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Sclecting Quantitative Measurements
in Paleoethnobotany

Virginia S. Popper

Introduction

Palcoethnobotanists learn little about human interaction with the_ plant
world from raw plant-remains data. Cultural and noncultural facto_rs blag the
types and numbers of remains we recover fr.om archaeological sites.
(‘onsequently, taxa frequencies alone do not directly reflect the human-f
plant interaction, and paleoethobotanists have dev?lope'd meﬂ'lods o
interpreting the frequencies. Ideally, pa]eo;thnobotams'ts first Qefme how
(uxi frequencies can answer research questions. We posit meanings to tgxz;
lrequencies through models, hypotheses, and assumptions (npnnumenca
triteria). Then we derive from these nonnumerical cnterla. the types,
numbers, distributions, and associations of taxa (i.e., the patterning) [l:lal we
¢xpect to find in the archaeobotanical data. In gcneral, we use qqan}ntagv;
measurements to describe the patterning found in the data and to distinguis -
the patterning defined by our research questions from other sources o
patierning,. : e

‘I'his paper presents the determinants for selecting quanmaqve measure-
ments. It discusses the sources of patterning in archaeobotgms:al data .and

{our methods of quantifying these data: absolute cpums, ubiquity, .rankmg,
and diversity. Miller (chapter 5) discusses a .flft.h method, ratios, ar}d
I'earsall (chapter 8) provides examples of the ubiquity (presence) and r(';m(;
(frequency) methods. These three papers show t‘hat no one met?o1 fo
(uantifying archacobotanical remains is appropriate or even useful for
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54 Virginia S. Popper
every paleoethnobotanical analysis. Quantitative measurements differ in
their assumptions about archacobotanical data and in the information that
they provide about such data. The measurements we select will depend on
our research questions and the quality of our data. To select the appropriate
measurement, we must understand the possible sources of patterning in our
data and the patterning we want to measure with our data. The more
carefully and systematically we collect, process, and identify archacobo-
tanical samples, the more choices we have in selecting an appropriate
quantitative measurement.

Sources of Patterning in Archaeobotanical Remains

Paleoethnobotanists must identify the many sources of patterning in a
collection of plant remains to interpret the collection accurately. The
sources of patterning are cumulative, beginnin g with human exploitation of
plants and continuing through the paleoethnobotanist’s recording of taxon
frequencies. Figure 4.1 depicts the sequence of factors that may affect the
types and frequencies of plant remains in a collection.

Patterning in the collection begins with people’s beliefs about plants.
Beliefs determine people’s behavior toward the plant world (Ford
1979:290, 320-23). For example, beliefs prescribe how a plant is used or
where it is planted. Plant remains vary depending on how people used,
processed, stored, and prepared the plants and disposed of their by-products
(Dennell 1976, 1978; Hillman 1984; Jones 1984). The remains form the
underlying patterning from which we try toreconstruct therole of the plants.
Two examples follow which illustrate how the same taxon can leave
differently patterned remains. In the first example, one taxon is put to two
uses; in the second example, the same crop is deposited at different stages
of processing,.

First, making chicha beer from maize will leave remains different from
those resulting from toasting maize popcorn. To make chicha, kernels are
soaked until they sprout and then are added to waler, along with some
chewed kernels, to ferment. To make popcorn, maize kernels are toasted
whole ina potor griddle over a fire. The broken-down chicha maize kernels
are unlikely to be burned or dropped in a fire and therefore will probably
leave no remains. In contrast, some popcorn kernels will probably burn, be
discarded, and survive as remains.

