M. 126–7, 128
Newbridge site, Illinois 231, 232–3
nominal data 6–7, 58–9, 81, 242
nonparametric test 172, 229, 230, 254, 262, 

263, 266, 267
defi ned, 262

normal distribution 88–94, 99, 100, 101, 
104, 112–14, 116–19, 133, 172, 185, 
229, 262, 266–7

characteristics, 88–9; compared to 
t-distribution, 121–2, 123, 125; 
compared to the chi-square 
distribution, 249; of chi-square 
residuals, 246; of random statistical 
error, 172, 185; of sample means, 
111–14, 116, 119–20, 262; 
standardized, 91, 109, 111, 112, 
118–19; use to approximate U, 
266–7

Norse 272–7, 278–82
null hypothesis

accepting, 104–5; ANOVA, 153–4, 172; 
chi-square test, 241; defi ned, 101; 
errors in testing, 105, 131–2; Fisher’s 
exact test, 251; F-test, 175–6; 
Kruskal–Wallis nonparametric 
ANOVA, 268; linear regression, 
196–7, 198, 200–2; median test, 254; 
nested ANOVA, 279; one-tailed 
tests, 127–8; paired t-tests, 149–50; 
Pearson’s correlation coeffi cient, 
226–8; Spearman’s correlation 
coeffi cient, 232; t-test, 124, 148–9; 
two-way ANOVA, 272; Wilcoxon 
two-sample test, 263, 266; 
Z-test, 99–100, 117–18, 148–9

number of identifi ed specimen 8, 
231

numerical taxonomy 238–9

O’Connell, J. 45, 46
ogives 31–2
one-tailed test 127–9, 175, 232, 252
ordinal data 6, 8–9, 10–11, 34, 35, 58–9, 

60, 61, 62, 81, 230, 231, 242, 248, 256, 
262, 263, 267, 292

and the chi-square test, 248, 256; and 
the Wilcoxon two-sample test, 263, 
267

orthogonal 295
outliers 47, 49

paired t-tests 149–50, 173–4, 282
parameter 44, 45, 53, 66, 118, 120, 123, 

158, 160, 161, 167, 171, 199, 203, 226, 
228, 305

defi ned 43
parametric test, defi ned 253, 262
Pascal’s triangle 79–80
Pearson’s product-moment correlation 

coeffi cient 224–30, 298
platykurtic distribution 33, 34, 89, 122
population

defi ned, 15, 43–4; relationship with a 
sample, 15, 43–5, 46, 51, 52–3, 55, 
111, 118, 249, 250; relationship 
with parameters and statistics, 43–5, 
46, 49, 51, 53, 55; statistical, 43–4, 97, 
99, 100, 101, 102, 104, 105, 107, 111, 
112, 113, 114, 115, 116, 117, 118, 
119–21, 126, 134, 135, 136, 147, 148, 
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population size, estimating 13, 192, 198, 
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power of a test 107, 136, 142–7
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parametric and nonparametric 
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increasing, 136–7, 141–5, 147

precision 13–14, 163, 167, 266, 310
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290–1, 294–7
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86–7, 110

empirical determination, 68–71; normal 
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267–8
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202, 282
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Roux, V. 175

Sahlins, M. 8–9
sample

arbitrary, 307, 312; defi ned, 15, 44, 305; 
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in archaeology, 2, 3, 305–7; 
selecting, 307; simple random 
sample, 307–9, 310, 312; stratifi ed 
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sample, 310–11, 312; with 
replacement, 309–10; without 
replacement, 309–10

sample bias 307, 311–12
sample size 15, 49, 70, 234, 249–50, 252, 

292–3, 312–14
scales of measurement 6, 10–11
scatter plot 183, 211, 223, 224, 229, 286, 

290, 291, 293

scree plot 296–7
seriation 38, 39
Service, E. 8–9
Sheriden Cave, Ohio 125–6
Shott, Michael 5
signifi cance level, defi ned 106
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skewed distribution 32, 33, 47, 112, 161, 

172, 176, 185, 229–30, 241
chi-square distribution, 241; 

F-distribution, 161
Spaulding, Albert 39, 238–9
specifi c variation, defi ned 289
standard deviation 50, 51–2, 53, 54, 

114
compared to the standard error, 114–15, 

118, 119; estimating, 54; pooled, 
148–9

standard error 114–18, 120–1, 155, 157
compared to the standard deviation, 

114–15, 118, 119; correlation 
coeffi cient, 226; pooled, 148–9; 
regression coeffi cient, 200; using s to 
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statistic 43, 44, 45, 53, 66, 118, 305
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statistical inference 118–21
stem and leaf diagrams 28–9
sum of squares 52, 53, 149, 155, 170–1, 
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sum of squares of means 157
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formal, 38; reference, 38; working, 

38
t-distribution 121–5, 148, 149, 161, 200–3, 
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t-test 148, 149–50, 173, 201, 202, 213, 

226, 232, 249, 262, 263–4, 270, 278, 
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Bonferroni correction, 150; compared 
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University of New Mexico skeletal 
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Upper Paleolithic 29, 30, 257, 258

validity 12–13, 105, 147, 310
VanPool, C. 82
variable 6, 10
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variance 49, 50–1, 52, 53, 54, 55, 111, 114, 
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196, 200, 202, 208, 253
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comparison between, 160–1, 175–6; 
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ANOVA, 155–6, 159; relationship 
to F-distribution, 160–1; within 
groups, defi ned, 156, 160, 171–2

variate, defi nition 6
Varna, Bulgaria 12
Venn diagram 71–2
Ventana Cave, Arizona 182, 186, 187, 203, 

254, 257, 287–8, 293–301

Weitzer site, Illinois 233
Wilcoxon two-sample test 263–7

type II error, 267

Yate’s continuity correction 252–3
type II error, 252–3

Z-score 91–4, 117–18, 245–7, 266–7
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