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xix

Karma Police, arrest this man, he talks in maths, he buzzes like a fridge, he’s like 
a detuned radio.

Radiohead (1997)

Introduction

Social science students despise statistics. For one thing, most have a non-mathematical back-
ground, which makes understanding complex statistical equations very difficult. The major 
advantage in being taught statistics in the early 1990s (as I was) compared to the 1960s was 
the development of computer software to do all of the hard work. The advantage of learning 
statistics now rather than 15 years ago is that Windows™/MacOS™ enable us to just click on 
stuff rather than typing in horribly confusing commands (although, as you will see, we can 
still type in horribly confusing commands if we want to). One of the most commonly used of 
these packages is SPSS; what on earth possessed me to write a book on it?

You know that you’re a geek when you have favourite statistics textbooks; my favourites are 
Howell (2006), Stevens (2002) and Tabachnick and Fidell (2007). These three books are peer-
less as far as I am concerned and have taught me (and continue to teach me) more about statistics 
than you could possibly imagine. (I have an ambition to be cited in one of these books but I don’t 
think that will ever happen.) So, why would I try to compete with these sacred tomes? Well,  
I wouldn’t and I couldn’t (intellectually these people are several leagues above me). However, 
these wonderful and clear books use computer examples as addenda to the theory. The advent of 
programs like SPSS provides the unique opportunity to teach statistics at a conceptual level with-
out getting too bogged down in equations. However, many SPSS books concentrate on ‘doing 
the test’ at the expense of theory. Using SPSS without any statistical knowledge at all can be a 
dangerous thing (unfortunately, at the moment SPSS is a rather stupid tool, and it relies heavily 
on the users knowing what they are doing). As such, this book is an attempt to strike a good bal-
ance between theory and practice: I want to use SPSS as a tool for teaching statistical concepts in 
the hope that you will gain a better understanding of both theory and practice.

Primarily, I want to answer the kinds of questions that I found myself asking while learning 
statistics and using SPSS as an undergraduate (things like ‘How can I understand how this statis-
tical test works without knowing too much about the maths behind it?’, ‘What does that button 
do?’, ‘What the hell does this output mean?’). Like most academics I’m slightly high on the autis-
tic spectrum, and I used to get fed up with people telling me to ‘ignore’ options or ‘ignore that 
bit of the output’. I would lie awake for hours in my bed every night wondering ‘Why is that bit 
of SPSS output there if we just ignore it?’ So that no student has to suffer the mental anguish that 
I did, I aim to explain what different options do, what bits of the output mean, and if we ignore 
something, why we ignore it. Furthermore, I want to be non-prescriptive. Too many books tell 
the reader what to do (‘click on this button’, ‘do this’, ‘do that’, etc.) and this can create the 
impression that statistics and SPSS are inflexible. SPSS has many options designed to allow you 
to tailor a given test to your particular needs. Therefore, although I make recommendations, 
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within the limits imposed by the senseless destruction of rainforests, I hope to give you enough 
background in theory to enable you to make your own decisions about which options are appro-
priate for the analysis you want to do.

A second, not in any way ridiculously ambitious, aim was to make this the only statistics 
textbook that anyone ever needs to buy. As such, it’s a book that I hope will become your 
friend from first year right through to your professorship. I’ve tried, therefore, to write a 
book that can be read at several levels (see the next section for more guidance). There are 
chapters for first-year undergraduates (1, 2, 3, 4, 5, 6, 9 and 15), chapters for second-year 
undergraduates (5, 7, 10, 11, 12, 13 and 14) and chapters on more advanced topics that 
postgraduates might use (8, 16, 17, 18 and 19). All of these chapters should be accessible 
to everyone, and I hope to achieve this by flagging the level of each section (see the next 
section).

My third, final and most important aim is make the learning process fun. I have a sticky 
history with maths because I used to be terrible at it:

Above is an extract of my school report at the age of 11. The ‘27’ in the report is to say 
that I came equal 27th with another student out of a class of 29. That’s almost bottom of 
the class. The 43 is my exam mark as a percentage! Oh dear. Four years later (at 15) this 
was my school report:

What led to this remarkable change? It was having a good teacher: my brother, Paul. In 
fact I owe my life as an academic to Paul’s ability to do what my maths teachers couldn’t: 
teach me stuff in an engaging way. To this day he still pops up in times of need to teach me 
things (a crash course in computer programming some Christmases ago springs to mind). 
Anyway, the reason he’s a great teacher is because he’s able to make things interesting and 
relevant to me. Sadly he seems to have got the ‘good teaching’ genes in the family (and 
he doesn’t even work as a bloody teacher, so they’re wasted!), but his approach inspires 
my lectures and books. One thing that I have learnt is that people appreciate the human 
touch, and so in previous editions I tried to inject a lot of my own personality and sense of 
humour (or lack of …). Many of the examples in this book, although inspired by some of 
the craziness that you find in the real world, are designed to reflect topics that play on the 
minds of the average student (i.e. sex, drugs, rock and roll, celebrity, people doing crazy 
stuff). There are also some examples that are there just because they made me laugh. So, 
the examples are light-hearted (some have said ‘smutty’ but I prefer ‘light-hearted’) and by 
the end, for better or worse, I think you will have some idea of what goes on in my head 
on a daily basis!
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What’s new?

Seeing as some people appreciated the style of the previous editions I’ve taken this as a 
green light to include even more stupid examples, more smut and more bad taste. I apolo-
gise to those who think it’s crass, hate it, or think that I’m undermining the seriousness of 
science, but, come on, what’s not funny about a man putting an eel up his anus?

Aside from adding more smut, I was forced reluctantly to expand the academic content! 
Most of the expansions have resulted from someone (often several people) emailing me to 
ask how to do something. So, in theory, this edition should answer any question anyone 
has asked me over the past four years! Mind you, I said that last time and still the questions 
come (will I never be free?). The general changes in the book are:

More introductory materialMM : The first chapter in the last edition was like sticking your 
brain into a food blender. I rushed chaotically through the entire theory of statistics 
in a single chapter at the pace of a cheetah on speed. I didn’t really bother explaining 
any basic research methods, except when, out of the blue, I’d stick a section in some 
random chapter, alone and looking for friends. This time, I have written a brand-new 
Chapter 1, which eases you gently through the research process – why and how we 
do it. I also bring in some basic descriptive statistics at this point too.
More graphsMM : Graphs are very important. In the previous edition information about 
plotting graphs was scattered about in different chapters making it hard to find. 
What on earth was I thinking? I’ve now written a self-contained chapter on how to 
use SPSS’s Chart Builder. As such, everything you need to know about graphs (and  
I added a lot of material that wasn’t in the previous edition) is now in Chapter 4.
More assumptionsMM : All chapters now have a section towards the end about what to 
do when assumptions are violated (although these usually tell you that SPSS can’t do 
what needs to be done!).
More data setsMM : You can never have too many examples, so I’ve added a lot of new 
data sets. There are 30 new data sets in the book at the last count (although I’m not 
very good at maths so it could be a few more or less).
More stupid facesMM : I have added some more characters with stupid faces because  
I find stupid faces comforting, probably because I have one. You can find out more 
in the next section. Miraculously, the publishers stumped up some cash to get them 
designed by someone who can actually draw.
More reporting your analysisMM : OK, I had these sections in the previous edition too, 
but then in some chapters I just seemed to forget about them for no good reason. This 
time every single chapter has one.
More glossaryMM : Writing the glossary last time nearly made me stick a vacuum cleaner 
into my ear to suck out my own brain. I thought I probably ought to expand it a bit. 
You can find my brain in the bottom of the vacuum cleaner in my house.
New! It’s colourMM : The publishers went full colour. This means that (1) I had to redo 
all of the diagrams to take advantage of the colour format, and (2) If you lick the 
orange bits they taste of orange (it amuses me that someone might try this to see 
whether I’m telling the truth).
New! Real-world dataMM : Lots of people said that they wanted more ‘real data’ to play 
with. The trouble is that real research can be quite boring. However, just for you,  
I trawled the world for examples of research on really fascinating topics (in my opin-
ion). I then stalked the authors of the research until they gave me their data. Every 
chapter now has a real research example.
New! Self-test questionsMM : Everyone loves an exam, don’t they? Well, everyone that is 
apart from people who breathe. Given how much everyone hates tests, I thought the 
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best way to commit commercial suicide was to liberally scatter tests throughout each 
chapter. These range from simple questions to test out what you have just learned to 
going back to a technique that you read about several chapters before and applying 
it in a new context. All of these questions have answers to them on the companion 
website. They are there so that you can check on your progress.

New! MM SPSS tips: SPSS does weird things sometimes. In each chapter, I’ve included 
boxes containing tips, hints and pitfalls related to SPSS.
New! MM SPSS 17 compliant: SPSS 17 looks different to earlier versions but in other 
respects is much the same. I updated the material to reflect the latest editions of SPSS.
New! Flash moviesMM : I’ve recorded some flash movies of using SPSS to accompany each 
chapter. They’re on the companion website. They might help you if you get stuck.
NewMM ! Additional material: Enough trees have died in the name of this book, but still 
it gets longer and still people want to know more. Therefore, I’ve written nearly 
300 pages, yes, three hundred, of additional material for the book. So for some more 
technical topics and help with tasks in the book the material has been provided 
electronically so that (1) the planet suffers a little less, and (2) you can actually lift 
the book.
New! Multilevel modellingMM : It’s all the rage these days so I thought I should write a 
chapter on it. I didn’t know anything about it, but I do now (sort of).
New! Multinomial logistic regressionMM : It doesn’t get much more exciting than this; 
people wanted to know about logistic regression with several categorical outcomes 
and I always give people what they want (but only if they want smutty examples).

All of the chapters now have SPSS tips, self-test questions, additional material (Oliver 
Twisted boxes), real research examples (Labcoat Leni boxes), boxes on difficult topics (Jane 
Superbrain boxes) and flash movies. The specific changes in each chapter are:

Chapter 1 (Research methods)MM : This is a completely new chapter. It basically talks 
about why and how to do research.

Chapter 2 (Statistics)MM : I spent a lot of time rewriting this chapter but it was such a 
long time ago that I can’t really remember what I changed. Trust me, though; it’s 
much better than before.

Chapter 3 (MM SPSS): The old Chapter 2 is now SPSS 17 compliant. I restructured a lot of 
the material, and added some sections on other forms of variables (strings and dates).

Chapter 4MM  (Graphs): This chapter is completely new.

Chapter 5 (Assumptions)MM : This retains some of the material from the old Chapter 4, but 
I’ve expanded the content to include P–P and Q–Q plots, a lot of new content on homo-
geneity of variance (including the variance ratio) and a new section on robust methods. 

Chapter 6 (Correlation)MM : The old Chapter 4; I redid one of the examples, added some 
material on confidence intervals for r, the biserial correlation, testing differences between 
dependent and independent rs and how certain eminent statisticians hate each other.

Chapter 7 (Regression)MM : This chapter was already so long that the publishers banned 
me from extending it! Nevertheless I rewrote a few bits to make them clearer, but 
otherwise it’s the same but with nicer diagrams and the bells and whistles that have 
been added to every chapter.

Chapter 8 (Logistic regression)MM : I changed the main example from one about theory 
of mind (which is now an end of chapter task) to one about putting eels up your anus 
to cure constipation (based on a true story). Does this help you understand logistic 
regression? Probably not, but it really kept me entertained for days. I’ve extended the 
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chapter to include multinomial logistic regression, which was a pain because I didn’t 
know how to do it.

Chapter 9 (MM t-tests): I stripped a lot of the methods content to go in Chapter 1, so 
this chapter is more purely about the t-test now. I added some discussion on median 
splits, and doing t-tests from only the means and standard deviations.

Chapter 10 (GLM 1)MM : Is basically the same as the old Chapter 8.

Chapter 11 (GLM 2)MM : Similar to the old Chapter 9, but I added a section on assump-
tions that now discusses the need for the covariate and treatment effect to be 
independent. I also added some discussion of eta-squared and partial eta-squared 
(SPSS produces partial eta-squared but I ignored it completely in the last edition). 
Consequently I restructured much of the material in this example (and I had to create 
a new data set when I realized that the old one violated the assumption that I had just 
spent several pages telling people not to violate).

Chapter 12 (GLM 3)MM : This chapter is ostensibly the same as the old Chapter 10, but 
with nicer diagrams. 

Chapter 13 (GLM 4)MM : This chapter is more or less the same as the old Chapter 11. 
I edited it down quite a bit and restructured material so there was less repetition. 
I added an explanation of the between-participant sum of squares also. The first 
example (tutors marking essays) is now an end of chapter task, and the new example 
is one about celebrities eating kangaroo testicles on television. It needed to be done.

Chapter 14 (GLM 5)MM : This chapter is very similar to the old Chapter 12 on mixed 
ANOVA.

Chapter 15 (Non-parametric statistics)MM : This chapter is more or less the same as the 
old Chapter 13.

Chapter 16 (MMM ANoVA): I rewrote a lot of the material on the interpretation of  
discriminant function analysis because I thought it pretty awful. It’s better now.

Chapter 17 (Factor analysis)MM : This chapter is very similar to the old Chapter 15. I wrote 
some material on interpretation of the determinant. I’m not sure why, but I did.

Chapter 18 (Categorical data)MM : This is similar to Chapter 16 in the previous edition. 
I added some material on interpreting standardized residuals.

Chapter 19 (Multilevel linear models)MM : This is a new chapter.

Goodbye

The first edition of this book was the result of two years (give or take a few weeks to write 
up my Ph.D.) of trying to write a statistics book that I would enjoy reading. The second 
edition was another two years of work and I was terrified that all of the changes would be 
the death of it. You’d think by now I’d have some faith in myself. Really, though, having 
spent an extremely intense six months in writing hell, I am still hugely anxious that I’ve 
just ruined the only useful thing that I’ve ever done with my life. I can hear the cries of 
lecturers around the world refusing to use the book because of cruelty to eels. This book 
has been part of my life now for over 10 years; it began and continues to be a labour of 
love. Despite this it isn’t perfect, and I still love to have feedback (good or bad) from the 
people who matter most: you. 

Andy
(My contact details are at www.statisticshell.com.)
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When the publishers asked me to write a section on ‘How to use this book’ it was obvi-
ously tempting to write ‘Buy a large bottle of Olay anti-wrinkle cream (which you’ll need 
to fend off the effects of ageing while you read), find a comfy chair, sit down, fold back the 
front cover, begin reading and stop when you reach the back cover.’ However, I think they 
wanted something more useful.

What background knowledge do I need?

In essence, I assume you know nothing about statistics, but I do assume you have some very 
basic grasp of computers (I won’t be telling you how to switch them on, for example) and 
maths (although I have included a quick revision of some very basic concepts so I really 
don’t assume anything). 

Do the chapters get more difficult as I go through 
the book?

In a sense they do (Chapter 16 on MANOVA is more difficult than Chapter 1), but in other 
ways they don’t (Chapter 15 on non-parametric statistics is arguably less complex than 
Chapter 14, and Chapter 9 on the t-test is definitely less complex than Chapter 8 on logistic 
regression). Why have I done this? Well, I’ve ordered the chapters to make statistical sense 
(to me, at least). Many books teach different tests in isolation and never really give you a 
grip of the similarities between them; this, I think, creates an unnecessary mystery. Most of 
the tests in this book are the same thing expressed in slightly different ways. So, I wanted 
the book to tell this story. To do this I have to do certain things such as explain regression 
fairly early on because it’s the foundation on which nearly everything else is built!

However, to help you through I’ve coded each section with an icon. These icons are 
designed to give you an idea of the difficulty of the section. It doesn’t necessarily mean 
you can skip the sections (but see Smart Alex in the next section), but it will let you know 
whether a section is at about your level, or whether it’s going to push you. I’ve based the 
icons on my own teaching so they may not be entirely accurate for everyone (especially as 
systems vary in different countries!):

1  This means ‘level 1’ and I equate this to first-year undergraduate in the UK. These are 
sections that everyone should be able to understand.

2  This is the next level and I equate this to second-year undergraduates in the UK. These 
are topics that I teach my second years and so anyone with a bit of background in sta-
tistics should be able to get to grips with them. However, some of these sections will be 
quite challenging even for second years. These are intermediate sections.

HOW TO USE THIS BOOk
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3  This is ‘level 3’ and represents difficult topics. I’d expect third-year (final-year) UK 
undergraduates and recent postgraduate students to be able to tackle these sections. 

4  This is the highest level and represents very difficult topics. I would expect these sec-
tions to be very challenging to undergraduates and recent postgraduates, but post-
graduates with a reasonable background in research methods shouldn’t find them too 
much of a problem.

Why do I keep seeing stupid faces everywhere?

Brian Haemorrhage: Brian’s job is to pop up to ask questions and look permanently con-
fused. It’s no surprise to note, therefore, that he doesn’t look entirely different from the author. 
As the book progresses he becomes increasingly despondent. Read into that what you will.

Curious Cat: He also pops up and asks questions (because he’s curious). Actually the only 
reason he’s here is because I wanted a cat in the book … and preferably one that looks like 
mine. Of course the educational specialists think he needs a specific role, and so his role is 
to look cute and make bad cat-related jokes.

Cramming Sam: Samantha hates statistics. In fact, she thinks it’s all a boring waste of time 
and she just wants to pass her exam and forget that she ever had to know anything about 
normal distributions. So, she appears and gives you a summary of the key points that you 
need to know. If, like Samantha, you’re cramming for an exam, she will tell you the essential 
information to save you having to trawl through hundreds of pages of my drivel.

Jane Superbrain: Jane is the cleverest person in the whole universe (she makes Smart 
Alex look like a bit of an imbecile). The reason she is so clever is that she steals the brains 
of statisticians and eats them. Apparently they taste of sweaty tank tops, but nevertheless 
she likes them. As it happens, she is also able to absorb the contents of brains while she eats 
them. Having devoured some top statistics brains she knows all the really hard stuff and 
appears in boxes to tell you really advanced things that are a bit tangential to the main text. 
(Readers should note that Jane wasn’t interested in eating my brain. That tells you all that 
you need to know about my statistics ability.)

Labcoat Leni: Leni is a budding young scientist and he’s fascinated by real research. He says, 
‘Andy, man, I like an example about using an eel as a cure for constipation as much as the next 
man, but all of your examples are made up. Real data aren’t like that, we need some real exam-
ples, dude!’ So off Leni went; he walked the globe, a lone data warrior in a thankless quest 
for real data. He turned up at universities, cornered academics, kidnapped their families and 
threatened to put them in a bath of crayfish unless he was given real data. The generous ones 
relented, but others? Well, let’s just say their families are sore. So, when you see Leni you know 
that you will get some real data, from a real research study to analyse. Keep it real.

Oliver Twisted: With apologies to Charles Dickens, Oliver, like his more famous fictional 
London urchin, is always asking, ‘Please sir, can I have some more?’ Unlike Master Twist, 
though, our young Master Twisted always wants more statistics information. Of course he 
does, who wouldn’t? Let us not be the ones to disappoint a young, dirty, slightly smelly 
boy who dines on gruel, so when Oliver appears you can be certain of one thing: there is 
additional information to be found on the companion website. (Don’t be shy; download it 
and bathe in the warm asp’s milk of knowledge.)
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Satan’s Personal Statistics Slave: Satan is a busy boy – he has all of the lost souls to 
torture in hell; then there are the fires to keep fuelled, not to mention organizing enough 
carnage on the planet’s surface to keep Norwegian black metal bands inspired. Like many of 
us, this leaves little time for him to analyse data, and this makes him very sad. So, he has his 
own personal slave, who, also like some of us, spends all day dressed in a gimp mask and tight 
leather pants in front of SPSS analysing Satan’s data. Consequently, he knows a thing or two 
about SPSS, and when Satan’s busy spanking a goat, he pops up in a box with SPSS tips.

Smart Alex: Alex is a very important character because he appears when things get par-
ticularly difficult. He’s basically a bit of a smart alec and so whenever you see his face 
you know that something scary is about to be explained. When the hard stuff is over he 
reappears to let you know that it’s safe to continue. Now, this is not to say that all of the 
rest of the material in the book is easy, he just let’s you know the bits of the book that you 
can skip if you’ve got better things to do with your life than read all 800 pages! So, if you 
see Smart Alex then you can skip the section entirely and still understand what’s going on. 
You’ll also find that Alex pops up at the end of each chapter to give you some tasks to do 
to see whether you’re as smart as he is.

What is on the companion website?

In this age of downloading, CD-ROMs are for losers (at least that’s what the ‘kids’ tell me) 
so this time around I’ve put my cornucopia of additional funk on that worldwide interweb 
thing. This has two benefits: (1) The book is slightly lighter than it would have been, and 
(2) rather than being restricted to the size of a CD-ROM, there is no limit to the amount 
of fascinating extra material that I can give you (although Sage have had to purchase a new 
server to fit it all on). To enter my world of delights, go to www.sagepub.co.uk/field3e 
(see the image on the next page). 

How will you know when there are extra goodies on this website? Easy-peasy, Oliver  
Twisted appears in the book to indicate that there’s something you need (or something 
extra) on the website. The website contains resources for students and lecturers alike:

Data filesMM : You need data files to work through the examples in the book and they 
are all on the companion website. We did this so that you’re forced to go there and 
once you’re there you will never want to leave.  There are data files here for a range 
of students, including those studying psychology, business and health sciences.
Flash moviesMM : Reading is a bit boring; it’s much more amusing to listen to me explain-
ing things in my camp English accent. Therefore, so that you can all have ‘laugh at 
Andy’ parties, I have created flash movies for each chapter that show you how to do 
the SPSS examples. I’ve also done extra ones that show you useful things that would 
otherwise have taken me pages of drivel to explain. Some of these movies are open 
access, but because the publishers want to sell some books, others are available only 
to lecturers. The idea is that they can put them on their virtual learning environ-
ments. If they don’t, put insects under their office doors.
PodcastMM : My publishers think that watching a film of me explaining what this book is 
all about is going to get people flocking to the bookshop. I think it will have people 
flocking to the medicine cabinet. Either way, if you want to see how truly uncharis-
matic I am, watch and cringe.
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Self-assessment multiple-choice questionsMM : Organized by chapter, these will allow 
you to test whether wasting your life reading this book has paid off so that you can 
walk confidently into an examination much to the annoyance of your friends. If you 
fail said exam, you can employ a good lawyer and sue me. 
Flashcard glossaryMM : As if a printed glossary wasn’t enough, my publishers insisted that 
you’d like one in electronic format too. Have fun here flipping about between terms 
and definitions that are covered in the textbook, it’s better than actually learning 
something.
Additional materialMM : Enough trees have died in the name of this book, but still it gets 
longer and still people want to know more. Therefore, I’ve written nearly 300 pages, 
yes, three hundred, of additional material for the book. So for some more technical 
topics and help with tasks in the book the material has been provided electronically 
so that (1) the planet suffers a little less, and (2) you can actually lift the book.
AnswersMM : each chapter ends with a set of tasks for you to test your newly acquired 
expertise. The chapters are also littered with self-test questions. How will you know 
if you get these correct? Well, the companion website contains around 300 hundred 
pages (that’s a different three hundred pages to the three hundred above) of detailed 
answers. Will I ever stop writing?
Cyberworms of knowledgeMM :  I have used nanotechnology to create cyberworms that 
crawl down your broadband connection, pop out of the USB port of your computer 
then fly through space into your brain. They re-arrange your neurons so that you 
understand statistics. You don’t believe me? Well, you’ll never know for sure unless 
you visit the companion website …

Happy reading, and don’t get sidetracked by Facebook.
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The first edition of this book wouldn’t have happened if it hadn’t been for Dan Wright, 
who not only had an unwarranted faith in a then-postgraduate to write the book, but also 
read and commented on draft chapters in all three editions. I’m really sad that he is leaving 
England to go back to the United States.

The last two editions have benefited from the following people emailing me with com-
ments, and I really appreciate their contributions: John Alcock, Aliza Berger-Cooper, Sanne 
Bongers, Thomas Brügger, Woody Carter, Brittany Cornell, Peter de Heus, Edith de Leeuw, 
Sanne de Vrie, Jaap Dronkers, Anthony Fee, Andy Fugard, Massimo Garbuio, Ruben van 
Genderen, Daniel Hoppe, Tilly Houtmans, Joop Hox, Suh-Ing (Amy) Hsieh, Don Hunt, 
Laura Hutchins-Korte, Mike Kenfield, Ned Palmer, Jim Parkinson, Nick Perham, Thusha 
Rajendran, Paul Rogers, Alf Schabmann, Mischa Schirris, Mizanur Rashid Shuvra, Nick 
Smith, Craig Thorley, Paul Tinsley, Keith Tolfrey, Frederico Torracchi, Djuke Veldhuis, Jane 
Webster and Enrique Woll.

In this edition I have incorporated data sets from real research papers. All of these 
research papers are studies that I find fascinating and it’s an honour for me to have these 
researchers’ data in my book: Hakan Çetinkaya, Tomas Chamorro-Premuzic, Graham 
Davey, Mike Domjan, Gordon Gallup, Eric Lacourse, Sarah Marzillier, Geoffrey Miller, 
Peter Muris, Laura Nichols and Achim Schüetzwohl.

Jeremy Miles stopped me making a complete and utter fool of myself (in the book –  
sadly his powers don’t extend to everyday life) by pointing out some glaring errors; 
he’s also been a very nice person to know over the past few years (apart from when 
he’s saying that draft sections of my books are, and I quote, ‘bollocks’!). David Hitchin, 
Laura Murray, Gareth Williams and Lynne Slocombe made an enormous contribution to 
the last edition and all of their good work remains in this edition. In this edition, Zoë 
Nightingale’s unwavering positivity and suggestions for many of the new chapters were 
invaluable. My biggest thanks go to Kate Lester who not only read every single chapter, 
but also kept my research laboratory ticking over while my mind was on this book. I liter-
ally could not have done it without her support and constant offers to take on extra work 
that she did not have to do so that I could be a bit less stressed. I am very lucky to have 
her in my research team.

All of these people have taken time out of their busy lives to help me out. I’m not sure 
what that says about their mental states, but they are all responsible for a great many 
improvements. May they live long and their data sets be normal.

Not all contributions are as tangible as those above. With the possible exception of 
them not understanding why sometimes I don’t answer my phone, I could not have asked 
for more loving and proud parents – a fact that I often take for granted. Also, very early 
in my career Graham Hole made me realize that teaching research methods didn’t have 
to be dull. My whole approach to teaching has been to steal all of his good ideas and I’m 
pleased that he has had the good grace not to ask for them back! He is also a rarity in being 
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brilliant, funny and nice. I also thank my Ph.D. students Carina Ugland, Khanya Price-
Evans and Saeid Rohani for their patience for the three months that I was physically away 
in Rotterdam, and for the three months that I was mentally away upon my return.

I appreciate everyone who has taken time to write nice reviews of this book on the vari-
ous Amazon sites around the world (or any other website for that matter!). The success of 
this book has been in no small part due to these people being so positive and constructive 
in their reviews. I continue to be amazed and bowled over by the nice things that people 
write and if any of you are ever in Brighton, I owe you a pint!

The people at Sage are less hardened drinkers than they used to be, but I have been very 
fortunate to work with Michael Carmichael and Emily Jenner. Mike, despite his failings 
on the football field(!), has provided me with some truly memorable nights out and he also 
read some of my chapters this time around which, as an editor, made a pleasant change. 
Both Emily and Mike took a lot of crap from me (especially when I was tired and stressed) 
and I’m grateful for their understanding. Emily I’m sure thinks I’m a grumpy sod, but she 
did a better job of managing me than she realizes. Also, Alex Lee did a fantastic job of turn-
ing the characters in my head into characters on the page. Thanks to Jill Rietema at SPSS 
Inc. who has been incredibly helpful over the past few years; it has been a pleasure working 
with her. The book (obviously) would not exist without SPSS Inc.’s kind permission to use 
screenshots of their software. Check out their web pages (http://www.SPSS.com) for sup-
port, contact information and training opportunities.

I wrote much of this edition while on sabbatical at the Department of Psychology at 
the Erasmus University, Rotterdam, The Netherlands. I’m grateful to the clinical research 
group (especially the white ape posse!) who so unreservedly made me part of the team. 
Part of me definitely stayed with you when I left – I hope it isn’t annoying you too much. 
Mostly, though, I thank Peter (Muris), Birgit (Mayer), Jip and Kiki who made me part of 
their family while in Rotterdam. They are all inspirational. I’m grateful for their kindness, 
hospitality, and for not getting annoyed when I was still in their kitchen having drunk all of 
their wine after the last tram home had gone. Mostly, I thank them for the wealth of happy 
memories that they gave me. 

I always write listening to music. For the previous editions, I owed my sanity to: Abba, 
AC/DC, Arvo Pärt, Beck, The Beyond, Blondie, Busta Rhymes, Cardiacs, Cradle of Filth, 
DJ Shadow, Elliott Smith, Emperor, Frank Black and the Catholics, Fugazi, Genesis (Peter 
Gabriel era), Hefner, Iron Maiden, Janes Addiction, Love, Metallica, Massive Attack, 
Mercury Rev, Morrissey, Muse, Nevermore, Nick Cave, Nusrat Fateh Ali Khan, Peter 
Gabriel, Placebo, Quasi, Radiohead, Sevara Nazarkhan, Slipknot, Supergrass and The White 
Stripes. For this edition, I listened to the following, which I think tells you all that you need 
to know about my stress levels: 1349, Air, Angantyr, Audrey Horne, Cobalt, Cradle of 
Filth, Danzig, Dark Angel, Darkthrone, Death Angel, Deathspell Omega, Exodus, Fugazi, 
Genesis, High on Fire, Iron Maiden, The Mars Volta, Manowar, Mastodon, Megadeth, 
Meshuggah, Opeth, Porcupine Tree, Radiohead, Rush, Serj Tankian, She Said!, Slayer, 
Soundgarden, Taake, Tool  and the Wedding Present.

Finally, all this book-writing nonsense requires many lonely hours (mainly late at night) 
of typing. Without some wonderful friends to drag me out of my dimly lit room from time 
to time I’d be even more of a gibbering cabbage than I already am. My eternal gratitude 
goes to Graham Davey, Benie MacDonald, Ben Dyson, Martin Watts, Paul Spreckley, Darren 
Hayman, Helen Liddle, Sam Cartwright-Hatton, Karina Knowles and Mark Franklin for 
reminding me that there is more to life than work. Also, my eternal gratitude to Gini Harrison, 
Sam Pehrson and Luke Anthony and especially my brothers of metal Doug Martin and Rob 
Mepham for letting me deafen them with my drumming on a regular basis. Finally, thanks to 
Leonora for her support while I was writing the last two editions of this book.



Dedication

Like the previous editions, this book is dedicated to my brother Paul and my cat Fuzzy, 
because one of them is a constant source of intellectual inspiration and the other wakes 
me up in the morning by sitting on me and purring in my face until I give him cat food: 
mornings will be considerably more pleasant when my brother gets over his love of cat 
food for breakfast. 
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mathematical operators

Σ
This symbol (called sigma) means ‘add everything up’. So, if you see something 
like Σxi it just means ‘add up all of the scores you’ve collected’.

Π
This symbol means ‘multiply everything’. So, if you see something like Π xi it just 
means ‘multiply all of the scores you’ve collected’.

√x This means ‘take the square root of x’.

Greek symbols

α The probability of making a Type I error

β The probability of making a Type II error

βi Standardized regression coefficient

χ2 Chi-square test statistic

χ2
F Friedman’s AnOVA test statistic

ε Usually stands for ‘error’

η2 Eta-squared

µ The mean of a population of scores

ρ The correlation in the population

σ2 The variance in a population of data

σ The standard deviation in a population of data

σx– The standard error of the mean

τ Kendall’s tau (non-parametric correlation coefficient)

ω2 Omega squared (an effect size measure). This symbol also means ‘expel the 
contents of your intestine immediately into your trousers’; you will understand why in 
due course

SYmBOLS USED IN THIS BOOk
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English symbols

bi The regression coefficient (unstandardized)

df Degrees of freedom

ei The error associated with the ith person

f f-ratio (test statistic used in AnOVA)

H Kruskal–Wallis test statistic

k The number of levels of a variable (i.e. the number of treatment conditions), or the 
number of predictors in a regression model

ln natural logarithm

MS The mean squared error (Mean Square). The average variability in the data

N, n, ni The sample size. N usually denotes the total sample size, whereas n usually 
denotes the size of a particular group

P Probability (the probability value, p-value or significance of a test are usually 
denoted by p)

r Pearson’s correlation coefficient

rs Spearman’s rank correlation coefficient

rb, rpb Biserial correlation coefficient and point–biserial correlation coefficient respectively

R The multiple correlation coefficient

R2 The coefficient of determination (i.e. the proportion of data explained by the model)

s2 The variance of a sample of data

s The standard deviation of a sample of data

SS The sum of squares, or sum of squared errors to give it its full title

SSA The sum of squares for variable A

SSM The model sum of squares (i.e. the variability explained by the model fitted to the data)

SSR The residual sum of squares (i.e. the variability that the model can’t explain – the 
error in the model)

SST The total sum of squares (i.e. the total variability within the data)

t Test statistic for Student’s t-test

T Test statistic for Wilcoxon’s matched-pairs signed-rank test

U Test statistic for the Mann–Whitney test

Ws Test statistic for Wilcoxon’s rank-sum test

X
–
 or x– The mean of a sample of scores

z A data point expressed in standard deviation units
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Two negatives make a positive1 : Although in life two wrongs don’t make a right, in 
mathematics they do! When we multiply a negative number by another negative 
number, the result is a positive number. For example, −2 × −4 = 8.

A negative number multiplied by a positive one make a negative number2 : If you mul-
tiply a positive number by a negative number then the result is another negative number. 
For example, 2 × −4 = −8, or −2 × 6 = −12.

BODMAS3 : This is an acronym for the order in which mathematical operations are per-
formed. It stands for Brackets, Order, Division, Multiplication, Addition, Subtraction 
and this is the order in which you should carry out operations within an equation. 
Mostly these operations are self-explanatory (e.g. always calculate things within 
brackets first) except for order, which actually refers to power terms such as squares. 
Four squared, or 42, used to be called four raised to the order of 2, hence the reason 
why these terms are called ‘order’ in BODMAS (also, if we called it power, we’d end 
up with BPDMAS, which doesn’t roll off the tongue quite so nicely). Let’s look at an 
example of BODMAS: what would be the result of 1 + 3 × 52? The answer is 76 (not 
100 as some of you might have thought). There are no brackets so the first thing is to deal 
with the order term: 52 is 25, so the equation becomes 1 + 3 × 25. There is no division, so 
we can move on to multiplication: 3 × 25, which gives us 75. BODMAS tells us to deal 
with addition next: 1 + 75, which gives us 76 and the equation is solved. If I’d written the 
original equation as (1 + 3) × 52, then the answer would have been 100 because we deal 
with the brackets first: (1 + 3) = 4, so the equation becomes 4 × 52. We then deal with 
the order term, so the equation becomes 4 × 25 = 100!

http://www.easymaths.com4  is a good site for revising basic maths.

SOmE mATHS REVIS ION
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1.1. What will this chapter tell me? 1

I was born on 21 June 1973. Like most people, I don’t remember anything about the first 
few years of life and like most children I did go through a phase of driving my parents 
mad by asking ‘Why?’ every five seconds. ‘Dad, why is the sky blue?’, ‘Dad, why doesn’t 
mummy have a willy?’ etc. Children are naturally curious about the world. I remember at 
the age of 3 being at a party of my friend Obe (this was just before he left England to return 
to Nigeria, much to my distress). It was a hot day, and there was an electric fan blowing 
cold air around the room. As I said, children are natural scientists and my little scientific 
brain was working through what seemed like a particularly pressing question: ‘What hap-
pens when you stick your finger into a fan?’ The answer, as it turned out, was that it hurts –  
a lot.1 My point is this: my curiosity to explain the world never went away, and that’s why 

1 In the 1970s fans didn’t have helpful protective cages around them to prevent idiotic 3 year olds sticking their 
fingers into the blades.

1Why is my evil lecturer 
forcing me to learn statistics?

Figure 1.1
When I grow up, 
please don’t let 
me be a statistics 
lecturer
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I’m a scientist, and that’s also why your evil lecturer is forcing you to learn statistics. It’s 
because you have a curious mind too and you want to answer new and exciting questions. 
To answer these questions we need statistics. Statistics is a bit like sticking your finger into 
a revolving fan blade: sometimes it’s very painful, but it does give you the power to answer 
interesting questions. This chapter is going to attempt to explain why statistics are an 
important part of doing research. We will overview the whole research process, from why 
we conduct research in the first place, through how theories are generated, to why we need 
data to test these theories. If that doesn’t convince you to read on then maybe the fact that 
we discover whether Coca-Cola kills sperm will. Or perhaps not.

1.2. What the hell am I doing here? I don’t  
belong here 1

You’re probably wondering why you have bought this book. Maybe you liked the pictures, 
maybe you fancied doing some weight training (it is heavy), or perhaps you need to reach 
something in a high place (it is thick). The chances are, though, that given the choice of 
spending your hard-earned cash on a statistics book or something more entertaining (a nice 
novel, a trip to the cinema, etc.) you’d choose the latter. So, why have you bought the book 
(or downloaded an illegal pdf of it from someone who has way too much time on their 
hands if they can scan an 800-page textbook)? It’s likely that you obtained it because you’re 
doing a course on statistics, or you’re doing some research, and you need to know how to 
analyse data. It’s possible that you didn’t realize when you started your course or research 
that you’d have to know this much about statistics but now find yourself inexplicably wad-
ing, neck high, through the Victorian sewer that is data analysis. The reason that you’re in 
the mess that you find yourself in is because you have a curious mind. You might have asked 
yourself questions like why people behave the way they do (psychology) or why behaviours 
differ across cultures (anthropology), how businesses maximize their profit (business), how 
did the dinosaurs die (palaeontology), does eating tomatoes protect you against cancer 
(medicine, biology), is it possible to build a quantum computer (physics, chemistry), is the 
planet hotter than it used to be and in what regions (geography, environmental studies)? 
Whatever it is you’re studying or researching, the reason you’re studying it is probably 
because you’re interested in answering questions. Scientists are curious people, and you 
probably are too. However, you might not have bargained on the fact that to answer inter-
esting questions, you need two things: data and an explanation of those data. 

The answer to ‘what the hell are you doing here?’ is, therefore, simple: to answer interest-
ing questions you need data. Therefore, one of the reasons why your evil statistics lecturer 
is forcing you to learn about numbers is because they are a form of data and are vital to the 
research process. Of course there are forms of data other than numbers that can be used to 
test and generate theories. When numbers are involved the research involves quantitative 
methods, but you can also generate and test theories by analysing language (such as conversa-
tions, magazine articles, media broadcasts and so on). This involves qualitative methods and 
it is a topic for another book not written by me. People can get quite passionate about which 
of these methods is best, which is a bit silly because they are complementary, not compet-
ing, approaches and there are much more important issues in the world to get upset about. 
Having said that, all qualitative research is rubbish.2

2 This is a joke. I thought long and hard about whether to include it because, like many of my jokes, there are 
people who won’t find it remotely funny. Its inclusion is also making me fear being hunted down and forced to eat 
my own entrails by a hoard of rabid qualitative researchers. However, it made me laugh, a lot, and despite being 
vegetarian I’m sure my entrails will taste lovely.
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Data Initial Observation

(Research Question)

Generate Theory

Generate Hypotheses

Collect Data to Test Theory

Analyse Data

Identify Variables

Measure Variables

 Graph Data
 Fit a Model

Figure 1.2
The research 
process

1.2.1.  The research process 1

How do you go about answering an interesting question? The research process is 
broadly summarized in Figure 1.2. You begin with an observation that you want 
to understand, and this observation could be anecdotal (you’ve noticed that your 
cat watches birds when they’re on TV but not when jellyfish are on3) or could be 
based on some data (you’ve got several cat owners to keep diaries of their cat’s 
TV habits and have noticed that lots of them watch birds on TV). From your ini-
tial observation you generate explanations, or theories, of those observations, from 
which you can make predictions (hypotheses). Here’s where the data come into 
the process because to test your predictions you need data. First you collect some 
relevant data (and to do that you need to identify things that can be measured) and then you 
analyse those data. The analysis of the data may support your theory or give you cause to 
modify the theory. As such, the processes of data collection and analysis and generating theo-
ries are intrinsically linked: theories lead to data collection/analysis and data collection/analysis 
informs theories! This chapter explains this research process in more detail.

1.3. Initial observation: finding something that 
needs explaining 1

The first step in Figure 1.2 was to come up with a question that needs an answer. I spend 
rather more time than I should watching reality TV. Every year I swear that I won’t get 
hooked on Big Brother, and yet every year I find myself glued to the TV screen waiting for 

3 My cat does actually climb up and stare at the TV when it’s showing birds flying about.

How do I do
research?



4 D ISCOVER ING STAT IST ICS  US ING SPSS

the next contestant’s meltdown (I am a psychologist, so really this is just research – honestly). 
One question I am constantly perplexed by is why every year there are so many contestants 
with really unpleasant personalities (my money is on narcissistic personality disorder4) on 
the show. A lot of scientific endeavour starts this way: not by watching Big Brother, but by 
observing something in the world and wondering why it happens.

Having made a casual observation about the world (Big Brother contestants on the whole 
have profound personality defects), I need to collect some data to see whether this obser-
vation is true (and not just a biased observation). To do this, I need to define one or more 
variables that I would like to measure. There’s one variable in this example: the personal-
ity of the contestant. I could measure this variable by giving them one of the many well-
established questionnaires that measure personality characteristics. Let’s say that I did this 
and I found that 75% of contestants did have narcissistic personality disorder. These data 
support my observation: a lot of Big Brother contestants have extreme personalities.

1.4. Generating theories and testing them 1

The next logical thing to do is to explain these data (Figure 1.2). One explanation could be 
that people with narcissistic personality disorder are more likely to audition for Big Brother 
than those without. This is a theory. Another possibility is that the producers of Big Brother 
are more likely to select people who have narcissistic personality disorder to be contestants 
than those with less extreme personalities. This is another theory. We verified our original 
observation by collecting data, and we can collect more data to test our theories. We can make 
two predictions from these two theories. The first is that the number of people turning up for 
an audition that have narcissistic personality disorder will be higher than the general level in 
the population (which is about 1%). A prediction from a theory, like this one, is known as a 
hypothesis (see Jane Superbrain Box 1.1). We could test this hypothesis by getting a team of 
clinical psychologists to interview each person at the Big Brother audition and diagnose them as 
having narcissistic personality disorder or not. The prediction from our second theory is that 
if the Big Brother selection panel are more likely to choose people with narcissistic personality 
disorder then the rate of this disorder in the final contestants will be even higher than the rate 
in the group of people going for auditions. This is another hypothesis. Imagine we collected 
these data; they are in Table 1.1. 

In total, 7662 people turned up for the audition. Our first hypothesis is that the percentage 
of people with narcissistic personality disorder will be higher at the audition than the gen-
eral level in the population. We can see in the table that of the 7662 people at the audition, 

4 This disorder is characterized by (among other things) a grandiose sense of self-importance, arrogance, lack of 
empathy for others, envy of others and belief that others envy them, excessive fantasies of brilliance or beauty, the 
need for excessive admiration and exploitation of others.

Table 1.1 A table of the number of people at the Big Brother audition split by whether they 
had narcissistic personality disorder and whether they were selected as contestants by the 
producers 

No Disorder Disorder Total

Selected    3   9   12

Rejected 6805 845 7650

Total 6808 854 7662
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854 were diagnosed with the disorder, this is about 11% (854/7662 × 100) which is much 
higher than the 1% we’d expect. Therefore, hypothesis 1 is supported by the data. The 
second hypothesis was that the Big Brother selection panel have a bias to choose people 
with narcissistic personality disorder. If we look at the 12 contestants that they selected, 9 
of them had the disorder (a massive 75%). If the producers did not have a bias we would 
have expected only 11% of the contestants to have the disorder. The data again support 
our hypothesis. Therefore, my initial observation that contestants have personality disor-
ders was verified by data, then my theory was tested using specific hypotheses that were 
also verified using data. Data are very important!

be empirically tested. So, statements such as ‘The Led 
Zeppelin reunion concert in London in 2007 was the best 
gig ever ’,5 ‘Lindt chocolate is the best food’, and ‘This is 
the worst statistics book in the world’ are all non-scientific; 
they cannot be proved or disproved. Scientific statements 
can be confirmed or disconfirmed empirically. ‘Watching 
Curb Your Enthusiasm makes you happy’, ‘having sex 
increases levels of the neurotransmitter dopamine’ and 
‘Velociraptors ate meat’ are all things that can be tested 
empirically (provided you can quantify and measure  
the variables concerned). Non-scientific statements can 
sometimes be altered to become scientific statements, 
so ‘The Beatles were the most influential band ever’ is 
non-scientific (because it is probably impossible to quan-
tify ‘influence’ in any meaningful way) but by changing the 
statement to ‘The Beatles were the best-selling band ever’ 
it becomes testable (we can collect data about worldwide 
record sales and establish whether The Beatles have, in 
fact, sold more records than any other music artist). Karl 
Popper, the famous philosopher of science, believed that 
non-scientific statements were nonsense, and had no 
place in science. Good theories should, therefore, pro-
duce hypotheses that are scientific statements.

A good theory should allow us to make statements about 
the state of the world. Statements about the world are 
good things: they allow us to make sense of our world, 
and to make decisions that affect our future. One current 
example is global warming. Being able to make a defini-
tive statement that global warming is happening, and 
that it is caused by certain practices in society, allows 
us to change these practices and, hopefully, avert catas-
trophe. However, not all statements are ones that can 
be tested using science. Scientific statements are ones 
that can be verified with reference to empirical evidence, 
whereas non-scientific statements are ones that cannot 

JANE SUPERBRAIN 1.1

When is a hypothesis not a hypothesis? 1

I would now be smugly sitting in my office with a contented grin on my face about how 
my theories and observations were well supported by the data. Perhaps I would quit while 
I’m ahead and retire. It’s more likely, though, that having solved one great mystery, my 
excited mind would turn to another. After another few hours (well, days probably) locked up 
at home watching Big Brother I would emerge triumphant with another profound observa-
tion, which is that these personality-disordered contestants, despite their obvious character 
flaws, enter the house convinced that the public will love them and that they will win.6 My 
hypothesis would, therefore, be that if I asked the contestants if they thought that they would 
win, the people with a personality disorder would say yes.

6 One of the things I like about Big Brother in the UK is that year upon year the winner tends to be a nice person, 
which does give me faith that humanity favours the nice.

5 It was pretty awesome actually.
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Let’s imagine I tested my hypothesis by measuring their expectations of success in 
the show, by just asking them, ‘Do you think you will win Big Brother?’. Let’s say that 
7 of 9 contestants with personality disorders said that they thought that they will win, 
which confirms my observation. Next, I would come up with another theory: these 
contestants think that they will win because they don’t realize that they have a per-
sonality disorder. My hypothesis would be that if I asked these people about whether 
their personalities were different from other people they would say ‘no’. As before,  
I would collect some more data and perhaps ask those who thought that they would 
win whether they thought that their personalities were different from the norm. All 
7 contestants said that they thought their personalities were different from the norm. 
These data seem to contradict my theory. This is known as falsification, which is the act 
of disproving a hypothesis or theory. 

It’s unlikely that we would be the only people interested in why individuals who go on 
Big Brother have extreme personalities and think that they will win. Imagine these research-
ers discovered that: (1) people with narcissistic personality disorder think that they are 
more interesting than others; (2) they also think that they deserve success more than oth-
ers; and (3) they also think that others like them because they have ‘special’ personalities.

This additional research is even worse news for my theory: if they didn’t realize that 
they had a personality different from the norm then you wouldn’t expect them to think 
that they were more interesting than others, and you certainly wouldn’t expect them to 
think that others will like their unusual personalities. In general, this means that my theory 
sucks: it cannot explain all of the data, predictions from the theory are not supported by 
subsequent data, and it cannot explain other research findings. At this point I would start 
to feel intellectually inadequate and people would find me curled up on my desk in floods 
of tears wailing and moaning about my failing career (no change there then).

At this point, a rival scientist, Fester Ingpant-Stain, appears on the scene with a rival theory 
to mine. In his new theory, he suggests that the problem is not that personality-disordered 
contestants don’t realize that they have a personality disorder (or at least a personality that 
is unusual), but that they falsely believe that this special personality is perceived positively by 
other people (put another way, they believe that their personality makes them likeable, not 
dislikeable). One hypothesis from this model is that if personality-disordered contestants are 
asked to evaluate what other people think of them, then they will overestimate other peo-
ple’s positive perceptions. To test this hypothesis, Fester Ingpant-Stain collected yet more data. 
When each contestant came to the diary room they had to fill out a questionnaire evaluating 
all of the other contestants’ personalities, and also answer each question as if they were each 
of the contestants responding about them. (So, for every contestant there is a measure of what 
they thought of every other contestant, and also a measure of what they believed every other 
contestant thought of them.) He found out that the contestants with personality disorders did 
overestimate their housemate’s view of them; in comparison the contestants without personal-
ity disorders had relatively accurate impressions of what others thought of them. These data, 
irritating as it would be for me, support the rival theory that the contestants with personality 
disorders know they have unusual personalities but believe that these characteristics are ones 
that others would feel positive about. Fester Ingpant-Stain’s theory is quite good: it explains 
the initial observations and brings together a range of research findings. The end result of this 
whole process (and my career) is that we should be able to make a general statement about the 
state of the world. In this case we could state: ‘Big Brother contestants who have personality 
disorders overestimate how much other people like their personality characteristics’.

SELF-TEST  Based on what you have read in this 
section, what qualities do you think a scientific theory 
should have?

Are Big Brother
contestants odd?
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1.5. Data collection 1: what to measure 1

We have seen already that data collection is vital for testing theories. When we collect data 
we need to decide on two things: (1) what to measure, (2) how to measure it. This section 
looks at the first of these issues.

1.5.1.  Variables 1

1.5.1.1. independent and dependent variables 1

To test hypotheses we need to measure variables. Variables are just things that can change (or 
vary); they might vary between people (e.g. IQ, behaviour) or locations (e.g. unemployment) 
or even time (e.g. mood, profit, number of cancerous cells). Most hypotheses can be expressed 
in terms of two variables: a proposed cause and a proposed outcome. For example, if we take 
the scientific statement ‘Coca-Cola is an effective spermicide’7 then proposed cause is ‘Coca-
Cola’ and the proposed effect is dead sperm. Both the cause and the outcome are variables: for 
the cause we could vary the type of drink, and for the outcome, these drinks will kill different 
amounts of sperm. The key to testing such statements is to measure these two variables.

A variable that we think is a cause is known as an independent variable (because its value 
does not depend on any other variables). A variable that we think is an effect is called a 
dependent variable because the value of this variable depends on the cause (independent 
variable). These terms are very closely tied to experimental methods in which the cause 
is actually manipulated by the experimenter (as we will see in section 1.6.2). In cross- 
sectional research we don’t manipulate any variables, and we cannot make causal statements 
about the relationships between variables, so it doesn’t make sense to talk of dependent and 
independent variables because all variables are dependent variables in a sense. One possibil-
ity is to abandon the terms dependent and independent variable and use the terms predictor 
variable and outcome variable. In experimental work the cause, or independent variable, is 
a predictor, and the effect, or dependent variable, is simply an outcome. This terminology 
also suits cross-sectional work where, statistically at least, we can use one or more variables 
to make predictions about the other(s) without needing to imply causality.

7 Actually, there is a long-standing urban myth that a post-coital douche with the contents of a bottle of Coke is 
an effective contraceptive. Unbelievably, this hypothesis has been tested and Coke does affect sperm motility, and 
different types of Coke are more or less effective – Diet Coke is best apparently (Umpierre, Hill, & Anderson, 
1985). Nevertheless, a Coke douche is ineffective at preventing pregnancy. 

            CRAMMING SAM’S TIPS     Some important terms

 When doing research there are some important generic terms for variables that you will encounter:

Independent variable: A variable thought to be the cause of some effect. This term is usually used in experimental research to 
denote a variable that the experimenter has manipulated.

Dependent variable: A variable thought to be affected by changes in an independent variable. You can think of this variable as 
an outcome.

Predictor variable: A variable thought to predict an outcome variable. This is basically another term for independent variable 
(although some people won’t like me saying that; I think life would be easier if we talked only about predictors and outcomes).

Outcome variable: A variable thought to change as a function of changes in a predictor variable. This term could be 
synonymous with ‘dependent variable’ for the sake of an easy life.
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1.5.1.2. levels of measurement 1

As we have seen in the examples so far, variables can take on many different forms and levels 
of sophistication. The relationship between what is being measured and the numbers that 
represent what is being measured is known as the level of measurement. Broadly speaking, 
variables can be categorical or continuous, and can have different levels of measurement.

A categorical variable is made up of categories. A categorical variable that you should 
be familiar with already is your species (e.g. human, domestic cat, fruit bat, etc.). You are 
a human or a cat or a fruit bat: you cannot be a bit of a cat and a bit of a bat, and neither 
a batman nor (despite many fantasies to the contrary) a catwoman (not even one in a nice 
PVC suit) exist. A categorical variable is one that names distinct entities. In its simplest 
form it names just two distinct types of things, for example male or female. This is known 
as a binary variable. Other examples of binary variables are being alive or dead, pregnant 
or not, and responding ‘yes’ or ‘no’ to a question. In all cases there are just two categories 
and an entity can be placed into only one of the two categories.

When two things that are equivalent in some sense are given the same name (or number), 
but there are more than two possibilities, the variable is said to be a nominal variable. It should 
be obvious that if the variable is made up of names it is pointless to do arithmetic on them  
(if you multiply a human by a cat, you do not get a hat). However, sometimes numbers are 
used to denote categories. For example, the numbers worn by players in a rugby or football 
(soccer) team. In rugby, the numbers of shirts denote specific field positions, so the number 
10 is always worn by the fly-half (e.g. England’s Jonny Wilkinson),8 and the number 1 is 
always the hooker (the ugly-looking player at the front of the scrum). These numbers do not 
tell us anything other than what position the player plays. We could equally have shirts with 
FH and H instead of 10 and 1. A number 10 player is not necessarily better than a number 1 
(most managers would not want their fly-half stuck in the front of the scrum!). It is equally as 
daft to try to do arithmetic with nominal scales where the categories are denoted by numbers: 
the number 10 takes penalty kicks, and if the England coach found that Jonny Wilkinson (his 
number 10) was injured he would not get his number 4 to give number 6 a piggyback and 
then take the kick. The only way that nominal data can be used is to consider frequencies. For 
example, we could look at how frequently number 10s score tries compared to number 4s.

8 Unlike, for example, NFL American football where a quarterback could wear any number from 1 to 19.

on a 10-point scale. We might be confident that a judge 
who gives a rating of 10 found Billie more beautiful than 
one who gave a rating of 2, but can we be certain that the 
first judge found her five times more beautiful than the sec-
ond? What about if both judges gave a rating of 8, could 
we be sure they found her equally beautiful? Probably not: 
their ratings will depend on their subjective feelings about 
what constitutes beauty. For these reasons, in any situa-
tion in which we ask people to rate something subjective 
(e.g. rate their preference for a product, their confidence 
about an answer, how much they have understood some 
medical instructions) we should probably regard these 
data as ordinal although many scientists do not.

A lot of self-report data are ordinal. Imagine if two judges 
at our beauty pageant were asked to rate Billie’s beauty 

JANE SUPERBRAIN 1.2

Self-report data 1
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So far the categorical variables we have considered have been unordered (e.g. different 
brands of Coke with which you’re trying to kill sperm) but they can be ordered too (e.g. 
increasing concentrations of Coke with which you’re trying to kill sperm). When categories are 
ordered, the variable is known as an ordinal variable. Ordinal data tell us not only that things 
have occurred, but also the order in which they occurred. However, these data tell us noth-
ing about the differences between values. Imagine we went to a beauty pageant in which the 
three winners were Billie, Freema and Elizabeth. The names of the winners don’t provide any 
information about where they came in the contest; however labelling them according to their 
performance does – first, second and third. These categories are ordered. In using ordered cat-
egories we now know that the woman who won was better than the women who came second 
and third. We still know nothing about the differences between categories, though. We don’t, 
for example, know how much better the winner was than the runners-up: Billie might have 
been an easy victor, getting much higher ratings from the judges than Freema and Elizabeth, or 
it might have been a very close contest that she won by only a point. Ordinal data, therefore, 
tell us more than nominal data (they tell us the order in which things happened) but they still 
do not tell us about the differences between points on a scale.

The next level of measurement moves us away from categorical variables and into con-
tinuous variables. A continuous variable is one that gives us a score for each person and can 
take on any value on the measurement scale that we are using. The first type of continu-
ous variable that you might encounter is an interval variable. Interval data are consider-
ably more useful than ordinal data and most of the statistical tests in this book rely on 
having data measured at this level. To say that data are interval, we must be certain that 
equal intervals on the scale represent equal differences in the property being measured. For 
example, on www.ratemyprofessors.com students are encouraged to rate their lecturers on 
several dimensions (some of the lecturers’ rebuttals of their negative evaluations are worth 
a look). Each dimension (i.e. helpfulness, clarity, etc.) is evaluated using a 5-point scale. 
For this scale to be interval it must be the case that the difference between helpfulness rat-
ings of 1 and 2 is the same as the difference between say 3 and 4, or 4 and 5. Similarly, the 
difference in helpfulness between ratings of 1 and 3 should be identical to the difference 
between ratings of 3 and 5. Variables like this that look interval (and are treated as interval) 
are often ordinal – see Jane Superbrain Box 1.2.

Ratio variables go a step further than interval data by requiring that in addition to the 
measurement scale meeting the requirements of an interval variable, the ratios of values 
along the scale should be meaningful. For this to be true, the scale must have a true and 
meaningful zero point. In our lecturer ratings this would mean that a lecturer rated as 4 
would be twice as helpful as a lecturer rated with a 2 (who would also be twice as helpful 
as a lecturer rated as 1!). The time to respond to something is a good example of a ratio 
variable. When we measure a reaction time, not only is it true that, say, the difference 
between 300 and 350 ms (a difference of 50 ms) is the same as the difference between 210 
and 260 ms or 422 and 472 ms, but also it is true that distances along the scale are divisible: 
a reaction time of 200ms is twice as long as a reaction time of 100 ms and twice as short as 
a reaction time of 400 ms. 

Continuous variables can be, well, continuous (obviously) but also discrete. This is quite 
a tricky distinction (Jane Superbrain Box 1.3). A truly continuous variable can be measured 
to any level of precision, whereas a discrete variable can take on only certain values (usually 
whole numbers) on the scale. What does this actually mean? Well, our example in the text 
of rating lecturers on a 5-point scale is an example of a discrete variable. The range of the 
scale is 1–5, but you can enter only values of 1, 2, 3, 4 or 5; you cannot enter a value of 
4.32 or 2.18. Although a continuum exists underneath the scale (i.e. a rating of 3.24 makes 
sense), the actual values that the variable takes on are limited. A continuous variable would 
be something like age, which can be measured at an infinite level of precision (you could 
be 34 years, 7 months, 21 days, 10 hours, 55 minutes, 10 seconds, 100 milliseconds, 63 
microseconds, 1 nanosecond old).
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1.5.2.  Measurement error 1

We have seen that to test hypotheses we need to measure variables. Obviously, it’s also 
important that we measure these variables accurately. Ideally we want our measure to be 
calibrated such that values have the same meaning over time and across situations. Weight 
is one example: we would expect to weigh the same amount regardless of who weighs 
us, or where we take the measurement (assuming it’s on Earth and not in an anti-gravity 
chamber). Sometimes variables can be directly measured (profit, weight, height) but in 
other cases we are forced to use indirect measures such as self-report, questionnaires and 
computerized tasks (to name a few). 

example, when we measure age we rarely use nano-
seconds but use years (or possibly years and months). 
In doing so we turn a continuous variable into a discrete 
one (the only acceptable values are years). Also, we 
often treat discrete variables as if they were continu-
ous. For example, the number of boyfriends/girlfriends 
that you have had is a discrete variable (it will be, in all 
but the very weird cases, a whole number). However, 
you might read a magazine that says ‘the average 
number of boyfriends that women in their 20s have has 
increased from 4.6 to 8.9’. This assumes that the vari-
able is continuous, and of course these averages are 
meaningless: no one in their sample actually had 8.9 
boyfriends.

The distinction between discrete and continuous vari-
ables can be very blurred. For one thing, continu-
ous variables can be measured in discrete terms; for 

JANE SUPERBRAIN 1.3

Continuous and discrete variables 1

             CRAMMING SAM’S TIPS    Levels of measurement

 Variables can be split into categorical and continuous, and within these types there are different levels of measurement:

Categorical (entities are divided into distinct categories):

Binary variable: There are only two categories (e.g. dead or alive).

Nominal variable: There are more than two categories (e.g. whether someone is an omnivore, vegetarian, vegan, or fruitarian).

Ordinal variable: The same as a nominal variable but the categories have a logical order (e.g. whether people got a fail, a 
pass, a merit or a distinction in their exam).

Continuous (entities get a distinct score):

Interval variable: Equal intervals on the variable represent equal differences in the property being measured (e.g. the 
difference between 6 and 8 is equivalent to the difference between 13 and 15).

Ratio variable: The same as an interval variable, but the ratios of scores on the scale must also make sense (e.g. a score 
of 16 on an anxiety scale means that the person is, in reality, twice as anxious as someone scoring 8).
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Let’s go back to our Coke as a spermicide example. Imagine we took some Coke and some 
water and added them to two test tubes of sperm. After several minutes, we measured the 
motility (movement) of the sperm in the two samples and discovered no difference. A few 
years passed and another scientist, Dr Jack Q. Late, replicated the study but found that sperm 
motility was worse in the Coke sample. There are two measurement-related issues that could 
explain his success and our failure: (1) Dr Late might have used more Coke in the test tubes 
(sperm might need a critical mass of Coke before they are affected); (2) Dr Late measured the 
outcome (motility) differently to us.

The former point explains why chemists and physicists have devoted many hours to devel-
oping standard units of measurement. If you had reported that you’d used 100 ml of Coke and 
5 ml of sperm, then Dr Late could have ensured that he had used the same amount – because 
millilitres are a standard unit of measurement we would know that Dr Late used exactly the 
same amount of Coke that we used. Direct measurements such as the millilitre provide an 
objective standard: 100 ml of a liquid is known to be twice as much as only 50 ml. 

The second reason for the difference in results between the studies could have been to 
do with how sperm motility was measured. Perhaps in our original study we measured 
motility using absorption spectrophotometry, whereas Dr Late used laser light-scattering 
techniques.9 Perhaps his measure is more sensitive than ours.

There will often be a discrepancy between the numbers we use to represent the thing 
we’re measuring and the actual value of the thing we’re measuring (i.e. the value we would 
get if we could measure it directly). This discrepancy is known as measurement error. For 
example, imagine that you know as an absolute truth that you weight 83 kg. One day you 
step on the bathroom scales and it says 80 kg. There is a difference of 3 kg between your 
actual weight and the weight given by your measurement tool (the scales): there is a meas-
urement error of 3 kg. Although properly calibrated bathroom scales should produce only 
very small measurement errors (despite what we might want to believe when it says we 
have gained 3 kg), self-report measures do produce measurement error because factors other 
than the one you’re trying to measure will influence how people respond to our measures. 
Imagine you were completing a questionnaire that asked you whether you had stolen from 
a shop. If you had, would you admit it, or might you be tempted to conceal this fact?

1.5.3.  Validity and reliability 1

One way to try to ensure that measurement error is kept to a minimum is to determine 
properties of the measure that give us confidence that it is doing its job properly. The first 
property is validity, which is whether an instrument actually measures what it sets out to 
measure. The second is reliability, which is whether an instrument can be interpreted con-
sistently across different situations.

Validity refers to whether an instrument measures what it was designed to measure; 
a device for measuring sperm motility that actually measures sperm count is not valid. 
Things like reaction times and physiological measures are valid in the sense that a reaction 
time does in fact measure the time taken to react and skin conductance does measure the 
conductivity of your skin. However, if we’re using these things to infer other things (e.g. 
using skin conductance to measure anxiety) then they will be valid only if there are no 
other factors other than the one we’re interested in that can influence them. 

Criterion validity is whether the instrument is measuring what it claims to measure (does 
your lecturers’ helpfulness rating scale actually measure lecturers’ helpfulness?). In an ideal 
world, you could assess this by relating scores on your measure to real-world observations. 

9 In the course of writing this chapter I have discovered more than I think is healthy about the measurement of 
sperm.
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For example, we could take an objective measure of how helpful lecturers were and  
compare these observations to student’s ratings on ratemyprofessor.com. This is often 
impractical and, of course, with attitudes you might not be interested in the reality so much 
as the person’s perception of reality (you might not care whether they are a psychopath 
but whether they think they are a psychopath). With self-report measures/questionnaires 
we can also assess the degree to which individual items represent the construct being meas-
ured, and cover the full range of the construct (content validity). 

Validity is a necessary but not sufficient condition of a measure. A second consideration 
is reliability, which is the ability of the measure to produce the same results under the same 
conditions. To be valid the instrument must first be reliable. The easiest way to assess reli-
ability is to test the same group of people twice: a reliable instrument will produce similar 
scores at both points in time (test–retest reliability). Sometimes, however, you will want to 
measure something that does vary over time (e.g. moods, blood-sugar levels, productiv-
ity). Statistical methods can also be used to determine reliability (we will discover these in 
Chapter 17).

SELF-TEST  What is the difference between reliability 
and validity?

1.6. Data collection 2: how to measure 1

1.6.1.  Correlational research methods 1

So far we’ve learnt that scientists want to answer questions, and that to do this they have 
to generate data (be they numbers or words), and to generate good data they need to use 
accurate measures. We move on now to look briefly at how the data are collected. If we 
simplify things quite a lot then there are two ways to test a hypothesis: either by observing 
what naturally happens, or by manipulating some aspect of the environment and observing 
the effect it has on the variable that interests us.

The main distinction between what we could call correlational or cross-sectional 
research (where we observe what naturally goes on in the world without directly inter-
fering with it) and experimental research (where we manipulate one variable to see its 
effect on another) is that experimentation involves the direct manipulation of variables. 
In correlational research we do things like observe natural events or we take a snapshot of 
many variables at a single point in time. As some examples, we might measure pollution 
levels in a stream and the numbers of certain types of fish living there; lifestyle variables 
(smoking, exercise, food intake) and disease (cancer, diabetes); workers’ job satisfaction 
under different managers; or children’s school performance across regions with different 
demographics. Correlational research provides a very natural view of the question we’re 
researching because we are not influencing what happens and the measures of the vari-
ables should not be biased by the researcher being there (this is an important aspect of 
ecological validity). 

At the risk of sounding like I’m absolutely obsessed with using Coke as a contracep-
tive (I’m not, but my discovery that people in the 1950s and 1960s actually tried this has,  
I admit, intrigued me), let’s return to that example. If we wanted to answer the question 
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‘is Coke an effective contraceptive?’ we could administer questionnaires about sexual prac-
tices (quantity of sexual activity, use of contraceptives, use of fizzy drinks as contracep-
tives, pregnancy, etc.). By looking at these variables we could see which variables predict 
pregnancy, and in particular whether those reliant on Coke as a form of contraceptive were 
more likely to end up pregnant than those using other contraceptives, and less likely than 
those using no contraceptives at all. This is the only way to answer a question like this 
because we cannot manipulate any of these variables particularly easily. Even if we could, 
it would be totally unethical to insist on some people using Coke as a contraceptive (or 
indeed to do anything that would make a person likely to produce a child that they didn’t 
intend to produce). However, there is a price to pay, which relates to causality.

1.6.2.  Experimental research methods 1

Most scientific questions imply a causal link between variables; we have seen already that 
dependent and independent variables are named such that a causal connection is implied 
(the dependent variable depends on the independent variable). Sometimes the causal link 
is very obvious in the research question: ‘Does low self-esteem cause dating anxiety?’ 
Sometimes the implication might be subtler, such as ‘Is dating anxiety all in the mind?’ 
The implication is that a person’s mental outlook causes them to be anxious when dating. 
Even when the cause–effect relationship is not explicitly stated, most research questions 
can be broken down into a proposed cause (in this case mental outlook) and a proposed 
outcome (dating anxiety). Both the cause and the outcome are variables: for the cause 
some people will perceive themselves in a negative way (so it is something that varies); 
and for the outcome, some people will get anxious on dates and others won’t (again, this 
is something that varies). The key to answering the research question is to uncover how 
the proposed cause and the proposed outcome relate to each other; is it the case that 
the people who have a low opinion of themselves are the same people that get anxious 
on dates? 

David Hume (1748; see Hume (1739–40) for more detail),10 an influential philosopher, 
said that to infer cause and effect: (1) cause and effect must occur close together in time 
(contiguity); (2) the cause must occur before an effect does; and (3) the effect should never 
occur without the presence of the cause. These conditions imply that causality can be 
inferred through corroborating evidence: cause is equated to high degrees of correlation 
between contiguous events. In our dating example, to infer that low self-esteem caused 
dating anxiety, it would be sufficient to find that whenever someone had low self-esteem 
they would feel anxious when on a date, that the low self-esteem emerged before the dat-
ing anxiety did, and that the person should never have dating anxiety if they haven’t been 
suffering from low self-esteem.

In the previous section on correlational research, we saw that variables are often meas-
ured simultaneously. The first problem with doing this is that it provides no information 
about the contiguity between different variables: we might find from a questionnaire study 
that people with low self-esteem also have dating anxiety but we wouldn’t know whether 
the low self-esteem or the dating anxiety came first.

Let’s imagine that we find that there are people who have low self-esteem but do not get 
dating anxiety. This finding doesn’t violate Hume’s rules: he doesn’t say anything about the 
cause happening without the effect. It could be that both low self-esteem and dating anxi-
ety are caused by a third variable (e.g. poor social skills which might make you feel gener-
ally worthless but also puts pressure on you in dating situations). This illustrates a second 

10 Both of these can be read online at http://www.utilitarian.net/hume/ or by doing a Google search for David 
Hume.
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problem with correlational evidence: the tertium quid (‘a third person or thing of indetermi-
nate character’). For example, a correlation has been found between having breast implants 
and suicide (Koot, Peeters, Granath, Grobbee, & Nyren, 2003). However, it is unlikely that 

having breast implants causes you to commit suicide – presumably, there 
is an external factor (or factors) that causes both; for example, low self-
esteem might lead you to have breast implants and also attempt suicide. 
These extraneous factors are sometimes called confounding variables or 
confounds for short. 

The shortcomings of Hume’s criteria led John Stuart Mill (1865) to add 
a further criterion: that all other explanations of the cause–effect relation-
ship be ruled out. Put simply, Mill proposed that, to rule out confounding 
variables, an effect should be present when the cause is present and that 
when the cause is absent the effect should be absent also. Mill’s ideas can be 
summed up by saying that the only way to infer causality is through com-
parison of two controlled situations: one in which the cause is present and 

one in which the cause is absent. This is what experimental methods strive to do: to provide a 
comparison of situations (usually called treatments or conditions) in which the proposed cause 
is present or absent.

As a simple case, we might want to see what the effect of positive encouragement has on 
learning about statistics. I might, therefore, randomly split some students into three differ-
ent groups in which I change my style of teaching in the seminars on the course:

Group 1 (positive reinforcement)MM : During seminars I congratulate all students in this 
group on their hard work and success. Even when they get things wrong, I am sup-
portive and say things like ‘that was very nearly the right answer, you’re coming 
along really well’ and then give them a nice piece of chocolate.

Group 2 (negative reinforcement)MM : This group receives seminars in which I give 
relentless verbal abuse to all of the students even when they give the correct answer. 
I demean their contributions and am patronizing and dismissive of everything they 
say. I tell students that they are stupid, worthless and shouldn’t be doing the course 
at all.

Group 3 (no reinforcement)MM : This group receives normal university-style seminars 
(some might argue that this is the same as group 2!). Students are not praised or pun-
ished and instead I give them no feedback at all.

The thing that I have manipulated is the teaching method (positive reinforcement, negative 
reinforcement or no reinforcement). As we have seen earlier in this chapter, this variable 
is known as the independent variable and in this situation it is said to have three levels, 
because it has been manipulated in three ways (i.e. reinforcement has been split into three 
types: positive, negative and none). Once I have carried out this manipulation I must have 
some kind of outcome that I am interested in measuring. In this case it is statistical ability, 
and I could measure this variable using a statistics exam after the last seminar. We have also 
already discovered that this outcome variable is known as the dependent variable because we 
assume that these scores will depend upon the type of teaching method used (the independ-
ent variable). The critical thing here is the inclusion of the ‘no reinforcement’ group because 
this is a group where our proposed cause (reinforcement) is absent, and we can compare the 
outcome in this group against the two situations where the proposed cause is present. If the 
statistics scores are different in each of the reinforcement groups (cause is present) compared 
to the group for which no reinforcement was given (cause is absent) then this difference can 
be attributed to the style of reinforcement. In other words, the type of reinforcement caused 
a difference in statistics scores (Jane Superbrain Box 1.4).

What’s the difference
between experimental and

correlational research?
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1.6.2.1. Two methods of data collection 1

When we collect data in an experiment, we can choose between two methods of data col-
lection. The first is to manipulate the independent variable using different participants. 
This method is the one described above, in which different groups of people take part in 
each experimental condition (a between-groups, between-subjects or independent design). 
The second method is to manipulate the independent variable using the same participants. 
Simplistically, this method means that we give a group of students positive reinforcement 
for a few weeks and test their statistical abilities and then begin to give this same group 
negative reinforcement for a few weeks before testing them again, and then finally giving 
them no reinforcement and testing them for a third time (a within-subject or repeated-
measures design). As you will discover, the way in which the data are collected determines 
the type of test that is used to analyse the data.

1.6.2.2. Two types of variation 1

Imagine we were trying to see whether you could train chimpanzees to run the economy. 
In one training phase they are sat in front of a chimp-friendly computer and press but-
tons which change various parameters of the economy; once these parameters have been 
changed a figure appears on the screen indicating the economic growth resulting from 
those parameters. Now, chimps can’t read (I don’t think) so this feedback is meaningless. 
A second training phase is the same except that if the economic growth is good, they get a 
banana (if growth is bad they do not) – this feedback is valuable to the average chimp. This 
is a repeated-measures design with two conditions: the same chimps participate in condi-
tion 1 and in condition 2.

Let’s take a step back and think what would happen if we did not introduce an experi-
mental manipulation (i.e. there were no bananas in the second training phase so condition 
1 and condition 2 were identical). If there is no experimental manipulation then we expect 
a chimp’s behaviour to be the same in both conditions. We expect this because external 
factors such as age, gender, IQ, motivation and arousal will be similar for both conditions  

its effect on an outcome (the effect). In correlational 
research we observe the co-occurrence of variables; we 
do not manipulate the causal variable first and then mea-
sure the effect, therefore we cannot compare the effect 
when the causal variable is present against when it is 
absent. In short, we cannot say which variable causes a 
change in the other; we can merely say that the variables 
co-occur in a certain way. The reason why some people 
think that certain statistical tests allow causal inferences 
is because historically certain tests (e.g. ANOVA, t-tests, 
etc.) have been used to analyse experimental research, 
whereas others (e.g. regression, correlation) have been 
used to analyse correlational research (Cronbach, 1957). 
As you’ll discover, these statistical procedures are, in 
fact, mathematically identical.

People sometimes get confused and think that certain 
statistical procedures allow causal inferences and oth-
ers don’t. This isn’t true, it’s the fact that in experiments 
we manipulate the causal variable systematically to see 

JANE SUPERBRAIN 1.4

Causality and statistics 1
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(a chimp’s gender etc. will not change from when they are tested in condition 1 to when 
they are tested in condition 2). If the performance measure is reliable (i.e. our test of how 
well they run the economy), and the variable or characteristic that we are measuring (in 
this case ability to run an economy) remains stable over time, then a participant’s perform-
ance in condition 1 should be very highly related to their performance in condition 2.  
So, chimps who score highly in condition 1 will also score highly in condition 2, and 
those who have low scores for condition 1 will have low scores in condition 2. However, 
performance won’t be identical, there will be small differences in performance created by 
unknown factors. This variation in performance is known as unsystematic variation. 

If we introduce an experimental manipulation (i.e. provide bananas as feedback in one of 
the training sessions), then we do something different to participants in condition 1 to what 
we do to them in condition 2. So, the only difference between conditions 1 and 2 is the manip-
ulation that the experimenter has made (in this case that the chimps get bananas as a positive 
reward in one condition but not in the other). Therefore, any differences between the means 
of the two conditions is probably due to the experimental manipulation. So, if the chimps per-
form better in one training phase than the other then this has to be due to the fact that bananas 
were used to provide feedback in one training phase but not the other. Differences in perform-
ance created by a specific experimental manipulation are known as systematic variation.

Now let’s think about what happens when we use different participants – an independ-
ent design. In this design we still have two conditions, but this time different participants 
participate in each condition. Going back to our example, one group of chimps receives 
training without feedback, whereas a second group of different chimps does receive feed-
back on their performance via bananas.11 Imagine again that we didn’t have an experimen-
tal manipulation. If we did nothing to the groups, then we would still find some variation 
in behaviour between the groups because they contain different chimps who will vary in 
their ability, motivation, IQ and other factors. In short, the type of factors that were held 
constant in the repeated-measures design are free to vary in the independent-measures 
design. So, the unsystematic variation will be bigger than for a repeated-measures design. 
As before, if we introduce a manipulation (i.e. bananas) then we will see additional varia-
tion created by this manipulation. As such, in both the repeated-measures design and the 
independent-measures design there are always two sources of variation:

Systematic variationMM : This variation is due to the experimenter doing something to all 
of the participants in one condition but not in the other condition.

Unsystematic variationMM : This variation results from random factors that exist between 
the experimental conditions (such as natural differences in ability, the time of day, etc.).

The role of statistics is to discover how much variation there is in performance, and then 
to work out how much of this is systematic and how much is unsystematic.

In a repeated-measures design, differences between two conditions can be caused by only 
two things: (1) the manipulation that was carried out on the participants, or (2) any other 
factor that might affect the way in which a person performs from one time to the next. 
The latter factor is likely to be fairly minor compared to the influence of the experimental 
manipulation. In an independent design, differences between the two conditions can also be 
caused by one of two things: (1) the manipulation that was carried out on the participants, 
or (2) differences between the characteristics of the people allocated to each of the groups. 
The latter factor in this instance is likely to create considerable random variation both within 
each condition and between them. Therefore, the effect of our experimental manipulation 
is likely to be more apparent in a repeated-measures design than in a between-group design, 

11 When I say ‘via’ I don’t mean that the bananas developed little banana mouths that opened up and said ‘well 
done old chap, the economy grew that time’ in chimp language. I mean that when they got something right they 
received a banana as a reward for their correct response.
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because in the former unsystematic variation can be caused only by differences in the way 
in which someone behaves at different times. In independent designs we have differences 
in innate ability contributing to the unsystematic variation. Therefore, this error variation  
will almost always be much larger than if the same participants had been used. When we 
look at the effect of our experimental manipulation, it is always against a background of 
‘noise’ caused by random, uncontrollable differences between our conditions. In a repeated-
measures design this ‘noise’ is kept to a minimum and so the effect of the experiment is more 
likely to show up. This means that, other things being equal, repeated-measures designs have 
more power to detect effects than independent designs.

1.6.3.  Randomization 1

In both repeated-measures and independent-measures designs it is important to try to keep 
the unsystematic variation to a minimum. By keeping the unsystematic variation as small 
as pos sible we get a more sensitive measure of the experimental manipulation. Generally, 
scientists use the randomization of participants to treatment conditions to achieve this goal. 
Many statistical tests work by identifying the systematic and unsystematic sources of vari-
ation and then comparing them. This comparison allows us to see whether the experiment 
has generated considerably more variation than we would have got had we just tested 
participants without the experimental manipulation. Randomization is important because 
it eliminates most other sources of systematic variation, which allows us to be sure that 
any systematic variation between experimental conditions is due to the manipulation of 
the independent variable. We can use randomization in two different ways depending on 
whether we have an independent- or repeated-measures design.

Let’s look at a repeated-measures design first. When the same people participate in more 
than one experimental condition they are naive during the first experimental condition but they 
come to the second experimental condition with prior experience of what is expected of them. 
At the very least they will be familiar with the dependent measure (e.g. the task they’re perform-
ing). The two most important sources of systematic variation in this type of design are:

Practice effectsMM : Participants may perform differently in the second condition because 
of familiarity with the experimental situation and/or the measures being used.
Boredom effectsMM : Participants may perform differently in the second condition because 
they are tired or bored from having completed the first condition.

Although these effects are impossible to eliminate completely, we can ensure that they 
produce no systematic variation between our conditions by counterbalancing the order in 
which a person participates in a condition. We can use randomization to determine in which 
order the conditions are completed. That is, we randomly determine whether a participant 
completes condition 1 before condition 2, or condition 2 before condition 1. Let’s look at the 
teaching method example and imagine that there were just two conditions: no reinforcement 
and negative reinforcement. If the same participants were used in all conditions, then we might 
find that statistical ability was higher after the negative reinforcement condition. However, if 
every student experienced the negative reinforcement after the no reinforcement seminars then 
they would enter the negative reinforcement condition already having a better knowledge of 
statistics than when they began the no reinforcement condition. So, the apparent improvement 
after negative reinforcement would not be due to the experimental manipulation (i.e. it’s not 
because negative reinforcement works), but because participants had attended more statistics 
seminars by the end of the negative reinforcement condition compared to the no reinforce-
ment one. We can use randomization to ensure that the number of statistics seminars does not 
introduce a systematic bias by randomly assigning students to have the negative reinforcement 
seminars first or the no reinforcement seminars first.
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If we turn our attention to independent designs, a similar argument can be applied. We 
know that different participants participate in different experimental conditions and that 
these participants will differ in many respects (their IQ, attention span, etc.). Although we 
know that these confounding variables contribute to the variation between conditions, 
we need to make sure that these variables contribute to the unsystematic variation and 
not the systematic variation. The way to ensure that confounding variables are unlikely to 
contribute systematically to the variation between experimental conditions is to randomly 
allocate participants to a particular experimental condition. This should ensure that these 
confounding variables are evenly distributed across conditions.

A good example is the effects of alcohol on personality. You might give one group of 
people 5 pints of beer, and keep a second group sober, and then count how many fights 
each person gets into. The effect that alcohol has on people can be very variable because 
of different tolerance levels: teetotal people can become very drunk on a small amount, 
while alcoholics need to consume vast quantities before the alcohol affects them. Now, 
if you allocated a bunch of teetotal participants to the condition that consumed alcohol, 
then you might find no difference between them and the sober group (because the teetotal 
participants are all unconscious after the first glass and so can’t become involved in any 
fights). As such, the person’s prior experiences with alcohol will create systematic variation 
that cannot be dissociated from the effect of the experimental manipulation. The best way 
to reduce this eventuality is to randomly allocate participants to conditions.

SELF-TEST  Why is randomization important?

1.7. Analysing data 
1

The final stage of the research process is to analyse the data you have collected. When the 
data are quantitative this involves both looking at your data graphically to see what the 
general trends in the data are, and also fitting statistical models to the data.

1.7.1.  Frequency distributions 1

Once you’ve collected some data a very useful thing to do is to plot a graph of how many 
times each score occurs. This is known as a frequency distribution, or histogram, which is a 
graph plotting values of observations on the horizontal axis, with a bar showing how many 
times each value occurred in the data set. Frequency distributions can be very useful for 
assessing properties of the distribution of scores. We will find out how to create these types 
of charts in Chapter 4.

Frequency distributions come in many different shapes and sizes. It is quite important, there-
fore, to have some general descriptions for common types of distributions. In an ideal world our 
data would be distributed symmetrically around the centre of all scores. As such, if we drew a 
vertical line through the centre of the distribution then it should look the same on both sides. This 
is known as a normal distribution and is characterized by the bell-shaped curve with which you 
might already be familiar. This shape basically implies that the majority of scores lie around the 
centre of the distribution (so the largest bars on the histogram are all around the central value). 
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Also, as we get further away from the centre the bars get smaller, implying 
that as scores start to deviate from the centre their frequency is decreasing. As 
we move still further away from the centre our scores become very infrequent 
(the bars are very short). Many naturally occurring things have this shape of 
distribution. For example, most men in the UK are about 175 cm tall;12 some 
are a bit taller or shorter but most cluster around this value. There will be 
very few men who are really tall (i.e. above 205 cm) or really short (i.e. under 
145 cm). An example of a normal distribution is shown in Figure 1.3.

There are two main ways in which a distribution can deviate from normal: 
(1) lack of symmetry (called skew) and (2) pointyness (called kurtosis). Skewed 
distributions are not symmetrical and instead the most frequent scores (the tall 
bars on the graph) are clustered at one end of the scale. So, the typical pat-
tern is a cluster of frequent scores at one end of the scale and the frequency of scores tailing off 
towards the other end of the scale. A skewed distribution can be either positively skewed (the fre-
quent scores are clustered at the lower end and the tail points towards the higher or more positive 
scores) or negatively skewed (the frequent scores are clustered at the higher end and the tail points 
towards the lower or more negative scores). Figure 1.4 shows examples of these distributions. 

Distributions also vary in their kurtosis. Kurtosis, despite sounding like some kind of 
exotic disease, refers to the degree to which scores cluster at the ends of the distribution 
(known as the tails) and how pointy a distribution is (but there are other factors that can 
affect how pointy the distribution looks – see Jane Superbrain Box 2.2). A distribution with 
positive kurtosis has many scores in the tails (a so-called heavy-tailed distribution) and is 
pointy. This is known as a leptokurtic distribution. In contrast, a distribution with negative 
kurtosis is relatively thin in the tails (has light tails) and tends to be flatter than normal. 
This distribution is called platykurtic. Ideally, we want our data to be normally distributed 
(i.e. not too skewed, and not too many or too few scores at the extremes!). For everything 
there is to know about kurtosis read DeCarlo (1997).

In a normal distribution the values of skew and kurtosis are 0 (i.e. the tails of the dis-
tribution are as they should be). If a distribution has values of skew or kurtosis above or 
below 0 then this indicates a deviation from normal: Figure 1.5 shows distributions with 
kurtosis values of +1 (left panel) and –4 (right panel).

12 I am exactly 180 cm tall. In my home country this makes me smugly above average. However, I’m writing this 
in The Netherlands where the average male height is 185 cm (a massive 10 cm higher than the UK), and where I 
feel like a bit of a dwarf. 

Figure 1.3
A ‘normal’ 
distribution (the 
curve shows the 
idealized shape)

What is a frequency
distribution and

when is it normal?
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1.7.2.  The centre of a distribution 
1

We can also calculate where the centre of a frequency distribution lies (known as the 
central tendency). There are three measures commonly used: the mean, the mode and the 
median.

Figure 1.4 A positively (left figure) and negatively (right figure) skewed distribution

Figure 1.5 Distributions with positive kurtosis (leptokurtic, left figure) and negative kurtosis (platykurtic, right figure)
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1.7.2.1. The mode 1

The mode is simply the score that occurs most frequently in the data set. This is easy to spot in 
a frequency distribution because it will be the tallest bar! To calculate the mode, simply place 
the data in ascending order (to make life easier), count how many times each score occurs, and 
the score that occurs the most is the mode! One problem with the mode is that it can often take 
on several values. For example, Figure 1.6 shows an example of a distribution with two modes 
(there are two bars that are the highest), which is said to be bimodal. It’s also possible to find 
data sets with more than two modes (multimodal). Also, if the frequencies of certain scores are 
very similar, then the mode can be influenced by only a small number of cases.

Figure 1.6
A bimodal 
distribution

1.7.2.2. The median 1

Another way to quantify the centre of a distribution is to look for the middle score when 
scores are ranked in order of magnitude. This is called the median. For example, Facebook is 
a popular social networking website, in which users can sign up to be ‘friends’ of other users. 
Imagine we looked at the number of friends that a selection (actually, some of my friends) of 
11 Facebook users had. Number of friends: 108, 103, 252, 121, 93, 57, 40, 53, 22, 116, 98.

To calculate the median, we first arrange these scores into ascending order: 22, 40, 53, 
57, 93, 98, 103, 108, 116, 121, 252.

Next, we find the position of the middle score by counting the number of scores we 
have collected (n), adding 1 to this value, and then dividing by 2. With 11 scores, this gives 
us (n + 1)/2 = (11 + 1)/2 = 12/2 = 6. Then, we find the score that is positioned at the 
location we have just calculated. So, in this example we find the sixth score:

22, 40, 53, 57, 93, 98, 103, 108, 116, 121, 252

Median
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This works very nicely when we have an odd number of scores (as in this example)  
but when we have an even number of scores there won’t be a middle value. Let’s 
imagine that we decided that because the highest score was so big (more than 
twice as large as the next biggest number), we would ignore it. (For one thing, 
this person is far too popular and we hate them.) We have only 10 scores now. 
As before, we should rank-order these scores: 22, 40, 53, 57, 93, 98, 103, 108, 
116, 121. We then calculate the position of the middle score, but this time it 
is (n + 1)/2 = 11/2 = 5.5. This means that the median is halfway between the 
fifth and sixth scores. To get the median we add these two scores and divide by 
2. In this example, the fifth score in the ordered list was 93 and the sixth score 
was 98. We add these together (93 + 98 = 191) and then divide this value by  

2 (191/2 = 95.5). The median number of friends was, therefore, 95.5.
The median is relatively unaffected by extreme scores at either end of the distribution: 

the median changed only from 98 to 95.5 when we removed the extreme score of 252. The 
median is also relatively unaffected by skewed distributions and can be used with ordinal, 
interval and ratio data (it cannot, however, be used with nominal data because these data 
have no numerical order).

1.7.2.3. The mean 1

The mean is the measure of central tendency that you are most likely to have heard of 
because it is simply the average score and the media are full of average scores.13 To calculate 
the mean we simply add up all of the scores and then divide by the total number of scores 
we have. We can write this in equation form as:

X=

Pn

i=1

xi

n

(1.1)

This may look complicated, but the top half of the equation simply means ‘add up all of the scores’ 
(the xi just means ‘the score of a particular person’; we could replace the letter i with each person’s 
name instead), and the bottom bit means divide this total by the number of scores you have got 
(n). Let’s calculate the mean for the Facebook data. First, we first add up all of the scores:

Xn

i= 1

xi = 22+ 40+ 53+ 57+93+ 98+103+ 108+ 116+ 121+252

= 1063

We then divide by the number of scores (in this case 11):

X=

Pn

i= 1

xi

n
= 1063

11
=96:64

The mean is 96.64 friends, which is not a value we observed in our actual data (it would be 
ridiculous to talk of having 0.64 of a friend). In this sense the mean is a statistical model – 
more on this in the next chapter.

13 I’m writing this on 15 February 2008, and to prove my point the BBC website is running a headline about how 
PayPal estimates that Britons will spend an average of £71.25 each on Valentine’s Day gifts, but uSwitch.com said 
that the average spend would be £22.69!

What are the mode,
median and mean?
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SELF-TEST  Compute the mean but excluding the 
score of 252.

If you calculate the mean without our extremely popular person (i.e. excluding the value 
252), the mean drops to 81.1 friends. One disadvantage of the mean is that it can be influ-
enced by extreme scores. In this case, the person with 252 friends on Facebook increased the 
mean by about 15 friends! Compare this difference with that of the median. Remember that 
the median hardly changed if we included or excluded 252, which illustrates how the median 
is less affected by extreme scores than the mean. While we’re being negative about the mean, 
it is also affected by skewed distributions and can be used only with interval or ratio data.

If the mean is so lousy then why do we use it all of the time? One very important reason 
is that it uses every score (the mode and median ignore most of the scores in a data set). 
Also, the mean tends to be stable in different samples. 

1.7.3.  The dispersion in a distribution 
1

It can also be interesting to try to quantify the spread, or dispersion, of scores in the data. 
The easiest way to look at dispersion is to take the largest score and subtract from it the 
smallest score. This is known as the range of scores. For our Facebook friends data, if we 
order these scores we get 22, 40, 53, 57, 93, 98, 103, 108, 116, 121, 252. The highest 
score is 252 and the lowest is 22; therefore, the range is 252 – 22 = 230. One problem 
with the range is that because it uses only the highest and lowest score it is affected dra-
matically by extreme scores.

SELF-TEST  Compute the range but excluding the 
score of 252.

If you have done the self-test task you’ll see that without the extreme score the range drops 
dramatically from 230 to 99 – less than half the size!

One way around this problem is to calculate the range when we exclude values at the 
extremes of the distribution. One convention is to cut off the top and bottom 25% of 
scores and calculate the range of the middle 50% of scores – known as the interquartile 
range. Let’s do this with the Facebook data. First we need to calculate what are called quar-
tiles. Quartiles are the three values that split the sorted data into four equal parts. First we 
calculate the median, which is also called the second quartile, which splits our data into two 
equal parts. We already know that the median for these data is 98. The lower quartile is the 
median of the lower half of the data and the upper quartile is the median of the upper half 
of the data. One rule of thumb is that the median is not included in the two halves when 
they are split (this is convenient if you have an odd number of values), but you can include 
it (although which half you put it in is another question). Figure 1.7 shows how we would 
calculate these values for the Facebook data. Like the median, the upper and lower quartile 
need not be values that actually appear in the data (like the median, if each half of the data 
had an even number of values in it then the upper and lower quartiles would be the average 
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of two values in the data set). Once we have worked out the values of the quartiles, we 
can calculate the interquartile range, which is the difference between the upper and lower 
quartile. For the Facebook data this value would be 116 – 53 = 63. The advantage of the 
interquartile range is that it isn’t affected by extreme scores at either end of the distribu-
tion. However, the problem with it is that you lose a lot of data (half of it in fact!).

SELF-TEST  Twenty-one heavy smokers were put on a 
treadmill at the fastest setting. The time in seconds was 
measured until they fell off from exhaustion: 18, 16, 18, 
24, 23, 22, 22, 23, 26, 29, 32, 34, 34, 36, 36, 43, 42, 49, 
46, 46, 57

Compute the mode, median, mean, upper and lower 
quartiles, range and interquartile range.

1.7.4.  Using a frequency distribution to go beyond the data 1

Another way to think about frequency distributions is not in terms of how often scores actu-
ally occurred, but how likely it is that a score would occur (i.e. probability). The word ‘prob-
ability’ induces suicidal ideation in most people (myself included) so it seems fitting that we 
use an example about throwing ourselves off a cliff. Beachy Head is a large, windy cliff on 
the Sussex coast (not far from where I live) that has something of a reputation for attract-
ing suicidal people, who seem to like throwing themselves off it (and after several months 
of rewriting this book I find my thoughts drawn towards that peaceful chalky cliff top more 
and more often). Figure 1.8 shows a frequency distribution of some completely made up 
data of the number of suicides at Beachy Head in a year by people of different ages (although 
I made these data up, they are roughly based on general suicide statistics such as those in 
Williams, 2001). There were 172 suicides in total and you can see that the suicides were most 
frequently aged between about 30 and 35 (the highest bar). The graph also tells us that, for 
example, very few people aged above 70 committed suicide at Beachy Head.

I said earlier that we could think of frequency distributions in terms of probability. To 
explain this, imagine that someone asked you ‘how likely is it that a 70 year old committed 
suicide at Beach Head?’ What would your answer be? The chances are that if you looked 
at the frequency distribution you might respond ‘not very likely’ because you can see that 
only 3 people out of the 172 suicides were aged around 70. What about if someone asked 
you ‘how likely is it that a 30 year old committed suicide?’ Again, by looking at the graph, 
you might say ‘it’s actually quite likely’ because 33 out of the 172 suicides were by people 
aged around 30 (that’s more than 1 in every 5 people that committed suicide). So based 

Figure 1.7
Calculating 
quartiles and 
the interquartile 
range
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on the frequencies of different scores it should start to become clear that we could use this 
information to estimate the probability that a particular score will occur. We could ask, 
based on our data, ‘what’s the probability of a suicide victim being aged 16–20?’ A prob-
ability value can range from 0 (there’s no chance whatsoever of the event happening) to 1 
(the event will definitely happen). So, for example, when I talk to my publishers I tell them 
there’s a probability of 1 that I will have completed the revisions to this book by April 2008. 
However, when I talk to anyone else, I might, more realistically, tell them that there’s a .10 
probability of me finishing the revisions on time (or put another way, a 10% chance, or 1 in 
10 chance that I’ll complete the book in time). In reality, the probability of my meeting the 
deadline is 0 (not a chance in hell) because I never manage to meet publisher’s deadlines! If 
probabilities don’t make sense to you then just ignore the decimal point and think of them 
as percentages instead (i.e. .10 probability that something will happen = 10% chance that 
something will happen).

I’ve talked in vague terms about how frequency distributions can be used to get a rough 
idea of the probability of a score occurring. However, we can be precise. For any distri-
bution of scores we could, in theory, calculate the probability of obtaining a 
score of a certain size – it would be incredibly tedious and complex to do it, 
but we could. To spare our sanity, statisticians have identified several common 
distributions. For each one they have worked out mathematical formulae that 
specify idealized versions of these distributions (they are specified in terms of 
a curved line). These idealized distributions are known as probability distribu-
tions and from these distributions it is possible to calculate the probability of 
getting particular scores based on the frequencies with which a particular score 
occurs in a distribution with these common shapes. One of these ‘common’ dis-
tributions is the normal distribution, which I’ve already mentioned in section 
1.7.1. Statisticians have calculated the probability of certain scores occurring in 
a normal distribution with a mean of 0 and a standard deviation of 1. Therefore, if we have  
any data that are shaped like a normal distribution, then if the mean and standard deviation 

Figure 1.8
Frequency 
distribution 
showing the 
number of 
suicides at 
Beachy Head in  
a year by age

What is the
normal distribution?
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are 0 and 1 respectively we can use the tables of probabilities for the normal distribution to 
see how likely it is that a particular score will occur in the data (I’ve produced such a table 
in the Appendix to this book).

The obvious problem is that not all of the data we collect will have a mean of 0 and 
standard deviation of 1. For example, we might have a data set that has a mean of 567 and 
a standard deviation of 52.98. Luckily any data set can be converted into a data set that has 
a mean of 0 and a standard deviation of 1. First, to centre the data around zero, we take 
each score and subtract from it the mean of all. Then, we divide the resulting score by the 
standard deviation to ensure the data have a standard deviation of 1. The resulting scores 
are known as z-scores and in equation form, the conversion that I’ve just described is:

z= X−X

s
(1.2)

The table of probability values that have been calculated for the standard normal dis-
tribution is shown in the Appendix. Why is this table important? Well, if we look at our 
suicide data, we can answer the question ‘what’s the probability that someone who threw 
themselves off Beachy Head was 70 or older?’ First we convert 70 into a z-score. Say, the 
mean of the suicide scores was 36, and the standard deviation 13; then 70 will become (70 –  
36)/13 = 2.62. We then look up this value in the column labelled ‘Smaller Portion’ (i.e. the 
area above the value 2.62). You should find that the probability is .0044, or put another 
way, only a 0.44% chance that a suicide victim would be 70 years old or more. By looking 
at the column labelled ‘Bigger Portion’ we can also see the probability that a suicide victim 
was aged 70 or less! This probability is .9956, or put another way, there’s a 99.56% chance 
that a suicide victim was less than 70 years old!

Hopefully you can see from these examples that the normal distribution and z-scores 
allow us to go a first step beyond our data in that from a set of scores we can calculate the 
probability that a particular score will occur. So, we can see whether scores of a certain 
size are likely or unlikely to occur in a distribution of a particular kind. You’ll see just how 
useful this is in due course, but it is worth mentioning at this stage that certain z-scores are 
particularly important. This is because their value cuts off certain important percentages of 
the distribution. The first important value of z is 1.96 because this cuts off the top 2.5% of 
the distribution, and its counterpart at the opposite end (–1.96) cuts off the bottom 2.5% 
of the distribution. As such, taken together, this value cuts off 5% of scores, or put another 
way, 95% of z-scores lie between –1.96 and 1.96. The other two important benchmarks are 
±2.58 and ±3.29, which cut off 1% and 0.1% of scores respectively. Put another way, 99% 
of z-scores lie between –2.58 and 2.58, and 99.9% of them lie between –3.29 and 3.29. 
Remember these values because they’ll crop up time and time again.

SELF-TEST  Assuming the same mean and standard 
deviation for the Beachy Head example above, what’s 
the probability that someone who threw themselves off 
Beachy Head was 30 or younger?

1.7.5.  Fitting statistical models to the data 1

Having looked at your data (and there is a lot more information on different ways to do 
this in Chapter 4), the next step is to fit a statistical model to the data. I should really just 
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write ‘insert the rest of the book here’, because most of the remaining chapters discuss the 
various models that you can fit to the data. However, I do want to talk here briefly about 
two very important types of hypotheses that are used when analysing the data. Scientific 
statements, as we have seen, can be split into testable hypotheses. The hypothesis or pre-
diction that comes from your theory is usually saying that an effect will be present. This 
hypothesis is called the alternative hypothesis and is denoted by H1. (It is sometimes also 
called the experimental hypothesis but because this term relates to a specific type of meth-
odology it’s probably best to use ‘alternative hypothesis’.) There is another type of hypoth-
esis, though, and this is called the null hypothesis and is denoted by H0. This hypothesis is 
the opposite of the alternative hypothesis and so would usually state that an effect is absent. 
Taking our Big Brother example from earlier in the chapter we might generate the follow-
ing hypotheses:

Alternative hypothesisMM : Big Brother contestants will score higher on personality disorder 
questionnaires than members of the public.

Null hypothesisMM : Big Brother contestants and members of the public will not differ in 
their scores on personality disorder questionnaires.

The reason that we need the null hypothesis is because we cannot prove the experi-
mental hypothesis using statistics, but we can reject the null hypothesis. If our data give us 
confidence to reject the null hypothesis then this provides support for our experimental 
hypothesis. However, be aware that even if we can reject the null hypothesis, this doesn’t 
prove the experimental hypothesis – it merely supports it. So, rather than talking about 
accepting or rejecting a hypothesis (which some textbooks tell you to do) we should be 
talking about ‘the chances of obtaining the data we’ve collected assuming that the null 
hypothesis is true’.

Using our Big Brother example, when we collected data from the auditions about the  
contestants’ personalities we found that 75% of them had a disorder. When we analyse 
our data, we are really asking, ‘Assuming that contestants are no more likely to have per-
sonality disorders than members of the public, is it likely that 75% or more of the con-
testants would have personality disorders?’ Intuitively the answer is that the chances are 
very low: if the null hypothesis is true, then most contestants would not have personality 
disorders because they are relatively rare. Therefore, we are very unlikely to have got the 
data that we did if the null hypothesis were true.

What if we found that only 1 contestant reported having a personality disorder (about 
8%)? If the null hypothesis is true, and contestants are no different in personality to the 
general population, then only a small number of contestants would be expected to have 
a personality disorder. The chances of getting these data if the null hypothesis is true are, 
therefore, higher than before.

When we collect data to test theories we have to work in these terms: we cannot talk 
about the null hypothesis being true or the experimental hypothesis being true, we can 
only talk in terms of the probability of obtaining a particular set of data if, hypotheti-
cally speaking, the null hypothesis was true. We will elaborate on this idea in the next 
chapter.

Finally, hypotheses can also be directional or non-directional. A directional hypothesis 
states that an effect will occur, but it also states the direction of the effect. For example, 
‘readers will know more about research methods after reading this chapter’ is a one-
tailed hypothesis because it states the direction of the effect (readers will know more). A 
non-directional hypothesis states that an effect will occur, but it doesn’t state the direc-
tion of the effect. For example, ‘readers’ knowledge of research methods will change 
after they have read this chapter’ does not tell us whether their knowledge will improve 
or get worse. 
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What have I discovered about statistics? 1

Actually, not a lot because we haven’t really got to the statistics bit yet. However, we 
have discovered some stuff about the process of doing research. We began by looking at 
how research questions are formulated through observing phenomena or collecting data 
about a ‘hunch’. Once the observation has been confirmed, theories can be generated 
about why something happens. From these theories we formulate hypotheses that we 
can test. To test hypotheses we need to measure things and this leads us to think about 
the variables that we need to measure and how to measure them. Then we can collect 
some data. The final stage is to analyse these data. In this chapter we saw that we can 
begin by just looking at the shape of the data but that ultimately we should end up fit-
ting some kind of statistical model to the data (more on that in the rest of the book). 
In short, the reason that your evil statistics lecturer is forcing you to learn statistics is 
because it is an intrinsic part of the research process and it gives you enormous power 
to answer questions that are interesting; or it could be that they are a sadist who spends 
their spare time spanking politicians while wearing knee-high PVC boots, a diamond-
encrusted leather thong and a gimp mask (that’ll be a nice mental image to keep with 
you throughout your course). We also discovered that I was a curious child (you can 
interpret that either way). As I got older I became more curious, but you will have to 
read on to discover what I was curious about. 

Key terms that I’ve discovered
Alternative hypothesis
Between-group design
Between-subject design
Bimodal
Binary variable
Boredom effect
Categorical variable
Central tendency
Confounding variable
Content validity
Continuous variable
Correlational research
Counterbalancing
Criterion validity
Cross-Sectional research
Dependent variable
Discrete variable
Ecological validity
Experimental hypothesis
Experimental research
Falsification
Frequency distribution
Histogram

Hypothesis
Independent design
Independent variable
Interquartile range
Interval variable
Kurtosis
Leptokurtic
Level of measurement
Lower quartile
Mean
Measurement error
Median
Mode
Multimodal
Negative skew
Nominal variable 
Normal distribution
Null hypothesis
Ordinal variable 
Outcome variable
Platykurtic
Positive skew
Practice effect
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Predictor variable
Probability distribution
Qualitative methods
Quantitative methods 
Quartile
Randomization
Range
Ratio variable
Reliability
Repeated-measures design
Second quartile

Skew
Systematic variation
Tertium quid
Test–retest reliability
Theory
Unsystematic variation
Upper quartile
Validity
Variables
Within-subject design
z-scores

Smart Alex’s stats quiz

Smart Alex knows everything there is to know about statistics and SPSS. He also likes noth-
ing more than to ask people stats questions just so that he can be smug about how much he 
knows. So, why not really annoy him and get all of the answers right!

What are (broadly speaking) the five stages of the research process? 1 1

What is the fundamental difference between experimental and correlational research? 2 1

What is the level of measurement of the following variables? 3 1

The number of downloads of different bands’ songs on iTunesa. 
The names of the bands that were downloaded.b. 
The position in the iTunes download chart.c. 
The money earned by the bands from the downloads.d. 
The weight of drugs bought by the bands with their royalties.e. 
The type of drugs bought by the bands with their royalties.f. 
The phone numbers that the bands obtained because of their fame.g. 
The gender of the people giving the bands their phone numbers.h. 
The instruments played by the band members.i. 
The time they had spent learning to play their instruments.j. 

Say I own 857 CDs. My friend has written a computer program that uses a webcam to 4 
scan the shelves in my house where I keep my CDs and measure how many I have. His 
program says that I have 863 CDs. Define measurement error. What is the measure-
ment error in my friend’s CD-counting device? 1

Sketch the shape of a normal distribution, a positively skewed distribution and a nega-5 
tively skewed distribution. 1

Answers can be found on the companion website. 

Further reading
Field, A. P., & Hole, G. J. (2003). How to design and report experiments. London: Sage. (I am rather 

biased, but I think this is a good overview of basic statistical theory and research methods.)
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Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: a practical 
introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)

Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book is a 
very gentle introduction to statistical theory.)

Interesting real research
Umpierre, S. A., Hill, J. A., & Anderson, D. J. (1985). Effect of Coke on sperm motility. New 

England Journal of Medicine, 313(21), 1351–1351.
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2
Everything you ever  
wanted to know about 
statistics (well, sort of)

Figure 2.1
The face of 
innocence … 
but what are the 
hands doing?

2.1. What will this chapter tell me? 1

As a child grows, it becomes important for them to fit models to the world: to be able to  
reliably predict what will happen in certain situations. This need to build models that accu-
rately reflect reality is an essential part of survival. According to my parents (conveniently 
I have no memory of this at all), while at nursery school one model of the world that I was 
particularly enthusiastic to try out was ‘If I get my penis out, it will be really funny’. No doubt 
to my considerable disappointment, this model turned out to be a poor predictor of positive 
outcomes. Thankfully for all concerned, I soon learnt that the model ‘If I get my penis out 
at nursery school the teachers and mummy and daddy are going to be quite annoyed’ was 
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a better ‘fit’ of the observed data. Fitting models that accurately reflect the observed data is 
important to establish whether a theory is true. You’ll be delighted to know that this chap-
ter is all about fitting statistical models (and not about my penis). We edge sneakily away 
from the frying pan of research methods and trip accidentally into the fires of statistics hell. 
We begin by discovering what a statistical model is by using the mean as a straightforward 
example. We then see how we can use the properties of data to go beyond the data we have 
collected and to draw inferences about the world at large. In a nutshell then, this chapter lays 
the foundation for the whole of the rest of the book, so it’s quite important that you read it 
or nothing that comes later will make any sense. Actually, a lot of what comes later probably 
won’t make much sense anyway because I’ve written it, but there you go.

2.2. Building statistical models 1

We saw in the previous chapter that scientists are interested in discovering something 
about a phenomenon that we assume actually exists (a ‘real-world’ phenomenon). 
These real-world phenomena can be anything from the behaviour of interest rates in 
the economic market to the behaviour of undergraduates at the end-of-exam party. 
Whatever the phenomenon we desire to explain, we collect data from the real world 
to test our hypotheses about the phenomenon. Testing these hypotheses involves 
building statistical models of the phenomenon of interest.

The reason for building statistical models of real-world data is best explained by 
analogy. Imagine an engineer wishes to build a bridge across a river. That engineer 
would be pretty daft if she just built any old bridge, because the chances are that it 
would fall down. Instead, an engineer collects data from the real world: she looks 
at bridges in the real world and sees what materials they are made from, what 
structures they use and so on (she might even collect data about whether these 
bridges are damaged). She then uses this information to construct a model. She 

builds a scaled-down version of the real-world bridge because it is impractical, not to mention 
expensive, to build the actual bridge itself. The model may differ from reality in several ways –  
it will be smaller for a start – but the engineer will try to build a model that best fits the situ-
ation of interest based on the data available. Once the model has been built, it can be used to 
predict things about the real world: for example, the engineer might test whether the bridge 
can withstand strong winds by placing the model in a wind tunnel. It seems obvious that it is 
important that the model is an accurate representation of the real world. Social scientists do 
much the same thing as engineers: they build models of real-world processes in an attempt to 
predict how these processes operate under certain conditions (see Jane Superbrain Box 2.1 
below). We don’t have direct access to the processes, so we collect data that represent the pro-
cesses and then use these data to build statistical models (we reduce the process to a statistical 
model). We then use this statistical model to make predictions about the real-world phenom-
enon. Just like the engineer, we want our models to be as accurate as possible so that we can be 
confident that the predictions we make are also accurate. However, unlike engineers we don’t 
have access to the real-world situation and so we can only ever infer things about psychologi-
cal, societal, biological or economic processes based upon the models we build. If we want our 
inferences to be accurate then the statistical model we build must represent the data collected 
(the observed data) as closely as possible. The degree to which a statistical model represents 
the data collected is known as the fit of the model.

Figure 2.2 illustrates the kinds of models that an engineer might build to represent the 
real-world bridge that she wants to create. The first model (a) is an excellent representation 
of the real-world situation and is said to be a good fit (i.e. there are a few small differences but 
the model is basically a very good replica of reality). If this model is used to make predictions 
about the real world, then the engineer can be confident that these predictions will be very 
accurate, because the model so closely resembles reality. So, if the model collapses in a strong 

Why do we build
statistical models?
Why do we build

statistical models?
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(a) Good Fit (b) Moderate Fit (c) Poor Fit

The Real World

Figure 2.2
Fitting models  
to real-world  
data (see text  
for details)

wind, then there is a good chance that the real bridge would collapse also. The second model 
(b) has some similarities to the real world: the model includes some of the basic structural 
features, but there are some big differences from the real-world bridge (namely the absence 
of one of the supporting towers). This is what we might term a moderate fit (i.e. there are 
some differences between the model and the data but there are also some great similarities). 
If the engineer uses this model to make predictions about the real world then these predic-
tions may be inaccurate and possibly catastrophic (e.g. the model predicts that the bridge 
will collapse in a strong wind, causing the real bridge to be closed down, creating 100-mile 
tailbacks with everyone stranded in the snow; all of which was unnecessary because the real 
bridge was perfectly safe – the model was a bad representation of reality). We can have some 
confidence, but not complete confidence, in predictions from this model. The final model  
(c) is completely different to the real-world situation; it bears no structural similarities to 
the real bridge and is a poor fit (in fact, it might more accurately be described as an abysmal 
fit). As such, any predictions based on this model are likely to be completely inaccurate. 
Extending this analogy to the social sciences we can say that it is important when we fit a 
statistical model to a set of data that this model fits the data well. If our model is a poor fit of 
the observed data then the predictions we make from it will be equally poor.

are identical systems based on linear models (Cohen, 
1968), yet they have different names and, in psychology 
at least, are used largely in different contexts due to his-
torical divisions in methodology (Cronbach, 1957).

A linear model is simply a model that is based upon 
a straight line; this means that we are usually trying to 
summarize our observed data in terms of a straight line. 
Suppose we measured how many chapters of this book 
a person had read, and then measured their spiritual 
enrichment. We could represent these hypothetical data 
in the form of a scatterplot in which each dot represents 
an individual’s score on both variables (see section 4.8). 
Figure 2.3 shows two versions of such a graph that sum-
marizes the pattern of these data with either a straight 

As behavioural and social scientists, most of the models 
that we use to describe data tend to be linear models. For 
example, analysis of variance (ANOVA) and regression 

JANE SUPERBRAIN 2.1

Types of statistical models 1
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2.3. Populations and samples 1

As researchers, we are interested in finding results that apply to an entire population of 
people or things. For example, psychologists want to discover processes that occur in all 
humans, biologists might be interested in processes that occur in all cells, economists want 
to build models that apply to all salaries, and so on. A population can be very general (all 
human beings) or very narrow (all male ginger cats called Bob). Usually, scientists strive to 
infer things about general populations rather than narrow ones. For example, it’s not very 
interesting to conclude that psychology students with brown hair who own a pet hamster 
named George recover more quickly from sports injuries if the injury is massaged (unless, 
like René Koning,1 you happen to be a psychology student with brown hair who has a pet 
hamster named George). However, if we can conclude that everyone’s sports injuries are 
aided by massage this finding has a much wider impact. 

Scientists rarely, if ever, have access to every member of a population. Psychologists  
cannot collect data from every human being and ecologists cannot observe every male ginger 
cat called Bob. Therefore, we collect data from a small subset of the population (known as a 
sample) and use these data to infer things about the population as a whole. The bridge-building 

1 A brown-haired psychology student with a hamster called Sjors (Dutch for George, apparently), who, after 
reading one of my web resources, emailed me to weaken my foolish belief that this is an obscure combination of 
possibilities.

Figure 2.3
A scatterplot of 
the same data 
with a linear 
model fitted 
(left), and with a 
non-linear model 
fitted (right)

It’s possible that many scientific disciplines are pro-
gressing in a biased way because most of the models 
that we tend to fit are linear (mainly because books like 
this tend to ignore more complex curvilinear models). 
This could create a bias because most published scien-
tific studies are ones with statistically significant results 
and there may be cases where a linear model has been 
a poor fit of the data (and hence the paper was not pub-
lished), yet a non-linear model would have fitted the data 
well. This is why it is useful to plot your data first: plots tell 
you a great deal about what models should be applied 
to data. If your plot seems to suggest a non-linear model 
then investigate this possibility (which is easy for me to 
say when I don’t include such techniques in this book!).

(left) or curved (right) line. These graphs illustrate how 
we can fit different types of models to the same data. 
In this case we can use a straight line to represent our 
data and it shows that the more chapters a person reads, 
the less their spiritual enrichment. However, we can also 
use a curved line to summarize the data and this shows 
that when most, or all, of the chapters have been read, 
spiritual enrichment seems to increase slightly (presum-
ably because once the book is read everything suddenly 
makes sense – yeah, as if!). Neither of the two types of 
model is necessarily correct, but it will be the case that 
one model fits the data better than another and this is 
why when we use statistical models it is important for us 
to assess how well a given model fits the data.
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engineer cannot make a full-size model of the bridge she wants to build and so she builds a 
small-scale model and tests this model under various conditions. From the results obtained from 
the small-scale model the engineer infers things about how the full-sized bridge will respond. 
The small-scale model may respond differently to a full-sized version of the bridge, but the 
larger the model, the more likely it is to behave in the same way as the full-size bridge. This 
metaphor can be extended to scientists. We never have access to the entire population (the real-
size bridge) and so we collect smaller samples (the scaled-down bridge) and use the behaviour 
within the sample to infer things about the behaviour in the population. The bigger the sample, 
the more likely it is to reflect the whole population. If we take several random samples from the 
population, each of these samples will give us slightly different results. However, on average, 
large samples should be fairly similar.

2.4. Simple statistical models 1

2.4.1.  The mean: a very simple statistical model 1

One of the simplest models used in statistics is the mean, which we encountered in section 
1.7.2.3. In Chapter 1 we briefly mentioned that the mean was a statistical model of the data 
because it is a hypothetical value that doesn’t have to be a value that is actually observed in 
the data. For example, if we took five statistics lecturers and measured the number of friends 
that they had, we might find the following data: 1, 2, 3, 3 and 4. If we take the mean number 
of friends, this can be calculated by adding the values we obtained, and dividing by the 
number of values measured: (1 + 2 + 3 + 3 + 4)/5 = 2.6. Now, we know that it is impos-
sible to have 2.6 friends (unless you chop someone up with a chainsaw and befriend their 
arm, which, frankly is probably not beyond your average statistics lecturer) so the mean value 
is a hypothetical value. As such, the mean is a model created to summarize our data.

2.4.2.   Assessing the fit of the mean: sums of squares,  
variance and standard deviations 1

With any statistical model we have to assess the fit (to return to our bridge analogy we need 
to know how closely our model bridge resembles the real bridge that we want to build). With 
most statistical models we can determine whether the model is accurate by looking at how dif-
ferent our real data are from the model that we have created. The easiest way to do this is to 
look at the difference between the data we observed and the model fitted. Figure 2.4 shows the 
number of friends that each statistics lecturer had, and also the mean number that we calcu-
lated earlier on. The line representing the mean can be thought of as our model, and the circles 
are the observed data. The diagram also has a series of vertical lines that connect each observed 
value to the mean value. These lines represent the deviance between the observed data and 
our model and can be thought of as the error in the model. We can calculate the magnitude 
of these deviances by simply subtracting the mean value (x-) from each of the observed values 
(xi).

2 For example, lecturer 1 had only 1 friend (a glove puppet of an ostrich called Kevin) and 
so the difference is x1 - x-= 1 - 2.6 = -1.6. You might notice that the deviance is a negative 
number, and this represents the fact that our model overestimates this lecturer’s popularity: it 

2 The xi simply refers to the observed score for the ith person (so, the i can be replaced with a number that repre-
sents a particular individual). For these data:  for lecturer 1, xi = x1 = 1; for lecturer 3, xi = x3 = 3; for lecturer 5, 
xi = x5 = 4.
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predicts that he will have 2.6 friends yet in reality he has only 1 friend (bless him!). Now, how 
can we use these deviances to estimate the accuracy of the model? One possibility is to add up 
the deviances (this would give us an estimate of the total error). If we were to do this we would 
find that (don’t be scared of the equations, we will work through them step by step – if you 
need reminding of what the symbols mean there is a guide at the beginning of the book):

total error= sum of deviances

=
X

ðxi − xÞ= ð−1:6Þ+ ð−0:6Þ+ ð0:4Þ+ ð0:4Þ+ ð1:4Þ= 0

So, in effect the result tells us that there is no total error between our model and the 
observed data, so the mean is a perfect representation of the data. Now, this clearly isn’t 
true: there were errors but some of them were positive, some were negative and they have 
simply cancelled each other out. It is clear that we need to avoid the problem of which 
direction the error is in and one mathematical way to do this is to square each error,3 that 
is multiply each error by itself. So, rather than calculating the sum of errors, we calculate 
the sum of squared errors. In this example:

sum of squrared errors ðSSÞ=
X

ðxi − xÞðxi − xÞ

= ð−1:6Þ2 + ð−0:6Þ2 + ð0:4Þ2 + ð0:4Þ2 + ð1:4Þ2

= 2:56+ 0:36+ 0:16+0:16+ 1:96

= 5:20

The sum of squared errors (SS) is a good measure of the accuracy of our model. However, 
it is fairly obvious that the sum of squared errors is dependent upon the amount of data 
that has been collected – the more data points, the higher the SS. To overcome this prob-
lem we calculate the average error by dividing the SS by the number of observations (N). If 
we are interested only in the average error for the sample, then we can divide by N alone. 
However, we are generally interested in using the error in the sample to estimate the error 
in the population and so we divide the SS by the number of observations minus 1 (the 
reason why is explained in Jane Superbrain Box 2.2 below). This measure is known as the 
variance and is a measure that we will come across a great deal:

3 When you multiply a negative number by itself it becomes positive.

Figure 2.4
Graph showing 
the difference 
between the 
observed number 
of friends that 
each statistics 
lecturer had, and 
the mean number 
of friends
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variance ðs2Þ= SS

N− 1
=

P
ðxi −xÞ2

N− 1
= 5:20

4
= 1:3

 (2.1)

The variance is, therefore, the average error between the mean and the observations made 
(and so is a measure of how well the model fits the actual data). There is one problem with 
the variance as a measure: it gives us a measure in units squared (because we squared each 
error in the calculation). In our example we would have to say that the average error in our 
data (the variance) was 1.3 friends squared. It makes little enough sense to talk about 1.3 
friends, but it makes even less to talk about friends squared! For this reason, we often take 
the square root of the variance (which ensures that the measure of average error is in the 
same units as the original measure). This measure is known as the standard deviation and is 
simply the square root of the variance. In this example the standard deviation is:

s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi −xÞ2

N− 1

s

=
ffiffiffiffiffiffiffi
1:3

p

= 1:14

 (2.2)

where they play – there is only one position left. Therefore 
there are 14 degrees of freedom; that is, for 14 players you 
have some degree of choice over where they play, but for 1 
player you have no choice. The degrees of freedom is one 
less than the number of players.

In statistical terms the degrees of freedom relate to the 
number of observations that are free to vary. If we take 
a sample of four observations from a population, then 
these four scores are free to vary in any way (they can be 
any value). However, if we then use this sample of four 
observations to calculate the standard deviation of the 
population, we have to use the mean of the sample as 
an estimate of the population’s mean. Thus we hold one 
parameter constant. Say that the mean of the sample was 
10; then we assume that the population mean is 10 also 
and we keep this value constant. With this parameter fixed, 
can all four scores from our sample vary? The answer is 
no, because to keep the mean constant only three values 
are free to vary. For example, if the values in the sample 
were 8, 9, 11, 12 (mean = 10) and we changed three of 
these values to 7, 15 and 8, then the final value must be 
10 to keep the mean constant. Therefore, if we hold one 
parameter constant then the degrees of freedom must 
be one less than the sample size. This fact explains why 
when we use a sample to estimate the standard deviation 
of a population, we have to divide the sums of squares by 
N - 1 rather than N alone. 

Degrees of freedom (df) is a very difficult concept to explain. 
I’ll begin with an analogy. Imagine you’re the manager of 
a rugby team and you have a team sheet with 15 empty 
slots relating to the positions on the playing field. There  
is a standard formation in rugby and so each team has  
15 specific positions that must be held constant for the 
game to be played. When the first player arrives, you have 
the choice of 15 positions in which to place this player. You 
place his name in one of the slots and allocate him to a 
position (e.g. scrum-half) and, therefore, one position on 
the pitch is now occupied. When the next player arrives, 
you have the choice of 14 positions but you still have the 
freedom to choose which position this player is allocated. 
However, as more players arrive, you will reach the point 
at which 14 positions have been filled and the final player 
arrives. With this player you have no freedom to choose 

JANE SUPERBRAIN 2.2

Degrees of freedom 2
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The sum of squares, variance and standard deviation are all, therefore, measures of the ‘fit’ (i.e. 
how well the mean represents the data). Small standard deviations (relative to the value of the 
mean itself) indicate that data points are close to the mean. A large standard deviation (relative 
to the mean) indicates that the data points are distant from the mean (i.e. the mean is not an 
accurate representation of the data). A standard deviation of 0 would mean that all of the scores 
were the same. Figure 2.5 shows the overall ratings (on a 5-point scale) of two lecturers after each 
of five different lectures. Both lecturers had an average rating of 2.6 out of 5 across the lectures. 
However, the first lecturer had a standard deviation of 0.55 (relatively small compared to the 
mean). It should be clear from the graph that ratings for this lecturer were consistently close to the 
mean rating. There was a small fluctuation, but generally his lectures did not vary in popularity. 
As such, the mean is an accurate representation of his ratings. The mean is a good fit of the data. 
The second lecturer, however, had a standard deviation of 1.82 (relatively high compared to the 
mean). The ratings for this lecturer are clearly more spread from the mean; that is, for some lec-
tures he received very high ratings, and for others his ratings were appalling. Therefore, the mean 
is not such an accurate representation of his performance because there was a lot of variability in 
the popularity of his lectures. The mean is a poor fit of the data. This illustration should hopefully 
make clear why the standard deviation is a measure of how well the mean represents the data.

SELF-TEST  In section 1.7.2.2 we came across some 
data about the number of friends that 11 people had on 
Facebook (22, 40, 53, 57, 93, 98, 103, 108, 116, 121, 
252). We calculated the mean for these data as 96.64. 
Now calculate the sums of squares, variance, and 
standard deviation.

SELF-TEST  Calculate these values again but 
excluding the extreme score (252).

2.4.3.  Expressing the mean as a model 2

The discussion of means, sums of squares and variance may seem a side track from the ini-
tial point about fitting statistical models, but it’s not: the mean is a simple statistical model 

Figure 2.5
Graphs 
illustrating data 
that have the 
same mean but 
different standard 
deviations
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that can be fitted to data. What do I mean by this? Well, everything in statistics essentially 
boils down to one equation:

outcomei = ðmodelÞ+ errori  (2.3)

This just means that the data we observe can be predicted from the model we choose to 
fit to the data plus some amount of error. When I say that the mean is a simple statistical 
model, then all I mean is that we can replace the word ‘model’ with the word ‘mean’ in 
that equation. If we return to our example involving the number of friends that statistics 
lecturers have and look at lecturer 1, for example, we observed that they had one friend 
and the mean of all lecturers was 2.6. So, the equation becomes:

outcomelecturer1 =X+ εlecturer1

1= 2:6+ εlecturer1

represents the data well then most of the scores will clus-
ter close to the mean and the resulting standard devia-
tion is small relative to the mean. When the mean is a 
worse representation of the data, the scores cluster more 
widely around the mean (think back to Figure 2.5) and 
the standard deviation is larger. Figure 2.6 shows two 
distributions that have the same mean (50) but different 
standard deviations. One has a large standard deviation 
relative to the mean (SD = 25) and this results in a flatter 
distribution that is more spread out, whereas the other 
has a small standard deviation relative to the mean (SD = 
15) resulting in a more pointy distribution in which scores 
close to the mean are very frequent but scores further 
from the mean become increasingly infrequent. The main 
message is that as the standard deviation gets larger, the  
distribution gets fatter. This can make distributions look 
platykurtic or leptokurtic when, in fact, they are not.

As well as telling us about the accuracy of the mean 
as a model of our data set, the variance and standard 
deviation also tell us about the shape of the distribu-
tion of scores. As such, they are measures of dispersion 
like those we encountered in section 1.7.3. If the mean 

JANE SUPERBRAIN 2.3

The standard deviation and  
the shape of the distribution 1

Figure 2.6 Two distributions with the same mean, but large and small standard deviations
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From this we can work out that the error is 1 – 2.6, or -1.6. If we replace this value 
in the equation we get 1 = 2.6 – 1.6 or 1 = 1. Although it probably seems like I’m 
stating the obvious, it is worth bearing this general equation in mind throughout this 
book because if you do you’ll discover that most things ultimately boil down to this 
one simple idea!

Likewise, the variance and standard deviation illustrate another fundamental concept: 
how the goodness of fit of a model can be measured. If we’re looking at how well a 
model fits the data (in this case our model is the mean) then we generally look at devia-
tion from the model, we look at the sum of squared error, and in general terms we can 
write this as:

deviation=
X

ðobserved−modelÞ2
 (2.4)

Put another way, we assess models by comparing the data we observe to the model we’ve 
fitted to the data, and then square these differences. Again, you’ll come across this funda-
mental idea time and time again throughout this book.

2.5. Going beyond the data 1

Using the example of the mean, we have looked at how we can fit a statistical model to 
a set of observations to summarize those data. It’s one thing to summarize the data that 
you have actually collected but usually we want to go beyond our data and say something 
general about the world (remember in Chapter 1 that I talked about how good theories 
should say something about the world). It is one thing to be able to say that people in our 
sample responded well to medication, or that a sample of high-street stores in Brighton 
had increased profits leading up to Christmas, but it’s more useful to be able to say, based 
on our sample, that all people will respond to medication, or that all high-street stores in 
the UK will show increased profits. To begin to understand how we can make these general 
inferences from a sample of data we can first look not at whether our model is a good fit 
of the sample from which it came, but whether it is a good fit of the population from which 
the sample came. 

2.5.1.  The standard error 1

We’ve seen that the standard deviation tells us something about how well the mean  
represents the sample data, but I mentioned earlier on that usually we collect data from 
samples because we don’t have access to the entire population. If you take several samples 
from a population, then these samples will differ slightly; therefore, it’s also important 
to know how well a particular sample represents the population. This is where we use 
the standard error. Many students get confused about the difference between the stand-
ard deviation and the standard error (usually because the difference is never explained 
clearly). However, the standard error is an important concept to grasp, so I’ll do my best 
to explain it to you.

We have already learnt that social scientists use samples as a way of estimating the 
behaviour in a population. Imagine that we were interested in the ratings of all lecturers 
(so, lecturers in general were the population). We could take a sample from this popu-
lation. When someone takes a sample from a population, they are taking one of many 
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possible samples. If we were to take several samples from the same population, then each 
sample has its own mean, and some of these sample means will be different.

Figure 2.7 illustrates the process of taking samples from a population. Imagine that we 
could get ratings of all lecturers on the planet and that, on average, the rating is 3 (this 
is the population mean, µ). Of course, we can’t collect ratings of all lecturers, so we use 
a sample. For each of these samples we can calculate the average, or sample mean. Let’s 
imagine we took nine different samples (as in the diagram); you can see that some of the 
samples have the same mean as the population but some have different means: the first 
sample of lecturers were rated, on average, as 3, but the second sample were, on average, 

Figure 2.7
Illustration of the 
standard error 
(see text for 
details)
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rated as only 2. This illustrates sampling variation: that is, samples will vary because they 
contain different members of the population; a sample that by chance includes some very 
good lecturers will have a higher average than a sample that, by chance, includes some 
awful lecturers. We can actually plot the sample means as a frequency distribution, or 
histogram,4 just like I have done in the diagram. This distribution shows that there were 
three samples that had a mean of 3, means of 2 and 4 occurred in two samples each, and 
means of 1 and 5 occurred in only one sample each. The end result is a nice symmetri-
cal distribution known as a sampling distribution. A sampling distribution is simply the 
frequency distribution of sample means from the same population. In theory you need 
to imagine that we’re taking hundreds or thousands of samples to construct a sampling 
distribution, but I’m just using nine to keep the diagram simple.5 The sampling distribu-
tion tells us about the behaviour of samples from the population, and you’ll notice that it 
is centred at the same value as the mean of the population (i.e. 3). This means that if we 
took the average of all sample means we’d get the value of the population mean. Now, 
if the average of the sample means is the same value as the population mean, then if we 
know the accuracy of that average we’d know something about how likely it is that a 
given sample is representative of the population. So how do we determine the accuracy 
of the population mean?

Think back to the discussion of the standard deviation. We used the standard deviation 
as a measure of how representative the mean was of the observed data. Small standard 
deviations represented a scenario in which most data points were close to the mean, a 
large standard deviation represented a situation in which data points were widely spread 
from the mean. If you were to calculate the standard deviation between sample means 
then this too would give you a measure of how much variability there was between the 
means of different samples. The standard deviation of sample means is known as the 
standard error of the mean (SE). Therefore, the standard error could be calculated by 
taking the difference between each sample mean and the overall mean, squaring these 
differences, adding them up, and then dividing by the number of samples. Finally, the 
square root of this value would need to be taken to get the standard deviation of sample 
means, the standard error.

Of course, in reality we cannot collect hundreds of samples and so we rely on approxi-
mations of the standard error. Luckily for us some exceptionally clever statisticians have 
demonstrated that as samples get large (usually defined as greater than 30), the sampling 
distribution has a normal distribution with a mean equal to the population mean, and a 
standard deviation of:

σX = sffiffiffiffiffi
N

p  (2.5)

This is known as the central limit theorem and it is useful in this context because it means 
that if our sample is large we can use the above equation to approximate the standard error 
(because, remember, it is the standard deviation of the sampling distribution).6 When the 
sample is relatively small (fewer than 30) the sampling distribution has a different shape, 
known as a t-distribution, which we’ll come back to later.

4 This is just a graph of each sample mean plotted against the number of samples that has that mean – see section 
1.7.1 for more details.
5 It’s worth pointing out that I’m talking hypothetically. We don’t need to actually collect these samples because 
clever statisticians have worked out what these sampling distributions would look like and how they behave.
6 In fact it should be the population standard deviation (σ) that is divided by the square root of the sample size; 
however, for large samples this is a reasonable approximation.
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2.5.2.  Confidence intervals 2

2.5.2.1. Calculating confidence intervals 2

Remember that usually we’re interested in using the sample mean as an estimate of the 
value in the population. We’ve just seen that different samples will give rise to different val-
ues of the mean, and we can use the standard error to get some idea of the extent to which 
sample means differ. A different approach to assessing the accuracy of the sample mean 
as an estimate of the mean in the population is to calculate boundaries within which we 
believe the true value of the mean will fall. Such boundaries are called confidence intervals. 
The basic idea behind confidence intervals is to construct a range of values within which 
we think the population value falls.

Let’s imagine an example: Domjan, Blesbois, and Williams (1998) examined the learnt 
release of sperm in Japanese quail. The basic idea is that if a quail is allowed to copulate 
with a female quail in a certain context (an experimental chamber) then this context will 
serve as a cue to copulation and this in turn will affect semen release (although during the 
test phase the poor quail were tricked into copulating with a terry cloth with an embalmed 
female quail head stuck on top)7. Anyway, if we look at the mean amount of sperm released 
in the experimental chamber, there is a true mean (the mean in the population); let’s ima-
gine it’s 15 million sperm. Now, in our actual sample, we might find the mean amount of 
sperm released was 17 million. Because we don’t know the true mean, we don’t really know 
whether our sample value of 17 million is a good or bad estimate of this value. What we can 
do instead is use an interval estimate: we use our sample value as the mid-point, but set a 
lower and upper limit as well. So, we might say, we think the true value of the mean sperm 
release is somewhere between 12 million and 22 million spermatozoa (note that  
17 million falls exactly between these values). Of course, in this case the true 
value (15 million) does fall within these limits. However, what if we’d set 
smaller limits, what if we’d said we think the true value falls between 16 and 18 
million (again, note that 17 million is in the middle)? In this case the interval 
does not contain the true value of the mean. Let’s now imagine that you were 
particularly fixated with Japanese quail sperm, and you repeated the experi-
ment 50 times using different samples. Each time you did the experiment again 
you constructed an interval around the sample mean as I’ve just described. 
Figure 2.8 shows this scenario: the circles represent the mean for each sample  
with the lines sticking out from them representing the intervals for these means. 
The true value of the mean (the mean in the population) is 15 million and is shown by a 
vertical line. The first thing to note is that most of the sample means are different from 

7 This may seem a bit sick, but the male quails didn’t appear to mind too much, which probably tells us all we 
need to know about male mating behaviour.

             CRAMMING SAM’S TIPS    The standard error

 The standard error is the standard deviation of sample means. As such, it is a measure of how representative 
a sample is likely to be of the population. A large standard error (relative to the sample mean) means that there is a lot of vari-
ability between the means of different samples and so the sample we have might not be representative of the population. A small 
standard error indicates that most sample means are similar to the population mean and so our sample is likely to be an accurate 
reflection of the population.

What is a confidence
interval?
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the true mean (this is because of sampling variation as described in the previous section). 
Second, although most of the intervals do contain the true mean (they cross the vertical 
line, meaning that the value of 15 million spermatozoa falls somewhere between the lower 
and upper boundaries), a few do not.

Up until now I’ve avoided the issue of how we might calculate the intervals. The crucial 
thing with confidence intervals is to construct them in such a way that they tell us something 
useful. Therefore, we calculate them so that they have certain properties: in particular they 
tell us the likelihood that they contain the true value of the thing we’re trying to estimate (in 
this case, the mean).

Typically we look at 95% confidence intervals, and sometimes 99% confidence inter-
vals, but they all have a similar interpretation: they are limits constructed such that for 

Figure 2.8
The confidence 
intervals of the 
sperm counts  
of Japanese  
quail (horizontal 
axis) for  
50 different 
samples  
(vertical axis)
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a certain percentage of the time (be that 95% or 99%) the true value of the population 
mean will fall within these limits. So, when you see a 95% confidence interval for a 
mean, think of it like this: if we’d collected 100 samples, calculated the mean and then 
calculated a confidence interval for that mean (a bit like in Figure 2.8) then for 95 of 
these samples, the confidence intervals we constructed would contain the true value of 
the mean in the population.

To calculate the confidence interval, we need to know the limits within which 95% of 
means will fall. How do we calculate these limits? Remember back in section 1.7.4 that I 
said that 1.96 was an important value of z (a score from a normal distribution with a mean 
of 0 and standard deviation of 1) because 95% of z-scores fall between –1.96 and 1.96. 
This means that if our sample means were normally distributed with a mean of 0 and a 
standard error of 1, then the limits of our confidence interval would be –1.96 and +1.96. 
Luckily we know from the central limit theorem that in large samples (above about 30) the 
sampling distribution will be normally distributed (see section 2.5.1). It’s a pity then that 
our mean and standard deviation are unlikely to be 0 and 1; except not really because, as 
you might remember, we can convert scores so that they do have a mean of 0 and standard 
deviation of 1 (z-scores) using equation (1.2):

z= X−X

s

If we know that our limits are –1.96 and 1.96 in z -scores, then to find out the correspond-
ing scores in our raw data we can replace z in the equation (because there are two values, 
we get two equations):

1:96= X−X

s
−1:96= X−X

s

We rearrange these equations to discover the value of X:

1:96× s=X−X −1:96× s=X−X

ð1:96× sÞ+X=X ð−1:96× sÞ+X=X

Therefore, the confidence interval can easily be calculated once the standard deviation (s in 
the equation above) and mean (X- in the equation) are known. However, in fact we use the 
standard error and not the standard deviation because we’re interested in the variability of 
sample means, not the variability in observations within the sample. The lower boundary 
of the confidence interval is, therefore, the mean minus 1.96 times the standard error, and 
the upper boundary is the mean plus 1.96 standard errors.

lower boundary of confidence interval=X− ð1:96× SEÞ

upper boundary of confidence interval=X+ ð1:96× SEÞ

As such, the mean is always in the centre of the confidence interval. If the mean rep-
resents the true mean well, then the confidence interval of that mean should be small. 
We know that 95% of confidence intervals contain the true mean, so we can assume this 
confidence interval contains the true mean; therefore, if the interval is small, the sample 
mean must be very close to the true mean. Conversely, if the confidence interval is very 
wide then the sample mean could be very different from the true mean, indicating that it 
is a bad representation of the population You’ll find that confidence intervals will come up 
time and time again throughout this book.
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2.5.2.2. Calculating other confidence intervals 2

The example above shows how to compute a 95% confidence interval (the most common 
type). However, we sometimes want to calculate other types of confidence interval such as 
a 99% or 90% interval. The 1.96 and -1.96 in the equations above are the limits within 
which 95% of z -scores occur. Therefore, if we wanted a 99% confidence interval we could 
use the values within which 99% of z-scores occur (-2.58 and 2.58). In general then, we 
could say that confidence intervals are calculated as:

lower boundary of confidence interval=X− z1− p
2

× SE

 

upper boundary of confidence interval=X+ z1− p
2

× SE

 

in which p is the probability value for the confidence interval. So, if you want a 95% 
confidence interval, then you want the value of z for (1 - 0.95)/2 = 0.025. Look this up 
in the ‘smaller portion’ column of the table of the standard normal distribution (see the 
Appendix) and you’ll find that z is 1.96. For a 99% confidence interval we want z for (1 – 
0.99)/2 = 0.005, which from the table is 2.58. For a 90% confidence interval we want z for 
(1 – 0.90)/2 = 0.05, which from the table is 1.65. These values of z are multiplied by the 
standard error (as above) to calculate the confidence interval. Using these general principles 
we could work out a confidence interval for any level of probability that takes our fancy. 

2.5.2.3. Calculating confidence intervals in small samples 2

The procedure that I have just described is fine when samples are large, but for small 
samples, as I have mentioned before, the sampling distribution is not normal, it has a 
t-distribution. The t-distribution is a family of probability distributions that change shape 
as the sample size gets bigger (when the sample is very big, it has the shape of a normal dis-
tribution). To construct a confidence interval in a small sample we use the same principle 
as before but instead of using the value for z we use the value for t:

lower boundary of confidence interval=X− ðtn− 1 × SEÞ

upper boundary of confidence interval=X+ ðtn− 1 × SEÞ

The n – 1 in the equations is the degrees of freedom (see Jane Superbrain Box 2.3) and tells 
us which of the t-distributions to use. For a 95% confidence interval we find the value of t 
for a two-tailed test with probability of .05, for the appropriate degrees of freedom.

SELF-TEST  In section 1.7.2.2 we came across some 
data about the number of friends that 11 people had on 
Facebook. We calculated the mean for these data as 
96.64 and standard deviation as 61.27. Calculate a  
95% confidence interval for this mean.

SELF-TEST  Recalculate the confidence interval 
assuming that the sample size was 56
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2.5.2.4. Showing confidence intervals visually 2

Confidence intervals provide us with very important information about the mean, and, therefore, 
you often see them displayed on graphs. (We will discover more about how to create these graphs 
in Chapter 4.) The confidence interval is usually displayed using something called an 
error bar, which just looks like the letter ‘I’. An error bar can represent the standard 
deviation, or the standard error, but more often than not it shows the 95% confidence 
interval of the mean. So, often when you see a graph showing the mean, perhaps dis-
played as a bar (section 4.6) or a symbol (section 4.7), it is often accompanied by this 
funny I-shaped bar. Why is it useful to see the confidence interval visually?

We have seen that the 95% confidence interval is an interval constructed such that 
in 95% of samples the true value of the population mean will fall within its limits. We 
know that it is possible that any two samples could have slightly different means (and 
the standard error tells us a little about how different we can expect sample means 
to be). Now, the confidence interval tells us the limits within which the population 
mean is likely to fall (the size of the confidence interval will depend on the size of the standard 
error). By comparing the confidence intervals of different means we can start to get some idea 
about whether the means came from the same population or different populations.

Taking our previous example of quail sperm, imagine we had a sample of quail and 
the mean sperm release had been 9 million sperm with a confidence interval of 2 to 16. 
Therefore, we know that the population mean is probably between 2 and 16 million sperm. 
What if we now took a second sample of quail and found the confidence interval ranged 
from 4 to 15? This interval overlaps a lot with our first sample:

The fact that the confidence intervals overlap in this way tells us that these means could 
plausibly come from the same population: in both cases the intervals are likely to contain 
the true value of the mean (because they are constructed such that in 95% of studies they 
will), and both intervals overlap considerably, so they contain many similar values. What if 
the confidence interval for our second sample ranges from 18 to 28? If we compared this 
to our first sample we’d get:

Now, these confidence intervals don’t overlap at all. So, one confidence interval, which 
is likely to contain the population mean, tells us that the population mean is somewhere 

What’s an error bar?What’s an error bar?
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between 2 and 16 million, whereas the other confidence interval, which is also likely to 
contain the population mean, tells us that the population mean is somewhere between 18 
and 28. This suggests that either our confidence intervals both do contain the population 
mean, but they come from different populations (and, therefore, so do our samples), or  
both samples come from the same population but one of the confidence intervals doesn’t 
contain the population mean. If we’ve used 95% confidence intervals then we know that 
the second possibility is unlikely (this happens only 5 times in 100 or 5% of the time), so 
the first explanation is more plausible.

OK, I can hear you all thinking ‘so what if the samples come from a different popula-
tion?’ Well, it has a very important implication in experimental research. When we do an 
experiment, we introduce some form of manipulation between two or more conditions 
(see section 1.6.2). If we have taken two random samples of people, and we have tested 
them on some measure (e.g. fear of statistics textbooks), then we expect these people to 
belong to the same population. If their sample means are so different as to suggest that, 
in fact, they come from different populations, why might this be? The answer is that our 
experimental manipulation has induced a difference between the samples.

To reiterate, when an experimental manipulation is successful, we expect to find that our 
samples have come from different populations. If the manipulation is unsuccessful, then we 
expect to find that the samples came from the same population (e.g. the sample means should 
be fairly similar). Now, the 95% confidence interval tells us something about the likely value of 
the population mean. If we take samples from two populations, then we expect the confidence 
intervals to be different (in fact, to be sure that the samples were from different populations we 
would not expect the two confidence intervals to overlap). If we take two samples from the same 
population, then we expect, if our measure is reliable, the confidence intervals to be very similar 
(i.e. they should overlap completely with each other).

This is why error bars showing 95% confidence intervals are so useful on graphs, because 
if the bars of any two means do not overlap then we can infer that these means are from 
different populations – they are significantly different. 

             CRAMMING SAM’S TIPS    Confidence intervals

 A confidence interval for the mean is a range of scores constructed such that the population mean will fall within 
this range in 95% of samples. 

The confidence interval is not an interval within which we are 95% confident that the population mean will fall.

2.6. Using statistical models to test research 
questions 1

In Chapter 1 we saw that research was a five-stage process:

Generate a research question through an initial observation (hopefully backed up by 1 
some data).

Generate a theory to explain your initial observation.2 

Generate hypotheses: break your theory down into a set of testable predictions.3 
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Collect data to test the theory: decide on what variables you need to measure to test 4 
your predictions and how best to measure or manipulate those variables.

Analyse the data: fit a statistical model to the data – this model will test your ori-5 
ginal predictions. Assess this model to see whether or not it supports your initial 
predictions.

This chapter has shown us that we can use a sample of data to estimate what’s hap-
pening in a larger population to which we don’t have access. We have also seen (using 
the mean as an example) that we can fit a statistical model to a sample of data and 
assess how well it fits. However, we have yet to see how fitting models like these can 
help us to test our research predictions. How do statistical models help us to test com-
plex hypotheses such as ‘is there a relationship between the amount of gibberish that 
people speak and the amount of vodka jelly they’ve eaten?’, or ‘is the mean amount 
of chocolate I eat higher when I’m writing statistics books than when I’m not?’ We’ve 
seen in section 1.7.5 that hypotheses can be broken down into a null hypothesis and 
an alternative hypothesis.

SELF-TEST  What are the null and alternative 
hypotheses for the following questions:

ü ‘Is there a relationship between the amount of 
gibberish that people speak and the amount of 
vodka jelly they’ve eaten?’

ü ‘Is the mean amount of chocolate eaten higher 
when writing statistics books than when not?’

Most of this book deals with inferential statistics, which tell us whether the alternative 
hypothesis is likely to be true – they help us to confirm or reject our predictions. Crudely 
put, we fit a statistical model to our data that represents the alternative hypothesis and see 
how well it fits (in terms of the variance it explains). If it fits the data well (i.e. explains 
a lot of the variation in scores) then we assume our initial prediction is true: we gain 
confidence in the alternative hypothesis. Of course, we can never be completely sure that 
either hypothesis is correct, and so we calculate the probability that our model would fit if 
there were no effect in the population (i.e. the null hypothesis is true). As this probability 
decreases, we gain greater confidence that the alternative hypothesis is actually correct and 
that the null hypothesis can be rejected. This works provided we make our predictions 
before we collect the data (see Jane Superbrain Box 2.4).

To illustrate this idea of whether a hypothesis is likely, Fisher (1925/1991) (Figure 2.9) 
describes an experiment designed to test a claim by a woman that she could determine, by 
tasting a cup of tea, whether the milk or the tea was added first to the cup. Fisher thought 
that he should give the woman some cups of tea, some of which had the milk added first 
and some of which had the milk added last, and see whether she could correctly identify 
them. The woman would know that there are an equal number of cups in which milk was 
added first or last but wouldn’t know in which order the cups were placed. If we take the 
simplest situation in which there are only two cups then the woman has 50% chance of 
guessing correctly. If she did guess correctly we wouldn’t be that confident in concluding 
that she can tell the difference between cups in which the milk was added first from those 
in which it was added last, because even by guessing she would be correct half of the time. 
However, what about if we complicated things by having six cups? There are 20 orders 
in which these cups can be arranged and the woman would guess the correct order only 
1 time in 20 (or 5% of the time). If she got the correct order we would be much more 
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before the tournament, but I can’t then change my mind 
halfway through, or after the final game!

The situation in research is similar: we can choose any 
hypothesis (rugby team) we like before the data are col-
lected, but we can’t change our minds halfway through 
data collection (or after data collection). Likewise we 
have to decide on our probability level (or betting odds) 
before we collect data. If we do this, the process works. 
However, researchers sometimes cheat. They don’t write 
down their hypotheses before they conduct their experi-
ments, sometimes they change them when the data are 
collected (like me changing my team after the World Cup 
is over), or worse still decide on them after the data are 
collected! With the exception of some complicated pro-
cedures called post hoc tests, this is cheating. Similarly, 
researchers can be guilty of choosing which significance 
level to use after the data are collected and analysed, like 
a betting shop changing the odds after the tournament.

Every time that you change your hypothesis or the 
details of your analysis you appear to increase the chance 
of finding a significant result, but in fact you are making 
it more and more likely that you will publish results that 
other researchers can’t reproduce (which is very embar-
rassing!). If, however, you follow the rules carefully and 
do your significance testing at the 5% level you at least 
know that in the long run at most only 1 result out of every 
20 will risk this public humiliation.

(With thanks to David Hitchin for this box, and with 
apologies to him for turning it into a rugby example.)

The process I describe in this chapter works only if you 
generate your hypotheses and decide on your criteria for 
whether an effect is significant before collecting the data. 
Imagine I wanted to place a bet on who would win the 
Rugby World Cup. Being an Englishman, I might want 
to bet on England to win the tournament. To do this I’d: 
(1) place my bet, choosing my team (England) and odds 
available at the betting shop (e.g. 6/4); (2) see which team 
wins the tournament; (3) collect my winnings (if England 
do the decent thing and actually win).

To keep everyone happy, this process needs to be 
equitable: the betting shops set their odds such that 
they’re not paying out too much money (which keeps 
them happy), but so that they do pay out sometimes 
(to keep the customers happy). The betting shop can 
offer any odds before the tournament has ended, but it 
can’t change them once the tournament is over (or the 
last game has started). Similarly, I can choose any team 

JANE SUPERBRAIN 2.4

Cheating in research 1

confident that she could genuinely tell the difference (and bow down in awe of her finely 
tuned palette). If you’d like to know more about Fisher and his tea-tasting antics see David 
Salsburg’s excellent book The lady tasting tea (Salsburg, 2002). For our purposes the take-
home point is that only when there was a very small probability that the woman could 
complete the tea-task by luck alone would we conclude that she had genuine skill in detect-
ing whether milk was poured into a cup before or after the tea.

It’s no coincidence that I chose the example of six cups above (where the tea-taster had 
a 5% chance of getting the task right by guessing), because Fisher suggested that 95% is 
a useful threshold for confidence: only when we are 95% certain that a result is genuine 
(i.e. not a chance finding) should we accept it as being true.8 The opposite way to look at 
this is to say that if there is only a 5% chance (a probability of .05) of something occur-
ring by chance then we can accept that it is a genuine effect: we say it is a statistically sig-
nificant finding (see Jane Superbrain Box 2.5 to find out how the criterion of .05 became 
popular!).

8 Of course, in reality, it might not be true – we’re just prepared to believe that it is.
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Figure 2.9
Sir Ronald A. 
Fisher, probably 
the cleverest 
person ever  
(p < .0001) 

textbook Statistical methods for research workers (Fisher, 
1925)9 Fisher produced tables of these critical values, but 
to save space produced tables for particular probability 
values (.05, .02 and .01). The impact of this book should 
not be underestimated (to get some idea of its influence  
25 years after publication see Mather, 1951; Yates, 1951) 
and these tables were very frequently used – even Neyman 
and Pearson admitted the influence that these tables had 
on them (Lehmann, 1993). This disastrous combination 
of researchers confused about the Fisher and Neyman–
Pearson approaches and the availability of critical values 
for only certain levels of probability led to a trend to report 
test statistics as being significant at the now infamous  
p < .05 and p < .01 (because critical values were readily 
available at these probabilities).

However, Fisher acknowledged that the dogmatic 
use of a fixed level of significance was silly: ‘no scientific 
worker has a fixed level of significance at which from year 
to year, and in all circumstances, he rejects hypotheses; 
he rather gives his mind to each particular case in the 
light of his evidence and his ideas’ (Fisher, 1956).

The use of effect sizes (section 2.6.4) strikes a balance 
between using arbitrary cut-off points such as p < .05 
and assessing whether an effect is meaningful within the 
research context. The fact that we still worship at the shrine 
of p < .05 and that research papers are more likely to be 
published if they contain significant results does make 
me wonder about a parallel universe where Fisher had 
woken up in a p < .10 kind of mood. My filing cabinet full 
of research with p just bigger than .05 are published and I 
am Vice-Chancellor of my university (although, if this were 
true, the parallel universe version of my university would be 
in utter chaos, but it would have a campus full of cats).

This criterion of 95% confidence, or a .05 probability, forms 
the basis of modern statistics and yet there is very little 
justification for it. How it arose is a complicated mystery 
to unravel. The significance testing that we use today is a 
blend of Fisher’s idea of using the probability value p as an 
index of the weight of evidence against a null hypothesis, 
and Jerzy Neyman and Egron Pearson’s idea of testing 
a null hypothesis against an alternative hypothesis. Fisher 
objected to Neyman’s use of an alternative hypothesis 
(among other things), and Neyman objected to Fisher’s 
exact probability approach (Berger, 2003; Lehmann, 
1993). The confusion arising from both parties’ hostility to 
each other’s ideas led scientists to create a sort of bastard 
child of both approaches.

This doesn’t answer the question of why we use .05. 
Well, it probably comes down to the fact that back in the 
days before computers, scientists had to compare their 
test statistics against published tables of ‘critical values’ 
(they did not have SPSS to calculate exact probabilities for 
them). These critical values had to be calculated by excep-
tionally clever people like Fisher. In his incredibly influential 

JANE SUPERBRAIN 2.5

Why do we use .05? 1

9 You can read this online at http://psychclassics.yorku.ca/Fisher/Methods/.
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2.6.1.  Test statistics 1

We have seen that we can fit statistical models to data that represent the hypotheses that 
we want to test. Also, we have discovered that we can use probability to see whether scores 
are likely to have happened by chance (section 1.7.4). If we combine these two ideas then 
we can test whether our statistical models (and therefore our hypotheses) are significant 
fits of the data we collected. To do this we need to return to the concepts of systematic 
and unsystematic variation that we encountered in section 1.6.2.2. Systematic variation is 
variation that can be explained by the model that we’ve fitted to the data (and, therefore, 
due to the hypothesis that we’re testing). Unsystematic variation is variation that cannot 
be explained by the model that we’ve fitted. In other words, it is error, or variation not 
attributable to the effect we’re investigating. The simplest way, therefore, to test whether 
the model fits the data, or whether our hypothesis is a good explanation of the data we 
have observed, is to compare the systematic variation against the unsystematic variation. 
In doing so we compare how good the model/hypothesis is at explaining the data against 
how bad it is (the error):

test statistic= variance explained by the model

variance not explained by the model
= effect

error

This ratio of systematic to unsystematic variance or effect to error is a test statistic, and 
you’ll discover later in the book there are lots of them: t, F and χ2 to name only three. The 
exact form of this equation changes depending on which test statistic you’re calculating, 
but the important thing to remember is that they all, crudely speaking, represent the same 
thing: the amount of variance explained by the model we’ve fitted to the data compared to 
the variance that can’t be explained by the model (see Chapters 7 and 9 in particular for a 
more detailed explanation). The reason why this ratio is so useful is intuitive really: if our 
model is good then we’d expect it to be able to explain more variance than it can’t explain. 
In this case, the test statistic will be greater than 1 (but not necessarily significant).

A test statistic is a statistic that has known properties; specifically we know how fre-
quently different values of this statistic occur. By knowing this, we can calculate the prob-
ability of obtaining a particular value (just as we could estimate the probability of getting 
a score of a certain size from a frequency distribution in section 1.7.4). This allows us to 
establish how likely it would be that we would get a test statistic of a certain size if there 
were no effect (i.e. the null hypothesis were true). Field and Hole (2003) use the ana logy 
of the age at which people die. Past data have told us the distribution of the age of death. 
For example, we know that on average men die at about 75 years old, and that this dis-
tribution is top heavy; that is, most people die above the age of about 50 and it’s fairly 
unusual to die in your twenties. So, the frequencies of the age of demise at older ages are 
very high but are lower at younger ages. From these data, it would be possible to calculate 
the probability of someone dying at a certain age. If we randomly picked someone and 
asked them their age, and it was 53, we could tell them how likely it is that they will die 
before their next birthday (at which point they’d probably punch us). Also, if we met a 
man of 110, we could calculate how probable it was that he would have lived that long 
(it would be a very small probability because most people die before they reach that age). 
The way we use test statistics is rather similar: we know their distributions and this allows 
us, once we’ve calculated the test statistic, to discover the probability of having found a 
value as big as we have. So, if we calculated a test statistic and its value was 110 (rather 
like our old man) we can then calculate the probability of obtaining a value that large. 
The more variation our model explains (compared to the variance it can’t explain), the 
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is that there is no effect in the population. All that a 
non-significant result tells us is that the effect is not 
big enough to be anything other than a chance find-
ing – it doesn’t tell us that the effect is zero. As Cohen 
(1990) points out, a non-significant result should 
never be interpreted (despite the fact that it often is) 
as ‘no difference between means’ or ‘no relationship 
between variables’. Cohen also points out that the 
null hypothesis is never true because we know from 
sampling distributions (see section 2.5.1) that two 
random samples will have slightly different means, 
and even though these differences can be very small 
(e.g. one mean might be 10 and another might be 
10.00001) they are nevertheless different. In fact, 
even such a small difference would be deemed as 
statistically significant if a big enough sample were 
used. So, significance testing can never tell us that 
the null hypothesis is true, because it never is.

 Significant results: OK, we may not be able to accept 
the null hypothesis as being true, but we can at least con-
clude that it is false when our results are significant, right? 
Wrong! A significant test statistic is based on probabilistic 
reasoning, which severely limits what we can conclude. 
Again, Cohen (1994), who was an incredibly lucid writer 
on statistics, points out that formal reasoning relies on an 
initial statement of fact followed by a statement about the 
current state of affairs, and an inferred conclusion. This 
syllogism illustrates what I mean:

¡ If a man has no arms then he can’t play guitar:
¡ This man plays guitar.
¡ Therefore, this man has arms.

The syllogism starts with a statement of fact that 
allows the end conclusion to be reached because you 
can deny the man has no arms (the antecedent) by 

 The importance of an effect: We’ve seen already 
that the basic idea behind hypothesis testing involves 
us generating an experimental hypothesis and a null 
hypothesis, fitting a statistical model to the data, and 
assessing that model with a test statistic. If the prob-
ability of obtaining the value of our test statistic by 
chance is less than .05 then we generally accept the 
experimental hypothesis as true: there is an effect in 
the population. Normally we say ‘there is a significant 
effect of …’. However, don’t be fooled by that word 
‘significant’, because even if the probability of our 
effect being a chance result is small (less than .05) it 
doesn’t necessarily follow that the effect is important. 
Very small and unimportant effects can turn out to be 
statistically significant just because huge numbers of 
people have been used in the experiment (see Field & 
Hole, 2003: 74).

 Non-significant results: Once you’ve calculated 
your test statistic, you calculate the probability of 
that test statistic occurring by chance; if this prob-
ability is greater than .05 you reject your alternative 
hypothesis. However, this does not mean that the null 
hypothesis is true. Remember that the null hypothesis 

JANE SUPERBRAIN 2.6

What we can and can’t conclude  
from a significant test statistic 2

bigger the test statistic will be, and the more unlikely it is to occur by chance (like our 110 
year old man). So, as test statistics get bigger, the probability of them occurring becomes 
smaller. When this probability falls below .05 (Fisher’s criterion), we accept this as giving 
us enough confidence to assume that the test statistic is as large as it is because our model 
explains a sufficient amount of variation to reflect what’s genuinely happening in the 
real world (the population). The test statistic is said to be significant (see Jane Superbrain 
Box 2.6 for a discussion of what statistically significant actually means). Given that the 
statistical model that we fit to the data reflects the hypothesis that we set out to test, then 
a significant test statistic tells us that the model would be unlikely to fit this well if the 
there was no effect in the population (i.e. the null hypothesis was true). Therefore, we can 
reject our null hypothesis and gain confidence that the alternative hypothesis is true (but, 
remember, we don’t accept it – see section 1.7.5).
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2.6.2.  One- and two-tailed tests 1

We saw in section 1.7.5 that hypotheses can be directional (e.g. ‘the more someone reads 
this book, the more they want to kill its author’) or non-directional (i.e. ‘reading more 
of this book could increase or decrease the reader’s desire to kill its author’). A statistical 
model that tests a directional hypothesis is called a one-tailed test, whereas one testing a 
non-directional hypothesis is known as a two-tailed test. 

Imagine we wanted to discover whether reading this book increased or decreased the desire 
to kill me. We could do this either (experimentally) by taking two groups, one who had read this 
book and one who hadn’t, or (correlationally) by measuring the amount of this book that had 

been read and the corresponding desire to kill me. If we have no directional hypothesis 
then there are three possibilities. (1) People who read this book want to kill me more 
than those who don’t so the difference (the mean for those reading the book minus the 
mean for non-readers) is positive. Correlationally, the more of the book you read, the 
more you want to kill me – a positive relationship. (2) People who read this book want 
to kill me less than those who don’t so the difference (the mean for those reading the 
book minus the mean for non-readers) is negative. Correlationally, the more of the book 
you read, the less you want to kill me – a negative relationship. (3) There is no differ-
ence between readers and non-readers in their desire to kill me – the mean for readers 
minus the mean for non-readers is exactly zero. Correlationally, there is no relationship 
between reading this book and wanting to kill me. This final option is the null hypoth-
esis. The direction of the test statistic (i.e. whether it is positive or negative) depends on 
whether the difference is positive or negative. Assuming there is a positive difference or 
relationship (reading this book makes you want to kill me), then to detect this difference 

we have to take account of the fact that the mean for readers is bigger than for non-readers (and 
so derive a positive test statistic). However, if we’ve predicted incorrectly and actually reading 
this book makes readers want to kill me less then the test statistic will actually be negative.

denying that he can’t play guitar (the consequent).10  
A comparable version of the null hypothesis is:

¡ If the null hypothesis is correct, then this test statis-
tic cannot occur:

¡ This test statistic has occurred.
¡ Therefore, the null hypothesis is false.

This is all very nice except that the null hypothesis is 
not represented in this way because it is based on 
probabilities. Instead it should be stated as follows:

¡ If the null hypothesis is correct, then this test statis-
tic is highly unlikely:

¡ This test statistic has occurred.
¡ Therefore, the null hypothesis is highly unlikely.

If we go back to the guitar example we could get a 
similar statement: 

¡ If a man plays guitar then he probably doesn’t play 
for Fugazi (this is true because there are thousands 
of people who play guitar but only two who play 
guitar in the band Fugazi):

¡ Guy Picciotto plays for Fugazi:
¡ Therefore, Guy Picciotto probably doesn’t play 

guitar.

This should hopefully seem completely ridiculous – the 
conclusion is wrong because Guy Picciotto does play 
guitar. This illustrates a common fallacy in hypothesis 
testing. In fact significance testing allows us to say 
very little about the null hypothesis.

10 Thanks to Philipp Sury for unearthing footage that disproves my point (http://www.parcival.org/2007/05/22/when- 
syllogisms-fail/).

Why do you need
two tails?
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What are the consequences of this? Well, if at the .05 level we needed to get a test statistic 
bigger than say 10 and the one we get is actually –12, then we would reject the hypothesis 
even though a difference does exist. To avoid this we can look at both ends (or tails) of the 
distribution of possible test statistics. This means we will catch both positive and negative 
test statistics. However, doing this has a price because to keep our criterion probability of 
.05 we have to split this probability across the two tails: so we have .025 at the positive end 
of the distribution and .025 at the negative end. Figure 2.10 shows this situation – the tinted 
areas are the areas above the test statistic needed at a .025 level of significance. Combine the 
probabilities (i.e. add the two tinted areas together) at both ends and we get .05, our criterion 
value. Now if we have made a prediction, then we put all our eggs in one basket and look only 
at one end of the distribution (either the positive or the negative end depending on the direc-
tion of the prediction we make). So, in Figure 2.10, rather than having two small tinted areas 
at either end of the distribution that show the significant values, we have a bigger area (the 
lined area) at only one end of the distribution that shows significant values. Consequently, we 
can just look for the value of the test statistic that would occur by chance with a probability 
of .05. In Figure 2.10, the lined area is the area above the positive test statistic needed at a 
.05 level of significance. Note on the graph that the value that begins the area for the .05 level 
of significance (the lined area) is smaller than the value that begins the area for the .025 level 
of significance (the tinted area). This means that if we make a specific prediction then we 
need a smaller test statistic to find a significant result (because we are looking in only one tail 
of the distribution), but if our prediction happens to be in the wrong direction then we’ll miss 
out on detecting the effect that does exist. In this context it’s important to remember what I 
said in Jane Superbrain Box 2.4: you can’t place a bet or change your bet when the tourna-
ment is over. If you didn’t make a prediction of direction before you collected the data, you 
are too late to predict the direction and claim the advantages of a one-tailed test.

2.6.3.  Type I and Type II errors 1

We have seen that we use test statistics to tell us about the true state of the world (to a 
certain degree of confidence). Specifically, we’re trying to see whether there is an effect in 

Figure 2.10
Diagram to show 
the difference 
between one- 
and two-tailed 
tests
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our population. There are two possibilities in the real world: there is, in reality, an effect 
in the population, or there is, in reality, no effect in the population. We have no way of 
knowing which of these possibilities is true; however, we can look at test statistics and their 
associated probability to tell us which of the two is more likely. Obviously, it is important 
that we’re as accurate as possible, which is why Fisher originally said that we should be 
very conservative and only believe that a result is genuine when we are 95% confident 
that it is – or when there is only a 5% chance that the results could occur if there was not 
an effect (the null hypothesis is true). However, even if we’re 95% confident there is still 
a small chance that we get it wrong. In fact there are two mistakes we can make: a Type I 
and a Type II error. A Type I error occurs when we believe that there is a genuine effect in 
our population, when in fact there isn’t. If we use Fisher’s criterion then the probability of 
this error is .05 (or 5%) when there is no effect in the population – this value is known as 
the α-level. Assuming there is no effect in our population, if we replicated our data collec-
tion 100 times we could expect that on five occasions we would obtain a test statistic large 
enough to make us think that there was a genuine effect in the population even though 
there isn’t. The opposite is a Type II error, which occurs when we believe that there is no 
effect in the population when, in reality, there is. This would occur when we obtain a small 
test statistic (perhaps because there is a lot of natural variation between our samples). In 
an ideal world, we want the probability of this error to be very small (if there is an effect 
in the population then it’s important that we can detect it). Cohen (1992) suggests that the 
maximum acceptable probability of a Type II error would be .2 (or 20%) – this is called the 
β-level. That would mean that if we took 100 samples of data from a population in which 
an effect exists, we would fail to detect that effect in 20 of those samples (so we’d miss 1 
in 5 genuine effects).

There is obviously a trade-off between these two errors: if we lower the probability of 
accepting an effect as genuine (i.e. make α smaller) then we increase the probability that 
we’ll reject an effect that does genuinely exist (because we’ve been so strict about the level 
at which we’ll accept that an effect is genuine). The exact relationship between the Type I 
and Type II error is not straightforward because they are based on different assumptions: 
to make a Type I error there has to be no effect in the population, whereas to make a Type 
II error the opposite is true (there has to be an effect that we’ve missed). So, although we 
know that as the probability of making a Type I error decreases, the probability of mak-
ing a Type II error increases, the exact nature of the relationship is usually left for the 
researcher to make an educated guess (Howell, 2006, gives a great explanation of the 
trade-off between errors).

2.6.4.  Effect sizes 2

The framework for testing whether effects are genuine that I’ve just presented has a few 
problems, most of which have been briefly explained in Jane Superbrain Box 2.6. The 
first problem we encountered was knowing how important an effect is: just because a test 
statistic is significant doesn’t mean that the effect it measures is meaningful or important. 
The solution to this criticism is to measure the size of the effect that we’re testing in a 
standardized way. When we measure the size of an effect (be that an experimental manip-
ulation or the strength of a relationship between variables) it is known as an effect size. 
An effect size is simply an objective and (usually) standardized measure of the magnitude 
of observed effect. The fact that the measure is standardized just means that we can com-
pare effect sizes across different studies that have measured different variables, or have 
used different scales of measurement (so an effect size based on speed in milliseconds 
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could be compared to an effect size based on heart rates). Such is the utility of effect 
size estimates that the American Psychological Association is now recommending that all 
psychologists report these effect sizes in the results of any published work. So, it’s a habit 
well worth getting into.

Many measures of effect size have been proposed, the most common of 
which are Cohen’s d, Pearson’s correlation coefficient r (Chapter 6) and the 
odds ratio (Chapter 18). Many of you will be familiar with the correlation 
coefficient as a measure of the strength of relationship between two variables 
(see Chapter 6 if you’re not); however, it is also a very versatile measure of 
the strength of an experimental effect. It’s a bit difficult to reconcile how the 
humble correlation coefficient can also be used in this way; however, this is 
only because students are typically taught about it within the context of non-
experimental research. I don’t want to get into it now, but as you read through 
Chapters 6, 9 and 10 it will (I hope) become clear what I mean. Personally,  
I prefer Pearson’s correlation coefficient, r, as an effect size measure because it 
is constrained to lie between 0 (no effect) and 1 (a perfect effect).11 However, 
there are situations in which d may be favoured; for example, when group 
sizes are very discrepant r can be quite biased compared to d (McGrath & 
Meyer, 2006).

Effect sizes are useful because they provide an objective measure of the importance of 
an effect. So, it doesn’t matter what effect you’re looking for, what variables have been 
measured, or how those variables have been measured – we know that a correlation coef-
ficient of 0 means there is no effect, and a value of 1 means that there is a perfect effect. 
Cohen (1988, 1992) has also made some widely used suggestions about what constitutes a 
large or small effect:

r M = .10 (small effect): In this case the effect explains 1% of the total variance.

r M = .30 (medium effect): The effect accounts for 9% of the total variance.

r M = .50 (large effect): The effect accounts for 25% of the variance.

It’s worth bearing in mind that r is not measured on a linear scale so an effect with r = .6 
isn’t twice as big as one with r = .3. Although these guidelines can be a useful rule of thumb 
to assess the importance of an effect (regardless of the significance of the test statistic), it 
is worth remembering that these ‘canned’ effect sizes are no substitute for evaluating an 
effect size within the context of the research domain that it is being used (Baguley, 2004; 
Lenth, 2001).

A final thing to mention is that when we calculate effect sizes we calculate them for a 
given sample. When we looked at means in a sample we saw that we used them to draw 
inferences about the mean of the entire population (which is the value in which we’re 
actually interested). The same is true of effect sizes: the size of the effect in the population 
is the value in which we’re interested, but because we don’t have access to this value, we 
use the effect size in the sample to estimate the likely size of the effect in the population. 
We can also combine effect sizes from different studies researching the same question to 
get better estimates of the population effect sizes. This is called meta-analysis – see Field 
(2001, 2005b).

Can we measure how
important an effect is?
Can we measure how
important an effect is?

11 The correlation coefficient can also be negative (but not below –1), which is useful when we’re measuring a 
relationship between two variables because the sign of r tells us about the direction of the relationship, but in 
experimental research the sign of r merely reflects the way in which the experimenter coded their groups (see 
Chapter 6).
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2.6.5.  Statistical power 2

Effect sizes are an invaluable way to express the importance of a research finding. The 
effect size in a population is intrinsically linked to three other statistical properties: (1) the 
sample size on which the sample effect size is based; (2) the probability level at which we 
will accept an effect as being statistically significant (the α-level); and (3) the ability of a test 
to detect an effect of that size (known as the statistical power, not to be confused with sta-
tistical powder, which is an illegal substance that makes you understand statistics better). As 
such, once we know three of these properties, then we can always calculate the remaining 
one. It will also depend on whether the test is a one- or two-tailed test (see section 2.6.2). 
Typically, in psychology we use an α-level of .05 (see earlier) so we know this value already. 
The power of a test is the probability that a given test will find an effect assuming that one 
exists in the population. If you think back you might recall that we’ve already come across 
the probability of failing to detect an effect when one genuinely exists (β, the probability 
of a Type II error). It follows that the probability of detecting an effect if one exists must be 
the opposite of the probability of not detecting that effect (i.e. 1 – β). I’ve also mentioned 
that Cohen (1988, 1992) suggests that we would hope to have a .2 probability of failing 
to detect a genuine effect, and so the corresponding level of power that he recommended 
was 1 – .2, or .8. We should aim to achieve a power of .8, or an 80% chance of detecting 
an effect if one genuinely exists. The effect size in the population can be estimated from 
the effect size in the sample, and the sample size is determined by the experimenter anyway 
so that value is easy to calculate. Now, there are two useful things we can do knowing that 
these four variables are related:

1 Calculate the power of a test: Given that we’ve conducted our experiment, we will 
have already selected a value of α, we can estimate the effect size based on our 
sample, and we will know how many participants we used. Therefore, we can use 
these values to calculate β, the power of our test. If this value turns out to be .8 or 
more we can be confident that we achieved sufficient power to detect any effects that 
might have existed, but if the resulting value is less, then we might want to replicate 
the experiment using more participants to increase the power.

2 Calculate the sample size necessary to achieve a given level of power: Given that we 
know the value of α and β, we can use past research to estimate the size of effect that 
we would hope to detect in an experiment. Even if no one had previously done the 
exact experiment that we intend to do, we can still estimate the likely effect size based 
on similar experiments. We can use this estimated effect size to calculate how many 
participants we would need to detect that effect (based on the values of α and β that 
we’ve chosen). 

The latter use is the more common: to determine how many participants should be 
used to achieve the desired level of power. The actual computations are very cumber-
some, but fortunately there are now computer programs available that will do them 
for you (one example is G*Power, which is free and can be downloaded from a link on 
the companion website; another is nQuery Adviser but this has to be bought!). Also, 
Cohen (1988) provides extensive tables for calculating the number of participants for a 
given level of power (and vice versa). Based on Cohen (1992) we can use the following 
guidelines: if we take the standard α-level of .05 and require the recommended power 
of .8, then we need 783 participants to detect a small effect size (r = .1), 85 partici-
pants to detect a medium effect size (r = .3) and 28 participants to detect a large effect  
size (r = .5).
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What have I discovered about statistics? 1

OK, that has been your crash course in statistical theory – hopefully your brain is still 
relatively intact. The key point I want you to understand is that when you carry out 
research you’re trying to see whether some effect genuinely exists in your population 
(the effect you’re interested in will depend on your research interests and your specific 
predictions). You won’t be able to collect data from the entire population (unless you 
want to spend your entire life, and probably several after-lives, collecting data) so you 
use a sample instead. Using the data from this sample, you fit a statistical model to test 
your predictions, or, put another way, detect the effect you’re looking for. Statistics boil 
down to one simple idea: observed data can be predicted from some kind of model and 
an error associated with that model. You use that model (and usually the error associated 
with it) to calculate a test statistic. If that model can explain a lot of the variation in the 
data collected (the probability of obtaining that test statistic is less than .05) then you 
infer that the effect you’re looking for genuinely exists in the population. If the prob-
ability of obtaining that test statistic is more than .05, then you conclude that the effect 
was too small to be detected. Rather than rely on significance, you can also quantify the 
effect in your sample in a standard way as an effect size and this can be helpful in gaug-
ing the importance of that effect. We also discovered that I managed to get myself into 
trouble at nursery school. It was soon time to move on to primary school and to new 
and scary challenges. It was a bit like using SPSS for the first time.

Key terms that I’ve discovered

α-level
β-level
Central limit theorem
Confidence interval 
Degrees of freedom
Deviance
Effect size
Fit
Linear model
Meta-analysis
One-tailed test
Population
Power

Sample
Sampling distribution
Sampling variation
Standard deviation
Standard error
Standard error of the mean (SE)
Sum of squared errors (SS)
Test statistic
Two-tailed test
Type I error
Type II error
Variance

Smart Alex’s stats quiz

1 Why do we use samples? 1

2 What is the mean and how do we tell if it’s representative of our data? 1
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3 What’s the difference between the standard deviation and the standard error? 1

4 In Chapter 1 we used an example of the time taken for 21 heavy smokers to fall off 
a treadmill at the fastest setting (18, 16, 18, 24, 23, 22, 22, 23, 26, 29, 32, 34, 34, 
36, 36, 43, 42, 49, 46, 46, 57). Calculate the sums of squares, variance, standard 
deviation, standard error and 95% confidence interval of these data. 1

5 What do the sum of squares, variance and standard deviation represent? How do 
they differ? 1

6 What is a test statistic and what does it tell us? 1

7 What are Type I and Type II errors? 1

8 What is an effect size and how is it measured? 2

9 What is statistical power? 2

Answers can be found on the companion website. 

Further reading
Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45(12), 1304–1312.
Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997–1003. (A couple 

of beautiful articles by the best modern writer of statistics that we’ve had.)
Field, A. P., & Hole, G. J. (2003). How to design and report experiments. London: Sage. (I am rather 

biased, but I think this is a good overview of basic statistical theory.)
Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: a practical 

introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)
Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book has 

very clear introductions to sampling, confidence intervals and other important statistical ideas.)

Interesting real research
Domjan, M., Blesbois, E., & Williams, J. (1998). The adaptive significance of sexual conditioning: 

Pavlovian control of sperm release. Psychological Science, 9(5), 411–415.
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3.1. What will this chapter tell me? 1

At about 5 years old I moved from nursery (note that I moved, I was not ‘kicked out’ 
for showing my …) to primary school. Even though my older brother was already there,  
I remember being really scared about going. None of my nursery school friends were going 
to the same school and I was terrified about meeting all of these new children. I arrived in my 
classroom and, as I’d feared, it was full of scary children. In a fairly transparent ploy to make 
me think that I’d be spending the next 6 years building sand castles, the teacher told me to 
play in the sand pit. While I was nervously trying to discover whether I could build a pile of 
sand high enough to bury my head in it, a boy came and joined me. He was Jonathan Land, 

Figure 3.1
All I want for 
Christmas 
is … some 
tasteful wallpaper

3The SPSS environment
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and he was really nice. Within an hour he was my new best friend (5 year olds are fickle …) 
and I loved school. Sometimes new environments seem more scary than they really are. This 
chapter introduces you to a scary new environment: SPSS. The SPSS environment is a gener-
ally more unpleasant environment in which to spend time than your normal environment; 
nevertheless, we have to spend time there if we are to analyse our data. The purpose of this 
chapter is, therefore, to put you in a sand pit with a 5 year old called Jonathan. I will orient 
you in your new home and everything will be fine. We will explore the key windows in SPSS 
(the data editor, the viewer and the syntax editor) and also look at how to create variables, 
enter data and adjust the properties of your variables. We finish off by looking at how to load 
files and save them.

3.2. Versions of SPSS 1

This book is based primarily on version 17 of SPSS (at least in terms of the 
diagrams); however, don’t be fooled too much by version numbers because 
SPSS has a habit of releasing ‘new’ versions fairly regularly. Although this 
makes SPSS a lot of money and creates a nice market for people writing 
books on SPSS, there are few differences in these new releases that most of us 
would actually notice. Occasionally they have a major overhaul (version 16 
actually looks quite different to version 15, and the output viewer changed 
quite a bit too), but most of the time you can get by with a book that doesn’t 
explicitly cover the version you’re using (the last edition of this book was 
based on version 13, but could be used easily with all subsequent versions up 
to this revision!). So, this third edition, although dealing with version 17, will 
happily cater for earlier versions (certainly back to version 10). I also suspect 
it’ll be useful with versions 18, 19 and 20 when they appear (although it’s 

always a possibility that SPSS may decide to change everything just to annoy me). In case 
you’re very old school there is a file called Field2000(Chapter1).pdf on the book’s website  
that covers data entry in versions of SPSS before version 10, but most of you can ignore 
this file.

3.3. Getting started 1

SPSS mainly uses two windows: the data editor (this is where you input your data and carry 
out statistical functions) and the viewer (this is where the results of any analysis appear).1 
There are several additional windows that can be activated such as the SPSS Syntax Editor 
(see section 3.7), which allows you to enter SPSS commands manually (rather than using 
the window-based menus). For many people, the syntax window is redundant because you 
can carry out most analyses by clicking merrily with your mouse. However, there are vari-
ous additional functions that can be accessed using syntax and in many situations it can 
save time. This is why sick individuals who enjoy statistics find numerous uses for syntax 
and start dribbling excitedly when discussing it. Because I wish to drown in a pool of my 
own excited dribble, there are some sections of the book where I’ll force you to use it.

Once SPSS has been activated, a start-up window will appear (see Figure 3.2), which 
allows you to select various options. If you already have a data file on disk that you would 
like to open then select Open an existing data source by clicking on the  so that it looks 
like : this is the default option. In the space underneath this option there will be a list of 
recently used data files that you can select with the mouse. To open a selected file click on 

. If you want to open a data file that isn’t in the list then simply select More Files … 

1 There is also the SmartViewer window, which actually isn’t very smart, but more on that later.

Which version of SPSS do
I needed to use

this book?

Which version of SPSS do
I needed to use

this book?
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with the mouse and click on . This will open a standard explorer window that allows 
you to browse your computer and find the file you want (see section 3.9). Now it might be 
the case that you want to open something other than a data file, for example a viewer docu-
ment containing the results of your last analysis. You can do this by selecting Open another 
type of file by clicking on the  (so that it looks like ) and either selecting a file from the 
list or selecting More Files … and browsing your computer. If you’re starting a new analysis 
(as we are here) then we want to type our data into a new data editor. Therefore, we need 
to select Type in data (by again clicking on the appropriate ) and then clicking on . 
This will load a blank data editor window.

3.4. The data editor 1

The main SPSS window includes a data editor for entering data. This window is where 
most of the action happens. At the top of this screen is a menu bar similar to the ones you 
might have seen in other programs. Figure 3.3 shows this menu bar and the data editor. 
There are several menus at the top of the screen (e.g. ) that can be activated by 
using the computer mouse to move the on-screen arrow onto the desired menu and then 
pressing the left mouse button once (I’ll refer to pressing this button as clicking). When 
you have clicked on a menu, a menu box will appear that displays a list of options that can 
be activated by moving the on-screen arrow so that it is pointing at the desired option and 
then clicking with the mouse. Often, selecting an option from a menu makes a window 
appear; these windows are referred to as dialog boxes. When referring to selecting options 
in a menu I will use images to notate the menu paths; for example, if I were to say that you 
should select the Save As … option in the File menu, you will see .

Figure 3.2
The start-up 
window of SPSS
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The data editor has two views: the data view and the variable view. The data view is for 
entering data into the data editor, and the variable view allows us to define various charac-
teristics of the variables within the data editor. At the bottom of the data editor, you should 
notice that there are two tabs labelled ‘Data View’ and ‘Variable View’ ( ) 
and all we do to switch between these two views is click on these tabs (the highlighted tab 
tells you which view you’re in, although it will be obvious). Let’s look at some general fea-
tures of the data editor, features that don’t change when we switch between the data view 
and the variable view. First off, let’s look at the menus.

In many computer packages you’ll find that within the menus some letters are under-
lined: these underlined letters represent the keyboard shortcut for accessing that func-
tion. It is possible to select many functions without using the mouse, and the experienced 
keyboard user may find these shortcuts faster than manoeuvring the mouse arrow to the 
appropriate place on the screen. The letters underlined in the menus indicate that the 
option can be obtained by simultaneously pressing Alt on the keyboard and the underlined 
letter. So, to access the Save As… option, using only the keyboard, you should press Alt 
and F on the keyboard simultaneously (which activates the File menu), then, keeping your 
finger on the Alt key, press A (which is the underlined letter).2 

Below is a brief reference guide to each of the menus and some of the options that they 
contain. This is merely a summary and we will discover the wonders of each menu as we 
progress through the book:

2 If these underlined letters are not visible (in Windows XP they seemed to disappear, but in Vista they appear to 
have come back) then try pressing Alt and then the underlined letters should become visible.

The highlighted cell is the
cell that is currently active

This shows that we are
currently in the ‘Data View’

We can click here to
switch to the ‘Variable View’

This area displays the value
of the currently active cell

Figure 3.3
The SPSS Data 
Editor
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MM  This menu allows you to do general things such as saving data, graphs or output. 
Likewise, you can open previously saved files and print graphs data or output. In 
essence, it contains all of the options that are customarily found in File menus.

MM  This menu contains edit functions for the data editor. In SPSS it is possible to 
cut and paste blocks of numbers from one part of the data editor to another (which 
can be very handy when you realize that you’ve entered lots of numbers in the wrong 
place). You can also use the  to select various preferences such as the font that 
is used for the output. The default preferences are fine for most purposes. 

MM  This menu deals with system specifications such as whether you have grid lines 
on the data editor, or whether you display value labels (exactly what value labels are 
will become clear later).

MM  This menu allows you to make changes to the data editor. The important fea-
tures are , which is used to insert a new variable into the data editor (i.e. 
add a column); , which is used to add a new row of data between two 
existing rows of data; , which is used to split the file by a grouping variable 
(see section 5.4.3); and , which is used to run analyses on only a selected 
sample of cases.

MM  You should use this menu if you want to manipulate one of your variables in 
some way. For example, you can use recode to change the values of certain variables 
(e.g. if you wanted to adopt a slightly different coding scheme for some reason) – see 
SPSS Tip 7.1. The compute function is also useful for transforming data (e.g. you can 
create a new variable that is the average of two existing variables). This function allows 
you to carry out any number of calculations on your variables (see section 5.7.3).

MM  The fun begins here, because the statistical procedures lurk in this menu. 
Below is a brief guide to the options in the statistics menu that will be used during the 
course of this book (this is only a small portion of what is available):

¡  This menu is for conducting descriptive statistics (mean, mode, 
median, etc.), frequencies and general data exploration. There is also a command 
called crosstabs that is useful for exploring frequency data and performing tests 
such as chi-square, Fisher’s exact test and Cohen’s kappa.

¡  This is where you can find t-tests (related and unrelated – 
Chapter 9) and one-way independent ANOVA (Chapter 10).

¡  This menu is for complex ANOVA such as two-way (unrelated, 
related or mixed), one-way ANOVA with repeated measures and multivariate 
analysis of variance (MANOVA) – see Chapters 11, 12, 13, 14, and 16.

¡  This menu can be used for running multilevel linear models 
(MLMs). At the time of writing I know absolutely nothing about these, but seeing 
as I’ve promised to write a chapter on them I’d better go and do some reading. 
With luck you’ll find a chapter on it later in the book, or 30 blank sheets of paper. 
It could go either way.

¡  It doesn’t take a genius to work out that this is where the cor-
relation techniques are kept! You can do bivariate correlations such as Pearson’s R, 
Spearman’s rho (ρ) and Kendall’s tau (τ) as well as partial correlations (see Chapter 6).

¡  There are a variety of regression techniques available in SPSS. 
You can do simple linear regression, multiple linear regression (Chapter 7) and 
more advanced techniques such as logistic regression (Chapter 8).

¡  Loglinear analysis is hiding in this menu, waiting for you, and 
ready to pounce like a tarantula from its burrow (Chapter 13).
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¡  You’ll find factor analysis here (Chapter 17).

¡  Here you’ll find reliability analysis (Chapter 17).

¡  There are a variety of non-parametric statistics available such as 
the chi-square goodness-of-fit statistic, the binomial test, the Mann–Whitney test, 
the Kruskal–Wallis test, Wilcoxon’s test and Friedman’s ANOVA (Chapter 15).

MM  SPSS has some graphing facilities and this menu is used to access the Chart 
Builder (see Chapter 4). The types of graphs you can do include: bar charts, histo-
grams, scatterplots, box–whisker plots, pie charts and error bar graphs to name but 
a few.

MM  This menu allows you to switch from window to window. So, if you’re look-
ing at the output and you wish to switch back to your data sheet, you can do so using 
this menu. There are icons to shortcut most of the options in this menu so it isn’t 
particularly useful.

MM  In this menu there is an option, , that allows you to comment 
on your data set. This can be quite useful because you can write yourself notes about 
from where the data come, or the date they were collected and so on.

MM  SPSS sells several add-ons that can be accessed through this menu. For example,  
SPSS has a program called Sample Power that computes the sample size required for 
studies, and power statistics (see section 2.6.5). However, because most people won’t 
have these add-ons (including me) I’m not going to discuss them in the book. 

MM  This is an invaluable menu because it offers you online help on both the system 
itself and the statistical tests. The statistics help files are fairly incomprehensible at 
times (the program is not designed to teach you statistics) and are certainly no sub-
stitute for acquiring a good book like this – erm, no, I mean acquiring a good knowl-
edge of your own. However, they can get you out of a sticky situation.

          SPSS T IP  3 .1     Save time and avoid RSI 1

By default, when you try to open a file from SPSS it will go to the directory in which the program is stored on your 
computer. This is fine if you happen to store all of your data and output in that folder, but if not then you will find 
yourself spending time navigating around your computer trying to find your data. If you use SPSS as much as I do 
then this has two consequences: (1) all those seconds have added up and I have probably spent weeks navigat-
ing my computer when I could have been doing something useful like playing my drum kit; (2) I have increased 
my chances of getting RSI in my wrists, and if I’m going to get RSI in my wrists I can think of more enjoyable ways 
to achieve it than navigating my computer (drumming again, obviously). Well, we can get around this by telling 
SPSS where we’d like it to start looking for data files. Select   to open the Options dialog box 
below and select the File Locations tab.

This dialog box allows you to select a folder in which SPSS will initially look for data files and other files. For 
example, I keep all of my data files in a single folder called, rather unimaginatively, ‘Data’. In the dialog box here  
I have clicked on  and then navigated to my data folder. SPSS will use this as the default location when 
I try to open files and my wrists are spared the indignity of RSI. You can also select the option for SPSS to use 
the Last folder used, in which case SPSS remembers where you were last time it was loaded and uses that folder 
when you try to open up data files.
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As well as the menus there is also a set of icons at the top of the data editor window (see 
Figure 3.3) that are shortcuts to specific, frequently used, facilities. All of these facilities can 
be accessed via the menu system but using the icons will save you time. Below is a brief list 
of these icons and their functions:

This icon gives you the option to open a previously saved file (if you are in the data editor SPSS assumes 
you want to open a data file; if you are in the output viewer, it will offer to open a viewer file).

This icon allows you to save files. It will save the file you are currently working on (be it data or output). If 
the file hasn’t already been saved it will produce the Save Data As dialog box.

This icon activates a dialog box for printing whatever you are currently working on (either the data editor or the 
output). The exact print options will depend on the printer you use. By default SPSS will print everything in the 
output window so a useful way to save trees is to print only a selection of the output (see SPSS Tip 3.4).

Clicking on this icon will activate a list of the last 12 dialog boxes that were used. From this list you can 
select any box from the list and it will appear on the screen. This icon makes it easy for you to repeat 
parts of an analysis.

This icon looks a bit like your data have had a few too many beers 
and have collapsed in the gutter by the side of the road. The truth is 
considerably less exciting: it enables you to go directly to a case  
(a case is a row in the data editor and represents something like a 
participant, an organism or a company). This button is useful if you are 
working on large data files: if you were analysing a survey with 3000 
respondents it would get pretty tedious scrolling down the data sheet  
to find participant 2407’s responses. This icon can be used to skip 
directly to a case. Clicking on this icon activates a dialog box in which 
you type the case number required (in our example 2407):
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This icon activates a function that is similar to the previous one 
except that you can skip directly to a variable (i.e. a column 
in the data editor). As before, this is useful when working with 
big data files in which you have many columns of data. In the 
example below, we have a data file with 23 variables and each 
variable represents a question on a questionnaire and is named 
accordingly (we’ll use this data file, SAQ.sav, in Chapter 17). 
We can use this icon to activate the Go To dialog box, but this 
time to find a variable. Notice that a drop-down box lists the first 
10 variables in the data editor but you can scroll down to go to 
others.

This icon implies to me (what with the big question mark and everything) that you click on it when you’re 
looking at your data scratching your head and thinking ‘how in Satan’s name do I analyse these data?’ 
The world would be a much nicer place if clicking on this icon answered this question, but instead the 
shining diamond of hope is snatched cruelly from you by the cloaken thief that is SPSS. Instead, clicking 
on this icon opens a dialog box that shows you the variables in the data editor and summary information 
about each one. The dialog box below shows the information for the file that we used for the previous 
icon. We have selected the first variable in this file, and we can see the variable name (question_01), the 
label (Statistics makes me cry), the measurement level (ordinal), and the value labels (e.g. the number 1 
represents the response of ‘strongly agree’).

This icon doesn’t allow you to spy on 
your neighbours (unfortunately), but it 
does enable you to search for words 
or numbers in your data file and 
output window. In the data editor it will 
search within the variable (column) 
that is currently active. This option 
is useful if, for example, you realize 
from a graph of your data that you 
have typed 20.02 instead of 2.02 (see 
section 4.4): you can simply search 
for 20.02 within that variable and 
replace that value with 2.02:



69CHAPTER 3   ThE SPSS ENV IRONmENT

Clicking on this icon inserts a new case in the data editor (so it creates a blank row at the point that is 
currently highlighted in the data editor). This function is very useful if you need to add new data at a 
particular point in the data editor.

Clicking on this icon creates a new variable to the left of the variable that is currently active (to activate a 
variable simply click once on the name at the top of the column).

Clicking on this icon is a shortcut to the  function (see section 5.4.3). There are often 
situations in which you might want to analyse groups of cases separately. In SPSS we differentiate 
groups of cases by using a coding variable (see section 3.4.2.3), and this function lets us divide our 
output by such a variable. For example, we might test males and females on their statistical ability. We 
can code each participant with a number that represents their gender (e.g. 1 = female, 0 = male). If we 
then want to know the mean statistical ability of each gender we simply ask the computer to split the file 
by the variable Gender. Any subsequent analyses will be performed on the men and women separately. 
There are situations across many disciplines where this might be useful: sociologists and economists 
might want to look at data from different geographic locations separately, biologists might wish to 
analyse different groups of mutated mice, and so on.

This icon shortcuts to the  function. This function is necessary when we come to input 
frequency data (see section 18.5.2) and is useful for some advanced issues in survey sampling.

This icon is a shortcut to the  function. If you want to analyse only a portion of your data, 
this is the option for you! This function allows you to specify what cases you want to include in the analysis. 
There is a Flash movie on the companion website that shows you how to select cases in your data file.

Clicking on this icon will either display or hide the value labels of any coding variables. We often group 
people together and use a coding variable to let the computer know that a certain participant belongs 
to a certain group. For example, if we coded gender as 1 = female, 0 = male then the computer knows 
that every time it comes across the value 1 in the Gender column, that person is a female. If you press 
this icon, the coding will appear on the data editor rather than the numerical values; so, you will see the 
words male and female in the Gender column rather than a series of numbers. This idea will become 
clear in section 3.4.2.3.

3.4.1.  Entering data into the data editor 1

When you first load SPSS it will provide a blank data editor with the title Untitled1 (this 
of course is daft because once it has been given the title ‘untitled’ it ceases to be untitled!). 
When inputting a new set of data, you must input your data in a logical way. The SPSS 
Data Editor is arranged such that each row represents data from one entity while each col-
umn represents a variable. There is no discrimination between independent and dependent 
variables: both types should be placed in a separate column. The key point is that each 
row represents one entity’s data (be that entity a human, mouse, tulip, business, or water 
sample). Therefore, any information about that case should be entered across the data 
editor. For example, imagine you were interested in sex differences in perceptions of pain 
created by hot and cold stimuli. You could place some people’s hands in a bucket of very 
cold water for a minute and ask them to rate how painful they thought the experience was 
on a scale of 1 to 10. You could then ask them to hold a hot potato and again measure their 
perception of pain. Imagine I was a participant. You would have a single row representing 
my data, so there would be a different column for my name, my gender, my pain percep-
tion for cold water and my pain perception for a hot potato: Andy, male, 7, 10.
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The column with the information about my gender is a grouping variable: I can belong 
to either the group of males or the group of females, but not both. As such, this variable is a 
between-group variable (different people belong to different groups). Rather than represent-
ing groups with words, in SPSS we have to use numbers. This involves assigning each group 
a number, and then telling SPSS which number represents which group. Therefore, between-
group variables are represented by a single column in which the group to which the person 
belonged is defined using a number (see section 3.4.2.3). For example, we might decide that if 
a person is male then we give them the number 0, and if they’re female we give them the num-
ber 1. We then have to tell SPSS that every time it sees a 1 in a particular column the person 
is a female, and every time it sees a 0 the person is a male. Variables that specify to which of 
several groups a person belongs can be used to split up data files (so in the pain example you 
could run an analysis on the male and female participants separately – see section 5.4.3).

Finally, the two measures of pain are a repeated measure (all participants were subjected 
to hot and cold stimuli). Therefore, levels of this variable (see SPSS Tip 3.2) can be entered 
in separate columns (one for pain to a hot stimulus and one for pain to a cold stimulus).

The data editor is made up of lots of cells, which are just boxes in which data values can be 
placed. When a cell is active it becomes highlighted in blue (as in Figure 3.3). You can move 
around the data editor, from cell to cell, using the arrow keys ← ↑ ↓ → (found on the right of 
the keyboard) or by clicking the mouse on the cell that you wish to activate. To enter a num-
ber into the data editor simply move to the cell in which you want to place the data value, 
type the value, then press the appropriate arrow button for the direction in which you wish 
to move. So, to enter a row of data, move to the far left of the row, type the value and then 
press → (this process inputs the value and then moves you into the next cell on the right).

The first step in entering your data is to create some variables using the ‘Variable View’ 
of the data editor, and then to input your data using the ‘Data View’ of the data editor. 
We’ll go through these two steps by working through an example.

3.4.2.  The ‘Variable View’ 1

Before we input any data into the data editor, we need to create the variables. To create vari-
ables we use the ‘Variable View’ of the data editor. To access this view click on the ‘Variable 
View’ tab at the bottom of the data editor ( ); the contents of the win-
dow will change (see Figure 3.4).

          SPSS T IP  3 .2     Entering data 1

There is a simple rule for how variables should be placed in the SPSS Data Editor: data from different things go in differ-
ent rows of the data editor, whereas data from the same things go in different columns of the data editor. As such, each 
person (or mollusc, goat, organization, or whatever you have measured) is represented in a different row. Data within 
each person (or mollusc etc.) go in different columns. So, if you’ve prodded your mollusc, or human, several times with 
a pencil and measured how much it twitches as an outcome, then each prod will be represented by a column. 

In experimental research this means that any variable measured with the same participants (a repeated mea-
sure) should be represented by several columns (each column representing one level of the repeated-measures 
variable). However, any variable that defines different groups of things (such as when a between-group design 
is used and different participants are assigned to different levels of the independent variable) is defined using a 
single column. This idea will become clearer as you learn about how to carry out specific procedures. This golden 
rule is broken in mixed models but until Chapter 19 we can overlook this annoying anomaly.
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Every row of the variable view represents a variable, and you set characteristics of a 
particular variable by entering information into the labelled columns. You can change vari-
ous characteristics of the variable by entering information into the following columns (play 
around and you’ll get the hang of it):

You can enter a name in this column for each variable. This name will appear at the top of the 
corresponding column in the data view, and helps you to identify variables in the data view. In current 
versions of SPSS you can more or less write what you like, but there are certain symbols you can’t use 
(mainly symbols that have other uses in SPSS such as +, -, $, &) , and you can’t use spaces. (Many 
people use a ‘hard’ space in variable names, which replaces the space with an underscore, for example, 
i.e. Andy_Field instead of Andy Field.) If you use a character that SPSS doesn’t like you’ll get an error 
message saying that the variable name is invalid when you click on a different cell, or try to move off the 
cell using the arrow keys.

You can have different types of data. Mostly you will use numeric variables (which just means that the 
variable contains numbers - SPSS assumes this data type). You will come across string variables, 
which consist of strings of letters. If you wanted to type in people’s names, for example, you would need 
to change the variable type to be string rather than numeric. You can also have currency variables  
(i.e. £s, $s, euro) and date variables (e.g. 21-06-1973)

By default, when a new variable is created, SPSS sets it up to be numeric and to store 8 digits, but you can 
change this value by typing a new number in this column in the dialog box. Normally 8 digits is fine, but if 
you are doing calculations that need to be particularly precise you could make this value bigger.

Another default setting is to have 2 decimal places displayed. (You’ll notice that if you don’t change this 
option then when you type in whole numbers to the data editor SPSS adds a decimal place with two 
zeros after it – this can be disconcerting initially!) If you want to change the number of decimal places for 
a given variable then replace the 2 with a new value or increase or decrease the values using , when in 
the cell that you want to change.

The name of the variable (see above) has some restrictions on characters, and you also wouldn’t want to 
use huge long names at the top of your columns (they become hard to read). Therefore, you can write a 
longer variable description in this column. This may seem pointless, but is actually one of the best habits 
you can get into (see SPSS Tip 3.3). 

This column is for assigning numbers to represent groups of people (see Section 3.4.2.3 below).

This column is for assigning numbers to missing data (see Section 3.4.3 below).

Enter a number into this column to determine the width of the column that is how many characters are 
displayed in the column. (This differs from , which determines the width of the variable itself – you 
could have a variable of 10 characters but by setting the column width to 8 you would only see 8 of the 
10 characters of the variable in the data editor.) It can be useful to increase the column width if you have 
a string variable (section 3.4.2.1) that exceeds 8 characters, or a coding variable (section 3.4.2.3) with 
value labels that exceed 8 characters.

You can use this column to select the alignment of the data in the corresponding column of the data 
editor. You can choose to align the data to the ,  or .

This is where you define the level at which a variable was measured (Nominal, Ordinal or Scale – section 
1.5.1.2).

Figure 3.4
The ‘Variable 
View’ of the 
SPSS Data 
Editor
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Let’s use the variable view to create some variables. Imagine we were interested in look-
ing at the differences between lecturers and students. We took a random sample of five 
psychology lecturers from the University of Sussex and five psychology students and then 
measured how many friends they had, their weekly alcohol consumption (in units), their 
yearly income and how neurotic they were (higher score is more neurotic). These data are 
in Table 3.1.

          SPSS T IP  3 .3     Naming variables 1

Why is it a good idea to take the time and effort to type in long variable names for your variables? Surely it’s a 
waste of my time? In a way, I can understand why it would seem to be so, but as you go through your course 
accumulating data files, you will be grateful that you did. Imagine you had a variable called ‘number of times I 
wanted to shoot myself during Andy Field’s statistics lecture’; then you might have called the column in SPSS 
‘shoot’. If you don’t add a label, SPSS will use this variable name in all of the output from an analysis. That’s all 
well and good, but what happens in three weeks’ time when you look at your data and output again? The chances 
are that you’ll probably think ‘What did shoot stand for? Number of shots at goal? Number of shots I drank?’ 
Imagine the chaos you could get into if you had used an acronym for the variable ‘workers attending new kiosk’. 
I have many data sets with variables called things like ‘sftg45c’, and if I didn’t give them proper labels I would be 
in all sorts of trouble. Get into a good habit and label all of your variables!

Table 3.1 Some data with which to play

Name Birth Date Job
No. of 

Friends Alcohol (Units) Income Neuroticism

Leo 17-Feb-1977 Lecturer  5 10 20,000 10

Martin 24-May-1969 Lecturer  2 15 40,000 17

Andy 21-Jun-1973 Lecturer  0 20 35,000 14

Paul 16-Jul-1970 Lecturer  4  5 22,000 13

Graham 10-Oct-1949 Lecturer  1 30 50,000 21

Carina 05-Nov-1983 Student 10 25  5,000  7

Karina 08-Oct-1987 Student 12 20    100 13

Doug 16-Sep-1989 Student 15 16  3,000  9

Mark 20-May-1973 Student 12 17 10,000 14

Mark 28-Mar-1990 Student 17 18     10 13

3.4.2.1. Creating a string variable 1

The first variable in our data set is the name of the lecturer/student. This variable consists 
of names; therefore, it is a string variable. To create this variable follow these steps:
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Move the on-screen arrow (using the mouse) to the first white cell in the column 1 
labelled Name.

Type the word 2 Name.

Move off this cell using the arrow keys on the keyboard (you can also just click on a 3 
different cell, but this is a very slow way of doing it).

You’ve just created your first variable! Notice that once you’ve typed a name, SPSS cre-
ates default settings for the variable (such as assuming it’s numeric and assigning 2 decimal 
places). The problem is that although SPSS has assumed that we want a numeric variable (i.e. 
numbers), we don’t; we want to enter people’s names, namely a string variable. Therefore, 
we have to change the variable type. Move into the column labelled  using 
the arrow keys on the keyboard. The cell will now look like this . Click on  to 
activate the dialog box in Figure 3.5. By default, SPSS selects the numeric variable type  
( ) – see the left panel of Figure 3.5. To change the variable to a string variable, click on 

 and the dialog box will change to look like the right panel of Figure 3.5. You can choose 
how many characters you want in your string variable (i.e. the maximum number of characters 
you will type for a given case of data). The default is 8, which is fine for us because our longest 
name is only six letters; however, if we were entering surnames as well, we would need to 
increase this value. When you have finished, click on  to return to the variable view.

Now because I want you to get into good habits, move to the cell in the  
column and type a description of the variable, such as ‘Participant’s First Name’. Finally, 
we can specify the level at which a variable was measured (see section 1.5.1.2) by going to 
the column labelled Measure and selecting either Nominal, Ordinal or Scale from the drop-
down list. In this case, we have a string variable, so they represent only names of cases and 
provide no information about the order of cases, or the magnitude of one case compared 
to another. Therefore, we need to select .

Once the variable has been created, you can return to the data view by clicking on the 
‘Data View’ tab at the bottom of the data editor ( ). The contents of the 
window will change, and you’ll notice that the first column now has the label Name. To 
enter the data, click on the white cell at the top of the column labelled Name and type the 
first name, ‘Leo’. To register this value in this cell, we have to move to a different cell and 
because we are entering data down a column, the most sensible way to do this is to press 
the ↓ key on the keyboard. This action moves you down to the next cell, and the word 
‘Leo’ should appear in the cell above. Enter the next name, ‘Martin’, and then press ↓ to 
move down to the next cell, and so on.

Figure 3.5
Defining a string 
variable in SPSS
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3.4.2.2. Creating a date variable 1

Notice that the second column in our table contains dates (birth dates to be exact). To enter 
date variables into SPSS we use the same procedure as with the previous variable, except 
that we need to change the variable type. First, move back to the ‘Variable View’ using the 
tab at the bottom of the data editor ( ). As with the previous variable, 
move to the cell in row 2 of the column labelled Name (under the previous variable you 
created). Type the word ‘Birth_Date’ (note that we have used a hard space to separate the 
words). Move into the column labelled  using the → key on the keyboard (SPSS 
will create default settings in the other columns). The cell will now look like this .  
Click on  to activate the dialog box in Figure 3.6. By default, SPSS selects the numeric 
variable type ( ) – see the left panel of Figure 3.6. To change the variable to a date, 
click on  and the dialog box will change to look like the right panel of Figure 3.6. You 
can then choose your preferred date format; being British, I am used to the days coming 
before the month and I have stuck with the default option of dd-mmm-yyyy (i.e. 21-Jun-
1973), but Americans, for example, will be used to the month and date being the other 
way around and could select mm/dd/yyyy (06/21/1973). When you have selected a format 
for your dates, click on  to return to the variable view. Finally, move to the cell in the 
column labelled Label and type ‘Date of Birth’. 

Now that the variable has been created, you can return to the data view by clicking on 
the ‘Data View’ tab ( ) and input the dates of birth. The second column 
now has the label Birth_Date; click on the white cell at the top of this column and type the 
first value, 17-Feb-1977. To register this value in this cell, move down to the next cell by 
pressing the ↓ key on the keyboard. Now enter the next date, and so on.

3.4.2.3. Creating coding variables 1

A coding variable (also known as a grouping variable) is a variable that uses numbers to rep-
resent different groups of data. As such, it is a numeric variable, but these numbers represent 
names (i.e. it is a nominal variable). These groups of data could be levels of a treatment variable 
in an experiment, different groups of people (men or women, an experimental group, or a con-
trol group, ethnic groups, etc.), different geographic locations, different organizations, etc.

In experiments, coding variables represent independent variables that have been measured 
between groups (i.e. different participants were assigned to different groups). If you were to 
run an experiment with one group of participants in an experimental condition and a differ-
ent group of participants in a control group, you might assign the experimental group a code 

Figure 3.6 
Defining variable 
types in SPSS
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of 1 and the control group a code of 0. When you come to put the data into the data editor, 
you would create a variable (which you might call group) and type in the value 1 for any 
participants in the experimental group, and 0 for any participant in the control group. These 
codes tell SPSS that all of the cases that have been assigned the value 1 should be treated as 
belonging to the same group, and likewise for the cases assigned the value 0. In situations 
other than experiments, you might simply use codes to distinguish naturally occurring groups 
of people (e.g. you might give students a code of 1 and lecturers a code of 0).

We have a coding variable in our data: the one describing whether a person was a lecturer or 
student. To create this coding variable, we follow the steps for creating a normal variable, but 
we also have to tell SPSS which numeric codes have been assigned to which groups. So, first of 
all, return to the variable view ( ) if you’re not already in it and then move 
to the cell in the third row of the data editor and in the column labelled Name type a name 
(let’s call it Group). I’m still trying to instil good habits, so move along the third row to the 
column called Label and give the variable a full description such as ‘Is the person a lecturer or a 
student?’ Then to define the group codes, move along the row to the column labelled  
and into this cell: . Click on  to access the Value Labels dialog box (see Figure 3.7).

The Value Labels dialog box is used to specify group codes. This can be done in three easy 
steps. First, click with the mouse in the white space next to where it says Value (or press Alt 
and u at the same time) and type in a code (e.g. 1). These codes are completely arbitrary; for 
the sake of convention people typically use 0, 1, 2, 3, etc., but in practice you could have a 
code of 495 if you were feeling particularly arbitrary. The second step is to click the mouse in 
the white space below, next to where it says Value Label (or press Tab, or Alt and e at the same 
time) and type in an appropriate label for that group. In Figure 3.7 I have already defined a 
code of 1 for the lecturer group, and then I have typed in 2 as my code and given this a label of 
Student. The third step is to add this coding to the list by clicking on . When you have 
defined all of your coding values you can click on  and SPSS will check your variable 
labels for spelling errors (which can be very handy if you are as bad at spelling as I am). To fin-
ish, click on ; if you click on  and have forgotten to add your final coding to the list, 
SPSS will display a message warning you that any pending changes will be lost. In plain English 

Click on the
appropriate cell
in the column

labelled Values

Then,
click on

This activates
the  Value

Labels dialog 

Figure 3.7
Defining coding 
variables and 
their values in 
SPSS
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this simply tells you to go back and click on  before continuing. Finally, coding variables 
always represent categories and so the level at which they are measured is nominal (or ordinal 
if the categories have a meaningful order). Therefore, you should specify the level at which the 
variable was measured by going to the column labelled Measure and selecting  (or 

 if the groups have a meaningful order) from the drop-down list (see earlier).
Having defined your codes, switch to the data view and type these numerical values 

into the appropriate column (so if a person was a lecturer, type 1, but if they were a stu-
dent then type 2). You can get SPSS to display the numeric codes, or the value labels that 
you assigned to them by clicking on  (see Figure 3.8), which is pretty groovy. Figure 3.8 
shows how the data should be arranged for a coding variable. Now remember that each 
row of the data editor represents data from one entity and in this example our entities were 
people (well, arguably in the case of the lecturers). The first five participants were lecturers 
whereas participants 6–10 were students.

This example should clarify why in experimental research grouping variables are used 
for variables that have been measured between participants: because by using a coding 
variable it is impossible for a participant to belong to more than one group. This situation 
should occur in a between-group design (i.e. a participant should not be tested in both 
the experimental and the control group). However, in repeated-measures designs (within 
subjects) each participant is tested in every condition and so we would not use this sort of 
coding variable (because each participant does take part in every experimental condition).

3.4.2.4. Creating a numeric variable 1

Numeric variables are the easiest ones to create because SPSS assumes this format for data. 
Our next variable is No. of friends; to create this variable we move back to the variable 
view using the tab at the bottom of the data editor ( ). As with the pre-
vious variables, move to the cell in row 4 of the column labelled Name (under the previous 
variable you created). Type the word ‘Friends’. Move into the column labelled  
using the → key on the keyboard. As with the previous variables we have created, SPSS has 
assumed that this is a numeric variable, so the cell will look like this . We can leave 
this as it is, because we do have a numeric variable.

Notice that our data for the number of friends has no decimal places (unless you are a 
very strange person indeed, you can’t have 0.23 of a friend). Move to the  column 
and type ‘0’ (or decrease the value from 2 to 0 using ) to tell SPSS that you don’t want 
any decimal places.

Value Labels
off

Value Labels
on

Figure 3.8
Coding values in 
the data editor 
with the value 
labels switched 
off and on
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Next, let’s continue our good habit of naming variables and move to the cell in the  
column labelled Label and type ‘Number of Friends’. Finally, we can specify the level 
at which a variable was measured (see section 1.5.1.2) by going to the column labelled 
Measure and selecting  from the drop-down list (this will have been done auto-
matically actually, but it’s worth checking). 

SELF-TEST  Why is the ‘Number of Friends’ variable a 
‘scale’ variable?

Once the variable has been created, you can return to the data view by clicking on the 
‘Data View’ tab at the bottom of the data editor ( ). The contents of the 
window will change, and you’ll notice that the first column now has the label Friends. To 
enter the data, click on the white cell at the top of the column labelled Friends and type 
the first value, 5. To register this value in this cell, we have to move to a different cell and 
because we are entering data down a column, the most sensible way to do this is to press 
the ↓ key on the keyboard. This action moves you down to the next cell, and the number 5 
should appear in the cell above. Enter the next number, 2, and then press ↓ to move down 
to the next cell, and so on.

SELF-TEST  Having created the first four variables with 
a bit of guidance, try to enter the rest of the variables in 
Table 3.1 yourself.

3.4.3.  Missing values 1

Although as researchers we strive to collect complete sets of data, it is often the case that we 
have missing data. Missing data can occur for a variety of reasons: in long questionnaires 
participants accidentally (or, depending on how paranoid you’re feeling, deliberately just 
to piss you off) miss out questions; in experimental procedures mechanical faults can lead 
to a datum not being recorded; and in research on delicate topics (e.g. sexual behaviour) 
participants may exert their right not to answer a question. However, just because we have 
missed out on some data for a participant doesn’t mean that we have to ignore the data we 
do have (although it sometimes creates statistical difficulties). Nevertheless, we do need to 
tell SPSS that a value is missing for a particular case. The principle behind missing values 
is quite similar to that of coding variables in that we choose a numeric value to represent 
the missing data point. This value tells SPSS that there is no recorded value for a partici-
pant for a certain variable. The computer then ignores that cell of the data editor (it does 
not use the value you select in the analysis). You need to be careful that the chosen code 
doesn’t correspond to any naturally occurring data value. For example, if we tell the com-
puter to regard the value 9 as a missing value and several participants genuinely scored 9, 
then the computer will treat their data as missing when, in reality, they are not.

To specify missing values you simply click in the column labelled  in the vari-
able view and then click on  to activate the Missing Values dialog box in Figure 3.9.  
By default SPSS assumes that no missing values exist, but if you do have data with missing 
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values you can choose to define them in one of three ways. The first is to select discrete val-
ues (by clicking on the circle next to where it says Discrete missing values) which are single 
values that represent missing data. SPSS allows you to specify up to three discrete values 
to represent missing data. The reason why you might choose to have several numbers to 
represent missing values is that you can assign a different meaning to each discrete value. 
For example, you could have the number 8 representing a response of ‘not applicable’, a 
code of 9 representing a ‘don’t know’ response, and a code of 99 meaning that the par-
ticipant failed to give any response. As far as the computer is concerned it will ignore any 
data cell containing these values; however, using different codes may be a useful way to 
remind you of why a particular score is missing. Usually, one discrete value is enough and 
in an experiment in which attitudes are measured on a 100-point scale (so scores vary from 
1 to 100) you might choose 666 to represent missing values because (1) this value cannot 
occur in the data that have been collected and (2) missing data create statistical problems, 
and you will regard the people who haven’t given you responses as children of Satan! The 
second option is to select a range of values to represent missing data and this is useful in 
situations in which it is necessary to exclude data falling between two points. So, we could 
exclude all scores between 5 and 10. The final option is to have a range of values and one 
discrete value.

3.5. The SPSS Viewer 1

Alongside the SPSS Data Editor window, there is a second window known as the SPSS 
Viewer. The viewer window has come a long way; not that you care, I’m sure, but in days 
of old, this window displayed statistical results in a rather bland and drab font, graphs 
appeared in a window called the carousel (not nearly as exciting as it sounds), and all of 
the computations were done by little nerdy dinosaurs that lived inside your computer. 
These days, the SPSS Viewer displays everything you could want (well, OK, it doesn’t 
display photos of your cat) and it’s generally prettier to look at than it used to be. Sadly, 
however, my prediction in previous editions of this book that future versions of SPSS 
will include a tea-making facility in the viewer have not come to fruition (SPSS Inc.  
take note!).

Figure 3.10 shows the basic layout of the output viewer. On the right-hand side there is 
a large space in which the output is displayed. SPSS displays both graphs and the results of 
statistical analyses in this part of the viewer. It is also possible to edit graphs and to do this 

Figure 3.9
Defining missing 
values
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Results
of Statistical 

Analysis

Graph of
Some Data

Tree
Diagram of the
Current Output

Figure 3.10
The SPSS 
Viewer 

you simply double-click on the graph you wish to edit (this creates a new window in which 
the graph can be edited – see section 4.9). On the left-hand side of the output viewer there 
is a tree diagram illustrating the structure of the output. This tree diagram is useful when 
you have conducted several analyses because it provides an easy way of accessing specific 
parts of the output. The tree structure is fairly self-explanatory in that every time you do 
something in SPSS (such as drawing a graph or running a statistical procedure), it lists this 
procedure as a main heading.

In Figure 3.10 I conducted a graphing procedure followed by a univariate analysis of 
variance (ANOVA) and so these names appear as main headings. For each procedure there 
are a series of sub-headings that represent different parts of the analysis. For example, in 
the ANOVA procedure, which you’ll learn more about later in the book, there are several 
sections to the output such as Levene’s test (see section 5.6.1) and a table of the between-
group effects (i.e. the F-test of whether the means are significantly different). You can skip 
to any one of these sub-components of the ANOVA output by clicking on the appropriate 
branch of the tree diagram. So, if you wanted to skip straight to the between-group effects 
you should move the on-screen arrow to the left-hand portion of the window and click 
where it says Tests of Between-Subjects Effects. This action will highlight this part of the 
output in the main part of the viewer (see SPSS Tip 3.4). 
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There are several icons in the output viewer window that help you to do things quickly 
without using the drop-down menus. Some of these icons are the same as those described 
for the data editor window so I will concentrate mainly on the icons that are unique to the 
viewer window:

As with the data editor window, this icon activates the print menu. However, when this icon is pressed in 
the viewer window it activates a menu for printing the output (see SPSS Tip 3.4).

This icon returns you to the data editor in a flash!

This icon takes you to the last output in the viewer (so it returns you to the last procedure you conducted).

This icon promotes the currently active part of the tree structure to a higher branch of the tree. For 
example, in Figure 3.10 the Tests of Between-Subjects Effects are a sub-component under the heading 
of Univariate Analysis of Variance. If we wanted to promote this part of the output to a higher level (i.e. to 
make it a main heading) then this is done using this icon.

This icon is the opposite of the above in that it demotes parts of the tree structure. For example, in Figure 
3.10 if we didn’t want the Univariate Analysis of Variance to be a unique section we could select this 
heading and demote it so that it becomes part of the previous heading (the Graph heading). This button is 
useful for combining parts of the output relating to a specific research question.

This icon collapses parts of the tree structure, which simply means that it hides the sub-components under 
a particular heading. For example, in Figure 3.10 if we selected the heading Univariate Analysis of Variance 
and pressed this icon, all of the sub-headings would disappear. The sections that disappear from the tree 
structure don’t disappear from the output itself; the tree structure is merely condensed. This can be useful 
when you have been conducting lots of analyses and the tree diagram is becoming very complex.

This icon expands any collapsed sections. By default all of the main headings are displayed in the tree 
diagram in their expanded form. If, however, you have opted to collapse part of the tree diagram (using the 
icon above) then you can use this icon to undo your dirty work.

This icon and the following one allow you to show and hide parts of the output itself. So you can select 
part of the output in the tree diagram and click on this icon and that part of the output will disappear. It 
isn’t erased, but it is hidden from view. This icon is similar to the collapse icon listed above except that it 
affects the output rather than the tree structure. This is useful for hiding less relevant parts of the output.

          SPSS T IP  3 .4    Printing and saving the planet 1

Rather than printing all of your SPSS output on reams of paper, 
you can help the planet by printing only a selection of the out-
put. You can do this by using the tree diagram in the SPSS 
Viewer to select parts of the output for printing. For example, 
if you decided that you wanted to print out a graph but you 
didn’t want to print the whole output, you can click on the word 
GGraph in the tree structure and that graph will become high-
lighted in the output. It is then possible through the print menu 
to select to print only the selected part of the output.