The second example comes from Hillman’s (1984:1-13) detailed de-
scription of traditional cereal processing in Turkey. Table 4.1 summarizes
his data on two of the many stages in the processing of glume wheats
(emmer, spelt, and einkorn) in areas with wet summers, Processing beging
with harvesting and ends with cooking the prime grains. The wheat is stored

WORLD VIEW AND PATTERNED HUMAN BEHAVIOR

Which plant used )

How used, processed, stored, dlsPosed of
Where used, processed, stored, disposed of
When used, processed, stored, disposed of

DISCARDED REMAINS

'

PRESERVATION POTENTIAL

Plants' physical properties Hard vs. fleshy
Postdeposition disturbance Rodents, dogs L
Site properites: environment Temperate vs. ari

deposits Deep vs. shallow

fire Site burned vs.
. fire only in hearth

;

PRESERVED REMAINS

'

COLLECTION AND PROCESSING OF SAMPLES

Deposit sampled vs. not sampled
Recovered in flotation vs. lost or broken

Identified vs. unidentifiable

RECORDED TYPES AND NUMBERS OF REMAINS

Figure 4.1. Cumulative stages of patterning of archacobotanical data.
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asspikelets before the second (coarse) and third (fine) sievings, which occur
daily as grain is used. The coarse sieving removes some of the larger by-
products from the prime grain. The fine sieving catches the prime grain and
removes the smaller cleanings, including small grains, small weed seeds,
and heavy bits of chaff, The cleanings from both sievings are usually thrown
into the fire, at least in winter when hearth fires are common (Hillman
1981:155). The third column of table 4.1 shows “those components which,
when exposed to fire, are small enough and dense enough to drop into the
ashes and be charred rather than being burned to ash” (Hillman 1984: 1 1).
The charred remains from the coarse and fine sievings differ greatly, but
both evidence the same crop and its processing.
After plant remains have been discarded or deposited, the vagaries of
preservation introduce further patterning into assemblages of plant re-
mains. Some plant parts are preserved better than others. Dense nutshells
and seeds with much-resistant cellulose are preserved better than fleshy
fruits with less-resistant sugars and starches (Dimbleby 1967:95: Munson,
Parmalee, and Yarnell 1971; Carbone and Keel 1985:5-6). Many softer and

Table 4.1. Second and third sieving of glume wheats

Activity By-Product Likely Charred Remains

Coarse Sieving * Unbroken spikelets Some intact spikelets

Straw nodes Few culm nodes
Large weed seeds Few “weeds smaller than
spikelets”
Fine Sieving b Tail grain Some tail grain
Small weed seeds Many “weeds smaller than
prime grain”
Heavy bits of chaff Some spikelet forks

Many glume bases
Many rachis internode
segments

* Prime grain passes through
b Prime grain retained
Source: Hillman 1984: fig. 5, table 1.
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: e CONTEXT A

Further patterning can result from strategies for collecting, processing, ) pero e "
and analyzing archacobotanical remains. As discussed in the Introduction,
archaeologists use a variety of sampling strategies to select deposits of T
plant remains for analysis. Too small or 100 few collected samples ca
misrepresent the types, frequencies, and distribution of plant remains af 4 (W) TAXON A TAXON C
site. Wagner (chapter 2) explains how different flotation and screening TAXON D
procedures for processing soil samples can influence the patterning of
remains. For example, screening deposits with 0.25-in. mesh loses the many
seeds and plant remains smaller than 0.25 inch. In analyzing plant remains, SAMPLE 1
our proficiency at identification affects plant frequencies. Identifying SAMPLE 4 SAMPLE 2
remains only to family or genus may obscure patterning of the constituent TAXON A SAMPLE 2 TAXON B i
species. If Wwe cannotdistinguish one species used commonly asa food from l SAMPLE 3 S

another used infrequently as a medicine, we lose information about the
latter. We also chose in our analysis to measure remains by count, weight,
or volume. Which units of measurement most accurately reflect the
qQuantities of tiny seeds, nutshell fragments, and charcoal? As Miller
(chapter 5) explains, the best measurement depends on the type of plant
remains. Finally, by grouping samples foranalysis (discussed in more detail