It is worth noting that if you click on a main heading (such as 
Univariate Analysis of Variance) then SPSS will highlight not only 
that main heading but all of the sub-components as well. This is 
useful for printing the results of a single statistical procedure.
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This icon undoes the previous one, so if you have hidden a selected part of the output from view and you 
click on this icon, that part of the output will reappear. By default, all parts of the output are shown, so this 
icon is not active; it will become active only once you have hidden part of the output.

Although this icon looks rather like a paint roller, unfortunately it does not paint the house for you. What it 
does do is to insert a new heading into the tree diagram. For example, if you had several statistical tests 
that related to one of many research questions you could insert a main heading and then demote the 
headings of the relevant analyses so that they all fall under this new heading.

Assuming you had done the above, you can use this icon to provide your new heading with a title. The 
title you type in will actually appear in your output. So, you might have a heading like ‘Research question 
number 1’ which tells you that the analyses under this heading relate to your first research question.

This final icon is used to place a text box in the output window. You can type anything into this box. In the 
context of the previous two icons, you might use a text box to explain what your first research question is 
(e.g. ‘My first research question is whether or not boredom has set in by the end of the first chapter of my 
book. The following analyses test the hypothesis that boredom levels will be significantly higher at the end 
of the first chapter than at the beginning’).

          SPSS T IP  3 .5     Funny numbers 1

You might notice that SPSS sometimes reports numbers with the letter ‘E’ placed in the mix just to confuse you. 
For example, you might see a value such as 9.612 E-02 and many students find this notation confusing. Well, 
this notation means 9.61 × 10–2 (which might be a more familiar notation, or could be even more confusing). OK, 
some of you are still confused. Well think of E-02 as meaning ‘move the decimal place 2 places to the left’, so 
9.612 E-02 becomes 0.09612. If the notation read 9.612 E-01, then that would be 0.9612, and if it read 9.612 
E-03, that would be 0.009612. Likewise, think of E+02 (notice the minus sign has changed) as meaning ‘move 
the decimal place 2 places to the right’. So 9.612 E+02 becomes 961.2.

3.6. The SPSS SmartViewer 1

Progress is all well and good, but it usually comes at a price and with version 16 of SPSS the 
output viewer changed quite dramatically (not really in terms of what you see, but behind 
the scenes). When you save an output file in version 17, SPSS uses the file extension .spv, 
and it calls it an SPSS Viewer file. In versions of SPSS before version 16, the viewer docu-
ments were saved as SPSS output files (.spo). Why does this matter? Well, it matters mainly 
because if you try to open an SPSS Viewer file in a version earlier than 16, SPSS won’t 
know what the hell it is and will scream at you (well, it won’t open the file). Similarly in 
versions after 16, if you try to open an output file (.spo) from an earlier version of SPSS 
you won’t be able to do it. I know what you’re thinking: ‘this is bloody SPSS madness – 
statistics is hard enough as it is without versions of SPSS not being compatible with each 
other; is it trying to drive me insane?’ Well, yes, it probably is.

This is why when you install SPSS on your computer you can install the SPSS SmartViewer. 
The SPSS SmartViewer looks suspiciously like the normal SPSS Viewer but without the icons. 
In fact, it looks so similar that I’m not even going to put a screenshot of it in this book – we 
can live on the edge, just this once. So what’s so smart about the SmartViewer? Actually bug-
ger all, that’s what; it’s just a way for you to open and read your old pre-version 17 SPSS 
output files. So, if you’re not completely new to SPSS, this is a useful program to have.
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The Syntax Editor 3

I’ve mentioned earlier that sometimes it’s useful to use SPSS syntax. This is a language 
of commands for carrying out statistical analyses and data manipulations. Most of the 
time you’ll do the things you need to using SPSS dialog boxes, but SPSS syntax can be 
useful. For one thing there are certain things you can do with syntax that you can’t do 
through dialog boxes (admittedly most of these things are fairly advanced, but there will 
be a few places in this book where I show you some nice tricks using syntax). The second 
reason for using syntax is if you often carry out very similar analyses on data sets. In 
these situations it is often quicker to do the analysis and save the syntax as you go along. 
Fortunately this is easily done because many dialog boxes in SPSS have a  button. 
When you’ve specified your analysis using the dialog box, if you click on this button it 
will paste the syntax into a syntax editor window for you. To open a syntax editor win-
dow simply use the menus  and a blank syntax editor will 
appear as in Figure 3.11. In this window you can type your syntax commands into the 
command area. The rules of SPSS syntax can be quite frustrating; for example, each line 
has to end with a full stop and if you forget this full stop you’ll get an error message. In 
fact, if you have made a syntax error, SPSS will produce an error message in the Viewer 
window that identifies the line in the syntax window in which the error occurred; notice 
that in the syntax window SPSS helpfully numbers each line so that you can find the line 
in which the error occurred easily.

As we go through the book I’ll show you a few things that will give you a flavour of how 
syntax can be used. Most of you won’t have to use it, but for those that do this flavour will 
hopefully be enough to start you on your way. The window also has a navigation area (rather 
like the Viewer window). When you have a large file of syntax commands this navigation 
area can be helpful for negotiating your way to the bit of syntax that you actually need. 
Once you’ve typed in your syntax you have to run it using the  menu.  will 
run all of the syntax in the window (clicking on  will also do this), or you can highlight 
a selection of your syntax using the mouse and use  to process the selected 
syntax. You can also run the current command by using  (or press Ctrl and R on 
the keyboard), or run all the syntax from the cursor to the end of the syntax window using 

. Another thing to note is that in SPSS you can have several data files open 
at once. Rather than have a syntax window for each data file, which could get confusing, 
you can use the same syntax window, but select the data set that you want to run the syntax 
commands on before you run them using the drop-down list . 

‘I want to drown in a puddle of my own saliva’ froths Oliver, ‘tell me 
more about the syntax Window’. Really? Well, OK, there is a Flash 
movie on the companion website that guides you through how to 
use the syntax window.

OLIVER TWISTED

Please, Sir, can I 
have some more … syntax?

smart
alex
only

3.8. Saving files 1

Although most of you should be familiar with how to save files, it is a vital thing to know 
and so I will briefly describe what to do. To save files simply use the  icon (or use the 

everybody



83CHAPTER 3   ThE SPSS ENV IRONmENT

Figure 3.11  A new syntax window (top) and a syntax window with some syntax in it (bottom)

menus  or ). If the file is a new file, then clicking on this icon will 
activate the Save As ... dialog box (see Figure 3.12). If you are in the data editor when you 
select Save As … then SPSS will save the data file you are currently working on, but if you 
are in the viewer window then it will save the current output.

There are several features of the dialog box in Figure 3.12. First, you need to select a loca-
tion at which to store the file. There are many types of locations where you can save data: the 
hard drive (or drives), a USB drive, a CD or DVD, etc. (you could have many other choices 
of location on your particular computer). The first thing to do is select a main location by 
double-clicking on it: your hard drive ( ), a CD or DVD ( ), or a USB stick or other exter-
nal drive ( ). Once you have chosen a main location the dialog box will display all of the 
available folders on that particular device. Once you have selected a folder in which to save 
your file, you need to give your file a name. If you click in the space next to where it says 
File name, a cursor will appear and you can type a name. By default, the file will be saved in 
an SPSS format, so if it is a data file it will have the file extension .sav, if it is a viewer docu-
ment it will have the file extension .spv, and if it is a syntax file it will have the file extension 

Navigation
Area

Line
Number

Command
Area

Figure 3.12
The Save Data 
As dialog box
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Figure 3.13
Dialog box to 
open a file

.sps. However, you can save data in different formats such as Microsoft Excel files and tab-
delimited text. To do this just click on  and a list of possible file 
formats will be displayed. Click on the file type you require. Once a file has previously been 
saved, it can be saved again (updated) by clicking on . This icon appears in both the data 
editor and the viewer, and the file saved depends on the window that is currently active. The 
file will be saved in the location at which it is currently stored.

3.9. Retrieving a file 1

Throughout this book you will work with data files that you need to download from the 
companion website. It is, therefore, important that you know how to load these data files 
into SPSS. The procedure is very simple. To open a file, simply use the  icon (or use the 
menus ) to activate the dialog box in Figure 3.13. First, 
you need to find the location at which the file is stored. Navigate to wherever you down-
loaded the files from the website (a USB stick, or a folder on your hard drive). You should see 
a list of files and folders that can be opened. As with saving a file, if you are currently in the 
data editor then SPSS will display only SPSS data files to be opened (if you are in the viewer 
window then only output files will be displayed). If you use the menus and used the path 

 then data files will be displayed, but if you used the path 
 then viewer files will be displayed, and if you used 

 then syntax files will be displayed (you get the general 
idea). You can open a folder by double-clicking on the folder icon. Once you have tracked 
down the required file you can open it either by selecting it with the mouse and then clicking 
on , or by double-clicking on the icon next to the file you want (e.g. double-clicking 
on ). The data/output will then appear in the appropriate window. If you are in the data 
editor and you want to open a viewer file, then click on  and a 
list of alternative file formats will be displayed. Click on the appropriate file type (viewer 
document (*.spv), syntax file (*.sps), Excel file (*.xls), text file (*.dat, *.txt)) and any files of 
that type will be displayed for you to open.



85CHAPTER 3   ThE SPSS ENV IRONmENT

What have I discovered about statistics? 1

This chapter has provided a basic introduction to the SPSS environment. We’ve seen 
that SPSS uses two main windows: the data editor and the viewer. The data editor has 
both a data view (where you input the raw scores) and a variable view (where you define 
variables and their properties). The viewer is a window in which any output appears, 
such as tables, statistics and graphs. You also created your first data set by creating some 
variables and inputting some data. In doing so you discovered that we can code groups 
of people using numbers (coding variables) and discovered that rows in the data editor 
represent people (or cases of data) and columns represent different variables. Finally, we 
had a look at the syntax window and were told how to open and save files.

We also discovered that I was scared of my new school. However, with the help of 
Jonathan Land my confidence grew. With this new confidence I began to feel comfort-
able not just at school but in the world at large. It was time to explore.

Key terms that I’ve discovered
Currency variable
Data editor
Data view
Date variable
Numeric variable

SmartViewer
String variable
Syntax editor
Variable view
Viewer

Smart Alex’s tasks

Task 1MM : Smart Alex’s first task for this chapter is to save the data that you’ve entered 
in this chapter. Save it somewhere on the hard drive of your computer (or a USB 
stick if you’re not working on your own computer). Give it a sensible title and save 
it somewhere easy to find (perhaps create a folder called ‘My Data Files’ where you 
can save all of your files when working through this book).
Task 2MM : Your second task is to enter the data that I used to create Figure 3.10. These 
data show the score (out of 20) for 20 different students, some of whom are male 
and some female, and some of whom were taught using positive reinforcement (being 
nice) and others who were taught using punishment (electric shock). Just to make it 
hard, the data should not be entered in the same way that they are laid out below:

Male Female

Electric Shock Being Nice Electric Shock Being Nice

15 12 6 10

14 10 7  9

20  7 5  8

13  8 4  8

13 13 8  7
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Task 3MM : Research has looked at emotional reactions to infidelity and found that men get 
homicidal and suicidal and women feel undesirable and insecure (Shackelford, LeBlanc, & 
Drass, 2000). Let’s imagine we did some similar research: we took some men and women 
and got their partners to tell them they had slept with someone else. We then took each 
person to two shooting galleries and each time gave them a gun and 100 bullets. In one gal-
lery was a human-shaped target with a picture of their own face on it, and in the other was 
a target with their partner’s face on it. They were left alone with each target for 5 minutes 
and the number of bullets used was measured. The data are below; enter them into SPSS 
and save them as Infidelity.sav (clue: they are not entered in the format in the table!).

Male Female

Partner’s Face Own Face Partner’s Face Own Face

69 33 70  97

76 26 74  80

70 10 64  88

76 51 43 100

72 34 51 100

65 28 93  58

82 27 48  95

71 9 51  83

71 33 74  97

75 11 73  89

52 14 41  69

34 46 84  82

Answers can be found on the companion website. 

Further reading

There are many good introductory SPSS books on the market that go through similar mat erial to 
this chapter. Pallant’s SPSS survival manual and Kinnear and Gray’s SPSS XX made simple (insert 
a version number where I’ve typed XX because they update it regularly) are both excellent guides 
for people new to SPSS. There are many others on the market as well, so have a hunt around.

Online tutorials
The companion website contains the following Flash movie tutorials to accompany this chapter:

M Entering data M The Syntax window
M Exporting SPSS output to Word M The Viewer window
M Importing text data to SPSS M Using Excel with SPSS
M Selecting cases
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Figure 4.1
Explorer Field 
borrows a bike 
and gets ready to 
ride it recklessly 
around a  
caravan site 

4.1. What will this chapter tell me? 1

As I got a bit older I used to love exploring. At school they would teach you about maps and 
how important it was to know where you were going and what you were doing. I used to have 
a more relaxed view of exploration and there is a little bit of a theme of me wandering off to 
whatever looked most exciting at the time. I got lost at a holiday camp once when I was about 
3 or 4. I remember nothing about this but apparently my parents were frantically running 
around trying to find me while I was happily entertaining myself (probably by throwing myself 
head first out of a tree or something). My older brother, who was supposed to be watching 
me, got a bit of flak for that but he was probably working out equations to bend time and 
space at the time. He did that a lot when he was 7. The careless explorer in me hasn’t really 
gone away: in new cities I tend to just wander off and hope for the best, and usually get lost 
and fortunately usually don’t die (although I tested my luck once by wandering through part 

4Exploring data with graphs
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of New Orleans where apparently tourists get mugged a lot – it seemed fine to me). When 
exploring data you can’t afford not to have a map; to explore data in the way that the 6 year 
old me used to explore the world is to spin around 8000 times while drunk and then run along 
the edge of a cliff. Wright (2003) quotes Rosenthal who said that researchers should ‘make 
friends with their data’. This wasn’t meant to imply that people who use statistics may as well 
befriend their data because the data are the only friend they’ll have; instead Rosenthal meant 
that researchers often rush their analysis. Wright makes the analogy of a fine wine: you should 
savour the bouquet and delicate flavours to truly enjoy the experience. That’s perhaps over-
stating the joys of data analysis, but rushing your analysis is, I suppose, a bit like gulping down 
a bottle of wine: the outcome is messy and incoherent! To negotiate your way around your 
data you need a map, maps of data are called graphs, and it is into this tranquil and tropical 
ocean that we now dive (with a compass and ample supply of oxygen, obviously).

4.2. The art of presenting data 1

4.2.1.  What makes a good graph? 1

Before we get down to the nitty-gritty of how to draw graphs in SPSS, I want to begin by 
talking about some general issues when presenting data. SPSS (and other packages) make it 
very easy to produce very snazzy-looking graphs (see section 4.9), and you may find your-
self losing consciousness at the excitement of colouring your graph bright pink (really, it’s 
amazing how excited my undergraduate psychology students get at the prospect of bright 
pink graphs – personally I’m not a fan of pink). Much as pink graphs might send a twinge 
of delight down your spine, I want to urge you to remember why you’re doing the graph – 
it’s not to make yourself (or others) purr with delight at the pinkness of your graph, it’s to 
present information (dull, perhaps, but true).

Tufte (2001) wrote an excellent book about how data should be presented. He points 
out that graphs should, among other things:

	Show the data.

	Induce the reader to think about the data being presented (rather than some other 
aspect of the graph, like how pink it is).

	Avoid distorting the data.

	Present many numbers with minimum ink.

	Make large data sets (assuming you have one) coherent.

	Encourage the reader to compare different pieces of data.

	Reveal data.

However, graphs often don’t do these things (see Wainer, 1984, for some examples). 
Let’s look at an example of a bad graph. When searching around for the worst example of 

a graph that I have ever seen, it turned out that I didn’t need to look any further than myself – 
it’s in the first edition of this book (Field, 2000). Overexcited by SPSS’s ability to put all sorts 
of useless crap on graphs (like 3-D effects, fill effects and so on – Tufte calls these chartjunk) 
I literally went into some weird orgasmic state and produced an absolute abomination (I’m 
surprised Tufte didn’t kill himself just so he could turn in his grave at the sight of it). The only 
consolation was that because the book was published in black and white, it’s not bloody pink! 
The graph is reproduced in Figure 4.2 (you should compare this to the more sober version in 
this edition, Figure 16.11). What’s wrong with this graph?
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Figure 4.2
A cringingly bad 
example of a 
graph from the 
first edition of 
this book

	The bars have a 3-D effect: Never use 3-D plots for a graph plotting two variables 
because it obscures the data.1 In particular it makes it hard to see the values of the 
bars because of the 3-D effect. This graph is a great example because the 3-D effect 
makes the error bars almost impossible to read.

	Patterns: The bars also have patterns, which, although very pretty, merely distract 
the eye from what matters (namely the data). These are completely unnecessary!

	Cylindrical bars: What’s that all about eh? Again, they muddy the data and distract 
the eye from what is important.

	Badly labelled y-axis: ‘Number’ of what? Delusions? Fish? Cabbage-eating sea lizards 
from the eighth dimension? Idiots who don’t know how to draw graphs?

Now, take a look at the alternative version of this graph (Figure 4.3). Can you see what 
improvements have been made?

	A 2-D plot: The completely unnecessary third dimension is gone making it much 
easier to compare the values across therapies and thoughts/behaviours.

	The y-axis has a more informative label: We now know that it was the number of 
obsessive thoughts or actions per day that was being measured.

	Distractions: There are fewer distractions like patterns, cylindrical bars and the like!

	Minimum ink: I’ve got rid of superfluous ink by getting rid of the axis lines and by 
using lines on the bars rather than grid lines to indicate values on the y-axis. Tufte 
would be pleased.

You have to do a fair bit of editing to get your graphs to look like this in SPSS but section 
4.9 explains how.

1 If you do 3-D plots when you’re plotting only two variables then a bearded statistician will come to your house, lock 
you in a room and make you write I µυστ νoτ δo 3-∆ γραπησ 75,172 times on the blackboard. Really, they will.
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4.2.2.  Lies, damned lies, and … erm … graphs 1

Governments lie with statistics, but scientists shouldn’t. How you present your data makes 
a huge difference to the message conveyed to the audience. As a big fan of cheese, I’m often 
curious about whether the urban myth that it gives you nightmares is true. Shee (1964) 
reported the case of a man who had nightmares about his workmates: ‘He dreamt of one, 
terribly mutilated, hanging from a meat-hook.2 Another he dreamt of falling into a bottom-
less abyss. When cheese was withdrawn from his diet the nightmares ceased.’ This would 
not be good news if you were the minister for cheese in your country.

Figure 4.4 shows two graphs that, believe it or not, display exactly the same data: the 
number of nightmares had after eating cheese. The first panel shows how the graph should 
probably be scaled. The y-axis reflects the maximum of the scale, and this creates the correct 
impression: that people have more nightmares about colleagues hanging from meat hooks if 

2 I have similar dreams but that has more to do with some of my workmates than cheese!

Figure 4.3
Figure 4.2 drawn 
properly

Figure 4.4
Two graphs 
about cheese
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they eat cheese before bed. However, as minister for cheese, you want people to think the 
opposite; all you have to do is rescale the graph (by extending the y-axis way beyond the aver-
age number of nightmares) and there suddenly seems to be a little difference. Tempting as it is, 
don’t do this (unless, of course, you plan to be a politician at some point in your life).

4.3. The SPSS Chart Builder 1

Graphs are a really useful way to look at your data before you get to the nitty-gritty of 
actually analysing them. You might wonder why you should bother drawing graphs – after 
all, you are probably drooling like a rabid dog to get into the statistics and to discover the 
answer to your really interesting research question. Graphs are just a 
waste of your precious time, right? Data analysis is a bit like Internet 
dating (actually it’s not, but bear with me), you can scan through the 
vital statistics and find a perfect match (good IQ, tall, physically fit, 
likes arty French films, etc.) and you’ll think you have found the perfect 
answer to your question. However, if you haven’t looked at a picture, 
then you don’t really know how to interpret this information – your 
perfect match might turn out to be Rimibald the Poisonous, King of 
the Colorado River Toads, who has genetically combined himself with 
a human to further his plan to start up a lucrative rodent farm (they 
like to eat small rodents).3 Data analysis is much the same: inspect your 
data with a picture, see how it looks and only then can you interpret 
the more vital statistics.

Without delving into the long and boring history of graphs in SPSS, in versions of SPSS 
after 16 most of the old-school menus for doing graphs were eliminated in favour of the all-
singing and all-dancing Chart Builder.4 In general, SPSS’s graphing facilities have got better 
(you can certainly edit graphs more than you used to be able to – see section 4.9) but they are 
still quite limited for repeated-measures data (for this reason some of the graphs in later chap-
ters are done in SigmaPlot in case you’re wondering why you can’t replicate them in SPSS).

3 On the plus side, he would have a long sticky tongue and if you smoke his venom (which, incidentally, can kill a 
dog) you’ll hallucinate (if you’re lucky, you’d hallucinate that he wasn’t a Colorado River Toad-Human hybrid).
4 Unfortunately it’s dancing like an academic at a conference disco and singing ‘I will always love you’ in the 
wrong key after 34 pints of beer.

Why should I
bother with graphs?

             CRAMMING SAM’S TIPS    Graphs

 	The vertical axis of a graph is known as the y-axis (or ordinate) of the graph.

  	The horizontal axis of a graph is known as the x-axis (or abscissa) of the graph.

If you want to draw a good graph follow the cult of Tufte:

	Don’t create false impressions of what the data actually show (likewise, don’t hide effects!) by scaling the y-axis in some 
weird way.

	Abolish chartjunk: Don’t use patterns, 3-D effects, shadows, pictures of spleens, photos of your Uncle Fred or anything else.

	Avoid excess ink: This is a bit radical, and difficult to achieve on SPSS, but if you don’t need the axes, then get rid of them.
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Figure 4.5 shows the basic Chart Builder dialog box, which is accessed through the 
 menu. There are some important parts of this dialog box:

GalleryMM : For each type of graph, a gallery of possible variants is shown. Double-click 
on an icon to select a particular type of graph.
Variables listMM : The variables in the data editor are listed here. These can be dragged 
into drop zones to specify what is shown in a given graph.
The canvasMM : This is the main area in the dialog box and is where a preview of the 
graph is displayed as you build it.
Drop zonesMM : These zones are designated with blue dotted lines. You can drag variables 
from the variable list into these zones.

There are two ways to build a graph: the first is by using the gallery of predefined graphs 
and the second is by building a graph on an element-by-element basis. The gallery is the 
default option and this tab ( ) is automatically selected; how-
ever, if you want to build your graph from basic elements then click on the Basic Elements 
tab ( ). This changes the bottom of the dialog box in Figure 4.5 
to look like Figure 4.6.

We will have a look at building various graphs throughout this chapter rather than trying to 
explain everything in this introductory section (see also SPSS Tip 4.1). Most graphs that you are 
likely to need can be obtained using the gallery view, so I will tend to stick with this method. 

Variables list: Variables
in the data editor

are displayed here. The Canvas: An example
graph will appear here

as you build it. 

Drop Zones: Variables
can be dragged into

these zones.

Gallery: Select a
style of graph by

clicking on an item on
this list.

Figure 4.5 The SPSS Chart Builder
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4.4. Histograms: a good way to spot obvious  
problems 1

In this section we’ll look at how we can use frequency distributions to screen our data.5 
We’ll use an example to illustrate what to do. A biologist was worried about the potential 
health effects of music festivals. So, one year she went to the Download Music Festival6  

5 An alternative way to graph the distribution is a density plot, which we’ll discuss in section 4.8.5.
6 http://www.downloadfestival.co.uk.

Figure 4.6
Building a graph 
from basic 
elements

          SPSS T IP  4 .1     Strange dialog boxes 1

When you first use the Chart Builder to draw a graph 
you will see a dialog box that seems to signal an 
impending apocalypse. In fact, SPSS is just help
fully(?!) reminding you that for the Chart Builder to 
work, you need to have set the level of measure
ment correctly for each variable. That is, when you 
defined each variable you must have set them cor
rectly to be Scale, Ordinal or Nominal (see section 

3.4.2). This is because SPSS needs 
to know whether variables are cat
egorical (nominal) or continuous 
(scale) when it creates the graphs. 
If you have been diligent and set 

these properties when you entered the data then simply click on  to make the dialog disappear. If you 
forgot to set the level of measurement for any variables then click on  to go to a new dialog 
box in which you can change the properties of the variables in the data editor.
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(for those of you outside the UK, you can pretend it is Roskilde Festival, Ozzfest, 
Lollopalooza, Waken or something) and measured the hygiene of 810 concert-goers over 
the three days of the festival. In theory each person was measured on each day but because 
it was difficult to track people down, there were some missing data on days 2 and 3. 
Hygiene was measured using a standardized technique (don’t worry, it wasn’t licking the 
person’s armpit) that results in a score ranging between 0 (you smell like a corpse that’s 
been left to rot up a skunk’s arse) and 4 (you smell of sweet roses on a fresh spring day). 
Now I know from bitter experience that sanitation is not always great at these places 
(the Reading Festival seems particularly bad) and so this researcher predicted that per-
sonal hygiene would go down dramatically over the three days of the festival. The data 
file, DownloadFestival.sav, can be found on the companion website (see section 3.9 for a 
reminder of how to open a file). We encountered histograms (frequency distributions) in 
Chapter 1; we will now learn how to create one in SPSS using these data.

SELF-TEST  What does a histogram show? 

First, access the chart builder as in Figure 4.5 and then select Histogram in the list 
labelled Choose from to bring up the gallery shown in Figure 4.7. This gallery has four 
icons representing different types of histogram, and you should select the appropriate one 
either by double-clicking on it, or by dragging it onto the canvas in the Chart Builder:

Simple histogramMM : Use this option when you just want to see the frequencies of scores 
for a single variable.

Stacked histogramMM : If you had a grouping variable (e.g. whether men or women 
attended the festival) you could produce a histogram in which each bar is split by 
group. In the example of gender, each bar would have two colours, one representing 
men and the other women. This is a good way to compare the relative frequency of 
scores across groups (e.g. were there more smelly women than men?).

Simple
Histogram

Stacked
Histogram

Frequency
Polygon

Population
Pyramid

Figure 4.7
The histogram 
gallery
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Frequency polygonMM : This option displays the same data as the simple histogram except 
that it uses a line instead of bars to show the frequency, and the area below the line 
is shaded.

Population pyramidMM : Like a stacked histogram this shows the relative frequency of 
scores in two populations. It plots the variable (in this case hygiene) on the verti-
cal axis and the frequencies for each population on the horizontal: the populations 
appear back to back on the graph. If the bars either side of the dividing line are 
equally long then the distributions have equal frequencies.

We are going to do a simple histogram so double-click on the icon for a simple histo-
gram (Figure 4.7). The Chart Builder dialog box will now show a preview of the graph in 
the canvas area. At the moment it’s not very exciting (top of Figure 4.8) because we haven’t 
told SPSS which variables we want to plot. Note that the variables in the data editor are 
listed on the left-hand side of the Chart Builder, and any of these variables can be dragged 
into any of the spaces surrounded by blue dotted lines (called drop zones).

A histogram plots a single variable (x-axis) against the frequency of scores (y-axis), so 
all we need to do is select a variable from the list and drag it into . Let’s do 
this for the hygiene scores on day 1 of the festival. Click on this variable in the list and drag 
it to  as shown in Figure 4.8; you will now find the histogram previewed 
on the canvas. (Although SPSS calls the resulting graph a preview it’s not really because it 
does not use your data to generate this image – it is a preview only of the general form of 
the graph, and not what your specific graph will actually look like.) To draw the histogram 
click on  (see also SPSS Tip 4.2).

Click on the Hygiene
Day 1 variable and drag

it to this Drop Zone.

Figure 4.8
Defining a 
histogram in the 
Chart Builder
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Click on the Hygiene
Day 1 variable and drag

it to this Drop Zone.

          SPSS T IP  4 .2     Further histogram options 1

You might notice another dialog box floating about making a nuisance of itself (if not, then consider yourself lucky, 
or click on ). This dialog box allows you to edit various features of a histogram (Figure 4.9). For example, 
you can change the statistic displayed: the default is Histogram but if you wanted to express values as a percent
age rather than a frequency, you could select Histogram Percent. You can also decide manually how you want to 
divide up your data to compute frequencies.

If you click on  then another dialog box appears (Figure 4.9), in which you can determine properties 
of the ‘bins’ used to make the histogram. You can think of a bin as, well, a rubbish bin (this is a pleasing ana
logy as you will see): on each rubbish bin you write a score (e.g. 3), or a range of scores (e.g. 1–3), then you go 
through each score in your data set and throw it into the rubbish bin with the appropriate label on it (so, a score of 
2 gets thrown into the bin labelled 1–3). When you have finished throwing your data into these rubbish bins, you 
count how many scores are in each bin. A histogram is created in much the same way; either SPSS can decide 
how the bins are labelled (the default), or you can decide. Our hygiene scores range from 0 to 4, therefore we 
might decide that our bins should begin with 0 and we could set the  property to 0. We might 
also decide that we want each bin to contain scores between whole numbers (i.e. 0–1, 1–2, 2–3, etc.), in which 
case we could set the  to be 1. This is what I’ve done in Figure 4.9, but for the time being leave the 
default settings (i.e. everything set to ).

Figure 4.8 
(continued)
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The resulting histogram is shown in Figure 4.10. The first thing that should leap out at 
you is that there appears to be one case that is very different to the others. All of the scores 
appear to be squashed up at one end of the distribution because they are all less than 5 
(yielding a very pointy distribution!) except for one, which has a value of 20! This is an 
outlier: a score very different to the rest (Jane Superbrain Box 4.1). Outliers bias the mean 
and inflate the standard deviation (you should have discovered this from the self-test tasks 
in Chapters 1 and 2) and screening data is an important way to detect them. You can look 
for outliers in two ways: (1) graph the data with a histogram (as we have done here) or a 
boxplot (as we will do in the next section), or (2) look at z-scores (this is quite complicated 
but if you want to know see Jane Superbrain Box 4.2).

The outlier shown on the histogram is particularly odd because it has a score of 20, 
which is above the top of our scale (remember, our hygiene scale ranged only from 0 to 
4), and so it must be a mistake (or the person had obsessive compulsive disorder and had 
washed themselves into a state of extreme cleanliness). However, with 810 cases, how 
on earth do we find out which case it was? You could just look through the data, but that 
would certainly give you a headache and so instead we can use a boxplot which is another 
very useful graph for spotting outliers.

Figure 4.9 Element Properties of a Histogram
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Figure 4.10
Histogram of the 
Day 1 Download 
Festival hygiene 
scores

horizontal line represents the mean of the scores when the 
outlier is not included (4.83). This line is higher than the origi
nal mean indicating that by ignoring this score the mean 
increases (it increases by 0.4). This example shows how 
a single score, from some meanspirited badger turd, can 
bias the mean; in this case the first rating (of 2) drags the 
average down. In practical terms this had a bigger implica
tion because Amazon rounded off to half numbers, so that 
single score made a difference between the average rating 
reported by Amazon as a generally glowing 5 stars and the 
less impressive 4.5 stars. (Nowadays Amazon sensibly pro
duces histograms of the ratings and has a better rounding 
system.) Although I am consumed with bitterness about this 
whole affair, it has at least given me a great example of an 
outlier! (Data for this example were taken from http://www 
.amazon.co.uk/ in about 2002.)

An outlier is a score very different from the rest of the data. 
When we analyse data we have to be aware of such val
ues because they bias the model we fit to the data. A good 
example of this bias can be seen by looking at the mean. 
When the first edition of this book came out in 2000, I was 
quite young and became very excited about obsessively 
checking the book’s ratings on Amazon.co.uk. These rat
ings can range from 1 to 5 stars. Back in 2002, the first edi
tion of this book had seven ratings (in the order given) of 2, 
5, 4, 5, 5, 5, 5. All but one of these ratings are fairly similar 
(mainly 5 and 4) but the first rating was quite different from 
the rest – it was a rating of 2 (a mean and horrible rating). 
The graph plots seven reviewers on the horizontal axis and 
their ratings on the vertical axis and there is also a horizontal 
line that represents the mean rating (4.43 as it happens). It 
should be clear that all of the scores except one lie close to 
this line. The score of 2 is very different and lies some way 
below the mean. This score is an example of an outlier – a 
weird and unusual person (sorry, I mean score) that deviates 
from the rest of humanity (I mean, data set). The dashed 

JANE SUPERBRAIN 4.1

What is an outlier? 1
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4.5. Boxplots (box–whisker diagrams) 1

Boxplots or box–whisker diagrams are really useful ways to display your data. At the 
centre of the plot is the median, which is surrounded by a box the top and bottom 
of which are the limits within which the middle 50% of observations fall (the inter-
quartile range). Sticking out of the top and bottom of the box are two whiskers which 
extend to the most and least extreme scores respectively. First, we will plot some 
using the Chart Builder and then we’ll look at what they tell us in more detail.

In the Chart Builder (Figure 4.5) select Boxplot in the list labelled Choose from 
to bring up the gallery shown in Figure 4.11. There are three types of boxplot you 
can choose:

Simple boxplotMM : Use this option when you want to plot a boxplot of a single variable, 
but you want different boxplots produced for different categories in the data (for 
these hygiene data we could produce separate boxplots for men and women).

Clustered boxplotMM : This option is the same as the simple boxplot except that you 
can select a second categorical variable on which to split the data. Boxplots for this 
second variable are produced in different colours. For example, we might have mea-
sured whether our festival-goer was staying in a tent or a nearby hotel during the 
festival. We could produce boxplots not just for men and women, but within men and 
women we could have different coloured boxplots for those who stayed in tents and 
those who stayed in hotels.

1-D boxplotMM : Use this option when you just want to see a boxplot for a single variable. 
(This differs from the simple boxplot only in that no categorical variable is selected 
for the x-axis.)

In the data file of hygiene scores we also have information about the gender of the 
concert-goer. Let’s plot this information as well. To make our boxplot of the day 1 hygiene 
scores for males and females, double-click on the simple boxplot icon (Figure 4.11), then 
from the variable list select the hygiene day 1 score variable and drag it into  
and select the variable gender and drag it to . The dialog should now look 
like Figure 4.12 – note that the variable names are displayed in the drop zones, and the 
canvas now displays a preview of our graph (e.g. there are two boxplots representing each 
gender). Click on  to produce the graph.

Did someone say a
box of whiskas?

Simple Boxplot Clustered Boxplot 1-D Boxplot

Figure 4.11
The boxplot 
gallery
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The resulting boxplot is shown in Figure 4.13. It shows a separate boxplot for the men 
and women in the data. You may remember that the whole reason that we got into this 
boxplot malarkey was to help us to identify an outlier from our histogram (if you have 
skipped straight to this section then you might want to backtrack a bit). The important 
thing to note is that the outlier that we detected in the histogram is shown up as an asterisk 
(*) on the boxplot and next to it is the number of the case (611) that’s producing this out-
lier. (We can also tell that this case was a female.) If we go to the data editor (data view), 
we can locate this case quickly by clicking on  and typing 611 in the dialog box that 
appears. That takes us straight to case 611. Looking at this case reveals a score of 20.02, 
which is probably a mistyping of 2.02. We’d have to go back to the raw data and check. 
We’ll assume we’ve checked the raw data and it should be 2.02, so replace the value 20.02 
with the value 2.02 before we continue this example.

SELF-TEST  Now we have removed the outlier in the 
data, try replotting the boxplot. The resulting graph 
should look like Figure 4.14

Figure 4.14 shows the boxplots for the hygiene scores on day 1 after the outlier has been 
corrected. Let’s look now in more detail about what the boxplot represents. First, it shows us 
the lowest score (the bottom horizontal line on each plot) and the highest (the top horizontal 

Figure 4.12
Completed dialog 
box for a simple 
boxplot
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line of each plot). Comparing the males and females we can see they both had similar low scores  
(0, or very smelly) but the women had a slightly higher top score (i.e. the most fragrant female 
was more hygienic than the cleanest male). The lowest edge of the tinted box is the lower quar-
tile (see section 1.7.3); therefore, the distance between the lowest horizontal line and the lowest 
edge of the tinted box is the range between which the lowest 25% of scores fall. This range is 
slightly larger for women than for men, which means that if we take the most unhygienic 25% 
females then there is more variability in their hygiene scores than the lowest 25% of males. The 
box (the tinted area) shows the interquartile range (see section 1.7.3): that is, 50% of the scores 
are bigger than the lowest part of the tinted area but smaller than the top part of the tinted area. 
These boxes are of similar size in the males and females.

The top edge of the tinted box shows the value of the upper quartile (see section 1.7.3); 
therefore, the distance between the top edge of the shaded box and the top horizontal line 
shows the range between which the top 25% of scores fall. In the middle of the tinted box is 
a slightly thicker horizontal line. This represents the value of the median (see section 1.7.2). 

Figure 4.13
Boxplot of 
hygiene scores 
on day 1 of 
the Download 
Festival split by 
gender
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The median for females is higher than for males, which tells us that the middle female 
scored higher, or was more hygienic, than the middle male.

Boxplots show us the range of scores, the range between which the middle 50% of 
scores fall, and the median, the upper quartile and lower quartile score. Like histograms, 
they also tell us whether the distribution is symmetrical or skewed. If the whiskers are the 
same length then the distribution is symmetrical (the range of the top and bottom 25% of 
scores is the same); however, if the top or bottom whisker is much longer than the oppo-
site whisker then the distribution is asymmetrical (the range of the top and bottom 25% 
of scores is different). Finally, you’ll notice some circles above the male boxplot. These 
are cases that are deemed to be outliers. Each circle has a number next to it that tells us 
in which row of the data editor to find that case. In Chapter 5 we’ll see what can be done 
about these outliers.

SELF-TEST  Produce boxplots for the day 2 and  
day 3 hygiene scores and interpret them.

(i.e. we ignore whether the zscore is positive or negative) 
then in a normal distribution we’d expect about 5% to have 
absolute values greater than 1.96 (we often use 2 for con
venience), and 1% to have absolute values greater than 
2.58, and none to be greater than about 3.29.

Alternatively, you could use some SPSS syntax in a syn
tax window to create the zscores and count them for you. 
I’ve written the file Outliers (Percentage of Z-scores).

sps (on the companion website) to produce 
a table for day 2 of the Download Festival 
hygiene data. Load this file and run the syn
tax, or open a syntax window (see section 
3.7) and type the following (remembering all 

of the full stops – the explanations of the code are sur
rounded by *s and don’t need to be typed).

DESCRIPTIVES
VARIABLES= day2 /SAVE.

To check for outliers we can look at zscores. We saw in 
section 1.7.4 that zscores are simply a way of standard-
izing a data set by expressing the scores in terms of a dis
tribution with a mean of 0 and a standard deviation of 1. 
In doing so we can use benchmarks that we can apply 
to any data set (regardless of what its original mean and 
standard deviation were). We also saw in this section 
that to convert a score into zscores we simply take each 
score (X) and convert it to a zscore by subtracting the 
mean of all scores (X

–
) from it and dividing by the stan

dard deviation of all scores (s).
We can get SPSS to do this conversion for us using 

the  dialog box, 
selecting a variable (such as day 2 of the hygiene data 
as in the diagram), or several variables, and selecting the 
Save standardized values as variables before we click on 

. SPSS creates a new variable in the data editor (with 
the same name prefixed with the letter z). To look for outli
ers we could use these zscores and count how many fall 
within certain important limits. If we take the absolute value 

JANE SUPERBRAIN 4.2

Using z-scores to find outliers 3
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4.6. Graphing means: bar charts and error bars 1

Bar charts are the usual way for people to display means. How you create these graphs 
in SPSS depends largely on how you collected your data (whether the means come from 
independent cases and are, therefore, independent, or came from the same cases and so are 
related). For this reason we will look at a variety of situations.

In all of these situations, our starting point is the Chart Builder (Figure 4.5). In this dialog 
box select Bar in the list labelled Choose from to bring up the gallery shown in Figure 4.15. 
This gallery has eight icons representing different types of bar chart, and you should select 
the appropriate one either by double-clicking on it, or by dragging it onto the canvas.

*This uses SPSS’s descriptives function on the vari
able day2 (instead of using the dialog box) to save the 
zscores in the data editor (these will be saved as a vari
able called zday2).*

COMPUTE outlier1=abs(zday2).
EXECUTE.

*This creates a new variable in the data editor called 
outlier1, which contains the absolute values of the 
zscores that we just created.* 

RECODE
outlier1 (3.29 thru Highest=4) (2.58 thru Highest=3) 

(1.96 thru Highest=2) (Lowest thru 2=1).
EXECUTE.

*This recodes the variable called outlier1 according 
to the benchmarks I’ve described. So, if a value is greater 
than 3.29 it’s assigned a code of 4, if it’s between 2.58 
and 3.29 then it’s assigned a code of 3, if it’s between 
1.96 and 2.58 it’s assigned a code of 2, and if it’s less 
than 1.96 it gets a code of 1.*

VALUE LABELS outlier1 
1 ‘Absolute zscore less than 2’ 2 ‘Absolute zscore 

greater than 1.96’ 3 ‘Absolute zscore greater than 2.58’ 
4 ‘Absolute zscore greater than 3.29’.

*This assigns appropriate labels to the codes we 
defined above.*

FREQUENCIES
VARIABLES=outlier1
/ORDER=ANALYSIS.

*Finally, this syntax uses the frequencies facility of 
SPSS to produce a table telling us the percentage of 1s, 
2s, 3s and 4s found in the variable outlier1.*

The table produced by this syntax is shown below. Look 
at the column labelled ‘Valid Percent’. We would expect to 
see 95% of cases with absolute value less than 1.96, 5% 
(or less) with an absolute value greater than 1.96, and 1% 
(or less) with an absolute value greater than 2.58. Finally, 
we’d expect no cases above 3.29 (well, these cases are 
significant outliers). For hygiene scores on day 2 of the 
festival, 93.2% of values had zscores less than 1.96; put 
another way, 6.8% were above (looking at the table we get 
this figure by adding 4.5% + 1.5% + 0.8%). This is slightly 
more than the 5% we would expect in a normal distribu
tion. Looking at values above 2.58, we would expect to 
find only 1%, but again here we have a higher value of 
2.3% (1.5% + 0.8%). Finally, we find that 0.8% of cases 
were above 3.29 (so, 0.8% are significant outliers). This 
suggests that there may be too many outliers in this data 
set and we might want to do something about them!

OUTLIER1

246 30.4 93.2 93.2
12 1.5 4.5 97.7

4 .5 1.5 99.2
2 .2 .8 100.0

264 32.6 100.0

546 67.4

810 100.0

Absolute z-score less than 2
Absolute z-score greater than 1.96
Absolute z-score greater than 2.58
Absolute z-score greater than 3.29
Total

Valid

SystemMissing

Total

Frequency Percent Valid Percent Cumulative
Percent
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Simple barMM : Use this option when you just want to see the means of scores across dif-
ferent groups of cases. For example, you might want to plot the mean ratings of two 
films.

Clustered barMM : If you had a second grouping variable you could produce a simple bar 
chart (as above) but with bars produced in different colours for levels of a second 
grouping variable. For example, you could have ratings of the two films, but for each 
film have a bar representing ratings of ‘excitement’ and another bar showing ratings 
of ‘enjoyment’.

Stacked barMM : This is really the same as the clustered bar except that the different 
coloured bars are stacked on top of each other rather than being side by side.

Simple 3-D barMM : This is also the same as the clustered bar except that the second 
grouping variable is displayed not by different coloured bars, but by an additional 
axis. Given what I said in section 4.2 about 3-D effects obscuring the data, my advice 
is not to use this type of graph, but to stick to a clustered bar chart.

Clustered 3-D barMM : This is like the clustered bar chart above except that you can add a 
third categorical variable on an extra axis. The means will almost certainly be impos-
sible for anyone to read on this type of graph so don’t use it.

Stacked 3-D barMM : This graph is the same as the clustered 3-D graph except the differ-
ent coloured bars are stacked on top of each other instead of standing side by side. 
Again, this is not a good type of graph for presenting data clearly.

Simple error barMM : This is the same as the simple bar chart except that instead of bars, 
the mean is represented by a dot, and a line represents the precision of the estimate 
of the mean (usually the 95% confidence interval is plotted, but you can plot the 
standard deviation or standard error of the mean also). You can add these error bars 
to a bar chart anyway, so really the choice between this type of graph and a bar chart 
with error bars is largely down to personal preference.

Clustered error barMM : This is the same as the clustered bar chart except that the mean 
is displayed as a dot with an error bar around it. These error bars can also be added 
to a clustered bar chart. 

Clustered 3-D Bar Stacked 3-D Bar Simple Error Bar 
Clustered 
Error Bar

Simple Bar Clustered Bar Stacked Bar Simple 3-D BarFigure 4.15
The bar chart 
gallery
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Figure 4.16
Element 
Properties of a 
bar chart

4.6.1.  Simple bar charts for independent means 1

To begin with, imagine that a film company director was interested in whether there was 
really such a thing as a ‘chick flick’ (a film that typically appeals to women more than men). 
He took 20 men and 20 women and showed half of each sample a film that was supposed to 
be a ‘chick flick’ (Bridget Jones’ Diary), and the other half of each sample a film that didn’t 
fall into the category of ‘chick flick’ (Memento, a brilliant film by the way). In all cases he 
measured their physiological arousal as an indicator of how much they enjoyed the film. 
The data are in a file called ChickFlick.sav on the companion website. Load this file now.

First of all, let’s just plot the mean rating of the two films. We have just one group-
ing variable (the film) and one outcome (the arousal); therefore, we want a simple bar 
chart. In the Chart Builder double-click on the icon for a simple bar chart (Figure 4.15). 
On the canvas you will see a graph and two drop zones: one for the y-axis and one for 
the x-axis. The y-axis needs to be the dependent variable, or the thing you’ve measured, 
or more simply the thing for which you want to display the mean. In this case it would 
be arousal, so select arousal from the variable list and drag it into the y-axis drop zone  
( ). The x-axis should be the variable by which we want to split the arousal data. 
To plot the means for the two films, select the variable film from the variable list and drag it 
into the drop zone for the x-axis ( ). 

How do I plot an
error bar graph?

Figure 4.16 shows some other options for the bar chart. The main dialog box 
should appear when you select the type of graph you want, but if it doesn’t click  
on  in the Chart Builder. There are three important features of this dialog box. 
The first is that, by default, the bars will display the mean value. This is fine, but just 
note that you can plot other summary statistics such as the median or mode. Second, 
just because you’ve selected a simple bar chart doesn’t mean that you have to have 
a bar chart. You can select to show an I-bar (the bar is reduced to a line with bars 
showing the top and bottom), or just a whisker (the bar is reduced to a vertical line). 
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The I-bar and whisker options might be useful when you’re not planning on showing error bars, 
but because we are going to show error bars we should stick with a bar. Finally, you can ask SPSS 
to add error bars to your bar chart to create an error bar chart by selecting . You 
have a choice of what your error bars represent. Normally, error bars show the 95% confidence 
interval (see section 2.5.2), and I have selected this option ( ).7 Note, though, that 
you can change the width of the confidence interval displayed by changing the ‘95’ to a differ-
ent value. You can also display the standard error (the default is to show 2 standard errors, but 
you can change this to 1) or standard deviation (again, the default is 2 but this could be changed 
to 1 or another value). It’s important that when you change these properties that you click on 

: if you don’t then the changes will not be applied to Chart Builder. Figure 4.17 shows the 
completed Chart Builder. Click on  to produce the graph.

7 It’s also worth mentioning at this point that error bars from SPSS are suitable only for normally distributed data 
(see section 5.4).

Figure 4.17
Dialog boxes  
for a simple  
bar chart with 
error bar 

Figure 4.18
Bar chart of  
the mean arousal 
for each of the 
two films
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Figure 4.19  
Dialog boxes for a 
clustered bar chart 
with error bar

Figure 4.18 shows the resulting bar chart. This graph displays the mean (and the confi-
dence interval of those means) and shows us that on average, people were more aroused by 
Memento than they were by Bridget Jones’ Diary. However, we originally wanted to look 
for gender effects, so this graph isn’t really telling us what we need to know. The graph we 
need is a clustered graph.8

4.6.2.  Clustered bar charts for independent means 1

To do a clustered bar chart for means that are independent (i.e. have come from different 
groups) we need to double-click on the clustered bar chart icon in the Chart Builder (Figure 
4.15). On the canvas you will see a graph as with the simple bar chart but there is now an 
extra drop zone: . All we need to do is to drag our second grouping variable into 
this drop zone. As with the previous example, select arousal from the variable list and drag 
it into , then select film from the variable list and drag it into . In 
addition, though, select the Gender variable and drag it into . This will mean that 
bars representing males and females will be displayed in different colours (but see SPSS Tip 
4.3). As in the previous section, select error bars in the properties dialog box and click on 

 to apply them to the Chart Builder. Figure 4.19 shows the completed Chart Builder. 
Click on  to produce the graph.

8 You can also use a drop-line graph, which is described in section 4.8.6.

Figure 4.20 shows the resulting bar chart. Like the simple bar chart this graph tells us 
that arousal was overall higher for Memento than Bridget Jones’ Diary, but it also splits 
this information by gender. The mean arousal for Bridget Jones’ Diary shows that males 
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were actually more aroused during this film than females. This indicates they enjoyed 
the film more than the women did. Contrast this with Memento, for which arousal  
levels are comparable in males and females. On the face of it, this contradicts the idea 
of a ‘chick flick’: it actually seems that men enjoy chick flicks more than the chicks 
(probably because it’s the only help we get to understand the complex workings of the 
female mind!).

Figure 4.20
Bar chart of the 
mean arousal  
for each of the 
two films

          SPSS T IP  4 .3     Colours or patterns? 1

By default, when you plot graphs on which you group the data by 
some categorical variable (e.g. a clustered bar chart, or a grouped 
scatterplot) these groups are plotted in different colours. You can 
change this default so that the groups are plotted using differ
ent patterns. In a bar chart this means that bars will be filled not 
with different colours, but with different patterns. With a scatterplot 
(see section 4.8.2) it means that different symbols are used to plot 
data from different groups. To make this change, doubleclick in 
the  drop zone (bar chart) or  (scatterplot) to 
bring up a new dialog box. Within this dialog box there is a drop
down list labelled Distinguish Groups by and in this list you can 
select Color or Pattern. To change the default select Pattern and 
then click on . Obviously you can switch back to displaying 
different groups in different colours in the same way
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4.6.3.  Simple bar charts for related means 1

Hiccups can be a serious problem: Charles Osborne apparently got a case of hiccups while 
slaughtering a hog (well, who wouldn’t?) that lasted 67 years. People have many methods 
for stopping hiccups (a surprise; holding your breath), but actually medical science has put 
its collective mind to the task too. The official treatment methods include tongue-pulling 
manoeuvres, massage of the carotid artery, and, believe it or not, digital rectal massage 
(Fesmire, 1988). I don’t know the details of what the digital rectal massage involved, but 
I can probably imagine. Let’s say we wanted to put digital rectal massage to the test (erm, 
as a cure of hiccups I mean). We took 15 hiccup sufferers, and during a bout of hiccups 
administered each of the three procedures (in random order and at intervals of 5 minutes) 
after taking a baseline of how many hiccups they had per minute. We counted the number 
of hiccups in the minute after each procedure. Load the file Hiccups.sav from the compan-
ion website. Note that these data are laid out in different columns; there is no grouping 
variable that specifies the interventions because each patient experienced all interventions. 
In the previous two examples we have used grouping variables to specify 
aspects of the graph (e.g. we used the grouping variable film to specify the 
x-axis). For repeated-measures data we will not have these grouping vari-
ables and so the process of building a graph is a little more complicated (but 
not a lot more).

To plot the mean number of hiccups go to the Chart Builder and double-
click on the icon for a simple bar chart (Figure 4.15). As before, you will see 
a graph on the canvas with drop zones for the x- and y-axis. Previously we 
specified the column in our data that contained data from our outcome meas-
ure on the y-axis, but for these data we have four columns containing data 
on the number of hiccups (the outcome variable). What we have to do then 
is to drag all four of these variables from the variable list into the y-axis drop 
zone. We have to do this simultaneously. First, we need to select multiple 
items in the variable list: to do this select the first variable by clicking on it with the mouse. 
The variable will be highlighted in blue. Now, hold down the Ctrl key on the keyboard and 
click on a second variable. Both variables are now highlighted in blue. Again, hold down the 
Ctrl key and click on a third variable in the variable list and so on for the fourth. In cases 
in which you want to select a list of consecutive variables, you can do this very quickly by 
simply clicking on the first variable that you want to select (in this case baseline), hold down 
the Shift key on the keyboard and then click on the last variable that you want to select (in 
this case digital rectal massage); notice that all of the variables in between have been selected 
too. Once the four variables are selected you can drag them by clicking on any one of the 
variables and then dragging them into  as shown in Figure 4.21.

Once you have dragged the four variables onto the y-axis drop zones a new dialog box 
appears (Figure 4.22). This box tells us that SPSS is creating two temporary variables. One 
is called Summary, which is going to be the outcome variable (i.e. what we measured – in 
this case the number of hiccups per minute). The other is called index and this variable 
will represent our independent variable (i.e. what we manipulated – in this case the type of 
intervention). SPSS uses these temporary names because it doesn’t know what our particu-
lar variables represent, but we should change them to something more helpful. Just click 
on  to get rid of this dialog box.

We need to edit some of the properties of the graph. Figure 4.23 shows the options that need 
to be set: if you can’t see this dialog box then click on  in the Chart Builder. In the left panel 
of Figure 4.23 just note that I have selected to display error bars (see the previous two sections 
for more information). The middle panel is accessed by clicking on X-Axis1 (Bar1) in the list 
labelled Edit Properties of which allows us to edit properties of the horizontal axis. The first 

How do I plot a bar
graph of repeated
measures data?
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Figure 4.21
Specifying a 
simple bar chart 
for repeated-
measures data

Figure 4.22
The Create 
Summary Group 
dialog box 

thing we need to do is give the axis a title and I have typed Intervention in the space labelled 
Axis Label. This label will appear on the graph. Also, we can change the order of our variables 
if we want to by selecting a variable in the list labelled Order and moving it up or down using  
and . If we change our mind about displaying one of our variables then we can also remove it 
from the list by selecting it and clicking on . Click on  for these changes to take effect. 
The right panel of Figure 4.23 is accessed by clicking on Y-Axis1 (Bar1) in the list labelled 
Edit Properties of which allows us to edit properties of the vertical axis. The main change that  
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I have made here is to give the axis a label so that the final graph has a useful description on the 
axis (by default it will just say Mean, which isn’t very helpful). I have typed ‘Mean Number of 
Hiccups Per Minute’ in the box labelled Axis Label. Also note that you can use this dialog box 
to set the scale of the vertical axis (the minimum value, maximum value and the major incre-
ment, which is how often a mark is made on the axis). Mostly you can let SPSS construct the 
scale automatically and it will be fairly sensible – and even if it’s not you can edit it later. Click 
on  to apply the changes. 

Figure 4.24 shows the completed Chart Builder. Click on  to produce the graph. 
The resulting bar chart in Figure 4.25 displays the mean (and the confidence interval of 
those means) number of hiccups at baseline and after the three interventions. Note that 
the axis labels that I typed in have appeared on the graph. The error bars on graphs of 
repeated-measures designs aren’t actually correct as we will see in Chapter 9; I don’t want 
to get into the reasons why here because I want to keep things simple, but if you’re doing 
a graph of your own data then I would read section 9.2 before you do.

We can conclude that the amount of hiccups after tongue pulling was about the same as 
at baseline; however, carotid artery massage reduced hiccups, but not by as much as a good 
old-fashioned digital rectal massage. The moral here is: if you have hiccups, find something 
digital and go amuse yourself for a few minutes.

4.6.4.  Clustered bar charts for related means 1

Now we have seen how to plot means that are related (i.e. show different conditions 
applied to the same group of cases), you might well wonder what you do if you have a sec-
ond independent variable that had been measured in the same sample. You’d do a clustered 
bar chart, right? Wrong? Actually, the SPSS Chart Builder doesn’t appear to be able to cope 
with this situation at all – at least not that I can work out from playing about with it. (Cue a 
deluge of emails along the general theme of ‘Dear Dr Field, I was recently looking through 
my FEI Titan 80-300 monochromated scanning transmission electron microscope and I 
think I may have found your brain. I have enclosed it for you – good luck finding it in the 

Figure 4.23
Setting Element 
Properties for 
a repeated-
measures graph
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Figure 4.24
Completed 
Chart Builder 
for a repeated-
measures graph

Figure 4.25
Bar chart of the 
mean number 
of hiccups at 
baseline and 
after various 
interventions 

envelope. May I suggest that you take better care next time there is a slight gust of wind or 
else, I fear, it might blow out of your head again. Yours, Professor Enormobrain. PS Doing 
clustered charts for related means in SPSS is simple for anyone whose mental acumen can 
raise itself above that of a louse.’) 
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4.6.5.  Clustered bar charts for ‘mixed’ designs 1

The Chart Builder might not be able to do charts for multiple repeated-measures vari ables, 
but it can graph what is known as a mixed design (see Chapter 14). This is a design in 
which you have one or more independent variables measured using different groups, and 
one or more independent variables measured using the same sample. Basically, the Chart 
Builder can produce a graph provided you have only one variable that was a repeated 
measure.

We all like to text-message (especially students in my lectures who feel the need to text-
message the person next to them to say ‘Bloody hell, this guy is so boring I need to poke 
out my own eyes.’). What will happen to the children, though? Not only will they develop 
super-sized thumbs, they might not learn correct written English. Imagine we conducted 
an experiment in which a group of 25 children was encouraged to send text messages on 
their mobile phones over a six-month period. A second group of 25 children was forbidden 
from sending text messages for the same period. To ensure that kids in this latter group 
didn’t use their phones, this group was given armbands that administered painful shocks in 
the presence of microwaves (like those emitted from phones).9 The outcome was a score on 
a grammatical test (as a percentage) that was measured both before and after the interven-
tion. The first independent variable was, therefore, text message use (text messagers versus 
controls) and the second independent variable was the time at which grammatical ability 
was assessed (baseline or after six months). The data are in the file Text Messages.sav. 

To graph these data we need to follow the procedure for graphing related means in 
section 4.6.3. Our repeated-measures variable is time (whether grammatical ability was 
measured at baseline or six months) and is represented in the data file by two columns, 
one for the baseline data and the other for the follow-up data. In the Chart Builder select 
these two variables simultaneously by clicking on one and then holding down the Ctrl key 
on the keyboard and clicking on the other. When they are both highlighted click on either 
one and drag it into  as shown in Figure 4.26. The second variable (whether 
children text messaged or not) was measured using different children and so is represented 
in the data file by a grouping variable (group). This variable can be selected in the variable 
list and dragged into . The two groups will be displayed as different-coloured bars.  
The finished Chart Builder is in Figure 4.27. Click on  to produce the graph.

SELF-TEST  Use what you learnt in section 4.6.3 to 
add error bars to this graph and to label both the x  
(I suggest ‘Time’) and yaxis (I suggest ‘Mean Grammar 
Score (%)’).

Figure 4.28 shows the resulting bar chart. It shows that at baseline (before the interven-
tion) the grammar scores were comparable in our two groups; however, after the interven-
tion, the grammar scores were lower in the text messagers than in the controls. Also, if you 
compare the two blue bars you can see that text messagers’ grammar scores have fallen over 
the six months; compare this to the controls (green bars) whose grammar scores are fairly 
similar over time. We could, therefore, conclude that text messaging has a detrimental effect 
on children’s understanding of English grammar and civilization will crumble, with Abaddon 
rising cackling from his bottomless pit to claim our wretched souls. Maybe.

9 Although this punished them for any attempts to use a mobile phone, because other people’s phones also emit 
microwaves, an unfortunate side effect was that these children acquired a pathological fear of anyone talking on 
a mobile phone.
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Figure 4.26
Selecting the 
repeated-
measures 
variable in the 
Chart Builder

Figure 4.27
Completed dialog 
box for an error 
bar graph of a 
mixed design
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4.7. Line charts 1

Line charts are bar charts but with lines instead of bars. Therefore, everything we have just 
done with bar charts we can display as a line chart instead. As ever, our starting point is the 
Chart Builder (Figure 4.5). In this dialog box select Line in the list labelled Choose from to 
bring up the gallery shown in Figure 4.29. This gallery has two icons and you should select 
the appropriate one either by double-clicking on it, or by dragging it onto the canvas.

Simple lineMM : Use this option when you just want to see the means of scores across 
different groups of cases.

Multiple lineMM : This is equivalent to the clustered bar chart in the previous section in 
that you can plot means of a particular variable but produce different-coloured lines 
for each level of a second variable. 

Figure 4.28
Error bar graph 
of the mean 
grammar score 
over six months 
in children who 
were allowed to 
text-message 
versus those who 
were forbidden

Figure 4.29
The line chart 
gallery

Simple Line Multiple Line
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Summary
Point Plot

Simple
Dot Plot

Scatterplot
Matrix

Drop–Line

Simple Scatter Grouped Scatter
Simple 3-D

Scatter
Grouped 3-D

Scatter

Figure 4.30
The scatter/dot 
gallery

SELF-TEST  As I said, the procedure for producing line 
graphs is basically the same as for bar charts except 
that you get lines on your graphs instead of bars. 
Therefore, you should be able to follow the previous 
sections for bar charts but selecting a simple line chart 
instead of a simple bar chart, and selecting a multiple 
line chart instead of a clustered bar chart. I would like 
you to produce line charts of each of the bar charts in 
the previous section. In case you get stuck, the selftest 
answers that can be downloaded from the companion 
website will take you through it step by step. 

4.8. Graphing relationships: the scatterplot 1

Sometimes we need to look at the relationships between variables (rather 
than their means, or frequencies). A scatterplot is simply a graph that plots 
each person’s score on one variable against their score on another. A scat-
terplot tells us several things about the data, such as whether there seems 
to be a relationship between the variables, what kind of relationship it is 
and whether any cases are markedly different from the others. We saw 
earlier that a case that differs substantially from the general trend of the 
data is known as an outlier and such cases can severely bias statistical pro-
cedures (see Jane Superbrain Box 4.1 and section 7.6.1.1 for more detail). 
We can use a scatterplot to show us if any cases look like outliers.

Drawing a scatterplot using SPSS is dead easy using the Chart Builder. As 
with all of the graphs in this chapter, our starting point is the Chart Builder 
(Figure 4.5). In this dialog box select Scatter/Dot in the list labelled Choose 

from to bring up the gallery shown in Figure 4.30. This gallery has eight icons representing 
different types of scatterplot, and you should select the appropriate one either by double-
clicking on it, or by dragging it onto the canvas.

How do I draw a graph
of the relationship between

two variables?

How do I draw a graph
of the relationship between

two variables?
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Simple scatterMM : Use this option when you want to plot values of one continuous vari-
able against another.

Grouped scatterMM : This is like a simple scatterplot except that you can display points 
belonging to different groups in different colours (or symbols).

Simple 3-D scatterMM : Use this option to plot values of one continuous variable against 
values of two others.

Grouped 3-D scatterMM : Use this option if you want to plot values of one continuous vari-
able against two others but differentiating groups of cases with different-coloured dots.

Summary point plotMM : This graph is the same as a bar chart (see section 4.6) except 
that a dot is used instead of a bar.

Simple dot plotMM : Otherwise known as density plot, this graph is similar to a histogram 
(see section 4.4) except that rather than having a summary bar representing the fre-
quency of scores, a density plot shows each individual score as a dot. They can be 
useful, like a histogram, for looking at the shape of a distribution.

Scatterplot matrixMM : This option produces a grid of scatterplots showing the relation-
ships between multiple pairs of variables. 

Drop-lineMM : This option produces a graph that is similar to a clustered bar chart (see, for 
example, section 4.6.2) but with a dot representing a summary statistic (e.g. the mean) 
instead of a bar, and with a line connecting means of different groups. These graphs can 
be useful for comparing statistics, such as the mean, across different groups. 

4.8.1.  Simple scatterplot 1

This type of scatterplot is for looking at just two variables. For example, a psychologist 
was interested in the effects of exam stress on exam performance. So, she devised and 
validated a questionnaire to assess state anxiety relating to exams (called the Exam Anxiety 
Questionnaire, or EAQ). This scale produced a measure of anxiety scored out of 100. 
Anxiety was measured before an exam, and the percentage mark of each student on the 
exam was used to assess the exam performance. The first thing that the psychologist should 
do is draw a scatterplot of the two variables (her data are in the file Exam Anxiety.sav and 
you should load this file into SPSS).

In the Chart Builder double-click on the icon for a simple scatterplot (Figure 4.31). On 
the canvas you will see a graph and two drop zones: one for the y-axis and one for the x-axis. 
The y-axis needs to be the dependent variable (the outcome that was measured).10 In this case 
the outcome is Exam Performance (%), so select it from the variable list and drag it into the 
y-axis drop zone ( ). The horizontal axis should display the independent variable 
(the variable that predicts the outcome variable). In this case it is Exam Anxiety, so click on 
this variable in the variable list and drag it into the drop zone for the x-axis ( ). 
Figure 4.17 shows the completed Chart Builder. Click on  to produce the graph.

Figure 4.32 shows the resulting scatterplot; yours won’t have a funky line on it yet, but 
don’t get too depressed about it because I’m going to show you how to add this line very soon. 
The scatterplot tells us that the majority of students suffered from high levels of anxiety (there 
are very few cases that had anxiety levels below 60). Also, there are no obvious outliers in 

10 In experimental research the independent variable is usually plotted on the horizontal axis and the dependent 
variable on the vertical axis because changes in the independent variable (the variable that the experimenter has 
manipulated) cause changes in the dependent variable. In correlational research, variables are measured simulta-
neously and so no cause-and-effect relationship can be established. As such, these terms are used loosely.
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Figure 4.31
Completed  
Chart Builder 
dialog box for a 
simple scatterplot

Figure 4.32
Scatterplot of 
exam anxiety 
and exam 
performance
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that most points seem to fall within the vicinity of other points. There also seems to be some 
general trend in the data, shown by the line, such that higher levels of anxiety are associated 
with lower exam scores and low levels of anxiety are almost always associated with 
high examination marks. Another noticeable trend in these data is that there were no 
cases having low anxiety and low exam performance – in fact, most of the data are 
clustered in the upper region of the anxiety scale.

Often when you plot a scatterplot it is useful to plot a line that summarizes the 
relationship between variables (this is called a regression line and we will discover 
more about it in Chapter 7). All graphs in SPSS can be edited by double-clicking 
on them in the SPSS Viewer to open them in the SPSS Chart Editor (see Figure 
4.40). For more detail on editing graphs see section 4.9; for now, just click on  
in the Chart Editor to open the Properties dialog box (Figure 4.33). Using this dia-
log box we can add a line to the graph that represents the overall mean of all data, 
a linear (straight line) model, a quadratic model, a cubic model and 
so on (these trends are described in section 10.2.11.5). Let’s look at 
the linear regression line; select this option and then click on  
to apply the changes to the graph. It should now look like Figure 
4.32. What if we want to see whether male and female students had different reactions to 
exam anxiety? To do this, we need a grouped scatterplot.

4.8.2.  Grouped scatterplot 1

This type of scatterplot is for looking at two continuous variables, but when you want to 
colour data points by a third categorical variable. Sticking with our previous example, we 

Figure 4.33
Properties dialog 
box for a simple 
scatterplot

How do I fit a regression
line to a scatterplot?
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could look at the relationship between exam anxiety and exam performance in males and 
females (our grouping variable). To do this we double-click on the grouped scatter icon in 
the Chart Builder (Figure 4.30). As in the previous example, we select Exam Performance 
(%) from the variable list, and drag it into the  drop zone, and select Exam 
Anxiety and drag it into  drop zone. There is an additional drop zone  
( ) into which we can drop any categorical variable. In this case, Gender is the only 
categorical variable in our variable list, so select it and drag it into this drop zone. (If you 
want to display the different genders using different-shaped symbols rather than different-
coloured symbols then read SPSS Tip 4.3). Figure 4.34 shows the completed Chart Builder. 
Click on  to produce the graph.

Figure 4.35 shows the resulting scatterplot; as before I have added regression lines, but 
this time I have added different lines for each group. We saw in the previous section that 
graphs can be edited by double-clicking on them in the SPSS Viewer to open them in the SPSS 
Chart Editor (Figure 4.40). We also saw that we could fit a regression line that summarized 
the whole data set by clicking on . We could do this again, if we wished. However, having 
split the data by gender it might be more interesting to fit separate lines for our two groups. 
This is easily achieved by clicking on  in the Chart Editor. As before, this action opens the 
Properties dialog box (Figure 4.33) and we can ask for a linear model to be fitted to the data 
(see the previous section); however, this time when we click on  SPSS will fit a separate 
line for the men and women. These lines (Figure 4.35) tell us that the relationship between 
exam anxiety and exam performance was slightly stronger in males (the line is steeper) indi-
cating that men’s exam performance was more adversely affected by anxiety than women’s 
exam anxiety. (Whether this difference is significant is another issue – see section 6.7.1.)

Figure 4.34
Completed Chart 
Builder dialog 
box for a grouped 
scatterplot
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4.8.3.  Simple and grouped 3-D scatterplots 1

I’m now going to show you one of the few times when you can use a 3-D graph without 
a bearded statistician locking you in a room. Having said that, even in this situation it 
is, arguably, still not a clear way to present data. A 3-D scatterplot is used to display the 
relationship between three variables. The reason why it’s alright to use a 3-D graph here 
is because the third dimension is actually telling us something useful (and isn’t just there 
to look pretty). As an example, imagine our researcher decided that exam anxiety might 
not be the only factor contributing to exam performance. So, she also asked participants to 
keep a revision diary from which she calculated the number of hours spent revising for the 
exam. She wanted to look at the relationships between these variables simultaneously.

We can use the same data set as in the previous example, but this time in the Chart Builder 
double-click on the simple 3-D scatter icon (Figure 4.30). The graph preview on the canvas 
differs from ones that we have seen before in that there is a third axis and a new drop zone 
( ). It doesn’t take a genius to work out that we simply repeat what we have done for 
previous scatterplots by dragging another continuous variable into this new drop zone. So, 
select Exam Performance (%) from the variable list and drag it into the  drop 
zone, and select Exam Anxiety and drag it into the  drop zone. Now select 
Time Spent Revising in the variable list and drag it into the  drop zone. Figure 4.36 
shows the completed Chart Builder. Click on  to produce the graph.

A 3-D scatterplot is great for displaying data concisely; however, as the resulting scat-
terplot in Figure 4.37 shows, it can be quite difficult to interpret (can you really see what 
the relationship between exam revision and exam performance is?). As such, its usefulness 
in exploring data can be limited. However, you can try to improve the interpretability by 
changing the angle of rotation of the graph (it sometimes helps, and sometimes doesn’t). 
To do this double-click on the scatterplot in the SPSS Viewer to open it in the SPSS Chart 
Editor (Figure 4.40). Then click on  in the Chart Editor to open the 3-D Rotation dialog 
box. You can change the values in this dialog box to achieve different views of data cloud. 

Figure 4.35
Scatterplot of 
exam anxiety 
and exam 
performance  
split by gender
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Figure 4.36
Completed Chart 
Builder for a 3-D 
scatterplot

Have a play with the different values and see what happens; ultimately you’ll have 
to decide which angle best represents the relationship for when you want to put the 
graph on a 2-D piece of paper! If you end up in some horrid pickle by putting ran-
dom numbers in the 3-D Rotation dialog box then simply click on  to restore 
the original view.

What about if we wanted to split the data cloud on our 3-D plot into different 
groups? This is very simple (so simple that I’m sure you can work it out for yourself); 
in the Chart Builder double-click on the grouped 3-D scatter icon (Figure 4.15). The 
graph preview on the canvas will look the same as for the simple 3-D scatterplot 

except that our old friend the  drop zone is back. We can simply drag our categori-
cal variable (in this case Gender) into this drop zone.

SELF-TEST  Based on my minimal (and no doubt 
unhelpful) summary, produce a 3D scatterplot of the 
data in Figure 4.37 but with the data split by gender. To 
make things a bit more tricky see if you can get SPSS to 
display different symbols for the two groups rather than 
two colours (see SPSS Tip 4.3). A full guided answer 
can be downloaded from the companion website
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4.8.4.  Matrix scatterplot 1

Instead of plotting several variables on the same axes on a 3-D scatterplot (which, as we have 
seen, can be difficult to interpret), it is possible to plot a matrix of 2-D scatterplots. This type 
of plot allows you to see the relationship between all combinations of many different pairs 
of variables. We’ll use the same data set as with the other scatterplots in this chapter. First, 
access the Chart Builder and double-click on the icon for a scatterplot matrix (Figure 4.30). 
A different type of graph to what you have seen before will appear on the canvas, and it has 
only one drop zone ( ). We need to drag all of the variables that we would 
like to see plotted against each other into this single drop zone. We have dragged multiple 
variables into a drop zone in previous sections, but, to recap, we first need to select multiple 
items in the variable list: to do this select the first variable (Time Spent Revising) by clicking 
on it with the mouse. The variable will be highlighted in blue. Now, hold down the Ctrl key 
on the keyboard and click on a second variable (Exam Performance %). Both variables are 
now highlighted in blue. Again, hold down the Ctrl key and click on a third variable (Exam 
Anxiety). (We could also have simply clicked on Time Spent Revising, then held down the 
Shift key on the keyboard and then clicked on Exam Anxiety.) Once the three variables  
are selected, click on any one of them and then drag them into  as shown in 
Figure 4.38. Click on  to produce the graph in Figure 4.39.

The six scatterplots in Figure 4.39 represent the various combinations of each variable 
plotted against each other variable. So, the grid references represent the following plots:

B1MM : revision time (Y) vs. exam performance (X)
C1MM : revision time (Y) vs. anxiety (X)
C2MM : exam performance (Y) vs. anxiety (X)
A2MM : exam performance (Y) vs. revision time (X)
B3MM : anxiety (Y) vs. exam performance (X)
A3MM : anxiety (Y) vs. revision time (X)

Figure 4.37
A 3-D scatterplot 
of exam 
performance 
plotted against 
exam anxiety 
and the amount 
of time spent 
revising for the 
exam
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Thus, the three scatterplots below the diagonal of the matrix are the same plots as the ones 
above the diagonal but with the axes reversed. From this matrix we can see that revision time 
and anxiety are inversely related (so, the more time spent revising the less anxiety the partici-
pant had about the exam). Also, in the scatterplot of revision time against anxiety (grids C1 
and A3) there looks as though there is one possible outlier – there is a single participant who 
spent very little time revising yet suffered very little anxiety about the exam. As all partici-
pants who had low anxiety scored highly on the exam, we can deduce that this person also 
did well on the exam (don’t you just hate a smart alec!). We could choose to examine this case 
more closely if we believed that their behaviour was caused by some external factor (such as 
taking brain-pills!). Matrix scatterplots are very convenient for examining pairs of relation-
ships between variables (see SPSS Tip 4.4). However, I don’t recommend plotting them for 
more than three or four variables because they become very confusing indeed!

Figure 4.38
Chart Builder 
dialog box for a 
matrix scatterplot

          SPSS T IP  4 .4    Regression lines on a scatterplot matrix 1

You can add regression lines to each scatterplot in the matrix in exactly the same way as for a simple scatterplot. 
First, doubleclick on the scatterplot matrix in the SPSS Viewer to open it in the SPSS Chart Editor, then click on 

 to open the Properties dialog box. Using this dialog box add a line to the graph that represents the linear 
model (this should be set by default). Click on  to apply the changes. Each panel of the matrix should now 
show a regression line.
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4.8.5.  Simple dot plot or density plot 1

I mentioned earlier that the simple dot plot or density plot as it is also known is a histogram 
except that each data point is plotted (rather than using a single summary bar to show each 
frequency). Like a histogram, the data are still placed into bins (SPSS Tip 4.2) but a dot is 
used to represent each data point. As such, you should be able to follow the instructions 
for a histogram to draw one.

Figure 4.39
Matrix scatterplot 
of exam 
performance, 
exam anxiety and 
revision time. 
Grid references 
have been added 
for clarity

SELF-TEST  Doing a simple dot plot in the Chart 
Builder is quite similar to drawing a histogram. Reload the 
DownloadFestival.sav data and see if you can produce 
a simple dot plot of the Download Festival day 1 hygiene 
scores. Compare the resulting graph to the earlier 
histogram of the same data (Figure 4.10). Remember 
that your starting point is to doubleclick on the icon for 
a simple dot plot in the Chart Builder (Figure 4.30). The 
instructions for drawing a histogram (section 4.4) might 
then help – if not there is full guidance in the additional 
material on the companion website. 
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4.8.6.  Drop-line graph 1

I also mentioned earlier that the drop-line plot is fairly similar to a clustered bar chart (or 
line chart) except that each mean is represented by a dot (rather than a bar), and within 
groups these dots are linked by a line (contrast this with a line graph where dots are joined 
across groups, rather than within groups). The best way to see the difference is to plot one 
and to do this you can apply what you were told about clustered line graphs (section 4.6.2) 
to this new situation.

4.9. Editing graphs 1

We have already seen how to add regression lines to scatterplots (section 4.8.1). You can edit 
almost every aspect of the graph by double-clicking on the graph in the SPSS Viewer to open it 
in a new window called the Chart Editor (Figure 4.40). Once in the Chart Editor you can click on 
virtually anything that you want to change and change it. There are also many buttons that you 
can click on to add elements to the graph (such as grid lines, regression lines, data labels). You 
can change the bar colours, the axes titles, the scale of each axis and so on. You can also do things 
like make the bars three-dimensional. However, tempting as these tools may be (it can look quite 
pretty) try to remember the advice I gave at the start of this chapter when editing your graphs.

Once in the Chart Editor (Figure 4.41) there are several icons that you can click on 
to change aspects of the graph. Whether a particular icon is active depends on the type 
of chart that you are editing (e.g. the icon to fit a regression line will not work on a bar 
chart). The figure tells you what most of the icons do, and to be honest most of them are 
fairly self-explanatory (you don’t need me to explain what the icon for adding a title does).  
I would suggest playing around with these features.

You can also edit parts of the graph by selecting them and then changing their proper-
ties. To select part of the graph simply click on it, it will become highlighted in blue and a 
new dialog box will appear (Figure 4.42). This Properties dialog box enables you to change 
virtually anything about the item that you have selected. Rather than spend a lot of time 
here showing you the various properties (there are lots) there is a tutorial in the additional 
website material (see Oliver Twisted).

SELF-TEST  Doing a dropline plot in the Chart Builder is 
quite similar to drawing a clustered bar chart. Reload the 
ChickFlick.sav data and see if you can produce a dropline 
plot of the arousal scores. Compare the resulting graph to the 
earlier clustered bar chart of the same data (Figure 4.20). The 
instructions in section 4.6.2 might help.

SELF-TEST  Now see if you can produce a dropline plot of the 
Text Messages.sav data from earlier in this chapter. Compare 
the resulting graph to the earlier clustered bar chart of the same 
data (Figure 4.28). The instructions in section 4.6.5 might help.

Remember that your starting point for both tasks is to doubleclick 
on the icon for a dropline plot in the Chart Builder (Figure 4.30).

There is full guidance for both examples in the additional 
material on the companion website.



127CHAPTER 4   ExPlOR ING DATA wITh GRAPhS

Double-click anywhere
on the graph to open
it in the SPSS Chart

Editor

Figure 4.40 Opening a graph for editing in the SPSS Chart Editor
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What have I discovered about statistics? 1

This chapter has looked at how to inspect your data using graphs. We’ve covered a lot of 
different graphs. We began by covering some general advice on how to draw graphs and 
we can sum that up as minimal is best: no pink, no 3-D effects, no pictures of Errol your 
pet ferret superimposed on the graph – oh, and did I mention no pink? We have looked at 
graphs that tell you about the distribution of your data (histograms, boxplots and density 
plots), that show summary statistics about your data (bar charts, error bar charts, line 
charts, drop-line charts) and that show relationships between variables (scatterplots). We 
ended the chapter by looking at how we can edit graphs in SPSS to make them look mini-
mal (and of course to colour them pink, but we know better than to do that, don’t we?).

We also discovered that I liked to explore as a child. I was constantly dragging my dad 
(or was it the other way around?) over piles of rocks along any beach we happened to be 
on. However, at this time I also started to explore great literature, although unlike my 
cleverer older brother who was reading Albert Einstein’s papers (well, Isaac Asimov) as an 
embryo, my literary preferences were more in keeping with my intellect as we shall see.

Figure 4.42
To select an 
element in the 
graph simply 
click on it and its 
Properties dialog 
box will appear

‘Blue and green should never be seen!’, shrieks Oliver with so much 
force that his throat starts to hurt. ‘This graph offends my delicate artis
tic sensibilities. It must be changed immediately!’ Never fear Oliver, the 
editing functions on SPSS are quite a lot better than they used to be 
and it’s possible to create some very tasteful graphs. However, these 
facilities are so extensive that I could probably write a whole book on 

them. In the interests of saving trees, I have prepared a tutorial and flash movie that is available in the additional material 
that can be downloaded from the companion website. We look at an example of how to edit an error bar chart to make it 
conform to some of the guidelines that I talked about at the beginning of this chapter. In doing so we will look at how to 
edit the axes, add grid lines, change the bar colours, change the background and borders. It’s a very extensive tutorial!

OLIVER TWISTED

Please, Sir, can I 
have some more … 
graphs?
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Key terms that I’ve discovered
Bar chart
Boxplot (box–whisker plot)
Chart Builder
Chart Editor
Chartjunk
Density plot

Error bar chart
Line chart
Outlier
Regression line
Scatterplot

Smart Alex’s tasks

Task 1MM : Using the data from Chapter 2 (which you should have saved, but if you 
didn’t re-enter it from Table 3.1) plot and interpret the following graphs: 1

	An error bar chart showing the mean number of friends for students and 
lecturers.

	An error bar chart showing the mean alcohol consumption for students and lecturers.
	An error line chart showing the mean income for students and lecturers.
	An error line chart showing the mean neuroticism for students and lecturers.
	A scatterplot with regression lines of alcohol consumption and neuroticism 

grouped by lecturer/student.
	A scatterplot matrix with regression lines of alcohol consumption, neuroticism 

and number of friends.

Task 2MM : Using the Infidelity.sav data from Chapter 3 (see Smart Alex’s task) plot a 
clustered error bar chart of the mean number of bullets used against the self and the 
partner for males and females. 1

Answers can be found on the companion website. 

Further reading
Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics Press.
Wainer, H. (1984). How to display data badly. American Statistician, 38(2), 137–147.
Wright, D. B., & Williams, S. (2003). Producing bad results sections. The Psychologist, 16, 646–648. 

(This is a very accessible article on how to present data. It is currently available from http://www.
sussex.ac.uk/Users/danw/nc/rm1graphlinks.htm or Google Dan Wright.)

http.//junkcharts.typepad.com/is an amusing look at bad graphs.

Online tutorial
The companion website contains the following Flash movie tutorial to accompany this chapter:

M Editing graphs

Interesting real research
Fesmire, F. M. (1988). Termination of intractable hiccups with digital rectal massage. Annals of 

Emergency Medicine, 17(8), 872.
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Figure 5.1
I came first in 
the competition 
for who has the 
smallest brain

5.1. What will this chapter tell me? 1

When we were learning to read at primary school, we used to read versions of stories by the 
famous storyteller Hans Christian Andersen. One of my favourites was the story of the ugly 
duckling. This duckling was a big ugly grey bird, so ugly that even a dog would not bite him. 
The poor duckling was ridiculed, ostracized and pecked by the other ducks. Eventually, it 
became too much for him and he flew to the swans, the royal birds, hoping that they would 
end his misery by killing him because he was so ugly. As he stared into the water, though, he 
saw not an ugly grey bird but a beautiful swan. Data are much the same. Sometimes they’re just 
big, grey and ugly and don’t do any of the things that they’re supposed to do. When we get data 
like these, we swear at them, curse them, peck them and hope that they’ll fly away and be killed 

5Exploring assumptions
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by the swans. Alternatively, we can try to force our data into becoming beautiful swans. That’s 
what this chapter is all about: assessing how much of an ugly duckling of a data set you have, 
and discovering how to turn it into a swan. Remember, though, a swan can break your arm.1

5.2. What are assumptions? 1

Some academics tend to regard assumptions as rather tedious things about which 
no one really need worry. When I mention statistical assumptions to my fellow 
psychologists they tend to give me that raised eyebrow, ‘good grief, get a life’ look 
and then ignore me. However, there are good reasons for taking assumptions 
seriously. Imagine that I go over to a friend’s house, the lights are on and it’s obvi-
ous that someone is at home. I ring the doorbell and no one answers. From that 
experience, I conclude that my friend hates me and that I am a terrible, unlovable, 
person. How tenable is this conclusion? Well, there is a reality that I am trying 
to tap (i.e. whether my friend likes or hates me), and I have collected data about 
that reality (I’ve gone to his house, seen that he’s at home, rang the doorbell and 
got no response). Imagine that in reality my friend likes me (he never was a good 

judge of character!); in this scenario, my conclusion is false. Why have my data led me to the 
wrong conclusion? The answer is simple: I had assumed that my friend’s doorbell was work-
ing and under this assumption the conclusion that I made from my data was accurate (my 
friend heard the bell but chose to ignore it because he hates me). However, this assumption 
was not true – his doorbell was not working, which is why he didn’t answer the door – and as 
a consequence the conclusion I drew about reality was completely false.

Enough about doorbells, friends and my social life: the point to remember is that when assump-
tions are broken we stop being able to draw accurate conclusions about reality. Different statistical 
models assume different things, and if these models are going to reflect reality accurately then 
these assumptions need to be true. This chapter is going to deal with some particularly ubiquitous 
assumptions so that you know how to slay these particular beasts as we battle our way through 
the rest of the book. However, be warned: some tests have their own unique two-headed, fire-
breathing, green-scaled assumptions and these will jump out from behind a mound of blood-
soaked moss and try to eat us alive when we least expect them to. Onward into battle …

5.3. Assumptions of parametric data 1

Many of the statistical procedures described in this book are paramet-
ric tests based on the normal distribution (which is described in sec-
tion 1.7.4). A parametric test is one that requires data from one of the 
large catalogue of distributions that statisticians have described and for 
data to be parametric certain assumptions must be true. If you use a 
parametric test when your data are not parametric then the results are 
likely to be inaccurate. Therefore, it is very important that you check 
the assumptions before deciding which statistical test is appropriate. 
Throughout this book you will become aware of my obsession with 
assumptions and checking them. Most parametric tests based on the 
normal distribution have four basic assumptions that must be met for 
the test to be accurate. Many students find checking assumptions a 

pretty tedious affair, and often get confused about how to tell whether or not an assump-
tion has been met. Therefore, this chapter is designed to take you on a step-by-step tour 
of the world of parametric assumptions (wow, how exciting!). Now, you may think that 

1 Although it is theoretically possible, apparently you’d have to be weak boned, and swans are nice and wouldn’t 
do that sort of thing.

Why bother with
assumptions?

What are the
assumptions of parametric

data?
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assumptions are not very exciting, but they can have great benefits: for one thing you can 
impress your supervisor/lecturer by spotting all of the test assumptions that they have vio-
lated throughout their careers. You can then rubbish, on statistical grounds, the theories 
they have spent their lifetime developing – and they can’t argue with you2 – but they can 
poke your eyes out! The assumptions of parametric tests are:

Normally distributed data1 : This a tricky and misunderstood assumption because it 
means different things in different contexts. For this reason I will spend most of the 
chapter discussing this assumption! In short, the rationale behind hypothesis test-
ing relies on having something that is normally distributed (in some cases it’s the 
sampling distribution, in others the errors in the model) and so if this assumption 
is not met then the logic behind hypothesis testing is flawed (we came across these 
principles in Chapters 1 and 2). 

Homogeneity of variance2 : This assumption means that the variances should be the 
same throughout the data. In designs in which you test several groups of participants 
this assumption means that each of these samples comes from populations with the 
same variance. In correlational designs, this assumption means that the variance of 
one variable should be stable at all levels of the other variable (see section 5.6).

Interval data3 : Data should be measured at least at the interval level. This assumption 
is tested by common sense and so won’t be discussed further (but do reread section 
1.5.1.2 to remind yourself of what we mean by interval data).

Independence4 : This assumption, like that of normality, is different depending on the 
test you’re using. In some cases it means that data from different participants are 
independent, which means that the behaviour of one participant does not influence 
the behaviour of another. In repeated-measures designs (in which participants are 
measured in more than one experimental condition), we expect scores in the exper-
imental conditions to be non-independent for a given participant, but behaviour 
between different participants should be independent. As an example, ima gine two 
people, Paul and Julie, were participants in an experiment where they had to indicate 
whether they remembered having seen particular photos earlier on in the experi-
ment. If Paul and Julie were to confer about whether they’d seen certain pictures 
then their answers would not be independent: Julie’s response to a given question 
would depend on Paul’s answer, and this would violate the assumption of inde-
pendence. If Paul and Julie were unable to confer (if they were locked in different 
rooms) then their responses should be independent (unless they’re telepathic): Paul’s 
responses should not be influenced by Julie’s. In regression, however, this assump-
tion also relates to the errors in the regression model being uncorrelated, but we’ll 
discuss that more in Chapter 7.

We will, therefore, focus in this chapter on the assumptions of normality and homogeneity 
of variance.

5.4. The assumption of normality 1

We encountered the normal distribution back in Chapter 1; we know what it looks like 
and we (hopefully) understand it. You’d think then that this assumption would be easy to 

2 When I was doing my Ph.D., we were set a task by our statistics lecturer in which we had to find some published 
papers and criticize the statistical methods in them. I chose one of my supervisor’s papers and proceeded to slag 
off every aspect of the data analysis (and I was being very pedantic about it all). Imagine my horror when my 
supervisor came bounding down the corridor with a big grin on his face and declared that, unbeknownst to me, 
he was the second marker of my essay. Luckily, he had a sense of humour and I got a good mark. 
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understand – it just means that our data are normally distributed, right? Actually, no. In 
many statistical tests (e.g. the t-test) we assume that the sampling distribution is normally 
distributed. This is a problem because we don’t have access to this distribution – we can’t 
simply look at its shape and see whether it is normally distributed. However, we know from 
the central limit theorem (section 2.5.1) that if the sample data are approximately normal 
then the sampling distribution will be also. Therefore, people tend to look at their sample 
data to see if they are normally distributed. If so, then they have a little party to celebrate 
and assume that the sampling distribution (which is what actually matters) is also. We also 
know from the central limit theorem that in big samples the sampling distribution tends to 
be normal anyway – regardless of the shape of the data we actually collected (and remember 
that the sampling distribution will tend to be normal regardless of the population distribution 
in samples of 30 or more). As our sample gets bigger then, we can be more confident that the 
sampling distribution is normally distributed (but see Jane Superbrain Box 5.1).

The assumption of normality is also important in research using regression (or general 
linear models). General linear models, as we will see in Chapter 7, assume that errors in the 
model (basically, the deviations we encountered in section 2.4.2) are normally distributed.

In both cases it might be useful to test for normality and that’s what this section is 
dedicated to explaining. Essentially, we can look for normality visually, look at values that 
quantify aspects of a distribution (i.e. skew and kurtosis) and compare the distribution we 
have to a normal distribution to see if it is different.

5.4.1.   Oh no, it’s that pesky frequency distribution again:  
checking normality visually 1

We discovered in section 1.7.1 that frequency distributions are a useful way to look at the 
shape of a distribution. In addition, we discovered how to plot these graphs in section 4.4. 
Therefore, we are already equipped to look for normality in our sample using a graph. 
Let’s return to the Download Festival data from Chapter 4. Remember that a biologist 
had visited the Download Festival (a rock and heavy metal festival in the UK) and assessed 
people’s hygiene over the three days of the festival using a standardized technique that 
results in a score ranging between 0 (you smell like a rotting corpse that’s hiding up a 
skunk’s anus) and 5 (you smell of sweet roses on a fresh spring day). The data file can be 
downloaded from the companion website (DownloadFestival.sav) – remember to use the 
version of the data for which the outlier has been corrected (if you haven’t a clue what  
I mean then read section 4.4 or your graphs will look very different to mine!). 

SELF-TEST  Using what you learnt in section 4.4 plot 
histograms for the hygiene scores for the three days of 
the Download Festival. 

There is another useful graph that we can inspect to see if a distribution is normal called 
a P–P plot (probability–probability plot). This graph plots the cumulative probability of 
a variable against the cumulative probability of a particular distribution (in this case we 
would specify a normal distribution). What this means is that the data are ranked and 
sorted. Then for each rank the corresponding z-score is calculated. This is the expected 
value that the score should have in a normal distribution. Next the score itself is converted 
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to a z-score (see section 1.7.4). The actual z-score is plotted against the expected z-score. 
If the data are normally distributed then the actual z-score will be the same as the expected 
z-score and you’ll get a lovely straight diagonal line. This ideal scenario is helpfully plot-
ted on the graph and your job is to compare the data points to this line. If values fall on 
the diagonal of the plot then the variable is normally distributed, but deviations from the 
diagonal show deviations from normality.

To get a P–P plot use  to access the dialog 
box in Figure 5.2. There’s not a lot to say about this dialog box really because the default 
options will compare any variables selected to a normal distribution, which is what we 
want (although note that there is a drop-down list of different distributions against which 
you could compare your data). Select the three hygiene score variables in the variable list 
(click on the day 1 variable, then hold down Shift and select the day 3 variable and the 
day 2 scores will be selected as well). Transfer the selected variables to the box labelled 
Variables by clicking on . Click on  to draw the graphs.

Figure 5.3 shows the histograms (from the self-test task) and the corresponding P–P 
plots. The first thing to note is that the data from day 1 look a lot more healthy since we’ve 
removed the data point that was mis-typed back in section 4.5. In fact the distribution is 
amazingly normal looking: it is nicely symmetrical and doesn’t seem too pointy or flat – 
these are good things! This is echoed by the P–P plot: note that the data points all fall very 
close to the ‘ideal’ diagonal line.

However, the distributions for days 2 and 3 are not nearly as symmetrical. In fact, they 
both look positively skewed. Again, this can be seen in the P–P plots by the data values devi-
ating away from the diagonal. In general, what this seems to suggest is that by days 2 and 3, 
hygiene scores were much more clustered around the low end of the scale. Remember that 
the lower the score, the less hygienic the person is, so this suggests that generally people 
became smellier as the festival progressed. The skew occurs because a substantial minority 
insisted on upholding their levels of hygiene (against all odds!) over the course of the fes-
tival (baby wet-wipes are indispensable I find). However, these skewed distributions might 
cause us a problem if we want to use parametric tests. In the next section we’ll look at ways 
to try to quantify the skewness and kurtosis of these distributions.

Figure 5.2
Dialog box  
for obtaining  
P–P plots
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5.4.2.  Quantifying normality with numbers 1

It is all very well to look at histograms, but they are subjective and open to abuse (I can 
imagine researchers sitting looking at a completely distorted distribution and saying ‘yep, 

Figure 5.3 Histograms (left) and P–P plots (right) of the hygiene scores over the three days of the Download Festival
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well Bob, that looks normal to me’, and Bob replying ‘yep, sure does’). Therefore, having 
inspected the distribution of hygiene scores visually, we can move on to look at ways to 
quantify the shape of the distributions and to look for outliers. To further explore the distri-
bution of the variables, we can use the frequencies command (

). The main dialog box is shown in Figure 5.4. The variables in the data editor 
are listed on the left-hand side, and they can be transferred to the box labelled Variable(s) 
by clicking on a variable (or highlighting several with the mouse) and then clicking on . 
If a variable listed in the Variable(s) box is selected using the mouse, it can be transferred 
back to the variable list by clicking on the arrow button (which should now be pointing in 
the opposite direction). By default, SPSS produces a frequency distribution of all scores in 
table form. However, there are two other dialog boxes that can be selected that provide 
other options. The statistics dialog box is accessed by clicking on , and the charts 
dialog box is accessed by clicking on .

Figure 5.4
Dialog boxes for 
the frequencies 
command
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The statistics dialog box allows you to select several ways in which a distribution of 
scores can be described, such as measures of central tendency (mean, mode, median), meas-
ures of variability (range, standard deviation, variance, quartile splits), measures of shape 
(kurtosis and skewness). To describe the characteristics of the data we should select the 
mean, mode, median, standard deviation, variance and range. To check that a distribution 
of scores is normal, we need to look at the values of kurtosis and skewness (see section 
1.7.1). The charts option provides a simple way to plot the frequency distribution of scores 
(as a bar chart, a pie chart or a histogram). We’ve already plotted histograms of our data so 
we don’t need to select these options, but you could use these options in future analyses. 
When you have selected the appropriate options, return to the main dialog box by clicking 
on . Once in the main dialog box, click on  to run the analysis.

SPSS OutPut 5.1

SPSS Output 5.1 shows the table of descriptive statistics for the three variables in this 
example. From this table, we can see that, on average, hygiene scores were 1.77 (out of 5) on 
day 1 of the festival, but went down to 0.96 and 0.98 on days 2 and 3 respectively. The other 
important measures for our purposes are the skewness and the kurtosis (see section 1.7.1), 
both of which have an associated standard error. The values of skewness and kurtosis should 
be zero in a normal distribution. Positive values of skewness indicate a pile-up of scores on 
the left of the distribution, whereas negative values indicate a pile-up on the right. Positive 
values of kurtosis indicate a pointy and heavy-tailed distribution, whereas negative values 
indicate a flat and light-tailed distribution. The further the value is from zero, the more likely 
it is that the data are not normally distributed. For day 1 the skew value is very close to zero 
(which is good) and kurtosis is a little negative. For days 2 and 3, though, there is a skewness 
of around 1 (positive skew).

Although the values of skew and kurtosis are informative, we can convert these values 
to z-scores. We saw in section 1.7.4 that a z-score is simply a score from a distribution that 
has a mean of 0 and a standard deviation of 1. We also saw that this distribution has known 
properties that we can use. Converting scores to a z-score is useful then because (1) we can 
compare skew and kurtosis values in different samples that used different measures, and  
(2) we can see how likely our values of skew and kurtosis are to occur. To transform any 
score to a z-score you simply subtract the mean of the distribution (in this case zero) and 
then divide by the standard deviation of the distribution (in this case we use the standard 
error). Skewness and kurtosis are converted to z-scores in exactly this way.
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Zskewness=
S− 0

SEskewness
Zkurtosis =

K− 0

SEkurtosis

In the above equations, the values of S (skewness) and K (kurtosis) and their respective stand-
ard errors are produced by SPSS. These z-scores can be compared against values that you 
would expect to get by chance alone (i.e. known values for the normal distribution shown in 
the Appendix). So, an absolute value greater than 1.96 is significant at p < .05, above 2.58 is 
significant at p < .01 and absolute values above about 3.29 are significant at p < .001. Large 
samples will give rise to small standard errors and so when sample sizes are big, significant 
values arise from even small deviations from normality. In smallish samples it’s OK to look 
for values above 1.96; however, in large samples this criterion should be increased to the 
2.58 one and in very large samples, because of the problem of small standard errors that 
I’ve described, no criterion should be applied! If you have a large sample (200 or more) it is 
more important to look at the shape of the distribution visually and to look at the value of 
the skewness and kurtosis statistics rather than calculate their significance. 

For the hygiene scores, the z-score of skewness is −0.004/0.086 = 0.047 on day 1, 
1.095/0.150 = 7.300 on day 2 and 1.033/0.218 = 4.739 on day 3. It is pretty clear then that 
although on day 1 scores are not at all skewed, on days 2 and 3 there is a very significant 
positive skew (as was evident from the histogram) – however, bear in mind what I just said 
about large samples! The kurtosis z-scores are: −0.410/0.172 = −2.38 on day 1, 0.822/0.299 = 
2.75 on day 2 and 0.732/0.433 = 1.69 on day 3. These values indicate significant kurtosis (at 
p < .05) for all three days; however, because of the large sample, this isn’t surprising and so we 
can take comfort in the fact that all values of kurtosis are below our upper threshold of 3.29.

             CRAMMING SAM’S TIPS    Skewness and kurtosis

 To check that the distribution of scores is approximately normal, we need to look at the values of skewness and kurtosis 
in the SPSS output.

 Positive values of skewness indicate too many low scores in the distribution, whereas negative values indicate a build-up of 
high scores.

 Positive values of kurtosis indicate a pointy and heavy-tailed distribution, whereas negative values indicate a flat and light-
tailed distribution.

 The further the value is from zero, the more likely it is that the data are not normally distributed.

 You can convert these scores to z-scores by dividing by their standard error. If the resulting score (when you ignore the 
minus sign) is greater than 1.96 then it is significant (p < .05).

 Significance tests of skew and kurtosis should not be used in large samples (because they are likely to be significant even 
when skew and kurtosis are not too different from normal).

In your SPSS output you will also see tabulated frequency 
distributions of each variable. This table is reproduced in the 
additional online material along with a description.

OLIVER TWISTED

Please, Sir, can I have some  
more … frequencies?
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5.4.3.  Exploring groups of data 1

Sometimes we have data in which there are different groups of people (men and 
women, different universities, people with depression and people without, for 
example). There are several ways to produce basic descriptive statistics for sepa-
rate groups of people (and we will come across some of these methods in section 
5.5.1). However, I intend to use this opportunity to introduce you to the split file 
function. This function allows you to specify a grouping variable (remember, these 
variables are used to specify categories of cases). Any subsequent procedure in 
SPSS is then carried out on each category of cases separately.

You’re probably getting sick of the hygiene data from the Download Festival so 
let’s use the data in the file SPSSExam.sav. This file contains data regarding students’ 
performance on an SPSS exam. Four variables were measured: exam (first-year SPSS 
exam scores as a percentage), computer (measure of computer literacy 
in percent), lecture (percentage of SPSS lectures attended) and numeracy 
(a measure of numerical ability out of 15). There is a variable called 
uni indicating whether the student attended Sussex University (where I 

work) or Duncetown University. To begin with, open the file SPSSExam.sav (see 
section 3.9). Let’s begin by looking at the data as a whole.

5.4.3.1. running the analysis for all data 1

To see the distribution of the variables, we can use the frequencies command, which we 
came across in the previous section (see Figure 5.4). Use this dialog box and place all four 
variables (exam, computer, lecture and numeracy) in the Variable(s) box. Then click on 

 to select the statistics dialog box and select some measures of central tendency 
(mean, mode, median), measures of variability (range, standard deviation, variance, quar-
tile splits) and measures of shape (kurtosis and skewness). Also click on  to access 
the charts dialog box and select a frequency distribution of scores with a normal curve (see 
Figure 5.4 if you need any help with any of these options). Return to the main dialog box 
by clicking on  and once in the main dialog box, click on  to run the analysis.

SPSS Output 5.2 shows the table of descriptive statistics for the four variables in this 
example. From this table, we can see that, on average, students attended nearly 60% of 
lectures, obtained 58% in their SPSS exam, scored only 51% on the computer literacy test, 
and only 5 out of 15 on the numeracy test. In addition, the standard deviation for compu-
ter literacy was relatively small compared to that of the percentage of lectures attended and 
exam scores. These latter two variables had several modes (multimodal). The other impor-
tant measures are the skewness and the kurtosis, both of which have an associated standard 
error. We came across these measures earlier on and found that we can convert these values 
to z-scores by dividing by their standard errors. For the SPSS exam scores, the z-score of 
skewness is −0.107/0.241 = −0.44. For numeracy, the z-score of skewness is 0.961/0.241 =  
3.99. It is pretty clear then that the numeracy scores are significantly positively skewed  
(p < .05) because the z-score is greater than 1.96, indicating a pile-up of scores on the left 
of the distribution (so, most students got low scores).

SELF-TEST  Calculate and interpret the z-scores for 
skewness of the other variables (computer literacy and 
percentage of lectures attended).

SELF-TEST  Calculate and interpret the z-scores for 
kurtosis of all of the variables.

Can I analyse
groups of data? 
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The output provides tabulated frequency distributions of each variable (not reproduced 
here). These tables list each score and the number of times that it is found within the data 
set. In addition, each frequency value is expressed as a percentage of the sample (in this 
case the frequencies and percentages are the same because the sample size was 100). Also, 
the cumulative percentage is given, which tells us how many cases (as a percentage) fell 
below a certain score. So, for example, we can see that 66% of numeracy scores were 5 or 
less, 74% were 6 or less, and so on. Looking in the other direction, we can work out that 
only 8% (100 − 92%) got scores greater than 8.

Finally, we are given histograms of each variable with the normal distribution overlaid. 
These graphs are displayed in Figure 5.5 and show us several things. The exam scores are 
very interesting because this distribution is quite clearly not normal; in fact, it looks sus-
piciously bimodal (there are two peaks indicative of two modes). This observation corre-
sponds with the earlier information from the table of descriptive statistics. It looks as though 
computer literacy is fairly normally distributed (a few people are very good with computers 
and a few are very bad, but the majority of people have a similar degree of knowledge) as  
is the lecture attendance. Finally, the numeracy test has produced very positively skewed 
data (i.e. the majority of people did very badly on this test and only a few did well). This 
corresponds to what the skewness statistic indicated.

Descriptive statistics and histograms are a good way of getting an instant picture of the 
distribution of your data. This snapshot can be very useful: for example, the bimodal distribu-
tion of SPSS exam scores instantly indicates a trend that students are typically either very good 
at statistics or struggle with it (there are relatively few who fall in between these extremes). 
Intuitively, this finding fits with the nature of the subject: statistics is very easy once everything 
falls into place, but before that enlightenment occurs it all seems hopelessly difficult! 

5.4.3.2. running the analysis for different groups 1

If we want to obtain separate descriptive statistics for each of the universities, we can split the 
file, and then proceed using the frequencies command described in the previous section. To 
split the file, select  or click on . In the resulting dialog box (Figure 5.6) select 
the option Organize output by groups. Once this option is selected, the Groups Based on box 
will activate. Select the variable containing the group codes by which you wish to repeat the 
analysis (in this example select Uni), and drag it to the box or click on . By default, SPSS 
will sort the file by these groups (i.e. it will list one category followed by the other in the data 
editor window). Once you have split the file, use the frequencies command (see the previous 
section). Let’s request statistics for only numeracy and exam scores for the time being.

SPSS OutPut 5.2
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Figure 5.5 Histograms of the SPSS exam data

Figure 5.6
Dialog box for 
the split file 
command
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SPSS OutPut 5.3

The SPSS output is split into two sections: first the results for students at Duncetown 
University, then the results for those attending Sussex University. SPSS Output 5.3 shows 
the two main summary tables. From these tables it is clear that Sussex students scored 
higher on both their SPSS exam and the numeracy test than their Duncetown counterparts. 
In fact, looking at the means reveals that, on average, Sussex students scored an amazing 
36% more on the SPSS exam than Duncetown students, and had higher numeracy scores 
too (what can I say, my students are the best).

Figure 5.7 shows the histograms of these variables split according to the university 
attended. The first interesting thing to note is that for exam marks, the distributions are 
both fairly normal. This seems odd because the overall distribution was bimodal. However, 
it starts to make sense when you consider that for Duncetown the distribution is centred 
around a mark of about 40%, but for Sussex the distribution is centred around a mark 
of about 76%. This illustrates how important it is to look at distributions within groups. 
If we were interested in comparing Duncetown to Sussex it wouldn’t matter that overall 
the distribution of scores was bimodal; all that’s important is that each group comes from 
a normal distribution, and in this case it appears to be true. When the two samples are 
combined, these two normal distributions create a bimodal one (one of the modes being 
around the centre of the Duncetown distribution, and the other being around the centre 
of the Sussex data!). For numeracy scores, the distribution is slightly positively skewed in 
the Duncetown group (there is a larger concentration at the lower end of scores) whereas 
Sussex students are fairly normally distributed around a mean of 7. Therefore, the overall 
positive skew observed before is due to the mixture of universities (the Duncetown stu-
dents contaminate Sussex’s normally distributed scores!). When you have finished with the 
split file command, remember to switch it off (otherwise SPSS will carry on doing every 
analysis on each group separately). To switch this function off, return to the Split File dia-
log box (Figure 5.6) and select Analyze all cases, do not create groups.

SELF-TEST  Repeat these analyses for the computer 
literacy and percentage of lectures attended and 
interpret the results.
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5.5. Testing whether a distribution is normal 1

Another way of looking at the problem is to see whether the distribu-
tion as a whole deviates from a comparable normal distribution. The 
Kolmogorov–Smirnov test and Shapiro–Wilk test do just this: they com-
pare the scores in the sample to a normally distributed set of scores with 
the same mean and standard deviation. If the test is non-significant (p > 
.05) it tells us that the distribution of the sample is not significantly dif-
ferent from a normal distribution (i.e. it is probably normal). If, how-
ever, the test is significant (p < .05) then the distribution in question is 
significantly different from a normal distribution (i.e. it is non-normal). 
These tests seem great: in one easy procedure they tell us whether our 
scores are normally distributed (nice!). However, they have their limi-
tations because with large sample sizes it is very easy to get significant 

results from small deviations from normality, and so a significant test doesn’t necessarily tell us 
whether the deviation from normality is enough to bias any statistical procedures that we apply 
to the data. I guess the take-home message is: by all means use these tests, but plot your data as 
well and try to make an informed decision about the extent of non-normality.

Figure 5.7 Distributions of exam and numeracy scores for Duncetown University and Sussex University students

Did someone say
Smirnov? Great, I need a drink

after all this data analysis!
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5.5.1.  Doing the Kolmogorov–Smirnov test on SPSS 1

The Kolmogorov–Smirnov (K–S from now on; Figure 5.8) test can be accessed through the 
explore command ( ). Figure 5.9 shows the dialog 
boxes for the explore command. First, enter any variables of interest in the box labelled 
Dependent List by highlighting them on the left-hand side and transferring them by click-
ing on . For this example, just select the exam scores and numeracy scores. It is also 
possible to select a factor (or grouping variable) by which to split the output (so, if you 
select Uni and transfer it to the box labelled Factor List, SPSS will produce exploratory 
analysis for each group – a bit like the split file command). If you click on  a dia-
log box appears, but the default option is fine (it will produce means, standard deviations 
and so on). The more interesting option for our current purposes is accessed by clicking 
on . In this dialog box select the option , and this will produce 
both the K–S test and some graphs called normal Q–Q plots. A Q–Q plot is very similar 
to the P-P plot that we encountered in section 5.4.1 except that it plots the quantiles of 
the data set instead of every individual score in the data. Quantiles are just values that 
split a data set into equal portions. We have already used quantiles without knowing 
it because quartiles (as in the interquartile range in section 1.7.3) are a special case of 
quantiles that split the data into four equal parts. However, you can have other quan-
tiles such as percentiles (points that split the data into 100 equal parts), noniles (points 
that split the data into nine equal parts) and so on. In short, then, the Q–Q plot can be 
interpreted in the same way as a P–P plot but it will have less points on it because rather 
than plotting every single data point it plots only values that divide the data into equal 
parts (so, they can be easier to interpret if you have a lot of scores). By default, SPSS will 
produce boxplots (split according to group if a factor has been specified) and stem and 
leaf diagrams as well. Click on  to return to the main dialog box and then click on 

 to run the analysis.

Figure 5.8
Andrei 
Kolmogorov, 
wishing he had  
a Smirnov
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5.5.2.  Output from the explore procedure 1

The first table produced by SPSS contains descriptive statistics (mean etc.) and should have 
the same values as the tables obtained using the frequencies procedure. The important 
table is that of the K–S test (SPSS Output 5.4). This table includes the test statistic itself, 
the degrees of freedom (which should equal the sample size) and the significance value of 
this test. Remember that a significant value (Sig. less than .05) indicates a deviation from 
normality. For both numeracy and SPSS exam scores, the K–S test is highly significant, 

Figure 5.9
Dialog boxes 
for the explore 
command
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indicating that both distributions are not normal. This result is likely to reflect the bimodal 
distribution found for exam scores, and the positively skewed distribution observed in the 
numeracy scores. However, these tests confirm that these deviations were significant. (But 
bear in mind that the sample is fairly big.)

SPSS OutPut 5.5

SPSS OutPut 5.4

‘There is another test reported in the table (the Shapiro–Wilk test)’, whispers 
Oliver as he creeps up behind you, knife in hand, ‘and a footnote saying that 
“Lilliefors’ significance correction” has been applied. What the hell is going 
on?’. (If you do the K–S test through the non-parametric test menu rather 
than the explore menu this correction is not applied.) Well, Oliver, all will be 
revealed in the additional material for this chapter on the companion website: 

you can find out more about the K–S test, and information about the Lilliefor correction and Shapiro–Wilk test. What are you 
waiting for?

OLIVER TWISTED

Please, Sir, can I 
have some more …  
normality tests?

As a final point, bear in mind that when we looked at the exam scores for separate 
groups, the distributions seemed quite normal; now if we’d asked for separate tests for 
the two universities (by placing Uni in the box labelled Factor List as in Figure 5.9) the 
K–S test might not have been significant. In fact if you try this out, you’ll get the table in 
SPSS Output 5.5, which shows that the percentages on the SPSS exam are indeed normal 
within the two groups (the values in the Sig. column are greater than .05). This is important 
because if our analysis involves comparing groups, then what’s important is not the overall 
distribution but the distribution in each group. 

Tests of Normality

.106 50 .200* .972 50 .283

.073 50 .200* .984 50 .715

.183 50 .000 .941 50 .015

.155 50 .004 .932 50 .007

University
Duncetown University
Sussex University
Duncetown University
Sussex University

Percentage on
SPSS exam

Numeracy

Statistic df Sig. Statistic df Sig.
Kolmogorov-Smirnova Shapiro-Wilk

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

SPSS also produces a normal Q–Q plot for any variables specified (see Figure 5.10). 
The normal Q–Q chart plots the values you would expect to get if the distribution were 
normal (expected values) against the values actually seen in the data set (observed values). 
The expected values are a straight diagonal line, whereas the observed values are plotted 
as individual points. If the data are normally distributed, then the observed values (the 
dots on the chart) should fall exactly along the straight line (meaning that the observed 
values are the same as you would expect to get from a normally distributed data set). Any 



148 D ISCOVER ING STAT IST ICS  US ING SPSS

deviation of the dots from the line represents a deviation from normality. So, if the Q–Q 
plot looks like a straight line with a wiggly snake wrapped around it then you have some 
deviation from normality! Specifically, when the line sags consistently below the diagonal, 
or consistently rises above it, then this shows that the kurtosis differs from a normal distri-
bution, and when the curve is S-shaped, the problem is skewness.

In both of the variables analysed we already know that the data are not normal, and 
these plots confirm this observation because the dots deviate substantially from the line. It 
is noteworthy that the deviation is greater for the numeracy scores, and this is consistent 
with the higher significance value of this variable on the K–S test. 

5.5.3.  Reporting the K–S test 1

The test statistic for the K–S test is denoted by D and we must also report the degrees 
of freedom (df ) from the table in brackets after the D. We can report the results in SPSS 
Output 5.4 in the following way:

	The percentage on the SPSS exam, D(100) = 0.10, p < .05, and the numeracy 
scores, D(100) = 0.15, p < .001, were both significantly non-normal. 

             CRAMMING SAM’S TIPS    Normality tests

 The K–S test can be used to see if a distribution of scores significantly differs from a normal distribution.

 If the K–S test is significant (Sig. in the SPSS table is less than .05) then the scores are significantly different from a normal 
distribution.

 Otherwise, scores are approximately normally distributed. 

 The Shapiro–Wilk test does much the same thing, but it has more power to detect differences from normality (so, you might 
find this test is significant when the K–S test is not).

 Warning: In large samples these tests can be significant even when the scores are only slightly different from a normal 
distribution. Therefore, they should always be interpreted in conjunction with histograms, P–P or Q–Q plots, and the values 
of skew and kurtosis.

Figure 5.10
Normal Q–Q 
plots of 
numeracy and 
SPSS exam 
scores
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5.6. Testing for homogeneity of variance 1

So far I’ve concentrated on the assumption of normally distributed data; however, at the 
beginning of this chapter I mentioned another assumption: homogeneity of variance. This 
assumption means that as you go through levels of one variable, the variance of the other 
should not change. If you’ve collected groups of data then this means that the variance of 
your outcome variable or variables should be the same in each of these groups. If you’ve 
collected continuous data (such as in correlational designs), this assumption means that the 
variance of one variable should be stable at all levels of the other variable. Let’s illustrate 
this with an example. An audiologist was interested in the effects of loud concerts on peo-
ple’s hearing. So, she decided to send 10 people on tour with the loudest band she could 
find, Motörhead. These people went to concerts in Brixton (London), Brighton, Bristol, 
Edinburgh, Newcastle, Cardiff and Dublin and after each concert the audiologist measured 
the number of hours after the concert that these people had ringing in their ears.

Figure 5.11 shows the number of hours that each person had ringing in their ears after each 
concert (each person is represented by a circle). The horizontal lines represent the average 
number of hours that there was ringing in the ears after each concert and these means are con-
nected by a line so that we can see the general trend of the data. Remember that for each concert, 
the circles are the scores from which the mean is calculated. Now, we can see in both graphs that 
the means increase as the people go to more concerts. So, after the first concert their ears ring for 
about 12 hours, but after the second they ring for about 15–20 hours, and by the final night of 
the tour, they ring for about 45–50 hours (2 days). So, there is a cumulative effect of the concerts 
on ringing in the ears. This pattern is found in both graphs; the difference between the graphs 
is not in terms of the means (which are roughly the same), but in terms of the spread of scores 
around the mean. If you look at the left-hand graph the spread of scores around the mean stays 
the same after each concert (the scores are fairly tightly packed around the mean). Put another 
way, if you measured the vertical distance between the lowest score and the highest score after 
the Brixton concert, and then did the same after the other concerts, all of these distances would 
be fairly similar. Although the means increase, the spread of scores for hearing loss is the same 
at each level of the concert variable (the spread of scores is the same after Brixton, Brighton, 
Bristol, Edinburgh, Newcastle, Cardiff and Dublin). This is what we mean by homogeneity of 
variance. The right-hand graph shows a different picture: if you look at the spread of scores after 
the Brixton concert, they are quite tightly packed around the mean (the vertical distance from 

Figure 5.11 Graphs illustrating data with homogeneous (left) and heterogeneous (right) variances
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the lowest score to the highest score is small), but after the Dublin show (for example) the scores 
are very spread out around the mean (the vertical distance from the lowest score to the highest 
score is large). This is an example of heterogeneity of variance: that is, at some levels of the con-
cert variable the variance of scores is different to other levels (graphically, the vertical distance 
from the lowest to highest score is different after different concerts).

5.6.1.  Levene’s test 1

Hopefully you’ve got a grip of what homogeneity of variance actually means. Now, how 
do we test for it? Well, we could just look at the values of the variances and see whether 
they are similar. However, this approach would be very subjective and probably prone to 
academics thinking ‘Ooh look, the variance in one group is only 3000 times larger than the 
variance in the other: that’s roughly equal’. Instead, in correlational analysis such as regres-
sion we tend to use graphs (see section 7.8.7) and for groups of data we tend to use a test 
called Levene’s test (Levene, 1960). Levene’s test tests the null hypothesis that the variances 
in different groups are equal (i.e. the difference between the variances is zero). It’s a very 
simple and elegant test that works by doing a one-way ANOVA (see Chapter 10) conducted 
on the deviation scores; that is, the absolute difference between each score and the mean of 
the group from which it came (see Glass, 1966, for a very readable explanation).3 For now, 
all we need to know is that if Levene’s test is significant at p ≤ .05 then we can conclude that 
the null hypothesis is incorrect and that the variances are significantly different – therefore, 
the assumption of homogeneity of variances has been violated. If, however, Levene’s test 
is non-significant (i.e. p > .05) then the variances are roughly equal and the assumption is 
tenable. Although Levene’s test can be selected as an option in many of the statistical tests 
that require it, it can also be examined when you’re exploring data (and strictly speaking 
it’s better to examine Levene’s test now than wait until your main analysis).

As with the K–S test (and other tests of normality), when the sample size is large, small 
differences in group variances can produce a Levene’s test that is significant (because, as 
we saw in Chapter 1, the power of the test is improved). A useful double check, therefore, 
is to look at Hartley’s FMax, also known as the variance ratio (Pearson & Hartley, 1954). This 
is the ratio of the variances between the group with the biggest variance and the group 
with the smallest variance. This ratio was compared to critical values in a table published 
by Hartley. Some of the critical values (for a .05 level of significance) are shown in Figure 
5.12 (see Oliver Twisted); as you can see the critical values depend on the number of cases 
per group (well, n − 1 actually), and the number of variances being compared. From this 
graph you can see that with sample sizes (n) of 10 per group, an FMax of less than 10 is more 
or less always going to be non-significant, with 15–20 per group the ratio needs to be less 
than about 5, and with samples of 30–60 the ratio should be below about 2 or 3.

3 We haven’t covered ANOVA yet so this explanation won’t make much sense to you now, but in Chapter 10 we 
will look in more detail at how Levene’s test works.

Oliver thinks that my graph of critical values is stupid. ‘Look at that 
graph,’ he laughed, ‘it’s the most stupid thing I’ve ever seen since I was 
at Sussex Uni and I saw my statistics lecturer, Andy Fie…’. Well, go choke 
on your gruel you Dickensian bubo because the full table of critical values 
is in the additional material for this chapter on the companion website.

OLIVER TWISTED

Please, Sir, can I 
have some more … 
Hartley’s FMax?
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We can get Levene’s test using the explore menu that we used in the previous section. 
For this example, we’ll use the SPSS exam data that we used in the previous section (in the 
file SPSSExam.sav). Once the data are loaded, use  
to open the dialog box in Figure 5.13. To keep things simple we’ll just look at the SPSS 
exam scores and the numeracy scores from this file, so transfer these two variables from the 
list on the left-hand side to the box labelled Dependent List by clicking on the  next to 
this box, and because we want to split the output by the grouping variable to compare the 
variances, select the variable Uni and transfer it to the box labelled Factor List by clicking 
on the appropriate . Then click on  to open the other dialog box in Figure 5.13. 
To get Levene’s test we need to select one of the options where it says Spread vs. level with 
Levene’s test. If you select  Levene’s test is carried out on the raw data (a good 
place to start). When you’ve finished with this dialog box click on  to return to the 
main Explore dialog box and then click on  to run the analysis.

SPSS Output 5.6 shows the table for Levene’s test. You should read the statistics based 
on the mean. Levene’s test is non-significant for the SPSS exam scores (values in the Sig. 

Figure 5.13
Exploring 
groups of data 
and obtaining 
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column are more than .05) indicating that the variances are not significantly different (i.e. 
they are similar and the homogeneity of variance assumption is tenable). However, for the 
numeracy scores, Levene’s test is significant (values in the Sig. column are less than .05) 
indicating that the variances are significantly different (i.e. they are not the same and the 
homogeneity of variance assumption has been violated). We can also calculate the variance 
ratio. To do this we need to divide the largest variance by the smallest. You should find the 
variances in your output, but if not we obtained these values in SPSS Output 5.3. For SPSS 
exam scores the variance ratio is 158.48/104.14 = 1.52 and for numeracy scores the value 
is 9.43/4.27 = 2.21. Our group sizes are 50 and we’re comparing 2 variances so the critical 
value is (from the table in the additional material) approximately 1.67. These ratios concur 
with Levene’s test: variances are significantly different for numeracy scores (2.21 is bigger 
than 1.67) but not for SPSS exam scores (1.52 is smaller than 1.67).

5.6.2.  Reporting Levene’s test 1

Levene’s test can be denoted with the letter F and there are two different degrees of free-
dom. As such you can report it, in general form, as F(df1, df2) = value, sig. So, for the 
results in SPSS Output 5.6 we could say:

	For the percentage on the SPSS exam, the variances were equal for Duncetown and 
Sussex University students, F(1, 98) = 2.58, ns, but for numeracy scores the variances 
were significantly different in the two groups, F(1, 98) = 7.37, p < .01.

SPSS OutPut 5.6

             CRAMMING SAM’S TIPS    Homogeneity of variance

 Homogeneity of variance is the assumption that the spread of scores is roughly equal in different groups of cases, or more 
generally that the spread of scores is roughly equal at different points on the predictor variable. 

 When comparing groups, this assumption can be tested with Levene’s test and the variance ratio (Hartley’s FMax).

 If Levene’s test is significant (Sig. in the SPSS table is less than .05) then the variances are significantly different in different 
groups.

 Otherwise, homogeneity of variance can be assumed. 

 The variance ratio is the largest group variance divided by the smallest. This value needs to be smaller than the critical values 
in Figure 5.12.

 Warning: In large samples Levene’s test can be significant even when group variances are not very different. Therefore, it 
should be interpreted in conjunction with the variance ratio.
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5.7. Correcting problems in the data 2

The previous section showed us various ways to explore our data; we saw how to look for 
problems with our distribution of scores and how to detect heterogeneity of variance. In 
Chapter 4 we also discovered how to spot outliers in the data. The next question is what 
to do about these problems?

5.7.1.  Dealing with outliers 2

If you detect outliers in the data there are several options for reducing the impact of these 
values. However, before you do any of these things, it’s worth checking that the data have 
been entered correctly for the problem cases. If the data are correct then the three main 
options you have are:

1 Remove the case: This entails deleting the data from the person who contributed the 
outlier. However, this should be done only if you have good reason to believe that 
this case is not from the population that you intended to sample. For example, if 
you were investigating factors that affected how much cats purr and one cat didn’t 
purr at all, this would likely be an outlier (all cats purr). Upon inspection, if you dis-
covered that this cat was actually a dog wearing a cat costume (hence why it didn’t 
purr), then you’d have grounds to exclude this case because it comes from a different 
population (dogs who like to dress as cats) than your target population (cats).

2 Transform the data: Outliers tend to skew the distribution and, as we will see in the 
next section, this skew (and, therefore, the impact of the outliers) can sometimes be 
reduced by applying transformations to the data.

3 Change the score: If transformation fails, then you can consider replacing the score. 
This on the face of it may seem like cheating (you’re changing the data from what 
was actually corrected); however, if the score you’re changing is very unrepresenta-
tive and biases your statistical model anyway then changing the score is the lesser of 
two evils! There are several options for how to change the score:
(a) The next highest score plus one: Change the score to be one unit above the next 

highest score in the data set.
(b) Convert back from a z-score: A z-score of 3.29 constitutes an outlier (see Jane 

Superbrain Box 4.1) so we can calculate what score would give rise to a z-score 
of 3.29 (or perhaps 3) by rearranging the z-score equation in section 1.7.4, which 
gives us X = (z × s) + X−. All this means is that we calculate the mean (X− ) and 
standard deviation (s) of the data; we know that z is 3 (or 3.29 if you want to be 
exact) so we just add three times the standard deviation to the mean, and replace 
our outliers with that score.

(c) The mean plus two standard deviations: A variation on the above method is to 
use the mean plus two times the standard deviation (rather than three times the 
standard deviation). 

5.7.2.  Dealing with non-normality and unequal variances 2

5.7.2.1. transforming data 2

The next section is quite hair raising so don’t worry if it doesn’t make much sense – many 
undergraduate courses won’t cover transforming data so feel free to ignore this section if 
you want to!
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We saw in the previous section that you can deal with outliers by trans-
forming the data and these transformations are also useful for correcting 
problems with normality and the assumption of homogeneity of variance. 
The idea behind transformations is that you do something to every score to 
correct for distributional problems, outliers or unequal variances. Although 
some students often (understandably) think that transforming data sounds 
dodgy (the phrase ‘fudging your results’ springs to some people’s minds!), 
in fact it isn’t because you do the same thing to all of your scores.4 As such, 
transforming the data won’t change the relationships between variables (the 
relative differences between people for a given variable stay the same), but it 
does change the differences between different variables (because it changes 

the units of measurement). Therefore, even if you only have one variable that has a skewed 
distribution, you should still transform any other variables in your data set if you’re going to 
compare differences between that variable and others that you intend to transform.

Let’s return to our Download Festival data (DownloadFestival.sav) from earlier in the chap-
ter. These data were not normal on days 2 and 3 of the festival (section 5.4). Now, we might 
want to look at how hygiene levels changed across the three days (i.e. compare the mean on 
day 1 to the means on days 2 and 3 to see if people got smellier). The data for days 2 and 3 
were skewed and need to be transformed, but because we might later compare the data to 
scores on day 1, we would also have to transform the day 1 data (even though scores were not 
skewed). If we don’t change the day 1 data as well, then any differences in hygiene scores we 
find from day 1 to days 2 or 3 will be due to us transforming one variable and not the others.

There are various transformations that you can do to the data that are helpful in cor-
recting various problems.5 However, whether these transformations are necessary or useful 
is quite a complex issue (see Jane Superbrain Box 5.1). Nevertheless, because they are used 
by researchers Table 5.1 shows some common transformations and their uses.

5.7.2.2. Choosing a transformation 2

Given that there are many transformations that you can do, how can you decide which one is 
best? The simple answer is trial and error: try one out and see if it helps and if it doesn’t then try 
a different one. Remember that you must apply the same transformation to all variables (you 
cannot, for example, apply a log transformation to one variable and a square root transforma-
tion to another if they are to be used in the same analysis). This can be quite time consuming. 
However, for homogeneity of variance we can see the effect of a transformation quite quickly. 
In section 5.6.1 we saw how to use the explore function to get Levene’s test. In that section 
we ran the analysis selecting the raw scores ( ). However, if the variances turn out 
to be unequal, as they did in our example, you can use the same dialog box (Figure 5.13) but 
select . When you do this you should notice a drop-down list that becomes active 
and if you click on this you’ll notice that it lists several transformations including the ones that 
I have just described. If you select a transformation from this list (Natural log perhaps or Square 
root) then SPSS will calculate what Levene’s test would be if you were to transform the data 
using this method. This can save you a lot of time trying out different transformations.

SELF-TEST  Use the explore command to see what effect 
a natural log transformation would have on the four 
variables measured in SPSSExam.sav (section 5.6.1).

4 Although there aren’t statistical consequences of transforming data, there may be empirical or scientific implica-
tions that outweigh the statistical benefits (see Jane Superbrain Box 5.1).
5 You’ll notice in this section that I keep writing Xi. We saw in Chapter 1 that this refers to the observed score for 
the ith person (so, the i could be replaced with the name of a particular person, thus for Graham, Xi = XGraham = 
Graham’s score, and for Carol, Xi = XCarol = Carol’s score).

What do I do if my
data are not normal?
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Data Transformation Can Correct For

Log transformation (log(Xi)): Taking the logarithm of a set of numbers squashes the 
right tail of the distribution. As such it’s a good way to reduce positive skew. However, 
you can’t get a log value of zero or negative numbers, so if your data tend to zero or 
produce negative numbers you need to add a constant to all of the data before you do the 
transformation. For example, if you have zeros in the data then do log (Xi + 1), or if you have 
negative numbers add whatever value makes the smallest number in the data set positive.

Positive skew, 
unequal variances

Square root transformation (√Xi): Taking the square root of large values has more of an 
effect than taking the square root of small values. Consequently, taking the square root 
of each of your scores will bring any large scores closer to the centre – rather like the log 
transformation. As such, this can be a useful way to reduce positive skew; however, you still 
have the same problem with negative numbers (negative numbers don’t have a square root).

Positive skew, 
unequal variances

Reciprocal transformation (1/Xi): Dividing 1 by each score also reduces the impact of 
large scores. The transformed variable will have a lower limit of 0 (very large numbers will 
become close to 0). One thing to bear in mind with this transformation is that it reverses 
the scores: scores that were originally large in the data set become small (close to 
zero) after the transformation, but scores that were originally small become big after the 
transformation. For example, imagine two scores of 1 and 10; after the transformation they 
become 1/1 = 1, and 1/10 = 0.1: the small score becomes bigger than the large score 
after the transformation. However, you can avoid this by reversing the scores before the 
transformation, by finding the highest score and changing each score to the highest score 
minus the score you’re looking at. So, you do a transformation 1/(XHighest − Xi).

Positive skew, 
unequal variances

Reverse score transformations: Any one of the above transformations can be used to 
correct negatively skewed data, but first you have to reverse the scores. To do this, subtract 
each score from the highest score obtained, or the highest score + 1 (depending on 
whether you want your lowest score to be 0 or 1). If you do this, don’t forget to reverse the 
scores back afterwards, or to remember that the interpretation of the variable is reversed: 
big scores have become small and small scores have become big!

Negative skew

table 5.1 Data transformations and their uses

The issue is quite complicated (especially for this early 
in the book), but essentially we need to know whether the 
statistical models we apply perform better on transformed 
data than they do when applied to data that violate the 
assumption that the transformation corrects. If a statisti-
cal model is still accurate even when its assumptions are 
broken it is said to be a robust test (section 5.7.4). I’m 
not going to discuss whether particular tests are robust 
here, but I will discuss the issue for particular tests in their 
respective chapters. The question of whether to trans-
form is linked to this issue of robustness (which in turn is 
linked to what test you are performing on your data).

A good case in point is the F-test in ANOVA (see 
Chapter 10), which is often claimed to be robust (Glass 
et al., 1972). Early findings suggested that F performed 
as it should in skewed distributions and that transform-
ing the data helped as often as it hindered the accu-
racy of F (Games & Lucas, 1966). However, in a lively 

Not everyone agrees that transforming data is a good idea; 
for example, Glass, Peckham, and Sanders (1972) in a very 
extensive review commented that ‘the payoff of normaliz-
ing transformations in terms of more valid probability state-
ments is low, and they are seldom considered to be worth 
the effort’ (p. 241). In which case, should we bother?

JANE SUPERBRAIN 5.1

To transform or not to transform,  
that is the question 3
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5.7.3.  Transforming the data using SPSS 2

5.7.3.1. the Compute function 2

To do transformations on SPSS we use the compute command, which enables us to carry 
out various functions on columns of data in the data editor. Some typical functions are 
adding scores across several columns, taking the square root of the scores in a column or 
calculating the mean of several variables. To access the Compute Variable dialog box, use 
the mouse to specify . The resulting dialog box is shown in Figure 
5.14; it has a list of functions on the right-hand side, a calculator-like keyboard in the 
centre and a blank space that I’ve labelled the command area. The basic idea is that you 
type a name for a new variable in the area labelled Target Variable and then you write 
some kind of command in the command area to tell SPSS how to create this new vari-
able. You use a combination of existing variables selected from the list on the left, and 
numeric expressions. So, for example, you could use it like a calculator to add variables 
(i.e. add two columns in the data editor to make a third). However, you can also use it to 
generate data without using existing variables too. There are hundreds of built-in func-
tions that SPSS has grouped together. In the dialog box it lists these groups in the area 
labelled Function g_roup; upon selecting a function group, a list of available functions 
within that group will appear in the box labelled Functions and Special Variables. If you 
select a function, then a description of that function appears in the grey box indicated in 
Figure 5.14. You can enter variable names into the command area by selecting the vari-
able required from the variables list and then clicking on . Likewise, you can select a 
certain function from the list of available functions and enter it into the command area 
by clicking on .

but informative exchange Levine and Dunlap (1982) 
showed that transformations of skew did improve the 
performance of F; however, in a response Games (1983) 
argued that their conclusion was incorrect, which Levine 
and Dunlap (1983) contested in a response to the 
response. Finally, in a response to the response of the 
response, Games (1984) pointed out several important 
questions to consider:

1 The central limit theorem (section 2.5.1) tells us 
that in big samples the sampling distribution will 
be normal regardless, and this is what’s actually 
important so the debate is academic in anything 
other than small samples. Lots of early research 
did indeed show that with samples of 40 the nor-
mality of the sampling distribution was, as pre-
dicted, normal. However, this research focused 
on distributions with light tails and subsequent 
work has shown that with heavy-tailed distributions 
larger samples would be necessary to invoke the 
central limit theorem (Wilcox, 2005). This research 
suggests that transformations might be useful for 
such distributions.

2 By transforming the data you change the hypoth-
esis being tested (when using a log transformation 
and comparing means you change from com-
paring arithmetic means to comparing geometric 
means). Transformation also means that you’re 
now addressing a different construct to the one 
originally measured, and this has obvious implica-
tions for interpreting that data (Grayson, 2004).

3 In small samples it is tricky to determine normality 
one way or another (tests such as K–S will have 
low power to detect deviations from normality and 
graphs will be hard to interpret with so few data 
points).

4 The consequences for the statistical model of 
applying the ‘wrong’ transformation could be worse 
than the consequences of analysing the untrans-
formed scores.

As we will see later in the book, there is an extensive 
library of robust tests that can be used and which have 
considerable benefits over transforming data. The defini-
tive guide to these is Wilcox’s (2005) outstanding book.



157CHAPTER 5   ExPlOR ING ASSUmPT IONS

The basic procedure is to first type a variable name in the box labelled Target Variable. 
You can then click on  and another dialog box appears, where you can give the 
variable a descriptive label, and where you can specify whether it is a numeric or string vari-
able (see section 3.4.2). Then when you have written your command for SPSS to execute, 
click on  to run the command and create the new variable. If you type in a variable 
name that already exists in the data editor then SPSS will tell you and ask you whether you 
want to replace this existing variable. If you respond with Yes then SPSS will replace the data 
in the existing column with the result of the compute function; if you respond with No then 
nothing will happen and you will need to rename the target variable. If you’re computing a 
lot of new variables it can be quicker to use syntax (see SPSS Tip 5.1).

Variable list

Categories of functions

Functions within the
selected category

Use this dialog box to
select certain cases

in the data

Description of
selected function 

Command area

Figure 5.14 Dialog box for the compute function
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Let’s first look at some of the simple functions:

Addition: This button places a plus sign in the command area. For example, with our hygiene data, 
‘day1 + day2’ creates a column in which each row contains the hygiene score from the column labelled 
day1 added to the score from the column labelled day2 (e.g. for participant 1: 2.65 + 1.35 = 4).

Subtraction: This button places a minus sign in the command area. For example, if we wanted to 
calculate the change in hygiene from day 1 to day 2 we could type ‘day2 − day1’. This creates a 
column in which each row contains the score from the column labelled day1 subtracted from the 
score from the column labelled day2 (e.g. for participant 1: 2.65 − 1.35 = –1.30). Therefore, this 
person’s hygiene went down by 1.30 (on our 5-point scale) from day 1 to day 2 of the festival.

Multiply: This button places a multiplication sign in the command area. For example, ‘day1 * day2’ 
creates a column that contains the score from the column labelled day1 multiplied by the score from 
the column labelled day2 (e.g. for participant 1: 2.65 × 1.35 = 3.58). 

Divide: This button places a division sign in the command area. For example, ‘day1/day2’ creates a 
column that contains the score from the column labelled day1 divided by the score from the column 
labelled day2 (e.g. for participant 1: 2.65/1.35 = 1.96).

Exponentiation: This button is used to raise the preceding term by the power of the succeeding 
term. So, ‘day1**2’ creates a column that contains the scores in the day1 column raised to the power 
of 2 (i.e. the square of each number in the day1 column: for participant 1, (2.65)2 = 7.02). Likewise, 
‘day1**3’ creates a column with values of day1 cubed.

Less than: This operation is usually used for ‘include case’ functions. If you click on the  button, 
a dialog box appears that allows you to select certain cases on which to carry out the operation. So, 
if you typed ‘day1 < 1’, then SPSS would carry out the compute function only for those participants 
whose hygiene score on day 1 of the festival was less than 1 (i.e. if day1 was 0.99 or less). So, we 
might use this if we wanted to look only at the people who were already smelly on the first day of the 
festival!

Less than or equal to: This operation is the same as above except that in the example above, cases 
that are exactly 1 would be included as well. 

More than: This operation is used to include cases above a certain value. So, if you clicked on  
and then typed ‘day1 > 1’ then SPSS will carry out any analysis only on cases for which hygiene 
scores on day 1 of the festival were greater than 1 (i.e. 1.01 and above). This could be used to 
exclude people who were already smelly at the start of the festival. We might want to exclude them 
because these people will contaminate the data (not to mention our nostrils) because they reek of 
putrefaction to begin with so the festival cannot further affect their hygiene!

More than or equal to: This operation is the same as above but will include cases that are exactly 1 
as well.

Equal to: You can use this operation to include cases for which participants have a specific value. 
So, if you clicked on  and typed ‘day1 = 1’ then only cases that have a value of exactly 1 for the 
day1 variable are included. This is most useful when you have a coding variable and you want to look 
at only one of the groups. For example, if we wanted to look only at females at the festival we could 
type ‘gender = 1’, then the analysis would be carried out on only females (who are coded as 1 in  
the data).

Not equal to: This operation will include all cases except those with a specific value. So, ‘gender 
~= 1’ (as in Figure 5.14) will include all cases except those that were female (have a 1 in the gender 
column). In other words, it will carry out the compute command only on the males.
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Some of the most useful functions are listed in Table 5.2, which shows the standard form 
of the function, the name of the function, an example of how the function can be used and 
what SPSS would output if that example were used. There are several basic functions for 
calculating means, standard deviations and sums of columns. There are also functions such 
as the square root and logarithm that are useful for transforming data that are skewed and 
we will use these functions now. For the interested reader, the SPSS help files have details 
of all of the functions available through the Compute Variable dialog box (click on  
when you’re in the dialog box).

5.7.3.2. the log transformation on SPSS 2

Now we’ve found out some basic information about the compute function, let’s use it 
to transform our data. First open the main Compute dialog box by selecting 

. Enter the name logday1 into the box labelled Target Variable and then click 
on  and give the variable a more descriptive name such as Log transformed hygiene 
scores for day 1 of Download festival. In the list box labelled Function g_roup click on 
Arithmetic and then in the box labelled Functions and Special Variables click on Lg10 (this 
is the log transformation to base 10, Ln is the natural log) and transfer it to the command 
area by clicking on . When the command is transferred, it appears in the command area 
as ‘LG10(?)’ and the question mark should be replaced with a variable name (which can be 
typed manually or transferred from the variables list). So replace the question mark with 
the variable day1 by either selecting the variable in the list and dragging it across, clicking 
on , or just typing ‘day1’ where the question mark is.

For the day 2 hygiene scores there is a value of 0 in the original data, and there is no 
logarithm of the value 0. To overcome this we should add a constant to our original scores 

Function Name Example Input Output

MEAN(?,?, ..) Mean Mean(day1, day2, day3)
For each row, SPSS calculates the average hygiene 
score across the three days of the festival

SD(?,?, ..) Standard deviation SD(day1, day2, day3)
Across each row, SPSS calculates the standard 
deviation of the values in the columns labelled day1, 
day2 and day3

SUM(?,?, ..) Sum SUM(day1, day2)
For each row, SPSS adds the values in the columns 
labelled day1 and day2

SQRT(?) Square root SQRT(day2)
Produces a column containing the square root of each 
value in the column labelled day2 

ABS(?) Absolute value ABS(day1)

Produces a variable that contains the absolute value of 
the values in the column labelled day1 (absolute values 
are ones where the signs are ignored: so –5 becomes 
+5 and +5 stays as +5)

LG10(?) Base 10 logarithm LG10(day1)
Produces a variable that contains the logarithmic (to 
base 10) values of the variable day1 

RV.NORMAL 
(mean, stddev)

Normal random 
numbers

Normal(20, 5)
Produces a variable of pseudo-random numbers from 
a normal distribution with a mean of 20 and a standard 
deviation of 5

table 5.2 Some useful compute functions
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before we take the log of those scores. Any constant will do, provided that it makes all of 
the scores greater than 0. In this case our lowest score is 0 in the data set so we can simply 
add 1 to all of the scores and that will ensure that all scores are greater than zero. To do this, 
make sure the cursor is still inside the brackets and click on  and then . The final dialog 
box should look like Figure 5.14. Note that the expression reads LG10(day1 + 1); that is, 
SPSS will add one to each of the day1 scores and then take the log of the resulting values. 
Click on  to create a new variable logday1 containing the transformed values.

SELF-TEST  Have a go at creating similar variables 
logday2 and logday3 for the day 2 and day 3 data. Plot 
histograms of the transformed scores for all three days.

5.7.3.3. the square root transformation on SPSS 2

To do a square root transformation, we run through the same process, by using a name 
such as sqrtday1 in the box labelled Target Variable (and click on  to give the vari-
able a more descriptive name). In the list box labelled Function g_roup click on Arithmetic 
and then in the box labelled Functions and Special Variables click on Sqrt and drag it to the 
command area or click on . When the command is transferred, it appears in the com-
mand area as SQRT(?). Replace the question mark with the variable day1 by selecting the 
variable in the list and dragging it, clicking on , or just typing ‘day1’ where the question 
mark is. The final expression will read SQRT(day1). Click on  to create the variable.

SELF-TEST  Repeat this process for day2 and day3 to 
create variables called sqrtday2 and sqrtday3. Plot 
histograms of the transformed scores for all three days.

5.7.3.4. the reciprocal transformation on SPSS 2

To do a reciprocal transformation on the data from day 1, we could use a name such as 
recday1 in the box labelled Target Variable. Then we can simply click on  and then . 
Ordinarily you would select the variable name that you want to transform from the list and 
drag it across, click on  or just type the name of the variable. However, the day 2 data 
contain a zero value and if we try to divide 1 by 0 then we’ll get an error message (you can’t 
divide by 0). As such we need to add a constant to our variable just as we did for the log trans-
formation. Any constant will do, but 1 is a convenient number for these data. So, instead of 
selecting the variable we want to transform, click on . This places a pair of brackets into the 
box labelled Numeric Expression; then make sure the cursor is between these two brackets 
and select the variable you want to transform from the list and transfer it across by clicking 
on  (or type the name of the variable manually). Now click on  and then  (or type + 
1 using your keyboard). The box labelled Numeric Expression should now contain the text 
1/(day1 + 1). Click on  to create a new variable containing the transformed values.

SELF-TEST  Repeat this process for day2 and day3. Plot 
histograms of the transformed scores for all three days..
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5.7.3.5. the effect of transformations 2

Figure 5.15 shows the distributions for days 1 and 2 of the festival after the three different 
transformations. Compare these to the untransformed distributions in Figure 5.3. Now, 
you can see that all three transformations have cleaned up the hygiene scores for day 2: 
the positive skew is reduced (the square root transformation in particular has been useful). 
However, because our hygiene scores on day 1 were more or less symmetrical to begin 
with, they have now become slightly negatively skewed for the log and square root trans-
formation, and positively skewed for the reciprocal transformation!6 If we’re using scores 
from day 2 alone then we could use the transformed scores; however, if we wanted to look 
at the change in scores then we’d have to weigh up whether the benefits of the transforma-
tion for the day 2 scores outweigh the problems it creates in the day 1 scores – data analysis 
can be frustrating sometimes! 

6 The reversal of the skew for the reciprocal transformation is because, as I mentioned earlier, the reciprocal has 
the effect of reversing the scores.

          SPSS T IP  5 .1     Using syntax to compute new variables 3

If you’re computing a lot of new variables it can be quicker to use syntax. For example, to create the 
transformed data in the example in this chapter. I’ve written the file Transformations.sps to do all 
nine of the transformations we’ve discussed in this section. Download this file from the companion 
website and open it. Alternatively, open a syntax window (see section 3.7) and type the following:

COMPUTE logday1 = LG10(day1 + 1) .

COMPUTE logday2 = LG10(day2 + 1) .

COMPUTE logday3 = LG10(day3 + 1) .

COMPUTE sqrtday1 = SQRT(day1).

COMPUTE sqrtday2 = SQRT(day2).

COMPUTE sqrtday3 = SQRT(day3).

COMPUTE recday1 = 1/(day1+1).

COMPUTE recday2 = 1/(day2+1).

COMPUTE recday3 = 1/(day3+1).

EXECUTE .

Each COMPUTE command above is doing the equivalent of what you’d do using the Compute Variable 
dialog box in Figure 5.14. So, the first three lines just ask SPSS to create three new variables (logday1, log-
day2 and logday3), which are just the log transformations of the variables day1, day2 and day3 plus 1. The 
next three lines do much the same but use the SQRT function, and so take the square root of day1, day2 
and day3 to create new variables called sqrtday1, sqrtday2 and sqrtday3 respectively. The next three lines 
do the reciprocal transformations in much the same way. The final line has the command EXECUTE without 
which none of the COMPUTE commands beforehand will be executed! Note also that every line ends with a 
full stop.
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5.7.4.  When it all goes horribly wrong 3

It’s very easy to think that transformations are the answers to all of your broken assump-
tion prayers. However, as we have seen, there are reasons to think that transformations 
are not necessarily a good idea (see Jane Superbrain Box 5.1) and even if you think that 
they are they do not always solve the problem, and even when they do solve the problem 

Figure 5.15 Distributions of the hygiene data on day 1 and day 2 after various transformations
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they often create different problems in the process. This happens more frequently than you 
might imagine (messy data are the norm).

If you find yourself in the unenviable position of having irksome data then there are some 
other options available to you (other than sticking a big samurai sword through your head). 
The first is to use a test that does not rely on the assumption of normally distributed data and 
as you go through the various chapters of this book I’ll point out these tests – there is also a 
whole chapter dedicated to them later on.7 One thing that you will quickly discover about 
non-parametric tests is that they have been developed for only a fairly limited range of situa-
tions. So, happy days if you want to compare two means, but sad lonely days listening to Joy 
Division if you have a complex experimental design.

A much more promising approach is to use robust methods (which I mentioned in Jane 
Superbrain Box 5.1). These tests have developed as computers have got more sophisticated 
(doing these tests without computers would be only marginally less painful than 
ripping off your skin and diving into a bath of salt). How these tests work is 
beyond the scope of this book (and my brain) but two simple concepts will give 
you the general idea. Some of these procedures use a trimmed mean. A trimmed 
mean is simply a mean based on the distribution of scores after some percentage 
of scores has been removed from each extreme of the distribution. So, a 10% 
trimmed mean will remove 10% of scores from the top and bottom before the 
mean is calculated. We saw in Chapter 2 that the accuracy of the mean depends 
on a symmetrical distribution, but a trimmed mean produces accurate results 
even when the distribution is not symmetrical, because by trimming the ends of 
the distribution we remove outliers and skew that bias the mean. Some robust 
methods work by taking advantage of the properties of the trimmed mean.

The second general procedure is the bootstrap (Efron & Tibshirani, 1993). The idea 
of the bootstrap is really very simple and elegant. The problem that we have is that we 
don’t know the shape of the sampling distribution, but normality in our data allows us to 
infer that the sampling distribution is normal (and hence we can know the probability of a 
particular test statistic occurring). Lack of normality prevents us from knowing the shape 
of the sampling distribution unless we have big samples (but see Jane Superbrain Box 5.1). 
Bootstrapping gets around this problem by estimating the properties of the sampling dis-
tribution from the sample data. In effect, the sample data are treated as a population from 
which smaller samples (called bootstrap samples) are taken (putting the data back before 
a new sample is drawn). The statistic of interest (e.g. the mean) is calculated in each sam-
ple, and by taking many samples the sampling distribution can be estimated (rather like in 
Figure 2.7). The standard error of the statistic is estimated from the standard deviation of 
this sampling distribution created from the bootstrap samples. From this standard error, 
confidence intervals and significance tests can be computed. This is a very neat way of get-
ting around the problem of not knowing the shape of the sampling distribution.

These techniques sound pretty good don’t they? It might seem a little strange then that  
I haven’t written a chapter on them. The reason why is that SPSS does not do most of them, 
which is something that I hope it will correct sooner rather than later. However, thanks to Rand 
Wilcox you can do them using a free statistics program called R (www.r-project.org) and a non-
free program called S-Plus. Wilcox provides a very comprehensive review of robust methods 
in his excellent book Introduction to robust estimation and hypothesis testing (2005) and has 
written programs to run these methods using R. Among many other things, he has files to run 
robust versions of many tests discussed in this book: ANOVA, ANCOVA, correlation and mul-
tiple regression. If there is a robust method, it is likely to be in his book, and he will have written 
a macro procedure to run it! You can also download these macros from his website.8 There are 

7 For convenience a lot of textbooks refer to these tests as non-parametric tests or assumption-free tests and stick 
them in a separate chapter. Actually neither of these terms are particularly accurate (e.g. none of these tests is 
assumption-free) but in keeping with tradition I’ve put them in a chapter (15) on their own ostracized from their 
‘parametric’ counterparts and feeling lonely.
8 www.usc.edu/schools/college/psyc/people/faculty1003819.html

What do I do if my
transformation doesn’t

work?
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What have I discovered about statistics? 1

‘You promised us swans,’ I hear you cry, ‘and all we got was normality this, homo-
somethingorother that, transform this – it’s all a waste of time that. Where were the 
bloody swans?!’ Well, the Queen owns them all so I wasn’t allowed to have them. 
Nevertheless, this chapter did negotiate Dante’s eighth circle of hell (Malebolge), 
where data of deliberate and knowing evil dwell. That is, data that don’t conform to 
all of those pesky assumptions that make statistical tests work properly. We began by 
seeing what assumptions need to be met for parametric tests to work, but we mainly 
focused on the assumptions of normality and homogeneity of variance. To look for 
normality we rediscovered the joys of frequency distributions, but also encountered 
some other graphs that tell us about deviations from normality (P–P and Q–Q plots). 
We saw how we can use skew and kurtosis values to assess normality and that there 
are statistical tests that we can use (the Kolmogorov–Smirnov test). While negotiating 
these evildoers, we discovered what homogeneity of variance is, and how to test it 
with Levene’s test and Hartley’s FMax. Finally, we discovered redemption for our data. 
We saw we can cure their sins, make them good, with transformations (and on the way 
we discovered some of the uses of the transform function of SPSS and the split-file 
command). Sadly, we also saw that some data are destined to always be evil. 

We also discovered that I had started to read. However, reading was not my true 
passion; it was music. One of my earliest memories is of listening to my dad’s rock 
and soul records (back in the days of vinyl) while waiting for my older brother to 
come home from school, so I must have been about 3 at the time. The first record  
I asked my parents to buy me was ‘Take on the world’ by Judas Priest which I’d heard 
on Top of the Pops (a now defunct UK TV show) and liked. This record came out in 
1978 when I was 5. Some people think that this sort of music corrupts young minds. 
Let’s see if it did …

‘Why is it called R?’, cackles Oliver ‘Is it because using it makes you 
shout Arrghhh!!?’ No, Oliver, it’s not. The R plugin is a useful tool but 
it’s very advanced. However, I’ve prepared a flash movie on the com-
panion website that shows you how to use it. Look out for some other 
R-related demos on there too.

OLIVER TWISTED

Please, Sir, can I 
have some more … R?

several good introductory books to tell you how to use R also (e.g. Dalgaard, 2002). There is also 
an SPSS plugin that you can download (http://www.spss.com/devcentral/index.cfm?pg=plugins) 
that allows you to use R commands from the SPSS syntax window. With this plugin you can 
analyse an open SPSS data file using the robust methods of R. These analyses are quite technical 
so I don’t discuss them in the book, but if you’d like to know more see Oliver Twisted. 
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Key terms that I’ve discovered
Bootstrap
Hartley’s FMax

Homogeneity of variance
Independence
Kolmogorov–Smirnov test
Levene’s test
Noniles 
Normally distributed data
Parametric test

Percentiles
P–P plot
Q–Q plot
Quantiles 
Robust test
Shapiro–Wilk test 
Transformation
Trimmed mean
Variance ratio

Smart Alex’s tasks

Task 1M : Using the ChickFlick.sav data from Chapter 4, check the assumptions of 
normality and homogeneity of variance for the two films (ignore gender): are the 
assumptions met? 1

Task 2M : Remember that the numeracy scores were positively skewed in the SPSSExam.
sav data (see Figure 5.5)? Transform these data using one of the transformations 
described in this chapter: do the data become normal? 2

Answers can be found on the companion website. 

Online tutorial
The companion website contains the following Flash movie tutorial to accompany this chapter:

 Using the compute command to transform variables

Further reading
Tabachnick, B. G., & Fidell, L. S. (2006). Using multivariate statistics (5th ed.). Boston: Allyn & 

Bacon. (Chapter 4 is the definitive guide to screening data!)
Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). Burlington, 

MA: Elsevier. (Quite technical, but this is the definitive book on robust methods.)
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Figure 6.1
I don’t have 
a photo from 
Christmas 1981, 
but this was taken 
about that time at 
my grandparents’ 
house. I’m trying 
to play an ‘E’ by 
the looks of it, no 
doubt because 
it’s in ‘Take on the 
world’

6.1. What will this chapter tell me? 1

When I was 8 years old, my parents bought me a guitar for Christmas. Even then, I’d 
desperately wanted to play the guitar for years. I could not contain my excitement at get-
ting this gift (had it been an electric guitar I think I would have actually exploded with 
excitement). The guitar came with a ‘learn to play’ book and after a little while of trying 
to play what was on page 1 of this book, I readied myself to unleash a riff of universe-
crushing power onto the world (well, ‘skip to my Lou’ actually). But, I couldn’t do it.  
I burst into tears and ran upstairs to hide.1 My dad sat with me and said, ‘Don’t worry, 
Andy, everything is hard to begin with, but the more you practise the easier it gets.’  

1 This is not a dissimilar reaction to the one I have when publishers ask me for new editions of statistics textbooks.

6 Correlation
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In his comforting words, my dad was inadvertently teaching me about the relation-
ship, or correlation, between two variables. These two variables could be related  
in three ways: (1) positively related, meaning that the more I practised my guitar, 
the better guitar player I would become (i.e. my dad was telling me the truth);  
(2) not related at all, meaning that as I practise the guitar my playing ability remains 
completely constant (i.e. my dad has fathered a cretin); or (3) negatively related, 
which would mean that the more I practised my guitar the worse a guitar player 
I became (i.e. my dad has fathered an indescribably strange child). This chapter 
looks first at how we can express the relationships between variables statistically 
by looking at two measures: covariance and the correlation coefficient. We then 
discover how to carry out and interpret correlations in SPSS. The chapter ends by looking 
at more complex measures of relationships; in doing so it acts as a precursor to the chapter 
on multiple regression.

6.2. Looking at relationships 1

In Chapter 4 I stressed the importance of looking at your data graphically before running 
any other analysis on them. I just want to begin by reminding you that our first starting 
point with a correlation analysis should be to look at some scatterplots of the variables 
we have measured. I am not going to repeat how to get SPSS to produce these graphs, but  
I am going to urge you (if you haven’t done so already) to read section 4.8 before embark-
ing on the rest of this chapter.

6.3. How do we measure relationships? 1

6.3.1.  A detour into the murky world of covariance 1

The simplest way to look at whether two variables are associated is to look at whether they 
covary. To understand what covariance is, we first need to think back to the concept of var-
iance that we met in Chapter 2. Remember that the variance of a single variable represents 
the average amount that the data vary from the mean. Numerically, it is described by: 

varianceðs2Þ=
P

ðxi − xÞ2

N−1
=

P
ðxi −xÞðxi −xÞ

N−1
(6.1)

The mean of the sample is represented by x-, xi is the data point in question and N is the 
number of observations (see section 2.4.1). If we are interested in whether two variables 
are related, then we are interested in whether changes in one variable are met with similar 
changes in the other variable. Therefore, when one variable deviates from its mean we 
would expect the other variable to deviate from its mean in a similar way. To illustrate what 
I mean, imagine we took five people and subjected them to a certain number of advertise-
ments promoting toffee sweets, and then measured how many packets of those sweets each 
person bought during the next week. The data are in Table 6.1 as well as the mean and 
standard deviation (s) of each variable.

What is a
correlation?
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Table 6.1

Subject 1 2 3 4 5 Mean S

Adverts Watched 5 4  4  6  8  5.4 1.67

Packets Bought 8 9 10 13 15 11.0 2.92

If there were a relationship between these two variables, then as one variable deviates 
from its mean, the other variable should deviate from its mean in the same or the directly 
opposite way. Figure 6.2 shows the data for each participant (green circles represent the 
number of packets bought and blue circles represent the number of adverts watched); the 
green line is the average number of packets bought and the blue line is the average number 
of adverts watched. The vertical lines represent the differences (remember that these dif-
ferences are called deviations) between the observed values and the mean of the relevant 
variable. The first thing to notice about Figure 6.2 is that there is a very similar pattern of 
deviations for both variables. For the first three participants the observed values are below 
the mean for both variables, for the last two people the observed values are above the mean 
for both variables. This pattern is indicative of a potential relationship between the two 
variables (because it seems that if a person’s score is below the mean for one variable then 
their score for the other will also be below the mean).

So, how do we calculate the exact similarity between the pattern of differences of the 
two variables displayed in Figure 6.2? One possibility is to calculate the total amount of 
deviation but we would have the same problem as in the single variable case: the positive 
and negative deviations would cancel out (see section 2.4.1). Also, by simply adding the 
deviations, we would gain little insight into the relationship between the variables. Now, in 
the single variable case, we squared the deviations to eliminate the problem of positive and 
negative deviations cancelling out each other. When there are two variables, rather than 
squaring each deviation, we can multiply the deviation for one variable by the correspond-
ing deviation for the second variable. If both deviations are positive or negative then this 
will give us a positive value (indicative of the deviations being in the same direction), but 
if one deviation is positive and one negative then the resulting product will be negative 

Figure 6.2
Graphical display 
of the differences 
between the 
observed data and 
the means of two 
variables
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(indicative of the deviations being opposite in direction). When we multiply the deviations 
of one variable by the corresponding deviations of a second variable, we get what is known 
as the cross-product deviations. As with the variance, if we want an average value of the 
combined deviations for the two variables, we must divide by the number of observations 
(we actually divide by N - 1 for reasons explained in Jane Superbrain Box 2.3). This aver-
aged sum of combined deviations is known as the covariance. We can write the covariance 
in equation form as in equation (6.2) – you will notice that the equation is the same as the 
equation for variance, except that instead of squaring the differences, we multiply them by 
the corresponding difference of the second variable:

covðx, yÞ=
P

ðxi − xÞðyi − yÞ
N−1 (6.2)

For the data in Table 6.1 and Figure 6.2 we reach the following value:

covðx, yÞ=
P

ðxi− xÞðyi − yÞ
N− 1

= ð−0:4Þð−3Þ+ ð−1:4Þð−2Þ+ ð−1:4Þð−1Þ+ ð0:6Þð2Þ+ ð2:6Þð4Þ
4

= 1:2+ 2:8+ 1:4+1:2+ 10:4

4

= 17

4

=4:25

Calculating the covariance is a good way to assess whether two variables are related to each 
other. A positive covariance indicates that as one variable deviates from the mean, the other 
variable deviates in the same direction. On the other hand, a negative covariance indicates 
that as one variable deviates from the mean (e.g. increases), the other deviates from the 
mean in the opposite direction (e.g. decreases).

There is, however, one problem with covariance as a measure of the relationship 
between variables and that is that it depends upon the scales of measurement used. So, 
covariance is not a standardized measure. For example, if we use the data above and 
assume that they represented two variables measured in miles then the covariance is 4.25 
(as calculated above). If we then convert these data into kilometres (by multiplying all 
values by 1.609) and calculate the covariance again then we should find that it increases 
to 11. This dependence on the scale of measurement is a problem because it means that 
we cannot compare covariances in an objective way – so, we cannot say whether a covari-
ance is particularly large or small relative to another data set unless both data sets were 
measured in the same units.

6.3.2.  Standardization and the correlation coefficient 1

To overcome the problem of dependence on the measurement scale, we need to convert 
the covariance into a standard set of units. This process is known as standardization. 
A very basic form of standardization would be to insist that all experiments use the 
same units of measurement, say metres – that way, all results could be easily compared. 
However, what happens if you want to measure attitudes – you’d be hard pushed to 
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measure them in metres! Therefore, we need a unit of measurement into which any 
scale of measurement can be converted. The unit of measurement we use is the standard 
deviation. We came across this measure in section 2.4.1 and saw that, like the variance, 
it is a measure of the average deviation from the mean. If we divide any distance from 
the mean by the standard deviation, it gives us that distance in standard deviation units. 
For example, for the data in Table 6.1, the standard deviation for the number of packets 
bought is approximately 3.0 (the exact value is 2.91). In Figure 6.2 we can see that the 
observed value for participant 1 was 3 packets less than the mean (so, there was an error 
of -3 packets of sweets). If we divide this deviation, -3, by the standard deviation, which 
is approximately 3, then we get a value of -1. This tells us that the difference between 
participant 1’s score and the mean was -1 standard deviation. So, we can express the 
deviation from the mean for a participant in standard units by dividing the observed 
deviation by the standard deviation.

It follows from this logic that if we want to express the covariance in a standard unit of 
measurement we can simply divide by the standard deviation. However, there are two vari-
ables and, hence, two standard deviations. Now, when we calculate the covariance we actu-
ally calculate two deviations (one for each variable) and then multiply them. Therefore, we 
do the same for the standard deviations: we multiply them and divide by the product of 
this multiplication. The standardized covariance is known as a correlation coefficient and 
is defined by equation (6.3) in which sx is the standard deviation of the first variable and 
sy is the standard deviation of the second variable (all other letters are the same as in the 
equation defining covariance):

r= covxy
sxsy

=
P

ðxi − xÞðyi− yÞ
ðN− 1Þsxsy (6.3)

The coefficient in equation (6.3) is known as the Pearson product-moment correlation coef-
ficient or Pearson correlation coefficient (for a really nice explanation of why it was originally 
called the ‘product-moment’ correlation see Miles & Banyard, 2007) and was invented by 
Karl Pearson (see Jane Superbrain Box 6.1).2 If we look back at Table 6.1 we see that the 
standard deviation for the number of adverts watched (sx) was 1.67, and for the number of 
packets of crisps bought (sy) was 2.92. If we multiply these together we get 1.67 × 2.92 = 
4.88. Now, all we need to do is take the covariance, which we calculated a few pages ago  
as being 4.25, and divide by these multiplied standard deviations. This gives us r = 4.25/ 
4.88 = .87.

By standardizing the covariance we end up with a value that has to lie between -1 and 
+1 (if you find a correlation coefficient less than -1 or more than +1 you can be sure that 
something has gone hideously wrong!). A coefficient of +1 indicates that the two variables 
are perfectly positively correlated, so as one variable increases, the other increases by a 
proportionate amount. Conversely, a coefficient of -1 indicates a perfect negative relation-
ship: if one variable increases, the other decreases by a proportionate amount. A coefficient 
of zero indicates no linear relationship at all and so if one variable changes, the other stays 
the same. We also saw in section 2.6.4 that because the correlation coefficient is a standard-
ized measure of an observed effect, it is a commonly used measure of the size of an effect 
and that values of ±.1 represent a small effect, ±.3 is a medium effect and ±.5 is a large 
effect (although I re-emphasize my caveat that these canned effect sizes are no substitute 
for interpreting the effect size within the context of the research literature). 

2 You will find Pearson’s product-moment correlation coefficient denoted by both r and R. Typically, the upper-
case form is used in the context of regression because it represents the multiple correlation coefficient; however, 
for some reason, when we square r (as in section 6.5.2.3) an upper case R is used. Don’t ask me why – it’s just to 
confuse me I suspect.
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6.3.3.  The significance of the correlation coefficient 3

Although we can directly interpret the size of a correlation coefficient, we have seen in 
Chapter 2 that scientists like to test hypotheses using probabilities. In the case of a correlation 
coefficient we can test the hypothesis that the correlation is different from zero (i.e. different 
from ‘no relationship’). If we find that our observed coefficient was very unlikely to happen 
if there was no effect in the population then we can gain confidence that the relationship that 
we have observed is statistically meaningful.

There are two ways that we can go about testing this hypothesis. The first is to use our trusty 
z-scores that keep cropping up in this book. As we have seen, z-scores are useful because we know 
the probability of a given value of z occurring, if the distribution from which it comes is normal. 
There is one problem with Pearson’s r, which is that it is known to have a sampling distribution 
that is not normally distributed. This is a bit of a nuisance, but luckily thanks to our friend Fisher 
we can adjust r so that its sampling distribution is normal as follows (Fisher, 1921):

zr=
1

2
loge

1+ r

1− r

 
(6.4)

The resulting zr has a standard error of:

SEzr =
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N− 3
p (6.5)

For our advert example, our r = .87 becomes 1.33 with a standard error of .71.

Another prominent statistician, Jerzy Neyman, criticized 
some of Fisher’s most important work in a paper deliv-
ered to the Royal Statistical Society on 28 March 1935 
at which Fisher was present. Fisher’s discussion of 
the paper at that meeting directly attacked Neyman. 
Fisher more or less said that Neyman didn’t know 
what he was talking about and didn’t understand the 
background material on which his work was based. 
Relations soured so much that while they both worked 
at University College London, Neyman openly attacked 
many of Fisher’s ideas in lectures to his students. The 
two feuding groups even took afternoon tea (a com-
mon practice in the British academic community of the 
time) in the same room but at different times! The truth 
behind who fuelled these feuds is, perhaps, lost in the 
mists of time, but Zabell (1992) makes a sterling effort 
to unearth it.

Basically then, the founders of modern statistical meth-
ods were a bunch of squabbling children. Nevertheless, 
these three men were astonishingly gifted individuals. 
Fisher, in particular, was a world leader in genetics, biol-
ogy and medicine as well as possibly the most original 
mathematical thinker ever (Barnard, 1963; Field, 2005d; 
Savage, 1976).

Students often think that statistics is dull, but back in the 
early 1900s it was anything but dull with various prominent 
figures entering into feuds on a soap opera scale. One of 
the most famous was between Karl Pearson and Ronald 
Fisher (whom we met in Chapter 2). It began when Pearson 
published a paper of Fisher’s in his journal but made com-
ments in his editorial that, to the casual reader, belittled 
Fisher’s work. Two years later Pearson’s group published 
work following on from Fisher’s paper without consulting 
him. The antagonism persisted with Fisher turning down 
a job to work in Pearson’s group and publishing ‘improve-
ments’ on Pearson’s ideas. Pearson for his part wrote in 
his own journal about apparent errors made by Fisher.

JANE SUPERBRAIN 6.1

Who said statistics was dull? 1
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We can then transform this adjusted r into a z-score just as we have done for raw scores, 
and for skewness and kurtosis values in previous chapters. If we want a z-score that rep-
resents the size of the correlation relative to a particular value, then we simply compute 
a z-score using the value that we want to test against and the standard error. Normally 
we want to see whether the correlation is different from 0, in which case we can subtract 
0 from the observed value of r and divide by the standard error (in other words, we just 
divide zr by its standard error):

z= zr
SEzr

(6.6)

For our advert data this gives us 1.33/.71 = 1.87. We can look up this value of z (1.87) 
in the table for the normal distribution in the Appendix and get the one-tailed probability 
from the column labelled ‘Smaller Portion’. In this case the value is .0307. To get the two-
tailed probability we simply multiply the one-tailed probability value by 2, which gives us 
.0614. As such the correlation is significant, p < .05 one-tailed, but not two-tailed.

In fact, the hypothesis that the correlation coefficient is different from 0 is usually (SPSS, 
for example, does this) tested not using a z-score, but using a t-statistic with N - 2 degrees 
of freedom, which can be directly obtained from r:

tr =
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N− 2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1− r2

p (6.7)

You might wonder then why I told you about z-scores. Partly it was to keep the discussion 
framed in concepts with which you are already familiar (we don’t encounter the t-test prop-
erly for a few chapters), but also it is useful background information for the next section.

6.3.4.  Confidence intervals for r 3

I was moaning earlier on about how SPSS doesn’t make tea for you. Another thing that it 
doesn’t do is compute confidence intervals for r. This is a shame because as we have seen 
in Chapter 2 these intervals tell us something about the likely value (in this case of the 
correlation) in the population. However, we can calculate these manually. To do this we 
need to take advantage of what we learnt in the previous section about converting r to zr 
(to make the sampling distribution normal), and using the associated standard errors. We 
can then construct a confidence interval in the usual way. For a 95% confidence interval 
we have (see section 2.5.2.1):

lower boundary of confidence interval=X− ð1:96× SEÞ

upper boundary of confidence interval=X+ ð1:96× SEÞ

In the case of our transformed correlation coefficients these equations become:

lower boundary of confidence interval= zr − ð1:96× SEzrÞ

upper boundary of confidence interval= zr+ ð1:96× SEzrÞ

For our advert data this gives us 1.33 - (1.96 × .71) = -0.062, and 1.33 + (1.96 × .71) = 
2.72. Remember that these values are in the zr metric and so we have to convert back to cor-
relation coefficients using:



173CHAPTER 6   Correlat ion

r= eð2zrÞ − 1

eð2zrÞ + 1 (6.8)

This gives us an upper bound of r = .991 and a lower bound of -0.062 (because this value 
is so close to zero the transformation to z has no impact).

‘These confidence intervals are rubbish,’ says Oliver, ‘they’re too con-
fusing and I hate equations, and the values we get will only be approxi-
mate. Can’t we get SPSS to do it for us while we check Facebook?’ 
Well, no you can’t. Except you sort of can with some syntax. I’ve written 
some SPSS syntax which will compute confidence intervals for r for 
you. To find out more, read the additional material for this chapter on 

the companion website. Or check Facebook, the choice is yours.

OLIVER TWISTED

Please, Sir, can I 
have some more …  
confidence intervals?

             CRAMMING SAM’S TIPS    

 A crude measure of the relationship between variables is the covariance.

 If we standardize this value we get Pearson’s correlation coefficient, r.

 The correlation coefficient has to lie between -1 and +1.

 A coefficient of +1 indicates a perfect positive relationship, a coefficient of -1 indicates a perfect negative relationship, a 
coefficient of 0 indicates no linear relationship at all.

 The correlation coefficient is a commonly used measure of the size of an effect: values of ±.1 represent a small effect, 
±.3 is a medium effect and ±.5 is a large effect.

6.3.5.  A word of warning about interpretation: causality 1

Considerable caution must be taken when interpreting correlation coefficients because 
they give no indication of the direction of causality. So, in our example, although we can 
conclude that as the number of adverts watched increases, the number of packets of tof-
fees bought increases also, we cannot say that watching adverts causes us to buy packets of 
toffees. This caution is for two reasons: 

The third-variableM  problem: We came across this problem in section 1.6.2. To recap, 
in any correlation, causality between two variables cannot be assumed because there 
may be other measured or unmeasured variables affecting the results. This is known as 
the third-variable problem or the tertium quid (see section 1.6.2 and Jane Superbrain 
Box 1.1).
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Direction of causalityM : Correlation coefficients say nothing about which variable causes 
the other to change. Even if we could ignore the third-variable problem described 
above, and we could assume that the two correlated variables were the only important 
ones, the correlation coefficient doesn’t indicate in which direction causality operates. 
So, although it is intuitively appealing to conclude that watching adverts causes us to 
buy packets of toffees, there is no statistical reason why buying packets of toffees can-
not cause us to watch more adverts. Although the latter conclusion makes less intuitive 
sense, the correlation coefficient does not tell us that it isn’t true. 

6.4. Data entry for correlation analysis  
using SPSS 1

Data entry for correlation, regression and multiple regression is straightforward because 
each variable is entered in a separate column. So, for each variable you have measured, 
create a variable in the data editor with an appropriate name, and enter a participant’s 
scores across one row of the data editor. There may be occasions on which you have one 
or more categorical variables (such as gender) and these variables can also be entered in a 
column (but remember to define appropriate value labels). As an example, if we wanted to 
calculate the correlation between the two variables in Table 6.1 we would enter these data 
as in Figure 6.3. You can see that each variable is entered in a separate column, and each 
row represents a single individual’s data (so the first consumer saw 5 adverts and bought 
8 packets).

SELF-TEST  Enter the advert data and use the Chart 
Editor to produce a scatterplot (number of packets 
bought on the y-axis, and adverts watched on the 
x-axis) of the data.

Figure 6.3
Data entry for 
correlation
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6.5. Bivariate correlation 1

6.5.1.  General procedure for running correlations on SPSS 1

There are two types of correlation: bivariate and partial. A bivariate correlation is a cor-
relation between two variables (as described at the beginning of this chapter) whereas a 
partial correlation looks at the relationship between two variables while ‘controlling’ the 
effect of one or more additional variables. Pearson’s product-moment correlation coef-
ficient (described earlier) and Spearman’s rho (see section 6.5.3) are examples of bivariate 
correlation coefficients.

Let’s return to the example from Chapter 4 about exam scores. Remember that a psy-
chologist was interested in the effects of exam stress and revision on exam performance. 
She had devised and validated a questionnaire to assess state anxiety relating to exams 
(called the Exam Anxiety Questionnaire, or EAQ). This scale produced a measure of anxi-
ety scored out of 100. Anxiety was measured before an exam, and the percentage mark of 
each student on the exam was used to assess the exam performance. She also measured the 
number of hours spent revising. These data are in Exam Anxiety.sav on the companion 
website. We have already created scatterplots for these data (section 4.8) so we don’t need 
to do that again.

To conduct a bivariate correlation you need to find the Correlate option of the Analyze 
menu. The main dialog box is accessed by selecting 

 and is shown in Figure 6.4. Using the dialog box it is possible to select 
which of three correlation statistics you wish to perform. The default setting is Pearson’s 
product-moment correlation, but you can also calculate Spearman’s correlation and 
Kendall’s correlation – we will see the differences between these correlation coefficients 
in due course.

Having accessed the main dialog box, you should find that the variables in the data edi-
tor are listed on the left-hand side of the dialog box (Figure 6.4). There is an empty box 

Figure 6.4 
Dialog box for 
conducting 
a bivariate 
correlation
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labelled Variables on the right-hand side. You can select any variables from the list using 
the mouse and transfer them to the Variables box by dragging them there or clicking on . 
SPSS will create a table of correlation coefficients for all of the combinations of variables. 
This table is called a correlation matrix. For our current example, select the variables Exam 
performance, Exam anxiety and Time spent revising and transfer them to the Variables 
box by clicking on . Having selected the variables of interest you can choose between 
three correlation coefficients: Pearson’s product-moment correlation coefficient ( ) 
Spearman’s rho ( ) and Kendall’s tau ( ). Any of these can be selected by 
clicking on the appropriate tick-box with a mouse.

In addition, it is possible to specify whether or not the test is one- or two-tailed (see 
section 2.6.2). To recap, a one-tailed test should be selected when you have a directional 
hypothesis (e.g. ‘the more anxious someone is about an exam, the worse their mark will 
be’). A two-tailed test (the default) should be used when you cannot predict the nature 
of the relationship (i.e. ‘I’m not sure whether exam anxiety will improve or reduce exam 
marks’). Therefore, if you have a directional hypothesis click on , whereas if you 
have a non-directional hypothesis click on .

If you click on  then another dialog box appears with two Statistics options and 
two options for missing values (Figure 6.5). The Statistics options are enabled only when 
Pearson’s correlation is selected; if Pearson’s correlation is not selected then these options 
are disabled (they appear in a light grey rather than black and you can’t activate them). This 
deactivation occurs because these two options are meaningful only for parametric data and 
the Pearson correlation is used with those kinds of data. If you select the tick-box labelled 
Means and standard deviations then SPSS will produce the mean and standard deviation of 
all of the variables selected for analysis. If you activate the tick-box labelled Cross-product 
deviations and covariances then SPSS will give you the values of these statistics for each of 
the variables in the analysis. The cross-product deviations tell us the sum of the products 
of mean corrected variables, which is simply the numerator (top half) of equation (6.2). 
The covariances option gives us values of the covariance between variables, which could be 
calculated manually using equation (6.2). In other words, these covariance values are the 
cross-product deviations divided by (N-1) and represent the unstandardized correlation 
coefficient. In most instances, you will not need to use these options but they occasionally 
come in handy (see Oliver Twisted). We can also decide how to deal with missing values 
(see SPSS Tip 6.1).

Figure 6.5
Dialog box 
for bivariate 
correlation 
options
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Oliver is so excited to get onto analysing his data that he doesn’t want 
me to spend pages waffling on about options that you will probably 
never use. ‘Stop writing, you waffling fool,’ he says. ‘I want to analyse 
my data.’ Well, he’s got a point. If you want to find out more about what 
the  do in correlation, then the additional material for this chap-
ter on the companion website will tell you. 

OLIVER TWISTED

Please, Sir, can I 
have some more … 
options?

          SPSS T IP  6 .1     Pairwise or listwise? 1

As we run through the various analyses in this book, many of them have additional options that can be accessed 
by clicking on . Often part of the resulting Options dialog box will ask you if you want to exclude cases 
‘pairwise’, ‘analysis by analysis’ or ‘listwise’. First, we can exclude cases listwise, which means that if a case has 
a missing value for any variable, then they are excluded from the whole analysis. So, for example, in our exam 
anxiety data if one of our students had reported their anxiety and we knew their exam performance but we didn’t 
have data about their revision time, then their data would not be used to calculate any of the correlations: they 
would be completely excluded from the analysis. Another option is to exclude cases on a pairwise or analysis-
by-analysis basis, which means that if a participant has a score missing for a particular variable or analysis, then 
their data are excluded only from calculations involving the variable for which they have no score. For our student 
about whom we don’t have any revision data, this means that their data would be excluded when calculating the 
correlation between exam scores and revision time, and when calculating the correlation between exam anxiety 
and revision time; however, the student’s scores would be included when calculating the correlation between 
exam anxiety and exam performance because for this pair of variables we have both of their scores.

6.5.2.  Pearson’s correlation coefficient 1

6.5.2.1. assumptions of Pearson’s r 1

Pearson’s correlation coefficient was described in full at the beginning of this chapter. Pearson’s 
correlation requires only that data are interval (see section 1.5.1.2) for it to be an accurate 
measure of the linear relationship between two variables. However, if you want to establish 
whether the correlation coefficient is significant, then more assumptions are required: for the 
test statistic to be valid the sampling distribution has to be normally distributed and as we saw 
in Chapter 5 we assume that it is if our sample data are normally distributed (or if we have 
a large sample). Although typically, to assume that the sampling distribution is normal, we 
would want both variables to be normally distributed, there is one exception to this rule: one 
of the variables can be a categorical variable provided there are only two categories (in fact, 
if you look at section 6.5.5 you’ll see that this is the same as doing a t-test, but I’m jumping 
the gun a bit). In any case, if your data are non-normal (see Chapter 5) or are not measured 
at the interval level then you should deselect the Pearson tick-box.
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6.5.2.2. running Pearson’s r on SPSS 1

We have already seen how to access the main dialog box and select the variables for analy-
sis earlier in this section (Figure 6.4). To obtain Pearson’s correlation coefficient simply 
select the appropriate box ( ) – SPSS selects this option by default. Our researcher 
predicted that (1) as anxiety increases, exam performance will decrease, and (2) as the time 
spent revising increases, exam performance will increase. Both of these are directional 
hypotheses, so both tests are one-tailed. To ensure that the output displays the one-tailed 
significance values select  and then click on  to run the analysis.

Figure 6.6
Karl Pearson

SPSS OuTPuT 6.1
Output for 
a Pearson’s 
correlation

Correlations

1.000 -.441** .397**
. .000 .000

103 103 103

-.441** 1.000 -.709**
.000 . .000
103 103 103

.397** -.709** 1.000

.000 .000 .
103 103 103

Pearson Correlation
Sig. (1-tailed)
N

Pearson Correlation
Sig. (1-tailed)
N

Pearson Correlation
Sig. (1-tailed)
N

Exam performance (%)

Exam Anxiety

Time spent revising

Exam
performance

(%)
Exam

Anxiety
Time spent

revising

**. Correlation is significant at the 0.01 level (1-tailed).

SPSS Output 6.1 provides a matrix of the correlation coefficients for the three variables. 
Underneath each correlation coefficient both the significance value of the correlation and 
the sample size (N) on which it is based are displayed. Each variable is perfectly correlated 
with itself (obviously) and so r = 1 along the diagonal of the table. Exam performance is 
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negatively related to exam anxiety with a Pearson correlation coefficient of r = -.441 and 
the significance value is less than .001 (as indicated by the double asterisk after the coef-
ficient). This significance value tells us that the probability of getting a correlation coef-
ficient this big in a sample of 103 people if the null hypothesis were true (there was no 
relationship between these variables) is very low (close to zero in fact). Hence, we can gain 
confidence that there is a genuine relationship between exam performance and anxiety. 
Our criterion for significance is usually .05 (see section 2.6.1) so SPSS marks any correla-
tion coefficient significant at this level with an asterisk. The output also shows that exam 
performance is positively related to the amount of time spent revising, with a coefficient of 
r = .397, which is also significant at p < .001. Finally, exam anxiety appears to be negatively 
related to the time spent revising, r = -.709, p < .001.

In psychological terms, this all means that as anxiety about an exam increases, the per-
centage mark obtained in that exam decreases. Conversely, as the amount of time revising 
increases, the percentage obtained in the exam increases. Finally, as revision time increases, 
the student’s anxiety about the exam decreases. So there is a complex interrelationship 
between the three variables.

6.5.2.3. using r2 for interpretation 1

Although we cannot make direct conclusions about causality from a correlation, we can 
take the correlation coefficient a step further by squaring it. The correlation coefficient 
squared (known as the coefficient of determination, R2) is a measure of the amount of vari-
ability in one variable that is shared by the other. For example, we may look at the relation-
ship between exam anxiety and exam performance. Exam performances vary from person 
to person because of any number of factors (different ability, different levels of preparation 
and so on). If we add up all of this variability (rather like when we calculated the sum of 
squares in section 2.4.1) then we would have an estimate of how much variability exists in 
exam performances. We can then use R2 to tell us how much of this variability is shared by 
exam anxiety. These two variables had a correlation of -0.4410 and so the value of R2 will 
be (-0.4410)2 = 0.194. This value tells us how much of the variability in exam perform-
ance is shared by exam anxiety.

If we convert this value into a percentage (multiply by 100) we can say that exam anxi-
ety shares 19.4% of the variability in exam performance. So, although exam anxiety was 
highly correlated with exam performance, it can account for only 19.4% of variation in 
exam scores. To put this value into perspective, this leaves 80.6% of the variability still 
to be accounted for by other variables. I should note at this point that although R2 is an 
extremely useful measure of the substantive importance of an effect, it cannot be used to 
infer causal relationships. Although we usually talk in terms of ‘the variance in y accounted 
for by x’, or even the variation in one variable explained by the other, this still says nothing 
about which way causality runs. So, although exam anxiety can account for 19.4% of the 
variation in exam scores, it does not necessarily cause this variation.

6.5.3.  Spearman’s correlation coefficient 1

Spearman’s correlation coefficient (Spearman, 1910; Figure 6.7), rs, is a non-parametric sta-
tistic and so can be used when the data have violated parametric assumptions such as non-
normally distributed data (see Chapter 5). You’ll sometimes hear the test referred to as 
Spearman’s rho (pronounced ‘row’, as in ‘row your boat gently down the stream’), which 
does make it difficult for some people to distinguish from the London lap-dancing club 
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Spearmint Rhino.3 Spearman’s test works by first ranking the data (see section 15.3.1), and 
then applying Pearson’s equation (equation (6.3)) to those ranks.

I was born in England, which has some bizarre traditions. One such oddity is The World’s 
Biggest Liar Competition held annually at the Santon Bridge Inn in Wasdale (in the Lake 
District). The contest honours a local publican, ‘Auld Will Ritson’, who in the nineteenth 

century was famous in the area for his far-fetched stories (one such tale 
being that Wasdale turnips were big enough to be hollowed out and used as 
garden sheds). Each year locals are encouraged to attempt to tell the biggest 
lie in the world (lawyers and politicians are apparently banned from the 
competition). Over the years there have been tales of mermaid farms, giant 
moles, and farting sheep blowing holes in the ozone layer. (I am thinking of 
entering next year and reading out some sections of this book.)

Imagine I wanted to test a theory that more creative people will be able 
to create taller tales. I gathered together 68 past contestants from this com-
petition and asked them where they were placed in the competition (first, 
second, third, etc.) and also gave them a creativity questionnaire (maximum 

score 60). The position in the competition is an ordinal variable (see section 1.5.1.2) because 
the places are categories but have a meaningful order (first place is better than second 
place and so on). Therefore, Spearman’s correlation coefficient should be used (Pearson’s 
r requires interval or ratio data). The data for this study are in the file The Biggest Liar.
sav. The data are in two columns: one labelled Creativity and one labelled Position (there’s 
actually a third variable in there but we will ignore it for the time being). For the Position 
variable, each of the categories described above has been coded with a numerical value. 
First place has been coded with the value 1, with positions being labelled 2, 3 and so on. 
Note that for each numeric code I have provided a value label (just like we did for coding 
variables). I have also set the Measure property of this variable to .

The procedure for doing a Spearman correlation is the same as for a Pearson correlation 
except that in the Bivariate Correlations dialog box (Figure 6.4), we need to select  and 
deselect the option for a Pearson correlation. At this stage, you should also specify whether 
you require a one- or two-tailed test. I predicted that more creative people would tell better 
lies. This hypothesis is directional and so a one-tailed test should be selected.

3 Seriously, a colleague of mine asked a student what analysis she was thinking of doing and she responded ‘a 
Spearman’s Rhino’. 

What if my data are
not parametric?

Figure 6.7 
Charles 
Spearman, 
ranking furiously 
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SPSS Output 6.2 shows the output for a Spearman correlation on the variables 
Creativity and Position. The output is very similar to that of the Pearson correlation: a 
matrix is displayed giving the correlation coefficient between the two variables (-.373), 
underneath is the significance value of this coefficient (.001) and finally the sample size 
(68).4 The significance value for this correlation coefficient is less than .05; therefore, 
it can be concluded that there is a significant relationship between creativity scores and 
how well someone did in the World’s Biggest Liar Competition. Note that the relation-
ship is negative: as creativity increased, position decreased. This might seem contrary to 
what we predicted until you remember that a low number means that you did well in 
the competition (a low number such as 1 means you came first, and a high number like 4 
means you came fourth). Therefore, our hypothesis is supported: as creativity increased, 
so did success in the competition. 

SELF-TEST  Did creativity cause success in the 
World’s Biggest Liar Competition?

6.5.4.  Kendall’s tau (non-parametric) 1

Kendall’s tau, τ, is another non-parametric correlation and it should be used rather 
than Spearman’s coefficient when you have a small data set with a large number of 
tied ranks. This means that if you rank all of the scores and many scores have the 
same rank, then Kendall’s tau should be used. Although Spearman’s statistic is the 
more popular of the two coefficients, there is much to suggest that Kendall’s statistic 
is actually a better estimate of the correlation in the population (see Howell, 1997: 
293). As such, we can draw more accurate generalizations from Kendall’s statistic than 
from Spearman’s. To carry out Kendall’s correlation on the world’s biggest liar data 
simply follow the same steps as for the Pearson and Spearman correlations but select 

 and deselect the Pearson and Spearman options. The output is much the 
same as for Spearman’s correlation.

4 It is good to check that the value of N corresponds to the number of observations that were made. If it doesn’t 
then data may have been excluded for some reason.

SPSS OuTPuT 6.2 
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You’ll notice from SPSS Output 6.3 that the actual value of the correlation coefficient 
is closer to zero than the Spearman correlation (it has increased from -.373 to -.300). 
Despite the difference in the correlation coefficients we can still interpret this result as 
being a highly significant relationship (because the significance value of .001 is less than 
.05). However, Kendall’s value is a more accurate gauge of what the correlation in the 
population would be. As with the Pearson correlation, we cannot assume that creativity 
caused success in the World’s Biggest Liar Competition.

SELF-TEST  Conduct a Pearson correlation analysis of 
the advert data from the beginning of the chapter.

6.5.5.  Biserial and point–biserial correlations 3

The biserial and point–biserial correlation coefficients are distinguished by only a concep-
tual difference yet their statistical calculation is quite different. These correlation coef-
ficients are used when one of the two variables is dichotomous (i.e. it is categorical with 
only two categories). An example of a dichotomous variable is being pregnant, because a 
woman can be either pregnant or not (she cannot be ‘a bit pregnant’). Often it is necessary 
to investigate relationships between two variables when one of the variables is dichoto-
mous. The difference between the use of biserial and point–biserial correlations depends 
on whether the dichotomous variable is discrete or continuous. This difference is very 
subtle. A discrete, or true, dichotomy is one for which there is no underlying continuum 
between the categories. An example of this is whether someone is dead or alive: a person 
can be only dead or alive, they can’t be ‘a bit dead’. Although you might describe a person 
as being ‘half-dead’ – especially after a heavy drinking session – they are clearly still alive 
if they are still breathing! Therefore, there is no continuum between the two categories. 
However, it is possible to have a dichotomy for which a continuum does exist. An example 
is passing or failing a statistics test: some people will only just fail while others will fail by 
a large margin; likewise some people will scrape a pass while others will clearly excel. So 
although participants fall into only two categories there is clearly an underlying continuum 
along which people lie. Hopefully, it is clear that in this case there is some kind of con-
tinuum underlying the dichotomy, because some people passed or failed more dramatically 
than others. The point–biserial correlation coefficient (rpb) is used when one variable is a 
discrete dichotomy (e.g. pregnancy), whereas the biserial correlation coefficient (rb) is used 
when one variable is a continuous dichotomy (e.g. passing or failing an exam). The biserial 

SPSS OuTPuT 6.3

smart
alex
only
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correlation coefficient cannot be calculated directly in SPSS: first you must calculate the 
point–biserial correlation coefficient and then use an equation to adjust that figure.

Imagine that I was interested in the relationship between the gender of a cat and how 
much time it spent away from home (what can I say? I love cats so these things interest me). 
I had heard that male cats disappeared for substantial amounts of time on long-distance 
roams around the neighbourhood (something about hormones driving them to find mates) 
whereas female cats tended to be more homebound. So, I used this as a purr-fect (sorry!) 
excuse to go and visit lots of my friends and their cats. I took a note of the gender of the 
cat and then asked the owners to note down the number of hours that their cat was absent 
from home over a week. Clearly the time spent away from home is measured at an inter-
val level – and let’s assume it meets the other assumptions of parametric data – while the 
gender of the cat is discrete dichotomy. A point–biserial correlation has to be calculated 
and this is simply a Pearson correlation when the dichotomous variable is coded with 0 for 
one category and 1 for the other (actually you can use any values and SPSS will change the 
lower one to 0 and the higher one to 1 when it does the calculations). So, to conduct these 
correlations in SPSS assign the Gender variable a coding scheme as described in section 
3.4.2.3 (in the saved data the coding is 1 for a male and 0 for a female). The time variable 
simply has time in hours recorded as normal. These data are in the file pbcorr.sav.

SELF-TEST  Carry out a Pearson correlation on these 
data (as in 6.5.2.2).

Congratulations: if you did the self-test task then you have just conducted your first point–
biserial correlation. See, despite the horrible name, it’s really quite easy to do. You should 
find that you have the same output as SPSS Output 6.4, which shows the correlation matrix 
of time and Gender. The point–biserial correlation coefficient is rpb = .378, which has a one-
tailed significance value of .001. The significance test for this correlation is actually the same 
as performing an independent-samples t-test on the data (see Chapter 9). The sign of the cor-
relation (i.e. whether the relationship was positive or negative) will depend entirely on which 
way round the coding of the dichotomous variable was made. To prove that this is the case, the 
data file pbcorr.sav has an extra variable called recode which is the same as the variable Gender 
except that the coding is reversed (1 = female, 0 = male). If you repeat the Pearson correlation 
using recode instead of Gender you will find that the correlation coefficient becomes -0.378. 
The sign of the coefficient is completely dependent on which category you assign to which 
code and so we must ignore all information about the direction of the relationship. However, 
we can still interpret R2 as before. So in this example, R2 = (0.378)2 = .143. Hence, we can 
conclude that gender accounts for 14.3% of the variability in time spent away from home.

SPSS OuTPuT 6.4 Correlations

1.000 .378**
. .001

60 60

.378** 1.000

.001 .
60 60

Pearson Correlation
Sig. (1-tailed)
N

Pearson Correlation
Sig. (1-tailed)
N

Time Away from Home (Hours)

Gender of Cat

Time away
from home

(hours)
Gender of

cat

**. Correlation is significant at the 0.01 level (1-tailed).
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Imagine now that we wanted to convert the point–biserial correlation into the biserial 
correlation coefficient (rb) (because some of the male cats were neutered and so there might 
be a continuum of maleness that underlies the gender variable). We must use equation (6.9) 
in which p is the proportion of cases that fell into the largest category and q is the propor-
tion of cases that fell into the smallest category. Therefore, p and q are simply the number 
of male and female cats. In this equation y is the ordinate of the normal distribution at 
the point where there is p% of the area on one side and q% on the other (this will become 
clearer as we do an example):

rb =
rpb

ffiffiffiffiffiffi
pq

p

y
(6.9)

To  calculate  p and q access the Frequencies dialog box using 
 and select the variable Gender. There is no need to click on any further 

options as the defaults will give you what you need to know (namely the percentage of 
male and female cats). It turns out that 53.3% (0.533 as a proportion) of the sample were 
female (this is p because it is the largest portion) while the remaining 46.7% (0.467 as a 
proportion) were male (this is q because it is the smallest portion). To calculate y, we use 
these values and the values of the normal distribution displayed in the Appendix. Figure 6.8 
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shows how to find the ordinate (the value in the column labelled y) when the normal curve 
is split with .467 as the smaller portion and .533 as the larger portion. The figure shows 
which columns represent p and q and we look for our values in these columns (the exact 
values of 0.533 and 0.467 are not in the table so instead we use the nearest values that we 
can find, which are .5319 and .4681 respectively). The ordinate value is in the column y 
and is .3977. 

If we replace these values in equation (6.9) we get .475 (see below), which is quite a lot 
higher than the value of the point–biserial correlation (0.378). This finding just shows you 
that whether you assume an underlying continuum or not can make a big difference to the 
size of effect that you get:

rb =
rpb

ffiffiffiffiffiffi
pq

p

y
= ð0:378Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:533×0:467Þ

p

0:3977
= 0:475

If this process freaks you out, you can also convert the point–biserial r to the biserial 
r using a table published by Terrell (1982b) in which you can use the value of the point–
biserial correlation (i.e. Pearson’s r) and p, which is just the proportion of people in the 
largest group (in the above example, .53). This spares you the trouble of having to work 
out y in the above equation (which you’re also spared from using). Using Terrell’s table 
we get a value in this example of .48 which is the same as we calculated to 2 decimal 
places.

To get the significance of the biserial correlation we need to first work out its standard 
error. If we assume the null hypothesis (that the biserial correlation in the population is 
zero) then the standard error is given by (Terrell, 1982a):

SErb
=

ffiffiffiffiffiffi
pq

p

y
ffiffiffiffiffi
N

p (6.10)

This equation is fairly straightforward because it uses the values of p, q and y that we 
already used to calculate the biserial r. The only additional value is the sample size (N), 
which in this example was 60. So, our standard error is:

SErb
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:533× :467Þ

p

:3977×
ffiffiffiffiffiffi
60

p = :162

The standard error helps us because we can create a z-score (see section 1.7.4). To get a 
z-score we take the biserial correlation, subtract the mean in the population and divide by 
the standard error. We have assumed that the mean in the population is 0 (the null hypoth-
esis), so we can simply divide the biserial correlation by its standard error:

Zrb
= rb − rb

SErb

= rb − 0

SErb

= rb
SErb

= :475

:162
= 2:93

We can look up this value of z (2.93) in the table for the normal distribution in the 
Appendix and get the one-tailed probability from the column labelled ‘Smaller Portion’. 
In this case the value is .00169. To get the two-tailed probability we simply multiply 
the one-tailed probability value by 2, which gives us .00338. As such the correlation is 
significant, p < .01. everybody
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6.6. Partial correlation 2

6.6.1.  The theory behind part and partial correlation 2

I mentioned earlier that there is a type of correlation that can be done that allows you 
to look at the relationship between two variables when the effects of a third variable are 
held constant. For example, analyses of the exam anxiety data (in the file ExamAnxiety.
sav) showed that exam performance was negatively related to exam anxiety, but positively 
related to revision time, and revision time itself was negatively related to exam anxiety. 
This scenario is complex, but given that we know that revision time is related to both 
exam anxiety and exam performance, then if we want a pure measure of the relationship 
between exam anxiety and exam performance we need to take account of the influence of 
revision time. Using the values of R2 for these relationships, we know that exam anxiety 
accounts for 19.4% of the variance in exam performance, that revision time accounts for 
15.7% of the variance in exam performance, and that revision time accounts for 50.2% 
of the variance in exam anxiety. If revision time accounts for half of the variance in exam 
anxiety, then it seems feasible that at least some of the 19.4% of variance in exam perform-
ance that is accounted for by anxiety is the same variance that is accounted for by revision 
time. As such, some of the variance in exam performance explained by exam anxiety is not 
unique and can be accounted for by revision time. A correlation between two variables in 
which the effects of other variables are held constant is known as a partial correlation.

Let’s return to our example of exam scores, revision time and exam anxiety to illustrate 
the principle behind partial correlation (Figure 6.9). In part 1 of the diagram there is a box 
for exam performance that represents the total variation in exam scores (this value would 
be the variance of exam performance). There is also a box that represents the variation 
in exam anxiety (again, this is the variance of that variable). We know already that exam 
anxiety and exam performance share 19.4% of their variation (this value is the correlation 
coefficient squared). Therefore, the variations of these two variables overlap (because they 
share variance) creating a third box (the one with diagonal lines). The overlap of the boxes 
representing exam performance and exam anxiety is the common variance. Likewise, in 

             CRAMMING SAM’S TIPS    

 We can measure the relationship between two variables using correlation coefficients.

 These coefficients lie between -1 and +1.

 Pearson’s correlation coefficient, r, is a parametric statistic and requires interval data for both variables. To test its signifi-
cance we assume normality too.

 Spearman’s correlation coefficient, rs, is a non-parametric statistic and requires only ordinal data for both variables.

 Kendall’s correlation coefficient, t, is like Spearman’s rs but probably better for small samples.

 The point–biserial correlation coefficient, rpb, quantifies the relationship between a continuous variable and a variable that is 
a discrete dichotomy (e.g. there is no continuum underlying the two categories, such as dead or alive).

 The biserial correlation coefficient, rb, quantifies the relationship between a continuous variable and a variable that is a 
continuous dichotomy (e.g. there is a continuum underlying the two categories, such as passing or failing an exam).

smart
alex
only
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part 2 of the diagram the shared variation between exam performance and revision time is 
illustrated. Revision time shares 15.7% of the variation in exam scores. This shared varia-
tion is represented by the area of overlap (filled with diagonal lines). We know that revision 
time and exam anxiety also share 50% of their variation; therefore, it is very probable that 
some of the variation in exam performance shared by exam anxiety is the same as the vari-
ance shared by revision time.

Part 3 of the diagram shows the complete picture. The first thing to note is that the 
boxes representing exam anxiety and revision time have a large overlap (this is because 
they share 50% of their variation). More important, when we look at how revision time 
and anxiety contribute to exam performance we see that there is a portion of exam per-
formance that is shared by both anxiety and revision time (the dotted area). However, 
there are still small chunks of the variance in exam performance that are unique to the 
other two variables. So, although in part 1 exam anxiety shared a large chunk of variation 
in exam performance, some of this overlap is also shared by revision time. If we remove 

Exam Performance 

Exam
Anxiety

Exam Performance 

Revision
Time

Exam Performance 

Revision
Time

Exam Anxiety

Variance Accounted
for by Exam Anxiety (19.4%)
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and Revision Time 

3

2

1
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the portion of variation that is also shared by revision time, we get a measure of the unique 
relationship between exam performance and exam anxiety. We use partial correlations to 
find out the size of the unique portion of variance. Therefore, we could conduct a partial 
correlation between exam anxiety and exam performance while ‘controlling’ for the effect 
of revision time. Likewise, we could carry out a partial correlation between revision time 
and exam performance while ‘controlling’ for the effects of exam anxiety.

6.6.2.  Partial correlation using SPSS 2

Reload the Exam Anxiety.sav file so that, as I suggested above, we can conduct a partial 
correlation between exam anxiety and exam performance while ‘controlling’ for the effect 
of revision time.. To access the Partial Correlations dialog box (Figure 6.10) select 

. This dialog box lists all of the variables in the data 
editor on the left-hand side and there are two empty spaces on the right-hand side. The 
space labelled Variables is for listing the variables that you want to correlate and the space 
labelled Controlling for is for declaring any variables the effects of which you want to con-
trol. In the example I have described, we want to look at the unique effect of exam anxiety 
on exam performance and so we want to correlate the variables exam and anxiety while 
controlling for revise. Figure 6.10 shows the completed dialog box. 

If you click on  then another dialog box appears as shown in Figure 6.11. These 
options are similar to those in bivariate correlation except that you can choose to compute 
zero-order correlations, which are simply the bivariate correlation coefficients without 
controlling for any other variables (i.e. they’re Pearson’s correlation coefficient). So, in our 
example, if we select the tick-box for zero-order correlations SPSS will produce a correla-
tion matrix of anxiety, exam and revise. If you haven’t conducted bivariate correlations 
before the partial correlation then this is a useful way to compare the correlations that 
haven’t been controlled against those that have. This comparison gives you some insight 
into the contribution of different variables. Tick the box for zero-order correlations but 
leave the rest of the options as they are.

Figure 6.10
Main dialog box 
for conducting a 
partial correlation
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SPSS Output 6.5 shows the output for the partial correlation of exam anxiety and exam 
performance controlling for revision time. The first thing to notice is the matrix of zero- 
order correlations, which we asked for using the options dialog box. The correlations 
displayed here are identical to those obtained from the Pearson correlation procedure (com-
pare this matrix to the one in SPSS Output 6.1). Underneath the zero-order correlations is 
a matrix of correlations for the variables anxiety and exam but controlling for the effect 
of revision. In this instance we have controlled for one variable and so this is known as a 
first-order partial correlation. It is possible to control for the effects of two variables at the 
same time (a second-order partial correlation) or control three variables (a third-order partial 
correlation) and so on. First, notice that the partial correlation between exam performance 
and exam anxiety is -.247, which is considerably less than the correlation when the effect of 
revision time is not controlled for (r = -.441). In fact, the correlation coefficient is nearly half 
what it was before. Although this correlation is still statistically significant (its p-value is still 
below .05), the relationship is diminished. In terms of variance, the value of R2 for the partial 
correlation is .06, which means that exam anxiety can now account for only 6% of the vari-
ance in exam performance. When the effects of revision time were not controlled for, exam 
anxiety shared 19.4% of the variation in exam scores and so the inclusion of revision time 
has severely diminished the amount of variation in exam scores shared by anxiety. As such, a 
truer measure of the role of exam anxiety has been obtained. Running this analysis has shown 

Figure 6.11
Options for 
partial correlation

SPSS OuTPuT 6.5
Output from a 
partial correlation



190 D iSCoVer inG Stat iSt iCS  US inG SPSS

us that exam anxiety alone does explain some of the variation in exam scores, but there is a 
complex relationship between anxiety, revision and exam performance that might otherwise 
have been ignored. Although causality is still not certain, because relevant variables are being 
included, the third variable problem is, at least, being addressed in some form.

These partial correlations can be done when variables are dichotomous (including the ‘third’ 
variable). So, for example, we could look at the relationship between bladder relaxation (did the 
person wet themselves or not?) and the number of large tarantulas crawling up your leg control-
ling for fear of spiders (the first variable is dichotomous, but the second variable and ‘controlled 
for’ variables are continuous). Also, to use an earlier example, we could examine the relation-
ship between creativity and success in the world’s greatest liar contest controlling for whether 
someone had previous experience in the competition (and therefore had some idea of the type 
of tale that would win) or not. In this latter case the ‘controlled for’ variable is dichotomous.5

6.6.3.  Semi-partial (or part) correlations 2

In the next chapter, we will come across another form of correlation known as a semi-partial 
correlation (also referred to as a part correlation). While I’m babbling on about partial cor-
relations it is worth my explaining the difference between this type of correlation and a semi-
partial correlation. When we do a partial correlation between two variables, we control for 
the effects of a third variable. Specifically, the effect that the third variable has on both varia-
bles in the correlation is controlled. In a semi-partial correlation we control for the effect that 
the third variable has on only one of the variables in the correlation. Figure 6.12 illustrates 
this principle for the exam performance data. The partial correlation that we calculated took 
account not only of the effect of revision on exam performance, but also of the effect of revi-
sion on anxiety. If we were to calculate the semi-partial correlation for the same data, then 
this would control for only the effect of revision on exam performance (the effect of revision 
on exam anxiety is ignored). Partial correlations are most useful for looking at the unique 
relationship between two variables when other variables are ruled out. Semi-partial correla-
tions are, therefore, useful when trying to explain the variance in one particular variable (an 
outcome) from a set of predictor variables. (Bear this in mind when you read Chapter 7.)

5 Both these examples are, in fact, simple cases of hierarchical regression (see the next chapter) and the first example is 
also an example of analysis of covariance. This may be confusing now, but as we progress through the book I hope it’ll 
become clearer that virtually all of the statistics that you use are actually the same things dressed up in different names.

Partial Correlation Semi-Partial Correlation 

Revision

AnxietyAnxiety ExamExam

RevisionFigure 6.12
The difference 
between a partial 
and a semi-partial 
correlation

             CRAMMING SAM’S TIPS    

 A partial correlation quantifies the relationship between two variables while controlling for the effects of a third variable on 
both variables in the original correlation.

 A semi-partial correlation quantifies the relationship between two variables while controlling for the effects of a third variable 
on only one of the variables in the original correlation.
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6.7. Comparing correlations 3

6.7.1.  Comparing independent rs 3

Sometimes we want to know whether one correlation coefficient is bigger than another. 
For example, when we looked at the effect of exam anxiety on exam performance, we 
might have been interested to know whether this correlation was different in men and 
women. We could compute the correlation in these two samples, but then how would we 
assess whether the difference was meaningful?

SELF-TEST  Use the split file command to compute 
the correlation coefficient between exam anxiety and 
exam performance in men and women.

If we did this, we would find that the correlations were rMale = -.506 and rFemale = -.381. 
These two samples are independent; that is, they contain different entities. To compare 
these correlations we can again use what we discovered in section 6.3.3 to convert these 
coefficients to zr (just to remind you, we do this because it makes the sampling distribution 
normal and we know the standard error). If you do the conversion, then we get zr (males) = 
-.557 and zr (females) = -.401. We can calculate a z-score of the differences between these 
correlations as:

ZDifference =
zr1 − zr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N1 − 3 +
1

N2 + 3

q
(6.11)

We had 52 men and 51 women so we would get:

ZDifference =
− :557− ð− :401Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
49 + 1

48

q = − :156

0:203
= − 0:768

We can look up this value of z (0.768, we can ignore the minus sign) in the table for the 
normal distribution in the Appendix and get the one-tailed probability from the column 
labelled ‘Smaller Portion’. In this case the value is .221. To get the two-tailed probability 
we simply multiply the one-tailed probability value by 2, which gives us .442. As such the 
correlation between exam anxiety and exam performance is not significantly different in 
men and women. (see Oliver Twisted for how to do this on SPSS).

6.7.2.  Comparing dependent rs 3

If you want to compare correlation coefficients that come from the same entities then things 
are a little more complicated. You can use a t-statistic to test whether a difference between two 
dependent correlations from the same sample is significant. For example, in our exam anxi-
ety data we might want to see whether the relationship between exam anxiety (x) and exam 
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performance (y) is stronger than the relationship between revision (z) and exam performance. 
To calculate this, all we need are the three rs that quantify the relationships between these 
variables: rxy, the relationship between exam anxiety and exam performance (-.441); rzy, the 
relationship between revision and exam performance (.397); and rxz, the relationship between 
exam anxiety and revision (-.709). The t-statistic is computed as (Chen & Popovich, 2002):

tDifference = rxy − rzy
 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−3Þð1+ rxzÞ

2 1− r2xy− r2xz − r2zy + 2rxyrxzrzy

 
vuut

(6.12)

Admittedly that equation looks hideous, but really it’s not too bad: it just uses the three 
correlation coefficients and the sample size N. Place the numbers from the exam anxiety 
example in it (N was 103) and you should end up with:

tDifference = ð−:838Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29:1

2ð1− :194− :503− :158+0:248

s

=−5:09

This value can be checked against the appropriate critical value in the Appendix with N - 3 
degrees of freedom (in this case 100). The critical values in the table are 1.98 (p < .05) and 
2.63 (p < .01), two-tailed. As such we can say that the correlation between exam anxiety 
and exam performance was significantly higher than the correlation between revision time 
and exam performance (this isn’t a massive surprise given that these relationships went in 
the opposite directions to each other).

‘Are you having a bloody laugh with that equation?’ yelps Oliver. ‘I’d rather 
smother myself with cheese sauce and lock myself in a room of hungry 
mice.’ Yes, yes, Oliver, enough of your sexual habits. To spare the poor 
mice I have written some SPSS syntax to run the comparisons mentioned 
in this section. For a guide on how to use them read the additional material 
for this chapter on the companion website. Go on, be kind to the mice! 

OLIVER TWISTED

Please, Sir, can I 
have some more …  
comparing of  
correlations?

Can I use r2

for non-parametric
correlations?

6.8. Calculating the effect size 1

Calculating effect sizes for correlation coefficients couldn’t be 
easier because, as we saw earlier in the book, correlation coef-
ficients are effect sizes! So, no calculations (other than those you 
have already done) necessary! However, I do want to point out 
one caveat when using non-parametric correlation coefficients 
as effect sizes. Although the Spearman and Kendall correlations 
are comparable in many respects (their power, for example, is 
similar under parametric conditions), there are two important 
differences (Strahan, 1982).

First, we saw for Pearson’s r that we can square this value to 
get the proportion of shared variance, R2. For Spearman’s rs we 
can do this too because it uses the same equation as Pearson’s r. 

everybody



193CHAPTER 6   Correlat ion

However, the resulting Rs
2 needs to be interpreted slightly differently: it is the proportion of 

variance in the ranks that two variables share. Having said this, Rs
2 is usually a good approx-

imation of R2 (especially in conditions of near-normal distributions). Kendall’s τ, however, 
is not numerically similar to either r or rs and so τ2 does not tell us about the proportion of 
variance shared by two variables (or the ranks of those two variables).

Second, Kendall’s τ is 66–75% smaller than both Spearman’s rs and Pearson’s r, but r 
and rs are generally similar sizes (Strahan, 1982). As such, if τ is used as an effect size it 
should be borne in mind that it is not comparable to r and rs and should not be squared. A 
related issue is that the point–biserial and biserial correlations differ in size too (as we saw 
in this chapter, the biserial correlation was bigger than the point–biserial). In this instance 
you should be careful to decide whether your dichotomous variable has an underlying con-
tinuum, or whether it is a truly discrete variable. More generally, when using correlations 
as effect sizes you should remember (both when reporting your own analysis and when 
interpreting others) that the choice of correlation coefficient can make a substantial differ-
ence to the apparent size of the effect. 

6.9. How to report correlation coefficents 1

Reporting correlation coefficients is pretty easy: you just have to say how big they are 
and what their significance value was (although the significance value isn’t that important 
because the correlation coefficient is an effect size in its own right!). Five things to note are 
that: (1) there should be no zero before the decimal point for the correlation coefficient 
or the probability value (because neither can exceed 1); (2) coefficients are reported to 2 
decimal places; (3) if you are quoting a one-tailed probability, you should say so; (4) each 
correlation coefficient is represented by a different letter (and some of them are Greek!); 
and (5) there are standard criteria of probabilities that we use (.05, .01 and .001). Let’s take 
a few examples from this chapter:

	There was a significant relationship between the number of adverts watched and the 
number of packets of sweets purchased, r = .87, p (one-tailed) < .05.

	Exam performance was significantly correlated with exam anxiety, r = -.44, and time 
spent revising, r = .40; the time spent revising was also correlated with exam anxiety, 
r = -.71 (all ps < .001).

	Creativity was significantly related to how well people did in the World’s Biggest Liar 
Competition, rs = –.37, p < .001. 

	Creativity was significantly related to how well people did in the World’s Biggest Liar 
Competition, τ = -.30, p < .001. (Note that I’ve quoted Kendall’s τ here.)

	The gender of the cat was significantly related to the time the cat spent away from 
home, rpb = .38, p < .01.

	The gender of the cat was significantly related to the time the cat spent away from 
home, rb = .48, p < .01.

Scientists, rightly or wrongly, tend to use several standard levels of statistical signifi-
cance. Primarily, the most important criterion is that the significance value is less than .05; 
however, if the exact significance value is much lower then we can be much more confident 
about the strength of the experimental effect. In these circumstances we like to make a big 
song and dance about the fact that our result isn’t just significant at .05, but is significant at 
a much lower level as well (hooray!). The values we use are .05, .01, .001 and .0001. You 
are rarely ever going to be in the fortunate position of being able to report an effect that is 
significant at a level less than .0001! 
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When we have lots of correlations we sometimes put them into a table. For example, 
our exam anxiety correlations could be reported as in Table 6.2. Note that above the diago-
nal I have reported the correlation coefficients and used symbols to represent different 
levels of significance. Under the table there is a legend to tell readers what symbols repre-
sent. (Actually, none of the correlations were non-significant or had p bigger than .001 so 
most of these are here simply to give you a reference point – you would normally include 
symbols that you had actually used in the table in your legend.) Finally, in the lower part of 
the table I have reported the sample sizes. These are all the same (101) but sometimes when 
you have missing data it is useful to report the sample sizes in this way because different 
values of the correlation will be based on different sample sizes. For some more ideas on 
how to report correlations have a look at Labcoat Leni’s Real Research 6.1. 

Table 6.2 An example of reporting a table of correlations

Exam 
Performance Exam Anxiety Revision Time

Exam Performance   1 -.44*** .40***

Exam Anxiety 101   1 -.71***

Revision Time 101 101 1

Ns = not significant (p > .05), *p < .05, ** p < .01, *** p < .001

As students you probably have to rate your lecturers at 
the end of the course. There will be some lecturers you 
like and others that you hate. As a lecturer I find this pro-
cess horribly depressing (although this has a lot to do 
with the fact that I tend focus on negative feedback and 
ignore the good stuff). There is some evidence that stu-
dents tend to pick courses of lecturers who they perceive 
to be enthusastic and good communicators. In a fascinat-
ing study, Tomas Chamorro-Premuzic and his colleagues 
(Chamorro-Premuzic, Furnham, Christopher, Garwood, & 
Martin, 2008) tested a slightly different hypothesis, which 
was that students tend to like lecturers who are like them-
selves. (This hypothesis will have the students on my 
course who like my lectures screaming in horror.)

First of all the authors measured students’ own per-
sonalities using a very well-established measure (the 
NEO-FFI) which gives rise to scores on five fundamental 
personality traits: Neuroticism, Extroversion, Openness to 
experience, Agreeableness and Conscientiousness. They 

also gave students a questionnaire that asked them to 
rate how much they wanted their lecturer to have each of 
a list of characteristics. For example, they would be given 
the description ‘warm: friendly, warm, sociable, cheerful, 
affectionate, outgoing’ and asked to rate how much they 
wanted to see this in a lecturer from -5 (they don’t want 
this characteristic at all) through 0 (the characteristic is 
not important) to +5 (I really want this characteristic in 
my lecturer). The characteristics on the questionnaire 
all related to personality characteristics measured by the 
NEO-FFI. As such, the authors had a measure of how 
much a student had each of the five core personality char-
acteristics, but also a measure of how much they wanted 
to see those same characteristics in their lecturer. 

In doing so, Tomas and his colleagues could test 
whether, for instance, extroverted students want extrovert 
lecturers. The data from this study (well, for the variables 
that I’ve mentioned) are in the file Chamorro-Premuzic.sav. 
Run some Pearson correlations on these variables to see if 

students with certain personality characteristics 
want to see those characteristics in their lectur-
ers. What conclusions can you draw?

Answers are in the additional material on 
the companion website (or look at Table 3 in 

the original article, which will also show you how to report 
a large number of correlations).

LABCOAT LENI’S
REAL RESEARCH 6.1

Why do you like your 
lecturers? 1
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What have I discovered about statistics? 1

This chapter has looked at ways to study relationships between variables. We began 
by looking at how we might measure relationships statistically by developing what we 
already know about variance (from Chapter 1) to look at variance shared between 
variables. This shared variance is known as covariance. We then discovered that when 
data are parametric we can measure the strength of a relationship using Pearson’s 
correlation coefficient, r. When data violate the assumptions of parametric tests we 
can use Spearman’s rs, or for small data sets Kendall’s τ may be more accurate. We 
also saw that correlations can be calculated between two variables when one of those 
variables is a dichotomy (i.e. composed of two categories); when the categories have 
no underlying continuum then we use the point–biserial correlation, rpb, but when the 
categories do have an underlying continuum we use the biserial correlation, rb. Finally, 
we looked at the difference between partial correlations, in which the relationship 
between two variables is measured controlling for the effect that one or more variables 
has on both of those variables, and semi-partial correlations, in which the relationship 
between two variables is measured controlling for the effect that one or more vari-
ables has on only one of those variables. We also discovered that I had a guitar and, 
like my favourite record of the time, I was ready to ‘Take on the world’. Well, Wales 
at any rate …

Key terms that I’ve discovered
Biserial correlation
Bivariate correlation
Coefficient of determination
Covariance
Cross-product deviations
Kendall’s tau

Partial correlation
Pearson correlation coefficient
Point–biserial correlation
Semi-partial correlation
Spearman’s correlation coefficient
Standardization

Smart Alex’s tasks

Task 1M : A student was interested in whether there was a positive relationship between 
the time spent doing an essay and the mark received. He got 45 of his friends and 
timed how long they spent writing an essay (hours) and the percentage they got 
in the essay (essay). He also translated these grades into their degree classifications 
(grade): first, upper second, lower second and third class. Using the data in the file 
EssayMarks.sav find out what the relationship was between the time spent doing an 
essay and the eventual mark in terms of percentage and degree class (draw a scat-
terplot too!). 1

Task 2M : Using the ChickFlick.sav data from Chapter 3, is there a relationship between 
gender and arousal? Using the same data, is there a relationship between the film 
watched and arousal? 1



196 D iSCoVer inG Stat iSt iCS  US inG SPSS

Task 3M : As a statistics lecturer I am always interested in the factors that determine 
whether a student will do well on a statistics course. One potentially important factor 
is their previous expertise with mathematics. Imagine I took 25 students and looked 
at their degree grades for my statistics course at the end of their first year at university. 
In the UK, a student can get a first-class mark (the best), an upper-second-class mark, a 
lower second, a third, a pass or a fail (the worst). I also asked these students what grade 
they got in their GCSE maths exams. In the UK GCSEs are school exams taken at age 
16 that are graded A, B, C, D, E or F (an A grade is better than all of the lower grades). 
The data for this study are in the file grades.sav. Carry out the appropriate analysis to 
see if GCSE maths grades correlate with first-year statistics grades. 1

Answers can be found on the companion website. 

Further reading
Chen, P. Y., & Popovich, P. M. (2002). Correlation: Parametric and nonparametric measures. Thousand 

Oaks, CA: Sage. 
Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 

might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007. 
Both are excellent texts that are a bit more technical than this book so they are a useful next 
step.)

Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: a practical 
introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)

Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book is a 
very gentle introduction to statistical theory.)

Online tutorial
The companion website contains the following Flash movie tutorial to accompany this chapter:

 Correlations using SPSS

Interesting real research
Chamorro-Premuzic, T., Furnham, A., Christopher, A. N., Garwood, J., & Martin, N. (2008). Birds 

of a feather: Students’ preferences for lecturers’ personalities as predicted by their own personal-
ity and learning approaches. Personality and Individual Differences, 44, 965–976.
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Figure 7.1
Me playing 
with my ding-
a-ling in the 
Holimarine Talent 
Show. Note the 
groupies queuing 
up at the front

7.1. What will this chapter tell me? 1

Although none of us can know the future, predicting it is so important that organisms are 
hard wired to learn about predictable events in their environment. We saw in the previ-
ous chapter that I received a guitar for Christmas when I was 8. My first foray into public 
performance was a weekly talent show at a holiday camp called ‘Holimarine’ in Wales (it 
doesn’t exist anymore because I am old and this was 1981). I sang a Chuck Berry song called 
‘My ding-a-ling’1 and to my absolute amazement I won the competition.2 Suddenly other 8 
year olds across the land (well, a ballroom in Wales) worshipped me (I made lots of friends 
after the competition). I had tasted success, it tasted like praline chocolate, and so I wanted 
to enter the competition in the second week of our holiday. To ensure success, I needed to 
know why I had won in the first week. One way to do this would have been to collect data 
and to use these data to predict people’s evaluations of children’s performances in the contest 

1 It appears that even then I had a passion for lowering the tone of things that should be taken seriously.
2 I have a very grainy video of this performance recorded by my dad’s friend on a video camera the size of a 
medium-sized dog that had to be accompanied at all times by a ‘battery pack’ the size and weight of a tank. Maybe 
I’ll put it up on the companion website …

7Regression



198 D ISCOVER ING STAT IST ICS  US ING SPSS

from certain variables: the age of the performer, what type of performance they gave (sing-
ing, telling a joke, magic tricks), and maybe how cute they looked. A regression analysis on 
these data would enable us to predict future evaluations (success in next week’s competition) 
based on values of the predictor variables. If, for example, singing was an important factor 
in getting a good audience evaluation, then I could sing again the following week; however, 
if jokers tended to do better then I could switch to a comedy routine. When I was 8 I wasn’t 
the sad geek that I am today, so I didn’t know about regression analysis (nor did I wish to 
know); however, my dad thought that success was due to the winning combination of a 
cherub-looking 8 year old singing songs that can be interpreted in a filthy way. He wrote me 
a song to sing in the competition about the keyboard player in the Holimarine Band ‘messing 
about with his organ’, and first place was mine again. There’s no accounting for taste.

7.2. An introduction to regression 1

In the previous chapter we looked at how to measure relationships between two variables. 
These correlations can be very useful but we can take this process a step further and pre-
dict one variable from another. A simple example might be to try to predict levels of stress 
from the amount of time until you have to give a talk. You’d expect this to be a negative 
relationship (the smaller the amount of time until the talk, the larger the anxiety). We 
could then extend this basic relationship to answer a question such as ‘if there’s 10 minutes 
to go until someone has to give a talk, how anxious will they be?’ This is the essence of 
regression analysis: we fit a model to our data and use it to predict values of the dependent 
variable (DV) from one or more independent variables (IVs).3 Regression analysis is a way 
of predicting an outcome variable from one predictor variable (simple regression) or several 
predictor variables (multiple regression). This tool is incredibly useful because it allows us 
to go a step beyond the data that we collected.

In section 2.4.3 I introduced you to the idea that we can predict any data using the fol-
lowing general equation:

outcomei = ðmodelÞ+ errori (7.1)

This just means that the outcome we’re trying to predict for a particular person can be 
predicted by whatever model we fit to the data plus some kind of error. In regression, the 

model we fit is linear, which means that we summarize a data set with 
a straight line (think back to Jane Superbrain Box 2.1). As such, the 
word ‘model’ in the equation above simply gets replaced by ‘things’ that 
define the line that we fit to the data (see the next section).

With any data set there are several lines that could be used to summa-
rize the general trend and so we need a way to decide which of many pos-
sible lines to choose. For the sake of making accurate predictions we want 
to fit a model that best describes the data. The simplest way to do this 
would be to use your eye to gauge a line that looks as though it summa-
rizes the data well. You don’t need to be a genius to realize that the ‘eye-
ball’ method is very subjective and so offers no assurance that the model 

is the best one that could have been chosen. Instead, we use a mathematical technique called 
the method of least squares to establish the line that best describes the data collected.

3 I want to remind you here of something I discussed in Chapter 1: SPSS refers to regression variables as de-
pendent and independent variables (as in controlled experiments). However, correlational research by its nature 
seldom controls the independent variables to measure the effect on a dependent variable and so I will talk about 
‘independent variables’ as predictors, and the ‘dependent variable’ as the outcome.

How do I fit a straight
line to my data?
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7.2.1.  Some important information about straight lines 1

I mentioned above that in our general equation the word ‘model’ gets replaced by ‘things 
that define the line that we fit to the data’. In fact, any straight line can be defined by two 
things: (1) the slope (or gradient) of the line (usually denoted by b1); and (2) the point at 
which the line crosses the vertical axis of the graph (known as the intercept of the line, b0). 
In fact, our general model becomes equation (7.2) below in which Yi is the outcome that 
we want to predict and Xi is the ith participant’s score on the predictor variable.4 Here b1 is 
the gradient of the straight line fitted to the data and b0 is the intercept of that line. These 
parameters b1 and b0 are known as the regression coefficients and will crop up time and 
time again in this book, where you may see them referred to generally as b (without any 
subscript) or bi (meaning the b associated with variable i). There is a residual term, εi, which 
represents the difference between the score predicted by the line for participant i and the 
score that participant i actually obtained. The equation is often conceptualized without 
this residual term (so, ignore it if it’s upsetting you); however, it is worth knowing that this 
term represents the fact our model will not fit the data collected perfectly:

Yi = ðb0 + b1XiÞ+ εi (7.2)

A particular line has a specific intercept and gradient. Figure 7.2 shows a set of lines that 
have the same intercept but different gradients, and a set of lines that have the same gradi-
ent but different intercepts. Figure 7.2 also illustrates another useful point: the gradient of 
the line tells us something about the nature of the relationship being described. In Chapter 
6 we saw how relationships can be either positive or negative (and I don’t mean the dif-
ference between getting on well with your girlfriend and arguing all the time!). A line that 
has a gradient with a positive value describes a positive relationship, whereas a line with a 
negative gradient describes a negative relationship. So, if you look at the graph in Figure 7.2

4 You’ll sometimes see this equation written as:

Yi = (β0 + β1Xi) + εi

The only difference is that this equation has got βs in it instead of bs and in fact both versions are the same thing, 
they just use different letters to represent the coefficients. When SPSS estimates the coefficients in this equation it 
labels them b and to be consistent with the SPSS output that you’ll end up looking at, I’ve used bs instead of βs.  

Figure 7.2
Lines with the 
same gradients 
but different 
intercepts, 
and lines that 
share the same 
intercept but 
have different 
gradients
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in which the gradients differ but the intercepts are the same, then the red line describes a 
positive relationship whereas the green line describes a negative relationship. Basically then, 
the gradient (b) tells us what the model looks like (its shape) and the intercept (b0) tells us 
where the model is (its location in geometric space).

If it is possible to describe a line knowing only the gradient and the intercept of that line, 
then we can use these values to describe our model (because in linear regression the model 
we use is a straight line). So, the model that we fit to our data in linear regression can be 
conceptualized as a straight line that can be described mathematically by equation (7.2). With 
regression we strive to find the line that best describes the data collected, then estimate the 
gradient and intercept of that line. Having defined these values, we can insert different values 
of our predictor variable into the model to estimate the value of the outcome variable.

7.2.2.  The method of least squares 1

I have already mentioned that the method of least squares is a way of finding the line that 
best fits the data (i.e. finding a line that goes through, or as close to, as many of the data 
points as possible). This ‘line of best fit’ is found by ascertaining which line, of all of the 
possible lines that could be drawn, results in the least amount of difference between the 
observed data points and the line. Figure 7.3 shows that when any line is fitted to a set of 
data, there will be small differences between the values predicted by the line and the data 
that were actually observed. 

Back in Chapter 2 we saw that we could assess the fit of a model (the example we used 
was the mean) by looking at the deviations between the model and the actual data col-
lected. These deviations were the vertical distances between what the model predicted and 
each data point that was actually observed. We can do exactly the same to assess the fit of 
a regression line (which, like the mean, is a statistical model). So, again we are interested in 
the vertical differences between the line and the actual data because the line is our model: 
we use it to predict values of Y from values of the X variable. In regression these differences 
are usually called residuals rather than deviations, but they are the same thing. As with the 
mean, data points fall both above (the model underestimates their value) and below (the 

Figure 7.3
This graph 
shows a 
scatterplot of 
some data with a 
line representing 
the general trend. 
The vertical 
lines (dotted) 
represent the 
differences 
(or residuals) 
between the 
line and the 
actual data
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model overestimates their value) the line yielding both positive and negative differences. In 
the discussion of variance in section 2.4.2 I explained that if we sum positive and negative 
differences then they tend to cancel each other out and that to circumvent this problem 
we square the differences before adding them up. We do the same thing here. The result-
ing squared differences provide a gauge of how well a particular line fits the data: if the 
squared differences are large, the line is not representative of the data; if the squared dif-
ferences are small, the line is representative.

You could, if you were particularly bored, calculate the sum of squared differences (or 
SS for short) for every possible line that is fitted to your data and then compare these 
‘goodness-of-fit’ measures. The one with the lowest SS is the line of best fit. Fortunately 
we don’t have to do this because the method of least squares does it for us: it selects the 
line that has the lowest sum of squared differences (i.e. the line that best represents the 
observed data). How exactly it does this is by using a mathematical technique for finding 
maxima and minima and this technique is used to find the line that minimizes the sum of 
squared differences. I don’t really know much more about it than that, to be honest, so I 
tend to think of the process as a little bearded wizard called Nephwick the Line Finder who 
just magically finds lines of best fit. Yes, he lives inside your computer. The end result is that 
Nephwick estimates the value of the slope and intercept of the ‘line of best fit’ for you. We 
tend to call this line of best fit a regression line.

7.2.3.   Assessing the goodness of fit: sums of squares,  

R and R 2 1

Once Nephwick the Line Finder has found the line of best fit it is important that we assess 
how well this line fits the actual data (we assess the goodness of fit of the model). We do this 
because even though this line is the best one available, it can still be a lousy fit to the data! 
In section 2.4.2 we saw that one measure of the adequacy of a model is the sum of squared 
differences (or more generally we assess models using equation (7.3) below). If we want to 
assess the line of best fit, we need to compare it against something, and the thing we choose 
is the most basic model we can find. So we use equation (7.3) to calculate the fit of the most 
basic model, and then the fit of the best model (the line of best fit), and basically if the best 
model is any good then it should fit the data significantly better than our basic model:

deviation=
X

ðobserved−modelÞ2 (7.3)

This is all quite abstract so let’s look at an example. Imagine that I was 
interested in predicting record sales (Y) from the amount of money spent 
advertising that record (X). One day my boss came in to my office and said 
‘Andy, I know you wanted to be a rock star and you’ve ended up work-
ing as my stats-monkey, but how many records will we sell if we spend 
£100,000 on advertising?’ If I didn’t have an accurate model of the rela-
tionship between record sales and advertising, what would my best guess 
be? Well, probably the best answer I could give would be the mean number 
of record sales (say, 200,000) because on average that’s how many records 
we expect to sell. This response might well satisfy a brainless record com-
pany executive (who didn’t offer my band a record contract). However, 
what if he had asked ‘How many records will we sell if we spend £1 on advertising?’ Again, in 
the absence of any accurate information, my best guess would be to give the average number 
of sales (200,000). There is a problem: whatever amount of money is spent on advertising I 

How do I tell if my
model is good?
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always predict the same levels of sales. As such, the mean is a model of ‘no relationship’ at all 
between the variables. It should be pretty clear then that the mean is fairly useless as a model 
of a relationship between two variables – but it is the simplest model available. 

So, as a basic strategy for predicting the outcome, we might choose to use the mean, because 
on average it will be a fairly good guess of an outcome. Using the mean as a model, we can 
calculate the difference between the observed values, and the values predicted by the mean 
(equation (7.3)). We saw in section 2.4.2 that we square all of these differences to give us 
the sum of squared differences. This sum of squared differences is known as the total sum of 
squares (denoted SST) because it is the total amount of differences present when the most basic 
model is applied to the data. This value represents how good the mean is as a model of the 
observed data. Now, if we fit the more sophisticated model to the data, such as a line of best fit, 
we can again work out the differences between this new model and the observed data (again 
using equation (7.3)). In the previous section we saw that the method of least squares finds 
the best possible line to describe a set of data by minimizing the difference between the model 
fitted to the data and the data themselves. However, even with this optimal model there is still 
some inaccuracy, which is represented by the differences between each observed data point and 
the value predicted by the regression line. As before, these differences are squared before they 
are added up so that the directions of the differences do not cancel out. The result is known as 
the sum of squared residuals or residual sum of squares (SSR). This value represents the degree 
of inaccuracy when the best model is fitted to the data. We can use these two values to calculate 
how much better the regression line (the line of best fit) is than just using the mean as a model 
(i.e. how much better is the best possible model than the worst model?). The improvement 
in prediction resulting from using the regression model rather than the mean is calculated by 
calculating the difference between SST and SSR. This difference shows us the reduction in the 
inaccuracy of the model resulting from fitting the regression model to the data. This improve-
ment is the model sum of squares (SSM). Figure 7.4 shows each sum of squares graphically.

If the value of SSM is large then the regression model is very different from using the 
mean to predict the outcome variable. This implies that the regression model has made a big 
improvement to how well the outcome variable can be predicted. However, if SSM is small 
then using the regression model is little better than using the mean (i.e. the regression model 
is no better than taking our ‘best guess’). A useful measure arising from these sums of squares 
is the proportion of improvement due to the model. This is easily calculated by dividing the 
sum of squares for the model by the total sum of squares. The resulting value is called R2 
and to express this value as a percentage you should multiply it by 100. R2 represents the 
amount of variance in the outcome explained by the model (SSM) relative to how much vari-
ation there was to explain in the first place (SST). Therefore, as a percentage, it represents 
the percentage of the variation in the outcome that can be explained by the model:

R2 = SSM
SST

(7.4)

This R2 is the same as the one we met in Chapter 6 (section 6.5.2.3) and you might have 
noticed that it is interpreted in the same way. Therefore, in simple regression we can take 
the square root of this value to obtain Pearson’s correlation coefficient. As such, the cor-
relation coefficient provides us with a good estimate of the overall fit of the regression 
model, and R2 provides us with a good gauge of the substantive size of the relationship.

A second use of the sums of squares in assessing the model is through the F-test. 
I mentioned way back in Chapter 2 that test statistics (like F) are usually the amount of 
systematic variance divided by the amount of unsystematic variance, or, put another way, 
the model compared against the error in the model. This is true here: F is based upon the 
ratio of the improvement due to the model (SSM) and the difference between the model 
and the observed data (SSR). Actually, because the sums of squares depend on the number 
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of differences that we have added up, we use the average sums of squares (referred to as 
the mean squares or MS). To work out the mean sums of squares we divide by the degrees 
of freedom (this is comparable to calculating the variance from the sums of squares – see 
section 2.4.2). For SSM the degrees of freedom are simply the number of variables in the 
model, and for SSR they are the number of observations minus the number of parameters 
being estimated (i.e. the number of beta coefficients including the constant). The result is 
the mean squares for the model (MSM) and the residual mean squares (MSR). At this stage 
it isn’t essential that you understand how the mean squares are derived (it is explained in 
Chapter 10). However, it is important that you understand that the F-ratio (equation (7.5)) 
is a measure of how much the model has improved the prediction of the outcome com-
pared to the level of inaccuracy of the model:

F = MSM
MSR

(7.5)

Figure 7.4
Diagram showing 
from where the 
regression sums 
of squares derive
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If a model is good, then we expect the improvement in prediction due to the model to be 
large (so, MSM will be large) and the difference between the model and the observed data 
to be small (so, MSR will be small). In short, a good model should have a large F-ratio 
(greater than 1 at least) because the top of equation (7.5) will be bigger than the bottom. 
The exact magnitude of this F-ratio can be assessed using critical values for the correspond-
ing degrees of freedom (as in the Appendix).

7.2.4.  Assessing individual predictors 1

We’ve seen that the predictor in a regression model has a coefficient (b1), which in simple 
regression represents the gradient of the regression line. The value of b represents the 
change in the outcome resulting from a unit change in the predictor. If the model was 
useless at predicting the outcome, then if the value of the predictor changes, what might 
we expect the change in the outcome to be? Well, if the model is very bad then we would 
expect the change in the outcome to be zero. Think back to Figure 7.4 (see the panel rep-
resenting SST) in which we saw that using the mean was a very bad way of predicting the 
outcome. In fact, the line representing the mean is flat, which means that as the predictor 
variable changes, the value of the outcome does not change (because for each level of the 
predictor variable, we predict that the outcome will equal the mean value). The important 
point here is that a bad model (such as the mean) will have regression coefficients of 0 for 
the predictors. A regression coefficient of 0 means: (1) a unit change in the predictor vari-
able results in no change in the predicted value of the outcome (the predicted value of the 
outcome does not change at all); and (2) the gradient of the regression line is 0, meaning 
that the regression line is flat. Hopefully, you’ll see that it logically follows that if a variable 
significantly predicts an outcome, then it should have a b-value significantly different from 
zero. This hypothesis is tested using a t-test (see Chapter 9). The t-statistic tests the null 
hypothesis that the value of b is 0: therefore, if it is significant we gain confidence in the 
hypothesis that the b-value is significantly different from 0 and that the predictor variable 
contributes significantly to our ability to estimate values of the outcome.

Like F, the t-statistic is also based on the ratio of explained variance against unexplained 
variance or error. Well, actually, what we’re interested in here is not so much variance but 
whether the b we have is big compared to the amount of error in that estimate. To estimate 
how much error we could expect to find in b we use the standard error. The standard error 
tells us something about how different b-values would be across different samples. We 
could take lots and lots of samples of data regarding record sales and advertising budgets 
and calculate the b-values for each sample. We could plot a frequency distribution of these 
samples to discover whether the b-values from all samples would be relatively similar, or 
whether they would be very different (think back to section 2.5.1). We can use the standard 
deviation of this distribution (known as the standard error) as a measure of the similarity 
of b-values across samples. If the standard error is very small, then it means that most 
samples are likely to have a b-value similar to the one in our sample (because there is little 
variation across samples). The t-test tells us whether the b-value is different from 0 relative 
to the variation in b-values across samples. When the standard error is small even a small 
deviation from zero can reflect a meaningful difference because b is representative of the 
majority of possible samples.

Equation (7.6) shows how the t-test is calculated and you’ll find a general version of this 
equation in Chapter 9 (equation (9.1)). The bexpected is simply the value of b that we would 
expect to obtain if the null hypothesis were true. I mentioned earlier that the null hypoth-
esis is that b is 0 and so this value can be replaced by 0. The equation simplifies to become 
the observed value of b divided by the standard error with which it is associated:
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t=
bobserved − bexpected

SEb

= bobserved
SEb

(7.6)

The values of t have a special distribution that differs according to the degrees of freedom 
for the test. In regression, the degrees of freedom are N − p − 1, where N is the total sam-
ple size and p is the number of predictors. In simple regression when we have only one 
predictor, this reduces down to N − 2. Having established which t-distribution needs to be 
used, the observed value of t can then be compared to the values that we would expect to 
find if there was no effect (i.e. b = 0): if t is very large then it is unlikely to have occurred 
when there is no effect (these values can be found in the Appendix). SPSS provides the 
exact probability that the observed value or a larger value of t would occur if the value of 
b was, in fact, 0. As a general rule, if this observed significance is less than .05, then scien-
tists assume that b is significantly different from 0; put another way, the predictor makes a 
significant contribution to predicting the outcome. 

7.3. Doing simple regression on SPSS 1

So far, we have seen a little of the theory behind regression, albeit restricted to the 
situation in which there is only one predictor. To help clarify what we have learnt so 
far, we will go through an example of a simple regression on SPSS. Earlier on I asked 
you to imagine that I worked for a record company and that my boss was interested in 
predicting record sales from advertising. There are some data for this example in the 
file Record1.sav. This data file has 200 rows, each one representing a different record. 
There are also two columns, one representing the sales of each record in the week after 
release and the other representing the amount (in pounds) spent promoting the record 
before release. This is the format for entering regression data: the outcome variable and 
any predictors should be entered in different columns, and each row should represent 
independent values of those variables.

The pattern of the data is shown in Figure 7.5 and it should be clear that a positive 
relationship exists: so, the more money spent advertising the record, the more it is likely 
to sell. Of course there are some records that sell well regardless of advertising (top left 
of scatterplot), but there are none that sell badly when advertising levels are high (bottom 
right of scatterplot). The scatterplot also shows the line of best fit for these data: bearing in 
mind that the mean would be represented by a flat line at around the 200,000 sales mark, 
the regression line is noticeably different.

To find out the parameters that describe the regression line, and to see whether this line is 
a useful model, we need to run a regression analysis. To do the analysis you need to access the 
main dialog box by selecting . Figure 7.6 
shows the resulting dialog box. There is a space labelled Dependent in which you should 
place the outcome variable (in this example sales). So, select sales from the list on the left-
hand side, and transfer it by dragging it or clicking on . There is another space labelled 
Independent(s) in which any predictor variable should be placed. In simple regression we 
use only one predictor (in this example, adverts) and so you should select adverts from 
the list and click on  to transfer it to the list of predictors. There are a variety of options 
available, but these will be explored within the context of multiple regression. For the time 
being just click on  to run the basic analysis.
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Figure 7.5
Scatterplot 
showing the 
relationship 
between record 
sales and the 
amount spent 
promoting the 
record

Figure 7.6
Main dialog box 
for regression

7.4. Interpreting a simple regression 1

7.4.1.  Overall fit of the model 1

The first table provided by SPSS is a summary of the model (SPSS Output 7.1). This summary 
table provides the value of R and R2 for the model that has been derived. For these data, R has 
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a value of .578 and because there is only one predictor, this value represents the simple cor-
relation between advertising and record sales (you can confirm this by running a correlation 
using what you were taught in Chapter 6). The value of R2 is .335, which tells us that adver-
tising expenditure can account for 33.5% of the variation in record sales. In other words, if 
we are trying to explain why some records sell more than others, we can look at the variation 
in sales of different records. There might be many factors that can explain this variation, but 
our model, which includes only advertising expenditure, can explain approximately 33% of 
it. This means that 66% of the variation in record sales cannot be explained by advertising 
alone. Therefore, there must be other variables that have an influence also.

The next part of the output (SPSS Output 7.2) reports an analysis of variance (ANOVA – 
see Chapter 10). The summary table shows the various sums of squares described in Figure 
7.4 and the degrees of freedom associated with each. From these two values, the average 
sums of squares (the mean squares) can be calculated by dividing the sums of squares by the 
associated degrees of freedom. The most important part of the table is the F-ratio, which 
is calculated using equation (7.5), and the associated significance value of that F-ratio. For 
these data, F is 99.59, which is significant at p < .001 (because the value in the column 
labelled Sig. is less than .001). This result tells us that there is less than a 0.1% chance 
that an F-ratio this large would happen if the null hypothesis were true. Therefore, we 
can conclude that our regression model results in significantly better prediction of record 
sales than if we used the mean value of record sales. In short, the regression model overall 
predicts record sales significantly well.

SSM

MSM

MSR

SSR

SST

7.4.2.  Model parameters 1

The ANOVA tells us whether the model, overall, results in a signifi-
cantly good degree of prediction of the outcome variable. However, the 
ANOVA doesn’t tell us about the individual contribution of variables in 
the model (although in this simple case there is only one variable in the 
model and so we can infer that this variable is a good predictor). The 
table in SPSS Output 7.3 provides details of the model parameters (the 
beta values) and the significance of these values. We saw in equation (7.2) 
that b0 was the Y intercept and this value is the value B (in the SPSS out-
put) for the constant. So, from the table, we can say that b0 is 134.14, 
and this can be interpreted as meaning that when no money is spent on 

SPSS OutPut 7.1

SPSS OutPut 7.2

How do I interpret
b values?
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advertising (when X = 0), the model predicts that 134,140 records will be sold (remember 
that our unit of measurement was thousands of records). We can also read off the value 
of b1 from the table and this value represents the gradient of the regression line. It is 
0.096. Although this value is the slope of the regression line, it is more useful to think of 
this value as representing the change in the outcome associated with a unit change in the 
predictor. Therefore, if our predictor variable is increased by one unit (if the advertising 
budget is increased by 1), then our model predicts that 0.096 extra records will be sold. 
Our units of measurement were thousands of pounds and thousands of records sold, so 
we can say that for an increase in advertising of £1000 the model predicts 96 (0.096 × 
1000 = 96) extra record sales. As you might imagine, this investment is pretty bad for the 
record company: it invests £1000 and gets only 96 extra sales. Fortunately, as we already 
know, advertising accounts for only one-third of record sales.

We saw earlier that, in general, values of the regression coefficient b represent the change 
in the outcome resulting from a unit change in the predictor and that if a predictor is hav-
ing a significant impact on our ability to predict the outcome then this b should be different 
from 0 (and big relative to its standard error). We also saw that the t-test tells us whether 
the b-value is different from 0. SPSS provides the exact probability that the observed value 
of t would occur if the value of b in the population were 0. If this observed significance is 
less than .05, then scientists agree that the result reflects a genuine effect (see Chapter 2). 
For these two values, the probabilities are .000 (zero to 3 decimal places) and so we can say 
that the probability of these t-values or larger occurring if the values of b in the population 
were 0 is less than .001. Therefore, the bs are different from 0 and we can conclude that the 
advertising budget makes a significant contribution (p < .001) to predicting record sales.

SELF-TEST  How is the t in SPSS Output 7.3 
calculated? Use the values in the table to see if you can 
get the same value as SPSS.

7.4.3.  Using the model 1

So far, we have discovered that we have a useful model, one that significantly improves our 
ability to predict record sales. However, the next stage is often to use that model to make 
some predictions. The first stage is to define the model by replacing the b-values in equa-
tion (7.2) with the values from SPSS Output 7.3. In addition, we can replace the X and Y 
with the variable names so that the model becomes:

record salesi = b0 + b1advertising budgeti

= 134:14+ ð0:096× advertising budgetiÞ
(7.7)

SPSS OutPut 7.3
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It is now possible to make a prediction about record sales, by replacing the advertising 
budget with a value of interest. For example, imagine a record executive wanted to spend 
£100,000 on advertising a new record. Remembering that our units are already in thou-
sands of pounds, we can simply replace the advertising budget with 100. He would dis-
cover that record sales should be around 144,000 for the first week of sales:

record salesi = 134:14+ ð0:096× advertising budgetiÞ
= 134:14+ ð0:096× 100Þ
= 143:74

(7.8)

SELF-TEST  How many records would be sold if we 
spent £666,000 on advertising the latest CD by black 
metal band Abgott?

             CRAMMING SAM’S TIPS    Simple regression

 Simple regression is a way of predicting values of one variable from another.

 We do this by fitting a statistical model to the data in the form of a straight line.

 This line is the line that best summarizes the pattern of the data.

 We have to assess how well the line fits the data using:
 R2 which tells us how much variance is explained by the model compared to how much variance there is to explain in 

the first place. It is the proportion of variance in the outcome variable that is shared by the predictor variable.
 F, which tells us how much variability the model can explain relative to how much it can’t explain (i.e. it’s the ratio of 

how good the model is compared to how bad it is).

 The b-value tells us the gradient of the regression line and the strength of the relationship between a predictor and the out-
come variable. If it is significant (Sig. < .05 in the SPSS table) then the predictor variable significantly predicts the outcome 
variable.

7.5. Multiple regression: the basics 2

To summarize what we have learnt so far, in simple linear regression 
the outcome variable Y is predicted using the equation of a straight line 
(equation (7.2)). Given that we have collected several values of Y and 
X, the unknown parameters in the equation can be calculated. They are 
calculated by fitting a model to the data (in this case a straight line) for 
which the sum of the squared differences between the line and the actual 
data points is minimized. This method is called the method of least 

What is the difference
between simple and
multiple regression?
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squares. Multiple regression is a logical extension of these principles to situations in which 
there are several predictors. Again, we still use our basic equation of:

outcomei = ðmodelÞ+ errori

but this time the model is slightly more complex. It is basically the same as for simple 
regression except that for every extra predictor you include, you have to add a coefficient; 
so, each predictor variable has its own coefficient, and the outcome variable is predicted 
from a combination of all the variables multiplied by their respective coefficients plus a 
residual term (see equation (7.9) – the brackets aren’t necessary, they’re just to make the 
connection to the general equation above):

Yi = ðb0 + b1Xi1 + b2Xi2 + . . . + bnXnÞ+ εi (7.9)

Y is the outcome variable, b1 is the coefficient of the first predictor (X1), b2 is the coefficient 
of the second predictor (X2), bn is the coefficient of the nth predictor (Xn), and εi is the dif-
ference between the predicted and the observed value of Y for the ith participant. In this 
case, the model fitted is more complicated, but the basic principle is the same as simple 
regression. That is, we seek to find the linear combination of predictors that correlate 
maximally with the outcome variable. Therefore, when we refer to the regression model in 
multiple regression, we are talking about a model in the form of equation (7.9).

7.5.1.  An example of a multiple regression model 2

Imagine that our record company executive was interested in extending his model of 
record sales to incorporate another variable. We know already that advertising accounts for 
33% of variation in record sales, but a much larger 67% remains unexplained. The record 
executive could measure a new predictor in an attempt to explain some of the unexplained 
variation in record sales. He decides to measure the number of times the record is played 
on Radio 1 (the UK’s biggest national radio station) during the week prior to release. The 
existing model that we derived using SPSS (see equation (7.7)) can now be extended to 
include this new variable (airplay):

record salesi = b0 + b1advertising budgeti + b2airplayi + εi (7.10)

The new model is based on equation (7.9) and includes a b-value for both predictors 
(and, of course, the constant). If we calculate the b-values, we could make predictions 
about record sales based not only on the amount spent on advertising but also in terms of 
radio play. There are only two predictors in this model and so we could display this model 
graphically in three dimensions (Figure 7.7).

Equation (7.9) describes the tinted trapezium in the diagram (this is known as the 
regression plane) and the dots represent the observed data points. Like simple regression, 
the plane fitted to the data aims to best-predict the observed data. However, there are 
invariably some differences between the model and the real-life data (this fact is evident 
because some of the dots do not lie exactly on the tinted area of the graph). The b-value for 
advertising describes the slope of the left and right sides of the regression plane, whereas 
the b-value for airplay describes the slope of the top and bottom of the regression plane. 
Just like simple regression, knowledge of these two slopes tells us about the shape of the 
model (what it looks like) and the intercept locates the regression plane in space.
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It is fairly easy to visualize a regression model with two predictors, because it is pos-
sible to plot the regression plane using a 3-D scatterplot. However, multiple regression can 
be used with three, four or even ten or more predictors. Although you can’t immediately 
visualize what such complex models look like, or visualize what the b-values represent, you 
should be able to apply the principles of these basic models to more complex scenarios.

7.5.2.  Sums of squares, R and R2 2

When we have several predictors, the partitioning of sums of squares is the same as in 
the single variable case except that the model we refer to takes the form of equation (7.9) 
rather than simply being a 2-D straight line. Therefore, SST can be calculated that rep-
resents the difference between the observed values and the mean value of the outcome 
variable. SSR still represents the difference between the values of Y predicted by the model 
and the observed values. Finally, SSM can still be calculated and represents the difference 
between the values of Y predicted by the model and the mean value. Although the compu-
tation of these values is much more complex than in simple regression, conceptually these 
values are the same.

When there are several predictors it does not make sense to look at the simple cor-
relation coefficient and instead SPSS produces a multiple correlation coefficient (labelled 
Multiple R). Multiple R is the correlation between the observed values of Y and the values 
of Y predicted by the multiple regression model. Therefore, large values of the multiple R 
represent a large correlation between the predicted and observed values of the outcome. A 
multiple R of 1 represents a situation in which the model perfectly predicts the observed 

Figure 7.7
Scatterplot of 
the relationship 
between record 
sales, advertising 
budget and  
radio play
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data. As such, multiple R is a gauge of how well the model predicts the observed data. It 
follows that the resulting R2 can be interpreted in the same way as simple regression: it is 
the amount of variation in the outcome variable that is accounted for by the model.

7.5.3.  Methods of regression 2

If we are interested in constructing a complex model with several predictors, how do we 
decide which predictors to use? A great deal of care should be taken in selecting predictors 
for a model because the values of the regression coefficients depend upon the variables in the 
model. Therefore, the predictors included and the way in which they are entered into the 
model can have a great impact. In an ideal world, predictors should be selected based on past 
research.5 If new predictors are being added to existing models then select these new vari-
ables based on the substantive theoretical importance of these variables. One thing not to do 
is select hundreds of random predictors, bung them all into a regression analysis and hope for 
the best. In addition to the problem of selecting predictors, there are several ways in which 
variables can be entered into a model. When predictors are all completely uncorrelated the 
order of variable entry has very little effect on the parameters calculated; however, we rarely 
have uncorrelated predictors and so the method of predictor selection is crucial.

7.5.3.1. Hierarchical (blockwise entry) 2

In hierarchical regression predictors are selected based on past work and the experimenter 
decides in which order to enter the predictors into the model. As a general rule, known 
predictors (from other research) should be entered into the model first in order of their 
importance in predicting the outcome. After known predictors have been entered, the 
experimenter can add any new predictors into the model. New predictors can be entered 
either all in one go, in a stepwise manner, or hierarchically (such that the new predictor 
suspected to be the most important is entered first).

7.5.3.2. Forced entry 2

Forced entry (or Enter as it is known in SPSS) is a method in which all predictors are forced 
into the model simultaneously. Like hierarchical, this method relies on good theoretical 
reasons for including the chosen predictors, but unlike hierarchical the experimenter makes 
no decision about the order in which variables are entered. Some researchers believe that 
this method is the only appropriate method for theory testing (Studenmund & Cassidy, 
1987) because stepwise techniques are influenced by random variation in the data and so 
seldom give replicable results if the model is retested.

7.5.3.3. Stepwise methods 2

In stepwise regressions decisions about the order in which predictors are entered into the 
model are based on a purely mathematical criterion. In the forward method, an initial 
model is defined that contains only the constant (b0). The computer then searches for the 
predictor (out of the ones available) that best predicts the outcome variable – it does this 

5 I might cynically qualify this suggestion by proposing that predictors be chosen based on past research that has 
utilized good methodology. If basing such decisions on regression analyses, select predictors based only on past 
research that has used regression appropriately and yielded reliable, generalizable models! 
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by selecting the predictor that has the highest simple correlation with the outcome. If this 
predictor significantly improves the ability of the model to predict the outcome, then this 
predictor is retained in the model and the computer searches for a second predictor. The 
criterion used for selecting this second predictor is that it is the variable that has the largest 
semi-partial correlation with the outcome. Let me explain this in plain English. Imagine 
that the first predictor can explain 40% of the variation in the outcome variable; then there 
is still 60% left unexplained. The computer searches for the predictor that can explain 
the biggest part of the remaining 60% (so, it is not interested in the 40% that is already 
explained). As such, this semi-partial correlation gives a measure of how much ‘new vari-
ance’ in the outcome can be explained by each remaining predictor (see section 6.6). The 
predictor that accounts for the most new variance is added to the model and, if it makes 
a significant contribution to the predictive power of the model, it is retained and another 
predictor is considered.

The stepwise method in SPSS is the same as the forward method, except that each time 
a predictor is added to the equation, a removal test is made of the least useful predictor. As 
such the regression equation is constantly being reassessed to see whether any redundant 
predictors can be removed. The backward method is the opposite of the forward method 
in that the computer begins by placing all predictors in the model and then calculating the 
contribution of each one by looking at the significance value of the t-test for each predic-
tor. This significance value is compared against a removal criterion (which can be either an 
absolute value of the test statistic or a probability value for that test statistic). If a predictor 
meets the removal criterion (i.e. if it is not making a statistically significant contribution 
to how well the model predicts the outcome variable) it is removed from the model and 
the model is re-estimated for the remaining predictors. The contribution of the remaining 
predictors is then reassessed.

If you do decide to use a stepwise method then the backward method is preferable to 
the forward method. This is because of suppressor effects, which occur when a predictor 
has a significant effect but only when another variable is held constant. Forward selection 
is more likely than backward elimination to exclude predictors involved in suppressor 
effects. As such, the forward method runs a higher risk of making a Type II error (i.e. miss-
ing a predictor that does in fact predict the outcome).

7.5.3.4. Choosing a method 2

SPSS allows you to opt for any one of these methods and it is important to select an appro-
priate one. The forward, backward and stepwise methods all come under the general head-
ing of stepwise methods because they all rely on the computer selecting 
variables based upon mathematical criteria. Many writers argue that 
this takes many important methodological decisions out of the hands 
of the researcher. What’s more, the models derived by computer often 
take advantage of random sampling variation and so decisions about 
which variables should be included will be based upon slight differ-
ences in their semi-partial correlation. However, these slight statistical 
differences may contrast dramatically with the theoretical importance 
of a predictor to the model. There is also the danger of over-fitting 
(having too many variables in the model that essentially make little 
contribution to predicting the outcome) and under-fitting (leaving out 
important predictors) the model. For this reason stepwise methods are 
best avoided except for exploratory model building. If you must do a stepwise regression 
then it is advisable to cross-validate your model by splitting the data (see section 7.6.2.2). 

When there is a sound theoretical literature available, then base your model upon what 
past research tells you. Include any meaningful variables in the model in their order of 
importance. After this initial analysis, repeat the regression but exclude any variables that 

Which method of
regression should I use?
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were statistically redundant the first time around. There are important considerations in 
deciding which predictors should be included. First, it is important not to include too many 
predictors. As a general rule, the fewer predictors the better, and certainly include only 
predictors for which you have a good theoretical grounding (it is meaningless to measure 
hundreds of variables and then put them all into a regression model). So, be selective and 
remember that you should have a decent sample size – see section 7.6.2.3.

7.6. How accurate is my regression model? 2

When we have produced a model based on a sample of data there are 
two important questions to ask: (1) does the model fit the observed data 
well, or is it influenced by a small number of cases; and (2) can my model 
generalize to other samples? These questions are vital to ask because 
they affect how we use the model that has been constructed. These ques-
tions are also, in some sense, hierarchical because we wouldn’t want to 
generalize a bad model. However, it is a mistake to think that because a 
model fits the observed data well we can draw conclusions beyond our 
sample. Generalization is a critical additional step and if we find that our 
model is not generalizable, then we must restrict any conclusions based 
on the model to the sample used. First, we will look at how we establish 
whether a model is an accurate representation of the actual data, and in 

section 7.6.2 we move on to look at how we assess whether a model can be used to make 
inferences beyond the sample of data that has been collected.

7.6.1.  Assessing the regression model I: diagnostics 2

To answer the question of whether the model fits the observed data well, or if it is influ-
enced by a small number of cases, we can look for outliers and influential cases (the differ-
ence is explained in Jane Superbrain Box 7.1). We will look at these in turn.

How do I tell if my
model is accurate?

In this section I’ve described two ways to look for cases that 
might bias the model: residual and influence statistics. To 
illustrate how these measures differ, imagine that the Mayor 

JANE SUPERBRAIN 7.1

The difference between 
residuals and influence statistics 3
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of London at the turn of the last century was interested in how 
drinking affected mortality. London is divided up into different 
regions called boroughs, and so he might measure the num-
ber of pubs and the number of deaths over a period of time in 
eight of his boroughs. The data are in a file called pubs.sav. 

The scatterplot of these data reveals that 
without the last case there is a perfect lin-
ear relationship (the dashed straight line). 
However, the presence of the last case (case 
8) changes the line of best fit dramatically 

(although this line is still a significant fit of the data – do 
the regression analysis and see for yourself).

What’s interesting about these data is when we look at the 
residuals and influence statistics. The standardized residual 
for case 8 is the second smallest: this outlier produces a very 
small residual (most of the non-outliers have larger residuals) 
because it sits very close to the line that has been fitted to the 
data. How can this be? Look at the influence statistics below 
and you’ll see that they’re massive for case 8: it exerts a huge 
influence over the model.

As always when you see a statistical oddity you should 
ask what was happening in the real world. The last data 
point represents the City of London, a tiny area of only 1 
square mile in the centre of London where very few people 
lived but where thousands of commuters (even then) came 
to work and had lunch in the pubs. Hence the pubs didn’t 
rely on the resident population for their business and the 

residents didn’t consume all of their beer! Therefore, there 
was a massive number of pubs.

This illustrates that a case exerting a massive influ-
ence can produce a small residual – so look at both! (I’m 
very grateful to David Hitchin for this example, and he in 
turn got it from Dr Richard Roberts.)

7.6.1.1. Outliers and residuals 2

An outlier is a case that differs substantially from the main trend of the data (see Jane 
Superbrain Box 4.1). Figure 7.8 shows an example of such a case in regression. Outliers 
can cause your model to be biased because they affect the values of the estimated regression 
coefficients. For example, Figure 7.8 uses the same data as Figure 7.3 except that the score 
of one participant has been changed to be an outlier (in this case a person who was very calm 
in the presence of a very big spider). The change in this one point has had a dramatic effect 
on the regression model chosen to fit the data. With the outlier present, the regression model 
changes: its gradient is reduced (the line becomes flatter) and the intercept increases (the 
new line will cross the Y-axis at a higher point). It should be clear from this diagram that it is 
important to try to detect outliers to see whether the model is biased in this way.

How do you think that you might detect an outlier? Well, we know that an outlier, 
by its nature, is very different from all of the other scores. This being true, do you think 
that the model will predict that person’s score very accurately? The answer is no: looking 
at Figure 7.8 it is evident that even though the outlier has biased the model, the model 
still predicts that one value very badly (the regression line is long way from the outlier). 
Therefore, if we were to work out the differences between the data values that were 
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collected, and the values predicted by the model, we could detect an outlier by looking 
for large differences. This process is the same as looking for cases that the model predicts 
inaccurately. The differences between the values of the outcome predicted by the model 
and the values of the outcome observed in the sample are known as residuals. These 
residuals represent the error present in the model. If a model fits the sample data well 
then all residuals will be small (if the model was a perfect fit of the sample data – all data 
points fall on the regression line – then all residuals would be zero). If a model is a poor 
fit of the sample data then the residuals will be large. Also, if any cases stand out as having 
a large residual, then they could be outliers.

The normal or unstandardized residuals described above are measured in the same units as 
the outcome variable and so are difficult to interpret across different models. What we can do 
is to look for residuals that stand out as being particularly large. However, we cannot define 
a universal cut-off point for what constitutes a large residual. To overcome this problem, we 
use standardized residuals, which are the residuals divided by an estimate of their standard 
deviation. We came across standardization in section 6.3.2 as a means of converting variables 
into a standard unit of measurement (the standard deviation); we also came across z-scores 
(see section 1.7.4) in which variables are converted into standard deviation units (i.e. they’re 
converted into scores that are distributed around a mean of 0 with a standard deviation of 1). 
By converting residuals into z-scores (standardized residuals) we can compare residuals from 
different models and use what we know about the properties of z-scores to devise universal 
guidelines for what constitutes an acceptable (or unacceptable) value. For example, we know 
from Chapter 1 that in a normally distributed sample, 95% of z-scores should lie between 
−1.96 and +1.96, 99% should lie between −2.58 and +2.58, and 99.9% (i.e. nearly all of 
them) should lie between −3.29 and +3.29. Some general rules for standardized residuals are 
derived from these facts: (1) standardized residuals with an absolute value greater than 3.29 
(we can use 3 as an approximation) are cause for concern because in an average sample case a 
value this high is unlikely to happen by chance; (2) if more than 1% of our sample cases have 
standardized residuals with an absolute value greater than 2.58 (we usually just say 2.5) there 
is evidence that the level of error within our model is unacceptable (the model is a fairly poor 
fit of the sample data); and (3) if more than 5% of cases have standardized residuals with an 
absolute value greater than 1.96 (we can use 2 for convenience) then there is also evidence 
that the model is a poor representation of the actual data.

Figure 7.8
Graph 
demonstrating 
the effect of an 
outlier. The green 
line represents 
the original 
regression line 
for these data 
(see Figure 7.3), 
whereas the red 
line represents 
the regression 
line when an 
outlier is present
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A third form of residual is the Studentized residual, which is the unstandardized residual 
divided by an estimate of its standard deviation that varies point by point. These residuals 
have the same properties as the standardized residuals but usually provide a more precise 
estimate of the error variance of a specific case.

7.6.1.2. influential cases 3

As well as testing for outliers by looking at the error in the model, it is also possible to look 
at whether certain cases exert undue influence over the parameters of the model. So, if we 
were to delete a certain case, would we obtain different regression coefficients? This type 
of analysis can help to determine whether the regression model is stable across the sample, 
or whether it is biased by a few influential cases. Again, this process will unveil outliers.

There are several residual statistics that can be used to assess the influence of a particular 
case. One statistic is the adjusted predicted value for a case when that case is excluded from 
the analysis. In effect, the computer calculates a new model without a particular case and 
then uses this new model to predict the value of the outcome variable for the case that 
was excluded. If a case does not exert a large influence over the model then we would 
expect the adjusted predicted value to be very similar to the predicted value when the case 
is included. Put simply, if the model is stable then the predicted value of a case should be 
the same regardless of whether or not that case was used to calculate the model. The dif-
ference between the adjusted predicted value and the original predicted value is known as 
DFFit (see below). We can also look at the residual based on the adjusted predicted value: 
that is, the difference between the adjusted predicted value and the original observed value. 
This is the deleted residual. The deleted residual can be divided by the standard deviation 
to give a standardized value known as the Studentized deleted residual. This residual can be 
compared across different regression analyses because it is measured in standard units.

The deleted residuals are very useful to assess the influence of a case on the ability of 
the model to predict that case. However, they do not provide any information about how 
a case influences the model as a whole (i.e. the impact that a case has on the model’s abil-
ity to predict all cases). One statistic that does consider the effect of a single case on the 
model as a whole is Cook’s distance. Cook’s distance is a measure of the overall influence 
of a case on the model and Cook and Weisberg (1982) have suggested that values greater 
than 1 may be cause for concern.

A second measure of influence is leverage (sometimes called hat values), which gauges the 
influence of the observed value of the outcome variable over the predicted values. The average 
leverage value is defined as (k + 1)/n in which k is the number of predictors in the model and n 
is the number of participants.6 Leverage values can lie between 0 (indicating that the case has 
no influence whatsoever) and 1 (indicating that the case has complete influence over predic-
tion). If no cases exert undue influence over the model then we would expect all of the lever-
age values to be close to the average value ((k + 1)/n). Hoaglin and Welsch (1978) recommend 
investigating cases with values greater than twice the average (2(k + 1)/n) and Stevens (2002) 
recommends using three times the average (3(k + 1)/n) as a cut-off point for identifying cases 
having undue influence. We will see how to use these cut-off points later. However, cases with 
large leverage values will not necessarily have a large influence on the regression coefficients 
because they are measured on the outcome variables rather than the predictors.

Related to the leverage values are the Mahalanobis distances (Figure 7.9), which measure 
the distance of cases from the mean(s) of the predictor variable(s). You need to look for the 
cases with the highest values. It is not easy to establish a cut-off point at which to worry, 

6 You may come across the average leverage denoted as p/n in which p is the number of parameters being estima ted. 
In multiple regression, we estimate parameters for each predictor and also for a constant and so p is equivalent to 
the number of predictors plus one, (k + 1).
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although Barnett and Lewis (1978) have produced a table of critical values dependent on 
the number of predictors and the sample size. From their work it is clear that even with large 
samples (N = 500) and 5 predictors, values above 25 are cause for concern. In smaller sam-
ples (N = 100) and with fewer predictors (namely 3) values greater than 15 are problematic, 
and in very small samples (N = 30) with only 2 predictors values greater than 11 should be 
examined. However, for more specific advice, refer to Barnett and Lewis’s table.

It is possible to run the regression analysis with a case included and then rerun the analysis 
with that same case excluded. If we did this, undoubtedly there would be some difference 
between the b coefficients in the two regression equations. This difference would tell us how 
much influence a particular case has on the parameters of the regression model. To take a 
hypothetical example, imagine two variables that had a perfect negative relationship except 
for a single case (case 30). If a regression analysis was done on the 29 cases that were perfectly 
linearly related then we would get a model in which the predictor variable X perfectly pre-
dicts the outcome variable Y, and there are no errors. If we then ran the analysis but this time 
include the case that didn’t conform (case 30), then the resulting model has different param-
eters. Some data are stored in the file dfbeta.sav which illustrate such a situation. Try running a 
simple regression first with all the cases included and then with case 30 deleted. The results are 
summarized in Table 7.1, which shows: (1) the parameters for the regression model when the 
extreme case is included or excluded; (2) the resulting regression equations; and (3) the value 
of Y predicted from participant 30’s score on the X variable (which is obtained by replacing the 
X in the regression equation with participant 30’s score for X, which was 1).

When case 30 is excluded, these data have a perfect negative relationship; hence the coef-
ficient for the predictor (b1) is −1 (remember that in simple regression this term is the same 
as Pearson’s correlation coefficient), and the coefficient for the constant (the intercept, b0) 
is 31. However, when case 30 is included, both parameters are reduced7 and the difference 
between the parameters is also displayed. The difference between a parameter estimated 
using all cases and estimated when one case is excluded is known as the DFBeta in SPSS. 
DFBeta is calculated for every case and for each of the parameters in the model. So, in our 
hypothetical example, the DFBeta for the constant is −2, and the DFBeta for the predictor 
variable is 0.1. By looking at the values of DFBeta, it is possible to identify cases that have a 
large influence on the parameters of the regression model. Again, the units of measurement 
used will affect these values and so SPSS produces a standardized DFBeta. These standardized 

7 The value of b1 is reduced because the data no longer have a perfect linear relationship and so there is now vari-
ance that the model cannot explain. 
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values are easier to use because universal cut-off points can be applied. In this case absolute 
values above 1 indicate cases that substantially influence the model parameters (although 
Stevens, 2002, suggests looking at cases with absolute values greater than 2).

A related statistic is the DFFit, which is the difference between the predicted value for a case 
when the model is calculated including that case and when the model is calculated excluding 
that case: in this example the value is −1.90 (see Table 7.1). If a case is not influential then 
its DFFit should be zero – hence, we expect non-influential cases to have small DFFit values. 
However, we have the problem that this statistic depends on the units of measurement of the 
outcome and so a DFFit of 0.5 will be very small if the outcome ranges from 1 to 100, but very 
large if the outcome varies from 0 to 1. Therefore, SPSS also produces standardized versions 
of the DFFit values (Standardized DFFit). A final measure is that of the covariance ratio (CVR), 
which is a measure of whether a case influences the variance of the regression parameters. A 
description of the computation of this statistic would leave most readers dazed and confused, 
so suffice to say that when this ratio is close to 1 the case is having very little influence on the 
variances of the model parameters. Belsey, Kuh and Welsch (1980) recommend the following: 

If CVRM
i > 1 + [3(k + 1)/n] then deleting the ith case will damage the precision of some 

of the model’s parameters.

If CVRM
i < 1 − [3(k + 1)/n] then deleting the ith case will improve the precision of some 

of the model’s parameters.

In both equations, k is the number of predictors, CVRi is the covariance ratio for the ith 
participant, and n is the sample size.

7.6.1.3. A final comment on diagnostic statistics 2

There are a lot of diagnostic statistics that should be examined after a regression analysis, 
and it is difficult to summarize this wealth of material into a concise conclusion. However, 
one thing I would like to stress is a point made by Belsey et al. (1980) who noted the dan-
gers inherent in these procedures. The point is that diagnostics are tools that enable you 
to see how good or bad your model is in terms of fitting the sampled data. They are a way 
of assessing your model. They are not, however, a way of justifying the removal of data 
points to effect some desirable change in the regression parameters (e.g. deleting a case 
that changes a non-significant b-value into a significant one). Stevens (2002), as ever, offers 
excellent advice:

If a point is a significant outlier on Y, but its Cook’s distance is < 1, there is no real 
need to delete that point since it does not have a large effect on the regression analysis. 
However, one should still be interested in studying such points further to understand 
why they did not fit the model. (p. 135)

tAble 7.1 The difference in the parameters of the regression model when one case is excluded

Parameter (b) Case 30 Included Case 30 Excluded Difference

Constant (intercept) 29.00 31.00 −2.00

Predictor (gradient) −0.90 −1.00   0.10

Model (regression line): Y = (− 0.9) X + 29 Y = (− 1) X + 31

Predicted Y 28.10 30.00 −1.90

everybody
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7.6.2.  Assessing the regression model II: generalization 2

When a regression analysis is done, an equation can be produced that is correct for the 
sample of observed values. However, in the social sciences we are usually interested in 
generalizing our findings outside of the sample. So, although it can be useful to draw con-
clusions about a particular sample of people, it is usually more interesting if we can then 
assume that our conclusions are true for a wider population. For a regression model to 
generalize we must be sure that underlying assumptions have been met, and to test whether 
the model does generalize we can look at cross-validating it.

7.6.2.1. Checking assumptions 2

To draw conclusions about a population based on a regression analysis done on a sample, 
several assumptions must be true (see Berry, 1993):

Variable typesM : All predictor variables must be quantitative or categorical (with 
two categories), and the outcome variable must be quantitative, continuous and 
unbounded. By quantitative I mean that they should be measured at the interval level 
and by unbounded I mean that there should be no constraints on the variability of 
the outcome. If the outcome is a measure ranging from 1 to 10 yet the data collected 
vary between 3 and 7, then these data are constrained.

Non-zero varianceM : The predictors should have some variation in value (i.e. they do 
not have variances of 0).

No perfect M multicollinearity: There should be no perfect linear relationship between 
two or more of the predictors. So, the predictor variables should not correlate too 
highly (see section 7.6.2.4).

Predictors are uncorrelated with ‘external variables’M : External variables are variables 
that haven’t been included in the regression model which influence the outcome 
variable.8 These variables can be thought of as similar to the ‘third variable’ that was 
discussed with reference to correlation. This assumption means that there should be 
no external variables that correlate with any of the variables included in the regres-
sion model. Obviously, if external variables do correlate with the predictors, then the 
conclusions we draw from the model become unreliable (because other variables exist 
that can predict the outcome just as well).

HomoscedasticityM : At each level of the predictor variable(s), the variance of the resid-
ual terms should be constant. This just means that the residuals at each level of the 
predictor(s) should have the same variance (homoscedasticity); when the variances 
are very unequal there is said to be heteroscedasticity (see section 5.6 as well).

Independent errorsM : For any two observations the residual terms should be uncorrelated 
(or independent). This eventuality is sometimes described as a lack of autocorrelation. 
This assumption can be tested with the Durbin–Watson test, which tests for serial cor-
relations between errors. Specifically, it tests whether adjacent residuals are correlated. 
The test statistic can vary between 0 and 4 with a value of 2 meaning that the residu-
als are uncorrelated. A value greater than 2 indicates a negative correlation between 

8 Some authors choose to refer to these external variables as part of an error term that includes any random factor 
in the way in which the outcome varies. However, to avoid confusion with the residual terms in the regression 
equations I have chosen the label ‘external variables’. Although this term implicitly washes over any random fac-
tors, I acknowledge their presence here!
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adjacent residuals, whereas a value below 2 indicates a positive correlation. The size of 
the Durbin–Watson statistic depends upon the number of predictors in the model and 
the number of observations. For accuracy, you should look up the exact acceptable val-
ues in Durbin and Watson’s (1951) original paper. As a very conservative rule of thumb, 
values less than 1 or greater than 3 are definitely cause for concern; however, values 
closer to 2 may still be problematic depending on your sample and model.

Normally distributed errorsM : It is assumed that the residuals in the model are random, 
normally distributed variables with a mean of 0. This assumption simply means that the 
differences between the model and the observed data are most frequently zero or very 
close to zero, and that differences much greater than zero happen only occasionally. Some 
people confuse this assumption with the idea that predictors have to be normally distrib-
uted. In fact, predictors do not need to be normally distributed (see section 7.11).

IndependenceM : It is assumed that all of the values of the outcome variable are indepen-
dent (in other words, each value of the outcome variable comes from a separate entity).

LinearityM : The mean values of the outcome variable for each increment of the 
predictor(s) lie along a straight line. In plain English this means that it is assumed that 
the relationship we are modelling is a linear one. If we model a non-linear relationship 
using a linear model then this obviously limits the generalizability of the findings.

This list of assumptions probably seems pretty daunting but as we saw in Chapter 5, 
assumptions are important. When the assumptions of regression are met, the model that 
we get for a sample can be accurately applied to the population of interest (the coefficients 
and parameters of the regression equation are said to be unbiased). Some people assume 
that this means that when the assumptions are met the regression model from a sample is 
always identical to the model that would have been obtained had we been able to test the 
entire population. Unfortunately, this belief isn’t true. What an unbiased model does tell 
us is that on average the regression model from the sample is the same as the population 
model. However, you should be clear that even when the assumptions are met, it is possible 
that a model obtained from a sample may not be the same as the population model – but 
the likelihood of them being the same is increased.

7.6.2.2. Cross-validation of the model 3

Even if we can’t be confident that the model derived from our sample accurately represents 
the entire population, there are ways in which we can assess how well our model can predict 
the outcome in a different sample. Assessing the accuracy of a model across different samples 
is known as cross-validation. If a model can be generalized, then it must be capable of accu-
rately predicting the same outcome variable from the same set of predictors in a different 
group of people. If the model is applied to a different sample and there is a severe drop in 
its predictive power, then the model clearly does not generalize. As a first rule of thumb, we 
should aim to collect enough data to obtain a reliable regression model (see the next section). 
Once we have a regression model there are two main methods of cross-validation:

Adjusted M R2: In SPSS, not only are the values of R and R2 calculated, but also an 
adjusted R2. This adjusted value indicates the loss of predictive power or shrinkage. 
Whereas R2 tells us how much of the variance in Y is accounted for by the regression 
model from our sample, the adjusted value tells us how much variance in Y would 
be accounted for if the model had been derived from the population from which the 
sample was taken. SPSS derives the adjusted R2 using Wherry’s equation. However, 
this equation has been criticized because it tells us nothing about how well the regres-
sion model would predict an entirely different set of data (how well can the model 
predict scores of a different sample of data from the same population?). One version 
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of R2 that does tell us how well the model cross-validates uses Stein’s formula which 
is shown in equation (7.11) (see Stevens, 2002):

adjusted R2 = 1− n− 1

n− k−1

 
n− 2

n− k− 2

 
n+ 1

n

  
1−R2
 

(7.11)

  In Stein’s equation, R2 is the unadjusted value, n is the number of participants and k is 
the number of predictors in the model. For the more mathematically minded of you, 
it is worth using this equation to cross-validate a regression model.

Data splittingM : This approach involves randomly splitting your data set, computing 
a regression equation on both halves of the data and then comparing the resulting 
models. When using stepwise methods, cross-validation is a good idea; you should 
run the stepwise regression on a random selection of about 80% of your cases. Then 
force this model on the remaining 20% of the data. By comparing the values of R2 
and b in the two samples you can tell how well the original model generalizes (see 
Tabachnick & Fidell, 2007, for more detail).

7.6.2.3. Sample size in regression 3

In the previous section I said that it’s important to collect enough data 
to obtain a reliable regression model. Well, how much is enough? You’ll 
find a lot of rules of thumb floating about, the two most common being 
that you should have 10 cases of data for each predictor in the model, 
or 15 cases of data per predictor. So, with five predictors, you’d need 
50 or 75 cases respectively (depending on the rule you use). These rules 
are very pervasive (even I used the 15 cases per predictor rule in the 
first edition of this book) but they over simplify the issue considerably. 
In fact, the sample size required will depend on the size of effect that 
we’re trying to detect (i.e. how strong the relationship is that we’re try-
ing to measure) and how much power we want to detect these effects. 

The simplest rule of thumb is that the bigger the sample size, the better! The reason is that 
the estimate of R that we get from regression is dependent on the number of predictors, 
k, and the sample size, N. In fact the expected R for random data is k/(N − 1) and so with 
small sample sizes random data can appear to show a strong effect: for example, with six 
predictors and 21 cases of data, R = 6/(21 − 1) = .3 (a medium effect size by Cohen’s criteria 
described in section 6.3.2). Obviously for random data we’d want the expected R to be 0 
(no effect) and for this to be true we need large samples (to take the previous example, if 
we had 100 cases not 21, then the expected R would be a more acceptable .06).

It’s all very well knowing that larger is better, but researchers usually need some more 
concrete guidelines (much as we’d all love to collect 1000 cases of data it isn’t always prac-
tical!). Green (1991) makes two rules of thumb for the minimum acceptable sample size, 
the first based on whether you want to test the overall fit of your regression model (i.e. 
test the R2), and the second based on whether you want to test the individual predictors 
within the model (i.e. test b-values of the model). If you want to test the model overall, 
then he recommends a minimum sample size of 50 + 8k, where k is the number of predic-
tors. So, with five predictors, you’d need a sample size of 50 + 40 = 90. If you want to 
test the individual predictors then he suggests a minimum sample size of 104 + k, so again 
taking the example of 5 predictors you’d need a sample size of 104 + 5 = 109. Of course, 
in most cases we’re interested both in the overall fit and in the contribution of individual 
predictors, and in this situation Green recommends you calculate both of the minimum 
sample sizes I’ve just described, and use the one that has the largest value (so, in the five-
predictor example, we’d use 109 because it is bigger than 90).

How much data
should I collect?
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Now, these guidelines are all right as a rough and ready guide, but they still oversimplify 
the problem. As I’ve mentioned, the sample size required actually depends on the size of 
the effect (i.e. how well our predictors predict the outcome) and how much statistical 
power we want to detect these effects. Miles and Shevlin (2001) produce some extremely 
useful graphs that illustrate the sample sizes needed to achieve different levels of power, for 
different effect sizes, as the number of predictors vary. For precise estimates of the sample 
size you should be using, I recommend using these graphs. I’ve summarized some of the 
general findings in Figure 7.10. This diagram shows the sample size required to achieve a 
high level of power (I’ve taken Cohen’s, 1988, benchmark of .8) depending on the number 
of predictors and the size of expected effect. To summarize the graph very broadly: (1) if 
you expect to find a large effect then a sample size of 80 will always suffice (with up to 20 
predictors) and if there are fewer predictors then you can afford to have a smaller sample; 
(2) if you’re expecting a medium effect, then a sample size of 200 will always suffice (up 
to 20 predictors), you should always have a sample size above 60, and with six or fewer 
predictors you’ll be fine with a sample of 100; and (3) if you’re expecting a small effect size 
then just don’t bother unless you have the time and resources to collect at least 600 cases 
of data (and many more if you have six or more predictors).

7.6.2.4. Multicollinearity 2

Multicollinearity exists when there is a strong correlation between two or more predic-
tors in a regression model. Multicollinearity poses a problem only for multiple regression 
because (without wishing to state the obvious) simple regression requires only one predic-
tor. Perfect collinearity exists when at least one predictor is a perfect linear combination of 
the others (the simplest example being two predictors that are perfectly correlated – they 
have a correlation coefficient of 1). If there is perfect collinearity between predictors it 
becomes impossible to obtain unique estimates of the regression coefficients because there 
are an infinite number of combinations of coefficients that would work equally well. Put 
simply, if we have two predictors that are perfectly correlated, then the values of b for 
each variable are interchangeable. The good news is that perfect collinearity is rare in 

Figure 7.10
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real-life data. The bad news is that less than perfect collinearity is virtually unavoidable. 
Low levels of collinearity pose little threat to the models generated by SPSS, but as colline-
arity increases there are three problems that arise:

Untrustworthy M bs: As collinearity increases so do the standard errors of the b coeffi-
cients. If you think back to what the standard error represents, then big standard errors 
for b coefficients means that these bs are more variable across samples. Therefore, it 
means that the b coefficient in our sample is less likely to represent the population. 
Crudely put, multicollinearity means that the b-values are less trustworthy. Don’t 
lend them money and don’t let them go for dinner with your boy- or girlfriend. Of 
course if the bs are variable from sample to sample then the resulting predictor equa-
tions will be unstable across samples too.

It limits the size of M R: Remember that R is a measure of the multiple correlation between 
the predictors and the outcome and that R2 indicates the variance in the outcome for 
which the predictors account. Imagine a situation in which a single variable predicts the 
outcome variable fairly successfully (e.g. R = .80) and a second predictor variable is then 
added to the model. This second variable might account for a lot of the variance in the 
outcome (which is why it is included in the model), but the variance it accounts for is 
the same variance accounted for by the first variable. In other words, once the variance 
accounted for by the first predictor has been removed, the second predictor accounts for 
very little of the remaining variance (the second variable accounts for very little unique 
variance). Hence, the overall variance in the outcome accounted for by the two predic-
tors is little more than when only one predictor is used (so R might increase from .80 
to .82). This idea is connected to the notion of partial correlation that was explained in 
Chapter 6. If, however, the two predictors are completely uncorrelated, then the second 
predictor is likely to account for different variance in the outcome to that accounted for 
by the first predictor. So, although in itself the second predictor might account for only 
a little of the variance in the outcome, the variance it does account for is different to 
that of the other predictor (and so when both predictors are included, R is substantially 
larger, say .95). Therefore, having uncorrelated predictors is beneficial.

Importance of predictorsM : Multicollinearity between predictors makes it difficult  
to assess the individual importance of a predictor. If the predictors are highly corre-
lated, and each accounts for similar variance in the outcome, then how can we know 
which of the two variables is important? Quite simply we can’t tell which variable is 
important – the model could include either one, interchangeably.

One way of identifying multicollinearity is to scan a correlation matrix of all of the predictor 
variables and see if any correlate very highly (by very highly I mean correlations of above .80 
or .90). This is a good ‘ball park’ method but misses more subtle forms of multicollinearity. 
Luckily, SPSS produces various collinearity diagnostics, one of which is the variance inflation 
factor (VIF). The VIF indicates whether a predictor has a strong linear relationship with the 
other predictor(s). Although there are no hard and fast rules about what value of the VIF 
should cause concern, Myers (1990) suggests that a value of 10 is a good value at which to 
worry. What’s more, if the average VIF is greater than 1, then multicollinearity may be bias-
ing the regression model (Bowerman & O’Connell, 1990). Related to the VIF is the tolerance 
statistic, which is its reciprocal (1/VIF). As such, values below 0.1 indicate serious problems 
although Menard (1995) suggests that values below 0.2 are worthy of concern.

Other measures that are useful in discovering whether predictors are dependent are the 
eigenvalues of the scaled, uncentred cross-products matrix, the condition indexes and the 
variance proportions. These statistics are extremely complex and will be covered as part 
of the interpretation of SPSS output (see section 7.8.5). If none of this has made any sense 
then have a look at Hutcheson and Sofroniou (1999: 78–85) who give a really clear expla-
nation of multicollinearity.
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7.7. How to do multiple regression using SPSS 2

7.7.1.  Some things to think about before the analysis 2

A good strategy to adopt with regression is to measure predictor variables for which there are 
sound theoretical reasons for expecting them to predict the outcome. Run a regression analysis in 
which all predictors are entered into the model and examine the output to see which predictors 
contribute substantially to the model’s ability to predict the outcome. Once you have established 
which variables are important, rerun the analysis including only the important predictors and use 
the resulting parameter estimates to define your regression model. If the initial analysis reveals 
that there are two or more significant predictors then you could consider running a forward step-
wise analysis (rather than forced entry) to find out the individual contribution of each predictor.

I have spent a lot of time explaining the theory behind regression and some of the diagnostic 
tools necessary to gauge the accuracy of a regression model. It is important to remember that 
SPSS may appear to be very clever, but in fact it is not. Admittedly, it can do lots of complex 
calculations in a matter of seconds, but what it can’t do is control the quality of the model that is 
generated – to do this requires a human brain (and preferably a trained one). SPSS will happily 
generate output based on any garbage you decide to feed into the data editor and SPSS will not 
judge the results or give any indication of whether the model can be generalized or if it is valid. 
However, SPSS provides the statistics necessary to judge these things, and at this point our brains 
must take over the job – which is slightly worrying (especially if your brain is as small as mine)!

7.7.2.  Main options 2

Imagine that the record company executive was now interested in extending the model of record 
sales to incorporate other variables. He decides to measure two new variables: (1) the number 
of times the record is played on Radio 1 during the week prior to release (airplay); and (2) the 
attractiveness of the band (attract). Before a record is released, the executive notes the amount 
spent on advertising, the number of times the record is played on radio the week before release, 
and the attractiveness of the band. He does this for 200 different records (each made by a dif-
ferent band). Attractiveness was measured by asking a random sample of the target audience to 
rate the attractiveness of each band on a scale from 0 (hideous potato-heads) to 10 (gorgeous sex 
objects). The mode attractiveness given by the sample was used in the regression (because he was 
interested in what the majority of people thought, rather than the average of people’s opinions). 

These data are in the file Record2.sav and you should note that each variable has its own 
column (the same layout as for correlation) and each row represents a different record. So, 
the first record had £10,260 spent advertising it, sold 330,000 copies, received 43 plays on 
Radio 1 the week before release, and was made by a band that the majority of people rated 
as gorgeous sex objects (Figure 7.11).

The executive has past research indicating that advertising budget is a significant pre-
dictor of record sales, and so he should include this variable in the model first. His new 
variables (airplay and attract) should, therefore, be entered into the model after advertising 
budget. This method is hierarchical (the researcher decides in which order to enter vari-
ables into the model based on past research). To do a hierarchical regression in SPSS we 
have to enter the variables in blocks (each block representing one step in the hierarchy). To 
get to the main regression dialog box (Figure 7.12) select 

; this dialog box is the same as when we encountered it for simple regression.
The main dialog box is fairly self-explanatory in that there is a space to specify the 

dependent variable (outcome) and a space to place one or more independent variables 
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(predictor variables). As usual, the variables in the data editor are listed 
on the left-hand side of the box. Highlight the outcome variable (record 
sales) in this list by clicking on it and then drag it to the box labelled 
Dependent or click on . We also need to specify the predictor vari-
able for the first block. We decided that advertising budget should be 
entered into the model first (because past research indicates that it is an 
important predictor), so highlight this variable in the list and drag it to 

the box labelled Independent(s) or click on . Underneath the Independent(s) box, there 

Figure 7.11
Data layout 
for multiple 
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Figure 7.12
Main dialog 
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regression
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is a drop-down menu for specifying the Method of regression (see section 7.5.3). You 
can select a different method of variable entry for each block by clicking on ,  
next to where it says Method. The default option is forced entry, and this is the option we 
want, but if you were carrying out more exploratory work, you might decide to use one of the 
stepwise methods (forward, backward, stepwise or remove).

Having specified the first block in the hierarchy, we need to move on to the second. To tell 
the computer that you want to specify a new block of predictors you must click on .  
This process clears the Independent(s) box so that you can enter the new predictors (you 
should also note that above this box it now reads Block 2 of 2 indicating that you are in the 
second block of the two that you have so far specified). We decided that the second block 
would contain both of the new predictors and so you should click on airplay and attract 
(while holding down Ctrl) in the variables list and drag them to the Independent(s) box or 
click on . The dialog box should now look like Figure 7.13. To move between blocks use 
the  and  buttons (so, for example, to move back to block 1, click on ).

It is possible to select different methods of variable entry for different blocks in a hierar-
chy. So although we specified forced entry for the first block, we could now specify a step-
wise method for the second. Given that we have no previous research regarding the effects 
of attractiveness and airplay on record sales, we might be justified in requesting a stepwise 
method for this block. However, because of the problems with stepwise methods, I am going 
to stick with forced entry for both blocks in this example.

7.7.3.  Statistics 2

In the main regression dialog box click on  to open a dialog box for selecting various 
important options relating to the model (Figure 7.14). Most of these options relate to the 
parameters of the model; however, there are procedures available for checking the assump-
tions of no multicollinearity (collinearity diagnostics) and serial independence of errors 

Figure 7.13
Main dialog 
box for block 2 
of the multiple 
regression
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(Durbin–Watson). When you have selected the statistics you require (I recommend all but 
the covariance matrix as a general rule) click on  to return to the main dialog box:

EM stimates: This option is selected by default because it gives us the estimated coeffi-
cients of the regression model (i.e. the estimated b-values). Test statistics and their sig-
nificance are produced for each regression coefficient: a t-test is used to see whether 
each b differs significantly from zero (see section 7.2.4).
CoM nfidence intervals: This option produces confidence intervals for each of the 
unstandardized regression coefficients. Confidence intervals can be a very useful tool 
in assessing the likely value of the regression coefficients in the population – I will 
describe their exact interpretation later.
CoM variance matrix: This option will display a matrix of the covariances, correlation 
coefficients and variances between the regression coefficients of each variable in the 
model. A variance–covariance matrix is produced with variances displayed along the 
diagonal and covariances displayed as off-diagonal elements. The correlations are 
produced in a separate matrix.
MM odel fit: This option is vital and so is selected by default. It provides not only a statistical 
test of the model’s ability to predict the outcome variable (the F-test, see section 7.2.3), 
but also the value of R (or multiple R), the corresponding R2 and the adjusted R2.
R M squared change: This option displays the change in R2 resulting from the inclusion 
of a new predictor (or block of predictors). This measure is a useful way to assess the 
contribution of new predictors (or blocks) to explaining variance in the outcome.
DM escriptives: If selected, this option displays a table of the mean, standard deviation 
and number of observations of all of the variables included in the analysis. A correla-
tion matrix is also displayed showing the correlation between all of the variables and 
the one-tailed probability for each correlation coefficient. This option is extremely 
useful because the correlation matrix can be used to assess whether predictors are 
interrelated (which can be used to establish whether there is multicollinearity).
PM art and partial correlations: This option produces the zero-order correlation (the 
Pearson correlation) between each predictor and the outcome variable. It also 

Figure 7.14
Statistics 
dialog box for 
regression 
analysis
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produces the partial correlation between each predictor and the outcome, control-
ling for all other predictors in the model. Finally, it produces the part correlation (or 
semi-partial correlation) between each predictor and the outcome. This correlation 
represents the relationship between each predictor and the part of the outcome that 
is not explained by the other predictors in the model. As such, it measures the unique 
relationship between a predictor and the outcome (see section 6.6).
CoM llinearity diagnostics: This option is for obtaining collinearity statistics such as the 
VIF, tolerance, eigenvalues of the scaled, uncentred cross-products matrix, condition 
indexes and variance proportions (see section 7.6.2.3).
DM urbin-Watson: This option produces the Durbin–Watson test statistic, which tests the 
assumption of independent errors. Unfortunately, SPSS does not provide the signifi-
cance value of this test, so you must decide for yourself whether the value is different 
enough from 2 to be cause for concern (see section 7.6.2.1).
CM asewise diagnostics: This option, if selected, lists the observed value of the outcome, 
the predicted value of the outcome, the difference between these values (the residual) 
and this difference standardized. Furthermore, it will list these values either for all 
cases, or just for cases for which the standardized residual is greater than 3 (when the 
± sign is ignored). This criterion value of 3 can be changed, and I recommend chang-
ing it to 2 for reasons that will become apparent. A summary table of residual sta-
tistics indicating the minimum, maximum, mean and standard deviation of both the 
values predicted by the model and the residuals (see section 7.7.5) is also produced.

7.7.4.  Regression plots 2

Once you are back in the main dialog box, click on  to activate the regression plots 
dialog box shown in Figure 7.15. This dialog box provides the means to specify several graphs, 
which can help to establish the validity of some regression assumptions. Most of these plots 
involve various residual values, which will be described in more detail in section 7.7.5. 

On the left-hand side of the dialog box is a list of several variables.

DEPENDNTM  (the outcome variable).

*ZPREDM  (the standardized predicted values of the dependent variable based on the 
model). These values are standardized forms of the values predicted by the model.

*ZRESIDM  (the standardized residuals, or errors). These values are the standardized 
differences between the observed data and the values that the model predicts).

*DRESIDM  (the deleted residuals). See section 7.6.1.1 for details.

*ADJPREDM  (the adjusted predicted values). See section 7.6.1.1 for details.

*SRESIDM  (the Studentized residual). See section 7.6.1.1 for details.

*SDRESIDM  (the Studentized deleted residual). This value is the deleted residual divided 
by its standard deviation.

The variables listed in this dialog box all come under the general heading of residuals, and 
were discussed in detail in section 7.6.1.1. For a basic analysis it is worth plotting *ZRESID 
(Y-axis) against *ZPRED (X-axis), because this plot is useful to determine whether the 
assumptions of random errors and homoscedasticity have been met. A plot of *SRESID 
(y-axis) against *ZPRED (x-axis) will show up any heteroscedasticity also. Although often 
these two plots are virtually identical, the latter is more sensitive on a case-by-case basis. To 
create these plots simply select a variable from the list, and transfer it to the space labelled 
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either x or y (which refer to the axes) by clicking on . When you have selected two vari-
ables for the first plot (as is the case in Figure 7.15) you can specify a new plot by clicking 
on . This process clears the spaces in which variables are specified. If you click on 

 and would like to return to the plot that you last specified, then simply click on 
. You can specify up to nine plots.

You can also select the tick-box labelled Produce all partial plots which will produce 
scatterplots of the residuals of the outcome variable and each of the predictors when both 
variables are regressed separately on the remaining predictors. Regardless of whether the 
previous sentence made any sense to you, these plots have several important characteristics 
that make them worth inspecting. First, the gradient of the regression line between the two 
residual variables is equivalent to the coefficient of the predictor in the regression equa-
tion. As such, any obvious outliers on a partial plot represent cases that might have undue 
influence on a predictor’s regression coefficient. Second, non-linear relationships between a 
predictor and the outcome variable are much more detectable using these plots. Finally, they 
are a useful way of detecting collinearity. For these reasons, I recommend requesting them.

There are several options for plots of the standardized residuals. First, you can select a 
histogram of the standardized residuals (this is extremely useful for checking the assump-
tion of normality of errors). Second, you can ask for a normal probability plot, which also 
provides information about whether the residuals in the model are normally distributed. 
When you have selected the options you require, click on  to take you back to the 
main regression dialog box.

7.7.5.  Saving regression diagnostics 2

In section 7.6 we met two types of regression diagnostics: those that help us assess how 
well our model fits our sample and those that help us detect cases that have a large influ-
ence on the model generated. In SPSS we can choose to save these diagnostic variables in 
the data editor (so, SPSS will calculate them and then create new columns in the data editor 
in which the values are placed).

To save regression diagnostics you need to click on  in the main regression dia-
log box. This process activates the save new variables dialog box (see Figure 7.16). Once 
this dialog box is active, it is a simple matter to tick the boxes next to the required statistics. 
Most of the available options were explained in section 7.6 and Figure 7.16 shows, what I 
consider to be, a fairly basic set of diagnostic statistics. Standardized (and Studentized) ver-
sions of these diagnostics are generally easier to interpret and so I suggest selecting them in 

Figure 7.15
Linear 
Regression:  
Plots dialog box
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preference to the unstandardized versions. Once the regression has been run, SPSS creates 
a column in your data editor for each statistic requested and it has a standard set of variable 
names to describe each one. After the name, there will be a number that refers to the analy-
sis that has been run. So, for the first regression run on a data set the variable names will 
be followed by a 1, if you carry out a second regression it will create a new set of variables 
with names followed by a 2, and so on. The names of the variables that will be created are 
below. When you have selected the diagnostics you require (by clicking in the appropriate 
boxes), click on  to return to the main regression dialog box:

pre_1M : unstandardized predicted value.

zpr_1M : standardized predicted value.

adj_1M : adjusted predicted value.

sep_1M : standard error of predicted value.

res_1M : unstandardized residual.

zre_1M : standardized residual.

sre_1M : Studentized residual.

dre_1M : deleted residual.

sdr_1M : Studentized deleted residual.

mah_1M : Mahalanobis distance.

coo_1M : Cook’s distance.

lev_1M : centred leverage value.

sdb0_1M : standardized DFBETA (intercept).

sdb1_1M : standardized DFBETA (predictor 1).

sdb2_1M : standardized DFBETA (predictor 2).

sdf_1M : standardized DFFIT.

cov_1M : covariance ratio.

7.7.6.  Further options 2

As a final step in the analysis, you can click on  to take you to the options dialog box 
(Figure 7.17). The first set of options allows you to change the criteria used for entering vari-
ables in a stepwise regression. If you insist on doing stepwise regression, then it’s probably 
best that you leave the default criterion of .05 probability for entry alone. However, you can 
make this criterion more stringent (.01). There is also the option to build a model that doesn’t 
include a constant (i.e. has no Y intercept). This option should also be left alone (almost 
always). Finally, you can select a method for dealing with missing data points (see SPSS Tip 
6.1). By default, SPSS excludes cases listwise, which in regression means that if a person has a 
missing value for any variable, then they are excluded from the whole analysis. So, for exam-
ple, if our record company executive didn’t have an attractiveness score for one of his bands, 
their data would not be used in the regression model. Another option is to excluded cases on 
a pairwise basis, which means that if a participant has a score missing for a particular variable, 
then their data are excluded only from calculations involving the variable for which they have 
no score. So, data for the band for which there was no attractiveness rating would still be used 
to calculate the relationships between advertising budget, airplay and record sales. However, if 
you do this many of your variables may not make sense, and you can end up with absurdities 
such as R2 either negative or greater than 1.0. So, it’s not a good option.
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Figure 7.16
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regression
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Another possibility is to replace the missing score with the average score for this variable 
and then include that case in the analysis (so, our example band would be given an attractive-
ness rating equal to the average attractiveness of all bands). The problem with this final choice 
is that it is likely to suppress the true value of the standard deviation (and more importantly 
the standard error). The standard deviation will be suppressed because for any replaced case 
there will be no difference between the mean and the score, whereas if data had been collected 
for that case there would, almost certainly, have been some difference between the score and 
the mean. Obviously, if the sample is large and the number of missing values small then this 
is not a serious consideration. However, if there are many missing values this choice is poten-
tially dangerous because smaller standard errors are more likely to lead to significant results 
that are a product of the data replacement rather than a genuine effect. The final option is to 
use the Missing Value Analysis routine in SPSS. This is for experts. It makes use of the fact that 
if two or more variables are present and correlated for most cases in the file, and an occasional 
value is missing, you can replace the missing values with estimates far better than the mean 
(Tabachnick & Fidell, 2007: Chapter 4, describe some of these procedures).

7.8. Interpreting multiple regression 2

Having selected all of the relevant options and returned to the main dialog box, we need 
to click on  to run the analysis. SPSS will spew out copious amounts of output in the 
viewer window, and we now turn to look at how to make sense of this information.

7.8.1.  Descriptives 2

The output described in this section is produced using the options in the Linear Regression: 
Statistics dialog box (see Figure 7.14). To begin with, if you selected the Descriptives option, 
SPSS will produce the table seen in SPSS Output 7.4. This table tells us the mean and standard 
deviation of each variable in our data set, so we now know that the average number of record 
sales was 193,000. This table isn’t necessary for interpreting the regression model, but it is a 
useful summary of the data. In addition to the descriptive statistics, selecting this option pro-
duces a correlation matrix too. This table shows three things. First, the table shows the value 
of Pearson’s correlation coefficient between every pair of variables (e.g. we can see that the 
advertising budget had a large positive correlation with record sales, r = .578). Second, the 
one-tailed significance of each correlation is displayed (e.g. the correlation above is significant, 
p < .001). Finally, the number of cases contributing to each correlation (N = 200) is shown.

You might notice that along the diagonal of the matrix the values for the correlation 
coefficients are all 1.00 (i.e. a perfect positive correlation). The reason for this is that 
these values represent the correlation of each variable with itself, so obviously the result-
ing values are 1. The correlation matrix is extremely useful for getting a rough idea of the 
relationships between predictors and the outcome, and for a preliminary look for multi-
collinearity. If there is no multicollinearity in the data then there should be no substantial 
correlations (r > .9) between predictors.

If we look only at the predictors (ignore record sales) then the highest correlation is 
between the attractiveness of the band and the amount of airplay which is significant at a 
.01 level (r = .182, p = .005). Despite the significance of this correlation, the coefficient is 
small and so it looks as though our predictors are measuring different things (there is little 
collinearity). We can see also that of all of the predictors the number of plays on Radio 1 
correlates best with the outcome (r = .599, p < .001) and so it is likely that this variable will 
best predict record sales.
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7.8.2.  Summary of model 2

The next section of output describes the overall model (so it tells us whether the model is 
successful in predicting record sales). Remember that we chose a hierarchical method and 
so each set of summary statistics is repeated for each stage in the hierarchy. In SPSS Output 
7.5 you should note that there are two models. Model 1 refers to the first stage in the hier-
archy when only advertising budget is used as a predictor. Model 2 refers to when all three 
predictors are used. SPSS Output 7.5 is the model summary and this table was produced 
using the Model fit option. This option is selected by default in SPSS because it provides 
us with some very important information about the model: the values of R, R2 and the 

             CRAMMING SAM’S TIPS    

 Use the descriptive statistics to check the correlation matrix for multicollinearity; that is, predictors that correlate 
too highly with each other, R > .9.

200

200

200

200

N

Descriptive Statistics

193.2000 80.6990

614.4123 485.6552

27.5000 12.2696

6.7700 1.3953

Record Sales
(thousands)
Advertising Budget
(thousands of pounds)
No. of plays on Radio 1
per week
Attractiveness of Band

Mean
Std.

Deviation

N

Correlations

1.000 .578 .599 .326

.578 1.000 .102 .081

.599 .102 1.000 .182

.326 .081 .182 1.000

. .000 .000 .000

.000 . .076 .128

.000 .076 . .005

.000 .128 .005 .

200 200 200 200

200 200 200 200

200 200 200 200

200 200 200 200

Record Sales
(thousands)
Advertising Budget
(thousands of pounds)
No. of plays on Radio 1
per week
Attractiveness of Band

Record Sales
(thousands)
Advertising Budget
(thousands of pounds)
No. of plays on Radio 1
per week
Attractiveness of Band

Record Sales
(thousands)
Advertising Budget
(thousands of pounds)
No. of plays on Radio 1
per week
Attractiveness of Band

Pearson Correlation

Sig. (1-tailed)

Record
Sales

(thousands)

Advertising
Budget

(thousands
of pounds)

No. of
plays on
Radio 1

per week
Attractiveness

of Band

SPSS OutPut 7.4
Descriptive statistics 
for regression 
analysis
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adjusted R2. If the R squared change and Durbin-Watson options were selected, then these 
values are included also (if they weren’t selected you’ll find that you have a smaller table).

The model summary table is shown in SPSS Output 7.5 and you should notice that 
under this table SPSS tells us what the dependent variable (outcome) was and what the 
predictors were in each of the two models. In the column labelled R are the values of 
the multiple correlation coefficient between the predictors and the outcome. When only 
advertising budget is used as a predictor, this is the simple correlation between advertising 
and record sales (0.578). In fact all of the statistics for model 1 are the same as the simple 
regression model earlier (see section 7.4). The next column gives us a value of R2, which we 
already know is a measure of how much of the variability in the outcome is accounted for 
by the predictors. For the first model its value is .335, which means that advertising budget 
accounts for 33.5% of the variation in record sales. However, when the other two predic-
tors are included as well (model 2), this value increases to .665 or 66.5% of the variance 
in record sales. Therefore, if advertising accounts for 33.5%, we can tell that attractiveness 
and radio play account for an additional 33%.9 So, the inclusion of the two new predictors 
has explained quite a large amount of the variation in record sales.

Model Summaryc

.578
a

.335 .331 65.9914 .335 99.587 1 198 .000

.815
b

.665 .660 47.0873 .330 96.447 2 196 .000 1.950

Model

1

2

R R Square
Adjusted R

Square

Std. Error
of the

Estimate
R Square
Change F Change df1 df2

Sig. F
Change

Change Statistics

Durbin-Watson

a. Predictors: (Constant), Advertising Budget (thousands of pounds)

b. Predictors: (Constant), Advertising Budget  (thousands of pounds), Attractiveness of Band, No. of plays on Radio 1 per week

c. Dependent Variable: Record Sales (thousands)

The adjusted R2 gives us some idea of how well our model generalizes and ideally we would 
like its value to be the same, or very close to, the value of R2. In this example the difference for 
the final model is small (in fact the difference between the values is .665 − .660 = .005 (about 
0.5%). This shrinkage means that if the model were derived from the population rather than 
a sample it would account for approximately 0.5% less variance in the outcome. Advanced 
students might like to apply Stein’s formula to the R2 to get some idea of its likely value in 
different samples. Stein’s formula was given in equation (7.11) and can be applied by repla-
cing n with the sample size (200) and k with the number of predictors (3):

adjusted R2 = 1− 200− 1

200− 3− 1

 
200− 2

200− 3− 2

 
200+1

200

  
1− 0:665ð Þ

= 1− ð1:015Þð1:015Þð1:005Þ½ ð0:335Þ
= 1−0:347

= 0:653

This value is very similar to the observed value of R2 (.665) indicating that the cross-validity 
of this model is very good.

The change statistics are provided only if requested and these tell us whether the change 
in R2 is significant. The significance of R2 can actually be tested using an F-ratio, and this 
F is calculated from the following equation (in which N is the number of cases or partici-
pants, and k is the number of predictors in the model):

F= ðN− k− 1ÞR2

kð1−R2Þ

9 That is, 33% = 66.5% − 33.5% (this value is the R Square Change in the table).

SPSS OutPut 7.5
Regression model 
summary
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In SPSS Output 7.5, the change in this F is reported for each block of the hierarchy. So, 
model 1 causes R2 to change from 0 to .335, and this change in the amount of variance 
explained gives rise to an F-ratio of 99.587, which is significant with a probability less than 
.001. Bearing in mind for this first model that we have only one predictor (so k = 1) and 
200 cases (N = 200), this F comes from the equation above:10

FModel1 =
ð200− 1−1Þ0:334648

1ð1− 0:334648Þ = 99:587

The addition of the new predictors (model 2) causes R2 to increase by .330 (see above). We 
can calculate the F-ratio for this change using the same equation, but because we’re look-
ing at the change in models we use the change in R2, R2

Change, and the R2 in the new model 
(model 2 in this case so I’ve called it R2

2) and we also use the change in the number of pre-
dictors, kChange (model 1 had one predictor and model 2 had three predictors, so the change 
in the number of predictors is 3−1 = 2), and the number of predictors in the new model, k2 
(in this case because we’re looking at model 2). Again, if we use a few more decimal places 
than in the SPSS table, we get approximately the same answer as SPSS:

FChange =
ðN− k2 − 1ÞR2

Change

kChangeð1−R2
2Þ

= ð200−3− 1Þ× 0:330

2ð1− 0:664668Þ
=96:44

As such, the change in the amount of variance that can be explained gives rise to an F-ratio 
of 96.44, which is again significant (p < .001). The change statistics therefore tell us about 
the difference made by adding new predictors to the model.

Finally, if you requested the Durbin–Watson statistic it will be found in the last column 
of the table in SPSS Output 7.5. This statistic informs us about whether the assumption of 
independent errors is tenable (see section 7.6.2.1). As a conservative rule I suggested that 
values less than 1 or greater than 3 should definitely raise alarm bells (although I urge you 
to look up precise values for the situation of interest). The closer to 2 that the value is, the 
better, and for these data the value is 1.950, which is so close to 2 that the assumption has 
almost certainly been met.

SPSS Output 7.6 shows the next part of the output, which contains an ANOVA that tests 
whether the model is significantly better at predicting the outcome than using the mean as 
a ‘best guess’. Specifically, the F-ratio represents the ratio of the improvement in prediction 
that results from fitting the model, relative to the inaccuracy that still exists in the model 
(see section 7.2.3). This table is again split into two sections: one for each model. We are 
told the value of the sum of squares for the model (this value is SSM in section 7.2.3 and 
represents the improvement in prediction resulting from fitting a regression line to the data 
rather than using the mean as an estimate of the outcome). We are also told the residual 
sum of squares (this value is SSR in section 7.2.3 and represents the total difference between 
the model and the observed data). We are also told the degrees of freedom (df ) for each 
term. In the case of the improvement due to the model, this value is equal to the number 
of predictors (1 for the first model and 3 for the second), and for SSR it is the number of 
observations (200) minus the number of coefficients in the regression model. The first 

10 To get the same values as SPSS we have to use the exact value of R2, which is 0.3346480676231 (if you don’t 
believe me double-click on the table in the SPSS output that reports this value, then double-click on the cell of the 
table containing the value of R2 and you’ll see that .335 becomes the value that I’ve just typed!).



237CHAPTER 7   REGRESS ION

model has two coefficients (one for the predictor and one for the constant) whereas the 
second has four (one for each of the three predictors and one for the constant). Therefore, 
model 1 has 198 degrees of freedom whereas model 2 has 196. The average sum of squares 
(MS) is then calculated for each term by dividing the SS by the df. The F-ratio is calculated 
by dividing the average improvement in prediction by the model (MSM) by the average 
difference between the model and the observed data (MSR). If the improvement due to 
fitting the regression model is much greater than the inaccuracy within the model then the 
value of F will be greater than 1 and SPSS calculates the exact probability of obtaining the 
value of F by chance. For the initial model the F-ratio is 99.587, which is very unlikely to 
have happened by chance (p < .001). For the second model the value of F is even higher 
(129.498), which is also highly significant (p < .001). We can interpret these results as 
meaning that the initial model significantly improved our ability to predict the outcome 
variable, but that the new model (with the extra predictors) was even better (because the 
F-ratio is more significant). 

ANOVAc

433687.833 1 433687.833 99.587 .000
a

862264.167 198 4354.870
1295952.0 199

861377.418 3 287125.806 129.498 .000
b

434574.582 196 2217.217
1295952.0 199

Regression
Residual
Total

Regression
Residual
Total

Model

1

2

Sum of
Squares df

Mean
Square F Sig.

a. Predictors: (Constant), Advertising Budget (thousands of pounds)

b. Predictors: (Constant), Advertising Budget (thousands of pounds), Attractiveness
of Band, No. of Plays on Radio 1 per Week

c. Dependent Variable: Record Sales (thousands)

SPSS OutPut 7.6
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 The fit of the regression model can be assessed using the Model Summary and ANOVA tables from SPSS. Look 
for the R2 to tell you the proportion of variance explained by the model. If you have done a hierarchical regression then you can 
assess the improvement of the model at each stage of the analysis by looking at the change in R2 and whether this change is 
significant (look for values less than .05 in the column labelled Sig F Change.). The ANOVA also tells us whether the model is 
a significant fit of the data overall (look for values less than .05 in the column labelled Sig.). Finally, there is an assumption that 
errors in regression are independent; this assumption is likely to be met if the Durbin–Watson statistic is close to 2 (and between 
1 and 3).

7.8.3.  Model parameters 2

So far we have looked at several summary statistics telling us whether or not the model 
has improved our ability to predict the outcome variable. The next part of the out-
put is concerned with the parameters of the model. SPSS Output 7.7 shows the model 
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parameters for both steps in the hierarchy. Now, the first step in our hierarchy was to 
include advertising budget (as we did for the simple regression earlier in this chapter) 
and so the parameters for the first model are identical to the parameters obtained in 
SPSS Output 7.3. Therefore, we will be concerned only with the parameters for the final 
model (in which all predictors were included). The format of the table of coefficients 
will depend on the options selected. The confidence interval for the b-values, collinear-
ity diagnostics and the part and partial correlations will be present only if selected in the 
dialog box in Figure 7.14.

11

Remember that in multiple regression the model takes the form of equation (7.9) and in 
that equation there are several unknown quantities (the b-values). The first part of the table 
gives us estimates for these b-values and these values indicate the individual contribution 
of each predictor to the model. If we replace the b-values in equation (7.9) we find that we 
can define the model as follows:

salesi= b0 +b1advertisingi + b2airplayi + b3attractivenessi

= − 26:61+ ð0:08advertisingiÞ+ ð3:37airplayiÞ
+ ð11:09attractivenessiÞ

(7.12)

The b-values tell us about the relationship between record sales and each predictor. If the 
value is positive we can tell that there is a positive relationship between the predictor and 
the outcome, whereas a negative coefficient represents a negative relationship. For these 
data all three predictors have positive b-values indicating positive relationships. So, as 
advertising budget increases, record sales increase; as plays on the radio increase, so do 
record sales; and finally more attractive bands will sell more records. The b-values tell 
us more than this, though. They tell us to what degree each predictor affects the outcome 
if the effects of all other predictors are held constant:

11 To spare your eyesight I have split this part of the output into two tables; however, it should appear as one long 
table in the SPSS Viewer.

SPSS OutPut 7.7
Coefficients of the 
regression model11
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Advertising budgetM  (b = 0.085): This value indicates that as advertising budget 
increases by one unit, record sales increase by 0.085 units. Both variables were mea-
sured in thousands; therefore, for every £1000 more spent on advertising, an extra 
0.085 thousand records (85 records) are sold. This interpretation is true only if the 
effects of attractiveness of the band and airplay are held constant.

AirplayM  (b = 3.367): This value indicates that as the number of plays on radio in the 
week before release increases by one, record sales increase by 3.367 units. Therefore, 
every additional play of a song on radio (in the week before release) is associated 
with an extra 3.367 thousand records (3367 records) being sold. This interpreta-
tion is true only if the effects of attractiveness of the band and advertising are held 
constant.

AttractivenessM  (b = 11.086): This value indicates that a band rated one unit higher on 
the attractiveness scale can expect additional record sales of 11.086 units. Therefore, 
every unit increase in the attractiveness of the band is associated with an extra 11.086 
thousand records (11,086 records) being sold. This interpretation is true only if the 
effects of radio airplay and advertising are held constant.

Each of these beta values has an associated standard error indicating to what extent these 
values would vary across different samples, and these standard errors are used to determine 
whether or not the b-value differs significantly from zero. As we saw in section 7.4.2, a 
t-statistic can be derived that tests whether a b-value is significantly different from 0. In 
simple regression, a significant value of t indicates that the slope of the regression line is 
significantly different from horizontal, but in multiple regression, it is not so easy to visu-
alize what the value tells us. Well, it is easiest to conceptualize the t-tests as measures of 
whether the predictor is making a significant contribution to the model. Therefore, if the 
t-test associated with a b-value is significant (if the value in the column labelled Sig. is less 
than .05) then the predictor is making a significant contribution to the model. The smaller 
the value of Sig. (and the larger the value of t), the greater the contribution of that predic-
tor. For this model, the advertising budget (t(196) = 12.26, p < .001), the amount of radio 
play prior to release (t(196) = 12.12, p < .001) and attractiveness of the band (t(196) =  
4.55, p < .001) are all significant predictors of record sales.12 From the magnitude of the 
t-statistics we can see that the advertising budget and radio play had a similar impact, 
whereas the attractiveness of the band had less impact.

The b-values and their significance are important statistics to look at; however, the 
standardized versions of the b-values are in many ways easier to interpret (because they 
are not dependent on the units of measurement of the variables). The standardized beta 
values are provided by SPSS (labelled as Beta, β1) and they tell us the number of standard 
deviations that the outcome will change as a result of one standard deviation change 
in the predictor. The standardized beta values are all measured in standard deviation 
units and so are directly comparable: therefore, they provide a better insight into the 
‘importance’ of a predictor in the model. The standardized beta values for airplay and 
advertising budget are virtually identical (.512 and .511 respectively) indicating that 
both variables have a comparable degree of importance in the model (this concurs with 
what the magnitude of the t-statistics told us). To interpret these values literally, we need 
to know the standard deviations of all of the variables and these values can be found in 
SPSS Output 7.4.

12 For all of these predictors I wrote t(196). The number in brackets is the degrees of freedom. We saw in section 
7.2.4 that in regression the degrees of freedom are N − p − 1, where N is the total sample size (in this case 200) 
and p is the number of predictors (in this case 3). For these data we get 200 − 3 − 1 = 196.  
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Advertising budgetM  (standardized β = .511): This value indicates that as advertising 
budget increases by one standard deviation (£485,655), record sales increase by 0.511 
standard deviations. The standard deviation for record sales is 80,699 and so this con-
stitutes a change of 41,240 sales (0.511 × 80,699). Therefore, for every £485,655 more 
spent on advertising, an extra 41,240 records are sold. This interpretation is true only 
if the effects of attractiveness of the band and airplay are held constant.
AirplayM  (standardized β = .512): This value indicates that as the number of plays on 
radio in the week before release increases by 1 standard deviation (12.27), record 
sales increase by 0.512 standard deviations. The standard deviation for record sales is 
80,699 and so this constitutes a change of 41,320 sales (0.512 × 80,699). Therefore, 
if Radio 1 plays the song an extra 12.27 times in the week before release, 41,320 
extra record sales can be expected. This interpretation is true only if the effects of 
attractiveness of the band and advertising are held constant.
AttractivenessM  (standardized β = .192): This value indicates that a band rated one 
standard deviation (1.40 units) higher on the attractiveness scale can expect addi-
tional record sales of 0.192 standard deviations units. This constitutes a change of 
15,490 sales (0.192 × 80,699). Therefore, a band with an attractiveness rating 1.40 
higher than another band can expect 15,490 additional sales. This interpretation is 
true only if the effects of radio airplay and advertising are held constant.

SELF-TEST  Think back to what the confidence interval 
of the mean represented (section 2.5.2). Can you guess 
what the confidence interval for b represents?

Imagine that we collected 100 samples of data measuring the same variables as our current 
model. For each sample we could create a regression model to represent the data. If the model 
is reliable then we hope to find very similar parameters in all samples. Therefore, each sample 
should produce approximately the same b-values. The confidence intervals of the unstandard-
ized beta values are boundaries constructed such that in 95% of these samples these bound-
aries will contain the true value of b (see section 2.5.2). Therefore, if we’d collected 100 
samples, and calculated the confidence intervals for b, we are saying that 95% of these confi-
dence intervals would contain the true value of b. Therefore, we can be fairly confident that 
the confidence interval we have constructed for this sample will contain the true value of b in 
the population. This being so, a good model will have a small confidence interval, indicating 
that the value of b in this sample is close to the true value of b in the population. The sign 
(positive or negative) of the b-values tells us about the direction of the relationship between 
the predictor and the outcome. Therefore, we would expect a very bad model to have con-
fidence intervals that cross zero, indicating that in some samples the predictor has a negative 
relationship to the outcome whereas in others it has a positive relationship. In this model, the 
two best predictors (advertising and airplay) have very tight confidence intervals indicating 
that the estimates for the current model are likely to be representative of the true population 
values. The interval for attractiveness is wider (but still does not cross zero) indicating that the 
parameter for this variable is less representative, but nevertheless significant.

If you asked for part and partial correlations, then they will appear in the output in sepa-
rate columns of the table. The zero-order correlations are the simple Pearson’s correlation 
coefficients (and so correspond to the values in SPSS Output 7.4). The partial correlations 
represent the relationships between each predictor and the outcome variable, controlling 
for the effects of the other two predictors. The part correlations represent the relationship 
between each predictor and the outcome, controlling for the effect that the other two vari-
ables have on the outcome. In effect, these part correlations represent the unique relationship 
that each predictor has with the outcome. If you opt to do a stepwise regression, you would 
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find that variable entry is based initially on the variable with the largest zero-order correla-
tion and then on the part correlations of the remaining variables. Therefore, airplay would 
be entered first (because it has the largest zero-order correlation), then advertising budget 
(because its part correlation is bigger than attractiveness) and then finally attractiveness. Try 
running a forward stepwise regression on these data to see if I’m right! Finally, we are given 
details of the collinearity statistics, but these will be discussed in section 7.8.5.

             CRAMMING SAM’S TIPS    

 The individual contribution of variables to the regression model can be found in the Coefficients table from SPSS. 
If you have done a hierarchical regression then look at the values for the final model. For each predictor variable, you can see if 
it has made a significant contribution to predicting the outcome by looking at the column labelled Sig. (values less than .05 are 
significant). You should also look at the standardized beta values because these tell you the importance of each predictor (bigger 
absolute value = more important). The Tolerance and VIF values will also come in handy later on, so make a note of them!

7.8.4.  Excluded variables 2

At each stage of a regression analysis SPSS provides a summary of any variables that have 
not yet been entered into the model. In a hierarchical model, this summary has details of the 
variables that have been specified to be entered in subsequent steps, and in stepwise regres-
sion this table contains summaries of the variables that SPSS is considering entering into the 
model. For this example, there is a summary of the excluded variables (SPSS Output 7.8) for 
the first stage of the hierarchy (there is no summary for the second stage because all predic-
tors are in the model). The summary gives an estimate of each predictor’s beta value if it 
was entered into the equation at this point and calculates a t-test for this value. In a stepwise 
regression, SPSS should enter the predictor with the highest t-statistic and will continue 
entering predictors until there are none left with t-statistics that have significance values 
less than .05. The partial correlation also provides some indication as to what contribution  
(if any) an excluded predictor would make if it were entered into the model.

Excluded Variablesb

.546a 12.513 .000 .665 .990 1.010 .990

.281a 5.136 .000 .344 .993 1.007 .993

No. of plays on Radio 1
per week
Attractiveness of Band

Model

1

Beta In t Sig.
Partial

Correlation Tolerance VIF
Minimum
Tolerance

Collinearity Statistics

a. Predictors in the Model: (Constant), Advertising Budget (thousands of pounds)

b. Dependent Variable: Record Sales (thousands)

7.8.5.  Assessing the assumption of no multicollinearity 2

SPSS Output 7.7 provided some measures of whether there is collinearity in the data. 
Specifically, it provides the VIF and tolerance statistics (with tolerance being 1 divided 

SPSS OutPut 7.8
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by the VIF). There are a few guidelines from section 7.6.2.3 that can be applied 
here:

If the largest VIF is greater than 10 then there is cause for concern (Bowerman & M

O’Connell, 1990; Myers, 1990).
If the average VIF is substantially greater than 1 then the regression may be biased M

(Bowerman & O’Connell, 1990).
Tolerance below 0.1 indicates a serious problem.M

Tolerance below 0.2 indicates a potential problem (Menard, 1995).M

For our current model the VIF values are all well below 10 and the tolerance statistics all 
well above 0.2; therefore, we can safely conclude that there is no collinearity within our 
data. To calculate the average VIF we simply add the VIF values for each predictor and 
divide by the number of predictors (k):

VIF=

Pk

i= 1

VIFi

k
= 1:015+1:043+ 1:038

3
= 1:032

The average VIF is very close to 1 and this confirms that collinearity is not a problem for this 
model. SPSS also produces a table of eigenvalues of the scaled, uncentred cross-products matrix, 
condition indexes and variance proportions (see Jane Superbrain Box 7.2). There is a lengthy 
discussion, and example, of collinearity in section 8.8.1 and how to detect it using variance 
proportions, so I will limit myself now to saying that we are looking for large variance propor-
tions on the same small eigenvalues. Therefore, in SPSS Output 7.9 we look at the bottom few 
rows of the table (these are the small eigenvalues) and look for any variables that both have high 
variance proportions for that eigenvalue. The variance proportions vary between 0 and 1, and 
for each predictor should be distributed across different dimensions (or eigenvalues). For this 
model, you can see that each predictor has most of its variance loading onto a different dimen-
sion (advertising has 96% of variance on dimension 2, airplay has 93% of variance on dimen-
sion 3 and attractiveness has 92% of variance on dimension 4). These data represent a classic 
example of no multicollinearity. For an example of when collinearity exists in the data and some 
suggestions about what can be done, see Chapters 8 (section 8.8.1) and 17 (section 17.3.3.3).

Collinearity Diagnosticsa

1.785 1.000 .11 .11

.215 2.883 .89 .89

3.562 1.000 .00 .02 .01 .00

.308 3.401 .01 .96 .05 .01

.109 5.704 .05 .02 .93 .07

2.039E-02 13.219 .94 .00 .00 .92

Dimension

1
2

1
2

3

4

Model

1

2

Eigenvalue
Condition

Index (Constant)

Advertising Budget
(thousands of

pounds)

No. of plays on
Radio 1 per

week
Attractiveness

of Band

Variance Proportions

Dependent Variable: Record Sales (thousands)a. 

SPSS OutPut 7.9

             CRAMMING SAM’S TIPS    

 To check the assumption of no multicollinearity, use the VIF values from the table Labelled coefficients in the 
SPSS output. If these values are less than 10 then that indicates there probably isn’t cause for concern. If you take the average 
of VIF values, and this average is not substantially greater than 1, then that also indicates that there’s no cause for concern.



243CHAPTER 7   REGRESS ION

JANE SUPERBRAIN 7.2

What are eigenvectors and eigenvalues? 4

lines are the eigenvectors of the original correlation matrix 
for these two variables (a vector is just a set of numbers 
that tells us the location of a line in geometric space). Note 
that the two lines we’ve drawn (one for height and one for 
width of the oval) are perpendicular; that is, they are at 
90 degrees, which means that they are independent of 
one another). So, with two variables, eigenvectors are just 
lines measuring the length and height of the ellipse that 
surrounds the scatterplot of data for those variables. If we 
add a third variable (e.g. experience of the supermodel) 
then all that happens is our scatterplot gets a third dimen-
sion, the ellipse turns into something shaped like a rugby 
ball (or American football), and because we now have 
a third dimension (height, width and depth) we get an 
extra eigenvector to measure this extra dimension. If we 
add a fourth variable, a similar logic applies (although it’s 
harder to visualize): we get an extra dimension, and an 
eigenvector to measure that dimension. Now, each eigen-
vector has an eigenvalue that tells us its length (i.e. the 
distance from one end of the eigenvector to the other). 
So, by looking at all of the eigenvalues for a data set, we 
know the dimensions of the ellipse or rugby ball: put more 
generally, we know the dimensions of the data. Therefore, 
the eigenvalues show how evenly (or otherwise) the vari-
ances of the matrix are distributed.

The definitions and mathematics of eigenvalues and 
eigenvectors are very complicated and most of us need 
not worry about them (although they do crop up again in 
Chapters 16 and 17). However, although the mathematics 
of them is hard, they are quite easy to visualize! Imagine 
we have two variables: the salary a supermodel earns in 
a year, and how attractive she is. Also imagine these two 
variables are normally distributed and so can be consid-
ered together as a bivariate normal distribution. If these 
variables are correlated, then their scatterplot forms an 
ellipse. This is shown in the scatterplots below: if we draw 
a dashed line around the outer values of the scatterplot we 
get something oval shaped. Now, we can draw two lines 
to measure the length and height of this ellipse. These 

In the case of two variables, the condition of the data 
is related to the ratio of the larger eigenvalue to the 
smaller. Let’s look at the two extremes: when there is 
no relationship at all between variables, and when there 
is a perfect relationship. When there is no relationship, 
the scatterplot will, more or less, be contained within a 
circle (or a sphere if we had three variables). If we again 
draw lines that measure the height and width of this 
circle we’ll find that these lines are the same length. The 
eigenvalues measure the length, therefore the eigen-
values will also be the same. So, when we divide the 

largest eigenvalue by the smallest we’ll get a value of 1 
(because the eigenvalues are the same). When the vari-
ables are perfectly correlated (i.e. there is perfect col-
linearity) then the scatterplot forms a straight line and 
the ellipse surrounding it will also collapse to a straight 
line. Therefore, the height of the ellipse will be very small 
indeed (it will approach zero). Therefore, when we divide 
the largest eigenvalue by the smallest we’ll get a value 
that tends to infinity (because the smallest eigenvalue is 
close to zero). Therefore, an infinite condition index is a 
sign of deep trouble.
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7.8.6.  Casewise diagnostics 2

SPSS produces a summary table of the residual statistics and these should be examined for 
extreme cases. SPSS Output 7.10 shows any cases that have a standardized residual less 
than −2 or greater than 2 (remember that we changed the default criterion from 3 to 2 in 
Figure 7.14). I mentioned in section 7.6.1.1 that in an ordinary sample we would expect 
95% of cases to have standardized residuals within about ±2. We have a sample of 200, 
therefore it is reasonable to expect about 10 cases (5%) to have standardized residuals 
outside of these limits. From SPSS Output 7.10 we can see that we have 12 cases (6%) that 
are outside of the limits: therefore, our sample is within 1% of what we would expect. In 
addition, 99% of cases should lie within ±2.5 and so we would expect only 1% of cases to 
lie outside of these limits. From the cases listed here, it is clear that two cases (1%) lie out-
side of the limits (cases 164 and 169). Therefore, our sample appears to conform to what 
we would expect for a fairly accurate model. These diagnostics give us no real cause for 
concern except that case 169 has a standardized residual greater than 3, which is probably 
large enough for us to investigate this case further.

Casewise Diagnosticsa

2.125 330.00 229.9203 100.0797
-2.314 120.00 228.9490 -108.9490
2.114 300.00 200.4662 99.5338

-2.442 40.00 154.9698 -114.9698
2.069 190.00 92.5973 97.4027

-2.424 190.00 304.1231 -114.1231
2.098 300.00 201.1897 98.8103

-2.345 70.00 180.4156 -110.4156
2.066 250.00 152.7133 97.2867

-2.577 120.00 241.3240 -121.3240
3.061 360.00 215.8675 144.1325

-2.064 110.00 207.2061 -97.2061

Case Number

1
2
10
47
52
55
61
68
100
164
169
200

Std.
Residual

Record
Sales

(thousands)
Predicted

Value Residual

a. Dependent Variable: Record Sales (thousands)

SPSS OutPut 7.10
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You may remember that in section 7.7.5 we asked SPSS to save various diagnostic sta-
tistics. You should find that the data editor now contains columns for these variables. It 
is perfectly acceptable to check these values in the data editor, but you can also get SPSS 
to list the values in your viewer window too. To list variables you need to use the Case 
Summaries command, which can be found by selecting 

. Figure 7.18 shows the dialog box for this function. Simply select the 
variables that you want to list and transfer them to the box labelled Variables by clicking 
on . By default, SPSS will limit the output to the first 100 cases, but if you want to list 
all of your cases then simply deselect this option. It is also very important to select the 
Show case numbers option because otherwise you might not be able to identify a problem 
case. 

One useful strategy is to use the casewise diagnostics to identify cases that you want to 
investigate further. So, to save space, I created a coding variable (1 = include, 0 = exclude) 
so that I could specify the 12 cases listed in SPSS Output 7.11 in one group, and all other 
cases in the other. By using this coding variable and specifying it as a grouping variable in the 
Summarize Cases dialog box, I could look at those 12 cases together and discard all others.

SPSS Output 7.11 shows the influence statistics for the 12 cases that I selected. None of 
them have a Cook’s distance greater than 1 (even case 169 is well below this criterion) and 
so none of the cases is having an undue influence on the model. The average leverage can 
be calculated as 0.02 (k + 1/n = 4/200) and so we are looking for values either twice as large 
as this (0.04) or three times as large (0.06) depending on which statistician you trust most 
(see section 7.6.1.2)! All cases are within the boundary of three times the average and only 
case 1 is close to two times the average. Finally, from our guidelines for the Mahalanobis 
distance we saw that with a sample of 100 and three predictors, values greater than 15 
were problematic. We have three predictors and a larger sample size, so this value will be a 
conservative cut-off, yet none of our cases comes close to exceeding this criterion. The evi-
dence suggests that there are no influential cases within our data (although all cases would 
need to be examined to confirm this fact).

We can look also at the DFBeta statistics to see whether any case would have a large 
influence on the regression parameters. An absolute value greater than 1 is a problem and 

Figure 7.18
The summarize 
cases dialog box
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in all cases the values lie within ±1, which shows that these cases have no undue influence 
over the regression parameters. There is also a column for the covariance ratio. We saw in 
section 7.6.1.2 that we need to use the following criteria:

CVRM
i > 1 + [3(k + 1)/n] = 1 + [3(3 + 1)/200] = 1.06.

CVRM
i < 1 − [3(k + 1)/n] = 1 − [3(3 + 1)/200] = 0.94. 

Therefore, we are looking for any cases that deviate substantially from these boundaries. 
Most of our 12 potential outliers have CVR values within or just outside these boundaries. 
The only case that causes concern is case 169 (again!) whose CVR is some way below the 
bottom limit. However, given the Cook’s distance for this case, there is probably little 
cause for alarm.

You would have requested other diagnostic statistics and from what you know from 
the earlier discussion of them you would be well advised to glance over them in case of 
any unusual cases in the data. However, from this minimal set of diagnostics we appear 
to have a fairly reliable model that has not been unduly influenced by any subset of 
cases.

Case Summaries

1 -.31554 -.24235 .15774 .35329 .48929 .97127
2 .01259 -.12637 .00942 -.01868 -.21110 .92018

10 -.01256 -.15612 .16772 .00672 .26896 .94392
47 .06645 .19602 .04829 -.17857 -.31469 .91458
52 .35291 -.02881 -.13667 -.26965 .36742 .95995
55 .17427 -.32649 -.02307 -.12435 -.40736 .92486
61 .00082 -.01539 .02793 .02054 .15562 .93654
68 -.00281 .21146 -.14766 -.01760 -.30216 .92370

100 .06113 .14523 -.29984 .06766 .35732 .95888
164 .17983 .28988 -.40088 -.11706 -.54029 .92037
169 -.16819 -.25765 .25739 .16968 .46132 .85325
200 .16633 -.04639 .14213 -.25907 -.31985 .95435

12 12 12 12 12 12

1
2
3
4
5
6
7
8
9
10
11
12

NTotal

Case
Number

Standardized
DFBETA
Intercept

Standardized
DFBETA

ADVERTS

Standardized
DFBETA
AIRPLAY

Standardized
DFBETA

ATTRACT
Standardized

DFFIT COVRATIO

Case Summaries

1 .05870 8.39591 .04219
2 .01089 .59830 .00301

10 .01776 2.07154 .01041
47 .02412 2.12475 .01068
52 .03316 4.81841 .02421
55 .04042 4.19960 .02110
61 .00595 .06880 .00035
68 .02229 2.13106 .01071

100 .03136 4.53310 .02278
164 .07077 6.83538 .03435
169 .05087 3.14841 .01582
200 .02513 3.49043 .01754

12 12 12

1
2
3
4
5
6
7
8
9
10
11
12

NTotal

Case
Number

Cook's
Distance

Mahalanobis
Distance

Centered
Leverage

Value

SPSS OutPut 7.11
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7.8.7.  Checking assumptions 2

As a final stage in the analysis, you should check the assumptions of the model. We have 
already looked for collinearity within the data and used Durbin–Watson to check whether 
the residuals in the model are independent. In section 7.7.4 we asked for a plot of *ZRESID 
against *ZPRED and for a histogram and normal probability plot of the residuals. The 
graph of *ZRESID and *ZPRED should look like a random array of dots evenly dispersed 
around zero. If this graph funnels out, then the chances are that there is heteroscedasti city 
in the data. If there is any sort of curve in this graph then the chances are that the data 
have broken the assumption of linearity. Figure 7.19 shows several examples of the plot 
of standardized residuals against standardized predicted values. Panel (a) shows the graph 
for the data in our record sales example. Note how the points are randomly and evenly 
dispersed throughout the plot. This pattern is indicative of a situation in which the assump-
tions of linearity and homoscedasticity have been met. Panel (b) shows a similar plot for 
a data set that violates the assumption of homoscedasticity. Note that the points form the 
shape of a funnel so they become more spread out across the graph. This funnel shape is 
typical of heteroscedasticity and indicates increasing variance across the residuals. Panel (c) 
shows a plot of some data in which there is a non-linear relationship between the outcome 
and the predictor. This pattern is shown up by the residuals. A line illustrating the curvilin-
ear relationship has been drawn over the top of the graph to illustrate the trend in the data. 
Finally, panel (d) represents a situation in which the data not only represent a non-linear 
relationship, but also show heteroscedasticity. Note first the curved trend in the data, and 
then also note that at one end of the plot the points are very close together whereas at the 
other end they are widely dispersed. When these assumptions have been violated you will 
not see these exact patterns, but hopefully these plots will help you to understand the types 
of anomalies you should look out for.

             CRAMMING SAM’S TIPS    

 You need to look for cases that might be influencing the regression model:

 Look at standardized residuals and check that no more than 5% of cases have absolute values above 2, and that no more 
than about 1% have absolute values above 2.5. Any case with the value above about 3, could be an outlier.

 Look in the data editor for the values of Cook’s distance: any value above 1 indicates a case that might be influencing the 
model.

 Calculate the average leverage (the number of predictors plus 1, divided by the sample size) and then look for values greater 
than twice or three times this average value.

 For Mahalanobis distance, a crude check is to look for values above 25 in large samples (500) and values above 15 in 
smaller samples (100). However, Barnett and Lewis (1978) should be consulted for more detailed analysis.

 Look for absolute values of DFBeta greater than 1.

 Calculate the upper and lower limit of acceptable values for the covariance ratio, CVR. The upper limit is 1 plus three times 
the average leverage, whereas the lower limit is 1 minus three times the average leverage. Cases that have a CVR that fall 
outside of these limits may be problematic.
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Figure 7.19 Plots of *ZRESID against *ZP   RED

To test the normality of residuals, we must look at the histogram and normal probabil-
ity plot selected in Figure 7.15. Figure 7.20 shows the histogram and normal probability 
plot of the data for the current example (left-hand side). The histogram should look like 
a normal distribution (a bell-shaped curve). SPSS draws a curve on the histogram to show 
the shape of the distribution. For the record company data, the distribution is roughly 
normal (although there is a slight deficiency of residuals exactly on zero). Compare this 
histogram to the extremely non-normal histogram next to it and it should be clear that 
the non-normal distribution is extremely skewed (unsymmetrical). So, you should look 
for a curve that has the same shape as the one for the record sales data: any deviation 
from this curve is a sign of non-normality and the greater the deviation, the more non-
normally distributed the residuals. The normal probability plot also shows up devia-
tions from normality (see Chapter 5). The straight line in this plot represents a normal 
distribution, and the points represent the observed residuals. Therefore, in a perfectly 
normally distributed data set, all points will lie on the line. This is pretty much what we 
see for the record sales data. However, next to the normal probability plot of the record 
sales data is an example of an extreme deviation from normality. In this plot, the dots 
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Figure 7.20 Histograms and normal P–P plots of normally distributed residuals (left-hand side) and non-normally distrib-
uted residuals (right-hand side)

are very distant from the line, which indicates a large deviation from normality. For both 
plots, the non-normal data are extreme cases and you should be aware that the deviations 
from normality are likely to be subtler. Of course, you can use what you learnt in Chapter 
5 to do a K–S test on the standardized residuals to see whether they deviate significantly 
from normality.

A final set of plots specified in Figure 7.15 was the partial plots. These plots are scat-
terplots of the residuals of the outcome variable and each of the predictors when both 
variables are regressed separately on the remaining predictors. I mentioned earlier that 
obvious outliers on a partial plot represent cases that might have undue influence on a 
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For advertising budget the partial 
plot shows the strong positive 
relationship to record sales. 
The gradient of the line is b for 
advertising in the model (this 
line does not appear by default).
There are no obvious outliers on 
this plot, and the cloud of dots 
is evenly spaced out around the 
line, indicating homoscedasticity.

For airplay the partial plot 
shows a strong positive 
relationship to record sales. 
The gradient and pattern 
of the data are similar to 
advertising (which would be 
expected given the similarity 
of the standardized betas of 
these predictors). There are 
no obvious outliers on this 
plot, and the cloud of dots is 
evenly spaced around the line, 
indicating homoscedasticity.

For attractiveness the partial plot 
shows a positive relationship to 
record sales. The relationship 
looks less linear than the other 
predictors do and the dots 
seem to funnel out, indicating 
greater variance at high levels 
of attractiveness. There are no 
obvious outliers on this 
plot, but the funnel-shaped 
cloud of dots might indicate a 
violation of the assumption of 
homoscedasticity. We would 
be well advised to collect some 
more data for unattractive bands 
to verify the current model.

predictor’s regression coefficient and that non-linear relationships and heteroscedasticity 
can be detected using these plots as well:
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We could summarize by saying that the model appears, in most senses, to be both accu-
rate for the sample and generalizable to the population. The only slight glitch is some con-
cern over whether attractiveness ratings had violated the assumption of homoscedasticity. 
Therefore, we could conclude that in our sample advertising budget and airplay are fairly 
equally important in predicting record sales. Attractiveness of the band is a significant 
predictor of record sales but is less important than the other two predictors (and probably 
needs verification because of possible heteroscedasticity). The assumptions seem to have 
been met and so we can probably assume that this model would generalize to any record 
being released.

7.9. What if I violate an assumption? 2

It’s worth remembering that you can have a perfectly good model for your data (no out-
liers, influential cases, etc.) and you can use that model to draw conclusions about your 
sample, even if your assumptions are violated. However, it’s much more interesting to 
generalize your regression model and this is where assumptions become important. If they 
have been violated then you cannot generalize your findings beyond your sample. The 
options for correcting for violated assumptions are a bit limited. If residuals show problems 
with heteroscedasticity or non-normality you could try transforming the raw data – but 
this won’t necessarily affect the residuals! If you have a violation of the linearity assump-
tion then you could see whether you can do logistic regression instead (described in the 
next chapter). Finally, there are a series of robust regression techniques (see section 5.7.4), 
which are described extremely well by Rand Wilcox in Chapter 10 of his book. SPSS can’t 
do these methods directly (well, technically it can do robust parameter estimates but it’s 
not easy), but you can attempt a robust regression using some of Wilcox’s files for the soft-
ware R (Wilcox, 2005) using SPSS’s R plugin.

             CRAMMING SAM’S TIPS    

 You need to check some of the assumptions of regression to make sure your model generalizes beyond your 
sample: 

 Look at the graph of* ZRESID plotted against* ZPRED. If it looks like a random array of dots then this is good. If the dots 
seem to get more or less spread out over the graph (look like a funnel) then this is probably a violation of the assumption 
of homogeneity of variance. If the dots have a pattern to them (i.e. a curved shape) then this is probably a violation of the 
assumption of linearity. If the dots seem to have a pattern and are more spread out at some points on the plot than others 
then this probably reflects violations of both homogeneity of variance and linearity. Any of these scenarios puts the validity 
of your model into question. Repeat the above for all partial plots too.

 Look at histograms and P–P plots. If the histograms look like normal distributions (and the P–P plot looks like a diagonal 
line), then all is well. If the histogram looks non-normal and the P–P plot looks like a wiggly snake curving around a diago-
nal line then things are less good! Be warned, though: distributions can look very non-normal in small samples even when 
they are!
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7.10. How to report multiple regression 2

If you follow the American Psychological Association guidelines for reporting multiple regres-
sion then the implication seems to be that tabulated results are the way forward. The APA 
also seem in favour of reporting, as a bare minimum, the standardized betas, their significance 
value and some general statistics about the model (such as the R2). If you do decide to do a 
table then the beta values and their standard errors are also very useful. Personally I’d like to 
see the constant as well because then readers of your work can construct the full regression 
model if they need to. Also, if you’ve done a hierarchical regression you should report these 
values at each stage of the hierarchy. So, basically, you want to reproduce the table labelled 
Coefficients from the SPSS output and omit some of the non-essential information. For the 
example in this chapter we might produce a table like that in Table 7.2.

See if you can look back through the SPSS output in this chapter and work out from 
where the values came. Things to note are: (1) I’ve rounded off to 2 decimal places through-
out; (2) for the standardized betas there is no zero before the decimal point (because these 
values cannot exceed 1) but for all other values less than 1 the zero is present; (3) the 
significance of the variable is denoted by an asterisk with a footnote to indicate the sig-
nificance level being used (if there’s more than one level of significance being used you 
can denote this with multiple asterisks, such as *p < .05, **p < .01, and ***p < .001); and  
(4) the R2 for the initial model and the change in R2 (denoted as ∆R2) for each subsequent 
step of the model are reported below the table. 

tAble 7.2 How to report multiple regression

B SE B β

Step 1

Constant 134.14  7.54

Advertising Budget   0.10  0.01 .58*

Step 2

Constant −26.61 17.35

Advertising Budget    0.09  0.01 .51*

Plays on BBC Radio 1    3.37  0.28 .51*

Attractiveness   11.09  2.44 .19*

Note: R2 = .34 for Step 1, ∆R2 = .33 for Step 2 (p < .001). * p < .001.

‘R you going to show us how to do robust regression?,’ mumbles 
Oliver as he dribbles down his shirt ‘I want to do one.’ I’ve prepared 
a flash movie on the companion website that shows you how to use 
the R plugin to do robust regression. You have no excuses now for 
not using it.

OLIVER TWISTED

Please, Sir, can I 
have some more … 
robust regression?
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7.11. Categorical predictors and multiple 
regression 3

Often in regression analysis you’ll collect data about groups of people (e.g. ethnic group, 
gender, socio-economic status, diagnostic category). You might want to include these 
groups as predictors in the regression model; however, we saw from our assumptions that 
variables need to be continuous or categorical with only two categories. We saw in section 
6.5.5 that a point–biserial correlation is Pearson’s r between two variables when one is 
continuous and the other has two categories coded as 0 and 1. We’ve also learnt that simple 
regression is based on Pearson’s r, so it shouldn’t take a great deal of imagination to see 
that, like the point–biserial correlation, we could construct a regression model with a pre-
dictor that has two categories (e.g. gender). Likewise, it shouldn’t be too inconceivable that 
we could then extend this model to incorporate several predictors that had two categories. 
All that is important is that we code the two categories with the values of 0 and 1. Why is 
it important that there are only two categories and that they’re coded 0 and 1? Actually, 
I don’t want to get into this here because this chapter is already too long, the publishers 
are going to break my legs if it gets any longer, and I explain it anyway later in the book 
(sections 9.7 and 10.2.3) so, for the time being, just trust me!

7.11.1.  Dummy coding 3

The obvious problem with wanting to use categorical variables as predictors is that often 
you’ll have more than two categories. For example, if you’d measured religiosity you 
might have categories of Muslim, Jewish, Hindu, Catholic, Buddhist, Protestant, Jedi (for 
those of you not in the UK, we had a census here a few years back in which a significant 
portion of people put down Jedi as their religion). Clearly these groups cannot be distin-
guished using a single variable coded with zeros and ones. In these cases we have to use 

In the previous chapter we encountered a study by 
Chamorro-Premuzic et al. in which they measured stu-
dents’ personality characteristics and asked them to rate 
how much they wanted these same characteristics in their 
lecturers (see Labcoat Leni’s Real Research 6.1 for a full 
description). In that chapter we correlated these scores; 
however, we could go a step further and see whether stu-
dents’ personality characteristics predict the characteris-
tics that they would like to see in their lecturers. 

The data from this study are in the 
file Chamorro-Premuzic.sav. Labcoat 
Leni wants you to carry out five multiple 
regression analyses: the outcome vari-
able in each of the five analyses is the 
ratings of how much students want to 

see Neuroticism, Extroversion, Openness to experience, 
Agreeableness and Conscientiousness. For each of 
these outcomes, force Age and Gender into the analysis 
in the first step of the hierarchy, then in the second block 
force in the five student personality traits (Neuroticism, 
Extroversion, Openness to experience, Agreeableness 
and Conscientiousness). For each analysis create a table 
of the results.

Answers are in the additional material on the compan-
ion website (or look at Table 4 in the original article).

LABCOAT LENI’S
REAL RESEARCH 7.1

Why do you like your 
lecturers? 1
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what’s called dummy variables. Dummy coding is a way of representing groups of people 
using only zeros and ones. To do it, we have to create several variables; in fact, the number 
of variables we need is one less than the number of groups we’re recoding. There are eight 
basic steps:

Count the number of groups you want to recode and subtract 1.1 

Create as many new variables as the value you calculated in step 1. These are your 2 
dummy variables.

Choose one of your groups as a baseline (i.e. a group against which all other groups 3 
should be compared). This should usually be a control group, or, if you don’t have 
a specific hypothesis, it should be the group that represents the majority of people 
(because it might be interesting to compare other groups against the majority).

Having chosen a baseline group, assign that group values of 0 for all of your dummy 4 
variables.

For your first dummy variable, assign the value 1 to the first group that you want to 5 
compare against the baseline group. Assign all other groups 0 for this variable.

For the second dummy variable assign the value 1 to the second group that you want 6 
to compare against the baseline group. Assign all other groups 0 for this variable.

Repeat this until you run out of dummy variables.7 

Place all of your dummy variables into the regression analysis!8 

Let’s try this out using an example. In Chapter 4 we came across an example in which a 
biologist was worried about the potential health effects of music festivals. She collected 
some data at the Download Festival, which is a music festival specializing in heavy metal. 
The biologist was worried that the findings that she had were a function of the fact that 
she had tested only one type of person: metal fans. Perhaps it’s not the festival that makes 
people smelly, maybe it’s only metal fans at festivals who get smellier (as a metal fan, 
I would at this point sacrifice the biologist to Satan for being so prejudiced). Anyway, 
to answer this question she went to another festival that had a more eclectic clientele. So, 
she went to the Glastonbury Music Festival which attracts all sorts of people because it has 
all styles of music there. Again, she measured the hygiene of concert-goers over the three 
days of the festival using a technique that results in a score ranging between 0 (you smell 
like you’ve bathed in sewage) and 5 (you smell of freshly baked bread). Now, in Chapters 4  
and 5, we just looked at the distribution of scores for the three days of the festival, but 
now the biologist wanted to look at whether the type of music you like (your cultural 
group) predicts whether hygiene decreases over the festival. The data are in the file called 
GlastonburyFestivalRegression.sav. This file contains the hygiene scores for each of three 
days of the festival, but it also contains a variable called change which is the change in 
hygiene over the three days of the festival (so it’s the change from day 1 to day 3).13 Finally, 
the biologist categorized people according to their musical affiliation: if they mainly liked 
alternative music she called them ‘indie kid’, if they mainly liked heavy metal she called 
them a ‘metaller’ and if they mainly liked sort of hippy/folky/ambient type of stuff then she 
labelled them a ‘crusty’. Anyone not falling into these categories was labelled ‘no musical 
affiliation’. In the data file she coded these groups 1, 2, 3 and 4 respectively.

The first thing we should do is calculate the number of dummy variables. We have four 
groups, so there will be three dummy variables (one less than the number of groups). Next 
we need to choose a baseline group. We’re interested in comparing those that have differ-
ent musical affiliations against those that don’t, so our baseline category will be ‘no musical 

13 Not everyone could be measured on day 3, so there is a change score only for a subset of the original sample.
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affiliation’. We give this group a code of 0 for all of our dummy variables. For our first 
dummy variable, we could look at the ‘crusty’ group, and to do this we give anyone that 
was a crusty a code of 1, and everyone else a code of 0. For our second dummy variable, 
we could look at the ‘metaller’ group, and to do this we give anyone that was a metaller 
a code of 1, and everyone else a code of 0. We have one dummy variable left and this will 
have to look at our final category: ‘indie kid’. To do this we give anyone that was an indie 
kid a code of 1, and everyone else a code of 0. The resulting coding scheme is shown in 
Table 7.3. The thing to note is that each group has a code of 1 on only one of the dummy 
variables (except the base category that is always coded as 0).

As I said, we’ll look at why dummy coding works in sections 9.7 and 10.2.3, but for 
the time being let’s look at how to recode our grouping variable into these dummy vari-
ables using SPSS. To recode variables you need to use the Recode function. Select 

 to access the dialog box in Figure 7.21. 
The recode dialog box lists all of the variables in the data editor, and you need to select 

the one you want to recode (in this case music) and transfer it to the box labelled Numeric 
Variable → Output Variable by clicking on . You then need to name the new variable (the 
output variable as SPSS calls it), so go to the part that says Output Variable and in the box 
below where it says Name write a name for your first dummy variable (you might call it 
Crusty). You can also give this variable a more descriptive name by typing something in the 
box labelled Label (for this first dummy variable I’ve called it No Affiliation vs. Crusty). 
When you’ve done this click on  to transfer this new variable to the box labelled 
Numeric Variable → Output Variable (this box should now say music → Crusty).

tAble 7.3 Dummy coding for the Glastonbury Festival data

Dummy Variable 1 Dummy Variable 2 Dummy Variable 3

No Affiliation 0 0 0

Indie Kid 0 0 1

Metaller 0 1 0

Crusty 1 0 0

Figure 7.21
The recode 
dialog box
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Having defined the first dummy variable, we need to tell SPSS how to recode the values 
of the variable music into the values that we want for the new variable, music1. To do this 
click on  to access the dialog box in Figure 7.22. This dialog box is used to 
change values of the original variable into different values for the new variable. For our 
first dummy variable, we want anyone who was a crusty to get a code of 1 and everyone 
else to get a code of 0. Now, crusty was coded with the value 3 in the original variable, so 
you need to type the value 3 in the section labelled Old Value in the box labelled Value. The 
new value we want is 1, so we need to type the value 1 in the section labelled New Value 
in the box labelled Value. When you’ve done this, click on  to add this change to the 
list of changes (the list is displayed in the box labelled Old → New, which should now say 
3 → 1 as in the diagram). The next thing we need to do is to change the remaining groups 
to have a value of 0 for the first dummy variable. To do this just select  and 
type the value 0 in the section labelled New Value in the box labelled Value.14 When you’ve 
done this, click on  to add this change to the list of changes (this list will now also say 
ELSE → 0). When you’ve done this click on  to return to the main dialog box, and 
then click on  to create the first dummy variable. This variable will appear as a new 
column in the data editor, and you should notice that it will have a value of 1 for anyone 
originally classified as a crusty and a value of 0 for everyone else.

SELF-TEST  Try creating the remaining two dummy 
variables (call them Metaller and Indie_Kid) using the 
same principles.

 

7.11.2.  SPSS output for dummy variables 3

Let’s assume you’ve created the three dummy coding variables (if you’re stuck there is a data 
file called GlastonburyDummy.sav (the ‘Dummy’ refers to the fact it has dummy variables in 
it – I’m not implying that if you need to use this file you’re a dummy!)). With dummy variables, 
you have to enter all related dummy variables in the same block (so use the Enter method). 

14 Using this  option is fine when you don’t have missing values in the data, but just note that when 
you do (as is the case here) cases with both system-defined and user-defined missing values will be included in the 
recode. One way around this is to recode only cases for which there is a value (see Oliver Twisted Box). The alter-
native is specifically to recode missing values using the  option. It is also a good idea to use the frequencies 
or crosstabs commands after a recode and check that you have caught all of these missing values.

‘Our data set has missing values,’ worries Oliver. ‘What do we do if we 
only want to recode cases for which we have data?’ Well, we can set 
some other options at this point, that’s what we can do. This is getting 
a little bit more involved so if you want to know more, the additional 
material for this chapter on the companion website will tell you. Stop 
worrying Oliver, everything will be OK. 

OLIVER TWISTED

Please, Sir, can I 
have some more … 
recode?
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Figure 7.22
Dialog boxes 
for the Recode 
function (see 
also SPSS  
Tip 7.1)

          SPSS T IP  7 .1     Using syntax to recode 3

If you’re doing a lot of recoding it soon becomes pretty tedious using the dialog boxes all of the time. I’ve written 
the syntax file, RecodeGlastonburyData.sps, to create all of the dummy variables we’ve discussed. Load this 
file and run the syntax, or open a syntax window (see Section 3.7) and type the following:

DO IF  (1-MISSING(change)).

RECODE music (3=1)(ELSE = 0) INTO Crusty.

RECODE music (2=1)(ELSE = 0) INTO Metaller.

RECODE music (1=1)(ELSE = 0) INTO Indie_Kid.

END IF.

VARIABLE LABELS  Crusty ‘No Affiliation vs. Crusty’.

VARIABLE LABELS  Metaller ‘No Affiliation vs. Metaller’.

VARIABLE LABELS  Indie_Kid ‘No Affiliation vs. Indie Kid’.

VARIABLE LEVEL Crusty Metaller Indie_Kid (Nominal).

FORMATS Crusty Metaller Indie_Kid (F1.0).

EXECUTE.

Each RECODE command is doing the equivalent of what you’d do using the compute dialog box in Figure 
7.22. So, the three lines beginning RECODE ask SPSS to create three new variables (Crusty, Metaller and Indie_
Kid), which are based on the original variable music. For the first variable, if music is 3 then it becomes 1, and 
every other value becomes 0. For the second, if music is 2 then it becomes 1, and every other value becomes 

(Continued)
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So, in this case we have to enter our dummy variables in the same block; however, if we’d had 
another variable (e.g. socio-economic status) that had been transformed into dummy variables, 
we could enter these dummy variables in a different block (so, it’s only dummy variables that 
have recoded the same variable that need to be entered in the same block).

SELF-TEST  Use what you’ve learnt in this chapter to 
run a multiple regression using the change scores as 
the outcome, and the three dummy variables (entered in 
the same block) as predictors.

Let’s have a look at the output.

Model Summaryb

.276a .076 .053 .68818 .076 3.270 3 119 .024 1.893
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

R Square
Change F Change df1 df2

Sig. F
Change

Change Statistics

Durbin-
Watson

a. Predictors: (Constant), No Affiliation vs. Indie Kid, No Affiliation vs. Crusty, No Affiliation vs. Metaller

b. Dependent Variable: Change in Hygiene Over The Festival

Model
1 .024a

ANOVAb

4.646 3 1.549 3.270

56.358 119 .474

61.004 122

Regression

Residual

Total

Sum of
Squares df Mean Square F Sig.

a. Predictors: (Constant), No Affiliation vs. Indie Kid, No Affiliation vs. Crusty, No
    Affiliation vs. Metaller

b. Dependent Variable: Change in Hygiene Over The Festival

0, and so on for the third dummy variable. Note that all of these RECODE commands are within an IF statement 
(beginning DO IF and ending with END IF). This tells SPSS to carry out the RECODE commands only if a certain 
condition is met. The condition we have set is (1- MISSING(change)). MISSING is a built-in command that returns 
‘true’ (i.e. the value 1) for a case that has a system- or user-defined missing value for the specified variable; it 
returns ‘false’ (i.e. the value 0) if a case has a value. Hence, MISSING(change) returns a value of 1 for cases that 
have a missing value for the variable ‘change’ and 0 for cases that do have values. We want to recode the cases 
that do have a value for the variable change, therefore I have specified ‘1- MISSING(change)’. This command 
reverses MISSING(change) so that it returns 1 (true) for cases that have a value for the variable change and 0 
(false) for system- or user-defined missing values. To sum up, the DO IF (1- MISSING(change)) tells SPSS ‘Do the 
following RECODE commands if the case has a value for the variable change.’

The lines beginning VARIABLE LABELS just tells SPSS to assign the text in the quotations as labels for the 
variables Crusty, Metaller and Indie_Kid respectively. The line beginning VARIABLE LEVEL then sets these three 
variables to be ‘nominal’, and the line beginning FORMATS changes the three variables to have a width of 1 and 
0 decimal places (hence the 1.0) – in other words, it changes the format to be a binary number.

The final line has the command EXECUTE without which none of the commands beforehand will be executed! 
Note also that every line ends with a full stop.

(Continued)

SPSS OutPut 7.12
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SPSS Output 7.12 shows the model statistics. This shows that by entering the three 
dummy variables we can explain 7.6% of the variance in the change in hygiene scores 
(the R2-value × 100). In other words, 7.6% of the variance in the change in hygiene can 
be explained by the musical affiliation of the person. The ANOVA (which shows the same 
thing as the R2 change statistic because there is only one step in this regression) tells us that 
the model is significantly better at predicting the change in hygiene scores than having no 
model (or, put another way, the 7.6% of variance that can be explained is a significant 
amount). Most of this should be clear from what you’ve read in this chapter already; what’s 
more interesting is how we interpret the individual dummy variables.

Coefficientsa

-.554 .090 -6.134 .000
-.412 .167 -.232 -2.464 .015
.028 .160 .017 .177 .860

-.410 .205 -.185 -2.001 .048

(Constant)
No Affiliation vs. Crusty
No Affiliation vs. Metaller
No Affiliation vs. Indie Kid

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

a. Dependent Variable: Change in Hygiene Over The Festival

SPSS Output 7.13 shows a basic Coefficients table for the dummy variables (I’ve excluded 
the confidence intervals and collinearity diagnostics). The first thing to notice is that each 
dummy variable appears in the table with a useful label (such as No Affiliation vs. Crusty). 
This has happened because when we recoded our variables we gave each variable a label; 
if we hadn’t done this then the table would contain the rather less helpful variable names 
(crusty, metaller and Indie_Kid). The labels that I suggested giving to each variable give us a 
hint about what each dummy variable represents. The first dummy variable (No Affiliation 
vs. Crusty) shows the difference between the change in hygiene scores for the no affilia-
tion group and the crusty group. Remember that the beta value tells us the change in the 
outcome due to a unit change in the predictor. In this case, a unit change in the predictor 
is the change from 0 to 1. As such it shows the shift in the change in hygiene scores that 
results from the dummy variable changing from 0 to 1 (Crusty). By including all three 
dummy variables at the same time, our baseline category is always zero, so this actually 
represents the difference in the change in hygiene scores if a person has no musical affili-
ation, compared to someone who is a crusty. This difference is the difference between the 
two group means.

To illustrate this fact, I’ve produced a table (SPSS Output 7.14) of the group means 
for each of the four groups and also the difference between the means for each group 
and the no affiliation group. These means represent the average change in hygiene scores 
for the three groups (i.e. the mean of each group on our outcome variable). If we calcu-
late the difference in these means for the No Affiliation group and the crusty group we 
get, Crusty − no affiliation = (−0.966) − (−0.554) = −0.412. In other words, the change in 
hygiene scores is greater for the crusty group than it is for the no affiliation group (crusties’ 
hygiene decreases more over the festival than those with no musical affiliation). This value 
is the same as the unstandardized beta value in SPSS Output 7.13! So, the beta values tell 
us the relative difference between each group and the group that we chose as a baseline 
category. This beta value is converted to a t-statistic and the significance of this t reported. 
This t-statistic is testing, as we’ve seen before, whether the beta value is 0 and when we 
have two categories coded with 0 and 1, that means it’s testing whether the difference 
between group means is 0. If it is significant then it means that the group coded with 1 is 
significantly different from the baseline category – so, it’s testing the difference between 

SPSS OutPut 7.13
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two means, which is the context in which students are most familiar with the t-statistic (see 
Chapter 9). For our first dummy variable, the t-test is significant, and the beta value has 
a negative value so we could say that the change in hygiene scores goes down as a person 
changes from having no affiliation to being a crusty. Bear in mind that a decrease in hygiene 
scores represents more change (you’re becoming smellier) so what this actually means is 
that hygiene decreased significantly more in crusties compared to those with no musical 
affiliation!

Moving on to our next dummy variable, this compares metallers to those that have no 
musical affiliation. The beta value again represents the shift in the change in hygiene scores 
if a person has no musical affiliation, compared to someone who is a metaller. If we calcu-
late the difference in the group means for the no affiliation group and the metaller group 
we get, metaller − no affiliation = (−0.526) − (−0.554) = 0.028. This value is again the same 
as the unstandardized beta value in SPSS Output 7.13! For this second dummy variable, the 
t-test is not significant, so we could say that the change in hygiene scores is the same if a 
person changes from having no affiliation to being a metaller. In other words, the change 
in hygiene scores is not predicted by whether someone is a metaller compared to if they 
have no musical affiliation. 

For the final dummy variable, we’re comparing indie kids to those that have no musi-
cal affiliation. The beta value again represents the shift in the change in hygiene scores 
if a person has no musical affiliation, compared to someone who is an indie kid. If we 
calculate the difference in the group means for the no affiliation group and the indie 
kid group we get, indie kid − no affiliation = (−0.964) – (−0.554) = −0.410. It should 
be no surprise to you by now that this is the unstandardized beta value in SPSS Output 
7.13! The t-test is significant, and the beta value has a negative value so, as with the first 
dummy variable, we could say that the change in hygiene scores goes down as a person 
changes from having no affiliation to being an indie kid. Bear in mind that a decrease in 
hygiene scores represents more change (you’re becoming smellier) so what this actually 
means is that hygiene decreased significantly more in indie kids compared to those with 
no musical affiliation! 

So, overall this analysis has shown that compared to having no musical affiliation, crust-
ies and indie kids get significantly smellier across the three days of the festival, but met-
allers don’t. This section has introduced some really complex ideas that I expand upon 
in Chapters 9 and 10. It might all be a bit much to take in, and so if you’re confused or 
want to know more about why dummy coding works in this way I suggest reading sections 
9.7 and 10.2.3 and then coming back here. Alternatively, read Hardy’s (1993) excellent 
monograph!

SPSS OutPut 7.14

everybody
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What have I discovered about statistics? 1

This chapter is possibly the longest book chapter ever written, and if you feel like you 
aged several years while reading it then, well, you probably have (look around, there are 
cobwebs in the room, you have a long beard, and when you go outside you’ll discover 
a second ice age has been and gone leaving only you and a few woolly mammoths to 
populate the planet). However, on the plus side, you now know more or less everything 
you ever need to know about statistics. Really, it’s true; you’ll discover in the coming 
chapters that everything else we discuss is basically a variation on the theme of regres-
sion. So, although you may be near death having spent your life reading this chapter 
(and I’m certainly near death having written it) you are a stats genius – it’s official!

We started the chapter by discovering that at 8 years old I could have really done with 
regression analysis to tell me which variables are important in predicting talent competi-
tion success. Unfortunately I didn’t have regression, but fortunately I had my dad instead 
(and he’s better than regression). We then looked at how we could use statistical models 
to make similar predictions by looking at the case of when you have one predictor and 
one outcome. This allowed us to look at some basic principles such as the equation of 
a straight line, the method of least squares, and how to assess how well our model fits 
the data using some important quantities that you’ll come across in future chapters: the 
model sum of squares, SSM, the residual sum of squares, SSR, and the total sum of squares, 
SST. We used these values to calculate several important statistics such as R2 and the 
F-ratio. We also learnt how to do a regression on SPSS, and how we can plug the resulting 
beta values into the equation of a straight line to make predictions about our outcome.

Next, we saw that the question of a straight line can be extended to include several 
predictors and looked at different methods of placing these predictors in the model 
(hierarchical, forced entry, stepwise). Next, we looked at factors that can affect the accu-
racy of a model (outliers and influential cases) and ways to identify these factors. We 
then moved on to look at the assumptions necessary to generalize our model beyond the 
sample of data we’ve collected before discovering how to do the analysis on SPSS, and 
how to interpret the output, create our multiple regression model and test its reliability 
and generalizability. I finished the chapter by looking at how we can use categorical pre-
dictors in regression (and in passing we discovered the recode function). In general, mul-
tiple regression is a long process and should be done with care and attention to detail. 
There are a lot of important things to consider and you should approach the analysis in 
a systematic fashion. I hope this chapter helps you to do that! 

So, I was starting to get a taste for the rock-idol lifestyle: I had friends, a fortune 
(well, two gold-plated winner’s medals), fast cars (a bike) and dodgy-looking 8 year olds 
were giving me suitcases full of lemon sherbet to lick off mirrors. However, my parents 
and teachers were about to impress reality upon my young mind … 

Key terms that I’ve discovered

Adjusted predicted value
Adjusted R2 

Autocorrelation
bi
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βi

Cook’s distance
Covariance ratio (CVR)
Cross-validation
Deleted residual
DFBeta
DFFit
Dummy variables
Durbin–Watson test
F-ratio
Generalization
Goodness of fit
Hat values
Heteroscedasticity
Hierarchical regression
Homoscedasticity
Independent errors
Leverage
Mahalanobis distances
Mean squares
Model sum of squares
Multicollinearity

Multiple R
Multiple regression
Outcome variable
Perfect collinearity
Predictor variable
Residual
Residual sum of squares
Shrinkage
Simple regression
Standardized DFBeta
Standardized DFFit
Standardized residuals
Stepwise regression
Studentized deleted residuals
Studentized residuals
Suppressor effects
t-statistic
Tolerance
Total sum of squares
Unstandardized residuals
Variance inflation factor (VIF)

Smart Alex’s tasks

Task 1M : A fashion student was interested in factors that predicted the salaries of catwalk 
models. She collected data from 231 models. For each model she asked them their salary 
per day on days when they were working (salary), their age (age), how many years they 
had worked as a model (years), and then got a panel of experts from modelling agencies 
to rate the attractiveness of each model as a percentage with 100% being perfectly attrac-
tive (beauty). The data are in the file Supermodel.sav. Unfortunately, this fashion student 
bought some substandard statistics text and so doesn’t know how to analyse her data. 
Can you help her out by conducting a multiple regression to see which variables predict a 
model’s salary? How valid is the regression model? 2

Task 2M : Using the Glastonbury data from this chapter (with the dummy coding 
in GlastonburyDummy.sav), which you should’ve already analysed, comment on 
whether you think the model is reliable and generalizable. 3

Task 3M : A study was carried out to explore the relationship between Aggression and sev-
eral potential predicting factors in 666 children that had an older sibling. Variables mea-
sured were Parenting_Style (high score = bad parenting practices), Computer_Games (high 
score = more time spent playing computer games), Television (high score = more time spent 
watching television), Diet (high score = the child has a good diet low in E-numbers), and 
Sibling_Aggression (high score = more aggression seen in their older sibling). Past research 
indicated that parenting style and sibling aggression were good predictors of the level of 
aggression in the younger child. All other variables were treated in an exploratory fashion. 
The data are in the file Child Aggression.sav. Analyse them with multiple regression. 2

Answers can be found on the companion website. 
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Further reading
Bowerman, B. L., & O’Connell, R. T. (1990). Linear statistical models: An applied approach (2nd ed.). 

Belmont, CA: Duxbury. (This text is only for the mathematically minded or postgraduate students 
but provides an extremely thorough exposition of regression analysis.)

Hardy, M. A. (1993). Regression with dummy variables. Sage university paper series on quantitative 
applications in the social sciences, 07–093. Newbury Park, CA: Sage.

Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 
might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007. 
Both are excellent introductions to the mathematics behind regression analysis.)

Miles, J. N. V., & Shevlin, M. (2001). Applying regression and correlation: a guide for students and 
researchers. London: Sage. (This is an extremely readable text that covers regression in loads of 
detail but with minimum pain – highly recommended.)

Stevens, J. (2002). Applied multivariate statistics for the social sciences (4th ed.). Hillsdale, NJ: 
Erlbaum. Chapter 3.

Online tutorial
The companion website contains the following Flash movie tutorials to accompany this chapter:

 Regression using SPSS  Robust Regression

Interesting real research
Chamorro-Premuzic, T., Furnham, A., Christopher, A. N., Garwood, J., & Martin, N. (2008). Birds 

of a feather: Students’ preferences for lecturers’ personalities as predicted by their own personal-
ity and learning approaches. Personality and Individual Differences, 44, 965–976.
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Figure 8.1
Practising for my 
career as a rock 
star by slaying 
the baying throng 
of Grove Primary 
School at the 
age of 10. (Note 
the girl with her 
hands covering 
her ears)

8.1. What will this chapter tell me? 1

We saw in the previous chapter that I had successfully conquered the holiday camps of 
Wales with my singing and guitar playing (and the Welsh know a thing or two about good 
singing). I had jumped on a snowboard called oblivion and thrown myself down the black 
run known as world domination. About 10 metres after starting this slippery descent I 
hit the lumpy patch of ice called ‘adults’. I was 9, life was fun, and yet every adult that I 
seemed to encounter was obsessed with my future. ‘What do you want to be when you 
grow up?’ they would ask. I was 9 and ‘grown-up’ was a lifetime away; all I knew was that 
I was going to marry Clair Sparks (more on her in the next chapter) and that I was a rock 
legend who didn’t need to worry about such adult matters as having a job. It was a difficult 
question, but adults require answers and I wasn’t going to let them know that I didn’t care 
about ‘grown-up’ matters. We saw in the previous chapter that we can use regression to 
predict future outcomes based on past data, when the outcome is a continuous variable, 

8 Logistic regression
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but this question had a categorical outcome (e.g. would I be a fireman, a doctor, a pimp?). 
Luckily, though, we can use an extension of regression called logistic regression to deal 
with these situations. What a result; bring on the rabid wolves of categorical data. To make 
a prediction about a categorical outcome then, as with regression, I needed to draw on 
past data: I hadn’t tried conducting brain surgery, neither had I experience of sentencing 
psychopaths to prison sentences for eating their husbands, nor had I taught anyone. I had, 
however, had a go at singing and playing guitar; ‘I’m going to be a rock star’ was my pre-
diction. A prediction can be accurate (which would mean that I am a rock star) or it can be 
inaccurate (which would mean that I’m writing a statistics textbook). This chapter looks at 
the theory and application of logistic regression, an extension of regression that allows us 
to predict categorical outcomes based on predictor variables. 

8.2. Background to logistic regression 1

In a nutshell, logistic regression is multiple regression but with an outcome variable that 
is a categorical variable and predictor variables that are continuous or categorical. In its 
simplest form, this means that we can predict which of two categories a person is likely to 
belong to given certain other information. A trivial example is to look at which variables 
predict whether a person is male or female. We might measure laziness, pig-headedness, 
alcohol consumption and number of burps that a person does in a day. Using logistic 
regression, we might find that all of these variables predict the gender of the person, but 
the technique will also allow us to predict whether a new person is likely to be male or 
female. So, if we picked a random person and discovered they scored highly on laziness, 
pig-headedness, alcohol consumption and the number of burps, then the regression model 
might tell us that, based on this information, this person is likely to be male. Admittedly, it 
is unlikely that a researcher would ever be interested in the relationship between flatulence 
and gender (it is probably too well established by experience to warrant research!), but 
logistic regression can have life-saving applications. In medical research logistic regres-
sion is used to generate models from which predictions can be made about the likelihood 
that a tumour is cancerous or benign (for example). A database of patients can be used to 
establish which variables are influential in predicting the malignancy of a tumour. These 
variables can then be measured for a new patient and their values placed in a logistic regres-
sion model, from which a probability of malignancy could be estimated. If the probability 
value of the tumour being malignant is suitably low then the doctor may decide not to carry 
out expensive and painful surgery that in all likelihood is unnecessary. We might not face 
such life-threatening decisions but logistic regression can nevertheless be a very useful tool. 
When we are trying to predict membership of only two categorical outcomes the analysis is 
known as binary logistic regression, but when we want to predict membership of more than 
two categories we use multinomial (or polychotomous) logistic regression. 

8.3. What are the principles behind logistic 
regression? 3

I don’t wish to dwell on the underlying principles of logistic regression because they aren’t 
necessary to understand the test (I am living proof of this fact). However, I do wish to 
draw a few parallels to normal regression so that you can get the gist of what’s going on 
using a framework that will be familiar to you already (what do you mean you haven’t read 
the regression chapter yet?!). To keep things simple I’m going to explain binary logistic 
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regression, but most of the principles extend easily to when there are more than two 
outcome categories. Now would be a good time for the equation-phobes to look away. In 
simple linear regression, we saw that the outcome variable Y is predicted from the equation 
of a straight line:

Yi =b0 + b1X1i + εi (8.1)

in which b0 is the Y intercept, b1 is the gradient of the straight line, X1 is the value of the 
predictor variable and ε is a residual term. Given the values of Y and X1, the unknown 
parameters in the equation can be estimated by finding a solution for which the squared 
distance between the observed and predicted values of the dependent variable is minimized 
(the method of least squares).

This stuff should all be pretty familiar by now. In multiple regression, in which there are 
several predictors, a similar equation is derived in which each predictor has its own coef-
ficient. As such, Y is predicted from a combination of each predictor variable multiplied by 
its respective regression coefficient.

Yi = b0 + b1X1i +b2X2i + . . . + bnXni + εi (8.2)

in which bn is the regression coefficient of the corresponding variable Xn. In logistic regres-
sion, instead of predicting the value of a variable Y from a predictor variable X1 or several 
predictor variables (Xs), we predict the probability of Y occurring given known values of X1 
(or Xs). The logistic regression equation bears many similarities to the regression equations 
just described. In its simplest form, when there is only one predictor variable X1, the logistic 
regression equation from which the probability of Y is predicted is given by:

PðYÞ= 1

1+ e− ðb0+ b1X1iÞ
(8.3)

in which P(Y) is the probability of Y occurring, e is the base of natural logarithms, and the 
other coefficients form a linear combination much the same as in simple regression. In 
fact, you might notice that the bracketed portion of the equation is identical to the linear 
regression equation in that there is a constant (b0), a predictor variable (X1) and a coeffi-
cient (or weight) attached to that predictor (b1). Just like linear regression, it is possible to 
extend this equation so as to include several predictors. When there are several predictors 
the equation becomes:

PðYÞ= 1

1+ e− ðb0 + b1X1i + b2X2i + ...+ bnXniÞ (8.4)

Equation (8.4) is the same as the equation used when there is only one predictor except 
that the linear combination has been extended to include any number of predictors. So, 
whereas the one-predictor version of the logistic regression equation contained the simple 
linear regression equation within it, the multiple-predictor version contains the multiple 
regression equation.

Despite the similarities between linear regression and logistic regression, there is a good 
reason why we cannot apply linear regression directly to a situation in which the outcome 
variable is categorical. The reason is that one of the assumptions of linear regression is that the 
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relationship between variables is linear (see section 7.6.2.1). In that sec-
tion we saw how important it is that the assumptions of a model are met 
for it to be accurate. Therefore, for linear regression to be a valid model, 
the observed data should contain a linear relationship. When the outcome 
variable is categorical, this assumption is violated (Berry, 1993). One way 
around this problem is to transform the data using the logarithmic transfor-
mation (see Berry & Feldman, 1985, and Chapter 5). This transformation 
is a way of expressing a non-linear relationship in a linear way. The logistic 
regression equation described above is based on this principle: it expresses 
the multiple linear regression equation in logarithmic terms (called the logit) 
and thus overcomes the problem of violating the assumption of linearity.

The exact form of the equation can be arranged in several ways but the version I have 
chosen expresses the equation in terms of the probability of Y occurring (i.e. the probability 
that a case belongs in a certain category). The resulting value from the equation, therefore, 
varies between 0 and 1. A value close to 0 means that Y is very unlikely to have occurred, and 
a value close to 1 means that Y is very likely to have occurred. Also, just like linear regression, 
each predictor variable in the logistic regression equation has its own coefficient. When we 
run the analysis we need to estimate the value of these coefficients so that we can solve the 
equation. These parameters are estimated by fitting models, based on the available predic-
tors, to the observed data. The chosen model will be the one that, when values of the predic-
tor variables are placed in it, results in values of Y closest to the observed values. Specifically, 
the values of the parameters are estimated using maximum-likelihood estimation, which selects 
coefficients that make the observed values most likely to have occurred. So, as with multiple 
regression, we try to fit a model to our data that allows us to estimate values of the outcome 
variable from known values of the predictor variable or variables. 

8.3.1.  Assessing the model: the log-likelihood statistic 3

We’ve seen that the logistic regression model predicts the probability of an event occur-
ring for a given person (we would denote this as P(Yi) the probability that Y occurs for 
the ith person), based on observations of whether or not the event did occur for that 
person (we could denote this as Yi, the actual outcome for the ith person). So, for a given 
person, Y will be either 0 (the outcome didn’t occur) or 1 (the outcome did occur), and 
the predicted value, P(Y), will be a value between 0 (there is no chance that the outcome 
will occur) and 1 (the outcome will certainly occur). We saw in multiple regression that 
if we want to assess whether a model fits the data we can compare the observed and pre-
dicted values of the outcome (if you remember, we use R2, which is the Pearson correla-
tion between observed values of the outcome and the values predicted by the regression 
model). Likewise, in logistic regression, we can use the observed and predicted values to 
assess the fit of the model. The measure we use is the log-likelihood:

log-likelihood=
XN

i= 1

Yi lnðPðYiÞÞ+ ð1−YiÞ lnð1−PðYiÞÞ½  (8.5)

The log-likelihood is based on summing the probabilities associated with the predicted and 
actual outcomes (Tabachnick & Fidell, 2007). The log-likelihood statistic is analogous to the 
residual sum of squares in multiple regression in the sense that it is an indicator of how much 
unexplained information there is after the model has been fitted. It, therefore, follows that 
large values of the log-likelihood statistic indicate poorly fitting statistical models, because 
the larger the value of the log-likelihood, the more unexplained observations there are.

Why can’t I use
linear regression?
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Now, it’s possible to calculate a log-likelihood for different models and to compare 
these models by looking at the difference between their log-likelihoods. One use of this is 
to compare the state of a logistic regression model against some kind of baseline state. The 
baseline state that’s usually used is the model when only the constant is included. In mul-
tiple regression, the baseline model we use is the mean of all scores (this is our best guess 
of the outcome when we have no other information). In logistic regression, if we want to 
predict the outcome, what would our best guess be? Well, we can’t use the mean score 
because our outcome is made of zeros and ones and so the mean is meaningless! However, 
if we know the frequency of zeros and ones, then the best guess will be the category with 
the largest number of cases. So, if the outcome occurs 107 times, and doesn’t occur only 
72 times, then our best guess of the outcome will be that it occurs (because it occurs 107 
times compared to only 72 times when it doesn’t occur). As such, like multiple regression, 
our baseline model is the model that gives us the best prediction when we know nothing 
other than the values of the outcome: in logistic regression this will be to predict the out-
come that occurs most often. This is, the logistic regression model when only the constant 
is included. If we then add one or more predictors to the model, we can compute the 
improvement of the model as follows:

w2 = 2 LLðnewÞ−LLðbaselineÞ½ 

ðdf =knew− kbaselineÞ
(8.6)

So, we merely take the new model and subtract from it the baseline model (the model 
when only the constant is included). You’ll notice that we multiply this value by 2; this is 
because it gives the result a chi-square distribution (see Chapter 18 and the Appendix) and 
so makes it easy to calculate the significance of the value. The chi-square distribution we 
use has degrees of freedom equal to the number of parameters, k in the new model minus 
the number of parameters in the baseline model. The number of parameters in the baseline 
model will always be 1 (the constant is the only parameter to be estimated); any subsequent 
model will have degrees of freedom equal to the number of predictors plus 1 (i.e. the 
number of predictors plus one parameter representing the constant).

8.3.2.  Assessing the model: R and R2 3

When we talked about linear regression, we saw that the multiple correlation coefficient R 
and the corresponding R2-value were useful measures of how well the model fits the data. 

We’ve also just seen that the likelihood ratio is similar in the respect 
that it is based on the level of correspondence between predicted and 
actual values of the outcome. However, you can calculate a more lit-
eral version of the multiple correlation in logistic regression known 
as the R-statistic. This R-statistic is the partial correlation between the 
outcome variable and each of the predictor variables and it can vary 
between –1 and 1. A positive value indicates, that as the predictor vari-
able increases, so does the likelihood of the event occurring. A negative 
value implies that as the predictor variable increases, the likelihood of 
the outcome occurring decreases. If a variable has a small value of R 
then it contributes only a small amount to the model.

The equation for R is given in equation (8.7). The −2LL is the −2 
log-likelihood for the original model, the Wald statistic is calculated as described in the 
next section, and the degrees of freedom can be read from the summary table for the 

Is there a logistic
regression equivalent

of R2?
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variables in the equation. However, because this value of R is dependent upon the Wald 
statistic it is by no means an accurate measure (we’ll see in the next section that the Wald 
statistic can be inaccurate under certain circumstances). For this reason the value of R 
should be treated with some caution, and it is invalid to square this value and interpret it 
as you would in linear regression:

R= ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wald− ð2× df Þ
− 2LLðoriginalÞ

 s
(8.7)

There is some controversy over what would make a good analogue to the R2-value in 
linear regression, but one measure described by Hosmer and Lemeshow (1989) can be eas-
ily calculated. In SPSS terminology, Hosmer and Lemeshow’s R L

2 measure is calculated as:

R2
L =

− 2LLðmodelÞ
− 2LLðoriginalÞ (8.8)

As such, RL
2 is calculated by dividing the model chi-square (based on the log-likelihood) by the 

original −2LL (the log-likelihood of the model before any predictors were entered). R2
L is the 

proportional reduction in the absolute value of the log-likelihood measure and as such it is a 
measure of how much the badness of fit improves as a result of the inclusion of the predictor 
variables. It can vary between 0 (indicating that the predictors are useless at predicting the out-
come variable) and 1 (indicating that the model predicts the outcome variable perfectly). 

However, this is not the measure used by SPSS. SPSS uses Cox and Snell’s R 2
CS (1989), 

which is based on the log-likelihood of the model (LL(new)) and the log-likelihood of the 
original model (LL(baseline)), and the sample size, n:

R2
CS = 1− e − 2

nðLLðnewÞÞ− ðLLðbaselineÞÞ½  (8.9)

However, this statistic never reaches its theoretical maximum of 1. Therefore, Nagelkerke 
(1991) suggested the following amendment (Nagelkerke’s R2

N):

R2
N = R2

CS

1− e
2 LLðbaselineÞð Þ

n

  (8.10)

Although all of these measures differ in their computation (and the answers you get), 
conceptually they are somewhat the same. So, in terms of interpretation they can be seen 
as similar to the R2 in linear regression in that they provide a gauge of the substantive sig-
nificance of the model.

8.3.3.   Assessing the contribution of predictors:  
the Wald statistic 2

As in linear regression, we want to know not only how well the model overall fits the 
data, but also the individual contribution of predictors. In linear regression, we used the 
estimated regression coefficients (b) and their standard errors to compute a t-statistic. In 
logistic regression there is an analogous statistic known as the Wald statistic, which has a 
special distribution known as the chi-square distribution. Like the t-test in linear regression, 
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the Wald statistic tells us whether the b coefficient for that predictor is significantly differ-
ent from zero. If the coefficient is significantly different from zero then we can assume that 
the predictor is making a significant contribution to the prediction of the outcome (Y): 

Wald= b

SEb
(8.11)

Equation (8.11) shows how the Wald statistic is calculated and you can see it’s basically 
identical to the t-statistic in linear regression (see equation (7.6)): it is the value of the 
regression coefficient divided by its associated standard error. The Wald statistic (Figure 
8.2) is usually used to ascertain whether a variable is a significant predictor of the outcome; 
however, it is probably more accurate to examine the likelihood ratio statistics. The reason 
why the Wald statistic should be used cautiously is because, when the regression coefficient 
(b) is large, the standard error tends to become inflated, resulting in the Wald statistic being 
underestimated (see Menard, 1995). The inflation of the standard error increases the prob-
ability of rejecting a predictor as being significant when in reality it is making a significant 
contribution to the model (i.e. you are more likely to make a Type II error).

Figure 8.2
Abraham Wald 
writing ‘I must 
not devise 
test statistics 
prone to having 
inflated standard 
errors’ on the 
blackboard 100 
times

8.3.4.  The odds ratio: Exp(B) 3

More crucial to the interpretation of logistic regression is the value of the odds ratio (Exp(B) 
in the SPSS output), which is an indicator of the change in odds resulting from a unit change 
in the predictor. As such, it is similar to the b coefficient in logistic regression but easier to 
understand (because it doesn’t require a logarithmic transformation). When the predictor 
variable is categorical the odds ratio is easier to explain, so imagine we had a simple example 
in which we were trying to predict whether or not someone got pregnant from whether or 
not they used a condom last time they made love. The odds of an event occurring are defined 
as the probability of an event occurring divided by the probability of that event not occurring 
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(see equation (8.12)) and should not be confused with the more colloquial usage of the word 
to refer to probability. So, for example, the odds of becoming pregnant are the probability of 
becoming pregnant divided by the probability of not becoming pregnant:

odds= PðeventÞ
Pðno eventÞ

Pðevent YÞ= 1

1+ e− ðb0 +b1X1Þ

Pðno event YÞ= 1−Pðevent YÞ

(8.12)

To calculate the change in odds that results from a unit change in the predictor, we must 
first calculate the odds of becoming pregnant given that a condom wasn’t used. We then 
calculate the odds of becoming pregnant given that a condom was used. Finally, we calcu-
late the proportionate change in these two odds.

To calculate the first set of odds, we need to use equation (8.3) to calculate the probabil-
ity of becoming pregnant given that a condom wasn’t used. If we had more than one predic-
tor we would use equation (8.4). There are three unknown quantities in this equation: the 
coefficient of the constant (b0), the coefficient for the predictor (b1) and the value of the 
predictor itself (X). We’ll know the value of X from how we coded the condom use variable 
(chances are we would’ve used 0 = condom wasn’t used and 1 = condom was used). The val-
ues of b1 and b0 will be estimated for us. We can calculate the odds as in equation (8.12).

Next, we calculate the same thing after the predictor variable has changed by one unit. In 
this case, because the predictor variable is dichotomous, we need to calculate the odds of get-
ting pregnant, given that a condom was used. So, the value of X is now 1 (rather than 0).

We now know the odds before and after a unit change in the predictor variable. It is a 
simple matter to calculate the proportionate change in odds by dividing the odds after a 
unit change in the predictor by the odds before that change:

odds= odds after a unit change in the predictor

original odds
(8.13)

This proportionate change in odds is the odds ratio, and we can interpret it in terms of the 
change in odds: if the value is greater than 1 then it indicates that as the predictor increases, 
the odds of the outcome occurring increase. Conversely, a value less than 1 indicates that 
as the predictor increases, the odds of the outcome occurring decrease. We’ll see how this 
works with a real example shortly.

8.3.5.  Methods of logistic regression 2

As with multiple regression (section 7.5.3), there are several different methods that can be 
used in logistic regression.   

8.3.5.1. The forced entry method 2

The default method of conducting the regression is ‘enter’. This is the same as forced entry 
in multiple regression in that all of the predictors are placed into the regression model in 
one block, and parameter estimates are calculated for each block.
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8.3.5.2. Stepwise methods 2

If you are undeterred by the criticisms of stepwise methods in the previous chapter, 
then you can select either a forward or a backward stepwise method. When the forward 
method is employed the computer begins with a model that includes only a constant 
and then adds single predictors to the model based on a specific criterion. This criterion 
is the value of the score statistic: the variable with the most significant score statistic is 
added to the model. The computer proceeds until none of the remaining predictors have 
a significant score statistic (the cut-off point for significance being .05). At each step, 
the computer also examines the variables in the model to see whether any should be 
removed. It does this in one of three ways. The first way is to use the likelihood ratio 
statistic described in section 18.3.3 (the Forward:LR method) in which case the current 
model is compared to the model when that predictor is removed. If the removal of that 
predictor makes a significant difference to how well the model fits the observed data, 
then the computer retains that predictor (because the model is better if the predictor is 
included). If, however, the removal of the predictor makes little difference to the model 
then the computer rejects that predictor. Rather than using the likelihood ratio statistic, 
which estimates how well the model fits the observed data, the computer could use the 
conditional statistic as a removal criterion (Forward:Conditional). This statistic is an 
arithmetically less intense version of the likelihood ratio statistic and so there is little to 
recommend it over the likelihood ratio method. The final criterion is the Wald statistic, 
in which case any predictors in the model that have significance values of the Wald sta-
tistic (above the default removal criterion of .1) will be removed. Of these methods the 
likelihood ratio method is the best removal criterion because the Wald statistic can, at 
times, be unreliable (see section 8.3.3).

The opposite of the forward method is the backward method. This method uses the 
same three removal criteria, but instead of starting the model with only a constant, it begins 
the model with all predictors included. The computer then tests whether any of these pre-
dictors can be removed from the model without having a substantial effect on how well the 
model fits the observed data. The first predictor to be removed will be the one that has the 
least impact on how the model fits the data.

8.3.5.3. How do i select a method? 2

As with ordinary regression (previous chapter), the method of regression chosen will 
depend on several things. The main consideration is whether you are testing a theory 

or merely carrying out exploratory work. As noted earlier, some people 
believe that stepwise methods have no value for theory testing. However, 
stepwise methods are defensible when used in situations in which no pre-
vious research exists on which to base hypotheses for testing, and in situ-
ations where causality is not of interest and you merely wish to find a 
model to fit your data (Agresti & Finlay, 1986; Menard, 1995). Also, as 
I mentioned for ordinary regression, if you do decide to use a stepwise 
method then the backward method is preferable to the forward method. 
This is because of suppressor effects, which occur when a predictor has a 
significant effect but only when another variable is held constant. Forward 
selection is more likely than backward elimination to exclude predictors 

involved in suppressor effects. As such, the forward method runs a higher risk of making a 
Type II error. In terms of the test statistic used in stepwise methods, the Wald statistic, as we 
have seen, has a tendency to be inaccurate in certain circumstances and so the likelihood 
ratio method is best.

Which method
should I use?
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8.4. Assumptions and things that can go wrong 4

8.4.1.  Assumptions 2

Logistic regression shares some of the assumptions of normal regression:

Linearity1 : In ordinary regression we assumed that the outcome had linear relation-
ships with the predictors. In logistic regression the outcome is categorical and so this 
assumption is violated. As I explained before, this is why we use the log (or logit) of 
the data. The assumption of linearity in logistic regression, therefore, assumes that 
there is a linear relationship between any continuous predictors and the logit of the 
outcome variable. This assumption can be tested by looking at whether the interac-
tion term between the predictor and its log transformation is significant (Hosmer & 
Lemeshow, 1989). We will go through an example in section 8.8.1.
Independence of errors2 : This assumption is the same as for ordinary regression (see sec-
tion 7.6.2.1). Basically it means that cases of data should not be related; for example, 
you cannot measure the same people at different points in time. Violating this assump-
tion produces overdispersion (see section 8.4.4).
Multicollinearity3 : Although not really an assumption as such, multicollinearity is a 
problem as it was for ordinary regression (see section 7.6.2.1). In essence, predictors 
should not be too highly correlated. As with ordinary regression, this assumption can 
be checked with tolerance and VIF statistics, the eigenvalues of the scaled, uncentred 
cross-products matrix, the condition indexes and the variance proportions. We go 
through an example in section 8.8.1.

Logistic regression also has some unique problems of its own (not assumptions, but 
things that can go wrong). SPSS solves logistic regression problems by an iterative proce-
dure (SPSS Tip 8.1). Sometimes, instead of pouncing on the correct solution quickly, you’ll 
notice nothing happening: SPSS begins to move infinitely slowly, or appears to have just 
got fed up with you asking it to do stuff and has gone on strike. If it can’t find a correct 
solution, then sometimes it actually does give up, quietly offering you (without any apol-
ogy) a result which is completely incorrect. Usually this is revealed by implausibly large 
standard errors. Two situations can provoke this situation, both of which are related to the 
ratio of cases to variables: incomplete information and complete separation.

8.4.2.  Incomplete information from the predictors 4

Imagine you’re trying to predict lung cancer from smoking (a foul habit believed to increase 
the risk of cancer) and whether or not you eat tomatoes (which are believed to reduce the risk 
of cancer). You collect data from people who do and don’t smoke, and from people who do 
and don’t eat tomatoes; however, this isn’t sufficient unless you collect data from all combi-
nations of smoking and tomato eating. Imagine you ended up with the following data:

Do you smoke? Do you eat tomatoes? Do you have cancer?

Yes

Yes

No

No

No

Yes

No

Yes

Yes

Yes

Yes

??????
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Observing only the first three possibilities does not prepare you for the outcome of the 
fourth. You have no way of knowing whether this last person will have cancer or not based on 
the other data you’ve collected. Therefore, SPSS will have problems unless you’ve collected 
data from all combinations of your variables. This should be checked before you run the analy-
sis using a crosstabulation table, and I describe how to do this in Chapter 18. While you’re 
checking these tables, you should also look at the expected frequencies in each cell of the table 
to make sure that they are greater than 1 and no more than 20% are less than 5 (see section 
18.4). This is because the goodness-of-fit tests in logistic regression make this assumption.

This point applies not only to categorical variables, but also to continuous ones. Suppose 
that you wanted to investigate factors related to human happiness. These might include age, 
gender, sexual orientation, religious beliefs, levels of anxiety and even whether a person 
is right-handed. You interview 1000 people, record their characteristics, and whether they 
are happy (‘yes’ or ‘no’). Although a sample of 1000 seems quite large, is it likely to include 
an 80 year old, highly anxious, Buddhist left-handed lesbian? If you found one such person 
and she was happy, should you conclude that everyone else in the same category is happy? 
It would, obviously, be better to have several more people in this category to confirm that 
this combination of characteristics causes happiness. One solution is to collect more data.

As a general point, whenever samples are broken down into categories and one or more 
combinations are empty it creates problems. These will probably be signalled by coef-
ficients that have unreasonably large standard errors. Conscientious researchers produce 
and check multiway crosstabulations of all categorical independent variables. Lazy but 
cautious ones don’t bother with crosstabulations, but look carefully at the standard errors. 
Those who don’t bother with either should expect trouble.

8.4.3.  Complete separation 4

A second situation in which logistic regression collapses might surprise you: it’s when the 
outcome variable can be perfectly predicted by one variable or a combination of variables! 
This is known as complete separation.

          SPSS T IP  8 .1     Error messages about ‘failure to coverage’ 3

Many statistical procedures use an iterative process, which means that SPSS attempts to estimate the param-
eters of the model by finding successive approximations of those parameters. Essentially, it starts by estimating 
the parameters with a ‘best guess’. It then attempts to approximate them more accurately (known as an iteration). 
It then tries again, and then again, and so on through many iterations. It stops either when the approximations of 
parameters converge (i.e. at each new attempt the ‘approximations’ of parameters are the same or very similar 
to the previous attempt), or when it reaches the maximum number of attempts (iterations). 

Sometimes you will get an error message in the output that says something like ‘Maximum number of iterations 
were exceeded, and the log-likelihood value and/or the parameter estimates cannot converge’. What this means is 
that SPSS has attempted to estimate the parameters the maximum number of times (as specified in the options) 
but they are not converging (i.e. at each iteration SPSS is getting quite different estimates). This certainly means 
that you should ignore any output that SPSS has produced, and it might mean that your data are beyond help. 
You can try increasing the number of iterations that SPSS attempts, or make the criteria that SPSS uses to assess 
‘convergence’ less strict.
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Let’s look at an example: imagine you 
placed a pressure pad under your door 
mat and connected it to your security 
system so that you could detect burglars 
when they creep in at night. However, 
because your teenage children (which 
you would have if you’re old enough and 
rich enough to have security systems and 
pressure pads) and their friends are often 
coming home in the middle of the night, 
when they tread on the pad you want it 
to work out the probability that the per-
son is a burglar and not your teenager. 
Therefore, you could measure the weight 
of some burglars and some teenagers 
and use logistic regression to predict the 
outcome (teenager or burglar) from the 
weight. The graph would show a line of triangles at zero (the data points for all of the teen-
agers you weighed) and a line of triangles at 1 (the data points for burglars you weighed). 
Note that these lines of triangles overlap (some teenagers are as heavy as burglars). We’ve 
seen that in logistic regression, SPSS tries to predict the probability of the outcome given a 
value of the predictor. In this case, at low weights the fitted probability follows the bottom 
line of the plot, and at high weights it follows the top line. At intermediate values it tries to 
follow the probability as it changes.

Imagine that we had the same pres-
sure pad, but our teenage children had 
left home to go to university. We’re now 
interested in distinguishing burglars from 
our pet cat based on weight. Again, we can 
weigh some cats and weigh some burglars. 
This time the graph still has a row of tri-
angles at zero (the cats we weighed) and 
a row at 1 (the burglars) but this time the 
rows of triangles do not overlap: there is 
no burglar who weighs the same as a cat – 
obviously there were no cat burglars in the 
sample (groan now at that sorry excuse for 
a joke!). This is known as perfect separa-
tion: the outcome (cats and burglars) can 
be perfectly predicted from weight (any-
thing less than 15 kg is a cat, anything 
more than 40 kg is a burglar). If we try to calculate the probabilities of the outcome given 
a certain weight then we run into trouble. When the weight is low, the probability is 0, and 
when the weight is high, the probability is 1, but what happens in between? We have no data 
in between 15 and 40 kg on which to base these probabilities. The figure shows two possible 
probability curves that we could fit to these data: one much steeper than the other. Either 
one of these curves is valid based on the data we have available. The lack of data means that 
SPSS will be uncertain about how steep it should make the intermediate slope and it will try 
to bring the centre as close to vertical as possible, but its estimates veer unsteadily towards 
infinity (hence large standard errors). 

This problem often arises when too many variables are fitted to too few cases. Often the 
only satisfactory solution is to collect more data, but sometimes a neat answer is found by 
adopting a simpler model.
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8.4.4.  Overdispersion 4

I’m not a statistician, and most of what I’ve read on overdispersion doesn’t make an awful 
lot of sense to me. From what I can gather, it is when the observed variance is bigger than 
expected from the logistic regression model. This can happen for two reasons. The first 
is correlated observations (i.e. when the assumption of independence is broken) and the 
second is due to variability in success probabilities. For example, imagine our outcome 
was whether a puppy in a litter survived or died. Genetic factors mean that within a given 
litter the chances of success (living) depend on the litter from which the puppy came. As 
such success probabilities vary across litters (Halekoh & Højsgaard, 2007), this example of 
dead puppies is particularly good – not because I’m a cat lover, but because it shows how 
variability in success probabilities can create correlation between observations (the survival 
rates of puppies from the same litter are not independent).

Overdispersion creates a problem because it tends to limit standard errors and result 
in narrower confidence intervals for test statistics of predictors in the logistic regression 
model. Given that the test statistics are computed by dividing by the standard error, if the 
standard error is too small then the test statistic will be bigger than it should be, and more 
likely to be deemed significant. Similarly, narrow confidence intervals will give us overcon-
fidence in the effect of our predictors on the outcome. In short, there is more chance of 
Type I errors. The parameters themselves (i.e. the b-values) are unaffected.

SPSS produces a chi-square goodness-of-fit statistic, and overdispersion is present if 
the ratio of this statistic to its degrees of freedom is greater than 1 (this ratio is called the 
dispersion parameter, φ). Overdispersion is likely to be problematic if the dispersion param-
eter approaches or is greater than 2. (Incidentally, underdispersion is shown by values 
less than 1, but this problem is much less common in practice.) There is also the deviance 
goodness-of-fit statistic, and the dispersion parameter can be based on this statistic instead 
(again by dividing by the degrees of freedom). When the chi-square and deviance statistics 
are very discrepant, then overdispersion is likely. 

The effects of overdispersion can be reduced by using the dispersion parameter to res-
cale the standard errors and confidence intervals. For example, the standard errors are 
multiplied by √φ to make them bigger (as a function of how big the overdispersion is). 
You can base these corrections on the deviance statistic too, and whether you rescale using 
this statistic or the Pearson chi-square statistic depends on which one is bigger. The bigger 
statistic will have the bigger dispersion parameter (because their degrees of freedom are the 
same), and will make the bigger correction; therefore, correct by the bigger of the two.

             CRAMMING SAM’S TIPS    Issues in logistic regression

 In logistic regression, like ordinary regression, we assume linearity, no multicollinearity and independence of errors.

 The linearity assumption is that each predictor has a linear relationship with the log of the outcome variable.

 If we created a table that combined all possible values of all variables then we should ideally have some data in every cell 
of this table. If you don’t then watch out for big standard errors.

 If the outcome variable can be predicted perfectly from one predictor variable (or a combination of predictor variables) then 
we have complete separation. This problem creates large standard errors too.

 Overdispersion is where the variance is larger than expected from the model. This can be caused by violating the assump-
tion of independence. This problem makes the standard errors too small!
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8.5. Binary logistic regression: an example  
that will make you feel eel 2

It’s amazing what you find in academic journals sometimes. It’s a bit of a hobby of mine 
trying to unearth bizarre academic papers (really, if you find any email them to me). 
I believe that science should be fun, and so I like finding research that makes me laugh. 
A research paper by Lo and colleagues is the one that (so far) has made me laugh the most 
(Lo, Wong, Leung, Law, & Yip, 2004). Lo and colleagues report the case of a 50 year old 
man who reported to the Accident and Emergency Department (ED for the Americans) 
with abdominal pain. A physical examination revealed peritonitis so they took an X-ray of 
the man’s abdomen. Although it somehow slipped the patient’s mind to mention this to 
the receptionist upon arrival at the hospital, the X-ray revealed the shadow of an eel. The 
authors don’t directly quote the man’s response to this news, but I like to imagine it was 
something to the effect of ‘Oh, that! Erm, yes, well I didn’t think it was terribly relevant to 
my abdominal pain so I didn’t mention it, but I did insert an eel into my anus. Do you think 
that’s the problem?’ Whatever he did say, the authors report that he admitted inserting an 
eel up his anus to ‘relieve constipation’.

I can have a lively imagination at times, and when I read this article 
I couldn’t help thinking about the poor eel. There it was, minding it’s 
own business swimming about in a river (or fish tank possibly), thinking 
to itself ‘Well, today seems like a nice day, there are no eel-eating sharks 
about, the sun is out, the water is nice, what could possibly go wrong?’ 
The next thing it knows, it’s being shoved up the anus of a man from 
Hong Kong. ‘Well, I didn’t see that coming,’ thinks the eel. Putting myself 
in the mindset of an eel for a moment, he has found himself in a tight 
dark tunnel, there’s no light, there’s a distinct lack of water compared to 
his usual habitat, and he’s probably fearing for his life. His day has gone 
very wrong. How can he escape this horrible fate? Well, doing what any self-respecting eel 
would do, he notices that his prison cell is fairly soft and decides ‘bugger this,1 I’ll eat my 
way out of here’. Unfortunately he didn’t make it, but he went out with a fight (there’s a 
fairly unpleasant photograph in the article of the eel biting the splenic flexure). The authors 
conclude that ‘Insertion of a live animal into the rectum causing rectal perforation has never 
been reported. This may be related to a bizarre healthcare belief, inadvertent sexual behav-
iour, or criminal assault. However, the true reason may never be known.’ Quite.

OK, so this is a really grim tale.2 It’s not really very funny for the man or the eel, but it 
was so unbelievably bizarre that I did laugh. Of course my instant reaction was that stick-
ing an eel up your anus to ‘relieve constipation’ is the poorest excuse for bizarre sexual 
behaviour I have ever heard. But upon reflection I wondered if I was being harsh on the 
man – maybe an eel up the anus really can cure constipation. If we wanted to test this, we 
could collect some data. Our outcome might be ‘constipated’ vs. ‘not constipated’, which 
is a dichotomous variable that we’re trying to predict. One predictor variable would be 

1 Literally.
2 As it happens, it isn’t an isolated grim tale. Through this article I found myself hurtling down a road of morbid 
curiosity that was best left untravelled. Although the eel was my favourite example, I could have chosen from 
a very large stone (Sachdev, 1967), a test tube (Hughes, Marice, & Gathright, 1976), a baseball (McDonald & 
Rosenthal, 1977), an aerosol deodorant can, hose pipe, iron bar, broomstick, penknife, marijuana, bank notes, 
blue plastic tumbler, vibrator and primus stove (Clarke, Buccimazza, Anderson, & Thomson, 2005), or (a close 
second place to the eel) a toy pirate ship, with or without pirates I’m not sure (Bemelman & Hammacher, 2005). 
So, although I encourage you to send me bizarre research, if it involves objects in the rectum then probably don’t, 
unless someone has managed to put Buckingham Palace up there.

Can an eel cure
constipation?
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intervention (eel up the anus) vs. waiting list (no treatment). We might also want to factor 
how many days the patient had been constipated before treatment. This scenario is perfect 
for logistic regression (but not for eels). The data are in Eel.sav.

I’m quite aware that many statistics lecturers would rather not be discussing eel-created rec-
tal perforations with their students, so I have named the variables in the file more generally:

Outcome (dependent variable)M : Cured (cured or not cured).

Predictor (independent variable)M : Intervention (intervention or no treatment).

Predictor (independent variable)M : Duration (the number of days before treatment 
that the patient had the problem).

In doing so, your lecturer can adapt the example to something more palatable if they wish 
to, but you will secretly know that it’s all about having eels up your bum!

8.5.1.  The main analysis 2

To carry out logistic regression, the data must be entered as for normal regression: they are 
arranged in the data editor in three columns (one representing each variable). Looking at 
the data editor you should notice that both of the categorical variables have been entered 
as coding variables (see section 3.4.2.3); that is, numbers have been specified to repre-
sent categories. For ease of interpretation, the outcome variable should be coded 1 (event 
occurred) and 0 (event did not occur); in this case, 1 represents being cured and 0 repre-
sents not being cured. For the intervention a similar coding has been used (1 = interven-
tion, 0 = no treatment). To open the main Logistic Regression dialog box (Figure 8.3) select 

.
The main dialog box is very similar to the standard regression dialog box. There is a 

space to place a dependent variable (or outcome variable). In this example, the outcome 
was whether or not the patient was cured, so we can simply click on Cured and drag it 
to the Dependent box or click on . There is also a box for specifying the covariates (the 
predictor variables). It is possible to specify the main effect of a predictor variable, which 

Figure 8.3
Logistic 
Regression main 
dialog box
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is simply the effect (on an outcome variable) of a variable on its own. You can also specify 
an interaction effect, which is the effect (on an outcome variable) of two or more variables 
in combination. We will discover more about main effects and interactions in Chapter 12. 
To specify a main effect, simply select one predictor (e.g. Duration) and then drag it to 
the Covariates box or click on . To input an interaction, click on more than one vari-
able on the left-hand side of the dialog box (i.e. click on several variables while holding 
down the Ctrl key) and then click on  to move them to the Covariates box. In this 
example there are only two predictors and therefore there is only one possible interaction 
(the Duration × Intervention interaction), but if you have three predictors then you can 
select several interactions using two predictors, and an interaction involving all three. In 
the figure I have selected the two main effects of Duration, Intervention and the Duration × 
Intervention interaction. Select these variables too.

8.5.2.  Method of regression 2

As with multiple regression, there are different ways of doing 
logistic regression (see section 8.3.5). You can select a par-
ticular method of regression by clicking on  and 
then clicking on a method in the resulting drop-down menu. 
For this analysis select a Forward:LR method of regression. 
Having spent a vast amount of time telling you never to do 
stepwise analyses, it’s probably a bit strange to hear me sug-
gest doing forward regression here. Well, for one thing this 
study is the first in the field and so we have no past research 
to tell us which variables to expect to be reliable predictors. Second, I didn’t show you a 
stepwise example in the regression chapter and so this will be a useful way to demonstrate 
how a stepwise procedure operates!

8.5.3.  Categorical predictors 2

It is necessary to ‘tell’ SPSS which predictor variables, if any, are categorical by clicking on 
 in the main Logistic Regression dialog box to activate the dialog box in Figure 

8.4. In this dialog box, the covariates are listed on the left-hand side, and there is a space on 
the right-hand side in which categorical covariates can be placed. Highlight any categorical 
variables you have (in this example we have only one, so click on Intervention) and drag 
them to the Categorical Covariates box or click on .

There are many ways in which you can treat categorical predictors. In section 7.11 we 
saw that categorical predictors could be incorporated into regression by recoding them using 
zeros and ones (known as dummy coding). Actually, there are different ways that you can 
code categorical variables depending on what you want to compare, and SPSS 
has several ‘standard’ ways built into it that you can select. By default SPSS 
uses Indicator coding, which is the standard dummy variable coding that I 
explained in section 7.11 (and you can choose to have either the first or last 
category as your baseline). To change to a different kind of contrast click on 

 to access a drop-down list of possible contrasts: it is possible to select 
simple contrasts; difference contrasts, Helmert contrasts, repeated contrasts, 
polynomial contrasts and deviation contrasts. These techniques will be dis-
cussed in detail in Chapter 10 and I’ll explain what these contrasts actually do 
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then (see Table 10.6). However, you won’t come across indicator contrasts in that chapter 
and so we’ll use them here. To reiterate, when an indicator contrast is used, levels of the cat-
egorical variable are recoded using standard dummy variable coding (see sections 7.11 and 
9.7). We do need to decide whether to use the first category as our baseline ( ) or the 
last category ( ). In this case it doesn’t make much difference because we have only two 
categories, but if you had a categorical predictor with more than two categories, then you 
should either use the highest number to code your control category and then select  for 
your indicator contrast, or use the lowest number to code your control category and then 
change the indicator contrast to compare against . In our data, I coded ‘cured’ as 1 and 
‘not cured’ (our control category) as 0; therefore, select the contrast, then click on  and 
then  so that the completed dialog box looks like Figure 8.4 .

8.5.4.  Obtaining residuals 2

As with linear regression, it is possible to save a set of residuals (see section 7.6.1.1) as new 
variables in the data editor. These residual variables can then be examined to see how well the 
model fits the observed data. To save residuals click on  in the main Logistic Regression 
dialog box (Figure 8.3). SPSS saves each of the selected variables into the data editor but they 
can be listed in the output viewer by using the Case Summaries command (see section 7.8.6) 
and selecting the residual variables of interest. The residuals dialog box in Figure 8.5 gives us 
several options and most of these are the same as those in multiple regression (refer to section 
7.7.5). Two residuals that are unique to logistic regression are the predicted probabilities and 
the predicted group memberships. The predicted probabilities are the probabilities of Y occur-
ring given the values of each predictor for a given participant. As such, they are derived from 
equation (8.4) for a given case. The predicted group membership is self-explanatory in that it 
predicts to which of the two outcome categories a participant is most likely to belong based on 
the model. The group memberships are based on the predicted probabilities and I will explain 
these values in more detail when we consider how to interpret the residuals. It is worth select-
ing all of the available options, or as a bare minimum select the same options as in Figure 8.5.

To reiterate a point from the previous chapter, running a regression without checking 
how well the model fits the data is like buying a new pair of trousers without trying them 
on – they might look fine on the hanger but get them home and you find you’re Johnny-
tight-pants. The trousers do their job (they cover your legs and keep you warm) but they 

Figure 8.4
Defining 
categorical 
variables 
in logistic 
regression
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have no real-life value (because they cut off the blood circulation to your legs, which then 
have to be amputated). Likewise, regression does its job regardless of the data – it will cre-
ate a model – but the real-life value of the model may be limited (see section 7.6).

8.5.5.  Further options 2

There is a final dialog box that offers further options. This box is shown in Figure 8.6 and 
is accessed by clicking on  in the main Logistic Regression dialog box. For the most 
part, the default settings in this dialog box are fine. I mentioned in section 8.5.2 that when 
a stepwise method is used there are default criteria for selecting and removing predic-
tors from the model. These default settings are displayed in the options dialog box under 
Probability for Stepwise. The probability thresholds can be changed, but there is really no 
need unless you have a good reason for wanting harsher criteria for variable selection. 
Another default is to arrive at a model after a maximum of 20 iterations (SPSS Tip 8.1). 
Unless you have a very complex model, 20 iterations will be more than adequate. We saw 
in Chapter 7 that regression equations contain a constant that represents the Y intercept 
(i.e. the value of Y when the value of the predictors is 0). By default SPSS includes this 
constant in the model, but it is possible to run the analysis without this constant and this 
has the effect of making the model pass through the origin (i.e. Y is 0 when X is 0). Given 
that we are usually interested in producing a model that best fits the data we have collected, 
there is little point in running the analysis without the constant included.

A classification plot is a histogram of the actual and predicted values of the outcome 
variable. This plot is useful for assessing the fit of the model to the observed data. It is also 
possible to do a Casewise listing of residuals either for any cases for which the standardized 
residual is greater than 2 standard deviations (this value can be changed but the default is sen-
sible), or for all cases. I recommend a more thorough examination of residuals but this option 
can be useful for a quick inspection. You can ask SPSS to display a confidence interval (see 
section 2.5.2) for the odds ratio (see section 8.3.4) Exp(B), and by default a 95% confidence 
interval is used, which is appropriate (if it says anything else then change it to 95%) and a use-
ful statistic to have. More important, you can request the Hosmer-Lemeshow goodness-of-fit 
statistic, which can be used to assess how well the chosen model fits the data.

Figure 8.5
Dialog box 
for obtaining 
residuals 
for logistic 
regression
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The remaining options are fairly unimportant: you can choose to display all statistics and 
graphs at each stage of an analysis (the default), or only after the final model has been fitted. 
Finally, you can display a correlation matrix of parameter estimates for the terms in the model, 
and you can display coefficients and log-likelihood values at each iteration of the parameter 
estimation process – the practical function of doing this is lost on most of us mere mortals!

8.6. Interpreting logistic regression 2

When you have selected all of the options that I’ve just described, click on  and watch 
the output spew out in the viewer window.

8.6.1.  The initial model 2

SPSS Output 8.1 tells us two things. First it tells us how we coded our outcome variable, 
and this table merely reminds us that 0 = not cured, and 1 = cured.3 The second is that it 
tell us how SPSS has coded the categorical predictors. The parameter codings are also given 
for the categorical predictor variable (Intervention). Indicator coding was chosen with two 
categories, and so the coding is the same as the values in the data editor (0 = no treatment, 
1 = treatment). If deviation coding had been chosen then the coding would have been −1 
(Treatment) and 1 (No Treatment). With a simple contrast the codings would have been 
−0.5 (Intervention = No Treatment) and 0.5 (Intervention = Treatment) if  was selected 
as the reference category or vice versa if  was selected as the reference category. The 
parameter codings are important for calculating the probability of the outcome variable 
(P(Y)), but we will come to that later. 

3 These values are the same as the data editor so this table might seem pointless; however, had we used codes other 
than 0 and 1 (e.g. 1 = not cured, 2 = cured) then SPSS changes these to zeros and ones and this table informs you 
of which category is represented by 0 and which by 1. This is important when it comes to interpretation.

Figure 8.6
Dialog box 
for logistic 
regression 
options



283CHAPTER 8   Log ist ic  regress ion

For this first analysis we requested a forward stepwise method4 and so the initial model is 
derived using only the constant in the regression equation. SPSS Output 8.2 tells us about the 
model when only the constant is included (i.e. all predictor variables are omitted). The table 
labelled Iteration History tells us that the log-likelihood of this baseline model (see section 
8.3.1) is 154.08. This represents the fit of the most basic model to the data. When including 
only the constant, the computer bases the model on assigning every participant to a single 
category of the outcome variable. In this example, SPSS can decide either to predict that the 
patient was cured, or that every patient was not cured. It could make this decision arbitrarily, 
but because it is crucial to try to maximize how well the model predicts the observed data, 
SPSS will predict that every patient belongs to the category in which most observed cases fell. 
In this example there were 65 patients who were cured, and only 48 who were not cured. 
Therefore, if SPSS predicts that every patient was cured then this prediction will be correct 
65 times out of 113 (i.e. 58% approx.). However, if SPSS predicted that every patient was 
not cured, then this prediction would be correct only 48 times out of 113 (42% approx.). As 
such, of the two available options it is better to predict that all patients were cured because 
this results in a greater number of correct predictions. The output shows a contingency table 
for the model in this basic state. You can see that SPSS has predicted that all patients are 
cured, which results in 0% accuracy for the patients who were not cured, and 100% accuracy 
for those observed to be cured. Overall, the model correctly classifies 57.5% of patients.

SPSS OuTPuT 8.1

SPSS OuTPuT 8.2

4 Actually, this is a really bad idea when you have an interaction term because to look at an interaction you need 
to include the main effects of the variables in the interaction term. I chose this method only to illustrate how 
stepwise methods work.
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SPSS Output 8.3 summarizes the model (Variables in the Equation), and at this stage 
this entails quoting the value of the constant (b0), which is equal to 0.30. The table labelled 
Variables not in the Equation tells us that the residual chi-square statistic is 9.83 which is 
significant at p < .05 (it labels this statistic Overall Statistics). This statistic tells us that the 
coefficients for the variables not in the model are significantly different from zero – in other 
words, that the addition of one or more of these variables to the model will significantly 
affect its predictive power. If the probability for the residual chi-square had been greater 
than .05 it would have meant that forcing all of the variables excluded from the model into 
the model would not have made a significant contribution to its predictive power.

The remainder of this table lists each of the predictors in turn with a value of Roa’s efficient 
score statistic for each one (column labelled Score). In large samples when the null hypothesis 
is true, the score statistic is identical to the Wald statistic and the likelihood ratio statistic. 
It is used at this stage of the analysis because it is computationally less intensive than the 
Wald statistic and so can still be calculated in situations when the Wald statistic would prove 
prohibitive. Like any test statistic, Roa’s score statistic has a specific distribution from which 
statistical significance can be obtained. In this example, Intervention and the Intervention × 
Duration interaction both have significant score statistics at p < .01 and could potentially 
make a contribution to the model, but Duration alone does not look likely to be a good 
predictor because its score statistic is non-significant p > .05. As mentioned in section 8.5.2, 
the stepwise calculations are relative and so the variable that will be selected for inclusion is 
the one with the highest value for the score statistic that has a significance below .05. In this 
example, that variable will be Intervention because its score statistic (9.77) is the biggest.

8.6.2.  Step 1: intervention 3

As I predicted in the previous section, whether or not an intervention was given to the 
patient (Intervention) is added to the model in the first step. As such, a patient is now clas-
sified as being cured or not based on whether they had an intervention or not (waiting list). 
This can be explained easily if we look at the crosstabulation for the variables Intervention 
and Cured.5 The model will use whether a patient had an intervention or not to predict 
whether they were cured or not by applying the crosstabulation table shown in Table 8.1.

The model predicts that all of the patients who had an intervention were cured. There 
were 57 patients who had an intervention, so the model predicts that these 57 patients 
were cured; it is correct for 41 of these patients, but misclassifies 16 people as ‘cured’ 
who were not cured – see Table 8.1. In addition, this new model predicts that all of the 56 
patients who received no treatment were not cured; for these patients the model is correct 
32 times but misclassifies as ‘not cured’ 24 people who were.

SPSS OuTPuT 8.3

5 The dialog box to produce this table can be obtained by selecting .
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SPSS Output 8.4 shows summary statistics about the new model (which we’ve already 
seen contains Intervention). The overall fit of the new model is assessed using the log- 
likelihood statistic (see section 8.3.1). In SPSS, rather than reporting the log-likelihood itself, 
the value is multiplied by −2 (and sometimes referred to as −2LL): this multiplication is done 
because −2LL has an approximately chi-square distribution and so it makes it possible to 
compare values against those that we might expect to get by chance alone. Remember that 
large values of the log-likelihood statistic indicate poorly fitting statistical models.

At this stage of the analysis the value of −2LL should be less than the value when only 
the constant was included in the model (because lower values of −2LL indicate that the 
model is predicting the outcome variable more accurately). When only the constant was 
included, −2LL = 154.08, but now Intervention has been included this value has been 
reduced to 144.16. This reduction tells us that the model is better at predicting whether 
someone was cured than it was before Intervention was added. The question of how much 
better the model predicts the outcome variable can be assessed using the model chi-square 
statistic, which measures the difference between the model as it currently stands and the 
model when only the constant was included. We saw in section 8.3.1 that we could assess 
the significance of the change in a model by taking the log-likelihood of the new model and 
subtracting the log-likelihood of the baseline model from it. The value of the model chi-
square statistic works on this principle and is, therefore, equal to −2LL with Intervention 
included minus the value of −2LL when only the constant was in the model (154.08 

Table 8.1 Crosstabulation of intervention with outcome status (cured or not)

Intervention or Not (Intervention)

No Treatment Intervention

Cured? (Cured) Not Cured 32 16

Cured 24 41

Total 56 57

SPSS OuTPuT 8.4



286 D iscoVer ing stAt ist ics  Us ing sPss

− 144.16 = 9.92). This value has a chi-square distribution and so its statistical significance 
can be calculated easily.6 In this example, the value is significant at a .05 level and so we 
can say that overall the model is predicting whether a patient is cured or not significantly 
better than it was with only the constant included. The model chi-square is an analogue of 
the F-test for the linear regression (see Chapter 7). In an ideal world we would like to see 
a non-significant overall −2LL (indicating that the amount of unexplained data is minimal) 
and a highly significant model chi-square statistic (indicating that the model including the 
predictors is significantly better than without those predictors). However, in reality it is 
possible for both statistics to be highly significant.

There is a second statistic called the step statistic that indicates the improvement in the 
predictive power of the model since the last stage. At this stage there has been only one 
step in the analysis and so the value of the improvement statistic is the same as the model 
chi-square. However, in more complex models in which there are three or four stages, this 
statistic gives a measure of the improvement of the predictive power of the model since 
the last step. Its value is equal to −2LL at the current step minus −2LL at the previous step. 
If the improvement statistic is significant then it indicates that the model now predicts the 
outcome significantly better than it did at the last step, and in a forward regression this can 
be taken as an indication of the contribution of a predictor to the predictive power of the 
model. Similarly, the block statistic provides the change in −2LL since the last block (for 
use in hierarchical or blockwise analyses).

SPSS Output 8.4 also tells us the values of Cox and Snell’s and Nagelkerke’s R2, but we 
will discuss these a little later. There is also a classification table that indicates how well 
the model predicts group membership; because the model is using Intervention to predict 
the outcome variable, this classification table is the same as Table 8.1. The current model 
correctly classifies 32 patients who were not cured but misclassifies 16 others (it correctly 
classifies 66.7% of cases). The model also correctly classifies 41 patients who were cured 
but misclassifies 24 others (it correctly classifies 63.1% of cases). The overall accuracy of 
classification is, therefore, the weighted average of these two values (64.6%). So, when 
only the constant was included, the model correctly classified 57.5% of patients, but now, 
with the inclusion of Intervention as a predictor, this has risen to 64.6%.

The next part of the output (SPSS Output 8.5) is crucial because it tells us the estimates 
for the coefficients for the predictors included in the model. This section of the output 
gives us the coefficients and statistics for the variables that have been included in the model 
at this point (namely Intervention and the constant). The b-value is the same as the b-value 
in linear regression: they are the values that we need to replace in equation (8.4) to estab-
lish the probability that a case falls into a certain category. We saw in linear regression 
that the value of b represents the change in the outcome resulting from a unit change in 
the predictor variable. The interpretation of this coefficient in logistic regression is very 
similar in that it represents the change in the logit of the outcome variable associated with 
a one-unit change in the predictor variable. The logit of the outcome is simply the natural 
logarithm of the odds of Y occurring.

SPSS OuTPuT 8.5

6 The degrees of freedom will be the number of parameters in the new model (the number of predictors plus 1, 
which in this case with one predictor means 2) minus the number of parameters in the baseline model (which is 1, 
the constant). So, in this case, df = 2 − 1 = 1.
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The crucial statistic is the Wald statistic7 which has a chi-square distribution and tells us 
whether the b coefficient for that predictor is significantly different from zero. If the coef-
ficient is significantly different from zero then we can assume that the predictor is making 
a significant contribution to the prediction of the outcome (Y). We came across the Wald 
statistic in section 8.3.3 and saw that it should be used cautiously because when the regres-
sion coefficient (b) is large, the standard error tends to become inflated, resulting in the 
Wald statistic being underestimated (see Menard, 1995). However, for these data it seems 
to indicate that having the intervention (or not) is a significant predictor of whether the 
patient is cured (note that the significance of the Wald statistic is less than .05).

In section 8.3.2 we saw that we could calculate an analogue of R using equation (8.7). 
For these data, the Wald statistic and its df can be read from SPSS Output 8.5 (9.45 and 1 
respectively), and the original −2LL was 154.08. Therefore, R can be calculated as:

R= ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:45− ð2× 1Þ

154:08

r

= :22

(8.14)

In the same section we saw that Hosmer and Lemeshow’s measure (R L
2) is calculated by 

dividing the model chi-square by the original −2LL. In this example the model chi-square 
after Intervention has been entered into the model is 9.93, and the original −2LL (before 
any variables were entered) was 154.08. So, RL

2 = 9.93/154.08 = .06, which is different to 
the value we would get by squaring the value of R given above (R2 = .222 = 0.05). Earlier on 
in SPSS Output 8.4, SPSS gave us two other measures of R2 that were described in section 
8.3.2. The first is Cox and Snell’s measure, which SPSS reports as .084, and the second is 
Nagelkerke’s adjusted value, which SPSS reports as .113. As you can see, all of these values 
differ, but they can be used as effect size measures for the model.

SELF-TEST  Using equations (8.9) and (8.10) calculate the 
values of Cox and Snell’s and Nagelkerke’s R2 reported 
by SPSS. [Hint: These equations use the log-likelihood, 
whereas SPSS reports –2 × log-likelihood. LL(new) 
is, therefore, 144.16/−2 = −72.08, and LL(baseline) = 
154.08/−2 = −77.04. The sample size, n, is 113.]

The final thing we need to look at is the odds ratio (Exp(B) in the SPSS output), which 
was described in section 8.3.4. To calculate the change in odds that results from a unit 
change in the predictor for this example, we must first calculate the odds of a patient being 
cured given that they didn’t have the intervention. We then calculate the odds of a patient 
being cured given that they did have the intervention. Finally, we calculate the proportion-
ate change in these two odds.

To calculate the first set of odds, we need to use equation (8.12) to calculate the prob-
ability of a patient being cured given that they didn’t have the intervention. The parameter 
coding at the beginning of the output told us that patients who did not have the interven-
tion were coded with a 0, so we can use this value in place of X. The value of b1 has been 
estimated for us as 1.229 (see Variables in the Equation in SPSS Output 8.5), and the 

7 As we have seen, this is simply b divided by its standard error (1.229/.40 = 3.0725); however, SPSS actually 
quotes the Wald statistic squared. For these data 3.07252 = 9.44 as reported (within rounding error) in the table.
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coefficient for the constant can be taken from the same table and is −0.288. We can calcu-
late the odds as:

PðCuredÞ= 1

1+ e− ðb0 + b1X1Þ

= 1

1+ e− − 0:288+ ð1:299× 0Þ½ 

= 0:428

PðNot CuredÞ= 1−PðCuredÞ
= 1−0:428

= 0:572

odds= 0:428

0:572

= 0:748

(8.15)

Now, we calculate the same thing after the predictor variable has changed by one unit. In 
this case, because the predictor variable is dichotomous, we need to calculate the odds of 
a patient being cured, given that they have had the intervention. So, the value of the inter-
vention variable, X, is now 1 (rather than 0). The resulting calculations are as follows:

PðCuredÞ= 1

1+ e− ðb0 + b1X1Þ

= 1

1+ e− − 0:288+ ð1:299× 1Þ½ 

= 0:719

PðNot CuredÞ= 1−PðCuredÞ
= 1−0:719

= 0:281

odds= 0:719

0:281

= 2:559

(8.16)

We now know the odds before and after a unit change in the predictor variable. It is now 
a simple matter to calculate the proportionate change in odds by dividing the odds after a 
unit change in the predictor by the odds before that change:

odds= odds after a unit change in the predictor

original odds

= 2:56

0:75

= 3:41

(8.17)

You should notice that the value of the proportionate change in odds is the same as the 
value that SPSS reports for Exp(B) (allowing for differences in rounding). We can interpret 
the odds ratio in terms of the change in odds. If the value is greater than 1 then it indicates 
that as the predictor increases, the odds of the outcome occurring increase. Conversely, a 
value less than 1 indicates that as the predictor increases, the odds of the outcome occur-
ring decrease. In this example, we can say that the odds of a patient who is treated being 
cured are 3.41 times higher than those of a patient who is not treated.
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In the options (see section 8.5.5), we requested a confidence interval for the odds ratio 
and it can also be found in the output. The way to interpret this confidence interval is the 
same as any other confidence interval (section 2.5.2): if we calculated confidence intervals 
for the value of the odds ratio in 100 different samples, then these intervals would encom-
pass the actual value of the odds ratio in the population (rather than the sample) in 95 
of those samples. In this case, we can be fairly confident that the population value of the 
odds ratio lies between 1.56 and 7.48. However, our sample could be one of the 5% that 
produces a confidence interval that ‘misses’ the population value.

The important thing about this confidence interval is that it doesn’t cross 1 (both values 
are greater than 1). This is important because values greater than 1 mean that as the predic-
tor variable increases, so do the odds of (in this case) being cured. Values less than 1 mean 
the opposite: as the predictor variable increases, the odds of being cured decrease. The 
fact that both limits of our confidence interval are above 1 gives us confidence that the 
direction of the relationship that we have observed is true in the population (i.e. it’s likely 
that having an intervention compared to not increases the odds of being cured). If the 
lower limit had been below 1 then it would tell us that there is a chance that in the popula-
tion the direction of the relationship is the opposite to what we have observed. This would 
mean that we could not trust that our intervention increases the odds of being cured.

The test statistics for Intervention if it were removed from the model are in SPSS Output 
8.6. Now, remember that earlier on I said how the regression would place variables into the 
equation and then test whether they then met a removal criterion. Well, the Model if Term 
Removed part of the output tells us the effects of removal. The important thing to note 
is the significance value of the log-likelihood ratio (log LR). The log LR for this model is 
significant (p < .01) which tells us that removing Intervention from the model would have 
a significant effect on the predictive ability of the model – in other words, it would be a 
very bad idea to remove it!

Finally, we are told about the variables currently not in the model. First of all, the 
residual chi-square (labelled Overall Statistics in the output), which is non-significant, tells 
us that none of the remaining variables have coefficients significantly different from zero. 
Furthermore, each variable is listed with its score statistic and significance value, and for 
both variables their coefficients are not significantly different from zero (as can be seen 
from the significance values of .964 for Duration and .835 for the Duration×Intervention 
interaction). Therefore, no further variables will be added to the model.

SPSS Output 8.7 displays the classification plot that we requested in the options dialog box. 
This plot is a histogram of the predicted probabilities of a patient being cured. If the model 
perfectly fits the data, then this histogram should show all of the cases for which the event has 
occurred on the right-hand side, and all the cases for which the event hasn’t occurred on the 
left-hand side. In other words, all of the patients who were cured should appear on the right 
and all those who were not cured should appear on the left. In this example, the only signifi-
cant predictor is dichotomous and so there are only two columns of cases on the plot. If the 

SPSS OuTPuT 8.6
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predictor is a continuous variable, the cases are spread out across many columns. As a rule of 
thumb, the more that the cases cluster at each end of the graph, the better; such a plot would 
show that when the outcome did actually occur (i.e. the patient was cured) the predicted 
probability of the event occurring is also high (i.e. close to 1). Likewise, at the other end of the 
plot it would show that when the event didn’t occur (i.e. the patient still had a problem) the 
predicted probability of the event occurring is also low (i.e. close to 0). This situation repre-
sents a model that is correctly predicting the observed outcome data. If, however, there are a 
lot of points clustered in the centre of the plot then it shows that for many cases the model is 
predicting a probability of .5 that the event will occur. In other words, for these cases there is 
little more than a 50:50 chance that the data are correctly predicted by the model – the model 
could predict these cases just as accurately by tossing a coin! In SPSS Output 8.7 it’s clear 
that cured cases are predicted relatively well by the model (the probabilities are not that close 
to .5), but for not cured cases the model is less good (the probability of classification is only 
slightly lower than .5 or chance!). Also, a good model will ensure that few cases are misclas-
sified; in this example there are a few Ns (not cureds) appearing on the cured side, but more 
worryingly there are quite a few Cs (cureds) appearing on the N side.

SPSS OuTPuT 8.7

             CRAMMING SAM’S TIPS    

 The overall fit of the final model is shown by the −2 log-likelihood statistic and its associated chi-square statistic. If the 
significance of the chi-square statistic is less than .05, then the model is a significant fit of the data.

 Check the table labelled Variables in the equation to see which variables significantly predict the outcome.

 For each variable in the model, look at the Wald statistic and its significance (which again should be below .05). More impor-
tant though, use the odds ratio, Exp(B), for interpretation. If the value is greater than 1 then as the predictor increases, the 
odds of the outcome occurring increase. Conversely, a value less than 1 indicates that as the predictor increases, the odds 
of the outcome occurring decrease. For the aforementioned interpretation to be reliable the confidence interval of Exp(B) 
should not cross 1!

 Check the table labelled Variables not in the equation to see which variables did not significantly predict the outcome.
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8.6.3.  Listing predicted probabilities 2

It is possible to list the expected probability of the outcome variable occurring based on 
the final model. In section 8.5.4 we saw that SPSS could save residuals and also predicted 
probabilities. SPSS saves these predicted probabilities and predicted group memberships as 
variables in the data editor and names them PRE_1 and PGR _1 respectively. These prob-
abilities can be listed using the  dialog box 
(see section 7.8.6).

SELF-TEST  Use the case summaries function in 
SPSS to create a table for the first 15 cases in the file 
eel.sav showing the values of Cured, Intervention, 
Duration, the predicted probability (PRE_1) and the 
predicted group membership (PGR_1) for each case. 

SPSS Output 8.8 shows a selection of the predicted probabilities (because the only sig-
nificant predictor was a dichotomous variable, there will be only two different probability 
values). It is also worth listing the predictor variables as well to clarify from where the 
predicted probabilities come.

We found from the model that the only significant predictor of being cured was having 
the intervention. This could have a value of either 1 (have the intervention) or 0 (no inter-
vention). If these two values are placed into equation (8.4) with the respective regression 
coefficients, then the two probability values are derived. In fact, we calculated these values 
as part of equation (8.15) and equation (8.16) and you should note that the calculated 
probabilities – P(Cured) in these equations – correspond to the values in PRE_1. These 
values tells us that when a patient is not treated (Intervention = 0, No Treatment), there is a 

SPSS OuTPuT 8.8
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probability of .429 that they will be cured – basically, about 43% of people get better with-
out any treatment. However, if the patient does have the intervention (Intervention = 1,  
yes), there is a probability of .719 that they will get better – about 72% of people treated 
get better. When you consider that a probability of 0 indicates no chance of getting better, 
and a probability of 1 indicates that the patient will definitely get better, the values obtained 
provide strong evidence that having the intervention increases your chances of getting bet-
ter (although the probability of recovery without the intervention is still not bad).

Assuming we are content that the model is accurate and that the intervention has some 
substantive significance, then we could conclude that our intervention (which, to remind 
you, was putting an eel up the anus) is the single best predictor of getting better (not being 
constipated). Furthermore, the duration of the constipation pre-intervention and its inter-
action with the intervention did not significantly predict whether a person got better.

SELF-TEST  Rerun this analysis using the forced entry 
method of analysis – how do your conclusions differ?

8.6.4. Interpreting residuals 2

Our conclusions so far are fine in themselves, but to be sure that the model is a good one, 
it is important to examine the residuals. In section 8.5.4 we saw how to get SPSS to save 
various residuals in the data editor. We can now interpret them.

We saw in the previous chapter that the main purpose of examining residuals in any 
regression is to (1) isolate points for which the model fits poorly, and (2) isolate points 
that exert an undue influence on the model. To assess the former we examine the residuals, 
especially the Studentized residual, standardized residual and deviance statistics. To assess 
the latter we use influence statistics such as Cook’s distance, DFBeta and leverage statistics. 
These statistics were explained in detail in section 7.6 and their interpretation in logistic 
regression is the same; therefore, Table 8.2 summarizes the main statistics that you should 
look at and what to look for, but for more detail consult the previous chapter.

If you request these residual statistics, SPSS saves them as new columns in the data 
editor. You can look at the values in the data editor, or produce a table using the 

 dialog box.
The basic residual statistics for this example (Cook’s distance, leverage, standardized resid-

uals and DFBeta values) are pretty good: note that all cases have DFBetas less than 1, and 
leverage statistics (LEV_1) are very close to the calculated expected value of 0.018. There are 

‘What about the trees?’ protests eco-warrior Oliver. ‘These SPSS out-
puts take up so much room, why don’t you put them on the website 
instead?’ It’s a valid point so I have produced a table of the diagnos-
tic statistics for this example, but it’s in the additional material for this 
chapter on the companion website

OLIVER TWISTED

Please, Sir, can I 
have some more … 
diagnostics?
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also no unusually high values of Cook’s distance (COO_1) which, all in all, means that there 
are no influential cases having an effect on the model. The standardized residuals all have 
values of less than ± 2 and so there seems to be very little here to concern us. 