TAXON A -e-——s TAXON B

TAXON A <— s TAXON B \ /

(d) TAXON C

A : ; c
below) we change patterning if we combine samples from different THRGH
populations, s sample 2
The sources of patterning in archaeobotanical data are many. Uncriti- SEERLE

cally applying quantitative measurements to interpret patternin g can lead
Lo erroneous conclusions, Paleoethnobotanists must consider the cumula-
tive sources of patterning in their data to isolate the underlying patterning

that supports or refutes the hypotheses developed from their research
questions.

rure 4.2 ['h omplexit of the tterns sou ht in alchaeolo ical data dcpends on the
& g 4
| pure 4.4. €c C P Yy pal

i stions.
complexity of research que

Research Questions

The complexity of the patterns we seek in our data will vary according

loourresearch questions. For example, a basic question in the interpretation luate the importance of food sources by the quantity of particular fo
i cvaluate

ibuti ict,or by the time and labor
e contzucl(l)(r):pl:r??:;l;?\d r?,onfood rc;ogrces?
. define importance, we translate it 'mtgoa:
een taxa. Depending on t‘he criteri ;
are the significance of different tat;(lc
for patterns whi(;h compare

les (fig. 4.2d).

pk fo§ digf ferent patterns of data
questions becomp
our analysis

sources, by th
required to procure.them? C
Whatever the criterion we use .to
expected numerical relauons.hxp betw
we may look for patterns »\{hlch compor
in a group of samples (flg. 4.2¢), s
relationships among taxa ina group 0 A
Different research questions lead us to i

nd to look at different scales of palu?rns. i e

Zrlnore complex, spanning different time periods

use and processing) about how use affects, among other things, the part of
the plantthat would be deposited. Twodifferent uses may lead todisposition
indifferent contexts or with different sets of plants. In the first case we look
for patterns relating one taxon to its context (fig. 4.2a), and in the second
case patterns relating one taxon to the assemblage of taxa in a sample (Fig.
4.2b).

Another question is the relative importance of plantsin the economy. To
evaluate relative importance, we begin again with nonnumerical criteria.
We make an assumption about what we mean by importance. Do we
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includes a greater variety of samples,
their ability to handle such complexit

ment can correct for inaccurate non
predicted patterns,

Types of Measurements

No one method of quantitative measurement is suitable for every
research question or every analysis. The summary below of the assumptiony
and biases of a number of quantitative m

ethods suggests ways of deciding
when one method might be more appropriate than the others,
Absolute Counts

Quantifying archaeobotanical data by absolute counts (the raw number
of each taxon in each sample) ass

umes that the absolute frequency of plant
remains accurately reflects prehistoric human-plant interaction. However,

as the discussion above shows, absolute frequencies may reflect preserva-

tion, sampling, or various other factors. Thus, absolute counts rarely
provide an adequate measurement for ar

chaeobotanical remains,
The problem with absolute counts is illustrated by an example of
quantifying charcoal excavated from a hearth. One could argue that the
charcoal directly reflects the amounts of different taxa of firewood burned
in the hearth. But some woods burn more completely than others, and some
fracture more casily than others (Smart and Hoffman, chapter 10). In
addition, clearly the significance of oak is different in one sample, where
itcomprises 100 fragments out of 1 ,000, from in another, where itcomprises
100 fragments out of 150. Moreover, if the first group of charcoal was
extracted from a 5-liter soil sample and the second from a 1 -liter soil sample,
the difference is even greater. A 5-liter soil sample must have 500 pieces
of oak charcoal to be equivalent to the 100 pieces from the 1-liter sample.
Atthe very least, the absolute counts must be standardized (converting them
into ratios) to account for differences in sample size (see Miller, chapter 5)
or differences in sample abundance (Scarry 1986:214). Paleoethnobotan-
ists frequently use these standardized counts in further quantitative and
statistical analyses,

Ubiquity

A common method for quantifying archacobotanical data is ubiquity or
presence analysis (Godwin 1956; Willcox 1974; Hubbard 1975, 1976,
1980). This method disregards the absolute count of ataxon (itassumes that
the absolute counts of any particular taxon are t0o influenced by the degree

of preservation to be meaningful) and instead looks at the number of

Quantitative measurements differ i
y. Of course no quantitative measure.
numerical criteria used to set up ow
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Table 4.2. Ubiquity and independent samples

Taxon Sample No.? Sample No.