You should note that these residuals are slightly unusual because they are based on a 
single predictor that is categorical. This is why there isn’t a lot of variability in the values of 
the residuals. Also, if substantial outliers or influential cases had been isolated, you are not 
justified in eliminating these cases to make the model fit better. Instead these cases should 
be inspected closely to try to isolate a good reason why they were unusual. It might simply 
be an error in inputting data, or it could be that the case was one which had a special reason 
for being unusual: for example, there were other medical complications that might contrib-
ute to the constipation that were noted during the patient’s assessment. In such a case, you 
may have good reason to exclude the case and duly note the reasons why.

Table 8.2 Summary of residual statistics saved by SPSS

Label Name Comment

PRE_1 Predicted Value

PGR_1 Predicted Group

COO_1 Cook’s Distance Should be less than 1

LEV_1 Leverage Lies between 0 (no influence) and 1 (complete 
influence). The expected leverage is (k +1)/N, where 
k is the number of predictors and N is the sample 
size. In this case it would be 2/113 = .018

SRE_1 Studentized Residual Only 5% should lie outside ±1.96, and about 1% 
should lie outside ±2.58. Cases above 3 are cause 
for concern and cases close to 3 warrant inspection

ZRE _1 Standardized Residual

DEV_1 Deviance

DFB0_1 DFBeta for the Constant Should be less than 1

DFB1 _1 DFBeta for the First 
Predictor (Intervention)

             CRAMMING SAM’S TIPS    Diagnostic statistics

 You need to look for cases that might be influencing the logistic regression model:

 Look at standardized residuals and check that no more than 5% of cases have absolute values above 2, and that no more 
than about 1% have absolute values above 2.5. Any case with a value above about 3 could be an outlier.

 Look in the data editor for the values of Cook’s distance: any value above 1 indicates a case that might be influencing the 
model.

 Calculate the average leverage (the number of predictors plus 1, divided by the sample size) and then look for values greater 
than twice or three times this average value.

 Look for absolute values of DFBeta greater than 1.
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8.6.5.  Calculating the effect size 2

We’ve already seen (section 8.3.2) that SPSS produces a value of r for each predictor, based 
on the Wald statistic. This can be used as your effect size measure for a predictor; how-
ever, it’s worth bearing in mind what I’ve already said about it: it won’t be accurate when 
the Wald statistic is inaccurate. The better effect size to use is the odds ratio (see section 
18.5.5).

8.7. How to report logistic regression 2

Logistic regression is fairly rarely used in my discipline of psychology, so it’s difficult to 
find any concrete guidelines about how to report one. My personal view is that you should 
report it much the same as linear regression (see section 7.9). I’d be inclined to tabulate the 
results, unless it’s a very simple model. As a bare minimum, report the beta values and their 
standard errors and significance value and some general statistics about the model (such as 
the R2 and goodness-of-fit statistics). I’d also highly recommend reporting the odds ratio 
and its confidence interval. I’d also include the constant so that readers of your work can 
construct the full regression model if they need to. You might also consider reporting the 
variables that were not significant predictors because this can be as valuable as knowing 
about which predictors were significant.

For the example in this chapter we might produce a table like that in Table 8.3. Hopefully 
you can work out from where the values came by looking back through the chapter so far. 
As with multiple regression, I’ve rounded off to 2 decimal places throughout; for the R2 
there is no zero before the decimal point (because these values cannot exceed 1) but for all 
other values less than 1 the zero is present; the significance of the variable is denoted by an 
asterisk with a footnote to indicate the significance level being used.

Table 8.3 How to report logistic regression

95% CI for Odds Ratio

B (SE) Lower Odds Ratio Upper

Included

Constant −0.29 (0.27)

Intervention   1.23* (0.40) 1.56 3.42 7.48

Note: R2 = .06 (Hosmer & Lemeshow), .08 (Cox & Snell), .11 (Nagelkerke). Model χ2(1) = 9.93, p < .01. * p < .01.

8.8. Testing assumptions: another example 2

This example was originally inspired by events in the soccer World Cup of 1998 (a long 
time ago now, but such crushing disappointments are not easily forgotten). Unfortunately 
for me (being an Englishman), I was subjected to watching England get knocked out of the 
competition by losing a penalty shootout. Reassuringly, six years later I watched England get 
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knocked out of the European Championship in another penalty shootout. Even more reas-
suring, a few months ago I saw them fail to even qualify for the European Championship 
(not a penalty shootout this time, just playing like cretins).

Now, if I were the England coach, I’d probably shoot the spoilt over-
paid prima donnas, or I might be interested in finding out what factors 
predict whether or not a player will score a penalty. Those of you who 
hate football can read this example as being factors that predict success 
in a free-throw in basketball or netball, a penalty in hockey or a penalty 
kick in rugby8 or field goal in American football. Now, this research 
question is perfect for logistic regression because our outcome vari-
able is a dichotomy: a penalty can be either scored or missed. Imagine 
that past research (Eriksson, Beckham, & Vassell, 2004; Hoddle, Batty, 
& Ince, 1998) had shown that there are two factors that reliably pre-
dict whether a penalty kick will be missed or scored. The first factor is 
whether the player taking the kick is a worrier (this factor can be meas-
ured using a measure such as the Penn State Worry Questionnaire, PSWQ). The second factor 
is the player’s past success rate at scoring (so, whether the player has a good track record of 
scoring penalty kicks). It is fairly well accepted that anxiety has detrimental effects on the 
performance of a variety of tasks and so it was also predicted that state anxiety might be able 
to account for some of the unexplained variance in penalty success.

This example is a classic case of building on a well-established model, because two predic-
tors are already known and we want to test the effect of a new one. So, 75 football players 
were selected at random and before taking a penalty kick in a competition they were given a 
state anxiety questionnaire to complete (to assess anxiety before the kick was taken). These 
players were also asked to complete the PSWQ to give a measure of how much they worried 
about things generally, and their past success rate was obtained from a database. Finally, a 
note was made of whether the penalty was scored or missed. The data can be found in the 
file penalty.sav, which contains four variables – each in a separate column:

ScoredM : This variable is our outcome and it is coded such that 0 = penalty missed and 
1 = penalty scored.

PSWQM : This variable is the first predictor variable and it gives us a measure of the 
degree to which a player worries.

PreviousM : This variable is the percentage of penalties scored by a particular player in 
their career. As such, it represents previous success at scoring penalties.

AnxiousM : This variable is our third predictor and it is a variable that has not previ-
ously been used to predict penalty success. Anxious is a measure of state anxiety 
before taking the penalty.

SELF-TEST  We learnt how to do hierarchical 
regression in the previous chapter. Try to conduct 
a hierarchical logistic regression analysis on these 
data. Enter Previous and PSWQ in the first block and 
Anxious in the second (forced entry). There is a full 
guide on how to do the analysis and its interpretation in 
the additional material on the companion website.

Why do the England
football team always

miss penalties?

8 Although this would be an unrealistic example because our rugby team, unlike their football counterparts, have 
Jonny Wilkinson who is the lord of penalty kicks and we bow at his great left foot in wonderment (well, I do).
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8.8.1.  Testing for linearity of the logit 3

In this example we have three continuous variables, therefore we have to check that each one is 
linearly related to the log of the outcome variable (Scored). I mentioned earlier in this chapter 
that to test this assumption we need to run the logistic regression but include predictors that 
are the interaction between each predictor and the log of itself (Hosmer & Lemeshow, 1989). 
To create these interaction terms, we need to use  (see section 5.7.3). For 
each variable create a new variable that is the log of the original variable. For example, for 
PSWQ, create a new variable called LnPSWQ by entering this name into the box labelled 
Target Variable and then click on  and give the variable a more descriptive label such 
as Ln(PSWQ). In the list box labelled Function g_roup click on Arithmetic and then in the box 
labelled Functions and Special Variables click on Ln (this is the natural log transformation) and 
transfer it to the command area by clicking on . When the command is transferred, it appears 
in the command area as ‘LN(?)’ and the question mark should be replaced with a variable name 
(which can be typed manually or transferred from the variables list). So replace the question 
mark with the variable PSWQ by either selecting the variable in the list and clicking on  or 
just typing ‘PSWQ’ where the question mark is. Click on  to create the variable.

SELF-TEST  Try creating two new variables that are the 
natural logs of Anxious and Previous. 

To test the assumption we need to redo the analysis exactly the same as before except that 
we should force all variables in a single block (i.e. we don’t need to do it hierarchically), and we 
also need to put in three new interaction terms of each predictor and their logs. Select 

, then in the main dialog box click on Scored and drag 
it to the Dependent box or click on . Specify the main effects by clicking on PSWQ, Anxious 
and Previous while holding down the Ctrl key and then drag them to the Covariates box or 
click on . To input the interactions, click on the two variables in the interaction while holding 
down the Ctrl key (e.g. click on PSWQ then, while holding down Ctrl, click on Ln(PSWQ)) and 
then click on  to move them to the Covariates box. This specifies the PSWQ×Ln(PSWQ) 
interaction; specify the Anxious×Ln(Anxious) and Previous×Ln(Previous) interactions in the 
same way. The completed dialog box is in Figure 8.7 (note that the final Previous×Ln(Previous) 
interaction isn’t visible but it is there!).

SPSS Output 8.9 shows the part of the output that tests the assumption. We’re interested 
only in whether the interaction terms are significant. Any interaction that is significant 
indicates that the main effect has violated the assumption of linearity of the logit. All three 
interactions have significance values greater than .05 indicating that the assumption of 
linearity of the logit has been met for PSWQ, Anxious and Previous.

SPSS OuTPuT 8.9
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8.8.2.  Testing for multicollinearity 3

In section 7.6.2.4 we saw how multicollinearity can affect the parameters of a regression 
model. Logistic regression is just as prone to the biasing effect of collinearity and it is essen-
tial to test for collinearity following a logistic regression analysis. Unfortunately, SPSS does 
not have an option for producing collinearity diagnostics in logistic regression (which can 
create the illusion that it is unnecessary to test for it!). However, you can obtain statistics 
such as the tolerance and VIF by simply running a linear regression analysis using the same 
outcome and predictors. For the penalty example in the previous section, access the Linear 
Regression dialog box by selecting . The completed 
dialog box is shown in Figure 8.8. It is unnecessary to specify lots of options (we are 
using this technique only to obtain tests of collinearity) but it is essential that you click on 

 and then select Collinearity diagnostics in the dialog box. Once you have selected 
, switch off all of the default options, click on  to return to the Linear 

Regression dialog box, and then click on  to run the analysis.
The results of the linear regression analysis are shown in SPSS Output 8.10. From the 

first table we can see that the tolerance values are 0.014 for Previous and Anxious and 
0.575 for PSWQ. In Chapter 7 we saw various criteria for assessing collinearity. To recap, 
Menard (1995) suggests that a tolerance value less than 0.1 almost certainly indicates a 
serious collinearity problem. Myers (1990) also suggests that a VIF value greater than 10 is 
cause for concern and in these data the values are over 70 for both Anxious and Previous. 
It seems from these values that there is an issue of collinearity between the predictor vari-
ables. We can investigate this issue further by examining the collinearity diagnostics.

SPSS Output 8.10 also shows a table labelled Collinearity Diagnostics. In this table, we are 
given the eigenvalues of the scaled, uncentred cross-products matrix, the condition index and 
the variance proportions for each predictor. If any of the eigenvalues in this table are much 
larger than others then the uncentred cross-products matrix is said to be ill-conditioned, 
which means that the solutions of the regression parameters can be greatly affected by small 
changes in the predictors or outcome. In plain English, these values give us some idea as to 
how accurate our regression model is: if the eigenvalues are fairly similar then the derived 
model is likely to be unchanged by small changes in the measured variables. The condition 
indexes are another way of expressing these eigenvalues and represent the square root of the 
ratio of the largest eigenvalue to the eigenvalue of interest (so, for the dimension with the 

Figure 8.7
Dialog box 
for testing the 
assumption 
of linearity 
in logistic 
regression
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largest eigenvalue, the condition index will always be 1). For these data the final dimension 
has a condition index of 81.3, which is massive compared to the other dimensions. Although 
there are no hard and fast rules about how much larger a condition index needs to be to 
indicate collinearity problems, this case clearly shows that a problem exists.

SPSS OuTPuT 8.10
Collinearity 
diagnostics for the 
penalty data

Figure 8.8
Linear 
Regression 
dialog box for the 
penalty data

The final step in analysing this table is to look at the variance proportions. The variance 
of each regression coefficient can be broken down across the eigenvalues and the variance 
proportions tell us the proportion of the variance of each predictor’s regression coefficient 
that is attributed to each eigenvalue. These proportions can be converted to percentages 
by multiplying them by 100 (to make them more easily understood). So, for example, 
for PSWQ 95% of the variance of the regression coefficient is associated with eigenvalue 
number 3, 4% is associated with eigenvalue number 2 and 1% is associated with eigenvalue 
number 1. In terms of collinearity, we are looking for predictors that have high proportions 
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on the same small eigenvalue, because this would indicate that the variances of their regres-
sion coefficients are dependent. So we are interested mainly in the bottom few rows of 
the table (which represent small eigenvalues). In this example, 99% of the variance in the 
regression coefficients of both Anxiety and Previous is associated with eigenvalue number 4 
(the smallest eigenvalue), which clearly indicates dependency between these variables.

The result of this analysis is pretty clear cut: there is collinearity between state anxi-
ety and previous experience of taking penalties and this dependency results in the model 
becoming biased.

SELF-TEST  Using what you learned in Chapter 6, 
carry out a Pearson correlation between all of the 
variables in this analysis. Can you work out why we 
have a problem with collinearity?

If you have identified collinearity then, unfortunately, there’s not much that you can do 
about it. One obvious solution is to omit one of the variables (so, for example, we might 
stick with the model from block 1 that ignored state anxiety). The problem with this should 
be obvious: there is no way of knowing which variable to omit. The resulting theoretical 

Although I have fairly eclectic tastes in music, my favourite 
kind of music is heavy metal. One thing that is mildly irri-
tating about liking heavy music is that everyone assumes 
that you’re a miserable or aggressive bastard. When 
not listening (and often while listening) to heavy metal, I 
spend most of my time researching clinical psychology: 
I research how anxiety develops in children. Therefore, I 
was literally beside myself with excitement when a few 
years back I stumbled on a paper that combined these 
two interests: Lacourse, Claes, and Villeneuve (2001) 
carried out a study to see whether a love of heavy metal 
could predict suicide risk. Fabulous stuff!

Eric Lacourse and his colleagues used questionnaires 
to measure several variables: suicide risk (yes or no), 
marital status of parents (together or divorced/separated), 
the extent to which the person’s mother and father were 
neglectful, self-estrangement/powerlessness (adolescents 
who have negative self-perceptions, bored with life, etc.), 
social isolation (feelings of a lack of support), normlessness 
(beliefs that socially disapproved behaviours can be used 

to achieve certain goals), meaninglessness (doubting that 
school is relevant to gain employment) and drug use. In 
addition, the author measured liking of heavy metal; they 
included the sub-genres of classic (Black Sabbath, Iron 
Maiden), thrash metal (Slayer, Metallica), death/black metal 
(Obituary, Burzum) and gothic (Marilyn Manson). As well as 
liking they measured behavioural manifestations of worship-
ping these bands (e.g. hanging posters, hanging out with 
other metal fans) and vicarious music listening (whether 
music was used when angry or to bring out aggressive 
moods). They used logistic regression to predict suicide risk 
from these predictors for males and females separately.

The data for the female sample are in the file 
Lacourse et al. (2001) Females.sav. Labcoat Leni 
wants you to carry out a logistic regression predicting 
Suicide_Risk from all of the predictors (forced entry). 
(To make your results easier to compare to the pub-
lished results, enter the predictors in the same order 
as Table 3 in the paper: Age, Marital_Status, Mother_
Negligence, Father_Negligence, Self_Estrangement, 
Isolation, Normlessness, Meaninglessness, Drug_
Use, Metal, Worshipping, Vicarious). Create a table of 

the results. Does listening to heavy metal 
make girls suicidal? If not, what does?

Answers are in the additional material on 
the companion website (or look at Table 3 in 
the original article).

LABCOAT LENI’S
REAL RESEARCH 8.1
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conclusions are meaningless because, statistically speaking, any of the collinear variables 
could be omitted. There are no statistical grounds for omitting one variable over another. 
Even if a predictor is removed, Bowerman and O’Connell (1990) recommend that another 
equally important predictor that does not have such strong multicollinearity replaces it. 
They also suggest collecting more data to see whether the multicollinearity can be lessened. 
Another possibility when there are several predictors involved in the multicollinearity is to 
run a factor analysis on these predictors and to use the resulting factor scores as a predictor 
(see Chapter 17). The safest (although unsatisfactory) remedy is to acknowledge the unreli-
ability of the model. So, if we were to report the analysis of which factors predict penalty 
success, we might acknowledge that previous experience significantly predicted penalty 
success in the first model, but propose that this experience might affect penalty taking by 
increasing state anxiety. This statement would be highly speculative because the correlation 
between Anxious and Previous tells us nothing of the direction of causality, but it would 
acknowledge the inexplicable link between the two predictors. I’m sure that many of you 
may find the lack of remedy for collinearity grossly unsatisfying – unfortunately statistics 
is frustrating sometimes!

8.9. Predicting several categories: multinomial 
logistic regression 3

I mentioned earlier that it is possible to use logistic regression to predict membership 
of more than two categories and that this is called multinomial logistic regression. 

Essentially, this form of logistic regression works in the same way as 
binary logistic regression so there’s no need for any additional equa-
tions to explain what is going on (hooray!). The analysis breaks the 
outcome variable down into a series of comparisons between two 
categories (which helps explain why no extra equations are really 
necessary). For example, if you have three outcome categories (A, B 
and C), then the analysis will consist of two comparisons. The form 
that these comparisons take depends on how you specify the analy-
sis: you can compare everything against your first category (e.g. A 
vs. B and A vs. C), or your last category (e.g. A vs. C and B vs. C), or 
a custom category, for example category B (e.g. B vs. A and B vs. C). 
In practice, this means that you have to select a baseline category. 

The important parts of the analysis and output are much the same as we have just seen 
for binary logistic regression.

Let’s look at an example. There has been some recent work looking at how men and 
women evaluate chat-up lines (Bale, Morrison, & Caryl, 2006; Cooper, O’Donnell, Caryl, 
Morrison, & Bale, 2007). This research has looked at how the content (e.g. whether the 
chat-up line is funny, has sexual content or reveals desirable personality characteristics) 
affects how favourably the chat-up line is viewed. To sum up this research, it has found 
that men and women like different things in chat-up lines: men prefer chat-up lines with a 
high sexual content and women prefer chat-up lines that are funny and show good moral 
fibre! 

Imagine that we wanted to assess how successful these chat-up lines were. We did a study 
in which we recorded the chat-up lines used by 348 men and 672 women in a night-club. 
Our outcome was whether the chat-up line resulted in one of the following three events: 
the person got no response or the recipient walked away, the person obtained the recipi-
ent’s phone number, or the person left the night-club with the recipient. Afterwards, the 
chat-up lines used in each case were rated by a panel of judges for how funny they were 

What do I do when
I have more than two
outcome categories?
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(0 = not funny at all, 10 = the funniest thing that I have ever heard), sexu-
ality (0 = no sexual content at all, 10 = very sexually direct) and whether 
the chat-up line reflected good moral vales (0 = the chat-up line does not 
reflect good characteristics, 10 = the chat-up line is very indicative of good 
characteristics). For example, ‘I may not be Fred Flintstone, but I bet I 
could make your bed rock’ would score high on sexual content, low on 
good characteristics and medium on humour; ‘I’ve been looking all over for 
YOU, the woman of my dreams’ would score high on good characteristics, 
low on sexual content and low on humour (but high on cheese had it been 
measured). We predict based on past research that the success of different 
types of chat-up line will interact with gender.

This situation is perfect for multinomial regression. The data are in 
the file Chat-Up Lines.sav. There is one outcome variable (Success) with 
three categories (no response, phone number, go home with recipient) 
and four predictors: funniness of the chat-up line (Funny), sexual content of the chat-up 
line (Sex), degree to which the chat-up line reflects good characteristics (Good_Mate) 
and the gender of the person being chatted up (Gender). 

8.9.1.  Running multinomial logistic regression in SPSS 3

To run multinomial logistic regression in SPSS, first select the main dialog box by selecting 
. In this dialog box there are spaces to place 

the outcome variable (Dependent), any categorical predictors (Factor(s)) and any continu-
ous predictors (Covariate(s)). In this example, the outcome variable is Success so select this 
variable from the list and transfer it to the box labelled Dependent by dragging it there or 
clicking on . We also have to tell SPSS whether we want to compare categories against 
the first category or the last and we do this by clicking on . 

SELF-TEST  Think about the three categories that we 
have as an outcome variable. Which of these categories 
do you think makes most sense to use as a baseline 
category?

By default SPSS uses the last category, but in our case it makes most sense to use the 
first category (No response/walk off) because this category represents failure (the chat-up 
line did not have the desired effect) whereas the other two categories represent some form 
of success (getting a phone number or leaving the club together). To change the reference 
category to be the first category, click on  and then click on  to return to 
the main dialog box (Figure 8.9).

Next we have to specify the predictor variables. We have one categorical predictor 
variable, which is Gender, so select this variable next and transfer it to the box labelled 
Factor(s) by dragging it there or clicking on . Finally, we have three continuous predic-
tors or covariates (Funny, Sex and Good_Mate). You can select all of these variables simul-
taneously by holding down the Ctrl key as you click on each one. Drag all three to the box 
labelled Covariate(s) or click on . For a basic analysis in which all of these predictors are 
forced into the model, this is all we really need to do. However, as we saw in the regression 
chapter you will often want to do a hierarchical regression and so for this analysis we’ll 
look at how to do this in SPSS.

The best cat-up line
ever is ‘Hello, would you

like some fish’?
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8.9.1.1. Customizing the model 3

In binary logistic regression, SPSS allowed us to specify interactions between predictor 
variables in the main dialog box, but with multinomial logistic regression we cannot do 
this. Instead we have to specify what SPSS calls a ‘custom model’, and this is done by click-
ing on  to open the dialog box in Figure 8.10. You’ll see that, by default, SPSS just 
looks at the main effects of the predictor variables. In this example, however, the main 
effects are not particularly interesting: based on past research we don’t necessarily expect 
funny chat-up lines to be successful, but we do expect them to be more successful when 

Figure 8.9
Main dialog box 
for multinomial 
logistic 
regression

Figure 8.10
Specifying a 
custom model
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used on women than on men. What this prediction implies is that the interaction of Gender 
and Funny will be significant. Similarly, chat-up lines with a high sexual content might not 
be successful overall, but expect them to be relatively successful when used on men. Again, 
this means that we might not expect the Sex main effect to be significant, but we do expect 
the Sex×Gender interaction to be significant. As such, we need to enter some interaction 
terms into the model.

To customize the model we first have to select  to activate the rest of the 
dialog box. There are two main ways that we can specify terms: we can force them in (by 
moving them to the box labelled Forced Entry Terms) or we can put them 
into the model using a stepwise procedure (by moving them into the box 
labelled Stepwise terms). If we want to look at interaction terms, we must 
force the main effects into the model. If we look at interactions without 
the corresponding main effects being in the model then we allow the inter-
action term to explain variance that might otherwise be attributed to the 
main effect (in other words, we’re not really looking at the interaction any 
more). So, select all of the variables in the box labelled Factors and covari-
ates by clicking on them while holding down Ctrl (or selecting the first vari-
able and then clicking on the last variable while holding down Shift). There is a drop-down 
list that determines whether you transfer these effects as main effects or interactions. We 
want to transfer them as main effects so set this box to  and click on .

To specify interactions we can do much the same: we can select two or more variables 
and then set the drop-down box to be  and then click on . If, for example, we 
selected Funny and Sex, then doing this would specify the Funny×Sex interaction. We 
can also specify multiple interactions at once. For example, if we selected Funny, Sex and 
Gender and then set the drop-down box to , it would transfer all of the interac-
tions involving two variables (i.e. Funny×Sex, Funny×Gender and Sex×Gender). You get 
the general idea. We could also select  which would automatically enter all main 
effects (Funny, Sex, Good_Mate, Gender), all interactions with two variables (Funny×Sex, 
Funny×Gender, Funny×Good_Mate, Sex×Gender, Sex×Good_Mate, Gender×Good_
Mate), all interactions with three variables (Funny×Sex×Gender, Funny×Sex×Good_
Mate, Good_Mate×Sex×Gender, Funny×Good_Mate×Gender) and the interaction of 
all four variables (Funny×Sex×Gender×Good_Mate).

In this scenario, we want to specify interactions between the ratings of the chat-up 
lines and gender only (we’re not interested in any interactions involving three variables, 
or all four variables). We can either force these interaction terms into the model by 
putting them in the box labelled Forced Entry Terms or we can put them into the model 
using a stepwise procedure (by moving them into the box labelled Stepwise terms). We’re 
going to do the latter, so interactions will be entered into the model only if they are sig-
nificant predictors of the success of the chat-up line. Let’s first enter the Funny×Gender 
interaction first. Click on Funny and then Gender in the Factors and covariates box while 
holding down the Ctrl key. Then next to the box labelled Stepwise terms change the 
drop-down menu to be  and then click on . You should now see Gender×Funny 
(SPSS orders the variables in reverse alphabetical order for some reason) listed in the 
Stepwise terms box. Specify the Sex×Gender and Good_Mate×Gender in the same way. 
Once the three interaction terms have been spec-
ified we can decide how we want to carry out 
the stepwise analysis. There is a drop-down list 
of methods under the heading Stepwise Method 
and this list enables you to choose between for-
ward and stepwise entry, or backward and step-
wise elimination (i.e. terms are removed from the model if they do not make a significant 
contribution). I’ve described these methods elsewhere, so select forward entry for this 
analysis.
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8.9.2.  Statistics  3

If you click on  you will see the dialog box in Figure 8.11, in which you can specify 
certain statistics:

Pseudo R-squareM : This produces the Cox and Snell and Nagelkerke R2 statistics. These 
can be used as effect sizes so this is a useful option to select.

Step summaryM : This option should be selected for the current analysis because we 
have a stepwise component to the model; this option produces a table that summa-
rizes the predictors entered or removed at each step.

Model fitting informationM : This option produces a table that compares the model 
(or models in a stepwise analysis) to the baseline (the model with only the intercept 
term in it and no predictor variables). This table can be useful to compare whether 
the model had improved (from the baseline) as a result of entering the predictors that 
you have.

Information criteriaM : This option produces Akaike’s information criterion (AIC) and 
Schwarz’s Bayesian information criterion (BIC). Both of these statistics are a useful 
way to compare models. Therefore, if you’re using stepwise methods, or if you want 
to compare different models containing different combinations of predictors, then 
select this option. Low values of the AIC and BIC indicate good fit; therefore, models 
with lower values of the AIC or BIC fit the data relatively better than models with 
higher values.

Cell probabilitiesM : This option produces a table of the observed and expected fre-
quencies. This is basically the same as the classification table produced in binary 
logistic regression and is probably worth inspecting.

Classification tableM : This option produces a contingency table of observed versus 
predicted responses for all combinations of predictor variables. I wouldn’t select this 
option, unless you’re running a relatively small analysis (i.e. a small number of pre-
dictors made up of a small number of possible values). In this example, we have three 
covariates with 11 possible values and one predictor (gender) with 2 possible values. 
Tabulating all combinations of these variables will create a very big table indeed.

Goodness-of-fitM : This option is important because it produces Pearson and likelihood-
ratio chi-square statistics for the model.

Monotonicity measuresM : This option is worth selecting only if your outcome variable 
has two outcomes (which in our case it doesn’t). It will produce measures of mono-
tonic association such as the concordance index, which measures the probability that, 
using a previous example, a person who scored a penalty kick is classified by the 
model as having scored and can range from .5 (guessing) to 1 (perfect prediction).

EstimatesM : This option produces the beta values, test statistics and confidence inter-
vals for predictors in the model. This option is very important.

Likelihood ratio testsM : The model overall is tested using likelihood ratio statistics, but 
this option will compute the same test for individual effects in the model. (Basically it 
tells us the same as the significance values for individual predictors.)

Asymptotic correlations and covariancesM : These produce a table of correlations (or 
covariances) between the betas in the model.

Set the options as in Figure 8.11 and click on  to return to the main dialog box.
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8.9.3.  Other options 3

If you click on  you’ll access the dialog box in Figure 8.12 (left). Logistic regression 
works through an iterative process (SPSS Tip 8.1). The options available here relate to this 
process. For example, by default, SPSS will make 100 attempts (iterations) and the thresh-
old for how similar parameter estimates have to be to ‘converge’ can be made more or 
less strict (the default is .0000001). You should leave these options alone unless when you 
run the analysis you get an error message saying something about ‘failing to converge’, in 
which case you could try increasing the Maximum iterations (to 150 or 200), the Parameter 
convergence (to .00001) or Log-likelihood convergence (to greater than 0). However, bear 
in mind that a failure to converge can reflect messy data and forcing the model to converge 
does not necessarily mean that parameters are accurate or stable across samples. 

You can also click on  in the main dialog box to access the dia-
log box in Figure 8.12 (right). The Scale option here can be quite useful; I 
mentioned in section 8.4.4 that overdispersion can be a problem in logistic 
regression because it reduces the standard errors that are used to test the sig-
nificance and construct the confidence intervals of the parameter estimates 
for individual predictors in the model. I also mentioned that this problem 
could be counteracted by rescaling the standard errors. Should you be in a situation where 
you need to do this (i.e. you have run the analysis and found evidence of overdispersion) 

Figure 8.11
Statistics options 
for multinomial 
logistic 
regression
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then you need to come to this dialog box and use the drop-down list to select to correct the 
standard errors by the dispersion parameter based on either the  or  statis-
tic. You should select whichever of these two statistics was bigger in the original analysis 
(because this will produce the bigger correction).

Finally, if you click on  you can opt to save predicted probabilities and predicted 
group membership (the same as for binary logistic regression except that they are called 
Estimated response probabilities and Predicted category (Figure 8.13)).

8.9.4.   Interpreting the multinomial logistic regression  
output 3

Our SPSS output from this analysis begins with a warning (SPSS Tip 8.2). It’s always nice 
after months of preparation, weeks entering data, years reading chapters of stupid statistics 

Figure 8.12
Criteria and 
options for 
multinomial 
logistic 
regression

Figure 8.13
save options 
for multinomial 
logistic 
regression
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textbooks, and sleepless nights with equations slicing at your brain with little pick-axes, to 
see at the start of your analysis: ‘Warning! Warning! abandon ship! flee for your life! bad 
data alert! bad data alert!’ Still, such is life.

Once, like all good researchers, we have ignored the warnings then the first part of the out-
put tells us about our model overall (SPSS Output 8.11). First, because we requested a stepwise 
analysis for our interaction terms, we get a table summarizing the steps in the analysis. You can 
see here that after the main effects were entered (Model 0), the Gender×Funny interaction term 
was entered (Model 1) followed by the Sex×Gender interaction (Model 2). The chi-square 
statistics for each of these steps are highly significant, indicating that these interactions have a 
significant effect on predicting whether a chat-up line was significant (this fact is also self-evident 
because these terms wouldn’t have been entered into the model had they not been significant). 
Also note that the AIC gets smaller as these terms are added to the model, indicating that the fit 
of the model is getting better as these terms are added (the BIC changes less, but still shows that 
having the interaction terms in the model results in a better fit than when just the main effects are 
present). Underneath the step summary, we see the statistics for the final model, which replicates 
the model-fitting criteria from the last line of the step summary table. This table also produces a 
likelihood ratio test of the overall model.

SELF-TEST  What does the log-likelihood measure?

          SPSS T IP  8 .2     Warning! Zero frequencies 3

Sometimes in logistic regression you get a warning about zero frequencies. This relates to the problem that  
I discussed in section 8.4.2 of 80 year old, highly anxious, Buddhist left-handed lesbians (well, incomplete infor-
mation). Imagine we had just looked at gender as a predictor of chat-up line success. We have three outcome 
categories and two gender categories. There are six possible combinations of these two variables and ideally 
we would like a large number of observations in each of these combinations. However, in this case, we have 
three variables (Funny, Sex and Good_Mate) with 11 possible outcomes, and Gender with 2 possible out-
comes and an outcome variable with 3 outcomes. It should be clear that by including the three covariates, the 
number of combinations of these variables has escalated considerably. This error message tells us that there are 
some combinations of these variables for which there are no observations. So, we really have a situation where 
we didn’t find an 80 year old, highly anxious, Buddhist left-handed lesbian; well, we didn’t find (for example) a 
chat-up line that was the most funny, showed the most good characteristics, had the most sexual content and 
was used on both a man and woman! In fact 53.5% of our possible combinations of variables had no data!

Whenever you have covariates it is inevitable that you will have empty cells, so you will get this kind of error 
message. To some extent, given its inevitability, we can just ignore it (in this study, for example, we have 1020 
cases of data and half of our cells are empty, so we would need to at least double the sample size to stand any 
chance of filling those cells). However, it is worth reiterating what I said earlier that empty cells create problems 
and that when you get a warning like this you should look for coefficients that have unreasonably large standard 
errors and if you find them be wary of them.
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 Remember that the log-likelihood is a measure of how much unexplained variability 
there is in the data; therefore, the difference or change in log-likelihood indicates how 
much new variance has been explained by the model. The chi-square test tests the decrease 
in unexplained variance from the baseline model (1149.53) to the final model (871.00), 
which is a difference of 1149.53 − 871 = 278.53. This change is significant, which means 
that our final model explains a significant amount of the original variability (in other words, 
it’s a better fit than the original model).

The next part of the output (SPSS Output 8.12) relates to the fit of the model to the 
data. We know that the model is significantly better than no model, but is it a good fit of 
the data? The Pearson and deviance statistics test the same thing, which is whether the 
predicted values from the model differ significantly from the observed values. If these sta-
tistics are not significant then the predicted values are not significantly different from the 
observed values; in other words, the model is a good fit. Here we have contrasting results: 
the deviance statistic says that the model is a good fit of the data (p = .45, which is much 
higher than .05), but the Pearson test indicates the opposite, namely that predicted values 
are significantly different from the observed values (p < .001). Oh dear.

SELF-TEST  Why might the Pearson and deviance 
statistics be different? What could this be telling us?

One answer is that differences between these statistics can be caused by overdispersion. This 
is a possibility that we need to look into. However, there are other reasons for this conflict: for 
example, the Pearson statistic can be very inflated by low expected frequencies (which could 

SPSS OuTPuT 8.11

SPSS OuTPuT 8.12
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happen because we have so many empty cells as indicated by our warning). One thing that is 
certain is that conflicting deviance and Pearson chi-square statistics are not good news!

Let’s look into the possibility of overdispersion. We can compute the dispersion param-
eters from both statistics:

φPearson =
χ2Pearson
df

= 886:62

614
= 1:44

φDeviance =
χ2Deviance

df
= 617:48

614
= 1:01

Neither of these is particularly high, and the one based on the deviance statistic is close to 
the ideal value of 1. The value based on Pearson is greater than 1, but not close to 2, so 
again does not give us an enormous cause for concern that the data are overdispersed.9 

The output also shows us the two other measures of R2 that were described in section 
8.3.2. The first is Cox and Snell’s measure, which SPSS reports as .24, and the second is 
Nagelkerke’s adjusted value, which SPSS reports as .28. As you can see, they are reasonably 
similar values and represent relatively decent-sized effects.

SPSS Output 8.13 shows the results of the likelihood ratio tests and these can be used 
to ascertain the significance of predictors to the model. The first thing to note is that no 
significance values are produced for covariates that are involved in higher-order interac-
tions (this is why there are blank spaces in the Sig. column for the effects of Funny and 
Sex). This table tells us, though, that gender had a significant main effect on success 
rates of chat-up lines, χ2(2) = 18.54, p < .001, as did whether the chat-up lined showed 
evidence of being a good partner, χ2(2) = 6.32, p < .042. Most interesting are the interac-
tions which showed that the humour in the chat-up line interacted with gender to predict 
success at getting a date, χ2(2) =  35.81, p < .001; also the sexual content of the chat-up 
line interacted with the gender of the person being chatted up in predicting their reaction, 
χ2(2) = 13.45, p < .001. These likelihood statistics can be seen as sorts of overall statistics 
that tell us which predictors significantly enable us to predict the outcome category, but 
they don’t really tell us specifically what the effect is. To see this we have to look at the 
individual parameter estimates.

SPSS OuTPuT 8.13

9 Incidentally, large dispersion parameters can occur for reasons other than overdispersion, for example omitted 
variables or interactions (in this example there were several interaction terms that we could have entered but 
chose not to), and predictors that violate the linearity of the logit assumption.



310 D iscoVer ing stAt ist ics  Us ing sPss

SPSS Output 8.14 shows the individual parameter estimates. Note that the table is split 
into two halves. This is because these parameters compare pairs of outcome categories. 
We specified the first category as our reference category; therefore, the part of the table 
labelled Get Phone Number is comparing this category against the ‘No response/walked 
away’ category. Let’s look at the effects one by one; because we are just comparing two 
categories the interpretation is the same as for binary logistic regression (so if you don’t 
understand my conclusions reread the start of this chapter):

Good_MateM : Whether the chat-up line showed signs of good moral fibre significantly 
predicted whether you got a phone number or no response/walked away, b = 0.13, 
Wald χ2(1) = 6.02, p < .05. The odds ratio tells us that as this variable increases, so as 
chat-up lines show one more unit of moral fibre, the change in the odds of getting a 
phone number (rather than no response/walked away) is 1.14. In short, you’re more 
likely to get a phone number than not if you use a chat-up line that demonstrates good 
moral fibre. (Note that this effect is superseded by the interaction with gender below.)

FunnyM : Whether the chat-up line was funny did not significantly predict whether you 
got a phone number or no response, b = 0.14, Wald χ2(1) = 1.60, p > .05. Note that 
although this predictor is not significant, the odds ratio is approximately the same as 
for the previous predictor (which was significant). So, the effect size is comparable, 
but the non-significance stems from a relatively higher standard error.

GenderM : The gender of the person being chatted up significantly predicted whether 
they gave out their phone number or gave no response, b = −1.65, Wald χ2(1) = 4.27, 
p < .05. Remember that 0 = female and 1 = male, so this is the effect of females com-
pared to males. The odds ratio tells us that as gender changes from female (0) to male 
(1) the change in the odds of giving out a phone number compared to not responding 
is 0.19. In other words, the odds of a man giving out his phone number compared to 
not responding are 1/0.19 = 5.26 times more than for a woman. Men are cheap.

SexM : The sexual content of the chat-up line significantly predicted whether you got 
a phone number or no response/walked away, b = 0.28, Wald χ2(1) = 9.59, p < .01. 
The odds ratio tells us that as the sexual content increased by a unit, the change in 
the odds of getting a phone number (rather than no response) is 1.32. In short, you’re 
more likely to get a phone number than not if you use a chat-up line with high sexual 
content. (But this effect is superseded by the interaction with gender.)

Funny×GenderM : The success of funny chat-up lines depended on whether they were 
delivered to a man or a woman because in interaction these variables predicted 
whether or not you got a phone number, b = 0.49, Wald χ2(1) = 12.37, p < .001. 
Bearing in mind how we interpreted the effect of gender above, the odds ratio tells 
us that as gender changes from female (0) to male (1) in combination with funniness 
increasing, the change in the odds of giving out a phone number compared to not 
responding was 1.64. In other words, as funniness increases, women become more 
likely to hand out their phone number than men. Funny chat-up lines are more suc-
cessful when used on women than men.

Sex×GenderM : The success of chat-up lines with sexual content depended on whether 
they were delivered to a man or a woman because in interaction these variables 
predicted whether or not you got a phone number, b = −0.35, Wald χ2(1) = 10.82, 
p < .01. Bearing in mind how we interpreted the interaction above (note that b is 
negative here but positive above), the odds ratio tells us that as gender changes from 
female (0) to male (1) in combination with the sexual content increasing, the change 
in the odds of giving out a phone number compared to not responding is 0.71. In 
other words, as sexual content increases, women become less likely than men to hand 
out their phone number. Chat-up lines with a high sexual content are more successful 
when used on men than women.
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The bottom half of SPSS Output 8.14 shows the individual parameter estimates for the 
Go Home with Person category compared to the ‘No response/walked away’ category. We 
can interpret these effects as follows:

Good_MateM : Whether the chat-up line showed signs of good moral fibre did not 
significantly predict whether you went home with the date or got a slap in the face, 
b = 0.13, Wald χ2(1) = 2.42, p > .05. In short, you’re not significantly more likely to go 
home with the person if you use a chat-up line that demonstrates good moral fibre.
FunnyM : Whether the chat-up line was funny significantly predicted whether you went 
home with the date or no response, b = 0.32, Wald χ2(1) = 6.46, p < .05. The odds 
ratio tells us that as chat-up lines are one more unit funnier, the change in the odds of 
going home with the person (rather than no response) is 1.38. In short, you’re more 
likely to go home with the person than get no response if you use a chat-up line that 
is funny. (This effect, though, is superseded by the interaction with gender below.)
GenderM : The gender of the person being chatted up significantly predicted whether 
they went home with the person or gave no response, b = −5.63, Wald χ2(1) = 17.93, 
p < .001. The odds ratio tells us that as gender changes from female (0) to male (1), the 
change in the odds of going home with the person compared to not responding is 0.004. 
In other words, the odds of a man going home with someone compared to not respond-
ing are 1/0.004 = 250 times more likely than for a woman. Men are really cheap.
SexM : The sexual content of the chat-up line significantly predicted whether you went 
home with the date or got a slap in the face, b = 0.42, Wald χ2(1) = 11.68, p < .01. The 
odds ratio tells us that as the sexual content increased by a unit, the change in the odds 
of going home with the person (rather than no response) is 1.52: you’re more likely to 
go home with the person than not if you use a chat-up line with high sexual content.
Funny×GenderM : The success of funny chat-up lines depended on whether they were 
delivered to a man or a woman because in interaction these variables predicted 
whether or not you went home with the date, b = 1.17, Wald χ2(1) = 34.63, p < .001. 
The odds ratio tells us that as gender changes from female (0) to male (1) in combina-
tion with funniness increasing, the change in the odds of going home with the person 
compared to not responding is 3.23. As funniness increases, women become more 
likely to go home with the person than men. Funny chat-up lines are more successful 
when used on women compared to men.

SPSS OuTPuT 8.14
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Sex×GenderM : The success of chat-up lines with sexual content depended on whether 
they were delivered to a man or a woman because in interaction these variables pre-
dicted whether or not you went home with the date, b = −0.48, Wald χ2(1) = 8.51, 
p < .01. The odds ratio tells us that as gender changes from female (0) to male (1) 
in combination with the sexual content increasing, the change in the odds of going 
home with the date compared to not responding is 0.62. As sexual content increases, 
women become less likely than men to go home with the person. Chat-up lines with 
sexual content are more successful when used on men than women.

SELF-TEST  Use what you learnt earlier in this chapter 
to check the assumptions of multicollinearity and 
linearity of the logit

8.9.5.  Reporting the results

We can report the results as with binary logistic regression using a table (see Table 8.4). 
Note that I have split the table by the outcome categories being compared, but otherwise it 
is the same as before. These effects are interpreted as in the previous section.

Table 8.4 How to report multinomial logistic regression

95% CI for Odds Ratio

B (SE) Lower Odds Ratio Upper

Phone Number vs. No Response

Intercept

Good Mate

Funny

Gender

Sexual Content

Gender × Funny

Gender × Sex

−1.78 (0.67)**

  .13 (0.05)*

  .14 (0.11)

−1.65 (0.80)*

  .28 (0.09)**

  .49 (0.14)***

 −.35 (0.11)**

1.03

 .93

 .04

1.11

1.24

 .57

1.14

1.15

 .19

1.32

1.64

 .71

1.27

1.43

 .92

1.57

2.15

 .87

Going Home vs. No Response

Intercept

Good Mate

Funny

Gender

Sexual Content

Gender × Funny

Gender × Sex

−4.29 (0.94)***

  .13 (0.08)

  .32 (0.13)*

−5.63 (1.33)***

  .42 (0.12)**

 1.17 (0.20)***

 −.48 (0.16)**

 .97

1.08

 .00

1.20

2.19

 .45

1.14

1.38

 .00

1.52

3.23

 .62

1.34

1.76

 .05

1.93

4.77

 .86

Note: R2 = .24 (Cox & Snell), .28 (Nagelkerke). Model χ2(12) = 278.53, p < .001. * p < .05, ** p < .01, *** p < .001.
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What have I discovered about statistics? 1

At the age of 10 I thought I was going to be a rock star. Such was my conviction about 
this that even today (many years on) I’m still not entirely sure how I ended up not being 
a rock star (lack of talent, not being a very cool person, inability to write songs that 
don’t make people want to throw rotting vegetables at you, are all possible explana-
tions). Instead of the glitzy and fun life that I anticipated I am instead reduced to writing 
chapters about things that I don’t even remotely understand.

We began the chapter by looking at why we can’t use linear regression when we have a 
categorical outcome, but instead have to use binary logistic regression (two outcome catego-
ries) or multinomial logistic regression (several outcome categories). We then looked into 
some of the theory of logistic regression by looking at the regression equation and what it 
means. Then we moved onto assessing the model and talked about the log-likelihood statis-
tic and the associated chi-square test. I talked about different methods of obtaining equiva-
lents to R2 in regression (Hosmer & Lemeshow, Cox & Snell and Nagelkerke). We also 
discovered the Wald statistic and Exp(B). The rest of the chapter looked at three examples 
using SPSS to carry out various logistic regression. So, hopefully, you should have a pretty 
good idea of how to conduct and interpret a logistic regression by now.

Having decided that I was going to be a rock star I put on my little denim jacket with 
Iron Maiden patches sewn onto it and headed off down the rocky road of stardom. The 
first stop was … my school. 

Key terms that I’ve discovered
–2LL
Binary logistic regression
Chi-square distribution
Complete separation
Cox and Snell’s R2

CS 
Exp(B)
Hosmer and Lemeshow’s R2

L

Interaction effect
Likelihood
Logistic regression

Log-likelihood
Main effect
Maximum-likelihood estimation
Multinomial logistic regression
Nagelkerke’s R 2

N

Odds
Polychotomous logistic regression 
Roa’s efficient score statistic
Suppressor effects
Wald statistic

Smart Alex’s tasks

Task 1M : A psychologist was interested in whether children’s understanding of display 
rules can be predicted from their age, and whether the child possesses a theory of 
mind. A display rule is a convention of displaying an appropriate emotion in a given 
situation. For example, if you receive a Christmas present that you don’t like, the 
appropriate emotional display is to smile politely and say ‘Thank you Auntie Kate, 
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I’ve always wanted a rotting cabbage.’ The inappropriate emotional display is to start 
crying and scream ‘Why did you buy me a rotting cabbage you selfish old bag?’ Using 
appropriate display rules has been linked to having a theory of mind (the ability to 
understand what another person might be thinking). To test this theory, children 
were given a false belief task (a task used to measure whether someone has a theory 
of mind), a display rule task (which they could either pass or fail) and their age in 
months was measured. The data are in Display.sav. Run a logistic regression to see 
whether possession of display rule understanding (did the child pass the test: Yes/
No?) can be predicted from possession of a theory of mind (did the child pass the 
false belief task: Yes/No?), age in months and their interaction. 3

Task 2M : Recent research has shown that lecturers are among the most stressed work-
ers. A researcher wanted to know exactly what it was about being a lecturer that 
created this stress and subsequent burnout. She took 467 lecturers and administered 
several questionnaires to them that measured: Burnout (burnt out or not), Perceived 
Control (high score = low perceived control), Coping Style (high score = high ability 
to cope with stress), Stress from Teaching (high score = teaching creates a lot of stress 
for the person), Stress from Research (high score = research creates a lot of stress for 
the person) and Stress from Providing Pastoral Care (high score = providing pastoral 
care creates a lot of stress for the person). The outcome of interest was burnout, and 
Cooper, Sloan, and Williams’ (1988) model of stress indicates that perceived control 
and coping style are important predictors of this variable. The remaining predictors 
were measured to see the unique contribution of different aspects of a lecturer’s work 
to their burnout. Can you help her out by conducting a logistic regression to see 
which factors predict burnout? The data are in Burnout.sav. 3

Task 3M : A health psychologist interested in research into HIV wanted to know the 
factors that influenced condom use with a new partner (relationship less than 1 month 
old). The outcome measure was whether a condom was used (Use: condom used = 1, 
not used = 0). The predictor variables were mainly scales from the Condom Attitude 
Scale (CAS) by Sacco, Levine, Reed, and Thompson (Psychological Assessment: A 
Journal of Consulting and Clinical Psychology, 1991): Gender (gender of the person); 
Safety (relationship safety, measured out of 5, indicates the degree to which the per-
son views this relationship as ‘safe’ from sexually transmitted disease); Sexexp (sexual 
experience, measured out of 10, indicates the degree to which previous experience 
influences attitudes towards condom use); Previous (a measure not from the CAS, 
this variable measures whether or not the couple used a condom in their previous 
encounter, 1 = condom used, 0 = not used, 2 = no previous encounter with this part-
ner); selfcon (self-control, measured out of 9, indicates the degree of self-control that 
a person has when it comes to condom use, i.e. do they get carried away with the 
heat of the moment, or do they exert control?); Perceive (perceived risk, measured 
out of 6, indicates the degree to which the person feels at risk from unprotected sex). 
Previous research (Sacco, Rickman, Thompson, Levine, and Reed, 1993) has shown 
that Gender, relationship safety and perceived risk predict condom use. Carry out 
an appropriate analysis to verify these previous findings, and to test whether self-
control, previous usage and sexual experience can predict any of the remaining vari-
ance in condom use. (1) Interpret all important parts of the SPSS output. (2) How 
reliable is the final model? (3) What are the probabilities that participants 12, 53 and 
75 will use a condom? (4) A female who used a condom in her previous encounter 
with her new partner scores 2 on all variables except perceived risk (for which she 
scores 6). Use the model to estimate the probability that she will use a condom in her 
next encounter. Data are in the file condom.sav. 3

Answers can be found on the companion website. 
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Further reading
Hutcheson, G., & Sofroniou, N. (1999). The multivariate social scientist. London: Sage. Chapter 4.
Menard, S. (1995). Applied logistic regression analysis. Sage university paper series on quantitative 

applications in the social sciences, 07–106. Thousand Oaks, CA: Sage. (This is a fairly advanced 
text, but great nevertheless. Unfortunately, few basic-level texts include logistic regression so 
you’ll have to rely on what I’ve written!)

Miles, J. N. V., & Shevlin, M. (2001). Applying regression and correlation: a guide for students and 
researchers. London: Sage. (Chapter 6 is a nice introduction to logistic regression.)

Online tutorial
The companion website contains the following Flash movie tutorial to accompany this chapter:

 Logistic regression using SPSS
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Figure 9.1
My (probably) 
8th birthday. 
L–R: My brother 
Paul (who still 
hides behind 
cakes rather 
than have his 
photo taken), 
Paul Spreckley, 
Alan Palsey, Clair 
Sparks and me

9.1. What will this chapter tell me? 1

Having successfully slayed audiences at holiday camps around the country, my next step 
towards global domination was my primary school. I had learnt another Chuck Berry song 
(‘Johnny B. Goode’), but also broadened my repertoire to include songs by other artists  
(I have a feeling ‘Over the edge’ by Status Quo was one of them).1 Needless to say, when 
the opportunity came to play at a school assembly I jumped at it. The headmaster tried 
to have me banned,2 but the show went on. It was a huge success (I want to reiterate my 

1 This would have been about 1982, so just before they became the most laughably bad band on the planet. Some 
would argue that they were always the most laughably bad band on the planet, but they were the first band that 
I called my favourite band.
2 Seriously! Can you imagine, a headmaster banning a 10 year old from assembly? By this time I had an electric guitar 
and he used to play hymns on an acoustic guitar; I can assume only that he somehow lost all perspective on the situ-
ation and decided that a 10 year old blasting out some Quo in a squeaky little voice was subversive or something.

9 Comparing two means
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earlier point that 10 year olds are very easily impressed). My classmates carried me around 
the playground on their shoulders. I was a hero. Around this time I had a childhood sweet-
heart called Clair Sparks. Actually, we had been sweethearts since before my new-found 
rock legend status. I don’t think the guitar playing and singing impressed her much, but she 
rode a motorbike (really, a little child’s one) which impressed me quite a lot; I was utterly 
convinced that we would one day get married and live happily ever after. I was utterly 
convinced, that is, until she ran off with Simon Hudson. Being 10, she probably literally 
did run off with him – across the playground. To make this important decision of which 
boyfriend to have, Clair had needed to compare two things (Andy and Simon) to see which 
one was better; sometimes in science we want to do the same thing, to compare two things 
to see if there is evidence that one is different to the other. This chapter is about the process 
of comparing two means using a t-test.

9.2. Looking at differences 1

Rather than looking at relationships between variables, researchers are sometimes inter-
ested in looking at differences between groups of people. In particular, in experimental 
research we often want to manipulate what happens to people so that we can make causal 
inferences. For example, if we take two groups of people and randomly assign one group 
a programme of dieting pills and the other group a programme of sugar pills (which they 
think will help them lose weight) then if the people who take the dieting pills lose more 
weight than those on the sugar pills we can infer that the diet pills caused the weight loss. 
This is a powerful research tool because it goes one step beyond merely observing variables 
and looking for relationships (as in correlation and regression).3 This chapter is the first of 
many that looks at this kind of research scenario, and we start with the simplest scenario: 
when we have two groups, or, to be more specific, when we want to compare two means. 
As we have seen (Chapter 1), there are two different ways of collecting data: we can either 
expose different people to different experimental manipulations (between-group or inde-
pendent design), or take a single group of people and expose them to different experimen-
tal manipulations at different points in time (a repeated-measures design).

9.2.1.   A problem with error bar graphs of  
repeated-measures designs 1

We also saw in Chapter 4 that it is important to visualize group differences using error 
bars. We’re now going to look at a problem that occurs when we graph repeated- 
measures error bars. To do this, we’re going to look at an example that I use throughout this 
chapter (not because I am too lazy to think up different data sets, but because it allows me to 
illustrate various things). The example relates to whether arachnophobia (fear of spiders) is spe-
cific to real spiders or whether pictures of spiders can evoke similar levels of anxiety. Twenty-
four arachnophobes were used in all. Twelve were asked to play with a big hairy tarantula 
spider with big fangs and an evil look in its eight eyes. Their subsequent anxiety was measured. 
The remaining twelve were shown only pictures of the same big hairy tarantula and again their 
anxiety was measured. The data are in Table 9.1 (and spiderBG.sav if you’re having difficulty 
entering them into SPSS yourself). Remember that each row in the data editor represents a 

3 People sometimes get confused and think that certain statistical procedures allow causal inferences and others 
don’t (see Jane Superbrain Box 1.4).
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different participant’s data. Therefore, you need a column representing the group to which 
they belonged and a second column representing their anxiety. The data in Table 9.1 show only 
the group codes and not the corresponding label. When you enter the data into SPSS, remem-
ber to tell the computer that a code of 0 represents the group that were shown the picture, and 
that a code of 1 represents the group that saw the real spider (see section 3.4.2.3).

SELF-TEST  Enter these data into SPSS. Using what 
you learnt in Chapter 4, plot an error bar graph of the 
spider data.

OK, now let’s imagine that we’d collected these data using the same participants; that 
is, all participants had their anxiety rated after seeing the real spider, but also after seeing 

Table 9.1 Data from spiderBG.sav

Participant Group Anxiety

 1 0 30

 2 0 35

 3 0 45

 4 0 40

 5 0 50

 6 0 35

 7 0 55

 8 0 25

 9 0 30

10 0 45

11 0 40

12 0 50

13 1 40

14 1 35

15 1 50

16 1 55

17 1 65

18 1 55

19 1 50

20 1 35

21 1 30

22 1 50

23 1 60

24 1 39
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the picture (in counterbalanced order obviously!). The data would now be arranged dif-
ferently in SPSS. Instead of having a coding variable, and a single column with anxiety 
scores in, we would arrange the data in two columns (one representing the picture condi-
tion and one representing the real condition). The data are displayed in Table 9.2 (and 
spiderRM.sav if you’re having difficulty entering them into SPSS yourself). Note that the 
anxiety scores are identical to the between-group data (Table 9.1) – it’s just that we’re 
pretending that they came from the same people rather than different people.

SELF-TEST  Enter these data into SPSS. Using what 
you learnt in Chapter 4, plot an error bar graph of the 
spider data.

Figure 9.2 shows the error bar graphs from the two different designs. Remember that 
the data are exactly the same, all that has changed is whether the design used the same par-
ticipants (repeated measures) or different (independent). Now, we discovered in Chapter 1  
that repeated-measures designs eliminate some extraneous variables (such as age, IQ and 
so on) and so can give us more sensitivity in the data. Therefore, we would expect our 
graphs to be different: the repeated-measures graph should reflect the increased sensi-
tivity in the design. Looking at the two error bar graphs, can you spot this difference 
between the graphs?

Hopefully you’re answer was ‘no’ because, of course, the graphs are identical! This 
similarity reflects the fact that when you create an error bar graph of repeated-measures 
data, SPSS treats the data as though different groups of participants were used! In other 
words, the error bars do not reflect the ‘true’ error around the means for repeated- 
measures designs. Fortunately we can correct this problem manually, and that’s what we 
will discover now.

Table 9.2 Data from spiderRM.sav

Subject Picture (Anxiety score) Real (Anxiety Score)

 1 30 40

 2 35 35

 3 45 50

 4 40 55

 5 50 65

 6 35 55

 7 55 50

 8 25 35

 9 30 30

10 45 50

11 40 60

12 50 39
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9.2.2.  Step 1: calculate the mean for each participant 2

To correct the repeated-measures error bars, we need to use the compute command that 
we encountered in Chapter 5. To begin with, we need to calculate the average anxiety for 
each participant and so we use the mean function. Access the main compute dialog box 
by selecting . Enter the name Mean into the box labelled Target 
Variable and then in the list labelled Function g_roup select Statistical and then in the list 
labelled Functions and Special Variables select Mean. Transfer this command to the com-
mand area by clicking on . When the command is transferred, it appears in the command 
area as MEAN(?,?); the question marks should be replaced with variable names (which can 
be typed manually or transferred from the variables list). So replace the first question mark 
with the variable picture and the second one with the variable real. The completed dialog 
box should look like the one in Figure 9.3. Click on  to create this new variable, which 
will appear as a new column in the data editor.

9.2.3.  Step 2: calculate the grand mean 2

The grand mean is the mean of all scores (regardless of which condition the score comes 
from) and so for the current data this value will be the mean of all 24 scores. One way to 
calculate this is by hand (i.e. add up all of the scores and divide by 24); however, an easier 
way is to use the means that we have just calculated. The means we have just calculated 
represent the average score for each participant and so if we take the average of those 
mean scores, we will have the mean of all participants (i.e. the grand mean) – phew, there 
were a lot of means in that sentence! OK, to do this we can use a useful little gadget called 
the descriptives command (you could also use the Explore or Frequencies functions that 
we came across in Chapter 5, but as I’ve already covered those we’ll try something dif-
ferent). Access the descriptives command by selecting 

. The dialog box in Figure 9.4 should appear. The descriptives command 
is used to get basic descriptive statistics for variables and by clicking on  a sec-
ond dialog box is activated. Select the variable Mean from the list and transfer it to the 
box labelled Variable(s) by clicking on . Then, use the options dialog box to specify  
only the mean (you can leave the default settings as they are, but it is only the mean in 
which we are interested). If you run this analysis the output should provide you with 

Figure 9.2
Two error bar 
graphs of 
anxiety data in 
the presence of 
a real spider or 
a photograph. 
The data on the 
left are treated 
as though they 
are different 
participants, 
whereas those 
on the right are 
treated as though 
they are from the 
same participants
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some self-explanatory descriptive statistics for each of the three variables (assuming you 
selected all three). You should see that we get the mean of the picture condition, and the 
mean of the real spider condition, but it’s actually the final variable we’re interested in: 
the mean of the picture and spider condition. The mean of this variable is the grand mean, 
and you can see from the summary table that its value is 43.50. We will use this grand 
mean in the following calculations.

Figure 9.3
Using the 
compute function 
to calculate the 
mean of two 
columns

Figure 9.4
Dialog boxes 
and output for 
descriptive 
statistics
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9.2.4.  Step 3: calculate the adjustment factor 2

If you look at the variable labelled Mean, you should notice that the values for each par-
ticipant are different, which tells us that some people had greater anxiety than others did 
across the conditions. The fact that participants’ mean anxiety scores differ represents 
individual differences between different people (so, it represents the fact that some of the 
participants are generally more scared of spiders than others). These differences in natural 
anxiety to spiders contaminate the error bar graphs, which is why if we don’t adjust the 
values that we plot, we will get the same graph as if an independent design had been used. 
Loftus and Masson (1994) argue that to eliminate this contamination we should equalize 
the means between participants (i.e. adjust the scores in each condition such that when we 
take the mean score across conditions, it is the same for all participants). To do this, we 
need to calculate an adjustment factor by subtracting each participant’s mean score from 
the grand mean. We can use the compute function to do this calculation for us. Activate the 
compute dialog box, give the target variable a name (I suggest Adjustment) and then use 
the command ‘43.5-mean’. This command will take the grand mean (43.5) and subtract 
from it each participant’s average anxiety level (see Figure 9.5).

This process creates a new variable in the data editor called Adjustment. The scores in 
the column Adjustment represent the difference between each participant’s mean anxiety 
and the mean anxiety level across all participants. You’ll notice that some of the values are 
positive and these participants are one’s who were less anxious than average. Other partici-
pants were more anxious than average and they have negative adjustment scores. We can 
now use these adjustment values to eliminate the between-subject differences in anxiety.

Figure 9.5
Calculating the 
adjustment factor
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9.2.5.  Step 4: create adjusted values for each variable 2

So far, we have calculated the difference between each participant’s mean score and the 
mean score of all participants (the grand mean). This difference can be used to adjust the 
existing scores for each participant. First we need to adjust the scores in the picture condi-
tion. Once again, we can use the compute command to make the adjustment. Activate the 
compute dialog box in the same way as before, and then title our new variable Picture_
Adjusted (you can then click on  and give this variable a label such as ‘Picture 
Condition: Adjusted Values’). All we are going to do is to add each participant’s score in 
the picture condition to their adjustment value. Select the variable picture and transfer it 
to the command area by clicking on , then click on  and select the variable Adjustment 
and transfer it to the command area by clicking on . The completed dialog box is shown 
in Figure 9.6. Now do the same thing for the variable real: create a variable called Real_
Adjusted that contains the values of real added to the value in the Adjustment column.

Now, the variables Real_Adjusted and Picture_Adjusted represent the anxiety experienced 
in each condition, adjusted so as to eliminate any between-subject differences. If you don’t 
believe me, then use the compute command to create a variable Mean2 that is the average 
of Real_Adjusted and Picture_Adjusted (just like we did in section 9.2.2). You should find 
that the value in this column is the same for every participant, thus proving that the between-
subject variability in means is gone: the value will be 43.50 (the grand mean).

SELF-TEST  Create an error bar chart of the mean  
of the adjusted values that you have just made  
(Real_Adjusted and Picture_Adjusted).

Figure 9.6
Adjusting the 
values of picture
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The resulting error bar graph is shown in Figure 9.7. Compare this graph to the graphs in 
Figure 9.2 – what differences do you see? The first thing to notice is that the means in the two 
conditions have not changed. However, the error bars have changed: they have got smaller. 
Also, whereas in Figure 9.2 the error bars overlap, in this new graph they do not. In Chapter 2 
we discovered that when error bars do not overlap we can be fairly confident that our samples 
have not come from the same population (and so our experimental manipulation has been 
successful). Therefore, when we plot the proper error bars for the repeated-measures data it 
shows the extra sensitivity that this design has: the differences between conditions appear to be 
significant, whereas when different participants are used, there does not appear to be a signifi-
cant difference. (Remember that the means in both situations are identical, but the sampling 
error is smaller in the repeated-measures design.) I expand upon this point in section 9.6.

9.3. The t-test 1

We have seen in previous chapters that the t-test is a very versatile statistic: it can be used to 
test whether a correlation coefficient is different from 0; it can also be used to test whether 
a regression coefficient, b, is different from 0. However, it can also be used to test whether 
two group means are different. It is to this use that we now turn.

The simplest form of experiment that can be done is one with only one independent varia-
ble that is manipulated in only two ways and only one outcome is measured. More often than 
not the manipulation of the independent variable involves having an experimental condition 
and a control group (see Field & Hole, 2003). Some examples of this kind of design are:

Is the movie MM Scream 2 scarier than the original Scream? We could measure heart rates 
(which indicate anxiety) during both films and compare them.

Does listening to music while you work improve your work? You could get some MM

people to write an essay (or book!) listening to their favourite music, and then write 
a different essay when working in silence (this is a control group). You could then 
compare the essay grades!

Figure 9.7
Error bar graph 
of the adjusted 
values of 
spiderRM.sav
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Does listening to Andy’s favourite music improve your MM

work? You could repeat the above but rather than letting 
people work with their favourite music, you could play 
them some of my favourite music (as listed in the acknowl-
edgements) and watch the quality of their work plummet! 

The t-test can analyse these sorts of scenarios. Of course, there 
are more complex experimental designs and we will look at these 
in subsequent chapters. There are, in fact, two different t-tests 
and the one you use depends on whether the independent vari-
able was manipulated using the same participants or different:

Independent-meansMM  t-test: This test is used when there are two experimental condi-
tions and different participants were assigned to each condition (this is sometimes 
called the independent-measures or independent-samples t-test).

Dependent-meansMM  t-test: This test is used when there are two experimental condi-
tions and the same participants took part in both conditions of the experiment (this 
test is sometimes referred to as the matched-pairs or paired-samples t-test).

9.3.1.  Rationale for the t-test 1

Both t-tests have a similar rationale, which is based on what we learnt in Chapter 2 about 
hypothesis testing:

Two samples of data are collected and the sample means calculated. These means MM

might differ by either a little or a lot.

If the samples come from the same population, then we expect their means to be roughly MM

equal (see section 2.5.1). Although it is possible for their means to differ by chance alone, 
we would expect large differences between sample means to occur very infrequently. 
Under the null hypothesis we assume that the experimental manipulation has no effect 
on the participants: therefore, we expect the sample means to be very similar.

We compare the difference between the sample means that we collected to the dif-MM

ference between the sample means that we would expect to obtain if there were no 
effect (i.e. if the null hypothesis were true). We use the standard error (see section 
2.5.1) as a gauge of the variability between sample means. If the standard error is 
small, then we expect most samples to have very similar means. When the standard 
error is large, large differences in sample means are more likely. If the difference 
between the samples we have collected is larger than what we would expect based on 
the standard error then we can assume one of two things:
 There is no effect and sample means in our population fluctuate a lot and we have, 

by chance, collected two samples that are atypical of the population from which 
they came.

 The two samples come from different populations but are typical of their respective 
parent population. In this scenario, the difference between samples represents a 
genuine difference between the samples (and so the null hypothesis is incorrect).

As the observed difference between the sample means gets larger, the more confident MM

we become that the second explanation is correct (i.e. that the null hypothesis should 
be rejected). If the null hypothesis is incorrect, then we gain confidence that the two 
sample means differ because of the different experimental manipulation imposed on 
each sample.

What’s the difference
between the independent

and dependent t-test?
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I mentioned in section 2.6.1 that most test statistics can be thought of as the ‘variance 
explained by the model’ divided by the ‘variance that the model can’t explain’. In other words, 
effect/error. When comparing two means the ‘model’ that we fit to the data (the effect) is the 
difference between the two group means. We saw also in Chapter 2 that means vary from sam-
ple to sample (sampling variation) and that we can use the standard error as a measure of how 
much means fluctuate (in other words, the error in the estimate of the mean). Therefore, we 
can also use the standard error of the differences between the two means as an estimate of the 
error in our model (or the error in the difference between means). Therefore, we calculate the 
t-test using equation (9.1) below. The top half of the equation is the ‘model’ (our model being 
the difference between means is bigger than the expected difference, which in most cases will 
be 0 – we expect the difference between means to be different to zero). The bottom half is the 
‘error’. So, just as I said in Chapter 2, we’re basically getting the test statistic by dividing the 
model (or effect) by the error in the model. The exact form that this equation takes depends on 
whether the same or different participants were used in each experimental condition:

t =

observed difference 
between sample means −

expected difference 
between population means
(if null hypothesis is true)

estimate of the standard error of the 
difference between two sample means

9.3.2.  Assumptions of the t-test 1

Both the independent t-test and the dependent t-test are parametric tests based on the normal 
distribution (see Chapter 5). Therefore, they assume:

The sampling distribution is normally distributed. In the dependent MM t -test this means 
that the sampling distribution of the differences between scores should be normal, not 
the scores themselves (see section 9.4.3).

Data are measured at least at the interval level.MM

The independent t-test, because it is used to test different groups of people, also 
assumes:

Variances in these populations are roughly equal (MM homogeneity of variance).

Scores are independent (because they come from different people).MM

These assumptions were explained in detail in Chapter 5 and, in that chapter, I emphasized 
the need to check these assumptions before you reach the point of carrying out your sta-
tistical test. As such, I won’t go into them again, but it does mean that if you have ignored 
my advice and haven’t checked these assumptions then you need to do it now! SPSS also 
incorporates some procedures into the t-test (e.g. Levene’s test, see section 5.6.1, can be 
done at the same time as the t-test). Let’s now look at each of the two t-tests in turn.

9.4. The dependent t-test 1

If we stay with our repeated-measures data for the time being we can look at the dependent 
t-test, or paired-samples t-test. The dependent t-test is easy to calculate. In effect, we use a 
numeric version of equation (9.1):

(9.1)
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t= D−µD

sD
 ffiffiffiffiffi

N
p (9.2)

Equation (9.2) compares the mean difference between our samples ( D− ) to the difference 
that we would expect to find between population means (µD), and then takes into account 
the standard error of the differences (sD/√N). If the null hypothesis is true, then we expect 
there to be no difference between the population means (hence µD = 0).

9.4.1.  Sampling distributions and the standard error 1

In equation (9.1) I referred to the lower half of the equation as the standard error of differ-
ences. The standard error was introduced in section 2.5.1 and is simply the standard deviation 
of the sampling distribution. Have a look back at this section now to refresh your memory 
about sampling distributions and the standard error. Sampling distributions have several prop-
erties that are important. For one thing, if the population is normally distributed then so is the 
sampling distribution; in fact, if the samples contain more than about 50 scores the sampling 
distribution should be normally distributed. The mean of the sampling distribution is equal to 
the mean of the population, so the average of all possible sample means should be the same as 
the population mean. This property makes sense because if a sample is representative of the 
population then you would expect its mean to be equal to that of the population. However, 
sometimes samples are unrepresentative and their means differ from the population mean. 
On average, though, a sample mean will be very close to the population mean and only rarely 
will the sample mean be substantially different from that of the population. A final property 
of a sampling distribution is that its standard deviation is equal to the standard deviation of 
the population divided by the square root of the number of observations in the sample. As I 
mentioned before, this standard deviation is known as the standard error.

We can extend this idea to look at the differences between sample means. If you were to 
take several pairs of samples from a population and calculate their means, then you could 
also calculate the difference between their means. I mentioned earlier that on average sample 
means will be very similar to the population mean: as such, most samples will have very similar 
means. Therefore, most of the time the difference between sample means from the same pop-
ulation will be zero, or close to zero. However, sometimes one or both of the samples could 
have a mean very deviant from the population mean and so it is possible to obtain large differ-
ences between sample means by chance alone. However, this would happen less frequently.

In fact, if you plotted these differences between sample means as a histogram, you would 
again have a sampling distribution with all of the properties previously described. The 
standard deviation of this sampling distribution is called the standard error of differences. 
A small standard error tells us that most pairs of samples from a population will have very 
similar means (i.e. the difference between sample means should normally be very small). A 
large standard error tells us that sample means can deviate quite a lot from the population 
mean and so differences between pairs of samples can be quite large by chance alone.

9.4.2.  The dependent t-test equation explained 1

In an experiment, a person’s score in condition 1 will be different to their score in condi-
tion 2, and this difference could be very large or very small. If we calculate the differences 
between each person’s score in each condition and add up these differences we would get the 
total amount of difference. If we then divide this total by the number of participants we get 
the average difference (thus how much, on average, a person’s score differed in condition 1 
compared to condition 2). This average difference is D−  in equation (9.2) and it is an indicator 
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of the systematic variation in the data (i.e. it represents the experimental 
effect). We need to compare this systematic variation against some kind of 
measure of the ‘systematic variation that we could naturally expect to find’. 
In Chapter 2 we saw that the standard deviation was a measure of the ‘fit’ 
of the mean to the observed data (i.e. it measures the error in the model 
when the model is the mean), but it does not measure the fit of the mean 
to the population. To do this we need the standard error (see the previous 
section, where we revised this idea).

The standard error is a measure of the error in the mean as a model of 
the population. In this context, we know that if we had taken two random 
samples from a population (and not done anything to these samples) then 

the means could be different just by chance. The standard error tells us by how much these 
samples could differ. A small standard error means that sample means should be quite simi-
lar, so a big difference between two sample means is unlikely. In contrast, a large standard 
error tells us that big differences between the means of two random samples are more likely. 
Therefore it makes sense to compare the average difference between means against the stand-
ard error of these differences. This gives us a test statistic that, as I’ve said numerous times 
in previous chapters, represents model/error. Our model is the average difference between 
condition means, and we divide by the standard error which represents the error associated 
with this model (i.e. how similar two random samples are likely to be from this population).

To clarify, imagine that an alien came down and cloned me millions of times. This 
population is known as Landy of the Andys (this would be possibly the most dreary and 
strangely terrifying place I could imagine). Imagine the aliens were interested in spider 
phobia in this population (because I am petrified of spiders). Everyone in this population 
(my clones) will be the same as me, and would behave in an identical way to me. If you 
took two samples from this population and measured their spider fear, then the means of 
these samples would be the same (we are clones), so the difference between sample means 
would be zero. Also, because we are all identical, then all samples from the population will 
be perfect reflections of the population (the standard error would be zero also). Therefore, 
if we were to get two samples that differed even very slightly then this would be very 
unlikely indeed (because our population is full of cloned Andys). Therefore, a difference 
between samples must mean that they have come from different populations. Of course, in 
reality we don’t have samples that perfectly reflect the population, but the standard error 
gives an idea of how well samples reflect the population from which they came.

Therefore, by dividing by the standard error we are doing two things: (1) standardizing 
the average difference between conditions (this just means that we can compare values of t 
without having to worry about the scale of measurement used to measure the outcome vari-
able); and (2) contrasting the difference between means that we have against the difference 
that we could expect to get based on how well the samples represent the populations from 
which they came. If the standard error is large, then large differences between samples are 
more common (because the distribution of differences is more spread out). Conversely, if the 
standard error is small, then large differences between sample means are uncommon (because 
the distribution is very narrow and centred around zero). Therefore, if the average difference 
between our samples is large, and the standard error of differences is small, then we can be 
confident that the difference we observed in our sample is not a chance result. If the differ-
ence is not a chance result then it must have been caused by the experimental manipulation.

In a perfect world, we could calculate the standard error by taking all possible pairs 
of samples from a population, calculating the differences between their means, and then 
working out the standard deviation of these differences. However, in reality this is impos-
sible. Therefore, we estimate the standard error from the standard deviation of differences 
obtained within the sample (sD) and the sample size (N). Think back to section 2.5.1 where 
we saw that the standard error is simply the standard deviation divided by the square root 
of the sample size; likewise the standard error of differences (σD

− ) is simply the standard 
deviation of differences divided by the square root of the sample size:

How does the
t-test actually work?
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ðσDÞ=
sDffiffiffiffiffi
N

p

If the standard error of differences is a measure of the unsystematic variation within the data, 
and the sum of difference scores represents the systematic variation, then it should be clear that 
the t-statistic is simply the ratio of the systematic variation in the experiment to the unsystematic 
variation. If the experimental manipulation creates any kind of effect, then we would expect 
the systematic variation to be much greater than the unsystematic variation (so at the very least, 
t should be greater than 1). If the experimental manipulation is unsuccessful then we might 
expect the variation caused by individual differences to be much greater than that caused by the 
experiment (so t will be less than 1). We can compare the obtained value of t against the maxi-
mum value we would expect to get by chance alone in a t-distribution with the same degrees of 
freedom (these values can be found in the Appendix); if the value we obtain exceeds this critical 
value we can be confident that this reflects an effect of our independent variable.

9.4.3.   The dependent t-test and the assumption  
of normality 1

We talked about the assumption of normality in Chapter 5 and discovered that parametric 
tests (like the dependent t-test) assume that the sampling distribution is normal. This should 
be true in large samples, but in small samples people often check the normality of their data 
because if the data themselves are normal then the sampling distribution is likley to be also. 
With the dependent t-test we analyse the differences between scores because we’re inter-
ested in the sampling distribution of these differences (not the raw data). Therefore, if you 
want to test for normality before a dependent t-test then what you should do is compute 
the differences between scores, and then check if this new variable is normally distributed 
(or use a big sample and not worry about normality!). It is possible to have two measures 
that are highly non-normal that produce beautifully distributed differences!

SELF-TEST  Using the spiderRM.sav data, compute 
the differences between the picture and real condition 
and check the assumption of normality for these 
differences.

9.4.4.  Dependent t-tests using SPSS 1

Using our spider data (spiderRM.sav), we have 12 spider-phobes who were exposed to a pic-
ture of a spider (picture) and on a separate occasion a real live tarantula (real). Their anxiety 
was measured in each condition (half of the participants were exposed to the picture before 
the real spider while the other half were exposed to the real spider first). I have already 
described how the data are arranged, and so we can move straight on to doing the test itself. 
First, we need to access the main dialog box by selecting  

 (Figure 9.8). Once the dialog box is activated, you need to select pairs of 
variables to be analysed. In this case we have only one pair (Real vs. Picture). To select a pair 
you should click on the first variable that you want to select (in this case Picture), then hold 
down the Ctrl key on the keyboard and select the second (in this case Real). To transfer these 
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two variables to the box labelled Paired Variables click on . (You can also select each vari-
able individually and transfer it by clicking on , but the method using the Ctrl key to select 
both variables is quicker.) If you want to carry out several t-tests then you can select another 
pair of variables, transfer them to the variables list, then select another pair and so on. In this 
case, we want only one test. If you click on  then another dialog box appears that 
gives you the chance to change the width of the confidence interval that is calculated. The 
default setting is for a 95% confidence interval and this is fine; however, if you want to be 
stricter about your analysis you could choose a 99% confidence interval but you run a higher 
risk of failing to detect a genuine effect (a Type II error). You can also select how to deal with 
missing values (see SPSS Tip 6.1). To run the analysis click on .

9.4.5.  Output from the dependent t-test 1

The resulting output produces three tables. SPSS Output 9.1 shows a table of summary 
statistics for the two experimental conditions. For each condition we are told the mean, the 
number of participants (N) and the standard deviation of the sample. In the final column 
we are told the standard error (see section 9.4.1), which is the sample standard deviation 
divided by the square root of the sample size (SE = s/√N), so for the picture condition SE = 
9.2932/√12 = 9.2932/3.4641 = 2.68.

SPSS Output 9.1 also shows the Pearson correlation between the two conditions. When 
repeated measures are used it is possible that the experimental conditions will correlate 
(because the data in each condition come from the same people and so there could be some 
constancy in their responses). SPSS provides the value of Pearson’s r and the two-tailed 
significance value (see Chapter 6). For these data the experimental conditions yield a fairly 
large correlation coefficient (r = .545) but are not significantly correlated because p > .05.

Figure 9.8
Main dialog  
box for paired-
samples t-test
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SPSS Output 9.2 shows the most important of the tables: the one that tells us whether the 
difference between the means of the two conditions was large enough to not be a chance result. 
First, the table tells us the mean difference between scores (this value, i.e. D−  in equation (9.2), is 
the difference between the mean scores of each condition: 40 − 47 = −7). The table also reports 
the standard deviation of the differences between the means and more important the standard 
error of the differences between participants’ scores in each condition (see section 9.4.1). The 
test statistic, t, is calculated by dividing the mean of differences by the standard error of differ-
ences (see equation (9.2): t = −7/2.8311 = −2.47). The size of t is compared against known val-
ues based on the degrees of freedom. When the same participants have been used, the degrees of 
freedom are simply the sample size minus 1 (df = N − 1 = 11). SPSS uses the degrees of freedom 
to calculate the exact probability that a value of t as big as the one obtained could occur if the 
null hypothesis were true (i.e. there was no difference between these means). This probability 
value is in the column labelled Sig. By default, SPSS provides only the two-tailed probability, 
which is the probability when no prediction was made about the direction of group differences. 
If a specific prediction was made (e.g. we might predict that anxiety will be higher when a real 
spider is used) then the one-tailed probability should be reported and this value is obtained by 
dividing the two-tailed probability by 2 (see SPSS Tip 9.1). The two-tailed probability for the 
spider data is very low (p = .031) and in fact it tells us that there is only a 3.1% chance that a 
value of t this big could happen if the null hypothesis were true. We saw in Chapter 2 that we 
generally accept a p < .05 as statistically meaningful; therefore, this t is significant because .031 
is smaller than .05. The fact that the t-value is a negative number tells us that the first condition 
(the picture condition) had a smaller mean than the second (the real condition) and so the real 
spider led to greater anxiety than the picture. Therefore, we can conclude that exposure to a 
real spider caused significantly more reported anxiety in spider-phobes than exposure to a pic-
ture, t(11) = −2.47, p < .05. This result was predicted by the error bar chart in Figure 9.7.

Finally, this output provides a 95% confidence interval for the mean difference. Imagine 
we took 100 samples from a population of difference scores and calculated their means 
(D− ) and a confidence interval for that mean. In 95 of those samples the constructed confi-
dence intervals contains the true value of the mean difference. The confidence interval tells 
us the boundaries within which the true mean difference is likely to lie.4 So, assuming this 
sample’s confidence interval is one of the 95 out of 100 that contains the population value, 

4 We saw in section 2.5.2 that these intervals represent the value of two (well, 1.96 to be precise) standard er-
rors either side of the mean of the sampling distribution. For these data, in which the mean difference was −7 
and the standard error was 2.8311, these limits will be −7 ± (1.96 × 2.8311). However, because we’re using the 
t-distribution, not the normal distribution, we use the critical value of t to compute the confidence intervals. This 
value is (with df = 11 as in this example) 2.201 (two-tailed), which gives us −7 ± (2.201 × 2.8311).

SPSS OuTPuT 9.1

SPSS OuTPuT 9.2
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we can say that the true mean difference lies between −13.23 and −0.77. The importance 
of this interval is that it does not contain zero (i.e. both limits are negative) because this 
tells us that the true value of the mean difference is unlikely to be zero. Crucially, if we 
were to compare pairs of random samples from a population we would expect most of the 
differences between sample means to be zero. This interval tells us that, based on our two 
samples, the true value of the difference between means is unlikely to be zero. Therefore, 
we can be confident that our two samples do not represent random samples from the 
same population. Instead they represent samples from different populations induced by the 
experimental manipulation.

9.4.6.  Calculating the effect size 2

Even though our t-statistic is statistically significant, this doesn’t mean our effect is important 
in practical terms. To discover whether the effect is substantive we need to use what we know 
about effect sizes (see section 2.6.4). I’m going to stick with the effect size r because it’s widely 
understood, frequently used, and yes, I’ll admit it, I actually like it! Converting a t-value into 
an r-value is actually really easy; we can use the following equation (e.g. Rosenthal, 1991; 
Rosnow & Rosenthal, 2005).5

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

t2 + df

s

We know the value of t and the df from the SPSS output and so we can compute r as follows:

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2:4732

−2:4732 + 11

s

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:116

17:116

r
= :60

If you think back to our benchmarks for effect sizes this represents a very large effect (it is 
above .5, the threshold for a large effect). Therefore, as well as being statistically signifi-
cant, this effect is large and so represents a substantive finding.

5 Actually, this will overestimate the effect size because of the correlation between the two conditions. This is quite 
a technical issue and I’m trying to keep things simple here, but bear this in mind and if you’re interested read 
Dunlap, Cortina, Vaslow, and Burke (1996).

          SPSS T IP  9 .1     One- and two-tailed significance in SPSS 1

Some students get a bit upset by the fact that SPSS produces only the two-tailed significance much of the time 
and are confused by why there isn’t an option that can be selected to produce the one-tailed significance. The 
answer is simple: there is no need for an option because the one-tailed probability can be ascertained by divid-
ing the two-tailed significance value by 2. For example, if the two-tailed probability is .107, then the one-tailed 
probability is .107/2 = .054.
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9.4.7.  Reporting the dependent t-test 1

There is a fairly standard way to report any test statistic: you usually state the finding 
to which the test relates and then report the test statistic, its degrees of freedom and the 
probability value of that test statistic. There has also been a recent move (by the American 
Psychological Association among others) to recommend that an estimate of the effect size 
is routinely reported. Although effect sizes are still rather sporadically used, I want to get 
you into good habits so we’ll start thinking about effect sizes now. In this example the SPSS 
output tells us that the value of t was −2.47, that the degrees of freedom on which this was 
based was 11, and that it was significant at p = .031. We can also see the means for each 
group. We could write this as:

	On average, participants experienced significantly greater anxiety to real spiders  
(M = 47.00, SE = 3.18) than to pictures of spiders (M = 40.00, SE = 2.68), t(11) = 
–2.47, p < .05, r = .60.

Note how we’ve reported the means in each group (and standard errors) in the standard 
format. For the test statistic, note that we’ve used an italic t to denote the fact that we’ve 
calculated a t-statistic, then in brackets we’ve put the degrees of freedom and then stated 
the value of the test statistic. The probability can be expressed in several ways: often peo-
ple report things to a standard level of significance (such as .05) as I have done here, but 
sometimes people will report the exact significance. Finally, note that I’ve reported the 
effect size at the end – you won’t always see this in published papers but that’s no excuse 
for you not to report it! 

Try to avoid writing vague, unsubstantiated things like this:

	People were more scared of real spiders (t = −2.47).

More scared than what? Where are the df? Was the result statistically significant? Was the 
effect important (what was the effect size)?

             CRAMMING SAM’S TIPS    

 

M The dependent t-test compares two means, when those means have come from the same entities; for example, if you have 
used the same participants in each of two experimental conditions.

M Look at the column labelled Sig. If the value is less than .05 then the means of the two conditions are significantly different.

M Look at the values of the means to tell you how the conditions differ.

M SPSS provides only the two-tailed significance value; if you want the one-tailed significance just divide the value by 2.

M Report the t-statistic, the degrees of freedom and the significance value. Also report the means and their corresponding 
standard errors (or draw an error bar chart).

M If you’re feeling brave, calculate and report the effect size too!
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9.5. The independent t-test 1

9.5.1.  The independent t-test equation explained 1

The independent t-test is used in situations in which there are two experimental condi-
tions and different participants have been used in each condition. There are two different 
equations that can be used to calculate the t-statistic depending on whether the samples 
contain an equal number of people. As with the dependent t-test we can calculate the 
t-statistic by using a numerical version of equation (9.1); in other words, we are comparing 
the model or effect against the error. With the dependent t-test we could look at differ-
ences between pairs of scores, because the scores came from the same participants and so 
individual differences between conditions were eliminated. Hence, the difference in scores 
should reflect only the effect of the experimental manipulation. Now, when different par-
ticipants participate in different conditions then pairs of scores will differ not just because 
of the experimental manipulation, but also because of other sources of variance (such as 
individual differences between participants’ motivation, IQ, etc.). If we cannot investigate 
differences between conditions on a per participant basis (by comparing pairs of scores as 
we did for the dependent t-test) then we must make comparisons on a per condition basis 
(by looking at the overall effect in a condition – see equation (9.3)):

t=
X1 −X2

 
− µ1 −µ2ð Þ

estimate of the standard error
(9.3)

Instead of looking at differences between pairs of scores, we now look at differences 
between the overall means of the two samples and compare them to the differences we 
would expect to get between the means of the two populations from which the samples 
come. If the null hypothesis is true then the samples have been drawn from the same popu-
lation. Therefore, under the null hypothesis µ1 = µ2 and therefore µ1 − µ2 = 0. Therefore, 
under the null hypothesis the equation becomes:

t= X1 −X2

estimate of the standard error
(9.4)

In the dependent t-test we divided the mean difference between pairs of scores by the 
standard error of these differences. For the independent t-test we are looking at differences 
between groups and so we need to divide by the standard deviation of differences between 
groups. We can still apply the logic of sampling distributions to this situation. Now, imagine 
we took several pairs of samples – each pair containing one sample from the two different 
populations – and compared the means of these samples. From what we have learnt about 
sampling distributions, we know that the majority of samples from a population will have 
fairly similar means. Therefore, if we took several pairs of samples (from different popula-
tions), the differences between the sample means will be similar across pairs. However, often 
the difference between a pair of sample means will deviate by a small amount and very 
occasionally it will deviate by a large amount. If we could plot a sampling distribution of the 
differences between every pair of sample means that could be taken from two populations, 
then we would find that it had a normal distribution with a mean equal to the difference 
between population means (µ1 − µ2). The sampling distribution would tell us by how much 
we can expect the means of two (or more) samples to differ. As before, the standard deviation 
of the sampling distribution (the standard error) tells us how variable the differences between 
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sample means are by chance alone. If the standard deviation is high then large differences 
between sample means can occur by chance; if it is small then only small differences between 
sample means are expected. It, therefore, makes sense that we use the standard error of the 
sampling distribution to assess whether the difference between two sample means is statisti-
cally meaningful or simply a chance result. Specifically, we divide the difference between 
sample means by the standard deviation of the sampling distribution.

So, how do we obtain the standard deviation of the sampling distribution of differences 
between sample means? Well, we use the variance sum law, which states that the variance of 
a difference between two independent variables is equal to the sum of their variances (see, 
for example, Howell, 2006). This statement means that the variance of the sampling distri-
bution is equal to the sum of the variances of the two populations from which the samples 
were taken. We saw earlier that the standard error is the standard deviation of the sampling 
distribution of a population. We can use the sample standard deviations to calculate the 
standard error of each population’s sampling distribution:

SE of sampling distribution of population 1= s1ffiffiffiffiffiffiffi
N1

p

SE of sampling distribution of population 2= s2ffiffiffiffiffiffiffi
N2

p

Therefore, remembering that the variance is simply the standard deviation squared, we can 
calculate the variance of each sampling distribution:

variance of sampling distribution of population 1= s1ffiffiffiffiffiffiffi
N1

p
 2

= s21
N1

variance of sampling distribution of population 2= s2ffiffiffiffiffiffiffi
N2

p
 2

= s22
N2

The variance sum law means that to find the variance of the sampling distribution of dif-
ferences we merely add together the variances of the sampling distributions of the two 
populations:

variance of sampling distribution of differences= s21
N1

+ s22
N2

To find out the standard error of the sampling distribution of differences we merely take 
the square root of the variance (because variance is the standard deviation squared):

SE of the sampling distribution of differences=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
N1

+ s22
N2

 s

Therefore, equation (9.4) becomes: 

t= X1 X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
N1

+ s22
N2

 s
(9.5)

Equation (9.5) is true only when the sample sizes are equal. Often in the social sciences it is 
not possible to collect samples of equal size (because, for example, people may not complete 
an experiment). When we want to compare two groups that contain different numbers of 
participants then equation (9.5) is not appropriate. Instead the pooled variance estimate t-test 
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is used which takes account of the difference in sample size by weighting the variance of each 
sample. We saw in Chapter 1 that large samples are better than small ones because they more 
closely approximate the population; therefore, we weight the variance by the size of sample 
on which it’s based (we actually weight by the number of degrees of freedom, which is the 
sample size minus 1). Therefore, the pooled variance estimate is:

s2p =
ðn1 − 1Þs21 + ðn2 − 1Þs22

n1 + n2 −2

This is simply a weighted average in which each variance is multiplied (weighted) by its degrees 
of freedom, and then we divide by the sum of weights (or sum of the two degrees of free-
dom). The resulting weighted average variance is then just replaced in the t-test equation:

t= X1 −X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p
n1

+
s2p
n2

s

As with the dependent t-test we can compare the obtained value of t against the maximum 
value we would expect to get by chance alone in a t-distribution with the same degrees of free-
dom (these values can be found in the Appendix); if the value we obtain exceeds this critical 
value we can be confident that this reflects an effect of our independent variable. One thing that 
should be apparent from the equation for t is that to compute it you don’t actually need any 
data! All you need are the means, standard deviations and sample sizes (see SPSS Tip 9.2).

The derivation of the t-statistic is merely to provide a conceptual grasp of what we are 
doing when we carry out a t-test on SPSS. Therefore, if you don’t know what on earth I’m 
babbling on about then don’t worry about it (just spare a thought for my cat: he has to listen 
to this rubbish all the time!) because SPSS knows how to do it and that’s all that matters!

          SPSS T IP  9 .2     Computing t from means, SDs and Ns 3

Using syntax, you can compute a t-test in SPSS from only the two group means, the two group stan-
dard deviations and the two group sizes. Open a data editor window and set up six new variables: x1 
(mean of group 1), x2 (mean of group 2), sd1 (standard deviation of group 1), sd2 (standard devia-
tion of group 2), n1 (sample size of group 1) and n2 (sample size of group 2). Type the values of each 
of these in the first row of the data editor. Open a syntax window and type the following:

COMPUTE df = n1+n2-2.
COMPUTE poolvar = (((n1-1)*(sd1 ** 2))+((n2-1)*(sd2 ** 2)))/df.
COMPUTE t = (x1-x2)/sqrt(poolvar*((1/n1)+(1/n2))).
COMPUTE sig = 2*(1-(CDF.T(abs(t),df))) .
Variable labels sig ‘Significance (2-tailed)’.
EXECUTE .

The first line computes the degrees of freedom, the second computes the pooled variance, s2
p, the third com-

putes t and the fourth its two-tailed significance. All of these values will be created in a new column in the data 
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editor. The line beginning ‘Variable labels’ simply labels the significance variable so that we know that it is two-
tailed. If you want to display the results in the SPSS Viewer you could type:

SUMMARIZE
  /TABLES= x1 x2 df t sig 
  /FORMAT=VALIDLIST NOCASENUM TOTAL LIMIT=100
  /TITLE=’T-test’
  /MISSING=VARIABLE
  /CELLS=NONE.

These commands will produce a table of the variables x1, x2, df, t and sig so you’ll see the means of the two 
groups, the degrees of freedom, the value of t and its two-tailed significance.

You can run lots of t-tests at the same time by putting different values for the means, SDs and sample sizes 
in different rows. If you do this, though, I suggest having a string variable called Outcome in the file in which you 
type what was being measured (or some other information so that you can identify to what the t-test relates).

I have put these commands in a syntax file called Independent t from means.sps. My file is actually a bit 
more complicated because it calculates an effect size measure (Cohen’s d). For an example of how to use this 
file see Labcoat Leni’s Real Research 9.1.

In the UK you often see the ‘humorous’ slogan ‘You 
don’t have to be mad to work here, but it helps’ stuck up 
in work places. Well, Board and Fritzon (2005) took this 
a step further by measuring whether 39 senior business 
managers and chief executives from leading UK compa-
nies were mad (well, had personality disorders, PDs). They 
gave them The Minnesota Multiphasic Personality Inventory 
Scales for DSM III Personality Disorders (MMPI-PD), which 
is a well-validated measure of 11 personality disorders: 
Histrionic, Narcissistic, Antisocial, Borderline, Dependent, 

Compulsive, Passive–aggressive, Paranoid, Schizotypal, 
Schizoid and Avoidant. They needed a comparison group, 
and what better one to choose than 317 legally classi-
fied psychopaths at Broadmoor Hospital (a famous high- 
security psychiatric hospital in the UK). 

The authors report the means and SDs for these two 
groups in Table 2 of their paper. Using these values and the 
syntax file Independent t from means.sps we can run t-tests 
on these means. The data from Board and Fritzon’s Table 2 
are in the file Board and Fritzon 2005.sav. Use this file and 
the syntax file to run t-tests to see whether managers score 

higher on personality disorder questionnaires 
than legally classified psychopaths. Report 
these results. What do you conclude? 

Answers are in the additional material 
on the companion website (or look at Table 
2 in the original article).

LABCOAT LENI’S
REAL RESEARCH 9.1

You don’t have to be  
mad here, but it helps 3
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9.5.2.  The independent t-test using SPSS 1

I have probably bored most of you to the point of wanting to eat your own legs by now. 
Equations are boring and that is why SPSS was invented to help us minimize our contact 
with them. Using our spider data again (spiderBG.sav), we have 12 spider-phobes who 
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were exposed to a picture of a spider and 12 different spider-phobes who were exposed 
to a real-life tarantula (the groups are coded using the variable group). Their anxiety was 
measured in each condition (anxiety). I have already described how the data are arranged 
(see section 9.2), so we can move straight on to doing the test itself. First, we need to access 
the main dialog box by selecting  (see 
Figure 9.9). Once the dialog box is activated, select the dependent variable from the list 
(click on anxiety) and transfer it to the box labelled Test Variable(s) by clicking on . If you 
want to carry out t-tests on several dependent variables then you can select other depend-
ent variables and transfer them to the variables list. However, there are good reasons why 
it is not a good idea to carry out lots of tests (see Chapter 10).

Next, we need to select an independent variable (the grouping variable). In this case, 
we need to select group and then transfer it to the box labelled Grouping Variable. When 
your grouping variable has been selected the  button will become active and 
you should click on it to activate the Define Groups dialog box. SPSS needs to know what 
numeric codes you assigned to your two groups, and there is a space for you to type the 
codes. In this example, we coded our picture group as 0 and our real group as 1, and so 
these are the codes that we type. Alternatively you can specify a Cut point in which case 
SPSS will assign all cases greater than or equal to that value to one group and all the values 
below the cut point to the second group. This facility is useful if you are testing different 
groups of participants based on something like a median split (see Jane Superbrain Box 
9.1) – you would simply type the median value in the box labelled Cut point. When you 
have defined the groups, click on  to return to the main dialog box. If you click on 

 then another dialog box appears that gives you the same options as for the depend-
ent t-test. To run the analysis click on .

Figure 9.9
Dialog boxes 
for the 
independent - 
samples t-test
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9.5.3.  Output from the independent t-test 1

The output from the independent t-test contains only two tables. The first table (SPSS Output 
9.3) provides summary statistics for the two experimental conditions. From this table, we 
can see that both groups had 12 participants (column labelled N). The group who saw the 
picture of the spider had a mean anxiety of 40, with a standard deviation of 9.29. What’s 
more, the standard error of that group (the standard deviation of the sampling distribution) 
is 2.68 (SE = 9.293/√12 = 9.293/3.464 = 2.68). In addition, the table tells us that the aver-
age anxiety level in participants who were shown a real spider was 47, with a standard devia-
tion of 11.03 and a standard error of 3.18 (SE = 11.029/√12 = 11.029/3.464 = 3.18).

The second table of output (SPSS Output 9.4) contains the main test statistics. The 
first thing to notice is that there are two rows containing values for the test statistics: one 

the median (50%) then we’re saying that Jip and Kiki 
are the same (they get a score of 1 = phobic) and 
Peter and Birgit are the same (they both get a score 
of 0 = not phobic). In reality, Kiki and Peter are the 
most similar of the four people, but they have been 
put in different groups. So, median splits change the 
original information quite dramatically (Peter and Kiki 
are originally very similar but become very different 
after the split, Jip and Kiki are relatively dissimilar 
originally but become identical after the split).

2 Effect sizes get smaller: if you correlate two con-
tinuous variables then the effect size will be larger 
than if you correlate the same variables after one 
of them has been dichotomized. Effect sizes also 
get smaller in ANOVA and regression.  

3 There is an increased chance of finding spurious 
effects.

So, if your supervisor has just told you to do a median 
split, have a good think about whether it is the right thing to 
do (and read MacCallum et al.’s paper). One of the rare situa-
tions in which dichotomizing a continuous variable is justified, 
according to MacCallum et al., is when there is a clear theo-
retical rationale for distinct categories of people based on a 
meaningful break point (i.e. not the median); for example, 
phobic versus not phobic based on diagnosis by a trained 
clinician would be a legitimate dichotomization of anxiety.

Often in research papers you see that people have analy-
sed their data using a ‘median split’. In our spider phobia 
example, this means that you measure scores on a spi-
der phobia questionnaire and calculate the median. You 
then classify anyone with a score above the median as a 
‘phobic’, and those below the median as ‘non-phobic’. In 
doing this you ‘dichotomize’ a continuous variable. This 
practice is quite common, but is it sensible?

MacCallum, Zhang, Preacher, and Rucker (2002) 
wrote a splendid paper pointing out various problems on 
turning a perfectly decent continuous variable into a cat-
egorical variable:

1 Imagine there are four people: Peter, Birgit, Jip and 
Kiki. We measure how scared of spiders they are as 
a percentage and get Jip (100%), Kiki (60%), Peter 
(40%) and Birgit (0%). If we split these four people at 

JANE SUPERBRAIN 9.1

Are median splits the devil’s work? 2

SPSS OuTPuT 9.3
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row is labelled Equal variances assumed, while the other is labelled Equal variances not 
assumed. In Chapter 5, we saw that parametric tests assume that the variances in experi-
mental groups are roughly equal. Well, in reality there are adjustments that can be made 
in situations in which the variances are not equal. The rows of the table relate to whether 
or not this assumption has been broken. How do we know whether this assumption has 
been broken?

We saw in section 5.6.1 that we can use Levene’s test to see whether variances are dif-
ferent in different groups, and SPSS produces this test for us. Remember that Levene’s test 
is similar to a t-test in that it tests the hypothesis that the variances in the two groups are 
equal (i.e. the difference between the variances is zero). Therefore, if Levene’s test is signif-
icant at p ≤ .05, we can gain confidence in the hypothesis that the variances are significantly 
different and that the assumption of homogeneity of variances has been violated. If, how-
ever, Levene’s test is non-significant (i.e. p > .05) then we do not have sufficient evidence 
to reject the null hypothesis that the difference between the variances is zero – in other 
words, we can assume that the variances are roughly equal and the assumption is tenable. 
For these data, Levene’s test is non-significant (because p = .386, which is greater than 
.05) and so we should read the test statistics in the row labelled Equal variances assumed. 
Had Levene’s test been significant, then we would have read the test statistics from the row 
labelled Equal variances not assumed.

Having established that the assumption of homogeneity of variances is met, we can move 
on to look at the t-test itself. We are told the mean difference X1 −X2 =40− 47=−7

 
 

and the standard error of the sampling distribution of differences, which is calculated using 
the lower half of equation (9.5):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
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+ s22
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 s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:292

12
+ 11:032

12

 s

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:19+ 10:14ð Þ

p

=
ffiffiffiffiffiffiffiffiffiffiffiffi
17:33

p

= 4:16

The t-statistic is calculated by dividing the mean difference by the standard error of the sam-
pling distribution of differences (t = −7/4.16 = −1.68). The value of t is then assessed against 
the value of t you might expect to get by chance when you have certain degrees of freedom. 
For the independent t-test, degrees of freedom are calculated by adding the two sample sizes 
and then subtracting the number of samples (df = N1 + N2 − 2 = 12 + 12 − 2 = 22). SPSS 
produces the exact significance value of t, and we are interested in whether this value is less 
than or greater than .05. In this case the two-tailed value of p is .107, which is greater than 
.05, and so we would have to conclude that there was no significant difference between the 
means of these two samples. In terms of the experiment, we can infer that spider-phobes are 
made equally anxious by pictures of spiders as they are by the real thing.

SPSS OuTPuT 9.4
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Now, we use the two-tailed probability when we have made no specific prediction about 
the direction of our effect (see section 2.6.2). For example, if we were unsure whether a 
real spider would induce more or less anxiety, then we would have to use a two-tailed test. 
However, often in research we can make specific predictions about which group has the 
highest mean. In this example, it is likely that we would have predicted that a real spider 
would induce greater anxiety than a picture and so we predict that the mean of the real group 
would be greater than the mean of the picture group. In this case, we can use a one-tailed test 
(for more discussion of this issue see section 2.6.2). The one-tailed probability is .107/2 = 
.054 (see SPSS Tip 9.1). The one-tailed probability is still greater than .05 (albeit by a small 
margin) and so we would still have to conclude that spider-phobes’ anxiety when presented 
with a real spider was not significantly different to spider-phobes who were presented with a 
picture of the same spider. This result was predicted by the error bar chart in Figure 9.2.

9.5.4.  Calculating the effect size 2

To discover whether our effect is substantive we can use the same equation as in section 
9.4.6 to convert the t-statistics into a value of r. We know the value of t and the df from the 
SPSS output and so we can compute r as follows:

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1:6812

−1:6812 + 22

s

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:826

24:826

r

= :34

If you think back to our benchmarks for effect sizes this represents a medium effect (it is around 
.3, the threshold for a medium effect). Therefore, even though the effect was non-significant, it 
still represented a fairly substantial effect. You may also notice that the effect has shrunk, which 
may seem slightly odd given that we used exactly the same data (but see section 9.6)! 

9.5.5.  Reporting the independent t-test 1

The rules that I made up, erm, I mean, reported, for the dependent t-test pretty much apply 
for the independent t-test. The SPSS output tells us that the value of t was −1.68, that the 
number of degrees of freedom on which this was based was 22, and that it was not signifi-
cant at p < .05. We can also see the means for each group. We could write this as:

	On average, participants experienced greater anxiety to real spiders (M = 47.00, 
SE = 3.18) than to pictures of spiders (M = 40.00, SE = 2.68). This difference was 
not significant t(22) = −1.68, p > .05; however, it did represent a medium-sized effect  
r = .34.

Note how we’ve reported the means in each group (and standard errors) as before. For 
the test statistic everything is much the same as before except that I’ve had to report that 
p was greater than (>) .05 rather than less than (<). Finally, note that I’ve commented on 
the effect size at the end.
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9.6. Between groups or repeated measures? 1

The two examples in this chapter are interesting (honestly!) because they illustrate the dif-
ference between data collected using the same participants and data collected using different 
participants. The two examples in this chapter use the same scores in each condition. When 
analysed as though the data came from the same participants the result was a significant 
difference between means, but when analysed as though the data came from different par-
ticipants there was no significant difference between group means. This may seem like a puz-
zling finding – after all the numbers were identical in both examples. What this illustrates is 
the relative power of repeated-measures designs. When the same participants are used across 
conditions the unsystematic variance (often called the error variance) is reduced dramatically, 
making it easier to detect any systematic variance. It is often assumed that the way in which 
you collect data is irrelevant, but I hope to have illustrated that it can make the difference 
between detecting a difference and not detecting one. In fact, researchers have carried out 
studies using the same participants in experimental conditions, then repeated the study using 
different participants in experimental conditions, then used the method of data collection as 
an independent variable in the analysis. Typically, they have found that the method of data 
collection interacts significantly with the results found (see Erlebacher, 1977).

9.7. The t-test as a general linear model 2

A lot of you might think it’s odd that I’ve chosen to represent the effect size for my t-tests 
using r, the correlation coefficient. In fact you might well be thinking ‘but correlations show 
relationships, not differences between means’. I used to think this too until I read a fantastic 
paper by Cohen (1968), which made me realize what I’d been missing; the complex, thorny, 
weed-infested and large Andy-eating tarantula-inhabited world of statistics suddenly turned 
into a beautiful meadow filled with tulips and little bleating lambs all jumping for joy at the 
wonder of life. Actually, I’m still a bumbling fool trying desperately to avoid having the blood 

             CRAMMING SAM’S TIPS    

 

M The independent t-test compares two means, when those means have come from different groups of entities; for example, 
if you have used different participants in each of two experimental conditions.

M Look at the column labelled levene’s Test for equality of Variance. If the Sig. value is less than .05 then the assumption of 
homogeneity of variance has been broken and you should look at the row in the table labelled equal variances not assumed. 
If the Sig. value of Levene’s test is bigger than .05 then you should look at the row in the table labelled equal variances 
assumed.

M Look at the column labelled Sig. If the value is less than .05 then the means of the two groups are significantly different.

M Look at the values of the means to tell you how the groups differ.

M SPSS provides only the two-tailed significance value; if you want the one-tailed significance just divide the value by 2.

M Report the t-statistic, the degrees of freedom and the significance value. Also report the means and their corresponding 
standard errors (or draw an error bar chart).

M Calculate and report the effect size. Go on, you can do it!
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sucked from my flaccid corpse by the tarantulas of statistics, but it was a good paper! What 
I’m about to say will either make no sense at all, or might help you to appreciate what I’ve 
said in most of the chapters so far: all statistical procedures are basically the same, they’re just 
more or less elaborate versions of the correlation coefficient!

In Chapter 7 we saw that the t-test was used to test whether the regression coefficient 
of a predictor was equal to zero. The experimental design for which the independent t-test 
is used can be conceptualized as a regression equation (after all, there is one independent 
variable (predictor) and one dependent variable (outcome)). If we want to predict our out-
come, then we can use the general equation that I’ve mentioned at various points:

outcomei = ðmodelÞ+ errori

If we want to use a linear model, then we saw that this general equation becomes equa-
tion (7.2) in which the model is defined by the slope and intercept of a straight line. 
Equation (9.6) shows a very similar equation in which Ai is the dependent variable (out-
come), b0 is the intercept, b1 is the weighting of the predictor and Gi is the independent 
variable (predictor). Now, I’ve also included the same equation but with some of the letters 
replaced with what they represent in the spider experiment (so, A = anxiety, G = group). 
When we run an experiment with two conditions, the independent variable has only two 
values (group 1 or group 2). There are several ways in which these groups can be coded (in 
the spider example we coded group 1 with the value 0 and group 2 with the value 1). This 
coding variable is known as a dummy variable and values of this variable represent groups 
of entities. We have come across this coding in section 7.11:

Ai = b0 + b1Gi + εi

Anxietyi = b0 + b1groupi + εi
(9.6)

Using the spider example, we know that the mean anxiety of the picture group was 40, 
and that the group variable is equal to 0 for this condition. Look at what happens when the 
group variable is equal to 0 (the picture condition): equation (9.6) becomes (if we ignore 
the residual term):

XPicture = b0 + ðb1 ×0Þ

b0 =XPicture

b0 = 40

Therefore, b0 (the intercept) is equal to the mean of the picture group (i.e. it is the mean 
of the group coded as 0). Now let’s look at what happens when the group variable is equal 
to 1. This condition is the one in which a real spider was used, therefore the mean anxiety 
(X− Real) of this condition was 47. Remembering that we have just found out that b0 is equal 
to the mean of the picture group (X− Picture ), equation (9.6) becomes:

XReal = b0 + ðb1 × 1Þ

XReal =XPicture + b1

b1 =XReal −XPicture

= 47− 40

= 7
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b1, therefore, represents the difference between the group means. As such, we can represent 
a two-group experiment as a regression equation in which the coefficient of the independent 
variable (b1) is equal to the difference between group means, and the intercept (b0) is equal 
to the mean of the group coded as 0. In regression, the t-test is used to ascertain whether the 
regression coefficient (b1) is equal to 0, and when we carry out a t-test on grouped data we, 
therefore, test whether the difference between group means is equal to 0. 

SELF-TEST  To prove that I’m not making it up as  
I go along, run a regression on the data in spiderBG.
sav with group as the predictor and anxiety as the 
outcome. Group is coded using zeros and ones and 
represents the dummy variable described above.

The resulting SPSS output should contain the regression summary table shown in SPSS 
Output 9.5. The first thing to notice is the value of the constant (b0): its value is 40, the 
same as the mean of the base category (the picture group). The second thing to notice is 
that the value of the regression coefficient b1 is 7, which is the difference between the two 
group means (47 − 40 = 7). Finally, the t-statistic, which tests whether b1 is significantly 
different from zero, is the same as for the independent t-test (see SPSS Output 9.4) and so 
is the significance value.6

Coefficientsa

40.000 2.944 13.587 .000
7.000 4.163 .337 1.681 .107

(Constant)
Condition

Model

1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Anxietya. 

This section has demonstrated that differences between means can be represented in 
terms of linear models and this concept is essential in understanding the following chapters 
on the general linear model.

9.8. What if my data are not normally  
distributed? 2

We’ve seen in this chapter that there are adjustments that can be made to the t-test when 
the assumption of homogeneity of variance is broken, but what about when you have non-
normally distributed data? The first thing to note is that although a lot of early evidence 
suggested that t was accurate when distributions were skewed, the t-test can be biased when 

6 In fact, the value of the t-statistic is the same but has a positive sign rather than negative. You’ll remember from 
the discussion of the point–biserial correlation in section 6.5.5 that when you correlate a dichotomous variable 
the direction of the correlation coefficient depends entirely upon which cases are assigned to which groups. 
Therefore, the direction of the t-statistic here is similarly influenced by which group we select to be the base 
category (the category coded as 0).

SPSS OuTPuT 9.5
Regression analysis 
of between-group 
spider data
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the assumption of normality is not met (Wilcox, 2005). Second, we need to remember that 
it’s the shape of the sampling distribution that matters, not the sample data. One option 
then is to use a big sample and rely on the central limit theorem (section 2.5.1) which says 
that the sampling distribution should be normal when samples are big. You could also try to 
correct the distribution using a transformation (but see Jane Superbrain Box 5.1). Another 
useful solution is to use one of a group of tests commonly referred to as non-parametric 
tests. These tests have fewer assumptions than their parametric counterparts and so are 
useful when your data violate the assumptions of parametric data described in Chapter 5. 
Some of these tests are described in Chapter 15. The non-parametric counterpart of the 
dependent t-test is called the Wilcoxon signed-rank Test (section 15.4), and the independent 
t-test has two non-parametric counterparts (both extremely similar) called the Wilcoxon 
rank-sum test and the Mann–Whitney test (section 15.3). I’d recommend reading these sec-
tions before moving on.

A final option is to use robust methods (see section 5.7.4). There are various robust 
ways to test differences between means that involve using trimmed means or a bootstrap. 
However, SPSS doesn’t do any of these directly. Should you wish to do these then plugin 
for SPSS. Look at the companion website for some demos of how to use the R plugin. 

What have I discovered about statistics? 1

We started this chapter by looking at my relative failures as a human being compared to 
Simon Hudson before investigating some problems with the way SPSS produces error 
bars for repeated-measures designs. We then had a look at some general conceptual fea-
tures of the t-test, a parametric test that’s used to test differences between two means. 
After this general taster, we moved on to look specifically at the dependent t-test (used 
when your conditions involve the same entities). I explained how it was calculated, how 
to do it on SPSS and how to interpret the results. We then discovered much the same 
for the independent t-test (used when your conditions involve different entities). After 
this I droned on excitedly about how a situation with two conditions can be conceptual-
ized as a general linear model, by which point those of you who have a life had gone to 
the pub for a stiff drink. My excitement about things like general linear models could 
explain why Clair Sparks chose Simon Hudson all those years ago. Perhaps she could see 
the writing on the wall! Fortunately, I was a ruthless pragmatist at the age of 10, and the 
Clair Sparks episode didn’t seem to concern me unduly; I just set my sights elsewhere 
during the obligatory lunchtime game of kiss chase. These games were the last I would 
see of women for quite some time …

Key terms that I’ve discovered

Dependent t-test
Grand mean
Independent t-test

Standard error of differences
Variance sum law
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Smart Alex’s tasks

These scenarios are taken from Field and Hole (2003). In each case analyse the data on SPSS:

Task 1MM : One of my pet hates is ‘pop psychology’ books. Along with banishing Freud from 
all bookshops, it is my avowed ambition to rid the world of these rancid putrefaction-
ridden wastes of trees. Not only do they give psychology a very bad name by stating the 
bloody obvious and charging people for the privilege, but they are also considerably less 
enjoyable to look at than the trees killed to produce them (admittedly the same could be 
said for the turgid tripe that I produce in the name of education but let’s not go there 
just for now!). Anyway, as part of my plan to rid the world of popular psychology I did a 
little experiment. I took two groups of people who were in relationships and randomly 
assigned them to one of two conditions. One group read the famous popular psychology 
book Women are from Bras and men are from Penis, whereas another group read Marie 
Claire. I tested only 10 people in each of these groups, and the dependent variable was an 
objective measure of their happiness with their relationship after reading the book. I didn’t 
make any specific prediction about which reading material would improve relationship 
happiness. The data are in the file Penis.sav. Analyse them with the appropriate t-test. 1

Task 2MM : Imagine Twaddle and Sons, the publishers of Women are from Bras and men are 
from Penis, were upset about my claims that their book was about as useful as a paper 
umbrella. They decided to take me to task and design their own experiment in which 
participants read their book and one of my books (Field and Hole) at different times. 
Relationship happiness was measured after reading each book. To maximize their chances 
of finding a difference they used a sample of 500 participants, but got each participant to 
take part in both conditions (they read both books). The order in which books were read 
was counterbalanced and there was a delay of six months between reading the books. They 
predicted that reading their wonderful contribution to popular psychology would lead 
to greater relationship happiness than reading some dull and tedious book about experi-
ments. The data are in Field&Hole.sav. Analyse them using the appropriate t-test. 1

Answers can be found on the companion website (or for more detail see Field and Hole, 2003). 

Further reading
Field, A. P., & Hole, G. (2003). How to design and report experiments. London: Sage. (In my completely 

unbiased opinion this is a useful book to get some more background on experimental methods.)
Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: a practical 

introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)
Rosnow, R. L., & Rosenthal, R. (2005). Beginning behavioural research: a conceptual primer 

(5th ed.). Englewood Cliffs, NJ: Pearson/Prentice Hall.
Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.) London: Sage. (This book has 

very clear introductions to the t-test.)

Online tutorial
The companion website contains the following Flash movie tutorial to accompany this chapter:

M t-tests using SPSS

Interesting real research
Board, B. J., & Fritzon, K. (2005). Disordered personalities at work. Psychology, Crime & Law, 

11(1), 17–32.
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Figure 10.1
My brother 
Paul (left) and I 
(right) in our very 
fetching school 
uniforms

10.1. What will this chapter tell me? 1

There are pivotal moments in everyone’s life, and one of mine was at the age of 11. Where I 
grew up in England there were three choices when leaving primary school and moving on to 
secondary school: (1) state school (where most people go); (2) grammar school (where clever 
people who pass an exam called the 11+ go); and (3) private school (where rich people go). My 
parents were not rich and I am not clever and consequently I failed my 11+, so private school 
and grammar school (where my clever older brother had gone) were out. This left me to join 
all of my friends at the local state school. I could not have been happier. Imagine everyone’s 
shock when my parents received a letter saying that some extra spaces had become available at 
the grammar school; although the local authority could scarcely believe it and had re-marked 
the 11+ papers several million times to confirm their findings, I was next on their list. I could 
not have been unhappier. So, I waved goodbye to all of my friends and trundled off to join 
my brother at Ilford County High School For Boys (a school that still hit students with a cane 
if they were particularly bad and that, for some considerable time and with good reason, had 

10Comparing several means: 
ANOVA (GLM 1)
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‘H.M. Prison’ painted in huge white letters on its roof). It was goodbye to normality, and hello 
to six years of learning how not to function in society. I often wonder how my life would have 
turned out had I not gone to this school; in the parallel universes where the letter didn’t arrive 
and the Andy went to state school, or where my parents were rich and the Andy went to private 
school, what became of him? If we wanted to compare these three situations we couldn’t use a 
t-test because there are more than two conditions.1 However, this chapter tells us all about the 
statistical models that we use to analyse situations in which we want to compare more than two 
conditions: analysis of variance (or ANOVA to its friends). This chapter will begin by explaining 
the theory of ANOVA when different participants are used (independent ANOVA). We’ll then 
look at how to carry out the analysis on SPSS and interpret the results. 

10.2. The theory behind ANOVA 2  

10.2.1.  Inflated error rates 2  

Before explaining how ANOVA works, it is worth mentioning why we don’t simply carry out 
several t-tests to compare all combinations of groups that have been tested. Imagine a situation in 
which there were three experimental conditions and we were interested in differences between 
these three groups. If we were to carry out t-tests on every pair of groups, then we would have 
to carry out three separate tests: one to compare groups 1 and 2, one to compare groups 1 and 

3, and one to compare groups 2 and 3. If each of these t-tests uses a .05 level 
of significance then for each test the probability of falsely rejecting the null 
hypothesis (known as a Type I error) is only 5%. Therefore, the probability of 
no Type I errors is .95 (95%) for each test. If we assume that each test is inde-
pendent (hence, we can multiply the probabilities) then the overall probability 
of no Type I errors is (.95)3 = .95 × .95 × .95 = .857, because the probability 
of no Type I errors is .95 for each test and there are three tests. Given that the 
probability of no Type I errors is .857, then we can calculate the probability of 
making at least one Type I error by subtracting this number from 1 (remember 
that the maximum probability of any event occurring is 1). So, the probability 
of at least one Type I error is 1 − .857 = .143, or 14.3%. Therefore, across this 

group of tests, the probability of making a Type I error has increased from 5% to 14.3%, a value 
greater than the criterion accepted by social scientists. This error rate across statistical tests con-
ducted on the same experimental data is known as the familywise or experimentwise error rate. 
An experiment with three conditions is a relatively simple design, and so the effect of carrying 
out several tests is not severe. If you imagine that we now increase the number of experimental 
conditions from three to five (which is only two more groups) then the number of t-tests that 
would need to done increases to 10.2 The familywise error rate can be calculated using the 

1 Really, this is the least of our problems: there’s the small issue of needing access to parallel universes.
2 These comparisons are group 1 vs. 2, 1 vs. 3, 1 vs. 4, 1 vs. 5, 2 vs. 3, 2 vs. 4, 2 vs. 5, 3 vs. 4, 3 vs. 5 and 4 vs. 5. 
The number of tests required is calculated using this equation:

number of comparisons,C= k!

2ðk−2Þ!

in which k is the number of experimental conditions. The ! symbol stands for factorial, which means that you 
multiply the value preceding the symbol by all of the whole numbers between zero and that value (so 5! = 5 × 4 
× 3 × 2 × 1 = 120). Thus, with five conditions we find that:

C= 5!

2ð5−2Þ! =
120

2×6
=10

Why not do lots
of t-tests?
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general equation (10.1) below, in which n is the number of tests carried out on the data. With 
10 tests carried out, the familywise error rate is .40 (1 − .9510 = .40), which means that there is 
a 40% chance of having made at least one Type I error. For this reason we use ANOVA rather 
than conducting lots of t-tests:

familywise error= 1− ð0:95Þn (10.1)

10.2.2.  Interpreting F 2  

When we perform a t-test, we test the hypothesis that the two samples have the same mean. 
Similarly, ANOVA tells us whether three or more means are the same, so it tests the null hypoth-
esis that all group means are equal. An ANOVA produces an F-statistic or F-ratio, which is 
similar to the t-statistic in that it compares the amount of systematic variance in 
the data to the amount of unsystematic variance. In other words, F is the ratio of 
the model to its error.

ANOVA is an omnibus test, which means that it tests for an overall experi-
mental effect: so, there are things that ANOVA cannot tell us. Although ANOVA 
tells us whether the experimental manipulation was generally successful, it does 
not provide specific information about which groups were affected. Assuming an 
experiment was conducted with three different groups, the F-ratio tells us that 
the means of these three samples are not equal (i.e. that X1 =X2 =X3 is not true). 
However, there are several ways in which the means can differ. The first pos-
sibility is that all three sample means are significantly different (X1 6¼ X2 6¼ X3). 
A second possibility is that the means of group 1 and 2 are the same but group 3 has a signifi-
cantly different mean from both of the other groups (X1 =X2 6¼ X3). Another possibility is that  
groups 2 and 3 have similar means but group 1 has a significantly different mean (X1 6¼ X2 =X3). 
Finally, groups 1 and 3 could have similar means but group 2 has a significantly different mean 
from both (X1 =X3 6¼ X2 ). So, in an experiment, the F-ratio tells us only that the experi-
mental manipulation has had some effect, but it doesn’t tell us specifically what the effect was.

10.2.3.  ANOVA as regression 2  

I’ve hinted several times that all statistical tests boil down to variants on regression. In fact, 
ANOVA is just a special case of regression. This surprises many scientists because ANOVA and 
regression are usually used in different situations. The reason is largely historical in that two 
distinct branches of methodology developed in the social sciences: correlational research and 
experimental research. Researchers interested in controlled experiments adopted ANOVA as 
their statistic of choice whereas those looking for real-world relationships adopted multiple 
regression. As we all know, scientists are intelligent, mature and rational people and so nei-
ther group was tempted to slag off the other and claim that their own choice of methodology 
was far superior to the other (yeah right!). With the divide in methodologies came a chasm 
between the statistical methods adopted by the two opposing camps (Cronbach, 1957, docu-
ments this divide in a lovely article). This divide has lasted many decades to the extent that 
now students are generally taught regression and ANOVA in very different contexts and 
many textbooks teach ANOVA in an entirely different way to regression.

Although many considerably more intelligent people than me have attempted to redress 
the balance (notably the great Jacob Cohen, 1968), I am passionate about making my own 
small, feeble-minded attempt to enlighten you (and I set the ball rolling in sections 7.11 and 
9.7). There are several good reasons why I think ANOVA should be taught within the con-
text of regression. First, it provides a familiar context: I wasted many trees trying to explain 

What does an
ANOVA tell me?
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regression, so why not use this base of knowledge to explain a new concept (it should make 
it easier to understand)? Second, the traditional method of teaching ANOVA (known as 
the variance-ratio method) is fine for simple designs, but becomes impossibly cumbersome 
in more complex situations (such as analysis of covariance). The regression model extends 
very logically to these more complex designs without anyone needing to get bogged down in 
mathematics. Finally, the variance-ratio method becomes extremely unmanageable in unusual 
circumstances such as when you have unequal sample sizes.3 The regression method makes 
these situations considerably simpler. Although these reasons are good enough, it is also the 
case that SPSS has moved away from the variance-ratio method of ANOVA and progressed 
towards solely using the regression model (known as the general linear model, or GLM).

I have mentioned that ANOVA is a way of comparing the ratio of systematic variance to 
unsystematic variance in an experimental study. The ratio of these variances is known as the 
F-ratio. However, any of you who have read Chapter 7 should recognize the F-ratio (see sec-
tion 7.2.3) as a way to assess how well a regression model can predict an outcome compared 
to the error within that model. If you haven’t read Chapter 7 (surely not!), have a look before 
you carry on (it should only take you a couple of weeks to read). How can the F-ratio be used 
to test differences between means and whether a regression model fits the data? The answer is 
that when we test differences between means we are fitting a regression model and using F to 
see how well it fits the data, but the regression model contains only categorical predictors (i.e. 
grouping variables). So, just as the t-test could be represented by the linear regression equation 
(see section 9.7), ANOVA can be represented by the multiple regression equation in which the 
number of predictors is one less than the number of categories of the independent variable.

Let’s take an example. There was a lot of controversy, when I wrote the first edition of this 
book, surrounding the drug Viagra. Admittedly there’s less controversy now, but the contro-
versy has been replaced by an alarming number of spam emails on the subject (for which I’ll no 
doubt be grateful in 20 years’ time), so I’m going to stick with the example. Viagra is a sexual 
stimulant (used to treat impotence) that broke into the black market under the belief that it 
will make someone a better lover (oddly enough, there was a glut of journalists taking the stuff 
at the time in the name of ‘investigative journalism’ … hmmm!). Suppose we tested this belief 
by taking three groups of participants and administering one group with a placebo (such as 
a sugar pill), one group with a low dose of Viagra and one with a high dose. The dependent 
variable was an objective measure of libido (I will tell you only that it was measured over the 
course of a week – the rest I will leave to your own imagination). The data can be found in the 
file Viagra.sav (which is described in detail later in this chapter) and are in Table 10.1.

Table 10.1 Data in Viagra.sav

Placebo Low Dose High Dose

3 5 7

2 2 4

1 4 5

1 2 3

4 3 6

X
−

2.20 3.20 5.00

s 1.30 1.30 1.58

s2 1.70 1.70 2.50

                                         Grand Mean = 3.467        Grand SD = 1.767      Grand Variance = 3.124

3 Having said this, it is well worth the effort in trying to obtain equal sample sizes in your different conditions 
because unbalanced designs do cause statistical complications (see section 10.2.10).
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If we want to predict levels of libido from the different levels of Viagra then we can use 
the general equation that keeps popping up:

outcomei = ðmodelÞ+ errori

If we want to use a linear model, then we saw in section 9.7 that when there are only 
two groups we could replace the ‘model’ in this equation with a linear regression equation 
with one dummy variable to describe two experimental groups. This dummy variable was 
a categorical variable with two numeric codes (0 for one group and 1 for the other). With 
three groups, however, we can extend this idea and use a multiple regression model with 
two dummy variables. In fact, as a general rule we can extend the model to any number 
of groups and the number of dummy variables needed will be one less than the number of 
categories of the independent variable. In the two-group case, we assigned one category 
as a base category (remember that in section 9.7 we chose the picture condition to act as 
a base) and this category was coded with 0. When there are three categories we also need 
a base category and you should choose the condition to which you intend to compare the 
other groups. Usually this category will be the control group. In most well-designed social 
science experiments there will be a group of participants who act as a baseline for other 
categories. This baseline group should act as the reference or base category, although the 
group you choose will depend upon the particular hypotheses that you want to test. In 
unbalanced designs (in which the group sizes are unequal) it is important that the base cat-
egory contains a fairly large number of cases to ensure that the estimates of the regression 
coefficients are reliable. In the Viagra example, we can take the placebo group as the base 
category because this group was a placebo control. We are interested in comparing both 
the high- and low-dose groups to the group which received no Viagra at all. If the placebo 
group is the base category then the two dummy variables that we have to create represent 
the other two conditions: so, we should have one dummy variable called High and the 
other one called Low). The resulting equation is described as: 

Libidoi = b0 + b2Highi +b1Lowi + εi (10.2)

In equation (10.2), a person’s libido can be predicted from knowing their group code (i.e. 
the code for the High and Low dummy variables) and the intercept (b0) of the model. The 
dummy variables in equation (10.2) can be coded in several ways, but the simplest way is 
to use a similar technique to that of the t-test. The base category is always coded as 0. If 
a participant was given a high dose of Viagra then they are coded with a 1 for the High 
dummy variable and 0 for all other variables. If a participant was given a low dose of Viagra 
then they are coded with the value 1 for the Low dummy variable and coded with 0 for all 
other variables (this is the same type of scheme we used in section 7.11). Using this coding 
scheme we can express each group by combining the codes of the two dummy variables 
(see Table 10.2).

Table 10.2 Dummy coding for the three-group experimental design

Group Dummy Variable 1 (High) Dummy Variable 2 (Low)

Placebo 0 0

Low-Dose Viagra 0 1

High-Dose Viagra 1 0
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Placebo group: Let’s examine the model for the placebo group. In the placebo group 
both the High and Low dummy variables are coded as 0. Therefore, if we ignore the error 
term (εi), the regression equation becomes:

Libidoi = b0 + b2 × 0ð Þ+ ðb1 ×0Þ

Libidoi = b0

X
Placebo

= b0

This is a situation in which the high- and low-dose groups have both been excluded (because 
they are coded with 0). We are looking at predicting the level of libido when both doses of 
Viagra are ignored, and so the predicted value will be the mean of the placebo group (because 
this group is the only one included in the model). Hence, the intercept of the regression model, 
b0, is always the mean of the base category (in this case the mean of the placebo group).

High-dose group: If we examine the high-dose group, the dummy variable High will 
be coded as 1 and the dummy variable Low will be coded as 0. If we replace the values of 
these codes into equation (10.2) the model becomes:

Libidoi = b0 + b2 × 1ð Þ+ b1 ×0ð Þ

Libidoi = b0 + b2

We know already that b0 is the mean of the placebo group. If we are interested in only the 
high-dose group then the model should predict that the value of Libido for a given participant 
equals the mean of the high-dose group. Given this information, the equation becomes:

Libidoi = b0 + b2

XHigh =XPlacebo + b2

b2 =XHigh −XPlacebo

Hence, b2 represents the difference between the means of the high-dose group and the 
placebo group.

Low-dose group: Finally, if we look at the model when a low dose of Viagra has been 
taken, the dummy variable Low is coded as 1 (and hence High is coded as 0). Therefore, 
the regression equation becomes:

Libidoi = b0 + b2 × 0ð Þ+ b1 ×1ð Þ

Libidoi = b0 + b1

We know that the intercept is equal to the mean of the base category and that for the low-
dose group the predicted value should be the mean libido for a low dose. Therefore the 
model can be reduced down to:

Libidoi =b0 + b1

XLow =XPlacebo + b1

b1 =XLow −XPlacebo

Hence, b1 represents the difference between the means of the low-dose group and the pla-
cebo group. This form of dummy variable coding is the simplest form, but as we will see 
later, there are other ways in which variables can be coded to test specific hypotheses. These 
alternative coding schemes are known as contrasts (see section 10.2.11.2). The idea behind 
contrasts is that you code the dummy variables in such a way that the b-values represent 
differences between groups that you are interested in testing.
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SELF-TEST  To illustrate exactly what is going on I have 
created a file called dummy.sav. This file contains the 
Viagra data but with two additional variables (dummy1 
and dummy2) that specify to which group a data point 
belongs (as in Table 10.2). Access this file and run 
multiple regression analysis using libido as the outcome 
and dummy1 and dummy2 as the predictors. If you’re 
stuck on how to run the regression then read Chapter 7 
again (see, these chapters are ordered for a reason)!

The resulting analysis is shown in SPSS Output 10.1. It might be a good idea to remind 
yourself of the group means from Table 10.1. The first thing to notice is that just as in the 
regression chapter, an ANOVA has been used to test the overall fit of the model. This test 
is significant, F(2, 12) = 5.12, p < .05. Given that our model represents the group differ-
ences, this ANOVA tells us that using group means to predict scores is significantly better 
than using the overall mean: in other words, the group means are significantly different.

In terms of the regression coefficients, bs, the constant is equal to the mean of the base 
category (the placebo group). The regression coefficient for the first dummy variable 
(b2) is equal to the difference between the means of the high-dose group and the placebo 
group (5.0 − 2.2 = 2.8). Finally, the regression coefficient for the second dummy variable 
(b1) is equal to the difference between the means of the low-dose group and the placebo 
group (3.2 − 2.2 = 1). This analysis demonstrates how the regression model represents 
the three-group situation. We can see from the significance values of the t-tests that the 
difference between the high-dose group and the placebo group (b2) is significant because 
p < .05. The difference between the low-dose and the placebo group is not, however, 
significant (p = .282).

A four-group experiment can be described by extending the three-group scenario. I men-
tioned earlier that you will always need one less dummy variable than the number of groups 
in the experiment: therefore, this model requires three dummy variables. As before, we need 
to specify one category that is a base category (a control group). This base category should 
have a code of 0 for all three dummy variables. The remaining three conditions will have a 
code of 1 for the dummy variable that described that condition and a code of 0 for the other 
two dummy variables. Table 10.3 illustrates how the coding scheme would work.

SPSS OuTPuT 10.1
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Table 10.3 Dummy coding for the four-group experimental design

Dummy Variable 1 Dummy Variable 2 Dummy Variable 3

Group 1 1 0 0

Group 2 0 1 0

Group 3 0 0 1

Group 4 (base) 0 0 0

10.2.4.  Logic of the F-ratio 2  

In Chapter 7 we learnt a little about the F-ratio and its calculation. To recap, we learnt that 
the F-ratio is used to test the overall fit of a regression model to a set of observed data. In 
other words, it is the ratio of how good the model is compared to how bad it is (its error). 
I have just explained how ANOVA can be represented as a regression equation, and this 
should help you to understand what the F-ratio tells you about your data. Figure 10.2 shows 
the Viagra data in graphical form (including the group means, the overall mean and the dif-
ference between each case and the group mean). In this example, there were three groups; 
therefore, we want to test the hypothesis that the means of three groups are different (so, the 
null hypothesis is that the group means are the same). If the group means were all the same, 
then we would not expect the placebo group to differ from the low-dose group or the high-
dose group, and we would not expect the low-dose group to differ from the high-dose group. 
Therefore, on the diagram, the three coloured lines would be in the same vertical position 
(the exact position would be the grand mean – the dashed line in the figure). We can see from 
the diagram that the group means are actually different because the coloured lines (the group 
means) are in different vertical positions. We have just found out that in the regression model, 
b2 represents the difference between the means of the placebo and the high-dose group, and 
b1 represents the difference in means between the low-dose and placebo groups. These two 
distances are represented in Figure 10.2 by the vertical arrows. If the null hypothesis is true 

Figure 10.2
The Viagra data 
in graphical form. 
The coloured 
horizontal lines 
represent the 
mean libido of 
each group. The 
shapes represent 
the libido of 
individual 
participants 
(different shapes 
indicate different 
experimental 
groups). The 
dashed horizontal 
line is the 
average libido of 
all participants
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and all the groups have the same means, then these b coefficients should be zero (because if 
the group means are equal then the difference between them will be zero). 

The logic of ANOVA follows from what we understand about regression:

The simplest model we can fit to a set of data is the grand mean (the mean of the out-MM

come variable). This basic model represents ‘no effect’ or ‘no relationship between 
the predictor variable and the outcome’.
We can fit a different model to the data collected that represents our hypotheses. MM

If this model fits the data well then it must be better than using the grand mean. 
Sometimes we fit a linear model (the line of best fit) but in experimental research we 
often fit a model based on the means of different conditions.
The intercept and one or more regression coefficients can describe the chosen model.MM

The regression coefficients determine the shape of the model that we have fitted; MM

therefore, the bigger the coefficients, the greater the deviation between the line and 
the grand mean.
In correlational research, the regression coefficients represent the slope of the line, MM

but in experimental research they represent the differences between group means.
The bigger the differences between group means, the greater the difference between MM

the model and the grand mean.
If the differences between group means are large enough, then the resulting model MM

will be a better fit of the data than the grand mean.
If this is the case we can infer that our model (i.e. predicting scores from the group MM

means) is better than not using a model (i.e. predicting scores from the grand mean). 
Put another way, our group means are significantly different.

Just like when we used ANOVA to test a regression model, we can compare the improvement 
in fit due to using the model (rather than the grand mean) to the error that still remains. 
Another way of saying this is that when the grand mean is used as a model, there will be a cer-
tain amount of variation between the data and the grand mean. When a model is fitted it will 
explain some of this variation but some will be left unexplained. The F-ratio is the ratio of the 
explained to the unexplained variation. Look back at section 7.2.3 to refresh you memory on 
these concepts before reading on. This may all sound quite complicated, but actually most of 
it boils down to variations on one simple equation (see Jane Superbrain Box 10.1).

from the observed data can be expressed, in general, in 
the form of equation (10.3). So, in ANOVA, as in regression, 
we use equation (10.3) to calculate the fit of the most basic 
model, and then the fit of the best model (the line of best 
fit). If the best model is any good then it should fit the data 
significantly better than our basic model:

deviation = S (observed – model)2 (10.3)

The interesting point is that all of the sums of squares 
in ANOVA are variations on this one basic equation. All 
that changes is what we use as the model, and what the 
corresponding observed data are. Look through the vari-
ous sections on the sums of squares and compare the 
resulting equations to equation (10.3); hopefully, you can 
see that they are all basically variations on this general 
form of the equation!

At every stage of the ANOVA we’re assessing variation (or 
deviance) from a particular model (be that the most basic 
model, or the most sophisticated model). We saw back 
in section 2.4.1 that the extent to which a model deviates 

JANE SUPERBRAIN 10.1

You might be surprised to know that ANOVA 
boils down to one equation (well, sort of) 2
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10.2.5.  Total sum of squares (SST) 2  

To find the total amount of variation within our data we calculate the difference between 
each observed data point and the grand mean. We then square these differences and add 
them together to give us the total sum of squares (SST):

SST =
X

xi − xgrand
 2

(10.4)

We also saw in section 2.4.1 that the variance and the sums of squares are related such that vari-
ance, s2 = SS/(N − 1), where N is the number of observations. Therefore, we can calculate the 
total sums of squares from the variance of all observations (the grand variance) by rearranging the 
relationship (SS = s2(N − 1)). The grand variance is the variation between all scores, regardless of 
the experimental condition from which the scores come. Therefore, in Figure 10.2 it would be 
the sum of the squared distances between each point and the dashed horizontal line. The grand 
variance for the Viagra data is given in Table 10.1, and if we count the number of observations 
we find that there were 15 in all. Therefore, SST is calculated as follows:

SST = s2grandðn− 1Þ
= 3:124ð15− 1Þ
= 3:124× 14

= 43:74

Before we move on, it is important to understand degrees of freedom, so have a look back 
at Jane Superbrain Box 2.2 to refresh your memory. We saw before that when we estimate 
population values, the degrees of freedom are typically one less than the number of scores 
used to calculate the population value. This is because to get these estimates we have to 
hold something constant in the population (in this case the mean), which leaves all but one 
of the scores free to vary (see Jane Superbrain Box 2.2). For SST, we used the entire sample 
(i.e. 15 scores) to calculate the sums of squares and so the total degrees of freedom (dfT) are 
one less than the total sample size (N – 1). For the Viagra data, this value is 14.

10.2.6.  Model sum of squares (SSM) 2

So far, we know that the total amount of variation within the data is 43.74 units. We now 
need to know how much of this variation the regression model can explain. In the ANOVA 
scenario, the model is based upon differences between group means and so the model sums 
of squares tell us how much of the total variation can be explained by the fact that different 
data points come from different groups.

In section 7.2.3 we saw that the model sum of squares is calculated by taking the differ-
ence between the values predicted by the model and the grand mean (see Figure 7.4). In 
ANOVA, the values predicted by the model are the group means (therefore, in Figure 10.2 
the coloured horizontal lines represented the values of libido predicted by the model). For 
each participant the value predicted by the model is the mean for the group to which the 
participant belongs. In the Viagra example, the predicted value for the five participants in 
the placebo group will be 2.2, for the five participants in the low-dose condition it will be 
3.2, and for the five participants in the high-dose condition it will be 5. The model sum of 
squares requires us to calculate the differences between each participant’s predicted value 
and the grand mean. These differences are then squared and added together (for reasons that 
should be clear in your mind by now). We know that the predicted value for participants in a 
particular group is the mean of that group. Therefore, the easiest way to calculate SSM is to:
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Calculate the difference between the mean of each group and the grand mean.1 
Square each of these differences.2 
Multiply each result by the number of participants within that group (3 nk).
Add the values for each group together.4 

The mathematical expression of this process is:

SSM =
X

nk xk −xgrand
 2 (10.5)

Using the means from the Viagra data, we can calculate SSM as follows:

SSM = 5 2:200−3:467ð Þ2 + 5 3:200−3:467ð Þ2 + 5 5:000−3:467ð Þ2

= 5 −1:267ð Þ2 + 5 −0:267ð Þ2 + 5 1:533ð Þ2

= 8:025+ 0:355+ 11:755

= 20:135

For SSM, the degrees of freedom (dfM) will always be one less than the number of param-
eters estimated. In short, this value will be the number of groups minus one (which you’ll 
see denoted as k − 1). So, in the three-group case the degrees of freedom will always be 2 
(because the calculation of the sums of squares is based on the group means, two of which 
will be free to vary in the population if the third is held constant).

10.2.7.  Residual sum of squares (SSR) 2

We now know that there are 43.74 units of variation to be explained in our data, and that our 
model can explain 20.14 of these units (nearly half). The final sum of squares is the residual 
sum of squares (SSR), which tells us how much of the variation cannot be explained by the 
model. This value is the amount of variation caused by extraneous factors such as individual 
differences in weight, testosterone or whatever. Knowing SST and SSM already, the simplest 
way to calculate SSR is to subtract SSM from SST (SSR = SST − SSM); however, telling you to 
do this provides little insight into what is being calculated and, of course, if you’ve messed 
up the calculations of either SSM or SST (or indeed both!) then SSR will be incorrect also. 
We saw in section 7.2.3 that the residual sum of squares is the difference between what the 
model predicts and what was actually observed. We already know that for a given participant, 
the model predicts the mean of the group to which that person belongs. Therefore, SSR is 
calculated by looking at the difference between the score obtained by a person and the mean 
of the group to which the person belongs. In graphical terms the vertical lines in Figure 10.2 
represent this sum of squares. These distances between each data point and the group mean 
are squared and then added together to give the residual sum of squares, SSR, thus: 

SSR =
X

xik− xkð Þ2 (10.6)

Now, the sum of squares for each group represents the sum of squared differences between 
each participant’s score in that group and the group mean. Therefore, we can express SSR 
as SSR = SSgroup1 + SSgroup2 + SSgroup3 … and so on. Given that we know the relationship 
between the variance and the sums of squares, we can use the variances for each group of 
the Viagra data to create an equation like we did for the total sum of squares. As such, SSR 
can be expressed as:

SSR =
X

s2k nk − 1ð Þ (10.7)
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This just means take the variance from each group (s2
k ) and multiply it by one less than the 

number of people in that group (nk − 1). When you’ve done this for each group, add them 
all up. For the Viagra data, this gives us:

SSR = s2group1 n1 − 1ð Þ+ s2group2 n2 − 1ð Þ+ s2group3 n3 −1ð Þ
= ð1:70Þð5−1Þ+ ð1:70Þð5− 1Þ+ ð2:50Þð5− 1Þ
= ð1:70×4Þ+ ð1:70× 4Þ+ ð2:50×4Þ
= 6:8+6:8+ 10

= 23:60

The degrees of freedom for SSR (dfR) are the total degrees of freedom minus the degrees of 
freedom for the model (dfR = dfT − dfM = 14 − 2 = 12). Put another way, it’s N − k: the total 
sample size, N, minus the number of groups, k.

10.2.8.  Mean squares 2

SSM tells us the total variation that the regression model (e.g. the experimental manipulation) 
explains and SSR tells us the total variation that is due to extraneous factors. However, because 
both of these values are summed values they will be influenced by the number of scores that were 
summed; for example, SSM used the sum of only 3 different values (the group means) compared 
to SSR and SST, which used the sum of 12 and 14 values respectively. To eliminate this bias we 
can calculate the average sum of squares (known as the mean squares, MS), which is simply the 
sum of squares divided by the degrees of freedom. The reason why we divide by the degrees of 
freedom rather than the number of parameters used to calculate the SS is because we are try-
ing to extrapolate to a population and so some parameters within that populations will be held 
constant (this is the same reason that we divide by N − 1 when calculating the variance, see Jane 
Superbrain Box 2.2). So, for the Viagra data we find the following mean squares:

MSM = SSM
dfM

= 20:135

2
= 10:067

MSR = SSR
dfR

= 23:60

12
= 1:967

MSM represents the average amount of variation explained by the model (e.g. the system-
atic variation), whereas MSR is a gauge of the average amount of variation explained by 
extraneous variables (the unsystematic variation).

10.2.9.  The F-ratio 2

The F-ratio is a measure of the ratio of the variation explained by the model and the vari-
ation explained by unsystematic factors. In other words, it is the ratio of how good the 
model is against how bad it is (how much error there is). It can be calculated by dividing 
the model mean squares by the residual mean squares.

F= MSM
MSR

(10.8)
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As with the independent t-test, the F-ratio is, therefore, a measure of the ratio of systematic 
variation to unsystematic variation. In experimental research, it is the ratio of the experi-
mental effect to the individual differences in performance. An interesting point about the 
F-ratio is that because it is the ratio of systematic variance to unsystematic variance, if 
its value is less than 1 then it must, by definition, represent a non-significant effect. The 
reason why this statement is true is because if the F-ratio is less than 1 it means that MSR 
is greater than MSM, which in real terms means that there is more unsystematic than sys-
tematic variance. You can think of this in terms of the effect of natural differences in ability 
being greater than differences brought about by the experiment. In this scenario, we can, 
therefore, be sure that our experimental manipulation has been unsuccessful (because it 
has brought about less change than if we left our participants alone!). For the Viagra data, 
the F-ratio is:

F= MSM
MSR

= 10:067

1:967
=5:12

This value is greater than 1, which indicates that the experimental manipulation had some 
effect above and beyond the effect of individual differences in performance. However, it 
doesn’t yet tell us whether the F-ratio is large enough to not be a chance result. To discover 
this we can compare the obtained value of F against the maximum value we would expect 
to get by chance if the group means were equal in an F-distribution with the same degrees 
of freedom (these values can be found in the Appendix); if the value we obtain exceeds this 
critical value we can be confident that this reflects an effect of our independent variable 
(because this value would be very unlikely if there were no effect in the population). In 
this case, with 2 and 12 degrees of freedom the critical values are 3.89 (p = .05) and 6.93  
(p = .01). The observed value, 5.12, is, therefore, significant at a .05 level of significance 
but not significant at a .01 level. The exact significance produced by SPSS should, there-
fore, fall somewhere between .05 and .01 (which, incidentally, it does).

10.2.10.  Assumptions of ANOVA 3

The assumptions under which the F statistic is reliable are the same as for all parametric 
tests based on the normal distribution (see section 5.2). That is, the variances in each 
experimental condition need to be fairly similar, observations should be independent and 
the dependent variable should be measured on at least an interval scale. In terms of normal-
ity, what matters is that distributions within groups are normally distributed.

You often hear people say ‘ANOVA is a robust test’, which means that it doesn’t matter 
much if we break the assumptions of the test: the F will still be accurate. There is some 
truth to this statement, but it is also an oversimplification of the situation. For 
one thing, the term ANOVA covers many different situations and the perform-
ance of F has been investigated in only some of those situations. There are two 
issues to consider: (1) does the F control the Type I error rate or is it significant 
even when there are no differences between means; and (2) does the F have 
enough power (i.e. is it able to detect differences when they are there)? Let’s 
have a look at the evidence.

Looking at normality first, Glass et al. (1972) reviewed a lot of evidence that 
suggests that F controls the Type I error rate well under conditions of skew, kur-
tosis and non-normality. Skewed distributions seem to have little effect on the 
error rate and power for two-tailed tests (but can have serious consequences for 
one-tailed tests). However, some of this evidence has been questioned (see Jane 

Is the F statistic
robust?
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Superbrain Box 5.1). In terms of kurtosis, leptokurtic distributions make the Type I error 
rate too low (too many null effects are significant) and consequently the power is too high; 
platykurtic distributions have the opposite effect. The effects of kurtosis seem unaffected 
by whether sample sizes are equal or not. One study that is worth mentioning in a bit of 
detail is by Lunney (1970) who investigated the use of ANOVA in about the most non-
normal situation you could imagine: when the dependent variable is binary (it could have 
values of only 0 or 1). The results showed that when the group sizes were equal, ANOVA 
was accurate when there were at least 20 degrees of freedom and the smallest response 
category contained at least 20% of all responses. If the smaller response category contained 
less than 20% of all responses then ANOVA performed accurately only when there were 
40 or more degrees of freedom. The power of F also appears to be relatively unaffected by 
non-normality (Donaldson, 1968). This evidence suggests that when group sizes are equal 
the F-statistic can be quite robust to violations of normality.

However, when group sizes are not equal the accuracy of F is affected by skew, and 
non-normality also affects the power of F in quite unpredictable ways (Wilcox, 2005). One 
situation that Wilcox describes shows that when means are equal the error rate (which 
should be 5%) can be as high as 18%. If you make the differences between means bigger 
you should find that power increases, but actually he found that initially power decreased 
(although it increased when he made the group differences bigger still). As such F can be 
biased when normality is violated.

In terms of violations of the assumption of homogeneity of variance, ANOVA is fairly 
robust in terms of the error rate when sample sizes are equal. However, when sample 
sizes are unequal, ANOVA is not robust to violations of homogeneity of variance (this is 
why earlier on I said it’s worth trying to collect equal-sized samples of data across condi-
tions!). When groups with larger sample sizes have larger variances than the groups with 
smaller sample sizes, the resulting F-ratio tends to be conservative. That is, it’s more likely 
to produce a non-significant result when a genuine difference does exist in the popula-
tion. Conversely, when the groups with larger sample sizes have smaller variances than 
the groups with smaller samples sizes, the resulting F-ratio tends to be liberal. That is, it 
is more likely to produce a significant result when there is no difference between groups 
in the population (put another way, the Type I error rate is not controlled) – see Glass 
et al. (1972) for a review. When variances are proportional to the means then the power of 
F seems to be unaffected by the heterogeneity of variance and trying to stabilize variances 
does not substantially improve power (Budescu, 1982; Budescu & Appelbaum, 1981). 
Problems resulting from violations of homogeneity of variance assumption can be cor-
rected (see Jane Superbrain Box 10.2). 

Violations of the assumption of independence are very serious indeed. Scariano and 
Davenport (1987) showed that when this assumption is violated (i.e. observations across 
groups are correlated) then the Type I error rate is substantially inflated. For example, 
using the conventional .05 Type I error rate when observations are independent, if these 
observations are made to correlate moderately (say, with a Pearson coefficient of .5), when 
comparing three groups to 10 observations per group the actual Type I error rate is .74 
(a substantial inflation!). Therefore, if observations are correlated you might think that you 
are working with the accepted .05 error rate (i.e. you’ll incorrectly find a significant result 
only 5% of the time) when in fact your error rate is closer to .75 (i.e. you’ll find a signifi-
cant result on 75% of occasions when, in reality, there is no effect in the population)!

10.2.11.  Planned contrasts 2

The F-ratio tells us only whether the model fitted to the data accounts for more variation 
than extraneous factors, but it doesn’t tell us where the differences between groups lie. 
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So, if the F-ratio is large enough to be statistically significant, then we know only that one 
or more of the differences between means is statistically significant (e.g. either b2 or b1 is 
statistically significant). It is, therefore, necessary after conducting an ANOVA to carry out 
further analysis to find out which groups differ. In multiple regression, each b coefficient 
is tested individually using a t-test and we could do the same for ANOVA. However, we 
would need to carry out two t-tests, which would inflate the familywise error rate (see sec-
tion 10.2). Therefore, we need a way to contrast the different groups without inflating the 
Type I error rate. There are two ways in which to achieve this goal. The first is to break 
down the variance accounted for by the model into component parts, the second is to com-
pare every group (as if conducting several t-tests) but to use a stricter acceptance criterion 
such that the familywise error rate does not rise above .05. The first option can be done 
using planned comparisons (also known as planned contrasts)4 whereas the latter option is 
done using post hoc comparisons (see next section). The difference between planned com-
parisons and post hoc tests can be likened to the difference between one- and two-tailed 
tests in that planned comparisons are done when you have specific hypotheses that you 
want to test, whereas post hoc tests are done when you have no specific hypotheses. Let’s 
first look at planned contrasts. 

10.2.11.1. Choosing which contrasts to do 2

In the Viagra example we could have had very specific hypotheses. For one thing, we 
would expect any dose of Viagra to change libido compared to the placebo group. As a 
second hypothesis we might believe that a high dose should increase libido more than a 
low dose. To do planned comparisons, these hypotheses must be derived before the data 
are collected. It is fairly standard in social sciences to want to compare experimental condi-
tions to the control conditions as the first contrast, and then to see where the differences lie 
between the experimental groups. ANOVA is based upon splitting the total variation into 
two component parts: the variation due to the experimental manipulation (SSM) and the 
variation due to unsystematic factors (SSR) (see Figure 10.3).

Planned comparisons take this logic a step further by breaking down the variation due 
to the experiment into component parts (see Figure 10.4). The exact comparisons that are 
carried out depend upon the hypotheses you want to test. Figure 10.4 shows a situation in 
which the experimental variance is broken down to look at how much variation is created 
by the two drug conditions compared to the placebo condition (contrast 1). Then the vari-
ation explained by taking Viagra is broken down to see how much is explained by taking a 
high dose relative to a low dose (contrast 2).

4 The terms comparison and contrast are used interchangeably.

Figure 10.3
Partitioning 
variance for 
ANOVA
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Typically, students struggle with the notion of planned comparisons, but there are sev-
eral rules that can help you to work out what to do. The important thing to remember is 
that we are breaking down one chunk of variation into smaller independent chunks. This 
means several things. First, if a group is singled out in one comparison, then it should not 
reappear in another comparison. So, in Figure 10.4 contrast 1 involved comparing the 
placebo group to the experimental groups; because the placebo group is singled out, it 
should not be incorporated into any other contrasts. You can think of partitioning variance 
as being similar to slicing up a cake. You begin with a cake (the total sum of squares) and 
you then cut this cake into two pieces (SSM and SSR). You then take the piece of cake that 
represents SSM and divide this up into smaller pieces. Once you have cut off a piece of cake 
you cannot stick that piece back onto the original slice, and you cannot stick it onto other 
pieces of cake, but you can divide it into smaller pieces of cake. Likewise, once a slice of 
variance has been split from a larger chunk, it cannot be attached to any other pieces of 
variance, it can only be subdivided into smaller chunks of variance. Now, all of this talk  
of cake is making me hungry, but hopefully it illustrates a point.

Each contrast must compare only two chunks of variance. This rule is so that we can 
draw firm conclusions about what the contrast tells us. The F-ratio tells us that some of our 
means differ, but not which ones, and if we were to perform a contrast on more than two 
chunks of variance we would have the same problem. By comparing only two chunks of 
variance we can be sure that a significant result represents a difference between these two 
portions of experimental variation.

If you follow the independence of contrasts rule that I’ve just explained (the cake sli-
cing!), and always compare only two pieces of variance, then you should always end up 
with one less contrast than the number of groups; there will be k − 1 contrasts (where k is 
the number of conditions you’re comparing).

In most social science research we use at least one control condition, and in the vast 
majority of experimental designs we predict that the experimental conditions will differ 
from the control condition (or conditions). As such, the biggest hint that I can give you 
is that when planning comparisons the chances are that your first contrast should be one 
that compares all of the experimental groups with the control group (or groups). Once you 
have done this first comparison, any remaining comparisons will depend upon which of 
the experimental groups you predict will differ.

Figure 10.4
Partitioning of 
experimental 
variance into 
component 
comparisons
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To illustrate these principles, Figure 10.5 and Figure 10.6 show the contrasts that might 
be done in a four-group experiment. The first thing to notice is that in both scenarios there 
are three possible comparisons (one less than the number of groups). Also, every contrast 
compares only two chunks of variance. What’s more, in both scenarios the first contrast is 
the same: the experimental groups are compared against the control group or groups. In 
Figure 10.5 there was only one control condition and so this portion of variance is used 
only in the first contrast (because it cannot be broken down any further). In Figure 10.6 
there were two control groups, and so the portion of variance due to the control conditions 
(contrast 1) can be broken down again so as to see whether or not the scores in the control 
groups differ from each other (contrast 3).

In Figure 10.5, the first contrast contains a chunk of variance that is due to the three experi-
mental groups and this chunk of variance is broken down by first looking at whether groups E1 
and E2 differ from E3 (contrast 2). It is equally valid to use contrast 2 to compare groups E1 
and E3 to E2, or to compare groups E2 and E3 to E1. The exact comparison that you choose 
depends upon your hypotheses. For contrast 2 in Figure 10.5 to be valid 
we need to have a good reason to expect group E3 to be different from 
the other two groups. The third comparison in Figure 10.5 depends 
on the comparison chosen for contrast 2. Contrast 2 necessarily had 
to involve comparing two experimental groups against a third, and the 
experimental groups chosen to be combined must be separated in the 
final comparison. As a final point, you’ll notice that in Figure 10.5 and 
Figure 10.6, once a group has been singled out in a comparison, it is 
never used in any subsequent contrasts.

When we carry out a planned contrast, we compare ‘chunks’ 
of variance and these chunks often consist of several groups. It is 

Figure 10.5
Partitioning 
variance 
for planned 
comparisons 
in a four-group 
experiment using 
one control 
group

What does a planned
contrast tell me?
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perhaps confusing to understand exactly what these contrasts tell us. Well, when you design 
a contrast that compares several groups to one other group, you are comparing the means 
of the groups in one chunk with the mean of the group in the other chunk. As an example, 
for the Viagra data I suggested that an appropriate first contrast would be to compare the 
two dose groups with the placebo group. The means of the groups are 2.20 (placebo), 3.20 
(low dose) and 5.00 (high dose) and so the first comparison, which compared the two 
experimental groups to the placebo, is comparing 2.20 (the mean of the placebo group) to 
the average of the other two groups ((3.20 + 5.00)/2 = 4.10). If this first contrast turns 
out to be significant, then we can conclude that 4.10 is significantly greater than 2.20, 
which in terms of the experiment tells us that the average of the experimental groups is 
significantly different to the average of the controls. You can probably see that logically this 
means that, if the standard errors are the same, the experimental group with the highest 
mean (the high-dose group) will be significantly different from the mean of the placebo 
group. However, the experimental group with the lower mean (the low-dose group) might 
not necessarily differ from the placebo group; we have to use the final comparison to make 
sense of the experimental conditions. For the Viagra data the final comparison looked at 
whether the two experimental groups differ (i.e. is the mean of the high-dose group sig-
nificantly different from the mean of the low-dose group?). If this comparison turns out to 
be significant then we can conclude that having a high dose of Viagra significantly affected 
libido compared to having a low dose. If the comparison is non-significant then we have 
to conclude that the dosage of Viagra made no significant difference to libido. In this latter 
scenario it is likely that both doses affect libido more than placebo, whereas the former case 
implies that having a low dose may be no different to having a placebo. However, the word 
implies is important here: it is possible that the low-dose group might not differ from the 
placebo. To be completely sure we must carry out post hoc tests.

Figure 10.6
Partitioning 
variance 
for planned 
comparisons 
in a four-group 
experiment using 
two control 
groups
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10.2.11.2. Defining contrasts using weights 2

Hopefully by now you have got some idea of how to plan which comparisons to do (i.e. if 
your brain hasn’t exploded by now). Much as I’d love to tell you that all of the hard work is 
now over and SPSS will magically carry out the comparisons that you’ve selected, it won’t. 
To get SPSS to carry out planned comparisons we need to tell it which groups we would 
like to compare and doing this can be quite complex. In fact, when we carry out contrasts 
we assign values to certain variables in the regression model (sorry, I’m afraid that I have 
to start talking about regression again) – just as we did when we used dummy coding for 
the main ANOVA. To carry out contrasts we assign certain values to the dummy variables 
in the regression model. Whereas before we defined the experimental groups by assigning 
the dummy variables values of 1 or 0, when we perform contrasts we use different values 
to specify which groups we would like to compare. The resulting coefficients in the regres-
sion model (b2 and b1) represent the comparisons in which we are interested. The values 
assigned to the dummy variables are known as weights.

This procedure is horribly confusing, but there are a few basic rules for assigning values 
to the dummy variables to obtain the comparisons you want. I will explain these simple rules 
before showing how the process actually works. Remember the previous section when you 
read through these rules, and remind yourself of what I mean by a ‘chunk’ of variation!

Rule 1MM : Choose sensible comparisons. Remember that you want to compare only two 
chunks of variation and that if a group is singled out in one comparison, that group 
should be excluded from any subsequent contrasts.
Rule 2MM : Groups coded with positive weights will be compared against groups coded 
with negative weights. So, assign one chunk of variation positive weights and the 
opposite chunk negative weights.
Rule 3MM : The sum of weights for a comparison should be zero. If you add up the 
weights for a given contrast the result should be zero.
Rule 4MM : If a group is not involved in a comparison, automatically assign it a weight of 0. 
If we give a group a weight of 0 then this eliminates that group from all calculations.
Rule 5MM : For a given contrast, the weights assigned to the group(s) in one chunk of vari-
ation should be equal to the number of groups in the opposite chunk of variation.

OK, let’s follow some of these rules to derive the weights for the Viagra data. The first 
comparison we chose was to compare the two experimental groups against the control:

Therefore, the first chunk of variation contains the two experimental groups, and the sec-
ond chunk contains only the placebo group. Rule 2 states that we should assign one chunk 
positive weights, and the other negative. It doesn’t matter which way round we do this, but 
for convenience let’s assign chunk 1 positive weights, and chunk 2 negative weights:
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Using rule 5, the weight we assign to the groups in chunk 1 should be equivalent to the 
number of groups in chunk 2. There is only one group in chunk 2 and so we assign each 
group in chunk 1 a weight of 1. Likewise, we assign a weight to the group in chunk 2 that is 
equal to the number of groups in chunk 1. There are two groups in chunk 1 so we give the 
placebo group a weight of 2. Then we combine the sign of the weights with the magnitude 
to give us weights of −2 (placebo), 1 (low dose) and 1 (high dose):

Rule 3 states that for a given contrast, the weights should add up to zero, and by fol-
lowing rules 2 and 5 this rule will always be followed (if you haven’t followed these rules 
properly then this will become clear when you add the weights). So, let’s check by adding 
the weights: sum of weights = 1 + 1 − 2 = 0: 

The second contrast was to compare the two experimental groups and so we want to 
ignore the placebo group. Rule 4 tells us that we should automatically assign this group a 
weight of 0 (because this will eliminate this group from any calculations). We are left with 
two chunks of variation: chunk 1 contains the low-dose group and chunk 2 contains the 
high-dose group. By following rules 2 and 5 it should be obvious that one group is assigned 
a weight of +1 while the other is assigned a weight of −1. The control group is ignored (and 
so given a weight of 0). If we add the weights for contrast 2 we should find that they again 
add up to zero: sum of weights = 1 − 1 + 0 = 0.

The weights for each contrast are codings for the two dummy variables in equation 
(10.2). Hence, these codings can be used in a multiple regression model in which b2 repre-
sents contrast 1 (comparing the experimental groups to the control), b1 represents contrast 
2 (comparing the high-dose group to the low-dose group), and b0 is the grand mean:

Libidoi =b0 + b1Contrast1i +b2Contrast2i (10.9)

Each group is specified now not by the 0 and 1 coding scheme that we initially used, but 
by the coding scheme for the two contrasts. A code of −2 for contrast 1 and a code of 0 
for contrast 2 identify participants in the placebo group. Likewise, the high-dose group is 
identified by a code of 1 for both variables, and the low-dose group has a code of 1 for one 
contrast and a code of −1 for the other (see Table 10.4).

It is important that the weights for a comparison sum to zero because it ensures that you 
are comparing two unique chunks of variation. Therefore, SPSS can perform a t-test. A more 
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important consideration is that when you multiply the weights for a par-
ticular group, these products should also add up to zero (see final column 
of Table 10.4). If the products add to zero then we can be sure that the con-
trasts are independent or orthogonal. It is important for interpretation that 
contrasts are orthogonal. When we used dummy variable coding and ran 
a regression on the Viagra data, I commented that we couldn’t look at the 
individual t-tests done on the regression coefficients because the familywise 
error rate is inflated (see section 10.2.11 and SPSS Output 10.1). However, 
if the contrasts are independent then the t-tests done on the b coefficients 
are independent also and so the resulting p-values are uncorrelated. You 
might think that it is very difficult to ensure that the weights you choose for 
your contrasts conform to the requirements for independence but, provided you follow the rules 
I have laid out, you should always derive a set of orthogonal comparisons. You should double-
check by looking at the sum of the multiplied weights and if this total is not zero then go back to 
the rules and see where you have gone wrong (see last column of Table 10.4).

Earlier on, I mentioned that when you used contrast codings in dummy variables in a regres-
sion model the b-values represented the differences between the means that the contrasts were 
designed to test. Although it is reasonable for you to trust me on this issue, for the more advanced 
students I’d like to take the trouble to show you how the regression model works (this next part 
is not for the faint-hearted and so equation-phobes should move on to the next section!). When 
we do planned contrasts, the intercept b0 is equal to the grand mean (i.e. the value predicted by 
the model when group membership is not known), which when group sizes are equal is:

b0 = grand mean=
XHigh +XLow +XPlacebo

3

Placebo group: If we use the contrast codings for the placebo group (see Table 10.4), the 
predicted value of libido equals the mean of the placebo group. The regression equation 
can, therefore, be expressed as:

Libidoi = b0 + b1Contrast1i +b2Contrast2i

XPlacebo =
XHigh +XLow +XPlacebo

3

 !
+ −2b1ð Þ+ b2 × 0ð Þ

Now, if we rearrange this equation and then multiply everything by 3 (to get rid of the 
fraction) we get:

2b1 =
XHigh +XLow +XPlacebo

3

 !
−XPlacebo

6b1 =XHigh +XLow +XPlacebo − 3XPlacebo

6b1 =XHigh +XLow − 2XPlacebo

What are orthogonal
contrasts?

Table 10.4 Orthogonal contrasts for the Viagra data

Group
Dummy Variable 1 

(Contrast1)
Dummy Variable 2 

(Contrast2)
Product  

Contrast1 × Contrast2

Placebo −2   0   0

Low Dose   1 −1 −1

High Dose   1   1   1

Total   0   0   0

smart
alex
only
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We can then divide everything by 2 to reduce the equation to its simplest form:

3b1 =
XHigh +XLow

2

 !
−XPlacebo

b1 =
1

3

XHigh +XLow

2

 !
−XPlacebo

" #

This equation shows that b1 represents the difference between the average of the two 
experimental groups and the control group:

3b1 =
XHigh +XLow

2

 !
−XPlacebo

= 5+ 3:2

2
− 2:2

= 1:9

We planned contrast 1 to look at the difference between the average of the experimental 
groups and the control and so it should now be clear how b1 represents this difference. 
The observant among you will notice that rather than being the true value of the differ-
ence between experimental and control groups, b1 is actually a third of this difference 
(b1 = 1.9/3 = 0.633). The reason for this division is that the familywise error is controlled 
by making the regression coefficient equal to the actual difference divided by the number 
of groups in the contrast (in this case 3).

High-dose group: For the situation in which the codings for the high-dose group (see 
Table 10.4) are used, the predicted value of libido is the mean for the high-dose group, and 
so the regression equation becomes:

Libidoi =b0 + b1Contrast1i +b2Contrast2i

XHigh =b0 + b1 × 1ð Þ+ b2 × 1ð Þ

b2 =XHigh − b1 − b0

We know already what b1 and b0 represent, so we place these values into the equation and 
then multiply by 3 to get rid of some of the fractions:

b2 =XHigh − b1 − b0

b2 =XHigh −
1

3

XHigh +XLow

2

 !
−XPlacebo

" #( )
−

XHigh +XLow +XPlacebo

3

 !

3b2 = 3XHigh −
XHigh +XLow

2

 !
−XPlacebo

" #
− XHigh +XLow +XPlacebo

 

If we multiply everything by 2 to get rid of the other fraction, expand all of the brackets 
and then simplify the equation we get:

6b2 = 6XHigh − XHigh +XLow − 2XPlacebo

 
− 2 XHigh +XLow +XPlacebo

 

6b2 = 6XHigh −XHigh −XLow + 2XPlacebo −2XHigh − 2XLow − 2XPlacebo

6b2 = 3XHigh − 3XLow
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Finally, we can divide the equation by 6 to find out what b2 represents (remember that  
3/6 = 1/2):

b2 =
1

2
XHigh −XLow

 

We planned contrast 2 to look at the difference between the experimental groups:

XHigh −XLow = 5− 3:2= 1:8

It should now be clear how b2 represents this difference. Again, rather than being the absolute 
value of the difference between the experimental groups, b2 is actually half of this difference 
(1.8/2 = 0.9). The familywise error is again controlled, by making the regression coefficient 
equal to the actual difference divided by the number of groups in the contrast (in this case 2).

SELF-TEST  To illustrate these principles, I have 
created a file called Contrast.sav in which the Viagra 
data are coded using the contrast coding scheme 
used in this section. Run multiple regression analyses 
on these data using libido as the outcome and using 
dummy1 and dummy2 as the predictor variables 
(leave all default options). 

SPSS Output 10.2 shows the result of this regression. The main ANOVA for the model is 
the same as when dummy coding was used (compare it to SPSS Output 10.1) showing that the 
model fit is the same (it should be because the model represents the group means and these 
have not changed); however, the regression coefficients have now changed. The first thing 
to notice is that the intercept is the grand mean, 3.467 (see, I wasn’t telling lies). Second, the 
regression coefficient for contrast 1 is one-third of the difference between the average of the 
experimental conditions and the control condition (see above). Finally, the regression coef-
ficient for contrast 2 is half of the difference between the experimental groups (see above). So, 
when a planned comparison is done in ANOVA a t-test is conducted comparing the mean of 
one chunk of variation with the mean of a different chunk. From the significance values of the 
t-tests we can see that our experimental groups were significantly different from the control 
(p < .05) but that the experimental groups were not significantly different (p > .05).

Coefficientsa

3.467 .362 9.574 .000
.633 .256 .525 2.474 .029
.900 .443 .430 2.029 .065

(Constant)
Dummy Variable 1
Dummy Variable 2

Model

1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Libidoa.

10.2.11.3. Non-orthogonal comparisons 2

I have spent a lot of time labouring how to design appropriate orthogonal comparisons without 
mentioning the possibilities that non-orthogonal contrasts provide. Non-orthogonal contrasts 

SPSS OuTPuT 10.2

everybody
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are comparisons that are in some way related and the best way to get them is to disobey rule 1 in 
the previous section. Using my cake analogy again, non-orthogonal comparisons are where you 
slice up your cake and then try to stick slices of cake together again! So, for the Viagra data a set 
of non-orthogonal contrasts might be to have the same initial contrast (comparing experimen-
tal groups against the placebo), but then to compare the high-dose group to the placebo. This 
disobeys rule 1 because the placebo group is singled out in the first contrast but used again in the 

second contrast. The coding for this set of contrasts is shown in Table 10.5 
and by looking at the last column it is clear that when you multiply and add 
the codings from the two contrasts the sum is not zero. This tells us that the 
contrasts are not orthogonal.

There is nothing intrinsically wrong with performing non-orthogonal 
contrasts. However, if you choose to perform this type of contrast you must 
be very careful in how you interpret the results. With non-orthogonal con-
trasts, the comparisons you do are related and so the resulting test statistics 
and p-values will be correlated to some extent. For this reason you should 
use a more conservative probability level to accept that a given contrast is 
statistically meaningful (see section 10.2.12).

             CRAMMING SAM’S TIPS    Planned contrasts

M After an ANOVA you need more analysis to find out which groups differ.

M When you have generated specific hypotheses before the experiment use planned contrasts.

M Each contrast compares two ‘chunks’ of variance. (A chunk can contain one or more groups.)

M The first contrast will usually be experimental groups vs. control groups.

M The next contrast will be to take one of the chunks that contained more than one group (if there were any) and divide it into 
two chunks.

M You then repeat this process: if there are any chunks in previous contrasts that contained more than one group that haven’t 
already been broken down into smaller chunks, then create a new contrast that breaks it down into smaller chunks.

M Carry on creating contrasts until each group has appeared in a chunk on its own in one of your contrasts.

M You should end up with one less contrast than the number of experimental conditions. If not, you’ve done it wrong.

M In each contrast assign a ‘weight’ to each group that is the value of the number of groups in the opposite chunk in that contrast.

M For a given contrast, randomly select one chunk, and for the groups in that chunk change their weights to be negative numbers.

M Breathe a sigh of relief.

Table 10.5 Non-orthogonal contrasts for the Viagra data

Group Dummy Variable 1 
(Contrast1)

Dummy Variable 2 
(Contrast2)

Product 
Contrast1 × Contrast2

Placebo −2 −1 2

Low Dose   1   0 0

High Dose   1   1 1

Total   0   0 3

Are non-orthogonal
contrasts legitimate?
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10.2.11.4. Standard contrasts 2

Although under most circumstances you will design your own contrasts, there are special 
contrasts that have been designed to compare certain situations. Some of these contrasts 
are orthogonal whereas others are non-orthogonal. Many procedures in SPSS allow you to 
choose to carry out the contrasts mentioned in this section.

Table 10.6 shows the contrasts that are available in SPSS for procedures such as logistic 
regression (see section 8.5.3), factorial ANOVA and repeated-measures ANOVA (see Chapters 
12 and 13). Although the exact codings are not provided in Table 10.6, examples of the com-
parisons done in a three- and four-group situation are given (where the groups are labelled 1, 
2, 3 and 1, 2, 3, 4 respectively). When you code variables in the data editor, SPSS will treat the 
lowest-value code as group 1, the next highest code as group 2, and so on. Therefore, depend-
ing on which comparisons you want to make you should code your grouping variable appropri-
ately (and then use Table 10.6 as a guide to which comparisons SPSS will carry out). One thing 
that clever readers might notice about the contrasts in Table 10.6 is that some are orthogonal 
(i.e. Helmert and difference contrasts) while others are non-orthogonal (deviation, simple and 
repeated). You might also notice that the comparisons calculated using simple contrasts are the 
same as those given by using the dummy variable coding described in Table 10.2.

Table 10.6 Standard contrasts available in SPSS

Name Definition Contrast Three Groups Four Groups

Deviation 
(first)

Compares the effect of each 
category (except first) to the 
overall experimental effect

1 2 vs. (1,2,3) 2 vs. (1,2,3,4)

2 3 vs. (1,2,3) 3 vs. (1,2,3,4)

3 4 vs. (1,2,3,4)

Deviation 
(last)

Compares the effect of each 
category (except last) to the 
overall experimental effect

1 1 vs. (1,2,3) 1 vs. (1,2,3,4)

2 2 vs. (1,2,3) 2 vs. (1,2,3,4)

3 3 vs. (1,2,3,4)

Simple 
(first)

Each category is compared to 
the first category

1 1 vs. 2 1 vs. 2

2 1 vs. 3 1 vs. 3

3 1 vs. 4

Simple 
(last)

Each category is compared to 
the last category

1 1 vs. 3 1 vs. 4

2 2 vs. 3 2 vs. 4

3 3 vs. 4

Repeated Each category (except the first) 
is compared to the previous 
category

1 1 vs. 2 1 vs. 2

2 2 vs. 3 2 vs. 3

3 3 vs. 4

Helmert Each category (except the last) 
is compared to the mean effect 
of all subsequent categories

1 1 vs. (2, 3) 1 vs. (2, 3, 4)

2 2 vs. 3 2 vs. (3, 4)

3 3 vs. 4

Difference 
(reverse 
Helmert)

Each category (except the first) is 
compared to the mean effect of 
all previous categories

1 3 vs. (2, 1) 4 vs. (3, 2, 1)

2 2 vs. 1 3 vs. (2, 1)

3 2 vs. 1
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10.2.11.5. Polynomial contrasts: trend analysis 2

One type of contrast deliberately omitted from Table 10.6 is the polynomial contrast. This con-
trast tests for trends in the data and in its most basic form it looks for a linear trend (i.e. that the 
group means increase proportionately). However, there are more complex trends such as quad-
ratic, cubic and quartic trends that can be examined. Figure 10.7 shows examples of the types 
of trend that can exist in data sets. The linear trend should be familiar to you all by now and 
represents a simply proportionate change in the value of the dependent variable across ordered 
categories (the diagram shows a positive linear trend but of course it could be negative). A quad-
ratic trend is where there is one change in the direction of the line (e.g. the line is curved in one 
place). An example of this might be a situation in which a drug enhances performance on a task 
at first but then as the dose increases the performance drops again. To find a quadratic trend 
you need at least three groups (because in the two-group situation there are not enough catego-
ries of the independent variable for the means of the dependent variable to change one way and 
then another). A cubic trend is where there are two changes in the direction of the trend. So, for 
example, the mean of the dependent variable at first goes up across the first couple of categories 
of the independent variable, then across the succeeding categories the means go down, but then 
across the last few categories the means rise again. To have two changes in the direction of the 
mean you must have at least four categories of the independent variable. The final trend that 
you are likely to come across is the quartic trend, and this trend has three changes of direction 
(so you need at least five categories of the independent variable).

Polynomial trends should be examined in data sets in which it makes sense to order the 
categories of the independent variable (so, for example, if you have administered five doses 
of a drug it makes sense to examine the five doses in order of magnitude). For the Viagra 
data there are only three groups and so we can expect to find only a linear or quadratic 
trend (and it would be pointless to test for any higher-order trends).

Each of these trends has a set of codes for the dummy variables in the regression model, 
so we are doing the same thing that we did for planned contrasts except that the codings 
have already been devised to represent the type of trend of interest. In fact, the graphs in 
Figure 10.7 have been constructed by plotting the coding values for the five groups. Also, 
if you add the codes for a given trend the sum will equal zero and if you multiply the codes 
you will find that the sum of the products also equals zero. Hence, these contrasts are 
orthogonal. The great thing about these contrasts is that you don’t need to construct your 
own coding values to do them, because the codings already exist.

10.2.12.  Post hoc procedures 2

Often it is the case that you have no specific a priori predictions about the data you have 
collected and instead you are interested in exploring the data for any between-group differ-
ences between means that exist. This procedure is sometimes called data mining or explor-
ing data. Now, personally I have always thought that these two terms have certain ‘rigging 
the data’ connotations to them and so I prefer to think of these procedures as ‘finding the 
differences that I should have predicted if only I’d been clever enough’. 

Post hoc tests consist of pairwise comparisons that are designed to compare all different com-
binations of the treatment groups. So, it is rather like taking every pair of groups and then per-
forming a t-test on each pair of groups. Now, this might seem like a particularly stupid thing to 
say (but then again, I am particularly stupid) in the light of what I have already told you about the 
problems of inflated familywise error rates. However, pairwise comparisons control the family-
wise error by correcting the level of significance for each test such that the overall Type I error 
rate (α) across all comparisons remains at .05. There are several ways in which the familywise 
error rate can be controlled. The most popular (and easiest) way is to divide α by the number of 
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Figure 10.7
Linear, quadratic, 
cubic and quartic 
trends across 
five groups

comparisons, thus ensuring that the cumulative Type I error is below .05. 
Therefore, if we conduct 10 tests, we use .005 as our criterion for signifi-
cance. This method is known as the Bonferroni correction (Figure 10.8). 
There is a trade-off for controlling the familywise error rate and that is 
a loss of statistical power. This means that the probability of rejecting an 
effect that does actually exist is increased (this is called a Type II error). By 
being more conservative in the Type I error rate for each comparison, we 
increase the chance that we will miss a genuine difference in the data.

Therefore, when considering which post hoc procedure to use we 
need to consider three things: (1) does the test control the Type I 
error rate; (2) does the test control the Type II error rate (i.e. does the 
test have good statistical power); and (3) is the test reliable when the 
test assumptions of ANOVA have been violated?

Although I would love to go into tedious details about how all of 
the various post hoc tests work, there is really very little point. For 
one thing, there are some excellent texts already available for those 
who wish to know (Klockars & Sax, 1986; Toothaker, 1993), for 
another, SPSS provides no less than 18 post hoc procedures and so it 
would use up several square miles of rainforest to explain them. By 
far the best reason, though, is that to explain them I would have to 
learn about them first, and I may be a nerd but even I draw the line 
at reading up on 18 different post hoc tests. However, it is important 
that you know which post hoc tests perform best according to the 
aforementioned criteria.

Figure 10.8
Carlo Bonferroni before the celebrity of his 
correction led to drink, drugs and statistics 
groupies
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10.2.12.1. Post hoc procedures and Type i (α) and  
Type ii error rates 2

The Type I error rate and the statistical power of a test are linked. Therefore, there is 
always a trade-off: if a test is conservative (the probability of a Type I error is small) then it 
is likely to lack statistical power (the probability of a Type II error will be high). Therefore, 
it is important that multiple comparison procedures control the Type I error rate but with-
out a substantial loss in power. If a test is too conservative then we are likely to reject 
differences between means that are, in reality, meaningful.

The least-significant difference (LSD) pairwise comparison makes no attempt to control 
the Type I error and is equivalent to performing multiple t-tests on the data. The only differ-
ence is that the LSD requires the overall ANOVA to be significant. The Studentized Newman–
Keuls (SNK) procedure is also a very liberal test and lacks control over the familywise error 
rate. Bonferroni’s and Tukey’s tests both control the Type I error rate very well but are con-
servative tests (they lack statistical power). Of the two, Bonferroni has more power when the 
number of comparisons is small, whereas Tukey is more powerful when testing large num-
bers of means. Tukey generally has greater power than Dunn and Scheffé. The Ryan, Einot, 
Gabriel and Welsch Q procedure (REGWQ) has good power and tight control of the Type 
I error rate. In fact, when you want to test all pairs of means this procedure is probably the 
best. However, when group sizes are different this procedure should not be used.

10.2.12.2. Post hoc procedures and violations of test 
assumptions 2

Most research on post hoc tests has looked at whether the test performs well when the group 
sizes are different (an unbalanced design), when the population variances are very different, and 
when data are not normally distributed. The good news is that most multiple comparison proce-
dures perform relatively well under small deviations from normality. The bad news is that they 
perform badly when group sizes are unequal and when population variances are different.

Hochberg’s GT2 and Gabriel’s pairwise test procedure were designed to cope with situa-
tions in which sample sizes are different. Gabriel’s procedure is generally more powerful but 
can become too liberal when the sample sizes are very different. Also, Hochberg’s GT2 is very 
unreliable when the population variances are different and so should be used only when you 
are sure that this is not the case. There are several multiple comparison procedures that have 
been specially designed for situations in which population variances differ. SPSS provides 
four options for this situation: Tamhane’s T2, Dunnett’s T3, Games–Howell and Dunnett’s 
C. Tamhane’s T2 is conservative and Dunnett’s T3 and C keep very tight Type I error control. 
The Games–Howell procedure is the most powerful but can be liberal when sample sizes are 
small. However, Games–Howell is also accurate when sample sizes are unequal.

10.2.12.3. Summary of post hoc procedures 2

The choice of comparison procedure will depend on the exact situation you have and whether 
it is more important for you to keep strict control over the familywise error rate or to have 
greater statistical power. However, some general guidelines can be drawn (Toothaker, 1993). 
When you have equal sample sizes and you are confident that your population variances are 
similar then use REGWQ or Tukey as both have good power and tight control over the Type 
I error rate. Bonferroni is generally conservative, but if you want guaranteed control over 
the Type I error rate then this is the test to use. If sample sizes are slightly different then use 

everybody

smart
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Gabriel’s procedure because it has greater power, but if sample sizes are very different use 
Hochberg’s GT2. If there is any doubt that the population variances are equal then use the 
Games–Howell procedure because this generally seems to offer the best performance. I rec-
ommend running the Games–Howell procedure in addition to any other tests you might select 
because of the uncertainty of knowing whether the population variances are equivalent. 

Although these general guidelines provide a convention to follow, be aware of the other 
procedures available and when they might be useful to use (e.g. Dunnett’s test is the only 
multiple comparison that allows you to test means against a control mean).

             CRAMMING SAM’S TIPS    Post hoc tests

M After an ANOVA you need a further analysis to find out which groups differ.

M When you have no specific hypotheses before the experiment use post hoc tests.

M When you have equal sample sizes and group variances are similar use REGWQ or Tukey.

M If you want guaranteed control over the Type I error rate then use Bonferroni.

M If sample sizes are slightly different then use Gabriel’s, but if sample sizes are very different use Hochberg’s GT2.

M If there is any doubt that group variances are equal then use the Games–Howell procedure.

10.3. Running one-way ANOVA on SPSS 2

Hopefully you should all have some appreciation for the theory behind ANOVA, so let’s 
put that theory into practice by conducting an ANOVA test on the Viagra data. As with the 
independent t-test we need to enter the data into the data editor using a coding variable to 
specify to which of the three groups the data belong. So, the data must be entered in two 
columns (one called dose which specifies how much Viagra the participant was given and 
one called libido which indicates the person’s libido over the following week). The data 
are in the file Viagra.sav but I recommend entering them by hand to gain practice in data 
entry. I have coded the grouping variable so that 1 = placebo, 2 = low dose and 3 = high 
dose (see section 3.4.2.3).

To conduct one-way ANOVA we have to access the main dialog box by selecting 
 (Figure 10.9). This dialog box has a space in 

which you can list one or more dependent variables and a second space to specify a group-
ing variable, or factor. Factor is another term for independent variable and should not be 
confused with the factors that we will come across when we learn about factor analysis. 
For the Viagra data we need select only libido from the variables list and drag it to the box 
labelled Dependent List (or click on ). Then select the grouping variable dose and drag 
it to the box labelled Factor (or click on ).

One thing that I dislike about SPSS is that in various procedures, such as one-way 
ANOVA, the program encourages the user to carry out multiple tests, which as we have 
seen is not a good thing. For example, in this procedure you are allowed to specify several 
dependent variables on which to conduct several ANOVAs. In reality, if you had measured 
several dependent variables (say you had measured not just libido but physiological arousal 
and anxiety too) it would be preferable to analyse these data using MANOVA rather than 
treating each dependent measure separately (see Chapter 16).
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10.3.1.  Planned comparisons using SPSS 2

If you click on  you access the dialog box that allows you to conduct the planned 
comparisons described in section 10.2.11. 

The dialog box is shown in Figure 10.10 and has two sections. The first section is for 
specifying trend analyses. If you want to test for trends in the data then tick the box labelled 
Polynomial. Once this box is ticked, you can select the degree of polynomial you would like. 
The Viagra data have only three groups and so the highest degree of trend there can be is a 
quadratic trend (see section 10.2.11.3). Now, it is important from the point of view of trend 
analysis that we have coded the grouping variable in a meaningful order. Also, we expect 
libido to be smallest in the placebo group, to increase in the low-dose group and then to 
increase again in the high-dose group. To detect a meaningful trend, we need to have coded 
these groups in ascending order. We have done this by coding the placebo group with the 
lowest value 1, the low-dose group with the middle value 2 and the high-dose group with 
the highest coding value of 3. If we coded the groups differently, this would influence both 
whether a trend is detected and, if a trend is detected, whether it is statistically meaningful.

For the Viagra data there are only three groups and so we should select the polynomial 
option , then select a quadratic degree by clicking on  and then select 
Quadratic (the drop-down list should now say ). If a quadratic trend is selected 
SPSS will test for both linear and quadratic trends.

The lower part of the dialog box in Figure 10.10 is for specifying any planned com-
parisons. To conduct planned comparisons we need to tell SPSS what weights to assign to 
each group. The first step is to decide which comparisons you want to do and then what 
weights must be assigned to each group for each of the contrasts. We have already gone 
through this process in section 10.2.11.2, so we know that the weights for contrast 1 were 
−2 (placebo group), +1 (low-dose group) and +1 (high-dose group). We will specify this 
contrast first. It is important to make sure that you enter the correct weight for each group, 
so you should remember that the first weight that you enter should be the weight for the 
first group (i.e. the group coded with the lowest value in the data editor). For the Viagra 
data, the group coded with the lowest value was the placebo group (which had a code of 1) 
so we should enter the weighting for this group first. Click in the box labelled Coefficients 
with the mouse and then type ‘-2’ in this box and click on . Next, we need to input 
the weight for the second group, which for the Viagra data is the low-dose group (because 
this group was coded in the data editor with the second-highest value). Click in the box 
labelled Coefficients with the mouse and then type ‘1’ in this box and click on . Finally, 
we need to input the weight for the last group, which for the Viagra data is the high-dose 

Figure 10.9
Main dialog box 
for one-way 
ANOVA
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group (because this group was coded with the highest value in the data editor). Click in the 
box labelled Coefficients with the mouse and then type ‘1’ in this box and click on . 
The box should now look like Figure 10.11 (left). 

Once you have inputted the weights you can change or remove any one of them by using 
the mouse to select the weight that you want to change. The weight will then appear in 
the box labelled Coefficients where you can type in a new weight and then click on .  
Alternatively, you can click on any of the weights and remove it completely by clicking 

. Underneath the weights SPSS calculates the coefficient total which, as we saw in 
section 10.2.11.2, should equal zero. If the coefficient number is anything other than zero 
you should go back and check that the contrasts you have planned make sense and that you 
have followed the appropriate rules for assigning weights.

Once you have specified the first contrast, click on . The weights that you have 
just entered will disappear and the dialog box will now read Contrast 2 of 2. We know from 
section 10.2.11.2 that the weights for contrast 2 were: 0 (placebo group), −1 (low-dose 
group) and +1 (high-dose group). We can specify this contrast as before. Remembering that 
the first weight we enter will be for the placebo group, we must enter the value 0 as the first 
weight. Click in the box labelled Coefficients with the mouse and then type ‘0’ and click on 

Figure 10.11
Contrasts dialog 
box completed 
for the two 
contrasts of the 
Viagra data

Figure 10.10
Dialog box for 
conducting 
planned 
comparisons
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. Next, we need to input the weight for the low-dose group by clicking in the box 
labelled Coefficients and then typing ‘-1’ and clicking on . Finally, we need to input 
the weight for the high-dose group by clicking in the box labelled Coefficients and then 
typing ‘+1’ and clicking on . The box should now look like Figure 10.11 (right). 
Notice that the weights add up to zero as they did for contrast 1. It is imperative that you 
remember to input zero weights for any groups that are not in the contrast. When all of the 
planned contrasts have been specified, click on  to return to the main dialog box.

10.3.2.  Post hoc tests in SPSS 2

Having told SPSS which planned comparisons to do, we can choose to do post hoc tests. In 
theory, if we have done planned comparisons we shouldn’t need to do post hoc tests (because 
we have already tested the hypotheses of interest). Likewise, if we choose to conduct post hoc 
tests then we should not need to do planned contrasts (because we have no hypotheses to test). 
However, for the sake of space we will conduct some post hoc tests on the Viagra data. Click on 

 in the main dialog box to access the post hoc tests dialog box (Figure 10.12). 
In section 10.2.12.3, I recommended various post hoc procedures for various situations. 

For the Viagra data there are equal sample sizes and so we need not use Gabriel’s test. We 
should use Tukey’s test and REGWQ and check the findings with the Games–Howell pro-
cedure. We have a specific hypothesis that both the high- and low-dose groups should differ 
from the placebo group and so we could use Dunnett’s test to examine these hypotheses. 
Once you have selected Dunnett’s test, change the control category (the default is to use the 

 category) to specify that the  category be used as the control category 
(because the placebo group was coded with the lowest value). You can also choose whether 
to conduct a two-tailed test ( ) or a one-tailed test. If you choose a one-tailed test then 
you must predict whether you believe that the mean of the control group will be less than 
a particular experimental group ( ) or greater than a particular experimental group 
( ). These are all of the post hoc tests that need to be specified and when the completed 
dialog box looks like Figure 10.12 click on  to return to the main dialog box.

Figure 10.12
Dialog box for 
specifying 
post hoc tests
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10.3.3.  Options 2

The options for one-way ANOVA are fairly straightforward (Figure 10.13). First you 
can ask for some descriptive statistics which will produce a table of the means, stand-
ard deviations, standard errors, ranges and confidence intervals for the means of each 
group. This option is useful to select because it assists in interpreting the final results. 
A vital option to select is the homogeneity of variance tests. As with the t-test, there is 
an assumption that the variances of the groups are equal and selecting this option tests 
this assumption. SPSS uses Levene’s test, which tests the hypothesis that the variances 
of each group are equal (see section 5.6.1). If the homogeneity of variance assumption 
is broken, then SPSS offers us two alternative versions of the F-ratio: the Brown–Forsythe F 
(1974), and Welch’s F (1951). If you’re really bored, these two statistics are discussed in 
Jane Superbrain Box 10.2, but suffice it to say they’re worth selecting just in case the 
assumption is broken.

There is also an option to have a Means plot and if this option is selected then a line 
graph of the group means will be produced in the output. However, the resulting graph 
is a leprotic tramp compared to what we can create using the Chart Builder and, as I have 
said before, it’s best to graph your data before the analysis. Finally, the options let us specify 
whether we want to exclude cases on a listwise basis or on a per analysis basis (SPSS Tip 6.1). 
This option is useful only if you are conducting several ANOVAs on different dependent 
variables. The first option (Exclude cases analysis by analysis) excludes any case that has a 
missing value for either the independent or the dependent variable used in that particular 
analysis. Exclude cases listwise will exclude from all analyses any case that has a missing 
value for the independent variable or any of the dependent variables specified. If you stick 
to good practice and don’t conduct hundreds of ANOVAs on different dependent variables 
(see Chapter 16 on MANOVA) the default settings are fine. When you have selected the 
appropriate options, click on  to return to the main dialog box and then click on  
to run the analysis.

Figure 10.13
Options for  
one-way ANOVA
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biases the F-ratio to be conservative. If you think back to 
equation (10.9) this makes perfect sense because to cal-
culate SSR variances are multiplied by their sample size 
(minus one), so in this situation you get a large sample 
size cross-multiplied with a large variance, which will 
inflate the value of SSR. What effect does this have on the 
F-ratio? Well, the F-ratio is proportionate to SSM/SSR, so 
if SSR is big, then the F-ratio gets smaller (which is why 
it would be more conservative: its value is being overly 
reduced!). Brown and Forsythe get around this problem 
by weighting the group variances, not by their sample 
size, but by the inverse of their sample sizes (actually 
they use n/N so it’s the sample size as a proportion of the 
total sample size). This means that the impact of large 
sample sizes with large variance is reduced:

FBF =
SSM

SSBF
= SSMP

s2k 1− nk
N

 

So, for the Viagra data, SSM is the same as before 
(20.135), so the equation becomes:

In section 10.2.10 I mentioned that when group sizes are 
unequal, violations of the assumption of homogeneity of 
variance can have quite serious consequences. SPSS 
incorporates options for two alternative F-ratios, which 
have been derived to be robust when homogeneity of 
variance has been violated. The first is the Brown and 
Forsythe (1974) F-ratio, which is fairly easy to explain. 
I mentioned earlier that when group sizes are unequal 
and the large groups have the biggest variance, then this 

JANE SUPERBRAIN 10.2

What do I do in ANOVA when the homogeneity 
of variance assumption is broken? 3

FBF =
20:135

s2group1 1− ngroup1
N

 
+ s2group2 1− ngroup2

N

 
+ s2group3 1− ngroup3

N

 

= 20:135

1:70 1− 5
15

 
+ 1:70 1− 5

15

 
+ 2:50 1− 5

15

 

= 20:135

3:933
= 5:119

This statistic is evaluated using degrees of freedom 
for the model and error terms. For the model, dfM is the 
same as before (i.e. k − 1 = 2), but an adjustment is made 
to the residual degrees of freedom, dfR. The second cor-
rection is Welch’s (1951) F – see Oliver Twisted.

The obvious question is which of the two procedures 
is best? Tomarken and Serlin (1986) review these and 

other techniques and seem to conclude that both tech-
niques control the Type I error rate well (i.e. when there’s 
no effect in the population you do indeed get a non- 
significant F). However, in terms of power (i.e. which test 
is best a detecting an effect when it exists), the Welch test 
seems to fare the best except when there is an extreme 
mean that has a large variance. 

‘You’re only telling us about the Brown–Forsythe F because you don’t 
understand Welch’s F,’ taunts Oliver, ‘Andy, Andy, brains all sandy ….’ 
Whatever, Oliver. Like the Brown–Forsythe F, Welch’s F adjusts F and 
the residual degrees of freedom to combat problems arising from vio-
lations of the homogeneity of variance assumption. There is a lengthy 
 explanation about Welch’s F in the additional material available on the 
companion website. Oh, and Oliver, microchips are made of sand.

OLIVER TWISTED

Please, Sir, can I 
have some more … 
Welch’s F?
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10.4. Output from one-way ANOVA 2

If you load up the Viagra data (or enter it in by hand) and select all of the options I have 
suggested, you should find that the output looks the same as what follows. If your output 
is different we should panic because one of us has done it wrong – hopefully not me or a 
lot of trees have died for nothing.

In Chapter 4 we saw that it is always a good idea to look at a graph of your data. In this 
case we should produce an error bar graph or a line graph with error bars.

SELF-TEST  Produce a line chart with error bars for the 
Viagra data.

Figure 10.14 shows a line chart with error bars of the Viagra data (I have edited my 
graph; see if you can use the SPSS Chart Editor to make yours look like mine). It’s clear 
from this chart that all of the error bars overlap, indicating that, on face value, there are 
no between-group differences (although this measure is only approximate). The line that 
joins the means seems to indicate a linear trend in that, as the dose of Viagra increases, so 
does the mean level of libido.

Figure 10.14
Error bar chart of 
the Viagra data

10.4.1.  Output for the main analysis 2

SPSS Output 10.3 shows the table of descriptive statistics from the one-way procedure for the 
Viagra data. The first thing to notice is that the means and standard deviations correspond to 
those shown in Table 10.1. In addition we are told the standard error. You should remember 
that the standard error is the standard deviation of the sampling distribution of these data 
(so, for the placebo group, if you took lots of samples from the population from which these 
data come, the means of these samples would have a standard deviation of 0.5831). We are 
also given confidence intervals for the mean. By now, you should be familiar with what a 
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confidence interval tells us, and that is that if we took 100 samples from the population from 
which the placebo group came and constructed confidence intervals for the mean, then 95 
of these intervals would contain the true value of the mean: in other words, the true value 
of the mean is likely to be between 0.5811 and 3.8189. Although these diagnostics are not 
immediately important, we will refer back to them throughout the analysis.

The next part of the output is a summary table of Levene’s test (see section 5.6.1). This 
test is designed to test the null hypothesis that the variances of the groups are the same. 
It is an ANOVA test conducted on the absolute differences between the observed data 
and the mean from which the data came (see Oliver Twisted). In this case, Levene’s test 
is, therefore, testing whether the variances of the three groups are significantly different. 
If Levene’s test is significant (i.e. the value of Sig. is less than .05) then we can say that 
the variances are significantly different. This would mean that we had violated one of the 
assumptions of ANOVA and we would have to take steps to rectify this matter. As we saw 
in Chapter 5, one common way to rectify differences between group variances is to trans-
form all of the data and then reanalyse these transformed values (see Chapter 5). However, 
given the apparent utility of Welch’s F, or the Brown–Forsythe F, and the fact that transfor-
mations often don’t help at all, you can instead report Welch’s F (and I’d probably suggest 
reporting this instead of the Brown–Forsythe F unless you have an extreme mean that is 
also causing the problem with the variances). Luckily, for these data the variances are very 
similar (hence the high probability value); in fact, if you look at SPSS Output 10.3 you’ll 
see that the variances of the placebo and low-dose groups are identical.

Test of Homogeneity of Variances

.092 2 12 .913Libido

Levene
Statistic df1 df2 Sig.

SPSS Output 10.5 shows the main ANOVA summary table. The table is divided into 
between-group effects (effects due to the model – the experimental effect) and within-group 

SPSS OuTPuT 10.3

SPSS OuTPuT 10.4

‘Liar! Liar! Pants on fire,’ screams Oliver his cheeks red and eyes about to 
explode. ‘You promised in Chapter 5 to explain Levene’s test properly and 
you haven’t, you spatula head.’ True enough, Oliver, I do have a spatula 
for a head. I also have a very nifty little demonstration of Levene’s test in 
the additional material for this chapter on the companion website. It will tell 
you more than you could possibly want to know. Let’s go fry an egg … 

OLIVER TWISTED

Please, Sir, can I 
have some more … 
Levene's test?
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effects (this is the unsystematic variation in the data). The between-group effect is further 
broken down into a linear and quadratic component and these components are the trend 
analyses described in section 10.2.11.5. The between-group effect labelled Combined is 
the overall experimental effect. In this row we are told the sums of squares for the model 
(SSM = 20.13) and this value corresponds to the value calculated in section 10.2.6. The 
degrees of freedom are equal to 2 and the mean squares for the model corresponds to the 
value calculated in section 10.2.8 (10.067). The sum of squares and mean squares represent 
the experimental effect. This overall effect is then broken down because we asked SPSS to 
conduct trend analyses of these data (we will return to these trends in due course). Had we 
not specified this in section 10.3.1, then these two rows of the summary table would not be 
produced. The row labelled Within groups gives details of the unsystematic variation within 
the data (the variation due to natural individual differences in libido and different reactions 
to Viagra). The table tells us how much unsystematic variation exists (the residual sum of 
squares, SSR) and this value (23.60) corresponds to the value calculated in section 10.2.7. 
The table then gives the average amount of unsystematic variation, the mean squares (MSR), 
which corresponds to the value (1.967) calculated in section 10.2.8. The test of whether the 
group means are the same is represented by the F-ratio for the combined between-group 
effect. The value of this ratio is 5.12, which is the same as was calculated in section 10.2.9. 
Finally SPSS tells us whether this value is likely to have happened by chance. The final col-
umn labelled Sig. indicates the likelihood of an F-ratio the size of the one obtained occurring 
if there was no effect in the population (see also SPSS Tip 10.1). In this case, there is a prob-
ability of .025 that an F-ratio of this size would occur if in reality there was no effect (that’s 
only a 2.5% chance!). We have seen in previous chapters that we use a cut-off point of .05 
as a criterion for statistical significance. Hence, because the observed significance value is 
less than .05 we can say that there was a significant effect of Viagra. However, at this stage 
we still do not know exactly what the effect of Viagra was (we don’t know which groups 
differed). One thing that is interesting here is that we obtained a significant experimental 
effect yet our error bar plot indicated that no significant difference would be found. This 
contradiction illustrates how the error bar chart can act only as a rough guide to the data.

Knowing that the overall effect of Viagra was significant, we can now look at the trend 
analysis. The trend analysis breaks down the experimental effect to see whether it can be 
explained by either a linear or a quadratic relationship in the data. First, let’s look at the 
linear component. This comparison tests whether the means increase across groups in a 
linear way. Again the sum of squares and mean squares are given, but the most important 
things to note are the value of the F-ratio and the corresponding significance value. For 
the linear trend the F-ratio is 9.97 and this value is significant at a .008 level. Therefore, 
we can say that as the dose of Viagra increased from nothing to a low dose to a high dose, 
libido increased proportionately. Moving on to the quadratic trend, this comparison is test-
ing whether the pattern of means is curvilinear (i.e. is represented by a curve that has one 
bend). The error bar graph of the data suggests that the means cannot be represented by 
a curve and the results for the quadratic trend bear this out. The F-ratio for the quadratic 
trend is non-significant (in fact, the value of F is less than 1, which immediately indicates 
that this contrast will not be significant).

SPSS OuTPuT 10.5
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Finally, SPSS Output 10.6 shows Welch’s and the Brown–Forsythe F-ratios. As it turned 
out we didn’t need these because our Levene’s test was not significant, indicating that 
our variances were equal. However, when homogeneity of variance has been violated you 
should look at these F-ratios instead of the ones in the main table. If you’re interested in 
how these values are calculated then look at Jane Superbrain Box 10.2, but to be honest 
it’s just bloody confusing if you ask me; you’re much better off just looking at the values in 
SPSS Output 10.6 and trusting that they do what they’re supposed to do (you should also 
note that the error degrees of freedom have been adjusted and you should remember this 
when you report the values!).

Robust Tests of Equality of Means
Libido

4.320 2 7.943 .054
5.119 2 11.574 .026

Welch
Brown-Forsythe

Statistica df1 df2 Sig.

Asymptotically F distributed.a. 

10.4.2.  Output for planned comparisons 2

In section 10.3.1 we told SPSS to conduct two planned comparisons: one to test whether 
the control group was different to the two groups which received Viagra, and one to see 
whether the two doses of Viagra made a difference to libido. SPSS Output 10.7 shows 
the results of the planned comparisons that we requested for the Viagra data. The first 
table displays the contrast coefficients; these values are the ones that we entered in section 
10.3.1 and it is well worth looking at this table to double-check that the contrasts are com-
paring what they are supposed to! As a quick rule of thumb, remember that when we do 
planned comparisons we arrange the weights such that we compare any group with a posi-
tive weight against any group with a negative weight. Therefore, the table of weights shows 
that contrast 1 compares the placebo group against the two experimental groups, and 
contrast 2 compares the low-dose group to the high-dose group. It is useful to check this 
table to make sure that the weights that we entered into SPSS correspond to the weights 
we intended to enter into SPSS!

          SPSS T IP  10.1     One- and two-tailed tests in ANOVA 2

A question I get asked a lot by students is ‘is the significance of the ANOVA one- or two-tailed, and if it’s two-tailed 
can I divide by 2 to get the one-tailed value?’ The answer is that to do a one-tailed test you have to be making a 
directional hypothesis (i.e. the mean for cats is greater than for dogs). ANOVA is a non-specific test, so it just tells 
us generally whether there is a difference or not and because there are several means you can’t possibly make a 
directional hypothesis. As such, it’s invalid to halve the significance value.

SPSS OuTPuT 10.6

SPSS OuTPuT 10.7
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The second table gives the statistics for each contrast. The first thing to notice is that statistics 
are produced for situations in which the group variances are equal, and when they are unequal. 
If Levene’s test was significant then you should read the part of the table labelled Does not 
assume equal variances. However, for these data Levene’s test was not significant and we can, 
therefore, use the part of the table labelled Assume equal variances. The table tells us the value of 
the contrast itself, which is the weighted sum of the group means. This value is obtained by tak-
ing each group mean, multiplying it by the weight for the contrast of interest, and then adding 
these values together.5 The table also gives the standard error of each contrast and a t-statistic. 
The t-statistic is derived by dividing the contrast value by the standard error (t = 3.8/1.5362 = 
2.47) and is compared against critical values of the t-distribution. The significance value of the 
contrast is given in the final column and this value is two-tailed. Using the first contrast as an 
example, if we had used this contrast to test the general hypothesis that the experimental groups 
would differ from the placebo group, then we should use this two-tailed value. However, in 
reality we tested the hypothesis that the experimental groups would increase libido above the 
levels seen in the placebo group: this hypothesis is one-tailed. Provided the means for the groups 
bear out the hypothesis we can divide the significance values by 2 to obtain the one-tailed 
probability. Hence, for contrast 1, we can say that taking Viagra significantly increased libido 
compared to the control group (p = .0145). For contrast 2 we also had a one-tailed hypothesis 
(that a high dose of Viagra would increase libido significantly more than a low dose) and the 
means bear this hypothesis out. The significance of contrast 2 tells us that a high dose of Viagra 
increased libido significantly more than a low dose (p(one-tailed) = .065/2 = .0325). Notice 
that had we not had a specific hypothesis regarding which group would have the highest mean, 
then we would have had to conclude that the dose of Viagra had no significant effect on libido. 
For this reason it can be important as scientists that we generate hypotheses before collecting 
any data because this method of scientific discovery is more powerful.

In summary, there is an overall effect of Viagra on libido. Furthermore, the planned 
contrasts revealed that having Viagra significantly increased libido compared to a control 
group, t(12) = 2.47, p < .05, and having a high dose significantly increased libido com-
pared to a low dose, t(12) = 2.03, p < .05.

10.4.3.  Output for post hoc tests 2

If we had no specific hypotheses about the effect that Viagra might have on libido then we 
could carry out post hoc tests to compare all groups of participants with each other. In fact, 
we asked SPSS to do this (see section 10.3.2) and the results of this analysis are shown in 
SPSS Output 10.8. This table shows the results of Tukey’s test (known as Tukey’s HSD)6, the 
Games–Howell procedure and Dunnett’s test, which were all specified earlier on. If we look 
at Tukey’s test first (because we have no reason to doubt that the population variances are 
unequal) it is clear from the table that each group of participants is compared to all of the 

5 For the first contrast this value is:

(X
−

W) = [(2.2 × –2)+(3.2 × 1)+(5.0 × 1)] = 3.8

6 The HSD stands for ‘honestly significant difference’, which has a slightly dodgy ring to it if you ask me!
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remaining groups. For each pair of groups the difference between group means is displayed, 
the standard error of that difference, the significance level of that difference and a 95% con-
fidence interval. First of all, the placebo group is compared to the low-dose group and reveals 
a non-significant difference (Sig. is greater than .05), but when compared to the high-dose 
group there is a significant difference (Sig. is less than .05). 

SELF-TEST  Our planned comparison showed that any 
dose of Viagra produced a significant increase in libido, 
yet the post hoc tests indicate that a low dose does not. 
Why is there this contradiction?

In section 10.2.11.2, I explained that the first planned comparison would compare 
the experimental groups to the placebo group. Specifically, it would compare the average 
of the two group means of the experimental groups ((3.2 + 5.0)/2 = 4.1) to the mean of 
the placebo group (2.2). So, it was assessing whether the difference between these values 
(4.1 − 2.2 = 1.9) was significant. In the post hoc tests, when the low dose is compared to 
the placebo, the contrast is testing whether the difference between the means of these two 
groups is significant. The difference in this case is only 1, compared to a difference of 1.9 
for the planned comparison. This explanation illustrates how it is possible to have appar-
ently contradictory results from planned contrasts and post hoc comparisons. More impor-
tant, it illustrates how careful we must be in interpreting planned contrasts.

The low-dose group is then compared to both the placebo group and the high-dose group. 
The first thing to note is that the contrast involving the low-dose and placebo groups is iden-
tical to the one just described. The only new information is the comparison between the two 
experimental conditions. The group means differ by 1.8 which is not significant. This result 
contradicts the planned comparisons (remember that contrast 2 compared these groups and 
found a significant difference).

SELF-TEST  Why does the post hoc test show a 
non-significant difference between high and low dose, 
when the planned comparison showed a significant 
difference?

This contradiction occurs for two possible reasons. First, post hoc tests by their nature are 
two-tailed (you use them when you have made no specific hypotheses and you cannot predict 
the direction of hypotheses that don’t exist!) and contrast 2 was significant only when consid-
ered as a one-tailed hypothesis. However, even at the two-tailed level the planned comparison 
was closer to significance than the post hoc test and this fact illustrates that post hoc procedures 
are more conservative (i.e. have less power to detect true effects) than planned comparisons.

The rest of the table describes the Games–Howell test and a quick inspection reveals the 
same pattern of results: the only groups that differed significantly were the high-dose and 
placebo groups. These results give us confidence in our conclusions from Tukey’s test because 
even if the populations variances are not equal (which seems unlikely given that the sample 
variances are very similar), then the profile of results still holds true. Finally, Dunnett’s test 
is described and you’ll hopefully remember that we asked the computer to compare both 
experimental groups against the control using a one-tailed hypothesis that the mean of the 
control group would be smaller than both experimental groups. Even as a one-tailed hypoth-
esis, levels of libido in the low-dose group are equivalent to the placebo group. However, the 
high-dose group has a significantly higher libido than the placebo group.
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The table in SPSS Output 10.9 shows the results of Tukey’s test and the REGWQ test. 
These tests display subsets of groups that have the same means. Therefore, Tukey’s test 
creates two subsets of groups with statistically similar means. The first subset contains the 
placebo and low-dose groups (indicating that these two groups have the similar means) 
whereas the second subset contains the high- and low-dose groups. These results dem-
onstrate that the placebo group has a similar mean to the low-dose group but not the 
high-dose group, and that the low-dose group has a similar mean to both the placebo and 
high-dose groups. In other words, the only groups that have significantly different means 
are the high-dose and placebo groups. The tests provide a significance value for each subset 
and it’s clear from these significance values that the groups in subsets have non-significant 
means (as indicated by values of Sig. that are greater than .05).

These calculations use the harmonic mean sample size. The harmonic mean is a weighted 
version of the mean that takes account of the relationship between variance and sample 
size. Although you don’t need to know the intricacies of the harmonic mean, it is useful 
that the harmonic sample size is used because it reduces bias that might be introduced 
through having unequal sample sizes. However, as we have seen, these tests are still biased 
when sample sizes are unequal.

SPSS OuTPuT 10.8

SPSS OuTPuT 10.9
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             CRAMMING SAM’S TIPS    One-way ANOVA

M The one-way independent ANOVA compares several means, when those means have come from different groups of people. 
For example; if you have several experimental conditions and have used different participants in each condition.

M When you have generated specific hypotheses before the experiment use planned comparisons, but if you don’t have spe-
cific hypotheses use post hoc tests.

M There are lots of different post hoc tests: when you have equal sample sizes and homogeneity of variance is met use 
REGWQ or Tukey’s HSD. If sample sizes are slightly different then use Gabriel’s procedure, but if sample sizes are very  
different use Hochberg’s GT2. If there is any doubt about homogeneity of variance use the Games–Howell procedure. 

M Test for homogeneity of variance using Levene’s test. Find the table with this label: if the value in the column labelled Sig. is  
less than .05 then the assumption is violated. If this is the case go to the table labelled Robust Tests of Equality of Means. If 
homogeneity of variance has been met (the significance of Levene’s test is greater than .05) go to the table labelled ANOVA.

M In the table labelled ANOVA (or Robust Tests of Equality of Means – see above), look at the column labelled Sig. if the value 
is less than .05 then the means of the groups are significantly different.

M For contrasts and post hoc tests, again look to the columns labelled Sig. to discover if your comparisons are significant 
(they will be if the significance value is less than .05).

Evolution has endowed us with many beautiful things 
(cats, dolphins, the Great Barrier Reef, etc.), all selected 
to fit their ecological niche. Given evolution’s seemingly 
limitless capacity to produce beauty, it’s something of a 
wonder how it managed to produce such a monstrostity 
as the human penis. One theory is that the penis evolved 
into the shape that it is because of sperm competition. 
Specifically, the human penis has an unusually large 
glans (the ‘bell-end’ as it’s affectionately known) com-
pared to other primates, and this may have evolved so 
that the penis can displace seminal fluid from other males 

by ‘scooping it out’ during intercourse. To put this idea 
to the test, Gordon Gallup and his colleagues came up 
with an ingenious study (Gallup, Burch, Zappieri, Parvez, 
Stockwell, & Davis, 2003). Armed with various female 
masturbatory devices from Hollywood Exotic Novelties, 
an artificial vagina from California Exotic Novelties, and 
some water and cornstarch to make fake sperm, they 
loaded the artificial vagina with 2.6 ml of fake sperm and 
inserted one of three female sex toys into it before with-
drawing it. Over several trials, three different female sex 
toys were used: a control phallus that had no coronal 
ridge (i.e. no bell-end), a phallus with a minimal coronal 
ridge (small bell-end) and a phallus with a coronal ridge.

They measured sperm displacement as a percentage 
using the following equation (included here because it 
is more interesting than all of the other equations in this 
book):
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weight of vagina with semen – weight of vagina following insertion and removal of phallus 
× 100

weight of vagina with semen – weight of empty vagina

As such, 100% means that all of the sperm was dis-
placed by the phallus, and 0% means that none of the 
sperm was displaced. If the human penis evolved as 
a sperm displacement device then Gallup et al. pre-
dicted: (1) that having a bell-end would displace more 
sperm than not; and (2) the phallus with the larger 
coronal ridge would displace more sperm than the 
phallus with the minimal coronal ridge. The conditions 
are ordered (no ridge, minimal ridge, normal ridge) so 

we might also predict a linear trend. The data can be 
found in the file Gallup et al.sav. Draw an error bar 
graph of the means of the three conditions. Conduct a 
one-way ANOVA with planned comparisons to test the 

two hypotheses above. What did Gallup 
et al. find?

Answers are in the additional material on 
the companion website (or look at pages 
280–281 in the original article).
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10.5. Calculating the effect size 2

One thing you will notice is that SPSS doesn’t routinely provide an effect size for one-way 
independent ANOVA. However, we saw in equation (7.4) that:

R2 = SSM
SST

Of course we know these values from the SPSS output. So we can simply calculate r2 
using the between-group effect (SSM) and the total amount of variance in the data (SST) – 
although for some bizarre reason it’s usually called eta squared, η2. It is then a simple matter 
to take the square root of this value to give us the effect size r:

r2 = η2

= SSM
SST

= 20:13

43:73

= :46

r=
ffiffiffiffiffiffiffi
:46

p

= :68

Using the benchmarks for effect sizes this represents a large effect (it is above the .5 
threshold for a large effect). Therefore, the effect of Viagra on libido is a substantive 
finding.

However, this measure of effect size is slightly biased because it is based purely on sums 
of squares from the sample and no adjustment is made for the fact that we’re trying to 
estimate the effect size in the population. Therefore, we often use a slightly more complex 
measure called omega squared (ω2). This effect size estimate is still based on the sums of 
squares that we’ve met in this chapter, but like the F-ratio it uses the variance explained 
by the model, and the error variance (in both cases the average variance, or mean squared 
error, is used):

ω2 = SSM − ðdfMÞMSR
SST +MSR

The dfM in the equation is the degrees of freedom for the effect, which you can get from the 
SPSS output (in the case of the main effect this is the number of experimental conditions 
minus one). So, in this example we’d get:

ω2 = 20:13− 2ð Þ1:97
43:73+ 1:97

= 16:19

45:70

= :35

ω= :60  
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As you can see, this has led to a slightly lower estimate to using r, and in general ω is a 
more accurate measure. Although in the sections on ANOVA I will use ω as my effect size 
measure, think of it as you would r (because it’s basically an unbiased estimate of r anyway). 
People normally report ω2 and it has been suggested that values of .01, .06 and .14 rep-
resent small, medium and large effects respectively (Kirk, 1996). Remember, though, that 
these are rough guidelines and that effect sizes need to be interpreted within the context 
of the research literature.

Most of the time it isn’t that interesting to have effect sizes for the overall ANOVA 
because it’s testing a general hypothesis. Instead, we really want effect sizes for the con-
trasts (because these compare only two things, so the effect size is considerably easier to 
interpret). Planned comparisons are tested with the t-statistic and, therefore, we can use 
the same equation as in section 9.4.6:

rcontrast =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

t2 + df

s

We know the value of t and the df from SPSS Output 8.7 and so we can compute r as 
follows:

rcontrast1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:4742

2:4742 + 12

s

=
ffiffiffiffiffiffiffiffiffiffiffiffi
6:12

18:12

r

=0:58

If you think back to our benchmarks for effect sizes this represents a large effect (it is above 
.5, the threshold for a large effect). Therefore, as well as being statistically significant, this 
effect is large and so represents a substantive finding. For contrast 2 we get:

rcontrast2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:0292

2:0292 + 12

s

=
ffiffiffiffiffiffiffiffiffiffiffiffi
4:12

16:12

r

=0:51

This too is a substantive finding and represents a large effect size.

10.6. Reporting results from one-way  
independent ANOVA 2

When we report an ANOVA, we have to give details of the F-ratio and the degrees of free-
dom from which it was calculated. For the experimental effect in these data the F-ratio was 
derived by dividing the mean squares for the effect by the mean squares for the residual. 
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Therefore, the degrees of freedom used to assess the F-ratio are the degrees of freedom for 
the effect of the model (dfM = 2) and the degrees of freedom for the residuals of the model 
(dfR = 12). Therefore, the correct way to report the main finding would be:

	There was a significant effect of Viagra on levels of libido, F(2, 12) = 5.12, p < .05,  
ω = .60.

Notice that the value of the F-ratio is preceded by the values of the degrees of free-
dom for that effect. Also, we rarely state the exact significance value of the F-ratio: 
instead we report that the significance value, p, was less than the criterion value of .05  
and include an effect size measure. The linear contrast can be reported in much the 
same way:

	There was a significant linear trend, F(1, 12) = 9.97, p < .01, ω = .62, indicating that 
as the dose of Viagra increased, libido increased proportionately.