1

2 34 lalb2 3 4

A

X
2 X
5 X XX X ;(( X X
s X X X X

Xin X
XX
Frequency Score ( %)
B 75 8
> 50 i
40

Note: This table presents two versions of the
two techniques.

“ X indicates taxon present.

same data to illustrate the
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1 . e from a locality with no wheat. Wh.
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answering questions about changing plant use over time foing
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Another methodological problem that can skew frequency scores is
having too few samples, which inflates frequency scores. For example, in
a group of four samples the minimum presence of a taxon is 25%, while in
a group of twenty samples the minimum presence is 5%. Comparing scores
from the two groups can be misleading. Similarly, “a taxon whose ‘real’
presence is 10% cannot be properly assessed with less than 10 samples”
(Hubbard 1976:160). Having few samples more severely skews frequency
scores of rare taxa, so with few samples rare taxa should be excluded from
analyses or interpreted with caution.

In interpreting ubiquity scores, it is important to make explicit the
relationship between the ubiquity scores and the information we seek. For
instance, Minnis (1985:104,106) clearly explains his use of ubiquity:

Making the assumption that charred remains are primarily the result of acci-
dents, then ubiquity tends to measure the number of accidents, which is more
closely related to the degree of utilization than is tabulation. Thus, I will assume
that a change in the number of samples in which a taxon is present is an imprecise
but useful measure of the relative change in the use of that resource.

Hubbard (1975:198; 1980) similarly uses ubiquity to examine crop
introduction and use in Europe and the Near Eastover the past 10,000 years.
Ubiquity analysis allows him to combine data from many sites, collected
with different excavation and sampling strategies, to compare the use and
spread of 11 crops within and between seven geographic areas. (Hubbard
[1980] points out the possible sources of error with such data.) The broad
view afforded by analyzing such alarge data base suggests many interesting
patterns and trends. For example, by correlating patterns of crop use with
climate, Hubbard (1976:165; 1980) suggests that through time cultural
preferences replaced ecological differences as the best explanation for
many of these patterns.

In a second example of ubiquity analysis, Hastorf (1983) argues that
ubiquity scores can measure crop production and land use of the prehistoric
Wanka ethnic group. By using a smaller and more carefully controlled data
base, she can draw more specific conclusions than Hubbard. Hastorf uses
the standard error of the difference in proportions to test for the significance
of trends across time and space and by context. For example, Hastorf
(1983:256-59) tests for differences in use and processing of domesticated
plants by examining the relationship between the frequencies of the
domesticates and different contexts. Finding no significant patterns intro-
duced by different processing, storage, or disposal methods, she concludes
that all of the contexts represent the same group of activities. Consequently,
she combines the frequencies of these remains from all contexts to test for
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trends in crop production and land use. Another method for lesting the
significance of rends js Spearman’s coefficient of rank-order correlation
(Minnis 1985:106).

In sum, ubiquity analysis is useful, within limitations, for showing
general trends when one has little control over the sources of patterning in

patterns of plant use where the frequency of use remains the same, but
abundance changes (Scarry 1986:193). The results of ubiquity analysis are
highly dependent on the grouping of samples and to some extent on the
number of samples,

Ranking

define a ranking scheme, and foreach taxon we separately determine a scale
of abundance which sets the frequency required to fall within each rank. To
choose the criteria for determining a scale of abundance for each taxon, we
select the most important noncultural sources of patterning in the data for
which we want to control. We set the scale to neutralize the biases
introduced by these sources of patterning.

In a simple hypothetical example, to confirm differences in status

produce a few large starchy tubers, which are rarely preserved in archaco-
logical sites.
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INoa 1ze tato
Iable 4.3. Scales of abundance * for quinoa, maize, and po

Rank
1 2 3
501+
(Quinoa 1-50 51-500 &
2
Maize 1-10 1125
6+
3-5
Potato 1-2

iz bers per
* Counts are the number of quinoa seeds, maize kernels, or potato tu pe
5-liter flotation sample.