Notice that the degrees of freedom have changed to reflect how the F-ratio was calcu-
lated. I’ve also included an effect size measure (have a go at calculating this as we did for 
the main F-ratio and see if you get the same value). Also, we have now reported that the 
F-value was significant at a value less than the criterion value of .01. We can also report 
our planned contrasts:

	Planned contrasts revealed that having any dose of Viagra significantly increased libido 
compared to having a placebo, t(12) = 2.47, p < .05 (1-tailed), r = .58, and that having 
a high dose significantly increased libido compared to having a low dose, t(12) = 2.03, 
p < .05 (1-tailed), r = .51.

Note that in both cases I’ve stated that we used a one-tailed probability.

10.7. Violations of assumptions in one-way 
independent ANOVA 2

I’ve mentioned several times in this chapter that ANOVA can be robust to violations of 
its assumptions, but not always. We also saw that there are measures that can be taken 
when you have heterogeneity of variance (Jane Superbrain Box 10.2). However, there 
is another alternative. There are a group of tests (often called assumption-free, distri-
bution-free and non-parametric tests, none of which are particularly accurate names!). 
Well, the one-way independent ANOVA also has a non-parametric counterpart called the 
Kruskal–Wallis test. If you have non-normally distributed data, or have violated some 
other assumption, then this test can be a useful way around the problem. This test is 
described in Chapter 15.

There are also robust methods available (see section 5.7.4) to compare independent 
means (and even medians) that involve, for example, using 20% trimmed means or a 
bootstrap. SPSS doesn’t do any of them so I advise investigating Wilcox’s Chapter 7 and 
the associated files for the software R (Wilcox, 2005). You can use the R plugin for SPSS 
to conduct these tests. See the companion website for some training demos about using 
R in SPSS.
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What have I discovered about statistics? 1

This chapter has introduced you to analysis of variance (ANOVA), which is the topic of 
the next few chapters also. One-way independent ANOVA is used in situations when you 
want to compare several means, and you’ve collected your data using different participants 
in each condition. I started off explaining that if we just do lots of t-tests on the same data 
then our Type I error rate becomes inflated. Hence we use ANOVA instead. I looked at 
how ANOVA can be conceptualized as a general linear model (GLM) and so is in fact the 
same as multiple regression. Like multiple regression, there are three important measures 
that we use in ANOVA: the total sum of squares, SST ( a measure of the variability in our 
data), the model sum of squares, SSM (a measure of how much of that variability can be 
explained by our experimental manipulation), and SSR (a measure of how much variability 
can’t be explained by our experimental manipulation). We discovered that, crudely speak-
ing, the F-ratio is just the ratio of variance that we can explain against the variance that we 
can’t. We also discovered that a significant F-ratio tells us only that our groups differ, not 
how they differ. To find out where the differences lie we have two options: specify specific 
contrasts to test hypotheses (planned contrasts), or test every group against every other 
group (post hoc tests). The former are used when we have generated hypotheses before 
the experiment, whereas the latter are for exploring data when no hypotheses have been 
made. Finally we discovered how to implement these procedures on SPSS.

We also saw that my life was changed by a letter that popped through the letterbox one 
day saying only that I could go to the local grammar school if I wanted to. When my parents 
told me, rather than being in celebratory mood, they were very down beat; they knew how 
much it meant to me to be with my friends and how I had got used to my apparent failure. 
Sure enough, my initial reaction was to say that I wanted to go to the local school. I was 
unwavering in this view. Unwavering, that is, until my brother convinced me that being at the 
same school as him would be really cool. It’s hard to measure how much I looked up to him, 
and still do, but the fact that I willingly subjected myself to a lifetime of social dysfunction just 
to be with him is a measure of sorts. As it turned out, being at school with him was not always 
cool – he was bullied for being a boffin (in a school of boffins) and being the younger brother 
of a boffin made me a target. Luckily, unlike my brother, I was stupid and played football, 
which seemed to be good enough reasons for them to leave me alone. Most of the time.

Key terms that I’ve discovered
Analysis of variance (ANOVA)
Bonferroni correction
Brown–Forsythe F
Cubic trend
Deviation contrast
Difference contrast (reverse Helmert contrast)
Eta squared, η2

Experimentwise error rate
Familywise error rate
Grand variance
Harmonic mean
Helmert contrast
Independent ANOVA

Omega squared, ω2

Orthogonal
Pairwise comparisons
Planned contrasts
Polynomial contrast
Post hoc tests
Quadratic trend
Quartic trend
Repeated contrast
Simple contrast
Weights
Welch’s F 
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Smart Alex’s tasks

Task 1MM : Imagine that I was interested in how different teaching methods affected 
students’ knowledge. I noticed that some lecturers were aloof and arrogant in their 
teaching style and humiliated anyone who asked them a question, while others were 
encouraging and supporting of questions and comments. I took three statistics courses 
where I taught the same material. For one group of students I wandered around with a 
large cane and beat anyone who asked daft questions or got questions wrong (punish). 
In the second group I used my normal teaching style, which is to encourage students 
to discuss things that they find difficult and to give anyone working hard a nice sweet 
(reward). The final group I remained indifferent to and neither punished nor rewarded 
students’ efforts (indifferent). As the dependent measure I took the students’ exam 
marks (percentage). Based on theories of operant conditioning, we expect punishment 
to be a very unsuccessful way of reinforcing learning, but we expect reward to be very 
successful. Therefore, one prediction is that reward will produce the best learning. 
A second hypothesis is that punishment should actually retard learning such that it 
is worse than an indifferent approach to learning. The data are in the file Teach.sav. 
Carry out a one-way ANOVA and use planned comparisons to test the hypotheses that 
(1) reward results in better exam results than either punishment or indifference; and  
(2) indifference will lead to significantly better exam results than punishment. 2

Task 2MM : In Chapter 15 (section 15.5) there are some data looking at whether eating 
Soya meals reduces your sperm count. Have a look at this section, access the data for 
that example, but analyse them with ANOVA. What’s the difference between what 
you find and what is found in section 15.5.4? Why do you think this difference has 
arisen? 2

Task 3MM : Students (and lecturers for that matter) love their mobile phones, which is 
rather worrying given some recent controversy about links between mobile phone 
use and brain tumours. The basic idea is that mobile phones emit microwaves, and 
so holding one next to your brain for large parts of the day is a bit like sticking 
your brain in a microwave oven and selecting the ‘cook until well done’ button. If 
we wanted to test this experimentally, we could get six groups of people and strap 
a mobile phone on their heads (that they can’t remove). Then, by remote control, 
we turn the phones on for a certain amount of time each day. After six months, we 
measure the size of any tumour (in mm3) close to the site of the phone antenna (just 
behind the ear). The six groups experienced 0, 1, 2, 3, 4 or 5 hours per day of phone 
microwaves for six months. The data are in Tumour.sav. (From Field & Hole, 2003, 
so there is a very detailed answer in there.) 2

Task 4MM : Using the Glastonbury data from Chapter 7 (GlastonburyFestival.sav), carry out a 
one-way ANOVA on the data to see if the change in hygiene (change) is significant across 
people with different musical tastes (music). Do a simple contrast to compare each group 
against ‘No Affiliation’. Compare the results to those described in section 7.11. 2

Task 5MM : Labcoat Leni’s Real Research 15.2 describes an experiment (Çetinkaya & 
Domjan, 2006) on quails with fetishes for terrycloth objects (really, it does). In this 
example, you are asked to analyse two of the variables that they measured with a 
Kruskal–Wallis test. However, there were two other outcome variables (time spent 
near the terrycloth object and copulatory efficiency). These data can be analysed 
with one-way ANOVA. Read Labcoat Leni’s Real Research 15.2 to get the full story, 
then carry out two one-way ANOVAs and Bonferroni post hoc tests on the aforemen-
tioned outcome variables. 2

Answers can be found on the companion website. 



394 D ISCOVER ING STAT IST ICS  US ING SPSS

Further reading
Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 

might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007. 
Both are excellent texts that provide very detailed coverage of the standard variance approach to 
ANOVA but also the GLM approach that I have discussed.)

Iversen, G. R., & Norpoth, H. (1987). ANOVA (2nd ed.). Sage university paper series on quantitative 
applications in the social sciences, 07-001. Newbury Park, CA: Sage. (Quite high-level, but a good 
read for those with a mathematical brain.)

Klockars, A. J., & Sax, G. (1986). Multiple comparisons. Sage university paper series on quantitative 
applications in the social sciences, 07-061. Newbury Park, CA: Sage. (High-level but thorough 
coverage of multiple comparisons – in my view this book is better than Toothaker for planned 
comparisons.)

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in behavioural 
research: a correlational approach. Cambridge: Cambridge University Press. (Fantastic book on 
planned comparisons by three of the great writers on statistics.)

Rosnow, R. L., & Rosenthal, R. (2005). Beginning behavioural research: a conceptual primer (5th ed.). 
Englewood Cliffs, NJ: Pearson/Prentice Hall. (Look, they wrote another great book!)

Toothaker, L. E. (1993). Multiple comparison procedures. Sage university paper series on quantitative 
applications in the social sciences, 07-089. Newbury Park, CA: Sage. (Also high-level, but gives an 
excellent precis of post hoc procedures.)

Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (If this chapter 
is too complex then this book is a very readable basic introduction to ANOVA.)

Online tutorials
The companion website contains the following Flash movie tutorials to accompany this chapter:

M One-Way Independent ANOVA using SPSS M The R plugin

Interesting real research
Gallup, G. G. J., Burch, R. L., Zappieri, M. L., Parvez, R., Stockwell, M., & Davis, J. A. (2003). The 

human penis as a semen displacement device. Evolution and Human Behavior, 24, 277–289.
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Figure 11.1
Davey Murray 
(guitarist from 
Iron Maiden) and 
me backstage 
in London 
in 1986; my 
grimace reflects 
the utter terror 
I was feeling at 
meeting my hero  

11.1. What will this chapter tell me? 2

My road to rock stardom had taken a bit of a knock with my unexpected entry to an all- 
boys grammar school (rock bands and grammar schools really didn’t go together). I needed 
to be inspired and I turned to the masters: Iron Maiden. I first heard Iron Maiden at the 
age of 11 when a friend of mine lent me ‘Piece of Mind’ and told me to listen to ‘The 
Trooper’. It was, to put it mildly, an epiphany. I became their smallest (I was 11) biggest fan 
and started to obsess about them in the most unhealthy way possible. I started stalking the 
man who ran their fan club with letters, and, bless him, he replied. Eventually this stalking 
paid off and he arranged for me to go backstage when they played Hammersmith Odeon 
in London (now the Carling Apollo Hammersmith) on 5 November 1986 (Somewhere on 
Tour in case you’re interested). Not only was it the first time that I had seen them live, but 
I got to meet them. It’s hard to put into words how bladder-splittingly exciting this was. I 
was so utterly awe-struck that I managed to say precisely no words to them. As usual, then, 
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a social situation provoked me to make an utter tit of myself.1 When it was over I was in 
no doubt that this was the best day of my life. In fact, I thought, I should just kill myself 
there and then because nothing would ever be as good as that again. This may be true, but 
I have subsequently had many other very nice experiences, so who is to say that they were 
not better? I could compare experiences to see which one is the best, but there is an impor-
tant confound: my age. At the age of 13, meeting Iron Maiden was bowel-weakeningly 
exciting, but adulthood (sadly) dulls your capacity for this kind of unqualified joy of life. 
Therefore, to really see which experience was best, I would have to take account of the 
variance in enjoyment that is attributable to my age at the time. This will give me a purer 
measure of how much variance in my enjoyment is attributable to the event itself. This 
chapter describes analysis of covariance, which extends the basic idea of ANOVA from the 
previous chapter to situations when we want to factor in other variables that influence the 
outcome variable.

11.2. What is ANCOVA? 2

In the previous chapter we saw how one-way ANOVA could be character-
ized in terms of a multiple regression equation that used dummy variables 
to code group membership. In addition, in Chapter 7 we saw how multi-
ple regression could incorporate several continuous predictor variables. It 
should, therefore, be no surprise that the regression equation for ANOVA 
can be extended to include one or more continuous variables that predict the 
outcome (or dependent variable). Continuous variables such as these, that 
are not part of the main experimental manipulation but have an influence 
on the dependent variable, are known as covariates and they can be included 
in an ANOVA analysis. When we measure covariates and include them in an 
analysis of variance we call it analysis of covariance (or ANCOVA for short). 

This chapter focuses on this technique. 
In the previous chapter, we used an example about looking at the effects of Viagra 

on libido. Let’s think about things other than Viagra that might influence libido: well, 
the obvious one is the libido of the participant’s sexual partner (after all ‘it takes two  
to tango’!), but there are other things too such as other medication that suppresses  
libido (such as antidepressants or the contraceptive pill) and fatigue. If these variables (the 
covariates) are measured, then it is possible to control for the influence they have on the 
dependent variable by including them in the regression model. From what we know of 
hierarchical regression (see Chapter 7) it should be clear that if we enter the covariate into 
the regression model first, and then enter the dummy variables representing the experi-
mental manipulation, we can see what effect an independent variable has after the effect 
of the covariate. As such, we partial out the effect of the covariate. There are two reasons 
for including covariates in ANOVA:

To reduce within-group error varianceMM : In the discussion of ANOVA and t-tests we 
got used to the idea that we assess the effect of an experiment by comparing the 
amount of variability in the data that the experiment can explain against the vari-
ability that it cannot explain. If we can explain some of this ‘unexplained’ variance 
(SSR) in terms of other variables (covariates), then we reduce the error variance, 
allowing us to more accurately assess the effect of the independent variable (SSM).

1 In my teens I stalked many bands and Iron Maiden are by far the nicest of the bands I’ve met. 

What’s a covariate?
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Elimination of confoundsMM : In any experiment, there may be unmeasured variables 
that confound the results (i.e. variables that vary systematically with the experimental 
manipulation). If any variables are known to influence the dependent variable being 
measured, then ANCOVA is ideally suited to remove the bias of these variables. Once 
a possible confounding variable has been identified, it can be measured and entered 
into the analysis as a covariate.

There are other reasons for including covariates in ANOVA but because I do not intend to 
describe the computation of ANCOVA in any detail I recommend that the interested reader 
consult my favourite sources on the topic (Stevens, 2002; Wildt & Ahtola, 1978).

Imagine that the researcher who conducted the Viagra study in the previous chapter 
suddenly realized that the libido of the participants’ sexual partners would affect the par-
ticipants’ own libido (especially because the measure of libido was behavioural). Therefore, 
they repeated the study on a different set of participants, but this time took a measure 
of the partner’s libido. The partner’s libido was measured in terms of how often they 
tried to initiate sexual contact. In the previous chapter, we saw that this experimental 
scenario could be characterized in terms of equation (10.2). Think back to what we know 
about multiple regression (Chapter 7) and you can hopefully see that this equation can be 
extended to include this covariate as follows:

Libidoi = b0 + b3Covariatei +b2Highi +b1Lowi + i

Libidoi = b0 + b3Partner’s Libidoi + b2Highi + b1Lowi + i
(11.1)

11.3. Assumptions and issues in ANCOVA 3

ANCOVA has the same assumptions as ANOVA except that there are two important  
additional considerations: (1) independence of the covariate and treatment effect, and  
(2) homogeneity of regression slopes.

11.3.1.  Independence of the covariate and treatment effect 3

I said in the previous section that one use of ANCOVA is to reduce within-group error vari-
ance by allowing the covariate to explain some of this error variance. However, for this to 
be true the covariate must be independent from the experimental effect.

Figure 11.2 shows three different scenarios. Part A shows a basic ANOVA and is similar 
to Figure 10.3; it shows that the experimental effect (in our example libido) can be parti-
tioned into two parts that represent the experimental or treatment effect (in this case the 
administration of Viagra) and the error or unexplained variance (i.e. factors that affect 
libido that we haven’t measured). Part B shows the ideal scenario for ANCOVA in which 
the covariate shares its variance only with the bit of libido that is currently unexplained. 
In other words, it is completely independent from the treatment effect (it does not overlap 
with the effect of Viagra at all). This scenario is the only one in which ANCOVA is appro-
priate. Part C shows a situation in which people often use ANCOVA when they should not. 
In this situation the effect of the covariate overlaps with the experimental effect. In other 
words, the experimental effect is confounded with the effect of the covariate. In this situ-
ation, the covariate will reduce (statistically speaking) the experimental effect because it 
explains some of the variance that would otherwise be attributable to the experiment. When 
the covariate and the experimental effect (independent variable) are not independent, the 
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treatment effect is obscured, spurious treatment effects can arise and at the very least the 
interpretation of the ANCOVA is seriously compromised (Wildt & Ahtola, 1978).

The problem of the covariate and treatment sharing variance is common and is ignored or 
misunderstood by many people (Miller & Chapman, 2001). Miller and Chapman, in a very 
readable review, cite many situations in which people misapply ANCOVA and I recommend 
reading this paper. To summarize the main issue, when treatment groups differ on the covariate 
then putting the covariate into the analysis will not ‘control for’ or ‘balance out’ those differ-
ences (Lord, 1967, 1969). This situation arises mostly when participants are not randomly 
assigned to experimental treatment conditions. For example, anxiety and depression are closely 
correlated (anxious people tend to be depressed) so if you wanted to compare an anxious group 
of people against a non-anxious group on some task, the chances are that the anxious group 
would also be more depressed than the non-anxious group. You might think that by adding 
depression as a covariate into the analysis you can look at the ‘pure’ effect of anxiety but you 
can’t. This would be the situation in part C of Figure 11.2; the effect of the covariate (depres-
sion) would contain some of the variance from the effect of anxiety. Statistically speaking all 
that we know is that anxiety and depression share variance; we cannot separate this shared vari-
ance into ‘anxiety variance’ and ‘depression variance’, it will always just be ‘shared’. Another 
common example is if you happen to find that your experimental groups differ in their ages. 
Placing age into the analysis as a covariate will not solve this problem – it is still confounded 
with the experimental manipulation. ANCOVA is not a magic solution to this problem. 

This problem can be avoided by randomizing participants to experimental groups, or by 
matching experimental groups on the covariate (in our anxiety example, you could try to 
find participants for the low anxious group who score high on depression). We can check 
whether this problem is likely to be an issue by checking whether experimental groups differ 

Figure 11.2
The role of the 
covariate in 
ANCOVA (see 
text for details)
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on the covariate before we run the ANCOVA. To use our anxiety example again, we could 
test whether our high and low anxious groups differ on levels of depression (with a t-test or 
ANOVA). If the groups do not significantly differ then we can use depression as a covariate.

11.3.2.  Homogeneity of regression slopes 3

When an ANCOVA is conducted we look at the overall relationship between the outcome 
(dependent variable) and the covariate: we fit a regression line to the entire data set, ignoring 
to which group a person belongs. In fitting this overall model we, therefore, assume that this 
overall relationship is true for all groups of participants. For example, if there’s a positive 
relationship between the covariate and the outcome in one group, we assume that there is a 
positive relationship in all of the other groups too. If, however, the relationship between the 
outcome (dependent variable) and covariate differs across the groups then the overall regres-
sion model is inaccurate (it does not represent all of the groups). This assumption is very 
important and is called the assumption of homogeneity of regression slopes. The best way to 
think of this assumption is to imagine plotting a scatterplot for each experimental condition 
with the covariate on one axis and the outcome on the other. If you then calculated, and 
drew, the regression line for each of these scatterplots you should find that the regression 
lines look more or less the same (i.e. the values of b in each group should be equal). We will 
have a look at an example of this assumption and how to test it in section 11.7.

11.4. Conducting ANCOVA on SPSS 2

11.4.1.  Inputting data 1

The data for this example are in Table 11.1 and can be found in the file ViagraCovariate.
sav. Table 11.1 shows the participant’s libido and their partner’s libido and Table 11.2 
shows the means and standard deviations of these data. For practice, let’s enter these data 
into the data editor by hand. This can be done in much the same way as the Viagra data 
from the previous chapter except that an extra variable must be created in which to place 
the values of the covariate.

In essence, the data should be laid out in the data editor as they are in Table 11.1. So, 
create a coding variable called Dose and use the Labels option to define value labels (as in 
Chapter 10 let’s use 1 = placebo, 2 = low dose, 3 = high dose). There were different num-
bers of participants in each condition, so you need to enter 9 values of 1 into this column (so 
that the first 9 rows contain the value 1), followed by 8 rows containing the value 2, followed 
by 13 rows containing the value of 3. At this point, you should have one column with 30 
rows of data entered. Next, create a second variable called Libido and enter the 30 scores 
that correspond to the person’s libido. Finally, create a third variable called Partner_Libido 
and use the Labels option to give this variable a title of ‘Partner’s libido’. Then, enter the 30 
scores that correspond to the partner’s libido. 

SELF-TEST  Use SPSS to find out the means and 
standard deviations of both the participant’s libido and 
that of their partner in the three groups. (Answers are in 
Table 11.2.)
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Table 11.1 Data from ViagraCovariate.sav

Dose Participant’s Libido Partner’s Libido

Placebo 3
2
5
2
2
2
7
2
4

4
1
5
1
2
2
7
4
5

Low Dose 7
5
3
4
4
7
5
4

5
3
1
2
2
6
4
2

High Dose 9
2
6
3
4
4
4
6
4
6
2
8
5

1
3
5
4
3
3
2
0
1
3
0
1
0

Table 11.2 Means (and standard deviations) from ViagraCovariate.sav

Dose Participant’s Libido Partner’s Libido

Placebo 3.22 (1.79) 3.44 (2.07)

Low Dose 4.88 (1.46) 3.12 (1.73)

High Dose 4.85 (2.12) 2.00 (1.63)

11.4.2.   Initial considerations: testing the independence  
of the independent variable and covariate 2

In section 11.3.1, I mentioned that before including a covariate in an analysis we should 
check that it is independent from the experimental manipulation. In this case, the proposed 
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covariate is partner’s libido, and we need to check that this variable was roughly equal 
across levels of our independent variable. In other words, is the mean level of partner’s 
libido roughly equal across our three Viagra groups? We can test this by running an ANOVA 
with Partner_Libido as the outcome and Dose as the predictor.

SELF-TEST  Conduct an ANOVA to test whether 
partner’s libido (our covariate) is independent of the 
dose of Viagra (our independent variable).

SPSS Output 11.1 shows the results of such an ANOVA. The main effect of dose is not sig-
nificant, F(2, 27) = 1.98, p = .16, which shows that the average level of partner’s libido was 
roughly the same in the three Viagra groups. In other words, the means for partner’s libido 
in Table 11.2 are not significantly different in the placebo, low- and high-dose groups. This 
result means that it is appropriate to use partner’s libido as a covariate in the analysis.

11.4.3.  The main analysis 2

Most of the General Linear Model (GLM) procedures in SPSS contain the facility to con-
tain one or more covariates. For designs that don’t involve repeated measures it is easiest to 
conduct ANCOVA via the GLM Univariate procedure. To access the main dialog box select 

 (see Figure 11.3). The main dialog box is similar 
to that for one-way ANOVA, except that there is a space to specify covariates. Select Libido 
and drag this variable to the box labelled Dependent Variable or click on . Select Dose 
and drag it to the box labelled Fixed Factor(s) and then select Partner_Libido and drag it to 
the box labelled Covariate(s).

11.4.4.  Contrasts and other options 2

There are various dialog boxes that can be accessed from the main dialog box. The first 
thing to notice is that if a covariate is selected, the post hoc tests are disabled (you cannot 
access this dialog box). Post hoc tests are not designed for situations in which a covariate is 
specified; however, some comparisons can still be done using contrasts.

Click on  to access the contrasts dialog box. This dialog box is different to the one 
we met in Chapter 10 in that you cannot enter codes to specify particular contrasts. Instead, 

SPSS OuTPuT 11.1



402 D ISCOVER ING STAT IST ICS  US ING SPSS

you can specify one of several standard contrasts. These standard contrasts were listed in 
Table 10.6. In this example, there was a placebo control condition (coded as the first group), 

so a sensible set of contrasts would be simple contrasts comparing each experi-
mental group with the control. To select a type of contrast click on  
to access a drop-down list of possible contrasts. Select a type of contrast (in this 
case Simple) from this list and the list will automatically disappear. For simple 
contrasts you have the option of specifying a reference category (which is the 
category against which all other groups are compared). By default the reference 
category is the last category: because in this case the control group was the first 
category (assuming that you coded placebo as 1) we need to change this option 
by selecting . When you have selected a new contrast option, you must click 
on  to register this change. The final dialog box should look like Figure 
11.4. Click on  to return to the main dialog box.

Another way to get post hoc tests is by clicking on  to access the 
options dialog box (see Figure 11.5). To specify post hoc tests, select the independent 
variable (in this case Dose) from the box labelled Estimated Marginal Means: Factor(s) 
and Factor Interactions and drag it to the box labelled Display Means for or click on . 

Once a variable has been transferred, the box labelled Compare main effects 
becomes active and you should select this option ( ). If this option 
is selected, the box labelled Confidence interval adjustment becomes active 
and you can click on  to see a choice of three adjustment levels. 
The default is to have no adjustment and simply perform a Tukey LSD post hoc 
test (this option is not recommended); the second is to ask for a Bonferroni 

correction (recommended); the final option is to have a Sidak correction. The Sidak correc-
tion is similar to the Bonferroni correction but is less conservative and so should be selected 
if you are concerned about the loss of power associated with Bonferroni corrected values. 
For this example use the Sidak correction (we will use Bonferroni later in the book). As 
well as producing post hoc tests for the Dose variable, placing Dose in the Display Means 
for box will create a table of estimated marginal means for this variable. These means pro-
vide an estimate of the adjusted group means (i.e. the means adjusted for the effect of the 
covariate). When you have selected the options required (see Jane Superbrain Box 11.1), 

Figure 11.3
Main dialog 
box for GLM 
univariate
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click on  to return to the main dialog box. There are other options available from the 
main dialog box. For example, if you have several independent variables you can plot them 
against each other (which is useful for interpreting interaction effects – see section 12.3.2). 
For this analysis, there is only one independent variable and so we can click on  to run 
the analysis.

Figure 11.4
Options for 
standard 
contrasts in GLM 
univariate

Figure 11.5
Options dialog 
box for GLM 
univariate
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11.5. Interpreting the output from ANCOVA 2

11.5.1.  What happens when the covariate is excluded? 2

SELF-TEST  Run a one-way ANOVA to see whether 
the three groups differ in their levels of libido.

SPSS Output 11.2 shows (for illustrative purposes) the ANOVA table for these data when 
the covariate is not included. It is clear from the significance value, which is greater than 
.05, that Viagra seems to have no significant effect on libido. It should also be noted 
that the total amount of variation to be explained (SST) was 110.97 (Corrected Total), of 

1992, and Howell, 2006, for ideas on how to do this by 
hand, or use the free software G*Power linked from the 
companion website).

 Parameter estimates: This option produces a table  
of regression coefficients and their tests of signifi-
cance for the variables in the regression model (see 
section 11.5.2).

 Contrast coefficient matrix: This option produces 
matrices of the coding values used for any contrasts 
in the analysis. This option is useful only for checking 
which groups are being compared in which contrast.

 Homogeneity tests: This option produces Levene’s 
test of the homogeneity of variance assumption (see 
sections 5.6.1 and 10.4.1). In ANCOVA the assump-
tion relates (as in regression) to the homogeneity of 
residuals (see section 7.6).

 Spread vs. level plot: This option produces a chart 
that plots the mean of each group of a factor (X-axis) 
against the standard deviation of that group (Y-axis). 
This is a useful plot to check that there is no relationship 
between the mean and standard deviation. If a relation-
ship exists then the data may need to be stabilized 
using a logarithmic transformation (see Chapter 5).

 Residual plot: This option produces plots of observed-
by-predicted-by-standardized residual values. These 
plots can be used to assess the assumption of equal-
ity of variance.

The remaining options in this dialog box are as follows:

 Descriptive statistics: This option produces a table of 
means and standard deviations for each group.

 Estimates of effect size: This option produces the 
value of partial eta squared (partial η2) – see section 
11.8 for a discussion.

 Observed power: This option provides an estimate of the 
probability that the statistical test could detect the dif-
ference between the observed group means (see sec-
tion 2.6.5). This measure is of little use because if the 
F-test is significant then the probability that the effect was 
detected will, of course, be high. Likewise, if group differ-

ences were small, the observed power would 
be low. Observed power is of little use and  
I would advise that power calculations (with 
regard to sample size) are made before the 
experiment is conducted (see Cohen, 1988, 

JANE SUPERBRAIN 11.1

Options for ANCOVA 2
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which the experimental manipulation accounted for 16.84 units (SSM), while 94.12 were 
unexplained (SSR). 

11.5.2.  The main analysis 2

SPSS Output 11.3 shows the results of Levene’s test (section 5.6.1) and the ANOVA table when 
partner’s libido is included in the model as a covariate. Levene’s test is significant, indicating that 
the group variances are not equal (hence the assumption of homogeneity of variance has been 
violated). However, as I’ve mentioned in section 5.6, Levene’s test is not necessarily the best way 
to judge whether variances are unequal enough to cause problems. A good double-check is to 
look at the highest and lowest variances. For our three groups we have standard deviations of 
1.79 (placebo), 1.46 (low dose) and 2.12 (high dose) – see Table 11.1. If we square these values 
we get variances of 3.20 (placebo), 2.13 (low dose) and 4.49 (high dose). We then take the lar-
gest variance and divide it by the smallest: in this case 4.49/2.13 = 2.11. If we look at Figure 
5.12 we can get the approximate critical value when comparing three variances and with 10 peo-
ple per group (we have unequal groups, but this will do as an approximation). The critical value 
in this situation is approximately 5. Our observed value of 2.11 is less than this critical value of 
5 so we probably don’t need to worry too much about the differences in variances. 

SPSS OuTPuT 11.2

SPSS OuTPuT 11.3
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The format of the ANOVA table is largely the same as without the covariate, except that 
there is an additional row of information about the covariate (Partner_Libido). Looking 
first at the significance values, it is clear that the covariate significantly predicts the depend-
ent variable, because the significance value is less than .05. Therefore, the person’s libido 
is influenced by their partner’s libido. What’s more interesting is that when the effect of 

partner’s libido is removed, the effect of Viagra becomes significant (p is 
.027 which is less than .05). The amount of variation accounted for by the 
model (SSM) has increased to 31.92 units (corrected model) of which Viagra 
accounts for 25.19 units. Most important, the large amount of variation in 
libido that is accounted for by the covariate has meant that the unexplained 
variance (SSR) has been reduced to 79.05 units. Notice that SST has not 
changed; all that has changed is how that total variation is explained.

This example illustrates how ANCOVA can help us to exert stricter experi-
mental control by taking account of confounding variables to give us a ‘purer’ 
measure of effect of the experimental manipulation. Without taking account 
of the libido of the participants’ partners we would have concluded that Viagra 
had no effect on libido, yet it does. Looking back at the group means from 

Table 11.1 for the libido data, it seems pretty clear that the significant ANOVA reflects a dif-
ference between the placebo group and the two experimental groups (because the low- and 
high-dose groups have very similar means – 4.88 and 4.85 – whereas the placebo group mean 
is much lower at 3.22). However, we’ll need to check some contrasts to verify this.

SPSS Output 11.4 shows the parameter estimates selected in the options dialog box. These 
estimates are calculated using a regression analysis with Dose split into two dummy coding 
variables (see section 10.2.3 and section 11.6). SPSS codes the two dummy variables such 
that the last category (the category coded with the highest value in the data editor – in this 
case the high-dose group) is the reference category. This reference category (labelled Dose=3 
in the output) is coded with 0 for both dummy variables (see section 10.2.3 for a reminder of 
how dummy coding works). Dose=2, therefore, represents the difference between the group 
coded as 2 (low dose) and the reference category (high dose), and dose=1 represents the dif-
ference between the group coded as 1 (placebo) and the reference category (high dose). The 
b-values represent the differences between the means of these groups and so the significances 
of the t-tests tell us whether the group means differ significantly. The degrees of freedom for 
these t-tests can be calculated as in normal regression (see section 7.2.4) as N − p − 1 in which 
N is the total sample size (in this case 30) and p is the number of predictors (in this case 3, the 
two dummy variables and the covariate). For these data, df = 30 − 3 – 1 = 26. From these 
estimates we could conclude that the high-dose differs significantly from the placebo group 
(Dose=1 in the table) but not from the low-dose group (Dose=2 in the table).

The final thing to notice is the value of b for the covariate (0.416). This value tells us that, 
other things being equal, if a partner’s libido increases by one unit, then the person’s libido should 
increase by just under half a unit (although there is nothing to suggest a causal link between the 
two). The sign of this coefficient tells us the direction of the relationship between the covariate 
and the outcome. So, in this example, because the coefficient is positive it means that partner’s 
libido has a positive relationship with the participant’s libido: as one increases so does the other. 
A negative coefficient would mean the opposite: as one increases, the other decreases.

How do I interpret
ANCOVA?

SPSS OuTPuT 11.4
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11.5.3.  Contrasts 2

SPSS Output 11.5 shows the result of the contrast analysis specified in Figure 11.4 and 
compares level 2 (low dose) against level 1 (placebo) as a first comparison, and level 3 (high 
dose) against level 1 (placebo) as a second comparison. These contrasts are consistent with 
what was specified: all groups are compared to the first group. The group differences are 
displayed: a difference value, standard error, significance value and 95% confidence inter-
val. These results show that both the low-dose group (contrast 1, p = .045) and high-dose 
group (contrast 2, p = .010) had significantly different libidos than the placebo group. 
These results are consistent with the regression parameter estimates (in fact, note that con-
trast 2 is identical to the regression parameters for Dose=1 in the previous section).

These contrasts and parameter estimates tell us that there were group differences, but 
to interpret them we need to know the means. We produced the means in Table 11.2 so 
surely we can just look at these values? Actually we can’t because these group means have 
not been adjusted for the effect of the covariate. These original means tell us nothing about 
the group differences reflected by the significant ANCOVA. SPSS Output 11.6 gives the 
adjusted values of the group means and it is these values that should be used for interpre-
tation (this is the main reason for selecting the Display Means for option). The adjusted 
means (and our contrasts) show that levels of libido were significantly higher in the low- 
and high-dose groups compared to the placebo group. The regression parameters also told 
us that the high- and low-dose groups did not significantly differ (p = .593). These conclu-
sions can be verified with the post hoc tests specified in the options menu but normally you 
would do only contrasts or post hoc tests, not both.

SPSS OuTPuT 11.5
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SPSS Output 11.7 shows the results of the Sidak-corrected post hoc comparisons that 
were requested as part of the options dialog box. The significant difference between the 
high-dose and placebo groups remains (p = .030), and the high-dose and low-dose groups 
do not significantly differ (p = .93). However, it is interesting that the significant differ-
ence between the low-dose and placebo groups shown by the regression parameters and 
contrasts (SPSS Output 11.4) is gone (p is only .13).

SELF-TEST  Why do you think that the results of the 
post hoc test differ to the contrasts for the comparison 
of the low-dose and placebo groups?

11.5.4.  Interpreting the covariate 2

I’ve already mentioned that the parameter estimates (SPSS Output 11.4) tell us how to inter-
pret the covariate. If the b-value for the covariate is positive then it means that the covariate 
and the outcome variable have a positive relationship (as the covariate increases, so does the 
outcome). If the b-value is negative it means the opposite: that the covariate and the outcome 
variable have a negative relationship (as the covariate increases, the outcome decreases). For 
these data the b-value was positive, indicating that as the partner’s libido increases, so does the 
participant’s libido. Another way to discover the same thing is simply to draw a scatterplot of 
the covariate against the outcome. We came across scatterplots in section 4.8 so have a look 
back there to find out how to produce one. Figure 11.6 shows the resulting scatterplot for 
these data and confirms what we already know: the effect of the covariate is that as partner’s 
libido increases, so does the participant’s libido (as shown by the slope of the regression line).

11.6. ANCOVA run as a multiple regression 2

Although the ANCOVA is essentially done, it is a useful educational exercise to rerun the 
analysis as a hierarchical multiple regression (it will, I hope, help you to understand what’s 
happening when we do an ANCOVA).

SPSS OuTPuT 11.7
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Figure 11.6
Scatterplot of 
libido against 
partner’s libido

Anxious people tend to interpret ambiguous information in 
a negative way. For example, being highly anxious myself, 
if I overheard a student saying ‘Andy Field’s lectures are 
really different’ I would assume that ‘different’ meant rub-
bish, but it could also mean ‘refreshing’ or ‘innovative’. 
One current mystery is how these interpretational biases 
develop in children. Peter Muris and his colleagues 
addressed this issue in an ingenious study. Children did 
a task in which they imagined that they were astronauts 
who had discovered a new planet. Although the planet 
was similar to Earth, some things were different. They 
were given some scenarios about their time on the planet 
(e.g. ‘On the street, you encounter a spaceman. He has 
a sort of toy handgun and he fires at you …’) and the 
child had to decide which of two outcomes occurred. 
One outcome was positive (‘You laugh: it is a water pistol 
and the weather is fine anyway’) and the other negative 
(‘Oops, this hurts! The pistol produces a red beam which 
burns your skin!’). After each response the child was told 
whether their choice was correct. Half of the children were 
always told that the negative interpretation was correct, 

and the remainder were told that the positive interpreta-
tion was correct.

Over 30 scenarios children were trained to interpret 
their experiences on the planet as negative or positive. 
Muris et al. then gave children a standard measure of 
interpretational biases in everyday life to see whether the 
training had created a bias to interpret things negatively. 
In doing so, they could ascertain whether children learn 
interpretational biases through feedback (e.g. from par-
ents) about how to disambiguate ambiguous situations.

The data from this study are in the file Muris et al 
(2008).sav. The independent variable is Training 
(positive or negative) and the outcome was the child’s  
interpretational bias score (Interpretational_Bias) – a 
high score reflects a tendency to interpret situations 
negatively. It is important to factor in the Age and 
Gender of the child and also their natural anxiety level 
(which they measured with a standard questionnaire of 
child anxiety called the SCARED) because these things 
affect interpretational biases also. Labcoat Leni wants 
you to carry out a one-way ANCOVA on these data to 
see whether Training significantly affected children’s 

Interpretational_Bias using Age, 
Gender and SCARED as covariates. 
What can you conclude?

Answers are in the additional mate-
rial on the companion website (or look at 
pages 475–476 in the original article).

LABCOAT LENI’S
REAL RESEARCH 11.1
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SELF-TEST  Add two dummy variables to the file 
ViagraCovariate.sav that compare the low dose to the 
placebo (Low_Placebo) and the high dose to the placebo 
(High_Placebo) – see section 10.2.3 for help. If you get 
stuck then download ViagraCovariateDummy.sav.

SELF-TEST  Run a hierarchical regression analysis with 
Libido as the outcome. In the first block enter partner’s libido 
(Partner_Libido) as a predictor, and then in a second block 
enter both dummy variables (Forced entry) – see section 7.7 
for help.

The summary of the regression model resulting from the self-test (SPSS Output 11.8) shows 
us the goodness of fit of the model first when only the covariate is used in the model, and second 
when both the covariate and the dummy variables are used.

Therefore, the difference between the values of R2 (.288 − .061 =  
.227) represents the individual contribution of the dose of Viagra. 
We can say that the dose of Viagra accounted for 22.7% of the vari-
ation in libido, whereas partner’s libido accounted for only 6.1%. 
This additional information provides some insight into the substan-
tive importance of Viagra. The next table is the ANOVA table, which 
is again divided into two sections. The top half represents the effect 
of the covariate alone, whereas the bottom half represents the whole 
model (i.e. covariate and dose of Viagra included). Notice at the bot-
tom of the ANOVA table (the bit for Model 2) that the entire model 
(partner’s libido and the dummy variables) accounts for 31.92 units 
of variance (SSM), there are 110.97 units in total (SST) and the unex-

plained variance (SSR) is 79.05. These values and those of F and the significance are the same as in 
the ANCOVA summary table in SPSS Output 11.3 – see the row labelled ‘Corrected Model’.

SPSS Output 11.9 shows the remainder of the regression analysis. This table of regres-
sion coefficients is more interesting. Again, this table is split into two: the top half shows 
the effect when only the covariate is in the model and the bottom half contains the whole 
model. When the dose of Viagra is considered with the covariate, the value of b for the 

Can I run ANCOVA using
the regression procedure?

SPSS OuTPuT 11.8
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covariate is .416, which corresponds to the value in the ANCOVA parameter estimates 
(SPSS Output 11.4). The b-values for the dummy variables represent the difference between 
the means of the low-dose group and the placebo group (Low_Placebo) and the high-dose 
group and the placebo group (High_Placebo) – see section 10.2.3 for an explanation of 
why. The means of the low- and high-dose groups were 4.88 and 4.85 respectively, and 
the mean of the placebo group was 3.22. Therefore, the b-values for the two dummy vari-
ables should be roughly the same (4.88 − 3.22 = 1.66 for Low_Placebo and 4.85 − 3.22 = 
1.63 for High_Placebo). The astute among you might notice from the SPSS output that, in 
fact, the b-values are not only very different from each other (which shouldn’t be the case 
because the high- and low-dose group means are virtually the same), but also different from 
the values I’ve just calculated. Does this mean I’ve been lying to you for the past 50 pages 
about what the beta values represent? Well, even I’m not that horrible; the reason for this 
apparent anomaly is because the b-values in this regression represent the differences between 
the adjusted means, not the original means; that is, the difference between the means of each 
group and the placebo when these means have been adjusted for the partner’s libido. The 
adjusted values were given in SPSS Output 11.6 and from this table we can see that:

bDummy1 =XLowðadjustedÞ −XPlaceboðadjustedÞ = 4:71−2:93= 1:78

bDummy2 =XHighðadjustedÞ −XPlaceboðadjustedÞ = 5:15−2:93= 2:22
(11.2)

These are the values that you can see in the SPSS table. The t-tests conducted on these val-
ues show that the significant ANCOVA reflected a significant difference between the high-
dose and placebo groups and also between the low-dose and placebo groups.2 You should 
also notice that the significances of the t-values are the same as we saw in the contrasts 
table of the original ANCOVA (see SPSS Output 11.5). As a final point, we obviously don’t 
know whether there was a difference between the low-dose and high-dose groups: to find 
this out we would need to use different dummy coding (perhaps comparing the high and 
low to the placebo and then comparing high to low like we did for the planned compari-
sons in Chapter 10 – see Jane Superbrain Box 11.2).

To summarize, you don’t have to run ANCOVA through the regression menus of SPSS; I 
have done this merely to illustrate that when we do ANCOVA we are using a regression model. 
In other words, we could just ignore the ANCOVA menu and run the analysis as regression. 
However, you wouldn’t do both. One instance in which running ANCOVA through the regres-
sion menu is helpful is when you want to do contrasts (see Jane Superbrain Box 11.2 ). 

2 As I mentioned earlier in this chapter, the degrees of freedom for these t-tests are N − p − 1, as in any regres-
sion analysis. N is the total sample size (in this case 30) and p is the number of predictors (in this case 3, the two 
dummy variables and the covariate). For these data we get df = 30 − 3 − 1 = 26.

SPSS OuTPuT 11.9
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be −2 for the placebo group and then 1 for both the high- 
and low-dose groups. For the second contrast the codes 
would be 0 for the placebo group, −1 for the low-dose group 
and 1 for the high-dose group (see Table 10.4). If you want 
to do these contrasts for ANCOVA, then you enter these 
values as two dummy variables. So, taking the data in this 
example, we’d add a column called Dummy1 and in that 
column we’d put the value −2 for every person who was in 
the placebo group, and the value 1 for all other participants. 
We’d then add a second column called Dummy2, in which 
we’d place the value 0 for everyone in the pla-
cebo group, −1 for everyone in the low-dose 
group and 1 for those in the high-dose group. 
The completed data would be as in the file 
ViagraCovariateContrasts.sav.

Run the analysis as described in section 11.6. The result-
ing output will begin with a model summary and ANOVA 
table that should be identical to those in SPSS Output 11.8 
(because we’ve done the same thing as before, the only 
difference is how the model variance is subsequently bro-
ken down with the contrasts). The regression coefficients 
for the dummy variables will be different though because 
we’ve now specified different codes: 

The first dummy variable compares the placebo 
group with the low- and high-dose groups. As such, 
it compares the adjusted mean of the placebo group 
(2.93) with the average of the adjusted means for the 
low- and high-dose groups ((4.71+5.15)/2 = 4.93). 
The b-value for the first dummy variable should there-
fore be the difference between these values: 4.93 − 2.93 = 
2. However, we also discovered in a rather complex 
and boring bit of section 10.2.11.2 that this value gets 
divided by the number of groups within the contrast 
(i.e. 3) and so will be 2/3 = .67 (as it is in the output). 
The associated t-statistic is significant, indicating that 
the placebo group was significantly different from the 
combined mean of the Viagra groups.

The second dummy variable compares the low- and 
high-dose groups, and so the b-value should be the dif-
ference between the adjusted means of these groups: 
5.15 − 4.71 = 0.44. We again discovered in section 10.2.11.2 
that this value also gets divided by the number of groups 
within the contrast (i.e. 2) and so will be 0.44/2 = 0.22 (as 
in the output). The associated t-statistic is not significant 
(its significance is .59 which is greater than .05), indicating 
that the high-dose group did not produce a significantly 
higher libido than the low-dose group.

This illustrates how you can apply the principles from sec-
tion 10.2.11 to ANCOVA: although SPSS doesn’t provide an 
easy interface to do planned contrasts, they can be done if you 
use the regression menus rather than the ANCOVA ones!

You may have noticed that although we can ask SPSS to do 
certain standard contrasts, there is no option for specifying 
planned contrasts like there was with one-way independent 
ANOVA (see section 10.3.1). However, these contrasts can 
be done if we run the ANCOVA through the regression menu. 
Imagine you chose some planned contrasts as in Chapter 
10, in which the first contrast compared the placebo group 
to all doses of Viagra, and the second contrast then com-
pared the high and low doses (see section 10.2.11). We saw 
in sections 10.2.11 and 10.3.1 that to do this in SPSS we had 
to enter certain numbers to code these contrasts. For the first 
contrast we discovered an appropriate set of codes would 

JANE SUPERBRAIN 11.2

Planned contrasts for ANCOVA 3
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11.7. Testing the assumption of homogeneity of 
regression slopes 3

We saw earlier that when we conduct ANCOVA we assume homogeneity of regression slopes. 
This just means that we assume that the relationship between the outcome (dependent vari-
able) and the covariate is the same in each of our treatment groups. Figure 11.7 shows 
scatterplots that display the relationship between partner’s libido (the covariate) and the out-
come (participant’s libido) for each of the three experimental conditions (different colours 
and symbols). Each symbol represents the data from a particular participant, and the type 
of symbol tells us the group (circles = placebo, triangles = low dose, squares = high dose). 
The lines are the regression slopes for the particular group, they summarize the relationship 
between libido and partner’s libido shown by the dots (blue = placebo group, green = low-
dose group, red = high-dose group). It should be clear that there is a positive relationship 
(the regression line slopes upwards from left to right) between partner’s libido and partici-
pant’s libido in both the placebo and low-dose conditions. In fact, the slopes of the lines for 
these two groups (blue and green) are very similar, showing that the relationship between 
libido and partner’s libido is very similar in these two groups. This situation is an example 
of homogeneity of regression slopes (the regression slopes in the two groups are similar). 
However, in the high-dose condition there appears to be no relationship at all between par-
ticipant’s libido and that of their partner (the squares are fairly randomly scattered and the 
regression line is very flat and shows a slightly negative relationship). The slope of this line is 
very different to the other two, and this difference gives us cause to doubt whether there is 
homogeneity of regression slopes (because the relationship between participant’s libido and 
that of their partner is different in the high-dose group to the other two groups).

To test the assumption of homogeneity of regression slopes we need to rerun the ANCOVA 
but this time use a customized model. Access the main dialog box as before and place the 
variables in the same boxes as before (so the finished box should look like Figure 11.3). To 
customize the model we need to access the model dialog box (Figure 11.8) by clicking on 

Figure 11.7
Scatterplot and 
regression lines 
of libido against 
partner’s libido 
for each of the 
experimental 
conditions
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. To customize your model, select  to activate the dialog box in Figure 11.8. 
The variables specified in the main dialog box are listed on the left-hand side. To test the 
assumption of homogeneity of regression slopes, we need to specify a model that includes 
the interaction between the covariate and independent variable. Ordinarily, the ANCOVA 
includes only the main effect of dose and partner’s libido and does not include this interac-
tion term. To test this interaction term it’s important to still include the main effects of dose 
and partner so that the interaction term is tested controlling for these main effects. If we 
don’t include the main effects then variance in libido may become attributed to the interac-
tion term that would otherwise be attributed to main effects.

Hence, to begin with you should select Dose and Partner_Libido (you can select both 
of them at the same time by holding down Ctrl). Then, click on the drop-down menu and 
change it to . Having selected this, click on  to move the main effects of Dose 
and Partner_Libido to the box labelled Model. Next we need to specify the 
interaction term. To do this, select Dose and Partner_Libido simultaneously 
(by holding down the Ctrl key while you click on the two variables), then 
select  in the drop-down list and click on . This action moves 
the interaction of Dose and Partner_Libido to the box labelled Model. The 
finished dialog box should look like Figure 11.8. Having specified our two 
main effects and the interaction term, click on  to return to the main 
dialog box and then click on  to run the analysis.

SPSS Output 11.10 shows the main summary table for the ANCOVA including the inter-
action term. The effects of the dose of Viagra and the partner’s libido are still significant, 
but the main thing in which we’re interested is the interaction term, so look at the signifi-
cance value of the covariate by outcome interaction (Dose×Partner_Libido), if this effect is 
significant then the assumption of homogeneity of regression slopes has been broken. The 
effect here is significant (p < .05); therefore the assumption is not tenable. Although this 
finding is not surprising given the pattern of relationships shown in Figure 11.7, it does 
raise concern about the main analysis. This example illustrates why it is important to test 
assumptions and not to just blindly accept the results of an analysis.

Figure 11.8
GLM univariate 
model dialog box
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SPSS OuTPuT 11.10

             CRAMMING SAM’S TIPS    ANCOVA

M Analysis of covariance (ANCOVA) compares several means, but adjusting for the effect of one or more other variables (called 
covariates); for example, if you have several experimental conditions and want to adjust for the age of the participants.

M Before the analysis you should check that the independent variables and covariate(s) are independent. You can do this using 
ANOVA or a t-test to check that levels of the covariate do not differ significantly across groups. 

M In the table labelled tests of Between-Subjects Effects, look at the column labelled sig. for both the covariate and the inde-
pendent variable. If the value is less than .05 then for the covariate it means that this variable has a significant relationship to 
the outcome variable; for the independent variable it means that the means are significantly different across the experimental 
conditions after partialling out the effect that the covariate has on the outcome.

M As with ANOVA, if you have generated specific hypotheses before the experiment use planned comparisons, but if you don’t 
have specific hypotheses use post hoc tests. Although SPSS will let you specify certain standard contrasts, other planned 
comparisons will have to be done by analysing the data using the regression procedure in SPSS.

M For contrasts and post hoc tests, again look to the columns labelled sig. to discover if your comparisons are significant 
(they will be if the significance value is less than .05).

M Test the same assumptions as for ANOVA, but in addition you should test the assumption of homogeneity of regression slopes. 
This has to be done by customizing the ANCOVA model in SPSS to look at the independent variable×covariate interaction.

11.8. Calculating the effect size 2

We saw in the previous chapter that we can use eta squared, η2, as an effect size measure in 
ANOVA. This effect size is just r2 by another name and is calculated by dividing the effect 
of interest, SSM, by the total amount of variance in the data, SST. As such, it is the propor-
tion of total variance explained by an effect. In ANCOVA (and some of the more complex 
ANOVAs that we’ll encounter in future chapters), we have more than one effect; therefore, 
we could calculate eta squared for each effect. However, we can also use an effect size 
measure called partial eta squared (partial η2). This differs from eta squared in that it looks 
not at the proportion of total variance that a variable explains, but at the proportion of var-
iance that a variable explains that is not explained by other variables in the analysis. Let’s 
look at this with our example; say we want to know the effect size of the dose of Viagra. 
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Partial eta squared is the proportion of variance in libido that the dose of Viagra shares that 
is not attributed to partner’s libido (the covariate). If you think about the variance that the 
covariate cannot explain, there are two sources: it cannot explain the variance attributable 
to the dose of Viagra, SSViagra, and it cannot explain the error variability, SSR. Therefore, we 
use these two sources of variance instead of the total variability, SST , in the calculation. The 
difference between eta squared and partial eta squared is shown as:

η2 = SSEffect
SSTotal

Partial η2 = SSEffect
SSEffect + SSResidual

(11.3)

We can get SPSS to produce partial eta squared for us (see Jane Superbrain Box 11.1). 
To illustrate its calculation let’s look at our Viagra example. We need to use the sums of 
squares in SPSS Output 11.3 for the effect of dose (25.19), the covariate (15.08) and the 
error (79.05): 

Partial η2Dose =
SSDose

SSDose + SSResidual

= 25:19

25:19+ 79:05

= 25:19

104:24

= :24

Partial η2PartnerLibido =
SSPartnerLibido

SSPartnerLibido + SSResidual

= 15:08

15:08+ 79:05

= 15:08

94:13

= :16

These values show that Dose explained a bigger proportion of the variance not attribut-
able to other variables than Partner_Libido.

SELF-TEST  Rerun the ANCOVA but select 
 in Figure 11.5. Do the values of partial 

eta squared match the ones we have just calculated?

As with ANOVA, you can also use omega squared (ω2). However, as we saw in section 
10.5 this measure can be calculated only when we have equal numbers of participants in 
each group (which is not the case in this example!). So, we’re a bit stumped! 

However, not all is lost because, as I’ve said many times already, the overall effect size is 
not nearly as interesting as the effect size for more focused comparisons. These are easy to 
calculate because we selected regression parameters (see SPSS Output 11.4) and so we have 
t-statistics for the covariate and comparisons between the low- and high-dose groups and 
the placebo and high-dose group. These t-statistics have 26 degrees of freedom (see section 
11.5.1). We can use the same equation as in section 9.4.6:3

rcontrast =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

t2 + df

s

3 Strictly speaking, we have to use a slightly more elaborate procedure when groups are unequal. It’s a bit beyond 
the scope of this book but Rosnow, Rosenthal, and Rubin (2000) give a very clear account.
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Therefore we get (t from SPSS Output 11.4):

rCovariate =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:232

2:232 + 26

s

=
ffiffiffiffiffiffiffiffiffiffiffiffi
4:97

30:97

r

= :40

rHigh Dose vs: Placebo =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2:772

− 2:772 +26

s

=
ffiffiffiffiffiffiffiffiffiffiffiffi
7:67

33:67

r

= :48

rHigh vs: Low Dose =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−0:542

− 0:542 +26

s

=
ffiffiffiffiffiffiffiffiffiffiffiffi
0:29

26:29

r

= :11

If you think back to our benchmarks for effect sizes, the effect of the covariate and the dif-
ference between the high dose and the placebo both represent medium to large effect sizes 
(they’re all between .4 and .5). Therefore, as well as being statistically significant, these 
effects are substantive findings. The difference between the high- and low-dose groups was 
a fairly small effect.

11.9. Reporting results 2

Reporting ANCOVA is much the same as reporting ANOVA except we now have to report 
the effect of the covariate as well. For the covariate and the experimental effect we give 
details of the F-ratio and the degrees of freedom from which it was calculated. In both 
cases, the F-ratio was derived from dividing the mean squares for the effect by the mean 
squares for the residual. Therefore, the degrees of freedom used to assess the F-ratio are 
the degrees of freedom for the effect of the model (dfM = 1 for the covariate and 2 for the 
experimental effect) and the degrees of freedom for the residuals of the model (dfR = 26 
for both the covariate and the experimental effect) – see SPSS Output 11.3. Therefore, the 
correct way to report the main findings would be:

 The covariate, partner’s libido, was significantly related to the participant’s libido, 
F(1, 26) = 4.96, p < .05, r = .40. There was also a significant effect of Viagra on levels 
of libido after controlling for the effect of partner’s libido, F(2, 26) = 4.14, p < .05, 
partial η2 = .24.

We can also report some contrasts (see SPSS Output 11.4):

 Planned contrasts revealed that having a high dose of Viagra significantly increased 
libido compared to having a placebo, t(26) = −2.77, p < .05, r = .48, but not compared 
to having a low dose, t(26) = −0.54, p > .05, r = .11.
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11.10. What to do when assumptions are  
violated in ANCOVA 3

In previous chapters we have seen that when the assumptions of a test have been violated, 
there is often a non-parametric test to which we can turn (Chapter 15). However, as we 
start to discover more complicated procedures, we will also see that the squid of despair 
squirts its ink of death on our data when they violate assumptions. For complex analyses, 
there are not non-parametric counterparts that are easily run through SPSS. ANCOVA is 
the first such example of a test that does not have an SPSS-friendly non-parametric test. As 
such, if our data violate the assumptions of normality, or homogeneity of variance, the only 
real solutions are robust methods (see section 5.7.4) such as those described in Wilcox’s 
Chapter 11 and the associated files for the software R (Wilcox, 2005). Use the SPSS R 
plugin to do these tests directly from within SPSS. You could also use the robust regression 
procedures in Wilcox’s book because, as we have seen, ANCOVA is simply a version of 
regression. Also, if you have violated the assumption of homogeneity of regression slopes 
then you can explicitly model this variation using multilevel linear models (see Chapter 19). 
If you run ANCOVA as a multilevel model you can also bootstrap the parameters to get 
robust estimates.

What have I discovered about statistics? 2

This chapter has shown you how the general linear model that was described in Chapter 10 
can be extended to include additional variables. The advantages of doing so are that 
we can remove the variance in our outcome that is attributable to factors other than 
our experimental manipulation. This gives us tighter experimental control, and may 
also help us to explain some of our error variance, and, therefore, give us a purer 
measure of the experimental manipulation. We didn’t go into too much theory about 
ANCOVA, just looked conceptually at how the regression model can be expanded 
to include these additional variables (covariates). Instead we jumped straight into an 
example, which was to look at the effect of Viagra on libido (as in Chapter 10) but 
including partner’s libido as a covariate. I explained how to do the analysis on SPSS 
and interpret the results but also showed how the same output could be obtained by 
running the analysis as a regression. This was to try to get the message home that 
ANOVA and ANCOVA are merely forms of regression! Anyway, we finished off by 
looking at an additional assumption that has to be considered when doing ANCOVA: 
the assumption of homogeneity of regression slopes. This just means that the relation-
ship between the covariate and the outcome variable should be the same in all of your 
experimental groups.

Having seen Iron Maiden in all of their glory, I was inspired. Although I had briefly 
been deflected from my destiny by the shock of grammar school, I was back on track. I 
had to form a band. There was just one issue: no one else played a musical instrument. 
The solution was easy: through several months of covert subliminal persuasion I con-
vinced my two best friends (both called Mark oddly enough) that they wanted nothing 
more than to start learning the drums and bass guitar. A power trio was in the making!
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Key terms that I’ve discovered
Adjusted mean
Analysis of covariance (ANCOVA)
Covariate
Homogeneity of regression slopes

Partial eta squared (partial η2) 
Partial out
Sidak correction

Smart Alex’s tasks

Task 1MM : Stalking is a very disruptive and upsetting (for the person being stalked) expe-
rience in which someone (the stalker) constantly harasses or obsesses about another 
person. It can take many forms, from sending intensely disturbing letters threaten-
ing to boil your cat if you don’t reciprocate the stalker’s undeniable love for you, to 
literally following you around your local area in a desperate attempt to see which 
CD you buy on a Saturday (as if it would be anything other than Fugazi!). A psy-
chologist, who’d had enough of being stalked by people, decided to try two different 
therapies on different groups of stalkers (25 stalkers in each group – this variable is 
called Group). To the first group of stalkers he gave what he termed cruel-to-be-kind 
therapy. This therapy was based on punishment for stalking behaviours; in short, 
every time the stalkers followed him around, or sent him a letter, the psychologist 
attacked them with a cattle prod until they stopped their stalking behaviour. It was 
hoped that the stalkers would learn an aversive reaction to anything resembling stalk-
ing. The second therapy was psychodyshamic therapy, which is a recent develop-
ment on Freud’s psychodynamic therapy that acknowledges what a sham this kind 
of treatment is (so, you could say it’s based on Fraudian theory!). The stalkers were 
hypnotized and regressed into their childhood; the therapist would also discuss their 
penis (unless it is a woman, in which case they discussed their lack of penis), the 
penis of their father, their dog’s penis, the penis of the cat down the road and anyone 
else’s penis that sprang to mind. At the end of therapy, the psychologist measured the 
number of hours in the week that the stalker spent stalking their prey (this variable 
is called stalk2). Now, the therapist believed that the success of therapy might well 
depend on how bad the problem was to begin with, so before therapy the therapist 
measured the number of hours that the patient spent stalking as an indicator of how 
much of a stalker the person was (this variable is called stalk1). The data are in the 
file Stalker.sav. Analyse the effect of therapy on stalking behaviour after therapy, 
controlling for the amount of stalking behaviour before therapy. 2

Task 2MM : A marketing manager for a certain well-known drinks manufacturer was 
interested in the therapeutic benefit of certain soft drinks for curing hangovers. He 
took 15 people out on the town one night and got them drunk. The next morning as 
they awoke, dehydrated and feeling as though they’d licked a camel’s sandy feet clean 
with their tongue, he gave five of them water to drink, five of them Lucozade (in case 
this isn’t sold outside of the UK, it’s a very nice glucose-based drink) and the remain-
ing five a leading brand of cola (this variable is called drink). He then measured how 
well they felt (on a scale from 0 = I feel like death to 10 = I feel really full of beans 
and healthy) two hours later (this variable is called well). He wanted to know which 
drink produced the greatest level of wellness. However, he realized it was important 
to control for how drunk the person got the night before, and so he measured this on 
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a scale of 0 = as sober as a nun to 10 = flapping about like a haddock out of water on 
the floor in a puddle of their own vomit. The data are in the file HangoverCure.sav. 
Conduct an ANCOVA to see whether people felt better after different drinks when 
controlling for how drunk they were the night before. 2

The answers are on the companion website and task 1 has a full interpretation in Field & 
Hole (2003).

Further reading
Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Thomson. (Or you 

might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007.)
Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal 

Psychology, 110(1), 40–48.
Rutherford, A. (2000). Introducing ANOVA and ANCOVA: A GLM approach. London: Sage.
Wildt, A. R., & Ahtola, O. (1978). Analysis of covariance. Sage university paper series on quantitative 

applications in the social sciences, 07-012. Newbury Park, CA: Sage. (This text is pretty high level 
but very comprehensive if you want to know the maths behind ANCOVA.)

Online tutorials
The companion website contains the following Flash movie tutorials to accompany this chapter:

M ANCOVA Using SPSS M The R plugin

Interesting real research
Muris, P., Huijding, J., Mayer, B. and Hameetman, M. (2008). A space odyssey: Experimental manip-

ulation of threat perception and anxiety-related interpretation bias in children. Child Psychiatry 
and Human Development, 39(4), 469–480.
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Figure 12.1
Andromeda 
coming to a 
living room near 
you in 1988 
(L–R: Malcolm, 
me and the two 
Marks)

12.1. What will this chapter tell me? 2

After persuading my two friends (Mark and Mark) to learn the bass and drums, I took the 
rather odd decision to stop playing the guitar. I didn’t stop, as such, but I focused on singing 
instead. In retrospect, I’m not sure why because I am not a good singer. Mind you, I’m not 
a good guitarist either. The upshot was that a classmate, Malcolm, ended up as our guitarist. 
I really can’t remember how or why we ended up in this configuration, but we called ourselves 
Andromeda, we learnt several Queen and Iron Maiden songs and we were truly awful. I have 
some tapes somewhere to prove just what a cacophony of tuneless drivel we produced, but the 
chances of their appearing on the companion website are slim at best. Suffice it to say, you’d 
be hard pushed to recognize which Iron Maiden and Queen songs we were trying to play. I 
try to comfort myself with the fact that we were only 14 or 15 at the time, but even youth 
does not excuse the depths of ineptitude to which we sank. Still, we garnered a reputation for 
being too loud in school assembly and we did a successful tour of our friends’ houses (much to 

12Factorial ANOVA (GLM 3)
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their parents’ amusement I’m sure). We even started to write a few songs (I wrote one called 
‘Escape From Inside’ about the film The Fly that contained the wonderful rhyming couplet 
of ‘I am a fly, I want to die’: genius!). The only thing that we did that resembled the activities 
of a ‘proper’ band was to split up due to ‘musical differences’, these differences being that 
Malcolm wanted to write 15-part symphonies about a boy’s journey to worship electricity 
pylons and discover a mythical beast called the cuteasaurus, whereas I wanted to write songs 
about flies, and dying. When we could not agree on a musical direction the split became inevi-
table. We could have tested empirically the best musical direction for the band by Malcolm 
and I both writing a 15-part symphony and a 3-minute song about a fly. If we played these 
songs to various people and measured their screams of agony then we could ascertain the best 
musical direction to gain popularity. We have two variables that predict screams: whether I 
or Malcolm wrote the song (songwriter), and whether the song was a 15-part symphony or a 
song about a fly (song type). The one-way ANOVA that we encountered in Chapter 10 cannot 
deal with two predictor variables – this is a job for factorial ANOVA!

12.2. Theory of factorial ANOVA  
(between-groups) 2

In the previous two chapters we have looked at situations in which we’ve tried to test for 
differences between groups when there has been a single independent variable (i.e. one var-
iable has been manipulated). However, at the beginning of Chapter 10 I said that one of the 
advantages of ANOVA was that we could look at the effects of more than one independent 
variable (and how these variables interact). This chapter extends what we already know 
about ANOVA to look at situations where there are two independent variables. We’ve 
already seen in the previous chapter that it’s very easy to incorporate a second variable 
into the ANOVA framework when that variable is a continuous variable (i.e. not split into 
groups), but now we’ll move on to situations where there is a second independent variable 
that has been systematically manipulated by assigning people to different conditions. 

12.2.1.  Factorial designs 2

In the previous two chapters we have explored situations in which we have 
looked at the effects of a single independent variable on some outcome. 
However, independent variables often get lonely and want to have friends. 
Scientists are obliging individuals and often put a second (or third) independent 
variable into their designs to keep the others company. When an experiment 
has two or more independent variables it is known as a factorial design (this is 
because variables are sometimes referred to as factors). There are several types 
of factorial design:

 Independent factorial designMM : In this type of experiment there are several inde-
pendent variables or predictors and each has been measured using different 
participants (between groups). We discuss this design in this chapter.

Repeated-measures (related) factorial designMM : This is an experiment in which several 
independent variables or predictors have been measured, but the same participants 
have been used in all conditions. This design is discussed in Chapter 13.

Mixed designMM : This is a design in which several independent variables or predictors 
have been measured; some have been measured with different participants whereas 
others used the same participants. This design is discussed in Chapter 14.

What is a factorial
design?
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As you might imagine, it can get quite complicated analysing these types of experiments. 
Fortunately, we can extend the ANOVA model that we encountered in the previous two 
chapters to deal with these more complicated situations. When we use ANOVA to analyse 
a situation in which there are two or more independent variables it is sometimes called 
factorial ANOVA; however, the specific names attached to different ANOVAs reflect the 
experimental design that they are being used to analyse (see Jane Superbrain Box 12.1). 
This section extends the one-way ANOVA model to the factorial case (specifically when 
there are two independent variables). In subsequent chapters we will look at repeated-
measures designs, factorial repeated-measures designs and finally mixed designs.

measured. In general terms we could write the name of 
an ANOVA as:

M A (number of independent variables) way of how 
these variables were measured ANOVA.

By remembering this you can understand the name of 
any ANOVA you come across. Look at these examples 
and try to work out how many variables were used and 
how they were measured:

M One-way independent ANOVA

M Two-way repeated-measures ANOVA

M Two-way mixed ANOVA

M Three-way independent ANOVA

The answers you should get are:

M One independent variable measured using differ-
ent participants.

M Two independent variables both measured using 
the same participants.

M Two independent variables: one measured using 
different participants and the other measured using 
the same participants.

M Three independent variables all of which are mea-
sured using different participants.

ANOVAs can be quite confusing because there appears 
to be lots of them. When you read research articles 
you’ll quite often come across phrases like ‘a two-way 
independent ANOVA was conducted’, or ‘a three-way 
repeated-measures ANOVA was conducted’. These 
names may look confusing but they are quite easy if 
you break them down. All ANOVAs have two things in 
common: they involve some quantity of independent 
variables and these variables can be measured using 
either the same or different participants. If the same par-
ticipants are used we typically use the term repeated 
measures and if different participants are used we use 
the term independent. When there are two or more inde-
pendent variables, it’s possible that some variables use 
the same participants whereas others use different par-
ticipants. In this case we use the term mixed. When we 
name an ANOVA, we are simply telling the reader how 
many independent variables we used and how they were 

JANE SUPERBRAIN 12.1

Naming ANOVAs 2

12.2.2.  An example with two independent variables 2

Throughout this chapter we’ll use an example that has two independent variables. This is 
known as a two-way ANOVA (see Jane Superbrain Box 12.1). I’ll look at an example with 
two independent variables because this is the simplest extension of the ANOVAs that we 
have already encountered.
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An anthropologist was interested in the effects of alcohol on mate selection at night-
clubs. Her rationale was that after alcohol had been consumed, subjective perceptions 
of physical attractiveness would become more inaccurate (the well-known ‘beer-goggles 
effect’). She was also interested in whether this effect was different for men and women. 
She picked 48 students: 24 male and 24 female. She then took groups of eight participants 
to a night-club and gave them no alcohol (participants received placebo drinks of alcohol-
free lager), 2 pints of strong lager, or 4 pints of strong lager. At the end of the evening she 
took a photograph of the person that the participant was chatting up. She then got a pool 
of independent judges to assess the attractiveness of the person in each photograph (out of 
100). The data are in Table 12.1 and Goggles.sav.

12.2.3.  Total sums of squares (SST) 2

Two-way ANOVA is conceptually very similar to one-way ANOVA. Basically, we still find 
the total sum of squared errors (SST) and break this variance down into variance that can be 
explained by the experiment (SSM) and variance that cannot be explained (SSR). However, 
in two-way ANOVA, the variance explained by the experiment is made up of not one 
experimental manipulation but two. Therefore, we break the model sum of squares down 
into variance explained by the first independent variable (SSA), variance explained by the 
second independent variable (SSB) and variance explained by the interaction of these two 
variables (SSA × B) – see Figure 12.2. 

We start off in the same way as we did for one-way ANOVA. That is, we calculate how 
much variability there is between scores when we ignore the experimental condition from 
which they came. Remember from one-way ANOVA (equation (10.4)) that SST is calcu-
lated using the following equation:

SST = s2grandðN− 1Þ

Table 12.1 Data for the beer-goggles effect

Alcohol None 2 Pints 4 Pints

Gender Female Male Female Male Female Male

 65

 70

 60

 60

 60

 55

 60

 55

 50

 55

 80

 65

 70

 75

 75

 65

 70

 65

 60

 70

 65

 60

 60

 50

 45

 60

 85

 65

 70

 70

 80

 60

 55

 65

 70

 55

 55

 60

 50

 50

 30

 30

 30

 55

 35

 20

 45

 40

Total 485 535 500 535 460 285

Mean 60.625 66.875 62.50 66.875 57.50 35.625

Variance 24.55 106.70 42.86 156.70 50.00 117.41
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The grand variance is simply the variance of all scores when we ignore the group to 
which they belong. So if we treated the data as one big group it would look as follows:

65

70

60

60

60

55

60

55

50

55

80

65

70

75

75

65

70

65

60

70

65

60

60

50

45

60

85

65

70

70

80

60

55

65

70

55

55

60

50

50

30

30

30

55

35

20

45

40

Grand Mean = 58.33

If we calculate the variance of all of these scores, we get 190.78 (try this on your calcu-
lators if you don’t trust me). We used 48 scores to generate this value, and so N is 48. As 
such the equation becomes:

SST = s2grand N−1ð Þ
= 190:78 48− 1ð Þ
= 8966:66

The degrees of freedom for this SS will be N − 1, or 47.

Figure 12.2
Breaking down 
the variance in 
two-way ANOVA
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12.2.4.  The model sum of squares (SSM) 2

The next step is to work out the model sum of squares. As I suggested earlier, this sum of 
squares is then further broken into three components: variance explained by the first inde-
pendent variable (SSA), variance explained by the second independent variable (SSB) and 
variance explained by the interaction of these two variables (SSA × B). 

Before we break down the model sum of squares into its component parts, we must 
first calculate its value. We know we have 8966.66 units of variance to be explained and 
our first step is to calculate how much of that variance is explained by our experimental 
manipulations overall (ignoring which of the two independent variables is responsible). 
When we did one-way ANOVA we worked out the model sum of squares by looking at 
the difference between each group mean and the overall mean (see section 10.2.6). We 
can do the same here. We effectively have six experimental groups if we combine all 
levels of the two independent variables (three doses for the male participants and three 
doses for the females). So, given that we have six groups of different people we can then 
apply the equation for the model sum of squares that we used for one-way ANOVA 
(equation (10.5)):

SSM =
X

nk xk −xgrand
 2

The grand mean is the mean of all scores (we calculated this above as 58.33) and n is the 
number of scores in each group (i.e. the number of participants in each of the six experi-
mental groups; eight in this case). Therefore, the equation becomes:

SSM = 8 60:625− 58:33ð Þ2 + 8 66:875− 58:33ð Þ2 + 8 62:5− 58:33ð Þ2 + . . .

+ 8 66:875− 58:33ð Þ2 + 8 57:5− 58:33ð Þ2 + 8 35:625− 58:33ð Þ2

= 8 2:295ð Þ2 +8 8:545ð Þ2 + 8 4:17ð Þ2 + 8 8:545ð Þ2 +8 −0:83ð Þ2 + 8 −22:705ð Þ2

= 42:1362+ 584:1362+139:1112+ 584:1362+ 5:5112+ 4124:1362

= 5479:167

The degrees of freedom for this SS will be the number of groups used, k, minus 1. We used 
six groups and so df = 5.

At this stage we know that the model (our experimental manipulations) can explain 
5479.167 units of variance out of the total of 8966.66 units. The next stage is to further 
break down this model sum of squares to see how much variance is explained by our inde-
pendent variables separately.

12.2.4.1. The main effect of gender (SS
a
) 2

To work out the variance accounted for by the first independent variable (in this case, gen-
der) we need to group the scores in the data set according to which gender they belong. So, 
basically we ignore the amount of drink that has been drunk, and we just place all of the 
male scores into one group and all of the female scores into another. So, the data will look 
like this (note that the first box contains the three female columns from our original table 
and the second box contains the male columns):
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A1: Female A2: Male

65
70
60
60
60
55
60
55

70
65
60
70
65
60
60
50

55
65
70
55
55
60
50
50

50
55
80
65
70
75
75
65

45
60
85
65
70
70
80
60

30
30
30
55
35
20
45
40

Mean Female = 60.21 Mean Male = 56.46

We can then apply the equation for the model sum of squares that we used to calculate the 
overall model sum of squares:

SSA =
X

nk xk − xgrand
 2

The grand mean is the mean of all scores (above) and n is the number of scores in each group 
(i.e. the number of males and females; 24 in this case). Therefore, the equation becomes:

SSGender =24 60:21−58:33ð Þ2 + 24 56:46− 58:33ð Þ2

=24 1:88ð Þ2 + 24 −1:87ð Þ2

=84:8256+ 83:9256

=168:75

The degrees of freedom for this SS will be the number of groups used, k, minus 1. We used two 
groups (males and females) and so df = 1. To sum up, the main effect of gender compares the mean 
of all males against the mean of all females (regardless of which alcohol group they were in).

12.2.4.2. The main effect of alcohol (SS
b
) 2

To work out the variance accounted for by the second independent variable (in this case, 
alcohol) we need to group the scores in the data set according to how much alcohol was 
consumed. So, basically we ignore the gender of the participant, and we just place all of the 
scores after no drinks in one group, the scores after 2 pints in another group and the scores 
after 4 pints in a third group. So, the data will look like this:

B1: None B2: 2 Pints B3: 4 Pints

65
70
60
60
60
55
60
55

50
55
80
65
70
75
75
65

70
65
60
70
65
60
60
50

45
60
85
65
70
70
80
60

55
65
70
55
55
60
50
50

30
30
30
55
35
20
45
40

Mean None = 63.75 Mean 2 Pints = 64.6875 Mean 4 Pints = 46.5625
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We can then apply the same equation for the model sum of squares that we used for the 
overall model sum of squares and for the main effect of gender:

SSB =
X

nk xk − xgrand
 2

The grand mean is the mean of all scores (58.33 as before) and n is the number of scores 
in each group (i.e. the number of scores in each of the boxes above, in this case 16). 
Therefore, the equation becomes:

SSAlcohol =16 63:75−58:33ð Þ2 + 16 64:6875− 58:33ð Þ2 + 16 46:5625− 58:33ð Þ2

=16 5:42ð Þ2 + 16 6:3575ð Þ2 + 16 −11:7675ð Þ2

=470:0224+ 646:6849+ 2215:5849

=3332:292

The degrees of freedom for this SS will be the number of groups used minus 1 (see sec-
tion 10.2.6). We used three groups and so df = 2. To sum up, the main effect of alcohol 
compares the means of the no alcohol, 2 pint and 4 pint groups (regardless of whether the 
scores come from men or women).

12.2.4.3. The interaction effect (SSa×b) 2

The final stage is to calculate how much variance is explained by the interaction of the two 
variables. The simplest way to do this is to remember that the SSM is made up of three com-
ponents (SSA, SSB and SSA × B). Therefore, given that we know SSA and SSB we can calculate 
the interaction term using subtraction:

SSA×B = SSM − SSA − SSB

Therefore, for these data, the value is:

SSA×B= SSM − SSA− SSB

= 5479:167−168:75− 3322:292

= 1978:125

The degrees of freedom can be calculated in the same way, but are also the product of the 
degrees of freedom for the main effects (either method works):

dfA×B = dfM − dfA − dfB
= 5−1− 2
= 2

dfA×B = dfA × dfB
= 1× 2
= 2

12.2.5.  The residual sum of squares (SSR) 2

The residual sum of squares is calculated in the same way as for one-way ANOVA (see section 
10.2.7) and again represents individual differences in performance or the variance that can’t 
be explained by factors that were systematically manipulated. We saw in one-way ANOVA 
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that the value is calculated by taking the squared error between each data point and its cor-
responding group mean. An alternative way to express this was as (see equation (10.7)):

SSR = s2group 1 n1 −1ð Þ+ s2group 2 n2 − 1ð Þ+ s2group 3 n3 − 1ð Þ+ . . . + s2group n nn − 1ð Þ

So, we use the individual variances of each group and multiply them by one less than 
the number of people within the group (n). We have the individual group variances in our 
original table of data (Table 12.1) and there were eight people in each group (therefore, 
n = 8) and so the equation becomes:

SSR = s2group 1 n1 − 1ð Þ+ s2group 2 n2 − 1ð Þ+ s2group 3 n3 − 1ð Þ+ s2group 4 n4 −1ð Þ+ . . .

+ s2group 5 n5 − 1ð Þ+ s2group 6 n6 − 1ð Þ
= 24:55ð Þ 8−1ð Þ+ 106:7ð Þ 8− 1ð Þ+ 42:86ð Þ 8− 1ð Þ+ 156:7ð Þ 8− 1ð Þ+   
+ ð50Þð8− 1Þ+ 117:41− 41ð Þð8−1Þ

= 24:55× 7ð Þ+ 106:7× 7ð Þ+ 42:86× 7ð Þ+ 156:7× 7ð Þ+ ð50× 7Þ+   
+ 117:41× 7ð Þ

= 171:85+ 746:9+ 300+ 1096:9+ 350+ 821:87

= 3487:52

The degrees of freedom for each group will be one less than the number of scores per 
group (i.e. 7). Therefore, if we add the degrees of freedom for each group, we get a total 
of 6 × 7 = 42.

12.2.6.  The F-ratios 2

Each effect in a two-way ANOVA (the two main effects and the interaction) has its own 
F-ratio. To calculate these we have to first calculate the mean squares for each effect by 
taking the sum of squares and dividing by the respective degrees of freedom (think back to 
section 10.2.8). We also need the mean squares for the residual term. So, for this example 
we’d have four mean squares calculated as follows:

MSA = SSA
dfA

= 168:75

1
=168:75

MSB =
SSB
dfB

= 3332:292

2
= 1666:146

MSA×B =
SSA×B

dfA×B
= 1978:125

2
= 989:062

MSR = SSR
dfR

= 3487:52

42
= 83:036

The F-ratios for the two independent variables and their interactions are then calculated 
by dividing their mean squares by the residual mean squares. Again, if you think back to 
one-way ANOVA this is exactly the same process!
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FA = MSA
MSR

= 168:75

83:036
= 2:032

FB =
MSB
MSR

= 1666:146

83:036
= 20:065

FA×B =
MSA×B

MSR
= 989:062

83:036
=11:911

Each of these F-ratios can be compared against critical values (based on their degrees of 
freedom, which can be different for each effect) to tell us whether these effects are likely to 
reflect data that have arisen by chance, or reflect an effect of our experimental manipula-
tions (these critical values can be found in the Appendix). If an observed F exceeds the cor-
responding critical values then it is significant. SPSS will calculate these F-ratios and exact 
significance for each, but what I hope to have shown you in this section is that two-way 
ANOVA is basically the same as one-way ANOVA except that the model sum of squares is 
partitioned into three parts: the effect of each of the independent variables and the effect 
of how these variables interact.

12.3. Factorial ANOVA using SPSS 2

12.3.1.   Entering the data and accessing the main  
dialog box 2

To enter these data into the SPSS Data Editor, remember that levels of a between-group 
variable go in a single column. Applying this rule to these data, we need to create two dif-
ferent coding variables in the data editor to represent gender and alcohol consumption. 
So, create a variable called Gender on the data editor and activate the labels dialog box. 
You should define value labels to represent the two genders. We have had a lot of experi-
ence with coding values, so you should be fairly happy about assigning numerical codes 
to different groups. I recommend using the code male = 0 and female = 1. Once you have 
done this, you can enter a code of 0 or 1 in this column indicating to which group the 
person belonged. Create a second variable called Alcohol and assign group codes by using 
the labels dialog box. I suggest that you code this variable with three values: placebo (no 
alcohol) = 1, 2 pints = 2 and 4 pints = 3. You can now enter 1, 2 or 3 into this column to 
represent the amount of alcohol consumed by the participant. Remember that if you turn 
the value labels option on you will see text in the data editor rather than the numerical 
codes. Now, the way this coding works is as follows:

Gender Alcohol Participant was

0

0

0

1

1

1

1

2

3

1

2

3

Male who consumed no alcohol

Male who consumed 2 pints

Male who consumed 4 pints

Female who consumed no alcohol

Female who consumed 2 pints

Female who consumed 4 pints
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Once you have created the two coding variables, you can create a third variable in which 
to place the values of the dependent variable. Call this variable Attractiveness and use the 
labels option to give it the fuller name of ‘Attractiveness of Date’. 

SELF-TEST  Use the Chart Builder to plot a line 
graph (with error bars) of the attractiveness of the date 
with alcohol consumption on the x-axis and different 
coloured lines to represent males and females.

In this example, there are two independent variables and different participants were 
used in each condition: hence, we can use the general factorial ANOVA procedure in SPSS. 
This procedure is designed for analysing between-group factorial designs. To access the 
main dialog box use the file path . The result-
ing dialog box is shown in Figure 12.3. First, select the dependent variable Attractiveness 
from the variables list on the left-hand side of the dialog box and drag it to the space 
labelled Dependent Variable or click on . In the space labelled Fixed Factor(s) we need to 
place any independent variables relevant to the analysis. Select Alcohol and Gender in the 
variables list (these variables can be selected simultaneously by holding down Ctrl while 
clicking on the variables) and drag them to the Fixed Factor(s) box (or click on ). There 
are various other spaces that are available for conducting more complex analyses such as 
random factors ANOVA and factorial ANCOVA. Random factors ANOVA is beyond the 
scope of this book (interested readers should consult Jackson & Brashers, 1994) and facto-
rial ANCOVA simply extends the principles described at the beginning of this chapter to 
include a covariate (as in the last chapter).

Figure 12.3
Main dialog box 
for univariate 
ANOVA
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12.3.2.  Graphing interactions 2

Once the relevant variables have been selected, you can click on  to access the dia-
log box in Figure 12.4. The plots dialog box allows you to select line graphs of your data and 
these graphs are very useful for interpreting interaction effects (however, really we should plot 
graphs of the means before the data are analysed). We have only two independent variables, 
and the most useful plot is one that shows the interaction between these variables (the plot 
that displays levels of one independent variable against the other). In this case, the interaction 
graph will help us to interpret the combined effect of gender and alcohol consumption. Select 
Alcohol from the variables list on the left-hand side of the dialog box and drag it to the space 
labelled Horizontal Axis (or click on ). In the space labelled Separate Lines place the remain-
ing independent variable, Gender. It doesn’t matter which way round the variables are plotted; 
you should use your discretion as to which way produces the most sensible graph. When you 
have moved the two independent variables to the appropriate box, click on  and this 
plot will be added to the list at the bottom of the box. You can plot a whole variety of graphs, 
and if you had a third independent variable, you have the option of plotting different graphs 
for each level of that third variable by specifying a variable under the heading Separate Plots. 
When you have finished specifying graphs, click on  to return to the main dialog box.

‘My friend told me that there are different types of sums of squares,’ 
complains Oliver with an air of impressive authority, ‘why haven’t you told 
us about them? Is it because you have a microbe for a brain?’ No, it’s 
not Oliver, it’s because everyone but you will find this very tedious. If you 
want to find out more about what the  button does, and the 

different types of sums of squares that can be used in ANOVA, then the additional material on the website will tell you. 

OLIVER TWISTED

Please, Sir, can I 
… customize my model?

Figure 12.4
The plots  
dialog box

12.3.3.  Contrasts 2

We saw in Chapter 10 that it’s useful to follow up ANOVA with contrasts that break 
down the main effects and tell us where the differences between groups lie. For one-way 
ANOVA, SPSS has a procedure for entering codes that define the contrasts we want to 
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do. However, for two-way ANOVA no such facility exists and instead we are restricted to 
doing one of several standard contrasts. These standard contrasts are described in Table 
10.6. To be fair, these contrasts will give you what you want in many different situations; 
however, if they don’t and you want to define your own contrasts then this has to be done 
using syntax (see Oliver Twisted).

We can use standard contrasts for this example. The effect of gender has only two levels, 
so we don’t really need contrasts for this main effect. The effect of alcohol has three levels: 
none, 2 pints and 4 pints. We could select a simple contrast for this variable, and use the first 
category as a reference category. This would compare the 2 pint group to the no alcohol 
group, and then compare the 4 pint category to the no alcohol group. As such, the alcohol 
groups would get compared to the no alcohol group. We could also select a repeated contrast. 
This would compare the 2 pint group to the no alcohol, and then the 4 pint group to the 2 
pint group (so it moves through the groups comparing each group to the one before). Again, 
this might be useful. We could also do a Helmert contrast, which compares each category 
against all subsequent categories, so in this case would compare the no alcohol group to the 
remaining categories (that is all of the groups that had some alcohol) and then would move 
on to the 2 pint category and compare this to the 4 pint category. Any of these would be 
fine, but they give us contrasts only for the main effects. In reality, most of the time we want 
contrasts for our interaction term, and they can be obtained only through syntax (oh well, 
looks like you might have to look at Oliver Twisted after all!).

To get contrasts for the main effect of alcohol click on  in the main dialog box. 
We have used the contrasts dialog box before in section 11.4.4 and so refer back to that 
section to help you select a Helmert contrast for the alcohol variable. Once the contrasts 
have been selected (Figure 12.5), click on  to return to the main dialog box.

Figure 12.5
Defining 
contrasts in 
factorial ANOVA

‘I don’t want to use standard contrasts,’ sulks Oliver as he stamps 
his feet on the floor, ‘they smell of rotting cabbage.’ I think actually, 
Oliver, the stench of rotting cabbage is probably because you stood 
your Dickensian self under a window when someone emptied their toi-
let bucket into the street. Nevertheless, I do get asked a fair bit about 
how to do contrasts with syntax and since I’m a complete masochist 

I’ve prepared a fairly detailed guide in the additional material for this chapter. These contrasts are useful to follow up a 
significant interaction effect.

OLIVER TWISTED

Please, Sir, can I 
have some more … 
contrasts?
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12.3.4.  Post hoc tests 2

The post hoc tests dialog box is obtained by clicking on  in the main dialog box 
(Figure 12.6). The variable Gender has only two levels and so we don’t need to select post 
hoc tests for that variable (because any significant effects can reflect only the difference 
between males and females). However, there were three levels of the Alcohol variable (no 
alcohol, 2 pints and 4 pints); hence we can conduct post hoc tests (although remember that 
normally you would conduct contrasts or post hoc tests, not both). First, you should select 
the variable Alcohol from the box labelled Factors and transfer it to the box labelled Post 
Hoc Tests for. My recommendations for which post hoc procedures to use are in section 
10.2.12 (and I don’t want to repeat myself). Suffice to say you should select the ones in 
Figure 12.6! Click on  to return to the main dialog box.

Figure 12.6
Dialog box for 
post hoc tests

12.3.5.  Options 2

Click on  to activate the dialog box in Figure 12.7. The options for factorial 
ANOVA are fairly straightforward. First you can ask for some descriptive statistics, which 
will display a table of the means and standard deviations. This is a useful option to select 
because it assists in interpreting the final results. A vital option to select is the homogene-
ity of variance tests, which will produce Levene’s test (section 5.6.1) to test the hypothesis 
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that the variances of each group are equal. You can also select  if you want 
SPSS to calculate partial eta squared for you (see section 11.8). Once these options have 
been selected click on  to return to the main dialog box, then click on  to run 
the analysis.

12.4. Output from factorial ANOVA 2

12.4.1.  Output for the preliminary analysis 2

SPSS Output 12.1 shows the initial output from factorial ANOVA. This table of descrip-
tive statistics is produced because we asked for descriptives in the options dialog box 
(see Figure 12.7) and it displays the means, standard deviations and number of partici-
pants in all conditions of the experiment. So, for example, we can see that in the no 
alcohol condition, males typically chatted up a female who was rated at about 67% on 
the attractiveness scale, whereas females selected a male who was rated as 61% on that 
scale. These means will be useful in interpreting the direction of any effects that emerge 
in the analysis.

Figure 12.7
Dialog box for 
options
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12.4.2.  Levene’s test 2

SPSS Output 12.2 shows the results of Levene’s test. We have come across Levene’s test 
numerous times before! In short, Levene’s test is used to assess the tenability of the assump-
tion of equal variances (homogeneity of variance). Levene’s test looks at whether there 
are any significant differences between group variances and so a non-significant result (as 
found here) is indicative of the assumption being met. If Levene’s test is significant then 
steps can be taken to equalize the variances through data transformation (see Chapter 5).

12.4.3.  The main ANOVA table 2

SPSS Output 12.3 is the most important part of the output because it tells us whether any 
of the independent variables have had an effect on the dependent variable. The important 
things to look at in the table are the significance values of the independent variables. The first 
thing to notice is that there is a significant main effect of alcohol (because the significance 
value is less than .05). The F-ratio is highly significant, indicating that the amount of alcohol 
consumed significantly affected who the participant would try to chat up. This means that 
overall, when we ignore whether the participant was male or female, the amount of alcohol 
influenced their mate selection. The best way to see what this means is to look at a bar chart 
of the average attractiveness at each level of alcohol (ignore gender completely). This graph 
plots the means in SPSS Output 12.1 that we calculated in section 12.2.4.2.

SELF-TEST  Plot error bar graphs of the main effects 
of alcohol and gender.

SPSS OuTPuT 12.1

SPSS OuTPuT 12.2



437CHAPTER 12   FACTOR IAl  ANOVA (GlM 3)

SPSS OuTPuT 12.3

Figure 12.8
Graph showing 
the main effect  
of alcohol

Figure 12.8 clearly shows that when you ignore gender the overall attractiveness of the 
selected mate is very similar when no alcohol has been drunk and when 2 pints have been 
drunk (the means of these groups are approximately equal). Hence, this significant main 
effect is likely to reflect the drop in the attractiveness of the selected mates when 4 pints 
have been drunk. This finding seems to indicate that a person is willing to accept a less 
attractive mate after 4 pints.

The next part of SPSS Output 12.3 tells us about the main effect of gender. This time 
the F-ratio is not significant (p = .161, which is larger than .05). This effect means that 
overall, when we ignore how much alcohol had been drunk, the gender of the participant 
did not influence the attractiveness of the partner that the participant selected. In other 
words, other things being equal, males and females selected equally attractive mates. The 
bar chart (that you have hopefully produced from the self-test) of the average attractive-
ness of mates for men and women (ignoring how much alcohol had been consumed) 
reveals the meaning of this main effect. Figure 12.9 plots the means in SPSS Output 12.1 
that we calculated in section 12.2.4.1. This graph shows that the average attractiveness 
of the partners of male and female participants was fairly similar (the means are different 
by only 4%). Therefore, this non-significant effect reflects the fact that the mean attrac-
tiveness was similar. We can conclude from this that, other things being equal, men and 
women chose equally attractive partners.
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Finally, SPSS Output 12.3 tells us about the interaction between the effect of gender and 
the effect of alcohol. The F-value is highly significant (because the p-value is less than .05). 
What this actually means is that the effect of alcohol on mate selection was different for 
male participants than it was for females. The SPSS output includes a plot that we asked for 
(see Figure 12.4) which tells us something about the nature of this interaction effect (see 
Figure 12.10 which is a nicer version of the graph in your output).

Figure 12.10 clearly shows that for women, alcohol has very little effect: the attrac-
tiveness of their selected partners is quite stable across the three conditions (as shown 
by the near-horizontal line). However, for the men, the attractiveness of their partners 

Figure 12.9
Graph to show 
the main effect of 
gender on mate 
selection

Figure 12.10
Graph of the 
interaction 
of gender 
and alcohol 
consumption in 
mate selection
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is stable when only a small amount has been drunk, but rapidly declines 
when more is drunk. Non-parallel lines usually indicate a significant 
interaction effect. In this particular graph the lines actually cross, which 
indicates a fairly large interaction between independent variables. The 
interaction tells us that alcohol has little effect on mate selection until 4 
pints have been drunk and that the effect of alcohol is prevalent only in 
male participants. In short, the results show that women maintain high 
standards in their mate selection regardless of alcohol, whereas men have 
a few beers and then try to get off with anything on legs! One interesting 
point that these data demonstrate is that we earlier concluded that alcohol 
significantly affected how attractive a mate was selected (the Alcohol main 
effect); however, the interaction effect tells us that this is true only in males (females 
appear unaffected). This shows how misleading main effects can be: it is usually the 
interactions between variables that are most interesting in a factorial design. 

12.4.4.  Contrasts 2

SPSS Output 12.4 shows the results of our Helmert contrast on the effect of alcohol. This 
helps us to break down the effect of alcohol. The top of the table shows the contrast for 
Level 1 vs. Later, which in this case means the no alcohol group compared to the two 
alcohol groups. This tests whether the mean of the no alcohol group (63.75) is different 
to the mean of the 2 pint and 4 pint groups combined ((64.69 + 46.56)/2 = 55.625). This 
is a difference of 8.125 (63.75 − 55.63), which we’re told by both the Contrast Estimate 
and the Difference in the table. The important thing to look at is the value of Sig., which 
tells us if this difference is significant. It is, because Sig. is .006, which is smaller than .05. 
We’re also told the confidence interval for this difference and because it doesn’t cross zero 
we can be safe in the knowledge that, assuming this sample is one of the 95 out of 100 that 
produces a confidence interval containing the true value of the difference, the real differ-
ence is more than zero (between 2.49 and 13.76 to be precise). So we could conclude that 
the effect of alcohol is that any amount of alcohol reduces the attractiveness of the dates 
selected compared to when no alcohol is drunk. Of course this is misleading because, in 
fact, the means for the no alcohol and 2 pint groups are fairly similar (63.75 and 64.69), 
so 2 pints of alcohol don’t reduce the attractiveness of selected dates! The reason why the 
comparison is significant is because it’s testing the combined effect of 2 and 4 pints, and 
because 4 pints has such a drastic effect it drags down the overall mean. This shows why 
you need to be careful about how you interpret these contrasts: you need to have a look at 
the remaining contrast as well.

The bottom of the table shows the contrast for Level 2 vs. Level 3, which in this case 
means the 2 pint group compared to the 4 pint group. This tests whether the mean of the 
2 pint group (64.69) is different to the mean of the 4 pint groups combined (46.56). This 
is a difference of 18.13 (64.69 − 46.56), which we’re told by both the Contrast Estimate 
and the Difference in the table. Again, the important thing to look at is the value of Sig., 
which tells us if this difference is significant. It is, because Sig. is .000, which is smaller 
than .05. We’re also told the confidence interval for this difference and because it doesn’t 
cross zero we can be safe in the knowledge that, assuming this confidence interval is one 
of the 95 out of 100 that contains the true value of the difference, the real difference 
is more than zero (between 11.62 and 24.63 to be precise). This tells us that having 
4 pints significantly reduced the attractiveness of selected dates compared to having only 
2 pints.

How do I interpret
interactions?
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12.4.5.  Simple effects analysis 3

One popular way to break down an interaction term is to use a technique called ‘simple 
effects analysis.’ This analysis basically looks at the effect of one independent variable at 
individual levels of the other independent variable. So, for example, in our beer-goggles 
data we could do a simple effects analysis looking at the effect of gender at each level of 
alcohol. This would mean taking the average attractiveness of the date selected by men 
and comparing it to that for women after no drinks, then making the same comparison 
for 2 pints and then finally for 4 pints. Another way of looking at this is to say we would 
compare each triangle to the corresponding circle in Figure 12.10: based on the graph we 
might expect to find no difference after no alcohol and after 2 pints (in both cases the tri-
angle and circle are located in about the same position) but we would expect a difference 
after 4 pints (because the circle and triangle are quite far apart). The alternative way to do 
it would be to compare the mean attractiveness after the none, 2 pints and 4 pints for men 
and then in a separate analysis do the same but for women. (This would be a bit like doing 
a one-way ANOVA on the effect of alcohol in men, and then doing a different one-way 
ANOVA for the effect of alcohol in women.) These analyses can’t be run through the usual 
dialog boxes, but they can be run using syntax – see SPSS Tip 12.1.

Contrast Results (K Matrix)

8.125
0

8.125

2.790
.006

2.494
13.756
18.125

0

18.125

3.222
.000

11.623
24.627

Contrast Estimate
Hypothesized Value
Difference (Estimate - Hypothesized)

Std. Error
Sig.

Lower Bound
Upper Bound

95% Confidence Interval
for Difference

Contrast Estimate
Hypothesized Value
Difference (Estimate - Hypothesized)

Std. Error
Sig.

Lower Bound
Upper Bound

95% Confidence Interval
for Difference

Alcohol Consumption
Helmert Contrast
Level 1 vs. Later

Level 2 vs. Level 3

Attractiveness
of Date

Dependent
Variable

SPSS OuTPuT 12.4

‘I want to impress my friends by doing a simple effects analysis by 
hand’ boasts Oliver. You don’t really need to know how simple effects 
analyses are calculated to run them, Oliver, but seeing as you asked 
it is explained in the additional material available from the companion 
website.

OLIVER TWISTED

Please, Sir, can I 
have some more …  
simple effects?
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12.4.6.  Post hoc analysis 2

The post hoc tests (SPSS Output 12.5) break down the main effect of alcohol and can be 
interpreted as if a one-way ANOVA had been conducted on the Alcohol variable (i.e. the 
reported effects for alcohol are collapsed with regard to gender). The Bonferroni and 
Games–Howell tests show the same pattern of results: when participants had drunk no 
alcohol or 2 pints of alcohol, they selected equally attractive mates. However, after 4 pints 
had been consumed, participants selected significantly less attractive mates than after both 
2 pints (p < .001) and no alcohol (p < .001). It is interesting to note that the mean attrac-
tiveness of partners after no alcohol and 2 pints were so similar that the probability of the 
obtained difference between those means is 1 (i.e. completely probable!). The REGWQ 
test confirms that the means of the placebo and 2 pint conditions were equal, whereas the 
mean of the 4 pint group was different. It should be noted that these post hoc tests ignore 
the interactive effect of gender and alcohol.

In summary, we should conclude that alcohol has an effect on the attractiveness of 
selected mates. Overall, after a relatively small dose of alcohol (2 pints) humans are still in 
control of their judgements and the attractiveness levels of chosen partners are consistent 
with a control group (no alcohol consumed). However, after a greater dose of alcohol, the 
attractiveness of chosen mates decreases significantly. This effect is what is referred to as 
the ‘beer-goggles effect’! More interesting, the interaction shows a gender difference in 
the beer-goggles effect. Specifically, it looks as though men are significantly more likely to 
pick less attractive mates when drunk. Women, in comparison, manage to maintain their 
standards despite being drunk. What we still don’t know is whether women will become 
susceptible to the beer-goggles effect at higher doses of alcohol.

SPSS OuTPuT 12.5
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             CRAMMING SAM’S TIPS    

M Two-way independent ANOVA compares several means when there are two independent variables and different participants 
have been used in all experimental conditions. For example, if you wanted to know whether different teaching methods 
worked better for different subjects, you could take students from four courses (Psychology, Geography, Management and 
Statistics) and assign them to either lecture-based or book-based teaching. The two variables are course and method of 
teaching. The outcome might be the end of year mark (as a percentage).

M Test for homogeneity of variance using Levene’s test. Find the table with this label: if the value in the column labelled Sig. is 
less than .05 then the assumption is violated. 

M In the table labelled Tests of Between-Subjects Effects, look at the column labelled Sig. for all three of your effects: there 
should be a main effect of each variable and an effect of the interaction between the two variables; if the value is less than 
.05 then the effect is significant. For main effects consult post hoc tests to see which groups differ, and for the interaction 
look at an interaction graph or conduct simple effects analysis.

M For post hoc tests, again look at the columns labelled Sig. to discover if your comparisons are significant (they will be if the 
significance value is less than .05).

M Test the same assumptions as for one way independent ANOVA (see Chapter 10).

          SPSS T IP  12 .1     Simple effects analysis on SPSS 3

Unfortunately, simple effects analyses can’t be done through the dialog boxes and instead you have to use SPSS 
syntax (see section 3.7 to remind yourself about the syntax window). The syntax you need to use in this example is:

MANOVA
 Attractiveness BY Gender (0 1) Alcohol(1 3)

*This initiates the ANOVA by specifying the outcome or dependent variable (Attractiveness) and then the BY 
command is followed by our independent variables (Gender and Alcohol) – the numbers in brackets are the 
minimum and maximum group codes that were used to define these variables. 

/DESIGN = Gender WITHIN Alcohol(1) Gender WITHIN Alcohol (2) Gender WITHIN Alcohol (3) 

*This specifies the simple effects. For example, ‘Gender WITHIN Alcohol(1)’ asks SPSS to analyse the effect of 
gender at level 1 of alcohol (i.e. when no alcohol was used). The number in brackets should relate to the level of 
the variable you want to look at (level 1 being the level having the lowest code in the data editor). If we wanted to 
compare alcohol at levels of gender, then we’d write this the opposite way around:

/DESIGN = Alcohol WITHIN Gender(1) Alcohol WITHIN Gender(2) 
/PRINT
 CELLINFO
 SIGNIF( UNIV MULT AVERF HF GG ).

*These final lines just ask for some descriptives for each cell of the analysis (CELLINFO) and for the main ANOVA 
to be printed (SIGNIF). The syntax for looking at the effect of gender at different levels of alcohol is stored in a file 
called GogglesSimpleEffects.sps for you to look at. Open this file (make sure you also have Goggles.sav loaded 
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12.5. Interpreting interaction graphs 2

We’ve already had a look at one interaction graph when we interpreted the analysis in 
this chapter. However, interactions are very important, and the key to understanding 
them is being able to interpret interaction graphs. In the example in this chapter we used 
Figure 12.10 to conclude that the interaction probably reflected the fact that men and 
women chose equally attractive dates after no alcohol and 2 pints, but that at 4 pints 
men’s standards dropped significantly more than women’s. Imagine we’d got the profile 
of results shown in Figure 12.11; do you think we would’ve still got a significant interac-
tion effect? 

This profile of data probably would also give rise to a significant interaction term 
because, although the attractiveness of men and women’s dates are similar after no alco-
hol and 4 pints of alcohol, there is a big difference after 2 pints. This reflects a scenario 
in which the beer-goggles effect is equally big in men and women after 4 pints (and 
doesn’t exist after no alcohol) but kicks in quicker for men: the attractiveness of their 
dates plummets after 2 pints, whereas women maintain their standards until 4 pints (at 
which point they’d happily date an unwashed skunk). Let’s try another example. Is there 
a significant interaction in Figure 12.12?

For the data in Figure 12.12 there is unlikely to be a significant interaction because 
the effect of alcohol is the same for men and women. So, for both men and women, the 
attractiveness of their dates after no alcohol is quite high, but after 2 pints all types drop by 
a similar amount (the slope of the male and female lines is about the same). After 4 pints 

into the data editor) and run the syntax. The output you get will be in the form of text (rather than nice 
tables). Part of it will replicate the main ANOVA results from SPSS Output 12.3. The simple effects are 
presented like this:

* * * * * * A n a l y s i s   o f   V a r i a n c e -- design   1 * * * * * *

Tests of Significance for ATTRACT using UNIQUE sums of squares

Source of Variation              SS      DF        MS         F  Sig of F

WITHIN+RESIDUAL             6819.79      44    155.00

GENDER WITHIN ALCOHOL(1)     156.25       1    156.25      1.01      .321

GENDER WITHIN ALCOHOL(2)      76.56       1     76.56       .49      .486

GENDER WITHIN ALCOHOL(3)    1914.06       1   1914.06     12.35      .001

(Model)                     2146.87       3    715.62      4.62      .007

(Total)                     8966.67      47    190.78

R-Squared =           .239

Adjusted R-Squared =  .188

Looking at the significance values for each simple effect, it appears that there was no significant difference 
between men and women at level 1 of alcohol (i.e. no alcohol), p = .32, or at level 2 of alcohol (2 pints), p = .49, 
but there was a very significant difference ( p = .001) at level 3 of alcohol (which judging from the graph reflects 
the fact that the mean for men is considerably lower than for women).
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Figure 12.11
Another 
interaction graph

Figure 12.12
A ‘lack of’ 
interaction graph

there is a further drop and, again, this drop is about the same in men and women (the 
lines again slope at about the same angle). The fact that the line for males is lower than for 
females just reflects the fact that across all conditions, men have lower standards than their 
female counterparts: this reflects a main effect of gender (i.e. males generally chose less 
attractive dates than females at all levels of alcohol). Two general points that we can make 
from these examples are that:
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Significant interactions are shown up by non-parallel lines on an interaction graph. MM

However, it’s important to remember that this doesn’t mean that non-parallel lines 
automatically mean that the interaction is significant: whether the interaction is sig-
nificant will depend on the degree to which the lines are not parallel!

If the lines on an interaction graph cross then obviously they are not parallel and this MM

can be a dead giveaway that you have a possible significant interaction. However, 
contrary to popular belief it isn’t always the case that if the lines of the interaction 
graph cross then the interaction is significant.

A further complication is that sometimes people draw bar charts rather than line charts. 
Figure 12.13 shows some bar charts of interactions between two independent variables. 

Figure 12.13 Bar charts showing interactions between two variables

(a) (b)

(c) (d)
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Panels (a) and (b) actually display the data from the example used in this chapter (in fact, 
why not have a go at plotting them!). As you can see, there are two ways to present the 
same data: panel (a) shows the data when levels of alcohol are placed along the x-axis and 
different-coloured bars are used to show means for males and females, and panel (b) shows 
the opposite scenario where gender is plotted on the x-axis and different colours distin-
guish the dose of alcohol. Both of these graphs show an interaction effect. What you’re 
looking for is for the differences between coloured bars to be different at different points 
along the x-axis. So, for panel (a) you’d look at the difference between the light- and dark-
blue bars for no alcohol, and then look to 2 pints and ask, ‘Is the difference between the 
bars different to when I looked at no alcohol?’ In this case the dark- and light-blue bars 
look the same at no alcohol as they do at 2 pints: hence, no interaction. However, we’d 
then move on to look at 4 pints, and we’d again ask, ‘Is the difference between the light- 
and dark-blue bars different to what it has been in any of the other conditions?’ In this 
case the answer is yes: for no alcohol and 2 pints, the light- and dark-blue bars were about 
the same height, but at 4 pints the dark-blue bar is much higher than the light one. This 
shows an interaction: the pattern of responses changes at 4 pints. Panel (b) shows the same 
thing but plotted the other way around. Again we look at the pattern of responses. So, first 
we look at the men and see that the pattern is that the first two bars are the same height, 
but the last bar is much shorter. The interaction effect is shown up by the fact that for the 
women there is a different pattern: all three bars are about the same height.

SELF-TEST  What about panels (c) and (d): do you 
think there is an interaction?

Again, they display the same data in two different ways, but it’s different data to what 
we’ve used in this chapter. First let’s look at panel (c): for the no alcohol data, the dark bar 
is a little bit bigger than the light one; moving on to the 2 pint data the dark bar is also a 
little bit taller than the light bar; and finally for the 4 pint data the dark bar is again higher 
than the light one. In all conditions the same pattern is shown – the dark-blue bar is a bit 
higher than the light-blue one (i.e. females pick more attractive dates than men regardless 
of alcohol consumption) – therefore, there is no interaction. Looking at panel (d) we see 
a similar result. For men, the pattern is that attractiveness ratings fall as more alcohol is 
drunk (the bars decrease in height) and then for the women we see the same pattern: rat-
ings fall as more is drunk. This again is indicative of no interaction: the change in attrac-
tiveness due to alcohol is similar in men and women. 

12.6. Calculating effect sizes 3

As we saw in previous chapters (e.g. section 11.8), we can get SPSS to produce partial eta 
squared, η2. However, you’re well advised, for reasons explained in these other sections, 
to use omega squared (ω2). The calculation of omega squared becomes somewhat more 
cumbersome in factorial designs (‘somewhat’ being one of my characteristic understate-
ments!). Howell (2006), as ever, does a wonderful job of explaining the complexities of it 
all (and has a nice table summarizing the various components for a variety of situations). 
Condensing all of this down, I’ll just say that we need to first compute a variance compo-
nent for each of the effects (the two main effects and the interaction term) and the error, 

smart
alex
only
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and then use these to calculate effect sizes for each. If we call the first main effect A, the 
second main effect B and the interaction effect A × B, then the variance components for 
each of these is based on the mean squares of each effect and the sample sizes on which 
they’re based:

σ̂2α =
a− 1ð Þ MSA −MSRð Þ

nab

σ̂2β =
b−1ð Þ MSB −MSRð Þ

nab

σ̂2αβ=
a− 1ð Þ b− 1ð Þ MSA×B −MSRð Þ

nab

In these equations, a is the number of levels of the first independent variable, b is the 
number of levels of the second independent variable and n is the number of people per 
condition. Let’s calculate these for our data. We need to look at SPSS Output 12.3 to find 
out the mean squares for each effect, and for the error term. Our first independent vari-
able was alcohol. This had three levels (hence a = 3) and had a mean squares of 1666.146. 
Our second independent variable was gender, which had two levels (hence b = 2) and a 
mean squares of 168.75. The number of people in each group was 8 and the residual mean 
squares were 83.036. Therefore, our equations become:

σ̂2α =
3− 1ð Þ 1666:146− 83:036ð Þ

8× 3× 2
= 65:96

σ̂2β =
2− 1ð Þ 168:75−83:036ð Þ

8× 3× 2
= 1:79

σ̂2αβ=
3− 1ð Þ 2− 1ð Þ 989:062− 83:036ð Þ

8× 3× 2
= 37:75

We also need to estimate the total variability and this is just the sum of these other vari-
ables plus the residual mean squares:

σ̂2total = σ̂2α + σ̂2β + σ̂2αβ+MSR

= 65:96+ 1:79+ 37:75+ 83:04

= 188:54

The effect size is then simply the variance estimate for the effect in which you’re interested 
divided by the total variance estimate:

ω2
effect =

σ̂2effect

σ̂2total

As such, for the main effect of alcohol we get:

ω2
alcohol =

σ̂2alcohol

σ̂2total
= 65:96

188:54
= 0:35
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For the main effect of gender we get:

ω2
gender=

σ̂2gender

σ̂2
total

= 1:79

188:54
= 0:009

For the interaction of gender and alcohol we get:

ω2
alcohol× gender =

σ̂2alcohol× gender

σ̂2total
= 37:75

188:54
=0:20

To make these values comparable to r we can take the square root, which gives us effect 
sizes of .59 for alcohol, .09 for gender and .45 for the interaction term. As such, the effects 
of alcohol and the interaction are fairly large, but the effect of gender, which was non-
significant in the main analysis, is very small indeed (close to zero in fact). It’s also possible 
to calculate effect sizes for our simple effects analysis (if you read section 12.4.5). These 
effects have 1 degree of freedom for the model (which means they’re comparing only two 
things) and in these situations F can be converted to r using the following equation (which 
just uses the F-ratio and the residual degrees of freedom):1

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 1, dfRð Þ

F 1, dfRð Þ+ dfR

s

Looking at SPSS Tip 12.1, we can see that we got F-ratios of 1.01, .49 and 12.35 for 
the effects of gender at no alcohol, 2 pints and 4 pints respectively. For each of these, 
the degrees of freedom were 1 for the model and 44 for the residual. Therefore, we get the 
following effect sizes:

rGender No Alcoholð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:01

1:01+ 44

r
= 0:15

rGender 2 Pintsð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:49

0:49+ 44

r
= 0:10

rGender 4 Pintsð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12:35

12:35+ 44

r
=0:47

Therefore, the effect of gender is very small at both no alcohol and 2 pints, but becomes 
large at 4 pints of alcohol.

12.7. Reporting the results of two-way ANOVA 2

As with the other ANOVAs we’ve encountered, we have to report the details of the F-ratio 
and the degrees of freedom from which it was calculated. For the various effects in these 
data the F-ratio will be based on different degrees of freedom: it was derived from dividing 

1 If your F compares more than two things then a different equation is needed (see Rosenthal et al. (2000: 44), 
but I prefer to try to keep effect sizes to situations in which only two things are being compared because inter-
pretation is easier.

everybody
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the mean squares for the effect by the mean squares for the residual. For the effects 
of alcohol and the alcohol × gender interaction, the model degrees of freedom were 
2 (dfM = 2), but for the effect of gender the degrees of freedom were only 1 (dfM = 1). For 
all effects, the degrees of freedom for the residuals were 42 (dfR = 42). We can, therefore, 
report the three effects from this analysis as follows:

 There was a significant main effect of the amount of alcohol consumed at the night-club, 
on the attractiveness of the mate they selected, F (2, 42) = 20.07, p < .001, ω2 = .35. The 
Games–Howell post hoc test revealed that the attractiveness of selected dates was signifi-
cantly lower after 4 pints than both after 2 pints and no alcohol (both ps < .001). The 
attractiveness of dates after 2 pints and no alcohol were not significantly different.

 There was a non-significant main effect of gender on the attractiveness of selected 
mates, F (1, 42) = 2.03, p = .161 ω2 = .009.

 There was a significant interaction effect between the amount of alcohol consumed and 
the gender of the person selecting a mate, on the attractiveness of the partner selected, 
F (2, 42) = 11.91, p < .001, ω2 = .20. This indicates that male and female genders were 
affected differently by alcohol. Specifically, the attractiveness of partners was similar in 
males (M = 66.88, SD = 10.33) and females (M = 60.63, SD = 4.96) after no alcohol; the 
attractiveness of partners was also similar in males (M = 66.88, SD = 12.52) and females 
(M = 62.50, SD = 6.55) after 2 pints; however, attractiveness of partners selected by 
males (M = 35.63, SD = 10.84) was significantly lower than those selected by females 
(M = 57.50, SD = 7.07) after 4 pints.

We have all experienced that feeling after we have left the 
house of wondering whether we locked the door, or if we 
remembered to close the window, or if we remembered to 
remove the bodies from the fridge in case the police turn 
up. This behaviour is normal; however, people with obses-
sive compulsive disorder (OCD) tend to check things 
excessively. They might, for example, check whether they 
have locked the door so often that it takes them an hour to 
leave their house. It is a very debilitating problem.

One theory of this checking behaviour in OCD sug-
gests that it is caused by a combination of the mood you 
are in (positive or negative) interacting with the rules you 
use to decide when to stop a task (do you continue until 
you feel like stopping, or until you have done the task as 
best as you can?). Davey, Startup, Zara, MacDonald & 
Field (2003) tested this hypothesis by inducing a negative, 

positive or no mood in different people and then asking 
them to imagine that they were going on holiday and to 
generate as many things as they could that they should 
check before they went away. Within each mood group, 
half of the participants were instructed to generate as 
many items as they could (known as an ‘as many as can’ 
stop rule), whereas the remainder were asked to gener-
ate items for as long as they felt like continuing the task 
(known as a ‘feel like continuing’ stop rule). The data are 
in the file Davey2003.sav.

Davey et al. hypothesized that people in negative 
moods, using an ‘as many as can’ stop rule would gener-
ate more items than those using a ‘feel like continuing’ stop 
rule. Conversely, people in a positive mood would gener-
ate more items when using a ‘feel like continuing’ stop rule 
compared to ‘an as many as can’ stop rule. Finally, in neu-
tral moods, the stop rule used shouldn’t affect the number 
of items generated. Draw an error bar chart of the data and 
then conduct the appropriate analysis to test 
Davey et al.’s hypotheses.

Answers are in the additional material on 
the companion website (or look at pages 
148–149 in the original article).

LABCOAT LENI’S
REAL RESEARCH 12.1
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12.8. Factorial ANOVA as regression 3

We saw in section 10.2.3 that one-way ANOVA could be conceptualized as a regression 
equation (a general linear model). In this section we’ll consider how we extend this linear 
model to incorporate two independent variables. To keep things as simple as possible I just 
want you to imagine that we have only two levels of the alcohol variable in our example 
(none and 4 pints). As such, we have two variables, each with two levels. All of the general 
linear models we’ve considered in this book take the general form of:

outcomei = modelð Þ+ errori

For example, when we encountered multiple regression in Chapter 7 we saw that this 
model was written as (see equation (7.9)):

Yi = b0 + b1X1i + b2X2i+ . . .+ bnXnið Þ+ εi

Also, when we came across one-way ANOVA, we adapted this regression model to concep-
tualize our Viagra example, as (see equation (10.2)):

Libidoi= b0 + b2Highi +b2Lowið Þ+ εi

In this model, the High and Low variables were dummy variables (i.e. variables that can take 
only values of 0 or 1). In our current example, we have two variables: gender (male or female) 
and alcohol (none and 4 pints). We can code each of these with zeros and ones: for example, 
we could code gender as male = 0, female = 1; and we could code the alcohol variable as 
0 = none, 1 = 4 pints. We could then directly copy the model we had in one-way ANOVA:

Attractivenessi = b0 + b1Genderi + b2Alcoholið Þ+ εi

Now the astute among you might say, ‘Where has the interaction term gone?’ Well, 
of course, we have to include this too, and so the model simply extends to become (first 
expressed generally and then in terms of this specific example):

Attractivei = b0 + b1Ai + b2Bi + b3ABið Þ+ εi

Attractivei = b0 + b1Genderi + b2Alcoholi + b3Interactionið Þ+ εi
(12.1)

The question is: how do we code the interaction term? The interaction term represents the 
combined effect of alcohol and gender and in fact to get any interaction term in regression 
you simply multiply the variables involved in that interaction term. This is why you see inter-
action terms written as gender × alcohol, because in regression terms the interaction variable 
literally is the two variables multiplied by each other. Table 12.2 shows the resulting variables 
for the regression (note that the interaction variable is simply the value of the gender dummy 
variable multiplied by the value of the alcohol dummy variable). So, for example, a male 
receiving 4 pints of alcohol would have a value of 0 for the gender variable, 1 for the alcohol 
variable and 0 for the interaction variable. The group means for the various combinations of 
gender and alcohol are also included because they’ll come in useful in due course.

To work out what the b-values represent in this model we can do the same as we did for 
the t-test and one-way ANOVA; that is, look at what happens when we insert values of our 
predictors (gender and alcohol)! To begin with, let’s see what happens when we look at 
men who had no alcohol. In this case, the value of gender is 0, the value of alcohol is 0 and 
the value of the interaction is also 0. The outcome we predict (as with one-way ANOVA) 
is the mean of this group (66.875), so our model becomes:

smart
alex
only
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Attractivei = b0 + b1Genderi + b2Alcoholi + b3Interactionið Þ+ εi

XMen,None = b0 + b1 × 0ð Þ+ b2 ×0ð Þ+ b3 × 0ð Þ

b0 =XMen, None

b0 = 66:875

So, the constant b0 in the model represents the mean of the group for which all variables 
are coded as 0. As such it’s the mean value of the base category (in this case men who had 
no alcohol). Now, let’s see what happens when we look at females who had no alcohol. In 
this case, the gender variable is 1 and the alcohol and interaction variables are still 0. Also 
remember that b0 is the mean of the men who had no alcohol. The outcome is the mean 
for women who had no alcohol. Therefore, the equation becomes:

XWomen, None = b0 + b1 × 1ð Þ+ b2 × 0ð Þ+ b3 ×0ð Þ

XWomen, None = b0 + b1

XWomen, None =XMen, None +b1

b1 =XWomen, None −XMen, None

b1 = 60:625− 66:875

b1 =−6:25

So, b1 in the model represents the difference between men and women who had no alcohol. 
More generally we can say it’s the effect of gender for the base category of alcohol (the base 
category being the one coded with 0, in this case no alcohol). Now let’s look at males who had 
4 pints of alcohol. In this case, the gender variable is 0, the alcohol variable is 1 and the interac-
tion variable is still 0. We can also replace b0 with the mean of the men who had no alcohol. The 
outcome is the mean for men who had 4 pints. Therefore, the equation becomes:

XMen, 4 Pints = b0 + b1 × 0ð Þ+ b2 × 1ð Þ+ b3 × 0ð Þ

XMen, 4 Pints = b0 + b2

XMen, 4 Pints =XMen, None+ b2

b2 =XMen, 4 Pints −XMen, None

b2 = 35:625− 66:875

b2 =−31:25

Table 12.2 Coding scheme for factorial ANOVA

Gender Alcohol Dummy 
(Gender)

Dummy 
(Alcohol) Interaction Mean

Male None 0 0 0 66.875

Male 4 Pints 0 1 0 35.625

Female None 1 0 0 60.625

Female 4 Pints 1 1 1 57.500
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So, b2 in the model represents the difference between having no alcohol and 4 pints in men. 
Put more generally, it’s the effect of alcohol in the base category of gender (i.e. the category of 
gender that was coded with 0, in this case men). Finally, we can look at females who had 4 pints 
of alcohol. In this case, the gender variable is 1, the alcohol variable is 1 and the interaction 
variable is also 1. We can also replace b0, b1, and b2, with what we now know they represent. 
The outcome is the mean for women who had 4 pints. Therefore, the equation becomes:

XWomen, 4 Pints = b0 + b1 × 1ð Þ+ b2 × 1ð Þ+ b3 × 1ð Þ

XWomen, 4 Pints = b0 + b1 + b2 + b3

XWomen, 4 Pints =XMen, None+ XWomen, None −XMen, None

 

+ XMen, 4 Pints −XMen, None

 
+ b3

XWomen, 4 Pints =XWomen, None +XMen, 4 Pints −XMen, None + b3

b3 =XMen, None−XWomen, None +XWomen, 4 Pints −XMen, 4 Pints

b3 = 66:875−60:625+ 57:500− 35:625

b3 = 28:125

So, b3 in the model really compares the difference between men and women in the no 
alcohol condition to the difference between men and women in the 4 pint condition. Put 
another way, it compares the effect of gender after no alcohol to the effect of gender after 
4 pints.2 If you think about it in terms of an interaction graph this makes perfect sense. For 
example, the top left-hand side of Figure 12.14 shows the interaction graph for these data. 
Now imagine we calculated the difference between men and women for the no alcohol 
groups. This would be the difference between the lines on the graph for the no alcohol 
group (the difference between group means, which is 6.25). If we then do the same for 
the 4 pints group, we find that the difference between men and women is −21.875. If we 
plotted these two values as a new graph we’d get a line connecting 6.25 to −21.875 (see 
the bottom left-hand side of Figure 12.14). This reflects the difference between the effect 
of gender after no alcohol compared to after 4 pints. We know that beta values represent 
gradients of lines and in fact b3 in our model is the gradient of this line! (This is 6.25 – 
(−21.875) = 28.125.) Let’s also see what happens if there isn’t an interaction effect: the 
right-hand side of Figure 12.14 shows the same data except that the mean for the females 
who had 4 pints has been changed to 30. If we calculate the difference between men and 
women after no alcohol we get the same as before: 6.25. If we calculate the difference 
between men and women after 4 pints we now get 5.625. If we again plot these differences 
on a new graph, we find a virtually horizontal line. So, when there’s no interaction, the line 
connecting the effect of gender after no alcohol and after 4 pints is flat and the resulting b3 
in our model would be close to 0 (remember that a zero gradient means a flat line). In fact 
its actual value would be 6.25 − 5.625 = 0.625.

SELF-TEST  The file GogglesRegression.sav 
contains the dummy variables used in this example. 
Just to prove that all of this works, use this file and run a 
multiple regression on the data.

2 In fact, if you re arrange the terms in the equation you’ll see that you can also phrase the interaction the opposite 
way around: it represents the effect of alcohol in men compared to women.
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The resulting table of coefficients is in SPSS Output 12.6. The important thing to note 
is that the various beta values are the same as we’ve just calculated, which should hope-
fully convince you that factorial ANOVA is, as is everything it would seem, just regression 
dressed up in a different costume!

Coefficientsa

66.875 3.055 21.890 .000

-6.250 4.320 -.219 -1.447 .159

-31.250 4.320 -1.094 -7.233 .000

28.125 6.110 .853 4.603 .000

(Constant)

Gender

Alcohol Consumption

Interaction

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Attractiveness of Datea.

Figure 12.14 Breaking down what an interaction represents

SPSS OuTPuT 12.6
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What I hope to have shown you in this example is how even complex ANOVAs are just 
forms of regression (a general linear model). You’ll be pleased to know (I’ll be pleased to 
know for that matter) that this is the last I’m going to say about ANOVA as a general linear 
model. I hope I’ve given you enough background so that you get a sense of the fact that we 
can just keep adding in independent variables into our model. All that happens is these new 
variables just get added into a multiple regression equation with an associated beta value 
(just like the regression chapter). Interaction terms can also be added simply by multiplying 
the variables that interact. These interaction terms will also have an associated beta value. 
So, any ANOVA (no matter how complex) is just a form of multiple regression.

12.9. What to do when assumptions are  
violated in factorial ANOVA 3

There is not a simple non-parametric counterpart of factorial ANOVA. As such, if our 
data violate the assumption of normality the only real solution is robust methods (see sec-
tion 5.7.4) such as those described in Wilcox’s Chapter 7 and the associated files for the 
software R (Wilcox, 2005), which you can implement direct from SPSS using the R plugin 
(see the companion website for some demonstration movies of using R from SPSS). Also, 
if you have violated the assumption of homogeneity of variance then you can try to imple-
ment corrections based on the Welch procedure that was described in the previous chapter. 
However, this is quite technical, SPSS doesn’t do it, and if you have anything more compli-
cated than a 2 × 2 design then, really, it would be less painful to cover your body in paper 
cuts and then bathe in chilli sauce (see Algina & Olejnik, 1984).

What have I discovered about statistics? 2

This chapter has been a whistle-stop tour of factorial ANOVA. In fact we’ll come across 
more factorial ANOVAs in the next two chapters, but for the time being we’ve just looked 
at the situation where there are two independent variables, and different people have been 
used in all experimental conditions. We started off by looking at how to calculate the vari-
ous sums of squares in this analysis, but most important we saw that we get three effects: 
two main effects (the effect of each of the independent variables) and an interaction effect. 
We moved on to see how this analysis is done on SPSS and how the output is interpreted. 
Much of this was similar to the ANOVAs we’ve come across in previous chapters, but one 
big difference was the interaction term. We spent a bit of time exploring interactions (and 
especially interaction graphs) to see what an interaction looks like and how to spot it! The 
brave readers also found out how to follow up an interaction with simple effects analysis 
and also discovered that even complex ANOVAs are simply regression analyses in disguise. 
Finally we discovered that calculating effect sizes in factorial designs is a complete head-
ache and should be attempted only by the criminally insane. So far we’ve steered clear of 
repeated-measures designs, but in the next chapter I have to resign myself to the fact that 
I can’t avoid explaining them for the rest of my life.

We also discovered that no sooner had I started my first band than it disintegrated.  
I went with drummer Mark to sing in a band called the Outlanders, who were much  
better musically but were not, if the truth be told, metal enough for me. They also 
sacked me after a very short period of time for not being able to sing like Bono (an insult 
at the time, but in retrospect …). 

everybody
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Key terms that I’ve discovered
Beer-goggles effect
Factorial ANOVA
Independent factorial design
Interaction graph

Mixed design
Related factorial design
Simple effects analysis

Smart Alex’s tasks

Task 1MM : People’s musical tastes tend to change as they get older (my parents, for example,  
after years of listening to relatively cool music when I was a kid in the 1970s, subse-
quently hit their mid-forties and developed a worrying obsession with country and 
western music – or maybe it was the stress of having me as a teenage son!). Anyway, 
this worries me immensely as the future seems incredibly bleak if it is spent listening to 
Garth Brooks and thinking ‘oh boy, did I underestimate Garth’s immense talent when 
I was in my 20s’. So, I thought I’d do some research to find out whether my fate really 
was sealed, or whether it’s possible to be old and like good music too. First, I got myself 
two groups of people (45 people in each group): one group contained young people 
(which I arbitrarily decided was under 40 years of age) and the other group contained 
more mature individuals (above 40 years of age). This is my first independent variable, 
age, and it has two levels (less than or more than 40 years old). I then split each of these 
groups of 45 into three smaller groups of 15 and assigned them to listen to either Fugazi 
(who everyone knows are the coolest band on the planet),3 ABBA or Barf Grooks (who 
is a lesser known country and western musician not to be confused with anyone who 
has a similar name and produces music that makes you want to barf). This is my second 
independent variable, music, and has three levels (Fugazi, ABBA or Barf Grooks). There 
were different participants in all conditions, which means that of the 45 under-forties, 
15 listened to Fugazi, 15 listened to ABBA and 15 listened to Barf Grooks; likewise, of 
the 45 over-forties, 15 listened to Fugazi, 15 listened to ABBA and 15 listened to Barf 
Grooks. After listening to the music I got each person to rate it on a scale ranging from 
−100 (I hate this foul music of Satan) through 0 (I am completely indifferent) to +100 
(I love this music so much I’m going to explode). This variable is called liking. The data 
are in the file Fugazi.sav. Conduct a two-way independent ANOVA on them. 2

Task 2MM : In Chapter 3 we used some data that related to men and women’s arousal levels 
when watching either Bridget Jones’ Diary or Memento (ChickFlick.sav). Analyse these data 
to see whether men and women differ in their reactions to different types of films. 2

Task 3MM : At the start of this chapter I described a way of empirically researching 
whether I wrote better songs than my old band mate Malcolm, and whether this 
depended on the type of song (a symphony or song about flies). The outcome vari-
able would be the number of screams elicited by audience members during the songs. 
These data are in the file Escape From Inside.sav. Draw an error bar graph (lines) and 
analyse and interpret these data. 2

Task 4MM : Using SPSS Tip 12.1, change the syntax in GogglesSimpleEffects.sps to look 
at the effect of alcohol at different levels of gender. 3

The answers are on the companion website. Task 1 is an example from Field & Hole 
(2003) and so has a more detailed answer in there if you feel like you want it.

3 See http://www.dischord.com.
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Further reading
Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Thompson.  

(Or you might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 
2007.)

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in behavioural research: 
a correlational approach. Cambridge: Cambridge University Press. (This is quite advanced but 
really cannot be bettered for contrasts and effect size estimation.)

Rosnow, R. L., & Rosenthal, R. (2005). Beginning behavioural research: a conceptual primer (5th ed.). 
Englewood, Cliffs, NJ: Pearson/Prentice Hall. (Has some wonderful chapters on ANOVA, with a 
particular focus on effect size estimation, and some very insightful comments on what interactions 
actually mean.)

Online tutorials
The companion website contains the following Flash movie tutorials to accompany this chapter:

M The R plugin M Two-Way Independent ANOVA using SPSS

Interesting real research
Davey, G. C. L., Startup, H. M., Zara, A., MacDonald, C. B., & Field, A. P. (2003). Perseveration of 

checking thoughts and mood-as-input hypothesis. Journal of Behavior Therapy & Experimental 
Psychiatry, 34, 141–160.
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13Repeated-measures designs 
(GLM 4)

Figure 13.1
Scansion in 
the early days; 
I used to stare 
a lot (L–R: me, 
Mark and Mark)

13.1. What will this chapter tell me? 2

At the age of 15, I was on holiday with my friend Mark (the drummer) in Cornwall. I had 
a pretty decent mullet by this stage (nowadays I just wish I had enough hair to grow a 
mullet … or perhaps not) and had acquired a respectable collection of heavy metal T-shirts 
from going to various gigs. We were walking along the cliff tops one evening at dusk remi-
niscing about our times in Andromeda. We came to the conclusion that the only thing we 
hadn’t enjoyed about that band was Malcolm and that maybe we should reform it with 
a different guitarist.1 As I was wondering who we could get to play guitar, Mark pointed 

1 I feel bad about saying this because Malcolm was a very nice guy and, to be honest, at that age (and some would 
argue beyond) I could be a bit of a cock.
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out the blindingly obvious: I played guitar. So, when we got home Scansion was born.2 
As the singer, guitarist and songwriter I set about writing some songs. I moved away from 
writing about flies and set my sights on the pointlessness of existence, death, betrayal and 
so on. We had the dubious honour of being reviewed in the music magazine Kerrang! (in 
a live review they called us ‘twee’, which is really not what you want to be called if you’re 
trying to make music so heavy that it ruptures the bowels of Satan himself). Our highlight, 
however, was playing a gig at the famous Marquee Club in London (this club has closed 
now, not as a result of us playing there I hasten to add, but in its day it started the careers of 
people like Jimi Hendrix, the Who, Iron Maiden and Led Zeppelin).3 This was the biggest 
gig of our career and it was essential that we played like we never had before. As it turned 
out, we did: I ran on stage, fell over and in the process de-tuned my guitar beyond recogni-
tion and broke the zip on my trousers. I spent the whole gig out of tune and spread-eagle 
to prevent my trousers falling down. Like I said, I’d never played like that before. We used 
to get quite obsessed with comparing how we played at different gigs. I didn’t know about 
statistics then (happy days) but if I had I would have realized that we could rate ourselves 
and compare the mean ratings for different gigs; because we would always be the ones 
doing the rating, this would be a repeated-measures design, so we would need a repeated-
measures ANOVA to compare these means. That’s what this chapter is about.

13.2. Introduction to repeated-measures designs 2

Over the last three chapters we have looked at a procedure called ANOVA which is used 
for testing differences between several means. So far we’ve concentrated on situations in 
which different people contribute to different means; put another way, different people 
take part in different experimental conditions. Actually, it doesn’t have to be different 
people (I tend to say people because I’m a psychologist and so spend my life torturing, 
I mean testing, children in the name of science), it could be different plants, different 
companies, different plots of land, different viral strains, different goats or even different 
duck-billed platypuses (or whatever the plural is). Anyway, the point is I’ve completely 
ignored situations in which the same people (plants, goats, hamsters, seven-eyed green 
galactic leaders from space, or whatever) contribute to the different means. I’ve put it off 
long enough, and now I’m going to take you through what happens when we do ANOVA 
on repeated-measures data.

SELF-TEST  What is a repeated-measures design? 
(Clue: it is described in Chapter 1.) 

Repeated-measures is a term used when the same participants participate in all condi-
tions of an experiment. For example, you might test the effects of alcohol on enjoyment 
of a party. Some people can drink a lot of alcohol without really feeling the consequences, 

2 Scansion is a term for the rhythm of poetry. We got the name by searching through a dictionary until we found 
a word that we liked. Originally we didn’t think it was ‘metal’ enough, and we decided that any self-respecting 
heavy metal band needed to have a big spiky ‘X’ in their name. So, for the first couple of years we spelt it 
‘Scanxion’. Like I said, I could be a bit of a cock back then. 
3 http://www.themarqueeclub.net.
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whereas others, like myself, have only to sniff a pint of lager and they start flapping around 
on the floor waving their arms and legs around shouting ‘Look at me, I’m Andy, King of the 
lost world of the Haddocks.’ Therefore, it is important to control for individual differences 
in tolerance to alcohol and this can be achieved by testing the same people in all conditions 
of the experiment: participants could be given a questionnaire assessing their enjoyment of 
the party after they had consumed 1 pint, 2 pints, 3 pints and 4 pints of lager.

We saw in Chapter 1 that this type of design has several advantages; however, there 
is a big disadvantage. In Chapter 10 we saw that the accuracy of the F-test in ANOVA 
depends upon the assumption that scores in different conditions are independent (see sec-
tion 10.2.10). When repeated-measures are used this assumption is violated: scores taken 
under different experimental conditions are likely to be related because they come from 
the same participants. As such, the conventional F-test will lack accuracy. The relationship 
between scores in different treatment conditions means that an additional assumption has 
to be made and, put simplistically, we assume that the relationship between pairs of experi-
mental conditions is similar (i.e. the level of dependence between experimental conditions 
is roughly equal). This assumption is called the assumption of sphericity, which, trust me, is 
a pain in the neck to try to pronounce when you’re giving statistics lectures at 9 a.m.

13.2.1.  The assumption of sphericity 2

The assumption of sphericity can be likened to the assumption of homogeneity of variance in 
between-group ANOVA. Sphericity (denoted by ε and sometimes referred to as circularity) is 
a more general condition of compound symmetry. Compound symmetry holds 
true when both the variances across conditions are equal (this is the same as the 
homogeneity of variance assumption in between-group designs) and the covar-
iances between pairs of conditions are equal. So, we assume that the variation 
within experimental conditions is fairly similar and that no two conditions are 
any more dependent than any other two. Although compound symmetry has 
been shown to be a sufficient condition for ANOVA using repeated-measures 
data, it is not a necessary condition. Sphericity is a less restrictive form of com-
pound symmetry (in fact much of the early research into repeated-measures 
ANOVA confused compound symmetry with spheri city). Sphericity refers to 
the equality of variances of the differences between treatment levels. So, if you 
were to take each pair of treatment levels, and calculate the differences between each pair of 
scores, then it is necessary that these differences have approximately equal variances. As such, 
you need at least three conditions for sphericity to be an issue.

13.2.2.  How is sphericity measured? 2

If we were going to check the assumption of sphericity by hand rather than getting SPSS 
to do it for us then we could start by calculating the differences between pairs of scores in 
all combinations of the treatment levels. Once this has been done, we could calculate the 
variance of these differences. Table 13.1 shows data from an experiment with three condi-
tions. The differences between pairs of scores are computed for each participant and the 
variance for each set of differences is calculated. We saw above that sphericity is met when 
these variances are roughly equal. For these data, sphericity will hold when:

varianceA−B≈ varianceA−C ≈ varianceB−C

What is sphericity?
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In these data there is some deviation from sphericity because the variance of the dif-
ferences between conditions A and B (15.7) is greater than the variance of the differences 
between A and C and between B and C (10.3). However, these data have local circularity 
(or local sphericity) because two of the variances of differences are identical. Therefore, 
the sphericity assumption has been met for any multiple comparisons involving these con-
ditions (for a discussion of local circularity see Rouanet and Lépine, 1970). The deviation 
from sphericity in the data in Table 13.1 does not seem too severe (all variances are roughly 
equal), but can we assess whether a deviation is severe enough to warrant action?

13.2.3.  Assessing the severity of departures from sphericity 2

SPSS produces a test known as Mauchly’s test, which tests the hypothesis that the variances 
of the differences between conditions are equal. Therefore, if Mauchly’s test statistic is 
significant (i.e. has a probability value less than .05) we should conclude that there are 
significant differences between the variances of differences and, therefore, the condition 
of sphericity is not met. If, however, Mauchly’s test statistic is non-significant (i.e. p > .05) 
then it is reasonable to conclude that the variances of differences are not significantly dif-
ferent (i.e. they are roughly equal). So, in short, if Mauchly’s test is significant then we 
must be wary of the F-ratios produced by the computer. However, like any significance 
test it is dependent on sample size: in big samples small deviations from sphericity can be 
significant, and in small samples large violations can be non-significant.

13.2.4.   What is the effect of violating the assumption of 
sphericity? 3

Rouanet and Lépine (1970) provided a detailed account of the validity of the F-ratio under 
violations of the sphericity assumption. They argued that there are two different F-ratios 
that can be used to assess treatment comparisons, labelled F′ and F″ respectively. F′ refers 
to an F-ratio derived from the mean squares of the comparison in question and the spe-
cific error term for the comparison of interest – this is the F-ratio normally used. F″ is 
derived not from the specific error mean square but from the total error mean squares for all 
repeated-measures comparisons. Rouanet and Lépine (1970) showed that for F″ to be valid,  

Table 13.1 Hypothetical data to illustrate the calculation of the variance of the differences 
between conditions

Group A Group B Group C A−B A−C B−C

10 12  8 −2  2  5

15 15 12  0  3  3

25 30 20 −5  5 10

35 30 28  5  7  2

30 27 20  3 10  7

Variance: 15.7 10.3 10.3

smart
alex
only
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‘Balls …,’ says Oliver, ‘… are spherical, and I like balls. Maybe I’ll like 
sphericity too if only you could explain it to me in more detail.’ Be care-
ful what you wish for, Oliver. In my youth I wrote an article called ‘A 
bluffer’s guide to sphericity’, which I used to cite in this book, roughly 
on this page. A few people ask me for it, so I thought I might as well 
reproduce it in the additional material for this chapter. 

OLIVER TWISTED

Please, Sir, can I 
have some more … 
sphericity?

overall sphericity must hold (i.e. the whole data set must be spherical), but for F′ to be valid, 
sphericity must hold for the specific comparison in question (see also Mendoza, Toothaker, 
& Crain, 1976). F′ is the statistic generally used and the effect of violating sphericity is a 
loss of power (compared to when F″ is used) and a test statistic (F-ratio) that simply cannot 
be compared to tabulated values of the F-distribution (see Oliver Twisted). 

What do I do if
sphericity is violated?

13.2.5.  What do you do if you violate sphericity? 2

If data violate the sphericity assumption there are several corrections that can be applied to 
produce a valid F-ratio. SPSS produces three corrections based upon the estimates of spheri-
city advocated by Greenhouse and Geisser (1959) and Huynh and Feldt 
(1976). Both of these estimates give rise to a correction factor that is 
applied to the degrees of freedom used to assess the observed F-ratio. The 
calculation of these estimates is beyond the scope of this book (interested 
readers should consult Girden, 1992); we need know only that the three 
estimates differ. The Greenhouse–Geisser correction (usually denoted as ε̂) 
varies between 1/k − 1 (where k is the number of repeated-measures con-
ditions) and 1. The closer that ε̂  is to 1, the more homogeneous the vari-
ances of differences, and hence the closer the data are to being spherical. 
For example, in a situation in which there are five conditions the lower 
limit of ε̂ will be 1/(5 − 1), or 0.25 (known as the lower-bound estimate of 
sphericity). 

Huynh and Feldt (1976) reported that when the Greenhouse–Geisser estimate is greater 
than 0.75 too many false null hypotheses fail to be rejected (i.e. the correction is too 
conservative) and Collier, Baker, Mandeville, and Hayes (1967) showed that this was also 
true when the sphericity estimate was as high as 0.90. Huynh and Feldt, therefore, pro-
posed their own less conservative correction (usually denoted as ε̂). However, Maxwell 
and Delaney (1990) report that ε̂  overestimates sphericity. Stevens (2002) therefore recom-
mends taking an average of the two and adjusting df by this averaged value. Girden (1992) 
recommends that when estimates of sphericity are greater than 0.75 then the Huynh–Feldt 
correction should be used, but when sphericity estimates are less than 0.75 or nothing is 
known about sphericity at all, then the Greenhouse–Geisser correction should be used 
instead. We will see how these values are used in due course.

A final option, when you have data that violate sphericity, is to use multivariate test statis-
tics (MANOVA – see Chapter 16), because they are not dependent upon the assumption of 
sphericity (see O’Brien & Kaiser, 1985). MANOVA is covered in depth in Chapter 16, but 
the repeated-measures procedure in SPSS automatically produces multivariate test statistics. 
However, there may be trade-offs in power between these univariate and multivariate tests 
(see Jane Superbrain Box 13.1).

everybody
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13.3. Theory of one-way repeated-measures 
ANOVA 2

In a repeated-measures ANOVA the effect of our experiment is shown up in the within-
participant variance (rather than in the between-group variance). Remember that in inde-
pendent ANOVA (section 10.2) the within-participant variance is our residual variance 
(SSR); it is the variance created by individual differences in performance. This variance is 
not contaminated by the experimental effect, because whatever manipulation we’ve car-
ried out has been done on different people. However, when we carry out our experimen-
tal manipulation on the same people then the within-participant variance will be made 
up of two things: the effect of our manipulation and, as before, individual differences 
in performance. So, some of the within-subjects variation comes from the effects of our 
experimental manipulation: we did different things in each experimental condition to the 
participants, and so variation in an individual’s scores will partly be due to these manipula-
tions. For example, if everyone scores higher in one condition than another, it’s reasonable 
to assume that this happened not by chance, but because we did something different to the 
participants in one of the conditions compared to any other one. Because we did the same 
thing to everyone within a particular condition, any variation that cannot be explained by 
the manipulation we’ve carried out must be due to random factors outside our control, 
unrelated to our experimental manipulations (we could call this ‘error’). As in independent 
ANOVA, we use an F-ratio that compares the size of the variation due to our experimental 
manipulations to the size of the variation due to random factors, the only difference being 
how we calculate these variances. If the variance due to our manipulations is big relative to 
the variation due to random factors, we get a big value of F, and we can conclude that the 
observed results are unlikely to have occurred if there was no effect in the population.

(1974) conducted a Monte Carlo study comparing univari-
ate and multivariate techniques under violations of com-
pound symmetry and normality and found that ‘as the 
degree of violation of compound symmetry increased, the 
empirical power for the multivariate tests also increased. 
In contrast, the power for the univariate tests generally 
decreased’ (p. 174). Maxwell and Delaney (1990) noted 
that the univariate test is relatively more powerful than the 
multivariate test as n decreases and proposed that ‘the 
multivariate approach should probably not be used if n 
is less than a + 10 (a is the number of levels for repeat-
ed-measures)’ (p. 602). As a rule it seems that when 
you have a large violation of sphericity (ε < 0.7) and your 
sample size is greater than (a + 10) then multivariate pro-
cedures are more powerful, but with small sample sizes 
or when sphericity holds (ε > 0.7) the univariate approach 
is preferred (Stevens, 2002). It is also worth noting that 
the power of MANOVA increases and decreases as a 
function of the correlations between dependent variables 
(see Jane Superbrain Box 16.1) and so the relationship 
between treatment conditions must be considered also.

There is a trade-off in test power between univariate and 
multivariate approaches (although some authors argue 
that this can be overcome with suitable mastery of the 
techniques – O’Brien and Kaiser, 1985). Davidson (1972) 
compared the power of adjusted univariate techniques 
with those of Hotelling’s T 2 (a MANOVA test statistic) and 
found that the univariate technique was relatively power-
less to detect small reliable changes between highly cor-
related conditions when other less correlated conditions 
were also present. Mendoza, Toothaker, and Nicewander 

JANE SUPERBRAIN 13.1

Power in ANOVA and MANOVA 3
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Figure 13.2 shows how the variance is partitioned in a repeated-measures ANOVA. 
The important thing to note is that we have the same types of variances as in independent 
ANOVA: we have a total sum of squares (SST), a model sum of squares (SSM) and a residual 
sum of squares (SSR). The only difference between repeated-measures and independent 
ANOVA is from where those sums of squares come: in repeated-measures ANOVA the 
model and residual sums of squares are both part of the within-participant variance. Let’s 
have a look at an example. 

I’m a celebrity, get me out of here is a TV show in the UK in which celebrities (well, they’re 
not really celebrities as such, more like ex-celebrities) in a pitiful attempt to salvage their 
careers (or just have careers in the first place) go and live in the jungle in Australia for a few 
weeks. During the show these contestants have to do various humiliating and degrading tasks 
to win food for their camp mates. These tasks invariably involve creepy-crawlies in places 
where creepy-crawlies shouldn’t go; for example, you might be locked in a coffin full of rats, 
forced to put your head in a bowl of large spiders, or have eels and cockroaches poured onto 
you. It’s cruel, voyeuristic, gratuitous, car crash TV, and I love it. As a vegetarian, a particular 
favourite task for me is the bushtucker trials in which the celebrities have to eat things like live 
stick insects, witchetty grubs, fish eyes and kangaroo testicles/penises. Honestly, your mental 
image of someone is forever scarred by seeing a fish eye exploding in their mouth (here’s pray-
ing that Angela Gossow never goes on the show, although she’d probably just eat the other 
contestants which could enhance rather than detract from her appeal). I’ve often wondered 
(perhaps a little too much) which of the bushtucker foods is the most revolting. Imagine that 
I tested this by getting eight celebrities, and forced them to eat four different animals (the 
aforementioned stick insect, kangaroo testicle, fish eye and witchetty grub) in counterbalanced 
order. On each occasion I measured the time it took the celebrity to retch, in seconds. This 
design is repeated-measures because every celebrity eats every food. The independent variable 
was the type of food eaten and the dependent variable was the time taken to retch.

Table 13.2 shows the data for this example. There were four foods, each eaten by eight 
different celebrities. Their times taken to retch are shown in the table. In addition, the 
mean amount of time to retch for each celebrity is shown in the table (and the variance in 
the time taken to retch), and also the mean time to retch for each animal. The total vari-
ance in retching time will, in part, be caused by the fact that different animals are more or 
less palatable (the manipulation), and will, in part, be caused by the fact that the celebrities 
themselves will differ in their constitution (individual differences).

Figure 13.2
Partitioning 
variance for 
repeated-
measures 
ANOVA
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13.3.1.  The total sum of squares (SST) 2

Remember from one-way independent ANOVA that SST is calculated using the following 
equation (see equation (10.4)):

SST = s2grand N− 1ð Þ

Well, in repeated-measures designs the total sum of squares is calculated in exactly the 
same way. The grand variance in the equation is simply the variance of all scores when we 
ignore the group to which they belong. So if we treated the data as one big group it would 
look as follows:

 8 7 1 6

 9 5 2 5

 6 2 3 8

 5 3 1 9

 8 4 5 8

 7 5 6 7

10 2 7 2

12 6 8 1

Grand Mean = 5.56 
Grand Variance = 8.19

The variance of these scores is 8.19 (try this on your calculators). We used 32 scores to 
generate this value, so N is 32. As such the equation becomes:

Table 13.2 Data for the bushtucker example

Celebrity
Stick 

Insect
Kangaroo 
Testicle Fish Eye

Witchetty 
Grub Mean s2

1  8 7 1 6 5.50 9.67

2  9 5 2 5 5.25 8.25

3  6 2 3 8 4.75 7.58

4  5 3 1 9 4.50 11.67

5  8 4 5 8 6.25 4.25

6  7 5 6 7 6.25 0.92

7 10 2 7 2 5.25 15.58

8 12 6 8 1 6.75 20.92

Mean 8.13 4.25 4.13 5.75

smart
alex
only
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SST = s2grand N− 1ð Þ
=8:19ð32− 1Þ
=253:89

The degrees of freedom for this sum of squares, as with the independent ANOVA, will be 
N − 1, or 31.

13.3.2.  The within-participant (SSW) 2

The crucial difference in this design is that there is a variance component called the within- 
participant variance (this arises because we’ve manipulated our independent variable within 
each participant). This is calculated using a sum of squares. Generally speaking, when we cal-
culate any sum of squares we look at the squared difference between the mean and individual 
scores. This can be expressed in terms of the variance across scores and the number of scores 
on which that variance is based. For example, when we calculated the residual sum of squares 
in independent ANOVA (SSR) we used the following equation (look back to equation (10.7)):

SSR =
Xn

i=1

xi −xið Þ2

SSR = s2 n− 1ð Þ

This equation gave us the variance between individuals within a particular group, and so is 
an estimate of individual differences within a particular group. Therefore, to get the total 
value of individual differences we have to calculate the sum of squares within each group 
and then add them up:

SSR= s2group 1ðn1 − 1Þ+ s2group 2ðn2 − 1Þ+ s2group 3ðn3 −1Þ . . .

This is all well and good when we have different people in each group, but in repeated-measures 
designs we’ve subjected people to more than one experimental condition, and, therefore, we’re 
interested in the variation not within a group of people (as in independent ANOVA) but within 
an actual person. That is, how much variability is there within an individual? To find this out we 
actually use the same equation but we adapt it to look at people rather than groups. So, if we call 
this sum of squares SSW (for within-participant SS) we could write it as: 

SSW = s2Person 1ðn1 − 1Þ+ s2Person 2ðn2 − 1Þ+ s2Person 3ðn3 − 1Þ+ . . . + s2Person nðnn − 1Þ

This equation simply means that we are looking at the variation in an individual’s scores 
and then adding these variances for all the people in the study. The ns simply represent the 
number of scores on which the variances are based (i.e. the number of experimental condi-
tions, or in this case the number of foods). All of the variances we need are in Table 13.2, 
so we can calculate SSW as:

SSW = s2Celebrity 1ðn1 − 1Þ+ s2Celebrity 2ðn2 − 1Þ+ . . . + s2Celebrity nðnn − 1Þ
= 9:67ð4−1Þ+ 8:25ð4− 1Þ+ 7:58ð4− 1Þ+ 11:67ð4− 1Þ

+ 4:25ð4− 1Þ+ 0:92ð4− 1Þ+ 15:58ð4− 1Þ+ 20:92ð4− 1Þ
= 29+24:75+ 22:75+ 35+ 12:75+ 2:75+ 46:75+ 62:75

= 236:50
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The degrees of freedom for each person are n − 1 (i.e. the number of conditions  
minus 1). To get the total degrees of freedom we add the dfs for all participants. So, with 
eight participants (celebrities) and four conditions (i.e. n = 4) there are three degrees of 
freedom for each celebrity and 8 × 3 = 24 degrees of freedom in total.

13.3.3.  The model sum of squares (SSM) 2

So far, we know that the total amount of variation within the data is 253.58 units. We 
also know that 236.50 of those units are explained by the variance created by individuals’ 
(celebrities’) performances under different conditions. Now some of this variation is the 
result of our experimental manipulation and some of this variation is simply random fluc-
tuation. The next step is to work out how much variance is explained by our manipulation 
and how much is not.

In independent ANOVA, we worked out how much variation could be explained by our 
experiment (the model SS) by looking at the means for each group and comparing these 
to the overall mean. So, we measured the variance resulting from the differences between 
group means and the overall mean (see equation (10.5)). We do exactly the same thing with 
a repeated-measures design. First we calculate the mean for each level of the independent 
variable (in this case the mean time to retch for each food) and compare these values to the 
overall mean of all foods.

So, we calculate this SS in the same way as for independent ANOVA:

Calculate the difference between the mean of each group and the grand mean.1 

Square each of these differences.2 

Multiply each result by the number of participants that contribute to that mean (3 ni).

Add the values for each group together:4 

SSM =
Xk

i= 1

ni xi − xgrand
 2

Using the means from the bushtucker data (see Table 13.2), we can calculate SSM as follows:

SSM = 8ð8:13−5:56Þ2 + 8ð4:25− 5:56Þ2 + 8ð4:13− 5:56Þ2 + 8ð5:75− 5:56Þ2

= 8ð2:57Þ2 + 8ð−1:31Þ2 + 8ð−1:44Þ2 + 8ð0:196Þ2

= 83:13

For SSM, the degrees of freedom (dfM) are again one less than the number of things used 
to calculate the sum of squares. For the model sums of squares we calculated the sum of 
squared errors between the four means and the grand mean. Hence, we used four things 
to calculate these sums of squares. Therefore, the degrees of freedom will be 3. So, as with 
independent ANOVA the model degrees of freedom are always the number of conditions 
(k) minus 1:

dfM = k−1= 3
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13.3.4.  The residual sum of squares (SSR) 2

We now know that there are 253.58 units of variation to be explained in our data, and that 
the variation across our conditions accounts for 236.50 units. Of these 236.50 units, our 
experimental manipulation can explain 83.13 units. The final sum of squares is the residual 
sum of squares (SSR), which tells us how much of the variation cannot be explained by 
the model. This value is the amount of variation caused by extraneous factors outside of 
experimental control. Knowing SSW and SSM already, the simplest way to calculate SSR is to 
subtract SSM from SSW (SSR = SSW − SSM):

SSR = SSW − SSM

SSR = 236:50−83:13

= 153:37

The degrees of freedom are calculated in a similar way:

dfR = dfW − dfM

= 24− 3

= 21

13.3.5.  The mean squares 2

SSM tells us how much variation the model (e.g. the experimental manipulation) explains and 
SSR tells us how much variation is due to extraneous factors. However, because both of these 
values are summed values the number of scores that were summed influences them. As with 
independent ANOVA we eliminate this bias by calculating the average sum of squares (known as 
the mean squares, MS), which is simply the sum of squares divided by the degrees of freedom:

MSM = SSM
dfM

= 83:13

3
= 27:71

MSR = SSR
dfR

= 153:37

21
=7:30

MSM represents the average amount of variation explained by the model (e.g. the system-
atic variation), whereas MSR is a gauge of the average amount of variation explained by 
extraneous variables (the unsystematic variation).

13.3.6.  The F-ratio 2

The F-ratio is a measure of the ratio of the variation explained by the model and the vari-
ation explained by unsystematic factors. It can be calculated by dividing the model mean 
squares by the residual mean squares. You should recall that this is exactly the same as for 
independent ANOVA:

F= MSM
MSR
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So, as with the independent ANOVA, the F-ratio is still the ratio of systematic variation to 
unsystematic variation. As such, it is the ratio of the experimental effect to the effect on 
performance of unexplained factors. For the bushtucker data, the F-ratio is:

F= MSM
MSR

= 27:71

7:30
= 3:79

This value is greater than 1, which indicates that the experimental manipulation had some 
effect above and beyond the effect of extraneous factors. As with independent ANOVA this 
value can be compared against a critical value based on its degrees of freedom (dfM and dfR), 
which are 3 and 21 in this case.

13.3.7.  The between-participant sum of squares 2

I mentioned that the total variation is broken down into a within-participant variation and 
a between-participant variation. We sort of forgot about the between-participant variation 
because we didn’t need it to calculate the F-ratio. However, I will just briefly mention what 
it represents. The easiest way to calculate this term is by subtraction, because we know 
from Figure 13.2 that:

SST = SSB + SSW

Now, we have already calculated SSW and SST so by rearranging the equation and replacing 
the values of these terms, we get:

SSB = SST − SSW

SSB = 253:58−236:89

= 17:39

This term represents individual differences between cases. So, in this example, different 
celebrities will have different tolerances of eating these sorts of food. This is shown by the 
means for the celebrities in Table 13.2. For example, celebrity 4 (M = 4.50) was, on average, 
more than 2 seconds quicker to retch than participant 8 (M = 6.75). Celebrity 8 just had a 
better constitution than celebrity 4. The between-participant sum of squares reflects these 
differences between individuals. In this case only 17.08 units of variation in the times to retch 
can be explained by individual differences between our celebrities.

13.4. One-way repeated-measures ANOVA  
using SPSS 2

13.4.1.  The main analysis 2

Sticking with the bushtucker example, we know that each row of the data editor should 
represent data from one entity while each column represents a level of a variable (SPSS 

everybody
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Tip 3.2). Therefore, separate columns represent levels of a repeated-measures variable. As 
such, there is no need for a coding variable (as with between-group designs). The data are 
in Table 13.2 and can be entered into the SPSS Data Editor in the same format as this table 
(you don’t need to include the columns labelled Celebrity, Mean or s2 as they were included 
only to clarify that the celebrities ate the same food and to help explain how this ANOVA is 
calculated). To begin with, create a variable called stick and use the labels dialog box to give 
this variable a full title of ‘Stick Insect’. In the next column, create a variable called testicle, 
and give this variable a full title of ‘Kangaroo Testicle’. The principle should now be clear: 
apply it to create the remaining variables called eye (‘Fish Eye’) and witchetty (‘Witchetty 
Grub’). These data can also be found in the file Bushtucker.sav. 

To conduct an ANOVA using a repeated-measures design, activate the define factors dialog 
box by selecting . In the define factors dialog box 
(Figure 13.3), you are asked to supply a name for the within-subject (repeated-measures) vari-
able. In this case the repeated-measures variable was the type of animal eaten in the bushtucker 
trial, so replace the word factor1 with the word Animal. The name you give to the repeated-
measures variable cannot have spaces in it. When you have given the repeated-measures factor 
a name, you have to tell the computer how many levels there were to that variable (i.e. how 
many experimental conditions there were). In this case, there were four different animals eaten 
by each person, so we have to enter the number 4 into the box labelled Number of Levels. 
Click on  to add this variable to the list of repeated-measures variables. This variable will 
now appear in the white box at the bottom of the dialog box and appears as Animal(4). If your 
design has several repeated-measures variables then you can add more factors to the list (see 
two-way ANOVA example below). When you have entered all of the repeated-measures factors 
that were measured click on  to go to the main dialog box.

Figure 13.3
The define 
factors dialog 
box for repeated-
measures 
ANOVA

The main dialog box (Figure 13.4) has a space labelled Within-Subjects Variables that 
contains a list of four question marks followed by a number. These question marks are 
for the variables representing the four levels of the independent variable. The variables 
corresponding to these levels should be selected and placed in the appropriate space. We 
have only four variables in the data editor, so it is possible to select all four variables at 
once (by clicking on the variable at the top, pressing the Shift key and then clicking on 
the last variable that you want to select). The selected variables can then be dragged to 
the box labelled Within-Subjects Variables (or click on ). When all four variables have 
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Figure 13.4
The main dialog 
box for repeated-
measures 
ANOVA (before 
and after 
completion)

been transferred, you can select various options for the analysis. There are several options 
that can be accessed with the buttons at the side of the main dialog box. These options are 
similar to the ones we have already encountered.
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13.4.2.  Defining contrasts for repeated-measures 2

It is not possible to specify user-defined planned comparisons for repeated-measures designs 
in SPSS.4 However, there is the option to conduct one of the many standard contrasts that 
we have come across previously (see section 11.4.4 for details of changing contrasts). If you 
click on  in the main dialog box you can access the contrasts dialog box (Figure 
13.5). The default contrast is a polynomial contrast, but to change this default select a 
variable in the box labelled Factors, click on , select a contrast from the list 
and then click on . If you choose to conduct a simple contrast then you can specify 
whether you would like to compare groups against the first or last category. The first cat-
egory would be the one entered as (1) in the main dialog box and, for these data, the last 
category would be the one entered as (4). Therefore, the order in which you enter variables 
in the main dialog box is important for the contrasts you choose. 

There is no particularly good contrast for the data we have (the simple contrast is not 
very useful because we have no control category) so let’s use the repeated contrast, which 
will compare each animal against the previous animal. This contrast can be useful in repeat-
ed-measures designs in which the levels of the independent variable have a meaningful 
order. An example is if you have measured the dependent variable at successive points in 
time, or administered increasing doses of a drug. When you have selected this contrast, 
click on  to return to the main dialog box.

4 Actually, as I mentioned in the previous chapter, you can, but only using SPSS syntax. Those who are not already 
feeling like sticking their head in an industrial-sized mincing machine can read the file ContrastsUsingSyntax.pdf 
on the companion website. Those who do feel like sticking their head in the aforementioned mincing machine 
can read the file as well: it will have much the same effect (at least it did on me)!

Figure 13.5
Repeated-
measures 
contrasts

13.4.3.  Post hoc tests and additional options 3

Not only does sphericity create problems for the F in repeated-measures ANOVA, but also 
it causes some amusing complications for post hoc tests (see Jane Superbrain Box 13.2).5

5 David Howell has a good discussion of this issue and suggestions for doing post hoc tests in repeated-measures designs on 
his web page (http://www.uvm.edu/~dhowell/StatPages/More_Stuff/RepMeasMultComp/RepMeasMultComp.html).
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If you don’t want to worry about what these complications are then the take-home mes-
sage is that when sphericity is violated, the Bonferroni method seems to be generally the 
most robust of the univariate techniques, especially in terms of power and control of the 
Type I error rate. When sphericity is definitely not violated, Tukey’s test can be used. In 
either case, the Games–Howell procedure, which uses a pooled error term, is preferable 
to Tukey’s test.

These sphericity-related complications mean that the standard post hoc tests that we 
have seen for independent designs are not available for repeated-measures analyses (you 
will find that if you access the post hoc test dialog box it will not list any repeated-measured 
factors). The good news, though, is that you can do some basic post hoc procedures through 
the additional options. These options can be accessed by clicking on  in the main 
dialog box to open the GLM Repeated Measures: Options dialog box (see Figure 13.6). To 
specify post hoc tests, select the repeated-measures variable (in this case Animal) from the 

Tukey’s procedure but with a separate error term with 
either (n − 1) df (labelled SEP1) or (n − 1)(k − 1) df (labelled 
SEP2); Bonferroni’s procedure (BON); and a multivariate 
approach – the Roy–Bose simultaneous confidence inter-
val (SCI). Maxwell (1980) tested these a priori procedures 
varying the sample size, number of levels of the repeated 
factor and departure from sphericity. He found that the 
multivariate approach was always ‘too conservative for 
practical use’ (p. 277) and this was most extreme when 
n (the number of participants) is small relative to k (the 
number of conditions). Tukey’s test inflated the alpha rate 
unacceptably with increasing departures from sphericity 
even when a separate error term was used (SEP1 and 
SEP2). The Bonferroni method, however, was extremely 
robust (although slightly conservative) and controlled 
alpha levels regardless of the manipulation. Therefore, 
in terms of Type I error rates the Bonferroni method was 
best.

In terms of test power (the Type II error rate) for a small 
sample (n = 8) Maxwell found WSD to be most powerful 
under conditions of non-sphericity, but this advantage was 
severely reduced when n = 15. Keselman and Keselman 
(1988) extended Maxwell’s work within unbalanced designs. 
They too used Tukey’s WSD, a modified WSD (with non-
pooled error variance), Bonferroni t-statistics and a multi-
variate approach, and found that when unweighted means 
were used (with unbalanced designs) none of the four tests 
could control the Type I error rate. When weighted means 
were used only the multivariate tests could limit alpha rates, 
although Bonferroni t-statistics were considerably better 
than the two Tukey methods. In terms of power Keselman 
and Keselman (1988) concluded that ‘as the number of 
repeated treatment levels increases, BON is substantially 
more powerful than SCI’ (p. 223).

The violation of sphericity has implications for multiple 
comparisons. Boik (1981) provided an estimable account 
of the effects of non-sphericity on post hoc tests in repeat-
ed-measures designs, and concluded that even very 
small departures from sphericity produce large biases 
in the F-test. He recommends against using these tests 
for repeated-measure contrasts. When experimental error 
terms are small, the power to detect relatively strong 
effects can be as low as .05 (when sphericity = .80). 
Boik argues that the situation for multiple comparisons 
cannot be improved and concludes by recommending 
a multivariate analogue. Mitzel and Games (1981) found 
that when sphericity does not hold (ε < 1) the pooled 
error term conventionally employed in pairwise compari-
sons resulted in non-significant differences between two 
means declared significant (i.e. a lenient Type I error rate) 
or undetected differences (a conservative Type I error 
rate). Mitzel and Games, therefore, recommended the 
use of separate error terms for each comparison. Maxwell 
(1980) systematically tested the power and alpha levels 
for five post hoc tests under repeated-measures condi-
tions. The tests assessed were Tukey’s wholly significant 
difference (WSD) test, which uses a pooled error term; 

JANE SUPERBRAIN 13.2

Sphericity and post hoc tests 3
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box labelled Estimated Marginal Means: Factor(s) and Factor Interactions and drag it to 
the box labelled Display Means for (or click on ). Once a variable has been transferred, 
select  (which will now be active). If this option is selected, the box labelled 
Confidence interval adjustment becomes active and you can click on  
to see a choice of three adjustment levels. The default is to have no adjustment and sim-
ply perform a Tukey LSD post hoc test (this is not recommended). The second option is 
a Bonferroni correction (recommended for the reasons mentioned above), and the final 
option is a Sidak correction, which should be selected if you are concerned about the loss 
of power associated with Bonferroni corrected values.

There are also syntax files available for conducting repeated-measures post hoc tests 
(available at http://www.spss.com/tech/macros/). Of these macros the Dunn–Sidak method 
is probably best because it is less conservative than Bonferroni corrected comparisons.

The options dialog box (Figure 13.6) has other useful options too. You can ask for 
descriptive statistics, which will provide the means, standard deviations and number of par-
ticipants for each level of the independent variable. You can also ask for a transformation 
matrix, which provides the coding values for any contrast selected in the contrasts dialog 
box (Figure 13.5) and is very useful for interpreting the contrasts in more complex designs. 
SPSS can also be asked to print out the hypothesis, error and residual sum of squares and 
cross-product matrices (SSCPs) and we will learn about the importance of these matrices in 
Chapter 16. The option for homogeneity of variance tests will be active only when there is 
a between-group factor as well (mixed designs – see the next chapter). You can also change 
the level of significance at which to test any post hoc tests; generally, the .05 level is accept-
able. When you have selected the options of interest, click on  to return to the main 
dialog box, and then click on  to run the analysis.

Figure 13.6
The options 
dialog box
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13.5. Output for one-way repeated-measures 
ANOVA 2

13.5.1.  Descriptives and other diagnostics 1

SPSS Output 13.1 shows the initial diagnostics statistics. First, we are told the variables that 
represent each level of the independent variable. This box is useful to check that the vari-
ables were entered in the correct order. The next table provides basic descriptive statistics 
for the four levels of the independent variable. From this table we can see that, on average, 
the time taken to retch was longest after eating the stick insect, and quickest after eating 
a testicle or eyeball. These mean values are useful for interpreting any effects that may 
emerge from the main analysis.

13.5.2.   Assessing and correcting for sphericity: Mauchly’s 
test 2

In section 13.2.3 you were told that SPSS produces a test of whether the data violate the 
assumption of sphericity. The next part of the output contains information about this test. 
Mauchly’s test (see also SPSS Tip 13.1) should be non-significant if we are to assume that 
the condition of sphericity has been met. SPSS Output 13.2 shows Mauchly’s test for the 
bushtucker data, and the important column is the one containing the significance value. 
The significance value (.047) is less than the critical value of .05, so we reject the assump-
tion that the variances of the differences between levels are equal. In other words, the 
assumption of sphericity has been violated. Knowing that we have violated this assumption 
a pertinent question is: how should we proceed?

We discovered in section 13.2.5 that SPSS produces two corrections based upon the 
estimates of sphericity advocated by Greenhouse and Geisser (1959) and Huynh and Feldt 
(1976). Both of these estimates give rise to a correction factor that is applied to the degrees 
of freedom used to assess the observed F-ratio. The closer the Greenhouse–Geisser correc-
tion ε̂  is to 1, the more homogeneous the variances of differences, and hence the closer the 

SPSS OuTPuT 13.1

SPSS OuTPuT 13.2
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data are to being spherical. In a situation in which there are four conditions (as with our 
data) the lower limit of ε̂  will be 1/(4 − 1), or 0.33 (the lower-bound estimate in the table). 
SPSS Output 13.2 shows that the calculated value of ε̂  is 0.533. This is closer to the lower 
limit of 0.33 than it is to the upper limit of 1 and it therefore represents a substantial devia-
tion from sphericity. We will see how these values are used in the next section.

13.5.3.  The main ANOVA 2

SPSS Output 13.3 shows the results of the ANOVA for the within-subject variable. This 
table can be read much the same as for one-way between-group ANOVA (see Chapter 10). 
There is a sum of squares for the repeated-measures effect of Animal, which tells us how 
much of the total variability is explained by the experimental effect. Note the value of 
83.13, which is the model sum of squares (SSM) that we calculated in section 13.3.3. There 
is also an error term, which is the amount of unexplained variation across the conditions of 
the repeated-measures variable. This is the residual sum of squares (SSR) that was calculated 
in section 13.3.4 and note that the value is 153.38 (which is the same value as calculated). 
As I explained earlier, these sums of squares are converted into mean squares by dividing 
by the degrees of freedom. As we saw before, the df for the effect of Animal is simply k 
− 1, where k is the number of levels of the independent variable. The error df is (n − 1)(k 
− 1), where n is the number of participants (or in this case, the number of celebrities) and 
k is as before. The F-ratio is obtained by dividing the mean squares for the experimental 
effect (27.71) by the error mean squares (7.30). As with between-group ANOVA, this test 
statistic represents the ratio of systematic variance to unsystematic variance. The value of 
F = 3.79 (the same as we calculated earlier) is then compared against a critical value for 3 
and 21 degrees of freedom. SPSS displays the exact significance level for the F-ratio. The 

          SPSS T IP  13 .1     My Mauchly’s test looks weird 2

Sometimes the SPSS output for Mauchly’s test looks strange. In particular, when you look at the significance, all 
you see is a dot. There is no significance value. This is the case in the output above, which is from an ANOVA 
done comparing only the stick insect and kangaroo testicle conditions of our current example. Naturally, you 
fear that SPSS has gone crazy and is going to break into your bedroom at night and tattoo the equation for the 
Greenhouse–Geisser correction on your face. The reason that this happens is that (as I mentioned in section 
13.2.1) you need at least three conditions for sphericity to be an issue (read that section if you want to know 
why). Therefore, if you have a repeated-measures variable that has only two levels then sphericity is met. Hence, 
the estimates computed by SPSS are 1 (perfect sphericity) and the resulting significance test cannot be com-
puted (hence the reason why the table has a value of 0 for the chi-square test and degrees of freedom and a 
blank space for the significance). It would be a lot easier if SPSS just didn’t produce the table, but then I guess 
we’d all be confused about why the table hadn’t appeared; maybe it should just print in big letters ‘Hooray! 
Hooray! Sphericity has gone away!’ We can dream.
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significance of F is .026, which is significant because it is less than the criterion value of 
.05. We can, therefore, conclude that there was a significant difference between the four 
animals in their capacity to induce retching when eaten. However, this main test does not 
tell us which animals differed from each other.

Although this result seems very plausible, we have learnt that the violation of the sphericity 
assumption makes the F-test inaccurate. We know from SPSS Output 13.2 that these data were 
non-spherical and so we need to make allowances for this violation. The table in SPSS Output 
13.3 shows the F-ratio and associated degrees of freedom when sphericity is assumed and the 
significant F-statistic indicated some difference(s) between the mean time to retch after eating 
the four animals. This table also contains several additional rows giving the corrected values 
of F for the three different types of adjustment (Greenhouse–Geisser, Huynh–Feldt and lower-
bound). Notice that in all cases the F-ratios remain the same; it is the degrees of freedom that 
change (and hence the critical value against which the obtained F-statistic is compared). The 
degrees of freedom have been adjusted using the estimates of sphericity calculated in SPSS 
Output 13.2. The adjustment is made by multiplying the degrees of freedom by the estimate 
of sphericity (see the previous Oliver Twisted).6 The new degrees of freedom are then used to 
ascertain the significance of F. For these data the corrections result in the observed F being 
non-significant when using the Greenhouse–Geisser correction (because p > .05). However, 
it was noted earlier that this correction is quite conservative, and so can miss effects that genu-
inely exist. It is, therefore, useful to consult the Huynh–Feldt corrected F-statistic. Using this 
correction, the F-value is still significant because the probability value of .048 is just below the 
criterion value of .05. So, by this correction we would accept the hypothesis that the lecturers 
differed in their marking. However, it was also noted earlier that this correction is quite liberal 
and so tends to accept values as significant when, in reality, they are not significant. This leaves 
us with the puzzling dilemma of whether or not to accept this F-statistic as significant (and also 
illustrates how ridiculous it is to have a fixed criterion like .05 against which to determine sig-
nificance). I mentioned earlier that Stevens (2002) recommends taking an average of the two 
estimates, and certainly when the two corrections give different results (as is the case here) this 
can be useful. If the two corrections give rise to the same conclusion it makes little difference 
which you choose to report (although if you accept the F-statistic as significant you might as 
well report the more conservative Greenhouse–Geisser estimate to avoid criticism!). Although 
it is easy to calculate the average of the two correction factors and to correct the degrees of 
freedom accordingly, it is not so easy to then calculate an exact probability for those degrees of 
freedom. Therefore, should you ever be faced with this perplexing situation (and to be honest 
that’s fairly unlikely) I recommend taking an average of the two significance values to give you 
a rough idea of which correction is giving the most accurate answer. In this case, the average 

6 For example, the Greenhouse–Geisser estimate of sphericity was 0.533. The original degrees of freedom for the 
model were 3; this value is corrected by multiplying by the estimate of sphericity (3 × 0.533 = 1.599). Likewise the 
error df was 21; this value is corrected in the same way (21 × 0.533 = 11.19). The F-ratio is then tested against a crit-
ical value with these new degrees of freedom (1.599, 11.19). The other corrections are applied in the same way.

SPSS OuTPuT 13.3
Repeated measures 
ANOVA
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of the two p-values is (.063 + .048)/2 = .056. Therefore, we should probably go with the 
Greenhouse–Geisser correction and conclude that the F-ratio is non-significant. 

These data illustrate how important it is to use a valid critical value of F: it can potentially 
mean the difference between making a Type I error and not. However, it also highlights how 
arbitrary it is that we use a .05 level of significance. These two corrections produce signifi-
cance values that differ by only .015 and yet they lead to completely opposite conclusions! 
The decision about ‘significance’ has, in some ways, become rather arbitrary. The F, and hence 
the size of effect, is unaffected by these corrections and so whether the p falls slightly above or 
slightly below .05 is less important than how big the effect is. We might be well advised to look 
at an effect size to see whether the effect is substantive regardless of its significance.

We also saw earlier that a final option, when you have data that violate sphericity, is 
to use multivariate test statistics (MANOVA – see Chapter 16), because they do not make 
this assumption (see O’Brien and Kaiser, 1985). MANOVA is covered in depth in Chapter 
16, but the repeated-measures procedure in SPSS automatically produces multivariate test 
statistics. SPSS Output 13.4 shows the multivariate test statistics for this example (details of 
these test statistics can be found in section 16.4.4). The column displaying the significance 
values shows that the multivariate tests are significant (because p is .002, which is less than 
the criterion value of .05). This result supports a decision to conclude that there are signifi-
cant differences between the time taken to retch after eating different animals. 

13.5.4.  Contrasts 2

The transformation matrix requested in the options is shown in SPSS Output 13.5 and 
we have to draw on our knowledge of contrast coding (see Chapter 10) to interpret this 
table. The first thing to remember is that a code of 0 means that the group is not included 
in a contrast. Therefore, contrast 1 (labelled Level 1 vs. Level 2 in the table) ignores the 
fish eyeball and witchetty grub. The next thing to remember is that groups with a nega-
tive weight are compared to groups with a positive weight. In this case this means that the 
first contrast compares the stick insect against the kangaroo testicle. Using the same logic, 
contrast 2 (labelled Level 2 vs. Level 3) ignores the stick insect and witchetty grub and 
compares the kangaroo testicle with the fish eye.

SELF-TEST  What does contrast 3 (Level 3 vs.  
Level 4) compare?

Finally, contrast 3 compares the fish eyeball with the witchetty grub. This pattern of con-
trasts is consistent with what we expect to get from a repeated contrast (i.e. all groups except 
the first are compared to the preceding category). 

SPSS OuTPuT 13.4
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Above the transformation matrix, we should find a summary table of the contrasts (SPSS 
Output 13.6). Each contrast is listed in turn, and as with between-group contrasts, an F-test 
is performed that compares the two chunks of variation. So, looking at the significance 
values from the table, we could say that celebrities took significantly longer to retch after 
eating the stick insect compared to the kangaroo testicle (Level 1 vs. Level 2), but that the 
time to retch was roughly the same after eating the kangaroo testicle and the fish eyeball 
(Level 2 vs. Level 3) and the time taken to retch was not significantly different after eating 
a fish eyeball compared to eating a witchetty grub (Level 3 vs. Level 4).

However, it’s worth remembering that by some criteria our main effect of the type of animal 
eaten was not significant, and if this is the case then the significant contrast should be ignored. 
We have to make some kind of decision about whether we think there really is an effect of eat-
ing different animals or not before we can look at further tests. Personally, given the multivariate 
tests, I would be inclined to conclude that the main effect of animal was significant and proceed 
with further tests. The important point to note is that the sphericity in our data has raised the 
issue that statistics is not a recipe book and that sometimes we have to use our own discretion to 
interpret data (it’s comforting to know that the computer does not have all of the answers – but 
it’s alarming to realize that this means that we have to know some of the answers ourselves).

13.5.5.  Post hoc tests 2

If you selected post hoc tests for the repeated-measures variable in the options dialog box 
(see section 13.4.3), then the table in SPSS Output 13.7 will be produced in the output 
viewer window.

The arrangement of the table in SPSS Output 13.7 is similar to the table produced for 
between-group post hoc tests: the difference between group means is displayed, the stand-
ard error, the significance value and a confidence interval for the difference between means. 
By looking at the significance values and the means (in SPSS Output 13.1) we can see that 
the time to retch was significantly longer after eating a stick insect compared to a kangaroo 
testicle (p = .012) and a fish eye (p = .006) but not compared to a witchetty grub. The 
time to retch after eating a kangaroo testicle was not significantly different to after eating a 
fish eyeball or witchetty grub (both ps > .05). Finally, the time to retch was not significantly 
different after eating a fish eyeball compared to a witchetty grub (p > .05).

SPSS OuTPuT 13.5

SPSS OuTPuT 13.6
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13.6. Effect sizes for repeated-measures ANOVA 3

As with independent ANOVA the best measure of the overall effect size is omega squared 
(ω2). However, just to make life even more complicated than it already is, the equations 
we’ve previously used for omega squared can’t be used for repeated-measures data! If you 
do use the same equation on repeated-measures data it will slightly overestimate the effect 
size. For the sake of simplicity some people do use the same equation for one-way inde-
pendent and repeated-measures ANOVAs (and I’m guilty of this in another book), but I’m 
afraid that in this book we’re going to hit simplicity in the face with stingy the particularly 
poison-ridden jellyfish, and embrace complexity like a particularly hot date.

SPSS OuTPuT 13.7

             CRAMMING SAM’S TIPS    

 
 The one-way repeated-measures ANOVA compares several means, when those means have come from the same partici-

pants; for example, if you measured people’s statistical ability each month over a year-long course.

 In repeated-measures ANOVA there is an additional assumption: sphericity. This assumption needs to be considered only 
when you have three or more repeated-measures conditions. Test for sphericity using Mauchly’s test. Find the table with this 
label: if the value in the column labelled Sig. is less than .05 then the assumption is violated. If the significance of Mauchly’s 
test is greater than .05 then the assumption of sphericity has been met.

 The table labelled Tests of Within-Subjects Effects shows the main result of your ANOVA. If the assumption of sphericity 
has been met then look at the row labelled Sphericity Assumed. If the assumption was violated then read the row labelled 
Greenhouse-Geisser (you can also look at Huynh-Feldt but you’ll have to read this chapter to find out the relative merits of 
the two procedures). Having selected the appropriate row, look at the column labelled Sig. if the value is less than .05 then 
the means of the groups are significantly different.

 For contrasts and post hoc tests, again look to the columns labelled Sig. to discover if your comparisons are significant (they 
will be if the significance value is less than .05).

smart
alex
only
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In repeated-measures ANOVA, the equation for omega squared is (hang onto your hats):

ω2 =

k− 1

nk
MSM −MSRð Þ

 

MSR + MSB −MSR
k

+ k− 1

nk
MSM −MSRð Þ

  (13.1)

I know what you’re thinking and it’s something along the lines of ‘are you having a bloody 
laugh?’ Well, no, I’m not, but really the equation isn’t too bad if you break it down. First, there 
are some mean squares that we’ve come across before (and calculated before). There’s the mean 
square for the model (MSM) and the residual mean square (MSR) both of which can be obtained 
from the ANOVA table that SPSS produces (SPSS Output 13.3). There’s also k, the number of 
conditions in the experiment, which for these data would be 4 (there were four animals), and 
there’s n, the number of people that took part (in this case, the number of celebrities, 8). The 
main problem is this term MSB. Back at the beginning of section 13.3 (Figure 13.2) I mentioned 
that the total variation is broken down into a within-participant variation and a between-
participant variation. In section 13.3.7 we saw that we could calculate this term from:

SST = SSB + SSW

The problem is that SPSS doesn’t give us SSW in the output, but we know that this is made 
up of SSM and SSR, which we are given. By substituting these terms and rearranging the 
equation we get:

SST = SSB + SSM + SSR

SSB = SST − SSM − SSR

The next problem is that SPSS, which is clearly trying to hinder us at every step, doesn’t give 
us SST and I’m afraid (unless I’ve missed something in the output) you’re just going to have to 
calculate it by hand (see section 13.3.1). From the values we calculated earlier, you should get:

SSB = 253:89− 83:13− 153:38

= 17:38

The next step is to convert this to a mean squares by dividing by the degrees of freedom, 
which in this case are the number of people in the sample minus 1 (N − 1):

MSB =
SSB
df B

= SSB
N− 1

= 17:38

8−1

= 2:48

Having done all this and probably died of boredom in the process, we must now resurrect 
our corpses with renewed vigour for the effect size equation, which becomes:

ω2 =

4−1

8×4
27:71−7:30ð Þ

 

7:30+ 2:48− 7:30

4
+ 4− 1

8× 4
27:71− 7:30ð Þ

 

= 1:91

8:01

= :24

So, we get an omega squared of .24.
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I’ve mentioned at various other points that it’s actually more useful to have effect size 
measures for focused comparisons anyway (rather than the main ANOVA), and so a slightly 
easier approach to calculating effect sizes is to calculate them for the contrasts we did (see 
SPSS Output 13.6). For these we can use the equation that we’ve seen before to convert the 
F-values (because they all have 1 degree of freedom for the model) to r:

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð1, dfRÞ

Fð1, dfRÞ+ dfR

s

For the three comparisons we did, we would get:

rStick insect vs: kangaroo testicle =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20:80

20:80+ 7

s
= :86

rkangaroo testicle vs: fish eyeball =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01

0:01+ 7

s
= :04

rFish eyeball vs: witchetty grub =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:80

0:80+ 7

r
= :32

The difference between the stick insect and the testicle was a large effect, between the fish eye 
and witchetty grub a medium effect, but between the testicle and eyeball a very small effect.

13.7. Reporting one-way repeated-measures 
ANOVA 2

When we report repeated-measures ANOVA, we give the same details as with an independent 
ANOVA. The only additional thing we should concern ourselves with is reporting the cor-
rected degrees of freedom if sphericity was violated. Personally, I’m also keen on reporting 
the results of sphericity tests as well. As with the independent ANOVA the degrees of freedom 
used to assess the F-ratio are the degrees of freedom for the effect of the model (dfM = 1.60) 
and the degrees of freedom for the residuals of the model (dfR = 11.19). Remember that in this 
example we corrected both using the Greenhouse–Geisser estimates of sphericity, which is why 
the degrees of freedom are as they are. Therefore, we could report the main finding as:

 The results show that the time to retch was not significantly affected by the type of 
animal eaten, F(1.60, 11.19) = 3.79, p > .05.

However, as I mentioned earlier, because the multivariate tests were significant we should 
probably be confident that the differences between the animals is significant. We could report 
these multivariate tests. There are four different test statistics, but in most situations you 
should probably report Pillai’s trace, V (see Chapter 16). You should report the value of V as 
well as the associated F and its degrees of freedom (all from SPSS Output 13.5). If you choose 
to report the sphericity test as well, you should report the chi-square approximation, its 
degrees of freedom and the significance value. It’s also nice to report the degree of sphericity 
by reporting the epsilon value. We’ll also report the effect size in this improved version:

 Mauchly’s test indicated that the assumption of sphericity had been violated, χ2(5) = 11.41, 
p < .05, therefore multivariate tests are reported (ε = .53). The results show that the time 
to retch was significantly affected by the type of animal eaten, V = 0.94, F(3, 5) = 26.96, 
p < .01, ω2 = .24.

everybody
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Alternatively, we could report the Huynh–Feldt corrected values: 

 Mauchly’s test indicated that the assumption of sphericity had been violated, χ2(5) = 
11.41, p < .05, therefore degrees of freedom were corrected using Huynh–Feldt esti-
mates of sphericity (ε = .67). The results show that the time to retch was significantly 
affected by the type of animal eaten, F(2, 13.98) = 3.79, p < .05, ω2 = .24.

13.8. Repeated-measures with several 
independent variables 2

We have seen already that simple between-group designs can be extended to incorporate 
a second (or third) independent variable. It is equally easy to incorporate a second, third 
or even fourth independent variable into a repeated-measures analysis. As an example, 
some social scientists were asked to research whether imagery could influence public atti-
tudes towards alcohol. There is evidence that attitudes towards stimuli can be changed 
using positive and negative imagery (Field, 2005c; Stuart, Shimp, & Engle, 1987) and 
these researchers were interested in answering two questions. On the one hand, the gov-
ernment had funded them to look at whether negative imagery in advertising could be 
used to change attitudes towards alcohol. Conversely, an alcohol company had provided 
funding to see whether positive imagery could be used to improve attitudes towards 
alcohol. The scientists designed a study to address both issues. Table 13.3 illustrates the 
experimental design and contains the data for this example (each row represents a single 
participant).

I’m going to let my ego get the better of me and talk 
about some of my own research. When I’m not scaring 
my students with statistics, I scare small children with 
Australian marsupials. There is a good reason for doing 
this, which is to try to discover how children develop 
fears (which will help us to prevent them). Most of my 
research looks at the effect of giving children informa-
tion about animals or situations that are novel to them 
(rather like a parent, teacher or TV show would do). In one 
particular study (Field, 2006), I used three novel animals 
(the quoll, quokka and cuscus) and children were told 
negative things about one of the animals, positive things 
about another, and were given no information about the 
third (our control). I then asked the children to place 

their hands in three wooden boxes each of which they 
believed contained one of the aforementioned animals. 
My hypothesis was that they would take longer to place 
their hand in the box containing the animal about which 
they had heard negative information.

The data from this part of the study are 
in the file Field(2006).sav. Labcoat Leni 
wants you to carry out a one-way repeated- 
measures ANOVA on the times taken for chil-
dren to place their hands in the three boxes 
(negative information, positive information, no 

information). First, draw an error bar graph of the means, then 
do some normality tests on the data, then do a log trans-
formation on the scores, and do the ANOVA on these log-
transformed scores (if you read the paper you’ll notice that 
I found that the data were not normally distributed, so I log 
transformed them before doing the ANOVA). Do children take 
longer to put their hands in a box that they believe contains 
an animal about which they have been told nasty things? 

Answers are in the additional material on the compan-
ion website (or look at page 748 in the original article).

LABCOAT LENI’S
REAL RESEARCH 13.1
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Table 13.3 Data from Attitude.sav

Drink Beer Wine Water

Image +ve −ve Neut +ve −ve Neut +ve −ve Neut

Male  1

43

15

40

 8

17

30

34

34

26

  6

 30

 15

 30

 12

 17

  21

 23

 20

 27

  5

  8

 12

 19

  8

 15

 21

 28

 26

 27

38

20

20

28

11

17

15

27

24

23

 −5

−12

−15

 −4

 −2

 −6

 −2

 −7

−10

−15

 4

 4

 6

 0

 6

 6

16

 7

12

14

10

 9

 6

20

27

 9

19

12

12

21

−14

−10

−16

−10

  5

 −6

−20

−12

 −9

 −6

 −2

−13

  1

  2

 −5

−13

  3

  2

  4

  0

Female  1

 7

22

30

40

15

20

 9

14

15

−19

−18

 −8

 −6

 −6

 −9

−17

−12

−11

 −6

−10

  6

  4

  3

  0

  4

  9

 −5

  7

 13

28

26

34

32

24

29

30

24

34

23

−13

−16

−23

−22

−9

−18

−17

−15

−14

−15

13

19

14

21

19

 7

12

18

20

15

33

23

21

17

15

13

16

17

19

29

 −2

−17

−19

−11

−10

−17

 −4

 −4

 −1

 −1

  9

  5

  0

  4

  2

  8

 10

  8

 12

 10

Participants viewed a total of nine mock adverts over three sessions. In one session, they 
saw three adverts: (1) a brand of beer (Brain Death) presented with a negative image (a 
dead body with the slogan ‘drinking Brain Death makes your liver explode’); (2) a brand 
of wine (Dangleberry) presented in the context of a positive image (a sexy naked man or 
woman – depending on the participant’s gender – and the slogan ‘drinking Dangleberry 
wine makes you a horny stud muffin’); and (3) a brand of water (Puritan) presented along-
side a neutral image (a person watching television accompanied by the slogan ‘drinking 
Puritan water makes you behave completely normally’). In a second session (a week later), 
the participants saw the same three brands, but this time Brain Death was accompanied 
by the positive imagery, Dangleberry by the neutral image and Puritan by the negative. 
In a third session, the participants saw Brain Death accompanied by the neutral image, 
Dangleberry by the negative image and Puritan by the positive. After each advert par-
ticipants were asked to rate the drinks on a scale ranging from −100 (dislike very much) 
through 0 (neutral) to 100 (like very much). The order of adverts was randomized, as was 
the order in which people participated in the three sessions. This design is quite complex. 
There are two independent variables: the type of drink (beer, wine or water) and the type 
of imagery used (positive, negative or neutral). These two variables completely cross over, 
producing nine experimental conditions. 
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13.8.1.  The main analysis 2

To enter these data into SPSS we need to remember that each row represents a single partici-
pant’s data. If a person participates in all experimental conditions (in this case (s)he sees all types 
of stimuli presented with all types of imagery) then each experimental condition must be repre-
sented by a column in the data editor. In this experiment there are nine experimental conditions 
and so the data need to be entered in nine columns (so, the format is identical to Table 13.3). 
You should create the following nine variables in the data editor with the names as given. For 
each one, you should also enter a full variable name (see section 3.4.2) for clarity in the output:

beerpos

beerneg

beerneut

winepos

wineneg

wineneut

waterpos

waterneg

waterneut

Beer

Beer

Beer

Wine

Wine

Wine

Water

Water

Water

+

+

+

+

+

+

+

+

+

Sexy Person

Corpse

Person in Armchair

Sexy Person

Corpse

Person in Armchair

Sexy Person

Corpse

Person in Armchair

SELF-TEST  Once these variables have been created, 
enter the data as in Table 13.3. If you have problems 
entering the data then use the file Attitude.sav.

To access the define factors dialog box select .  
In the define factors dialog box you are asked to supply a name for the within-subject 
(repeated-measures) variable. In this case there are two within-subject factors: Drink (beer, 
wine or water) and Imagery (positive, negative and neutral). Replace the word factor1 with 
the word Drink. When you have given this repeated-measures factor a name, you have to 
tell the computer how many levels there were to that variable. In this case, there were three 
types of drink, so we have to enter the number 3 into the box labelled Number of Levels. 
Click on  to add this variable to the list of repeated-measures variables. This variable 
will now appear in the white box at the bottom of the dialog box and appears as Drink(3). 
We now have to repeat this process for the second independent variable. Enter the word 
Imagery into the space labelled Within-Subject Factor Name and then, because there were 
three levels of this variable, enter the number 3 into the space labelled Number of Levels. 
Click on  to include this variable in the list of factors; it will appear as Imagery(3). 
The finished dialog box is shown in Figure 13.7. When you have entered both of the 
within-subject factors click on  to go to the main dialog box.

The main dialog box is essentially the same as when there is only one independent vari-
able except that there are now nine question marks (Figure 13.8). At the top of the Within-
Subjects Variables box, SPSS states that there are two factors: Drink and Imagery. In the 
box below there is a series of question marks followed by bracketed numbers. The numbers 
in brackets represent the levels of the factors (independent variables):
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_?_(1,1)

_?_(1,2)

_?_(1,3)

_?_(2,1)

_?_(2,2)

_?_(2,3)

_?_(3,1)

_?_(3,2)

_?_(3,3)

variable representing 1st level of drink and 1st level of imagery

variable representing 1st level of drink and 2nd level of imagery

variable representing 1st level of drink and 3rd level of imagery

variable representing 2nd level of drink and 1st level of imagery

variable representing 2nd level of drink and 2nd level of imagery

variable representing 2nd level of drink and 3rd level of imagery

variable representing 3rd level of drink and 1st level of imagery

variable representing 3rd level of drink and 2nd level of imagery

variable representing 3rd level of drink and 3rd level of imagery

In this example, there are two independent variables and so there are two numbers in 
the brackets. The first number refers to levels of the first factor listed above the box (in 
this case Drink). The second number in the bracket refers to levels of the second factor 
listed above the box (in this case Imagery). As with one-way repeated-measures ANOVA, 
you are required to replace these question marks with variables from the list on the left-
hand side of the dialog box. With between-group designs, in which coding variables are 
used, the levels of a particular factor are specified by the codes assigned to them in the 
data editor. However, in repeated-measures designs, no such coding scheme is used and so 

Figure 13.7
The define factors 
dialog box for 
factorial repeated-
measures ANOVA
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we determine which condition to assign to a level at this stage. For example, if we entered 
beerpos into the list first, then SPSS would treat beer as the first level of Drink and posi-
tive imagery as the first level of the Imagery variable. However, if we entered wineneg into 
the list first, SPSS would consider wine as the first level of Drink and negative imagery as 
the first level of Imagery. For this reason, it is imperative that we think about the type of 
contrasts that we might want to do before entering variables into this dialog box. In this 
design, if we look at the first variable, Drink, there were three conditions, two of which 
involved alcoholic drinks. In a sense, the water condition acts as a control to whether the 
effects of imagery are specific to alcohol. Therefore, for this variable we might want to 
compare the beer and wine condition with the water condition. This comparison could 
be done by either specifying a simple contrast (see Table 10.6) in which the beer and 
wine conditions are compared to the water, or using a difference contrast in which both 
alcohol conditions are compared to the water condition before being compared to each 
other. In either case it is essential that the water condition be entered as either the first 
or last level of the independent variable Drink (because you can’t specify the middle level 
as the reference category in a simple contrast). Now, let’s think about the second factor. 
The imagery factor also has a control category that was not expected to change attitudes 
(neutral imagery). As before, we might be interested in using this category as a reference 
category in a simple contrast7 and so it is important that this neutral category is entered 
as either the first or last level.

Based on what has been discussed about using contrasts, it makes sense to have water as 
level 3 of the Drink factor and neutral as the third level of the imagery factor. The remain-
ing levels can be decided arbitrarily. I have chosen beer as level 1 and wine as level 2 of the 

7 We expect positive imagery to improve attitudes, whereas negative imagery should make attitudes more nega-
tive. Therefore, it does not make sense to do a Helmert or difference contrast for this factor because the effects 
of the two experimental conditions will cancel each other out.

Figure 13.8
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Drink factor. For the Imagery variable I chose positive as level 1 and negative as level 2. 
These decisions mean that the variables should be entered as follows:

beerpos

beerneg

beerneut

winepos

wineneg

wineneut

waterpos

waterneg

waterneut

_?_(1,1)

_?_(1,2)

_?_(1,3)

_?_(2,1)

_?_(2,2)

_?_(2,3)

_?_(3,1)

_?_(3,2)

_?_(3,3)

Coincidentally, this order is the order in which variables are listed in the data editor; 
this coincidence occurred simply because I thought ahead about what contrasts would be 
done, and then entered variables in the appropriate order! When these variables have been 
transferred, the dialog box should look exactly like Figure 13.9. The buttons at the side of 
the screen have already been described for the one-independent-variable case and so I will 
describe only the buttons most relevant to this analysis.

Figure 13.9
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13.8.2.  Contrasts 2

Following the main analysis it is interesting to compare levels of the independent variables to 
see whether they differ. As we’ve seen, there’s no facility for entering contrast codes (unless 
you use syntax) so we have to rely on the standard contrasts available (see Table 10.6). Figure 
13.10 shows the dialog box for conducting contrasts and is obtained by clicking on  
in the main dialog box. In the previous section I described why it might be interesting to use 
the water and neutral conditions as base categories for the drink and imagery factors respec-
tively. We have used the contrasts dialog box before in sections 11.4.4 and 13.4.2 and so all 
I will say is that you should select a simple contrast for each independent variable. For both 
independent variables, we entered the variables such that the control category was the last 
one; therefore, we need not change the reference category for the simple contrast. Once the 
contrasts have been selected, click on  to return to the main dialog box. An alternative 
to the contrasts available here is to do a simple effects analysis.

Figure 13.10

We can also follow up interaction effects with specially-defined con-
trasts for the interaction term. Like simple effects this can be done only 
using syntax and it’s a fairly involved process. However, if this sounds 
like something you might want to do then the additional material for this 
chapter contains an example that I’ve prepared that walks you through 
specifying contrasts across an interaction. 

OLIVER TWISTED

Please, Sir, can I 
have some more … 
contrasts?

13.8.3.  Simple effects analysis 3

With repeated-measures designs we can still do simple effects through SPSS syntax, but the 
syntax we use is slightly different – see SPSS Tip 13.2.
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          SPSS T IP  13 .2     Simple effects analysis on SPSS 3

We saw in the previous chapter than another way to break down an interaction term is to use a technique called 
‘simple effects’ analysis. This analysis looks at the effect of one independent variable at individual levels of the 
other independent variable. So, for this example, we could look at the effect of drink for positive imagery, then for 
negative imagery and then for neutral imagery. Alternatively, we could analyse the effect of imagery separately for 
beer, wine and water. With repeated measures-designs we can still do simple effects through SPSS syntax, but 
the syntax we use is slightly different. The syntax you need to use in this example is:

MANOVA
beerpos beerneg beerneut winepos wineneg wineneut waterpos waterneg waterneut 
/WSFACTORS drink(3) imagery(3)

*This initiates the ANOVA by specifying the variables in the data editor that relate to the levels of our 
repeated-measures variables. The /WSFACTORS command then defines the two repeated-measures vari-
ables that we have. The order that we list the variables from the data editor is important. So, because we’ve 
defined drink(3) imagery(3), SPSS starts at level 1 of drink, and then because we’ve specified three levels of 
imagery, it uses the first three variables listed as the levels of imagery at level 1 of drink. It then moves on to 
level 2 of drink and again looks to the next three variables in the list to be the relevant levels of imagery. Finally 
it moves to level 3 of drink and uses the next three variables (the last three in this case) to be the levels of 
imagery. This is hard to explain, but look at the order of variables, and see that the first three relate to beer 
(and differ according to imagery), then the next three are wine and the three levels of imagery, and the final 
three are water ordered again according to imagery. Because we ordered them in this way we have to define 
drink(3) and then imagery(3). (It would be equally valid to write /WSFACTORS imagery(3) drink(3), but only if 
initially we’d ordered the variables beerpos winepos waterpos beerneg wineneg waterneg beerneut wineneut 
waterneut.)

/WSDESIGN = MWITHIN drink(1) MWITHIN drink(2) MWITHIN drink(3)
 
*This specifies the simple effects. For example, MWITHIN drink(1) asks SPSS to analyse the effect of 

imagery at level 1 of drink (i.e. when beer was used). If we wanted to compare drink at levels of imagery, then 
we’d write this the opposite way around: /WSDESIGN = MWITHIN imagery(1) MWITHIN imagery(2) MWITHIN 
imagery(3)

/PRINT
 SIGNIF( UNIV MULT AVERF HF GG ).

*These final lines just ask for the main ANOVA to be printed (SIGNIF). The syn-
tax for looking at the effect of imagery at different levels of drink is stored in a file called 
SimpleEffectsAttitude.sps for you to look at. Open this file (make sure you also have 
Attitude.sav loaded into the data editor) and run the syntax. The output you get will be in 
the form of text (rather than nice tables). Part of it will replicate the main ANOVA results. The 
simple effects are presented like this:

(Continued)
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(Continued)

* * * * * * A n a l y s i s  o f  V a r i a n c e -- design   1 * * * * * *

Tests involving ‘MWITHIN DRINK(1)’ Within-Subject Effect.

Tests of Significance for T1 using UNIQUE sums of squares
Source of Variation         SS     DF       MS        F  Sig of F

WITHIN+RESIDUAL         7829.67      19    412.09
MWITHIN DRINK(1)        8401.67       1    8401.67  20.39      .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* * * * * * A n a l y s i s   o f   V a r i a n c e -- design   1 * * * * * *

Tests involving ‘MWITHIN DRINK(2)’ Within-Subject Effect.

Tests of Significance for T2 using UNIQUE sums of squares
Source of Variation          SS      DF        MS         F  Sig of F

WITHIN+RESIDUAL          376.00      19     19.79
MWITHIN DRINK(2)        4166.67       1   4166.67    210.55      .000

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* * * * * * A n a l y s i s   o f   V a r i a n c e -- design   1 * * * * * *

Tests involving ‘MWITHIN DRINK(3)’ Within-Subject Effect.

Tests of Significance for T3 using UNIQUE sums of squares
Source of Variation          SS      DF        MS         F  Sig of F

WITHIN+RESIDUAL         1500.32      19     78.96
MWITHIN DRINK(3)         742.02       1    742.02      9.40      .006

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The table labelled ‘MWITHIN DRINK(1)’ gives us an ANOVA of the effect of imagery for beer and the sub-
sequent tables are for wine and water respectively. Looking at the significance values for each simple effect, it 
appears that there were significant effects of imagery at all levels of drink! 

13.8.4.  Graphing interactions 2

When we had only one independent variable, we ignored the plots dialog box; however, if 
there are two or more factors, the plots dialog box is a convenient way to plot the means for 
each level of the factors (although really you should do some proper graphs before the analy-
sis). To access this dialog box click on . Select Drink from the variables list on the 
left-hand side of the dialog box and drag it to the space labelled Horizontal Axis or click on 

. In the space labelled Separate Lines we need to place the remaining independent variable: 
Imagery. As before, it is down to your discretion which way round the graph is plotted. When 
you have moved the two independent variables to the appropriate box, click on  and 
this interaction graph will be added to the list at the bottom of the box (see Figure 13.11). 
When you have finished specifying graphs, click on  to return to the main dialog box.
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13.8.5.  Other options 2

As for the one-way ANOVA, the post hoc tests are disabled because this design has only 
repeated-measures variables. Therefore, the only remaining options are in the options dialog 
box, which is accessed by clicking on . The options here are the same as for the one-
way ANOVA. I recommend selecting some descriptive statistics and you might also want to 
select some multiple comparisons by selecting all factors in the box labelled Factor(s) and 
Factor Interactions and dragging them to the box labelled Display Means for, or clicking 
on  (see Figure 13.12). Having selected these variables, you should select  
and select an appropriate correction (I chose Bonferroni). The only remaining option of 
particular interest is to select the Transformation matrix option. This option produces a lot 
of extra output but is important for interpreting the output from the contrasts.

Figure 13.11

Figure 13.12
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13.9. Output for factorial repeated-measures 
ANOVA 2

13.9.1.  Descriptives and main analysis 2

SPSS Output 13.8 shows the initial output from this ANOVA. The first table merely lists 
the variables that have been included from the data editor and the level of each independ-
ent variable that they represent. This table is more important than it might seem, because 
it enables you to verify that you entered the variables in the correct order for the compari-
sons that you want to do. The second table is a table of descriptives and provides the mean 
and standard deviation for each of the nine conditions. The names in this table are the 
names I gave the variables in the data editor (therefore, if you didn’t give these variables 
full names, this table will look slightly different).

The descriptives are interesting in that they tell us that the variability among scores was 
greatest when beer was used as a product (compare the standard deviations of the beer 
variables against the others). Also, when a corpse image was used, the ratings given to the 
products were negative (as expected) for wine and water but not for beer (so, for some rea-
son, negative imagery didn’t seem to work when beer was used as a stimulus). The values 
in this table will help us later to interpret the main effects of the analysis.

SPSS Output 13.9 shows the results of Mauchly’s sphericity test (see section 13.2.3) for 
each of the three effects in the model (two main effects and one interaction). The signifi-
cance values of these tests indicate that both the main effects of Drink and Imagery have 
violated this assumption and so the F-values should be corrected (see section 13.5.2). For 
the interaction the assumption of sphericity is met (because p > .05) and so we need not 
correct the F-ratio for this effect.

Mauchly's Test of Sphericityb

Measure: MEASURE_1

.267 23.753 2 .000 .577 .591 .500

.662 7.422 2 .024 .747 .797 .500

.595 9.041 9 .436 .798 .979 .250

Within Subjects Effect

DRINK
IMAGERY
DRINK * IMAGERY

Mauchly's
W

Approx.
Chi-Square df Sig. Greenhouse-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an
identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the layers
(by default) of the Tests of Within Subjects Effects table.

a.

Design: Intercept - Within Subjects Design: DRINK+IMAGERY+DRINK*IMAGERYb.

SPSS OuTPuT 13.8

SPSS OuTPuT 13.9
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SPSS Output 13.10 shows the results of the ANOVA (with corrected F-values). The output 
is split into sections that refer to each of the effects in the model and the error terms associated 
with these effects. By looking at the significance values it is clear that there is a significant effect 
of the type of drink used as a stimulus, a significant main effect of the type of imagery used and a 
significant interaction between these two variables. I will examine each of these effects in turn.

13.9.2.  The effect of drink 2

The first part of SPSS Output 13.10 tells us the effect of the type of drink used in the 
advert. For this effect we must look at one of the corrected significance values because 
sphericity was violated (see above). All of the corrected values are significant and so we 
should report the conservative Greenhouse–Geisser corrected values of the degrees of free-
dom. This effect tells us that if we ignore the type of imagery that was used, participants 
still rated some types of drink significantly differently.

In section 13.8.5 we requested that SPSS display means for all of the effects in the model 
(before conducting post hoc tests) and if you scan through your output you should find the 
table in SPSS Output 13.11 in a section headed Estimated Marginal Means.8 SPSS Output 
13.11 is a table of means for the main effect of drink with the associated standard errors. 
The levels of this variable are labelled 1, 2 and 3 and so we must think back to how we entered 

8 These means are obtained by taking the average of the means in SPSS Output 13.8 for a given condition. For 
example, the mean for the beer condition (ignoring imagery) is:

 

XBeer =
XBeer+ Sexy +XBeer+Corpse +XBeer+Neutral

3

= 21:05+ 4:45+ 10:00

3

= 11:83

SPSS OuTPuT 13.10
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the variable to see which row of the table relates to which condition. We entered this variable 
with the beer condition first and the water condition last. Figure 13.13 uses this information to 
display the means for each condition. It is clear from this graph that beer and wine were rated 
higher than water (with beer being rated most highly). To see the nature of this effect we can 
look at the post hoc tests (see below) and the contrasts (see section 13.9.5).

SPSS Output 13.12 shows the pairwise comparisons for the main effect of drink cor-
rected using a Bonferroni adjustment. This table indicates that the significant main effect 
reflects a significant difference (p < .01) between levels 2 and 3 (wine and water). Curiously, 
the difference between the beer and water conditions is larger than that for wine and water 
yet this effect is non-significant (p > .05). This inconsistency can be explained by looking 
at the standard error in the beer condition compared to the wine condition. The standard 
error for the wine condition is incredibly small and so the difference between means is 
relatively large (see Chapter 9).

SELF-TEST  Try rerunning these post hoc tests but 
select the uncorrected values (LSD) in the options 
dialog box (see section 13.8.5). You should find 
that the difference between beer and water is now 
significant (p = .02).

This finding highlights the importance of controlling the error rate by using a Bonferroni 
correction. Had we not used this correction we could have concluded erroneously that 
beer was rated significantly more highly than water.

SPSS OuTPuT 13.11

Figure 13.13
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13.9.3.  The effect of imagery 2

SPSS Output 13.10 also indicates that the effect of the type of imagery used in the advert 
had a significant influence on participants’ ratings of the stimuli. Again, we must look at 
one of the corrected significance values because sphericity was violated (see above). All 
of the corrected values are highly significant and so we can again report the Greenhouse–
Geisser corrected values of the degrees of freedom. This effect tells us that if we ignore 
the type of drink that was used, participants’ ratings of those drinks were different accord-
ing to the type of imagery that was used. In section 13.8.5 we requested means for all of 
the effects in the model and if you scan through your output you should find the table in 
SPSS Output 13.13 (after the pairwise comparisons for the main effect of drink). SPSS 
Output 13.13 is a table of means for the main effect of imagery with the associated stand-
ard errors. The levels of this variable are labelled 1, 2 and 3 and so we must think back 
to how we entered the variable to see which row of the table relates to which condition. 
We entered this variable with the positive condition first and the neutral condition last. 
Figure 13.14 uses this information to illustrate the means for each condition. It is clear 
from this graph that positive imagery resulted in very positive ratings (compared to the 
neutral imagery) and negative imagery resulted in negative ratings (especially compared to 
the effect of neutral imagery). To see the nature of this effect we can look at the post hoc 
tests (see below) and the contrasts (see section 13.9.5).

SPSS Output 13.14 shows the pairwise comparisons for the main effect of imagery cor-
rected using a Bonferroni adjustment. This table indicates that the significant main effect 
reflects significant differences (all p < .01) between levels 1 and 2 (positive and negative), 
between levels 1 and 3 (positive and neutral) and between levels 2 and 3 (negative and 
neutral). 

SPSS OuTPuT 13.12

SPSS OuTPuT 13.13
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13.9.4.  The interaction effect (drink × imagery) 2

SPSS Output 13.10 indicated that imagery interacted in some way with the type of drink 
used as a stimulus. From that table we should report that there was a significant interac-
tion between the type of drink used and imagery associated with it, F(4, 76) = 17.16, 
p < .001. This effect tells us that the type of imagery used had a different effect depending 
on which type of drink it was presented alongside. As before, we can use the means that 
we requested in section 13.8.5 to determine the nature of this interaction (this table should 
be below the pairwise comparisons for imagery and is shown in SPSS Output 13.15). The 
table of means in SPSS Output 13.15 is essentially the same as the initial descriptive sta-
tistics in SPSS Output 13.8 except that the standard errors are displayed rather than the 
standard deviations.

SPSS OuTPuT 13.14

Figure 13.14



497CHAPTER 13   REPEATED-mEASURES DES IGNS (GLm 4)

The means in SPSS Output 13.15 are used to create the plot that we requested in section 
13.8.4 and this graph is essential for interpreting the interaction. Figure 13.15 shows the 
interaction graph (slightly modified to make it look prettier!) and we are looking for non-
parallel lines. The graph shows that the pattern of responding across drinks was similar when 
positive and neutral imagery were used. That is, ratings were positive for beer, they were 
slightly higher for wine and then they went down slightly for water. The fact that the line rep-
resenting positive imagery is higher than the neutral line indicates that positive imagery gave 
rise to higher ratings than neutral imagery across all drinks. The bottom line (representing 
negative imagery) shows a different effect: ratings were lower for wine and water but not for 
beer. Therefore, negative imagery had the desired effect on attitudes towards wine and water, 
but for some reason attitudes towards beer remained fairly neutral. Therefore, the interac-
tion is likely to reflect the fact that negative imagery has a different effect to both positive and 
neutral imagery (because it decreases ratings rather than increasing them). This interaction 
is completely in line with the experimental predictions. To verify the interpretation of the 
interaction effect, we need to look at the contrasts that we requested in section 13.8.2.

SPSS OuTPuT 13.15

Figure 13.15
Interaction graph 
for Attitude.
sav. The type 
of imagery is 
represented by 
the three lines: 
positive imagery 
(circles), 
negative imagery 
(squares) and 
neutral imagery 
(triangles)
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13.9.5.  Contrasts for repeated-measures variables 2

In section 13.8.2 we requested simple contrasts for the Drink variable (for which water was used 
as the control category) and for the Imagery category (for which neutral imagery was used as the 
control category). SPSS Output 13.16 shows the summary results for these contrasts. The table 
is split up into main effects and interactions, and each effect is split up into components of the 
contrast. So, for the main effect of drink, the first contrast compares level 1 (beer) against the 
base category (in this case, the last category: water). If you are confused as to which level is which 
you are reminded that SPSS Output 13.8 lists them for you. This result is significant, F(1, 19) = 
6.22, p < .05, which contradicts what was found using post hoc tests (see SPSS Output 13.12).

SELF-TEST  Why do you think that this contradiction 
has occurred?

The next contrast compares level 2 (wine) with the base category (water) and confirms 
the significant difference found with the post hoc tests, F(1, 19) = 18.61, p < .001. For the 
imagery main effect, the first contrast compares level 1 (positive) to the base category (the 
last category: neutral) and verifies the significant difference found with the post hoc tests, 
F(1, 19) = 142.19, p < .001. The second contrast confirms the significant difference in 
ratings found in the negative imagery condition compared to the neutral, F(1, 19) = 47.07,  
p < .001. These contrasts are all very well, but they tell us only what we already knew (although 
note the increased statistical power with these tests shown by the higher significance values). 
The contrasts become much more interesting when we look at the interaction term.

SPSS OuTPuT 13.16
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13.9.5.1. beer vs. water,  
positive vs. neutral imagery 2

The first interaction term looks at level 1 of drink 
(beer) compared to level 3 (water), when posi-
tive imagery (level 1) is used compared to neutral 
(level 3). This contrast is non-significant. This result 
tells us that the increased liking found when posi-
tive imagery is used (compared to neutral imagery) 
is the same for both beer and water. In terms of 
the interaction graph (Figure 13.15) it means that  
the distance between the circle and the triangle in the 
beer condition is the same as the distance between the 
circle and the triangle in the water condition. If we just 
plot this section of the interaction graph then it’s easy 
to see that the lines are approximately parallel, indicating no significant interaction. We could con-
clude that the improvement of ratings due to positive imagery compared to neutral is not affected 
by whether people are evaluating beer or water.

13.9.5.2. beer vs. water,  
negative vs. neutral imagery 2

The second interaction term looks at level 1 of drink 
(beer) compared to level 3 (water), when negative 
imagery (level 2) is used compared to neutral (level 3). 
This contrast is significant, F(1, 19) = 6.75, p < .05. 
This result tells us that the decreased liking found when 
negative imagery is used (compared to neutral imagery) 
is different when beer is used compared to when water 
is used. In terms of the interaction graph (Figure 13.15) 
it means that the distance between the square and the 
triangle in the beer condition (a small difference) is sig-
nificantly smaller than the distance between the square 
and the triangle in the water condition (a larger dif-
ference). We could conclude that the decrease in ratings due to negative imagery (compared to 
neutral) found when water is used in the advert is smaller than when beer is used. 

13.9.5.3. Wine vs. water,  
positive vs. neutral imagery 2

The third interaction term looks at level 2 of drink 
(wine) compared to level 3 (water), when positive 
imagery (level 1) is used compared to neutral (level 
3). This contrast is non-significant, indicating that 
the increased liking found when positive imagery 
is used (compared to neutral imagery) is the same 
for both wine and water. In terms of the interac-
tion graph (Figure 13.15) it means that the distance 
between the circle and the triangle in the wine con-
dition is the same as the distance between the circle 
and the triangle in the water condition. If we just 
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plot this section of the interaction graph then it’s easy to see that the lines are parallel, 
indicating no interaction effect. We could conclude that the improvement of ratings due 
to positive imagery compared to neutral is not affected by whether people are evaluating 
wine or water. 

13.9.5.4. Wine vs. water, negative vs. neutral imagery 2

The final interaction term looks at level 2 of drink (wine) 
compared to level 3 (water), when negative imagery (level 2)  
is used compared to neutral (level 3). This contrast is sig-
nificant, F(1, 19) = 26.91, p < .001. This result tells us 
that the decreased liking found when negative imagery is 
used (compared to neutral imagery) is different when wine 
is used compared to when water is used. In terms of the 
interaction graph (Figure 13.15) it means that the distance 
between the square and the triangle in the wine condition 
(a big difference) is significantly larger than the distance 
between the square and the triangle in the water condition 
(a smaller difference). We could conclude that the decrease 
in ratings due to negative imagery (compared to neutral) 
is significantly greater when wine is advertised than when 
water is advertised.

13.9.5.5. limitations of these contrasts 2

These contrasts, by their nature, tell us nothing about the differences between the beer and 
wine conditions (or the positive and negative conditions) and different contrasts would 
have to be run to find out more. However, what is clear so far is that relative to the neutral 
condition, positive images increased liking for the products more or less regardless of the 
product; however, negative imagery had a greater effect on wine and a lesser effect on beer. 
These differences were not predicted. Although it may seem tiresome to spend so long inter-
preting an analysis so thoroughly, you are well advised to take such a systematic approach 
if you want to truly understand the effects that you obtain. Interpreting interaction terms is 
complex, and I can think of a few well-respected researchers who still struggle with them, 
so don’t feel disheartened if you find them hard. Try to be thorough, and break each effect 
down as much as possible using contrasts and hopefully you will find enlightenment.

             CRAMMING SAM’S TIPS    

 

 Two-way repeated-measures ANOVA compares several means when there are two independent variables, and the same 
participants have been used in all experimental conditions. 

 Test the assumption of sphericity when you have three or more repeated-measures conditions. Test for sphericity using 
Mauchly’s test. Find the table with this label: if the value in the column labelled Sig. is less than .05 then the assumption 
is violated. If the significance of Mauchly’s test is greater than .05 then the assumption of sphericity has been met. You 
should test this assumption for all effects (in a two-way ANOVA this means you test it for the effect of both variables and 
the interaction term).
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 The table labelled Tests of Within-Subjects Effects shows the main result of your ANOVA. In a two-way 
ANOVA you will have three effects: a main effect of each variable and the interaction between the two. For each 
effect, if the assumption of sphericity has been met then look at the row labelled Sphericity Assumed. If the 
assumption was violated then read the row labelled Greenhouse-Geisser (you can also look at Huynh-Feldt 
but you’ll have to read this chapter to find out the relative merits of the two procedures). Having selected the 
appropriate row, look at the column labelled Sig. If the value is less than .05 then the means of the groups are 
significantly different.

 Break down the main effects and interaction terms using contrasts. These contrasts appear in the table 
labelled Tests of Within-Subjects Contrasts, again look to the columns labelled Sig. to discover if your com-
parisons are significant (they will be if the significance value is less than .05).

13.10. Effect sizes for factorial repeated-measures 
ANOVA 3

Calculating omega squared for a one-way repeated-measures ANOVA was hair-raising 
enough, and as I keep saying, effect sizes are really more useful when they describe a 
focused effect, so I’d advise calculating effect sizes for your contrasts when you’ve got a 
factorial design (and any main effects that compare only two groups). SPSS Output 13.16 
shows the values for several contrasts, all of which have 1 degree of freedom for the model 
(i.e. they represent a focused and interpretable comparison) and have 19 residual degrees 
of freedom. We can use these F-ratios and convert them to an effect size r, using a formula 
we’ve come across before:

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð1, dfRÞ

Fð1, dfRÞ+ dfR

s

For the two comparisons we did for the drink variable (SPSS Output 13.16), we would get:

rBeer vs: Water =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:22

6:22+ 19

s
= 0:50

rWine vs: Water =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18:61

18:61+ 19

r
= 0:70

Therefore, both comparisons yielded very large effect sizes. For the two comparisons we 
did for the imagery variable (SPSS Output 13.16), we would get:

rPositive vs: Neutral=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

142:19

142:19+ 19

s
=0:94

rNegative vs: Neutral =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

47:07

47:07+ 19

r
= 0:84

smart
alex
only
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Again, both comparisons yield very large effect sizes. For the interaction term, we had 
four contrasts, but again we can convert them to r because they all have 1 degree of free-
dom for the model (SPSS Output 13.16):

rBeer vs: Water, Positive vs: Neutral =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:58

1:58+ 19

s
= 0:28

rBeer vs: Water, Negative vs: Neutral =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:75

6:75+ 19

s
= 0:51

rWine vs: Water, Positive vs: Neutral =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:24

0:24+ 19

s
= 0:11

rWine vs: Water, Negative vs: Neutral =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

26:91

26:91+ 19

r
= 0:77

As such, the two effects that were significant (beer vs. water, negative vs. neutral and 
wine vs. water, negative vs. neutral) yield large effect sizes. The two effects that were not 
significant yielded a medium effect size (beer vs. water, positive vs. neutral) and a small 
effect size (wine vs. water, positive vs. neutral).

13.11. Reporting the results from factorial 
repeated-measures ANOVA 2

We can report a factorial repeated-measures ANOVA in much the same way as any other 
ANOVA. Remember that we’ve got three effects to report, and these effects might have 
different degrees of freedom. For the main effects of drink and imagery, the assumption of 
sphericity was violated so we’d have to report the Greenhouse–Geisser corrected degrees 
of freedom. We can, therefore, begin by reporting the violation of sphericity:

 Mauchly’s test indicated that the assumption of sphericity had been violated for the main 
effects of drink, χ2(2) = 23.75, p < .001, and imagery, χ2(2) = 7.42, p < .05. Therefore 
degrees of freedom were corrected using Greenhouse–Geisser estimates of sphericity  
(ε = .58 for the main effect of drink and .75 for the main effect of imagery).

We can then report the three effects from this analysis as follows:

 All effects are reported as significant at p < .05. There was a significant main effect of 
the type of drink on ratings of the drink, F(1.15, 21.93) = 5.11. Contrasts revealed that 
ratings of beer, F(1, 19) = 6.22, r = .50, and wine, F(1, 19) = 18.61, r = .70, were 
significantly higher than water.

 There was also a significant main effect of the type of imagery on ratings of the drinks, 
F(1.50, 28.40) = 122.57. Contrasts revealed that ratings after positive imagery were 
significantly higher than after neutral imagery, F(1, 19) = 142.19, r = .94. Conversely, 
ratings after negative imagery were significantly lower than after neutral imagery,  
F(1, 19) = 47.07, r = .84.

everybody
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 There was a significant interaction effect between the type of drink and the type of 
imagery used, F(4, 76) = 17.16. This indicates that imagery had different effects on 
people’s ratings depending on which type of drink was used. To break down this interac-
tion, contrasts were performed comparing all drink types to their baseline (water) and 
all imagery types to their baseline (neutral imagery). These revealed significant interac-
tions when comparing negative imagery to neutral imagery both for beer compared to 
water, F(1, 19) = 6.75, r = .51, and wine compared to water, F(1, 19) = 26.91, r = .77. 
Looking at the interaction graph, these effects reflect that negative imagery (compared 
to neutral) lowered scores significantly more in water than it did for beer, and lowered 
scores significantly more for wine than it did for water. The remaining contrasts revealed 
no significant interaction term when comparing positive imagery to neutral imagery both 
for beer compared to water, F(1, 19) = 1.58, r = .28, and wine compared to water, F(1, 
19) < 1, r = .11. However, these contrasts did yield small to medium effect sizes. 

13.12. What to do when assumptions are  
violated in repeated-measures ANOVA 3

When you have only one independent variable then you can use a nonparametric test called 
Friedman’s ANOVA (see Chapter 15) if you find that your assumptions are being irksome. 
However, for factorial repeated measures designs there is not a non-parametric counterpart. 
At the risk of sounding like a broken record, this means that if our data violate the assump-
tion of normality then the solution is to read Rand Wilcox’s book. I know I say this in every 
chapter, but it really is the definitive source. So, to get a robust method (see section 5.7.4) 
for factorial repeated-measures ANOVA designs, read Wilcox’s Chapter 8, get the associated 
files for the software R (Wilcox, 2005), use the SPSS R plugin (see the companion website) 
to implement these files and away you go to statistics oblivion.

What have I discovered about statistics? 2

This chapter has helped us to walk through the murky swamp of repeated-measures 
designs. We discovered that it was infested with rabid leg-eating crocodiles. The first thing 
we learnt was that with repeated-measures designs there is yet another assumption to 
worry about: sphericity. Having recovered from this shock revelation, we were fortunate 
to discover that this assumption, if violated, can be easily remedied. Sorted! We then 
moved on to look at the theory of repeated-measures ANOVA for one independent vari-
able. Although not essential by any stretch of the imagination, this was a useful exercise 
to demonstrate that basically it’s exactly the same as when we have an independent design 
(well, there are a few subtle differences but I was trying to emphasize the similarities). We 
then worked through an example on SPSS, before tackling the particularly foul-tempered, 
starving hungry, and mad as ‘Stabby’ the mercury-sniffing hatter, piranha fish of omega 
squared. That’s a road I kind of regretted going down after I’d started, but, stubborn as 
ever, I persevered. This led us ungracefully on to factorial repeated-measures designs and 
specifically the situation where we have two independent variables. We learnt that as with 
other factorial designs we have to worry about interaction terms. But, we also discovered 
some useful ways to break these terms down using contrasts. 
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By 16 I had started my first ‘serious’ band. We actually stayed together for about 
7 years (with the same line-up, and we’re still friends now) before Mark (drummer) 
moved to Oxford, I moved to Brighton to do my Ph.D., and rehearsing became a mam-
moth feat of organization. We had a track on a CD, some radio play and transformed 
from a thrash metal band to a blend of Fugazi, Nirvana and metal. I never split my trou-
sers during a gig again (although I did once split my head open). Why didn’t we make 
it? Well, Mark was an astonishingly good drummer so it wasn’t his fault, the other Mark 
was an extremely good bassist too (of the three of us he is the one that has always been 
in a band since we split up), so the weak link was me. This was especially unfortunate 
given that I had three roles in the band (guitar, singing, songs) – my poor band mates 
never stood a chance. I stopped playing music for quite a few years after we split. I still 
wrote songs (for personal consumption) but the three of us were such close friends that I 
couldn’t bear the thought of playing with other people. At least not for a few years …

Key terms that I’ve discovered

Compound symmetry
Greenhouse–Geisser correction 
Huynh–Feldt correction
Lower bound 

Mauchly’s test
Repeated-measures ANOVA
Sphericity

Smart Alex’s tasks

Task 1M : There is often concern among students as to the consistency of marking 
between lecturers. It is common that lecturers obtain reputations for being ‘hard’ 
or ‘light’ markers (or to use the students’ terminology, ‘evil manifestations from 
Beelzebub’s bowels’ and ‘nice people’) but there is often little to substantiate these 
reputations. A group of students investigated the consistency of marking by submit-
ting the same essays to four different lecturers. The mark given by each lecturer was 
recorded for each of the eight essays. It was important that the same essays were used 
for all lecturers because this eliminated any individual differences in the standard of 
work that each lecturer marked. This design is repeated-measures because every lec-
turer marked every essay. The independent variable was the lecturer who marked the 
report and the dependent variable was the percentage mark given. The data are in the 
file TutorMarks.sav. Conduct a one-way ANOVA on these data by hand. 2

Task 2M : Repeat the analysis above on SPSS and interpret the results. 2

Task 3M : Imagine I wanted to look at the effect alcohol has on the roving eye. The ‘rov-
ing eye’ effect is the propensity of people in relationships to ‘eye-up’ members of the 
opposite sex. I took 20 men and fitted them with incredibly sophisticated glasses that 
could track their eye movements and record both the movement and the object being 
observed (this is the point at which it should be apparent that I’m making it up as 
I go along). Over four different nights I plied these poor souls with 1, 2, 3 or 4 pints 
of strong lager in a night-club. Each night I measured how many different women 
they eyed up (a woman was categorized as having been eyed up if the man’s eye 
moved from her head to her toe and back up again). To validate this measure we also 
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collected the amount of dribble on the man’s chin while looking at a woman. The 
data are in the file RovingEye.sav. Analyse them with a one-way ANOVA. 2

Task 4M : In the previous chapter we came across the beer-goggles effect, a severe  
perceptual distortion after imbibing several pints of alcohol. The specific visual distor-
tion is that previously unattractive people suddenly become the hottest thing since Spicy 
Gonzalez’ extra-hot Tabasco-marinated chillies. In short, one minute you’re standing in a 
zoo admiring the orang-utans, and the next you’re wondering why someone would put 
Angela Gossow in a cage. Anyway, in that chapter, a blatantly fabricated data set demon-
strated that the beer-goggles effect was much stronger for men than women, and took 
effect only after two pints. Imagine we wanted to follow this finding up to look at what 
factors mediate the beer-goggles effect. Specifically, we thought that the beer-goggles effect 
might be made worse by the fact that it usually occurs in clubs which have dim lighting. 
We took a sample of 26 men (because the effect is stronger in men) and gave them various 
doses of alcohol over four different weeks (0 pints, 2 pints, 4 pints and 6 pints of lager). 
This is our first independent variable, which we’ll call alcohol consumption, and it has 
four levels. Each week (and, therefore, in each state of drunkenness) participants were 
asked to select a mate in a normal club (that had dim lighting) and then select a second 
mate in a specially designed club that had bright lighting. As such, the second independent 
variable was whether the club had dim or bright lighting. The outcome measure was the 
attractiveness of each mate as assessed by a panel of independent judges. To recap, all par-
ticipants took part in all levels of the alcohol consumption variable, and selected mates in 
both brightly and dimly lit clubs. The data are in the file BeerGogglesLighting.sav. Analyse 
them with a two-way repeated-measures ANOVA. 2

Task 5M : Using SPSS Tip 13.2, change the syntax in SimpleEffectsAttitude.sps to look 
at the effect of drink at different levels of imagery. 3

Answers can be found on the companion website.

Further reading
Field, A. P. (1998). A bluffer’s guide to sphericity. Newsletter of the Mathematical, Statistical and 

Computing section of the British Psychological Society, 6(1), 13–22. (Available in the additional 
material for this chapter.)

Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Thomson. (Or you 
might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007.)

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in behavioural research: 
a correlational approach. Cambridge: Cambridge University Press. (This is quite advanced but 
really cannot be bettered for contrasts and effect size estimation.)

Online tutorials
The companion website contains the following Flash movie tutorials to accompany this chapter:

 Repeated Measures ANOVA using SPSS  The R Plugin

Interesting real research
Field, A. P. (2006). The behavioral inhibition system and the verbal information pathway to chil-

dren’s fears. Journal of Abnormal Psychology, 115(4), 742–752.
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Figure 14.1
My 18th birthday 
cake

14.1. What will this chapter tell me? 1

Most teenagers are anxious and depressed, but I probably had more than my fair share. 
The parasitic leech that was the all boys grammar school that I attended had feasted on 
my social skills leaving in its wake a terrified husk. Although I had no real problem with 
playing my guitar and shouting in front of people, speaking to them was another matter 
entirely. In the band I felt at ease, in the real world I did not. Your 18th birthday is a time 
of great joy, where (in the UK at any rate) you cast aside the shackles of childhood and 
embrace the exciting new world of adult life. Your birthday cake might symbolize this 
happy transition by reflecting one of your great passions. Mine had a picture on it of a 
long-haired person who looked somewhat like me, slitting his wrists. That pretty much 
sums it up. Still, you can’t lock yourself in your bedroom with your Iron Maiden CDs for 
ever and soon enough I tried to integrate with society. Between the ages of 16 and 18 this 

14 Mixed design ANOVA (GLM 5)
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pretty much involved getting drunk. I quickly discovered that getting drunk made it much 
easier to speak to people, and getting really drunk made you unconscious and then the 
problem of speaking to people went away entirely. This situation was exacerbated by the 
sudden presence of girls in my social circle. I hadn’t seen a girl since Clair Sparks; they 
were particularly problematic because not only had you to talk to them, but what you said 
had to be really impressive because then they might become your girlfriend. Also, in 1990, 
girls didn’t like to talk about Iron Maiden – they probably still don’t. Speed dating1 didn’t 
exist back then, but if it had it would have been a sick and twisted manifestation of hell 
on earth for me. The idea of having a highly pressured social situation where you have to 
think of something witty and amusing to say or be thrown to the baying vultures of eternal 
loneliness would have had me injecting pure alcohol into my eyeballs; at least that way I 
could be in a coma and unable to see the disappointment on the faces of those forced to 
spend 3 minutes in my company. That’s what this chapter is all about: speed dating, oh, 
and mixed ANOVA too, but if I mention that you’ll move swiftly on to the next chapter 
when the bell rings.

14.2. Mixed designs 2

If you thought that the previous chapter was bad, well, I’m about to throw an 
added complication into the mix. We can combine repeated measures and inde-
pendent designs, and this chapter looks at this situation. As if this wasn’t bad 
enough, I’m also going to use this as an excuse to show you a design with three 
independent variables (at this point you should imagine me leaning back in my 
chair, cross-eyed, dribbling and laughing maniacally). A mixture of between-
group and repeated-measures variables is called a mixed design. It should be 
obvious that you need at least two independent variables for this type of design 
to be possible, but you can have more complex scenarios too (e.g. two between-
group and one repeated measures, one between-group and two repeated meas-
ures, or even two of each). SPSS allows you to test almost any design you might 
want to, and of virtually any degree of complexity. However, interaction terms 
are difficult enough to interpret with only two variables, so imagine how dif-
ficult they are if you include four! The best advice I can offer is to stick to three or fewer 
independent variables if you want to be able to interpret your interaction terms,2 and 
certainly don’t exceed four unless you want to give yourself a migraine.

This chapter will go through an example of a mixed ANOVA. There won’t be any theory 
because really and truly you’ve probably had enough ANOVA theory by now to have a 
good idea of what’s going on (you can read this as ‘it’s too complex for me and I’m going 
to cover up my own incompetence by pretending you don’t need to know about it’). So, 
we look at an example using SPSS and then interpret the output. In the process you’ll 
hopefully develop your understanding of interactions and how to break them down using 
contrasts.

1 In case speed dating goes out of fashion and no one knows what I’m going on about, the basic idea is that lots 
of men and women turn up to a venue (or just men or just women if it’s a gay night), one-half of the group sit 
individually at small tables and the remainder choose a table, get 3 minutes to impress the other person at the 
table with their tales of heteroscedastic data, then a bell rings and they get up and move to the next table. Having 
worked around all of the tables, the end of the evening is spent either stalking the person whom you fancied or 
avoiding the hideous mutant who was going on about hetero…something or other.
2 Fans of irony will enjoy the four-way ANOVAs that I conducted in Field and Davey (1999) and Field and Moore 
(2005), to name but two examples! 

What is a mixed
ANOVA?
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14.3. What do men and women look for in  
a partner? 2

The example we’re going to use in this chapter stays with the dating theme. It seems that 
lots of magazines go on all the time about how men and women want different things from 
relationships (or perhaps it’s just my girlfriend’s copies of Marie Clare, which I don’t read – 
honestly). The big question to which we all want to know the answer is: are looks or per-
sonality more important? Imagine you wanted to put this to the test. You devised a cunning 
plan whereby you’d set up a speed-dating night. Little did the people who came along know 
that you’d got some of your friends to act as the dates. Each date varied in their attractive-
ness (attractive, average or ugly) and their charisma (charismatic, average and dull) and by 
combining these characteristics you get nine different combinations. Each combination was 
represented by one of your stooge dates. As such, your stooge dates were made up of nine 
different people. Three were extremely attractive people but differed in their personality: 
one had tons of charisma,3 one had some charisma and the other was as dull as this book. 
Another three people were of average attractiveness, and again differed in their personality: 
one was highly charismatic, one had some charisma and the third was a dullard. The final 
three were, not wishing to be unkind in any way, pig-ugly, and again one was charismatic, 
one had some charisma and the final poor soul was mind-numbingly tedious. Obviously you 
had two sets of stooge dates: one set was male and the other female so that your participants 
could match up with dates of the appropriate sex.

The participants themselves were not these nine stooges, but 10 men and 10 women 
who came to the speed-dating event that you had set up. Over the course of the evening 
they speed dated all nine members of the opposite sex that you’d set up for them. After 
their 5 minute date, they rated how much they’d like to have a proper date with the person 
as a percentage (100% = ‘I’d pay large sums of money for your phone number’, 0% = ‘I’d 
pay a large sum of money for a plane ticket to get me as far away from you as possible’). 
As such, each participant rated nine different people who varied in their attractiveness 
and personality. So, there are two repeated-measures variables: Looks (with three levels 
because the person could be attractive, average or ugly) and Personality (again with three 
levels because the person could have lots of charisma, have some charisma or be a dullard). 
The people giving the ratings could be male or female, so we should also include the gender 
of the person making the ratings (male or female), and this, of course, will be a between-
group variable. The data are in Table 14.1.

14.4. Mixed ANOVA on SPSS 2

14.4.1.  The main analysis 2

To enter these data into SPSS we use the same procedure as the two-way repeated-measures 
ANOVA that we came across in the previous chapter. Remember that each row in the data 
editor represents a single participant’s data. If a person participates in all experimental 
conditions (in this case they date all of the people who differ in attractiveness and all of the 
people who differ in their charisma) then each experimental condition must be represented 

3 The highly attractive people with tons of charisma were, of course, taken to a remote cliff top and shot after 
the experiment because life is hard enough without having people like that floating around making you feel 
inadequate.
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by a column in the data editor. In this experiment there are nine experimental conditions 
and so the data need to be entered in nine columns (the format is identical to Table 14.1). 
Therefore, create the following nine variables in the data editor with the names as given. 
For each one, you should also enter a full variable name (see section 3.4.2) for clarity in 
the output:

att_high

av_high

ug_high

att_some

av_some

ug_some

att_none

av_none

ug_none

Attractive

Average Looks

Ugly

Attractive

Average Looks

Ugly

Attractive

Average Looks

Ugly

+

+

+

+

+

+

+

+

+

High Charisma

High Charisma

High Charisma

Some Charisma

Some Charisma

Some Charisma

Dullard

Dullard

Dullard

Table 14.1 Data from LooksOrPersonality.sav (Att = Attractive, Av = Average, Ug = Ugly)

High Charisma Some Charisma Dullard

Looks Att Av Ugly Att Av Ug Att Av Ug

Male  86

 91

 89

 89

 80

 80

 89

100

 90

 89

 84

 83

 88

 69

 81

 84

 85

 94

 74

 86

67

53

48

58

57

51

61

56

54

63

88

83

99

86

88

96

87

86

92

80

69

74

70

77

71

63

79

71

71

73

50

48

48

40

50

42

44

54

58

49

97

86

90

87

82

92

86

84

78

91

48

50

45

47

50

48

50

54

38

48

47

46

48

53

45

43

45

47

45

39

Female  89

 84

 99

 86

 89

 80

 82

 97

 95

 95

 91

 90

100

 89

 87

 81

 92

 69

 92

 93

93

85

89

83

80

79

85

87

90

96

88

95

80

86

83

86

81

95

98

79

65

70

79

74

74

59

66

72

64

66

54

60

53

58

43

47

47

51

53

46

55

50

51

52

58

51

50

45

54

52

48

44

48

48

50

47

45

48

53

39

52

45

44

47

48

40

47

46

45

47
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SELF-TEST  Once these variables have been created, enter 
the data as in Table 14.1. If you have problems entering the 
data then use the file LooksOrPersonality.sav. 

First we have to define our repeated-measures variables, so access the define factors dialog 
box by selecting  As with two-way repeated-
measures ANOVA (see the previous chapter) we need to give names to our repeated-
measures variables and specify how many levels they have. In this case there are two 
within-subject factors: Looks (attractive, average or ugly) and Charisma (high charisma, 
some charisma and dullard). In the define factors dialog box replace the word factor1 
with the word Looks. When you have given this repeated-measures factor a name, tell 
the computer that this variable has three levels by typing the number 3 into the box 
labelled Number of Levels. Click on  to add this variable to the list of repeated-
measures variables. This variable will now appear in the white box at the bottom of 
the dialog box and appears as Looks(3). Now repeat this process for the second inde-
pendent variable. Enter the word Charisma into the space labelled Within-Subject Factor 
Name and then, because there were three levels of this variable, enter the number 3 
into the space labelled Number of Levels. Click on  to include this variable in  
the list of factors; it will appear as Charisma(3). The finished dialog box is shown in 
Figure 14.2. When you have entered both of the within-subject factors click on  to 
go to the main dialog box.

The main dialog box is the same as when we did a factorial repeated-measures ANOVA 
in the previous chapter (see Figure 14.3). At the top of the Within-Subjects Variables box, 

Figure 14.2
The define 
factors dialog 
box for factorial 
repeated-
measures 
ANOVA
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SPSS states that there are two factors: Looks and Charisma. In the box below there is a 
series of question marks followed by bracketed numbers. The numbers in brackets repre-
sent the levels of the factors (independent variables) – see the previous chapter for a more 
detailed explanation.

In this example, there are two independent variables and so there are two numbers in the 
brackets. The first number refers to levels of the first factor listed above the box (in this case 
Looks). The second number in the brackets refers to levels of the second factor listed above 
the box (in this case Charisma). As with the other repeated-measures ANOVAs we’ve come 
across, we have to replace the question marks with variables from the list on the left-hand 
side of the dialog box. With between-group designs, in which coding variables are used, the 
levels of a particular factor are specified by the codes assigned to them in the data editor. 
However, in repeated-measures designs, no such coding scheme is used and so we determine 
which condition to assign to a level at this stage (again look back to the previous chapter for 
more about this). For this reason, it is imperative that we think about the type of contrasts 
that we might want to do before entering variables into this dialog box. In this experiment, 
if we look at the first variable, Looks, there were three conditions: attractive, average and 
ugly. In many ways it makes sense to compare the attractive and ugly conditions to the aver-
age because the average person represents the norm (although it wouldn’t be wrong to, for 
example, compare attractive and average to ugly). This comparison could be done by speci-
fying a simple contrast (see Table 10.6) provided that we make sure that average is coded as 
our first or last category. Now, let’s think about the second factor. The Charisma factor also 
has a category that represents the norm, and that is some charisma. Again we could use this 
as a control against which to compare our two extremes (lots of charisma and none what-
soever). Therefore, we could again conduct a simple contrast comparing everything against 
some charisma; therefore, this must be entered as either the first or last level.

Based on what has been discussed about using contrasts, it makes sense to have average 
as level 3 of the Looks factor and some charisma as the third level of the Charisma factor. 
The remaining levels can be decided arbitrarily. I have chosen attractive as level 1 and ugly 

Figure 14.3
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as level 2 of the Looks factor. For the Charisma variable I chose high charisma as level 1 
and none as level 2. These decisions mean that the variables should be entered as follows:

att_high

att_none

att_some

ug_high

ug_none

ug_some

av_high

av_none

av_some

_?_(1,1)

_?_(1,2)

_?_(1,3)

_?_(2,1)

_?_(2,2)

_?_(2,3)

_?_(3,1)

_?_(3,2)

_?_(3,3)

Unlike in the previous chapter, I’ve deliberately made this order different to how the 
variables are entered into the data editor. This is simply to illustrate that we can enter the 
variables in any order we like. So far the procedure has been similar to other factorial repeat-
ed-measures designs. However, we have a mixed design here, so we also need to specify our 
between-group factor as well. We do this by selecting Gender in the variables list and drag-
ging it to the box labelled Between-Subjects Factors (or click on ). The completed dialog 
box should look exactly like Figure 14.4. I’ve already discussed the options for the buttons 
at the bottom of this dialog box, so I’ll talk only about the ones of particular interest for this 
example.

Figure 14.4
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14.4.2.  Other options 2

Following the main analysis it is interesting to compare levels of the independent variables 
to see whether they differ. As we’ve seen, there’s no facility for entering contrast codes 
(unless you use syntax) so we have to rely on the standard contrasts available (see Table 
10.6). Figure 14.5 shows the dialog box for conducting contrasts and is obtained by click-
ing on  in the main dialog box. In the previous section I described why it might be 
interesting to use the average attractiveness and some charisma conditions as base catego-
ries for the looks and charisma factors respectively. We have used the contrasts dialog box 
before in sections 11.4.4 and 13.4.2 and so all I will say is that you should select a simple 
contrast for each independent variable. For both independent variables, we entered the 
variables such that the control category was the last one; therefore, we need not change 
the reference category for the simple contrast. Once the contrasts have been selected, click 
on  to return to the main dialog box.

Gender has only two levels (male or female) so we don’t actually need to specify con-
trasts for this variable. The addition of a between-group factor also means that we can 
select post hoc tests for this variable by clicking on . This action brings up the 
post hoc test dialog box (see section 10.3.2), which can be used as previously explained. 

Figure 14.5

Figure 14.6
The plots  
dialog box for  
a three-way 
mixed ANOVA
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However, we need not specify any post hoc tests here because Gender has only two 
levels.

The addition of a third independent variable makes it necessary to choose a different 
graph to the one in the previous chapter’s example. Click on  to access the dialog 
box in Figure 14.6. Place Looks in the slot labelled Horizontal Axis and Charisma in slot 
labelled Separate Line, and finally, place Gender in the slot labelled Separate Plots. When 
all three variables have been specified, don’t forget to click on  to add this combina-
tion to the list of plots. By asking SPSS to plot the looks × charisma × gender interaction, 
we should get the interaction graph for looks and charisma, but a separate version of this 
graph will be produced for male and female participants.

As far as other options are concerned, you should select the same ones that were cho-
sen for the previous example (see section 13.8.5). It is worth selecting estimated marginal 
means for all effects (because these values will help you to understand any significant 
effects), but to save space I did not ask for confidence intervals for these effects because we 
have considered this part of the output in some detail already. When all of the appropriate 
options have been selected, run the analysis.

14.5. Output for mixed factorial ANOVA: main 
analysis 3

The initial output is the same as the two-way ANOVA example: there is a table listing the 
repeated-measures variables from the data editor and the level of each independent vari-
able that they represent. The second table contains descriptive statistics (mean and stand-
ard deviation) for each of the nine conditions split according to whether participants were 
male or female (see SPSS Output 14.1). The names in this table are the names I gave the 
variables in the data editor (therefore, your output may differ slightly). These descriptive 
statistics are interesting because they show us the pattern of means across all experimental 
conditions (so, we use these means to produce the graphs of the three-way interaction).

SELF-TEST  SPSS Output 14.2 shows the results of 
Mauchly’s sphericity test. Based on what you have 
already learnt, was sphericity violated?

SPSS OuTPuT 14.1
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Mauchly's Test of Sphericityb

Measure: MEASURE_1

.960 .690 2 .708 .962 1.000 .500

.929 1.246 2 .536 .934 1.000 .500

.613 8.025 9 .534 .799 1.000 .250

Within Subjects Effect
LOOKS
CHARISMA
LOOKS * CHARISMA

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

a.

Design: Intercept+GENDER 
Within Subjects Design: LOOKS+CHARISMA+LOOKS*CHARISMA

b.

SPSS OuTPuT 14.2

SPSS Output 14.2 shows the results of Mauchly’s sphericity test for each of the three 
repeated-measures effects in the model. None of the effects violate the assumption of 
sphericity because all of the values in the column labelled Sig. are above .05; therefore, we 
can assume sphericity when we look at our F-statistics.

SPSS Output 14.3 shows the summary table of the repeated-measures effects in the 
ANOVA with corrected F-values. As with factorial repeated-measures ANOVA, the output 
is split into sections for each of the effects in the model and their associated error terms. 
The only difference is that the interactions between our between-group variable of gender 
and the repeated-measures effects are included also. 

Again, we need to look at the column labelled Sig. and if the values in this column are 
less than .05 for a particular effect then it is statistically significant. Working down from the 
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top of the table we find a significant effect of looks, which means that if we ignore whether 
the date was charismatic, and whether the rating was from a man or a woman, then the 
attractiveness of a person significantly affected the ratings they received. The looks × gen-
der interaction is also significant, which means that although the ratings were affected by 
whether the date was attractive, average or ugly, the way in which ratings were affected by 
attractiveness was different in male and female raters.

Next, we find a significant effect of charisma, which means that if we ignore whether the 
date was attractive, and whether the rating was from a man or a woman, then the charisma 
of a person significantly affected the ratings they received. The charisma × gender interaction 
is also significant, indicating that this effect of charisma differed in male and female raters.

There is a significant interaction between looks and charisma, which means that if we 
ignore the gender of the rater, the profile of ratings across different levels of attractiveness 
was different for highly charismatic dates, charismatic dates and dullards. (It is equally 
true to say this the opposite way around: the profile of ratings across different levels of 
charisma was different for attractive, average and ugly dates.) Just to add to the mounting 
confusion, the looks × charisma × gender interaction is also significant, meaning that the 
looks × charisma interaction was significantly different in men and women participants!

This is all a lot to take in so we’ll look at each of these effects in turn in subsequent sec-
tions. First, though, we need to see what has happened to our main effect of gender.

SPSS OuTPuT 14.3
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SELF-TEST  What is the difference between a main 
effect and an interaction?

14.5.1.  The main effect of gender 2

The main effect of gender is listed separately from the repeated-measures effects in a table 
labelled Tests of Between-Subjects Effects. Before looking at this table it is important to 
check the assumption of homogeneity of variance using Levene’s test (see section 5.6.1).

SELF-TEST  Was the assumption of homogeneity of 
variance met (SPSS Output 14.4)?

SPSS OuTPuT 14.4

SPSS produces a table listing Levene’s test for each of the repeated-measures variables 
in the data editor, and we need to look for any variable that has a significant value. SPSS 
Output 14.4 shows both tables. The table showing Levene’s test indicates that variances 
are homogeneous for all levels of the repeated-measures variables (because all significance 
values are greater than .05). If any values were significant, then this would compromise the 
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Figure 14.7

SPSS OuTPuT 14.5

accuracy of the F-test for gender, and we would have to consider transforming all of our 
data to stabilize the variances between groups (see Chapter 5). Fortunately, in this example 
a transformation is unnecessary. The second table shows the ANOVA summary table for 
the main effect of gender, and this reveals a non-significant effect (because the significance 
of .946 is greater than the standard cut-off point of .05).

We can report that there was a non-significant (ns) main effect of gender, F(1, 18) < 
1, ns. This effect tells us that if we ignore all other variables, male participants’ ratings 
were basically the same as females’. If you requested that SPSS display means for the gen-
der effect you should scan through your output and find the table in a section headed 
Estimated Marginal Means. SPSS Output 14.5 is a table of means for the main effect of 
gender with the associated standard errors. This information is plotted in Figure 14.7. It is 
clear from this graph that men and women’s ratings were generally the same.

14.5.2.  The main effect of looks 2

SELF-TEST  Based on the previous section and what 
you have learned in previous chapters, can you interpret 
the main effect of ‘looks’? (SPSS Output 14.3)?
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We came across the main effect of looks in SPSS Output 14.3. Now we’re going to have 
a look at what this effect means. We can report that there was a significant main effect of 
looks, F(2, 36) = 423.73, p < .001. This effect tells us that if we ignore all other variables, 
ratings were different for attractive, average and unattractive dates. If you requested that 
SPSS display means for the looks effect (I’ll assume you did from now on) you will find 
the table in a section headed Estimated Marginal Means. SPSS Output 14.6 is a table of 
means for the main effect of looks with the associated standard errors. The levels of looks 
are labelled simply 1, 2 and 3, and it’s down to you to remember how you entered the 
variables (or you can look at the summary table that SPSS produces at the beginning of the 
output – see SPSS Output 14.1). If you followed what I did then level 1 is attractive, level 
2 is ugly and level 3 is average. To make things easier, this information is plotted in Figure 
14.8. You can see that as attractiveness falls, the mean rating falls too. So this main effect 
seems to reflect that the raters were more likely to express a greater interest in going out 
with attractive people than average or ugly people. However, we really need to look at 
some contrasts to find out exactly what’s going on. 

SPSS Output 14.7 shows the contrasts that we requested. For the time being, just look at 
the row labelled Looks. Remember that we did a simple contrast, and so we get a contrast 
comparing level 1 to level 3, and then comparing level 2 to level 3; because of the order 
in which we entered the variables, these contrasts represent attractive compared to aver-
age (level 1 vs. level 3) and ugly compared to average (level 2 vs. level 3). Looking at the 
values of F for each contrast, and their related significance values, tells us that the effect 

SPSS OuTPuT 14.6

Figure 14.8
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of attractiveness represented the fact that attractive dates were rated significantly higher 
than average dates, F(1, 18) = 226.99, p < .001, and average dates were rated significantly 
higher than ugly ones, F(1, 18) = 160.07, p < .001.

14.5.3.  The main effect of charisma 2

The main effect of charisma is in SPSS Output 14.3. We can report that there was a sig-
nificant main effect of charisma, F(2, 36) = 328.25, p < .001. This effect tells us that if we 
ignore all other variables, ratings were different for highly charismatic, a bit charismatic 
and dullard people. The table labelled Charisma in the section headed Estimated Marginal 
Means tells us what this effect means (SPSS Output 14.8). Again, the levels of charisma are 
labelled simply 1, 2 and 3. If you followed what I did then level 1 is high charisma, level 
2 is no charisma and level 3 is some charisma. This information is plotted in Figure 14.9: 
as charisma declines, the mean rating falls too. So this main effect seems to reflect that the 
raters were more likely to express a greater interest in going out with charismatic people 
than average people or dullards. 

SPSS Output 14.7 shows the contrasts that we requested. Looking at the row labelled 
Charisma and remembering that we requested simple contrasts, we get a contrast com-
paring level 1 to level 3, and then comparing level 2 to level 3. How we interpret these 
contrasts depends on the order in which we entered the repeated-measures variables: in 
this case these contrasts represent high charisma compared to some charisma (level 1 vs. 
level 3) and no charisma compared to some charisma (level 2 vs. level 3). The contrasts 
tell us that the effect of charisma represented the fact that highly charismatic dates were 
rated significantly higher than dates with some charisma, F(1, 18) = 109.94, p < .001, 
and dates with some charisma were rated significantly higher than dullards, F(1, 18) = 
227.94, p < .001.

SPSS OuTPuT 14.7
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14.5.4.  The interaction between gender and looks 2

SPSS Output 14.3 indicated that gender interacted in some way with the attractiveness of 
the date. From the summary table we can report that there was a significant interaction 
between the attractiveness of the date and the gender of the participant, F(2, 36) = 80.43, 
p < .001. This effect tells us that the profile of ratings across dates of different attractive-
ness was different for men and women. We can use the estimated marginal means to deter-
mine the nature of this interaction (or we could have asked SPSS for a plot of gender × 
looks using the dialog box in Figure 14.6). The means and interaction graph (Figure 14.10 
and SPSS Output 14.9) shows the meaning of this result. The graph shows the average male 
ratings of dates of different attractiveness ignoring how charismatic the date was (circles). 
The women’s scores are shown as squares. The graph clearly shows that male and female 
ratings are very similar for average-looking dates, but men give higher ratings (i.e. they’re 
really keen to go out with these people) than women for attractive dates, but women 
express more interest in going out with ugly people than men. In general this interaction 
seems to suggest than men’s interest in dating a person is more influenced by their looks 
than for females. Although both male’s and female’s interest decreases as attractiveness 
decreases, this decrease is more pronounced for men. This interaction can be clarified using 
the contrasts in SPSS Output 14.7.

SPSS OuTPuT 14.8

Figure 14.9
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14.5.4.1. looks × gender interaction 1: attractive vs. average, 
male vs. female 2

The contrast for the first interaction term looks at level 1 of looks (attractive) compared  
to level 3 (average), comparing male and female scores. This contrast is highly significant, 
F(1, 18) = 43.26, p < .001. This result tells us that the increased interest in attractive dates 
compared to average-looking dates found for men is significantly more than for women.  
So, in Figure 14.10 the slope of the line between the circles representing male ratings of 
attractive dates and average dates is steeper than the line joining the squares representing 
female ratings of attractive dates and average dates. We can conclude that the preferences for 
attractive dates, compared to average-looking dates, are greater for males than females.

14.5.4.2. looks × gender interaction 2: ugly vs. average,  
male vs. female 2

The second contrast compares level 2 of looks (ugly) to level 3 (average), comparing male 
and female scores. This contrast is highly significant, F(1, 18) = 30.23, p < .001. This tells 
us that the decreased interest in ugly dates compared to average-looking dates found for 
men is significantly more than for women. So, in Figure 14.10 the slope of the line between 
the circles representing male ratings of ugly dates and average dates is steeper than the 
line joining the squares representing female ratings of ugly dates and average dates. We 

SPSS OuTPuT 14.9

Figure 14.10
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can conclude that the preferences for average-looking dates, compared to ugly dates, are 
greater for males than females.

14.5.5.  The interaction between gender and charisma 2

SPSS Output 14.3 indicated that gender interacted in some way with how charismatic the 
date was. From the summary table we should report that there was a significant interaction 
between the attractiveness of the date and the gender of the participant, F(2, 36) = 62.45, 
p < .001. This effect tells us that the profile of ratings across dates of different levels of 
charisma was different for men and women. The estimated marginal means (or a plot of 
gender × charisma using the dialog box in Figure 14.6) tell us the meaning of this interac-
tion (see Figure 14.11 and SPSS Output 14.10). The graph shows the average male ratings 
of dates of different levels of charisma ignoring how attractive they were (circles). The 
women’s scores are shown as squares. The graph shows almost the reverse pattern as for 
the attractiveness data; again male and female ratings are very similar for dates with normal 
amounts of charisma, but this time men show more interest in dates who are dullards than 
women do, and women show slightly more interest in very charismatic dates than men 
do. In general this interaction seems to suggest than women’s interest in dating a person is 
more influenced by their charisma than for men. Although both male’s and female’s inter-
est decreases as charisma decreases, this decrease is more pronounced for females. This 
interaction can be clarified using the contrasts in SPSS Output 14.7.

SPSS OuTPuT 14.10

Figure 14.11
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14.5.5.1. Charisma × gender interaction 1: high vs. some 
charisma, male vs. female 2

The first contrast for this interaction term looks at level 1 of charisma (high charisma) 
compared to level 3 (some charisma), comparing male and female scores. This contrast is 
highly significant, F(1, 18) = 27.20, p < .001. This result tells us that the increased inter-
est in highly charismatic dates compared to averagely charismatic dates found for women 
is significantly more than for men. So, in Figure 14.11 the slope of the line between the 
squares representing female ratings of very charismatic dates and dates with some charisma 
is steeper than the line joining the circles representing male ratings of very charismatic 
dates and dates with some charisma. We can conclude that the preferences for very charis-
matic dates, compared to averagely charismatic dates, are greater for females than males.

14.5.5.2. Charisma × gender interaction 2: dullard vs. some 
charisma, male vs. female 2

The second contrast for this interaction term looks at level 2 of charisma (dullard) compared 
to level 3 (some charisma), comparing male and female scores. This contrast is highly signifi-
cant, F(1, 18) = 33.69, p < .001. This result tells us that the decreased interest in dullard dates 
compared to averagely charismatic dates found for women is significantly more than for men. 
So, in Figure 14.11 the slope of the line between the squares representing female ratings of 
dates with some charisma and dullard dates is steeper than the line joining the circles repre-
senting male ratings of dates with some charisma and dullard dates. We can conclude that the 
preferences for dates with some charisma over dullards are greater for females than males.

14.5.6.   The interaction between attractiveness and  
charisma 2

SPSS Output 14.3 indicated that the attractiveness of the date interacted in some way with 
how charismatic the date was. From the summary table we should report that there was a 
significant interaction between the attractiveness of the date and the charisma of the date, 
F(4, 72) = 36.63, p < .001. This effect tells us that the profile of ratings across dates of dif-
ferent levels of charisma was different for attractive, average and ugly dates. The estimated 
marginal means (or a plot of looks × charisma using the dialog box in Figure 14.6) tell us 
the meaning of this interaction (see SPSS Output 14.11 and Figure 14.12).

SPSS OuTPuT 14.11
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The graph shows the average ratings of dates of different levels of attractiveness when 
the date also had high levels of charisma (circles), some charisma (squares) and no cha-
risma (triangles). Look first at the difference between attractive and average-looking 
dates. The interest in highly charismatic dates doesn’t change (the line is more or less 
flat between these two points), but for dates with some charisma or no charisma inter-
est levels decline. So, if you have lots of charisma you can get away with being average 
looking and people will still want to date you. Now, if we look at the difference between 
average-looking and ugly dates, a different pattern is observed. For dates with no cha-
risma (triangles) there is no difference between ugly and average people (so if you’re a 
dullard you have to be really attractive before people want to date you). However, for 
those with charisma, there is a decline in interest if you’re ugly (so, if you’re ugly, having 
charisma won’t help you much). This interaction is very complex, but we can break it 
down using the contrasts in SPSS Output 14.7.

14.5.6.1. looks × charisma interaction 1: 
attractive vs. average, high charisma vs. 
some charisma 2

The first contrast for this interaction term investigates 
level 1 of looks (attractive) compared to level 3 (aver-
age looking), comparing level 1 of charisma (high cha-
risma) to level 3 of charisma (some charisma). This is 
like asking ‘is the difference between high charisma 
and some charisma the same for attractive people and 
average-looking people?’ The best way to understand 
what this contrast is testing is to extract the relevant 
bit of the interaction graph in Figure 14.12. If you 
look at this you can see that the interest (as indi-
cated by high ratings) in attractive dates was the same 

Figure 14.12
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regardless of whether they had high or average charisma. However, for average-looking 
dates, there was more interest when that person had high charisma rather than average. 
The contrast is highly significant, F(1, 18) = 21.94, p < .001, and tells us that as dates 
become less attractive there is a greater decline in interest when charisma is average 
compared to when charisma is high.

14.5.6.2. looks × charisma interaction 2: attractive vs.  
average, dullard vs. some charisma 2

The second contrast for this interaction term inves-
tigates level 1 of looks (attractive) compared to level 
3 (average looking), when comparing level 2 of cha-
risma (dullard) to level 3 of charisma (some charisma). 
This is like asking ‘is the difference between no cha-
risma and some charisma the same for attractive peo-
ple and average-looking people?’ Again, the best way 
to understand what this contrast is testing is to extract 
the relevant bit of the interaction graph in Figure 
14.12. If you look at this you can see that the interest 
(as indicated by high ratings) in attractive dates was 
higher when they had some charisma than when they 
were a dullard. The same is also true for average-looking 
dates. In fact the two lines are fairly parallel. The con-
trast is not significant, F(1, 18) = 4.09, ns, and tells us 
that as dates become less attractive there is a decline in 
interest both when charisma is low and when there is 
no charisma at all.

14.5.6.3. looks × charisma interaction 3: ugly vs. average,  
high charisma vs. some charisma 2

The third contrast for this interaction term inves-
tigates level 2 of looks (ugly) compared to level 3 
(average looking), comparing level 1 of charisma 
(high charisma) to level 3 of charisma (some cha-
risma). This is like asking ‘is the difference between 
high charisma and some charisma the same for ugly 
people and average-looking people?’ If we again 
extract the relevant bit of the interaction graph 
in Figure 14.12 you can see that the interest (as 
indicated by high ratings) decreases from average-
looking dates to ugly ones in both high- and some- 
charisma dates; however, this fall is slightly greater 
in the low-charisma dates (the line connecting the 
squares is slightly steeper). The contrast is signif-
icant, F(1, 18) = 6.23, p < .05, and tells us that 
as dates become less attractive there is a greater 
decline in interest when charisma is low compared 
to when charisma is high.
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14.5.6.4. looks × charisma interaction 4:  
ugly vs. average, dullard vs. some charisma 2

The final contrast for this interaction term investigates 
level 2 of looks (ugly) compared to level 3 (average 
looking), when comparing level 2 of charisma (dullard) 
to level 3 of charisma (some charisma). This is like ask-
ing ‘is the difference between no charisma and some 
charisma the same for ugly people and average-looking 
people?’ If we extract the relevant bit of the interac-
tion graph in Figure 14.12 you can see that the interest 
(as indicated by high ratings) in average-looking dates 
was higher when they had some charisma than when 
they were a dullard, but for ugly dates the ratings were 
roughly the same regardless of the level of charisma. 
This contrast is highly significant, F(1, 18) = 88.60, 
p < .001, and tells us that as dates become less attrac-
tive the decline in interest in dates with a bit of cha-
risma is significantly greater than for dullards.

14.5.7.   The interaction between looks, charisma and  
gender 3

The three-way interaction tells us whether the looks × charisma interaction 
described above is the same for men and women (i.e. whether the combined 
effect of attractiveness of the date and their level of charisma is the same 
for male participants as for female subjects). SPSS Output 14.3 tells us that 
there is a significant three-way looks × charisma × gender interaction, F(4, 
72) = 24.12, p < .001. The nature of this interaction is revealed in Figure 
14.13, which shows the looks × charisma interaction for men and women 
separately (the means on which this graph is based appear in SPSS Output 
14.12). The male graph shows that when dates are attractive, men will 
express a high interest regardless of charisma levels (the circle, square and 
dot all overlap). At the opposite end of the attractiveness scale, when a date 
is ugly, regardless of charisma men will express very little interest (ratings are all low). The only 
time charisma makes any difference to a man is if the date is average looking, in which case high 
charisma boosts interest, being a dullard reduces interest, and having a bit of charisma leaves 
things somewhere in between. The take-home message is that men are superficial cretins who 
are more interested in physical attributes. The picture for women is very different. If someone 
has high levels of charisma then it doesn’t really matter what they look like, women will express 
an interest in them (the line of circles is relatively flat). At the other extreme, if the date is a 
dullard, then they will express no interest in them, regardless of how attractive they are (the line 
of triangles is relatively flat). The only time attractiveness makes a difference is when someone 
has an average amount of charisma, in which case being attractive boosts interest, and being 
ugly reduces it. Put another way, women prioritize charisma over physical appearance. Again, 
we can look at some contrasts to further break this interaction down (SPSS Output 14.7). These 
contrasts are similar to those for the looks × charisma interaction, but they now also take into 
account the effect of gender as well!

How do I interpret a
three-way interaction?



528 d isCOVeR ing sTAT isT iCs  Us ing sPss

SPSS OuTPuT 14.12

Figure 14.13
Graphs showing 
the looks by 
charisma 
interaction for 
men and women. 
Lines represent 
high charisma 
(circles), some 
charisma 
(squares) and 
no charisma 
(triangles)

14.5.7.1. looks × charisma × gender interaction 1:  
attractive vs. average, high charisma vs. some charisma,  
male vs. female 3

The first contrast for this interaction term compares level 1 of looks (attractive) to level 3 
(average looking), when level 1 of charisma (high charisma) is compared to level 3 of charisma 
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(some charisma) in males compared to females,  
F(1, 18) < 1, ns. If we extract the relevant bits of the 
interaction graph in Figure 14.3, we can see that inter-
est (as indicated by high ratings) in attractive dates 
was the same regardless of whether they had high or 
some charisma. However, for average-looking dates, 
there was more interest when that person had high 
charisma rather than some charisma. Importantly, 
this pattern of results is the same in males and females 
and this is reflected in the non-significance of this 
contrast.

14.5.7.2. looks × charisma × 
gender interaction 2: attractive vs. 
average, dullard vs. some charisma, male vs. female 3

The second contrast for this interaction term compares level 1 of looks (attractive) to  
level 3 (average looking), when level 2 of charisma (dullard) is compared to level 3 of cha-
risma (some charisma), in men compared to women. Again, we extract the relevant bit of 
the interaction graph in Figure 14.3 and you can see that the patterns are different for men 
and women. This is reflected by the fact that the 
contrast is significant, F(1, 18) = 60.67, p < .001. 
To unpick this we need to look at the graph. First, 
if we look at average-looking dates, for both men 
and women more interest is expressed when the date 
has some charisma than when they have none (and 
the distance between the square and the triangle is 
about the same). So the difference doesn’t appear to 
be here. If we now look at attractive dates, we see 
that men are equally interested in their dates regard-
less of their charisma, but for women, they’re much 
less interested in an attractive person if they are a 
dullard. Put another way, for attractive dates, the dis-
tance between the square and the triangle is much 
smaller for men than it is for women. Another way 
to look at it is that for dates with some charisma, the 
reduction in interest as attractiveness goes down is 
about the same in men and women (the lines with 
squares have the same slope). However, for dates who are dullards, the decrease in interest 
if these dates are average looking rather than attractive is much more dramatic in men than 
women (the line with triangles is much steeper for men than it is for women).

14.5.7.3. looks × charisma × gender interaction 3: ugly vs. 
average, high charisma vs. some charisma, males vs. females 3

The third contrast for this interaction term compares level 2 of looks (ugly) to level 3 
(average looking), when level 1 of charisma (high charisma) is compared to level 3 of cha-
risma (some charisma), in men compared to women. Again, we extract the relevant bit of 
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the interaction graph in Figure 14.3 and you can see 
that the patterns are different for men and women. 
This is reflected by the fact that the contrast is sig-
nificant, F(1, 18) = 11.70, p < .01. To unpick this 
we need to look at the graph. First, let’s look at the 
men. For men, as attractiveness goes down, so does 
interest when the date has high charisma and when 
they have some charisma. In fact the lines are par-
allel. So, regardless of charisma, there is a similar 
reduction in interest as attractiveness declines. For 
women the picture is quite different. When charisma 
is high, there is no decline in interest as attractiveness 
falls (the line connecting the circles is flat); however, 
when charisma is lower, the attractiveness of the date 
does matter and interest is lower in an ugly date than 
in an average-looking date. Another way to look at 
it is that for dates with some charisma, the reduction 
in interest as attractiveness goes down is about the 

same in men and women (the lines with squares have the same slope). However, for dates 
who have high charisma, the decrease in interest if these dates are ugly rather than average 
looking is much more dramatic in men than women (the line with circles is much steeper for 
men than it is for women). This is what the significant contrast tells us.

14.5.7.4. looks × charisma × 
gender interaction 4: ugly vs. 
average, dullard vs. some  
charisma, male vs. female 3

The final contrast for this interaction term compares 
level 2 of looks (ugly) to level 3 (average looking), 
when comparing level 2 of charisma (dullard) to 
level 3 of charisma (some charisma), in men com-
pared to women. If we extract the relevant bits of 
the interaction graph in Figure 14.3, we can see that 
interest (as indicated by high ratings) in ugly dates 
was the same regardless of whether they had some 
charisma or were a dullard. However, for average-
looking dates, there was more interest when that 
person had some charisma rather than if they were 

a dullard. Importantly, this pattern of results is the same in males and females and this is 
reflected in the non-significance of this contrast, F(1, 18) = 1.33, ns. 

14.5.8.  Conclusions 3

These contrasts tell us nothing about the differences between the attractive and ugly condi-
tions, or the high-charisma and dullard conditions, because these were never compared. We 
could rerun the analysis and specify our contrasts differently to get these effects. However, 
what is clear from our data is that differences exist between men and women in terms of 
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how they’re affected by the looks and personality of potential dates. Men appear to be 
enthusiastic about dating anyone who is attractive regardless of how awful their personality. 
Women are almost completely the opposite: they are enthusiastic about dating anyone with 
a lot of charisma, regardless of how they look (and are unenthusiastic about dating people 
without charisma regardless of how attractive they look). The only consistency between 
men and women is when there is some charisma (but not lots), in which case for both gen-
ders the attractiveness influences how enthusiastic they are about dating the person.

What should be even clearer from this chapter is that when more than two independent 
variables are used in ANOVA, it yields complex interaction effects that require a great deal 
of concentration to interpret (imagine interpreting a four-way interaction!). Therefore, it 
is essential to take a systematic approach to interpretation and plotting graphs is a particu-
larly useful way to proceed. It is also advisable to think carefully about the appropriate 
contrasts to use to answer the questions you have about your data. It is these contrasts that 
will help you to interpret interactions, so make sure you select sensible ones!

             CRAMMING SAM’S TIPS    

	 Mixed ANOVA compares several means when there are two or more independent variables, and at least one of them has 
been measured using the same participants and at least one other has been measured using different participants. 

	 Test the assumption of sphericity for the repeated-measures variable(s) when they have three or more conditions using 
Mauchly’s test. If the value in the column labelled Sig. is less than .05 then the assumption is violated. You should test this 
assumption for all effects (if there are two or more repeated-measures variables this means you test the assumption for all 
variables and the corresponding interaction terms).

	 The table labelled Tests of Within-Subjects Effects shows the results of your ANOVA for the repeated-measures variables 
and all of the interaction effects. For each effect, if the assumption of sphericity has been met then look at the row labelled 
Sphericity Assumed. Otherwise, read the row labelled Greenhouse-Geisser or Huynh-Feldt (read the previous chapter to 
find out the relative merits of the two procedures). Having selected the appropriate row, look at the column labelled Sig. If 
the value is less than .05 then the means are significantly different.

	 The table labelled Tests of Between-Subjects Effects shows the results of your ANOVA for the between-group variables. 
Look at the column labelled Sig. If the value is less than .05 then the means of the groups are significantly different.

	 Break down the main effects and interaction terms using contrasts. These contrasts appear in the table labelled Tests of 
Within-Subjects Contrasts, again look to the columns labelled Sig. to discover if your comparisons are significant (they will 
be if the significance value is less than .05).

	 Look at the means, or better still draw graphs, to help you interpret the contrasts.

14.6. Calculating effect sizes 3

I keep emphasizing the fact that effect sizes are really more useful when they summarize a 
focused effect. This also gives me a useful excuse to circumvent the complexities of omega 
squared in mixed designs (it’s the road to madness I assure you). Therefore, just calculate 
effect sizes for your contrasts when you’ve got a factorial design (and any main effects 
that compare only two groups). SPSS Output 14.7 shows the values for several contrasts, 
all of which have 1 degree of freedom for the model (i.e. they represent a focused and 

smart
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interpretable comparison) and have 18 residual degrees of freedom. We can use these 
F-ratios and convert them to an effect size r, using a formula we’ve come across before:

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð1, dfRÞ

Fð1, dfRÞ+ dfR

s

First, we can deal with the main effect of gender because this compares only two groups:

rGender =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:005

0:005+ 18

r
= 0:02

For the two comparisons we did for the looks variable (SPSS Output 14.7), we would get:

rAttractive vs: Average =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

226:99

226:99+ 18

r
= 0:96

rUgly vs: Average =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

160:07

160:07+ 18

r
= 0:95

Therefore, both comparisons yielded massive effect sizes. For the two comparisons we did 
for the charisma variable (SPSS Output 14.7), we would get:

rHigh vs: Some =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

109:94

109:94+ 18

r
= 0:93

rDullard vs: Some =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

227:94

227:94+ 18

r
= 0:96

Again, both comparisons yield massive effect sizes. For the looks × gender interaction, we 
again had two contrasts:

rAttractive vs: Average, Male vs: Female =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

43:26

43:26+ 18

r
= 0:84

rUgly vs: Average, Male vs: Female =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

30:23

30:23+ 18

r
= 0:79

Again, these are massive effects. For the charisma × gender interaction, the two contrasts give us:

rHigh vs: Some, Male vs: Female =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27:20

27:20+ 18

r
= 0:78

rDullard vs: Some, Male vs: Female =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

33:69

33:69+ 18

r
= 0:81

Yet again massive effects (can’t you tell the data are fabricated!). 
Moving on to the looks × charisma interaction, we get four contrasts:

rAttractive vs: Average, High vs: Some =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

21:94

21:94+ 18

s
= 0:74

rAttractive vs: Average, Dullard vs:Some =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4:09

4:09+ 18

s
=0:43

rUgly vs: Average, High vs: Some =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:23

6:23+ 18

s
=0:51

rUgly vs: Average, Dullard vs: Some =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

88:60

88:60+ 18

r
= 0:91



533CHAPTER 14   M ixed des ign AnOVA (gLM 5)

All of these effects are in the medium to massive range. Finally, for the looks × charisma 
× gender interaction we had four contrasts:

rAttractive vs: Average, High vs: Some, Male vs: Female =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:93

0:93+ 18

s
= 0:22

rAttractive vs: Average, Dullard vs: Some, Male vs: Female =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

60:67

60:67+ 18

s
=0:88

rUgly vs: Average, High vs: Some, Male vs: Female =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11:70

11:70+ 18

s
=0:63

rUgly vs: Average, Dullard vs: Some, Male vs: Female =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:33

1:33+ 18

r
= 0:26

As such, the two effects that were significant (attractive vs. average, dullard vs. some, male 
vs. female and ugly vs. average, high vs. some, male vs. female) yielded large effect sizes. 
The two effects that were not significant yielded close to medium effect sizes.

14.7. Reporting the results of mixed ANOVA 2

As you’ve probably gathered, when you have more than two independent variables there’s 
a hell of a lot of information to report. You have to report all of the main effects, all of the 
interactions and any contrasts you may have done. This can take up a lot of space and one 
good tip is: reserve the most detail for the effects that actually matter (e.g. main effects are 
usually not that interesting if you’ve got a significant interaction that includes that vari-
able). I’m a big fan of giving brief explanations of results in the results section to really 
get the message across about what a particular effect is telling us and so I tend to not just 
report results, but offer some interpretation as well. Having said that, some journal editors 
are big fans of telling me my results sections are too long. So, you should probably ignore 
everything I say. Assuming we want to report all of our effects, we could do it something 
like this (although not as a list!):

 All effects are reported as significant at p < .05. There was a significant main effect of 
the attractiveness of the date on interest expressed by participant, F(2, 36) = 423.73. 
Contrasts revealed that attractive dates were more desirable than average-looking ones, 
F(1, 18) = 226.99, r = .96, and ugly dates were less desirable than average-looking ones 
F(1, 18) = 160.07, r = .95.

 There was also a significant main effect of the amount of charisma the date possessed 
on the interest expressed in dating them, F(2, 36) = 328.25. Contrasts revealed that 
dates with high charisma were more desirable than dates with some charisma, F(1, 
18) = 109.94, r = .93, and dullards were less desirable than dates with some charisma, 
F(1, 18) = 227.94, r = .96.

 There was no significant effect of gender, indicating that ratings from male and female 
participants were in general the same, F(1, 18) < 1, r = .02.

 There was a significant interaction effect between the attractiveness of the date and the 
gender of the participant, F(2, 36) = 80.43. This indicates that the desirability of dates of 
different levels of attractiveness differed in men and women. To break down this interac-
tion, contrasts were performed comparing each level of attractiveness to average look-
ing across male and female participants. These revealed significant interactions when 
comparing male and female scores to attractive dates compared to average-looking dates, 
F(1, 18) = 43.26, r = .84, and to ugly dates compared to average dates, F(1, 18) = 30.23, 

everybody
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r = .79. Looking at the interaction graph, this suggests that male and female ratings are 
very similar for average-looking dates, but men rate attractive dates higher than women, 
whereas women rate ugly dates higher than men. Although both male’s and female’s 
interest decreases as attractiveness decreases, this decrease is more pronounced for men, 
suggesting that when charisma is ignored, men’s interest in dating a person is more influ-
enced by their looks than for females.

 There was a significant interaction effect between the level of charisma of the date and 
the gender of the participant, F(2, 36) = 62.45. This indicates that the desirability of 
dates of different levels of charisma differed in men and women. To break down this 
interaction, contrasts were performed comparing each level of charisma to the mid-
dle category of ‘some charisma’ across male and female participants. These revealed 
significant interactions when comparing male and female scores to highly charismatic 
dates compared to dates with some charisma, F(1, 18) = 27.20, r = .78, and to dullards 
compared to dates with some charisma, F(1, 18) = 33.69, r = .81. The interaction graph 
reveals that men show more interest in dates who are dullards than women do, and 
women show slightly more interest in very charismatic dates than men do. Both male’s 
and female’s interest decrease as charisma decreases, but this decrease is more pro-
nounced for females, suggesting women’s interest in dating a person is more influenced 
by their charisma than for men. 

 There was a significant interaction effect between the level of charisma of the date and 
the attractiveness of the date, F(4, 72) = 36.63. This indicates that the desirability of 
dates of different levels of charisma differed according to their attractiveness. To break 
down this interaction, contrasts were performed comparing each level of charisma to 
the middle category of ‘some charisma’ across each level of attractiveness compared to 
the category of average attractiveness. The first contrast revealed a significant interac-
tion when comparing attractive dates to average-looking dates when the date had high 
charisma compared to some charisma, F(1, 18) = 21.94, r = .74, and tells us that as dates 
become less attractive there is a greater decline in interest when charisma is low compared 
to when charisma is high. The second contrast compared attractive dates to average- 
looking dates when the date was a dullard compared to when they had some charisma. 
This was not significant, F(1, 18) = 4.09, r = .43, and tells us that as dates become less 
attractive there is decline in interest both when charisma is low and when there is no 
charisma at all. The third contrast compared ugly dates to average-looking dates when 
the date had high charisma compared to some charisma. This was significant, F(1, 18) = 
6.23, r = .51, and tells us that as dates become less attractive there is a greater decline 
in interest when charisma is low compared to when charisma is high. The final contrast 
compared ugly dates to average-looking dates when the date was a dullard compared to 
when they had some charisma. This contrast was highly significant, F(1, 18) = 88.60, 
r = .91, and tells us that as dates become less attractive the decline in interest in dates 
with a bit of charisma is significantly greater than for dullards.

 Finally, the looks × charisma × gender interaction was significant F(4, 72) = 24.12. 
This indicates that the looks × charisma interaction described previously was differ-
ent in male and female participants. Again, contrasts were used to break down this 
interaction; these contrasts compared male and females scores at each level of charisma 
compared to the middle category of ‘some charisma’ across each level of attractiveness 
compared to the category of average attractiveness. The first contrast revealed a non-
significant difference between male and female responses when comparing attractive 
dates to average-looking dates when the date had high charisma compared to some cha-
risma, F(1, 18) < 1, r = .22, and tells us that for both males and females, as dates become 
less attractive there is a greater decline in interest when charisma is low compared to 
when charisma is high. The second contrast investigated differences between males and 
females when comparing attractive dates to average-looking dates when the date was 
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a dullard compared to when they had some charisma. This was significant, F(1, 18) = 
60.67, r = .88, and tells us that for dates with some charisma, the reduction in interest 
as attractiveness goes down is about the same in men and women, but for dates who are 
dullards, the decrease in interest if these dates are average looking rather than attractive 
is much more dramatic in men than women. The third contrast looked for differences 
between males and females when comparing ugly dates to average-looking dates when 
the date had high charisma compared to some charisma. This was significant, F(1, 18) = 
11.70, r = .63, and tells us that for dates with some charisma, the reduction in interest 
as attractiveness goes down is about the same in men and women, but for dates who 
have high charisma, the decrease in interest if these dates are ugly rather than average 
looking is much more dramatic in men than women. The final contrast looked for dif-
ferences between men and women when comparing ugly dates to average-looking dates 
when the date was a dullard compared to when they had some charisma. This contrast 
was not significant, F(1, 18) = 1.33, r = .26, and tells us that for both men and women, 
as dates become less attractive the decline in interest in dates with a bit of charisma is 
significantly greater than for dullards.

People can be jealous. People can be especially jeal-
ous when they think that their partner is being unfaithful. 
An evolutionary view of jealousy suggests that men and 
women have evolved distinctive types of jealousy because 
male and female reproductive success is threatened by 
different types of infidelity. Specifically, a woman’s sexual 
infidelity deprives her mate of a reproductive opportunity 
and in some cases burdens him with years investing in 
a child that is not his. Conversely, a man’s sexual infidel-
ity does not burden his mate with unrelated children, but 
may divert his resources from his mate’s progeny. This 
diversion of resources is signalled by emotional attach-
ment to another female. Consequently, men’s jealousy 
mechanism should have evolved to prevent a mate’s 
sexual infidelity, whereas in women it has evolved to pre-
vent emotional infidelity. If this is the case then men and 
women should divert their attentional resources towards 
different cues to infidelity: women should be ‘on the 
look out’ for emotional infidelity, whereas men should be 
watching out for sexual infidelity.

Achim Schützwohl put this theory to the test in a unique 
study in which men and women saw sentences presented 
on a computer screen (Schützwohl, 2008). On each  
trial, participants saw a target sentence that was always 

emotionally neutral (e.g. ‘The gas station is at the other 
side of the street’). However, the trick was that before each 
of these targets, a distracter sentence was presented that 
could also be affectively neutral, or could indicate sexual 
infidelity (e.g. ‘Your partner suddenly has difficulty becom-
ing sexually aroused when he and you want to have sex’) 
or emotional infidelity (e.g. ‘Your partner doesn’t say ‘‘I love 
you’’ to you anymore’). The idea was that if these distrac-
tor sentences grabbed a person’s attention then (1) they 
would remember them, and (2) they would not remember 
the target sentence that came afterwards (because their 
attentional resources were still focused on the distractor). 
These effects should show up only in people currently in a 
relationship. The outcome was the number of sentences 
that a participant could remember (out of 6), and the 
predictors were whether the person had a partner or not 
(Relationship), whether the trial used a neutral distrac-
tor, an emotional infidelity distractor or a sexual infidelity 
distractor, and whether the sentence was a distractor or the 
target following the distractor. Schützwohl analysed men 
and women’s data separately. The predictions are that 
women should remember more emotional infidelity sen-
tences (distractors) but fewer of the targets that followed 
those sentences (target). For men, the same effect should 
be found but for sexual infidelity sentences. 

The data from this study are in the file Schützwohl 
(2008).sav. Labcoat Leni wants you to carry out two 
three-way mixed ANOVAs (one for men and the other 
for women) to test these hypotheses. Answers are in the 
additional material on the companion website (or look at 
pages 638–642 in the original article).

LABCOAT LENI’S
REAL RESEARCH 14.1
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14.8. What to do when assumptions are violated 
in mixed ANOVA 3

If I had £1 (or $1, 1 euro or whatever currency you fancy) for every time someone had told 
me with 100% confidence that there was no ‘non-parametric’ equivalent of mixed ANOVA, 
then I’d have a nice shiny new drum kit. As with other factorial ANOVAs, there is not a non-
parametric counterpart of mixed ANOVA, as such, but there are robust methods that can be 
used (see section 5.7.4). As in previous chapters, my advice is to read Rand Wilcox’s book 
(Wilcox, 2005), then use the R plugin for SPSS to run the analysis (see Oliver Twisted).

‘There is not a non-parametric equivalent of mixed ANOVA’, sobs 
Oliver, ‘how will I analyse my data?’ That’s £1, thanks. In return for 
your money, Oliver, I’ve prepared a flash movie on the companion 
website that shows you how to use the R plugin to run a robust mixed 
ANOVA. What a bargain.

OLIVER TWISTED

Please, Sir, can I 
have some more … 
robust tests?

What have I discovered about statistics? 2

Three-way ANOVA is a confusing nut to crack. I’ve probably done hundreds of three-way 
ANOVAs in my life and still I kept getting confused throughout writing this chapter (and so 
if you’re confused after reading it it’s not your fault, it’s mine). Hopefully, what you should 
have discovered is that ANOVA is flexible enough that you can mix and match independ-
ent variables that are measured using the same or different participants. In addition we’ve 
looked at how ANOVA is also flexible enough to go beyond merely including two independ-
ent variables. Hopefully, you’ve also started to realize why there are good reasons to limit 
the number of independent variables that you include (for the sake of interpretation).

Of course far more interesting than that is that you’ve discovered that men are super-
ficial creatures who value looks over charisma, and that women are prepared to date the 
hunchback of Notre Dame provided he has a sufficient amount of charisma. This is why 
as a 16–18 year old my life was so complicated, because where on earth do you discover 
your hidden charisma? Luckily for me, some girls find alcoholics appealing. The girl I was 
particularly keen on at 16 was, as it turned out, keen on me too. I refused to believe this for 
at least a month. All of our friends were getting bored of us declaring our undying love for 
each other to them but then not speaking to each other; they eventually intervened. There 
was a party one evening and all of her friends had spent hours convincing me to ask her on 
a date, guaranteeing me that she would say ‘yes’. I had psyched myself up, I was going to do 
it, I was actually going to ask a girl out on a date. My whole life had been leading up to this 
moment and I must not do anything to ruin it. By the time she arrived my nerves had got 
the better of me and she had to step over my paralytic corpse to get into the house. Later on, 
my friend Paul Spreckley (see Figure 9.1) physically carried the girl in question from another 
room and put her next to me and then said something to the effect of ‘Andy, I’m going to sit 
here until you ask her out.’ He had a long wait but eventually, miraculously, the words came 
out of my mouth. What happened next is the topic for another book, not about statistics.
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Key terms that I’ve discovered
Mixed ANOVA Mixed design

Smart Alex’s tasks

Task 1	 : I am going to extend the example from the previous chapter (advertis-
ing and different imagery) by adding a between-group variable into the design.4  
To recap, in case you haven’t read the previous chapter, participants viewed a total 
of nine mock adverts over three sessions. In these adverts there were three prod-
ucts (a brand of beer, Brain Death, a brand of wine, Dangleberry, and a brand of 
water, Puritan). These could be presented alongside positive, negative or neutral ima-
gery. Over the three sessions and nine adverts, each type of product was paired with 
each type of imagery (read the previous chapter if you need more detail). After each 
advert participants rated the drinks on a scale ranging from −100 (dislike very much) 
through 0 (neutral) to 100 (like very much). The design, thus far, has two indepen-
dent variables: the type of drink (beer, wine or water) and the type of imagery used 
(positive, negative or neutral). These two variables completely cross over, producing 
nine experimental conditions. Now imagine that I also took note of each person’s 
gender. Subsequent to the previous analysis it occurred to me that men and women 
might respond differently to the products (because, in keeping with stereotypes, men 
might mostly drink lager whereas women might drink wine). Therefore, I wanted 
to reanalyse the data taking this additional variable into account. Now, gender is a 
between-group variable because a participant can be only male or female: they can-
not participate as a male and then change into a female and participate again! The 
data are the same as in the previous chapter (Table 13.3) and can be found in the file 
MixedAttitude.sav. Run a mixed ANOVA on these data. 3

Task 2	 : Text messaging is very popular among mobile phone owners, to the point 
that books have been published on how to write in text speak (BTW, hope u kno wat 
I mean by txt spk). One concern is that children may use this form of communica-
tion so much that it will hinder their ability to learn correct written English. One 
concerned researcher conducted an experiment in which one group of children was 
encouraged to send text messages on their mobile phones over a six-month period. 
A second group was forbidden from sending text messages for the same period. To 
ensure that kids in this latter group didn’t use their phones, this group were given 
armbands that administered painful shocks in the presence of microwaves (like those 
emitted from phones). There were 50 different participants: 25 were encouraged to 
send text messages, and 25 were forbidden. The outcome was a score on a gram-
matical test (as a percentage) that was measured both before and after the experi-
ment. The first independent variable was, therefore, text message use (text messagers 
versus controls) and the second independent variable was the time at which gram-
matical ability was assessed (before or after the experiment). The data are in the file 
TextMessages.sav. 3

Task 3	 : A researcher was interested in the effects on people’s mental health of  
participating in Big Brother (see Chapter 1 if you don’t know what Big Brother is). 

4 Previously the example contained two repeated-measures variables (drink type and imagery type), but now it will 
include three variables (two repeated-measures and one between-group).
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The researcher hypothesized that they start off with personality disorders that are 
exacerbated by being forced to live with people as attention seeking as themselves. 
To test this hypothesis, she gave eight contestants a questionnaire measuring person-
ality disorders before they entered the house, and again when they left the house. A 
second group of eight people acted as a waiting list control. These were people short 
listed to go into the house, but never actually made it. They too were given the ques-
tionnaire at the same points in time as the contestants. The data are in BigBrother.
sav. Conduct a mixed ANOVA on the data. 2

Answers can be found on the companion website. Some more detailed comments about 
task 2 can be found in Field and Hole (2003).

Further reading
Field, A. P. (1998). A bluffer’s guide to sphericity. Newsletter of the Mathematical, Statistical and 

Computing section of the British Psychological Society, 6(1), 13–22. (Available in the additional 
material on the companion website.)

Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Thomson. (Or you 
might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007.)

Online tutorials
The companion website contains the following Flash movie tutorials to accompany this chapter:

 Mixed ANOVA using SPSS  Robust Mixed ANOVA using R

Interesting real research
Schützwohl, A. (2008). The disengagement of attentive resources from task-irrelevant cues to sexual 

and emotional infidelity. Personality and Individual Differences, 44, 633–644.
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Figure 15.1
In my office 
during my 
Ph.D., probably 
preparing some 
teaching. Yes, 
as if my life isn’t 
embarrassing 
enough, I had 
quite long hair 
back then

15.1. What will this chapter tell me? 1

After my psychology degree (at City University, London) I went to the University of Sussex 
to do my Ph.D. (also in psychology) and like many people I had to teach to survive. Much to 
my dread I was allocated to teach second-year undergraduate statistics. This was possibly the 
worst combination of events that I could imagine. I was still very shy at the time, and I didn’t 
have a clue about research methods. Standing in front of a room full of strangers and trying 
to teach them ANOVA was only marginally more appealing than dislocating my knees and 
running a marathon – with broken glass in my trainers (sneakers). I obsessively prepared for 
my first session so that it would go well; I created handouts, I invented examples, I rehearsed 
what I would say. I went in terrified but at least knowing that if preparation was any predictor 
of success then I would be OK. About half way through the first session as I was mumbling on 
to a room of bored students, one of them rose majestically from their chair. She walked slowly 
towards me and I’m convinced that she was surrounded by an aura of bright white light and 
dry ice. Surely she had been chosen by her peers to impart a message of gratitude for the hours 
of preparation I had done and the skill with which I was un-clouding their brains of the mys-
teries of ANOVA. She stopped beside me. We stood inches apart and my eyes raced around 
the floor looking for the reassurance of my shoelaces: ‘No one in this room has a rabbit1 clue 
what you’re going on about,’ she spat before storming out. Scales have not been invented 

1 She didn’t say rabbit, but she did say a word that describes what rabbits do a lot; it begins with an ‘f ’ and the 
publishers think that it will offend you.

15Non-parametric tests
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yet to measure how much I wished I’d ran the dislocated-knees marathon that morning and 
then taken the day off. I was absolutely mortified. To this day I have intrusive thoughts about 
groups of students in my lectures walking zombie-like towards the front of the lecture theatre 
chanting ‘No one knows what you’re going on about’ before devouring my brain in a rabid 
feeding frenzy. The point is that sometimes our lives, like data, go horribly, horribly wrong. 
This chapter is about data that are as wrong as dressing a cat in a pink tutu.

15.2. When to use non-parametric tests 1

We’ve seen in the last few chapters how we can use various techniques to 
look for differences between means. However, all of these tests rely on 
parametric assumptions (see Chapter 5). Data are often unfriendly and 
don’t always turn up in nice normally distributed packages! Just to add 
insult to injury, it’s not always possible to correct for problems with the 
distribution of a data set – so, what do we do in these cases? The answer 
is that we have to use special kinds of statistical procedures known as 
non-parametric tests. Non-parametric tests are sometimes known as 
assumption-free tests because they make fewer assumptions about the type 
of data on which they can be used.2 Most of these tests work on the principle 
of ranking the data: that is, finding the lowest score and giving it a rank 

of 1, then finding the next highest score and giving it a rank of 2, and so on. This process 
results in high scores being represented by large ranks, and low scores being represented by 
small ranks. The analysis is then carried out on the ranks rather than the actual data. This 
process is an ingenious way around the problem of using data that break the parametric 
assumptions. Some people believe that non-parametric tests have less power than their para-
metric counterparts, but as we will see in Jane Superbrain Box 15.1 below this is not always 
true. In this chapter we’ll look at four of the most common non-parametric procedures: the 
Mann–Whitney test, the Wilcoxon signed-rank test, Friedman’s test and the Kruskal–Wallis 
test. For each of these we’ll discover how to carry out the analysis on SPSS and how to inter-
pret and report the results.

15.3. Comparing two independent conditions: the 
Wilcoxon rank-sum test and Mann–Whitney test 1

When you want to test differences between two conditions and different participants have 
been used in each condition then you have two choices: the Mann–Whitney test (Mann & 
Whitney, 1947) and the Wilcoxon rank-sum test (Wilcoxon, 1945; Figure 15.2). These tests are 
the non-parametric equivalent of the independent t-test. In fact both tests are equivalent, and 
there’s another, more famous, Wilcoxon test, so it gets extremely confusing for most of us.

For example, a neurologist might collect data to investigate the depressant effects of 
certain recreational drugs. She tested 20 clubbers in all: 10 were given an ecstasy tablet to 
take on a Saturday night and 10 were allowed to drink only alcohol. Levels of depression 
were measured using the Beck Depression Inventory (BDI) the day after and midweek. The 
data are in Table 15.1.

2 Non-parametric tests sometimes get referred to as distribution-free tests, with an explanation that they make no 
assumptions about the distribution of the data. Technically, this isn’t true: they do make distributional assump-
tions (e.g. the ones in this chapter all assume a continuous distribution), but they are less restrictive ones than 
their parametric counterparts.

What are non-parametric
tests?
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Table 15.1 Data for drug experiment

Participant Drug BDI (Sunday) BDI (Wednesday)

 1 Ecstasy 15 28

 2 Ecstasy 35 35

 3 Ecstasy 16 35

 4 Ecstasy 18 24

 5 Ecstasy 19 39

 6 Ecstasy 17 32

 7 Ecstasy 27 27

 8 Ecstasy 16 29

 9 Ecstasy 13 36

10 Ecstasy 20 35

11 Alcohol 16  5

12 Alcohol 15  6

13 Alcohol 20 30

14 Alcohol 15  8

15 Alcohol 16  9

16 Alcohol 13  7

17 Alcohol 14  6

18 Alcohol 19 17

19 Alcohol 18  3

20 Alcohol 18 10

Figure 15.2 
Frank Wilcoxon
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15.3.1.  Theory 2

The logic behind the Wilcoxon rank-sum and Mann–Whitney tests is incredibly elegant. 
First, let’s imagine a scenario in which there is no difference in depression levels between 
ecstasy and alcohol users. If we were to rank the data ignoring the group to which a person 
belonged from lowest to highest (i.e. give the lowest score a rank of 1 and the next lowest 
a rank of 2 etc.), then what should you find? Well, if there’s no difference between the 
groups then you expect to find a similar number of high and low ranks in each group; 
specifically, if you added up the ranks, then you’d expect the summed total of ranks in each 
group to be about the same. Now think about what would happen if there was a difference 
between the groups. Let’s imagine that the ecstasy group is more depressed than the alco-
hol group. If you rank the scores as before, then you would expect the higher ranks to be 
in the ecstasy group and the lower ranks to be in the alcohol group. Again, if we summed 
the ranks in each group, we’d expect the sum of ranks to be higher in the ecstasy group 
than in the alcohol group.

The Mann–Whitney and Wilcoxon rank-sum tests both work on this 
principle. In fact, when the groups have unequal numbers of participants 
in them then the test statistic (Ws) for the Wilcoxon rank-sum test is sim-
ply the sum of ranks in the group that contains the fewer people; when 
the group sizes are equal it’s the value of the smaller summed rank. Let’s 
have a look at how ranking works in practice.

Figure 15.3 shows the ranking process for both the Wednesday and 
Sunday data. To begin with, let’s use our data for Wednesday, because 
it’s more straightforward. First, just arrange the scores in ascending 
order, attach a label to remind you which group they came from (I’ve 
used A for alcohol and E for ecstasy), then starting at the lowest score 

assign potential ranks starting with 1 and going up to the number of scores you have. The 
reason why I’ve called these potential ranks is because sometimes the same score occurs 
more than once in a data set (e.g. in these data a score of 6 occurs twice, and a score of 
35 occurs three times). These are called tied ranks and these values need to be given the 
same rank, so all we do is assign a rank that is the average of the potential ranks for those 
scores. So, with our two scores of 6, because they would’ve been ranked as 3 and 4, we 
take an average of these values (3.5) and use this value as a rank for both occurrences of 
the score! Likewise, with the three scores of 35, we have potential ranks of 16, 17 and 
18; we actually use the average of these three ranks, (16 + 17 + 18)/3 = 17. When we’ve 
ranked the data, we add up all of the ranks for the two groups. So, add the ranks for the 
scores that came from the alcohol group (you should find the sum is 59) and then add 
the ranks for the scores that came from the ecstasy group (this value should be 151). We 
take the lowest of these sums to be our test statistic, therefore the test statistic for the 
Wednesday data is Ws = 59.

SELF-TEST  Based on what you have just learnt,  
try ranking the Sunday data. (The answers are in 
Figure 15.3 – there are lots of tied ranks and the  
data are generally horrible.)

You should find that when you’ve ranked the data, and added the ranks for the two 
groups, the sum of ranks for the alcohol group is 90.5 and for the ecstasy group it is 119.5. 
The lowest of these sums is our test statistic; therefore the test statistic for the Sunday data 
is Ws = 90.5.

How do I rank data?

smart
alex
only
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The next issue is: how do we determine whether this test statistic is significant? It turns 
out that the mean (W

—
s) and standard error of this test statistic (SEW

—
s
) can be easily calculated 

from the sample sizes of each group (n1 is the sample size of group 1 and n2 is the sample 
size of group 2):

Ws=
n1ðn1 + n2 + 1Þ

2

SEWs
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðn1 + n2 + 1Þ

12

r

For our data, we actually have equal-sized groups and there are 10 people in each, so 
n1 and n2 are both 10. Therefore, the mean and standard deviation are:

Ws=
10ð10+ 10+ 1Þ

2
= 105

SEWs
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10×10Þð10+ 10+ 1Þ

12

r
= 13:23

If we know the test statistic, the mean of test statistics and the standard error, then we can 
easily convert the test statistic to a z-score using the equation that we came across way back 
in Chapter 1:

z= X−X

s
= Ws −Ws

SEWs

If we calculate this value for the Sunday and Wednesday depression scores we get:

zSunday =
Ws −Ws

SEWs

= 90:5− 105

13:23
=−1:10

zWednesday =
Ws −Ws

SEWs

= 59− 105

13:23
=−3:48

If these values are bigger than 1.96 (ignoring the minus sign) then the test is significant 
at p < .05. So, it looks as though there is a significant difference between the groups on 
Wednesday, but not on Sunday.

The procedure I’ve actually described is the Wilcoxon rank-sum test. The Mann–Whitney 
test, with which many of you may be more familiar, is basically the same. It is based on a 
test statistic U, which is derived in a fairly similar way to the Wilcoxon procedure (in fact 
there’s a direct relationship between the two). If you’re interested, U is calculated using an 
equation in which n1 and n2 are the sample sizes of groups 1 and 2 respectively, and R1 is 
the sum of ranks for group 1:

U= n1n2 +
N1ðN1 + 1Þ

2
−R1

So, for our data we’d get the following (remember that we have 10 people in each group 
and the sum of ranks for group 1, the ecstasy group, was 119.5 for the Sunday data and 
151 for the Wednesday data):
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USunday = ð10× 10Þ+ 10ð11Þ
2

−119:50= 35:50

UWednesday= ð10× 10Þ+ 10ð11Þ
2

−151:00= 4:00

SPSS produces both statistics and there is a direct relationship between the two, so it 
doesn’t really matter which one you choose!

15.3.2.  Inputting data and provisional analysis 1

SELF-TEST  See whether you can use what you have 
learnt about data entry to enter the data in Table 15.1 
into SPSS.

When the data are collected using different participants in each group, we need to input 
the data using a coding variable. So, the data editor will have three columns of data. 
The first column is a coding variable (called something like Drug) which, in this case, 
will have only two codes (for convenience I suggest 1 = ecstasy group and 2 = alcohol 
group). The second column will have values for the dependent variable (BDI) measured 
the day after (call this variable Sunday_BDI) and the third will have the midweek scores 
on the same questionnaire (call this variable Wednesday_BDI). When you enter the data 
into SPSS remember to tell the computer that a code of 1 represents the group that was 
given ecstasy and a code of 2 represents the group that was restricted to alcohol (see 
section 3.4.2.3).

There were no specific predictions about which drug would have the most effect so the 
analysis should be two-tailed. First, we would run some exploratory analyses on the data 
and because we’re going to be looking for group differences we need to run these explora-
tory analyses for each group. 

SELF-TEST  Carry out some analyses to test for 
normality and homogeneity of variance in these data 
(see sections 5.5 and 5.6).

The results of your exploratory analysis are shown in SPSS Output 15.1. These tables 
show first of all that for the Sunday data the distributions for ecstasy, D(10) = 0.28, 
p < .05, appears to be non-normal whereas the alcohol data, D(10) = 0.17, ns, were 
normal; we can tell this by whether the significance of the K–S and Shapiro–Wilk 
tests are less than .05 (and, therefore, significant) or greater than .05 (and, therefore, 
non-significant, ns). For the Wednesday data, although the data for ecstasy were normal, 
D(10) = 0.24, ns, the data for alcohol appeared to be significantly non-normal, D(10) = 
0.31, p < .01. This finding would alert us to the fact that the sampling distribution might 

everybody
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also be non-normal for the Sunday and Wednesday data and that a non-parametric test 
should be used. You should note that the Shapiro–Wilk statistic yields exact significance 
values whereas the K–S test sometimes gives an approximation of .2 for the significance (see 
the Sunday data for the alcohol group) because SPSS cannot calculate exact significances. 
This finding highlights an important difference between the K–S test and the Shapiro–Wilk 
test: in general the Shapiro–Wilk test is more accurate (see Chapter 5). The second table in 
SPSS Output 15.1 shows the results of Levene’s test. For the Sunday data, F(1, 18) = 3.64, 
ns, and for Wednesday, F(1, 18) = 0.51, ns, the variances are not significantly different, 
indicating that the assumption of homogeneity has been met. 

15.3.3.  Running the analysis 1

First, access the main dialog box (see Figure 15.4) by selecting 
. Once the dialog box is activated, select both dependent variables from 

the list (click on Beck Depression Inventory Sunday [Sunday_BDI] then, holding down 
Ctrl, click on Beck Depression Inventory Wednesday [Wednesday_BDI]) and drag them to 
the box labelled Test Variable List (or click on ). Next, select the independent variable, 
in this case Type of Drug [Drug], and transfer it to the box labelled Grouping Variable. 
When the grouping variable has been selected the  button becomes active and 
you should click on it to activate the define groups dialog box. SPSS needs to know what 
numeric codes you assigned to your two groups, and there is a space for you to type the 
codes. In this example we coded our ecstasy group as 1 and our alcohol group as 2, and 
so you should type these two values in the appropriate space. When you have defined the 
groups, click on  to return to the main dialog box. The main dialog box also pro-
vides the facility to do tests other than the Mann–Whitney test and these alternatives are 
explained in SPSS Tip 15.1.

SPSS OuTPuT 15.1
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If you click on  then another dialog box appears.3 By default SPSS calculates the 
significance of the Mann–Whitney test using a method that is accurate with large sam-
ples (called the Asymptotic Method); however, when samples are smaller, or the data are 
particularly poorly distributed, then more accurate methods are available. The most accu-
rate method is an exact test, which calculates the significance of the Mann–Whitney test 
exactly. However, to get this precision, there is a price, and because of the complexities of 
the computation SPSS can take some time to find a solution – especially in large samples. 
A slightly less labour-intensive method is to estimate the significance using the Monte Carlo 
method.4 This basically involves creating a distribution similar to that found in the sample 
and then taking several samples (the default is 10,000) from this distribution and from 
those samples the mean significance value and the confidence interval around it can be 
created. If that didn’t make any sense to you then, fear not, the rule of thumb is that when 
samples are large you should probably opt for the Monte Carlo method, and when you 
have small samples (as we have) it’s worth opting for the exact test (as I have done in this 
example). Finally, clicking on  opens another dialog box that gives you options for 
the analysis. These options are not particularly useful because, for example, the option that 
provides descriptive statistics does so for the entire data set (so doesn’t break down val-
ues according to group membership). For this reason, I recommend obtaining descriptive 
statistics using the methods we learnt about in sections 5.4.3 and 5.5. To run the analyses 
return to the main dialog box and click on .

3 This button will appear only if you have the Exact tests module of SPSS installed. Remember this in future  
sections too.

4 If you’re wondering why it’s called the Monte Carlo method it’s because back in the late 1800s when Karl Pearson 
was trying to simulate data he didn’t have a computer to do it for him. So he used to toss coins. A lot. That is, until 
a friend suggested that roulette wheels, if unbiased, were excellent random number generators. Rather than trying 
to persuade the Royal Society to fund trips to Monte Carlo casinos to collect data from their roulette wheels, he 
purchased copies of Le Monaco, a weekly Paris periodical that published exactly the data that he required, at the cost 
of 1 franc (Pearson, 1894; Plackett, 1983). When simulated data are used to test a statistical method, or to estimate a 
statistic, it is known as the Monte Carlo method even though we use computers now and not roulette wheels. 

Figure 15.4
Dialog boxes 
for the Mann–
Whitney test
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15.3.4.  Output from the Mann–Whitney test 1

I explained earlier that the Mann–Whitney test works by looking at differences in the ranked 
positions of scores in different groups. Therefore, the first part of the output summarizes 
the data after they have been ranked. Specifically, SPSS tells us the average and total ranks 
in each condition (see SPSS Output 15.2). Remember that the Mann–Whitney test relies on 
scores being ranked from lowest to highest; therefore, the group with the lowest mean rank 
is the group with the greatest number of lower scores in it. Similarly, the group that has the 
highest mean rank should have a greater number of high scores within it. Therefore, this 
initial table can be used to ascertain which group had the highest scores, which is useful in 
case we need to interpret a significant result. You should note that the sums of ranks are the 
same as those calculated in section 15.3.1 (which is something of a relief to me!).

Ranks

10 11.95 119.50
10 9.05 90.50
20
10 15.10 151.00
10 5.90 59.00
20

Type of Drug
Ecstasy
Alcohol
Total
Ecstasy
Alcohol
Total

Beck Depression
Inventory (Sunday)

Beck Depression
Inventory (Wednesday)

N Mean Rank Sum of Ranks

The second table (SPSS Output 15.3) provides the actual test statistics for the Mann–
Whitney test, the Wilcoxon procedure and the corresponding z-score. SPSS Output 15.3 

          SPSS T IP  15 .1     Other options for the Mann–Whitney test 2

In the main dialog box there are some other tests that can be selected:

 Kolmogorov-Smirnov Z: In Chapter 5 we met a Kolmogorov–Smirnov test that tested whether a sample was 
from a normally distributed population. This is a different test! In fact, it tests whether two groups have been 
drawn from the same population (regardless of what that population may be). In effect, this means it does 
much the same as the Mann–Whitney test! However, this test tends to have better power than the Mann–
Whitney test when sample sizes are less than about 25 per group, and so is worth selecting if that’s the case.

 Moses Extreme Reactions: Great name – makes me think of a bearded man standing on Mount Sinai read-
ing a stone tablet and then suddenly bursting into a wild rage, smashing the tablet and screaming ‘What do 
you mean, do not worship any other God?’ Sadly, this test isn’t as exciting as my mental image. It’s a bit like a 
non-parametric Levene’s test (section 5.6.1); it basically compares the variability of scores in the two groups.

 Wald-Wolfowitz runs: Despite sounding like a particularly bad case of diarrhoea this test is another variant 
on the Mann–Whitney test. In this test the scores are rank ordered as in the Mann–Whitney test, but rather 
than analysing the ranks, this test looks for ‘runs’ of scores from the same group within the ranked order. 
Now, if there’s no difference between groups then obviously ranks from the two groups should be randomly 
interspersed. However, if the groups are different then you should see more ranks from one group at the lower 
end and more ranks from the other group at the higher end. By looking for clusters of scores in this way the 
test can determine if the groups differ.

SPSS OuTPuT 15.2
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has a column for each variable (one for Sunday_BDI and one for Wednesday_BDI) and in 
each column there is the value of Mann–Whitney’s U statistic, the value of Wilcoxon’s sta-
tistic and the associated z approximation. Note that the values of U, Ws and the associated 
z-score are the same as we calculated in section 15.3.1.

The important part of the table is the significance value of the test, which gives the 
two-tailed probability that a test statistic of at least that magnitude is a chance result. This 
significance value can be used as it is when no prediction has been made about which group 
will differ from which. However, if a prediction has been made (e.g. if we said that ecstasy 
users would be more depressed than alcohol users the day after taking the drug) then we 
can calculate the one-tailed probability by taking the two-tailed value and dividing it by 2 
(SPSS Tip 9.1). For these data, the Mann–Whitney test is non-significant (two-tailed) for 
the depression scores taken on the Sunday. This finding indicates that ecstasy is no more 
of a depressant, the day after taking it, than alcohol: both groups report comparable lev-
els of depression. However, for the midweek measures the results are highly significant 
(p < .001). The value of the mean rankings indicates that the ecstasy group had significantly 
higher levels of depression midweek than the alcohol group. This conclusion is reached by 
noting that for the Wednesday scores, the average rank is higher in the ecstasy users (15.10) 
than in the alcohol users (5.90).

Test Statisticsb

35.500 4.000
90.500 59.000
-1.105 -3.484

.269 .000

.280a .000a

Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed Sig.)]

Beck
Depression
Inventory
(Sunday)

Beck
Depression
Inventory

(Wednesday)

Not corrected for ties.a.

Grouping Variable: Type of Drugb.

SPSS Output 15.4 shows the output for the Mann–Whitney test when exact significance 
is selected for. I’ve just included this to show you that you get some extra lines that give 
exact significance values (both one- and two-tailed). These don’t actually change our con-
clusions, but be aware that you should probably consult these values in preference to the 
asymptotic value, especially when sample sizes are small.

Test Statisticsb

35.500 4.000
90.500 59.000
-1.105 -3.484

.269 .000

.280a .000a

.288 .000

.144 .000

.013 .000

Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed Sig.)]
Exact Sig. (2-tailed)
Exact Sig. (1-tailed)
Point Probability

Beck
Depression
Inventory
(Sunday)

Beck
Depression
Inventory

(Wednesday)

Not corrected for ties.a.

Grouping Variable: Type of Drugb.

SPSS OuTPuT 15.3
(without Monte Carlo 
exact significance)

SPSS OuTPuT 15.4
(with Monte Carlo 
exact significance)
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15.3.5.  Calculating an effect size 2

As we’ve seen throughout this book, it’s important to report effect sizes so that people have 
a standardized measure of the size of the effect you observed, which they can compare to 
other studies. SPSS doesn’t calculate an effect size for us, but we can calculate approxi-
mate effect sizes really easily thanks to the fact that SPSS converts the test statistics into a 
z-score. The equation to convert a z-score into the effect size estimate, r, is as follows (from 
Rosenthal, 1991: 19):

r= Zffiffiffiffiffi
N

p

in which z is the z-score that SPSS produces and N is the size of the study (i.e. the number 
of total observations) on which z is based. In this case SPSS Output 15.3 tells us that z is 
−1.11 for the Sunday data and −3.48 for the Wednesday data. In both cases we had 10 
ecstasy users and 10 alcohol users and so the total number of observations was 20. The 
effect sizes are therefore:

rSunday =
− 1:11ffiffiffiffiffiffi

20
p =−0:25

rWednesday =
− 3:48ffiffiffiffiffiffi

20
p −0:78

This represents a small to medium effect for the Sunday data (it is below the .3 criterion 
for a medium effect size) and a huge effect for the Wednesday data (the effect size is well 
above the .5 threshold for a large effect). The Sunday data show how a fairly large effect 
size can still be non-significant in a small sample!

15.3.6.  Writing the results 1

For the Mann–Whitney test, we need to report only the test statistic (which is denoted by 
U) and its significance. Of course, we really ought to include the effect size as well. So, we 
could report something like:

 Depression levels in ecstasy users (Mdn = 17.50) did not differ significantly from alco-
hol users (Mdn = 16.00) the day after the drugs were taken, U = 35.50, z = −1.11, ns, 
r = −.25. However, by Wednesday, ecstasy users (Mdn = 33.50) were significantly more 
depressed than alcohol users (Mdn = 7.50), U = 4.00, z = −3.48, p < .001, r = −.78.

Note that I’ve reported the median for each condition – this statistic is more appropriate 
than the mean for non-parametric tests. We could also choose to report Wilcoxon’s test 
rather than Mann–Whitney’s U statistic and this would be as follows:

 Depression levels in ecstasy users (Mdn = 17.50) did not significantly differ from alco-
hol users (Mdn = 16.00) the day after the drugs were taken, Ws = 90.50, z = −1.11, ns, 
r = −.25. However, by Wednesday, ecstasy users (Mdn = 33.50) were significantly more 
depressed than alcohol users (Mdn = 7.50), Ws = 59.00, z = −3.48, p < .001, r = −.78.
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             CRAMMING SAM’S TIPS    

 The Mann–Whitney test and Wilcoxon rank-sum test compare two conditions when different participants take part in each 
condition and the resulting data violate any assumption of the independent t-test.

 Look at the row labelled Asymp. Sig. (2-tailed). If the value is less than .05 then the two groups are significantly different. 
(If you opted for exact tests then look at the row labelled Exact Sig. (2-tailed).)

 The values of the ranks tell you how the groups differ (the group with the highest scores will have the highest ranks).

 SPSS provides only the two-tailed significance value; the one-tailed significance is this value divided by 2. (If you opted for 
exact tests then look at the row labelled Exact Sig. (1-tailed).)

 Report the U statistic (or Ws if you prefer), the corresponding z, and the significance value. Also report the medians and their 
corresponding ranges (or draw a boxplot).

 You should calculate the effect size and report this too!

test and a non-parametric test on the same data, and 
those data meet the appropriate assumptions, then the 
parametric test will have greater power to detect the 
effect than the non-parametric test.

The problem is that to define the power of a test we 
need to be sure that it controls the Type I error rate (the 
number of times a test will find a significant effect when 
in reality there is no effect to find – see section 2.6.2). We 
saw in Chapter 2 that this error rate is normally set at 5%. 
We know that when the sampling distribution is normally 
distributed then the Type I error rate of tests based on 
this distribution is indeed 5%, and so we can work out 
the power. However, when data are not normal the Type I 
error rate of tests based on this distribution won’t be 5% 
(in fact we don’t know what it is for sure as it will depend 
on the shape of the distribution) and so we have no way 
of calculating power (because power is linked to the 
Type I error rate – see section 2.6.5). So, although you 
often hear (in the first edition of this book for example!) 
of non-parametric tests having an increased chance of 
a Type II error (i.e. more chance of accepting that there 
is no difference between groups when, in reality, a differ-
ence exists), this is true only if the sampling distribution 
is normally distributed.

Ranking the data is a useful way around the distribu-
tional assumptions of parametric tests but there is a 
price to pay: by ranking the data we lose some infor-
mation about the magnitude of differences between 
scores. Consequently, non-parametric tests can be less 
powerful than their parametric counterparts. Statistical 
power (section 2.6.5) refers to the ability of a test to find 
an effect that genuinely exists. So, by saying that non- 
parametric tests are less powerful, we mean that if there 
is a genuine effect in our data then a parametric test 
is more likely to detect it than a non-parametric one. 
However, this statement is true only if the assumptions 
of the parametric test are met. So, if we use a parametric 

JANE SUPERBRAIN 15.1

Non-parametric tests and statistical power 2
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15.4. Comparing two related conditions:  
the Wilcoxon signed-rank test 1

The Wilcoxon signed-rank test (Wilcoxon, 1945), not to be confused with the rank-sum 
test in the previous section, is used in situations in which there are two sets of scores to 
compare, but these scores come from the same participants. As such, think of it as the 
non-parametric equivalent of the dependent t-test (or a Mann–Whitney test for repeated-
measures data). Imagine the experimenter in the previous section was now interested in 
the change in depression levels, within people, for each of the two drugs. We now want 
to compare the BDI scores on Sunday to those on Wednesday. We still have to use a non-
parametric test because the distributions of scores for both drugs were non-normal on one 
of the two days (see SPSS Output 15.1).

15.4.1.  Theory of the Wilcoxon signed-rank test 2

The Wilcoxon signed-rank test works in a fairly similar way to the dependent t-test (Chapter 9)  
in that it is based on the differences between scores in the two conditions you’re comparing. 
Once these differences have been calculated they are ranked (just like in section 15.3.1) but 
the sign of the difference (positive or negative) is assigned to the rank. If we use the same data 
as before we can compare depression scores on Sunday to those on Wednesday for the two 
drugs separately.

Table 15.2 shows the ranking for these data. Remember that we’re ranking the two 
drugs separately. First, we calculate the difference between Sunday and Wednesday (that’s 
just Sunday’s score subtracted from Wednesday’s). If the difference is zero (i.e. the scores 
are the same on Sunday and Wednesday) then we exclude these data from the ranking. 
We make a note of the sign of the difference (was it positive or negative?) and then rank the 
differences (starting with the smallest) ignoring whether they are positive or negative. The 
ranking is the same as in section 15.3.1, and we deal with tied scores in exactly the same 
way. Finally we collect together the ranks that came from a positive difference between 
the conditions, and add them up to get the sum of positive ranks (T+). We also add up the 
ranks that came from negative differences between the conditions to get the sum of nega-
tive ranks (T−). So, for ecstasy, T+ = 36 and T− = 0 (in fact there were no negative ranks), 
and for alcohol, T+ = 8 and T− = 47. The test statistic, T, is the smaller of the two values, 
and so is 0 for ecstasy and 8 for alcohol.

To calculate the significance of the test statistic (T), we again look at the mean (T
—

) and 
standard error (SET

—), which, like the Mann–Whitney and rank-sum test in the previous 
section, are functions of the sample size, n (because we used the same participants, there is 
only one sample size):

T= nðn+ 1Þ
4

SET =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+1Þð2n+ 1Þ

24

r

In both groups, n is simply 10 (because that’s how many participants were used). However, 
remember that for our ecstasy group we excluded two people because they had differences 
of zero, therefore the sample size we use is 8, not 10. This gives us:

smart
alex
only
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TEcstasy =
8ð8+ 1Þ

4
= 18

SETEcstasy
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð8+ 1Þð16+ 1Þ

24

r
= 7:14

For the alcohol group there were no exclusions so we get:

TAlcohol =
10ð10+ 1Þ

4
= 27:50

SE
TAlcohol

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ð10+ 1Þð20+ 1Þ

24

r
= 9:81

Table 15.2 Ranking data in the Wilcoxon signed-rank test

BDI Sunday BDI Wednesday Difference Sign Rank Positive Ranks Negative Ranks

Ecstasy

15 28 13 + 2.5 2.5

35 35  0 Exclude

16 35 19 + 6 6

18 24  6 + 1 1

19 39 20 + 7 7

17 32 15 + 4.5 4.5

27 27  0 Exclude

16 29 13 + 2.5 2.5

13 36 23 + 8 8

20 35 15 + 4.5 4.5

Total = 36 0

Alcohol

16  5 –11 − 9 9

15  6 –9 − 7 7

20 30 10 + 8 +8

15  8 –7 − 3.5 3.5

16  9 –7 − 3.5 3.5

13  7 –6 − 2 2

14  6 –8 − 5.5 5.5

19 17 –2 − 1 1

18  3 –15 − 10 10

18 10 –8 − 5.5 5.5

Total =   8 47
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As before, if we know the test statistic, the mean of test statistics and the standard error, 
then we can easily convert the test statistic to a z-score using the equation that we came 
across way back in Chapter 1 and the previous section:

z= X−X

s
= T−T

SET

If we calculate this value for the ecstasy and alcohol depression scores we get:

ZEcstasy =
T−T

SE
T

= 0−18

7:14
=−2:52

ZAlcohol =
T−T

SET

= 8−27:5

9:81
=−1:99

If these values are bigger than 1.96 (ignoring the minus sign) then the test is significant at 
p < .05. So, it looks as though there is a significant difference between depression scores on 
Wednesday and Sunday for both ecstasy and alcohol.

15.4.2.  Running the analysis 1

To do the same analysis on SPSS we can use the same data as before, but because we want 
to look at the change for each drug separately, we need to use the split file command and 
ask SPSS to split the file by the variable Type of Drug [Drug]. This process ensures that any 
subsequent analysis is done for the ecstasy group and the alcohol group separately.

SELF-TEST  Split the file by Drug (see section 5.4.3).

Once the file has been split, select the Wilcoxon test dialog box (Figure 15.5) by selecting 
. This dialog box allows you to select other tests 

too (see SPSS Tip 15.2).
Once the dialog box is activated, select two variables from the list (click on the first vari-

able with the mouse and then, while holding down the Ctrl key, click on the second). You 
can also select the variables one at a time and transfer them: for example, you could select 
Beck Depression Inventory (Sunday) [Sunday_BDI] and drag it to the column labelled 
Variable 1 in the box labelled Test Pairs (or click on ), and then select Beck Depression 
Inventory (Wednesday) [Wednesday_BDI] and drag it to the column labelled Variable 2 (or 
click on ). To carry out several Wilcoxon tests select another pair of variables, transfer 
them to the variables list, and then select another pair and so on. Each pair appears as a 
new row in the box labelled Test Pairs. If you click on  then another dialog box 
appears that allows you to select for SPSS to compute exact significance values (see section 
15.3.3). I won’t go into this again, but suffice it to say that when samples are large you 
should probably opt for the Monte Carlo method, and when you have small samples it’s 
worth opting for the exact test. I haven’t opted for either in this example. If you click on 

everybody
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 then a dialog box appears that gives you the chance to select descriptive statistics. 
Unlike the Mann–Whitney test, the descriptive statistics here are worth having, because 
it is the change across variables (columns in the data editor) that is relevant. To run the 
analysis, return to the main dialog box and click on .

Figure 15.5
Dialog boxes for 
the Wilcoxon 
signed-rank test

          SPSS T IP  15 .2     Other options for the Wilcoxon signed-rank test 2

In the main dialog box there are some other tests that can be selected:

	 Sign: The sign test basically does the same thing as the Wilcoxon signed-rank test, except that it is based 
only on the direction of difference (positive or negative). The magnitude of change is completely ignored 
(unlike in the Wilcoxon test where the rank tells us something about the relative magnitude of change). For 
these reasons the sign test lacks power (it’s not very good at detecting effects) unless sample sizes are very 
small (six or less). So, frankly I don’t see the point.

	 McNemar: McNemar’s test is useful when you have nominal rather than ordinal data. It’s typically used when 
you’re looking for changes in people’s scores and it compares the number of people who changed their 
response in one direction (i.e. scores increased) to those who changed in the opposite direction (scores 
decreased). So, this test needs to be used when you’ve got two related dichotomous variables.

	 Marginal Homogeneity: This produces an extension of McNemar’s test but for ordinal variables. It does much 
the same as the Wilcoxon test as far as I can tell.
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15.4.3.  Output for the ecstasy group 1

If you have split the file, then the first set of results obtained will be for the 
ecstasy group (SPSS Output 15.5). The first table provides information about 
the ranked scores. It tells us the number of negative ranks (these are people 
for whom the Sunday score was greater than the Wednesday score) and the 
number of positive ranks (people for whom the Wednesday score was greater 
than the Sunday score). The table shows that for 8 of the 10 participants, their 
score on Wednesday was greater than on Sunday, indicating greater depres-
sion midweek compared to the morning after. There were two tied ranks (i.e. 
participants who scored the same on both days). The table also shows the 
average number of negative and positive ranks and the sum of positive and 
negative ranks. Below the table are footnotes, which tell us to what the posi-
tive and negative ranks relate (so provide the same kind of explanation as I’ve 
just made – see, I’m not clever, I just read the footnotes!). In section 15.4.1 I 

explained that the test statistic, T, is the lowest value of the two types of ranks, so our test 
value here is the sum of negative ranks (e.g. 0). However, I also showed how this value 
can be converted to a z-score and this is what SPSS does. The advantage of this approach 
is that it allows exact significance values to be calculated based on the normal distribution. 
The second table in SPSS Output 15.5 tells us that the test statistic is based on the negative 
ranks, that the z-score is −2.53 (which is within rounding error of the value we calculated 
in section 15.4.1) and that this value is significant at p = .012. Therefore, because this 
value is based on the negative ranks (and because the test statistic is the smaller of the posi-
tive and negative ranks, the majority of ranks must have been positive), we should con-
clude that when taking ecstasy there was a significant increase in depression (as measured 
by the BDI) from the morning after to midweek. If the test statistic had been based on the 
positive ranks then this would have told us that the results were in the opposite direction 
(i.e. BDI scores were greater the morning after compared to midweek). Therefore, we can 
conclude that for ecstasy users there was a significant increase in depression from the next 
day to midweek (z = −2.53, p < .05).

Ranksd

0a .00 .00
8b 4.50 36.00
2c

10

Negative Ranks
Positive Ranks
Ties
Total

Beck Depression Inventory (Wednesday) -
Beck Depression Inventory (Sunday)

N Mean Rank Sum of Ranks

Beck Depression Inventory (Wednesday) < Beck Depression Inventory (Sunday)a.

Beck Depression Inventory (Wednesday) > Beck Depression Inventory (Sunday)b.

Beck Depression Inventory (Wednesday) = Beck Depression Inventory (Sunday)c. 

Type of Drug = Ecstasyd.

Test Statisticsb,c

-2.527a

.012

Z
Asymp. Sig. (2-tailed)

Beck Depression Inventory
(Wednesday) - Beck Depression

Inventory (Sunday)

Based on negative ranks.a.

Wilcoxon Signed Ranks Testb.

Type of Drug = Ecstasyc. 

What are the effects
of ecstasy?

SPSS OuTPuT 15.5
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15.4.4.  Output for the alcohol group 1

The remainder of the output should contain the same two tables but for the alcohol 
group (if it does not, then you probably forgot to split the file). As before, the first 
table in SPSS Output 15.6 provides information about the ranked scores. It tells us the 
number of negative ranks (these are people who were more depressed on Sunday than 
on Wednesday) and the number of positive ranks (people who were more depressed 
on Wednesday than on Sunday). The table shows that for 9 of the 10 participants, 
their score on Sunday was greater than on Wednesday, indicating greater depression the 
morning after compared to midweek. Unlike the ecstasy takers there were no tied ranks. 
The table also shows the average number of negative and positive ranks and the sum of 
positive and negative ranks. Below the table are footnotes that tell us to what the posi-
tive and negative ranks relate. As before, the lowest value of ranked scores is converted 
to a z-score (in this case 8). The second table tells us that the test statistic is based on 
the positive ranks, that the z-score is −1.99 (this is the value we calculated in section 
15.4.1; I point this out merely because I’m so amazed that my hand calculations actually 
worked!) and that this value is significant at p = .047. Therefore, we should conclude 
(based on the fact that positive ranks were used) that when taking alcohol there was a 
significant decline in depression (as measured by the BDI) from the morning after to 
midweek (z = −1.99, p < .05).

From the results of the two different groups, we can see that there is an opposite effect 
when alcohol is taken to when ecstasy is taken. Alcohol makes you slightly depressed 
the morning after but this depression has dropped by midweek. Ecstasy also causes some 
depression the morning after consumption; however, this depression increases towards 
the middle of the week. Of course, to see the true effect of the morning after we would 
have had to take measures of depression before the drugs were administered! This opposite 
effect between groups of people is known as an interaction (i.e. you get one effect under 
certain circumstances and a different effect under other circumstances and we came across 
these in Chapters 12 to 14.

Ranksd

9a 5.22 47.00
1b 8.00 8.00
0c

10

Negative Ranks
Positive Ranks
Ties
Total

Beck Depression Inventory (Wednesday) -
Beck Depression Inventory (Sunday)

N Mean Rank Sum of Ranks

Beck Depression Inventory (Wednesday) < Beck Depression Inventory (Sunday)a.

Beck Depression Inventory (Wednesday) > Beck Depression Inventory (Sunday)b.

Beck Depression Inventory (Wednesday) = Beck Depression Inventory (Sunday)c. 

Type of Drug = Alcohold.

Test Statisticsb,c

-1.990a

.047

Z
Asymp. Sig. (2-tailed)

Beck Depression Inventory
(Wednesday) - Beck Depression

Inventory (Sunday)

Based on positive ranks.a.

Wilcoxon Signed Ranks Testb.

Type of Drug = Alcoholc. 

SPSS OuTPuT 15.6
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15.4.5.  Calculating an effect size 2

The effect size can be calculated in the same way as for the Mann–Whitney test (see the 
equation in section 15.3.5). In this case SPSS Output 15.6 tells us that for the ecstasy 
group z is –2.53, and for the alcohol group is −1.99. In both cases we had 20 observations 
(although we only used 10 people and tested them twice, it is the number of observations, 
not the number of people, that is important here). The effect size is therefore:

rEcstasy =
− 2:53ffiffiffiffiffiffi

20
p =−0:57

rAlcohol =
− 199ffiffiffiffiffiffi

20
p =−0:44

This represents a large change in levels of depression when ecstasy is taken (it is above 
Cohen’s benchmark of .5) and a medium to large change in depression when alcohol is taken 
(it is between Cohen’s criteria of .3 and .5 for a medium and large effect respectively).

15.4.6.  Writing the results 1

For the Wilcoxon test, we need to report only the test statistic (which is denoted by the 
letter T and the smallest of the two sum of ranks), its significance and preferably an effect 
size. So, we could report something like:

	For ecstasy users, depression levels were significantly higher on Wednesday (Mdn = 
33.50) than on Sunday (Mdn = 17.50), T = 0, p < .05, r = −.57. However, for alcohol 
users the opposite was true: depression levels were significantly lower on Wednesday 
(Mdn = 7.50) than on Sunday (Mdn = 16.0), T = 8, p < .05, r = −.44.

Alternatively, we could report the values of z:

	For ecstasy users, depression levels were significantly higher on Wednesday (Mdn = 
33.50) than on Sunday (Mdn = 17.50), z = −2.53, p < .05, r = −.57. However, for alcohol 
users the opposite was true: depression levels were significantly lower on Wednesday 
(Mdn = 7.50) than on Sunday (Mdn = 16.0), z = −1.99, p < .05, r = −.44.

             CRAMMING SAM’S TIPS    

 The Wilcoxon signed-rank test compares two conditions when the same participants take part in each condition and the 
resulting data violate an assumption of the dependent t-test.

 Look at the row labelled Asymp. Sig. (2-tailed). If the value is less than .05 then the two groups are significantly different.

 Look at positive and negative ranks (and the footnotes explaining what they mean) to tell you how the groups differ (the 
greater number of ranks in a particular direction tells you the direction of the result).

 SPSS provides only the two-tailed significance value. If you want the one-tailed significance just divide the value by 2.

 Report the T statistic, the corresponding z, the significance value, and an effect size if possible. Also report the medians and 
their corresponding ranges (or draw a boxplot).
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15.5. Differences between several independent 
groups: the Kruskal–Wallis test 1

In Chapter 10 we discovered a technique called one-way independent ANOVA that could 
be used to test for differences between several independent groups. I mentioned several 
times in that chapter that the F statistic can be robust to violations of its assumptions (sec-
tion 10.2.10). We also saw that there are measures that can be taken when you have hetero-
geneity of variance (Jane Superbrain Box 10.2). However, there is another alternative: the 
one-way independent ANOVA has a non-parametric counterpart called the Kruskal–Wallis 
test (Kruskal & Wallis, 1952; Figure 15.6). If you have data that have violated an assump-
tion then this test can be a useful way around the problem.

I read a story in a newspaper claiming that scientists had discovered that the chemi-
cal genistein, which is naturally occurring in soya, was linked to lowered sperm counts 
in western males. In fact, when you read the actual study, it had been conducted on rats, 

We encountered some research in Chapter 2 in which we 
discovered that you can influence aspects of male quail’s 
sperm production through ‘conditioning’. The basic idea is 
that the male is granted access to a female for copulation in 
a certain chamber (e.g. one that is coloured green) but gains 
no access to a female in a different context (e.g. a chamber 
with a tilted floor). The male, therefore, learns that when he 
is in the green chamber his luck is in, but if the floor is tilted 
then frustration awaits. For other males the chambers will 
be reversed (i.e. they get sex only when in the chamber with 
the tilted floor). The human equivalent (well, sort of) would 
be if you always managed to pull in the Pussycat Club but 
never in the Honey Club.5 During the test phase, males get 
to mate in both chambers; the question is: after the males 
have learnt that they will get a mating opportunity in a cer-
tain context, do they produce more sperm or better-quality 
sperm when mating in that context compared to the control 
context? (That is, are you more of a stud in the Pussycat 
Club?  OK, I’m going to stop this analogy now.)

Mike Domjan and his colleagues predicted that 
if conditioning evolved because it increases reproduc-
tive fitness then males who mated in the context that 
had previously signalled a mating opportunity would fer-
tilize a significantly greater number of eggs than quails 
that mated in their control context (Matthews, Domjan, 
Ramsey, & Crews, 2007). They put this hypothesis to 
the test in an experiment that is utter genius. After train-
ing, they allowed 14 females to copulate with two males 
(counterbalanced): one male copulated with the female in 
the chamber that had previously signalled a reproductive 
opportunity (Signalled), whereas the second male copu-
lated with the same female but in the chamber that had 
not previously signalled a mating opportunity (Control). 
Eggs were collected from the females for 10 days after 

the mating and a genetic analysis was 
used to determine the father of any fertil-
ized eggs. 

The data from this study are in the file 
Matthews et al. (2007).sav. Labcoat Leni 
wants you to carry out a Wilcoxon signed-
rank test to see whether more eggs were 

fertilized by males mating in their signalled context com-
pared to males in their control context.

Answers are in the additional material on the compan-
ion website (or look at page 760 in the original article).

LABCOAT LENI’S
REAL RESEARCH 15.1

Having a quail of a time? 1
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5 These are both clubs in Brighton that I don’t go to because although my social skills are marginally 
better than they used to be, they’re not that good.
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it found no link to lowered sperm counts, but there was  
evidence of abnormal sexual development in male rats (prob-
ably because this chemical acts like oestrogen). The journalist 
naturally interpreted this as a clear link to apparently declin-
ing sperm counts in western males (never trust what you read 
in the newspaper!). Anyway, as a vegetarian who eats lots 
of soya products and probably would like to have kids one 
day, I might want to test this idea in humans rather than rats. 
I took 80 males and split them into four groups that varied in 
the number of soya meals they ate per week over a year-long 
period. The first group was a control group and had no soya 
meals at all per week (i.e. none in the whole year); the second 
group had one soya meal per week (that’s 52 over the year); 
the third group had four soya meals per week (that’s 208 over 
the year); and the final group had seven soya meals a week 
(that’s 364 over the year). At the end of the year, all of the par-
ticipants were sent away to produce some sperm that I could 
count (when I say ‘I’, I mean someone else in a laboratory as 
far away from me as humanly possible).6

15.5.1.  Theory of the Kruskal–Wallis test 2

The theory for the Kruskal–Wallis test is very similar to that of the Mann–Whitney (and 
Wilcoxon rank-sum) test, so before reading on look back at section 15.3.1. Like the Mann–
Whitney test, the Kruskal–Wallis test is based on ranked data. So, to begin with, you simply 
order the scores from lowest to highest, ignoring the group to which the score belongs, and 
then assign the lowest score a rank of 1, the next highest a rank of 2 and so on (see section 
15.3.1 for more detail). When you’ve ranked the data you collect the scores back into their 
groups and simply add up the ranks for each group. The sum of ranks for each group is 
denoted by Ri (where i is used to denote the particular group). 

Table 15.3 shows the raw data for this example along with the ranks.

SELF-TEST  Have a go at ranking the data and see if 
you get the same results as me!

Once the sum of ranks has been calculated for each group, the test statistic, H, is calcu-
lated as:

H= 12

N N− 1ð Þ
Xk

i= 1

R2
i

ni
− 3 N+ 1ð Þ (15.1)

In this equation, Ri is the sum of ranks for each group, N is the total sample size (in this 
case 80) and ni is the sample size of a particular group (in this case we have equal sample 

Figure 15.6 Joseph Kruskal spotting some more 
errors in his well-thumbed first edition of Discovering 
Statistics… by that idiot Field

6 In case any medics are reading this chapter, these data are made up and, because I have absolutely 
no idea what a typical sperm count is, they’re probably ridiculous. I apologise and you can laugh at 
my ignorance!

smart
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sizes and they are all 20). Therefore, all we really need to do for each group is square the 
sum of ranks and divide this value by the sample size for that group. We then add up these 
values. That deals with the middle part of the equation; the rest of it involves calculating 
various values based on the total sample size. For these data we get:

H= 12

80ð81Þ
9722

20
+ 8832

20
+ 8332

20
+ 5472

20

 
− 3ð81Þ

= 12

6480
ð42,966:45+ 38,984:45+ 38,984:45+ 14,960:45Þ− 243

= 0:0019ð135,895:8Þ− 243

= 251:66− 243

= 8:659

This test statistic has a special kind of distribution known as the chi-square distribution (see 
Chapter 18) and for this distribution there is one value for the degrees of freedom, which 
is one less than the number of groups (k – 1): in this case 3.

Table 15.3 Data for the soya example with ranks

No Soya 1 Soya Meal 4 Soya Meals 7 Soya Meals

Sperm 
(Millions) Rank

Sperm 
(Millions) Rank

Sperm 
(Millions) Rank

Sperm 
(Millions) Rank

 0.35  4  0.33   3  0.40   6 0.31   1

 0.58  9  0.36   5  0.60  10 0.32   2

 0.88 17  0.63  11  0.96  19 0.56   7

 0.92 18  0.64  12  1.20  21 0.57   8

 1.22 22  0.77  14  1.31  24 0.71  13

 1.51 30  1.53  32  1.35  27 0.81  15

 1.52 31  1.62  34  1.68  35 0.87  16

 1.57 33  1.71  36  1.83  37 1.18  20

 2.43 41  1.94  38  2.10  40 1.25  23

 2.79 46  2.48  42  2.93  48 1.33  25

 3.40 55  2.71  44  2.96  49 1.34  26

 4.52 59  4.12  57  3.00  50 1.49  28

 4.72 60  5.65  61  3.09  52 1.50  29

 6.90 65  6.76  64  3.36  54 2.09  39

 7.58 68  7.08  66  4.34  58 2.70  43

 7.78 69  7.26  67  5.81  62 2.75  45

 9.62 72  7.92  70  5.94  63 2.83  47

10.05 73  8.04  71 10.16  74 3.07  51

10.32 75 12.10  77 10.98  76 3.28  53

21.08 80 18.47  79 18.21  78 4.11  56

Total (Ri) 927 883 883 547

everybody
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15.5.2.  Inputting data and provisional analysis 1

SELF-TEST  See whether you can enter the data in 
Table 15.3 into SPSS (you don’t need to enter the 
ranks). Then conduct some exploratory analyses on the 
data (see sections 5.5 and 5.6).

When the data are collected using different participants in each group, we input the data 
using a coding variable. So, the data editor will have two columns of data. The first column 
is a coding variable (called something like Soya) which, in this case, will have four codes (for 
convenience I suggest 1 = no soya, 2 = one soya meal per week, 3 = four soya meals per week 
and 4 = seven soya meals per week). The second column will have values for the depend-
ent variable (sperm count) measured at the end of the year (call this variable Sperm). When 
you enter the data into SPSS remember to tell the computer which group is represented by 
which code (see section 3.4.2.3). The data can be found in the file Soya.sav.

First, we would run some exploratory analyses on the data and because we’re going to be 
looking for group differences we need to run these exploratory analyses for each group. If you 
do these analyses you should find the same tables shown in SPSS Output 15.7. The first table 
shows that the Kolmogorov–Smirnov test (see section 5.5) was not significant for the control 
group (D(20) = .181, p > .05) but the Shapiro–Wilk test is significant and this test is actually 
more accurate (though less widely reported) than the Kolmogorov–Smirnov test (see Chapter 5).  
Data for the group that ate one soya meal per week were significantly different from normal 
(D(20) = .207, p < .05), as were the data for those that ate four (D(20) = .267, p < .01) and 
seven (D(20) = .204, p < .05). The second table shows the results of Levene’s test (section 
5.6.1). The assumption of homogeneity of variance has been violated, F(3, 76) = 5.12, p < .01, 
and this is shown by the fact that the significance of Levene’s test is less than .05. As such, these 
data are not normally distributed, and the groups have heterogeneous variances!

Tests of Normality

.181 20 .085 .805 20 .001

.207 20 .024 .826 20 .002

.267 20 .001 .743 20 .000

.204 20 .028 .912 20 .071

Number of Soya Meals
Per Week
No Soya Meals
1 Soya Meal Per Week
4 Soyal Meals Per Week
7 Soya Meals Per Week

Sperm Count (Millions)
Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnova Shapiro-Wilk

Lilliefors Significance Correctiona.

Test of Homogeneity of Variance

5.117 3 76 .003
2.860 3 76 .042

2.860 3 58.107 .045

4.070 3 76 .010

Based on Mean
Based on Median
Based on Median and
with adjusted df
Based on trimmed mean

Sperm Count (Millions)

Levene
Statistic df1 df2 Sig.

15.5.3.  Doing the Kruskal–Wallis test on SPSS 1

First, access the main dialog box (see Figure 15.7) by selecting 
. Once the dialog box is activated, select the dependent variable from 

SPSS OuTPuT 15.7
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the list (click on Sperm Count (Millions)) and drag it to the box labelled Test Variable 
List (or click on ). Next, select the independent variable (the grouping variable), in this 
case Soya, and drag it to the box labelled Grouping Variable. When the grouping vari-
able has been selected the  button becomes active and you should click on it to 
activate the define range dialog box. SPSS needs to know the range of numeric codes you 
assigned to your groups, and there is a space for you to type the minimum and maximum 
code. If you followed my coding scheme, then the minimum code we used was 1, and 
the maximum was 4, so type these numbers into the appropriate spaces. When you have 
defined the groups, click on  to return to the main dialog box. The main dialog 
box also provides options to conduct some tests similar to the Kruskal–Wallis test (see 
SPSS Tip 15.3).

If you click on  then you get a dialog box for selecting exact significance values 
for the Kruskal–Wallis test. I’ve explained this option in section 15.3.3, so I won’t repeat 
myself here. I’ll just recap by saying that when samples are large you should probably opt 
for the Monte Carlo method (as I have done in this example) and when you have small 
samples it’s worth opting for the exact test. Finally, if you click on  then another 
dialog box appears that gives you options for the analysis. These options are not particu-
larly useful because, for example, the option that provides descriptive statistics does so 
for the entire data set (so doesn’t break down values according to group membership). 
For this reason, I recommend obtaining descriptive statistics using the methods we learnt 
about in sections 5.4.3 and 5.5. The final option you can ask for is for the Jonckheere–
Terpstra trend test (select ). This is useful if you want to look for a linear 
trend in the data (see section 10.2.11.5). To run the analyses return to the main dialog 
box and click on .

Figure 15.7 Dialog boxes for the Kruskal–Wallis test
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          SPSS T IP  15 .3     Other options for Kruskal–Wallis 2

In the main dialog box there are some other tests that can be selected:

	 Median: This tests whether samples are drawn from a population with the same median. So, in effect the 
median test does the same thing as the Kruskal–Wallis test. It works on the basis of producing a contingency 
table that is split for each group into the number of scores that fall above and below the observed median of 
the entire data set. If the groups are from the same population then you’d expect these frequencies to be the 
same in all conditions (about 50% above and about 50% below).

	 Jonckheere-Terpstra: The Jonckheere–Terpstra test tests for trends in the data (see section 15.5.6).

15.5.4.  Output from the Kruskal–Wallis test 1

SPSS Output 15.8 shows a summary of the ranked data in each condition and we’ll need 
these for interpreting any effects.

Ranks

20 46.35
20 44.15
20 44.15
20 27.35
80

Number of Soya Meals
No Soya Meals
1 Soya Meal Per Week
4 Soyal Meals Per Week
7 Soya Meals Per Week
Total

Sperm Count (Millions)
N Mean Rank

SPSS Output 15.9 shows the test statistic, H, for the Kruskal–Wallis test (although SPSS 
labels it chi-square, because of its distribution, rather than H), its associated degrees of free-
dom (in this case we had four groups so the degrees of freedom are 4−1, or 3) and the sig-
nificance. The crucial thing to look at is the significance value, which is .034; because this 
value is less than .05 we could conclude that the amount of soya meals eaten per week does 
significantly affect sperm counts. Note also the Monte Carlo estimate of significance, which 
is slightly lower (.031). This is the value we ought to look to rather than the asymptotic value 
if it yields different results. The confidence interval for significance is also useful: it is .027 
to .036 and the fact that the boundary does not cross .05 is important because it means that, 
assuming this confidence interval is one of the 99 out of 100 that contains the true value of 
the significance of the test statistic, the true value is less than .05. This gives us a lot of confi-
dence that the significant effect is genuine. Like a one-way ANOVA, though, this test tells us 
only that a difference exists; it doesn’t tell us exactly where the differences lie. 

SPSS OuTPuT 15.8
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SELF-TEST  Use the Chart Builder to draw a boxplot of 
these data?

One way to see which groups differ is to look at a boxplot (see section 5.4.2) of the 
groups (see Figure 15.8). The first thing to note is that there are some outliers (note the 
circles and asterisks that lie above the top whiskers) – these are men who produced a par-
ticularly rampant amount of sperm. Using the control as our baseline, the medians of the 
first three groups seem quite similar; however, the median of the group which ate seven 
soya meals per week does seem a little lower, so perhaps this is where the difference lies. 
However, these conclusions are subjective. What we really need are some contrasts or post 
hoc tests like we used in ANOVA (see sections 10.2.11 and 10.2.12).

15.5.5.  Post hoc tests for the Kruskal–Wallis test 2

There are two ways to do non-parametric post hoc procedures, the first 
being to use Mann–Whitney tests (section 15.3). However, if we use lots of 
Mann–Whitney tests we will inflate the Type I error rate (section 10.2.1) 
and this is precisely why we don’t begin by doing lots of Mann–Whitney 
tests! However, if we want to use lots of Mann–Whitney tests to follow up 
a Kruskal–Wallis test, we can if we make some kind of adjustment to ensure 
that the Type I errors don’t build up to more than .05. The easiest method 
is to use a Bonferroni correction, which in its simplest form just means that 
instead of using .05 as the critical value for significance for each test, you 
use a critical value of .05 divided by the number of tests you’ve conducted. 
If you do this, you’ll soon discover that you quickly end up using a critical 
value for significance that is so small that it is very restrictive. Therefore, 
it’s a good idea to be selective about the comparisons you make. In this 

Figure 15.8
Boxplot for the 
sperm counts 
of individuals 
eating different 
numbers of soya 
meals per week

Can I do non-parametric
post hoc tests?
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example, we have a control group which had no soya meals. As such, a nice succinct set of 
comparisons would be to compare each group against the control:

Test 1: one soya meal per week compared to no soya meals	

Test 2: four soya meals per week compared to no soya meals	

Test 3: seven soya meals per week compared to no soya meals	

This results in three tests, so rather than use .05 as our critical level of significance, we’d 
use .05/3 = .0167. If we didn’t use focused tests and just compared all groups to all other 
groups we’d end up with six tests rather than three (no soya vs. 1 meal, no soya vs. 4 meals, 
no soya vs. 7 meals, 1 meal vs. 4 meals, 1 meal vs. 7 meals, 4 meals vs. 7 meals), meaning 
that our critical value would fall to .05/6 = .0083.

SELF-TEST  Carry out the three Mann–Whitney tests 
suggested above.

SPSS Output 15.10 shows the test statistics from doing Mann–Whitney tests on the 
three focused comparisons that I suggested. Remember that we are now using a critical 
value of .0167, so the only comparison that is significant is when comparing those that had 
seven soya meals a week to those that had none (because the observed significance value of 
.009 is less than .0167). The other two comparisons produce significance values that are 
greater than .0167 so we’d have to say they’re non-significant. So the effect we got seems 
to mainly reflect the fact that eating soya seven times per week lowers (I know this from the 
medians in Figure 15.8) sperm counts compared to eating no soya. However, eating some 
soya (one meal or four meals) doesn’t seem to affect sperm counts significantly. 

-.243
.808
.820a

Wilcoxon W
Z

No Soya vs. 1 Meal per week:

Test Statisticsb

191.000
401.000

Mann-Whitney U

Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed Sig.)]

Sperm Count
(Millions)

a. Not corrected for ties.

b. Grouping Variable: Number of Soya Meals Per Week

.745

.758a

Z

No Soya vs. 4 Meals per week:

Test Statisticsb

188.000
398.000

-.325

Mann-Whitney U
Wilcoxon W

Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed Sig.)]

Sperm Count
(Millions)

a. Not corrected for ties.

b. Grouping Variable: Number of Soya Meals Per Week

Z

a.

104.000
314.000

-2.597
.009
.009a

Mann-Whitney U
Wilcoxon W

(Millions)

b.

No Soya vs. 7 Meals per week:

Test Statisticsb

Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed Sig.)]

Sperm Count

Not corrected for ties.

Grouping Variable: Number of Soya Meals Per Week

SPSS OuTPuT 15.10
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The second way to do post hoc tests is essentially the same as doing Mann–Whitney tests 
on all possible comparisons, but for the sake of completeness I’ll run you through it! It is 
described by Siegel and Castellan (1988) and involves taking the difference between the 
mean ranks of the different groups and comparing this to a value based on the value of z 
(corrected for the number of comparisons being done) and a constant based on the total 
sample size and the sample size in the two groups being compared. The inequality is:

Ru −Rv

 ≥ zα=kðk− 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN+1Þ

12

1

nu
+ 1

nv

 s
(15.2)

The left-hand side of this inequality is just the difference between the mean rank of the two 
groups being compared, but ignoring the sign of the difference (so the two vertical lines that 
enclose the difference between mean ranks just indicate that if the difference is negative 
then we ignore the negative sign and treat it as positive). For the rest of the expression, k is 
the number of groups (in the soya example, 4), N is the total sample size (in this case 80), 
nu is the number of people in the first group that’s being compared (we have equal group 
sizes in the soya example so it will be 20 regardless of which groups we compare), and nv is 
the number of people in the second group being compared (again this will be 20 regardless 
of which groups we compare because we have equal group sizes in the soya example). The 
only other thing we need to know is zα/k(k – 1), and to get this value we need to decide a level 
for α, which is the level of significance at which we want to work. You should know by 
now that in the social sciences we traditionally work at a .05 level of significance, so α will 
be .05. We then calculate k(k − 1), which for these data will be 4(4 − 1) = 12. Therefore, 
α/k(k − 1) = .05/12 = .00417. So, z

α/k(k – 1) just means ‘the value of z for which only α/k(k – 1)  
other values of z are bigger’ (or in this case ‘the value of z for which only .00417 other 
values of z are bigger’). In practical terms this means we go to table A.1 in the Appendix, 
look at the column labelled Smaller Portion and find the number .00417 (or the nearest 
value to this, which if you look at the table is .00415), and we then look in the same row 
at the column labelled z. In this case, you should find that the value of z is 2.64. The next 
thing to do is to calculate the right-hand side of inequality (15.2):

critical difference= zα=kðk− 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN+ 1Þ

12

1

nu
+ 1

nv

 s

= 2:64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
80ð80+ 1Þ

2

1

20
+ 1

20

 s

= 2:64
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
540ð0:1Þ

p

= 2:64
ffiffiffiffiffiffi
54

p

= 19:40

For this example, because the sample sizes across groups are equal, this critical difference 
can be used for all comparisons. However, when sample sizes differ across groups, the criti-
cal difference will have to be calculated for each comparison individually. The next step is 
simply to calculate all of the differences between the mean ranks of all of the groups (the 
mean ranks can be found in SPSS Output 15.8), as in Table 15.4.

Inequality (15.2) basically means that if the differences between mean ranks is bigger 
than or equal to the critical difference for that comparison, then that difference is signifi-
cant. In this case, because we have only one critical difference, it means that if any differ-
ence is bigger than 19.40, then it is significant. As you can see, all differences are below this 
value so we would have to conclude that none of the groups were significantly different! 
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This contradicts our earlier findings where the Mann–Whitney test for the no-meals group 
compared to the seven-meals group was deemed significant; why do you think that is? 
Well, for our Mann–Whitney tests, we did only three comparisons and so only corrected 
the significance value for the three tests we’d done (.05/3 = .0167). Earlier on in this sec-
tion I said that if we compared all groups against all other groups, that would be six com-
parisons, so we could accept a difference as being significant only if the significance value 
was less than .05/6 = .0083. If we go back to our one significant Mann–Whitney test (SPSS 
Output 15.10) the significance value was .009; therefore, if we had done all six compari-
sons this would’ve been non-significant (because .009 is bigger than .0083)! This illustrates 
what I said earlier about the benefits of choosing selective comparisons.

15.5.6.  Testing for trends: the Jonckheere–Terpstra test 2

Back in section 15.5.3 we selected an option for the Jonckheere–Terpstra test,  
(Jonckheere, 1954; Terpstra, 1952). This statistic tests for an ordered pattern to the medi-
ans of the groups you’re comparing. Essentially it does the same thing as the Kruskal–
Wallis test (i.e. test for a difference between the medians of the groups) but it incorporates 
information about whether the order of the groups is meaningful. As such, you should use 
this test when you expect the groups you’re comparing to produce a meaningful order of 
medians. So, in the current example we expect that the more soya a person eats, the more 
their sperm count will go down. Therefore, the control group should have the highest 
sperm count, those having one soya meal per week should have a lower sperm count, the 
sperm count in the four meals per week group should be smaller still, and the seven meals 
per week group should have the lowest sperm count. Therefore, there is an order to our 
medians: they should decrease across the groups. Conversely there might be situations 
where you expect your medians to increase. For example, there’s a phenomenon in psy-
chology known as the ‘mere exposure effect’ which basically means that the more you’re 
exposed to something, the more you’ll like it. Record companies use this to good effect by 
making sure songs are played on radio for about two months prior to their release, so on 
the day of release, everyone loves the song and is dying to have it and rushes out to buy it, 
sending it to number one.7 Anyway, if you took three groups and exposed them to a song 

Table 15.4 Differences between mean ranks for the soya data

Comparison R
—

u R
—

v R
—

u – R
—

v |R
—

u – R
—

v|

No Meals–1 Meal 46.35 44.15  2.20  2.20

No Meals–4 Meals 46.35 44.15  2.20  2.20 

No-Meals–7 Meals 46.35 27.35 19.00 19.00

1 Meal–4 Meals 44.15 44.15  0.00  0.00

1 Meal–7 Meals 44.15 27.35 16.80 16.80

4 Meals–7 Meals 44.15 27.35 16.80 16.80

7 Although in most cases the mere exposure effect seems to have the reverse effect on me: the more I hear the 
manufactured rubbish that gets into the charts, the more I want to rid my brain of the mental anguish it creates 
by making myself deaf by ramming hot irons into my ears.

everybody
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10 times, 20 times and 30 times respectively and then measured how much people liked 
the song, you’d expect the medians to increase. Those who heard it 10 times would like it 
a bit, but those who heard it 20 times would like it more, and those who heard it 30 times 
would like it the most.

The Jonckheere–Terpstra test (actually referred to more often just as the Jonckheere 
test) was designed for these situations. In SPSS, it works on the principle that your cod-
ing variable (the one that defines the groups) specifies the order in which you expect the 
medians to change (it doesn’t matter whether you expect them to increase or decrease). For 
our soya example, we coded our groups as 1 = no soya, 2 = one soya meal per week, 3 = 
four soya meals per week and 4 = seven soya meals per week, so it would test whether the 
median sperm count increases or decreases across the groups when they’re ordered in that 
way. Obviously we could change the coding scheme and test whether the medians were 
ordered in a different way. The important thing is that the test determines whether the 
medians of the groups ascend or descend in the order specified by the coding variable.

We saw how to specify the test in section 15.5.3, and SPSS Output 15.11 shows the 
output from the test for the soya data. This table tells you the number of groups being 
compared, 4 (just in case you hadn’t noticed). It also tells you the value of test-statistic, 
J, which is 912. In large samples (more than about eight per group) this test statistic has 
a sampling distribution that is normal, and a mean and standard deviation that are eas-
ily defined and calculated (the output tells us that the mean is 1200 and the standard 
deviation is 116.33). Knowing these things, we can convert to a z-score by taking the 
test statistic, subtracting the mean of the sampling distribution from it and then dividing 
the result by the standard deviation (z = (912−1200)/116.33 = −2.476). This is much the 
same as what we did for the Mann–Whitney and Wilcoxon tests. This z-score can then 
be compared against the values of a normal distribution, and because Jonckheere’s test 
should normally be one-tailed (we specify before the experiment the order of the medi-
ans) we’re looking for a value greater than 1.65 (when we ignore the sign). A value of 2.47 
is, therefore, significant. The sign of the z-value does tell us something useful, though: if 
it is positive then it indicates a trend of ascending medians (i.e. the medians get bigger as 

SPSS OuTPuT 15.11



570 D ISCOVER ING STAT IST ICS  US ING SPSS

the values of the coding variable get bigger), but if it is negative (as it is here) it indicates 
a trend of descending medians (the medians get smaller as the value of the coding variable 
gets bigger). In this example, because we coded the variables as 1 = no soya, 2 = one soya 
meal per week, 3 = four soya meals per week and 4 = seven soya meals per week, it means 
that the medians get smaller as we go from no soya, to one soya meal, to four soya meals 
and on to seven soya meals.

You’ll also notice that there are one- and two-tailed significance values estimated using 
Monte Carlo methods. These have appeared because we chose that option for the Kruskal–
Wallis test. They confirm what we have already found.

15.5.7.  Calculating an effect size 2

Unfortunately there isn’t an easy way to convert a chi-square statistic that has more than 1 
degree of freedom to an effect size r. You could use the significance value of the Kruskal–
Wallis test statistic to find an associated value of z from a table of probability values for the 
normal distribution (like that in the Appendix). From this you could use the conversion 
to r that we used in section 15.3.5. However, this kind of effect size is rarely that useful 
(because it’s summarizing a general effect). In most cases it’s more interesting to know the 
effect size for a focused comparison (such as when comparing two things). For this reason, 
I’d suggest just calculating effect sizes for the Mann–Whitney tests that we used to follow 
up the main analysis. 

For the first comparison (no soya vs. 1 meal) SPSS Output 15.10 shows us that z is 
−0.243, and because this is based on comparing two groups each containing 20 observa-
tions, we had 40 observations in total. The effect size is therefore:

rNoSoya− 1Meal =
−0:243ffiffiffiffiffiffi

40
p

=−:04

This represents a very small effect because it is close to zero, which tells us that the effect 
on sperm counts of having one soya meal per week compared to no soya meals was 
negligible.

For the second comparison (no soya vs. 4 meals) SPSS Output 15.10 shows us that z is 
−0.325, and this was again based on 40 observations. The effect size is therefore:

rNoSoya− 1Meal =
−0:325ffiffiffiffiffiffi

40
p

=−:05

‘I want to know how the Jonckheere–Terpstra test actually works,’ com-
plains Oliver. Of course you do, Oliver, sleep is hard to come by these 
days. I am only too happy to oblige my little syphilitic friend. The addi-
tional material for this chapter on the companion website has a complete 
explanation of the test and how it works. I bet you’re glad you asked.

OLIVER TWISTED

Please, Sir, can I 
have some more … 
Jonck?
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This again represents a negligible effect because it is close to zero, which tells us that the 
effect on sperm counts of having four soya meals per week compared to no soya meals was 
negligible.

For the final comparison (no soya vs. 7 meals) SPSS Output 15.10 shows us that z is 
−2.597, and this was again based on 40 observations. The effect size is therefore:

rNoSoya− 1Meal =
−2:597ffiffiffiffiffiffi

40
p

=−:41

This represents a medium effect, which tells us that the effect of seven soya meals 
a week lowering sperm counts (compared to having none) was a fairly substantive 
finding.

We can also calculate an effect size for Jonckheere’s test if we want to by using the same 
equation. This test involves all data, so we have to use 80 as our value of N:

rJonckheere =
−2:476ffiffiffiffiffiffi

80
p

=−:28

15.5.8.  Writing and interpreting the results 1

For the Kruskal–Wallis test, we need only report the test statistic (which we saw earlier  
is denoted by H), its degrees of freedom and its significance. So, we could report some-
thing like:

	Sperm counts were significantly affected by eating soya meals, H(3) = 8.66, p < .05.

However, we need to report the follow-up tests as well (including their effect sizes): 

	Sperm counts were significantly affected by eating soya meals, H(3) = 8.66, p < .05. 
Mann–Whitney tests were used to follow up this finding. A Bonferroni correction was 
applied and so all effects are reported at a .0167 level of significance. It appeared that 
sperm counts were no different when one soya meal (U = 191, r = −.04) or four soya 
meals (U = 188, r = −.05) were eaten per week compared to none. However, when 
seven soya meals were eaten per week sperm counts were significantly lower than 
when no soya was eaten (U = 104, r = −.41). We can conclude that if soya is eaten every 
day it significantly reduces sperm counts compared to eating none; however, eating 
soya less than every day has no significant effect on sperm counts (‘phew!’ says the 
vegetarian man!).

Or, we might want to report our trend:

	All effects are reported at p < .05. Sperm counts were significantly affected by  
eating soya meals (H(3) = 8.66). Jonckheere’s test revealed a significant trend in the 
data: as more soya was eaten, the median sperm count decreased, J = 912, z = −2.48, 
r = −.28.
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             CRAMMING SAM’S TIPS    

 The Kruskal–Wallis test compares several conditions when different participants take part in each condition and the result-
ing data violate an assumption of one-way independent ANOVA.

 Look at the row labelled Asymp. Sig. If the value is less than .05 then the groups are significantly different.

 You can follow up the main analysis with Mann–Whitney tests between pairs of conditions, but only accept them as signifi-
cant if they’re significant below .05/number of tests.

 If you predict that the means will increase or decrease across your groups in a certain order then do Jonckheere’s trend 
test.

 Report the h statistic, the degrees of freedom and the significance value for the main analysis. For any post hoc tests, report 
the U statistic and an effect size if possible (you can also report the corresponding z and the significance value). Also report 
the medians and their corresponding ranges (or draw a boxplot).

There seems to be a lot of sperm in this book (not literally 
I hope) – it’s possible that I have a mild obsession. We 
saw in Labcoat Leni’s Real Research 15.1 that male quail 
fertilized more eggs if they had been trained to be able to 
predict when a mating opportunity would arise. However, 
some quail develop fetishes. Really. In the previous exam-
ple the type of compartment acted as a predictor of an 
opportunity to mate, but in studies where a terrycloth 
object acts as a sign that a mate will shortly become 
available, some quail start to direct their sexuial behav-
iour towards the terrycloth object. (I may regret this anol-
ogy but in human terms if you imagine that every time you 
were going to have sex with your boyfriend you gave him 
a green towel a few moments before seducing him, then 
after enough seductions he would start rubbing his crotch 
against any green towel he saw. If you’ve ever wondered 
why you boyfriend rubs his crotch on green towels, then 
I hope this explanation has been enlightening.) In evolu-
tionary terms, this fetishistic behaviour seems counter-
productive because sexual behaviour becomes directed 
towards something that cannot provide reproductive suc-
cess. However, perhaps this behaviour serves to prepare 
the organism for the ‘real’ mating behaviour.

Hakan Çetinkaya and Mike Domjan conducted a bril-
liant study in which they sexually conditioned male quail 
(Çetinkaya & Domjan, 2006). All quail experienced the 
terrycloth stimulus and an opportunity to mate, but for 
some the terrycloth stimulus immediately preceded the 
mating opportunity (paired group) whereas for others 
they experienced it 2 hours after the mating opportunity 
(this was the control group because the terrycloth stimu-
lus did not predict a mating opportuinity). In the paired 
group, quail were classified as fetishistic or not depend-
ing on whether they engaged in sexual behaviour with the 
terrycloth object.

During a test trial the quail mated with a female and 
the researchers measured the percentage of eggs fertil-
ized, the time spent near the terrycloth object, the latency 
to initiate copulation, and copulatory efficiency. If this 
fetishistic behaviour provides an evolutionary advantage 
then we would expect the fetishistic quail to fertilize more 
eggs, initiate copulation faster and be more efficient in 
their copulations. 

The data from this study are in the 
file Çetinkaya & Domjan (2006).sav. 
Labcoat Leni wants you to carry out a 
Kruskal–Wallis test to see whether fetish-
ist quail produced a higher percentage 
of fertilized eggs and initiated sex more 
quickly.

Answers are in the additional material on the com-
panion website (or look at pages 429–430 in the original 
article).

LABCOAT LENI’S
REAL RESEARCH 15.2
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15.6. Differences between several related groups: 
Friedman’s ANOVA 1

In Chapter 13 we discovered a technique called one-way related ANOVA that could be used 
to test for differences between several related groups. Although, as we’ve seen, ANOVA can 
be robust to violations of its assumptions, there is another alternative to the repeated-measures 
case: Friedman’s ANOVA (Friedman, 1937). As such, it is used for testing differences between 
conditions when there are more than two conditions and the same participants have been used 
in all conditions (each case contributes several scores to the data). If you have violated some 
assumption of parametric tests then this test can be a useful way around the problem.

Young people (women especially) can become obsessed with body weight and diets, and 
because the media are insistent on ramming ridiculous images of stick-thin celebrities down 
our throats (should that be ‘into our eyes’?) and brainwashing us into believing that these ema-
ciated corpses are actually attractive, we all end up terribly depressed that we’re not perfect 
(because we don’t have a couple of slugs stuck to our faces instead of lips). Then corporate 
parasites jump on our vulnerability by making loads of money on diets that will help us attain 
the body beautiful! Well, not wishing to miss out on this great opportunity to exploit people’s 
insecurities I came up with my own diet called the Andikins diet.8 The principle is that you 
follow my lifestyle: you eat no meat, drink lots of Darjeeling tea, eat shed-loads of lovely 
European cheese, lots of fresh crusty bread, pasta, chocolate at every available opportunity 
(especially when writing books), then enjoy a few beers at the weekend, play football and 
rugby twice a week and play your drum kit for an hour a day or until your neighbour threatens 
to saw your arms off and beat you around the head with them for making so much noise. To 
test the efficacy of my wonderful new diet, I took 10 women who considered themselves to be 
in need of losing weight and put them on this diet for two months. Their weight was measured 
in kilograms at the start of the diet and then after one month and two months.

15.6.1.  Theory of Friedman’s ANOVA 2

The theory for Friedman’s ANOVA is much the same as the other tests we’ve seen in this chapter: 
it is based on ranked data. To begin with, you simply place your data for different conditions into 
different columns (in this case there were three conditions so we have three columns). The data 
for the diet example are in Table 15.5; note that the data are in different columns and so each 
row represents the weight of a different person. The next thing we have to do is rank the data 
for each person. So, we start with person 1, we look at their scores (in this case person 1 weighed 
63.75 kg at the start, 65.38 kg after one month on the diet, and 81.34 kg after two months on 
the diet), and then we give the lowest one a rank of 1, the next highest a rank of 2 and so on (see 
section 15.3.1 for more detail). When you’ve ranked the data for the first person, you move on 
to the next person and, starting at 1 again, rank their lowest score, then rank the next highest as 
2 and so on. You do this for all people from whom you’ve collected data. You then simply add 
up the ranks for each condition (Ri, where i is used to denote the particular group).

SELF-TEST  Have a go at ranking the data and see if 
you get the same results as in Table 15.5.

8 Not to be confused with the Atkins diet obviously.
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Table 15.5 Data for the diet example with ranks

Weight Weight

Start Month 1 Month 2
Start 

(Ranks)
Month 1 
(Ranks)

Month 2 
(Ranks)

Person 1  63.75  65.38  81.34  1  2  3

Person 2  62.98  66.24  69.31  1  2  3

Person 3  65.98  67.70  77.89  1  2  3

Person 4 107.27 102.72  91.33  3  2  1

Person 5  66.58  69.45  72.87  1  2  3

Person 6 120.46 119.96 114.26  3  2  1

Person 7  62.01  66.09  68.01  1  2  3

Person 8  71.87  73.62  55.43  2  3  1

Person 9  83.01  75.81  71.63  3  2  1

Person 10  76.62  67.66  68.60  3  1  2

Ri 19 20 21

Once the sum of ranks has been calculated for each group, the test statistic, Fr, is calcu-
lated as: 

Fr =
12

Nkðk+ 1Þ
Xk

i=1

R2
i

" #
−3Nðk+ 1Þ (15.3)

In this equation, Ri is the sum of ranks for each group, N is the total sample size (in this 
case 10) and k is the number of conditions (in this case 3). This equation is very similar to 
that of the Kruskal–Wallis test (compare equations (15.1) and (15.3)). All we need to do 
for each condition is square the sum of ranks and then add up these values. That deals with 
the middle part of the equation; the rest of it involves calculating various values based on 
the total sample size and the number of conditions. For these data we get:

Fr =
12

ð10× 3Þð3+ 1Þ
192 + 202 + 212
  

− ð3× 10Þð3+ 1Þ

= 12

120
ð361+ 400+ 441Þ− 120

=0:1ð1202Þ− 120

=120:2− 120

=0:2

When the number of people tested is large (bigger than about 10) this test statistic, like the 
Kruskal–Wallis test in the previous section, has a chi-square distribution (see Chapter 18) 
and for this distribution there is one value for the degrees of freedom, which is one less 
than the number of groups (k − 1): in this case 2. everybody
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15.6.2.  Inputting data and provisional analysis 1

SELF-TEST  Using what you know about inputting 
data, try to enter these data into SPSS and run some 
exploratory analyses (see Chapter 5)

When the data are collected using the same participants in each condition, the data are 
entered using different columns. So, the data editor will have three columns of data. The 
first column is for the data from the start of the diet (called something like Start), the 
second column will have values for the weights after one month (called Month1) and 
the final column will have the weights at the end of the diet (called Month2). The data can 
be found in the file Diet.sav.

First, we run some exploratory analyses on the data. With a bit of luck you’ll get the 
same table shown in SPSS Output 15.12, which shows that the Kolmogorov–Smirnov 
test (see section 5.5) was not significant for the initial weights at the start of the diet 
(D(10) = .23, p > .05), but the Shapiro–Wilk test is significant and this test is actually 
more accurate than the Kolmogorov–Smirnov test. The data one month into the diet 
were significantly different from normal (D(10) = .34, p < .01). The data at the end of 
the diet do appear to be normal, though (D(10) = .20, p > .05). Some of these data are 
not normally distributed.

15.6.3.  Doing Friedman’s ANOVA on SPSS 1

First, access the main dialog box (see Figure 15.9) by selecting 
. Once the dialog box is activated, select the three variables that represent 

the dependent variable at the different levels of the independent variable from the list 
(click on Start and then, holding down the Ctrl key, click on Month1 and Month2). Drag 
them to the box labelled Test Variables (or click on ). If you click on  then you 
get a dialog box for selecting exact significance values for Friedman’s ANOVA (see section 
15.3.3). Remember that I’ve said that when samples are large you should probably opt for 
the Monte Carlo method but with small samples it’s worth opting for the exact test. Well, 
we’ve got a relatively small sample here so we can select the exact tests. Finally, click on 

 to select some descriptive statistics. To run the analyses return to the main dialog 
box and click on . You can also conduct some related tests using the same dialog box 
as for Friedman’s ANOVA (see SPSS Tip 15.4).

SPSS OuTPuT 15.12
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15.6.4.  Output from Friedman’s ANOVA 1

As we’ve seen, Friedman’s ANOVA, like all the non-parametric tests in this chapter, is 
based on the ranks, not the actual scores. SPSS Output 15.13 shows the mean rank in each 
condition. These mean ranks are important later for interpreting any effects; they show 
that the ranks were fairly similar across the conditions.

SPSS Output 15.14 shows the test statistic (SPSS calls this Chi-Square rather that Fr because 
Fr has a chi-square distribution). The value of this statistic is 0.2, the same value that we cal-
culated earlier. We’re also told the test statistic’s degrees of freedom (in this case we had three 
groups so the degrees of freedom are 3 − 1, or 2), and the significance. If you ask for exact 
significance then this value is given too. The significance value is .905 (or .974 if you read the 
exact significance), which is well above .05, therefore we could conclude that the Andikins diet 
does not have any effect: the weights didn’t significantly change over the course of the diet.

Figure 15.9
Dialog boxes 
for Friedman’s 
ANOVA

          SPSS T IP  15 .4    Other options for Friedman’s ANOVA 2

In the main dialog box there are some other tests that can be selected:

	 Kendall’s W: This is similar to Friedman’s ANOVA but is used specifically for looking at the agreement 
between raters. If, for example, we asked 10 different women to rate the attractiveness of Justin Timberlake, 
David Beckham and Barack Obama we could use this test to look at the extent to which they agree. This test 
is particularly useful because, like the correlation coefficient, Kendall’s W has a limited range: it ranges from 
0 (no agreement between judges) to 1 (complete agreement between judges).

	 Cochran’s Q: This test is an extension of McNemar’s test (see SPSS Tip 15.3) and is basically a Friedman 
test for when you have dichotomous data. So imagine you asked 10 people whether they’d like to snog 
Justin Timberlake, David Beckham and Barack Obama and they could answer only yes or no. If we coded 
responses as 0 (no) and 1 (yes) we could do the Cochran test on these data).
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15.6.5.  Post hoc tests for Friedman’s ANOVA 2

In normal circumstances we wouldn’t do any follow-up tests because the overall effect 
from Friedman’s ANOVA was not significant. However, in case you get a result that is 
significant we will have a look at what options you have. As with the Kruskal–Wallis test, 
there are two ways to do non-parametric post hoc procedures, which are in essence the 
same. The first is to use Wilcoxon signed-rank tests (section 15.4) but correcting for the 
number of tests we do (see sections 10.2.1 and 15.5.5 for the reasons why). The way we 
correct for the number of tests is to accept something as significant only if its significance 
is less than α/number of comparisons (the Bonferroni correction). In the social sciences this 
usually means .05/number of comparisons. In this example, we have only three groups, so 
if we compare all of the groups we simply get three comparisons: 

Test 1: Weight at the start of the diet compared to at one month.	

Test 2: Weight at the start of the diet compared to at two months.	

Test 3: Weight at one month compared to at two months.	

Therefore, rather than use .05 as our critical level of significance, we’d use .05/3 = .0167. 
In fact we wouldn’t bother with post hoc tests at all for this example because the main 
ANOVA was non-significant, but I’ll go through the motions to illustrate what to do.

SELF-TEST  Carry out the three Wilcoxon tests 
suggested above (see Figure 15.5).

SPSS Output 15.15 shows the Wilcoxon signed-rank test statistics from doing the three 
comparisons. Remember that we are now using a critical value of .0167, and in fact none 
of the comparisons are significant because they have one-tailed significance values of .500, 
.423 and .461 (this isn’t surprising because the main analysis was non-significant).

SPSS OuTPuT 15.13

SPSS OuTPuT 15.14
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The second way to do post hoc tests is very similar to what we did for the Kruskal–Wallis 
test in section 15.5.5 and is, likewise, described by Siegel and Castellan (1988). Again, we 
take the difference between the mean ranks of the different groups and compare these dif-
ferences to a value based on the value of z (corrected for the number of comparisons being 
done) and a constant based on the total sample size, N (10 in this example) and the number 
of conditions, k (3 in this case). The inequality is:

RuRv

 ≥ zα=kðk−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk+ 1Þ

6N

r
(15.4)

The left-hand side of this inequality is just the difference between the mean rank of the two 
groups being compared, but ignoring the sign of the difference. As with Kruskal–Wallis, we 
need to know z

α/k(k – 1), and if we stick to tradition and use an α level of .05, knowing that k is 3,  
we get α/k(k −1) = .05/3(3 − 1) = .05/6 = .00833. So, z

α/k(k – 1) just means ‘the value of z for 
which only α/k(k −1) other values of z are bigger’ (or in this case ‘the value of z for which 
only .00833 other values of z are bigger’). Therefore, we go to table A.1 in the Appendix, 

SPSS OuTPuT 15.15
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look at the column labelled Smaller Portion and find the number .00833 and then find 
the value in the same row in the column labelled z. In this case there are values of .00842 
and .00820, which give z-values of 2.39 and 2.40 respectively; because .00833 lies about 
midway between the values we found, we could just take the midpoint of the two z-values, 
2.395, or we could err on the side of caution and use 2.40. I’ll err on the cautious side and 
use 2.40. We can now calculate the right-hand side of inequality (15.4):

critical difference= zα=kðk− 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk+ 1Þ

6N

r

= 2:40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3+ 1Þ
6ð10Þ

s

= 2:40

ffiffiffiffiffiffi
12

60

r

= 2:40
ffiffiffiffiffiffiffi
0:2

p

= 1:07

When the same people have been used, the same critical difference can be used for all com-
parisons. The next step is simply to calculate all of the differences between the mean ranks of 
all of the groups (the mean ranks can be found in SPSS Output 15.13), as in Table 15.6.

Inequality (15.4) means that if the differences between mean ranks is bigger than or 
equal to the critical difference, then that difference is significant. In this case, it means that 
if any difference is bigger than 1.07, then it is significant. All differences are below this 
value so we could conclude that none of the groups were significantly different and this is 
consistent with the non-significance of the initial ANOVA. 

15.6.6.  Calculating an effect size 2

As I mentioned before, there isn’t an easy way to convert a chi-square statistic that has 
more than 1 degree of freedom to an effect size r and, in any case, it’s not always that 
helpful to have an effect size for a general effect like that tested by Friedman’s ANOVA.9 
Therefore, it’s more sensible (in my opinion at least) to calculate effect sizes for any com-
parisons you’ve done after the ANOVA. As we saw in section 15.4.5, it’s straightforward to 
get an effect size r from the Wilcoxon signed-rank test. Alternatively, we could just calculate 
effect sizes for the Wilcoxon tests that we used to follow up the main analysis. These effect 
sizes will be very informative in their own right.

Table 15.6 Differences between mean ranks for the diet data

Comparison R
—

u RR
—

v R
—

u – R
—

v |R
—

u – R
—

v|

Start–1 Month 1.90 2.00 −0.10 0.10

Start–2 Months 1.90 2.10 −0.20 0.20

1 Month–2 Months 2.00 2.10 −0.10 0.10

9 If you really want to, though, you can (as with the Kruskal–Wallis test) use the significance value of the chi-square 
test statistic to find an associated value of z from a table of probability values for the normal distribution (see 
Appendix) and then use the conversion to r that we’ve seen throughout this chapter.

everybody
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For the first comparison (start weight vs. 1 month) SPSS Output 15.15 shows us that z is 
−0.051, and because this is based on comparing two conditions each containing 10 obser-
vations, we had 20 observations in total (remember it isn’t important that the observations 
come from the same people). The effect size is therefore:

rStart−1Month =
−0:051ffiffiffiffiffiffi

20
p

=−0:01

For the second comparison (start weight vs. 2 months) SPSS Output 15.15 shows us that 
z is −0.255, and this was again based on 20 observations. The effect size is therefore:

rStart−2Months =
−0:255ffiffiffiffiffiffi

20
p

=−0:06

For the final comparison (1 month vs. 2 months) SPSS Output 15.15 shows us that z is 
−0.153, and this was again based on 20 observations. The effect size is therefore:

rStart−2Months =
−0:153ffiffiffiffiffiffi

20
p

=−0:03

Unsurprisingly, given the lack of significance of the Wilcoxon tests, these all represent 
virtually non-existent effects: they are all very close to zero. 

15.6.7.  Writing and interpreting the results 1

For Friedman’s ANOVA we need only report the test statistic (which we saw earlier is denoted 
by c2),10 its degrees of freedom and its significance. So, we could report something like:

	The weight of participants did not significantly change over the two months of the diet, 
c2(2) = 0.20, p > .05.

Although with no significant initial analysis we wouldn’t report post hoc tests for these 
data, in case you need to, you should say something like this (remember that the test sta-
tistic T is the smaller of the two sums of ranks for each test and these values are in SPSS 
Output 15.15):

	The weight of participants did not significantly change over the two months of the diet, 
c2(2) = 0.20, p > .05. Wilcoxon tests were used to follow up this finding. A Bonferroni 
correction was applied and so all effects are reported at a .0167 level of significance. 
It appeared that weight didn’t significantly change from the start of the diet to one 
month, T = 27, r = −0.01, from the start of the diet to two months, T = 25, r = −0.06, or 
from one month to two months, T = 26, r = −0.03. We can conclude that the Andikins 
diet, like its creator, is a complete failure. 

10 The test statistic is often denoted as χ2
F but the official APA style guide doesn’t recognize this term. 
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What have I discovered about statistics? 1

This chapter has dealt with an alternative approach to violations of parametric assump-
tions, which is to use tests based on ranking the data. We started with the Wilcoxon 
rank-sum test and the Mann–Whitney test, which is used for comparing two independ-
ent groups. This test allowed us to look in some detail at the process of ranking data. 
We then moved on to look at the Wilcoxon signed-rank test, which is used to compare 
two related conditions. We moved on to more complex situations in which there are 
several conditions (the Kruskal–Wallis test for independent conditions and Friedman’s 
ANOVA for related conditions). For each of these tests we looked at the theory of the 
test (although these sections could be ignored) and then focused on how to conduct 
them on SPSS, how to interpret the results and how to report the results of the test. 
In the process we discovered that drugs make you depressed, soya reduces your sperm 
count, and my lifestyle is not conducive to losing weight!

We also discovered that my teaching career got off to an inauspicious start. As it 
turned out, one of the reasons that the class did not have a clue what I was talking about 
was because I hadn’t been shown their course handouts and I was trying to teach them 
ANOVA using completely different equations to their lecturer (there are many ways to 
compute an ANOVA). The other reason was that I was a rubbish teacher. This event did 
change my life, though, because the experience was so awful that I did everything in my 
power to make sure that it didn’t happen again. After years of experimentation I can 
now pass on the secret of avoiding students telling you how awful your ANOVA classes 
are: the more penis jokes you tell, the less likely you are to be emotionally crushed by 
dissatisfied students.

             CRAMMING SAM’S TIPS    

 

 Friedman’s ANOVA compares several conditions when the same participants take part in each condition and the resulting 
data violate an assumption of one-way repeated-measures ANOVA.

 Look at the row labelled Asymp. Sig. If the value is less than .05 then the conditions are significantly different.

 You can follow up the main analysis with Wilcoxon signed-rank tests between pairs of conditions, but only accept them as 
significant if they’re significant below .05/number of tests.

 Report the χ2 statistic, its degrees of freedom and significance. For any post hoc tests report the T statistic, and an effect 
size if possible. You can also report the value of z and its significance value. Report the medians and their ranges (or draw 
a boxplot).
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Key terms that I’ve discovered
Cochran’s Q
Friedman’s ANOVA
Jonckheere–Terpstra test
Kendall’s W
Kolmogorov–Smirnov Z
Kruskal–Wallis test
Mann–Whitney test
McNemar’s test
Median test

Monte Carlo method
Moses extreme reactions
Non-parametric tests
Ranking
Sign test
Wald–Wolfowitz runs
Wilcoxon rank-sum test
Wilcoxon signed-rank test

Smart Alex’s tasks

Task 1	 : A psychologist was interested in the cross-species differences between men 
and dogs. She observed a group of dogs and a group of men in a naturalistic setting 
(20 of each). She classified several behaviours as being dog-like (urinating against 
trees and lamp posts, attempts to copulate with anything that moved, and attempts 
to lick their own genitals). For each man and dog she counted the number of dog-
like behaviours displayed in a 24 hour period. It was hypothesized that dogs would 
display more dog-like behaviours than men. The data are in the file MenLikeDogs.
sav. Analyse them with a Mann–Whitney test. 1

Task 2	 : There’s been much speculation over the years about the influence of sublimi-
nal messages on records. To name a few cases, both Ozzy Osbourne and Judas Priest 
have been accused of putting backward masked messages on their albums that sub-
liminally influence poor unsuspecting teenagers into doing things like blowing their 
heads off with shotguns. A psychologist was interested in whether backward masked 
messages really did have an effect. He took the master tapes of Britney Spears’ ‘Baby 
one more time’ and created a second version that had the masked message ‘deliver 
your soul to the dark lord’ repeated in the chorus. He took this version, and the origi-
nal, and played one version (randomly) to a group of 32 people. He took the same 
group six months later and played them whatever version they hadn’t heard the time 
before. So each person heard both the original and the version with the masked mes-
sage, but at different points in time. The psychologist measured the number of goats 
that were sacrificed in the week after listening to each version. It was hypothesized 
that the backward message would lead to more goats being sacrificed. The data are in 
the file DarkLord.sav. Analyse them with a Wilcoxon signed-rank test. 1

Task 3	 : A psychologist was interested in the effects of television programmes on 
domestic life. She hypothesized that through ‘learning by watching’, certain pro-
grammes might actually encourage people to behave like the characters within them. 
This in turn could affect the viewer’s own relationships (depending on whether the 
programme depicted harmonious or dysfunctional relationships). She took episodes 
of three popular TV shows and showed them to 54 couples after which the couple 
were left alone in the room for an hour. The experimenter measured the number 
of times the couple argued. Each couple viewed all three of the TV programmes 
at different points in time (a week apart) and the order in which the programmes 
were viewed was counterbalanced over couples. The TV programmes selected were 
Eastenders (which typically portrays the lives of extremely miserable, argumentative, 
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London folk who like nothing more than to beat each other up, lie to each other, 
sleep with each other’s wives and generally show no evidence of any consideration to 
their fellow humans!), Friends (which portrays a group of unrealistically considerate 
and nice people who love each other oh so very much – but for some reason I love it 
anyway!), and a National Geographic programme about whales (this was supposed 
to act as a control). The data are in the file Eastenders.sav. Access them and conduct 
Friedman’s ANOVA on the data. 1

Task 4	 : A researcher was interested in trying to prevent coulrophobia (fear of clowns) 
in children. She decided to do an experiment in which different groups of children 
(15 in each) were exposed to different forms of positive information about clowns. 
The first group watched some adverts for McDonald’s in which their mascot Ronald 
McDonald is seen cavorting about with children going on about how they should love 
their mums. A second group was told a story about a clown who helped some children 
when they got lost in a forest (although what on earth a clown was doing in a forest 
remains a mystery). A third group was entertained by a real clown, who came into the 
classroom and made balloon animals for the children.11 A final group acted as a control 
condition and they had nothing done to them at all. The researcher took self-report 
ratings of how much the children liked clowns resulting in a score for each child that 
could range from 0 (not scared of clowns at all) to 5 (very scared of clowns). The data 
are in the file coulrophobia.sav. Access them and conduct a Kruskal–Wallis test. 1

Answers can be found on the companion website and because these examples are used in 
Field and Hole (2003), you could steal this book or photocopy Chapter 7 to get some very 
detailed answers.

Further reading
Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New 

York: McGraw-Hill. (This has become the definitive text on non-parametric statistics, and is the 
only book seriously worth recommending as ‘further’ reading. It is probably not a good book for 
stats-phobes, but if you’ve coped with my chapter then this book will be an excellent next step.)

Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). Burlington, MA: 
Elsevier. (This book is quite technical, compared to this one, but really is a wonderful resource. Wilcox 
describes how to use an astonishing range of robust tests that can’t be done directly in SPSS!)

Online tutorial
The companion website contains the following Flash movie tutorial to accompany this chapter:

 Nonparametric tests using SPSS

Interesting real research
Çetinkaya, H., & Domjan, M. (2006). Sexual fetishism in a quail (Coturnix japonica) model system: 

Test of reproductive success. Journal of Comparative Psychology, 120(4), 427–432.
Matthews, R. C., Domjan, M., Ramsey, M., & Crews, D. (2007). Learning effects on sperm competi-

tion and reproductive fitness. Psychological Science, 18(9), 758–762.

11 Unfortunately, the first time they attempted the study the clown accidentally burst one of the bal-
loons. The noise frightened the children and they associated that fear response with the clown. All 
15 children are currently in therapy for coulrophobia!
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Figure 16.1
Fuzzy doing 
some light 
reading

16 Multivariate analysis of 
variance (MANOVA)

16.1. What will this chapter tell me? 2

Having had what little confidence I had squeezed out of me by my formative teaching experi-
ences, I decided that I could either kill myself, or get a cat. I’d wanted to do both for years but 
when I was introduced to a little four-week old bundle of gingerness the choice was made. 
Fuzzy (as I named him) was born on 8 April 1996 and has been my right-hand feline ever 
since. He is like the Cheshire cat in Lewis Carroll’s Alice’s adventures in Wonderland1 in that 
he seemingly vanishes and reappears at will: I go to find clothes in my wardrobe and notice 

1 This is one of my favourite books from my childhood. For those that haven’t read it, the Cheshire cat is a big 
fat cat mainly remembered for vanishing and reappearing out of nowhere; on one occasion it vanished leaving 
only its smile behind.
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What is MANOVA?

a ginger face peering out at me, I put my pants in the laundry basket and he looks up at me 
from a pile of smelly socks, I go to have a bath and he’s sitting in it, and I shut the bedroom 
door yet wake up to find him asleep next to me. His best vanishing act was a few years ago 
when I moved house. He’d been locked up in his travel basket (which he hates) during the 
move, so once we were in our new house I thought I’d let him out as soon as possible. I found 
a quiet room, checked the doors and windows to make sure he couldn’t escape, opened the 
basket, gave him a cuddle and left him to get to know his new house. When I returned five 
minutes later, he was gone. The door had been shut, the windows closed and the walls were 
solid (I checked). He had literally vanished into thin air and he didn’t even leave behind his 
smile. Before his dramatic disappearance, Fuzzy had stopped my suicidal tendencies, and 
there is lots of research showing that having a pet is good for your mental health. If you 
wanted to test this you could compare people with pets against those without to see if they 
had better mental health. However, the term mental health covers a wide range of concepts 
including (to name a few) anxiety, depression, general distress and psychosis. As such, we 
have four outcome measures and all the tests we have encountered allow us to look at one. 
Fear not, when we want to compare groups on several outcome variables we can extend 
ANOVA to become a MANOVA. That’s what this chapter is all about. 

16.2. When to use MANOVA 2

Over Chapters 9–14, we have seen how the general linear model (GLM) 
can be used to detect group differences on a single dependent variable. 
However, there may be circumstances in which we are interested in several 
dependent variables and in these cases the simple ANOVA model is inad-
equate. Instead, we can use an extension of this technique known as mul-
tivariate analysis of variance (or MANOVA). MANOVA can be thought of as 
ANOVA for situations in which there are several dependent variables. The 
principles of ANOVA extend to MANOVA in that we can use MANOVA 
when there is only one independent variable or when there are several, we 
can look at interactions between independent variables, and we can even do 
contrasts to see which groups differ from each other. ANOVA can be used 
only in situations in which there is one dependent variable (or outcome) and so is known 
as a univariate test (univariate quite obviously means ‘one variable’); MANOVA is designed 
to look at several dependent variables (outcomes) simultaneously and so is a multivariate 
test (multivariate means ‘many variables’). This chapter will explain some basics about 
MANOVA for those of you who want to skip the fairly tedious theory sections and just 
get on with the test. However, for those who want to know more there is a fairly lengthy 
theory section to try to explain the workings of MANOVA. We then look at an example 
using SPSS and see how the output from MANOVA can be interpreted. This leads us to 
look at another statistical test known as discriminant function analysis.

16.3. Introduction: similarities and differences  
to ANOVA 2

If we have collected data about several dependent variables then we could simply conduct a 
separate ANOVA for each dependent variable (and if you read research articles you’ll find that it 
is not unusual for researchers to do this!). Think back to Chapter 10 and you should remember 
that a similar question was posed regarding why ANOVA was used in preference to multiple 
t-tests. The answer to why MANOVA is used instead of multiple ANOVAs is the same: the 
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is in most cases greater than that for moderate intercor-
relations, and in some cases it is dramatically higher’ 
(p. 736). These findings are slightly contradictory, which 
leaves us with the puzzling conundrum of what, exactly, is 
the relationship between power and intercorrelation of the 
dependent variables? Luckily, Cole, Maxwell, Arvey, and 
Salas (1994) have done a great deal to illuminate this rela-
tionship. They found that the power of MANOVA depends 
on a combination of the correlation between dependent 
variables and the effect size to be detected. In short, if 
you are expecting to find a large effect, then MANOVA will 
have greater power if the measures are somewhat differ-
ent (even negatively correlated) and if the group differ-
ences are in the same direction for each measure. If you 
have two dependent variables, one of which exhibits a 
large group difference, and one of which exhibits a small, 
or no, group difference, then power will be increased 
if these variables are highly correlated. The take-home 
message from Cole et al.’s work is that if you are inter-
ested in how powerful the MANOVA is likely to be you 
should consider not just the intercorrelation of dependent 
variables but also the size and pattern of group differ-
ences that you expect to get. However, it should be noted 
that Cole et al.’s work is limited to the case of where two 
groups are being compared and power considerations 
are more complex in multiple group situations.

I mentioned in the previous section that MANOVA had 
greater power than ANOVA to detect effects because it 
could take account of the correlations between depen-
dent variables (Huberty & Morris, 1989). However, the 
issue of power is more complex than alluded to by 
my simple statement. Ramsey (1982) found that as the 
correlation between dependent variables increased, the 
power of MANOVA decreased. This led Tabachnick and 
Fidell (2007) to recommend that MANOVA ‘works best 
with highly negatively correlated DVs, and acceptably 
well with moderately correlated DVs in either direction’ 
and that ‘MANOVA also is wasteful when DVs are uncor-
related’ (p. 268). In contrast, Stevens’ (1980) investigation 
of the effect of dependent variable correlations on test 
power revealed that ‘the power with high intercorrelations 

JANE SUPERBRAIN 16.1

The power of MANOVA 3

more tests we conduct on the same data, the more we inflate the familywise 
error rate (see section 10.2.1). The more dependent variables that have been 
measured, the more ANOVAs would need to be conducted and the greater the 
chance of making a Type I error. However, there are other reasons for prefer-
ring MANOVA to several ANOVAs. For one thing, there is important addi-
tional information that is gained from a MANOVA. If separate ANOVAs are 
conducted on each dependent variable, then any relationship between depend-
ent variables is ignored. As such, we lose information about any correlations 
that might exist between the dependent variables. MANOVA, by including 
all dependent variables in the same analysis, takes account of the relationship 
between outcome variables. Related to this point, ANOVA can tell us only 

whether groups differ along a single dimension whereas MANOVA has the power to detect 
whether groups differ along a combination of dimensions. For example, ANOVA tells us how 
scores on a single dependent variable distinguish groups of participants (so, for example, we 
might be able to distinguish drivers, non-drivers and drunk drivers by the number of pedestrians 
they kill). MANOVA incorporates information about several outcome measures and, therefore, 
informs us of whether groups of participants can be distinguished by a combination of scores 
on several dependent measures. For example, it may not be possible to distinguish drivers, non-
drivers and drunk drivers only by the number of pedestrians that they kill, but they might be 
distinguished by a combination of the number of pedestrians they kill, the number of lamp posts 
they hit, and the number of cars they crash into. So, in this sense MANOVA has greater power 
to detect an effect, because it can detect whether groups differ along a combination of variables, 
whereas ANOVA can detect only if groups differ along a single variable (see Jane Superbrain 
Box 16.1). For these reasons, MANOVA is preferable to conducting several ANOVAs.

Why not do lots
of ANOVAs?
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16.3.1.  Words of warning 2

From my description of MANOVA it is probably looking like a pretty groovy little test that 
allows you to measure hundreds of dependent variables and then just sling them into the 
analysis. This is not the case. It is not a good idea to lump all of your dependent variables 
together in a MANOVA unless you have a good theoretical or empirical basis for doing so. 
I mentioned way back at the beginning of this book that statistical procedures are just a 
way of number crunching and so even if you put rubbish into an analysis you will still reach 
conclusions that are statistically meaningful, but are unlikely to be empirically meaningful. 
In circumstances where there is a good theoretical basis for including some but not all of 
your dependent variables, you should run separate analyses: one for the variables being 
tested on a heuristic basis and one for the theoretically meaningful variables. The point to 
take on board here is not to include lots of dependent variables in a MANOVA just because 
you have measured them.

16.3.2.  The example for this chapter 2

Throughout the rest of this chapter we’re going to use a single example to look at how 
MANOVA works and then how to conduct one on SPSS. Imagine that we were interested 
in the effects of cognitive behaviour therapy on obsessive compulsive disorder (OCD). 
OCD is a disorder characterized by intrusive images or thoughts that the sufferer finds 
abhorrent (in my case this might be the thought of someone carrying out a t-test on data 
that are not normally distributed, or imagining your parents have died). These thoughts 
lead the sufferer to engage in activities to neutralize the unpleasantness of these thoughts 
(these activities can be mental, such as doing a MANOVA in my head to make me feel 
better about the t-test thought, or physical, such as touching the floor 23 times so that 
your parents won’t die). Now, we could compare a group of OCD sufferers after cogni-
tive behaviour therapy (CBT) and after behaviour therapy (BT) with a group of OCD 
sufferers who are still awaiting treatment (a no-treatment condition, NT).2 Now, most 
psychopathologies have both behavioural and cognitive elements to them. For example, 
in OCD if someone had an obsession with germs and contamination, this disorder might 
manifest itself in obsessive hand-washing and would influence not just how many times 
they actually wash their hands (behaviour), but also the number of times they think 
about washing their hands (cognitions). Similarly, someone with an obsession about 
bags won’t just think about bags a lot, but they might carry out bag-related behaviours 
(such as saying ‘bag’ repeatedly, or buying lots of bags). If we are interested in seeing 
how successful a therapy is, it is not enough to look only at behavioural outcomes (such 
as whether obsessive behaviours are reduced); it is important to establish whether cog-
nitions are being changed also. Hence, in this example two dependent measures were 
taken: the occurrence of obsession-related behaviours (Actions) and the occurrence of 
obsession-related cognitions (Thoughts). These dependent variables were measured on 
a single day and so represent the number of obsession-related behaviours/thoughts in a 
normal day.

The data are in Table 16.1 and can be found in the file OCD.sav. Participants belonged 
to group 1 (CBT), group 2 (BT) or group 3 (NT) and within these groups all participants 
had both actions and thoughts measured.

2 The non-psychologists out there should note that behaviour therapy works on the basis that if you stop the 
maladaptive behaviours the disorder will go away, whereas cognitive therapy is based on the idea that treating the 
maladaptive cognitions will stop the disorder.
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Table 16.1 Data from OCD.sav

DV 1: Actions DV 2: Thoughts

Group: CBT (1) BT (2) NT (3) CBT (1) BT (2) NT (3)

5 4 4 14 14 13

5 4 5 11 15 15

4 1 5 16 13 14

4 1 4 13 14 14

5 4 6 12 15 13

3 6 4 14 19 20

7 5 7 12 13 13

6 5 4 15 18 16

6 2 6 16 14 14

4 5 5 11 17 18

X
—

4.90 3.70 5.00 13.40 15.20 15.00

s 1.20 1.77 1.05  1.90  2.10  2.36

s2 1.43 3.12 1.11  3.60  4.40  5.56

X
—

grand (Actions) = 4.53

s 2
grand (Actions) = 2.1195

X
—

 grand (Thoughts) = 14.53

s 2
grand (Thoughts) = 4.8780

16.4. Theory of MANOVA 3

The theory of MANOVA is very complex to understand without knowing matrix algebra, 
and frankly matrix algebra is way beyond the scope of this book (those with maths brains 
can consult Namboodiri, 1984; Stevens, 2002). However, I intend to give a flavour of the 
conceptual basis of MANOVA, using matrices, without requiring you to understand exactly 
how those matrices are used. Those interested in the exact underlying theory of MANOVA 
should read Bray and Maxwell’s (1985) superb monograph.

16.4.1.  Introduction to matrices 3

A matrix is simply a collection of numbers arranged in columns and rows. In fact, throughout 
this book you have been using a matrix without even realizing it: the SPSS Data Editor. In the 
data editor we have numbers arranged in columns and rows and this is exactly what a matrix 
is. A matrix can have many columns and many rows and we usually specify the dimensions of 
the matrix using numbers. So, a 2 × 3 matrix is a matrix with two rows and three columns, 
and a 5 × 4 matrix is one with five rows and four columns (examples below):

smart
alex
only
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2 5 6

3 5 8

 
2 4 6 8

3 4 6 7

4 3 5 8

2 5 7 9

4 6 6 9

0
BBBBBB@

1
CCCCCCA

2×3 matrix 5×4 matrix

You can think of these matrices in terms of each row representing the data from a single 
participant and each column as representing data relating to a particular variable. So, for 
the 5 × 4 matrix we can imagine a situation where five participants were tested on four 
variables: so, the first participant scored 2 on the first variable and 8 on the fourth variable. 
The values within a matrix are typically referred to as components or elements.

A square matrix is one in which there are an equal number of columns and rows. In this 
type of matrix it is sometimes useful to distinguish between the diagonal components (i.e. 
the values that lie on the diagonal line from the top left component to the bottom right 
component) and the off-diagonal components (the values that do not lie on the diagonal). 
In the matrix below, the diagonal components are 5, 12, 2 and 6 because they lie along the 
diagonal line. The off-diagonal components are all of the other values. A square matrix in 
which the diagonal elements are equal to 1 and the off-diagonal elements are equal to 0 is 
known as an identity matrix:

5 3 6 10

3 12 4 6

6 4 2 7

10 6 7 6

0

BBB@

1

CCCA

1 0 0

0 1 0

0 0 1

0
B@

1
CA

square matrix identity matrix

Hopefully, the concept of a matrix should now be slightly less scary than it was previously: 
it is not some magical mathematical entity, merely a way of representing a data set – just 
like a spreadsheet.

Now, there is a special case of a matrix where there are data from only one person, 
and this is known as a row vector. Likewise, if there is only one column in a matrix this is 
known as a column vector. In the examples below, the row vector can be thought of as a 
single person’s score on four different variables, whereas the column vector can be thought 
of as five participants’ scores on one variable: 

2 6 4 8ð Þ

8

6

10

15

6

0
BBBBBB@

1
CCCCCCA

row vector column vector

Armed with this knowledge of what vectors are, we can have a brief look at how they are 
used to conduct MANOVA.

Diagonal 
Components
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16.4.2.  Some important matrices and their functions 3

As with ANOVA, we are primarily interested in how much variance can be explained 
by the experimental manipulation (which in real terms means how much variance is 
explained by the fact that certain scores appear in certain groups). Therefore, we need 
to know the sum of squares due to the grouping variable (the systematic variation, 
SSM), the sum of squares due to natural differences between participants (the residual 
variation, SSR) and of course the total amount of variation that needs to be explained 
(SST); for more details about these sources of variation reread Chapters 7 and 10. 
However, I mentioned that MANOVA also takes into account several dependent vari-
ables simultaneously and it does this by using a matrix that contains information about 
the variance accounted for by each dependent variable. For the univariate F-test (e.g. 
ANOVA) we calculated the ratio of systematic variance to unsystematic variance for 
a single dependent variable. In MANOVA, the test statistic is derived by comparing 
the ratio of systematic to unsystematic variance for several dependent variables. This 
comparison is made by using the ratio of a matrix representing the systematic variance 
of all dependent variables to a matrix representing the unsystematic variance of all 
dependent variables. To sum up, the test statistic in both ANOVA and MANOVA rep-
resents the ratio of the effect of the systematic variance to the unsystematic variance; in 
ANOVA these variances are single values, but in MANOVA each is a matrix containing 
many variances and covariances.

The matrix that represents the systematic variance (or the model sum of squares for all 
variables) is denoted by the letter H and is called the hypothesis sum of squares and cross-
products matrix (or hypothesis SSCP). The matrix that represents the unsystematic variance 
(the residual sums of squares for all variables) is denoted by the letter E and is called the 
error sum of squares and cross-products matrix (or error SSCP). Finally, there is a matrix that 
represents the total amount of variance present for each dependent variable (the total sums 
of squares for each dependent variable) and this is denoted by T and is called the total sum 
of squares and cross-products matrix (or total SSCP).

Later, I will show how these matrices are used in exactly the same way as the simple 
sums of squares (SSM, SSR and SST) in ANOVA to derive a test statistic representing the ratio 
of systematic to unsystematic variance in the model. The observant among you may have 
noticed that the matrices I have described are all called sum of squares and cross-products 
(SSCP) matrices. It should be obvious why these matrices are referred to as sum of squares 
matrices, but why is there a reference to cross-products in their name?

SELF-TEST  Can you remember (from Chapter 6) what 
a cross-product is?

Cross-products represent a total value for the combined error between two variables (so, 
in some sense they represent an unstandardized estimate of the total correlation between 
two variables). As such, whereas the sum of squares of a variable is the total squared dif-
ference between the observed values and the mean value, the cross-product is the total 
combined error between two variables. I mentioned earlier that MANOVA had the power 
to account for any correlation between dependent variables and it does this by using these 
cross-products.
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16.4.3.  Calculating MANOVA by hand: a worked example 3

To begin with let’s carry out univariate ANOVAs on each of the two dependent variables in our 
OCD example (see Table 16.1). A description of the ANOVA model can be found in Chapter 10 
and I will draw heavily on the assumption that you have read this chapter; if you are hazy on the 
details of Chapter 10 then now would be a good time to (re)read sections 10.2.5 to 10.2.9. 

16.4.3.1. univariate aNOVa for DV 1 (actions) 2

There are three sums of squares that need to be calculated. First we need to assess how 
much variability there is to be explained within the data (SST), next we need to see how 
much of this variability can be explained by the model (SSM), and finally we have to assess 
how much error there is in the model (SSR). From Chapter 10 we can calculate each of 
these values:

SSMM
T(Actions): The total sum of squares is obtained by calculating the difference between 

each of the 20 scores and the mean of those scores, then squaring these differences 
and adding these squared values up. Alternatively, you can get SPSS to calculate the 
variance for the action data (regardless of which group the score falls into) and then 
multiplying this value by the number of scores minus 1:

SST = s2grandðn− 1Þ
= 2:1195ð30− 1Þ
= 2:1195× 29

= 61:47

SSMM
M(Actions): This value is calculated by taking the difference between each group mean 

and the grand mean and then squaring them. Multiply these values by the number of 
scores in the group and then add them together:

SSM =10ð4:90− 4:53Þ2 + 10ð3:70− 4:53Þ2 + 10ð5:00− 4:53Þ2

=10ð0:37Þ2 + 10ð−0:83Þ2 + 10ð0:47Þ2

=1:37+ 6:89+ 2:21

=10:47

SSMM
R(Actions): This value is calculated by taking the difference between each score and the 

mean of the group from which it came. These differences are then squared and then 
added together. Alternatively we can get SPSS to calculate the variance within each 
group, multiply each group variance by the number of scores minus 1 and then add 
them together:

SSR= s2CBTðnCBT − 1Þ+ s2BTðnBT −1Þ+ s2NTðnNT − 1Þ
= ð1:433Þð10− 1Þ+ ð3:122Þð10− 1Þ+ ð1:111Þð10−1Þ
= ð1:433× 9Þ+ ð3:122× 9Þð1:111× 9Þ
= 12:9+ 28:1+ 10:0

= 51:00
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The next step is to calculate the average sums of squares (the mean square) of each by 
dividing by the degrees of freedom (see section 10.2.8):

SS df MS

SSM(Actions) = 10.47  2 5.235

SSR(Actions) = 51.00 27 1.889

The final stage is calculate F by dividing the mean squares for the model by the mean 
squares for the error in the model:

F= MSM
MSR

= 5:235

1:889
= 2:771

This value can then be evaluated against critical values of F. The point to take home here is 
the calculation of the various sums of squares and what each one relates to. 

16.4.3.2. univariate aNOVa for DV 2 (thoughts) 2

As with the data for dependent variable 1, there are three sums of squares that need to be 
calculated as before:

SSMM
T(Thoughts):

SST = s2grandðn− 1Þ
= 4:878ð30− 1Þ
= 4:878× 29

= 141:46

SSMM
M(Thoughts):

SSM = 10ð13:40− 14:53Þ2 + 10ð15:2− 14:53Þ2 + 10ð15:0− 14:53Þ2

= 10ð−1:13Þ2 + 10ð0:67Þ2 +10ð0:47Þ2

= 12:77+ 4:49+ 2:21

= 19:47

SSMM
R(Thoughts):

SSR= s2CBTðnCBT − 1Þ+ s2BTðnBT −1Þ+ s2NTðnNT − 1Þ
= ð3:6Þð10−1Þ+ ð4:4Þð10− 1Þ+ ð5:56Þð10−1Þ
= ð3:6× 9Þ+ ð4:4× 9Þð5:56× 9Þ
= 32:4+ 39:6+ 50:0

= 122

The next step is to calculate the average sums of squares (the mean square) of each by 
dividing by the degrees of freedom (see section 10.2.8): 
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SS df MS

SSM(Thoughts) = 19.47  2 9.735

SSR(Thoughts) = 122.00 27 4.519

The final stage is to calculate F by dividing the mean squares for the model by the mean 
squares for the error in the model:

F= MSM
MSR

= 9:735

4:519
= 2:154

This value can then be evaluated against critical values of F. Again, the point to take home 
here is the calculation of the various sums of squares and what each one relates to.

16.4.3.3. The relationship between DVs: cross-products 2

We know already that MANOVA uses the same sums of squares as ANOVA, and in the 
next section we will see exactly how it uses these values. However, I have also mentioned 
that MANOVA takes account of the relationship between dependent variables by using 
the cross-products. There are three different cross-products that are of interest and these 
three cross-products relate to the three sums of squares that we calculated for the univari-
ate ANOVAs: that is, there is a total cross-product, a cross-product due to the model and a 
residual cross-product. Let’s look at the total cross-product (CPT) first.

I mentioned in Chapter 6 that the cross-product was the difference between the scores 
and the mean in one group multiplied by the difference between the scores and the mean 
in the other group. In the case of the total cross-product, the mean of interest is the grand 
mean for each dependent variable (see Table 16.2). Hence, we can adapt the cross-product 
equation described in Chapter 6 using the two dependent variables. The resulting equation 
for the total cross-product is described as in equation (16.1). Therefore, for each depend-
ent variable you take each score and subtract from it the grand mean for that variable. This 
leaves you with two values per participant (one for each dependent variable) which should 
be multiplied together to get the cross-product for each participant. The total can then be 
found by adding the cross-products of all participants. Table 16.2 illustrates this process:

CPT =
X

xiðActionsÞ−XgrandðActionsÞ
 

xiðThoughtsÞ −XgrandðThoughtsÞ
 

(16.1)

The total cross-product is a gauge of the overall relationship between the two variables. 
However, we are also interested in how the relationship between the dependent variables is 
influenced by our experimental manipulation and this relationship is measured by the model 
cross-product (CPM). The CPM is calculated in a similar way to the model sum of squares. First, 
the difference between each group mean and the grand mean is calculated for each dependent 
variable. The cross-product is calculated by multiplying the differences found for each group. 
Each product is then multiplied by the number of scores within the group (as was done with the 
sum of squares). This principle is illustrated in the following equation and Table 16.3:

CPM =
X

n xgroupðActionsÞ −XgrandðActionsÞ
 

xgroupðThoughtsÞ −XgrandðThoughtsÞ
  

(16.2)
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Table 16.2 Calculation of the total cross-product

Group Actions Thoughts
Actions  

–X
— 

grand(Actions) (D1)
Thoughts  

–X
— 

grand(Thoughts) (D2) D1 × D2

CBT 5

5

4

4

5

3

7

6

6

4

14

11

16

13

12

14

12

15

16

11

  0.47

  0.47

−0.53

−0.53

  0.47

−1.53

  2.47

  1.47

  1.47

−0.53

−0.53

−3.53

  1.47

−1.53

−2.53

−0.53

−2.53

  0.47

  1.47

−3.53

−0.25

−1.66

−0.78

  0.81

−1.19

  0.81

−6.25

  0.69

  2.16

  1.87

BT 4

4

1

1

4

6

5

5

2

5

14

15

13

14

15

19

13

18

14

17

−0.53

−0.53

−3.53

−3.53

−0.53

  1.47

  0.47

  0.47

−2.53

  0.47

−0.53

  0.47

−1.53

−0.53

  0.47

  4.47

−1.53

  3.47

−0.53

  2.47

  0.28

−0.25

  5.40

  1.87

−0.25

  6.57

−0.72

  1.63

  1.34

  1.16

NT 4

5

5

4

6

4

7

4

6

5

13

15

14

14

13

20

13

16

14

18

−0.53

  0.47

  0.47

−0.53

  1.47

−0.53

  2.47

−0.53

  1.47

  0.47

−1.53

  0.47

−0.53

−0.53

−1.53

  5.47

−1.53

  1.47

−0.53

  3.47

  0.81

  0.22

−0.25

  0.28

−2.25

−2.90

−3.78

−0.78

−0.78

  1.63

X
—

grand 4.53 14.53 CPT = Σ(D1 × D2) = 5.47

Finally, we also need to know how the relationship between the two dependent vari-
ables is influenced by individual differences in participants’ performances. The residual 
cross-product (CPR) tells us about how the relationship between the dependent variables is 
affected by individual differences, or error in the model. The CPR is calculated in a similar 
way to the total cross-product except that the group means are used rather than the grand 
mean (see equation (16.3)). So, to calculate each of the difference scores, we take each 
score and subtract from it the mean of the group to which it belongs (see Table 16.4): 

CPR =
X

xiðActionsÞ −XgroupðActionsÞ
 

xiðThoughtsÞ −XgroupðThoughtsÞ
 

(16.3)
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Table 16.3 Calculating the model cross-product

X
— 

group 
Actions

X
—

group – X
—

grand  

(D1)
X
—

group

Thoughts
X
—

group – X
—

grand  

(D2) D1 × D2 N(D1 × D2)

CBT 4.9   0.37 13.4 −1.13 −0.418 −4.18

BT 3.7 −0.83 15.2   0.67 −0.556 −5.56

NT 5.0   0.47 15.0   0.47   0.221   2.21

X
—

grand  4.53  14.53 CPM = ΣN(D1 × D2) = –7.53

The observant among you may notice that the residual cross-product can also be calculated 
by subtracting the model cross-product from the total cross-product:

CPR =CPT −CPM

=5:47− ð−7:53Þ=13

However, it is useful to calculate the residual cross-product manually in case of mistakes 
in the calculation of the other two cross-products. The fact that the residual and model 
cross-products should sum to the value of the total cross-product can be used as a useful 
double-check.

Each of the different cross-products tells us something important about the relation-
ship between the two dependent variables. Although I have used a simple scenario to keep 
the maths relatively simple, these principles can be easily extended to more complex sce-
narios. For example, if we had measured three dependent variables then the cross-products 
between pairs of dependent variables are calculated (as they were in this example) and 
entered into the appropriate SSCP matrix (see next section). As the complexity of the situ-
ation increases, so does the amount of calculation that needs to be done. At times such as 
these the benefit of software like SPSS becomes ever more apparent!

16.4.3.4. The total SSCP matrix (T) 3

In this example we have only two dependent variables and so all of the SSCP matrices will 
be 2 × 2 matrices. If there had been three dependent variables then the resulting matrices 
would all be 3 × 3 matrices. The total SSCP matrix, T, contains the total sums of squares for 
each dependent variable and the total cross-product between the two dependent variables. 
You can think of the first column and first row as representing one dependent variable and 
the second column and row as representing the second dependent variable:

Column 1 Actions Column 2 Thoughts

Row 1 Actions SST(Actions) CPT

Row 1 Thoughts CPT SST(Thoughts)
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Table 16.4 Calculation of CPR

 
 

Group

 

Actions

Actions  
–XX

—

group(Actions)  

(D1)

 
 

Thoughts

Thoughts  
–X

— 

group(Thoughts) 
(D2) D1 × D2

CBT 5

5

4

4

5

3

7

6

6

4

  0.10

  0.10

−0.90

−0.90

  0.10

−1.90

  2.10

  1.10

  1.10

−0.90

14

11

16

13

12

14

12

15

16

11

  0.60

−2.40

  2.60

−0.40

−1.40

  0.60

−1.40

  1.60

  2.60

−2.40

  0.06

−0.24

−2.34

  0.36

−0.14

−1.14

−2.94

  1.76

  2.86

  2.16

X
—

CBT    4.9     13.4 Σ = 0.40

BT 4

4

1

1

4

6

5

5

2

5

  0.30

  0.30

−2.70

−2.70

  0.30

  2.30

  1.30

  1.30

−1.70

  1.30

14

15

13

14

15

19

13

18

14

17

−1.20

−0.20

−2.20

−1.20

−0.20

  3.80

−2.20

  2.80

−1.20

  1.80

−0.36

−0.06

  5.94

  3.24

−0.06

  8.74

−2.86

  3.64

  2.04

  2.34

X
—

BT 3.7 15.2 Σ = 22.60

NT 4

5

5

4

6

4

7

4

6

5

−1.00

  0.00

  0.00

−1.00

  1.00

−1.00

  2.00

−1.00

  1.00

  0.00

13

15

14

14

13

20

13

16

14

18

−2.00

0

−1.00

−1.00

−2.00

  5.00

−2.00

  1.00

−1.00

  3.00

  2.00

  0.00

  0.00

  1.00

−2.00

−5.00

−4.00

−1.00

−1.00

  0.00

X
—

NT 5 15 Σ = −10.00

CPR = Σ(D1 × D2) = 13
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We calculated these values in the previous sections and so we can simply place the appro-
priate values in the appropriate cell of the matrix:

T= 61:47 5:47
5:47 141:47

 

From the values in the matrix (and what they represent) it should be clear that the total 
SSCP represents both the total amount of variation that exists within the data and the total 
co-dependence that exists between the dependent variables. You should also note that the 
off-diagonal components are the same (they are both the total cross-product) because this 
value is equally important for both of the dependent variables.

16.4.3.5. The residual SSCP matrix (e) 3

The residual (or error) sum of squares and cross-product matrix, E, contains the residual 
sums of squares for each dependent variable and the residual cross-product between the 
two dependent variables. This SSCP matrix is similar to the total SSCP except that the 
information relates to the error in the model:

Column 1 Actions Column 2 Thoughts

Row 1 Actions SSR(Actions) CPR

Row 1 Thoughts CPR SSR(Thoughts)

We calculated these values in the previous sections and so we can simply place the appro-
priate values in the appropriate cell of the matrix:

E= 51 13
13 122

 

From the values in the matrix (and what they represent) it should be clear that the residual 
SSCP represents both the unsystematic variation that exists for each dependent variable and 
the co-dependence between the dependent variables that is due to chance factors alone. As 
before, the off-diagonal elements are the same (they are both the residual cross-product).

16.4.3.6. The model SSCP matrix (H) 3

The model (or hypothesis) sum of squares and cross-product matrix, H, contains the model 
sums of squares for each dependent variable and the model cross-product between the two 
dependent variables:

Column 1 Actions Column 2 Thoughts

Row 1 Actions SSM(Actions) CPM

Row 1 Thoughts CPM SSM(Thoughts)
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These values were calculated in the previous sections and so we can simply place the appro-
priate values in the appropriate cell of the matrix (see below). From the values in the 
matrix (and what they represent) it should be clear that the model SSCP represents both 
the systematic variation that exists for each dependent variable and the co-dependence 
between the dependent variables that is due to the model (i.e. is due to the experimental 
manipulation). As before, the off-diagonal components are the same (they are both the 
model cross-product):

H= 10:47 −7:53
−7:53 19:47

 

Matrices are additive, which means that you can add (or subtract) two matrices together by 
adding (or subtracting) corresponding components. Now, when we calculated univariate 
ANOVA we saw that the total sum of squares was the sum of the model sum of squares and 
the residual sum of squares (i.e. SST = SSM + SSR). The same is true in MANOVA except 
that we are adding matrices rather than single values: 

T=H+E

T=
10:47 −7:53

−7:53 19:47

 
+

51 13

13 122

 

=
10:47+ 51 −7:53+ 13

−7:53+ 13 19:47+ 122

 

=
61:47 5:47

5:47 141:47

 

The demonstration that these matrices add up should (hopefully) help you to understand 
that the MANOVA calculations are conceptually the same as for univariate ANOVA – the 
difference is that matrices are used rather than single values.

16.4.4.  Principle of the MANOVA test statistic 4

In univariate ANOVA we calculate the ratio of the systematic variance to the unsystematic 
variance (i.e. we divide SSM by SSR).3 The conceptual equivalent would therefore be to 
divide the matrix H by the matrix E. There is, however, a problem in that matrices are not 
divisible by other matrices! However, there is a matrix equivalent to division, which is to 
multiply by what’s known as the inverse of a matrix. So, if we want to divide H by E we 
have to multiply H by the inverse of E (denoted as E−1). So, therefore, the test statistic is 
based upon the matrix that results from multiplying the model SSCP with the inverse of the 
residual SSCP. This matrix is called HE−1.

Calculating the inverse of a matrix is incredibly difficult and there is no need for you 
to understand how it is done because SPSS will do it for you. However, the interested 
reader should consult either Stevens (2002) or Namboodiri (1984) – these texts provide 
very accessible accounts of how to derive an inverse matrix. For readers who do consult 
these sources, see Oliver Twisted. For the uninterested reader, you’ll have to trust me on 
the following:

3 In reality we use the mean squares but these values are merely the sums of squares corrected for the degrees of 
freedom.
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E−1 =
0:0202 −0:0021

−0:0021 0:0084

 

HE−1 =
0:2273 −0:0852

−0:1930 0:1794

 

Remember that HE−1 represents the ratio of systematic variance in the model to the unsys-
tematic variance in the model and so the resulting matrix is conceptually the same as 
the F-ratio in univariate ANOVA. There is another problem, though. In ANOVA, when 
we divide the systematic variance by the unsystematic variance we get a single figure: the 
F-ratio. In MANOVA, when we divide the systematic variance by the unsystematic variance 
we get a matrix containing several values. In this example, the matrix contains four values, 
but had there been three dependent variables the matrix would have had nine values. In 
fact, the resulting matrix will always contain p2 values, where p is the number of depend-
ent variables. The problem is how to convert these matrix values into a meaningful single 
value. This is the point at which we have to abandon any hope of understanding the maths 
behind the test and talk conceptually instead. 

16.4.4.1. Discriminant function variates 4

The problem of having several values with which to assess statistical significance can be simpli-
fied considerably by converting the dependent variables into underlying dimensions or fac-
tors (this process will be discussed in more detail in Chapter 17). In Chapter 7, we saw how 
multiple regression worked on the principle of fitting a linear model to a set of data to predict 
an outcome variable (the dependent variable in ANOVA terminology). This linear model was 
made up of a combination of predictor variables (or independent variables) each of which 
had a unique contribution to this linear model. We can do a similar thing here, except that we 
are interested in the opposite problem (i.e. predicting an independent variable from a set of 
dependent variables). So, it is possible to calculate underlying linear dimensions of the depend-
ent variables. These linear combinations of the dependent variables are known as variates (or 
sometimes called latent variables or factors). In this context we wish to use these linear variates 
to predict which group a person belongs to (i.e. whether they were given CBT, BT or no treat-
ment), so we are using them to discriminate groups of people. Therefore, these variates are 
called discriminant functions or discriminant function variates. Although I have drawn a parallel 
between these discriminant functions and the model in multiple regression, there is a differ-
ence in that we can extract several discriminant functions from a set of dependent variables, 
whereas in multiple regression all independent variables are included in a single model.

That’s the theory in simplistic terms, but how do we discover these discriminant func-
tions? Well, without going into too much detail, we use a mathematical procedure of 
maximization, such that the first discriminant function (V1) is the linear combination of 
dependent variables that maximizes the differences between groups. 

It follows from this that the ratio of systematic to unsystematic variance (SSM/SSR) will 
be maximized for this first variate, but subsequent variates will have smaller values of this 
ratio. Remember that this ratio is an analogue of what the F-ratio represents in univariate 
ANOVA, and so in effect we obtain the maximum possible value of the F-ratio when we 
look at the first discriminant function. This variate can be described in terms of a linear 
regression equation (because it is a linear combination of the dependent variables):

Y= b0 +b1X1 + b2X2

V1 = b0 +b1DV1 +b2DV2

V1 = b0 +b1Actions+b2Thoughts

(16.4)
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Equation (16.4) shows the multiple regression equation for two predictors and then extends 
this to show how a comparable form of this equation can describe discriminant functions. 
The b-values in the equation are weights (just as in regression) that tell us something about 
the contribution of each dependent variable to the variate in question. In regression, the 
values of b are obtained by the method of least squares; in discriminant function analysis 
the values of b are obtained from the eigenvectors (see Jane Superbrain Box 7.2) of the 
matrix HE−1. We can actually ignore b0 as well because this serves only to locate the variate 
in geometric space, which isn’t necessary when we’re using it to discriminate groups.

In a situation in which there are only two dependent variables and two groups for the 
independent variable, there will be only one variate. This makes the scenario very simple: by 
looking at the discriminant function of the dependent variables, rather than looking at the 
dependent variables themselves, we can obtain a single value of SSM/SSR for the discriminant 
function, and then assess this value for significance. However, in more complex cases where 
there are more than two dependent variables or more than three levels of the independent 
variable (as is the case in our example), there will be more than one variate. The number of 
variates obtained will be the smaller of p (the number of dependent variables) or k − 1 (where 
k is the number of levels of the independent variable). In our example, both p and k − 1  
are 2, so we should be able to find two variates. I mentioned earlier that the b-values that 
describe the variates are obtained by calculating the eigenvectors of the matrix HE−1 and, in 
fact, there will be two eigenvectors derived from this matrix: one with the b-values for the 
first variate, and one with the b-values of the second variate. Conceptually speaking, eigen-
vectors are the vectors associated with a given matrix that are unchanged by transformation 
of that matrix to a diagonal matrix (look back to Jane Superbrain Box 7.2 for a visual expla-
nation of eigenvectors and eigenvalues). A diagonal matrix is simply a matrix in which the 
off-diagonal elements are zero and by changing HE−1 to a diagonal matrix we eliminate all of 
the off-diagonal elements (thus reducing the number of values that we must consider for sig-
nificance testing). Therefore, by calculating the eigenvectors and eigenvalues, we still end up 
with values that represent the ratio of systematic to unsystematic variance (because they are 
unchanged by the transformation), but there are considerably less of them. The calculation 
of eigenvectors is extremely complex (insane students can consider reading Namboodiri, 
1984), so you can trust me that for the matrix HE−1 the eigenvectors obtained are:

eigenvector1 =
0:603

−0:335

 

eigenvector2 =
0:425

0:339

 

Replacing these values into the two equations for the variates and bearing in mind we can 
ignore b0 we obtain the models described in the following equation:

V1 = b0 + 0:603Actions−0:335Thoughts

V2 = b0 + 0:425Actions−0:339Thoughts
(16.5)

It is possible to use the equations for each variate to calculate a score for each person on the 
variate. For example, the first participant in the CBT group carried out 5 obsessive actions 
and had 14 obsessive thoughts. Therefore, this participant’s score on variate 1 would be 
−1.675:

V1 = ð0:603× 5Þ− ð0:335× 14Þ=−1:675
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The score for variate 2 would be 6.871:

V2 = ð0:425× 5Þ− ð0:339×14Þ= 6:871

If we calculated these variate scores for each participant and then calculated the SSCP matri-
ces (e.g. H, E, T and HE−1) that we used previously, we would find that all of them have 
cross-products of zero. The reason for this is because the variates extracted from the data 
are orthogonal, which means that they are uncorrelated. In short, the variates extracted are 
independent dimensions constructed from a linear combination of the dependent variables 
that were measured. 

This data reduction has a very useful property in that if we look at the matrix HE−1 cal-
culated from the variate scores (rather than the dependent variables) we find that all of the 
off-diagonal elements (the cross-products) are zero. The diagonal elements of this matrix 
represent the ratio of the systematic variance to the unsystematic variance (i.e. SSM/SSR) for 
each of the underlying variates. So, for the data in this example, this means that instead 
of having four values representing the ratio of systematic to unsystematic variance, we 
now have only two. This reduction may not seem a lot. However, in general if we have p 
dependent variables, then ordinarily we would end up with p2 values representing the ratio 
of systematic to unsystematic variance; by looking at discriminant functions, we reduce 
this number to p. If there were four dependent variables we would end up with four values 
rather than sixteen (which highlights the benefit of this process).

For the data in our example, the matrix HE−1 calculated from the variate scores is:

HE−1
variates =

0:335 0:000

0:000 0:073

 

It is clear from this matrix that we have two values to consider when assessing the significance 
of the group differences. It probably seems like a complex procedure to reduce the data down 
in this way: however, it transpires that the values along the diagonal of the matrix for the 
variates (namely 0.335 and 0.073) are the eigenvalues of the original HE−1 matrix. Therefore, 
these values can be calculated directly from the data collected without first forming the eigen-
vectors. If you have lost all sense of rationality and want to see how these eigenvalues are cal-
culated then see Oliver Twisted. These eigenvalues are conceptually equivalent to the F-ratio 
in ANOVA and so the final step is to assess how large these values are compared to what we 
would expect by chance alone. There are four ways in which the values are assessed.

‘You are a bit stupid. I think it would be fun to check your maths so that 
we can see exactly how much of a village idiot you are,’ mocks Oliver. 
Luckily you can. Never one to shy from public humiliation on a mass 
scale, I have provided the matrix calculations for this example on the 
companion website. Find a mistake, go on, you know that you can …

OLIVER TWISTED

Please, Sir, can I 
have some more … 
maths?

16.4.4.2. Pillai–bartlett trace (V) 4

The Pillai–Bartlett trace (also known as Pillai’s trace) is given by equation (16.6) in which λ 
represents the eigenvalues for each of the discriminant variates and s represents the number 
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of variates. Pillai’s trace is the sum of the proportion of explained variance on the discrimi-
nant functions. As such, it is similar to the ratio of SSM/SST, which is known as R2:

V=
Xs

i= 1

li
1+ li

(16.6)

For our data, Pillai’s trace turns out to be 0.319, which can be transformed to a value that 
has an approximate F-distribution:

V= 0:335

1+ 0:335
+ 0:073

1+0:073
= 0:319

16.4.4.3. Hotelling’s T 2 4

The Hotelling–Lawley trace (also known as Hotelling’s T2; Figure 16.2) 
is simply the sum of the eigenvalues for each variate (see equation 
(16.7)) and so for these data its value is 0.408 (0.335 + 0.073). This 
test statistic is the sum of SSM/SSR for each of the variates and so it 
compares directly to the F-ratio in ANOVA:

T=
Xs

i=1

li (16.7)

16.4.4.4. Wilks’s lambda () 4

Wilks’s lambda is the product of the unexplained variance on each of 
the variates (see equation (16.8) –  the  symbol is similar to the sum-
mation symbol (∑) that we have encountered already except that it 
means multiply rather than add up). So, Wilks’s lambda represents the 
ratio of error variance to total variance (SSR/SST) for each variate:

Λ=
Ys

i=1

1

1+ li
(16.8)

For the data in this example the value is 0.698, and it should be clear that large eigenvalues 
(which in themselves represent a large experimental effect) lead to small values of Wilks’s 
lambda: hence statistical significance is found when Wilks’s lambda is small:

Λ= 1

1+ 0:335

 
1

1+ 0:073

 
= 0:698

16.4.4.5. roy’s largest root 4

Roy’s largest root always makes me think of some bearded statistician with a garden spade 
digging up an enormous parsnip (or similar root vegetable); however, it isn’t a parsnip but, 
as the name suggests, is simply the eigenvalue for the first variate. So, in a sense it is the 
same as the Hotelling–Lawley trace but for the first variate only, that is:

Figure 16.2 Harold Hotelling enjoying 
my favourite activity of drinking tea
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Θ= lLargest (16.9)

As such, Roy’s largest root represents the proportion of explained variance to unexplained 
variance (SSM/SSR) for the first discriminant function.4 For the data in this example, the 
value of Roy’s largest root is simply 0.335 (the eigenvalue for the first variate). So, this 
value is conceptually the same as the F-ratio in univariate ANOVA. It should be apparent, 
from what we have learnt about the maximizing properties of these discriminant variates, 
that Roy’s root represents the maximum possible between-group difference given the data 
collected. Therefore, this statistic should in many cases be the most powerful. 

16.5. Practical issues when conducting MANOVA 3

There are three main practical issues to be considered before running MANOVA. First 
off, as always we have to consider the assumptions of the test. Next, for the main analysis 
there are four commonly used ways of assessing the overall significance of a MANOVA and 
debate exists about which method is best in terms of power and sample size considerations. 
Finally, we also need to think about what analysis to do after the MANOVA: like ANOVA, 
MANOVA is a two-stage test in which an overall (or omnibus) test is first performed before 
more specific procedures are applied to tease apart group differences. As you will see, there 
is substantial debate over how best to further analyse and interpret group differences when 
the overall MANOVA is significant. We will look at these issues in turn.

16.5.1.  Assumptions and how to check them 3

MANOVA has similar assumptions to ANOVA but extended to the multivariate case:

IndependenceMM : Observations should be statistically independent.

Random samplingMM : Data should be randomly sampled from the population of interest 
and measured at an interval level.

Multivariate normalityMM : In ANOVA, we assume that our dependent variable is normally 
distributed within each group. In the case of MANOVA, we assume that the depen-
dent variables (collectively) have multivariate normality within groups.

Homogeneity of covariance matricesMM : In ANOVA, it is assumed that the variances in 
each group are roughly equal (homogeneity of variance). In MANOVA we must 
assume that this is true for each dependent variable, but also that the correlation 
between any two dependent variables is the same in all groups. This assumption is 
examined by testing whether the population variance–covariance matrices of the dif-
ferent groups in the analysis are equal. 5

Most of the assumptions can be checked in the same way as for univariate tests (see Chapter 
10); the additional assumptions of multivariate normality and equality of covariance matri-
ces require different procedures. The assumption of multivariate normality cannot be tested 

4 This statistic is sometimes characterized as λlargest/(1 + λlargest) but this is not the statistic reported by SPSS.
5 For those of you who read about SSCP matrices, if you think about the relationship between sums of squares 
and variance, and cross-products and correlations, it should be clear that a variance-covariance matrix is basically 
a standardized form of an SSCP matrix.

everybody
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on SPSS and so the only practical solution is to check the assumption of univariate normal-
ity for each dependent variable in turn (see Chapter 5). This solution is practical (because 
it is easy to implement) and useful (because univariate normality is a necessary condition 
for multivariate normality), but it does not guarantee multivariate normality. So, although 
this approach is the best we can do, I urge interested readers to consult Stevens (2002) who 
provides some alternative solutions.

The assumption of equality of covariance matrices is more easily checked. First, for this 
assumption to be true the univariate tests of equality of variances between groups should 
be met. This assumption is easily checked using Levene’s test (see section 5.6.1). As a pre-
liminary check, Levene’s test should not be significant for any of the dependent variables. 
However, Levene’s test does not take account of the covariances and so the variance–
covariance matrices should be compared between groups using Box’s test. This test should 
be non-significant if the matrices are the same. The effect of violating this assumption is 
unclear, except that Hotelling’s T 2 is robust in the two-group situation when sample sizes 
are equal (Hakstian, Roed, & Lind, 1979).

Box’s test is susceptible to deviations from multivariate normality and so can be non-
significant not because the matrices are similar, but because the assumption of multivariate 
normality is not tenable. Hence, it is vital to have some idea of whether the data meet the 
multivariate normality assumption before interpreting the result of Box’s test. Also, as with 
any significance test, in large samples Box’s test could be significant even when covariance 
matrices are relatively similar. As a general rule, if sample sizes are equal then disregard 
Box’s test, because (1) it is unstable and (2) in this situation we can assume that Hotelling’s 
and Pillai’s statistics are robust (see section 16.5.2). However, if group sizes are different, 
then robustness cannot be assumed (especially if Box’s test is significant at p < .001). The 
more dependent variables you have measured, and the greater the differences in sample 
sizes, the more distorted the probability values produced by SPSS become. Tabachnick and 
Fidell (2007) suggest that if the larger samples produce greater variances and covariances 
then the probability values will be conservative (and so significant findings can be trusted). 
However, if it is the smaller samples that produce the larger variances and covariances 
then the probability values will be liberal and so significant differences should be treated 
with caution (although non-significant effects can be trusted). Therefore, the variance– 
covariance matrices for samples should be inspected to assess whether the printed prob-
abilities for the multivariate test statistics are likely to be conservative or liberal. In the 
event that you cannot trust the printed probabilities, there is little you can do except equal-
ize the samples by randomly deleting cases in the larger groups (although with this loss of 
information comes a loss of power).

16.5.2.  Choosing a test statistic 3

Only when there is one underlying variate will the four test statistics necessarily be the 
same. Therefore, it is important to know which test statistic is best in terms of test power 
and robustness. A lot of research has investigated the power of the four MANOVA test sta-
tistics (Olson, 1974, 1976, 1979; Stevens, 1980). Olson (1974) observed that for small and 
moderate sample sizes the four statistics differ little in terms of power. If group differences 
are concentrated on the first variate (as will often be the case in social science research) 
Roy’s statistic should prove most powerful (because it takes account of only that first 
variate), followed by Hotelling’s trace, Wilks’s lambda and Pillai’s trace. However, when 
groups differ along more than one variate, the power ordering is the reverse (i.e. Pillai’s 
trace is most powerful and Roy’s root is least). One final issue pertinent to test power is 
that of sample size and the number of dependent variables. Stevens (1980) recommends 
using fewer than 10 dependent variables unless sample sizes are large. 
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In terms of robustness, all four test statistics are relatively robust to 
violations of multivariate normality (although Roy’s root is affected by 
platykurtic distributions – see Olson, 1976). Roy’s root is also not robust 
when the homogeneity of covariance matrix assumption is untenable 
(Stevens, 1979). The work of Olson and Stevens led Bray and Maxwell 
(1985) to conclude that when sample sizes are equal the Pillai–Bartlett 
trace is the most robust to violations of assumptions. However, when 
sample sizes are unequal this statistic is affected by violations of the 
assumption of equal covariance matrices. As a rule, with unequal group 
sizes, check the assumption of homogeneity of covariance matrices using 
Box’s test; if this test is non-significant, and if the assumption of multi-
variate normality is tenable (which allows us to assume that Box’s test is accurate), then 
assume that Pillai’s trace is accurate.