Using these ranks, we look for differences in the abundan:it: :ri ;hie(:: ,:i’;;
in kitchen middens of three households. Ind.ependen} c o
he Id 3 as high status. The plant remains confirm the p 90
h(')use'l']o' n between status and diet. Households 1 and 2 have more qumoS
3530014‘2::) and Houséhold 3 has more maize (table 4.4). These dif fetls'ence
z?e cplzarer when we look at the ranks instead of the absolute counts.

Table 4.4. Quinoa, maize, and potato counts

Houscholds
1 2 3
Counts
40(1)
Quinoa 700(3) 70(2)
30(3)
Maize 24(2) 9(1) (
1(1)
Potato 6(3) 3(2) (

1 12 S tato
Note: Counts show number of quinoa scgds. maize kem::z,r(;; l?so
tubers per 5-liter flotation sample. Numbers in parentheses




66 Virginia S. Popper
The assumptions we must satisfy to apply ranking depend on the criteria
used to create each taxon’s scale of abundance. In this example, we assume
first that the preservation conditions are the same for every sample. We
cannot apply the same scale of abundance to maize from a dry rock shelter,
where uncarbonized kernels are preserved, as to maize from a shallow open-
air site with poor preservation. Because preservation conditions differ
between contexts at the same site, the ranking method increases in accuracy
if we only compare samples from the same context.
Second, we assume a relative weighting of seed production to establish
the scales of abundance. This assumption is worthwhile only with a large
number of remains in each sample and high counts of individual taxa. In this
example (table 4.3), 100 and 400 quinoa seeds per sample are of equal
significance, while 600 seeds are of greater significance. If no sample
contains more than 10 quinoa seeds, this scale is useless. In addition,
because of quinoa’s high seed production, we should notdivide 0 to 10 seeds
into several ranks. Ranking this small range of data will probably introduce
errors into our results rather than control for variation in seed production.
Consequently ranking is not suitable.

In sum, ranking might be useful for evaluating the abundance of plant
remainsatasite that has consistently excellent preservation of plantremains
and high counts of taxa in each sample. If these criteria limit us to applying
ranking only to samples from one context at one site, we are limited in the
types of questions we can answer with ranking. Ranking is advantageous
because it allows taxa to be evaluated independently. But the subjective
weighting of taxa frequencies to determine their scales of abundance
increases the potential for introducing errors into the results. In many cases
the complication and potential for error with ranking will exceed ranking’s
potential for measuring plant frequencies more precisely.

Diversity

A diversity measurement summarizes data to describe the composition
of a plant assemblage. Of the several methods for measuring diversity, this
paper uses the Shannon-Weaver information index as an example. This
measurement incorporates the total number of taxain an assemblage and the
relative abundance of each taxon to express the certainty of predicting the
identity of a randomly selected plant remain (Yellen 1977: 107-8; Pearsall
1983:130). If there are many taxa evenly distributed in the assemblage, the
certainty.of predicting the identity of the selected plantis low and the index
indicates high diversity. If the taxa are few and unevenly distributed, the
index indicates low diversity. Pielou (1977:292) cautions that “since
diversity depends on two independent properties of a collection ambiguity
is inevitable; thus a collection with few species and high evenness could
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huve the same diversity as another collection with many Specics and low
‘ V(ll'tit;:le (1983:130-31) introduced the use of the Shannon-Weav.erS 1}1:3;;
i palcocthnobotany. She analyzed an assemblage.of plap?hremauilns jony
I"achamachay, a multioccupation site in Peru, to distinguis re;naden
ypecialized or temporary occupation from those qf abase camp (1))@ ie eent?}l;i
hunter-gatherers. Pearsall’s results showed partial .agreex.nemf g:'l o
diversity index and independent measure.:mcms.of intensity of oc di[\)/ersm;
§ix of the eight phases showed constan'l, mcrs:asmg, or dccr.eastx}g bl
(hat corresponded to similar trends in mlensny of ocs:upauqn. wmpand :
with predicted low intensity of occupation (z} sponfadlc .hur?un_g ca P;; e
ceramic workshop) produced moderately high diversity ‘mdl-cesti] fit
(1983:134) suggests that low abundance of plant remains in : gegg) 0
phases probably skewed the results. Caddell .(1933) gnd Sc.arry ( e
the Shannon-Weaver index to examine variability in maize popu
ase row number.

hdb;g;:;;’?] 983:137) used the following formula to calculate u;le Sh;l]r;;
non-Weaver index. (Although her formula galls for natural logam[hmi,mer
example results are based on common logarithms. Qne converts to 1 ceusmg
using a constant. Pearsall’s [pers. com.] recalculation of her 1ex:;mpommon
natural logarithms shows that the natural log curve paralle s the ¢

log curve in its shifts and supports the same conclusions.)

H=- Sum(N/N) log (N/N)

where N = total number of seeds in the phase

N = total number of seeds of taxon j in the phase
J

A hypothetical example (table 4.5) points out some of the d_nfﬁ'cn(ljlilézz gi
the Shannon-Weaver index. The example looks at the dweTS;][y in e
plantremains from three excavated levels. Tabl§4.5 prcsems.t ecou ssiblje
of five taxa in each level, totaling (N) ZOQ remains. Thc.ma.x imum (pI\(I) e
diversity index in this example is .70, indicating even distribution (N; =

e taxa. :
i 2'llziulezlrff:)arrnalion derived from this analysis is necesgnly gcniralv.v"l:iliz
diversityindexinlevel 1,closeto ;he rga;ir:um 1 (s)tvl:)e\:lz ?\l,itr‘s?:;c”r[‘s;, e);;, e
index values in levels 2 and 3 show r div - Th
:?;g;::;u:uc for measuring the significangc of ths filfference 1&:21:23
In addition, as Pearsall points out, lt_\e dxvc.arsny mde); com o
frequency data from one period or level‘m one mdex,.thus. osmga et
tion on constituent data. Two samples with the same diversity me
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Table 4.5. Example of diversity measurement

Level 1 Level 2 Level 3
Lima beans 40 12 50
Avocado 37 10 0
Squash 29 140 70
Maize 50 15 0
Prickly pear 44 23 80
Total (N) 200 200 200
Diversity .68 44 46
index (H)

contain differenttaxa (Yellen 1977:108), and in this example, low diversity
in level 2 comes from uneven distribution, while equally low diversity in
level 3 comes from few taxa. Thus, this diversity measurement may be
useful for looking for generalized (diverse) versus specialized (not diverse)
plant assemblages, but gives only the broadest trends. We must look to the
data themselves to understand the nature of the specialization. We may find
that differences in seed production and preservation potential among taxa
have influenced the measurement, thereby obscuring its cultural meaning.
If prickly pear seeds, ranging from 0 to 1,000 per sample, are in the same
index asavocado seeds, ranging from 0 to 20 seeds per sample, an automatic
bias exists toward uneven distribution of the taxa and low diversity.

An advantage of the diversity measurement is that it is easy to calculate
and provides a simple value. However, with more specific predictions about
how, for instance, a permanent agricultural settlement’s plant remains will
differ from those of a temporary harvesting camp (e.g., differences in types,
quantities, and contexts of remains) we could use other quantitative

¢ v ) ()‘)
i (& casure v i '()('lhll()h()l my
( )lllllllil 1nve M asureme nits n | e

- cirements which would provide more spccil: ic ml(?rmfmon.il;?:ilzé‘?;
”'W‘Nm‘m\)b\; . ver index requires high counts for cach mxont,)r et
Soolicabil L‘I) archacobotanical data. Pearsall (1983:139) lcl Janis
"N,hmhlm-y 1(() -ould lead to inaccurate results. If , as occasionally ‘h‘c)oum;
o bi w‘amplcs (possibly from differentcontexts) to reaclmion .
 Jurige l::lsbc careful to group samples from the same popu
(|)):/:;lr\llc(|)1; v:licn;dy discussed in terms of ubiquity measurement).