16.5.3.  Follow-up analysis 3

There is some controversy over how best to follow up the main MANOVA. The tradi-
tional approach is to follow a significant MANOVA with separate ANOVAs on each of the 
dependent variables. If this approach is taken, you might well wonder why we bother with 
the MANOVA in the first place (earlier on I said that multiple ANOVAs were a bad thing 
to do). Well, the ANOVAs that follow a significant MANOVA are said to be ‘protected’ by 
the initial MANOVA (Bock, 1975). The idea is that the overall multivariate test protects 
against inflated Type I error rates because if that initial test is non-significant (i.e. the null 
hypothesis is true) then any subsequent tests are ignored (any significance must be a Type 
I error because the null hypothesis is true). However, the notion of protection is some-
what fallacious because a significant MANOVA, more often than not, reflects a significant 
difference for one, but not all, of the dependent variables. Subsequent ANOVAs are then 
carried out on all of the dependent variables, but the MANOVA protects only the depend-
ent variable for which group differences genuinely exist (see Bray and Maxwell, 1985: 
40–41). Therefore, you might want to consider applying a Bonferroni correction to the 
subsequent ANOVAs (Harris, 1975).

By following up a MANOVA with ANOVAs you assume that the significant MANOVA 
is not due to the dependent variables representing a set of underlying dimensions that 
differentiate the groups. Therefore, some researchers advocate the use of discriminant 
analysis, which finds the linear combination(s) of the dependent variables that best sepa-
rates (or discriminates) the groups. This procedure is more in keeping with the ethos of 
MANOVA because it embraces the relationships that exist between dependent variables 
and it is certainly useful for illuminating the relationship between the dependent variables 
and group membership. The major advantage of this approach over multiple ANOVAs 
is that it reduces and explains the dependent variables in terms of a set of underlying 
dimensions thought to reflect substantive theoretical dimensions. By default the standard 
GLM procedure in SPSS provides univariate ANOVAs, but not the discriminant analysis. 
However, the discriminant analysis can be accessed via different menus. 

16.6. MANOVA on SPSS 2

In the remainder of this chapter we will use the OCD data to illustrate how MANOVA is 
done (those of you who skipped the theory section should refer to Table 16.1).

Which test statistic
should I use?
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16.6.1.  The main analysis 2

Either load the data in the file OCD.sav, or enter the data manually. If you enter the 
data manually you need three columns: one column must be a coding variable for the 
Group variable (I used the codes CBT = 1, BT = 2, NT = 3), and in the remaining two 
columns enter the scores for each dependent variable respectively. Once the data have 
been entered, access the main MANOVA dialog box (see Figure 16.3) by selecting 

.
The ANOVAs (and various multiple comparisons) carried out after the main MANOVA 

are identical to running separate ANOVA procedures in SPSS for each of the dependent 
variables. Hence, the main dialog box and options for MANOVA are very similar to the 
factorial ANOVA procedure we met in Chapter 12. The main difference to the main dialog 
box is that the space labelled Dependent Variables has room for several variables. Select 
the two dependent variables from the variables list (i.e. Actions and Thoughts) and drag 
them to the Dependent Variables box (or click on ). Select group from the variables list 
and drag it (or click on ) to the Fixed Factor(s) box. There is also a box in which you can 
place covariates. For this analysis there are no covariates; however, you can apply the prin-
ciples of ANCOVA to the multivariate case and conduct multivariate analysis of covariance 
(MANCOVA). Once you have specified the variables in the analysis, you can select any of 
the other dialog boxes by clicking the buttons on the right-hand side:

This button opens a dialog box for customizing your analysis and selecting the type 
of sums of squares used (see sections 8.9.1.1 and 11.7).

This button opens a dialog box for selecting interaction graphs, which are useful 
when two or more independent variables have been measured (see section 12.3.2).

This button opens a dialog box for saving residuals of the GLM (i.e. regression 
diagnostics). These options are useful for checking the fit of the model to the data 
(see Chapter 7).

Figure 16.3
Main dialog box 
for MANOVA
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16.6.2.  Multiple comparisons in MANOVA 2

The default way to follow up a MANOVA is to look at individual univariate ANOVAs for each 
dependent variable. For these tests, SPSS has the same options as in the univariate ANOVA pro-
cedure (see Chapter 10). The  button opens a dialog box for specifying one of several 
standard contrasts for the independent variable(s) in the analysis. Table 10.6 describes what each 
of these tests compares, but for this example it makes sense to use a simple contrast that compares 
each of the experimental groups to the no-treatment control group. The no-treatment control 
group was coded as the last category (it had the highest code in the data editor), so we need to 
select the group variable and change the contrast to a simple contrast using the last category as the 
reference category (see Figure 16.4). For more details about contrasts see section 10.2.11.

Instead of running a contrast, we could carry out post hoc tests on the independent vari-
able to compare each group to all other groups. To access the post hoc tests dialog box click 
on . The dialog box is the same as that for factorial ANOVA (see Figure 12.6) and 
the choice of test should be based on the same criteria as outlined in section 10.2.12. For the 
purposes of this example, I suggest selecting two of my usual recommendations: REGWQ 
and Games–Howell. Once you have selected post hoc tests return to the main dialog box.

Figure 16.4
Contrasts for 
independent 
variable(s) in 
MANOVA

16.6.3.  Additional options 3

To access the options dialog box, click on  in the main dialog box (see Figure 16.5). 
The resulting dialog box is fairly similar to that of factorial ANOVA (see section 12.3.5); 
however, there are a few additional options that are worth mentioning:

SMM SCP Matrices: If this option is selected, SPSS will produce the model SSCP matrix, the 
error SSCP matrix and the total SSCP matrix. This option can be useful for understand-
ing the computation of the MANOVA. However, if you didn’t read the theory section 
you might be happy not to select this option and not worry about these matrices!
Residual SSMM CP Matrix: If this option is selected, SPSS produces the error SSCP matrix, the 
error variance–covariance matrix and the error correlation matrix. The error variance–
covariance matrix is the matrix upon which Bartlett’s test of sphericity is based. Bartlett’s 
test examines whether this matrix is proportional to an identity matrix (i.e. that the cova-
riances are zero and the variances – the values along the diagonal – are roughly equal).

The remaining options are the same as for factorial ANOVA and so have been described in 
Chapter 12. I recommend rereading that chapter before deciding which options are useful.
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16.7. Output from MANOVA 3

16.7.1.  Preliminary analysis and testing assumptions 3

SPSS Output 16.1 shows an initial table of descriptive statistics that is produced by clicking 
on the descriptive statistics option in the options dialog box (Figure 16.5). This table con-
tains the overall and group means and standard deviations for each dependent variable in 
turn. These values correspond to those calculated by hand in Table 16.1 and by looking at 
that table it should be clear what this part of the output tells us. It is clear from the means 
that participants had many more obsession-related thoughts than behaviours.

SPSS Output 16.2 shows Box’s test of the assumption of equality of covariance matrices 
(see section 16.5.1). This statistic tests the null hypothesis that the variance–covariance 
matrices are the same in all three groups. Therefore, if the matrices are equal (and there-
fore the assumption of homogeneity is met) this statistic should be non-significant. For 
these data p = .18 (which is greater than .05): hence, the covariance matrices are roughly 
equal and the assumption is tenable.

If the value of Box’s test was significant (p < .05) then the covariance matrices are signifi-
cantly different and so the homogeneity assumption would have been violated. Bartlett’s test 
of sphericity tests whether the assumption of sphericity has been met and is useful only in 
univariate repeated-measures designs because MANOVA does not require this assumption.

16.7.2.  MANOVA test statistics 3

SPSS Output 16.3 shows the main table of results. Test statistics are quoted for the intercept of 
the model (even MANOVA can be characterized as a regression model, although how this is 

Figure 16.5
Additional 
options in 
MANOVA
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done is beyond the scope of my brain) and for the group variable. For our purposes, the group 
effects are of interest because they tell us whether or not the therapies had an effect on the OCD 
clients. You’ll see that SPSS lists the four multivariate test statistics and their values correspond 
to those calculated in sections 16.4.4.2 to 16.4.4.5. In the next column these values are trans-
formed into an F-ratio with 2 degrees of freedom. The column of real interest, however, is the 
one containing the significance values of these F-ratios. For these data, Pillai’s trace (p = .049), 
Wilks’s lambda (p = .050) and Roy’s largest root (p = .020) all reach the criterion for significance 
of .05. However, Hotelling’s trace (p = .051) is non-significant by this criterion. This scenario 
is interesting, because the test statistic we choose determines whether or not we reject the null 
hypothesis that there are no between-group differences. However, given what we know about 
the robustness of Pillai’s trace when sample sizes are equal, we might be well advised to trust the 
result of that test statistic, which indicates a significant difference. This example highlights the 
additional power associated with Roy’s root (you should note how this statistic is considerably 
more significant than all others) when the test assumptions have been met and when the group 
differences are focused on one variate (which they are in this example, as we will see later).

From this result we should probably conclude that the type of therapy employed had a 
significant effect on OCD. The nature of this effect is not clear from the multivariate test 
statistic. First, it tells us nothing about which groups differed from which, and second it 
tells us nothing about whether the effect of therapy was on the obsession-related thoughts, 
the obsession-related behaviours, or a combination of both. To determine the nature of the 
effect, SPSS provides us with univariate tests.

16.7.3.  Univariate test statistics 2

SPSS Output 16.4 initially shows a summary table of Levene’s test of equality of variances 
for each of the dependent variables. These tests are the same as would be found if a one-way 
ANOVA had been conducted on each dependent variable in turn (see section 12.4.2). Levene’s 

SPSS OuTPuT 16.1

SPSS OuTPuT 16.2
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test should be non-significant for all dependent variables if the assumption of homogeneity of 
variance has been met. The results for these data clearly show that the assumption has been 
met. This finding not only gives us confidence in the reliability of the univariate tests to follow, 
but also strengthens the case for assuming that the multivariate test statistics are robust.

The next part of the output contains the ANOVA summary table for the dependent vari-
ables. The row of interest is that labelled Group (you’ll notice that the values in this row 
are the same as for the row labelled Corrected Model: this is because the model fitted to the 
data contains only one independent variable: Group). The row labelled Group contains an 
ANOVA summary table for each of the dependent variables, and values are given for the 
sums of squares for both actions and thoughts (these values correspond to the values of SSM 
calculated in sections 16.4.3.1 and 16.4.3.2 respectively). The row labelled Error contains 
information about the residual sums of squares and mean squares for each of the depend-
ent variables: these values of SSR were calculated in sections 16.4.3.1 and 16.4.3.2 and I 
urge you to look back to these sections to consolidate what these values mean. The row 
labelled Corrected Total contains the values of the total sums of squares for each dependent 
variable (again, these values of SST were calculated in sections 16.4.3.1 and 16.4.3.2). The 
important parts of this table are the columns labelled F and Sig. in which the F-ratios for 
each univariate ANOVA and their significance values are listed. What should be clear from 
SPSS Output 16.4 and the calculations made in sections 16.4.3.1 and 16.4.3.2 is that the 
values associated with the univariate ANOVAs conducted after the MANOVA are identical 
to those obtained if one-way ANOVA was conducted on each dependent variable. This fact 
illustrates that MANOVA offers only hypothetical protection of inflated Type I error rates: 
there is no real-life adjustment made to the values obtained.

The values of p in SPSS Output 16.4 indicate that there was a non-significant differ-
ence between therapy groups in terms of both obsession-related thoughts (p = .136) and 
obsession-related behaviours (p = .080). These two results should lead us to conclude that 
the type of therapy has had no significant effect on the levels of OCD experienced by clients. 
Those of you that are still awake may have noticed something odd about this example: the 
multivariate test statistics led us to conclude that therapy had had a significant impact on 
OCD, yet the univariate results indicate that therapy has not been successful.

SELF-TEST  Why might the univariate tests be non-
significant when the multivariate tests were significant?

The reason for the anomaly in these data is simple: the multivariate test takes account 
of the correlation between dependent variables and so for these data it has more power 

SPSS OuTPuT 16.3
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to detect group differences. With this knowledge in mind, the univariate tests are not par-
ticularly useful for interpretation, because the groups differ along a combination of the 
dependent variables. To see how the dependent variables interact we need to carry out a 
discriminant function analysis, which will be described in due course.

16.7.4.  SSCP matrices 3

If you selected the two options to display SSCP matrices (section 16.6.3), then SPSS will 
produce the tables in SPSS Output 16.5 and SPSS Output 16.6. The first table (SPSS 
Output 16.5) displays the model SSCP (H), which is labelled Hypothesis Group (I have 
shaded this matrix blue) and the error SSCP (E) which is labelled Error (I have shaded 
this matrix yellow). The matrix for the intercept is displayed also, but this matrix is not 
important for our purposes. It should be pretty clear that the values in the model and 
error matrices displayed in SPSS Output 16.5 correspond to the values we calculated 
in sections 16.4.3.6 and 16.4.3.5 respectively. These matrices are useful, therefore, for 
gaining insight into the pattern of the data, and especially in looking at the values of the 
cross-products to indicate the relationship between dependent variables. In this example, 
the sums of squares for the error SSCP matrix are substantially bigger than in the model 
(or group) SSCP matrix, whereas the absolute value of the cross-products is fairly similar. 
This pattern suggests that if the MANOVA is significant then it might be the relationship 
between dependent variables that is important rather than the individual dependent vari-
ables themselves.

SPSS OuTPuT 16.4
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SPSS Output 16.6 shows the residual SSCP matrix again, but this time it includes the 
variance–covariance matrix and the correlation matrix. These matrices are all related. If you 
look back to Chapter 6, you should remember that the covariance is calculated by dividing 
the cross-product by the number of observations (i.e. the covariance is the average cross-
product). Likewise, the variance is calculated by dividing the sums of squares by the degrees 
of freedom (and so similarly represents the average sum of squares). Hence, the variance– 
covariance matrix represents the average form of the SSCP matrix. Finally, we saw in Chapter 6 
that the correlation was a standardized version of the covariance (where the standard devia-
tion is also taken into account) and so the correlation matrix represents the standardized 
form of the variance–covariance matrix. As with the SSCP matrix, these other matrices are 
useful for assessing the extent of the error in the model. The variance–covariance matrix is 
especially useful because Bartlett’s test of sphericity is based on this matrix. Bartlett’s test 
examines whether this matrix is proportional to an identity matrix. In section 16.4.1 we saw 
that an identity matrix was one in which the diagonal elements were one and the off-diagonal 
elements were zero. Therefore, Bartlett’s test effectively tests whether the diagonal elements 
of the variance–covariance matrix are equal (i.e. group variances are the same), and that the 
off-diagonal elements are approximately zero (i.e. the dependent variables are not corre-
lated). In this case, the variances are quite different (1.89 compared to 4.52) and the covari-
ances slightly different from zero (0.48), so Bartlett’s test has come out as nearly significant 
(see SPSS Output 16.2). Although this discussion is irrelevant to the multivariate tests, I hope 
that by expanding upon them here you can relate these ideas back to the issues of sphericity 
raised in Chapter 13, and see more clearly how this assumption is tested.

SPSS OuTPuT 16.5

SPSS OuTPuT 16.6 Residual SSCP Matrix
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Number of
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thoughts

Based on Type III Sum of Squares
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16.7.5.  Contrasts 3

I need to begin this section by reminding you that because the univariate ANOVAs were 
both non-significant we should not interpret these contrasts. However, purely to give you 
an example to follow for when your main analysis is significant, we’ll look at this part of 
the output anyway. In section 16.6.2 I suggested carrying out a simple contrast that com-
pares each of the therapy groups to the no-treatment control group. SPSS Output 16.7 
shows the results of these contrasts. The table is divided into two sections conveniently 
labelled Level 1 vs. Level 3 and Level 2 vs. Level 3 where the numbers correspond to the 
coding of the group variable (i.e. 1 represents the lowest code used in the data editor and 
3 the highest). If you coded the group variable using the same codes as I did, then these 
contrasts represent CBT vs. NT and BT vs. NT respectively. Each contrast is performed on 
both dependent variables separately and so they are identical to the contrasts that would 
be obtained from a univariate ANOVA. The table provides values for the contrast estimate 
and the hypothesized value (which will always be zero because we are testing the null 
hypothesis that the difference between groups is zero). The observed estimated difference 
is then tested to see whether it is significantly different from zero based on the standard 
error (it might help to reread Chapter 2 for some theory on this kind of hypothesis testing). 
A 95% confidence interval is produced for the estimated difference.

The first thing that you might notice (from the values of Sig.) is that when we com-
pare CBT to NT there are no significant differences in thoughts (p = .104) or behaviours 
(p = .872) because both values are above the .05 threshold. However, comparing BT to NT, 
there is no significant difference in thoughts (p = .835) but there is a significant difference 
in behaviours between the groups (p = .044, which is less than .05). The confidence inter-
vals confirm these findings. We have seen before that a 95% confidence interval is an inter-
val that contains the true value of the difference between groups 95% of the time. If these 
boundaries cross zero (i.e. the lower is a negative number and the upper a positive value), 
then this tells us that the true value of the group difference could be zero (i.e. there will be 
no difference between the groups). Therefore, we cannot be confident that the observed 
group difference is meaningful because the true group difference in the population could 
be zero. If, however, the confidence interval does not cross zero (i.e. both values are posi-
tive or negative), then we can be confident that the true value of the group difference is 

SPSS OuTPuT 16.7
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different from zero. As such, we can be confident that genuine group differences exist. For 
these data all confidence intervals include zero (the lower bounds are negative whereas the 
upper bounds are positive) except for the BT vs. NT contrast for behaviours and so only 
this contrast is significant. This is a little unexpected because the univariate ANOVA for 
behaviours was non-significant and so we would not expect there to be group differences.

             CRAMMING SAM’S TIPS    MANOVA

M MANOVA is used to test the difference between groups across several dependent variables simultaneously.

M Box’s test looks at the assumption of equal covariance matrices. This test can be ignored when sample sizes are equal 
because when they are some MANOVA test statistics are robust to violations of this assumption. If group sizes differ this test 
should be inspected. If the value of Sig. is less than .001 then the results of the analysis should not be trusted (see section 
16.7.1).

M The table labelled Multivariate Tests gives us the results of the MANOVA. There are four test statistics (Pillai’s Trace, Wilks’s 
Lambda, Hotelling’s Trace and Roy’s Largest Root). I recommend using Pillai’s trace. If the value of Sig. for this statistic is 
less than .05 then the groups differ significantly with respect to the dependent variables.

M ANOVAs can be used to follow up the MANOVA (a different ANOVA for each dependent variable). The results of these are 
listed in the table entitled Tests of Between-Subjects Effects. These ANOVAs can in turn be followed up using contrasts 
(see Chapters 10 to 14). Personally I don’t recommend this approach and suggest conducting a discriminant function 
analysis.

16.8. Reporting results from MANOVA 2

Reporting a MANOVA is much like reporting an ANOVA. As you can see in SPSS Output 
16.3, the multivariate tests are converted into approximate Fs, and people often just report 
these Fs just as they would for ANOVA (i.e. they give details of the F-ratio and the degrees 
of freedom from which it was calculated). For our effect of group, we would report the 
hypothesis df and the error df. Therefore, we could report these analyses as:

 There was a significant effect of therapy on the number of obsessive thoughts and 
behaviours, F(4, 54) = 2.56, p < .05.

However, personally, I think the multivariate test statistic should be quoted as well. 
There are four different multivariate tests reported in SPSS Output 16.3; I’ll report each 
one in turn (note that the degrees of freedom and value of F change), but in reality you 
would just report one of the four:

 Using Pillai’s trace, there was a significant effect of therapy on the number of obsessive 
thoughts and behaviours, V = 0.32, F(4, 54) = 2.56, p < .05.

 Using Wilks’s statistic, there was a significant effect of therapy on the number of obses-
sive thoughts and behaviours,  = 0.70, F(4, 52) = 2.56, p = .05.

 Using Hotelling’s trace statistic, there was not a significant effect of therapy on the 
number of obsessive thoughts and behaviours, T = 0.41, F(4, 50) = 2.55, p > .05.

 Using Roy’s largest root, there was a significant effect of therapy on the number of 
obsessive thoughts and behaviours, Θ = 0.35, F(2, 27) = 4.52, p < .05.
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We can also report the follow-up ANOVAs in the usual way (see SPSS Output 16.4):

 Using Pillai’s trace, there was a significant effect of therapy on the number of obsessive 
thoughts and behaviours, V = 0.32, F(4, 54) = 2.56, p < .05. However, separate univariate 
ANOVAs on the outcome variables revealed non-significant treatment effects on obses-
sive thoughts, F(2, 27) = 9.73, p > .05, and behaviours, F(2, 27) = 5.23, p > .05.

Have you ever wondered what researchers do in their 
spare time? Well, some of them spend it tracking down 
the sounds of people burping and farting! It has long been 
established that anxiety and disgust are linked. Anxious 
people are, typically, easily disgusted. Throughout this 
book I have talked about how you cannot infer causal-
ity from relationships between variables. This has been 
a bit of a conundrum for anxiety researchers: does anxi-
ety cause feelings of digust or does a low threshold for 
being disgusted cause anxiety? Two colleagues of mine 
at Sussex addressed this in an unusual study in which 
they induced feelings of anxiety, feelings of disgust, or 
a neutral mood and they looked at the effect that these 
induced moods had on feelings of anxiety, sadness, hap-
piness, anger, disgust and contempt. To induce these 
moods, they used three different types of manipula-
tion: vignettes (e.g. ‘you’re swimming in a dark lake and 
something brushes your leg’ for anxiety, and ‘you go into 
a public toilet and find it has not been flushed. The bowl 

of the toilet is full of diarrhoea’ for disgust), music (e.g. 
some scary music for anxiety, and a tape of burps, farts 
and vomitting for disgust), videos (e.g. a clip from Silence 
of the lambs for anxiety and a scene from Pink flamingos 
in which Divine eats dog faeces) and memory (remem-
bering events from the past that had made the person 
anxious, disgusted or neutral).

Different people underwent anxious, disgust and 
neutral mood inductions. Within these groups, the 
induction was done using either vignettes and music, 
videos, or memory recall and music for different people. 
The outcome variables were the change (from before 
to after the induction) in six moods: anxiety, sadness, 
happiness, anger, disgust and contempt.

The data are in the file Marzillier and Davey (2005).
sav. Draw an error bar graph of the changes in moods 
in the different conditions, then conduct a 3 (Mood: anxi-
ety, disgust, neutral) × 3 (Induction: vignettes + music, 
videos, memory recall + music) MANOVA on these data. 

Whatever you do, don’t imagine what their 
fart tape sounded like while you do the 
analysis!

Answers are in the additional mate-
rial on the companion website (or look at 
page 738 of the original article).

LABCOAT LENI’S
REAL RESEARCH 16.1
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16.9. Following up MANOVA with discriminant 
analysis 3

I mentioned earlier on that a significant MANOVA could be followed up using either uni-
variate ANOVA or discriminant analysis (sometimes called discriminant function analysis). 
In the example in this chapter, the univariate ANOVAs were not a useful way of looking at 
what the multivariate tests showed because the relationship between dependent variables is 
obviously having an effect. However, these data were designed especially to illustrate how 
the univariate ANOVAs should be treated cautiously and in real life a significant MANOVA 
is likely to be accompanied by at least one significant ANOVA. However, this does not 
mean that the relationship between dependent variables is not important, and it is still 
vital to investigate the nature of this relationship. Discriminant analysis is the best way to 
achieve this, and I strongly recommend that you follow up a MANOVA with both univari-
ate tests and discriminant analysis if you want to fully understand your data.
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Discriminant analysis is quite straightforward in SPSS: to access the main dialog box (see 
Figure 16.6) select . The main dialog box will list 
the variables in the data editor on the left-hand side and provides two spaces on the right: 
one for the group variable and one for the predictors. In discriminant analysis we look to 
see how we can best separate (or discriminate) a set of groups using several predictors (so 
it is a little like logistic regression but where there are several groups rather than two).6 It 
might be confusing to think of actions and thoughts as independent variables (after all, they 
were dependent variables in the MANOVA!) which is why I refer to them as predictors – 
this is another example of why it is useful not to refer to variables as independent variables 
and dependent variables in correlational analysis.

To run the analysis, select the variable Group and drag it to the box labelled Grouping 
Variable (or click on ). Once this variable has been transferred, the  button will 
become active and you should click this button to activate a dialog box in which you can 
specify the value of the highest and lowest coding values (1 and 3 in this case). Once you have 
specified the codings used for the grouping variable, you should select the variables Actions 
and Thoughts (click on them both while holding down the Ctrl key) and drag them to the box 
labelled Independents (or click on ). There are two options available to determine how the 
predictors are entered into the model. The default is that both predictors are entered together 
( ) and this is the option we require (because in MANOVA the dependent vari-
ables are analysed simultaneously). It is possible to enter the dependent variables in a stepwise 
manner ( ) and if this option is selected the  button becomes active, which 
opens a dialog box for specifying the criteria upon which predictors are entered. For the pur-
pose of following up MANOVA, we need only be concerned with the remaining options.

Click on  to activate the dialog box in Figure 16.7. This dialog box allows us to 
request group means, univariate ANOVAs and Box’s test of equality of covariance matri-
ces, all of which have already been provided in the MANOVA output (so we need not ask 
for them again). Furthermore, we can ask for the within-group correlation and covariance 
matrices, which are the same as the residual correlation and covariance matrices seen in 
SPSS Output 16.6. There is also an option to display a separate-groups covariance matrix, 
which can be useful for gaining insight into the relationships between dependent variables 
for each group (this matrix is something that the MANOVA procedure doesn’t display and 
I recommend selecting it). Finally, we can ask for a total covariance matrix, which displays 
covariances and variances of the dependent variables overall. Another useful option is to 
select Unstandardized function coefficients. This option will produce the unstandardized bs 
for each variate (see equation (16.5)). When you have finished with this dialog box, click 
on  to return to the main dialog box.

6 In fact, I could have just as easily described discriminant analysis rather than logistic regression in Chapter 8. 
Because they are different ways of achieving the same end result. However, logistic regression has far fewer 
restrictive assumptions and is generally more robust, which is why I have limited the coverage of discriminant 
analysis to this chapter.

Figure 16.6
Main dialog box 
for discriminant 
analysis
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If you click on  you will access the dialog box in Figure 16.8. In this dialog box there 
are several options available. First, you can select how prior probabilities are determined: if your 
group sizes are equal then you should leave the default setting as it is; however, if you have an 
unbalanced design then it is beneficial to base prior probabilities on the observed group sizes. The 
default option for basing the analysis on the within-group covariance matrix is fine (because this 
is the matrix upon which the MANOVA is based). You should also request a combined-groups 
plot, which will plot the variate scores for each participant grouped according to the therapy 
they were given. The separate-groups plots show the same thing but using different graphs for 
each of the groups; when the number of groups is small it is better to select a combined plot 
because it is easier to interpret. The remaining options are of little interest when using discrimi-
nant analysis to follow up MANOVA. The only option that is useful is the summary table, which 
provides an overall gauge of how well the discriminant variates classify the actual participants. 
When you have finished with the options click on  to return to the main dialog box.

The final options are accessed by clicking on  to access the dialog box in Figure 
16.9. There are three options available, two of which relate to the predicted group member-
ships and probabilities of group memberships from the model. These values are comparable to 
those obtained from a logistic regression analysis (see Chapter 8). The final option is to provide 
the discriminant scores. These are the scores for each person, on each variate, obtained from 
equation (16.5). These scores can be useful because the variates that the analysis identifies may 
represent underlying social or psychological constructs. If these constructs are identifiable, then 
it is useful for interpretation to know what a participant scores on each dimension.

Figure 16.7
Statistics options 
for discriminant 
analysis

Figure 16.8
Discriminant 
analysis 
classification 
options
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16.10. Output from the discriminant analysis 4

SPSS Output 16.8 shows the covariance matrices for separate groups (selected in Figure 16.7). 
These matrices are made up of the variances of each dependent variable for each group (in 
fact these values are shown in Table 16.1). The covariances are obtained by taking the cross-
products between the dependent variables for each group (shown in Table 16.4 as .40, 22.6 and 
−10) and dividing each by 9, the degrees of freedom, N − 1 (where N is the number of observa-
tions). The values in this table are useful because they give us some idea of how the relationship 
between dependent variables changes from group to group. For example, in the CBT group 
behaviours and thoughts have virtually no relationship because the covariance is almost zero. 
In the BT group thoughts and actions are positively related, so as the number of behaviours 
decreases, so does the number of thoughts. In the NT condition there is a negative relationship, 
so if the number of thoughts increases then the number of behaviours decreases. It is important 
to note that these matrices don’t tell us about the substantive importance of the relationships 
because they are unstandardized (see Chapter 6), they merely give a basic indication.

SPSS Output 16.9 shows the initial statistics from the discriminant analysis. At first we 
are told the eigenvalues for each variate and you should note that the values correspond 
to the values of the diagonal elements of the matrix HE−1 (for the calculation see Oliver 
Twisted). These eigenvalues are converted into percentage of variance accounted for, and 
the first variate accounts for 82.2% of variance compared to the second variate, which 
accounts for only 17.8%. This table also shows the canonical correlation, which we can 
square to use as an effect size (just like R2 which we have encountered in regression).

Figure 16.9
The save 
new variables 
dialog box in 
discriminant 
analysis

SPSS OuTPuT 16.8
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The next part of the output shows the significance tests of the variates. These show 
the significance of both variates (‘1 through 2’ in the table), and the significance after 
the first variate has been removed (‘2’ in the table). So, effectively we test the model as a 
whole, and then peel away variates one at a time to see whether what’s left is significant. 
In this case with only two variates we get only two steps: the whole model, and then the 
model after the first variate is removed (which leaves only the second variate). When both 
variates are tested in combination Wilks’s lambda has the same value (0.699), degrees 
of freedom (4) and significance value (.05) as in the MANOVA (see SPSS Output 16.3). 
The important point to note from this table is that the two variates significantly discrimi-
nate the groups in combination (p = .05), but the second variate alone is non-significant, 
p = .173. Therefore, the group differences shown by the MANOVA can be explained in 
terms of two underlying dimensions in combination.

Eigenvalues

.335
a

82.2 82.2 .501

.073a 17.8 100.0 .260

Function

1
2

Eigenvalue
% of

Variance Cumulative %
Canonical
Correlation

a. First 2 canonical discriminant functions were used in the analy

Wilks's Lambda

.699 9.508 4 .050

.932 1.856 1 .173

Test of Function
1 through 2

2

Wilks's
Lambda Chi-square df Sig.

SPSS OuTPuT 16.9

SPSS OuTPuT 16.10

 

Standardized Canonical Discriminant Function Coefficients

.829 .584

-.713 .721

Number of obsession-related
behaviours
Number of obsession-related
thoughts

1 2
Function

Structure Matrix

.711* .703

-.576 .817*

Number of obsession-related
behaviours
Number of obsession-related
thoughts

1 2
Function

Pooled within-groups correlations between discriminating
variables and standardized canonical discriminant functions
Variables ordered by absolute size of correlation within function.

*. Largest absolute correlation between each variable and
any discriminant function

The tables in SPSS Output 16.10 are the most important for interpretation. The first 
table shows the standardized discriminant function coefficients for the two variates. These 
values are standardized versions of the values in the eigenvectors calculated in section 
16.4.4.1. Recall that if the variates can be expressed in terms of a linear regression equation 
(see equation (16.4)), the standardized discriminant function coefficients are equivalent to 
the standardized betas in regression. The structure matrix below shows the same informa-
tion but in a slightly different form. The values in this matrix are the canonical variate 
correlation coefficients. These values are comparable to factor loadings and indicate the 
substantive nature of the variates (see Chapter 17). Bargman (1970) argues that when some 
dependent variables have high canonical variate correlations while others have low ones, 
then the ones with high correlations contribute most to group separation. As such they 
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represent the relative contribution of each dependent variable to group separation (see 
Bray and Maxwell, 1985: 42–45). Hence, the coefficients in these tables tell us the relative 
contribution of each variable to the variates.

If we look at variate 1 first, thoughts and behaviours have the opposite effect (behaviour 
has a positive relationship with this variate whereas thoughts have a negative relationship). 
Given that these values (in both tables) can vary between 1 and −1, we can also see that 
both relationships are strong (although behaviours have slightly larger contribution to the 
first variate). The first variate, then, could be seen as one that differentiates thoughts and 
behaviours (it affects thoughts and behaviours in the opposite way). Both thoughts and 
behaviours have a strong positive relationship with the second variate. This tells us that 
this variate represents something that affects thoughts and behaviours in a similar way. 
Remembering that ultimately these variates are used to differentiate groups, we could say 
that the first variate differentiates groups by some factor that affects thoughts and behav-
iours differently, whereas the second variate differentiates groups on some dimension that 
affects thoughts and behaviours in the same way.

Canonical Discriminant Function Coefficients

.603 .425

-.335 .339

2.139 -6.857

Number of obsession-related
behaviours
Number of obsession-related
thoughts
(Constant)

1 2
Function

Unstandardized coefficients

-.229
-.128
.357

2

Functions at Group Centroids

.601
-.726
.125

group

CBT
BT
No Treatment Control

1
Function

Unstandardized canonical discriminant functions evaluated at
group means

SPSS OuTPuT 16.11

SPSS Output 16.11 tells us first the canonical discriminant function coefficients, which 
are the unstandardized versions of the standardized coefficients described above. These 
values are the values of b in equation (16.4) and you’ll notice that these values correspond 
to the values in the eigenvectors derived in section 16.4.4.1 and used in equation (16.5). 
The values are less useful than the standardized versions, but do demonstrate from where 
the standardized versions come.

The centroids are simply the mean variate scores for each group. For interpretation we 
should look at the sign of the centroid (positive or negative). We can also use a combined-
groups plot (selected using the dialog box in Figure 16.8). This graph plots the variate scores for 
each person, grouped according to the experimental condition to which that person belonged. 
In addition, the group centroids from SPSS Output 16.11 are shown as blue squares. The 
graph (Figure 16.10) and the tabulated values of the centroids (SPSS Output 16.11) tell us 
that (look at the big squares labelled with the group initials) variate 1 discriminates the BT 
group from the CBT (look at the horizontal distance between these centroids). The second 
variate differentiates the no-treatment group from the two interventions (look at the vertical 
distances), but this difference is not as dramatic as for the first variate. Remember that the vari-
ates significantly discriminate the groups in combination (i.e. when both are considered).
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Figure 16.10
Combined-
groups plot

             CRAMMING SAM’S TIPS    

M Discriminant function analysis (DFA) can be used after MANOVA to see how the dependent variables discriminate the 
groups.

M DFA identifies variates (combinations of the dependent variables) and to find out how many variates are significant look at 
the tables labelled Wilks’s Lambda: if the value of Sig. is less than .05 then the variate is significantly discriminating the 
groups.

M Once the significant variates have been identified, use the table labelled Standardized Canonical Discriminant Function 
Coefficients to find out how the dependent variables contribute to the variates. High scores indicate that a dependent 
variable is important for a variate, and variables with positive and negative coefficients are contributing to the variate in 
opposite ways.

M Finally, to find out which groups are discriminated by a variate look at the table labelled Functions at Group Centroids: for 
a given variate, groups with values opposite in sign are being discriminated by that variate.

16.11. Reporting results from discriminant  
analysis 2

The guiding principal (for the APA, whose guidelines, as a psychologist, are the ones that 
I try to follow) in presenting data is to give the readers enough information to be able to 
judge for themselves what your data mean. The APA does not have specific guidelines for 
what needs to be reported for discriminant analysis. Personally, I would suggest reporting 
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percentage of variance explained (which gives the reader the same information as the eigen-
value but in a more palatable form) and the squared canonical correlation for each variate 
(this is the appropriate effect size measure for discriminant analysis). I would also report the 
chi-square significance tests of the variates. All of these values can be found in SPSS Output 
16.9 (although remember to square the canonical correlation). It is probably also useful to 
quote the values in the structure matrix in SPSS Output 16.10 (which will tell the reader 
about how the outcome variables relate to the underlying variates). Finally, although I won’t 
reproduce it below, you could consider including a (well-edited) copy of the combined-
groups centroid plot (Figure 16.10), which will help readers to determine how the variates 
contribute to distinguishing your groups. We could, therefore, write something like this:

 The MANOVA was followed up with discriminant analysis, which revealed two discri-
minant functions. The first explained 82.2% of the variance, canonical R2 = .25, whereas 
the second explained only 17.8%, canonical R2 = .07. In combination these discriminant 
functions significantly differentiated the treatment groups,  = 0.70, χ2(4) = 9.51, p = 
.05, but removing the first function indicated that the second function did not signifi-
cantly differentiate the treatment groups,  = 0.93, χ2(1) = 1.86, p > .05. The correlations 
between outcomes and the discriminant functions revealed that obsessive behaviours 
loaded fairly evenly highly onto both functions (r = .71 for the first function and r = .70 
for the second); obsessive thoughts loaded more highly on the second function (r = .82) 
than the first function  (r = −.58). The discriminant function plot showed that the first 
function discriminated the BT group from the CBT group, and the second function dif-
ferentiated the no-treatment group from the two interventions.

16.12. Some final remarks 4

16.12.1.  The final interpretation 4

So far we have gathered an awful lot of information about our data, but how can we 
bring all of it together to answer our research question: can therapy improve OCD and if 
so which therapy is best? Well, the MANOVA tells us that therapy can have a significant 
effect on OCD symptoms, but the non-significant univariate ANOVAs suggested that this 
improvement is not simply in terms of either thoughts or behaviours. The discriminant 
analysis suggests that the group separation can be best explained in terms of one underlying 
dimension. In this context the dimension is likely to be OCD itself (which we can realisti-
cally presume is made up of both thoughts and behaviours). So, therapy doesn’t necessarily 
change behaviours or thoughts per se, but it does influence the underlying dimension of 
OCD. So, the answer to the first question seems to be: yes, therapy can influence OCD, but 
the nature of this influence is unclear.

The next question is more complex: which therapy is best? Figure 16.11 shows graphs 
of the relationships between the dependent variables and the group means of the original 
data. The graph of the means shows that for actions, BT reduces the number of obses-
sive behaviours, whereas CBT and NT do not. For thoughts, CBT reduces the number of 
obsessive thoughts, whereas BT and NT do not (check the pattern of the bars). Looking 
now at the relationships between thoughts and actions, in the BT group there is a positive 
relationship between thoughts and actions, so the more obsessive thoughts a person has, 
the more obsessive behaviours they carry out. In the CBT group there is no relationship at 
all (thoughts and actions vary quite independently). In the no-treatment group there is a 
negative (and non-significant incidentally) relationship between thoughts and actions.
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What we have discovered from the discriminant analysis is that BT and CBT can be dif-
ferentiated from the control group based on variate 2, a variate that has a similar effect on 
both thoughts and behaviours. We could say then that BT and CBT are both better than 
a no-treatment group at changing obsessive thoughts and behaviours. We also discovered 
that BT and CBT could be distinguished by variate 1, a variate that had the opposite effects 
on thoughts and behaviours. Combining this information with that in Figure 16.11 we 
could conclude that BT is better at changing behaviours and CBT is better at changing 
thoughts. So, the NT group can be distinguished from the CBT and BT groups using a 

Figure 16.11
Graphs 
showing (a) the 
relationships 
and (b) the 
means (and 
95% confidence 
intervals) 
between the 
dependent 
variables in each 
therapy group
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variable that affects both thoughts and behaviours. Also, the CBT and BT groups can be 
distinguished by a variate that has opposite effects on thoughts and behaviours. So, some 
therapy is better than none, but the choice of CBT or BT depends on whether you think 
it’s more important to target thoughts (CBT) or behaviours (BT).

16.12.2.  Univariate ANOVA or discriminant analysis?

This example should have made clear that univariate ANOVA and discriminant analysis are 
ways of answering different questions arising from a significant MANOVA. If univariate 
ANOVAs are chosen, Bonferroni corrections should be applied to the level at which you 
accept significance. The truth is that you should run both analyses to get a full picture of 
what is happening in your data. The advantage of discriminant analysis is that it tells you 
something about the underlying dimensions within your data (which is especially useful 
if you have employed several dependent measures in an attempt to capture some social 
or psychological construct). Even if univariate ANOVAs are significant, the discriminant 
analysis provides useful insight into your data and should be used. I hope that this chapter 
will convince you of this recommendation!

16.13. What to do when assumptions are violated 
in MANOVA 3

SPSS doesn’t offer a non-parametric version of MANOVA; however, some ideas have been 
put forward based on ranked data (much like the non-parametric tests we saw in Chapter 
15). Although discussion of these tests is well beyond the scope of this book, there are some 
techniques that can be beneficial when multivariate normality or homogeneity of covari-
ance matrices cannot be assumed (Zwick, 1985). In addition, there are robust methods 
(see section 5.7.4) described by Wilcox (Wilcox, 2005) for fairly straightforward designs 
with multiple outcome variables (for example, the Munzel–Brunner method). The SPSS R 
plugin can be used to run Wilcox’s files for the software R from within SPSS. The compan-
ion website has some demonstration movies of how to use the R plugin.

What have I discovered about statistics? 2

In this chapter we’ve cackled maniacally in the ear of MANOVA, force-fed discriminant 
function analysis cod-liver oil, and discovered to our horror that Roy has a large root. There 
are sometimes situations in which several outcomes have been measured in different groups 
and we discovered that in these situations the ANOVA technique can be extended and is 
called MANOVA (multivariate analysis of variance). The reasons for using this technique 
rather than running lots of ANOVAs is that we retain control over the Type I error rate, and 
we can incorporate the relationships between outcome variables into the analysis. Some 
of you will have then discovered that MANOVA works in very similar ways to ANOVA, 
but just with matrices rather than single values. Others will have discovered that it’s best
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to ignore the theory sections of this 
book. We had a look at an example of 
MANOVA on SPSS and discovered that 
just to make life as confusing as possi-
ble you get four test statistics relating 
to the same effect! Of these, I tried to 
convince you that Pillai’s trace was the 
safest option. Finally, we had a look 
at the two options for following up 
MANOVA: running lots of ANOVAs, 
or discriminant function analysis. Of 
these, discriminant function analysis 
gives us the most information, but can 
be a bit of nightmare to interpret.

We also discovered that pets can be therapeutic. I left the whereabouts of Fuzzy a mys-
tery. Now admit it, how many of you thought he was dead? He’s not: he is lying next to me 
as I type this sentence. After frantically searching the house I went back to the room that 
he had vanished from to check again whether there was a hole that he could have wriggled 
through. As I scuttled around on my hands and knees tapping the walls, a little ginger (and 
sooty) face popped out from the fireplace with a look as if to say ‘have you lost something?’ 
(see the picture). Yep, freaked out by the whole moving experience, he had done the only 
sensible thing and hidden up the chimney! Cats, you gotta love ’em.

Key terms that I’ve discovered

Bartlett’s test of sphericity
Box’s test
Discriminant analysis
Discriminant function variates
Discriminant scores
Error SSCP (E)
HE−1

Homogeneity of covariance matrices
Hotelling–Lawley trace (T 2)
Hypothesis SSCP (H)
Identity matrix
Matrix

Multivariate
Multivariate analysis of variance (or MANOVA)
Multivariate normality
Pillai–Bartlett trace (V )
Roy’s largest root
Square matrix
Sum of squares and cross-products (SSCP) matrix 
Total SSCP (T)
Univariate
Variance–covariance matrix
Wilks’s lambda ()

Smart Alex’s tasks

Task 1MM : A clinical psychologist noticed that several of his manic psychotic patients 
did chicken impersonations in public. He wondered whether this behaviour could be 
used to diagnose this disorder and so decided to compare his patients against a normal 
sample. He observed 10 of his patients as they went through a normal day. He also 
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needed to observe 10 of the most normal people he could find: naturally he chose to 
observe lecturers at the University of Sussex. He measured all participants using two 
dependent variables: first, how many chicken impersonations they did in the streets of 
Brighton over the course of a day, and, second, how good their impersonations were 
(as scored out of 10 by an independent farmyard noise expert). The data are in the file 
chicken.sav. Use MANOVA and DFA to find out whether these variables could be used 
to distinguish manic psychotic patients from those without the disorder. 3

Task 2MM : I was interested in whether students’ knowledge of different aspects of psy-
chology improved throughout their degree. I took a sample of first years, second 
years and third years and gave them five tests (scored out of 15) representing dif-
ferent aspects of psychology: Exper (experimental psychology such as cognitive and 
neuropsychology etc.); Stats (statistics); Social (social psychology); Develop (develop-
mental psychology); Person (personality). Your task is to: (1) carry out an appropriate 
general analysis to determine whether there are overall group differences along these 
five measures; (2) look at the scale-by-scale analyses of group differences produced 
in the output and interpret the results accordingly; (3) select contrasts that test the 
hypothesis that second and third years will score higher than first years on all scales; 
(4) select tests that compare all groups to each other and briefly compare these results 
with the contrasts; and (5) carry out a separate analysis in which you test whether a 
combination of the measures can successfully discriminate the groups (comment only 
briefly on this analysis). Include only those scales that revealed group differences 
for the contrasts. How do the results help you to explain the findings of your initial 
analysis? The data are in the file psychology.sav. 4

Answers can be found on the companion website.

Further reading
Bray, J. H., & Maxwell, S. E. (1985). Multivariate analysis of variance. Sage university paper 

series on quantitative applications in the social sciences, 07-054. Newbury Park, CA: Sage. 
(This monograph on MANOVA is superb: I cannot recommend anything better.)

Huberty, C. J., & Morris, J. D. (1989). Multivariate analysis versus multiple univariate analysis. 
Psychological Bulletin, 105(2), 302–308.

Online tutorials
The companion website contains the following Flash movie tutorials to accompany this chapter:

M MANOVA using SPSS M The R plugin

Interesting real research
Marzillier, S. L., & Davey, G. C. L. (2005). Anxiety and disgust: Evidence for a unidirectional rela-

tionship. Cognition and Emotion, 19(5), 729–750.
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Figure 17.1
Me at Niagara 
Falls in 1998.  
I was in the 
middle of writing 
the first edition of 
this book at the 
time. Note how 
fresh faced I look

17.1. What will this chapter tell me? 1

I was a year or so into my Ph.D., and thanks to my initial terrible teaching experiences 
I had developed a bit of an obsession with over-preparing for classes. I wrote detailed 
handouts and started using funny examples. Through my girlfriend at the time I met Dan 
Wright (a psychologist, who was in my department but sadly moved recently to Florida). 
He had published a statistics book of his own and was helping his publishers to sign up 
new authors. On the basis that my handouts were quirky and that I was too young to 
realize that writing a textbook at the age of 23 was academic suicide (really, textbooks 
take a long time to write and they are not at all valued compared to research articles) 
I was duly signed up. The commissioning editor was a man constantly on the verge of 
spontaneously combusting with intellectual energy. He can start a philosophical debate 
about literally anything: should he ever be trapped in an elevator he will be compelled to 
attempt to penetrate the occupants’ minds with probing arguments that the elevator doesn’t 
exist, that they don’t exist, and that their entrapment is an illusory construct generated by  
their erroneous beliefs in the physical world. Ultimately though, he’d still be a man trapped 
in an elevator (with several exhausted corpses). A combination of his unfaltering self-
confidence and my fear of social interactions with people that I don’t know coupled with 
utter bemusement that anyone would want me to write a book made me incapable of say-
ing anything sensible to him. Ever. He must have thought that he had signed up an imbe-
cile. He was probably right. (I find him less intimidating since thinking up the elevator 
scenario.) The trouble with agreeing to write books is that you then have to write them. 

17Exploratory factor analysis
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For the next two years or so I found myself trying to juggle my research, a lectureship at 
the University of London, and writing a book. Had I been writing a book on heavy metal 
it would have been fine because all of the information was moshing away in my memory 
waiting to stage-dive out. Sadly, however, I had agreed to write a book on something that  
I knew nothing about: statistics. I soon discovered that writing the book was like doing a  
factor analysis: in factor analysis we take a lot of information (variables) and SPSS effort-
lessly reduces this mass of confusion to a simple message (fewer variables) that is easier to 
digest. SPSS does this (sort of) by filtering out the bits of the information overload that we 
don’t need to know about. It takes a few seconds. Similarly, my younger self took a mass 
of information about statistics that I didn’t understand and filtered it down into a simple 
message that I could understand: I became a living, breathing factor analysis … except that, 
unlike SPSS, it took me two years and some considerable effort.

17.2. When to use factor analysis 2

In the social sciences we are often trying to measure things that cannot directly be measured 
(so-called latent variables). For example, management researchers (or psychologists even) 
might be interested in measuring ‘burnout’, which is when someone who has been working 
very hard on a project (a book, for example) for a prolonged period of time suddenly finds 
themselves devoid of motivation, inspiration, and wants to repeatedly headbutt their com-
puter screaming ‘please Mike, unlock the door, let me out of the basement, I need to feel 
the soft warmth of sunlight on my skin’. You can’t measure burnout directly: it has many 
facets. However, you can measure different aspects of burnout: you could get some idea 
of motivation, stress levels, whether the person has any new ideas and so on. Having done 
this, it would be helpful to know whether these differences really do reflect a single vari-
able. Put another way, are these different variables driven by the same underlying variable? 
This chapter will look at factor analysis (and principal component analysis) – a technique 
for identifying groups or clusters of variables. This technique has three main uses: (1) to 
understand the structure of a set of variables (e.g. pioneers of intelligence such as Spearman 
and Thurstone used factor analysis to try to understand the structure of the latent variable 
‘intelligence’); (2) to construct a questionnaire to measure an underlying variable (e.g. you 
might design a questionnaire to measure burnout); and (3) to reduce a data set to a more 
manageable size while retaining as much of the original information as possible (e.g. we 
saw in Chapter 7 that multicollinearity can be a problem in multiple regression, and fac-
tor analysis can be used to solve this problem by combining variables that are collinear). 
Through this chapter we’ll discover what factors are, how we find them, and what they tell 
us (if anything) about the relationship between the variables we’ve measured.

17.3. Factors 2

If we measure several variables, or ask someone several questions about them-
selves, the correlation between each pair of variables (or questions) can be 
arranged in what’s known as an R-matrix. An R-matrix is just a correlation 
matrix: a table of correlation coefficients between variables (in fact, we saw small 
versions of these matrices in Chapter 6). The diagonal elements of an R-matrix 
are all ones because each variable will correlate perfectly with itself. The off-
diagonal elements are the correlation coefficients between pairs of variables, or 
questions.1 The existence of clusters of large correlation coefficients between 
subsets of variables suggests that those variables could be measuring aspects  
of the same underlying dimension. These underlying dimensions are known 

1 This matrix is called an R-matrix, or R, because it contains correlation coefficients and r usually denotes Pear-
son’s correlation (see Chapter 6) – the r turns into a capital letter when it denotes a matrix.

What is a factor?
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as factors (or latent variables). By reducing a data set from a group of interrelated variables to a 
smaller set of factors, factor analysis achieves parsimony by explaining the maximum amount of 
common variance in a correlation matrix using the smallest number of explanatory constructs.

There are numerous examples of the use of factor analysis in the social sciences. The trait 
theorists in psychology used factor analysis endlessly to assess personality traits. Most read-
ers will be familiar with the extraversion−introversion and neuroticism traits measured by 
Eysenck (1953). Most other personality questionnaires are based on factor analysis – notably 
Cattell’s (1966a) 16 personality factors questionnaire – and these inventories are frequently 
used for recruiting purposes in industry (and even by some religious groups). However, 
although factor analysis is probably most famous for being adopted by psychologists, its use 
is by no means restricted to measuring dimensions of personality. Economists, for example, 
might use factor analysis to see whether productivity, profits and workforce can be reduced 
down to an underlying dimension of company growth, and Jeremy Miles told me of a bio-
chemist who used it to analyse urine samples!

Let’s put some of these ideas into practice by imagining that we wanted to measure different 
aspects of what might make a person popular. We could administer several measures that we 
believe tap different aspects of popularity. So, we might measure a person’s social skills (Social 
Skills), their selfishness (Selfish), how interesting others find them (Interest), the proportion of 
time they spend talking about the other person during a conversation (Talk 1), the proportion of 
time they spend talking about themselves (Talk 2), and their propensity to lie to people (the Liar 
scale). We can then calculate the correlation coefficients for each pair of variables and create an 
R-matrix. Table 17.1 shows this matrix. Any significant correlation coefficients are shown in bold 
type. It is clear that there are two clusters of interrelating variables. Therefore, these variables 
might be measuring some common underlying dimension. The amount that someone talks about 
the other person during a conversation seems to correlate highly with both the level of social 
skills and how interesting the other finds that person. Also, social skills correlates well with how 
interesting others perceive a person to be. These relationships indicate that the better your social 
skills, the more interesting and talkative you are likely to be. However, there is a second cluster 
of variables. The amount that people talk about themselves within a conversation correlates with 
how selfish they are and how much they lie. Being selfish also correlates with the degree to which 
a person tells lies. In short, selfish people are likely to lie and talk about themselves.

In factor analysis we strive to reduce this R-matrix down to its underlying dimensions by 
looking at which variables seem to cluster together in a meaningful way. This data reduction 
is achieved by looking for variables that correlate highly with a group of other variables, but 
do not correlate with variables outside of that group. In this example, there appear to be two 
clusters that fit the bill. The first factor seems to relate to general sociability, whereas the sec-
ond factor seems to relate to the way in which a person treats others socially (we might call 
it Consideration). It might, therefore, be assumed that popularity depends not only on your 
ability to socialize, but also on whether you are genuine towards others.

Table 17.1 An R-matrix

Talk 1 Social Skills Interest Talk 2 Selfish Liar 

Talk 1 1.000

Social Skills  .772
1.000

Interest  .646  .879 1.000

Talk 2  .074 −.120  .054 1.000

Selfish −.131  .031 −.101  .441
1.000

Liar  .068  .012  .110  .361  .277 1.000

Factor 2

Factor 1
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17.3.1.  Graphical representation of factors 2

Factors (not to be confused with independent variables in factorial ANOVA) are statisti-
cal entities that can be visualized as classification axes along which measurement variables 
can be plotted. In plain English, this statement means that if you imagine factors as being 
the axis of a graph, then we can plot variables along these axes. The co-ordinates of vari-
ables along each axis represent the strength of relationship between that variable and each 
factor. Figure 17.2 shows such a plot for the popularity data (in which there were only 
two factors). The first thing to notice is that for both factors, the axis line ranges from −1 
to 1, which are the outer limits of a correlation coefficient. Therefore, the position of a 
given variable depends on its correlation to the two factors. The circles represent the three 
variables that correlate highly with factor 1 (Sociability: horizontal axis) but have a low 
correlation with factor 2 (Consideration: vertical axis). Conversely, the triangles represent 
variables that correlate highly with consideration to others but have a low correlation to 
sociability. From this plot, we can tell that selfishness, the amount a person talks about 
themselves and their propensity to lie all contribute to a factor which could be called con-
sideration of others. Conversely, how much a person takes an interest in other people, how 
interesting they are and their level of social skills contribute to a second factor, sociabil-
ity. This diagram therefore supports the structure that was apparent in the R-matrix. Of 
course, if a third factor existed within these data it could be represented by a third axis 
(creating a 3-D graph). It should also be apparent that if more than three factors exist in a 
data set, then they cannot all be represented by a 2-D drawing.

If each axis on the graph represents a factor, then the variables that go to make up a 
factor can be plotted according to the extent to which they relate to a given factor. The co-
ordinates of a variable, therefore, represent its relationship to the factors. In an ideal world 
a variable should have a large co-ordinate for one of the axes and low co-ordinates for any 
other factors. This scenario would indicate that this particular variable related to only one 
factor. Variables that have large co-ordinates on the same axis are assumed to measure dif-
ferent aspects of some common underlying dimension. The co-ordinate of a variable along 

Figure 17.2
Example of a 
factor plot
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a classification axis is known as a factor loading. The factor loading can be thought of as the 
Pearson correlation between a factor and a variable (see Jane Superbrain Box 17.1). From 
what we know about interpreting correlation coefficients (see section 6.5.2.3) it should be 
clear that if we square the factor loading we obtain a measure of the substantive impor-
tance of a particular variable to a factor.

17.3.2.  Mathematical representation of factors 2

The axes drawn in Figure 17.2 are straight lines and so can be described mathematically 
by the equation of a straight line. Therefore, factors can also be described in terms of this 
equation.

SELF-TEST  What is the equation of a straight line?

a variable makes to a factor. As long as you understand 
that much, you have no problems.

However, the factor loadings in a given analysis can 
be both correlation coefficients and regression coef-
ficients. In a few section’s time we’ll discover that the 
interpretation of factor analysis is helped greatly by a 
technique known as rotation. Without going into details, 
there are two types: orthogonal and oblique rotation 
(see section 17.4.6). When orthogonal rotation is used, 
any underlying factors are assumed to be independent, 
and the factor loading is the correlation between the 
factor and the variable, but is also the regression coef-
ficient. Put another way, the values of the correlation 
coefficients are the same as the values of the regression 
coefficients. However, there are situations in which the 
underlying factors are assumed to be related or corre-
lated to each other. In these situations, oblique rotation 
is used and the resulting correlations between variables 
and factors will differ from the corresponding regression 
coefficients. In this case, there are, in effect, two differ-
ent sets of factor loadings: the correlation coefficients 
between each variable and factor (which are put in the 
factor structure matrix) and the regression coefficients 
for each variable on each factor (which are put in the 
factor pattern matrix). These coefficients can have 
quite different interpretations (see Graham, Guthrie, & 
Thompson, 2003).

Throughout my discussion of factor loadings I’ve been 
quite vague. Sometimes I’ve said that these loadings can 
be thought of as the correlation between a variable and 
a given factor, then at other times I’ve described these 
loadings in terms of regression coefficients (b). Now, it 
should be obvious from what we discovered in Chapters 
6 and 7 that correlation coefficients and regression coef-
ficients are quite different things, so what the hell am I 
going on about: shouldn’t I make up my mind what the 
factor loadings actually are?

Well, in vague terms (the best terms for my brain) both 
correlation coefficients and regression coefficients repre-
sent the relationship between a variable and linear model 
in a broad sense, so the key take-home message is that 
factor loadings tell us about the relative contribution that 

JANE SUPERBRAIN 17.1

What’s the difference between a  
pattern matrix and a structure matrix? 3

smart
alex
only
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Equation (17.1) reminds us of the equation describing a linear model and then applies this 
to the scenario of describing a factor. You’ll notice that there is no intercept in the equation, 
the reason being that the lines intersect at zero (hence the intercept is also zero). The bs in 
the equation represent the factor loadings.

Yi = b1X1i + b2X2i + . . . + bnXni + εi

Factori = b1Variable1i + b2Variable2i + . . . +bnVariableni + εi
(17.1)

Sticking with our example of popularity, we found that there were two factors underly-
ing this construct: general sociability and consideration. We can, therefore, construct an 
equation that describes each factor in terms of the variables that have been measured. The 
equations are as follows: 

Yi = b1X1i + b2X2i + . . . + bnXni + εi

Sociabilityi = b1Talk 1i + b2 Social Skillsi + b3Interesti

+ b4Talk 2i + b5Selfishi + b6Liari + εi

Considerationi = b1Talk 1i + b2 Social Skillsi + b3Interesti

+ b4Talk 2i + b5Selfishi + b6Liari + εi

(17.2)

First, notice that the equations are identical in form: they both include all of the variables 
that were measures. However, the values of b in the two equations will be different (depend-
ing on the relative importance of each variable to the particular factor). In fact, we can 
replace each value of b with the co-ordinate of that variable on the graph in Figure 17.2 (i.e. 
replace the values of b with the factor loading). The resulting equations are as follows:

Yi = b1X1i+ b2X2i + . . . + bnXni + εi

Sociabilityi = 0:87Talk 1i + 0:96Social Skillsi + 0:92Interesti

+ 0:00Talk 2i − 0:10Selfishi + 0:09Liari + εi

Considerationi = 0:01Talk 1i − 0:03Social Skillsi + 0:04Interesti

+ 0:82Talk 2i + 0:75Selfishi + 0:70Liari + εi

(17.3)

Notice that, for the sociability factor, the values of b are high for Talk 1, Social Skills and 
Interest. For the remaining variables (Talk 2, Selfish and Liar) the values of b are very low 
(close to 0). This tells us that three of the variables are very important for that factor (the 
ones with high values of b) and three are very unimportant (the ones with low values of b). 
We saw that this point is true because of the way that three variables clustered highly on the 
factor plot. The point to take on board here is that the factor plot and these equations rep-
resent the same thing: the factor loadings in the plot are simply the b-values in these equa-
tions (but see Jane Superbrain Box 17.1). For the second factor, inconsideration to others, 
the opposite pattern can be seen in that Talk 2, Selfish and Liar all have high values of b 
whereas the remaining three variables have b-values close to 0. In an ideal world, variables 
would have very high b-values for one factor and very low b-values for all other factors.

These factor loadings can be placed in a matrix in which the columns represent each 
factor and the rows represent the loadings of each variable onto each factor. For the popu-
larity data this matrix would have two columns (one for each factor) and six rows (one for 
each variable). This matrix, usually denoted A, can be seen below. To understand what the 
matrix means, try relating the elements to the loadings in equation (17.3). For example, 
the top row represents the first variable, Talk 1, which had a loading of .87 for the first 
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factor (Sociability) and a loading of .01 for the second factor (Consideration). This matrix 
is called the factor matrix or component matrix (if doing principal component analysis) – see 
Jane Superbrain Box 17.1 to find out about the different forms of this matrix:

A=

0:87 0:01

0:96 −0:03

0:92 0:04

0:00 0:82

−0:10 0:75

0:09 0:70

0

BBBBBBBB@

1

CCCCCCCCA

The major assumption in factor analysis is that these algebraic factors represent real-world 
dimensions, the nature of which must be guessed at by inspecting which variables have high 
loads on the same factor. So, psychologists might believe that factors represent dimensions 
of the psyche, education researchers might believe they represent abilities, and sociologists 
might believe they represent races or social classes. However, it is an extremely contentious 
point whether this assumption is tenable and some believe that the dimensions derived 
from factor analysis are real only in the statistical sense – and are real-world fictions. 

17.3.3.  Factor scores 2

A factor can be described in terms of the variables measured and the relative importance of 
them for that factor (represented by the value of b). Therefore, having discovered which fac-
tors exist, and estimated the equation that describes them, it should be possible to also estimate 
a person’s score on a factor, based on their scores for the constituent variables. As such, if we 
wanted to derive a score of sociability for a particular person, we could place their scores on 
the various measures into equation (17.3). This method is known as a weighted average. In fact, 
this method is overly simplistic and rarely used, but it is probably the easiest way to explain 
the principle. For example, imagine the six scales all range from 1 to 10 and that someone 
scored the following: Talk 1 (4), Social Skills (9), Interest (8), Talk 2 (6), Selfish (8) and Liar 
(6). We could replace these values into equation (17.3) to get a score for this person’s sociabil-
ity and their consideration to others (see equation (17.4)). The resulting scores of 19.22 and 
15.21 reflect the degree to which this person is sociable and their inconsideration to others 
respectively. This person scores higher on sociability than inconsideration. However, the scales 
of measurement used will influence the resulting scores, and if different variables use different 
measurement scales, then factor scores for different factors cannot be compared. As such, this 
method of calculating factor scores is poor and more sophisticated methods are usually used:

Sociability=0:87Talk 1+0:96Social Skills+0:92Interest+0:00Talk 2

−0:10Selfish+0:09Liar

= ð0:87×4Þ+ ð0:96×9Þ+ ð0:92×8Þ+ ð0:00×6Þ− ð0:10×8Þ+ ð0:09×6Þ
=19:22

Consideration=0:01Talk 1−0:03Social Skills+0:04Interest+0:82Talk 2

+0:75Selfish+0:70Liar

= ð0:01×4Þ− ð0:03×9Þ+ ð0:04×8Þ+ ð0:82×6Þ+ ð0:75×8Þ+ ð0:70×6Þ
=15:21

(17.4)

everybody
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17.3.3.1. The regression method 4

There are several sophisticated techniques for calculating factor scores that use factor score 
coefficients as weights in equation (17.1) rather than using the factor loadings. The form 
of the equation remains the same, but the bs in the equation are replaced with these factor 
score coefficients. Factor score coefficients can be calculated in several ways. The simplest 
way is the regression method. In this method the factor loadings are adjusted to take 
account of the initial correlations between variables; in doing so, differences in units of 
measurement and variable variances are stabilized.

To obtain the matrix of factor score coefficients (B) we multiply the matrix of factor loadings 
by the inverse (R−1) of the original correlation or R-matrix. You might remember from the pre-
vious chapter that matrices cannot be divided (see section 16.4.4.1). Therefore, if we want to 
divide by a matrix it cannot be done directly and instead we multiply by its inverse. Therefore, 
by multiplying the matrix of factor loadings by the inverse of the correlation matrix we are, 
conceptually speaking, dividing the factor loadings by the correlation coefficients. The resulting 
factor score matrix, therefore, represents the relationship between each variable and each fac-
tor taking into account the original relationships between pairs of variables. As such, this matrix 
represents a purer measure of the unique relationship between variables and factors.

The matrices for the popularity data are shown below. The resulting matrix of fac-
tor score coefficients, B, comes from SPSS. The matrices R−1 and A can be multiplied by 
hand to get the matrix B and those familiar with matrix algebra (or who have consulted 
Namboodiri, 1984, or Stevens, 2002) might like to verify the result (see Oliver Twisted). 
To get the same degree of accuracy as SPSS you should work to at least 5 decimal places: 

B=R− 1A=

4:76 −7:46 3:91 −2:35 2:42 −0:49

−7:46 18:49 −12:42 5:45 −5:54 1:22

3:91 −12:42 10:07 −3:65 3:79 −0:96

−2:35 −5:45 −3:65 −2:97 −2:16 −0:02

2:42 −5:54 3:79 −2:16 2:98 −0:56

−0:49 1:22 −0:96 0:02 −0:56 1:27

0

BBBBBBBB@

1

CCCCCCCCA

0:87 0:01

0:96 −0:03

0:92 0:04

0:00 0:82

−0:10 0:75

0:09 0:70

0

BBBBBBBB@

1

CCCCCCCCA

=

0:343 0:006

0:376 −0:020

0:362 0:020

0:000 0:473

−0:037 0:437

0:039 0:405

0

BBBBBBBB@

1

CCCCCCCCA

The pattern of the loadings is the same for the factor score coefficients: that is, the first three 
variables have high loadings for the first factor and low loadings for the second, whereas the 
pattern is reversed for the last three variables. The difference is only in the actual value of the 
weightings, which are smaller because the correlations between variables are now accounted 
for. These factor score coefficients can be used to replace the b-values in equation (17.2):

Sociability= 0:343Talk 1+ 0:376Social Skills+ 0:362Interest

+ 0:000Talk 2− 0:037Selfish+ 0:039Liar

= ð0:343× 4Þ+ ð0:376×9Þ+ ð0:362× 8Þ+ ð0:000× 6Þ
− ð0:037× 8Þ+ ð0:039× 6Þ

= 7:59

Consideration= 0:006Talk 1− 0:020Social Skills+ 0:020Interest

+ 0:473Talk 2+ 0:437Selfish+ 0:405Liar

= ð0:006× 4Þ+ ð0:020×9Þ+ ð0:020× 8Þ+ ð0:473× 6Þ
+ ð0:437× 8Þ+ ð0:405× 6Þ

= 8:768
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Sociability= 0:343Talk 1+ 0:376Social Skills+ 0:362Interest

+ 0:000Talk 2− 0:037Selfish+ 0:039Liar

= ð0:343× 4Þ+ ð0:376×9Þ+ ð0:362× 8Þ+ ð0:000× 6Þ
− ð0:037× 8Þ+ ð0:039× 6Þ

= 7:59

Consideration= 0:006Talk 1− 0:020Social Skills+ 0:020Interest

+ 0:473Talk 2+ 0:437Selfish+ 0:405Liar

= ð0:006× 4Þ+ ð0:020×9Þ+ ð0:020× 8Þ+ ð0:473× 6Þ
+ ð0:437× 8Þ+ ð0:405× 6Þ

= 8:768

(17.5)

Equation (17.5) shows how these coefficient scores are used to produce two factor scores for 
each person. In this case, the participant had the same scores on each variable as were used 
in equation (17.4.) The resulting scores are much more similar than when the factor loadings 
were used as weights because the different variances among the six variables have now been 
controlled for. The fact that the values are very similar reflects the fact that this person not 
only scores highly on variables relating to sociability, but is also inconsiderate (i.e. they score 
equally highly on both factors). This technique for producing factor scores ensures that the 
resulting scores have a mean of 0 and a variance equal to the squared multiple correlation 
between the estimated factor scores and the true factor values. However, the downside of the 
regression method is that the scores can correlate not only with factors other than the one on 
which they are based, but also with other factor scores from a different orthogonal factor.

‘The Matrix …’ enthuses Oliver ‘… that was a good film. I want to dress 
in black and glide through the air as though time has stood still. Maybe 
the matrix of factor scores is as cool as the film.’ I think you might be 
disappointed Oliver, but we’ll give it a shot. The matrix calculations of 
factor scores are detailed in the additional material for this chapter on 
the companion website. Be afraid, be very afraid …

OLIVER TWISTED

Please, Sir, can I 
have some more …  
matrix algebra?

17.3.3.2. Other methods 2

To overcome the problems associated with the regression technique, two adjustments have 
been proposed: the Bartlett method and the Anderson–Rubin method. SPSS can produce factor 
scores based on any of these methods. The Bartlett method produces scores that are unbiased 
and that correlate only with their own factor. The mean and standard deviation of the scores 
is the same as for the regression method. However, factor scores can still correlate with each 
other. The Anderson–Rubin method is a modification of the Bartlett method that produces 
factor scores that are uncorrelated and standardized (they have a mean of 0 and a standard 
deviation of 1). Tabachnick and Fidell (2007) conclude that the Anderson–Rubin method is 
best when uncorrelated scores are required but that the regression method is preferred in other 
circumstances simply because it is most easily understood. Although it isn’t important that you 
understand the maths behind any of the methods, it is important that you understand what the 
factor scores represent: namely, a composite score for each individual on a particular factor.

17.3.3.3. uses of factor scores 2

There are several uses of factor scores. First, if the purpose of the factor analysis is to reduce 
a large set of data to a smaller subset of measurement variables, then the factor scores tell 



636 D ISCOVER ING STAT IST ICS  US ING SPSS

us an individual’s score on this subset of measures. Therefore, any further analysis can be 
carried out on the factor scores rather than the original data. For example, we could carry 
out a t-test to see whether females are significantly more sociable than males using the fac-
tor scores for sociability. A second use is in overcoming collinearity problems in regression. 
If, following a multiple regression analysis, we have identified sources of multicollinearity 
then the interpretation of the analysis is questioned (see section 7.6.2.3). In this situation, 
we can simply carry out a factor analysis on the predictor variables to reduce them down to 
a subset of uncorrelated factors. The variables causing the multicollinearity will combine to 
form a factor. If we then rerun the regression but using the factor scores as predictor vari-
ables then the problem of multicollinearity should vanish (because the variables are now 
combined into a single factor). There are ways in which we can ensure that the factors are 
uncorrelated (one way is to use the Anderson–Rubin method – see above). By using uncor-
related factor scores as predictors in the regression we can be confident that there will be 
no correlation between predictors: hence, no multicollinearity!

17.4. Discovering factors 2

By now, you should have some grasp of the concept of what a factor is, how it is represented 
graphically, how it is represented algebraically, and how we can calculate composite scores 
representing an individual’s ‘performance’ on a single factor. I have deliberately restricted 
the discussion to a conceptual level, without delving into how we actually find these mythi-
cal beasts known as factors. This section will look at how we find factors. Specifically we 
will examine different types of methods, look at the maths behind one method (principal 
components), investigate the criteria for determining whether factors are important, and 
discover how to improve the interpretation of a given solution.

17.4.1.  Choosing a method 2

The first thing you need to know is that there are several methods for unearthing fac-
tors in your data. The method you chose will depend on what you hope to do with the 
analysis. Tinsley and Tinsley (1987) give an excellent account of the different methods 
available. There are two things to consider: whether you want to generalize the findings 
from your sample to a population and whether you are exploring your data or testing 
a specific hypothesis. This chapter describes techniques for exploring data using factor 
analysis. Testing hypotheses about the structures of latent variables and their relationships 
to each other requires considerable complexity and can be done with computer programs 
such as AMOS (which some of you might find hidden away in the Analyze menu of SPSS). 
Those interested in hypothesis testing techniques (known as confirmatory factor analysis) are 
advised to read Pedhazur and Schmelkin (1991: Chapter 23) for an introduction. Assuming 
we want to explore our data, we then need to consider whether we want to apply our 
findings to the sample collected (descriptive method) or to generalize our findings to a 
population (inferential methods). When factor analysis was originally developed it was 
assumed that it would be used to explore data to generate future hypotheses. As such, 
it was assumed that the technique would be applied to the entire population of interest. 
Therefore, certain techniques assume that the sample used is the population, and so results 
cannot be extrapolated beyond that particular sample. Principal component analysis is an 
example of one of these techniques, as is principal factors analysis (principal axis factor-
ing) and image covariance analysis (image factoring). Of these, principal component analy-
sis and principal factors analysis are the preferred methods and usually result in similar 
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solutions (see section 17.4.3). When these methods are used, conclusions are restricted to 
the sample collected and generalization of the results can be achieved only if analysis using 
different samples reveals the same factor structure.

Another approach has been to assume that participants are randomly selected and that 
the variables measured constitute the population of variables in which we’re interested. 
By assuming this, it is possible to develop techniques from which the results can be gen-
eralized from the sample participants to a larger population. However, a constraint is 
that any findings hold true only for the set of variables measured (because we’ve assumed 
this set constitutes the entire population of variables). Techniques in this category include 
the maximum-likelihood method (see Harman, 1976) and Kaiser’s alpha factoring. The 
choice of method depends largely on what generalizations, if any, you want to make from 
your data.2

17.4.2.  Communality 2

Before continuing it is important that you understand some basic things about the variance 
within an R-matrix. It is possible to calculate the variability in scores (the variance) for any 
given measure (or variable). You should be familiar with the idea of variance by now and 
comfortable with how it can be calculated (if not see Chapter 2). The total variance for a 
particular variable will have two components: some of it will be shared with other vari-
ables or measures (common variance) and some of it will be specific to that measure (unique 
variance). We tend to use the term unique variance to refer to variance that can be reliably 
attributed to only one measure. However, there is also variance that is specific to one meas-
ure but not reliably so; this variance is called error or random variance. The proportion of 
common variance present in a variable is known as the communality. As such, a variable that 
has no specific variance (or random variance) would have a communality of 1; a variable 
that shares none of its variance with any other variable would have a communality of 0.

In factor analysis we are interested in finding common underlying dimensions within 
the data and so we are primarily interested only in the common variance. Therefore, when 
we run a factor analysis it is fundamental that we know how much of the variance present 
in our data is common variance. This presents us with a logical impasse: to do the factor 
analysis we need to know the proportion of common variance present in the data, yet the 
only way to find out the extent of the common variance is by carrying out a factor analysis! 
There are two ways to approach this problem. The first is to assume that all of the variance 
is common variance. As such, we assume that the communality of every variable is 1. By 
making this assumption we merely transpose our original data into constituent linear com-
ponents (known as principal component analysis). The second approach is to estimate the 
amount of common variance by estimating communality values for each variable. There 
are various methods of estimating communalities but the most widely used (including alpha 
factoring) is to use the squared multiple correlation (SMC) of each variable with all oth-
ers. So, for the popularity data, imagine you ran a multiple regression using one measure 
(Selfish) as the outcome and the other five measures as predictors: the resulting multiple 
R2 (see section 7.5.2) would be used as an estimate of the communality for the variable 
Selfish. This second approach is used in factor analysis. These estimates allow the factor 
analysis to be done. Once the underlying factors have been extracted, new communalities 
can be calculated that represent the multiple correlation between each variable and the 
factors extracted. Therefore, the communality is a measure of the proportion of variance 
explained by the extracted factors.

2 It’s worth noting at this point that principal components analysis is not in fact the same as factor analysis. This 
doesn’t stop idiots like me from discussing them as though they are, but more on that later.
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17.4.3.  Factor analysis vs. principal component analysis 2

I have just explained that there are two approaches to locating underlying dimensions of 
a data set: factor analysis and principal component analysis. These techniques differ in the 
communality estimates that are used. Simplistically, though, factor analysis derives a math-
ematical model from which factors are estimated, whereas principal component analysis 
merely decomposes the original data into a set of linear variates (see Dunteman, 1989: 
Chapter 8, for more detail on the differences between the procedures). As such, only factor 
analysis can estimate the underlying factors and it relies on various assumptions for these 
estimates to be accurate. Principal component analysis is concerned only with establishing 
which linear components exist within the data and how a particular variable might contrib-
ute to that component. In terms of theory, this chapter is dedicated to principal component 
analysis rather than factor analysis. The reasons are that principal component analysis is a 
psychometrically sound procedure, it is conceptually less complex than factor analysis, and 
it bears numerous similarities to discriminant analysis (described in the previous chapter).

However, we should consider whether the techniques provide different solutions to 
the same problem. Based on an extensive literature review, Guadagnoli and Velicer (1988) 
concluded that the solutions generated from principal component analysis differ little from 
those derived from factor analytic techniques. In reality, there are some circumstances for 
which this statement is untrue. Stevens (2002) summarizes the evidence and concludes that 
with 30 or more variables and communalities greater than 0.7 for all variables, different 
solutions are unlikely; however, with fewer than 20 variables and any low communalities 
(< 0.4) differences can occur.

The flip-side of this argument is eloquently described by Cliff (1987) who observed that 
proponents of factor analysis ‘insist that components analysis is at best a common factor 
analysis with some error added and at worst an unrecognizable hodgepodge of things from 
which nothing can be determined’ (p. 349). Indeed, feeling is strong on this issue with 
some arguing that when principal component analysis is used it should not be described as 
a factor analysis and that you should not impute substantive meaning to the resulting com-
ponents. However, to non-statisticians the difference between a principal component and 
a factor may be difficult to conceptualize (they are both linear models), and the differences 
arise largely from the calculation.3

17.4.4.  Theory behind principal component analysis 3

Principal component analysis works in a very similar way to MANOVA and discriminant 
function analysis (see previous chapter). Although it isn’t necessary to understand the 
mathematical principles in any detail, readers of the previous chapter may benefit from 
some comparisons between the two techniques. For those who haven’t read that chapter, 
I suggest you flick through it before moving ahead!

In MANOVA, various sum of squares and cross-product matrices were calculated that 
contained information about the relationships between dependent variables. I mentioned 
before that these SSCP matrices could be easily converted to variance–covariance matri-
ces, which represent the same information but in averaged form (i.e. taking account of 
the number of observations). I also said that by dividing each element by the relevant 
standard deviation the variance–covariance matrices becomes standardized. The result is a 

3 For this reason I have used the terms components and factors interchangeably throughout this chapter. Although 
this use of terms will reduce some statisticians (and psychologists) to tears I’m banking on these people not need-
ing to read this book! I acknowledge the methodological differences, but I think it’s easier for students if I dwell 
on the similarities between the techniques and not the differences.

smart
alex
only
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correlation matrix. In principal component analysis we usually deal with correlation matri-
ces (although it is possible to analyse a variance–covariance matrix too) and the point to 
note is that this matrix pretty much represents the same information as an SSCP matrix in 
MANOVA. The difference is just that the correlation matrix is an averaged version of the 
SSCP that has been standardized.

In MANOVA, we used several SSCP matrices that represented different components 
of experimental variation (the model variation and the residual variation). In principal 
component analysis the covariance (or correlation) matrix cannot be broken down in this 
way (because all data come from the same group of participants). In MANOVA, we ended 
up looking at the variates or components of the SSCP matrix that represented the ratio 
of the model variance to the error variance. These variates were linear dimensions that 
separated the groups tested, and we saw that the dependent variables mapped onto these 
underlying components. In short, we looked at whether the groups could be separated 
by some linear combination of the dependent variables. These variates were found by 
calculating the eigenvectors of the SSCP. The number of variates obtained was the smaller 
of p (the number of dependent variables) or k − 1 (where k is the number of groups). In 
component analysis we do something similar (I’m simplifying things a little, but it will give 
you the basic idea). That is, we take a correlation matrix and calculate the variates. There 
are no groups of observations, and so the number of variates calculated will always equal 
the number of variables measured (p). The variates are described, as for MANOVA, by the 
eigenvectors associated with the correlation matrix. The elements of the eigenvectors are 
the weights of each variable on the variate (see equation (16.5)). These values are the factor 
loadings described earlier. The largest eigenvalue associated with each of the eigenvectors 
provides a single indicator of the substantive importance of each variate (or component). 
The basic idea is that we retain factors with relatively large eigenvalues and ignore those 
with relatively small eigenvalues.

In summary, component analysis works in a similar way to MANOVA. We begin with 
a matrix representing the relationships between variables. The linear components (also 
called variates, or factors) of that matrix are then calculated by determining the eigenvalues 
of the matrix. These eigenvalues are used to calculate eigenvectors, the elements of which 
provide the loading of a particular variable on a particular factor (i.e. they are the b-values 
in equation (17.1)). The eigenvalue is also a measure of the substantive importance of the 
eigenvector with which it is associated.

17.4.5.  Factor extraction: eigenvalues and the scree plot 2

Not all factors are retained in an analysis, and there is debate over the criterion 
used to decide whether a factor is statistically important. I mentioned above 
that eigenvalues associated with a variate indicate the substantive importance 
of that factor. Therefore, it seems logical that we should retain only factors 
with large eigenvalues. How do we decide whether or not an eigenvalue is 
large enough to represent a meaningful factor? Well, one technique advocated 
by Cattell (1966b) is to plot a graph of each eigenvalue (Y-axis) against the 
factor with which it is associated (X-axis). This graph is known as a scree 
plot (because it looks like a rock face with a pile of debris, or scree, at the 
bottom). I mentioned earlier that it is possible to obtain as many factors as 
there are variables and that each has an associated eigenvalue. By graphing the 
eigenvalues, the relative importance of each factor becomes apparent. Typically there will be 
a few factors with quite high eigenvalues, and many factors with relatively low eigenvalues, 
so this graph has a very characteristic shape: there is a sharp descent in the curve followed 
by a tailing off (see Figure 17.3). Cattell (1966b) argued that the cut-off point for selecting 
factors should be at the point of inflexion of this curve. The point of inflexion is where the 

How many factors
should I extract?

everybody
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slope of the line changes dramatically: so, in Figure 17.3, imagine drawing a straight line that 
summarizes the vertical part of the plot and another that summarizes the horizontal part (the 
red dashed lines); then the point of inflexion is the data point at which these two lines meet. 
In both examples in Figure 17.3 the point of inflexion occurs at the third data point (factor); 
therefore, we would extract two factors. Thus, you retain (or extract) only factors to the left 
of the point of inflexion (and do not include the factor at the point of inflexion itself).4 With 
a sample of more than 200 participants, the scree plot provides a fairly reliable criterion for 
factor selection (Stevens, 2002).

Although scree plots are very useful, factor selection should not be based on this criterion 
alone. Kaiser (1960) recommended retaining all factors with eigenvalues greater than 1. 
This criterion is based on the idea that the eigenvalues represent the amount of variation 
explained by a factor and that an eigenvalue of 1 represents a substantial amount of varia-
tion. Jolliffe (1972, 1986) reports that Kaiser’s criterion is too strict and suggests the third 

4 Actually if you read Cattell’s original paper he advised including the factor at the point of inflexion as well 
because it is ‘desirable to include at least one common error factor as a “garbage can”’. The idea is that the 
point of inflexion represents an error factor. However, in practice this garbage can factor is rarely retained; also 
Thurstone argued that it is better to retain too few rather than too many factors so most people do not to retain 
the factor at the point of inflexion.

Figure 17.3  Examples of scree plots for data that probably have two underlying factors
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option of retaining all factors with eigenvalues more than 0.7. The difference between how 
many factors are retained using Kaiser’s methods compared to Jolliffe’s can be dramatic.

You might well wonder how the methods compare. Generally speaking, Kaiser’s cri-
terion overestimates the number of factors to retain (see Jane Superbrain Box 17.2) but 
there is some evidence that it is accurate when the number of variables is less than 30 and 
the resulting communalities (after extraction) are all greater than 0.7. Kaiser’s criterion 
can also be accurate when the sample size exceeds 250 and the average communality is 
greater than or equal to 0.6. In any other circumstances you are best advised to use a scree 
plot provided the sample size is greater than 200 (see Stevens, 2002, for more detail). By 
default, SPSS uses Kaiser’s criterion to extract factors. Therefore, if you use the scree plot 
to determine how many factors are retained you may have to rerun the analysis specifying 
that SPSS extracts the number of factors you require.

However, as is often the case in statistics, the three criteria often provide different solu-
tions! In these situations the communalities of the factors need to be considered. In principal 
component analysis we begin with communalities of 1 with all factors retained (because we 
assume that all variance is common variance). At this stage all we have done is to find the 
linear variates that exist in the data – so we have just transformed the data without discard-
ing any information. However, to discover what common variance really exists between 
variables we must decide which factors are meaningful and discard any that are too trivial 
to consider. Therefore, we discard some information. The factors we retain will not explain 
all of the variance in the data (because we have discarded some information) and so the 
communalities after extraction will always be less than 1. The factors retained do not map 
perfectly onto the original variables – they merely reflect the common variance present 
in the data. If the communalities represent a loss of information then they are important 

substantive’ underlying factors (Nunnally & Bernstein, 
1994). Consequently, Kaiser’s criterion often overesti-
mates the number of factors. On this basis Jolliffe’s cri-
terion is even worse (a factor explains less variance than 
a variable!).

There are more complex ways to determine how many 
factors to retain, but they are not easy to do on SPSS 
(which is why I’m discussing them outside of the main 
text). The best is probably parallel analysis (Horn, 1965). 
Essentially each eigenvalue (which represents the size of 
the factor) is compared against an eigenvalue for the cor-
responding factor in many randomly generated data sets 
that have the same characteristics as the data being ana-
lysed. In doing so, each eigenvalue is being compared to 
an eigenvalue from a data set that has no underlying fac-
tors. This is a bit like asking whether our observed factor is 
bigger than a non-existing factor. Factors that are bigger 
than their ‘random’ counterparts are retained. Of paral-
lel analysis, the scree plot and Kaiser’s criterion, Kaiser’s 
criterion is, in general, worst and parallel analysis best 
(Zwick & Velicer, 1986). If you want to do parallel analy-
sis then SPSS syntax is available (O’Connor, 2000) from 
http://flash.lakeheadu.ca/~boconno2/nfactors.html.

The discussion of factor extraction in the text is some-
what simplified. In fact, there are fundamental problems 
with Kaiser’s criterion (Nunnally & Bernstein, 1994). For 
one thing an eigenvalue of 1 means different things in 
different analyses: with 100 variables it means that a fac-
tor explains 1% of the variance, but with 10 variables it 
means that a factor explains 10% of the variance. Clearly, 
these two situations are very different and a single rule 
that covers both is inappropriate. An eigenvalue of 1 also 
means only that the factor explains as much variance 
as a variable, which rather defeats the original inten-
tion of the analysis to reduce variables down to ‘more 

JANE SUPERBRAIN 17.2

How many factors do I retain? 3
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statistics. The closer the communalities are to 1, the better our factors are at explaining the 
original data. It is logical that the more factors retained, the greater the communalities will 
be (because less information is discarded); therefore, the communalities are good indices 
of whether too few factors have been retained. In fact, with generalized least-squares factor 
analysis and maximum-likelihood factor analysis you can get a statistical measure of the 
goodness of fit of the factor solution (see the next chapter for more on goodness-of-fit tests). 
This basically measures the proportion of variance that the factor solution explains (so, can 
be thought of as comparing communalities before and after extraction).

As a final word of advice, your decision on how many factors to extract will depend also 
on why you’re doing the analysis; for example, if you’re trying to overcome multicollinearity 
problems in regression, then it might be better to extract too many factors than too few.

17.4.6.  Improving interpretation: factor rotation 3

Once factors have been extracted, it is possible to calculate to what degree 
variables load onto these factors (i.e. calculate the loading of the variable on 
each factor). Generally, you will find that most variables have high loadings on 
the most important factor and small loadings on all other factors. This charac-
teristic makes interpretation difficult, and so a technique called factor rotation 
is used to discriminate between factors. If a factor is a classification axis along 
which variables can be plotted, then factor rotation effectively rotates these fac-
tor axes such that variables are loaded maximally to only one factor. Figure 
17.4 demonstrates how this process works using an example in which there 
are only two factors. Imagine that a sociologist was interested in classifying 

university lecturers as a demographic group. She discovered that two underlying dimensions best 
describe this group: alcoholism and achievement (go to any academic conference and you’ll see 
that academics drink heavily!). The first factor, alcoholism, has a cluster of variables associated 
with it (green circles) and these could be measures such as the number of units drunk in a week, 
dependency and obsessive personality. The second factor, achievement, also has a cluster of vari-
ables associated with it (blue circles) and these could be measures relating to salary, job status 
and number of research publications. Initially, the full lines represent the factors, and by looking 
at the co-ordinates it should be clear that the blue circles have high loadings for factor 2 (they 
are a long way up this axis) and medium loadings on factor 1 (they are not very far up this axis). 
Conversely, the green circles have high loadings for factor 1 and medium loadings for factor 2. 
By rotating the axes (dashed lines), we ensure that both clusters of variables are intersected by 
the factor to which they relate most. So, after rotation, the loadings of the variables are maxi-
mized onto one factor (the factor that intersects the cluster) and minimized on the remaining 
factor(s). If an axis passes through a cluster of variables, then these variables will have a loading 
of approximately zero on the opposite axis. If this idea is confusing, then look at Figure 17.4 
and think about the values of the co-ordinates before and after rotation (this is best achieved by 
turning the book when you look at the rotated axes).

There are two types of rotation that can be done. The first is orthogonal rotation, and 
the left-hand side of Figure 17.4 represents this method. In Chapter 10 we saw that the 
term orthogonal means unrelated, and in this context it means that we rotate factors while 
keeping them independent, or unrelated. Before rotation, all factors are independent (i.e. 
they do not correlate at all) and orthogonal rotation ensures that the factors remain uncor-
related. That is why in Figure 17.4 the axes are turned while remaining perpendicular.5 The 
other form of rotation is oblique rotation. The difference with oblique rotation is that the 
factors are allowed to correlate (hence, the axes of the right-hand diagram of Figure 17.4 
do not remain perpendicular).

5 This term means that the axes are at right angles to one another.

Do we have to
rotate?
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The choice of rotation depends on whether there is a good theoretical reason to sup-
pose that the factors should be related or independent (but see my later comments on this), 
and also how the variables cluster on the factors before rotation. On the first point, we 
might not expect alcoholism to be completely independent of achievement (after all, high 
achievement leads to high stress, which can lead to the drinks cabinet!). Therefore, on 
theoretical grounds, we might choose oblique rotation. On the second point, Figure 17.4 
demonstrates how the positioning of clusters is important in determining how successful 
the rotation will be (note the position of the green circles). Specifically, if an orthogonal 
rotation was carried out on the right-hand diagram it would be considerably less successful 
in maximizing loadings than the oblique rotation that is displayed. One approach is to run 
the analysis using both types of rotation. Pedhazur and Schmelkin (1991) suggest that if the 
oblique rotation demonstrates a negligible correlation between the extracted factors then 
it is reasonable to use the orthogonally rotated solution. If the oblique rotation reveals a 
correlated factor structure, then the orthogonally rotated solution should be discarded. In 
any case, an oblique rotation should be used only if there are good reasons to suppose that 
the underlying factors could be related in theoretical terms.

The mathematics behind factor rotation is complex (especially oblique rotation). 
However, in oblique rotation, because each factor can be rotated by different amounts 
a factor transformation matrix, Λ, is needed. The factor transformation matrix is a square 
matrix and its size depends on how many factors are extracted from the data. If two factors 
are extracted then it will be a 2 × 2 matrix, but if four factors are extracted then it becomes 
a 4 × 4 matrix. The values in the factor transformation matrix consist of sines and cosines 
of the angle of axis rotation (θ ). This matrix is multiplied by the matrix of unrotated factor 
loadings, A, to obtain a matrix of rotated factor loadings.

For the case of two factors the factor transformation matrix would be:

=
cos θ − sin θ

sin θ cos θ

 

Therefore, you should think of this matrix as representing the angle through which the axes 
have been rotated, or the degree to which factors have been rotated. The angle of rotation 
necessary to optimize the factor solution is found in an iterative way (see SPSS Tip 8.1) and 
different methods can be used.

Figure 17.4
Schematic 
representations 
of factor 
rotation. The left 
graph displays 
orthogonal 
rotation whereas 
the right graph 
displays oblique 
rotation (see text 
for more details). 
θ is the angle 
through which 
the axes are 
rotated
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17.4.6.1. Choosing a method of factor rotation 3

SPSS has three methods of orthogonal rotation (varimax, quartimax and equamax) and two 
methods of oblique rotation (direct oblimin and promax). These methods differ in how they 
rotate the factors and, therefore, the resulting output depends on which method you select. 
Quartimax rotation attempts to maximize the spread of factor loadings for a variable across 
all factors. Therefore, interpreting variables becomes easier. However, this often results 
in lots of variables loading highly onto a single factor. Varimax is the opposite in that it 
attempts to maximize the dispersion of loadings within factors. Therefore, it tries to load a 
smaller number of variables highly onto each factor resulting in more interpretable clusters 
of factors. Equamax is a hybrid of the other two approaches and is reported to behave fairly 
erratically (see Tabachnick and Fidell, 2007). For a first analysis, you should probably select 
varimax because it is a good general approach that simplifies the interpretation of factors. 

The case with oblique rotations is more complex because correlation between factors 
is permitted. In the case of direct oblimin, the degree to which factors are allowed to cor-
relate is determined by the value of a constant called delta. The default value in SPSS is 
0 and this ensures that high correlation between factors is not allowed (this is known as 
direct quartimin rotation). If you choose to set delta to greater than 0 (up to 0.8), then 
you can expect highly correlated factors; if you set delta to less than 0 (down to −0.8) you 
can expect less correlated factors. The default setting of 0 is sensible for most analyses and 
I don’t recommend changing it unless you know what you are doing (see Pedhazur and 
Schmelkin, 1991: 620). Promax is a faster procedure designed for very large data sets.

In theory, the exact choice of rotation will depend largely on whether or not you think 
that the underlying factors should be related. If you expect the factors to be independ-
ent then you should choose one of the orthogonal rotations (I recommend varimax). If, 
however, there are theoretical grounds for supposing that your factors might correlate, 
then direct oblimin should be selected. In practice, there are strong grounds to believe that 
orthogonal rotations are a complete nonsense for naturalistic data, and certainly for any 
data involving humans (can you think of any psychological construct that is not in any way 
correlated with some other psychological construct?) As such, some argue that orthogonal 
rotations should never be used.

17.4.6.2. Substantive importance of factor loadings 2

Once a factor structure has been found, it is important to decide which variables make 
up which factors. Earlier I said that the factor loadings were a gauge of the substantive 
importance of a given variable to a given factor. Therefore, it makes sense that we use these 
values to place variables with factors. It is possible to assess the statistical significance of 
a factor loading (after all, it is simply a correlation coefficient or regression coefficient); 
however, there are various reasons why this option is not as easy as it seems (see Stevens, 
2002: 393). Typically, researchers take a loading of an absolute value of more than 0.3 
to be important. However, the significance of a factor loading will depend on the sam-
ple size. Stevens (2002) produced a table of critical values against which loadings can be 
compared. To summarize, he recommends that for a sample size of 50 a loading of 0.722 
can be considered significant, for 100 the loading should be greater than 0.512, for 200 it 
should be greater than 0.364, for 300 it should be greater than 0.298, for 600 it should be 
greater than 0.21, and for 1000 it should be greater than 0.162. These values are based on 
an alpha level of .01 (two-tailed), which allows for the fact that several loadings will need 
to be tested (see Stevens, 2002, for further detail). Therefore, in very large samples, small 
loadings can be considered statistically meaningful. SPSS does not provide significance tests 
of factor loadings but by applying Stevens’ guidelines you should gain some insight into the 
structure of variables and factors.
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The significance of a loading gives little indication of the substantive importance of 
a variable to a factor. This value can be found by squaring the factor loading to give an 
estimate of the amount of variance in a factor accounted for by a variable (like R2). In this 
respect Stevens (2002) recommends interpreting only factor loadings with an absolute 
value greater than 0.4 (which explain around 16% of the variance in the variable).

17.5. Research example 2

One of the uses of factor analysis is to develop questionnaires: after all, if you want to 
measure an ability or trait, you need to ensure that the questions asked relate to the con-
struct that you intend to measure. I have noticed that a lot of students become very stressed 
about SPSS. Therefore I wanted to design a questionnaire to measure a trait that I termed 
‘SPSS anxiety’. I decided to devise a questionnaire to measure various aspects of students’ 
anxiety towards learning SPSS. I generated questions based on interviews with anxious and 
non-anxious students and came up with 23 possible questions to include. Each question was 
a statement followed by a five-point Likert scale ranging from ‘strongly disagree’ through 
‘neither agree nor disagree’ to ‘strongly agree’. The questionnaire is printed in Figure 17.5.

The questionnaire was designed to predict how anxious a given individual would be 
about learning how to use SPSS. What’s more, I wanted to know whether anxiety about 
SPSS could be broken down into specific forms of anxiety. In other words, what latent 
variables contribute to anxiety about SPSS? With a little help from a few lecturer friends 
I collected 2571 completed questionnaires (at this point it should become apparent that 
this example is fictitious!). The data are stored in the file SAQ.sav. Load this file into SPSS 
and have a look at the variables and their properties. The first thing to note is that each 
question (variable) is represented by a different column. We know that in SPSS, cases (or 
people’s data) are stored in rows and variables are stored in columns and so this layout 
is consistent with past chapters. The second thing to notice is that there are 23 variables 
labelled q1 to q23 and that each has a label indicating the question. By labelling my vari-
ables I can be very clear about what each variable represents (this is the value of giving your 
variables full titles rather than just using restrictive column headings).

‘I’m going to design a questionnaire to measure one’s propensity to 
pick a pocket or two,’ says Oliver, ‘but how would I go about doing it?’ 
You’d read the useful information about the dos and don’ts of ques-
tionnaire design in the additional material for this chapter on the com-
panion website, that’s how. Rate how useful it is on a Likert scale from 
1 = not useful at all, to 5 = very useful.

OLIVER TWISTED

Please, Sir, can I 
have some more … 
questionnaires?

17.5.1.  Before you begin 2

17.5.1.1. Sample size 2

Correlation coefficients fluctuate from sample to sample, much more so in small sam-
ples than in large. Therefore, the reliability of factor analysis is also dependent on sample 
size. Much has been written about the necessary sample size for factor analysis resulting in 
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SD = Strongly Disagree, D = Disagree, N = Neither, A = Agree, SA = Strongly Agree

 SD D N A SA

 1 Statistics make me cry     

 2 My friends will think I’m stupid for not being able to 
cope with SPSS

    

 3 Standard deviations excite me     

 4 I dream that Pearson is attacking me with correlation 
coefficients

    

 5 I don’t understand statistics     

 6 I have little experience of computers     

 7 All computers hate me     

 8 I have never been good at mathematics     

 9 My friends are better at statistics than me     

10 Computers are useful only for playing games     

11 I did badly at mathematics at school     

12 People try to tell you that SPSS makes statistics easier 
to understand but it doesn’t

    

13 I worry that I will cause irreparable damage because of 
my incompetence with computers

    

14 Computers have minds of their own and deliberately go 
wrong whenever I use them

    

15 Computers are out to get me     

16 I weep openly at the mention of central tendency     

17 I slip into a coma whenever I see an equation     

18 SPSS always crashes when I try to use it     

19 Everybody looks at me when I use SPSS     

20 I can’t sleep for thoughts of eigenvectors     

21 I wake up under my duvet thinking that I am trapped 
under a normal distribution

    

22 My friends are better at SPSS than I am     

23 If I am good at statistics people will think I am a nerd     

Figure 17.5
The SPSS  
anxiety 
questionnaire 
(SAQ)
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many ‘rules of thumb’. The common rule is to suggest that a researcher has at least 10–15 
participants per variable. Although I’ve heard this rule bandied about on numerous occasions 
its empirical basis is unclear (however, Nunnally, 1978, did recommend having 10 times as 
many participants as variables). Kass and Tinsley (1979) recommended having between 5 and 
10 participants per variable up to a total of 300 (beyond which test parameters tend to be 
stable regardless of the participant to variable ratio). Indeed, Tabachnick and Fidell (2007) 
agree that ‘it is comforting to have at least 300 cases for factor analysis’ (p. 613) and Comrey 
and Lee (1992) class 300 as a good sample size, 100 as poor and 1000 as excellent.

Fortunately, recent years have seen empirical research done in the form of experiments 
using simulated data (so-called Monte Carlo studies). Arrindell and van der Ende (1985) 
used real-life data to investigate the effect of different participant to variable ratios. They 
concluded that changes in this ratio made little difference to the stability of factor solu-
tions. Guadagnoli and Velicer (1988) found that the most important factors in determining 
reliable factor solutions was the absolute sample size and the absolute magnitude of factor 
loadings. In short, they argue that if a factor has four or more loadings greater than 0.6 
then it is reliable regardless of sample size. Furthermore, factors with 10 or more load-
ings greater than 0.40 are reliable if the sample size is greater than 150. Finally, factors 
with a few low loadings should not be interpreted unless the sample size is 300 or more. 
MacCallum, Widaman, Zhang, and Hong (1999) have shown that the minimum sample 
size or sample to variable ratio depends on other aspects of the design of the study. In 
short, their study indicated that as communalities become lower the importance of sample 
size increases. With all communalities above 0.6, relatively small samples (less than 100) 
may be perfectly adequate. With communalities in the 0.5 range, samples between 100 and 
200 can be good enough provided there are relatively few factors each with only a small 
number of indicator variables. In the worst scenario of low communalities (well below 0.5) 
and a larger number of underlying factors they recommend samples above 500.

What’s clear from this work is that a sample of 300 or more will probably provide a sta-
ble factor solution but that a wise researcher will measure enough variables to adequately 
measure all of the factors that theoretically they would expect to find.

Another alternative is to use the Kaiser–Meyer–Olkin measure of sampling adequacy (KMO) 
(Kaiser, 1970). The KMO can be calculated for individual and multiple variables and rep-
resents the ratio of the squared correlation between variables to the squared partial correla-
tion between variables. The KMO statistic varies between 0 and 1. A value of 0 indicates 
that the sum of partial correlations is large relative to the sum of correlations, indicating 
diffusion in the pattern of correlations (hence, factor analysis is likely to be inappropriate). 
A value close to 1 indicates that patterns of correlations are relatively compact and so fac-
tor analysis should yield distinct and reliable factors. Kaiser (1974) recommends accepting 
values greater than 0.5 as barely acceptable (values below this should lead you to either 
collect more data or rethink which variables to include). Furthermore, values between 0.5 
and 0.7 are mediocre, values between 0.7 and 0.8 are good, values between 0.8 and 0.9 are 
great and values above 0.9 are superb (Hutcheson & Sofroniou, 1999).

17.5.1.2. Correlations between variables 3

When I was an undergraduate my statistics lecturer always used to say ‘if you put garbage 
in, you get garbage out’. This saying applies particularly to factor analysis because SPSS will 
always find a factor solution to a set of variables. However, the solution is unlikely to have 
any real meaning if the variables analysed are not sensible. The first thing to do when con-
ducting a factor analysis or principal component analysis is to look at the intercorrelation 
between variables. There are essentially two potential problems: (1) correlations that are not 
high enough; and (2) correlations that are too high. The correlations between variables can 
be checked using the correlate procedure (see Chapter 6) to create a correlation matrix of all 
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variables. This matrix can also be created as part of the main factor analysis. In both cases the 
remedy is to remove variables from the analysis. We will look at each problem in turn.

If our test questions measure the same underlying dimension (or dimensions) then we 
would expect them to correlate with each other (because they are measuring the same 
thing). Even if questions measure different aspects of the same things (e.g. we could meas-
ure overall anxiety in terms of sub-components such as worry, intrusive thoughts and phys-
iological arousal), there should still be high intercorrelations between the variables relating 
to these sub-traits. We can test for this problem first by visually scanning the correlation 
matrix and looking for correlations below about .3 (you could use the significance of cor-
relations but, given the large sample sizes normally used with factor analysis, this approach 
isn’t helpful because even very small correlations will be significant in large samples). If 
any variables have lots of correlations below .3 then consider excluding them. It should be 
immediately clear that this approach is very subjective: I’ve used fuzzy terms such as ‘about 
.3’ and ‘lots of ’, but I have to because every data set is different. Analysing data really is a 
skill, not a recipe book!

If you want an objective test of whether correlations (overall) are too small then we can 
test for a very extreme scenario. If the variables in our correlation matrix did not correlate 
at all, then our correlation matrix would be an identity matrix (i.e. the off-diagonal com-
ponents are zero – see section 16.4.2). In Chapter 16 we came across a test that examines 
whether the population correlation matrix resembles an identity matrix: Bartlett’s test. If 
the population correlation matrix resembles an identity matrix then it means that every 
variable correlates very badly with all other variables (i.e. all correlation coefficients are 
close to zero). If it were an identity matrix then it would mean that all variables are per-
fectly independent from one another (all correlation coefficients are zero). Given that we 
are looking for clusters of variables that measure similar things, it should be obvious why 
this scenario is problematic: if no variables correlate then there are no clusters to find. 
Bartlett’s test tells us whether our correlation matrix is significantly different from an 
identity matrix. Therefore, if it is significant then it means that the correlations between 
variables are (overall) significantly different from zero. So, if Bartlett’s test is significant 
then it is good news. However, as with any significance test it depends on sample sizes 
and in factor analysis we typically use very large samples. Therefore, although a non- 
significant Bartlett’s test is certainly cause for concern, a significant test does not neces-
sarily mean that correlations are big enough to make the analysis meaningful. If you do 
identify any variables, that seem to have very low correlations with lots of other variables, 
then exclude them from the factor analysis.

The opposite problem is when variables correlate too highly. Although mild multicol-
linearity is not a problem for factor analysis it is important to avoid extreme multicollinear-
ity (i.e. variables that are very highly correlated) and singularity (variables that are perfectly 
correlated). As with regression, multicollinearity causes problems in factor analysis because 
it becomes impossible to determine the unique contribution to a factor of the variables 
that are highly correlated (as was the case for multiple regression). Multicollinearity does 
not cause a problem for principal component analysis. Therefore, as well as scanning the 
correlation matrix for low correlations, we could also look out for very high correlations 
(r > .8). The problem with a heuristic such as this is that the effect of two variables cor-
relating with r = .9 might be less than the effect of, say, three variables that all correlate at 
r = .6. In other words, eliminating such highly correlating variables might not be getting at 
the cause of the multicollinearity (Rockwell, 1975).

Multicollinearity can be detected by looking at the determinant of the R-matrix, 
denoted |R| (see Jane Superbrain Box 17.3). One simple heuristic is that the determinant 
of the R-matrix should be greater than 0.00001. However, Haitovsky (1969) proposed a 
significance test of whether the determinant is zero (i.e. the matrix is singular). If this test 
is significant it tells us that the correlation matrix is significantly different from a singular 
matrix, which implies that there is no severe multicollinearity. Simple eh? Well, not quite 
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so simple because SPSS doesn’t do this test! However, it can be done manually without 
too much trauma:

Haitovsky’s χ2H = 1+ ð2p+5Þ
6

−N

 
lnð1− jRjÞ (17.6)

in which p is the number of variables in the correlation matrix, N is the total sample size, |R| 
is the determinant of the correlation matrix and ln is the natural logarithm (this is a standard 
mathematical function that we came across in Chapter 8 and you can find it on your calcula-
tor usually labelled as ln or loge). The resulting test statistic has a chi-square distribution with 
p(p − 1)/2 degrees of freedom. We’ll see how to use this equation in due course.

If you have reason to believe that the correlation matrix has multicollinearity then  
you could look through the correlation matrix for variables that correlate very highly  

JANE SUPERBRAIN 17.3

What is the determinant? 3

At the time I used these to describe eigenvectors 
and eigenvalues (which describe the shape of the 
data). The determinant is related to eigenvalues and 
eigenvectors but instead of describing the height and 
width of the data it describes the overall area. So, in the 
left diagram, the determinant of those data would repre-
sent the area inside the red dashed elipse. These vari-
ables have a low correlation so the determinant (area) 
is big; the biggest value it can be is 1. In the right dia-
gram, the variables are perfectly correlated or singular, 
and the elipse (red dashed line) has been squashed 
down to a straight line. In other words, the opposite 
sides of the ellipse have actually met each other and 
there is no distance between them at all. Put another 
way, the area, or determinant, is zero. Therefore, the 
determinant tells us whether the correlation matrix is 
singular (determinant is 0), or if all variables are com-
pletely unrelated (determinant is 1), or somewhere in 
between!

The determinant of a matrix is an important diagnostic tool 
in factor analysis, but the question of what it is is not easy to 
answer because it has a mathematical definition and I’m not 
a mathematician. Rather than pretending that I understand 
the maths, all I’ll say is that a good explanation of how the 
determinant is derived can be found at mathworld.wolfram.
com. However, we can bypass the maths and think about 
the determinant conceptually. The way that I think of the 
determinant is as describing the ‘area’ of the data. In Jane 
Superbrain Box 7.2 we saw these two diagrams:
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(R > 0.8) and consider eliminating one of the variables (or more depending on the extent of 
the problem) before proceeding. You may have to try some trial and error to work out which 
variables are creating the problem (it’s not always the two with the highest correlation, it 
could be a larger number of variables with correlations that are not obviously too large).   

17.5.1.3. The distribution of data 2

As well as looking for interrelations, you should ensure that variables have roughly nor-
mal distributions and are measured at an interval level (which Likert scales are, perhaps 
wrongly, assumed to be!). The assumption of normality is most important if you wish 
to generalize the results of your analysis beyond the sample collected. You can do factor 
analysis on non-continuous data; for example, if you had dichotomous variables, it’s pos-
sible (using syntax) to do the factor analysis direct from the correlation matrix, but you 
should construct the correlation matrix from tetrachoric correlation coefficients (http://
ourworld.compuserve.com/homepages/jsuebersax/tetra.htm). This keeps the analysis close 
to the familiar framework of factor analysis, and the only hassle is computing the correla-
tions (but see the website for software options). Alternatively you can use software other 
than SPSS, such as MPLUS (http://www.statmodel.com/), to analyse the raw data.

17.6. Running the analysis 2

Access the main dialog box (Figure 17.6) by selecting 
. Simply select the variables you want to include in the analysis (remember to 

exclude any variables that were identified as problematic during the data screening) and 
transfer them to the box labelled Variables by clicking on .

There are several options available, the first of which can be accessed by clicking on 
 to access the dialog box in Figure 17.7. The Univariate descriptives option pro-

vides means and standard deviations for each variable. Most of the other options relate 
to the correlation matrix of variables (the R-matrix described earlier). The Coefficients 
option produces the R-matrix, and the Significance levels option will produce a matrix 
indicating the significance value of each correlation in the R-matrix. You can also ask for 

Figure 17.6
Main dialog 
box for factor 
analysis
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the Determinant of this matrix and this option is vital for testing for multicollinearity or 
singularity (see section 17.5.1.2).

KMO and Bartlett’s test of sphericity produces the Kaiser–Meyer–Olkin measure of sam-
pling adequacy and Bartlett’s test. With a sample of 2571 we shouldn’t have cause to worry 
about the sample size (see section 17.5.1.1). We have already stumbled across KMO (see 
section 17.5.1.1) and Bartlett’s test (see section 17.5.1.2) and have seen the various criteria 
for adequacy.

The Reproduced option produces a correlation matrix based on the model (rather than 
the real data). Differences between the matrix based on the model and the matrix based 
on the observed data indicate the residuals of the model (i.e. differences). SPSS produces 
these residuals in the lower table of the reproduced matrix and we want relatively few of 
these values to be greater than .05. Luckily, to save us scanning this matrix, SPSS produces 
a summary of how many residuals lie above .05. The Reproduced option should be selected 
to obtain this summary. The Anti-image option produces an anti-image matrix of covari-
ances and correlations. These matrices contain measures of sampling adequacy for each 
variable along the diagonal and the negatives of the partial correlation/covariances on the 
off-diagonals. The diagonal elements, like the KMO measure, should all be greater than 
0.5 at a bare minimum if the sample is adequate for a given pair of variables. If any pair of 
variables has a value less than this, consider dropping one of them from the analysis. The 
off-diagonal elements should all be very small (close to zero) in a good model. When you 
have finished with this dialog box click on  to return to the main dialog box.

17.6.1.  Factor extraction on SPSS 2

To access the extraction dialog box (Figure 17.8), click on  in the main dialog 
box. There are several ways of conducting a factor analysis (see section 17.4.1) and when 
and where you use the various methods depend on numerous things. For our purposes we 
will use principal component analysis ( ) which strictly speaking isn’t factor 
analysis; however, the two procedures may often yield similar results (see section 17.4.3). 

In the Analyze box there are two options: to analyse the Correlation matrix or to ana-
lyse the Covariance matrix. You should be happy with the idea that these two matrices 

Figure 17.7
Descriptives in 
factor analysis
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are actually different versions of the same thing: the correlation matrix is the standard-
ized version of the covariance matrix. Analysing the correlation matrix is a useful default 
method because it takes the standardized form of the matrix; therefore, if variables have 
been measured using different scales this will not affect the analysis. In this example, 
all variables have been measured using the same measurement scale (a five-point Likert 
scale), but often you will want to analyse variables that use different measurement scales. 
Analysing the correlation matrix ensures that differences in measurement scales are 
accounted for. In addition, even variables measured using the same scale can have very 
different variances and this too creates problems for principal component analysis. Using 
the correlation matrix eliminates this problem also. There are statistical reasons for pre-
ferring to analyse the covariance matrix6 and generally the results will differ from analysis 
on the correlation matrix. However, the covariance matrix should be analysed only when 
your variables are commensurable. 

The Display box has two options within it: to display the Unrotated factor solution and 
a Scree plot. The scree plot was described earlier and is a useful way of establishing how 
many factors should be retained in an analysis. The unrotated factor solution is useful in 
assessing the improvement of interpretation due to rotation. If the rotated solution is little 
better than the unrotated solution then it is possible that an inappropriate (or less optimal) 
rotation method has been used.

The Extract box provides options pertaining to the retention of factors. You have the 
choice of either selecting factors with eigenvalues greater than a user-specified value or 
retaining a fixed number of factors. For the Eigenvalues over option the default is Kaiser’s 
recommendation of eigenvalues over 1, but you could change this to Jolliffe’s recommen-
dation of 0.7 or any other value you want. It is probably best to run a primary analysis 
with the Eigenvalues over 1 option selected, select a scree plot and compare the results. If 
looking at the scree plot and the eigenvalues over 1 lead you to retain the same number 
of factors then continue with the analysis and be happy. If the two criteria give different 
results then examine the communalities and decide for yourself which of the two criteria to 
believe. If you decide to use the scree plot then you may want to redo the analysis specify-
ing the number of factors to extract. The number of factors to be extracted can be speci-
fied by selecting Number of factors and then typing the appropriate number in the space 
provided (e.g. 4). 

6 The reason being that correlation coefficients are insensitive to variations in the dispersion of data whereas 
covariance is and so produces better-defined factor structures (Tinsley & Tinsley, 1987)

Figure 17.8
Dialog box for 
factor extraction
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17.6.2.  Rotation 2

We have already seen that the interpretability of factors can be improved through rotation. 
Rotation maximizes the loading of each variable on one of the extracted factors while mini-
mizing the loading on all other factors. This process makes it much clearer which variables 
relate to which factors. Rotation works through changing the absolute values of the variables 
while keeping their differential values constant. Click on  to access the dialog box in 
Figure 17.9. I’ve discussed the various rotation options in section 17.4.6.1, but, to summarize, 
the exact choice of rotation will depend on whether or not you think that the underlying fac-
tors should be related. If there are theoretical grounds to think that the factors are independent 
(unrelated) then you should choose one of the orthogonal rotations (I recommend varimax). 
However, if theory suggests that your factors might correlate then one of the oblique rotations 
(direct oblimin or promax) should be selected. In this example I’ve selected varimax.

The dialog box also has options for displaying the Rotated solution and a Loading 
plot. The rotated solution is displayed by default and is essential for interpreting the final 
rotated analysis. The loading plot will provide a graphical display of each variable plotted 
against the extracted factors up to a maximum of three factors (unfortunately SPSS cannot 
produce four- or five-dimensional graphs!). This plot is basically similar to Figure 17.2 and 
it uses the factor loading of each variable for each factor. With two factors these plots are 
fairly interpretable, and you should hope to see one group of variables clustered close to 
the X-axis and a different group of variables clustered around the Y-axis. If all variables are 
clustered between the axes, then the rotation has been relatively unsuccessful in maximiz-
ing the loading of a variable onto a single factor. With three factors these plots can become 
quite messy and certainly put considerable strain on the visual system! However, they can 
still be a useful way to determine the underlying structures within the data.

A final option is to set the Maximum Iterations for Convergence, which specifies the 
number of times that the computer will search for an optimal solution. In most circum-
stances the default of 25 is more than adequate for SPSS to find a solution for a given data 
set. However, if you have a large data set (like we have here) then the computer might have 
difficulty finding a solution (especially for oblique rotation). To allow for the large data set 
we are using, change the value to 30.

Figure 17.9
Factor Analysis: 
Rotation dialog 
box
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17.6.3.  Scores 2

The factor scores dialog box (Figure 17.10) can be accessed by clicking on  in 
the main dialog box. This option allows you to save factor scores (see section 17.3.3) for 
each case in the data editor. SPSS creates a new column for each factor extracted and then 
places the factor score for each case within that column. These scores can then be used for 
further analysis, or simply to identify groups of participants who score highly on particular 
factors. There are three methods of obtaining these scores, all of which were described in 
sections 17.3.3.1 and 17.3.3.2. If you want to ensure that factor scores are uncorrelated 
then select the Anderson-Rubin method; if correlations between factor scores are accept-
able then choose the Regression method.

As a final option, you can ask SPSS to produce the factor score coefficient matrix. This 
matrix was the matrix B described in section 17.3.3.1. This matrix can be useful if, for 
whatever reason, you wish to construct factor equations such as those in equation (17.5), 
because it provides you with the values of b for each of the variables.

Figure 17.10
Factor Analysis: 
Factor Scores 
dialog box

17.6.4.  Options 2

The options dialog box can be obtained by clicking on  in the main dialog box (Figure 
17.11). Missing data are a problem for factor analysis just like most other procedures and 
SPSS provides a choice of excluding cases or estimating a value for a case. Tabachnick and 
Fidell (2007) have an excellent chapter on data screening (Chapter 4 – see also the rather less 
excellent Chapter 5 of this book). Based on their advice, you should consider the distribution 
of missing data. If the missing data are non-normally distributed or the sample size after exclu-
sion is too small then estimation is necessary. SPSS uses the mean as an estimate (Replace with 
mean). These procedures lower the standard deviation of variables and so can lead to signifi-
cant results that would otherwise be non-significant. Therefore, if missing data are random, you 
might consider excluding cases. SPSS allows you to either Exclude cases listwise, in which case 
any participant with missing data for any variable is excluded, or to Exclude cases p_ airwise, in 
which case a participant’s data are excluded only from calculations for which a datum is missing 
(see SPSS Tip 6.1). If you exclude cases pairwise your estimates can go all over the place so it’s 
probably safest to opt to exclude cases listwise unless this results in a massive loss of data.
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The final two options relate to how coefficients are displayed. By default SPSS will list 
variables in the order in which they are entered into the data editor. Usually, this format is 
most convenient. However, when interpreting factors it is sometimes useful to list variables 
by size. By selecting Sorted by size, SPSS will order the variables by their factor loadings. In 
fact, it does this sorting fairly intelligently so that all of the variables that load highly onto 
the same factor are displayed together. The second option is to Suppress absolute values less 
than a specified value (by default 0.1). This option ensures that factor loadings within ±0.1 
are not displayed in the output. Again, this option is useful for assisting in interpretation. 
The default value is probably sensible, but on your first analysis I recommend changing it 
either to 0.4 (for interpretation purposes) or to a value reflecting the expected value of a sig-
nificant factor loading given the sample size (see section 17.4.6.2). This will make interpre-
tation simpler. You can, if you like, rerun the analysis and set this value lower just to check 
you haven’t missed anything (like a loading of .39). For this example set the value at 0.4.

17.7. Interpreting output from SPSS 2

Select the same options as I have in the screen diagrams and run a factor analysis with 
orthogonal rotation.

SELF-TEST  Having done this, select the Direct 
Oblimin option in Figure 17.9 and repeat the analysis. 
You should obtain two outputs identical in all respects 
except that one used an orthogonal rotation and the 
other an oblique.

For the purposes of saving space in this section I set the default SPSS options such that 
each variable is referred to only by its label on the data editor (e.g. Q12). On the output you 
obtain, you should find that SPSS uses the value label (the question itself) in all of the output. 
When using the output in this chapter just remember that Q1 represents question 1, Q2 
represents question 2 and Q17 represents question 17. By referring back to Figure 17.5 and 
matching the question number to the variable name you can identify each question.

Figure 17.11
Factor Analysis: 
Options  
dialog box
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Sometimes the factor analysis doesn’t work, the KMO test and determinant are nowhere 
to be found and SPSS spits out an error message about a ‘non positive definite matrix’ (see 
SPSS Tip 17.1).

          SPSS T IP  17 .1      Error messages about a 'non positive 
definite matrix' 4

What is a non-positive definite matrix?: As we have seen, factor analysis works by looking at your correlation 
matrix. This matrix has to be ‘positive definite’ for the analysis to work. What does that mean in plain English? 
It means lots of horrible things mathematically (e.g. the eigenvalues and determinant of the matrix have to be 
positive) and about the best explanation I’ve seen is at http://www2.gsu.edu/~mkteer/npdmatri.html. In more 
basic terms, factors are like lines floating in space, and eigenvalues measure the length of those lines. If your 
eigenvalue is negative then it means that the length of your line/factor is negative too. It’s a bit like me asking you 
how tall you are, and you responding ‘I’m minus 175 cm tall’. That would be nonsense. By analogy, if a factor has 
negative length, then that too is nonsense. When SPSS decomposes the correlation matrix to look for factors, if 
it comes across a negative eigenvalue it starts thinking ‘oh dear, I’ve entered some weird parallel universe where 
the usual rules of maths no longer apply and things can have negative lengths, and this probably means that time 
runs backwards, my mum is my dad, my sister is a dog, my head is a fish, and my toe is a frog called Gerald’. As 
you might well imagine, it does the sensible thing and decides not to proceed.

Things like the KMO test and the determinant rely on a positive definite matrix; if you don’t have one they can’t 
be computed.

Why have I got a non-positive definite matrix?: The most likely answer is that you have too many variables and 
too few cases of data, which makes the correlation matrix a bit unstable. It could also be that you have too many 
highly correlated items in your matrix (singularity, for example, tends to mess things up). In any case it means 
that your data are bad, naughty data, and not to be trusted; if you let them loose then you have only yourself to 
blame for the consequences.

What can I do?: Other than cry, there’s not that much you can do. You could try to limit your items, or selectively remove 
items (especially highly correlated ones) to see if that helps. Collecting more data can help too. There are some math-
ematical fudges you can do, but they’re not as tasty as vanilla fudge and they are hard to implement easily.

17.7.1.  Preliminary analysis 2

The first body of output concerns data screening, assumption testing and sampling ade-
quacy. You’ll find several large tables (or matrices) that tell us interesting things about 
our data. If you selected the Univariate descriptives option in Figure 17.7 then the first 
table will contain descriptive statistics for each variable (the mean, standard deviation and 
number of cases). This table is not included here, but you should have enough experience 
to be able to interpret it. The table also includes the number of missing cases; this summary 
is a useful way to determine the extent of missing data.

SPSS Output 17.1 shows the R-matrix (or correlation matrix)7 produced using the 
Coefficients and Significance levels options in Figure 17.7. The top half of this table contains 

7 To save space I have edited out several columns of data from the large tables: only data for the first and last five 
questions in the questionnaire are included.
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the Pearson correlation coefficient between all pairs of questions whereas the bottom half 
contains the one-tailed significance of these coefficients. You should be comfortable with 
the idea that to do a factor analysis we need to have variables that correlate fairly well, 
but not perfectly. Also, any variables that correlate with no others should be eliminated. 
Therefore, we can use this correlation matrix to check the pattern of relationships. First, 
scan the matrix for correlations greater than .3, then look for variables that only have a 
small number of correlations greater than this value. Then scan the correlation coefficients 
themselves and look for any greater than 0.9. If any are found then you should be aware 
that a problem could arise because of multicollinearity in the data.

You can also check the determinant of the correlation matrix and, if necessary, eliminate 
variables that you think are causing the problem. The determinant is listed at the bottom 
of the matrix (blink and you’ll miss it). For these data its value is 5.271E-04 (which is 
0.0005271) which is greater than the necessary value of 0.00001 (see section 17.6).8 We 
can also compute Haitovsky’s (1969) test of whether the determinant is 0 using equation 

8 SPSS 16 appears to report the determinant as = .001 for these data, which is wrong and I’m not sure why it does 
this. Hopefully SPSS will sort out this problem in the future.

Correlation Matrixa

1.000 -.099 -.337 .436 .402 -.189 .214 .329 -.104 -.004
-.099 1.000 .318 -.112 -.119 .203 -.202 -.205 .231 .100
-.337 .318 1.000 -.380 -.310 .342 -.325 -.417 .204 .150
.436 -.112 -.380 1.000 .401 -.186 .243 .410 -.098 -.034
.402 -.119 -.310 .401 1.000 -.165 .200 .335 -.133 -.042
.217 -.074 -.227 .278 .257 -.167 .101 .272 -.165 -.069
.305 -.159 -.382 .409 .339 -.269 .221 .483 -.168 -.070
.331 -.050 -.259 .349 .269 -.159 .175 .296 -.079 -.050

-.092 .315 .300 -.125 -.096 .249 -.159 -.136 .257 .171
.214 -.084 -.193 .216 .258 -.127 .084 .193 -.131 -.062
.357 -.144 -.351 .369 .298 -.200 .255 .346 -.162 -.086
.345 -.195 -.410 .442 .347 -.267 .298 .441 -.167 -.046
.355 -.143 -.318 .344 .302 -.227 .204 .374 -.195 -.053
.338 -.165 -.371 .351 .315 -.254 .226 .399 -.170 -.048
.246 -.165 -.312 .334 .261 -.210 .206 .300 -.168 -.062
.499 -.168 -.419 .416 .395 -.267 .265 .421 -.156 -.082
.371 -.087 -.327 .383 .310 -.163 .205 .363 -.126 -.092
.347 -.164 -.375 .382 .322 -.257 .235 .430 -.160 -.080

-.189 .203 .342 -.186 -.165 1.000 -.249 -.275 .234 .122
.214 -.202 -.325 .243 .200 -.249 1.000 .468 -.100 -.035
.329 -.205 -.417 .410 .335 -.275 .468 1.000 -.129 -.068

-.104 .231 .204 -.098 -.133 .234 -.100 -.129 1.000 .230
-.004 .100 .150 -.034 -.042 .122 -.035 -.068 .230 1.000

.000 .000 .000 .000 .000 .000 .000 .000 .410
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .043
.000 .000 .000 .000 .000 .000 .000 .000 .017
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .006 .000 .000 .000 .000 .000 .000 .000 .005
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000 .001
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000 .009
.000 .000 .000 .000 .000 .000 .000 .000 .000 .004
.000 .000 .000 .000 .000 .000 .000 .000 .000 .007
.000 .000 .000 .000 .000 .000 .000 .000 .000 .001
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .039
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .000 .000 .000 .000 .000 .000 .000
.410 .000 .000 .043 .017 .000 .039 .000 .000

Q01
Q02
Q03
Q04
Q05
Q06
Q07
Q08
Q09
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22
Q23

Q01
Q02
Q03
Q04
Q05
Q06
Q07
Q08
Q09
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22
Q23

Correlation

Sig. (1-tailed)

Q01 Q02 Q03 Q04 Q05 Q19 Q20 Q21 Q22 Q23

a. Determinant = 5.271E-04

SPSS OuTPuT 17.1
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(17.6). We have a sample of 2571 (N), 23 variables (p) and a determinant of 0.0005271, 
which gives us:

Haitovsky’s χ2
H = 1+ ð2×23+ 5Þ

6
−2571

 
lnð1− 0:0005271Þ

= ½1+ 8:5− 2571lnð0:99947Þ
= 1:35

This test statistic has p(p − 1)/2 degrees of freedom, which is equal to 23(23 – 1)/2 = 253. 
We can look in Appendix A.4, and for df = 253 the critical values are 233.99 (df = 200) 
and 341.40 (df = 300) and in both cases the observed chi-square is much smaller than these 
values indicating non-significance. As such, our determinant is not significantly different 
from zero.

Therefore, we have rather contradictory evidence about whether multicollinearity is a 
problem for these data. If we were doing factor analysis then we might want to explore 
this further and try to eliminate the problem (although it’s not entirely obvious from the 
correlation matrix where the problem lies). However, because we are performing principal 
component analysis, we don’t need to worry about multicollinearity.

 In summary, all questions in the SAQ correlate reasonably well with all others and none 
of the correlation coefficients are excessively large; therefore, we won’t eliminate any ques-
tions at this stage.

SPSS Output 17.2 shows the inverse of the correlation matrix (R−1), which is used in var-
ious calculations (including factor scores – see section 17.3.3.1). This matrix is produced 
using the Inverse option in Figure 17.7 but in all honesty is useful only if you want some 
insight into the calculations that go on in a factor analysis. Most of us have more interest-
ing things to do than gain insight into the workings of factor analysis and the practical use 
of this matrix is minimal – so ignore it.

SPSS Output 17.3 shows several very important parts of the output: the Kaiser–Meyer–
Olkin measure of sampling adequacy, Bartlett’s test of sphericity and the anti-image 

Inverse of Correlation Matrix

1.595 -.028 .087 -.268 -.233 .017 -.024 .011 .002 -.078
-.028 1.232 -.224 -.057 .013 -.037 .076 .062 -.148 -.003
.087 -.224 1.661 .138 .057 -.175 .118 .122 -.009 -.103

-.268 -.057 .138 1.626 -.203 -.049 -.006 -.149 -.045 -.023
-.233 .013 .057 -.203 1.410 -.024 -.016 -.074 .045 -.006
.034 -.078 -.072 -.011 -.055 -.023 .080 .069 .058 .025
.039 .025 .127 -.152 -.072 .105 .077 -.386 .019 -.012

-.087 -.051 -.013 -.134 -.045 .074 .034 -.039 -.035 .003
-.023 -.242 -.208 .043 -.027 -.141 .050 -.047 -.156 -.110
-.017 -.015 -.023 .009 -.124 -.012 .056 .026 .023 .017
-.075 .061 .121 -.041 .000 -.010 -.140 -.009 .055 .015
-.011 .046 .147 -.259 -.091 .060 -.100 -.141 .026 -.038
-.145 -.011 -.055 .040 .007 .014 .028 -.061 .077 -.042
-.064 .033 .115 -.007 -.040 .063 .002 -.110 .041 -.034
.138 .050 .013 -.098 .021 .013 -.054 .058 .034 -.030

-.454 -.017 .142 -.063 -.155 .071 -.008 -.158 -.005 .033
-.084 -.045 .063 -.064 -.030 -.074 .025 -.077 .015 .080
-.041 .028 .070 -.044 .004 .047 -.004 -.136 -.037 .033
.017 -.037 -.175 -.049 -.024 1.264 .120 .048 -.141 -.045

-.024 .076 .118 -.006 -.016 .120 1.370 -.511 -.014 -.034
.011 .062 .122 -.149 -.074 .048 -.511 1.830 -.036 .018
.002 -.148 -.009 -.045 .045 -.141 -.014 -.036 1.200 -.202

-.078 -.003 -.103 -.023 -.006 -.045 -.034 .018 -.202 1.094

Q01
Q02
Q03
Q04
Q05
Q06
Q07
Q08
Q09
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22

Q23

Q01 Q02 Q03 Q04 Q05 Q19 Q20 Q21 Q22 Q23

SPSS OuTPuT 17.2
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correlation and covariance matrices (note that these matrices have been edited down to 
contain only the first and last five variables). The anti-image correlation and covariance 
matrices provide similar information (remember the relationship between covariance and 
correlation) and so only the anti-image correlation matrix need be studied in detail as it 
is the most informative. These tables are obtained using the KMO and Bartlett’s test of 
sphericity and the Anti-image options in Figure 17.7.

We came across the KMO statistic in section 17.5.1.1 and saw that Kaiser (1974) recom-
mends a bare minimum of 0.5 and that values between 0.5 and 0.7 are mediocre, values 
between 0.7 and 0.8 are good, values between 0.8 and 0.9 are great and values above 0.9 
are superb (Hutcheson & Sofroniou, 1999). For these data the value is 0.93, which falls 
into the range of being superb, so we should be confident that the sample size is adequate 
for factor analysis.

I mentioned that KMO can be calculated for multiple and individual variables. The KMO 
values for individual variables are produced on the diagonal of the anti-image correlation 
matrix (I have highlighted these cells). These values make the anti-image correlation matrix 
an extremely important part of the output (although the anti-image covariance matrix can 
be ignored). As well as checking the overall KMO statistic, it is important to examine the 
diagonal elements of the anti-image correlation matrix: the value should be above the bare 
minimum of 0.5 for all variables (and preferably higher). For these data all values are well 
above 0.5, which is good news! If you find any variables with values below 0.5 then you 
should consider excluding them from the analysis (or run the analysis with and without that 
variable and note the difference). Removal of a variable affects the KMO statistics, so if you 
do remove a variable be sure to re-examine the new anti-image correlation matrix. As for 
the rest of the anti-image correlation matrix, the off-diagonal elements represent the partial 
correlations between variables. For a good factor analysis we want these correlations to be 
very small (the smaller, the better). So, as a final check you can just look through to see that 
the off-diagonal elements are small (they should be for these data).

SPSS OuTPuT 17.3
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Bartlett’s measure tests the null hypothesis that the original correlation matrix is an 
identity matrix. For factor analysis to work we need some relationships between variables 
and if the R-matrix were an identity matrix then all correlation coefficients would be zero. 
Therefore, we want this test to be significant (i.e. have a significance value less than .05). 
A significant test tells us that the R-matrix is not an identity matrix; therefore, there are 
some relationships between the variables we hope to include in the analysis. For these data, 
Bartlett’s test is highly significant (p < .001), and therefore factor analysis is appropriate.

             CRAMMING SAM’S TIPS    Preliminary analysis

 Scan the Correlation Matrix: look for variables that don’t correlate with any other variables, or correlate very highly (r = .9) 
with one or more other variable. In factor analysis, check that the determinant of this matrix is bigger than 0.00001; if it is then 
multicollinearity isn’t a problem.

 In the table labelled KMO and Bartlett’s Test the KMO statistic should be greater than 0.5 as a bare minimum; if it isn’t 
collect more data. Bartlett’s test of sphericity should be significant (the value of Sig. should be less than .05). You can also 
check the KMO statistic for individual variables by looking at the diagonal of the Anti-Image Matrices: again, these values 
should be above 0.5 (this is useful for identifying problematic variables if the overall KMO is unsatisfactory).

17.7.2.  Factor extraction 2

The first part of the factor extraction process is to determine the linear components within 
the data set (the eigenvectors) by calculating the eigenvalues of the R-matrix (see section 
17.4.4). We know that there are as many components (eigenvectors) in the R-matrix as 
there are variables, but most will be unimportant. To determine the importance of a par-
ticular vector we look at the magnitude of the associated eigenvalue. We can then apply 
criteria to determine which factors to retain and which to discard. By default SPSS uses 
Kaiser’s criterion of retaining factors with eigenvalues greater than 1 (see Figure 17.8).

SPSS Output 17.4 lists the eigenvalues associated with each linear component (factor) 
before extraction, after extraction and after rotation. Before extraction, SPSS has identified 
23 linear components within the data set (we know that there should be as many eigenvectors 
as there are variables and so there will be as many factors as variables – see section 17.4.4). 
The eigenvalues associated with each factor represent the variance explained by that par-
ticular linear component and SPSS also displays the eigenvalue in terms of the percentage of 
variance explained (so, factor 1 explains 31.696% of total variance). It should be clear that 
the first few factors explain relatively large amounts of variance (especially factor 1) whereas 
subsequent factors explain only small amounts of variance. SPSS then extracts all factors 
with eigenvalues greater than 1, which leaves us with four factors. The eigenvalues associ-
ated with these factors are again displayed (and the percentage of variance explained) in the 
columns labelled Extraction Sums of Squared Loadings. The values in this part of the table 
are the same as the values before extraction, except that the values for the discarded factors 
are ignored (hence, the table is blank after the fourth factor). In the final part of the table 
(labelled Rotation Sums of Squared Loadings), the eigenvalues of the factors after rotation 
are displayed. Rotation has the effect of optimizing the factor structure and one consequence 
for these data is that the relative importance of the four factors is equalized. Before rota-
tion, factor 1 accounted for considerably more variance than the remaining three (31.696% 
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compared to 7.560, 5.725 and 5.336%), but after extraction it accounts for only 16.219% 
of variance (compared to 14.523, 11.099 and 8.475% respectively).

SPSS Output 17.5 shows the table of communalities before and after extraction. 
Remember that the communality is the proportion of common variance within a variable 
(see section 17.4.1). Principal component analysis works on the initial assumption that all 
variance is common; therefore, before extraction the communalities are all 1 (see column 
labelled Initial). In effect, all of the variance associated with a variable is assumed to be com-
mon variance. Once factors have been extracted, we have a better idea of how much vari-
ance is, in reality, common. The communalities in the column labelled Extraction reflect this 
common variance. So, for example, we can say that 43.5% of the variance associated with 
question 1 is common, or shared, variance. Another way to look at these communalities is in 
terms of the proportion of variance explained by the underlying factors. Before extraction, 
there are as many factors as there are variables, so all variance is explained by the factors and 
communalities are all 1. However, after extraction some of the factors are discarded and so 
some information is lost. The retained factors cannot explain all of the variance present in 
the data, but they can explain some. The amount of variance in each variable that can be 
explained by the retained factors is represented by the communalities after extraction.

SPSS Output 17.5 also shows the component matrix before rotation. This matrix con-
tains the loadings of each variable onto each factor. By default SPSS displays all loadings; 
however, we requested that all loadings less than 0.4 be suppressed in the output (see 
Figure 17.11) and so there are blank spaces for many of the loadings. This matrix is not 
particularly important for interpretation, but it is interesting to note that before rotation 
most variables load highly onto the first factor (that is why this factor accounts for most of 
the variance in SPSS Output 17.4).

At this stage SPSS has extracted four factors. Factor analysis is an exploratory tool and 
so it should be used to guide the researcher to make various decisions: you shouldn’t 
leave the computer to make them. One important decision is the number of factors to 
extract. In section 17.4.5 we saw various criteria for assessing the importance of factors. By 
Kaiser’s criterion we should extract four factors and this is what SPSS has done. However, 

Total Variance Explained

7.290 31.696 31.696 7.290 31.696 31.696 3.730 16.219 16.219

1.739 7.560 39.256 1.739 7.560 39.256 3.340 14.523 30.742
1.317 5.725 44.981 1.317 5.725 44.981 2.553 11.099 41.842
1.227 5.336 50.317 1.227 5.336 50.317 1.949 8.475 50.317
.988 4.295 54.612
.895 3.893 58.504
.806 3.502 62.007
.783 3.404 65.410
.751 3.265 68.676
.717 3.117 71.793
.684 2.972 74.765
.670 2.911 77.676
.612 2.661 80.337
.578 2.512 82.849
.549 2.388 85.236
.523 2.275 87.511
.508 2.210 89.721
.456 1.982 91.704
.424 1.843 93.546
.408 1.773 95.319
.379 1.650 96.969
.364 1.583 98.552
.333 1.448 100.000

Component

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Total
% of

Variance
Cumulative

% Total
% of

Variance
Cumulative

% Total
% of

Variance
Cumulative

%

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.

SPSS OuTPuT 17.4
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this criterion is accurate when there are less than 30 variables and communalities after 
extraction are greater than 0.7 or when the sample size exceeds 250 and the average com-
munality is greater than 0.6. The communalities are shown in SPSS Output 17.5, and 
only one exceeds 0.7. The average of the communalities can be found by adding them up 
and dividing by the number of communalities (11.573/23 = 0.503). So, on both grounds 
Kaiser’s rule may not be accurate. However, you should consider the huge sample that we 
have, because the research into Kaiser’s criterion gives recommendations for much smaller 
samples. By Jolliffe’s criterion (retain factors with eigenvalues greater than 0.7) we should 
retain 10 factors (see SPSS Output 17.4), but there is little to recommend this criterion 
over Kaiser’s. As a final guide we can use the scree plot which we asked SPSS to produce 
by using the option in Figure 17.8. The scree plot is shown in SPSS Output 17.6. This curve 
is difficult to interpret because it begins to tail off after three factors, but there is another 
drop after four factors before a stable plateau is reached. Therefore, we could probably 
justify retaining either two or four factors. Given the large sample, it is probably safe to 
assume Kaiser’s criterion; however, you might like to rerun the analysis specifying that 
SPSS extract only two factors (see Figure 17.8) and compare the results.

SPSS Output 17.7 shows an edited version of the reproduced correlation matrix that was 
requested using the option in Figure 17.7. The top half of this matrix (labelled Reproduced 
Correlations) contains the correlation coefficients between all of the questions based on 
the factor model. The diagonal of this matrix contains the communalities after extraction 
for each variable (you can check the values against SPSS Output 17.5).

The correlations in the reproduced matrix differ from those in the R-matrix because 
they stem from the model rather than the observed data. If the model were a perfect fit of 
the data then we would expect the reproduced correlation coefficients to be the same as 
the original correlation coefficients. Therefore, to assess the fit of the model we can look at 

Communalities

1.000 .435
1.000 .414
1.000 .530
1.000 .469
1.000 .343
1.000 .654
1.000 .545
1.000 .739
1.000 .484

1.000 .335
1.000 .690
1.000 .513
1.000 .536
1.000 .488
1.000 .378
1.000 .487
1.000 .683
1.000 .597

1.000 .343
1.000 .484
1.000 .550
1.000 .464
1.000 .412

Q01
Q02
Q03
Q04
Q05
Q06
Q07

Q08
Q09
Q10
Q11
Q12
Q13
Q14
Q15
Q16

Q17
Q18
Q19
Q20
Q21
Q22
Q23

Initial Extraction

Extraction Method: Principal Component

Component Matrixa

.701

.685

.679

.673

.669

.658

.656

.652 -.400

.643

.634
-.629
.593
.586
.556
.549 .401 -.417
.437
.436 -.404

-.427
.627
.548
.465

.562 .571
.507

Q18
Q07
Q16
Q13
Q12
Q21
Q14
Q11
Q17
Q04
Q03
Q15
Q01
Q05
Q08
Q18
Q20
Q19
Q09
Q02
Q22
Q06
Q23

1 2 3 4
Component

Extraction Method: Principal Component Analysis.

a. 4 components extracted. 

SPSS OuTPuT 17.5
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the differences between the observed correlations and the correlations based on the model. 
For example, if we take the correlation between questions 1 and 2, the correlation based on 
the observed data is −0.099 (taken from SPSS Output 17.1). The correlation based on the 
model is −0.112, which is slightly higher. We can calculate the difference as follows:

residual= robserved − rfrom model

residualQ1Q2
= ð−0:099Þ− ð−0:112Þ
= 0:013

You should notice that this difference is the value quoted in the lower half of the repro-
duced matrix (labelled Residual) for questions 1 and 2. Therefore, the lower half of the 
reproduced matrix contains the differences between the observed correlation coefficients 
and the ones predicted from the model. For a good model these values will all be small. In 
fact, we want most values to be less than 0.05. Rather than scan this huge matrix, SPSS pro-
vides a footnote summary, which states how many residuals have an absolute value greater 
than 0.05. For these data there are 91 residuals (35%) that are greater than 0.05. There are 
no hard and fast rules about what proportion of residuals should be below 0.05; however, 
if more than 50% are greater than 0.05 you probably have grounds for concern.

             CRAMMING SAM’S TIPS    Factor extraction

 To decide how many factors to extract look at the table labelled Communalities and the column labelled Extraction. If these 
values are all 0.7 or above and you have less than 30 variables then the SPSS default option for extracting factors is fine 
(Kaiser’s criterion of retaining factors with eigenvalues greater than 1). Likewise, if your sample size exceeds 250 and the 
average of the communalities is 0.6 or greater then the default option is fine. Alternatively, with 200 or more participants the 
scree plot can be used.

 Check the bottom of the table labelled Reproduced Correlations for the percentage of ‘nonredundant residuals with absolute 
values > 0.05’. This percentage should be less than 50% and the smaller it is, the better.

17.7.3.  Factor rotation 2

The first analysis I asked you to run was using an orthogonal rotation. However, you were 
asked to rerun the analysis using oblique rotation too. In this section the results of both 
analyses will be reported so as to highlight the differences between the outputs. This com-
parison will also be a useful way to show the circumstances in which one type of rotation 
might be preferable to another.

17.7.3.1. Orthogonal rotation (varimax) 2

SPSS Output 17.8 shows the rotated component matrix (also called the rotated factor 
matrix in factor analysis) which is a matrix of the factor loadings for each variable onto 
each factor. This matrix contains the same information as the component matrix in SPSS 
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Output 17.5 except that it is calculated after rotation. There are several things to consider 
about the format of this matrix. First, factor loadings less than 0.4 have not been displayed 
because we asked for these loadings to be suppressed using the option in Figure 17.11. If 
you didn’t select this option, or didn’t adjust the criterion value to 0.4, then your output 
will differ. Second, the variables are listed in the order of size of their factor loadings. By 
default, SPSS orders the variables as they are in the data editor; however, we asked for the 
output to be Sorted by size using the option in Figure 17.11. If this option was not selected 
your output will look different. Finally, for all other parts of the output I suppressed the 

Rotated Component Matrixa

.800

.684

.647

.638

.579

.550

.459
.677

.661

-.567

.473 .523

.516

.514

.496

.429
.833
.747
.747

.648

.645

.586

.543

.427

I have little experience of computers
SPSS always crashes when I try to use it
I worry that I will cause irreparable damage because
of my incompetenece with computers
All computers hate me
Computers have minds of their own and deliberately
go wrong whenever I use them
Computers are useful only for playing games
Computers are out to get me
I can't sleep for thoughts of eigen vectors
I wake up under my duvet thinking that I am trapped
under a normal distribtion
Standard deviations excite me
People try to tell you that SPSS makes statistics
easier to understand but it doesn't
I dream that Pearson is attacking me with correlation
coefficients
I weep openly at the mention of central tendency
Statiscs makes me cry
I don't understand statistics
I have never been good at mathematics
I slip into a coma whenever I see an equation
I did badly at mathematics at school
My friends are better at statistics than me
My friends are better at SPSS than I am
If I'm good at statistics my friends will think I'm a nerd
My friends will think I'm stupid for not being able to
cope with SPSS
Everybody looks at me when I use SPSS

1 2 3 4
Component

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 9 iterations.

Component Transformation Matrix

.635 .585 .443 -.242

.137 -.168 .488 .846

.758 -.513 -.403 .008

.067 .605 -.635 .476

Component

1
2
3
4

1 2 3 4

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

SPSS OuTPuT 17.8
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variable labels (for reasons of space) but for this matrix I have allowed the variable labels 
to be printed to aid interpretation.

The original logic behind suppressing loadings less than 0.4 was based on Stevens’ (2002) 
suggestion that this cut-off point was appropriate for interpretative purposes (i.e. loadings 
greater than 0.4 represent substantive values). However, this means that we have sup-
pressed several loadings that are undoubtedly significant (see section 17.4.6.2). However, 
significance itself is not important.

Compare this matrix to the unrotated solution (SPSS Output 17.5). Before rotation, 
most variables loaded highly onto the first factor and the remaining factors didn’t really get 
a look in. However, the rotation of the factor structure has clarified things considerably: 
there are four factors and variables load very highly onto only one factor (with the excep-
tion of one question). The suppression of loadings less than 0.4 and ordering variables by 
loading size also make interpretation considerably easier (because you don’t have to scan 
the matrix to identify substantive loadings).

The next step is to look at the content of questions that load onto the same factor to 
try to identify common themes. If the mathematical factor produced by the analysis rep-
resents some real-world construct then common themes among highly loading questions 
can help us identify what the construct might be. The questions that load highly on factor 
1 seem to all relate to using computers or SPSS. Therefore we might label this factor fear 
of computers. The questions that load highly on factor 2 all seem to relate to different 
aspects of statistics; therefore, we might label this factor fear of statistics. The three ques-
tions that load highly on factor 3 all seem to relate to mathematics; therefore, we might 
label this factor fear of mathematics. Finally, the questions that load highly on factor 4 
all contain some component of social evaluation from friends; therefore, we might label 
this factor peer evaluation. This analysis seems to reveal that the initial questionnaire, in 
reality, is composed of four subscales: fear of computers, fear of statistics, fear of maths 
and fear of negative peer evaluation. There are two possibilities here. The first is that 
the SAQ failed to measure what it set out to (namely, SPSS anxiety) but does measure 
some related constructs. The second is that these four constructs are sub-components of 
SPSS anxiety; however, the factor analysis does not indicate which of these possibilities 
is true.

The final part of the output is the factor transformation matrix (see section 17.4.6). 
This matrix provides information about the degree to which the factors were rotated to 
obtain a solution. If no rotation were necessary, this matrix would be an identity matrix. 
If orthogonal rotation were completely appropriate then we would expect a symmetrical 
matrix (same values above and below the diagonal). However, in reality the matrix is not 
easy to interpret although very unsymmetrical matrices might be taken as a reason to try 
oblique rotation. For the inexperienced factor analyst you are probably best advised to 
ignore the factor transformation matrix.

17.7.3.2. Oblique rotation 2

When an oblique rotation is conducted the factor matrix is split into two matrices: the 
pattern matrix and the structure matrix (see Jane Superbrain Box 17.1). For orthogonal 
rotation these matrices are the same. The pattern matrix contains the factor loadings 
and is comparable to the factor matrix that we interpreted for the orthogonal rotation. 
The structure matrix takes into account the relationship between factors (in fact it is 
a product of the pattern matrix and the matrix containing the correlation coefficients 
between factors). Most researchers interpret the pattern matrix, because it is usually sim-
pler; however, there are situations in which values in the pattern matrix are suppressed 
because of relationships between the factors. Therefore, the structure matrix is a useful 
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double-check and Graham et al. (2003) recommend reporting both (with some useful 
examples of why this can be important).

For the pattern matrix for these data (SPSS Output 17.9) the same four factors seem 
to have emerged (although for some variables the factor loadings are too small to be dis-
played). Factor 1 seems to represent fear of statistics, factor 2 represents fear of peer evalu-
ation, factor 3 represents fear of computers and factor 4 represents fear of mathematics. 
The structure matrix (SPSS Output 17.10) differs in that shared variance is not ignored. 
The picture becomes more complicated because with the exception of factor 2, several 
variables load highly onto more than one factor. This has occurred because of the relation-
ship between factors 1 and 3 and factors 3 and 4. This example should highlight why the 
pattern matrix is preferable for interpretative reasons: because it contains information 
about the unique contribution of a variable to a factor.

The final part of the output is a correlation matrix between the factors (SPSS Output 
17.11). This matrix contains the correlation coefficients between factors. As predicted 
from the structure matrix, factor 2 has little or no relationship with any other factors (cor-
relation coefficients are low), but all other factors are interrelated to some degree (notably 
factors 1 and 3 and factors 3 and 4). The fact that these correlations exist tell us that the 
constructs measured can be interrelated. If the constructs were independent then we would 
expect oblique rotation to provide an identical solution to an orthogonal rotation and the 

Pattern Matrixa

.706

.591

-.511

.405

.400

.643

.621

.615

.507

.885

.713

.653

.650

.588

.585

.412 .462

.411
-.902
-.774
-.774

I can't sleep for thoughts of eigen vectors
I wake up under my duvet thinking that I am trapped
under a normal distribtion
Standard deviations excite me
I dream that Pearson is attacking me with correlation
coefficients
I weep openly at the mention of central tendency
Statiscs makes me cry
I don't understand statistics
My friends are better at SPSS than I am
My friends are better at statistics than me
If I'm good at statistics my friends will think I'm a nerd
My friends will think I'm stupid for not being able to
cope with SPSS
Everybody looks at me when I use SPSS
I have little experience of computers
SPSS always crashes when I try to use it
All computers hate me
I worry that I will cause irreparable damage because
of my incompetenece with computers
Computers have minds of their own and deliberately
go wrong whenever I use them
Computers are useful only for playing games
People try to tell you that SPSS makes statistics
easier to understand but it doesn't
Computers are out to get me
I have never been good at mathematics
I slip into a coma whenever I see an equation
I did badly at mathematics at school

1 2 3 4

Component

Extraction Method: Principal Component Analysis.

Rotation Method: Oblimin with Kaiser Normalization.
a. Rotation converged in 29 iterations.

SPSS OuTPuT 17.9



668 D ISCOVER ING STAT IST ICS  US ING SPSS

Structure Matrix

.695 .477

.685
-.632 -.407
.567 .516 -.491

.548 .487 -.485

.520 .413 -.501

.462 .453
.660
.653
.588

.546

-.435 .446
.777

.404 .761

.401 .723

.723 -.429

.426 .671

.576 .606

.561 -.441

.556
-.855

.453 -.822

.451 -.818

I wake up under my duvet thinking that I am trapped under
a normal distribtion
I can't sleep for thoughts of eigen vectors
Standard deviations excite me
I weep openly at the mention of central tendency
I dream that Pearson is attacking me with correlation
coefficients
Statiscs makes me cry
I don't understand statistics
My friends are better at SPSS than I am
My friends are better at statistics than me
If I'm good at statistics my friends will think I'm a nerd
My friends will think I'm stupid for not being able to cope
with SPSS
Everybody looks at me when I use SPSS
I have little experience of computers
SPSS always crashes when I try to use it
All computers hate me
I worry that I will cause irreparable damage because of
my incompetenece with computers
Computers have minds of their own and deliberately go
wrong whenever I use them
People try to tell you that SPSS makes statistics easier to
understand but it doesn't
Computers are out to get me
Computers are useful only for playing games
I have never been good at mathematics
I slip into a coma whenever I see an equation
I did badly at mathematics at school

1 2 3 4

Component

Extraction Method: Principal Component Analysis.

Rotation Method: Oblimin with Kaiser Normalization.

SPSS OuTPuT 17.10

SPSS OuTPuT 17.11 Component Correlation Matrix

1.000 -.154 .364 -.279
-.154 1.000 -.185 8.155E-02
.364 -.185 1.000 -.464

-.279 8.155E-02 -.464 1.000

Component

1
2
3
4

1 2 3 4

Extraction Method: Principal Component Analysis. 
Rotation Method: Oblimin with Kaiser Normalization.

component correlation matrix should be an identity matrix (i.e. all factors have correlation 
coefficients of 0). Therefore, this final matrix gives us a guide to whether it is reasonable 
to assume independence between factors: for these data it appears that we cannot assume 
independence. Therefore, the results of the orthogonal rotation should not be trusted: the 
obliquely rotated solution is probably more meaningful.

On a theoretical level the dependence between our factors does not cause concern; we 
might expect a fairly strong relationship between fear of maths, fear of statistics and fear 
of computers. Generally, the less mathematically and technically minded people struggle 
with statistics. However, we would not expect these constructs to correlate with fear of 
peer evaluation (because this construct is more socially based). In fact, this factor is the one 
that correlates fairly badly with all others – so on a theoretical level, things have turned 
out rather well!
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17.7.4.  Factor scores 2

Having reached a suitable solution and rotated that solution we can look at the factor scores. 
SPSS Output 17.12 shows the component score matrix B (see section 17.3.3.1) from which 
the factor scores are calculated and the covariance matrix of factor scores. The component 
score matrix is not particularly useful in itself. It can be useful in understanding how the fac-
tor scores have been computed, but with large data sets like this one you are unlikely to want 
to delve into the mathematics behind the factor scores. However, the covariance matrix of 
scores is useful. This matrix in effect tells us the relationship between factor scores (it is an 
unstandardized correlation matrix). If factor scores are uncorrelated then this matrix should 
be an identity matrix (i.e. diagonal elements will be 1 but all other elements are 0). For these 
data the covariances are all zero indicating that the resulting scores are uncorrelated.

In the original analysis we asked for scores to be calculated based on the Anderson–
Rubin method (hence why they are uncorrelated). You will find these scores in the data 
editor. There should be four new columns of data (one for each factor) labelled FAC1_1, 
FAC2_1, FAC3_1 and FAC4_1 respectively. If you asked for factor scores in the oblique 
rotation then these scores will appear in the data editor in four other columns labelled 
FAC2_1 and so on.

SELF-TEST  Using what you learnt in section 7.8.6 use 
the Case Summaries command to list the factor scores 
for these data (given that there are over 2500 cases, 
you might like to restrict the output to the first 10 or 20).

SPSS Output 17.13 shows the factor scores for the first 10 participants. It should be 
pretty clear that participant 9 scored highly on all four factors and so this person is very 
anxious about statistics, computing and maths, but less so about peer evaluation (factor 4). 

             CRAMMING SAM’S TIPS    Interpretation

 If you’ve conduced orthogonal rotation then look at the table labelled Rotated Component Matrix. For each variable, note 
the component for which the variable has the highest loading. Also, for each component, note the variables that load highly 
onto it (by high I’d say loadings should be above 0.4 when you ignore the plus or minus sign). Try to make sense of what 
the factors represent by looking for common themes in the items that load onto them.

 If you’ve conducted oblique rotation then look at the table labelled Pattern Matrix. For each variable, note the component for 
which the variable has the highest loading. Also, for each component, note the variables that load highly onto it (by high I’d 
say loadings should be above 0.4 when you ignore the plus or minus sign). Double check what you find by doing the same 
thing for the Structure Matrix. Try to make sense of what the factors represents by looking for common themes in the items 
that load onto them.
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SPSS OuTPuT 17.12

SPSS OuTPuT 17.13

Factor scores can be used in this way to assess the relative fear of one person compared to 
another, or we could add the scores up to obtain a single score for each participant (that we 
might assume represents SPSS anxiety as a whole). We can also use factor scores in regres-
sion when groups of predictors correlate so highly that there is multicollinearity.
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17.7.5.  Summary 2

To sum up, the analyses revealed four underlying scales in our questionnaire that may, or 
may not, relate to genuine sub-components of SPSS anxiety. It also seems as though an 
obliquely rotated solution was preferred due to the interrelationships between factors. The 
use of factor analysis is purely exploratory; it should be used only to guide future hypoth-
eses, or to inform researchers about patterns within data sets. A great many decisions are 
left to the researcher using factor analysis and I urge you to make informed decisions, 
rather than basing decisions on the outcomes you would like to get. The next question is 
whether or not our scale is reliable.

17.8. How to report factor analysis 1

As with any analysis, when reporting factor analysis we need to provide our readers with 
enough information to make an informed opinion about our data. As a bare minimum we 
should be very clear about our criteria for extracting factors and the method of rotation 
used. We must also produce a table of the rotated factor loadings of all items and flag (in 
bold) values above a criterion level (I would personally choose .40 but I discussed the vari-
ous criteria you could use in section 17.4.6.2). You should also report the percentage of 
variance that each factor explains and possibly the eigenvalue too. Table 17.2 shows an 
example of such a table for the SAQ data; note that I have also reported the sample size 
in the title. 

In my opinion, a table of factor loadings and a description of the analysis are a bare 
minimum, though. You could consider (if it’s not too large) including the table of correla-
tions from which someone could reproduce your analysis (should they want to). You could 
also consider including some information on sample size adequacy. For this example we 
might write something like this (although obviously you don’t have to cite this book as 
much as I have):

 A principal component analysis (PCA) was conducted on the 23 items with orthogonal 
rotation (varimax). The Kaiser–Meyer–Olkin measure verified the sampling adequacy 
for the analysis, KMO = .93 (‘superb’ according to Field, 2009), and all KMO values 
for individual items were > .77, which is well above the acceptable limit of .5 (Field, 
2009). Bartlett’s test of sphericity χ² (253) = 19334.49, p < .001, indicated that cor-
relations between items were sufficiently large for PCA. An initial analysis was run to 
obtain eigenvalues for each component in the data. Four components had eigenvalues 
over Kaiser’s criterion of 1 and in combination explained 50.32% of the variance. The 
scree plot was slightly ambiguous and showed inflexions that would justify retaining 
both components 2 and 4. Given the large sample size, and the convergence of the scree 
plot and Kaiser’s criterion on four components, this is the number of components that 
were retained in the final analysis. Table 17.2 shows the factor loadings after rotation. 
The items that cluster on the same components suggest that component 1 represents a 
fear of computers, component 2 a fear of statistics, component 3 a fear of maths and 
component 4 peer evaluation concerns.

Finally, if you have used oblique rotation you should consider reporting a table of both the 
structure and pattern matrix because the loadings in these tables have different interpreta-
tions (see Jane Superbrain Box 17.1).
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Table 17.2 Summary of exploratory factor analysis results for the SPSS anxiety questionnaire (N = 2571)

Rotated Factor Loadings

Item
Fear of 

Computers
Fear of 

Statistics
Fear of 
Maths

Peer 
Evaluation

I have little experience of computers .80 −.01 .10 −.07

SPSS always crashes when I try to use it .68 .33 .13 −.08

I worry that I will cause irreparable damage because of 
my incompetence with computers

.65 .23 .23 −.10

All computers hate me .64 .33 .16 −.08

Computers have minds of their own and deliberately go 
wrong whenever I use them

.58 .36 .14 −.07

Computers are useful only for playing games .55 .00 .13 −.12

Computers are out to get me .46 .22 .29 −.19

I can’t sleep for thoughts of eigenvectors -.04 .68 .08 −.14

I wake up under my duvet thinking that  
I am trapped under a normal distribution

.29 .66 .16 −.07

Standard deviations excite me −.20 –.57 −.18 .37

People try to tell you that SPSS makes statistics easier 
to understand but it doesn’t

.47 .52 .10 −.08

I dream that Pearson is attacking me with correlation 
coefficients

.32 .52 .31 .04

I weep openly at the mention of central tendency .33 .51 .31 −.12

Statistics makes me cry .24 .50 .36 .06

I don’t understand statistics .32 .43 .24 .02

I have never been good at mathematics .13 .17 .83 .01

I slip into a coma whenever I see an equation .27 .22 .75 −.04

I did badly at mathematics at school .26 .21 .75 −.14

My friends are better at statistics than me −.09 −.20 .12 .65

My friends are better at SPSS than I am −.19 .03 −.10 .65

If I’m good at statistics my friends will think I’m a nerd −.02 .17 −.20 .59

My friends will think I’m stupid for not being able to 
cope with SPSS

−.01 −.34 .07 .54

Everybody looks at me when I use SPSS −.15 −.37 −.03 .43

Eigenvalues 7.29 1.74 1.32 1.23

% of variance 31.70 7.56 5.73 5.34

α .82 .82 .82 .57

Note: Factor loadings over .40 appear in bold.
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17.9. Reliability analysis 2

17.9.1.  Measures of reliability 3

If you’re using factor analysis to validate a questionnaire, it is useful to check the reliability 
of your scale.

SELF-TEST  Thinking back to Chapter 1, what are 
reliability and test–retest reliability?

Reliability means that a measure (or in this case questionnaire) should consistently reflect 
the construct that it is measuring. One way to think of this is that, other things being equal, 
a person should get the same score on a questionnaire if they complete it at two different 
points in time (we have already discovered that this is called test–retest reliability). So, 

The Internet is now a houshold tool. In 2007 it was esti-
mated that around 179 million people worldwide used the 
Internet (over 100 million of those were in the USA and 
Canada). From the increasing populatrity (and useful-
ness) of the Internet has emerged a new phenomenon: 
Internet addiction. This is now a serious and recognized 
problem, but until very recently it was very difficult to 
research this topic because there was not a psychomet-
rically sound measure of Internet addition. That is, until 
Laura Nichols and Richard Nicki developed the Internet 
Addiction Scale, IAS (Nichols & Nicki, 2004). (Incidentally, 
while doing some research on this topic I encountered 
an Internet addiction recovery website that I won’t name 
but offered a whole host of resources that would keep 
you online for ages, such as questionnaires, an online 
support group, videos, articles, a recovery blog and pod-
casts. It struck me that this was a bit like having a recov-
ery centre for heroin addiction where the addict arrives 

to be greeted by a nice-looking counsellor who says 
‘there’s a huge pile of heroin in the corner over there, just 
help yourself’).

Anyway, Nichols and Nicki developed a 36-item ques-
tionnaire to measure Internet addiction. It contained items 
such as ‘I have stayed on the Internet longer than I intended 
to’ and ‘My grades/work have suffered because of my 
Internet use’ which could be responded to on a 5-point 
scale (Never, Rarely, Sometimes, Frequently, Always). They 
collected data from 207 people to validate this measure.

The data from this study are in the file Nichols & Nicki 
(2004).sav. The authors dropped two items because 

they had low means and variances, and 
dropped three others because of relatively 
low correlations with other items. They 
performed a principal component analy-
sis on the remaining 31 items. Labcoat 
Leni wants you to run some descriptive 
statistics to work out which two items were 

dropped for having low means/variances, then inspect a 
correlation matrix to find the three items that were dropped 
for having low correlations. Finally, he wants you to run a 
principal component analysis on the data. 

Answers are in the additional material on the compan-
ion website (or look at the original article).

LABCOAT LENI’S
REAL RESEARCH 17.1
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someone who is terrified of statistics and who scores highly on our SAQ 
should score similarly highly if we tested them a month later (assuming 
they hadn’t gone into some kind of statistics-anxiety therapy in that 
month). Another way to look at reliability is to say that two people 
who are the same in terms of the construct being measured should get 
the same score. So, if we took two people who were equally statistics-
phobic, then they should get more or less identical scores on the SAQ. 
Likewise, if we took two people who loved statistics, they should both 
get equally low scores. It should be apparent that if we took someone 
who loved statistics and someone who was terrified of it, and they got 
the same score on our questionnaire, then it wouldn’t be an accurate 

measure of statistical anxiety! In statistical terms, the usual way to look at reliability is 
based on the idea that individual items (or sets of items) should produce results consistent 
with the overall questionnaire. So, if we take someone scared of statistics, then their overall 
score on the SAQ will be high; if the SAQ is reliable then if we randomly select some items 
from it the person’s score on those items should also be high.

The simplest way to do this in practice is to use split-half reliability. This method ran-
domly splits the data set into two. A score for each participant is then calculated based on 
each half of the scale. If a scale is very reliable a person’s score on one half of the scale 
should be the same (or similar) to their score on the other half: therefore, across several 
participants, scores from the two halves of the questionnaire should correlate perfectly 
(well, very highly). The correlation between the two halves is the statistic computed in the 
split-half method, with large correlations being a sign of reliability. The problem with this 
method is that there are several ways in which a set of data can be split into two and so 
the results could be a product of the way in which the data were split. To overcome this 
problem, Cronbach (1951) came up with a measure that is loosely equivalent to splitting 
data in two in every possible way and computing the correlation coefficient for each split. 
The average of these values is equivalent to Cronbach’s alpha, α, which is the most common 
measure of scale reliability.9

Cronbach’s α is:

α= N2CovP
s2item +

P
Covitem

(17.7)

which may look complicated, but actually isn’t. The first thing to note is that for each item 
on our scale we can calculate two things: the variance within the item, and the covari-
ance between a particular item and any other item on the scale. Put another way, we can 
construct a variance–covariance matrix of all items. In this matrix the diagonal elements 
will be the variance within a particular item, and the off-diagonal elements will be covari-
ances between pairs of items. The top half of the equation is simply the number of items 
(N) squared multiplied by the average covariance between items (the average of the off-
diagonal elements in the aforementioned variance–covariance matrix). The bottom half is 
just the sum of all the item variances and item covariances (i.e. the sum of everything in the 
variance–covariance matrix).

9 Although this is the easiest way to conceptualize Cronbach’s α, whether or not it is exactly equal to the average 
of all possible split-half reliabilities depends on exactly how you calculate the split-half reliability (see the glossary 
for computational details). If you use the Spearman–Brown formula, which takes no account of item standard 
deviations, then Cronbach’s α will be equal to the average split half-reliability only when the item standard devia-
tions are equal; otherwise α will be smaller than the average. However, if you use a formula for split-half reli-
ability that does account for item standard deviations (such as Flanagen, 1937; Rulon, 1939) then α will always 
equal the average split-half reliability (see Cortina, 1993).

How do I tell if my
questionnaire is reliable?
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There is a standardized version of the coefficient too, which essentially uses the same 
equation except that correlations are used rather than covariances, and the bottom half of 
the equation uses the sum of the elements in the correlation matrix of items (including the 
ones that appear on the diagonal of that matrix). The normal alpha is appropriate when 
items on a scale are summed to produce a single score for that scale (the standardized alpha 
is not appropriate in these cases). The standardized alpha is useful, though, when items on 
a scale are standardized before being summed. 

17.9.2.  Interpreting Cronbach’s α (some cautionary tales …) 2

You’ll often see in books, journal articles, or be told by people that a value of .7 to .8 is an 
acceptable value for Cronbach’s α; values substantially lower indicate an unreliable scale. 
Kline (1999) notes that although the generally accepted value of .8 is appropriate for cog-
nitive tests such as intelligence tests, for ability tests a cut-off point of .7 is more suitable. 
He goes on to say that when dealing with psychological constructs values below even .7 
can, realistically, be expected because of the diversity of the constructs being measured.

However, Cortina (1993) notes that such general guidelines need to be used with cau-
tion because the value of α depends on the number of items on the scale. You’ll notice that 
the top half of the equation for α includes the number of items squared. Therefore, as the 
number of items on the scale increases, α will increase. Therefore, it’s possible to get a large 
value of α because you have a lot of items on the scale, and not because your scale is reli-
able! For example, Cortina reports data from two scales, both of which have α = .8. The 
first scale has only three items, and the average correlation between items was a respectable 
.57; however, the second scale had 10 items with an average correlation between these 
items of a less respectable .28. Clearly the internal consistency of these scales differs enor-
mously, yet according to Cronbach’s α they are both equally reliable!

A second common interpretation of alpha is that it measures ‘unidimensionality’, or the 
extent to which the scale measures one underlying factor or construct. This interpretation 
stems from the fact that when there is one factor underlying the data, α is a measure of the 
strength of that factor (see Cortina, 1993). However, Grayson (2004) demonstrates that data 
sets with the same α can have very different structures. He showed that α = .8 can be achieved 
in a scale with one underlying factor, with two moderately correlated factors and with two 
uncorrelated factors. Cortina (1993) has also shown that with more than 12 items, and fairly 
high correlations between items (r > .5), α can reach values around and above .7 (.65 to .84). 
These results compellingly show that α should not be used as a measure of ‘unidimensional-
ity’. Indeed, Cronbach (1951) suggested that if several factors exist then the formula should 
be applied separately to items relating to different factors. In other words, if your question-
naire has subscales, α should be applied separately to these subscales.

The final warning is about items that have a reverse phrasing. For 
example, in our SAQ that we used in the factor analysis part of this chap-
ter, we had one item (question 3) that was phrased the opposite way 
around to all other items. The item was ‘standard deviations excite me’. 
Compare this to any other item and you’ll see it requires the opposite 
response. For example, item 1 is ‘statistics make me cry’. Now, if you 
don’t like statistics then you’ll strongly agree with this statement and so 
will get a score of 5 on our scale. For item 3, if you hate statistics then 
standard deviations are unlikely to excite you so you’ll strongly disa-
gree and get a score of 1 on the scale. These reverse-phrased items are 
important for reducing response bias; participants will actually have to 
read the items in case they are phrased the other way around. For factor analysis, this 
reverse phrasing doesn’t matter, all that happens is you get a negative factor loading for 

Eek! My alpha is
negative! What do I do?
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any reversed items (in fact, look at SPSS Output 17.8 and you’ll see that item 3 has a nega-
tive factor loading). However, in reliability analysis these reverse-scored items do make a 
difference. To see why, think about the equation for Cronbach’s α. In this equation, the top 
half incorporates the average covariance between items. If an item is reverse phrased then it 
will have a negative relationship with other items, hence the covariances between this item 
and other items will be negative. The average covariance is obviously the sum of covari-
ances divided by the number of covariances, and by including a bunch of negative values 
we reduce the sum of covariances, and hence we also reduce Cronbach’s α, because the top 
half of the equation gets smaller. In extreme cases, it is even possible to get a negative value 
for Cronbach’s α, simply because the magnitude of negative covariances is bigger than the 
magnitude of positive ones! A negative Cronbach’s α doesn’t make much sense, but it does 
happen, and if it does, ask yourself whether you included any reverse-phrased items!

If you have reverse-phrased items then you have to also reverse the way in which they’re 
scored before you conduct reliability analysis. This is quite easy. To take our SAQ data, we 
have one item which is currently scored as 1 = strongly disagree, 2 = disagree, 3 = neither, 
4 = agree and 5 = strongly agree. This is fine for items phrased in such a way that agreement 
indicates statistics anxiety, but for item 3 (standard deviations excite me), disagreement 
indicates statistics anxiety. To reflect this numerically, we need to reverse the scale such that 
1 = strongly agree, 2 = agree, 3 = neither, 4 = disagree and 5 = strongly disagree. This way, 
an anxious person still gets 5 on this item (because they’d strongly disagree with it).

To reverse the scoring find the maximum value of your response scale (in this case 5) 
and add 1 to it (so you get 6 in this case). Then for each person, you take this value and 
subtract from it the score they actually got. Therefore, someone who scored 5 originally 
now scores 6 − 5 = 1, and someone who scored 1 originally now gets 6 − 1 = 5. Someone 
in the middle of the scale with a score of 3 will still get 6 − 3 = 3! Obviously it would take 
a long time to do this for each person, but we can get SPSS to do it for us

SELF-TEST  Using what you learnt in Chapter 5,  
use the Compute command to reverse-score item 3. 
(Clue: Remember that you are simply changing the 
variable to 6 minus its original value.)

17.9.3.  Reliability analysis on SPSS 2

Let’s test the reliability of the SAQ using the data in SAQ.sav. Now, you should have 
reverse scored item 3 (see above), but if you can’t be bothered then load up the file SAQ 
(Item 3 Reversed).sav instead. Remember also that I said we should conduct reliability 
analysis on any subscales individually. If we use the results from our orthogonal rotation 
(look back at SPSS Output 17.8), then we have four subscales:

Subscale 1 (1 Fear of computers): items 6, 7, 10, 13, 14, 15, 18

Subscale 2 (2 Fear of statistics): items 1, 3, 4, 5, 12, 16, 20, 21

Subscale 3 (3 Fear of mathematics): items 8, 11, 17

Subscale 4 (4 Peer evaluation): items 2, 9, 19, 22, 23

To conduct each reliability analysis on these data you need to select 
 to display the dialog box in Figure 17.12. Select any 
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items from the list that you want to analyse (to begin with, let’s do the items from the fear 
of computers subscale) on the left-hand side of the dialog box and drag them to the box 
labelled Items (or click on ). Remember that you can select several items at the same time 
if you hold down the Ctrl key while you click on the variables.

There are several reliability analyses you can run, but the default option is Cronbach’s α. 
You can change the method (e.g. to the split-half method) by clicking on  to reveal 
a drop-down list of possibilities, but the default method is a good one to select. Also, it’s 
a good idea to type the name of the scale (in this case ‘Fear of Computers’) into the box 
labelled Scale Label because this will add a header to the SPSS output with whatever you 
type in this box: typing a sensible name here will make your output easier to follow.

If you click on  you can access the dialog box in Figure 17.13. In the statistics 
dialog box you can select several things, but the one most important for questionnaire 
reliability is: Scale if item deleted. This option provides a value of Cronbach’s α for each 
item on your scale. It tells us what the value of α would be if that item were deleted. If our 
questionnaire is reliable then we would not expect any one item to greatly affect the overall 
reliability. In other words, no item should cause a substantial decrease in α. If it does then 
we have serious cause for concern and you should consider dropping that item from the 
questionnaire. As .8 is seen as a good value for α, we would hope that all values of alpha if 
item deleted should be around .8 or higher.

The inter-item correlations and covariances (and summaries) provide us with correlation 
coefficients and averages for items on our scale. We should already have these values from our 
factor analysis so there is little point in selecting these options. However, if you haven’t already 
done a factor analysis then it’s useful to ask for inter-item correlations because the overall α is 
affected by the number of items being analysed, and so you might want to check back to see 
whether the items seem to interrelate well. Options like the ANOVA Table will simply compare 
the central tendency of different items on the questionnaire using an F test (it conducts a one-
way repeated-measures ANOVA on the items on the questionnaire), a Friedman chi-sq_uare (if 
your data are ranked), or a Cochran chi-square (if your data are dichotomous, e.g. if items on 
the questionnaire had yes/no responses). The Hotelling_’s T-square does much the same but 
produces the multivariate equivalent of the F test. These tests are useful if you want to check 
that items have similar distributional properties (i.e. the same average value), but given the large 
sample sizes you ought to be using for factor analysis, they will inevitably produce significant 
results even when only small differences exist between the means of questionnaire items.

You can also use this dialog box to get an intraclass correlation coefficient (ICC). The cor-
relation coefficients that we encountered earlier in this book measure the relation between 
variables that measure different things. For example, the correlation between listening to 
Deathspell Omega and Satanism represents two classes of measures: the type of music a 

Figure 17.12
Main dialog box 
for reliability 
analysis



678 D ISCOVER ING STAT IST ICS  US ING SPSS

person likes and their religious beliefs. Intraclass correlations measure the relationship 
between two variables that measure the same thing (i.e. variables within the same class). 
Two common uses are in comparing paired data (such as twins) on the same measure, and 
assessing the consistency between judges’ ratings of a set of objects (hence the reason why it 
is found in the reliability statistics in SPSS). If you’d like to know more see section 19.2.1.

Use the simple set of options in Figure 17.13 to run a basic reliability analysis. Click on 
 to return to the main dialog box and then click on  to run the analysis.

17.9.4.  Interpreting the output 2

SPSS Output 17.14 shows the results of this basic reliability analysis for the fear of comput-
ing subscale. The values in the column labelled Corrected Item-Total Correlation are the 
correlations between each item and the total score from the questionnaire. In a reliable scale 
all items should correlate with the total. So, we’re looking for items that don’t correlate with 
the overall score from the scale: if any of these values are less than about .3 then we’ve got 
problems, because it means that a particular item does not correlate very well with the scale 
overall. Items with low correlations may have to be dropped. For these data, all data have 
item-total correlations above 0.3, which is encouraging.

The values in the column labelled Cronbach’s Alpha if Item is Deleted are the values of 
the overall α if that item isn’t included in the calculation. As such, they reflect the change 
in Cronbach’s α that would be seen if a particular item were deleted. The overall α is .823, 
and so all values in this column should be around that same value. What we’re actually 
looking for is values of α greater than the overall α. If you think about it, if the deletion 
of an item increases Cronbach’s α then this means that the deletion of that item improves 
reliability. Therefore, any items that result in substantially greater values of α than the 

Figure 17.13
Statistics for 
reliability analysis
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overall α may need to be deleted from the scale to improve its reliability. None of the items 
here would substantially affect reliability if they were deleted. The worst offender is ques-
tion 10: deleting this question would increase the α from .823 to .824. Nevertheless this 
increase is negligible and both values reflect a good degree of reliability.

Finally, and perhaps most important, the value of Alpha at the very bottom is Cronbach’s 
α: the overall reliability of the scale. To reiterate, we’re looking for values in the range of .7 to 
.8 (or thereabouts) bearing in mind what we’ve already noted about effects from the number 
of items. In this case α is slightly above .8, and is certainly in the region indicated by Kline 
(1999), so this probably indicates good reliability. As a final point, it’s worth noting that if 
items do need to be removed at this stage then you should rerun your factor analysis as well 
to make sure that the deletion of the item has not affected the factor structure!

OK, let’s move on to do the fear of statistics subscale (items 1, 3, 4, 5, 12, 16, 20 and 
21). I won’t go through the SPSS again, but SPSS Output 17.15 shows the output from the 
analysis (to save space I’ve omitted the inter-item correlations). The values in the column 
labelled Corrected Item-Total Correlation are again all above .3, which is good. The values 
in the column labelled Cronbach’s Alpha if Item is Deleted are the values of the overall α if 
that item isn’t included in the calculation. The overall α is .821, and none of the items here 
would increase the reliability if they were deleted. This indicates that all items are posi-
tively contributing to the overall reliability. The overall α is also excellent (.821) because it 
is above .8, and indicates good reliability. 

Just to illustrate the importance of reverse scoring items before running reliability analy-
sis, SPSS Output 17.16 shows the reliability analysis for the fear of statistics subscale but 
done on the original data (i.e. without item 3 being reverse scored). Note that the overall α 
is considerably lower (.605 rather than .821). Also, note that this item has a negative item-
total correlation (which is a good way to spot if you have a potential reverse-scored item in 
the data that hasn’t been reverse scored). Finally, note that for item 3, the α if item deleted 
is .8. That is, if this item were deleted then the reliability would improve from about .6 to 
about .8. This, I hope, illustrates that failing to reverse-score items that have been phrased 
oppositely to other items on the scale will mess up your reliability analysis.

Moving swiftly on to the fear of maths subscale (items 8, 11 and 17), SPSS Output 17.17 shows 
the output from the analysis. The values in the column labelled Corrected Item-Total Correlation 
are again all above .3, which is good, and the values in the column labelled Cronbach’s Alpha 

SPSS OuTPuT 17.14
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SPSS OuTPuT 17.15

SPSS OuTPuT 17.16

if Item is Deleted indicate that none of the items here would increase the reliability if they were 
deleted because all values in this column are less than the overall reliability of .819. As with the 
previous two subscales, the overall α is around .8, which indicates good reliability.

Finally, if you run the analysis for the final subscale of peer evaluation, you should get 
the output in SPSS Output 17.18. The values in the column labelled Corrected Item-Total 
Correlation are all around .3, and in fact for item 23 the value is below .3. This indicates fairly 
bad internal consistency and identifies item 23 as a potential problem. The values in the col-
umn labelled Cronbach’s Alpha if Item is Deleted indicate that none of the items here would 
increase the reliability if they were deleted because all values in this column are less than the 
overall reliability of .57. Unlike the previous subscales, the overall α is quite low and although 
this is in keeping with what Kline (1999) says we should expect for this kind of social science 
data, it is well below the other scales. The scale has five items, compared to seven, eight and 

SPSS OuTPuT 17.17
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SPSS OuTPuT 17.18

             CRAMMING SAM’S TIPS    Reliability

 Reliability is really the consistency of a measure.

 Reliability analysis can be used to measure the consistency of a questionnaire.

 Remember to reverse-score any items that were reverse phrased on the original questionnaire before you run the analysis.

 Run separate reliability analyses for all subscales of your questionnaire.

 Cronbach’s α indicates the overall reliability of a questionnaire and values around 0.8 are good (or 0.7 for ability tests and 
such like). 

 The cronbach’s Alpha if item deleted tells you whether removing an item will improve the overall reliability: values greater 
than the overall reliability indicate that removing that item will improve the overall reliability of the scale. Look for items that 
dramatically increase the value of α.

 If you do remove items, rerun your factor analysis to check that the factor structure still holds!

three on the other scales, so its reduced reliability is not going to be dramatically affected by 
the number of items (in fact, it has more items than the fear of maths subscale). If you look at 
the items on this subscale, they cover quite diverse themes of peer evaluation, and this might 
explain the relative lack of consistency. This might lead us to rethink this subscale.

17.10. How to report reliability analysis 2

You can report the reliabilities in the text using the symbol α and remembering that because 
Cronbach’s α can’t be larger than 1 then we drop the zero before the decimal place (if we 
are following APA format): 

 The fear of computers, fear of statistics and fear of maths subscales of the SAQ all had 
high reliabilities, all Cronbach’s α = .82. However, the fear of negative peer evaluation 
subscale had relatively low reliability, Cronbach’s α = .57.

However, the most common way to report reliability analysis when it follows a factor 
analysis is to report the values of Cronbach’s α as part of the table of factor loadings. For 
example, in Table 17.2 notice that in the last row of the table I have quoted the value of 
Cronbach’s α for each subscale in turn.
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What have I discovered about statistics? 2

This chapter has made us tiptoe along the craggy rockface that is factor analysis. This 
is a technique for identifying clusters of variables that relate to each other. One of the 
difficult things with statistics is realizing that they are subjective: many books (this one 
included I suspect) create the impression that statistics are like a cook book and if you 
follow the instructions you’ll get a nice tasty chocolate cake (yum!). Factor analysis per-
haps more than any other test in this book illustrates how incorrect this is. The world of 
statistics is full of arbitrary rules that we probably shouldn’t follow (.05 being the classic 
example) and nearly all of the time, whether you realize it or not, we should act upon 
our own discretion. So, if nothing else I hope you’ve discovered enough to give you suf-
ficient discretion about factor analysis to act upon! We saw that the first stage of factor 
analysis is to scan your variables to check that they relate to each other to some degree 
but not too strongly. The factor analysis itself has several stages: check some initial issues 
(e.g. sample size adequacy), decide how many factors to retain, and finally decide which 
items load onto which factors (and try to make sense of the meaning of the factors). 
Having done all that you can consider whether the items you have are reliable measures 
of what you’re trying to measure.

We also discovered that at the age of 23 I took it upon myself to become a living 
homage to the digestive system. I furiously devoured articles and books on statistics 
(some of them I even understood), I mentally chewed over them, I broke them down 
with the stomach acid of my intellect, I stripped them of their goodness and nutrients, 
I compacted them down, and after about two years I forced the smelly brown remnants 
of those intellectual meals out of me in the form of a book. I was mentally exhausted at 
the end of it; ‘It’s a good job I’ll never have to do that again’ I thought.

Key terms that I’ve discovered
Alpha factoring
Anderson–Rubin method
Common variance
Communality
Component matrix
Confirmatory factor analysis CFA)
Cronbach’s α
Direct oblimin
Equamax
Extraction
Factor analysis
Factor loading
Factor matrix
Factor scores
Factor transformation matrix, 
Intraclass correlation coefficient (ICC)
Kaiser–Meyer–Olkin (KMO) measure of  

sampling adequacy

Kaiser’s criterion
Latent variable
Oblique rotation
Orthogonal rotation
Pattern matrix
Principal component analysis (PCA)
Promax
Quartimax
Random variance
Rotation
Scree plot
Singularity
Split-half reliability
Structure matrix
Unique variance
Varimax
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Smart Alex’s tasks

Task 1M : The University of Sussex is constantly seeking to employ the best people pos-
sible as lecturers (no, really, it is). Anyway, they wanted to revise a questionnaire based 
on Bland’s theory of research methods lecturers. This theory predicts that good research 
methods lecturers should have four characteristics: (1) a profound love of statistics; 
(2) an enthusiasm for experimental design; (3) a love of teaching; and (4) a complete 
absence of normal interpersonal skills. These characteristics should be related (i.e. cor-
related). The ‘Teaching of Statistics for Scientific Experiments’ (TOSSE) already existed, 
but the university revised this questionnaire and it became the ‘Teaching of Statistics 
for Scientific Experiments – Revised’ (TOSSE-R). They gave this questionnaire to 239 
research methods lecturers around the world to see if it supported Bland’s theory. The 
questionnaire is in Figure 17.14, and the data are in TOSSE-R.sav. Conduct a factor 
analysis (with appropriate rotation) to see the factor structure of the data. 2

SD = Strongly Disagree, D = Disagree, N = Neither, A = Agree, SA = Strongly Agree

 SD D N A SA

 1 I once woke up in the middle of a vegetable patch hugging a turnip that I’d 
mistakenly dug up thinking it was Roy’s largest root

    

 2 If I had a big gun I’d shoot all the students I have to teach     

 3 I memorize probability values for the F-distribution     

 4 I worship at the shrine of Pearson     

 5 I still live with my mother and have little personal hygiene     

 6 Teaching others makes me want to swallow a large bottle of bleach because 
the pain of my burning oesophagus would be light relief in comparison

    

 7 Helping others to understand sums of squares is a great feeling     

 8 I like control conditions     

 9 I calculate 3 ANOVAs in my head before getting out of bed every morning     

10 I could spend all day explaining statistics to people     

11 I like it when people tell me I’ve helped them to understand factor rotation     

12 People fall asleep as soon as I open my mouth to speak     

13 Designing experiments is fun     

14 I’d rather think about appropriate dependent variables than go to the pub     

15 I soil my pants with excitement at the mere mention of factor analysis     

16 Thinking about whether to use repeated or independent measures thrills me     

17 I enjoy sitting in the park contemplating whether to use participant 
observation in my next experiment

    

18 Standing in front of 300 people in no way makes me lose control of my bowels     

19 I like to help students     
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20 Passing on knowledge is the greatest gift you can bestow on an individual     

21 Thinking about Bonferroni corrections gives me a tingly feeling in my groin     

22 I quiver with excitement when thinking about designing my next experiment     

23 I often spend my spare time talking to the pigeons ... and even they die of 
boredom

    

24 I tried to build myself a time machine so that I could go back to the 1930s 
and follow Fisher around on my hands and knees licking the floor on which 
he’d just trodden

    

25 I love teaching     

26 I spend lots of time helping students     

27 I love teaching because students have to pretend to like me or they’ll get 
bad marks

    

28 My cat is my only friend     

Figure 17.14 The Teaching of Statistics for Scientific Experiments – Revised (TOSSE-R)

Task 2M : Dr Sian Williams (University of Brighton) devised a questionnaire to measure 
organizational ability. She predicted five factors to do with organizational ability: (1) 
preference for organization; (2) goal achievement; (3) planning approach; (4) accep-
tance of delays; and (5) preference for routine. These dimensions are theoretically 
independent. Williams’ questionnaire contains 28 items using a 7-point Likert scale 
(1 = strongly disagree, 4 = neither, 7 = strongly agree). She gave it to 239 people. 
Run a principal component analysis on the data in Williams.sav. 2

 1 I like to have a plan to work to in everyday life

 2 I feel frustrated when things don’t go to plan

 3 I get most things done in a day that I want to

 4 I stick to a plan once I have made it

 5 I enjoy spontaneity and uncertainty

 6 I feel frustrated if I can’t find something I need

 7 I find it difficult to follow a plan through

 8 I am an organized person

 9 I like to know what I have to do in a day

10 Disorganized people annoy me

11 I leave things to the last minute

12 I have many different plans relating to the same goal

13 I like to have my documents filed and in order

14 I find it easy to work in a disorganized environment



685CHAPTER 17   ExPlORATORy fACTOR ANAlyS IS

15 I make ‘to do’ lists and achieve most of the things on it

16 My workspace is messy and disorganized

17 I like to be organized

18 Interruptions to my daily routine annoy me

19 I feel that I am wasting my time

20 I forget the plans I have made

21 I prioritize the things I have to do

22 I like to work in an organized environment

23 I feel relaxed when I don’t have a routine

24 I set deadlines for myself and achieve them

25 I change rather aimlessly from one activity to another during the day

26 I have trouble organizing the things I have to do

27 I put tasks off to another day

28 I feel restricted by schedules and plans

Answers can be found on the companion website.

Further reading
Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal 

of Applied Psychology, 78, 98–104. (A very readable paper on Cronbach’s α.)
Dunteman, G. E. (1989). Principal components analysis. Sage university paper series on quantitative 

applications in the social sciences, 07-069. Newbury Park, CA: Sage. (This monograph is quite 
high level but comprehensive.)

Pedhazur, E., & Schmelkin, L. (1991). Measurement, design and analysis: an integrated approach. 
Hillsdale, NJ: Erlbaum. (Chapter 22 is an excellent introduction to the theory of factor analysis.)

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Allyn & 
Bacon. (Chapter 13 is a technical but wonderful overview of factor analysis.)

Online tutorial
The companion website contains the following Flash movie tutorial to accompany this chapter:

 Principal Component Analysis (PCA) using SPSS

Interesting real research
Nichols, L. A., & Nicki, R. (2004). Development of a psychometrically sound internet addiction 

scale: a preliminary step. Psychology of Addictive Behaviors, 18(4), 381–384.
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Figure 18.1
Midway through 
writing the 
second edition of 
this book, things 
had gone a little 
strange

18.1. What will this chapter tell me? 1

We discovered in the previous chapter that I wrote a book. This book. There are a lot of 
good things about writing books. The main benefit is that your parents are impressed. 
Well, they’re not that impressed actually because they think that a good book sells as 
many copies as Harry Potter and that people should queue outside bookshops for the lat-
est enthralling instalment of Discovering Statistics … . My parents are, consequently, quite 
baffled about how this book is seen as successful, yet I don’t get invited to dinner by the 
Queen. Nevertheless, given that my family don’t really understand what I do, books are 
tangible proof that I do something. The size of this book and the fact it has equations in it 
is an added bonus because it makes me look cleverer than I actually am. However, there is 
a price to pay, which is immeasurable mental anguish. In England we don’t talk about our 
emotions, because we fear that if they get out into the open, civilization as we know it will 

18 Categorical data
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collapse, so I definitely will not mention that the writing process for the second edition was 
so stressful that I came within one of Fuzzy’s whiskers of a total meltdown. It took me two 
years to recover, just in time to start thinking about this third edition. Still, it was worth it 
because the feedback suggests that some people found the book vaguely useful. Of course, 
the publishers don’t care about helping people, they care only about raking in as much 
cash as possible to feed their cocaine habits and champagne addictions. Therefore, they 
are obsessed with sales figures and comparisons with other books. They have databases 
that have sales figures of this book and its competitors in different ‘markets’ (you are not 
a person, you are a ‘consumer’ and you don’t live in a country, you live in a ‘market’) and 
they gibber and twitch at their consoles creating frequency distributions (with 3-D effects) 
of these values. The data they get are frequency data (the number of books sold in a certain 
timeframe). Therefore, if they wanted to compare sales of this book to its competitors, in 
different countries, they would need to read this chapter because it’s all about analysing 
data, for which we know only the frequency with which events occur. Of course, they 
won’t read this chapter, but they should …

18.2. Analysing categorical data 1

Sometimes, we are interested not in test scores, or continuous measures, but in categori-
cal variables. These are not variables involving cats (although the examples in this chapter 
might convince you otherwise), but are what we have mainly used as grouping variables. 
They are variables that describe categories of entities (see section 1.5.1.2). We’ve come 
across these types of variables in virtually every chapter of this book. There are different 
types of categorical variable (see section 6.5.5), but in theory a person, or case, should fall 
into only one category. Good examples of categorical variables are gender (with few excep-
tions people can be only biologically male or biologically female),1 pregnancy (a woman 
can be only pregnant or not pregnant) and voting in an election (as a general rule you are 
allowed to vote for only one candidate). In all cases (except logistic regression) so far, 
we’ve used such categorical variables to predict some kind of continuous outcome, but 
there are times when we want to look at relationships between lots of categorical variables. 
This chapter looks at two techniques for doing this. We begin with the simple case of two 
categorical variables and discover the chi-square statistic (which we’re not really discover-
ing because we’ve unwittingly come across it countless times before). We then extend this 
model to look at relationships between several categorical variables.

18.3. Theory of analysing categorical data 1

We will begin by looking at the simplest situation that you could encounter; that is, analys-
ing two categorical variables. If we want to look at the relationship between two categori-
cal variables then we can’t use the mean or any similar statistic because we don’t have any 
variables that have been measured continuously. Trying to calculate the mean of a categori-
cal variable is completely meaningless because the numeric values you attach to different 
categories are arbitrary, and the mean of those numeric values will depend on how many 
members each category has. Therefore, when we’ve measured only categorical variables, we 
analyse frequencies. That is, we analyse the number of things that fall into each combination 

1 �efore anyone rips my arms from their sockets and beats me around the head with them, I am aware that numer-�efore anyone rips my arms from their sockets and beats me around the head with them, I am aware that numer-
ous chromosomal and hormonal conditions exist that complicate the matter. Also, people can have a different 
gender identity to their biological gender.
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of categories. If we take an example, a researcher was interested in whether animals could 
be trained to line dance. He took 200 cats and tried to train them to line dance by giving 
them either food or affection as a reward for dance-like behaviour. At the end of the week 
they counted how many animals could line dance and how many could not. There are two 
categorical variables here: training (the animal was trained using either food or affection, 
not both) and dance (the animal either learnt to line dance or it did not). �y combining 
categories, we end up with four different categories. All we then need to do is to count how 
many cats fall into each category. We can tabulate these frequencies as in Table 18.1 (which 
shows the data for this example) and this is known as a contingency table.

18.3.1.  Pearson’s chi-square test 1

If we want to see whether there’s a relationship between two categorical variables (i.e. 
does the amount of cats that line dance relate to the type of training used?) we can use the 
Pearson’s chi-square test (Fisher, 1922; Pearson, 1900). This is an extremely elegant statis-
tic based on the simple idea of comparing the frequencies you observe in certain categories 
to the frequencies you might expect to get in those categories by chance. All the way back 
in Chapters 2, 7 and 10 we saw that if we fit a model to any set of data we can evaluate 
that model using a very simple equation (or some variant of it):

deviation=
X

ðobserved−modelÞ2

This equation was the basis of our sums of squares in regression and ANOVA. Now, when 
we have categorical data we can use the same equation. There is a slight variation in that 
we divide by the model scores as well, which is actually much the same process as dividing 
the sum of squares by the degrees of freedom in ANOVA. So, basically, what we’re doing is 
standardizing the deviation for each observation. If we add all of these standardized devia-
tions together the resulting statistic is Pearson’s chi-square (χ2) given by: 

χ2 =
X observedij −modelij

 2

modelij
, (18.1)

in which i represents the rows in the contingency table and j represents the columns. The 
observed data are, obviously, the frequencies in Table 18.1, but we need to work out what 
the model is. In ANOVA the model we use is group means, but as I’ve mentioned we can’t 
work with means when we have only categorical variables so we work with frequencies 

Table 18.1 Contingency table showing how many cats will line dance after being trained with 
different rewards

Training

Food as Reward Affection as Reward Total

Could They Dance? Yes 28  48  76

No 10 114 124

Total 38 162 200
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instead. Therefore, we use ‘expected frequencies’. One way to estimate the expected fre-
quencies would be to say ‘well, we’ve got 200 cats in total, and four categories, so the 
expected value is simply 200/4 = 50’. This would be fine if, for example, we had the same 
number of cats that had affection as a reward and food as a reward; however, we didn’t: 
38 got food and 162 got affection as a reward. Likewise there are not equal numbers that 
could and couldn’t dance. To take account of this, we calculate expected frequencies for 
each of the cells in the table (in this case there are four cells) and we use the column and 
row totals for a particular cell to calculate the expected value:

modelij =Eij =
row totali × column totalj

n

n is simply the total number of observations (in this case 200). We can calculate these 
expected frequencies for the four cells within our table (row total and column total are 
abbreviated to RT and CT respectively):

modelFood, Yes =
RTYes × CTFood

n
= 76× 38

200
= 14:44

modelFood,No =
RTNo × CTFood

n
= 124× 38

200
=23:56

modelAffection, Yes =
RTYes × CTAffection

n
= 76× 162

200
= 61:56

modelAffection,No =
RTNo × CTAffection

n
= 124×162

200
=100:44

Given that we now have these model values, all we need to do is take each value in each 
cell of our data table, subtract from it the corresponding model value, square the result, 
and then divide by the corresponding model value. Once we’ve done this for each cell in 
the table, we just add them up!

χ2 = ð28−14:44Þ2

14:44
+ ð10− 23:56Þ2

23:56
+ ð48− 61:56Þ2

61:56
+ ð114− 100:44Þ2

100:44

= ð13:56Þ2

14:44
+ ð−13:56Þ2

23:56
+ ð−13:568Þ2

61:56
+ ð13:56Þ2

100:44

= 12:73+7:80+ 2:99+ 1:83

= 25:35

This statistic can then be checked against a distribution with known properties. All we need 
to know is the degrees of freedom and these are calculated as (r − 1)(c − 1) in which r is the 
number of rows and c is the number of columns. Another way to think of it is the number 
of levels of each variable minus one multiplied. In this case we get df = (2 − 1)(2 − 1) = 1. If 
you were doing the test by hand, you would find a critical value for the chi-square distribu-
tion with df = 1 and if the observed value was bigger than this critical value you would say 
that there was a significant relationship between the two variables. These critical values are 
produced in Appendix A.4, and for df = 1 the critical values are 3.84 (p = .05) and 6.63 (p = 
.01) and so because the observed chi-square is bigger than these values it is significant at p < 
.01. However, if you use SPSS, it will simply produce an estimate of the precise probability of 
obtaining a chi-square statistic at least as big as (in this case) 25.35 if there were no association 
in the population between the variables.
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18.3.2.  Fisher’s exact test 1

There is one problem with the chi-square test, which is that the sampling distribution of the 
test statistic has an approximate chi-square distribution. The larger the sample is, the better 
this approximation becomes and in large samples the approximation is good enough to not 
worry about the fact that it is an approximation. However, in small samples, the approxi-
mation is not good enough, making significance tests of the chi-square distribution inac-
curate. This is why you often read that to use the chi-square test the expected frequencies 
in each cell must be greater than 5 (see section 18.4). When the expected frequencies are 
greater than 5, the sampling distribution is probably close enough to a perfect chi-square 
distribution for us not to worry. However, when the expected frequencies are too low, it 
probably means that the sample size is too small and that the sampling distribution of the 
test statistic is too deviant from a chi-square distribution to be of any use.

Fisher came up with a method for computing the exact probability of the chi-square sta-
tistic that is accurate when sample sizes are small. This method is called Fisher’s exact test 
(Fisher, 1922) even though it’s not so much of a test as a way of computing the exact prob-
ability of the chi-square statistic. This procedure is normally used on 2 × 2 contingency 
tables (i.e. two variables each with two options) and with small samples. However, it can be 
used on larger contingency tables and with large samples, but on larger contingency tables 
it becomes computationally intensive and you might find SPSS taking a long time to give 
you an answer. In large samples there is really no point because it was designed to over-
come the problem of small samples, so you don’t need to use it when samples are large.

18.3.3.  The likelihood ratio 2

An alternative to Pearson’s chi-square is the likelihood ratio statistic, which is based on 
maximum-likelihood theory. The general idea behind this theory is that you collect some 
data and create a model for which the probability of obtaining the observed set of data is 
maximized, then you compare this model to the probability of obtaining those data under 
the null hypothesis. The resulting statistic is, therefore, based on comparing observed fre-
quencies with those predicted by the model:

Lχ2 = 2
X

observedij ln
observedij
modelij

 
(18.2)

in which i and j are the rows and columns of the contingency table and ln is the natural 
logarithm (this is the standard mathematical function that we came across in Chapter 8 and 
you can find it on your calculator usually labelled as ln or loge). Using the same model and 
observed values as in the previous section, this would give us:

Lχ2 = 2 28× ln
28

14:44

 
+ 10× ln

10

23:56

 
+ 48× ln

48

61:56

 
+ 114× ln

114

100:44

  

= 2 ð28× 0:662Þ+ ð10×−0:857Þ+ ð48×−0:249Þ+ ð114× 0:0:127Þ½ 
= 2 18:54− 8:57− 11:94+14:44½ 
= 24:94

As with Pearson’s chi-square, this statistic has a chi-square distribution with the same 
degrees of freedom (in this case 1). As such, it is tested in the same way: we could look 
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up the critical value of chi-square for the number of degrees of freedom that we have. As 
before, the value we have here will be significant because it is bigger than the critical values 
of 3.84 (p = .05) and 6.63 (p = .01). For large samples this statistic will be roughly the same 
as Pearson’s chi-square, but is preferred when samples are small.

18.3.4.  Yates’s correction 2

When you have a 2 × 2 contingency table (i.e. two categorical variables each with two cat-
egories) then Pearson’s chi-square tends to produce significance values that are too small 
(in other words, it tends to make a Type I error). Therefore, Yates suggested a correction 
to the Pearson formula (usually referred to as Yates’s continuity correction). The basic idea is 
that when you calculate the deviation from the model (the observedij − Modelij in equation 
(18.1)) you subtract 0.5 from the absolute value of this deviation before you square it. In 
plain English this means you calculate the deviation, ignore whether it is positive or negative, 
subtract 0.5 from the value and then square it. Pearson’s equation then becomes:

χ2 =
X jobservedij−modelijj− 0:5

 2

modelij

For the data in our example this just translates into:

χ2 = ð13:56−0:5Þ2

14:44
+ ð13:56−0:5Þ2

23:56
+ ð13:56− 0:5Þ2

61:56
+ ð13:56− 0:5Þ2

100:44

= 11:81+ 7:24+ 2:77+ 1:70

= 23:52

The key thing to note is that it lowers the value of the chi-square statistic and, therefore, 
makes it less significant. Although this seems like a nice solution to the problem, there is a 
fair bit of evidence that this overcorrects and produces chi-square values that are too small! 
Howell (2006) provides an excellent discussion of the problem with Yates’s correction for 
continuity if you’re interested; all I will say is that although it’s worth knowing about, it’s 
probably best ignored!

18.4. Assumptions of the chi-square test 1

It should be obvious that the chi-square test does not rely on assumptions such as having 
continuous normally distributed data like most of the other tests in this book (categorical 
data cannot be normally distributed because they aren’t continuous). However, the chi-
square test still has two important assumptions:

Pretty much all of the tests we have encountered in this book have made an assumption 1 
about the independence of data and the chi-square test is no exception. For the chi-
square test to be meaningful it is imperative that each person, item or entity contributes 
to only one cell of the contingency table. Therefore, you cannot use a chi-square test 
on a repeated-measures design (e.g. if we had trained some cats with food to see if they 
would dance and then trained the same cats with affection to see if they would dance 
we couldn’t analyse the resulting data with Pearson’s chi-square test).
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The expected frequencies should be greater than 5. Although it is acceptable in larger 2 
contingency tables to have up to 20% of expected frequencies below 5, the result is 
a loss of statistical power (so, the test may fail to detect a genuine effect). Even in 
larger contingency tables no expected frequencies should be below 1. Howell (2006) 
gives a nice explanation of why violating this assumption creates problems. If you 
find yourself in this situation consider using Fisher’s exact test (section 18.3.2).

Finally, although it’s not an assumption, it seems fitting to mention in a section in which 
a gloomy and foreboding tone is being used that proportionately small differences in cell 
frequencies can result in statistically significant associations between variables if the sam-
ple is large enough (although it might need to be very large indeed). Therefore, we must 
look at row and column percentages to interpret any effects we get. These percentages 
will reflect the patterns of data far better than the frequencies themselves (because these 
frequencies will be dependent on the sample sizes in different categories).

18.5. Doing chi-square on SPSS 1

There are two ways in which categorical data can be entered: enter the raw scores, or enter 
weighted cases. We’ll look at both in turn.

18.5.1.  Entering data: raw scores 1

If we input the raw scores, it means that every row of the data editor represents each entity 
about which we have data (in this example, each row represents a cat). So, you would cre-
ate two coding variables (Training and Dance) and specify appropriate numeric codes for 
each. The Training could be coded with 0 to represent a food reward and 1 to represent 
affection, and Dance could be coded with 0 to represent an animal that danced and 1 to 
represent one that did not. For each animal, you put the appropriate numeric code into 
each column. So a cat that was trained with food that did not dance would have 0 in the 
training column and 1 in the dance column. The data in the file Cats.sav are entered in this 
way and you should be able to identify the variables described. There were 200 cats in all 
and so there are 200 rows of data.

18.5.2.  Entering data: weight cases 1

An alternative method of data entry is to create the same coding variables as before, but to 
have a third variable that represents the number of animals that fell into each combination 
of categories. In other words, we input the frequency data (the number of cases that fall 
into a particular category). We could call this variable Frequency. Figure 18.2 shows the 
data editor with this third variable added. Now, instead of having 200 rows, each one rep-
resenting a different animal, we have one row representing each combination of categories 
and a variable telling us how many animals fell into this category combination. So, the first 
row represents cats that had food as a reward and then danced. The variable Frequency 
tells us that there were 28 cats that had food as a reward and then danced. This informa-
tion was previously represented by 28 different rows in the file Cats.sav and so you can see 
how this method of data entry saves you a lot of time! Extending this principle, we can see 
that when affection was used as a reward 114 cats did not dance.
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Entering data using a variable representing the number of cases that fall into a combi-
nation of categories can be quite labour saving. However, to analyse data entered in this 
way we must tell the computer that the variable Frequency represents the number of cases 
that fell into a particular combination of categories. To do this, access the Weight Cases 
dialog box in Figure 18.3 by selecting . Select  and then select 
the variable in which the number of cases is specified (in this case Frequency) and drag it to 
the box labelled Frequency variable (or click on ). This process tells the computer that it 
should weight each category combination by the number in the column labelled Frequency. 
Therefore, the computer will pretend, for example, that there are 28 rows of data that have 
the category combination 0, 0 (representing cats trained with food and that danced). Data 
entered in this way are in the file CatsWeight.sav and if you use this file you must remem-
ber to weight the cases as described.

Figure 18.2
Data entry using 
weighted cases

Figure 18.3
The dialog box 
for the weight 
cases command
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18.5.3.  Running the analysis 1

Summarizing data that fall into categories is done using the crosstabs command 
(which also produces the chi-square test). Crosstabs is accessed by selecting 

. Figure 18.4 shows the dialog boxes for the cross-
tabs command (the variable Frequency is in the diagram because I ran the analysis on the 

Figure 18.4 Dialog boxes for the crosstabs command
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CatsWeight.sav data). First, select one of the variables of interest in the variable list and 
drag it into the box labelled Row(s) (or click on ). For this example, I selected Training 
to be the rows of the table. Next, select the other variable of interest (Dance) and drag it 
to the box labelled Column(s) (or click on ). In addition, it is possible to select a layer 
variable (i.e. you can split the rows of the table into further categories). If you had a 
third categorical variable (as we will later in this chapter) you could split the contingency 
table by this variable (so layers of the table represent different categories of this third 
variable).

If you click on  a dialog box appears in which you can specify various statisti-
cal tests. The most important options under the statistics menu for categorical data are 
described in SPSS Tip 18.1.

          SPSS T IP  18 .1     Statistical options for crosstabs 2

	 Chi-square: This performs the basic Pearson chi-square test (section 18.3.1).

	 Phi and Cramer’s V: These are measures of the strength of association between two categorical variables. 
Phi is used with 2 × 2 contingency tables (tables in which you have two categorical variables and each vari-
able has only two categories). Phi is calculated by taking the chi-square value and dividing it by the sample 
size and then taking the square root of this value. If one of the two categorical variables contains more than 
two categories then Cramer’s V is preferred to phi because phi fails to reach its minimum value of 0 (indicating 
no association) in these circumstances.

	 Goodman and Kruskal’s lambda (λ): This measures the proportional reduction in error that is achieved when 
membership of a category of one variable is used to predict category membership of the other variable. A 
value of 1 means that one variable perfectly predicts the other, whereas a value of 0 indicates that one vari-
able in no way predicts the other.

	 Kendall’s statistic: This statistic is discussed in section 6.5.4.

Select the chi-square test, the continuity correction, phi and lambda, and then click on 
. If you click on  a dialog box appears in which you can specify the type 

of data displayed in the crosstabulation table. It is important that you ask for expected 
counts because for chi-square to be accurate these expected counts must exceed certain 
values. The basic rule of thumb is that with 2 × 2 contingency tables no expected values 
should be below 5. In larger tables the rule is that all expected counts should be greater 
than 1 and no more than 20% of expected counts should be less than 5. It is also useful 
to have a look at the row, column and total percentages because these values are usually 
more easily interpreted than the actual frequencies and provide some idea of the origin of 
any significant effects. The second important option is to select some standardized residu-
als. These values are important for breaking down a significant chi-square test (should 
we get one). Once these options have been selected, click on  to return to the main 
dialog box.

From here you can click on  (if you have exact tests installed) to compute Fisher’s 
exact test (section 18.3.2). You can use this option if your sample is small or if your expected 
frequencies are too low (see 18.4). Select the Exact test option; we don’t really need it for 
these data but it will be a useful way to see how it is used. Click on  to return to the 
main dialog box and then click  on  to run the analysis.
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18.5.4.  Output for the chi-square test 1

The crosstabulation table produced by SPSS (SPSS Output 18.1) contains the number of 
cases that fall into each combination of categories and is rather like our original contin-
gency table. We can see that in total 76 cats danced (38% of the total) and of these 28 were 
trained using food (36.8% of the total that danced) and 48 were trained with affection 
(63.2% of the total that danced). Further, 124 cats didn’t dance at all (62% of the total) 
and of those that didn’t dance, 10 were trained using food as a reward (8.1% of the total 
that didn’t dance) and a massive 114 were trained using affection (91.9% of the total that 
didn’t dance). The numbers of cats can be read from the rows labelled Count and the per-
centages are read from the rows labelled % within Did they dance? We can also look at the 
percentages within the training categories by looking at the rows labelled % within Type 
of Training. This tells us, for example, that of those trained with food as a reward, 73.7% 
danced and 26.3% did not. Similarly, for those trained with affection only 29.6% danced 
compared to 70.4% that didn’t. In summary, when food was used as a reward most cats 
would dance, but when affection was used most cats refused to dance.

�efore moving on to look at the test statistics itself it is vital that we check that the 
assumption for chi-square has been met. The assumption is that in 2 × 2 tables (which is 
what we have here), all expected frequencies should be greater than 5. If you look at the 
expected counts in the crosstabulation table (which incidentally are the same as we calcu-
lated earlier), it should be clear that the smallest expected count is 14.4 (for cats that were 
trained with food and did dance). This value exceeds 5 and so the assumption has been 
met. If you found an expected count lower than 5 the best remedy is to collect more data 
to try to boost the proportion of cases falling into each category.

As we saw earlier, Pearson’s chi-square test examines whether there is an association 
between two categorical variables (in this case the type of training and whether the animal 
danced or not). As part of the crosstabs procedure SPSS produces a table that includes the 
chi-square statistic and its significance value (SPSS Output 18.2). The Pearson chi-square 

SPSS OuTPuT 18.1
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statistic tests whether the two variables are independent. If the significance value is small 
enough (conventionally Sig. must be less than .05) then we reject the hypothesis that the 
variables are independent and gain confidence in the hypothesis that they are in some way 
related. The value of the chi-square statistic is given in the table (and the degrees of free-
dom) as is the significance value. The value of the chi-square statistic is 25.356, which is 
within rounding error of what we calculated in section 18.3.1. This value is highly signifi-
cant (p < .001), indicating that the type of training used had a significant effect on whether 
an animal would dance.

A series of other statistics are also included in the table (many of which have to be specif-
ically requested using the options in the dialog box in Figure 18.4). Continuity Correction 
is Yates’s continuity corrected chi-square (see section 18.3.4) and its value is the same as the 
value we calculated earlier (23.52). As I mentioned earlier, this test is probably best ignored 
anyway, but it does confirm the result from the main chi-square test. The Likelihood Ratio 
is the statistic we encountered in section 18.3.3 (and is again within rounding error of the 
value we calculated: 24.93). Again this confirms the main chi-square result, but this statis-
tic would be preferred in smaller samples.

Underneath the chi-square table there are several footnotes relating to the assumption 
that expected counts should be greater than 5. If you forgot to check this assumption your-
self, SPSS kindly gives a summary of the number of expected counts below 5. In this case, 
there were no expected frequencies less than 5 so we know that the chi-square statistic 
should be accurate. 

The highly significant result indicates that there is an association between 
the type of training and whether the cat danced or not. What we mean by an 
association is that the pattern of responses (i.e. the proportion of cats that 
danced to the proportion that did not) in the two training conditions is sig-
nificantly different. This significant finding reflects the fact that when food is 
used as a reward, about 74% of cats learn to dance and 26% do not, whereas 
when affection is used, the opposite is true (about 70% refuse to dance and 
30% do dance). Therefore, we can conclude that the type of training used 
significantly influences the cats: they will dance for food but not for love! 
Having lived with a lovely cat for many years now, this supports my cynical 
view that they will do nothing unless there is a bowl of cat-food waiting for 
them at the end of it!

If requested, SPSS will produce another table of output containing some 
additional statistical tests. Most of these tests are measures of the strength of association. 
These measures are based on modifying the chi-square statistic to take account of sample 
size and degrees of freedom and they try to restrict the range of the test statistic from 0 to 
1 (to make them similar to the correlation coefficient described in Chapter 6). These are 
shown in SPSS Output 18.3.

SPSS OuTPuT 18.2

How do I interpret
chi-square?
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Phi	 : This statistic is accurate for 2 × 2 contingency tables. However, for tables with 
greater than two dimensions the value of phi may not lie between 0 and 1 because the 
chi-square value can exceed the sample size. Therefore, Pearson suggested the use of 
the coefficient of contingency.

Contingency Coefficient	 : This coefficient ensures a value between 0 and 1 but, unfor-
tunately, it seldom reaches its upper limit of 1 and for this reason Cramer devised 
Cramer’s V.

Cramer’s V	 : When both variables have only two categories, phi and Cramer’s V are 
identical. However, when variables have more than two categories Cramer’s statistic 
can attain its maximum of one – unlike the other two – and so it is the most useful.

For these data, Cramer’s statistic is 0.36 out of a possible maximum value of 1. This rep-
resents a medium association between the type of training and whether the cats danced or 
not (if you think of it like a correlation coefficient then this represents a medium effect 
size). This value is highly significant (p < .001) indicating that a value of the test statistic 
that is this big is unlikely to have happened by chance, and therefore the strength of the 
relationship is significant. These results confirm what the chi-square test already told us but 
also give us some idea of the size of effect.

18.5.5.   Breaking down a significant chi-square test with 
standardized residuals 2

Although in a 2 × 2 contingency table like the one we have in this example the nature of the 
association can be quite clear from just the cell percentages or counts, in larger contingency 
tables it can be useful to do a finer-grained investigation of the table. In a way, you can think 
of a significant chi-square test in much the same way as a significant interaction in ANOVA: 
it is an effect that needs to be broken down further. One very easy way to break down a 
significant chi-square test is to use data that we already have – the standardized residual.

Just like regression, the residual is simply the error between what the model predicts 
(the expected frequency) and the data actually observed (the observed frequency):

residualij = observedij −modelij

in which i and j represent the two variables (i.e. the rows and columns in the contingency 
table). This is the same as every other residual or deviation that we have encountered in 
this book (compare this equation to, for example, equation (2.4)). To standardize this 
equation, we simply divide by the square root of the expected frequency:

standardized residual= observedij −modelijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
modelij

p

SPSS OuTPuT 18.3
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Does this equation look familiar? Well, it’s basically part of equation (18.1). The only 
difference is that rather than looking at squared deviations, we’re looking at the pure 
deviation. Remember that the rationale for squaring deviations in the first place is simply 
to make them positive so that they don’t cancel out when we add them. The chi-square sta-
tistic is based on adding together values, so it is important that the deviations are squared 
so that they don’t cancel out. However, if we’re not planning to add up the deviations 
or residuals then we can inspect them in their unsquared form. There are two important 
things about these standardized residuals:

1 Given that the chi-square statistic is the sum of these standardized residuals (sort of), 
then if we want to decompose what contributes to the overall association that the 
chi-square statistic measures, then looking at the individual standardized residuals is 
a good idea because they have a direct relationship with the test statistic.  

2 These standardized residuals behave like any other (see section 7.6.1.1) in the sense 
that each one is a z-score. This is very useful because it means that just by looking at 
a standardized residual we can assess its significance (see section 1.7.4). As we have 
learnt many times before, if the value lies outside of ±1.96 then it is significant at p < 
.05, if it lies outside ±2.58 then it is significant at p < .01 and if it lies outside ±3.29 
then it is significant at p < .001. 

Fortunately, when we selected  in Figure 18.4, SPSS produced these standard-
ized residuals and we can see them in SPSS Output 18.1. There are four residuals: one for 
each combination of the type of training and whether the cats danced. When food was used 
as a reward the standardized residual was significant for both those that danced (z = 3.6) 
and those that didn’t dance (z = −2.8) because both values are bigger than 1.96 (when you 
ignore the minus sign). The plus or minus sign (and the counts and expected counts within 
the cells) tells us that when food was used as a reward significantly more cats than expected 
danced, and significantly less cats than expected did not dance. When affection was used 
as a reward the standardized residual was not significant for both those that danced 
(z = −1.7) and those that didn’t dance (z = 1.4) because they are both smaller than 1.96 
(when you ignore the minus sign). This tells us that when affection was used as a reward 
as many cats as expected danced and did not dance. In a nutshell, the cells for when food 
was used as a reward both significantly contribute to the overall chi-square statistic. Put 
another way, the association between the type of reward and dancing is mainly driven by 
when food is a reward.

18.5.6.  Calculating an effect size 2

Although Cramer’s V is an adequate effect size (in the sense that it is constrained to fall 
between 0 and 1 and is, therefore, easily interpretable), a more common and possibly more 
useful measure of effect size for categorical data is the odds ratio, which we encountered 
in Chapter 8 (it was called Exp(B) in that chapter). Odds ratios are most interpretable in 
2 × 2 contingency tables and are probably not useful for larger contingency tables. However, 
this isn’t as restrictive as you might think because as I’ve said more times than I care to 
recall in the GLM chapters, effect sizes are only ever useful when they summarize a focused 
comparison. A 2 × 2 contingency table is the categorical data equivalent of a focused 
comparison!

The odds ratio is simple enough to calculate. If we look at our example, we can first 
calculate the odds that a cat danced given that they had food as a reward. This is simply 
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the number of cats that were given food and danced, divided by the number of cats given 
food that didn’t dance:

oddsdancing after food =
number that had food and danced

number that had food but didn’t dance

= 28

10

= 2:8

Next we calculate the odds that a cat danced given that they had affection as a reward. 
This is simply the number of cats that were given affection and danced, divided by the 
number of cats given affection that didn’t dance:

oddsdancing after affection =
number that had affection and danced

number that had affection but didn’t dance

= 48

114
=0:421

The odds ratio is simply the odds of dancing after food divided by the odds of dancing 
after affection:

odds ratio=
oddsdancing after food

oddsdancing after affection

= 2:8

0:421

= 6:65

What this tells us is that if a cat was trained with food the odds of their dancing were 
6.65 times higher than if they had been trained with affection. As you can see, this is an 
extremely elegant and easily understood metric for expressing the effect you’ve got!

18.5.7.  Reporting the results of chi-square 1

When reporting Pearson’s chi-square we simply report the value of the test statistic with its 
associated degrees of freedom and the significance value. The test statistic, as we’ve seen, 
is denoted by χ2. The SPSS output tells us that the value of χ2 was 25.36, that the degrees 
of freedom on which this was based were 1, and that it was significant at p < .001. It’s also 
useful to reproduce the contingency table and my vote would go to quoting the odds ratio 
too. As such, we could report:

 There was a significant association between the type of training and whether or not 
cats would dance χ2 (1) = 25.36, p < .001. This seems to represent the fact that, based 
on the odds ratio, the odds of cats dancing were 6.65 times higher if they were trained 
with food than if trained with affection.