(‘onclusion

1 i t human-
This paper shows that we cannot draw direct con;l;:snoar:e z::)l(;liln Ly
antii tions from the frequency of taxa alone. The p: sl
Dldf}l e ltural and noncultural factors. Ou'r researc qd i
dcr)gc:clsf:l):(rllaggumplions define the patterns we seek n:rt)l:xsr‘ (21:11;2:) z:; couﬁ e
b : S cmains. But we .
e lhfesgt?;lr‘;?;;sig it?;ii‘:tzrlc.r(guamitalivc measuremcn;sS ?.E)s;zl \:Z
('“hcr SOU“fCS 0Wpth the increasing complexity of the rescgrch qu i
mll(:wcsseq :?)Sa‘;sc.hac‘obotanical data, theimportance of selecting anapprop
address :
qﬂami‘i‘ﬁ"e mcasitflfr er::‘r?tn (;:;i?igtci:/iarsr?;surcmcms pointout the Zu‘e;%:ll:ts‘
Examples‘ > dlf zgch method. The different methods. t'xeat theda i
'df}d WCﬁk%bS@? (‘)of specificity, require different conditions, an a;;) S
d%ffcmm QC%recs tion. As the measurements move away frp;n e
dlffCTem.m Ormlasc ir;formalionon abundance. Butmorc speci ‘1c Lt
fquUC“CIC‘S,VlVC (:)solutc counts and ranking, require grcawr cort\ i
e SU.Lh e ?1 context than ubiquity. Ratios (seg Miller, ct}ap \;:, s
prcservanon'a‘:vilh greater specificity than ubiquux analysxst.) il
e lh? 'daml ¢ well-controlled data (e.g., comparing }z}xa c;s agal
gi:;ir:\;p;n;&:)nlexl atone site) wemay wanta m(t)\rcqslf):scaf)lﬁ Smlch i
i carc
i Vr\’ll;‘; ts:(;n;S)?é‘;efrc:r::cZ?\?;;coTs;tcr:fs may call for more general
compa -
el s between alternative measurements, we also consul(:,lrr ::Z
W'h'en g ire. Ubiquity is less reliable (cspcglally for mflzzlanking
s fr L La;m) when there are few samplqs in a group. e
. ffequef}cy y rarcts of taxa. All paleoethnobotamcal .am?\lysesfC l?laﬂy
rcqu;ﬂ;s g‘:f:pi:\(;u& samples for accurate results. ’:"hlgs ;sn }:i:: ; i
o iqui i rouping sampies1 ! '
inf]pt(l)\relacnz:li:ulll:tli?)‘:lllyl\?l‘i‘l?clz)rlszsc,ht;;i:?Sg)gdisc?usses the issues involved in
o :
avcragmg' Value?' ion they give, ranking and ubiquity allow usdto gi\;z:\;i:ea
‘“_ u:ieegg?(;‘e‘:\c:ryo This does not hold true for ratios that standar
taxain .
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by comparing the quantity of one taxon or category of remains to that of
another taxon or category (see Miller, chapter 5). Diversity measurements
are useful for summarizing groups of data but tell us nothing about
individual taxa. The same cautionary note applies to the interpretation of all
quantitative measurements. We must be explicit about how the values we
receive from our measurements provide the information we need to answer
our research questions.

This paper illustrates that one cannot generalize about the suitability of
a particular quantitative method. Some methods may be better suited in
general to some research questions, but the best method in any specific
instance depends also on the condition of the archaeobotanical data. To
choosea suitable method, we need to consider both the question and the data
condition. Specific examples from this paper and this volume provide
guidelines for the selection of quantitative measurements. Paleoethnobo-
tanical analyses often include several methods of quantification and may
benefit from comparing the results of different methods.
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