701CHAPTER 18   Categor iCal  data

             CRAMMING SAM’S TIPS    

 If you want to test the relationship between two categorical variables you can do this with Pearson’s chi-square test or the 
likelihood ratio statistic.

 Look at the table labelled Chi-Square tests; if the Exact Sig. value is less than .05 for the row labelled Pearson chi-square 
then there is a significant relationship between your two variables. 

 Check underneath this table to make sure that no expected frequencies are less than 5.

 Look at the crosstabulation table to work out what the relationship between the variables is. Better still, look out for signifi-
cant standardized residuals (values outside of ±1.96), and calculate the odds ratio.

 Report the χ2 statistic, the degrees of freedom, and the significance value. Also report the contingency table. 

When I was doing my psychology degree I spent a 
lot of time reading about the civil rights movement in 
the USA. Although I was supposed to be reading psy-
chology, I became more interested in Malcolm X and 
Martin Luther King Jr. This is why I find Beckham’s 1929 
study of black Americans such an interesting piece of 
research. Beckham was a black American academic 
who founded the psychology laboratory at Howard 
University, Washington, DC, and his wife Ruth was the 
first black woman ever to be awarded a Ph.D. (also in 
psychology) at the University of Minnesota. The article 
needs to be placed within the era in which it was pub-
lished. To put some context on the study, it was pub-
lished 36 years before the Jim Crow laws were finally 
overthrown by the Civil Rights Act of 1964, and in a 
time when black Americans were segregated, openly 
discriminated against and were victims of the most 
abominable violations of civil liberties and human rights. 
For a richer context I suggest reading James Baldwin’s 
superb novel The fire next time. Even the language of 
the study and the data from it are an uncomfortable 
reminder of the era in which it was conducted.

Beckham sought to measure the psychological 
state of black Americans with three questions put to 
3443 black Americans from different walks of life. He 
asked them whether they thought black Americans 
were happy, whether they personally were happy as a 
black American, and whether black Americans should 
be happy. They could answer only yes or no to each 
question. By today’s standards the study is quite 
simple, and he did no formal statistical analysis of his 
data (Fisher’s article containing the popularized ver-
sion of the chi-square test was published only seven 
years earlier in a statistics journal that would not have 
been read by psychologists). I love this study, though, 
because it demonstrates that you do not need elabo-
rate methods to answer important and far-reaching 
questions; with just three questions, Beckham told the 

world an enormous amount about very 
real and important psychological and 
sociological phenomena.

The frequency data (number of yes 
and no responses within each employ-
ment category) from this study are in 
the file Beckham(1929).sav. Labcoat 

Leni wants you to carry out three chi-square tests (one 
for each question that was asked). What conclusions can 
you draw?

Answers are in the additional material on the compan-
ion website.

LABCOAT LENI’S
REAL RESEARCH 18.1
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18.6. Several categorical variables: loglinear 
analysis 3

So far we’ve looked at situations in which there are only two categorical variables. However, 
often we want to analyse more complex contingency tables in which there are three or more 
variables. For example, what about if we took the example we’ve just used but also collected 
data from a sample of 70 dogs? We might want to compare the behaviour in dogs to that in 
cats. We would now have three variables: Animal (dog or cat), Training (food as reward or 
affection as reward) and Dance (did they dance or not?). This couldn’t be analysed with the 
Pearson chi-square and instead has to be analysed with a technique called loglinear analysis.

18.6.1.  Chi-square as regression 4

To begin with, let’s have a look at how our simple chi-square example can be expressed as 
a regression model. Although we already know about as much as we need to about the chi-
square test, if we want to understand more complex situations life becomes considerably 
easier if we consider our model as a general linear model (i.e. regression). All of the general 
linear models we’ve considered in this book take the general form of:

outcomei = ðmodelÞ+ errori

For example, when we encountered multiple regression in Chapter 7 we saw that this 
model was written as (see equation (7.9)):

Yi = ðb0 +b1X1i + b2X2i + . . . + bnXniÞ+ εi

Also, when we came across one-way ANOVA, we adapted this regression model to concep-
tualize our Viagra example, as (see equation (10.2)):

Libidoi = b0 + b2Highi +b1Lowi + εi

The t-test was conceptualized in a similar way. In all cases the same basic equation is used; 
it’s just the complexity of the model that changes. With categorical data we can use the same 
model in much the same way as with regression to produce a linear model. In our current 
example we have two categorical variables: training (food or affection) and dance (yes they 
did dance or no they didn’t dance). �oth variables have two categories and so we can rep-
resent each one with a single dummy variable (see section 7.11.1) in which one category is 
coded as 0 and the other as 1. So for training, we could code ‘food’ as 0 and ‘affection’ as 1, 
and we could code the dancing variable as 0 for ‘yes’ and 1 for ‘no’ (see Table 18.2). 

Table 18.2 Coding scheme for dancing cats

Training Dance
Dummy 

(Training) Dummy (Dance) Interaction Frequency

Food Yes 0 0 0  28

Food No 0 1 0  10

Affection Yes 1 0 0  48

Affection No 1 1 1 114

smart
alex
only
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This situation might be familiar if you think back to factorial ANOVA (section 12.8) in 
which we also had two variables as predictors. In that situation we saw that when there are 
two variables the general linear model became (think back to equation (12.1)):

outcomei = ðb0 + b1Ai + b2Bi + b3ABiÞ+ εi

in which A represents the first variable, � represents the second and A� represents the 
interaction between the two variables. Therefore, we can construct a linear model using 
these dummy variables that is exactly the same as the one we used for factorial ANOVA 
(above). The interaction term will simply be the training variable multiplied by the dance 
variable (look at Table 18.2 and if it doesn’t make sense look back to section 12.8 because 
the coding is exactly the same as this example):

outcomei = ðmodelÞ+Errori

outcomeij = ðb0 + b1Trainingi + b2Dancej +b3InteractionijÞ
(18.3) 

However, because we’re using categorical data, to make this model linear we have to 
actually use log values (see Chapter 8) and so the actual model becomes.2

lnðOiÞ= lnðmodelÞ+ lnðεiÞ

lnðOijÞ= ðb0 + b1Trainingi + b2Dancej + b3InteractionijÞ+ lnðεiÞ
(18.4)

The training and dance variables and the interaction can take the values 0 and 1, depending 
on which combination of categories we’re looking at (Table 18.2). Therefore, to work out what 
the b-values represent in this model we can do the same as we did for the t-test and ANOVA 
and look at what happens when we replace training and dance with values of 0 and 1. To begin 
with, let’s see what happens when we look at when training and dance are both zero. This rep-
resents the category of cats that got food reward and did line dance. When we used this sort of 
model for the t-test and ANOVA the outcomes we used were taken from the observed data: we 
used the group means (e.g. see sections 9.7 and 10.2.3). However, with categorical variables, 
means are rather meaningless because we haven’t measured anything on an ordinal or inter-
val scale, instead we merely have frequency data. Therefore, we use the observed frequencies 
(rather than observed means) as our outcome instead. In Table 18.1 we saw that there were 28 
cats that had food for a reward and did line dance. If we use this as the observed outcome then 
the model can be written as (if we ignore the error term for the time being):

lnðOijÞ=b0 + b1Trainingi + b2Dancej + b3Interactionij

For cats that had food reward and did dance, the training and dance variables and the 
interaction will all be 0 and so the equation reduces down to:

lnðOFood,YesÞ= b0 + ðb1 × 0Þ+ ðb2 ×0Þ+ ðb3 × 0Þ

lnðOFood,YesÞ= b0

lnð28Þ= b0

b0 = 3:332

2 Actually, the convention is to denote b0 as θ and the b values as λ, but I think these notational changes serve only 
to confuse people so I’m sticking with b because I want to emphasize the similarities to regression and ANOVA.
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Therefore, b0 in the model represents the log of the observed value when all of the catego-
ries are zero. As such it’s the log of the observed value of the base category (in this case 
cats that got food and danced). Now, let’s see what happens when we look at cats that 
had affection as a reward and danced. In this case, the training variable is 1 and the dance 
variable and the interaction are still 0. Also, our outcome now changes to be the observed 
value for cats that received affection and danced (from Table 18.1 we can see the value is 48). 
Therefore, the equation becomes:

lnðOAffection,YesÞ= b0 + ðb1 × 1Þ+ ðb2 × 0Þ+ ðb3 × 0Þ

lnðOAffection,YesÞ= b0 + b1

b1 = lnðOAffection,YesÞ−b0

Remembering that b0 is the expected value for cats that had food and danced, we get:

b1 = lnðOAffection, YesÞ− lnðOFood, YesÞ
= lnð48Þ− lnð28Þ
= 3:871− 3:332

= 0:539

The important thing is that b1 is the difference between the log of the observed frequency 
for cats that received affection and danced, and the log of the observed values for cats that 
received food and danced. Put another way, within the group of cats that danced it repre-
sents the difference between those trained using food and those trained using affection.

Now, let’s see what happens when we look at cats that had food as a reward and did not 
dance. In this case, the training variable is 0, the dance variable is 1 and the interaction is 
again 0. Our outcome now changes to be the observed frequency for cats that received food 
but did not dance (from Table 18.1 we can see the value is 10). Therefore, the equation 
becomes:

lnðOFood,NoÞ= b0 + ðb1 × 0Þ+ ðb2 × 1Þ+ ðb3 ×0Þ

lnðOFood,NoÞ= b0 + b2

b2 = lnðOFood,NoÞ−b0

Remembering that b0 is the expected value for cats that had food and danced, we get:

b2 = lnðOFood,NoÞ− lnðOFood,YesÞ
= lnð10Þ− lnð28Þ
= 2:303− 3:332

=−1:029

The important thing is that b2 is the difference between the log of the observed frequency 
for cats that received food and danced, and the log of the observed frequency for cats that 
received food and didn’t dance. Put another way, within the group of cats that received 
food as a reward it represents the difference between cats that didn’t dance and those that 
did. Finally, we can look at cats that had affection and danced. In this case, the training and 
dance variables are both 1 and the interaction (which is the value of training multiplied by 
the value of dance) is also 1. We can also replace b0, b1 and b2 with what we now know they 
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represent. The outcome is the log of the observed frequency for cats that received affec-
tion but didn’t dance (this expected value is 114 – see Table 18.1). Therefore, the equation 
becomes (I’ve used the shorthand of A for affection, F for food, Y for yes, and N for No):

lnðOA,NÞ= b0 + ðb1 ×1Þ+ ðb2 × 1Þ+ ðb3 × 1Þ

lnðOA,NÞ= b0 +b1 + b2 + b3

lnðOA,NÞ= lnðOF,YÞ+ lnðOA,YÞ− lnðOF,YÞ
 

+ lnðOF,NÞ− lnðOF,YÞ
 

+b3

lnðOA,NÞ= lnðOA,YÞ+ lnðOF,NÞ− lnðOF, YÞ+ b3

b3 = lnðOA,NÞ− lnðOF,NÞ+ lnðOF,YÞ− lnðOA,YÞ
= lnð114Þ− lnð10Þ+ lnð28Þ− lnð48Þ
= 1:895

So, b3 in the model really compares the difference between affection and food when the 
cats didn’t dance to the difference between food and affection when the cats did dance. 
Put another way, it compares the effect of training when cats didn’t dance to the effect of 
training when they did dance. 

The final model is therefore:

lnðOijÞ= 3:332+ 0:539Training− 1:029Dance+ 1:895Interaction+ lnðεijÞ

The important thing to note here is that everything is exactly the same as factorial ANOVA 
except that we dealt with log-transformed values (in fact compare this section to section 
12.8 to see just how similar everything is). In case you still don’t believe me that this works 
as a general linear model, I’ve prepared a file called CatRegression.sav which contains the 
two variables Dance and Training (both dummy coded with 0 and 1 as described above) 
and the interaction (Interaction). There is also a variable called Observed which contains 
the observed frequencies in Table 18.1 for each combination of Dance and Training. Finally, 
there is a variable called LnObserved, which is the natural logarithm of these observed fre-
quencies (remember that throughout this section we’ve dealt with the log observed values).

SELF-TEST  Run a multiple regression analysis 
using CatsRegression.sav with LnObserved as the 
outcome, and Training, Dance and Interaction as your 
three predictors.

SPSS Output 18.4 shows the resulting coefficients table from this regression. The impor-
tant thing to note is that the constant, b0, is 3.332 as calculated above, the beta value 
for type of training, b1, is 0.539 and for dance, b2, is −1.030, both of which are within 
rounding error of what was calculated above. Also the coefficient for the interaction, b3, 
is 1.895 as predicted. There is one interesting point, though: all of the standard errors are 
zero, or put differently there is no error at all in this model (which is also why there are no 
significance tests). This is because the various combinations of coding variables completely 
explain the observed values. This is known as a saturated model and I will return to this 
point later, so bear it in mind. For the time being, I hope this convinces you that chi-square 
can be conceptualized as a linear model.
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OK, this is all very well, but the heading of this section did rather imply that I would 
show you how the chi-square test can be conceptualized as a linear model. Well, basically, 
the chi-square test looks at whether two variables are independent; therefore, it has no 
interest in the combined effect of the two variables, only their unique effect. Thus, we can 
conceptualize chi-square in much the same way as the saturated model, except that we don’t 
include the interaction term. If we remove the interaction term, our model becomes:

lnðmodelijÞ= b0 + b1Trainingi +b2Dancej

With this new model, we cannot predict the observed values like we did for the saturated 
model because we’ve lost some information (namely, the interaction term). Therefore, the 
outcome from the model changes, and therefore the beta values change too. We saw earlier 
that the chi-square test is based on ‘expected frequencies’. Therefore, if we’re conceptual-
izing the chi-square test as a linear model, our outcomes will be these expected values. If you 
look back to the beginning of this chapter you’ll see we already have the expected frequencies 
based on this model. We can recalculate the beta values based on these expected values:

lnðEijÞ= b0 + b1Trainingi + b2Dancej

For cats that had food reward and did dance, the training and dance variables will be 0 and 
so the equation reduces down to:

lnðEFood,YesÞ=b0 + ðb1 × 0Þ+ ðb2 × 0Þ

lnðEFood,YesÞ=b0

b0 = lnð14:44Þ
=2:67

Therefore, b0 in the model represents the log of the expected value when all of the catego-
ries are zero.

When we look at cats that had affection as a reward and danced, the training variable 
is 1 and the dance variable is still 0. Also, our outcome now changes to be the expected 
value for cats that received affection and danced:

lnðEAffection, YesÞ= b0 + ðb1 × 1Þ+ ðb2 ×0Þ

lnðEAffection, YesÞ= b0 + b1

b1 = lnðEAffection, YesÞ− b0

= lnðEAffection, YesÞ− lnðEFood,YesÞ
= lnð61:56Þ− lnð14:44Þ
= 1:45

SPSS OuTPuT 18.4
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The important thing is that b1 is the difference between the log of the expected frequency 
for cats that received affection and did dance and the log of the expected values for cats that 
received food and danced. In fact, the value is the same as the column marginal, that is the dif-
ference between the total number of cats getting affection and the total number of cats getting 
food: ln(162) − ln(38) = 1.45. Put simply, it represents the main effect of the type of training.

When we look at cats that had food as a reward and did not dance, the training variable 
is 0 and the dance variable is 1. Our outcome now changes to be the expected frequency 
for cats that received food but did not dance:

lnðEFood,NoÞ= b0 + ðb1 × 0Þ+ ðb2 ×1Þ

lnðEFood,NoÞ= b0 + b2

b2 = lnðOFood,NoÞ− b0

= lnðOFood,NoÞ− lnðOFood, yesÞ
= lnð23:56Þ− lnð14:44Þ
= 0:49

Therefore, b2 is the difference between the log of the expected frequencies for cats that 
received food and didn’t or did dance. In fact, the value is the same as the row marginal, that 
is the difference between the total number of cats that did and didn’t dance: ln(124) − ln 
(76) = 0.49. In simpler terms, it is the main effect of whether or not the cat danced.

We can double-check all of this by looking at the final cell:

lnðEAffection,NoÞ= b0 + ðb1 × 1Þ+ ðb2 × 1Þ

lnðEAffection,NoÞ= b0 + b1 + b2

lnð100:44Þ= 2:67+ 1:45+0:49

4:61= 4:61

The final chi-square model is therefore:

lnðOiÞ=modelij + lnðεiÞ

lnðOiÞ= 2:67+ 1:45Training+ 0:49Dance+ lnðεiÞ

We can rearrange this to get some residuals (the error term):

lnðεiÞ= lnðOiÞ− ðmodelÞ

In this case, the model is merely the expected frequencies that were calculated for the chi-square 
test, so the residuals are the differences between the observed and expected frequencies.

SELF-TEST  To show that this all actually works, 
run another multiple regression analysis using 
CatsRegression.sav. This time the outcome is the log 
of expected frequencies (LnExpected) and Training 
and Dance are the predictors (the interaction is not 
included).
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This demonstrates how chi-square can work as a linear model, just like regression and 
ANOVA, in which the beta values tell us something about the relative differences in frequen-
cies across categories of our two variables. If nothing else made sense I want you to leave this 
section aware that chi-square (and analysis of categorical data generally) can be expressed as 
a linear model (although we have to use log values). We can express categories of a variable 
using dummy variables, just as we did with regression and ANOVA, and the resulting beta 
values can be calculated in exactly the same way as for regression and ANOVA. In ANOVA, 
these beta values represented differences between the means of a particular category com-
pared against a baseline category. With categorical data, the beta values represent the same 
thing, the only difference being that rather than dealing with means, we’re dealing with 
expected values. Grasping this idea (that regression, t-tests, ANOVAs and categorical data 
analysis are basically the same) will help (me) considerably in the next section.

18.6.2.  Loglinear analysis 3

In the previous section, after nearly reducing my brain to even more of a rotting vegetable 
than it already is trying to explain how categorical data analysis is just another form of 
regression, I ran the data through an ordinary regression on SPSS to prove that I wasn’t 
talking complete gibberish. At the time I rather glibly said ‘oh, by the way, there’s no error 
in the model, that’s odd isn’t it?’ and sort of passed this off by telling you that it was a ‘satu-
rated’ model and not to worry too much about it because I’d explain it all later just as soon 
as I’d worked out what the hell was going on. That seemed like a good avoidance tactic at 
the time but unfortunately I now have to explain what I was going on about.

To begin with, I hope you’re now happy with the idea that categorical data can be 
expressed in the form of a linear model provided that we use log values (this, incidentally, 
is why the technique we’re discussing is called loglinear analysis). From what you hopefully 
already know about ANOVA and linear models generally, you should also be cosily tucked 
up in bed with the idea that we can extend any linear model to include any amount of pre-
dictors and any resulting interaction terms between predictors. Therefore, if we can repre-
sent a simple two-variable categorical analysis in terms of a linear model, then it shouldn’t 
amaze you to discover that if we have more than two variables this is no problem: we can 
extend the simple model by adding whatever variables and the resulting interaction terms. 
This is all you really need to know. So, just as in multiple regression and ANOVA, if we 
think of things in terms of a linear model, then conceptually it becomes very easy to under-
stand how the model expands to incorporate new variables. So, for example, if we have 
three predictors (A, � and C) in ANOVA (think back to section 14.4) we end up with three 
two-way interactions (A�, AC, �C) and one three-way interaction (A�C). Therefore, the 
resulting linear model of this is just:

outcomei = ðb0 + b1A+ b2B+ b3C+ b4AB+ b5AC+ b6BC+ b7ABCÞ+ εi

In exactly the same way, if we have three variables in a categorical data analysis we get 
an identical model, but with an outcome in terms of logs:

lnðOijkÞ= ðb0 +b1Ai + b2Bj +b3Ck + b4ABij+ b5ACik + b6BCjk + b7ABCijkÞ+ lnðεijkÞ

Obviously the calculation of beta values and expected values from the model becomes con-
siderably more cumbersome and confusing, but that’s why we invented computers – so that 
we don’t have to worry about it! Loglinear analysis works on these principles. However, 
as we’ve seen in the two-variable case, when our data are categorical and we include all 

everybody
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of the available terms (main effects and interactions) we get no error: our predictors can 
perfectly predict our outcome (the expected values). So, if we start with the most complex 
model possible, we will get no error. The job of loglinear analysis is to try to fit a simpler 
model to the data without any substantial loss of predictive power. Therefore, loglinear 
analysis typically works on a principle of backward elimination (yes, the same kind of 
backward elimination that we can use in multiple regression – see section 7.5.3.3). So we 
begin with the saturated model, and then we remove a predictor from the model and using 
this new model we predict our data (calculate expected frequencies, just like the chi-square 
test) and then see how well the model fits the data (i.e. are the expected frequencies close 
to the observed frequencies?). If the fit of the new model is not very different from the 
more complex model, then we abandon the complex model in favour of the new one. Put 
another way, we assume the term we removed was not having a significant impact on the 
ability of our model to predict the observed data.

However, the analysis doesn’t just remove terms randomly, it does it hierarchically. So, we 
start with the saturated model and then remove the highest-order interaction, and assess the 
effect that this has. If removing the interaction term has no effect on the model then it’s obvi-
ously not having much of an effect; therefore, we get rid of it and move on to remove any 
lower-order interactions. If removing these interactions has no effect then we carry on to any 
main effects until we find an effect that does affect the fit of the model if it is removed.

To put this in more concrete terms, at the beginning of the section on loglinear analysis I 
asked you to imagine we’d extended our training and line-dancing example to incorporate a 
sample of dogs. So, we now have three variables: animal (dog or cat), training (food or affec-
tion) and dance (did they dance or not?). Just as in ANOVA this results in three main effects:

Animal	

Training	

Dance	

three interactions involving two variables:

Animal 	 × Training

Animal 	 × Dance

Training 	 × Dance

and one interaction involving all three variables:

Animal 	 × Training × Dance

When I talk about backward elimination all I mean is that loglinear analysis starts by 
including all of these effects; it then takes the highest-order interaction (in this case the 
three-way interaction of animal × training × dance) and removes it. It constructs a new 
model without this interaction, and from the model calculates expected frequencies. It 
then compares these expected frequencies (or model frequencies) to the observed frequen-
cies using the standard equation for the likelihood ratio statistic (see 18.3.3). If the new 
model significantly changes the likelihood ratio statistic, then removing this interaction 
term has a significant effect on the fit of the model and we know that this effect is statisti-
cally important. If this is the case then SPSS will stop there and tell you that you have a 
significant three-way interaction! It won’t test any other effects because with categorical 
data all lower-order effects are consumed within higher-order effects. If, however, remov-
ing the three-way interaction doesn’t significantly affect the fit of the model then SPSS 
moves on to lower-order interactions. Therefore, it looks at the animal × training, animal × 
dance and training × dance interactions in turn and constructs models in which these terms 
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are not present. For each model it again calculates expected values and compares them to 
the observed data using a likelihood ratio statistic.3 Again, if any one of these models does 
result in a significant change in the likelihood ratio then the term is retained and SPSS 
won’t move on to look at any main effects involved in that interaction (so, if the animal × 
training interaction is significant it won’t look at the main effects of animal or training). 
However, if the likelihood ratio is unchanged then the analysis removes the offending 
interaction term and moves on to look at main effects.

I mentioned that the likelihood ratio statistic (see section 18.3.3) is used to assess each 
model. From the equation it should be clear how this equation can be adapted to fit any 
model: the observed values are the same throughout, and the model frequencies are sim-
ply the expected frequencies from the model being tested. For the saturated model, this 
statistic will always be 0 (because the observed and model frequencies are the same so the 
ratio of observed to model frequencies will be 1, and ln(1) = 0), but as we’ve seen, in other 
cases it will provide a measure of how well the model fits the observed frequencies. To test 
whether a new model has changed the likelihood ratio, all we need do is to take the likeli-
hood ratio for a model and subtract from it the likelihood statistic for the previous model 
(provided the models are hierarchically structured):

Lχ2
Change =Lχ2Current Model −Lχ2Previous Model (18.5)

I’ve tried in this section to give you a flavour of how loglinear analysis works, without 
actually getting too much into the nitty-gritty of the calculations. I’ve tried to show you 
how we can conceptualize a chi-square analysis as a linear model and then relied on what 
I’ve previously told you about ANOVA to hope that you can extrapolate these conceptual 
ideas to understand roughly what’s going on. The curious among you might want to know 
exactly how everything is calculated and to these people I have two things to say: ‘I don’t 
know’ and ‘I know a really good place where you can buy a straitjacket’. If you’re that 
interested then Tabachnick and Fidell (2007) have, as ever, written a wonderfully detailed 
and lucid chapter on the subject which frankly puts this feeble attempt to shame. Still, 
assuming you’re happy to live in relative ignorance, we’ll now have a look at how to do a 
loglinear analysis.

18.7. Assumptions in loglinear analysis 2

Loglinear analysis is an extension of the chi-square test and so has similar assumptions; 
that is, an entity should fall into only one cell of the contingency table (i.e. cells of the 
table must be independent) and the expected frequencies should be large enough for a reli-
able analysis. In loglinear analysis with more than two variables it’s all right to have up to 
20% of cells with expected frequencies less than 5; however, all cells must have expected 
frequencies greater than 1. If this assumption is broken the result is a radical reduction in 
test power – so dramatic in fact that it may not be worth bothering with the analysis at all. 
Remedies for problems with expected frequencies are: (1) collapse the data across one of 
the variables (preferably the one you least expect to have an effect!); (2) collapse levels of 
one of the variables; (3) collect more data; or (4) accept the loss of power.

If you want to collapse data across one of the variables then certain things have to be 
considered:

3 It’s worth mentioning that for every model, the computation of expected values differs, and as the designs get 
more complex, the computation gets increasingly tedious and incomprehensible (at least to me); however, you 
don’t need to know the calculations to get a feel for what is going on.
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1 The highest-order interaction should be non-significant.

2 At least one of the lower-order interaction terms involving the variable to be deleted 
should be non-significant.

Let’s take the example we’ve been using. Say we wanted to delete the animal variable; then 
for this to be valid, the animal × training × dance variable should be non-significant, and either 
the animal × training or the animal × dance interaction should also be non-significant. You can 
also collapse categories within a variable. So, if you had a variable of ‘season’ relating to spring, 
summer, autumn and winter, and you had very few observations in winter, you could consider 
reducing the variable to three categories: spring, summer, autumn/winter perhaps. However, 
you should really only combine categories that it makes theoretical sense to combine.

Finally, some people overcome the problem by simply adding a constant to all cells of the 
table, but there really is no point in doing this because it doesn’t address the issue of power.

18.8. Loglinear analysis using SPSS 2

18.8.1.  Initial considerations 2

Data are entered for loglinear analysis in the same way as for the chi-square test (see sec-
tions 18.5.1 and 18.5.2). The data for the cat and dog example are in the file CatsandDogs.
sav; open this file. Notice that it has three variables (Animal, Training and Dance) and each 
one contains codes representing the different categories of these variables. To begin with, 
we should use the crosstabs command to produce a contingency table of the data.

SELF-TEST  Use section 18.5.3 to help you to create 
a contingency table of these data with dance as the 
columns, the type of training as rows and the type of 
animal as a layer

The crosstabulation table produced by SPSS (SPSS Output 18.5) contains the number of 
cases that fall into each combination of categories. The top half of this table is the same as 
SPSS Output 18.1 because the data are the same (we’ve just added some dogs) and if you 
look back in this chapter there’s a summary of what this tells us. For the dogs we can sum-
marize the data in a similar way. In total 49 dogs danced (70% of the total) and of these 20 
were trained using food (40.8% of the total that danced) and 29 were trained with affec-
tion (59.2% of the total that danced). Further, 21 dogs didn’t dance at all (30% of the total) 
and of those that didn’t dance, 14 were trained using food as a reward (66.7% of the total 
that didn’t dance) and 7 were trained using affection (33.3% of the total that didn’t dance). 
The numbers of dogs can be read from the rows labelled Count and the percentages are 
read from the rows labelled % within Did they dance? In summary, a lot more dogs danced 
(70%) than didn’t (30%). About half of those that danced were trained with affection and 
about half with food as a reward. In short, dogs seem more willing to dance than cats (70% 
compared to 38%), and they’re not too worried what training method is used.
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�efore moving on to look at the test statistics it is vital that we check that the assumptions 
of loglinear analysis have been met: specifically, there should be no expected counts less than 
1, and no more than 20% less than 5. If you look at the expected counts in the crosstabulation 
table, it should be clear that the smallest expected count is 10.2 (for dogs that were trained 
with food but didn’t dance). This value still exceeds 5 and so the assumption has been met.

18.8.2.  The loglinear analysis 2

Having established that the assumptions have been met we can move on to the main analy-
sis. The way to run loglinear analysis that is consistent with my section on the theory of the 
analysis is to select  to access the dialog box in 
Figure 18.5. Select any variables that you want to include in the analysis by selecting them 
with the mouse (remember that you can select several at the same time by holding down the 
Ctrl key) and then dragging them to the box labelled Factor(s) (or click on ). When there 

SPSS OuTPuT 18.5
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is a variable in this box the  button becomes active. Just like the t-test and several 
of the non-parametric tests we encountered in Chapter 15, we have to tell SPSS the codes 
that we’ve used to define our categorical variables. Select a variable in the Factor(s) box and 
then click on  to activate a dialog box that allows you to specify the value of the 
minimum and maximum code that you’ve used for that variable. In fact all three variables 
in this example have the same codes (they all have two categories and I coded them all with 
0 and 1) so we can select all three, then click on  and type 0 in the Minimum box 
and 1 in the Maximum box. When you’ve done this click on  to return to the main 
dialog box.

The default options in this main box are fine; the main thing to note is that by default 
SPSS uses backward elimination (as I’ve described elsewhere). You can actually select Enter 
in a single step, which is a non-hierarchical method (in which all effects are entered and 
evaluated, like forced entry in multiple regression). In loglinear analysis the combined 
effects take precedence over lower-order effects and so there is little to recommend non-
hierarchical methods.

If you click on  then this will open a dialog box very similar to those we saw in 
ANCOVA (e.g. see Figure 11.8). �y default SPSS fits the saturated model, and this is what 
we should be fitting. However, you can define your own model if you like by specifying 
individual main effects and interaction terms. Unless you have a very good reason for not 
fitting the saturated model, then leave well alone!

Figure 18.5
Main dialog box 
for loglinear 
analysis
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Clicking on  opens the dialog box in Figure 18.6. There are few options to play 
around with really (the default options are fine). The only two things you can select are 
Parameter estimates, which will produce a table of parameter estimates for each effect (by 
parameter estimates I just mean a z-score and associated confidence interval). The other 
thing is that you can ask for an Association table, which will produce chi-square statistics 
for all of the effects in the model. This may be useful in some situations, but as I’ve said 
before, if the higher-order interactions are significant then we shouldn’t really be interested 
in the lower-order effects because they’re confounded with the higher-order effects. When 
you’ve finished with the options click on  to return to the main dialog box and then 
click on  to run the analysis.

18.9. Output from loglinear analysis 3

SPSS Output 18.6 shows the initial output from the loglinear analysis. The first table tells 
us that we have 270 cases (remember that we had 200 cats and 70 dogs and this is a useful 
check that no cats or dogs have been lost – they do tend to wander off). SPSS then lists all 
of the factors in the model and the number of levels they have (in this case all have two 
levels). To begin with, SPSS fits the saturated model (all terms are in the model including 
the highest-order interaction, in this case the animal × training × dance interaction). The 
second table gives us the observed and expected counts for each of the combinations of 
categories in our model. These values should be the same as the original contingency table 
except that each cell has 0.5 added to it (this value is the default and is fine, but if you want 
to change it you can do so by changing Delta in Figure 18.6). 

The final bit of this initial output gives us two goodness-of-fit statistics (Pearson’s chi-
square and the likelihood ratio statistic, both of which we came across at the beginning 
of this chapter). In this context these tests are testing the hypothesis that the frequen-
cies predicted by the model (the expected frequencies) are significantly different from the 
actual frequencies in our data (the observed frequencies). Now, obviously, if our model is 
a good fit of the data then the observed and expected frequencies should be very similar 

Figure 18.6
Options for 
loglinear analysis
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(i.e. not significantly different). Therefore, we want these statistics to be non-significant. 
A significant result would mean that our model was significantly different from our data 
(i.e. the model is a bad fit of the data). In large samples these statistics should give the same 
results but the likelihood ratio statistic is preferred in small samples. In this example, both 
statistics are 0 and yield a probability value, p, of ‘.’, which is a rather confusing way of 
saying that the probability cannot be computed. The reason why it cannot be computed is 
because at this stage the model perfectly predicts the data. If you read the theory section 
this shouldn’t surprise you because I showed there that the saturated model is a perfect fit 
of the data and I also mentioned that the resulting likelihood ratio would be zero. What’s 
interesting in loglinear analysis is what bits of the model we can then remove without sig-
nificantly affecting the fit of the model.

The next part of the output (SPSS Output 18.7) tells us something about which com-
ponents of the model can be removed. The first bit of the output is labelled K-Way and 
Higher-Order Effects and there are rows showing likelihood ratio and Pearson chi-square 
statistics when K = 1, 2 and 3 (as we go down the rows of the table). The first row (K = 
1) tells us whether removing the one-way effects (i.e. the main effects of animal, training 
and dance) and any higher-order effects will significantly affect the fit of the model. There 
are lots of higher-order effects here – there are the two-way interactions and the three-
way interaction – and so this is basically testing whether if we remove everything from 
the model there will be a significant effect on the fit of the model. This effect is highly 
significant. If this test was non-significant (if the values of Sig. were above .05) then this 
would tell you that removing everything from your model would not affect the fit of the 
model (in other words, overall the combined effect of your variables and interactions is 
not significant). The next row of the table (K = 2) tells us whether removing the two-way 
interactions (i.e. the animal × training, animal × dance and training × dance interactions) 

SPSS OuTPuT 18.6



716 d iSCoVer iNg Stat iSt iCS  US iNg SPSS

and any higher-order effects will affect the model. In this case there is a higher-order effect 
(the three-way interaction) so this is testing whether removing the two-way interactions 
and the three-way interaction would affect the fit of the model. This is also highly signifi-
cant indicating that if we removed the two-way interactions and the three-way interaction 
then this would have a significant detrimental effect on the model. The final row (K = 3) 
is testing whether removing the three-way effect and higher-order effects will significantly 
affect the fit of the model. Now of course, the three-way interaction is the highest-order 
effect that we have, so this is simply testing whether removal of three-way interaction (i.e. 
the animal × training × dance interaction) will significantly affect the fit of the model. If 
you look at the two columns labelled Sig. then you can see that both chi-square and likeli-
hood ratio tests agree that removing this interaction will significantly affect the fit of the 
model (because the probability value is less than .05). 

The next part of the table expresses the same thing but without including the higher-
order effects. It’s labelled K-way Effects and it lists tests for when K = 1, 2 and 3. The first 
row (K = 1), therefore, tests whether removing the main effects (the one-way effects) has 
a significant detrimental effect on the model. The probability values are smaller than .05 
indicating that if we removed the main effects of animal, training and dance from our 
model it would significantly affect the fit of the model (in other words, these effects in 
combination are significant predictors of the data). The second row (K = 2) tests whether 
removing the two-way interactions has a significant detrimental effect on the model. The 
probability values are less than .05 indicating that if we removed the animal × training, 
animal × dance and training × dance interactions then this would significantly reduce how 
well the model fits the data. In other words, one or more of these two-way interactions is 
a significant predictor of the data. The final row (K = 3) tests whether removing the three-
way interaction has a significant detrimental effect on the model. The probability values 
are less than .05 indicating that if we removed the animal × training × dance interaction 
then this would significantly reduce how well the model fits the data. In other words, this 
three-way interaction is a significant predictor of the data. This row should be identical 
to the final row of the top of the table (the K-way and Higher Order Effects) because it is 
the highest-order effect and so in the previous table there were no higher-order effects to 
include in the test (look at the output and you’ll see the results are identical).

What this is actually telling us is that the three-way interaction is significant: removing it 
from the model has a significant effect on how well the model fits the data. We also know 
that removing all two-way interactions has a significant effect on the model, but you have 
to remember that loglinear analysis should be done hierarchically and so these two-way 
interactions aren’t of interest to us because the three-way interaction is significant (we’d 
look only at these effects if the three-way interaction were non-significant).

If you selected an Association table in Figure 18.6 then you’ll get the table in SPSS 
Output 18.8. This simply breaks down the table that we’ve just looked at into its compo-
nent parts. So, for example, although we know from the previous output that removing 
all of the two-way interactions significantly affects the model, we don’t know which of the 

SPSS OuTPuT 18.7
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two-way interactions is having the effect. This table tells us. We get a Pearson chi-square 
test for each of the two-way interactions and the main effects and the column labelled Sig. 
tells us which of these effects is significant (values less than .05 are significant). We can tell 
from this that the animal × dance, training × dance and the animal × training interactions 
are all significant. Likewise, we saw in the previous output that removing the one-way 
effects (the main effects of animal, training and dance) also significantly affected the fit 
of the model, and these findings are confirmed here because the main effects of animal 
and training are both significant. However, the main effect of dance is not (the probability 
value is greater than .05). Interesting as these findings are, we should ignore them because 
of the hierarchical nature of loglinear analysis: these effects are all confounded with the 
higher-order interaction of animal × training × dance.

If you selected the Parameter estimates in Figure 18.6 then you’ll get the table in SPSS 
Output 18.9. This simply tells us the same thing as the previous table (i.e. it provides indi-
vidual estimates for each effect) but it does so using a z-score rather than a chi-square test. 
This can be useful because we get confidence intervals, and also because the value of z gives 
us a useful comparison between effects (if you ignore the plus or minus sign, the bigger the 
z, the more significant the effect). So, if you look at the z-values you can see that the main 
effect of animal is the most important effect in the model (z = 4.84) followed by the animal 
× training interaction (z = −4.82) and then the animal × training × dance interaction (z = 
4.32) and so on. However, it’s worth reiterating that in this case we don’t need to concern 
ourselves with anything other than the three-way interaction.

The final bit of output (SPSS Output 18.10) deals with the backward elimination. SPSS 
will begin with the highest-order effect (in this case the animal × training × dance inter-
action); it removes it from the model, sees what effect this has, and if it doesn’t have a 
significant effect then it moves on to the next highest effects (in this case the two-way inter-
actions). However, we’ve already seen that removing the three-way interaction will have 
a significant effect and this is confirmed at this stage by the table labelled Step Summary, 
which confirms that removing the three-way interaction has a significant effect on the 
model. Therefore, the analysis stops here: the three-way interaction is not removed and 
SPSS evaluates this final model.

SPSS OuTPuT 18.8
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SPSS OuTPuT 18.10

Finally SPSS evaluates this final model with the likelihood ratio 
statistic and we’re looking for a non-significant test statistic which 
indicates that the expected values generated by the model are not 
significantly different from the observed data (put another way, the 
model is a good fit of the data). In this case the result is very non-
significant indicating that the model is a good fit of the data.4

The next step is to try to interpret this interaction. The first useful thing 
we can do is to plot the frequencies across all of the different categories. 
You should plot the frequencies in terms of the percentage of the total 
(these values can be found in the crosstabulation table in SPSS Output 
18.5 in the rows labelled % of total). The resulting graph is shown in 
Figure 18.7 and this shows what we already know about cats: they will 
dance (or do anything else for that matter) when there is food involved 
but if you train them with affection they’re not interested. Dogs on the 

other hand will dance when there’s affection involved (actually more dogs danced than didn’t 
dance regardless of the type of reward, but the effect is more pronounced when affection was 
the training method). In fact, both animals show similar responses to food training, it’s just that 
cats won’t do anything for affection. So cats are sensible creatures that only do stupid stuff when 
there’s something in it for them (i.e. food), whereas dogs are just plain stupid! 

SELF-TEST  Can you use the Chart Builder to replicate 
the graph in Figure 18.7?

4 The fact that the analysis has stopped here is unhelpful because I can’t show you how it would proceed in the 
event of a non-significant three-way interaction. However, it does keep things simple and if you’re interested in 
exploring loglinear analysis further, the task at the end of the chapter shows you what happens when the highest 
order interaction is not significant.

I don’t need a loglinear
analysis to tell me that cats are

vastly superior to dogs!
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18.10. Following up loglinear analysis 2

An alternative way to interpret a three-way interaction is to conduct chi-square analy-
sis at different levels of one of your variables. For example, to interpret our animal × 
training × dance interaction, we could perform a chi-square test on training and dance 
but do this separately for dogs and cats (in fact the analysis for cats will be the same as 
the example we used for chi-square). You can then compare the results in the different 
animals.

SELF-TEST  Use the split file command (see section 
5.4.3) to run a chi-square test on Dance and Training 
for dogs and cats.

The results and interpretation for cats are in SPSS Output 18.2 and for dogs the output is 
shown in SPSS Output 18.11. For dogs there is still a significant relationship between the 
types of training and whether they danced but it is weaker (the chi-square is 3.93 compared 
to 25.2 in the cats).5 This reflects the fact that dogs are more likely to dance if given affec-
tion than if given food, the opposite of cats! 

5 The chi-square statistic depends on the sample size, so really you need to calculate effect sizes and compare them 
to make this kind of statement (unless you had equal numbers of dogs and cats!).

Figure 18.7
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18.11. Effect sizes in loglinear analysis 2

As with Pearson’s chi-square, one of the most elegant ways to report your effects is in terms 
of odds ratios. Odds ratios are easiest to understand for 2 × 2 contingency tables and so if 
you have significant higher-order interactions, or your variables have more than two cat-
egories, it is worth trying to break these effects down into logical 2 × 2 tables and calculat-
ing odds ratios that reflect the nature of the interaction. So, for example, in this example 
we could calculate odds ratios for dogs and cats separately. We have the odds ratios for cats 
already (section 18.5.5), and for dogs we would get:

oddsdancing after food =
number that had food and danced

number that had food but didn’t dance

= 20

14
=1:43

oddsdancing after affection =
number that had affection and danced

number that had affection but didn’t dance

= 29

7

=4:14

odds ratio=
oddsdancing after food

oddsdancing after affection

= 1:43

4:14

=0:35

This tells us that if a dog was trained with food the odds of their dancing were 0.35 times 
the odds if they were rewarded with affection (i.e. they were less likely to dance). Another 
way to say this is that the odds of their dancing were 1/0.35 = 2.90 times lower if they 
were trained with food instead of affection. Compare this to cats where the odds of danc-
ing were 6.65 higher if they were trained with food rather than affection. As you can see, 
comparing the odds ratios for dogs and cats is an extremely elegant way to present the 
three-way interaction term in the model.

SPSS OuTPuT 18.11
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18.12. Reporting the results of loglinear analysis 2

When reporting loglinear analysis you need to report the likelihood ratio statistic for the 
final model, usually denoted just by χ2. For any terms that are significant you should report 
the chi-square change, or you could consider reporting the z-score for the effect and its 
associated confidence interval. If you break down any higher-order interactions in subse-
quent analyses then obviously you need to report the relevant chi-square statistics (and 
odds ratios). For this example we could report:

 The three-way loglinear analysis produced a final model that retained all effects. 
The likelihood ratio of this model was χ2 (0) = 0, p = 1. This indicated that the 
highest-order interaction (the animal × training × dance interaction) was significant, 
χ2 (1) = 20.31, p < .001. To break down this effect, separate chi-square tests on the 
training and dance variables were performed separately for dogs and cats. For cats, 
there was a significant association between the type of training and whether or not 
cats would dance, χ2 (1) = 25.36, p < .001; this was true in dogs also, χ2 (1) = 3.93, 
p < .05. Odds ratios indicated that the odds of dancing were 6.65 higher after food 
than affection in cats, but only 0.35 in dogs (i.e. in dogs, the odds of dancing were 
2.90 times lower if trained with food compared to affection). Therefore, the analysis 
seems to reveal a fundamental difference between dogs and cats: cats are more likely 
to dance for food rather than affection, whereas dogs are more likely to dance for 
affection than food.

             CRAMMING SAM’S TIPS  

 If you want to test the relationship between more than two categorical variables you can do this with loglinear analysis.

 Loglinear analysis is hierarchical: the initial model contains all main effects and interactions. Starting with the highest-order 
interaction, terms are removed to see whether their removal significantly affects the fit of the model. If it does then this term 
is not removed and all lower-order effects are ignored.

 Look at the table labelled K-Way and Higher Order Effects to see which effects have been retained in the final model. Then 
look at the table labelled Partial Associations to see the individual significance of the retained effects (look at the column 
labelled Prob: values less than .05 indicate significance).

 Look at the Goodness-of-fit test statistics for the final model: if this model is a good fit of the data then this statistic should 
be non-significant (Sig. should be bigger than .05).

 Look at the crosstabulation table to interpret any significant effects (% of total for cells is the best thing to look at).
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What have I discovered about statistics? 1

When I wrote the first edition of this book I had always intended to do a chapter on 
loglinear analysis, but by the time I got to that chapter I had already written 300 pages 
more than I was contracted to do, and had put so much effort into the rest of it that, 
well, the thought of that extra chapter was making me think of large cliffs and jump-
ing. When the second edition needed to be written, I wanted to make sure that at the 
very least I did a loglinear chapter. However, when I came to it, I’d already written 200 
pages more than I was supposed to for this new edition, and with deadlines fading into 
the distance, history was repeating itself. It won’t surprise you to know then that I was 
really happy to have written the damn thing! This chapter has taken a very brief look at 
analysing categorical data. What I’ve tried to do is to show you how really we approach 
categorical data in much the same way as any other kind of data: we fit a model, we 
calculate the deviation between our model and the observed data, and we use that to 
evaluate the model we’ve fitted. I’ve also tried to show that the model we fit is the same 
one that we’ve come across throughout this book: it’s a linear model (regression). When 
we have only two variables we can use Pearson’s chi-square test or the likelihood ratio 
test to look at whether those two variables are associated. In more complex situations, 
we simply extend these models into something known as a loglinear model. This is a bit 
like ANOVA for categorical data: for every variable we have, we get a main effect but we 
also get interactions between variables. Loglinear analysis simply evaluates all of these 
effects hierarchically to tell us which ones best predict our outcome.

Fortunately the experience of this loglinear chapter taught me a valuable lesson, 
which is never to agree to write a chapter about something that you know very little 
about, and if you do then definitely don’t leave it until the very end of the writing pro-
cess when you’re under pressure and mentally exhausted. It’s lucky that we learn from 
our mistakes isn’t it …?

Key terms that I’ve discovered 
Chi-square test
Contingency table
Cramer’s V
Fisher’s exact test
Goodman and Kruskal’s λ

Loglinear analysis
Odds ratio
Phi
Saturated model
Yates’s continuity correction

Smart Alex’s tasks

Task 1	 : Certain editors at Sage like to think they’re a bit of a whiz at football (soccer 
if you prefer). To see whether they are better than Sussex lecturers and postgradu-
ates we invited various employees of Sage to join in our football matches (oh, sorry, 
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I mean we invited them down for important meetings about books). Every player was 
only allowed to play in one match. Over many matches, we counted the number of 
players that scored goals. The data are in the file SageEditorsCan’tPlayFootball.sav. 
Do a chi-square test to see whether more publishers or academics scored goals. We 
predict that Sussex people will score more than Sage people. 3  

Task 2	 : I wrote much of this update while on sabbatical in The Netherlands (I have 
a real soft spot for Holland). However, living there for three months did enable me 
to notice certain cultural differences to England. The Dutch are famous for travel-
ling by bike; they do it much more than the English. However, I noticed that many 
more Dutch people cycle while steering with only one hand. I pointed this out to 
one of my friends, �irgit Mayer, and she said that I was being a crazy English fool 
and that Dutch people did not cycle one-handed. Several weeks of my pointing at 
one-handed cyclists and her pointing at two-handed cyclists ensued. To put it to the 
test I counted the number of Dutch and English cyclists who ride with one or two 
hands on the handlebars (Handlebars.sav). Can you work out whether �irgit or  
I am right? 1  

Task 3	 : I was interested in whether horoscopes are just a figment of people’s minds. 
Therefore, I got 2201 people, made a note of their star sign (this variable, obviously, 
has 12 categories: Capricorn, Aquarius, Pisces, Aries, Taurus, Gemini, Cancer, Leo, 
Virgo, Libra, Scorpio and Sagittarius) and whether they believed in horoscopes (this 
variable has two categories: believer or unbeliever). I then sent them a horoscope in 
the post of what would happen over the next month: everybody, regardless of their 
star sign, received the same horoscope, which read ‘August is an exciting month for 
you. You will make friends with a tramp in the first week of the month and cook him 
a cheese omelette. Curiosity is your greatest virtue, and in the second week, you’ll 
discover knowledge of a subject that you previously thought was boring, statistics 
perhaps. You might purchase a book around this time that guides you towards this 
knowledge. Your new wisdom leads to a change in career around the third week, 
when you ditch your current job and become an accountant. �y the final week you 
find yourself free from the constraints of having friends, your boy/girlfriend has left 
you for a Russian ballet dancer with a glass eye, and you now spend your weekends 
doing loglinear analysis by hand with a pigeon called Hephzibah for company.’ At 
the end of August I interviewed all of these people and I classified the horoscope as 
having come true, or not, based on how closely their lives had matched the fictitious 
horoscope. The data are in the file Horoscope.sav. Conduct a loglinear analysis to see 
whether there is a relationship between the person’s star sign, whether they believe in 
horoscopes and whether the horoscope came true. 3

Task 4	 : On my statistics course students have weekly SPSS classes in a computer 
laboratory. These classes are run by postgraduate tutors but I often pop in to help 
out. I’ve noticed in these sessions that many students are studying Facebook rather 
more than they are studying the very interesting statistics assignments that I have set 
them. I wanted to see the impact that this behaviour had on their exam performance. 
I collected data from all 260 students on my course. First I checked their Attendance 
and classified them as having attended either more or less than 50% of their lab 
classes. Next, I classified them as being either someone who looked at Facebook dur-
ing their lab class, or someone who never did. Lastly, after the Research Methods in 
Psychology (RMiP) exam, I classified them as having either passed or failed (Exam). 
The data are in Facebook.sav. Do a loglinear analysis on the data to see if there is an 
association between studying Facebook and failing your exam. 3

Answers can be found on the companion website.
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Further reading
Hutcheson, G., & Sofroniou, N. (1999). The multivariate social scientist. London: Sage.
Tabachnick, �. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). �oston: Allyn & 

�acon. (Chapter 16 is a fantastic account of loglinear analysis.)

Online tutorial
The companion website contains the following Flash movie tutorial to accompany this chapter:

 Chi-Square test using SPSS

Interesting real research
�eckham, A. S. (1929). Is the Negro happy? A psychological analysis. Journal of Abnormal and Social 

Psychology, 24, 186–190.
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Figure 19.1
Having a therapy 
session in 2007

19.1. What will this chapter tell me? 1

Over the last couple of chapters we saw that I had gone from a child having dreams and 
aspirations of being a rock star, to becoming a living (barely) statistical test. A more dramatic 
demonstration of my complete failure to achieve my life’s ambitions I can scarcely imagine. 
Having devoted far too much of my life to statistics it was time to unlock the latent rock 
star once more. The second edition of the book had left me in desperate need for some 
therapy and, therefore, at the age of 29 I decided to start playing the drums (there’s a joke 
in there somewhere about it being the perfect instrument for a failed musician, but really 
they’re much harder to play than people think). A couple of years later I had a call from an 
old friend of mine, Doug, who used to be in a band that my old band Scansion used to play 
with a lot: ‘Remember the last time I saw you we talked about you coming and having a 
jam with us?’ I had absolutely no recollection whatsoever of him saying this so I responded 

19Multilevel linear models
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‘Yes’. ‘Well, how about it then?’ he said. ‘OK,’ I said, ‘you arrange it and I’ll bring my 
guitar.’ ‘No, you whelk,’ he said, ‘we want you to drum and maybe you could learn some of 
the songs on the CD I gave you last year?’ I’d played his band’s CD and I liked it, but there 
was no way on this earth that I could play the drums as well as their drummer. ‘Sure, no 
problem,’ I lied. I spent the next two weeks playing along to this CD as if my life depended 
on it and when the rehearsal came, much as I’d love to report that I drummed like a lord, 
I didn’t. I did, however, nearly have a heart attack and herniate everything in my body that 
it’s possible to herniate (really, the music is pretty fast!). Still, we had another rehearsal, 
and then another and, well, three years down the line we’re still having them. The only 
difference is that now I can play the songs at a speed that makes their old recordings seem 
as though a sedated snail was on the drums (www.myspace.com/fracturepattern). The point 
is that it’s never too late to learn something new. This is just as well because, as a man who 
clearly doesn’t learn from his mistakes, I agreed to write a chapter on multilevel linear 
models, a subject about which I know absolutely nothing. I’m writing it last, when I feel 
mentally exhausted and stressed. Hopefully at some point between now and the end of 
writing the chapter I will learn something. With a bit of luck you will too.

19.2. Hierarchical data 2

In all of the analyses in this book so far we have treated data as though they 
are organized at a single level. However, in the real world, data are often 
hierarchical. This just means that some variables are clustered or nested 
within other variables. For example, when I’m not writing statistics books 
I spend most of my time researching how anxiety develops in children 
below the age of 10. This typically involves my running experiments in 
schools. When I run research in a school, I test children who have been 
assigned to different classes, and who are taught by different teachers. The 
classroom that a child is in could conceivably affect my results. Let’s imagine 
I test in two different classrooms. The first class is taught by Mr Nervous. 
Mr Nervous is very anxious and often when he supervises children he 

tells them to be careful, or that things that they do are dangerous, or that they might hurt 
themselves. The second class is taught by Little Miss Daredevil.1 She is very carefree and 
she believes that children in her class should have the freedom to explore new experiences. 
Therefore, she is always telling them not to be scared of things and to explore new situa-
tions. One day I go into the school to test the children. I take in a big animal carrier, which 
I tell them has an animal inside. I measure whether they will put their hand in the carrier 
to stroke the animal. Children taught by Mr Nervous have grown up in an environment 
where their teacher reinforces caution, whereas children taught by Miss Daredevil have 
been encouraged to embrace new experiences. Therefore, we might expect Mr Nervous’s 
children to be more reluctant to put their hand in the box because of the classroom experi-
ences that they have had. The classroom is, therefore, known as a contextual variable. In 
reality, as an experimenter I would be interested in a much more complicated situation. For 
example, I might tell some of the children that the animal is a bloodthirsty beast, whereas 
I tell others that the animal is friendly. Now obviously I’m expecting the information I give 
the children to affect their enthusiasm for stroking the animal. However, it’s also possible 
that their classroom has an effect. Therefore, my manipulation of the information that I 
give the children also has to be placed within the context of the classroom to which the 

1 Those of you who don’t spot the Mr Men references here, check out http://www.mrmen.com. Mr Nervous used 
to be called Mr Jelly and was a pink jelly-shaped blob, which in my humble opinion was better than his current 
incarnation.

What are
hierarchical data?
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child belongs. My threat information is likely to have more impact on Mr Nervous’s chil-
dren than it will on Miss Daredevil’s children. One consequence of this is that children 
within Mr Nervous’s class will be more similar to each other than they are to children in 
Miss Daredevil’s class and vice versa.  

Figure 19.2 illustrates this scenario more generally. In a big data set, we might have col-
lected data from lots of children. This is the bottom of the hierarchy and is known as a level 
1 variable. So, children (or cases) are our level 1 variable. However, these children are organ-
ized by classroom (children are said to be nested within classes). The class to which a child 
belongs is a level up from the participant in the hierarchy and is said to be a level 2 variable.

The situation that I have just described is the simplest hierarchy that you can have 
because there are just two levels. However, you can have other layers to your hierarchy. 
The easiest way to explain this is to stick with our example of my testing children in dif-
ferent classes and then to point out the obvious fact that classrooms are themselves nested 
within schools. Therefore, if I ran a study incorporating lots of different schools, as well 
as different classrooms within those schools, then I would have to add another level to the 
hierarchy. We can apply the same logic as before, in that children in particular schools will 
be more similar to each other than to children in different schools. This is because schools 
tend to reflect their social demographic (which can differ from school to school) and they 
may differ in their policies also. Figure 19.3 shows this scenario. There are now three lev-
els in the hierarchy: the child (level 1), the class to which the child belongs (level 2) and 
the school within which that class exists (level 3). In this situation we have two contextual 
variables: school and classroom.

Hierarchical data structures need not apply only to between-participant situations. We 
can also think of data as being nested within people. In this situation the case, or person, is 
not at the bottom of the hierarchy (level 1), but is further up. A good example is memory. 
Imagine that after giving children threat information about my caged animal I asked them a 
week later to recall everything they could about the animal. For each child there are many 
facts that they could recall. Let’s say that I originally gave them 15 pieces of information; 
some children might recall all 15 pieces of information, but others might remember only 
2 or 3 bits of information. The bits of information, or memories, are nested within the 
person and their recall depends on the person. The probability of a given memory being 
recalled depends on what other memories are available, and the recall of one memory 
may have knock-on effects for what other memories are recalled. Therefore, memories are 
not independent units. As such, the person acts as a context within which memories are 
recalled (Wright, 1998).

Figure 19.2
An example 
of a two-level 
hierarchical 
data structure. 
Children 
(level 1) are 
organized within 
classrooms 
(level 2)
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Figure 19.4 shows the structure of the situation that I have just described. The child is our 
level 2 variable, and within each child there are several memories (our level 1 variable). Of 
course we can also have levels of the hierarchy above the child. So, we could still, for example,  
factor in the context of the class from which they came (as I have done in Figure 19.4) as a 
level 3 variable. Indeed, we could even include the school again as a level 4 variable!

19.2.1.  The intraclass correlation 2

You might well wonder why it matters that data are hierarchical (or not). The main prob-
lem is that the contextual variables in the hierarchy introduce dependency in the data. In 
plain English this means that residuals will be correlated. I have alluded to this fact already 

Figure 19.3
An example of 
a three-level 
hierarchical data 
structure

Figure 19.4
An example of 
a three-level 
hierarchical 
data structure, 
where the level 
1 variable is 
a repeated 
measure 
(memories 
recalled)
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when I noted that children in Mr Nervous’s class would be more similar to each other than 
to children in Miss Daredevil’s class. In some sense, having the same teacher makes children 
more similar to each other. This similarity is a problem because in nearly every test we 
have covered in this book we assume that cases are independent. In other words, there is 
absolutely no correlation between residual scores of one child and another. However, when 
people are sampled from similar contexts, this independence is unlikely to be true. For 
example, Charlotte and Emily’s responses to the animal in the carrier have both been influ-
enced by Mr Nervous’s cautious manner, so their behaviour will be similar. Likewise, Kiki 
and Jip’s responses to the animal in the box have both been influenced by Miss Daredevil’s 
carefree manner, so their behaviour will be similar too. We have seen before that in ANOVA, 
for example, a lack of independence between cases is a huge problem that really affects the 
resulting test statistic – and not in a good way! (See section 10.2.10.)

By thinking about contextual variables and factoring them into the analysis we can over-
come this problem of non-independent observations. One way that we can do this is to use 
the intraclass correlation (ICC). We came across this measure in section 17.9.3 as a measure of 
inter-rater reliability, but it can also be used as a measure of dependency between scores. We’ll 
skip the formalities of calculating the ICC (but see Oliver Twisted if you’re keen to know), and 
we’ll just give a conceptual grasp of what it represents. In our two-level example of children 
within classes, the ICC represents the proportion of the total variability in the outcome that is 
attributable to the classes. It follows that if a class has had a big effect on the children within it 
then the variability within the class will be small (the children will behave similarly). As such, 
variability in the outcome within classes is minimized, and variability in the outcome between 
classes is maximized; therefore, the ICC is large. Conversely, if the class has little effect on the 
children then the outcome will vary a lot within classes, which will make differences between 
classes relatively small. Therefore, the ICC is small too. Thus, the ICC tells us that variability 
within levels of a contextual variable (in this case the class to which a child belongs) is small, 
but between levels of a contextual variable (comparing classes) is large. As such the ICC is a 
good gauge of whether a contextual variable has an effect on the outcome.

‘I have a dependency on gruel,’ whines Oliver. ‘Maybe I could measure 
this dependency if I knew more about the ICC.’ We’ll you’re so high 
on gruel Oliver that you have rather missed the point. Still, I did write 
an article on the ICC once upon a time (Field, 2005a) and it’s repro-
duced in the additional web material for your delight and amusement.

OLIVER TWISTED

Please, Sir, can I 
have some more … ICC?

19.2.2.  Benefits of multilevel models 2

Multilevel linear models have numerous uses. To convince you that trawling through this 
chapter is going to reward you with statistical possibilities beyond your wildest dreams, 
here are just a few (slightly overstated) benefits of multilevel models:

Cast aside the assumption of homogeneity of regression slopesMM : We saw in Chapter 
11 that when we use analysis of covariance we have to assume that the relationship 
between our covariate and our outcome is the same across the different groups that 
make up our predictor variable. However, this doesn’t always happen. Luckily, in 
multilevel models we can explicitly model this variability in regression slopes, thus 
overcoming this inconvenient problem.
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Say ‘bye bye’ to the assumption of independenceMM : We saw in Chapter 10 that when 
we use independent ANOVA we have to assume that the different cases of data are 
independent. If this is not true, little lizards climb out of your mattress while you’re 
asleep and eat you. Again, multilevel models are specifically designed to allow you 
to model these relationships between cases. Also, in Chapter 7 we saw that multiple 
regression relies on having independent observations. However, there are situations 
in which you might want to measure someone on more than one occasion (i.e. over 
time). Ordinary regression turns itself into cheese and hides in the fridge at the pros-
pect of cases of data that are related. Multilevel models eat these data for breakfast, 
with a piece of regression-flavoured cheese.

Laugh in the face of missing dataMM : I’ve spent a lot of this book extolling the virtues 
of balanced designs and not having missing data. Regression, ANOVA, ANCOVA and 
most of the other tests we have covered do strange things when data are missing or 
the design is not balanced. This can be a real pain. Multilevel models open the door 
to missing data, invite them to sit by the fire and make them a cup of tea. Multilevel 
models expect missing data, they love them in fact. So, if you have some kind of 
ANOVA or regression (of any variety) for which you have missing data, fear not, just 
do a multilevel model. 

I think you’ll agree that multilevel models are pretty funky. ‘Is there anything they can’t 
do?’ I hear you cry. Well, no, not really.

19.3. Theory of multilevel linear models 3

The underlying theory of multilevel models is very complicated indeed – far too compli-
cated for my little peanut of a brain to comprehend. Fortunately, the advent of computers 
and software like SPSS makes it possible for feeble-minded individuals such as myself to 
take advantage of this wonderful tool without actually needing to know the maths. Better 
still, this means I can get away with not explaining the maths (and really, I’m not kidding, 
I don’t understand any of it). What I will do though is try to give you a flavour of what mul-
tilevel models are and what they do by describing the key concepts within the framework 
of linear models that has permeated this whole book.

19.3.1.  An example 2

Throughout the first part of the chapter we will use an example to illustrate some of the 
concepts in multilevel models. Cosmetic surgery is on the increase at the moment. In the 
USA, there was a 1600% increase in cosmetic surgical and non-surgical treatments between 
1992 and 2002, and in 2004, 65,000 people in the UK underwent privately and publicly 
funded operations (Kellett, Clarke, & McGill, 2008). With the increasing popularity of this 
surgery, many people are starting to question the motives of those who want to go under 
the knife. There are two main reasons to have cosmetic surgery: (1) to help a physical prob-
lem such as having breast reduction surgery to relieve back ache; and (2) to change your 
external appearance, for example by having a face lift. Related to this second point, there 
is even some case for arguing that cosmetic surgery could be performed as a psychological 
intervention: to improve self-esteem (Cook, Rosser, & Salmon, 2006; Kellett et al., 2008). 
The main example for this chapter looks at the effects of cosmetic surgery on quality of life. 
The variables in the data file are:



731CHAPTER 19   MUlT I lEVEl  l INEAR MODElS

Post_QoLMM : This is a measure of quality of life after the cosmetic surgery. This is our 
outcome variable.
Base_QoLMM : We need to adjust our outcome for quality of life before the surgery.
SurgeryMM : This variable is a dummy variable that specifies whether the person has 
undergone cosmetic surgery (1) or whether they are on the waiting list (0), which 
acts as our control group.
ClinicMM : This variable specifies which of 10 clinics the person attended to have their 
surgery.
AgeMM : This variable tells us the person’s age in years.
BDIMM : It is becoming increasingly apparent that people volunteering for cosmetic sur-
gery (especially when the surgery is purely for vanity) might have very different per-
sonality profiles than the general public (Cook, Rossera, Toone, James, & Salmon, 
2006). In particular, these people might have low self-esteem or be depressed. When 
looking at quality of life it is important to assess natural levels of depression and this 
variable used the Beck Depression Inventory (BDI) to do just that.  
ReasonMM : This dummy variable specifies whether the person had/is waiting to have 
surgery purely to change their appearance (0), or because of a physical reason (1).
GenderMM : This variable simply specifies whether the person was a man (1) or a woman (0).

When conducting hierarchical models we generally work up from a very simple model 
to more complicated models and we will take that approach in this chapter. In doing so 
I hope to illustrate multilevel modelling by attaching it to frameworks that you already 
understand, such as ANOVA and ANCOVA.

Figure 19.5 shows the hierarchical structure of the data. Essentially, people being treated 
in the same surgeries are not independent of each other because they will have had surgery 
from the same surgeon. Surgeons will vary in how good they are, and quality of life will to 
some extent depend on how well the surgery went (if they did a nice neat job then qual-
ity of life should be higher than if they left you with unpleasant scars). Therefore, people 
within clinics will be more similar to each other than people in different clinics. As such, 
the person undergoing surgery is the level 1 variable, but there is a level 2 variable, a vari-
able higher in the hierarchy, which is the clinic attended.

Figure 19.5
Diagram to show 
the hierarchical 
structure of the 
cosmetic surgery 
data set. People 
are clustered 
within clinics. 
Note that for each 
person there 
would be a series 
of variables 
measured: 
surgery, BDI, 
age, gender, 
reason and pre-
surgery quality 
of life
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19.3.2.  Fixed and random coefficients 3

Throughout this book we have discussed effects and variables and these concepts should be 
very familiar to you by now. However, we have viewed these effects and variables in a relatively 
simple way: we have not distinguished between whether something is fixed or random.

What we mean by ‘fixed’ and ‘random’ can be a bit confusing because the terms are 
used in a variety of contexts. You hear people talk about fixed effects and random effects. An 
effect in an experiment is said to be a fixed effect if all possible treatment conditions that 
a researcher is interested in are present in the experiment. An effect is said to be random if 
the experiment contains only a random sample of possible treatment conditions. This dis-
tinction is important because fixed effects can be generalized only to the situations in your 
experiment, whereas random effects can be generalized beyond the treatment conditions in 
the experiment (provided that the treatment conditions are representative). For example, in 
our Viagra example from Chapter 10, the effect is fixed if we say that we are interested only 
in the three conditions that we had (placebo, low dose and high dose) and we can generalize 
our findings only to the situation of a placebo, low dose and high dose. However, if we were 
to say that the three doses were only a sample of possible doses (maybe we could have tried 
a very high dose), then it is a random effect and we can generalize beyond just placebos, low 
doses and high doses. All of the effects in this book so far we have treated as fixed effects. 
The vast majority of academic research that you read will treat variables as fixed effects. 

People also talk about fixed variables and random variables. A fixed variable is one that is 
not supposed to change over time (e.g. for most people their gender is a fixed variable – it 
never changes), whereas a random one varies over time (e.g. your weight is likely to fluctuate 
over time).

In the context of multilevel models we need to make a distinction between fixed coefficients 
and random coefficients. In the regressions, ANOVAs and ANCOVAs throughout this book we 
have assumed that the regression parameters are fixed. We have seen numerous times that a 
linear model is characterized by two things: the intercept, b0, and the slope, b1:

Yi = b0 + b1X1i + εi

Note that the outcome (Y), the predictor (X) and the error (ε) all vary as a function of i, which 
normally represents a particular case of data. In other words, it represents the level 1 variable. 
If, for example, we wanted to predict Sam’s score, we could replace the is with her name:

YSam = b0 + b1X1Sam + εSam

This is just some basic revision. Now, when we do a regression like this we assume that 
the bs are fixed and we estimate them from the data. In other words, we’re assuming that 
the model holds true across the entire sample and that for every case of data in the sample 
we can predict a score using the same values of the gradient and intercept. However, we 
can also conceptualize these parameters as being random.2 If we say that a parameter is 
random then we assume not that it is a fixed value, but that its value can vary. Up until 
now we have thought of regression models as having fixed intercepts and fixed slopes, but 
this opens up three new possibilities for us that are shown in Figure 19.6. This figure uses 
the data from our ANCOVA example in Chapter 11 and shows the relationship between 
a person’s libido and that of their partner overall (the dashed line) and separately for the 
three groups in the study (a placebo group, a group that had a low dose of Viagra and a 
group that had a high dose).

2 In a sense random isn’t an intuitive term for us non-statisticians because it implies that values are plucked out of 
thin air (randomly selected). However, this is not the case, they are carefully estimated just as fixed parameters are.
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Random Intercept, Fixed Slope

Fixed Intercept, Random Slope

Random Intercept and Random  
Slope

Figure 19.6
Data sets 
showing an 
overall model 
(dashed line) and 
the models for 
separate contexts 
within the data 
(i.e. groups of 
cases)
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19.3.2.1. The random intercept model 3

The simplest way to introduce random parameters into the model is to assume that the 
intercepts vary across contexts (or groups) – because the intercepts vary, we call them 
random intercepts. For our libido data this is like assuming that the relationship between 
libido and partner’s libido is the same in the placebo, low- and high-dose groups (i.e. the 
slope is the same), but that the models for each group are in different locations (i.e. the 
intercepts are different). This is shown in the diagram in which the models within the dif-
ferent contexts (colours) have the same shape (slope) but are located in different geometric 
space (they have different intercepts – top panel of Figure 19.6). 

19.3.2.2. random slope model 3

We can also assume that the slopes vary across contexts – i.e. we assume random slopes. 
For our libido data this is like assuming that the relationship between libido and partner’s 
libido is different in the placebo, low- and high-dose groups (i.e. the slopes are different), 
but that the models for each group are fixed at the same geometric location (i.e. the inter-
cepts are the same). This is what happens when we violate the assumption of homogeneity 
of regression slopes in ANCOVA. Homogeneity of regression slopes is the assumption that 
regression slopes are the same across contexts. If this assumption is not tenable than we can 
use a multilevel model to explicitly estimate that variability in slopes. This is shown in the 
diagram in which the models within the different contexts (colours) converge on a single 
intercept but have different slopes (middle panel of Figure 19.6). 

19.3.2.3. The random intercept and slope model 3

The most realistic situation is to assume that both intercepts and slopes vary around the 
overall model. This is shown in the diagram in which the models within the different con-
texts (colours) have different slopes but are also located in different geometric space and 
so have different intercepts (bottom panel of Figure 19.6). 

19.4. The multilevel model 4

We have seen conceptually what a random intercept, random slope and random intercept 
and slope model looks like. Now let’s look at how we actually represent the models. To 
keep things concrete, let’s use our example. For the sake of simplicity, let’s imagine first 
that we wanted to predict someone’s quality of life (QoL) after cosmetic surgery. We can 
represent this as a linear model as follows:

QoL After Surgeryi = b0 + b1Surgeryi + εi (19.1)

We have seen equations like this many times and it represents a linear model: regression, 
a t-test (in this case) and ANOVA. In this example, we had a contextual variable, which 
was the clinic in which the cosmetic surgery was conducted. We might expect the effect of 
surgery on quality of life to vary as a function of which clinic the surgery was conducted at 
because surgeons will differ in their skill. This variable is a level 2 variable. As such we could 
allow the model that represents the effect of surgery on quality of life to vary across the dif-
ferent contexts (clinics). We can do this by allowing the intercepts to vary across clinics, or 
by allowing the slopes to vary across clinics or by allowing both to vary across clinics.
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To begin with, let’s say we want to include a random intercept for quality of life. All 
we do is add a component to the intercept that measures the variability in intercepts, u0 j. 
Therefore, the intercept changes from b0 to become b0 + u0j. This term estimates the inter-
cept of the overall model fitted to the data, b0, and the variability of intercepts around that 
overall model, u0j. The overall model becomes.3

Yij = ðb0 + u0jÞ+ b1Xij + εij (19.2)

The js in the equation reflect levels of the variable over which the intercept varies (in this case 
the clinic) – the level 2 variable. Another way that we could write this is to take out the error 
terms so that it looks like an ordinary regression equation except that the intercept has changed 
from a fixed, b0, to a random one, b0j, which is defined in a separate equation:

Yij = b0j +b1Xij + εij

b0j = b0 + u0j
(19.3)

Therefore, if we want to know the estimated intercept for Clinic 7, we simply replace the 
j with ‘clinic 7’ in the second equation:

b0Clinic7 = b0 + u0Clinic7

If we want to include random slopes for the effect of surgery on quality of life, then all we 
do is add a component to the slope of the overall model that measures the variability in 
slopes, u1 j. Therefore, the gradient changes from b1 to become (b1 + u1j). This term esti-
mates the slope of the overall model fitted to the data, b1, and the variability of slopes in 
different contexts around that overall model, u1 j. The overall model becomes (compare to  
the random intercept model above):

Yij = b0 + ðb1 + u1jÞXij + εij (19.4)

Again we can take the error terms out into a separate equation to make the link to a famil-
iar linear model even clearer. It now looks like an ordinary regression equation except that 
the slope has changed from a fixed, b1, to a random one, b1j, which is defined in a separate 
equation:

Yij = b0i + b1jXij + εij

b1j = b1 +u1j
(19.5)

If we want to model a situation with random slopes and intercepts, then we combine the 
two models above. We still estimate the intercept and slope of the overall model (b0 and b1) 
but we also include the two terms that estimate the variability in intercepts, u0j, and slopes, 
u1j. The overall model becomes (compare to the two models above):

Yij = ðb0 + u0jÞ+ ðb1 + u1jÞXij + εij (19.6)

We can link this more directly to a simple linear model if we take some of these extra terms 
out into separate equations. We could write this model as a basic linear model, except 

3 Some people use gamma (γ), not b, to represent the parameters, but I prefer b because it makes the link to the 
other linear models that we have used in this book clearer.
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we’ve replaced our fixed intercept and slope (b0 and b1) with their random counterparts 
(b0j and b1j):

Yij= b0j + b1jXij + εij

b0j= b0 +u0j

b1j = b1 +u1j

(19.7)

The take-home point is that we’re not doing anything terribly different from the rest of the 
book: it’s basically just a posh regression.

Now imagine we wanted to add in another predictor, for example quality of life 
before surgery. Knowing what we do about multiple regression we shouldn’t be invading 
the personal space of the idea that we can simply add this variable in with an associated 
beta:

QoL After Surgeryi = b0 + b1Surgeryi+ b2QoL Before Surgeryi + εi (19.8)

This is all just revision of ideas from earlier in the book. Remember also that the i repre-
sents the level 1 variable, in this case the people we tested. Therefore, we can predict a 
given person’s quality of life after surgery by replacing the i with their name:

QoL AfterSam = b0 +b1SurgerySam + b2QoL BeforeSam+ εSam

Now, if we want to allow the intercept of the effect of surgery on quality of life after 
surgery to vary across contexts then we simply replace b0 with b0 j . If we want to allow the 
slope of the effect of surgery on quality of life after surgery to vary across contexts then 
we replace b1 with b1 j. So, even with a random intercept and slope, our model stays much 
the same:

QoL Afterij = b0j + b1jSurgeryij + b2QoL Beforeij + εij

b0j = b0 + u0j

b1j = b1 + u1j

(19.9)

Remember that the j in the equation relates to the level 2 contextual variable (clinic in this 
case). So, if we wanted to predict someone’s score we wouldn’t just do it from their name, 
but also from the clinic they attended. Imagine our guinea pig Sam had her surgery done at 
Clinic 7; then we could replace the is and js as follows:

QoL After SurgerySam; Clinic7 = b0Clinic7 + b1Clinic7SurgerySam; Clinic7

+b2QoL Before SurgerySam; Clinic7 + εSam; Clinic7

I want to sum up by just reiterating that all we’re really doing in a multilevel model is a 
fancy regression in which we allow either the intercepts or slopes, or both, to vary across 
different contexts. All that really changes is that for every parameter that we allow to be 
random, we get an estimate of the variability of that parameter as well as the parameter 
itself. So, there isn’t anything terribly complicated; we can add new predictors to the model 
and for each one decide whether its regression parameter is fixed or random. 
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19.4.1.  Assessing the fit and comparing multilevel models 4

As in logistic regression (Chapter 8) the overall fit of a multilevel model is tested using a 
chi-square likelihood ratio test (see section 18.3.3) and just as in logistic regression, SPSS 
reports the −2 log-likelihood (see section 8.3.1). Essentially, the smaller the value of the 
log-likelihood, the better. SPSS also produces four adjusted versions of the log-likelihood 
value. All of these can be interpreted in the same way as the log-likelihood, but they have 
been corrected for various things:

Akaike’s information criterion MM (AIC): This is basically a goodness-of-fit measure that is 
corrected for model complexity. That just means that it takes into account how many 
parameters have been estimated. 

Hurvich and Tsai’s criterion MM (AICC): This is the same as AIC but is designed for small 
samples.

Bozdogan’s criterion MM (CAIC): Again this can be interpreted in the same way as the AIC, 
but this version corrects not just for model complexity but for sample size too.

Schwarz’s Bayesian criterion MM (BIC): This statistic is again comparable to the AIC, 
although it is slightly more conservative (it corrects more harshly for the number of 
parameters being estimated). It should be used when sample sizes are large and the 
number of parameters is small.

All of these measures are similar but the AIC and BIC are the most commonly used. None 
of them are intrinsically interpretable (it’s not meaningful to talk about their values being 
large or small per se); however, they are all useful as a way of comparing models. The 
value of AIC, AICC, CAIC and BIC can all be compared to their equivalent values in other 
models. In all cases smaller values mean better-fitting models.

Many writers recommend building up multilevel models starting with a ‘basic’ model in 
which all parameters are fixed and then adding in random coefficients as appropriate and 
exploring confounding variables (Raudenbush & Bryk, 2002; Twisk, 2006). One advan-
tage of doing this is that you can compare the fit of the model as you make parameters ran-
dom, or as you add in variables. To compare models we simply subtract the log-likelihood 
of the new model from the value for the old:

χ2Change = ð−2Log−LikelihoodOldÞjð−2Log−LikelihoodNewÞ

dfChange =Number of ParametersOld −Number of ParametersNew
(19.10)

This equation is the same as equations (18.5) and (8.6), but written in a way that uses the 
names of the actual values that SPSS produces. There are two caveats to this equation: (1) 
it works only if full maximum-likelihood estimation is used (and not restricted maximal 
likelihood, see SPSS Tip 19.1); and (2) the new model contains all of the effects of the 
older model.

19.4.2.  Types of covariance structures 4

If you have any random effects or repeated measures in your multilevel model then you 
have to decide upon the covariance structure of your data. If you have random effects and 
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repeated measures then you can specify different covariance structures for each. The cov-
ariance structure simply specifies the form of the variance–covariance matrix (a matrix in 
which the diagonal elements are variances and the off-diagonal elements are covariances). 
There are various forms that this matrix could take and we have to tell SPSS what form 
we think it does take. Of course we might not know what form it takes (most of the time 
we’ll be taking an educated guess), so it is sometimes useful to run the model with different 
covariance structures defined and use the goodness-of-fit indices (the AIC, AICC, CAIC 
and BIC) to see whether changing the covariance structure improves the fit of the model 
(remember that a smaller value of these statistics means a better-fitting model).

The covariance structure is important because SPSS uses it as a starting point to estimate 
the model parameters. As such, you will get different results depending on which covariance 
structure you choose. If you specify a covariance structure that is too simple then you are more 
likely to make a Type I error (finding a parameter is significant when in reality it is not), but if 
you specify one that is too complex then you run the risk of a Type II error (finding parameters 
to be non-significant when in reality they are). SPSS has 17 different covariance structures that 
you can use. We will look at four of the commonest covariance structures to give you a feel 
for what they are and when they should be used. In each case I use a representation of the 
variance–covariance matrix to illustrate. With all of these matrices you could imagine that the 
rows and columns represents four different clinics in our cosmetic surgery data:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

Variance components: This covariance structure is very simple and assumes that all 
random effects are independent (this is why all of the covariances in the matrix are 0). 
Variances of random effects are assumed to be the same (hence why they are 1 in the 
matrix) and sum to the variance of the outcome variable. In SPSS this is the default 
covariance structure for random effects and is sometimes called the independence model.

σ21 0 0 0
0 σ21 0 0
0 0 σ21 0
0 0 0 σ21

0
BB@

1
CCA

Diagonal: This variance structure is like variance components except that variances 
are assumed to be heterogeneous (this is why the diagonal of the matrix is made 
up of different variance terms). This structure again assumes that variances are 
independent and, therefore, that all of the covariances are 0. In SPSS this is the 
default covariance structure for repeated measures.

1 ρ ρ2 ρ2

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ2 ρ2 ρ 1

0
BB@

1
CCA

AR(1): This stands for first-order autoregressive structure. In layman’s terms this 
means that the relationship between variances changes in a systematic way. If you 
imagine the rows and columns of the matrix to be points in time, then it assumes that 
the correlations between repeated measurements is highest at adjacent time points. 
So, in the first column, the correlation between time points 1 and 2 is ρ; let’s assume 
that this value is .3. As we move to time point 3, the correlation between time point 1 
and 3 is ρ2, or .09. In other words, it has decreased: scores at time point 1 are more 
related to scores at time 2 than they are to scores at time 3. At time 4, the correlation 
goes down again to ρ3 or .027. So, the correlations between time points next to 
each other are assumed to be ρ, scores two intervals apart are assumed to have 
correlations of ρ2, and scores three intervals apart are assumed to have correlations of 
ρ3. So the correlation between scores gets smaller over time. Variances are assumed 
to be homogeneous but there is a version of this covariance structure where variance 
can be heterogeneous. This structure is often used for repeated-measures data 
(especially when measurements are taken over time such as in growth models).

σ21 σ21 σ31 σ41
σ21 σ22 σ32 σ42
σ31 σ32 σ23 σ43
σ41 σ42 σ43 σ24

0
BB@

1
CCA

Unstructured: This covariance structure is completely general and is, therefore, the 
default option for random effects in SPSS. Covariances are assumed to be completely 
unpredictable: they do not conform to a systematic pattern. 
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19.5. Some practical issues 3

19.5.1.  Assumptions 3

Multilevel linear models are an extension of regression so all of the assumptions for 
regression apply to multilevel models (see section 7.6.2). There is a caveat, though, 
which is that the assumptions of independence and independent errors can sometimes be 
solved by a multilevel model because the purpose of this model is to factor in the correla-
tions between cases caused by higher-level variables. As such, if a lack of independence 
is being caused by a level 2 or level 3 variable then a multilevel model should make this 
problem go away (although not always). As such, try to check the usual assumptions in 
the usual way.

There are two additional assumptions in multilevel models that relate to the random 
coefficients. These coefficients are assumed to be normally distributed around the over-
all model. So, in a random intercepts model the intercepts in the different contexts are 
assumed to be normally distributed around the overall model. Similarly, in a random 
slopes model, the slopes of the models in different contexts are assumed to be normally 
distributed.

Also it’s worth mentioning that multicollinearity can be a particular problem in mul-
tilevel models if you have interactions that cross levels in the data hierarchy (cross-level 
interactions). However, centring predictors can help matters enormously (Kreft & de 
Leeuw, 1998), and we will see how to centre predictors in section 19.5.3.

             CRAMMING SAM’S TIPS    Multilevel models

M Multilevel models should be used to analyse data that have a hierarchical structure. For example, you might measure 
depression after psychotherapy. In your sample, patients will see different therapists within different clinics. This is a three-
level hierarchy with depression scores from patients (level 1), nested within therapists (level 2) who are themselves nested 
within clinics (level 3).

M Hierarchical models are just like regression, except that you can allow parameters to vary (this is called a random effect). 
In ordinary regression, parameters generally are a fixed value estimated from the sample (a fixed effect).

M If we estimate a linear model within each context (e.g. the therapist or clinic to use the example above) rather than the 
sample as a whole, then we can assume that the intercepts of these models vary (a random intercepts model), or that the 
slopes of these models differ (a random slopes model) or that both vary.  

M We can compare different models (assuming that they differ in only one additional parameter) by looking at the difference 
in the −2 log-likelihood. Usually we would do this when we have changed only one parameter (added one new thing to the 
model).

M For any model we have to assume a covariance structure. For random intercepts models the default of variance components 
is fine, but when slopes are random an unstructured covariance structure is often assumed. When data are measured over 
time an autoregressive structure (AR1) is often assumed.
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19.5.2.  Sample size and power 3

As you might well imagine, the situation with power and sample size is very complex 
indeed. One complexity is that we are trying to make decisions about our power to detect 
both fixed and random effects coefficients. Kreft and de Leeuw (1998) do a tremendous 
job of making sense of things for us. Essentially, the take-home message is the more data, 
the better. As more levels are introduced into the model, more parameters need to be esti-
mated and the larger the sample sizes need to be. Kreft and de Leeuw conclude that if you 
are looking for cross-level interactions then you should aim to have more than 20 contexts 
(groups) in the higher-level variable, and that group sizes ‘should not be too small’. They 
conclude by saying that there are so many factors involved in multilevel analysis that it is 
impossible to produce any meaningful rules of thumb.

Twisk (2006) agrees that the number of contexts relative to individuals within those 
contexts is important. He also points out that standard sample size and power calculations 
can be used but then ‘corrected’ for the multilevel component of the analysis (by factoring, 
among other things, the intraclass correlation). However, there are two corrections that he 
discusses that yield very different sample sizes! He recommends using sample size calcula-
tions with caution.

The easiest option is to get a computer to do it for you. HLM (http://www.ssicentral.com/
hlm/index.html) will do power calculations for multilevel models, and for two-level models 
you could try Tom Snijders’ PinT program (http://stat.gamma.rug.nl/multilevel.htm).

19.5.3.  Centring variables 4

Centring refers to the process of transforming a variable into deviations 
around a fixed point. This fixed point can be any value that you choose, 
but typically we use the grand mean. We have already come across a form 
of centring way back in Chapter 1, when we discovered how to compute 
z-scores. When we calculate a z-score we take each score and subtract from 
it the mean of all scores (this centres the values at 0), and then divide by 
the standard deviation (this changes the units of measurement to standard 
deviations). When we centre a variable around the mean we simply sub-
tract the mean from all of the scores: this centres the variables around 0.

There are two forms of centring that are typically used in multilevel 
modelling: grand mean centring and group mean centring. Grand mean 

centring means that for a given variable we take each score and subtract from it the mean 
of all scores (for that variable). Group mean centring means that for a given variable we 
take each score and subtract from it the mean of the scores (for that variable) within a given 
group. In both cases it is usually only level 1 predictors that are centred (in our cosmetic 
surgery example this would be predictors such as age, BDI and pre-surgery quality of life). 
If group mean centring is used then a level 1 variable is typically centred around means of 
a level 2 variable (in our cosmetic surgery data this would mean that, for example, the age 
of a person would be centred around the mean of age for the clinic at which the person 
had their surgery).

Centring can be used in ordinary multiple regression too, and because this form of regres-
sion is already familiar to you I’d like to begin by looking at the effects of centring in regres-
sion. In multiple regression the intercept represents the value of the outcome when all of the 
predictors take a value of 0. There are some predictors for which a value of 0 makes little 
sense. For example, if you were using heart rate as a predictor variable then a value of 0 
would be meaningless (no one will have a heart rate of 0 unless they are dead). As such, the 

What is centring
and do I need to do it?
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intercept in this case has no real-world use: why would you want to know the value of the 
outcome when heart rate was 0 given than no alive person would even have a heart rate that 
low? Centring heart rate around its mean changes the meaning of the intercept. The intercept 
becomes the value of the outcome when heart rate is its average value. In more general terms, 
if all predictors are centred around their mean then the intercept is the value of the outcome 
when all predictors are the value of their mean. Centring can, therefore, be a useful tool for 
interpretation when a value of 0 for the predictor is meaningless.

The effect of centring in multilevel models, however, is much more complicated. There 
are some excellent reviews that look in detail at the effects of centering on multilevel models 
(Kreft & de Leeuw, 1998; Kreft, de Leew, & Aiken, 1995), and here I will just give a very 
basic précis of what they say. Essentially if you fit a multilevel model using the raw score pre-
dictors and then fit the same model but with grand mean centred predictors then the resulting 
models are equivalent. By this, I mean that they will fit the data equally well, have the same 
predicted values, and the residuals will be the same. The parameters themselves (the bs) will, 
of course, be different but there will be a direct relationship between the parameters from the 
two models (i.e. they can be directly transformed into each other). Therefore, grand mean 
centring doesn’t change the model, but it would change your interpretation of the parameters 
(you can’t interpret them as though they are raw scores). When group mean centring is used 
the picture is much more complicated. In this situation the raw score model is not equivalent 
to the centred model in either the fixed part or the random part. One exception is when only 
the intercept is random (which arguably is an unusual situation), and the group means are 
reintroduced into the model as level 2 variables (Kreft & de Leeuw, 1998).

The decision about whether to centre or not is quite complicated and you really need 
to make the decision yourself in a given analysis. Centring can be a useful way to combat 
multicollinearity between predictor variables. It’s also helpful when predictors do not have 
a meaningful zero point. Finally, multilevel models with centred predictors tend to be more 
stable, and estimates from these models can be treated as more or less independent of each 
other, which might be desirable. If group mean centring is used then the group means should 
be reintroduced as a level 2 variable unless you want to look at the effect of your ‘group’ or 
level 2 variable uncorrected for the mean effect of the centred level 1 predictor, such as when 
fitting a model when time is your main explanatory variable (Kreft & de Leeuw, 1998).

‘Recentgin’ babbles Oliver as he stumbles drunk out of Mrs Moonshine’s 
alcohol emporium. ‘I need some more recent gin.’ I think you mean 
centring Oliver, not recentgin. If you want to know how to centre your 
variables using SPSS, then the additional material for this chapter on 
the companion website will tell you. 

OLIVER TWISTED

Please, Sir, can I 
have some more … 
centring?

19.6. Multilevel modelling on SPSS 4

SPSS is not the best program in the world for multilevel modelling. Most people who do seri-
ous multilevel modelling tend to use specialist software such as MLwiN, HLM, SAS and R. 
There are several excellent books that compare the various packages and SPSS tends to fare 
pretty badly in all of them (Tabachnick & Fidell, 2001; Twisk, 2006). The main area where 
SPSS is behind its competitors is that it cannot do multilevel modelling when the outcome 
variable is categorical, yet this is bread and butter (albeit staggeringly complicated bread and 
butter) for the other packages mentioned. The second problem is that SPSS cannot produce 
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bootstrap estimates of the model parameters, and these can be a very useful way to circum-
vent pesky distributional assumptions (see section 5.7.4). Other packages have these facili-
ties. SPSS also has (and it’s not just me that says this) a completely indecipherable windows 
interface for doing multilevel models (it is much easier to do using syntax).

We saw in section 19.4.1 that it is useful to build up models starting with a ‘basic’ model 
in which all parameters are fixed and then add random coefficients as appropriate before 
exploring confounding variables. We will take this approach to look at an example of con-
ducting a multilevel model on SPSS.

19.6.1.  Entering the data 2

Data entry depends a bit on the type of multilevel model that you wish to run: the data layout 
is slightly different when the same variables are measured at several points in time. However, 
we will look at the case of repeated-measures data in a second example. In this first example, 
the situation we have is very much like multiple regression in that data from each person who 
had surgery are not measured over multiple time points. Figure 19.7 shows the data layout. 
Each row represents a case of data (in this case a person who had surgery). Their scores on 
the various variables are simply entered in different columns. So, for example, the first per-
son was 31 years old, had a BDI score of 12, they were in the waiting list control group at 
clinic 1, were female and were waiting for surgery for a physical reason.

19.6.2.  Ignoring the data structure: ANOVA 2

First of all, let’s ground the example in something very familiar to us: ANOVA. Let’s say for 
the time being that we were interested only in the effect that surgery has on post-operative 
quality of life. We could analyse this with a simple one-way independent ANOVA (or 
indeed a t-test), and the model is described by equation (19.1).

Figure 19.7
Data layout 
for multilevel 
modelling with 
no repeated 
measure
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SELF-TEST  Using what you know about ANOVA, 
conduct a one-way ANOVA using Surgery as the 
predictor and Post_QoL as the outcome.

In reality we wouldn’t do an ANOVA, I’m just using it as a way of showing you that mul-
tilevel models are not big and scary, but are simply extensions of what we have done before. 
SPSS Output 19.1 shows the results of the ANOVA that you should get if you did the self-test. 
We find a non-significant effect of surgery on quality of life, F(1, 274) = 0.33, p > .05.

To run a multilevel model we use the Mixed Models command. To access this command 
select , which will bring up the dialog box in Figure 
19.8. This dialog box is for specifying the hierarchical nature of the data and because for 
the time being we are ignoring the hierarchical structure of our data, we will ignore this 
dialog box for now. 

SPSS OuTPuT 19.1

Figure 19.8
The initial mixed 
models dialog 
box
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Click on  to move to the main dialog box (Figure 19.9), which should look very 
familiar to many other dialog boxes that we have seen before. First we must specify our 
outcome variable, which is quality of life (QoL) after surgery, so select Post_QoL and drag 
it to the space labelled Dependent Variable (or click on ). Next we need to specify our 
predictor, which is whether or not the person has had surgery. Therefore, select Surgery 
and drag it to the space labelled Covariate(s) (or click on ).4 

You’ll notice several buttons at the side of the main dialog box. We use  to 
specify fixed effects in our model, and  to specify, yes, you’ve guessed it, random 
effects. To begin with we are going to treat our effects as fixed, so click on  to bring 
up the dialog box in Figure 19.10. We have only one variable specified as a predictor, and 
we want this to be treated as a fixed effect; therefore, we select it in this dialog box from 
the list labelled Factors and Covariates and then click on  to transfer it to the Model. 
Click on  to return to the main dialog box.

In the main dialog box click on  to open the dialog box in Figure 19.11 (left 
panel). This dialog box allows you to change the parameters that SPSS will use when esti-
mating the model. For example, if you don’t get a solution then you could increase the 
number of iterations (SPSS Tip 8.1). The defaults can be left alone, but you do need to 
decide whether to use the maximum likelihood, or something called the restricted maxi-
mum-likelihood estimation method. There are pros and cons to both (see SPSS Tip 19.1) 
but because we want to compare models as we build them up, we will select . 
Click on  to return to the main dialog box.

In the main dialog box click on  to open the dialog box in Figure 19.11 (right 
panel). There are two useful options in this dialog box. The first is to request Parameter 
estimates. This will give us b-values for each effect and their significance (so, it will give 
us similar information to the coefficients table in multiple regression). The second useful 
option is Tests for covariance parameters, which will give us a significance test of each of 
the covariance estimates in the model (i.e. the values of u in equations (19.3), (19.5) and 

4 You might wonder why we don’t drag it to the Factors box given that it is a categorical variable. I wondered that 
too, but when I did drag it there the resulting analysis is wrong. Given this variable is coded 0 and 1 it shouldn’t 
make any difference whether we specify it as a covariate of a factor, but when we include the hierarchical data 
structure it does. I don’t know why, maybe you can email SPSS and then tell me.

Figure 19.9
The main mixed 
models dialog 
box
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Figure 19.10
The dialog box 
for specifying 
fixed effects in 
mixed models

Figure 19.11
The estimation 
and statistics 
options for mixed 
models
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(19.7)). These estimates tell us about the variability of intercepts or slopes across our con-
textual variable and so significance testing them can be useful (we can then say that there 
was significant, or not, variability in intercepts or slopes). Select these two options and then 
click on  to return to the main dialog box. To run the analysis, click on .

SPSS Output 19.2 shows the main table for the model. Compare this table with SPSS 
Output 19.1 and you’ll see that there is basically no difference: we get a non-significant 
effect of surgery with an F of 0.33, and a p of .56. The point I want you to absorb here is 
that if we ignore the hierarchical structure of the data then what we are left with is some-
thing very familiar: an ANOVA/regression. The numbers are more or less exactly the same; 
all that has changed is that we have used different menus to get to the same end point. 

19.6.3.  Ignoring the data structure: ANCOVA 2

We have seen that there is no effect of cosmetic surgery on quality of life, but we did not 
take into account the quality of life before surgery. Let’s, therefore, extend the example 
a little to look at the effect of the surgery on quality of life while taking into account the 
quality of life scores before surgery. Our model is now described by equation (19.8). You 
would normally do this analysis with an ANCOVA, through the univariate GLM menu. As 
in the previous section we’ll run the analysis both ways, just to illustrate that we’re doing 
the same thing when we run a hierarchical model.

SELF-TEST  Using what you know about ANCOVA, 
conduct a one-way ANCOVA using Surgery as the 
predictor, Post_QoL as the outcome and Base_QoL as 
the covariate.

          SPSS T IP  19 .1     Estimation 3

SPSS gives you the choice of two methods for estimating the parameters in the analysis: maximum likelihood 
(ML), which we have encountered before, and restricted maximum likelihood (REML). The conventional wisdom 
seems to be that ML produces more accurate estimates of fixed regression parameters, whereas REML pro-
duces more accurate estimates of random variances (Twisk, 2006). As such, the choice of estimation procedure 
depends on whether your hypotheses are focused on the fixed regression parameters or on estimating variances 
of the random effects. However, in many situations the choice of ML or REML will make only small differences to 
the parameter estimates. Also, if you want to compare models you must use ML.

SPSS OuTPuT 19.2
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As before, we probably wouldn’t do an ANCOVA using the mixed model command, 
but it’s a useful illustration. SPSS Output 19.3 shows the results of the ANCOVA that you 
should get if you did the self-test. With baseline quality of life included we find a significant 
effect of surgery on quality of life, F(1, 273) = 4.04, p < .05. Baseline quality of life also 
predicted quality of life after surgery, F(1, 273) = 214.89, p < .001.

Select  again, and just like last time ignore the first 
dialog box because for the time being we are ignoring the hierarchical structure of our 
data. We can leave the main dialog box (Figure 19.12) as it was in the last analysis except 
that we now need to add the baseline quality of life as another predictor. To do this, select 
Base_QoL and drag it to the space labelled Covariate(s) (or click on ). 

We need to add this new variable to our model as a fixed effect, so click on   to 
bring up the dialog box in Figure 19.13. Select Base_QoL in the list labelled Factors and 
Covariates and then click on  to transfer it to the Model. Click on  to return 
to the main dialog box and click on  to run the analysis.

SPSS Output 19.4 shows the main table for the model. Compare this table with SPSS 
Output 19.3 and you’ll see that again there is no difference: we get a significant effect of 
surgery with an F of 4.08, p < .05, and a significant effect of baseline quality of life with an 
F of 217.25, p < .001. We can also see that the regression coefficient for surgery is −1.70. 
Again, the results are pretty similar to when we ran the analysis as ANCOVA (the values are 

SPSS OuTPuT 19.3

Figure 19.12
The main mixed 
models dialog 
box
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Figure 19.13
The dialog box 
for specifying 
fixed effects in 
mixed models

SPSS OuTPuT 19.4
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slightly different because here we’re using maximum likelihood methods to estimate the 
parameters of the model but in ANCOVA we use ordinary least squares methods). Hopefully 
this has convinced you that we’re just doing a regression here, something you have been 
doing throughout this book. This technique isn’t radically different, and if you think about 
it as just an extension of what you already know, then it’s relatively easy to understand. So, 
having shown you that we can do basic analyses through the mixed models command, let’s 
now use its power to factor in the hierarchical structure of the data.

19.6.4.  Factoring in the data structure: random intercepts 3

We have seen that when we factor in the pre-surgery quality of life scores, which them-
selves significantly predict post-surgery quality of life scores, surgery seems to positively 
affect quality of life. However, at this stage we have ignored the fact that our data have a 
hierarchical structure. Essentially we have violated the independence assumption because 
scores from people who had their surgery at the same clinic are likely to be related to each 
other (and certainly more related than with people at different clinics). We have seen that 
violating the assumption of independence can have some quite drastic consequences (see 
section 10.2.10). However, rather than just panic and gibber about our F-ratio being inac-
curate, we can model this covariation within clinics explicitly by including the hierarchical 
data structure in our analysis.

To begin with, we will include the hierarchy in a fairly crude way by assuming simply 
that intercepts vary across clinics. Our model is now described by:

QoL After Surgeryij = b0j + b1Surgeryij +b2QoL Before Surgeryij + εij

b0j= b0 + u0j

To run a multilevel model we use the Mixed Models option by selecting 
, which will bring up the dialog box in Figure 19.8. This 

time we don’t want to ignore this dialog box, but instead want to specify our level 2 vari-
able (Clinic). We specify contextual variables that group participants (or subjects) in the 
box labelled Subjects. Select Clinic from the list of variables and drag it to the box labelled 
Subjects (or click on ). The completed dialog box is shown in Figure 19.14.

Click on  to access the main dialog box. We don’t need to change this because all 
we are doing in this model is changing the intercept from being fixed to random. Therefore, 
the main dialog box should still look like Figure 19.12. We also don’t need to re-specify 
our fixed effects so there is no need to click on  unless you want to check that the 
dialog box still looks like Figure 19.13. However, we do need to specify a random effect 
for the first time, so click on  in the main dialog box to access the dialog box in 
Figure 19.15. The first thing we need to do is to specify our contextual variable. We do 
this by selecting it from the list of contextual variables that we have told SPSS about in 
Figure 19.14. These appear in the section labelled Subjects and because we only specified 
one variable, there is only one variable in the list, Clinic. Select this variable and drag it to 
the area labelled Combinations (or click on ). We want to specify only that the intercept 
is random, and we do this by selecting . Notice in this dialog box that there is a 
drop-down list to specify the type of covariance ( ). For a random intercept 
model this default option is fine. Click on  to return to the main dialog box and then 
click on  to run the analysis.

The output of this analysis is shown in SPSS Output 19.5. The first issue is whether 
allowing the intercepts to vary has made a difference to the model. We can test this from 
the change in the −2 log-likelihood (equation (19.10)). In our new model the −2LL is 
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Figure 19.14
Specifying a level 
2 variable in a 
hierarchical linear 
model

Figure 19.15
The dialog box 
for specifying 
random effects in 
mixed models
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1837.49 (SPSS Output 19.5) based on a total of five parameters. In the old model (SPSS 
Output 19.4) the −2LL was 1852.54, based on four parameters. Therefore:

χ2Change = 1852:54− 1837:49= 15:05

dfChange = 5− 4=1

If we look at the critical values for the chi-square statistic with 1 degree of freedom in 
Appendix A4, they are 3.84 (p < .05) and 6.63 (p < .01); therefore, this change is highly 
significant. Put another way, it is important that we modelled this variability in intercepts 
because when we do our model is significantly improved. We can conclude then that the 
intercepts for the relationship between surgery and quality of life (when controlling for 
baseline quality of life) vary significantly across the different clinics.

SPSS OuTPuT 19.5
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You will also notice that the significance of the variance estimate for the intercept 
(9.24) is tested using the Wald statistic, which is a standard z-score in this case (z = 1.69). 
You should be cautious in interpreting the Wald statistic because, for random parameters 
especially, it can be quite unpredictable (for fixed effects it should be OK). The change 
in the −2LL is much more reliable, and you should use this to assess the significance of 
changes to the model – just like with logistic regression (Chapter 8). 

By allowing the intercept to vary we also have a new regression parameter for the effect 
of surgery, which is −.31 compared to −1.70 when the intercept was fixed (SPSS Output 
19.4). In other words, by allowing the intercepts to vary over clinics, the effect of surgery 
has decreased dramatically. In fact, it is not significant any more, F(1, 275.63) = 0.14, 
p > .05. This shows how, had we ignored the hierarchical structure in our data, we would 
have reached very different conclusions to what we have found here.

19.6.5.   Factoring in the data structure: random intercepts  
and slopes 4

We have seen that including a random intercept is important for this model (it changes the 
log-likelihood significantly). However, we could now look at whether adding a random 
slope will also be beneficial by adding this term to the model. The model is now described 
by equation (19.9), which we saw earlier on; it can be specified in SPSS with only minor 
modifications to the dialog boxes. All we are doing is adding another random term to the 
model; therefore, the only changes we need to make are in the dialog box accessed by click-
ing on . (If you are starting from scratch then follow the instructions for setting 
up the dialog box in the previous section.) We need to select the predictor (Surgery) from 
the list of Factors and covariates and add it to the model by clicking on  (see Figure 
19.16). Click on  to return to the main dialog box and then click on  to run the 
analysis

All we’re interested in at this stage is estimating the effect of including the variance in 
intercepts. SPSS Output 19.6 gives us the −2LL for the new model and the value of the 
variance in slopes (29.63). To find the significance of the variance in slopes, we subtract 
this value from the −2LL for the previous model. This gives us a chi-square statistic with 
df = 1 (because we have added only one new parameter to the model: the variance in 
slopes). In our new model the −2LL is 1816 (SPSS Output 19.6) based on a total of six 
parameters. In the old model (SPSS Output 19.5) the −2LL was 1837.49, based on five 
parameters. Therefore:

χ2
Change = 1837:49− 1816= 21:49

dfChange = 6− 5=1

Comparing this value to the same critical values as before for the chi-square statistic with 
df = 1 (i.e. 3.84 and 6.63) shows that this change is highly significant because 21.49 is much 
larger than these two values. Put another way, the fit of our model significantly improved 
when the variance of slopes was included: there is significant variability in slopes.

Now that we know that there is significant variability in slopes, we can look to see 
whether the slopes and intercepts are correlated (or covary). By selecting  
in the previous analysis, we assumed that the covariances between the intercepts and slopes 
were zero. Therefore, SPSS estimated only the variance of slopes. This was a useful thing 
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to do because it allowed us to look at the effect of the variance of slopes in isolation. If 
we now want to include the covariance between random slopes and random intercepts 
we do this by clicking on  in Figure 19.16 to access the drop-down list, 
and selecting  instead. By changing to , we remove the assumption 
that the covariances between slopes and intercepts are zero, and so SPSS will estimate this 
covariance. As such, by changing to , we add a new term to the model that esti-
mates the covariance between random slopes and intercepts. Redo the analysis but change 

 to  in Figure 19.16. 
The output of this analysis is shown in SPSS Output 19.7. The first issue is whether add-

ing the covariance between slopes and intercepts has made a difference to the model using 
the change in the −2LL (equation (19.10)). In our new model the −2LL is 1798.62 (SPSS 
Output 19.7) based on a total of seven parameters. In the old model (SPSS Output 19.6) 
the −2LL was 1816, based on six parameters. Therefore:

χ2
Change = 1816− 1798:62= 17:38

dfChange = 7− 6=1

This change is highly significant at p < .01 because 17.38 is bigger than the critical 
value of 6.63 for the chi-square statistic with 1 degree of freedom (see Appendix A4). Put 
another way, our model is significantly improved when the covariance term is included in 

Figure 19.16
The dialog box 
for specifying 
random effects in 
mixed models
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the model. The variance estimates for the intercept (37.60) and slopes (−36.68 and 38.41), 
and their associated significance based on the Wald test, confirm this because all three esti-
mates are close to significance (although I reiterate my earlier point that the Wald statistic 
should be interpreted with caution).

One important part of the output to take note of is that the random part of the slopes 
now has two values (−36.68 and 38.41). The reason that there are two values is because 
we changed from a covariance structure of , which assumes that param-
eters are uncorrelated to , which makes no such assumption, and, therefore, 
the covariance is estimated too. The first of these values is the covariance between the 
random slope and random intercept, and the second is the variance of the random slopes. 
We encountered covariance in Chapter 6 and saw that it is an unstandardized measure 
of the relationship between variables. In other words, it’s like a correlation. Therefore, 
the covariance term tells us whether there is a relationship or interaction between the 
random slope and the random intercept within the model. The actual size of this value 
is not terribly important because it is unstandardized (so we can’t compare the size of 
covariances measured across different variables), but the direction of it is. In this case the 
covariance is negative (−36.68) indicating a negative relationship between the intercepts 
and the slopes. Remember that we are looking at the effect of surgery on quality of life in 
10 different clinics, so this means that, across these clinics, as the intercept for the rela-
tionship between surgery and quality of life increases, the value of the slope decreases. 
This is best understood using a diagram and Figure 19.17 shows the observed values of 
quality of life after surgery plotted against those predicted by our model. In this diagram 
each line represents a different clinic. We can see that the 10 clinics differ: those with 
low intercepts (low values on the y-axis) have quite steep positive slopes. However, as 
the intercept increases (as we go from the line that crosses the y-axis at the lowest point 
up to the line that hits the y-axis at the highest point) the slopes of the lines get flatter 
(the slope decreases). The negative covariance between slope and intercept reflects this 
relationship. Had it been positive it would mean the opposite: as intercepts increase, the 
slopes increase also.

The second term that we get with the random slope is its variance (in this case 38.41). 
This tells us how much the slopes vary around a single slope fitted to the entire data set 
(i.e. ignoring the clinic from which the data came). This confirms what our chi-square test 
showed us: that the slopes across clinics are significantly different.

SPSS OuTPuT 19.6
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We can conclude then that the intercepts and slopes for the relationship between surgery 
and quality of life (when controlling for baseline quality of life) vary significantly across the 
different clinics. By allowing the intercept and slopes to vary we also have a new regression 
parameter for the effect of surgery, which is −.65 compared to −0.31 when the slopes were 
fixed (SPSS Output 19.5). In other words, by allowing the intercepts to vary over clinics, 
the effect of surgery has increased slightly, although it is still nowhere near significant, 
F(1, 9.518) = 0.10, p > .05. This shows how, had we ignored the hierarchical structure in 
our data, we would have reached very different conclusions to what we have found here.

SPSS OuTPuT 19.7
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19.6.6.  Adding an interaction to the model 4

We can now build up the model by adding in another variable. One of the variables we 
measured was the reason for the person having cosmetic surgery: was it to resolve a physi-
cal problem or was it purely for vanity? We can add this variable to the model, and also 
look at whether it interacts with surgery in predicting quality of life.5 Our model will sim-
ply expand to incorporate these new terms, and each term will have a regression coefficient 
(which we select to be fixed). Therefore, our new model can be described as in the equation 
below (note that all that has changed is that there are two new predictors):

QoL Afterij = b0j+ b1jSurgeryij + b2QoL Before Surgeryij + b3Reasonij

+ b4 ðReason× SurgeryÞij + εij

b0j = b0 + u0j

b1j = b1 + u1j

(19.11)

To set up this model in SPSS is very easy to do and just requires some minor changes 
to the dialog boxes that we have already used. First, select 

; this initial dialog box should be set up as for the previous analysis, but if you’re 
running this analysis without running the prior one first then set up the level 2 variable of 

5 In reality, because we would use the change in the  –2LL to see whether effects are significant, we would build 
this new model up a term at a time. Therefore, we would first include only Reason in the model, then in a separate 
analysis we would add the interaction. By doing so we can calculate the change in  –2LL for each effect. To save 
space I’m going to put both into the model in a single step.

Figure 19.17
Predicted 
values from the 
model (surgery 
predicting quality 
of life after 
controlling for 
baseline quality 
of life) plotted 
against the 
observed values
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Clinic as in the previous sections (the completed dialog box is shown in Figure 19.14). Click 
on  to access the main dialog box. If you’re continuing the previous analysis then this 
dialog box will already be set up with the previous model. If you’ve jumped straight into 
this analysis then set this dialog box up as with our previous model (Figure 19.12). We have 
two new covariates to add to the model: the effect of the reason for the surgery (Reason) 
and the interaction of Reason and Surgery. At this stage we simply need to add Reason as 
a covariate, so select this variable and drag it to the space labelled Covariate(s) (or click on 

). The completed dialog box is in Figure 19.18.
We need to add these fixed effects to our model, so click on  to bring up the dia-

log box in Figure 19.19. First let’s specify the main effect of Reason; to do this, select this 
variable in the list labelled Factors and Covariates and then click on  to transfer it to 
Model. To specify the interaction term, first click on  and change it to .  
Next, select Surgery from Factors and Covariates and then while holding down the Ctrl 
key select Reason. With both variables selected click on  to transfer them to Model 
as an interaction effect. The dialog box should now look like Figure 19.19. Click on  
to return to the main dialog box. We don’t need to specify any extra random coefficients 
so we can leave the dialog box accessed through  as it is in Figure 19.16, and we 
can leave the other options as they are in previous analyses. In the main dialog box click 
on  to run the analysis.

SPSS Output 19.8 shows the resulting output, which is similar to the previous output 
except that we now have two new fixed effects. The first issue is whether these new effects 
make a difference to the model. We can use the log-likelihood statistics again: 

χ2Change = 1798:62− 1789:05=9:57

dfChange= 9− 7= 2

If we look at the critical values for the chi-square statistic in the Appendix, it is 5.99 
(p < .05, df = 2); therefore, this change is significant. We can look at the effects individu-
ally in the table of fixed effects. This tells us that quality of life before surgery significantly 
predicted quality of life after surgery, F(1, 268.92) = 33.65, p < .001, surgery still did 
not significantly predict quality of life, F(1, 15.86) = 2.17, p = .161, but the reason for 
surgery, F(1, 259.89) = 9.67, p < .01, and the interaction of the reason for surgery and 
surgery, F(1, 217.09) = 6.28, p < .05, both did significantly predict quality of life. The 

Figure 19.18
The main mixed 
models dialog 
box
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table of estimates of fixed effects tells us much the same thing except it also gives us the 
regression coefficients and their confidence intervals. 

The values of the variance for the intercept (30.06) and the slope (29.35) are lower 
than the previous model but still significant (one-tailed). Also the covariance between the 
slopes and intercepts is still negative (−28.08). As such our conclusions about our random 
parameters stay much the same as in the previous model.

The effect of the reason for surgery is easy to interpret. Given that we coded this 
predictor as 1 = physical reason and 0 = change appearance, the negative coefficient 
tells us that as reason increases (i.e. for surgery = 0, as a person goes from changing 
their appearance to a physical reason) quality of life decreases. However, this effect in 
isolation isn’t that interesting because it includes both people who had surgery and the 
waiting list controls. More interesting is the interaction term, because this takes account 
of whether or not the person had surgery. To break down this interaction we could rerun 
the analysis separately for the two ‘reason groups’. Obviously we would remove the 
interaction term and the main effect of Reason from this analysis (because we are ana-
lysing the physical reason group separately from the group that wanted to change their 
appearance). As such, you need to fit the model in the previous section, but first split the 
file by Reason.

SELF-TEST  Split the file by Reason and then run a 
multilevel model predicting Post_QoL with a random 
intercept, and random slopes for Surgery, and 
including Base_QoL and Surgery as predictors.

Figure 19.19
Specifying a 
fixed effect 
interaction in 
mixed models
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SPSS Output 19.9 shows the parameter estimates from these analyses. It shows that for 
those operated on only to change their appearance, surgery almost significantly predicted 
quality of life after surgery, b = −4.31, t(7.72) = −1.92, p = .09. The negative gradient 
shows that in these people, quality of life was lower after surgery compared to the control 
group. However, for those that had surgery to solve a physical problem surgery did not 
significantly predict quality of life, b = 1.20, t(7.61) = 0.58, p = .58. However, the slope 
was positive indicating that people who had surgery scored higher on quality of life than 

SPSS OuTPuT 19.8
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SPSS OuTPuT 19.9

those on the waiting list (although not significantly so!). The interaction effect, therefore, 
reflects the difference in slopes for surgery as a predictor of quality of life in those that 
had surgery for physical problems (slight positive slope) and those that had surgery purely 
for vanity (a negative slope).

We could sum up these results by saying that quality of life after surgery, after control-
ling for quality of life before surgery, was lower for those that had surgery to change their 
appearance than those that had surgery for a physical reason. This makes sense because for 
those having surgery to correct a physical problem, the surgery has probably bought relief 
and so their quality of life will improve. However, for those having surgery for vanity they 
might well discover that having a different appearance wasn’t actually at the root of their 
unhappiness, so their quality of life is lower.

             CRAMMING SAM’S TIPS    Multilevel models SPSS output

M The Information Criteria table can be used to assess the overall fit of the model. The −2LL can be significance tested with 
df = the number of parameters being estimated. It is mainly used, though, to compare models that are the same in all but 
one parameter by testing the difference in −2LL in the two models against df = 1 (if only one parameter has been changed). 
The AIC, AICC, CAIC and BIC can also be compared across models (but not significance tested).

M The table of Type III Tests of Fixed Effects tells you whether your predictors significantly predict the outcome: look in the 
column labelled Sig. If the value is less than .05 then the effect is significant.

M The table of Estimates of Fixed Effects gives us the regression coefficient for each effect and its confidence interval. The direc-
tion of these coefficients tells us whether the relationship between each predictor and the outcome is positive or negative. 

M The table labelled Estimates of Covariance Parameters tells us about any random effects in the model. These values can tell 
us how much intercepts and slopes varied over our level 1 variable. The significance of these estimates should be treated cau-
tiously. The exact labelling of these effects depends on which covariance structure you selected for the analysis.
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19.7. Growth models 4

Growth models are extremely important in many areas of science including psychology, 
medicine, physics, chemistry or economics. In a growth model the aim is to look at the rate 
of change of a variable over time: for example, we could look at white blood cell counts, 
attitudes, radioactive decay or profits. In all cases we’re trying to see which model best 
describes the change over time.

19.7.1.  Growth curves (polynomials) 4

Figure 19.20 gives some examples of possible growth curves. This diagram 
shows three polynomials representing a linear trend (the blue line) other-
wise known as a first-order polynomial, a quadratic trend (the green line) 
otherwise known as a second-order polynomial, and a cubic trend (the 
red line) otherwise known as a third-order polynomial. Notice first that 
the linear trend is a straight line, but as the polynomials increase they get 
more and more curved, indicating more rapid growth over time. Also, as 
polynomials increase, the change in the curve is quite dramatic (so dra-
matic that I adjusted the scale of the graph to fit all three curves on the 
same diagram). This observation highlights the fact that any growth curve 
higher than a quadratic (or possibly cubic) trend is very unrealistic in real data. By fitting a 
growth model to the data we can see which trend best describes the growth of an outcome 
variable over time (although, no one will believe that a significant fifth-order polynomial 
is telling us anything meaningful about the real world!).

The growth curves that we have described might seem familiar to you: they are the same 
as the trends that we described for ordered means in section 10.2.11.5. What we are discuss-
ing now is really no different. There are just two important things to remember when fitting 
growth curves: (1) you can fit polynomials up to one less than the number of time points that 
you have; and (2) a polynomial is defined by a simple power function. On the first point, this 
means that with three time points you can fit a linear and quadratic growth curve (or a first- 
and second-order polynomial), but you cannot fit any higher-order growth curves. Similarly, if 
you have six time points you can fit up to a fifth-order polynomial. This is the same basic idea 
as having one less contrast than the number of groups in ANOVA (see section 10.2.11).

On the second point, we have to define growth curves manually in multilevel models in 
SPSS: there is not a convenient option that we can select to do it for us. However, this is 
quite easy to do. If time is our predictor variable, then a linear trend is tested by including 
this variable alone. A quadratic or second-order polynomial is tested by including a predic-
tor that is time2, a cubic or third-order polynomial is tested by including a predictor that is 
time3 and so on. So any polynomial is tested by including a variable that is the predictor to 
the power of the order of polynomial that you want to test: for a fifth-order polynomial we 
need a predictor of time5 and for an n-order polynomial we would have to include timen as a 
predictor. Hopefully you get the general idea.

19.7.2.  An example: the honeymoon period 2

I recently heard a brilliant talk given by Professor Daniel Kahneman, who won the 2002 
Nobel Prize for Economics. In this talk Kahneman brought together an enormous amount of 
research on life satisfaction (he explored questions such as whether people are happier if they 
are richer). There was one graph in this talk that particularly grabbed my attention. It showed 

What is a
growth curve?
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that leading up to marriage people reported greater life satisfaction, but by about two years 
after marriage this life satisfaction decreased back to its baseline level. This graph perfectly 
illustrated what people talk about as the ‘honeymoon period’: a new relationship/marriage 
is great at first (no matter how ill suited you may be) but after six months or so the cracks 
start to appear and everything turns to elephant dung. Kahneman argued that people adapt 
to marriage; it does not make them happier in the long run (Kahneman & Krueger, 2006).6 
This got me thinking about relationships not involving marriage (is it marriage that makes 
you happy, or just being in a long-term relationship?). Therefore, in a completely fictitious 
parallel world where I don’t research child anxiety, but instead concern myself with people’s 
life satisfaction, I collected some data. I organized a massive speed-dating event (see Chapter 
14). At the start of the night I measured everyone’s life satisfaction (Satisfaction_Baseline) 
on a 10-point scale (0 = completely dissatisfied, 10 = completely satisfied) and their gender 
(Gender). After the speed dating I noted all of the people who had found dates. If they ended 
up in a relationship with the person that they met on the speed-dating night then I stalked 
these people over the next 18 months of that relationship. As such, I had measures of their 
life satisfaction at 6 months (Satisfaction_6_Months), 12 months (Satisfaction_12_Months) 
and 18 months (Satisfaction_18_Months), after they entered the relationship. None of the 
people measured were in the same relationship (i.e. I measured only life satisfaction from one 
of the people in the couple).7 Also, as is often the case with longitudinal data, I didn’t have 
scores for all people at all time points because not everyone was available at the follow-up 
sessions. One of the benefits of a multilevel approach is that these missing data do not pose 
a particular problem. The data are in the file Honeymoon Period.sav.

Figure 19.21 shows the data. Each circle is a data point and the line shows the average 
life satisfaction over time. Basically, from baseline, life satisfaction rises slightly at time 2 
(6 months) but then starts to decrease over the next 12 months. There are two things to 
note about the data. First, time 0 is before the people enter into their new relationship yet 

6 The romantics among you might be relieved to know that others have used the same data to argue the complete 
opposite: that married people are happier than non-married people in the long term (Easterlin, 2003).

7 However, I could have measured both people in the couple because using a multilevel model I could have treated 
people as being nested within ‘couples’ to take account of the dependency in their data.

Figure 19.20
Illustration of a 
first-order (linear, 
blue), second-
order (quadratic, 
green) and third-
order (cubic, red) 
polynomial
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already there is a lot of variability in their responses (reflecting the fact that people will 
vary in their satisfaction due to other reasons such as finances, personality and so on). This 
suggests that intercepts for life satisfaction differ across people. Second, there is also a lot 
of variability in life satisfaction after the relationship has started (time 1) and at all subse-
quent time points, which suggests that the slope of the relationship between time and life 
satisfaction might vary across people also. If we think of the time points as a level 1 vari-
able that is nested with people (a level 2 variable) then we can easily model this variability 
in intercepts and slopes within people. We have a situation similar to Figure 19.4 (except 
with two levels instead of three, although we could add in the location of the speed dating 
event as a level 3 variable if we had that information!). 

19.7.3.  Restructuring the data 3

The first problem with having data measured over time is that to do 
a multilevel model the data need to be in a different format to what 
we are used to. Figure 19.22 shows how we would normally set up the 
data editor for a repeated-measures design: each row represents a person, 
and notice that the repeated-measures variable of time is represented by 
four different columns. If we were going to run an ordinary repeated- 
measures ANOVA this data layout would be fine; however, for a mul-
tilevel model we need the variable Time to be represented by a single 
column. We could enter all of the data again, but that would be a pain; 
luckily we don’t have to do this because SPSS has a restructure command, 
which is also a pain, but not as much as retyping the data. This command 
enables you to take your data set and create a new data set that is organized differently.

To access the restructure wizard select . The steps in the wizard are shown in 
Figure 19.23. In the first dialog box you need to say whether you are converting variables to 

SPSS has restructured
my brain …

Figure 19.21
Life satisfaction 
over time
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Figure 19.22 The data editor for a normal repeated-measures data set

Figure 19.23 Continued
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Figure 19.23 The data restructure wizard

cases, or cases to variables. We have different levels of time in different columns (variables), and 
we want them to be in different rows (cases), so we need to select .  
Click on  to move to the next dialog box. This dialog box asks you whether you are 
creating just one new variable in your new data file from different columns in the old data 
file, or whether you want to create more than one new variable. In our case we are going to 
create one variable representing life satisfaction; therefore, select .  
When you have done this click on . The next dialog box is crucial because it’s where 
you set up the new data file. By default, SPSS creates a variable in your new data file called 
id which tells you from which person the data came (i.e. which row of the original data file). 
It does this by using the case numbers in the original data file. This default is fine, but if you 
want to change it (or the name id) then go to the section labelled Case Group Identification 
and change  to be  and then select a variable from your data file to act 
as a label in the new data file. For example, in the diagram I have chosen the variable Person 
from the original data set to identify participants in the new data file. 
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In the section labelled Variables to be Transposed there is a drop-down list labelled Target 
Variable which should contain an item labelled (rather unimaginatively) trans1. There is 
one item because we specified that we wanted one new variable in the previous dialog 
box (if we had asked for more than one new variable this drop-down list would contain as 
many items as variables that we requested). We can change the name of trans1 by selecting 
the variables in the drop-down list and then editing their names. I suggest that you rename 
the variable Life_Satisfaction. We then need to tell SPSS which columns are associated 
with these two variables. Select from the list labelled Variables in the Current File the four 
variables that represent the different time points at which life satisfaction was measured 
(Satisfaction_Baseline, Satisfaction_6_Months, Satisfaction_12_Months, Satisfaction_18_
Months). If you hold down the Ctrl key then you can select all four variables and either 
drag them across or click on . It’s important that you select the variables in the correct 
order: SPSS assumes that the first variable that it encounters is the first level of the repeated 
measure, and the second variable is the second level and so on. Once the variables are 
transferred, you can reorder them by using  or  to move selected variables up or down 
the list. Finally, there is a space to select Fixed Variable(s). Drag variables here that do not 
vary at level 1 of your hierarchy. In this example, this means that we can select variables 
that are different in different people (they vary at level 2) but have the same value at the 
different time points (they do not vary at level 1). The only variable that we have like this 
is Gender, which did not change over the course of the data collection, but differs across 
people. When you have finished click on .

The remaining dialog boxes are fairly straightforward. The next two deal with the index-
ing variable. SPSS creates a new variable that will tell you from which column the data 
originate. In our case with four time points this will mean that the variable is simply a 
sequence of numbers from 1 to 4. So, if the data point came from the baseline phase it will 
be assigned a 1, whereas it if came from the 18-month follow-up phase it will be given a 4. 
You can select to have a single index variable (which we need here) or not to have one, or to 
have several. We have restructured only one repeated-measures variable (Time), so we need 
only one index variable to represent levels of this variable. Therefore, select  and click 
on . In the next dialog box you can opt either to have the index variable containing 
numbers (such as 1, 2, 3, 4) or to use the names at the top of the columns from which the 
data came. The choice is up to you. You can also change the index variables name from 
Index to something useful such as Time (as I have done in the figure). The default options in 
the remaining dialog boxes are fine for most purposes so you can just click on  to do 
the restructuring. However, if you want to, you can click on  to move to a dialog box 
that enables you to opt to keep any variables from your original data file that you haven’t 
explicitly specified in the previous dialog boxes. The default is to drop them, and that’s fine 
(any variables from the original data file that you want in the new data file should probably 
be specified earlier on in the wizard). You can also choose to keep or discard missing data. 
Again, the default option to keep missing data is advisable here because multilevel models 
can deal with missing values. Click on  to move on to the final dialog box. This box 
gives you the option to restructure the data (the default) or to paste the syntax into a syntax 
window so that you can save it as a syntax file. If you’re likely to do similar data restructur-
ing then saving the syntax might be useful, but once you have got used to the windows it 
doesn’t take long to restructure new data anyway. Click on  to restructure the data. 

The restructured data are shown in Figure 19.24; it’s useful to compare the restructured 
data with the old data file in Figure 19.22. Notice that each person is now represented by 
four rows (one for each time point) and that variables such as gender that are invariant over 
the time points have the same value within each person. However, our outcome variable 
(life satisfaction) does change over the four time points (the four rows for each person).

There is only one other thing left to do. In your data set you’ll notice that the time points 
have values from 1 to 4. However, it’s useful to centre this variable at 0 because our initial 
life satisfaction was measured before the new relationship. Therefore, an intercept of 0 is 
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meaningful for these data: it is the value of life satisfaction when not in a relationship. By 
centring the scores around a baseline value of 0 we can interpret the intercept much more 
easily and intuitively. The easiest way to change the values is using the compute command 
to recompute Time to be Time −1. This will change the values from 1–4 to 0–3.

SELF-TEST  Use the compute command to transform 
Time into Time minus 1.

19.7.4.  Running a growth model on SPSS 4

Now that we have our data set up, we can run the analysis. Essentially, we can set up this ana-
lysis in a very similar way to the previous example. First, select 

 and in the initial dialog box set up the level 2 variable. In this example, life satisfac-
tion at multiple time points is nested within people. Therefore, the level 2 variable is the 
person and this variable is represented by the variable labelled Person. Select this variable 
and drag it to the box labelled Subjects (or click on ), see Figure 19.25. Click on  
to access the main dialog box.

In the main dialog box we need to set up our predictors and outcome. The outcome 
was life satisfaction, so select Life_Satisfaction and drag it to the box labelled Dependent 
Variable (or click on ). Our predictor, or growth variable, is Time so select this variable 
and drag it to the box labelled Covariate(s), or click on , see Figure 19.26.

We need to add the potential growth curves that we want to test as fixed effects to our model, 
so click on  to bring up the fixed effects dialog box (Figure 19.27). In section 19.7.1 
we discussed different growth curves. With four time points we can fit up to a third-order poly-
nomial. One way to do this would be to start with just the linear effect (Time), then run a new 

Figure 19.24
Data entry for 
a repeated-
measures 
multilevel model
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model with the linear and quadratic (Time2) polynomials to see if the quadratic trend improves 
the model. Finally, run a third model with the linear, quadratic and cubic (Time3) polynomial in, 
and see if the cubic trend adds to the model. So, basically, we add in polynomials one at a time 
and assess the change in the −2LL. To specify the linear polynomial click on Time and then click 

 to add it into the model. Click on  to return to the main dialog box.
I mentioned earlier on that we expected the relationship between time and life satisfaction to 

have both a random intercept and a random slope. We need to define these parameters now by 
clicking on  in the main dialog box to access the dialog box in Figure 19.28. The first 
thing we need to do is to specify our contextual variable. We do this by selecting it from the list 

Figure 19.25
Setting up the 
level 2 variable in 
a growth model

Figure 19.26
Setting up the 
outcome variable 
and predictor in a 
multilevel growth 
model
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Figure 19.27
Setting up the 
linear polynomial

Figure 19.28
Defining a 
random intercept 
and random 
slopes in a 
growth model
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of contextual variables that we have told SPSS about already. These appear in the section labelled 
Subjects and because we specified only one variable, there is only one variable in the list, Person. 
Select this variable and drag it to the area labelled Combinations (or click on ). To specify that 
the intercept is random select , and to specify random slopes for the effect of Time, 
click on this variable in the Factors and Covariates list and then click on  to include it in 
Model. Finally, we need to specify the covariance structure. By default, the covariance structure is 
set to be . However, we saw in section 19.4.2 that when we have repeated meas-
ures over time it can be useful to specify a covariance structure that assumes that scores become 
less correlated over time. Therefore, let’s choose an autoregressive covariance structure, AR(1), 
and let’s also assume that variances will be heterogeneous. Therefore, select  
from the drop-down list. Click on  to return to the main dialog box.

Click on  and select  and then click on  and select Parameter 
estimates and Tests for covariance parameters (see Figure 19.11). Click on  to return 
to the main dialog box. To run the analysis, click on .

SPSS Output 19.10 shows the preliminary tables from the output. We can see that the 
linear trend was significant, F(1, 106.72) = 134.26, p < .001. For evaluating the improve-
ment in the model when we add in new polynomials, we also need to note the value −2LL, 
which is 1862.63, and the degrees of freedom, which are 6 (look at the row labelled Total 
in the column labelled Number of Parameters, in the table called Model Dimension).

Now, let’s add the quadratic trend. To do this we return to the dialog box for fixed 
effects. Therefore, follow the instructions to run this analysis again until you reach the 
point where you click on . The linear polynomial should already be specified from 
before (if not, then click on Time and then click on  to add it into the model) and 
the dialog box will look like Figure 19.27. To add the higher-order polynomials we need 
to select . Select Time in the Factors and Covariates list and  will become 
active; click on this button and Time will appear in the space labelled Build Term. For 
the quadratic or second-order polynomial we need to define Time2 (Time multiplied by 
itself), and we can specify this by clicking on  to add a multiplication symbol to our 
term, then selecting Time again and clicking on . The Build Term bar should now read 

SPSS OuTPuT 19.10
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Time*Time (or, put another way, Time2). This term is the second-order polynomial, and we 
click on  to put it into the model. Click on  to return to the main dialog box 
and click on  to rerun the analysis.

The output will now include the quadratic polynomial. To see whether this quadratic 
trend has improved the model we need to compare the −2LL for this new model, to the 
value when only the linear polynomial was included. The value of −2LL is shown in SPSS 
Output 19.11, and it is 1802.03. We have added only one term to the model so the new 
degrees of freedom will have risen by 1, from 6 to 7 (you can check that the new degrees 
of freedom are 7 in the row labelled Total in the column labelled Number of Parameters, in 
the table called Model Dimension). We can compute the change in −2LL as a result of the 
quadratic term by subtracting the −2LL for this model from the −2LL for the model with 
only the linear trend:

χ2Change = 1862:63− 1802:03= 60:60

dfChange = 7− 6=1

If we look at the critical values for the chi-square statistic for df = 1 in Appendix A4, they 
are 3.84 (p < .05) and 6.63 (p < .01); therefore, this change is highly significant because 
60.60 is bigger than these values.

Figure 19.29
Specifying a 
linear trend 
(Time) and a 
quadratic trend 
(Time*Time)

SPSS OuTPuT 19.11
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Finally, let’s add the cubic trend. To do this we return to the dialog box for fixed effects. 
As for the quadratic trend, follow the instructions to run this analysis until you reach the 
point where you click on . The linear and quadratic polynomials should already be 
specified from before and the dialog box will look like Figure 19.29. As for the quadratic 
trend, make sure  is selected. Then, select Time in the Factors and Covariates 
list and  will become active; click on this button and Time will appear in the space 
labelled Build Term. For the cubic or third-order polynomial we need to define Time3 (or 
Time*Time*Time). We build this term up in the same way as for the quadratic polynomial. 
Select Time, click on , click on , select Time again, click on , click on  
again, select Time for a third time, click on  and finally click on . This should add 
the third-order polynomial (or Time*Time*Time) to the model,8 see Figure 19.30. Click on 

 to return to the main dialog box and click on  to rerun the analysis.
The output will now include the cubic polynomial. To see whether this cubic trend has 

improved the model we again compare the −2LL for this new model to the value in the 
previous model. The value of −2LL is shown in SPSS Output 19.12, and it is 1798.86. We 
have added only one term to the model so the new degrees of freedom will have risen by 
1, from 7 to 8 (again you can find the value of 8 in the row labelled Total in the column 
labelled Number of Parameters, in the table called Model Dimension). We can compute the 
change in −2LL as a result of the cubic-term by subtracting the −2LL for this model from 
the −2LL for the model with only the linear trend:

χ2Change = 1802:03− 1798:86=3:17

dfChange= 8− 7= 1

8 Should you ever want even high-order polynomials (notwithstanding my remark about them having little real-world 
relevance) then you can extrapolate from what I have told you about the other polynomials; for example, for a fourth-
order polynomial you go through the whole process again, but this time creating Time4 (or Time*Time*Time*Time), 
and for the fifth-order polynomial you create Time5 (or Time*Time*Time*Time*Time).

Figure 19.30
Specifying linear 
(Time), quadratic 
(Time*Time) 
and cubic 
(Time*Time*Time) 
trends
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Using the same critical values for the chi-square statistic as before, we can conclude that 
this change is not significant because 3.17 is less than the critical value of 3.84.

We will look at the SPSS output for this final model in a little more detail (SPSS 
Output 19.12). First, we are given the fit indices (the −2LL, AIC, AICC, CAIC and BIC). 
As we have seen, these are useful mainly for comparing models, so we have used the 
log-likelihood, for example, to test whether the addition of a polynomial significantly 
affects the fit of the model. The main part of the output is the table of fixed effects and 
the parameter estimates. These tell us that the linear, F(1, 221.39) = 10.01, p < .01, and 
quadratic, F(1, 212.49) = 9.41, p < .01, trends both significantly described the pattern 
of the data over time; however, the cubic trend, F(1, 214.37) = 3.19, p > .05, does not. 
This confirms what we already know from comparing the fit of successive models. The 
trend in the data is best described by a second-order polynomial, or a quadratic trend. 
This reflects the initial increase in life satisfaction 6 months after finding a new partner 
but a subsequent reduction in life satisfaction at 12 and 18 months after the start of 
the relationship (Figure 19.21). The parameter estimates tell us much the same thing. 
It’s worth remembering that this quadratic trend is only an approximation: if it were 
completely accurate then we would predict from the model that couples who had been 
together for 10 years would have negative life satisfaction, which is impossible given the 
scale we used to measure it.

SPSS OuTPuT 19.12
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The final part of the output tells us about the random parameters in the model. First of 
all, the variance of the random intercepts was Var(u0j) = 3.89. This suggests that we were 
correct to assume that life satisfaction at baseline varied significantly across people. Also, the 
variance of the people’s slopes varied significantly Var(u1j) = 0.24. This suggests also that the 
change in life satisfaction over time varied significantly across people too. Finally, the cov-
ariance between the slopes and intercepts (−0.38) suggests that as intercepts increased, the 
slope decreased. (Ideally, all of these terms should have been added in individually so that 
we could calculate the chi-square statistic for the change in the −2LL for each of them.)

19.7.5.  Further analysis 4

It’s worth pointing out that I’ve kept this growth curve analysis simple to give you the 
basic tools. In the example I allowed only the linear term to have a random intercept and 
slopes, but given that we discovered that a second-order polynomial described the change 
in responses, we could redo the analysis and allow random intercepts and slopes for the 
second-order polynomial also. To do these we would just have to specify these terms in 
Figure 19.28 in much the same way as we set them up as fixed effects in Figure 19.29. If 
we were to do this it would make sense to add the random components one at a time and 
test whether they have a significant impact on the model by comparing the log-likelihood 
values or other fit indices.

Also, the polynomials I have described are not the only ones that can be used. You could 
test for a logarithmic trend over time, or even an exponential one. 

             CRAMMING SAM’S TIPS    Growth models

 

M Growth models are multilevel models in which changes in an outcome over time are modelled using potential growth 
patterns.

M These growth patterns can be linear, quadratic, cubic, logarithmic, exponential, or anything you like really.

M The hierarchy in the data is that time points are nested within people (or other entities). As such, it’s a way of analysing 
repeated-measures data that have a hierarchical structure.

M The Information Criteria table can be used to assess the overall fit of the model. The −2LL can be significance tested with 
df = the number of parameters being estimated. It is mainly used, though, to compare models that are the same in all but 
one parameter by testing the difference in −2LL in the two models against df = 1 (if only one parameter has been changed). 
The AIC, AICC, CAIC and BIC can also be compared across models (but not significance tested).

M The table of Type III Tests of Fixed Effects tells you whether the growth functions that you have entered into the model 
significantly predict the outcome: look in the column labelled Sig. If the value is less than .05 then the effect is significant.

M The table labelled Estimates of Covariance Parameters tells us about any random effects in the model. These 
values can tell us how much intercepts and slopes varied over our level 1 variable. The significance of these esti-
mates should be treated cautiously. The exact labelling of these effects depends on which covariance structure you 
selected for the analysis.

M An autoregressive covariance structure, AR(1), is often assumed in time course data such as that in growth models.
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19.8. How to report a multilevel model 3

Specific advice on reporting multilevel models is hard to come by. Also, the models themselves 
can take on so many forms that giving standard advice is hard. If you have built up your model 
from one with only fixed parameters to one with a random intercept, and then random slope, 
it is advisable to report all stages of this process (or at the very least report the fixed-effects- 
only model and the final model). For any model you need to say something about the random 
effects. For the final model of the cosmetic surgery example you could write something like:

 The relationship between surgery and quality of life showed significant variance in 
intercepts across participants, var(u0j) = 30.06, χ2(1) = 15.05, p < .01. In addition, 
the slopes varied across participants, var(u1j) = 29.35, χ2(1) = 21.49, p < .01, and the 
slopes and intercepts negatively and significantly covaried, cov(u0 j , u1j) = −28.08, χ2(1) 
= 17.38, p < .01.

For the model itself, you have two choices. The first is to report the results rather like an ANOVA, 
with the Fs and degrees of freedom for the fixed effects, and then report the parameters for the 

Most female mammals experience a phase of ‘estrus’ dur-
ing which they are more sexually receptive, proceptive, 
selective and attractive. As such, the evolutionary benefit 
to this phase is believed to be to attract mates of superior 
genetic stock. However, some people have argued that this 
important phase became uniquely lost or hidden in human 
females. Testing these evolutionary ideas is exceptionally 
difficult but Geoffrey Miller and his colleagues came up 
with an incredibly elegant piece of research that did just 
that. They reasoned that if the ‘hidden-estrus’ theory is 
incorrect then men should find women most attractive dur-
ing the fertile phase of their menstrual cycle compared to 
the pre-fertile (menstrual) and post-fertile (luteal) phase.

To measure how attractive men found women in an 
ecologically valid way, they came up with the ingeneous 
idea of collecting data from women working at lap-danc-
ing clubs. These women maximize their tips from male 
visitors by attracting more dances. In effect the men 
‘try out’ several dancers before choosing a dancer for a 
prolonged dance. For each dance the male pays a ‘tip’, 
therefore the more men that choose a particular woman, 
the more her earnings will be. As such, each dancer’s 

earnings are a good index of how attractive the male cus-
tomers have found her. Miller and his colleagues argued, 
therefore, that if women do have an estrus phase then 
they will be more attractive during this phase and there-
fore earn more money. This study is a brilliant example of 
using a real-world phenomenon to address an important 
scientific question in an ecologically valid way. 

The data for this study are in the file Miller et al. 
(2007).sav. The researcher collected data via a website 
from several dancers (ID), who provided data for mul-
tiple lap-dancing shifts (so for each person there are sev-
eral rows of data). They also measured what phase of 
the menstrual cycle the women were in at a given shift 
(Cyclephase), and whether they were using hormonal 
contraceptives (Contraceptive) because this would 
affect their cycle. The outcome was their earnings on a 
given shift in dollars (Tips).

A multilevel model can be used here because the data 
are unbalanced: each woman differed in the number of 
shifts they provided data for (the range was 9 to 29 shifts); 
multilevel models can handle this problem.

Labcoat Leni wants you to carry out 
a multilevel model to see whether Tips 
can be predicted from Cyclephase, 
Contraceptive and their interaction. Is 
the ‘estrus-hidden’ hypothesis supported? 
Answers are in the additional material on 

the companion website (or look at page 378 in the origi-
nal article).

LABCOAT LENI’S
REAL RESEARCH 19.1

A fertile gesture 3

M
IL

Le
R,

 G
. T

yB
U

R,
 J

.M
. &

 J
o

R
D

AN
, B

.D
. (

20
07

).
 E

vo
lu

Ti
o

n
 a

n
d

 H
u

m
an

 B
EH

av
io

r,
 2

8,
 3

75
–3

81
.



776 D ISCOVER ING STAT IST ICS  US ING SPSS

random effects in the text as well. The second is to produce a table of parameters as you would 
for regression. For example, we might report our cosmetic surgery example as follows:

 Quality of life before surgery significantly predicted quality of life after surgery, 
F(1, 268.92) = 33.65, p < .001, surgery did not significantly predict quality of life, 
F(1, 15.86) = 2.17, p = .161, but the reason for surgery, F(1, 259.89) = 9.67, p < .01, and 
the interaction of the reason for surgery and surgery, F(1, 217.09) = 6.28, p < .05, both 
did significantly predict quality of life. This interaction was broken down by conducting 
separate multilevel models on the ‘physical reason’ and ‘attractiveness reason’. The mod-
els specified were the same as the main model but excluded the main effect and interac-
tion term involving the reason for surgery. These analyses showed that for those operated 
on only to change their appearance, surgery almost significantly predicted quality of life 
after surgery, b = −4.31, t(7.72) = −1.92, p = .09: quality of life was lower after surgery 
compared to the control group. However, for those that had surgery to solve a physical 
problem, surgery did not significantly predict quality of life, b = 1.20, t(7.61) = 0.58, 
p = .58. The interaction effect, therefore, reflects the difference in slopes for surgery as a 
predictor of quality of life in those that had surgery for physical problems (slight positive 
slope) and those that had surgery purely for vanity (a negative slope).

Alternatively we could present parameter information in a table:

b SE b 95% CI

Baseline QoL 0.31 0.05 0.20, 0.41

Surgery −3.19 2.17 −7.78, 1.41

Reason −3.51 1.13 −5.74, −1.29

Surgery × Reason 4.22 1.68 0.90, 7.54

What have I discovered about statistics? 2

Writing this chapter was quite a steep learning curve for me. I’ve been meaning to learn 
about multilevel modelling for ages, and now I finally feel like I know something. This is 
pretty amazing considering that the bulk of the reading and writing was done between 11 
p.m. and 3 a.m. over many nights. However, despite now feeling as though I understand 
them, I don’t, and if you feel like you now understand them then you’re wrong. This 
sounds harsh, but sadly multilevel modelling is very complicated and we have scratched 
only the surface of what there is to know. Multilevel models often fail to converge with 
no apology or explanation, and trying to fathom out what’s happening can feel like ham-
mering nails into your head.

Needless to say I didn’t mention any of this at the start of the chapter because I wanted 
you to read it. Instead, I lulled you into a false sense of security by looking gently at how 
data can be hierarchical and how this hierarchical structure can be important. Most of 
the tests in this book simply ignore the hierarchy. We also saw that hierarchical models 
are just basically a fancy regression in which you can estimate the variability in the slopes 
and intercepts within entities. We saw that you should start with a model that ignores the 
hierarchy and then add in random intercepts and slopes to see if they improve the fit of 
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the model. Having submerged ourselves in the warm bath of standard multilevel models 
we moved on to the icy lake of growth curves. We saw that there are ways to model 
trends in the data over time (and that these trends can also have variable intercepts and 
slopes). We also discovered that these trends have long confusing names like fourth-order 
polynomial. We asked ourselves why they couldn’t have a sensible name, like Kate. In 
fact, we decided to ourselves that we’d secretly call a linear trend Kate, a quadratic trend 
Benjamin, a cubic trend Zoë and a fourth-order trend Doug. ‘That will show the statisti-
cians’ we thought to ourselves, and felt a little bit self-satisfied too.

We also saw that after years of denial, my love of making a racket got the better of me. 
This brings my life story up to date. Admittedly I left out some of the more colourful bits, 
but only because I couldn’t find an extremely tenuous way to link them to statistics. We saw 
that over my life I managed to completely fail to achieve any of my childhood dreams. It’s 
OK, I have other ambitions now (a bit smaller scale than ‘rock star’) and I’m looking for-
ward to failing to achieve them too. The question that remains is whether there is life after 
Discovering Statistics. What effect does writing a statistics book have on your life?

Key terms that I’ve discovered 
AIC
AICC
AR(1)
BIC
CAIC
Centring
Diagonal
Fixed coefficient
Fixed effect
Fixed intercept
Fixed slope
Fixed variable

Grand mean centring
Group mean centring
Growth curve
Multilevel linear model
Polynomial
Random coefficient
Random effect
Random intercept
Random slope
Random variable
Unstructured
Variance components

Smart Alex’s tasks

Task 1MM : Using the cosmetic surgery example, run the analysis described in section 
19.6.5 but also including BDI, age and gender as fixed effect predictors. What differ-
ences does including these predictors make? 4

Task 2MM : Using our growth model example in this chapter, analyse the data but include 
Gender as an additional covariate. Does this change your conclusions? 4

Task 3: Getting kids to exercise (Hill, Abraham, & Wright, 2007)MM : The purpose of 
this research was to examine whether providing children with a leaflet based on the 
‘theory of planned behaviour’ increases children’s exercise. There were four differ-
ent interventions (Intervention): a control group, a leaflet, a leaflet and quiz, and a 
leaflet and plan. A total of 503 children from 22 different classrooms were sampled 
(Classroom). It was not practical to have children in the same classrooms in dif-
ferent conditions, therefore the 22 classrooms were randomly assigned to the four 
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different conditions. Children were asked ‘On average over the last three weeks, I 
have exercised energetically for at least 30 minutes ______ times per week’ after the 
intervention (Post_Exercise). Run a multilevel model analysis on these data (Hill et al. 
(2007).sav) to see whether the intervention affected the children’s exercise levels (the 
hierarchy in the data is: children within classrooms within interventions). 4

Task 4MM : Repeat the above analysis but include the pre-intervention exercise scores 
(Pre_Exercise) as a covariate. What difference does this make to the results? 4

Answers can be found on the companion website. 

Further reading
Kreft, I., & De Leeuw, J. (1998). Introducing multilevel modeling. London: Sage. (This is a fantastic 

book that is easy to get into but has a lot of depth too.)
Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Boston: Allyn & 

Bacon. (Chapter 15 is a fantastic account of multilevel linear models that goes a bit more in depth 
than I do.)

Twisk, J. W. R. (2006). Applied multilevel analysis: a practical guide. Cambridge: Cambridge 
University Press. (An absolutely superb introduction to multilevel modelling. This book is excep-
tionally clearly written and is aimed at novices. Without question, this is the best beginner’s guide 
that I have read.)

Online tutorial
The companion website contains the following Flash movie tutorial to accompany this chapter:

M Mixed Models using SPSS

Interesting real research
Cook, S. A., Rosser, R., & Salmon, P. (2006). Is cosmetic surgery an effective psychotherapeutic 

intervention? A systematic review of the evidence. Journal of Plastic, Reconstructive & Aesthetic 
Surgery, 59, 1133–1151.

Miller, G., Tybur, J. M., & Jordan, B. D. (2007). Ovulatory cycle effects on tip earnings by lap dan-
cers: economic evidence for human estrus? Evolution and Human Behavior, 28, 375–381.
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Here’s some questions that the writer sent
Can an observer be a participant?

Have I seen too much?
Does it count if it doesn’t touch?
If the view is all I can ascertain,

Pure understanding is out of range.
(Fugazi, 2001)

When I wrote the first edition of this book my main ambition was to write a statistics book 
that I would enjoy reading. Pretty selfish I know. I thought that if I had a reference book 
that had a few examples that amused me then it would make life a lot easier when I needed 
to look something up. I honestly didn’t think anyone would buy the thing (well, apart  
from my mum and dad) and I anticipated a glut of feedback along the lines of ‘the whole 
of Chapter X is completely wrong and you’re an arrant fool’, or ‘you should be ashamed 
of how many trees have died in the name of this rubbish, you brainless idiot’. In fact, even 
the publishers didn’t think it would sell (they have only revealed this subsequently I might 
add). There are several other things that I didn’t expect to happen:

Nice emails1 : I didn’t expect to receive hundreds of extremely nice emails from peo-
ple who liked the book. To this day it still absolutely amazes me that anyone reads 
it, let alone takes the time to write me a nice email, and knowing that the book has 
helped people always puts a huge smile on my face. When the nice comments are 
followed by four pages of statistics questions the smile fades a bit …
Everybody thinks that I’m a statistician2 : I should have seen this one coming really, 
but since writing a statistics textbook everyone assumes that I’m a statistician. I’m not, 
I’m a psychologist. Consequently, I constantly disappoint people by not being able to 
answer their statistics questions. In fact, this book is the sum total of my knowledge 
about statistics; there is nothing else (statistics-wise) in my brain that isn’t in this book. 
Actually, that’s a lie: there is more in this book about statistics than in my brain. For 
example, in the logistic regression chapter there is a new example on multinomial 
logistic regression. To write this new section I read a lot about multinomial logistic 
regression because I’d never used it. I wrote that new section about four months ago, 
and I’ve now forgotten everything that I wrote. Should I ever need to do a multino-
mial logistic regression I will read the chapter in this book and think to myself ‘wow, it 
really sounds as though I know what I’m talking about’. 

Craziness on a grand scale3 : The nicest thing about life after discovering statistics is the 
effort that people make to demonstrate that they are even stranger than me. All of these 
people have made life after Discovering Statistics … a profoundly enjoyable experience.

EpiloguE:  l ifE AftEr 
DiscovEring stAtist ics
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CatisticsMM : I’ve had quite a few photographs of people’s cats (and dogs) reading my 
book (check out my ‘discovering catistics’ website at http://www.statisticshell.com/
catistics.html). There has been many a week where one of these in my inbox has 
turned what was going to be a steaming turd of a day into a fragrant romp through 
fields of tulips. How can you not get a big stupid grin on your face when you see 
these?
FacebookMM : Two particularly strange people from Exeter (UK) whom I have never 
met set up an ‘Andy Field appreciation society’ on Facebook. I don’t go there 
much because it scares me a bit. But secretly I think it is quite cool. It’s almost like 
being the rock star that I always wanted to be, except that when people join a rock 
star’s appreciation society they mean it, but people join mine because it’s funny. 
Nevertheless, beggars can’t be choosers and I’m happy to overlook a technicality 
such as the truth if it means that I can believe that I’m popular.
FilmsMM : Possibly the strangest thing to have happened is Julie-Renée Kabriel and 
her bonkers friends from Washburn University producing a video homage to 
‘Discovering Stats’ (http://www.youtube.com/watch?v=oLsrt594Xxc). I was in 
equal parts crippled with laughter and utterly bemused watching this video. My 
parents liked it too. (Oddly enough, it’s to the tune of ‘Sweet Home Alabama’ by 
Lynyrd Skynyrd; I once gave a talk at Aberdeen University (Scotland) after which 
I got taken to a bar and ended up (quite unexpectedly) playing drums to that song 
with a makeshift band of complete strangers.)
Invitation to an autopsyMM : I got invited to an autopsy. Really! Some (very nice) foren-
sic scientists in Leicester loved this book so much that they felt that I needed to be 
rewarded for my efforts. They felt that the most appropriate reward would be to offer 
to take me to see a dead body being carved up (or to spend a day visiting crime scenes). 
In a strange way, I can see their logic. I haven’t been because I’m slightly scared that 
it’s a cruel trick and that it will turn out to be my body on the slab. However, in the 
interests of having a good story for the next edition I might just go …
Befriended by SatanMM : I got an email from the manager of a black metal band from 
London who, while using my book for her studies, was impressed to see that I 

like black metal bands. My band was playing the next week in 
London and never one to miss an opportunity, I invited her to 
come along. She not only turned up, but brought some of the 
band and some free CDs. They’re called Abgott, they rock, and 
they renamed me ‘The Evil Statistic’. I’ve subsequently spent 
many a happy night in London listening to deafening music 
and drinking too much with them. Buy their albums, buy their 
albums, buy their albums …

Life after Discovering Statistics … never ceases to amuse me.  
I never dreamed for a second that I’d be writing a third edition, 
or that this book would have become such a huge part of my life.  
I would recommend writing a statistics book to anyone: it changes 
your life. You get a constant warm fuzzy feeling from being told 
that you’ve helped people, strangers send you photos of their 
pets, they make films about you, they give you CDs, you get an 
appreciation society, you can go to see corpses being cut up, join a 
black metal band (well, maybe not, but if my drumming improves 
and their drummer’s arms and legs fall off, who knows?) and have 
people constantly overestimate your intelligence. It’s a great life 
and long may the craziness continue. 



781

0: the amount of a clue that Sage has 
about how much effort I put into 
writing this book.

−2LL: the log-likelihood multiplied by 
minus 2. This version of the likelihood 
is used in logistic regression.

α-level: the probability of making a Type I 
error (usually this value is .05).

A Life: what you don’t have when writing 
statistics textbooks.

Adjusted mean: in the context of 
analysis of covariance this is the value 
of the group mean adjusted for the 
effect of the covariate.

Adjusted predicted value: a measure 
of the influence of a particular case 
of data. It is the predicted value of a 
case from a model estimated without 
that case included in the data. The 
value is calculated by re-estimating 
the model without the case in 
question, then using this new model 
to predict the value of the excluded 
case. If a case does not exert a large 
influence over the model then its 
predicted value should be similar 
regardless of whether the model was 
estimated including or excluding that 
case. The difference between the  
predicted value of a case from the 
model when that case was included 
and the predicted value from the 
model when it was excluded is  
the DFFit.

Adjusted R2: a measure of the loss 
of predictive power or shrinkage in 
regression. The adjusted R2 tells us 
how much variance in the outcome 
would be accounted for if the model 
had been derived from the population 
from which the sample was taken. 

AIC (Akaike’s Information Criterion): 
a goodness-of-fit measure that is 
corrected for model complexity. 
That just means that it takes into 
account how many parameters have 
been estimated. It is not intrinsically 
interpretable, but can be compared in 
different models to see how changing 

the model affects the fit. A small value 
represents a better fit of the data.

AICC (Hurvich and Tsai’s Criterion): 
a goodness-of-fit measure that is 
similar to AIC but is designed for 
small samples. It is not intrinsically 
interpretable, but can be compared in 
different models to see how changing 
the model affects the fit. A small value 
represents a better fit of the data.

Alpha factoring: a method of factor 
analysis.

Alternative hypothesis: the prediction 
that there will be an effect (i.e. that 
your experimental manipulation will 
have some effect or that certain 
variables will relate to each other).

Analysis of covariance: a statistical 
procedure that uses the F-ratio to 
test the overall fit of a linear model 
controlling for the effect that one or 
more covariates have on the outcome 
variable. In experimental research 
this linear model tends to be defined 
in terms of group means and the 
resulting ANOVA is therefore an 
overall test of whether group means 
differ after the variance in the outcome 
variable explained by any covariates 
has been removed.

Analysis of variance: a statistical 
procedure that uses the F-ratio to 
test the overall fit of a linear model. 
In experimental research this linear 
model tends to be defined in terms 
of group means and the resulting 
ANOVA is therefore an overall test of 
whether group means differ.

ANCOVA: acronym for analysis of 
covariance.

Anderson–Rubin method: a way 
of calculating factor scores which 
produces scores that are uncorrelated 
and standardized with a mean of 0 
and a standard deviation of 1.

ANOVA: acronym for analysis of 
variance.

AR(1): this stands for first-order 
autoregressive structure. It is a 

covariance structure used in multilevel 
models in which the relationship 
between scores changes in a 
systematic way. It is assumed that 
the correlation between scores gets 
smaller over time and variances are 
assumed to be homogeneous. This 
structure is often used for repeated-
measures data (especially when 
measurements are taken over time 
such as in growth models).

Autocorrelation: when the residuals 
of two observations in a regression 
model are correlated.

bi: unstandardized regression coefficient. 
Indicates the strength of relationship 
between a given predictor, i, and an 
outcome in the units of measurement 
of the predictor. It is the change in 
the outcome associated with a unit 
change in the predictor.

βi: standardized regression coefficient. 
Indicates the strength of relationship 
between a given predictor, i, and 
an outcome in a standardized form. 
It is the change in the outcome (in 
standard deviations) associated with 
a one standard deviation change in 
the predictor.

β-level: the probability of making a Type 
II error (Cohen, 1992, suggests a 
maximum value of 0.2).

Bar chart: a graph in which a summary 
statistic (usually the mean) is plotted 
on the y-axis against a categorical 
variable on the x-axis (this categorical 
variable could represent, for example, 
groups of people, different times or 
different experimental conditions). The 
value of the mean for each category 
is shown by a bar. Different-coloured 
bars may be used to represent levels 
of a second categorical variable.

Bartlett’s test of sphericity: 
unsurprisingly this is a test of the 
assumption of sphericity. This test 
examines whether a variance–
covariance matrix is proportional to an 
identity matrix. Therefore, it effectively 

G l o s s a ry
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tests whether the diagonal elements 
of the variance–covariance matrix 
are equal (i.e. group variances are 
the same), and that the off-diagonal 
elements are approximately zero 
(i.e. the dependent variables are not 
correlated). Jeremy Miles, who does 
a lot of multivariate stuff, claims he’s 
never ever seen a matrix that reached 
non-significance using this test and, 
come to think of it, I’ve never seen one 
either (although I do less multivariate 
stuff) so you’ve got to wonder about 
its practical utility.

Beer-goggles effect: the phenomenon 
that people of the opposite gender 
(or the same depending on your 
sexual orientation) appear much more 
attractive after a few alcoholic drinks. 

Between-group design: another name 
for independent design.

Between-subject design: another name 
for independent design.

BIC (Schwarz’s Bayesian Criterion): 
a goodness-of-fit statistic comparable 
to the AIC, although it is slightly 
more conservative (it corrects more 
harshly for the number of parameters 
being estimated). It should be used 
when sample sizes are large and the 
number of parameters is small. It is 
not intrinsically interpretable, but can 
be compared in different models to 
see how changing the model affects 
the fit. A small value represents a 
better fit of the data.

Bimodal: a description of a distribution 
of observations that has two modes.

Binary logistic regression: logistic 
regression in which the outcome 
variable has exactly two categories.

Binary variable: a categorical variable 
that has only two mutually exclusive 
categories (e.g. being dead or alive).

Biserial correlation: a standardized 
measure of the strength of 
relationship between two variables 
when one of the two variables is 
dichotomous. The biserial correlation 
coefficient is used when one variable 
is a continuous dichotomy (e.g. has 
an underlying continuum between the 
categories). 

Bivariate correlation: a correlation 
between two variables.

Blockwise regression: another name 
for hierarchical regression.

Bonferroni correction: a correction 
applied to the α-level to control the 
overall Type I error rate when multiple 
significance tests are carried out. 
Each test conducted should use a 
criterion of significance of the α-level 
(normally .05) divided by the number 

of tests conducted. This is a simple 
but effective correction, but tends to 
be too strict when lots of tests are 
performed.

Bootstrap: a technique from which the 
sampling distribution of a statistic 
is estimated by taking repeated 
samples (with replacement) from 
the data set (so, in effect, treating 
the data as a population from which 
smaller samples are taken). The 
statistic of interest (e.g. the mean, or 
b coefficient) is calculated for each 
sample, from which the sampling 
distribution of the statistic is 
estimated. The standard error of  
the statistic is estimated as the 
standard deviation of the sampling 
distribution created from the 
bootstrap samples. From this, 
confidence intervals and significance 
tests can be computed.

Boredom effect: refers to the possibility 
that performance in tasks may be 
influenced (the assumption is a 
negative influence) by boredom/lack 
of concentration if there are many 
tasks, or the task goes on for a long 
period of time. In short, what you are 
experiencing reading this glossary is a 
boredom effect.

Box’s test: a test of the assumption of 
homogeneity of covariance matrices. 
This test should be non-significant if the 
matrices are roughly the same. Box’s 
test is very susceptible to deviations 
from multivariate normality and so 
can be non-significant, not because 
the variance–covariance matrices are 
similar across groups, but because the 
assumption of multivariate normality 
is not tenable. Hence, it is vital to have 
some idea of whether the data meet 
the multivariate normality assumption 
(which is extremely difficult) before 
interpreting the result of Box’s test.

Boxplot (a.k.a. box–whisker 
diagram): a graphical representation 
of some important characteristics 
of a set of observations. At the 
centre of the plot is the median, 
which is surrounded by a box the 
top and bottom of which are the 
limits within which the middle 50% 
of observations fall (the interquartile 
range). Sticking out of the top and 
bottom of the box are two whiskers 
which extend to the most and least 
extreme scores respectively.

Box–whisker plot: see Boxplot.
Brown–Forsythe F: a version of the 

F-ratio designed to be accurate when 
the assumption of homogeneity of 
variance has been violated.

CAIC (Bozdogan’s criterion): a 
goodness-of-fit measure similar to the 
AIC, but corrects for model complexity 
and sample size. It is not intrinsically 
interpretable, but can be compared in 
different models to see how changing 
the model affects the fit. A small value 
represents a better fit of the data.

Categorical variable: any variable made 
up of categories of objects/entities. 
The UK degree classifications are a 
good example because degrees are 
classified as a 1, 2:1, 2:2, 3, pass 
or fail. Therefore, graduates form a 
categorical variable because they will 
fall into only one of these categories 
(hopefully the category of students 
receiving a first).

Central limit theorem: this theorem 
states that when samples are large 
(above about 30) the sampling 
distribution will take the shape of 
a normal distribution regardless of 
the shape of the population from 
which the sample was drawn. For 
small samples the t-distribution 
better approximates the shape of the 
sampling distribution. We also know 
from this theorem that the standard 
deviation of the sampling distribution 
(i.e. the standard error of the sample 
mean) will be equal to the standard 
deviation of the sample (s) divided by 
the square root of the sample size (N).

Central tendency: a generic term 
describing the centre of a frequency 
distribution of observations as measured 
by the mean, mode and median.

Centring: the process of transforming 
a variable into deviations around a 
fixed point. This fixed point can be any 
value that is chosen, but typically a 
mean is used. To centre a variable the 
mean is subtracted from each score. 
See Grand mean centring, Group 
mean centring.

Chart Builder: facility in SPSS for 
drawing graphs that is accessed via 
the Graphs menu.

Chart Editor: a window in SPSS in which 
graphs from the SPSS Viewer can 
be edited. To access the chart editor 
window double-click on a graph in the 
viewer.

Chartjunk: superfluous material 
that distracts from the data being 
displayed on a graph.

Chi-square distribution: a probability 
distribution of the sum of squares of 
several normally distributed variables. 
It tends to be used to (1) test 
hypotheses about categorical data, 
and (2) test the fit of models to the 
observed data.
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Chi-square test: although this term  
can apply to any test statistic  
having a chi-square distribution,  
it generally refers to Pearson’s  
chi-square test of the independence 
of two categorical variables. 
Essentially it tests whether two 
categorical variables forming a 
contingency table are associated.

Cochran’s Q: this test is an extension 
of McNemar’s test and is basically a 
Friedman’s ANOVA for dichotomous 
data. So imagine you asked 10 people 
whether they’d like to shoot Justin 
Timberlake, David Beckham and 
Simon Cowell and they could answer 
only yes or no. If we coded responses 
as 0 (no) and 1 (yes) we could do 
Cochran’s test on these data.

Coefficient of determination: the 
proportion of variance in one variable 
explained by a second variable. It is 
the Pearson correlation coefficient 
squared.

Common variance: variance shared by 
two or more variables.

Communality: the proportion of a 
variable’s variance that is common 
variance. This term is used primarily in 
factor analysis. A variable that has no 
unique variance (or random variance) 
would have a communality of 1, 
whereas a variable that shares none 

of its variance with any other variable 
would have a communality of 0.

Complete separation: a situation in 
logistic regression when the outcome 
variable can be perfectly predicted 
by one predictor or a combination 
of predictors. Suffice it to say this 
situation makes your computer 
have the equivalent of a nervous 
breakdown: it’ll start gibbering, 
weeping and saying it doesn’t know 
what to do. 

Component matrix: general term for 
the structure matrix in SPSS principal 
component analysis.

Compound symmetry: a condition that 
holds true when both the variances 
across conditions are equal (this 
is the same as the homogeneity 
of variance assumption) and the 
covariances between pairs of 
conditions are also equal.

Confidence interval: for a given 
statistic calculated for a sample of 
observations (e.g. the mean), the 
confidence interval is a range of 
values around that statistic that are 
believed to contain, with a certain 
probability (e.g. 95%), the true value 
of that statistic (i.e. the population 
value). 

Confirmatory factor analysis (CFA): 
a version of factor analysis in which 

specific hypotheses about structure 
and relations between the latent 
variables that underlie the data are 
tested.

Confounding variable: a variable  
(that we may or may not have 
measured) other than the predictor 
variables in which we’re interested 
that potentially affects an outcome 
variable.

Content validity: evidence that the 
content of a test corresponds to 
the content of the construct it was 
designed to cover.

Contingency table: a table representing 
the cross-classification of two or 
more categorical variables. The levels 
of each variable are arranged in a 
grid, and the number of observations 
falling into each category is noted in 
the cells of the table. For example, if 
we took the categorical variables of 
glossary (with two categories: whether 
an author was made to write a 
glossary or not) and mental state (with 
three categories: normal, sobbing 
uncontrollably and utterly psychotic), 
we could construct a table as below. 
This instantly tells us that 127 authors 
who were made to write a glossary 
ended up as utterly psychotic, 
compared to only 2 who did not write 
a glossary.

Glossary

Author made to  
write glossary No glossary Total

Mental state Normal   5 423 428

Sobbing uncontrollably  23  46  69

Utterly psychotic 127   2 129

Total 155 471 626

Continuous variable: a variable that can 
be measured to any level of precision. 
(Time is a continuous variable, because 
there is in principle no limit on how finely 
it could be measured.)

Cook’s distance: a measure of the 
overall influence of a case on a 
model. Cook and Weisberg (1982) 
have suggested that values greater 
than 1 may be cause for concern.

Correlation coefficient: a measure 
of the strength of association or 
relationship between two variables. 
See Pearson’s correlation coefficient, 
Spearman’s correlation coefficient, 
Kendall’s tau.

Correlational research: a form of 
research in which you observe what 
naturally goes on in the world without 
directly interfering with it. This term 
implies that data will be analysed so 
as to look at relationships between 
naturally-occurring variables rather than 
making statements about cause and 
effect. Compare with cross-sectional 
research and experimental research.

Counterbalancing: a process of 
systematically varying the order in 
which experimental conditions are 
conducted. In the simplest case  
of there being two conditions  
(A and B), counterbalancing simply 

implies that half of the participants 
complete condition A followed by 
condition B, whereas the remainder 
do condition B followed by condition 
A. The aim is to remove systematic 
bias caused by practice effects or 
boredom effects.

Covariance: a measure of the ‘average’ 
relationship between two variables. 
It is the average cross-product 
deviation (i.e. the cross-product 
divided by one less than the number 
of observations).

Covariance ratio (CVR): a measure 
of whether a case influences the 
variance of the parameters in a 
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regression model. When this ratio 
is close to 1 the case is having very 
little influence on the variances of 
the model parameters. Belsey et al. 
(1980) recommend the following: 
if the CVR of a case is greater than 
1 + [3(k + 1)/n] then deleting that 
case will damage the precision of 
some of the model’s parameters, 
but if it is less than 1 − [3(k + 1)/n] 
then deleting the case will improve 
the precision of some of the model’s 
parameters (k is the number of 
predictors and n is the sample size).

Covariate: a variable that has a 
relationship with (in terms of 
covariance), or has the potential to be 
related to, the outcome variable we’ve 
measured.

Cox and Snell’s R 2
CS: a version of 

the coefficient of determination for 
logistic regression. It is based on the 
log-likelihood of a model (LL(new)) 
and the log-likelihood of the original 
model (LL(baseline)), and the sample 
size, n. However, it is notorious for not 
reaching its maximum value of 1 (see 
Nagelkerke’s R 2

N).
Cramer’s V: a measure of the strength 

of association between two 
categorical variables used when one 
of these variables has more than two 
categories. It is a variant of phi used 
because when one or both of the 
categorical variables contain more 
than two categories, phi fails to reach 
its minimum value of 0 (indicating no 
association).

Criterion validity: evidence that scores 
from an instrument correspond with or 
predict concurrent external measures 
conceptually related to the measured 
construct.

Cronbach’s α: a measure of the 
reliability of a scale defined by:

α= N2CovP
s2item +

P
Covitem

 
in which the top half of the equation 
is simply the number of items (N) 
squared multiplied by the average 
covariance between items (the 
average of the off-diagonal elements 
in the variance–covariance matrix). 
The bottom half is the sum of all the 
elements in the variance–covariance 
matrix.

Cross-product deviations: a measure 
of the ‘total’ relationship between two 
variables. It is the deviation of one 
variable from its mean multiplied by the 
other variable’s deviation from its mean.

Cross-sectional research: a form of 
research in which you observe what 

naturally goes on in the world without 
directly interfering with it. This term 
specifically implies that data come 
from people at different age points 
with different people representing 
each age point. See also correlational 
research.

Cross-validation: assessing the 
accuracy of a model across different 
samples. This is an important step 
in generalization. In a regression 
model there are two main methods 
of cross-validation: adjusted R2 or 
data splitting, in which the data are 
split randomly into two halves, and 
a regression model is estimated for 
each half and then compared.

Crying: what you feel like doing after 
writing statistics textbooks.

Cubic trend: if you connected the 
means in ordered conditions with 
a line then a cubic trend is shown 
by two changes in the direction of 
this line. You must have at least four 
ordered conditions.

Currency variable: a variable containing 
values of money.

Data editor: the main window in SPSS 
in which you enter data and carry out 
statistical functions.

Data view: there are two ways to view 
the contents of the data editor 
window. The data view shows you 
a spreadsheet and can be used for 
entering raw data. See also variable 
view.

Date variable: variables made up of 
dates. The data can take forms such 
as dd-mmm-yyyy (e.g. 21-Jun-1973), 
dd-mmm-yy (e.g. 21-Jun-73), mm/dd/
yy (e.g. 06/21/73), dd.mm.yyyy (e.g. 
21.06.1973).

Degrees of freedom: an impossible 
thing to define in a few pages let 
alone a few lines. Essentially it is 
the number of ‘entities’ that are free 
to vary when estimating some kind 
of statistical parameter. In a more 
practical sense, it has a bearing on 
significance tests for many commonly 
used test statistics (such as the 
F-ratio, t-test, chi-square statistic) 
and determines the exact form of the 
probability distribution for these test 
statistics. The explanation involving 
rugby players in Chapter 8 is far more 
interesting…

Deleted residual: a measure of the 
influence of a particular case of 
data. It is the difference between the 
adjusted predicted value for a case 
and the original observed value for 
that case. 

Density plot: similar to a histogram 
except that rather than having a 

summary bar representing the 
frequency of scores, it shows each 
individual score as a dot. They can 
be useful for looking at the shape of a 
distribution of scores.

Dependent t-test: a test using the 
t-statistic that establishes whether 
two means collected from the same 
sample (or related observations) differ 
significantly.

Dependent variable: another name 
for outcome variable. This name is 
usually associated with experimental 
methodology (which is the only time it 
really makes sense) and is so called 
because it is the variable that is not 
manipulated by the experimenter and 
so its value depends on the variables 
that have been manipulated. To be 
honest I just use outcome variable all 
the time – it makes more sense (to 
me) and is less confusing.

Deviance: the difference between the 
observed value of a variable and the 
value of that variable predicted by a 
statistical model.

Deviation contrast: a non-orthogonal 
planned contrast that compares the 
mean of each group (except first or 
last depending on how the contrast is 
specified) to the overall mean.

DFA: acronym for discriminant function 
analysis (see discriminant analysis).

DFBeta: a measure of the influence of a 
case on the values of bi in a regression 
model. If we estimated a regression 
parameter bi and then deleted a 
particular case and re-estimated the 
same regression parameter bi, then 
the difference between these two 
estimates would be the DFBeta for 
the case that was deleted. By looking 
at the values of the DFBetas, it is 
possible to identify cases that have a 
large influence on the parameters of 
the regression model; however, the 
size of DFBeta will depend on the units 
of measurement of the regression 
parameter.

DFFit: a measure of the influence of a 
case. It is the difference between 
the adjusted predicted value and the 
original predicted value of a particular 
case. If a case is not influential then 
its DFFit should be zero – hence, we 
expect non-influential cases to have 
small DFFit values. However, we have 
the problem that this statistic depends 
on the units of measurement of the 
outcome and so a DFFit of 0.5 will be 
very small if the outcome ranges from 
1 to 100, but very large if the outcome 
varies from 0 to 1.

Diagonal: a covariance structure used 
in multilevel models. This variance 
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structure in which variances are 
assumed to be heterogeneous and 
that all of the covariances are 0. In 
SPSS this is the default covariance 
structure for repeated measures 
designs.

Dichotomous: description of a 
variable that consists of only two 
categories (e.g. the variable gender 
is dichotomous because it consists 
of only two categories: male and 
female).

Difference contrast: a non-orthogonal 
planned contrast that compares 
the mean of each condition (except 
the first) to the overall mean of all 
previous conditions combined.

Direct oblimin: a method of oblique 
rotation.

Discrete variable: a variable that can 
only take on certain values (usually 
whole numbers) on the scale.

Discriminant analysis: also known as 
discriminant function analysis. This 
analysis identifies and describes the 
discriminant function variates of a set 
of variables and is useful as a follow-
up test to MANOVA as a means of 
seeing how these variates allow 
groups of cases to be discriminated.

Discriminant function variate: a linear 
combination of variables created such 
that the differences between group 
means on the transformed variable are 
maximized. It takes the general form:

Variate1 =b1X1 +b2X2 + . . . +bnXn:

Discriminant score: a score for an 
individual case on a particular 
discriminant function variate obtained 
by replacing that case’s scores on the 
measured variables into the equation 
that defines the variate in question. 

Dummy variables: a way of recoding 
a categorical variable with more 
than two categories into a series of 
variables all of which are dichotomous 
and can take on values of only 0 or 1. 
There are seven basic steps to create 
such variables: (1) count the number 
of groups you want to recode and 
subtract 1; (2) create as many new 
variables as the value you calculated 
in step 1 (these are your dummy 
variables); (3) choose one of your 
groups as a baseline (i.e. a group 
against which all other groups should 
be compared, such as a control 
group); (4) assign that baseline group 
values of 0 for all of your dummy 
variables; (5) for your first dummy 
variable, assign the value 1 to the 
first group that you want to compare 
against the baseline group (assign 
all other groups 0 for this variable); 

(6) for the second dummy variable 
assign the value 1 to the second 
group that you want to compare 
against the baseline group (assign all 
other groups 0 for this variable); (7) 
repeat this process until you run out of 
dummy variables.

Durbin–Watson test: tests for serial 
correlations between errors in 
regression models. Specifically, it 
tests whether adjacent residuals 
are correlated, which is useful 
in assessing the assumption of 
independent errors. The test statistic 
can vary between 0 and 4 with a value 
of 2 meaning that the residuals are 
uncorrelated. A value greater than 
2 indicates a negative correlation 
between adjacent residuals, whereas 
a value below 2 indicates a positive 
correlation. The size of the Durbin–
Watson statistic depends upon the 
number of predictors in the model 
and the number of observations. 
For accuracy, look up the exact 
acceptable values in Durbin and 
Watson’s (1951) original paper. As 
a very conservative rule of thumb, 
values less than 1 or greater than 
3 are definitely cause for concern; 
however, values closer to 2 may still 
be problematic depending on the 
sample and model.

Ecological validity: evidence that the 
results of a study, experiment or test 
can be applied, and allow inferences, 
to real-world conditions.

Eel: long, snakelike, scaleless fishes 
that lack pelvic fins. From the order 
Anguilliformes or Apodes, they should 
probably not be inserted into your 
anus to cure constipation (or for any 
other reason).

Effect size: an objective and (usually) 
standardized measure of the magnitude 
of an observed effect. Measures include 
Cohen’s d, Glass’ g and Pearson’s 
correlations coefficient, r.

Equamax: a method of orthogonal 
rotation that is a hybrid of quartimax 
and varimax. It is reported to behave 
fairly erratically (see Tabachnick and 
Fidell, 2001) and so is probably best 
avoided.

Error bar chart: a graphical 
representation of the mean of a set 
of observations that includes the 95% 
confidence interval of the mean. The 
mean is usually represented as a 
circle, square or rectangle at the value 
of the mean (or a bar extending to the 
value of the mean). The confidence 
interval is represented by a line 
protruding from the mean (upwards, 
downwards or both) to a short 

horizontal line representing the limits 
of the confidence interval. Error bars 
can be drawn using the standard error 
or standard deviation instead of the 
95% confidence interval.

Error SSCP (E): the error sum of 
squares and cross-product matrix. 
This is a sum of squares and 
cross-product matrix for the error 
in a predictive linear model fitted to 
multivariate data. It represents the 
unsystematic variance and is the 
multivariate equivalent of the residual 
sum of squares.

Eta squared (η2): an effect size measure 
that is the ratio of the model sum of 
squares to the total sum of squares. 
So, in essence, the coefficient of 
determination by another name. It 
doesn’t have an awful lot going for 
it: not only is it biased, but it typically 
measures the overall effect of an 
ANOVA and effect sizes are more 
easily interpreted when they reflect 
specific comparisons (e.g. the 
difference between two means).

Exp(B): the label that SPSS applies to 
the odds ratio. It is an indicator of the 
change in odds resulting from a unit 
change in the predictor in logistic 
regression. If the value is greater than 
1 then it indicates that as the predictor 
increases, the odds of the outcome 
occurring increase. Conversely, a 
value less than 1 indicates that as the 
predictor increases, the odds of the 
outcome occurring decrease.

Experimental hypothesis: synonym for 
alternative hypothesis.

Experimental research: a form of 
research in which one or more 
variable is systematically manipulated 
to see their effect (alone or in 
combination) on an outcome variable. 
This term implies that data will be 
able to be used to make statements 
about cause and effect. Compare 
with cross-sectional research and 
correlational research.

Experimentwise error rate: the 
probability of making a Type I error in 
an experiment involving one or more 
statistical comparisons when the null 
hypothesis is true in each case.

Extraction: a term used for the process 
of deciding whether a factor in factor 
analysis is statistically important 
enough to ‘extract’ from the data 
and interpret. The decision is based 
on the magnitude of the eigenvalue 
associated with the factor. See 
Kaiser’s criterion, scree plot.

FMax: see Hartley’s FMax.
F-ratio: a test statistic with a known 

probability distribution (the 
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F-distribution). It is the ratio of the 
average variability in the data that 
a given model can explain to the 
average variability unexplained by 
that same model. It is used to test 
the overall fit of the model in simple 
regression and multiple regression, 
and to test for overall differences 
between group means in experiments.

Factor: another name for an 
independent variable or predictor 
that’s typically used when describing 
experimental designs. However, to 
add to the confusion, it is also used 
synonymously with latent variable in 
factor analysis.

Factor analysis: a multivariate technique 
for identifying whether the correlations 
between a set of observed variables 
stem from their relationship to one or 
more latent variables in the data, each 
of which takes the form of a linear 
model.

Factor loading: the regression 
coefficient of a variable for the linear 
model that describes a latent variable 
or factor in factor analysis. 

Factor matrix: general term for the 
structure matrix in SPSS factor 
analysis.

Factor scores: a single score from 
an individual entity representing 
their performance on some latent 
variable. The score can be crudely 
conceptualized as follows: take an 
entity’s score on each of the variables 
that make up the factor and multiply 
it by the corresponding factor loading 
for the variable, then add these values 
up (or average them).

Factor transformation matrix, Λ: 
a matrix used in factor analysis. It 
can be thought of as containing the 
angles through which factors are 
rotated in factor rotation.

Factorial ANOVA: an analysis of 
variance involving two or more 
independent variables or predictors. 

Falsification: the act of disproving a 
hypothesis or theory.

Familywise error rate: the probability 
of making a Type I error in any family 
of tests when the null hypothesis is 
true in each case. The ‘family of tests’ 
can be loosely defined as a set of 
tests conducted on the same data set 
and addressing the same empirical 
question.

Fisher’s exact test: Fisher’s exact 
test (Fisher, 1922) is not so much 
of a test as a way of computing the 
exact probability of a statistic. It was 
designed originally to overcome the 
problem that with small samples the 

sampling distribution of the chi-square 
statistic deviates substantially from a 
chi-square distribution. It should be 
used with small samples.

Fit: how sexually attractive you find a 
statistical test. Alternatively, it’s the 
degree to which a statistical model is 
an accurate representation of some 
observed data. (Incidentally, it’s just 
plain wrong to find statistical tests 
sexually attractive.)

Fixed coefficient: a coefficient or model 
parameter that is fixed; that is, it 
cannot vary over situations or contexts 
(cf. Random coefficient).

Fixed effect: an effect in an experiment 
is said to be a fixed effect if all 
possible treatment conditions that a 
researcher is interested in are present 
in the experiment. Fixed effects can 
be generalized only to the situations 
in the experiment. For example, the 
effect is fixed if we say that we are 
interested only in the conditions 
that we had in our experiment (e.g. 
placebo, low dose and high dose) 
and we can generalize our findings 
only to the situation of a placebo, low 
dose and high dose.

Fixed intercept: a term used in multilevel 
modelling to denote when the 
intercept in the model is fixed. That is, 
it is not free to vary across different 
groups or contexts (cf. Random 
intercept).

Fixed slope: a term used in multilevel 
modelling to denote when the slope 
of the model is fixed. That is, it is not 
free to vary across different groups or 
contexts (cf. Random slope).

Fixed variable: a fixed variable is one 
that is not supposed to change 
over time (e.g. for most people their 
gender is a fixed variable – it never 
changes).

Frequency distribution: a graph 
plotting values of observations on 
the horizontal axis, and the frequency 
with which each value occurs in the 
data set on the vertical axis (a.k.a. 
histogram).

Friedman’s ANOVA: a non-parametric 
test of whether more than two related 
groups differ. It is the non-parametric 
version of one-way repeated-
measures ANOVA.

Generalization: the ability of a statistical 
model to say something beyond the 
set of observations that spawned it. If 
a model generalizes it is assumed that 
predictions from that model can be 
applied not just to the sample on which 
it is based, but to a wider population 
from which the sample came.

Glossary: a collection of grossly 
inaccurate definitions (written late 
at night when you really ought to be 
asleep) of things that you thought 
you understood until some evil book 
publisher forced you to try to define 
them.

Goodman and Kruskal’s λ: measures 
the proportional reduction in error that 
is achieved when membership of a 
category of one variable is used to 
predict category membership of the 
other variable. A value of 1 means 
that one variable perfectly predicts the 
other, whereas a value of 0 indicates 
that one variable in no way predicts 
the other.

Goodness of fit: an index of how well a 
model fits the data from which it was 
generated. It’s usually based on how 
well the data predicted by the model 
correspond to the data that were 
actually collected.

Grand mean: the mean of an entire set 
of observations.

Grand mean centring: grand mean 
centring means the transformation of 
a variable by taking each score and 
subtracting the mean of all scores (for 
that variable) from it (cf. Group mean 
centring).

Grand variance: the variance within an 
entire set of observations.

Greenhouse–Geisser correction: 
an estimate of the departure from 
sphericity. The maximum value 
is 1 (the data completely meet 
the assumption of sphericity) and 
minimum is the lower bound. Values 
below 1 indicate departures from 
sphericity and are used to correct 
the degrees of freedom associated 
with the corresponding F-ratios by 
multiplying them by the value of the 
estimate. Some say the Greenhouse–
Geisser correction is too conservative 
(strict) and recommend the Huynh–
Feldt correction instead.

Group mean centring: group mean 
centering is to transform a variable 
by taking each score and subtracting 
from it the mean of the scores (for 
that variable) for the group to which 
that score belongs (cf. Grand mean 
centring).

Growth curve: a curve that summarizes 
the change in some outcome over 
time. See Polynomial.

Harmonic mean: a weighted version 
of the mean that takes account of 
the relationship between variance 
and sample size. It is calculated 
by summing the reciprocal of all 
observations, then dividing by 
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the number of observations. The 
reciprocal of the end product is the 
harmonic mean:

H = 1

1
n

Pn

i =1

1
xi

Hartley’s FMax: also known as the 
variance ratio, this is the ratio of the 
variances between the group with 
the biggest variance and the group 
with the smallest variance. This ratio 
is compared to critical values in a 
table published by Hartley as a test 
of homogeneity of variance. Some 
general rules are that with sample 
sizes (n) of 10 per group, an FMax less 
than 10 is more or less always going 
to be non-significant, with 15–20 per 
group the ratio needs to be less than 
about 5, and with samples of 30–60 
the ratio should be below about 2 
or 3.

Hat values: another name for leverage.
HE−1: this is a matrix that is functionally 

equivalent to the hypothesis SSCP 
divided by the error SSCP in MANOVA. 
Conceptually it represents the ratio of 
systematic to unsystematic variance, 
so is a multivariate analogue of the 
F-ratio.

Helmert contrast: a non-orthogonal 
planned contrast that compares 
the mean of each condition (except 
the last) to the overall mean all 
subsequent conditions combined.

Heterogeneity of variance: the 
opposite of homogeneity of variance. 
This term means that the variance of 
one variable varies (i.e. is different) 
across levels of another variable.

Heteroscedasticity: the opposite of 
homoscedasticity. This occurs when 
the residuals at each level of the 
predictor variables(s) have unequal 
variances. Put another way, at each 
point along any predictor variable, the 
spread of residuals is different.

Hierarchical regression: a method of 
multiple regression in which the order 
in which predictors are entered into 
the regression model is determined 
by the researcher based on previous 
research: variables already known to 
be predictors are entered first, new 
variables are entered subsequently.

Histogram: a frequency distribution.
Homogeneity of covariance matrices: 

an assumption of some multivariate 
tests such as MANOVA. It is an 
extension of the homogeneity of 
variance assumption in univariate 
analyses. However, as well as 
assuming that variances for each 

dependent variable are the same 
across groups, it also assumes that 
relationships (covariances) between 
these dependent variables are roughly 
equal. It is tested by comparing 
the population variance–covariance 
matrices of the different groups in the 
analysis.

Homogeneity of regression slopes: an 
assumption of analysis of covariance. 
This is the assumption that the 
relationship between the covariate 
and outcome variable is constant 
across different treatment levels. So, if 
we had three treatment conditions, if 
there’s a positive relationship between 
the covariate and the outcome in 
one group, we assume that there is 
a similar-sized positive relationship 
between the covariate and outcome in 
the other two groups too.

Homogeneity of variance: the 
assumption that the variance of one 
variable is stable (i.e. relatively similar) 
at all levels of another variable.

Homoscedasticity: an assumption 
in regression analysis that the 
residuals at each level of the predictor 
variables(s) have similar variances. 
Put another way, at each point along 
any predictor variable, the spread of 
residuals should be fairly constant.

Hosmer and Lemeshow’s R 2
L: a version 

of the coefficient of determination for 
logistic regression. It is a fairly literal 
translation in that it is the −2LL for the 
model divided by the original −2LL; in 
other words, it’s the ratio of what the 
model can explain compared to what 
there was to explain in the first place!

Hotelling–Lawley trace (T2): a test 
statistic in MANOVA. It is the sum of 
the eigenvalues for each discriminant 
function variate of the data and so is 
conceptually the same as the F-ratio 
in ANOVA: it is the sum of the ratio of 
systematic and unsystematic variance 
(SSM/SSR) for each of the variates.

Huynh–Feldt correction: an estimate 
of the departure from sphericity. 
The maximum value is 1 (the data 
completely meet the assumption 
of sphericity). Values below this 
indicate departures from sphericity 
and are used to correct the degrees 
of freedom associated with the 
corresponding F-ratios by multiplying 
them by the value of the estimate. 
It is less conservative than the 
Greenhouse–Geisser estimate, but 
some say it is too liberal.

Hypothesis: a prediction about the 
state of the world (see experimental 
hypothesis and null hypothesis).

Hypothesis SSCP (H): the hypothesis 
sum of squares and cross-product 
matrix. This is a sum of squares and 
cross-product matrix for a predictive 
linear model fitted to multivariate data. 
It represents the systematic variance 
and is the multivariate equivalent of 
the model sum of squares.

Identity matrix: a square matrix (i.e. 
has the same number of rows and 
columns) in which the diagonal 
elements are equal to 1, and the off-
diagonal elements are equal to 0. The 
following are all examples:

1 0
0 1

  1 0 0
0 1 0
0 0 1

0
@

1
A

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

Independence: the assumption that one 
data point does not influence another. 
When data come from people, it 
basically means that the behaviour 
of one person does not influence the 
behaviour of another.

Independent ANOVA: analysis of 
variance conducted on any design 
in which all independent variables or 
predictors have been manipulated 
using different participants (i.e. all 
data come from different entities).

Independent design: an experimental 
design in which different treatment 
conditions utilize different organisms 
(e.g. in psychology, this would mean 
using different people in different 
treatment conditions) and so the 
resulting data are independent (a.k.a. 
between-group or between-subject 
designs).

Independent errors: for any two 
observations in regression the 
residuals should be uncorrelated  
(or independent). 

Independent factorial design: an 
experimental design incorporating two 
or more predictors (or independent 
variables) all of which have been 
manipulated using different 
participants (or whatever entities are 
being tested).

Independent t-test: a test using the 
t-statistic that establishes whether two 
means collected from independent 
samples differ significantly.

Independent variable: another name 
for a predictor variable. This name is 
usually associated with experimental 
methodology (which is the only time 
it makes sense) and is so called 
because it is the variable that is 
manipulated by the experimenter 
and so its value does not depend 
on any other variables (just on 
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the experimenter). I just use the 
term predictor variable all the time 
because the meaning of the term 
is not constrained to a particular 
methodology.

Interaction effect: the combined effect 
of two or more predictor variables on 
an outcome variable. 

Interaction graph: a graph showing the 
means of two or more independent 
variables in which means of one 
variable are shown at different levels 
of the other variable. Unusually the 
means are connected with lines, 
or are displayed as bars. These 
graphs are used to help understand 
interaction effects.

Interquartile range: the limits within 
which the middle 50% of an ordered 
set of observations falls. It is the 
difference between the value of the 
upper quartile and lower quartile.

Interval variable: data measured on 
a scale along the whole of which 
intervals are equal. For example, 
people’s ratings of this book on 
Amazon.com can range from 1 to 
5; for these data to be interval it 
should be true that the increase in 
appreciation for this book represented 
by a change from 3 to 4 along the 
scale should be the same as the 
change in appreciation represented 
by a change from 1 to 2, or 4 to 5.

Intraclass correlation: a correlation 
coefficient that assess the consistency 
between measures of the same class 
(i.e. measures of the same thing). (cf. 
Pearson product moment correlation 
which measures the relationship 
between variables of a different class.) 
Two common uses are in comparing 
paired data (such as twins) on the 
same measure, and assessing the 
consistency between judges’ ratings 
of a set of objects. The calculations of 
these correlations depends on whether 
a measure of consistency (in which 
the order of scores from a source is 
considered but not the actual value 
around which the scores are anchored) 
or absolute agreement (in which both 
the order of scores and the relative 
values are considered), and whether 
the scores represent averages of many 
measures or just a single measure, is 
required. This measure is also used in 
multilevel linear models to measure the 
dependency in data within the same 
context.

Jonckheere–Terpstra test: this statistic 
tests for an ordered pattern of 
medians across independent groups. 
Essentially it does the same thing as 

the Kruskal–Wallis test (i.e. test for a 
difference between the medians of the 
groups) but it incorporates information 
about whether the order of the groups 
is meaningful. As such, you should 
use this test when you expect the 
groups you’re comparing to produce 
a meaningful order of medians.

Kaiser–Meyer–Olkin measure of 
sampling adequacy (KMO): the 
KMO can be calculated for individual 
and multiple variables and represents 
the ratio of the squared correlation 
between variables to the squared 
partial correlation between variables. 
It varies between 0 and 1: a value 
of 0 indicates that the sum of partial 
correlations is large relative to the 
sum of correlations, indicating 
diffusion in the pattern of correlations 
(hence, factor analysis is likely to be 
inappropriate); a value close to 1 
indicates that patterns of correlations 
are relatively compact and so factor 
analysis should yield distinct and 
reliable factors. Values between .5 
and .7 are mediocre, values between 
.7 and .8 are good, values between 
.8 and .9 are great and values above 
.9 are superb (see Hutcheson and 
Sofroniou, 1999).

Kaiser’s criterion: a method of 
extraction in factor analysis based 
on the idea of retaining factors with 
associated eigenvalues greater 
than 1. This method appears to 
be accurate when the number of 
variables in the analysis is less than 
30 and the resulting communalities 
(after extraction) are all greater than 
0.7, or when the sample size exceeds 
250 and the average communality is 
greater than or equal to 0.6.

Kendall’s tau: a non-parametric 
correlation coefficient similar to 
Spearman’s correlation coefficient, but 
should be used in preference for a 
small data set with a large number of 
tied ranks.

Kendall’s W: this is much the same 
as Friedman’s ANOVA but is used 
specifically for looking at the 
agreement between raters. So, if, 
for example, we asked 10 different 
women to rate the attractiveness of 
Justin Timberlake, David Beckham 
and Brad Pitt we could use this test 
to look at the extent to which they 
agree. Kendall’s W ranges from 0 
(no agreement between judges) to 
1 (complete agreement between 
judges).

Kolmogorov–Smirnov test: a test of 
whether a distribution of scores is 

significantly different from a normal 
distribution. A significant value 
indicates a deviation from normality, 
but this test is notoriously affected 
by large samples in which small 
deviations from normality yield 
significant results.

Kolmogorov–Smirnov Z: not to be 
confused with the Kolmogorov–
Smirnov test that tests whether a 
sample comes from a normally 
distributed population. This tests 
whether two groups have been 
drawn from the same population 
(regardless of what that population 
may be). It does much the same as 
the Mann–Whitney test and Wilcoxon 
rank-sum test! This test tends to have 
better power than the Mann–Whitney 
test when sample sizes are less than 
about 25 per group.

Kruskal–Wallis test: non-parametric 
test of whether more than two 
independent groups differ. It is the 
non-parametric version of one-way 
independent ANOVA. 

Kurtosis: this measures the degree to 
which scores cluster in the tails of a 
frequency distribution. A distribution 
with positive Kurtosis (leptokurtic, 
kurtosis > 0) has too many scores in 
the tails and is too peaked, whereas 
a distribution with negative kurtosis 
(platykurtic, kurtosis < 0) has too few 
scores in the tails and is quite flat.

Latent variable: a variable that cannot 
be directly measured, but is assumed 
to be related to several variables that 
can be measured.

Leptokurtic: see Kurtosis.
Levels of measurement: the 

relationship between what is being 
measured and the numbers obtained 
on a scale.

Levene’s test: tests the hypothesis that 
the variances in different groups are 
equal (i.e. the difference between the 
variances is zero). It basically does a 
one-way ANOVA on the deviations (i.e. 
the absolute value of the difference 
between each score and the mean of 
its group). A significant result indicates 
that the variances are significantly 
different – therefore, the assumption 
of homogeneity of variances has 
been violated. When samples sizes 
are large, small differences in group 
variances can produce a significant 
Levene’s test and so the variance ratio 
is a useful double-check. 

Leverage: leverage statistics (or hat 
values) gauge the influence of the 
observed value of the outcome 
variable over the predicted values. 
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The average leverage value is (k + 1)/n 
in which k is the number of predictors 
in the model and n is the number of 
participants. Leverage values can lie 
between 0 (the case has no influence 
whatsoever) and 1 (the case has 
complete influence over prediction).  
If no cases exert undue influence over 
the model then we would expect all of 
the leverage value to be close to the 
average value. Hoaglin and Welsch 
(1978) recommend investigating 
cases with values greater than twice 
the average (2(k + 1)/n) and Stevens 
(2002) recommends using three times 
the average (3(k + 1)/n) as a cut-off 
point for identifying cases having 
undue influence. 

Likelihood: the probability of obtaining 
a set of observations given the 
parameters of a model fitted to those 
observations.

Linear model: a model that is based 
upon a straight line.

Line chart: a graph in which a summary 
statistic (usually the mean) is plotted 
on the y-axis against a categorical 
variable on the x-axis (this categorical 
variable could represent, for example, 
groups of people, different times or 
different experimental conditions). The 
value of the mean for each category 
is shown by a symbol and means 
across categories are connected by 
a line. Different-coloured lines may be 
used to represent levels of a second 
categorical variable.

Logistic regression: a version of 
multiple regression in which the 
outcome is a categorical variable. If 
the categorical variable has exactly 
two categories the analysis is called 
binary logistic regression, and when 
the outcome has more than two 
categories it is called multinomial 
logistic regression.

Log-likelihood: a measure of error, or 
unexplained variation, in categorical 
models. It is based on summing 
the probabilities associated with the 
predicted and actual outcomes and 
is analogous to the residual sum of 
squares in multiple regression in that it is 
an indicator of how much unexplained 
information there is after the model has 
been fitted. Large values of the log-
likelihood statistic indicate poorly fitting 
statistical models, because the larger 
the value of the log-likelihood, the more 
unexplained observations there are. 
The log-likelihood is the logarithm of the 
likelihood.

Loglinear analysis: a procedure used 
as an extension of the chi-square test 

to analyse situations in which we have 
more than two categorical variables 
and we want to test for relationships 
between these variables. Essentially, 
a linear model is fit to the data that 
predicts expected frequencies (i.e. the 
number of cases expected in a given 
category). In this respect it is much 
the same as analysis of variance but 
for entirely categorical data.

Lower bound: the name given to 
the lowest possible value of the 
Greenhouse–Geisser estimate of 
sphericity. Its value is 1/k−1, in which k 
is the number of treatment conditions.

Lower quartile: the value that cuts off 
the lowest 25% of the data. If the data 
are ordered and then divided into two 
halves at the median, then the lower 
quartile is the median of the lower half 
of the scores.

Mahalanobis distances: these measure 
the influence of a case by examining 
the distance of cases from the 
mean(s) of the predictor variable(s). 
One needs to look for the cases with 
the highest values. It is not easy to 
establish a cut-off point at which to 
worry, although Barnett and Lewis 
(1978) have produced a table of critical 
values dependent on the number of 
predictors and the sample size. From 
their work it is clear that even with 
large samples (N = 500) and five 
predictors, values above 25 are cause 
for concern. In smaller samples (N = 
100) and with fewer predictors (namely, 
three) values greater than 15 are 
problematic, and in very small samples 
(N = 30) with only two predictors 
values greater than 11 should be 
examined. However, for more specific 
advice, refer to Barnett and Lewis’s 
(1978) table.

Main effect: the unique effect of a 
predictor variable (or independent 
variable) on an outcome variable. The 
term is usually used in the context of 
ANOVA.

Mann–Whitney test: a non-parametric 
test that looks for differences between 
two independent samples. That is, it 
tests whether the populations from 
which two samples are drawn have 
the same location. It is functionally 
the same as Wilcoxon’s rank-sum test, 
and both tests are non-parametric 
equivalents of the independent t-test. 

MANOVA: acronym for multivariate 
analysis of variance.

Matrix: a collection of numbers arranged 
in columns and rows. The values 
within a matrix are typically referred to 
as components or elements.

Mauchly’s test: a test of the assumption 
of sphericity. If this test is significant 
then the assumption of sphericity has 
not been met and an appropriate 
correction must be applied to the 
degrees of freedom of the F-ratio 
in repeated-measures ANOVA. 
The test works by comparing the 
variance–covariance matrix of the data 
to an identity matrix; if the variance–
covariance matrix is a scalar multiple of 
an identity matrix then sphericity is met. 

Maximum-likelihood estimation: a way 
of estimating statistical parameters 
by choosing the parameters that 
make the data most likely to have 
happened. Imagine for a set of 
parameters that we calculated the 
probability (or likelihood) of getting 
the observed data; if this probability 
was high then these particular 
parameters yield a good fit of the 
data, but conversely if the probability 
was low, these parameters are a bad 
fit of our data. Maximum-likelihood 
estimation chooses the parameters 
that maximize the probability.

McNemar’s test: this tests differences 
between two related groups (see 
Wilcoxon signed-rank test and sign 
test), when nominal data have been 
used. It’s typically used when we’re 
looking for changes in people’s 
scores and it compares the proportion 
of people who changed their 
response in one direction (i.e. scores 
increased) to those who changed 
in the opposite direction (scores 
decreased). So, this test needs to 
be used when we’ve got two related 
dichotomous variables.

Mean: a simple statistical model of the 
centre of a distribution of scores. A 
hypothetical estimate of the ‘typical’ 
score.

Mean squares: a measure of average 
variability. For every sum of squares 
(which measure the total variability) it 
is possible to create mean squares by 
dividing by the number of things used 
to calculate the sum of squares (or 
some function of it).

Measurement error: the discrepancy 
between the numbers used to represent 
the thing that we’re measuring and 
the actual value of the thing we’re 
measuring (i.e. the value we would get if 
we could measure it directly).

Median: the middle score of a set of 
ordered observations. When there 
is an even number of observations 
the median is the average of the two 
scores that fall either side of what 
would be the middle value.
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Median test: a non-parametric test of 
whether samples are drawn from a 
population with the same median. 
So, in effect it does the same thing 
as the Kruskal–Wallis test. It works on 
the basis of producing a contingency 
table that is split for each group into 
the number of scores that fall above 
and below the observed median of 
the entire data set. If the groups are 
from the same population then these 
frequencies would be expected to be 
the same in all conditions (about 50% 
above and about 50% below).

Meta-analysis: this is a statistical 
procedure for assimilating research 
findings. It is based on the simple 
idea that we can take effect sizes from 
individual studies that research the 
same question, quantify the observed 
effect in a standard way (using effect 
sizes) and then combine these effects 
to get a more accurate idea of the 
true effect in the population.

Mixed ANOVA: analysis of variance used 
for a mixed design.

Mixed design: an experimental design 
incorporating two or more predictors 
(or independent variables) at least one 
of which has been manipulated using 
different participants (or whatever 
entities are being tested) and at least 
one of which has been manipulated 
using the same participants (or entities). 
Also known as a split-plot design 
because Fisher developed ANOVA for 
analysing agricultural data involving 
‘plots’ of land containing crops.

Mode: the most frequently occurring 
score in a set of data.

Model sum of squares: a measure 
of the total amount of variability for 
which a model can account. It is the 
difference between the total sum 
of squares and the residual sum of 
squares.

Monte Carlo method: a term applied to 
the process of using data simulations 
to solve statistical problems. Its name 
comes from the use of Monte Carlo 
roulette tables to generate ‘random’ 
numbers in the pre-computer age. 
Karl Pearson, for example, purchased 
copies of Le Monaco, a weekly Paris 
periodical that published data from 
the Monte Carlo casinos’ roulette 
wheels. He used these data as 
pseudo-random numbers in his 
statistical research.

Moses extreme reactions: a non-
parametric test that compares the 
variability of scores in two groups, 
so it’s a bit like a non-parametric 
Levene’s test.

Multicollinearity: a situation in which 
two or more variables are very closely 
linearly related.

Multilevel linear model (MLM): a 
linear model (just like regression, 
ANCOVA, ANOVA, etc.) in which the 
hierarchical structure of the data is 
explicitly considered. In this analysis 
regression parameters can be fixed 
(as in regression and ANOVA) but 
also random (i.e. free to vary across 
different contexts at a higher level 
of the hierarchy). This means that 
for each regression parameter 
there is a fixed component but 
also an estimate of how much the 
parameter varies across contexts 
(see Fixed coefficient, Random 
coefficient).

Multimodal: description of a distribution 
of observations that has more than 
two modes.

Multinomial logistic regression: 
logistic regression in which the 
outcome variable has more than two 
categories. 

Multiple R: the multiple correlation 
coefficient. It is the correlation 
between the observed values of 
an outcome and the values of the 
outcome predicted by a multiple 
regression model.

Multiple regression: an extension 
of simple regression in which an 
outcome is predicted by a linear 
combination of two or more predictor 
variables. The form of the model is  

 Yi = ðb0 +b1X1i +b2X2i + . . . +bnXni Þ+ εi

 in which the outcome is denoted as 
Y and each predictor is denoted as 
X. Each predictor has a regression 
coefficient bi associated with it, and b0  
is the value of the outcome when all 
predictors are zero.

Multivariate: means ‘many variables’ 
and is usually used when referring to 
analyses in which there is more than 
one outcome variable (e.g. MANOVA, 
principal component analysis, etc.). 

Multivariate analysis of variance: 
family of tests that extend the basic 
analysis of variance to situations 
in which more than one outcome 
variable has been measured.

Multivariate normality: an extension 
of a normal distribution to multiple 
variables. It is a probability 
distribution of a set of variables  
v 0 = ½v1; v2, . . . , vn  given by:

 f ðv1, v2, . . . , vnÞ=2πn=2 j j1=2

exp − 1

2
ðv −µÞ0−1ðv −µÞ

  
 

 in which µ is the vector of means of 
the variables, and Σ is the variance–
covariance matrix. If that made any 
sense to you then you’re cleverer  
than I am.

Nagelkerke’s R2
N: a version of the 

coefficient of determination for logistic 
regression. It is a variation on Cox 
and Snell’s R2

CS which overcomes 
the problem that this statistic has of 
not being able to reach its maximum 
value.

Negative skew: see Skew.
Nominal variable: where numbers 

merely represent names. For example, 
the numbers on sports players shirts: 
a player with the number 1 on her 
back is not necessarily worse than 
a player with a 2 on her back. The 
numbers have no meaning other than 
denoting the type of player (i.e. full 
back, centre forward, etc.). 

Noniles: a type of quantile; they are 
values that split the data into nine 
equal parts. They are commonly used 
in educational research.

Non-parametric tests: a family of 
statistical procedures that do not 
rely on the restrictive assumptions 
of parametric tests. In particular they 
do not assume that the sampling 
distribution is normally distributed.

Normal distribution: a probability 
distribution of a random variable that 
is known to have certain properties. It 
is perfectly symmetrical (has a skew 
of 0), and has a kurtosis of 0.

Null hypothesis: reverse of the 
experimental hypothesis that your 
prediction is wrong and the predicted 
effect doesn’t exist.

Numeric variables: variables involving 
numbers.

Oblique rotation: a method of rotation 
in factor analysis that allows the 
underlying factors to be correlated.

Odds: the probability of an event 
occurring divided by the probability of 
that event not occurring.

Odds ratio: the ratio of the odds of 
an event occurring in one group 
compared to another. So, for 
example, if the odds of dying after 
writing a glossary are 4, and the odds 
of dying after not writing a glossary 
are 0.25, then the odds ratio is 4/0.25 
= 16. This means that the odds of 
dying if you write a glossary are 16 
times higher than if you dont. An odds 
ratio of 1 would indicate that the odds 
of a particular outcome are equal in 
both groups.

Omega squared: an effect size measure 
associated with ANOVA that is 
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less biased than eta squared. It is 
a (sometimes hideous) function 
of the model sum of squares and 
the residual sum of squares and 
isn’t actually much use because it 
measures the overall effect of the 
ANOVA and so can’t be interpreted in 
a meaningful way. In all other respects 
it’s great, though.

One-tailed test: a test of a directional 
hypothesis. For example, the 
hypothesis ‘the longer I write this 
glossary, the more I want to place 
my editor’s genitals in a starved 
crocodile’s mouth’ requires a one-
tailed test because I’ve stated the 
direction of the relationship (see also 
two-tailed test).

Ordinal variable: data that tell us not 
only that things have occurred, but 
also the order in which they occurred. 
These data tell us nothing about 
the differences between values. For 
example, gold, silver and bronze 
medals are ordinal: they tell us that 
the gold medallist was better than 
the silver medallist, but they don’t tell 
us how much better (was gold a lot 
better than silver, or were gold and 
silver very closely competed?).

Orthogonal: means perpendicular (at 
right angles) to something. It tends 
to be equated to independence in 
statistics because of the connotation 
that perpendicular linear models in 
geometric space are completely 
independent (one is not influenced by 
the other). 

Orthogonal rotation: a method of 
rotation in factor analysis that keeps 
the underlying factors independent 
(i.e. not correlated).

Outcome variable: a variable whose 
values we are trying to predict from 
one or more predictor variables.

Outlier: an observation very different 
from most others. Outliers can bias 
statistics such as the mean.

Pairwise comparisons: comparisons of 
pairs of means.

Parametric test: a test that requires 
data from one of the large catalogue 
of distributions that statisticians have 
described. Normally this term is used 
for parametric tests based on the 
normal distribution, which require four 
basic assumptions that must be met 
for the test to be accurate: a normally 
distributed sampling distribution (see 
Normal distribution), homogeneity of 
variance, interval or ratio data, and 
independence.

Part correlation: another name for a 
semi-partial correlation. 

Partial correlation: a measure of the 
relationship between two variables 
while ‘controlling’ the effect of one or 
more additional variables has on both.

Partial eta squared (partial η2):  
a version of eta squared that is the 
proportion of variance that a variable 
explains when excluding other 
variables in the analysis. Eta squared 
is the proportion of total variance 
explained by a variable, whereas 
partial eta squared is the proportion of 
variance that a variable explains that 
is not explained by other variables. 

Partial out: to partial out the effect of 
a variable is to remove the variance 
that the variable shares with other 
variables in the analysis before 
looking at their relationships (see 
partial correlation).

Pattern matrix: a matrix in factor analysis 
containing the regression coefficients 
for each variable on each factor in the 
data. See also Structure matrix.

Pearson’s correlation coefficient: or 
Pearson’s product-moment correlation 
coefficient to give it its full name, is a 
standardized measure of the strength 
of relationship between two variables. 
It can take any value from −1 (as one 
variable changes, the other changes 
in the opposite direction by the same 
amount), through 0 (as one variable 
changes the other doesn’t change at 
all), to +1 (as one variable changes, 
the other changes in the same 
direction by the same amount). 

Percentiles: are a type of quantile; they 
are values that split the data into 100 
equal parts. 

Perfect collinearity: exists when at 
least one predictor in a regression 
model is a perfect linear combination 
of the others (the simplest example 
being two predictors that are perfectly 
correlated – they have a correlation 
coefficient of 1).

Phi: a measure of the strength of 
association between two categorical 
variables. Phi is used with 2 × 2 
contingency tables (tables which have 
two categorical variables and each 
variable has only two categories). Phi 
is a variant of the 

 chi square test, χ2: φ=
ffiffiffiffiffi
χ2

n

r
, 

 in which n is the total number of 
observations.

Pillai–Bartlett trace (V): a test statistic 
in MANOVA. It is the sum of the 
proportion of explained variance on 
the discriminant function variates of 
the data. As such, it is similar to the 
ratio of SSM/SST.

Planned comparisons: another name 
for planned contrasts.

Planned contrasts: a set of 
comparisons between group means 
that are constructed before any data 
are collected. These are theory-led 
comparisons and are based on 
the idea of partitioning the variance 
created by the overall effect of group 
differences into gradually smaller 
portions of variance. These tests have 
more power than post hoc tests.

Platykurtic: see Kurtosis.
Point–biserial correlation: a 

standardized measure of the strength 
of relationship between two variables 
when one of the two variables is 
dichotomous. The point–biserial 
correlation coefficient is used when 
the dichotomy is discrete, or true, 
dichotomy (i.e. one for which there 
is no underlying continuum between 
the categories). An example of this 
is pregnancy: you can be either 
pregnant or not, there is no in 
between.

Polychotomous logistic regression: 
another name for multinomial logistic 
regression. 

Polynomial: a posh name for a growth 
curve or trend over time. If time is 
our predictor variable, then any 
polynomial is tested by including a 
variable that is the predictor to the 
power of the order of polynomial 
that we want to test: a linear trend is 
tested by time alone, a quadratic or 
second-order polynomial is tested 
by including a predictor that is time2, 
for a fifth-order polynomial we need a 
predictor of time5 and for an nth-order 
polynomial we would have to include 
timen as a predictor.

Polynomial contrast: a contrast that 
tests for trends in the data. In its most 
basic form it looks for a linear trend 
(i.e. that the group means increase 
proportionately). 

Population: in statistical terms this 
usually refers to the collection of units 
(be they people, plankton, plants, 
cities, suicidal authors, etc.) to which 
we want to generalize a set of findings 
or a statistical model.

Positive skew: see Skew.
Post hoc tests: a set of comparisons 

between group means that were 
not thought of before data were 
collected. Typically these tests 
involve comparing the means of all 
combinations of pairs of groups. To 
compensate for the number of tests 
conducted, each test uses a strict 
criterion for significance. As such, 
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they tend to have less power than 
planned contrasts. They are usually 
used for exploratory work for which 
no firm hypotheses were available on 
which to base planned contrasts. 

Power: the ability of a test to detect an 
effect of a particular size (a value of .8 
is a good level to aim for).

P–P plot: short for a probability–
probability plot. A graph plotting the 
cumulative probability of a variable 
against the cumulative probability 
of a particular distribution (often 
a normal distribution). Like a Q–Q 
plot, if values fall on the diagonal 
of the plot then the variable shares 
the same distribution as the one 
specified. Deviations from the 
diagonal show deviations from the 
distribution of interest.

Practice effect: refers to the possibility 
that participants’ performance in a 
task may be influenced (positively 
or negatively) if they repeat the 
task because of familiarity with the 
experimental situation and/or the 
measures being used.

Predictor variable: a variable that 
is used to try to predict values 
of another variable known as an 
outcome variable.

Principal component analysis (PCA): 
a multivariate technique for identifying 
the linear components of a set of 
variables.

Probability distribution: a curve 
describing an idealized frequency 
distribution of a particular variable 
from which it is possible to 
ascertain the probability with which 
specific values of that variable will 
occur. For categorical variables 
it is simply a formula yielding 
the probability with which each 
category occurs.

Promax: a method of oblique rotation 
that is computationally faster than 
direct oblimin and so useful for large 
data sets.

Q–Q plot: short for a quantile–quantile 
plot. A graph plotting the quantiles of 
a variable against the quantiles of a 
particular distribution (often a normal 
distribution). Like a P–P plot, if values 
fall on the diagonal of the plot then the 
variable shares the same distribution 
as the one specified. Deviations from 
the diagonal show deviations from the 
distribution of interest.

Quadratic trend: if the means in ordered 
conditions are connected with a line 
then a quadratic trend is shown by 
one change in the direction of this line 
(e.g. the line is curved in one place); 

the line is, therefore, U-shaped. 
There must be at least three ordered 
conditions.

Qualitative methods: extrapolating 
evidence for a theory from what 
people say or write (contrast with 
quantitative methods).

Quantiles: values that split a data 
set into equal portions. Quartiles, 
for example, are a special case of 
quantiles that split the data into four 
equal parts. Similarly, percentiles 
are points that split the data into 
100 equal parts and noniles are 
points that split the data into 9 
equal parts (you get the general 
idea).

Quantitative methods: inferring 
evidence for a theory through 
measurement of variables that 
produce numeric outcomes (contrast 
with qualitative methods).

Quartic trend: if the means in ordered 
conditions are connected with a line 
then a quartic trend is shown by three 
changes in the direction of this line. 
There must be at least five ordered 
conditions.

Quartiles:  generic term for the three 
values that cut an ordered data 
set into four equal parts. The three 
quartiles are known as the lower 
quartile, the second quartile (or 
median) and the upper quartile.

Quartimax: a method of orthogonal 
rotation. It attempts to maximize 
the spread of factor loadings for a 
variable across all factors. This often 
results in lots of variables loading 
highly onto a single factor.

Random coefficient: a coefficient or 
model parameter that is free to vary 
over situations or contexts (cf. Fixed 
coefficient).

Random effect: an effect is said to be 
random if the experiment contains 
only a sample of possible treatment 
conditions. Random effects can be 
generalized beyond the treatment 
conditions in the experiment. For 
example, the effect is random if 
we say that the conditions in our 
experiment (e.g. placebo, low dose 
and high dose) are only a sample of 
possible conditions (maybe we could 
have tried a very high dose). We can 
generalize this random effect beyond 
just placebos, low doses and high 
doses.

Random intercept: a term used in 
multilevel modelling to denote when 
the intercept in the model is free 
to vary across different groups or 
contexts (cf. Fixed intercept).

Random slope: a term used in multilevel 
modelling to denote when the slope 
of the model is free to vary across 
different groups or contexts (cf. Fixed 
slope).

Random variable: a random variable 
is one that varies over time (e.g. your 
weight is likely to fluctuate over time).

Random variance: variance that is 
unique to a particular variable but not 
reliably so.

Randomization: the process of doing 
things in an unsystematic or random 
way. In the context of experimental 
research the word usually applies 
to the random assignment of 
participants to different treatment 
conditions.

Range: the range of scores is value of 
the smallest score subtracted from 
the highest score. It is a measure  
of the dispersion of a set of scores. 
See also variance, standard deviation, 
and interquartile range.

Ranking: the process of transforming 
raw scores into numbers that 
represent their position in an ordered 
list of those scores. i.e. the raw scores 
are ordered from lowest to highest 
and the lowest score is assigned a 
rank of 1, the next highest score is 
assigned a rank of 2, and so on.

Ratio variable: an interval variable but 
with the additional property that ratios 
are meaningful. For example, people’s 
ratings of this book on Amazon.com 
can range from 1 to 5; for these data 
to be ratio not only must they have 
the properties of interval variables, 
but in addition a rating of 4 should 
genuinely represent someone who 
enjoyed this book twice as much as 
someone who rated it as 2. Likewise, 
someone who rated it as 1 should be 
half as impressed as someone who 
rated it as 2.

Regression coefficient: see bi and βi.
Regression line: a line on a scatterplot 

representing the regression model 
of the relationship between the two 
variables plotted.

Regression model: see Multiple 
regression and Simple regression.

Related design: another name for a 
repeated-measures design.

Related factorial design: an 
experimental design incorporating two 
or more predictors (or independent 
variables) all of which have been 
manipulated using the same 
participants (or whatever entities are 
being tested).

Reliability: the ability of a measure to 
produce consistent results when the 
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same entities are measured under 
different conditions.

Repeated contrast: a non-orthogonal 
planned contrast that compares the 
mean in each condition (except the 
first) to the mean of the preceding 
condition.

Repeated-measures ANOVA: an 
analysis of variance conducted on 
any design in which the independent 
variable (predictor) or variables 
(predictors) have all been measured 
using the same participants in all 
conditions.

Repeated-measures design: an 
experimental design in which different 
treatment conditions utilize the same 
organisms (i.e. in psychology, this 
would mean the same people take 
part in all experimental conditions) 
and so the resulting data are related 
(a.k.a. related design or within-subject 
designs).

Residual: the difference between the 
value a model predicts and the value 
observed in the data on which the 
model is based. When the residual 
is calculated for each observation in 
a data set the resulting collection is 
referred to as the residuals.

Residuals: see Residual.
Residual sum of squares: a measure of 

the variability that cannot be explained 
by the model fitted to the data. It is the 
total squared deviance between the 
observations, and the value of those 
observations predicted by whatever 
model is fitted to the data.

Reverse Helmert contrast: another 
name for a difference contrast.

Roa’s efficient score statistic: a 
statistic measuring the same thing 
as the Wald statistic but which is 
computationally easier to calculate.

Robust test: a term applied to a family 
of procedures to estimate statistics 
that are reliable even when the normal 
assumptions of the statistic are  
not met.

Rotation: a process in factor analysis 
for improving the interpretability of 
factors. In essence, an attempt is 
made to transform the factors that 
emerge from the analysis in such a 
way as to maximize factor loadings 
that are already large, and minimize 
factor loadings that are already small. 
There are two general approaches: 
orthogonal rotation and oblique rotation.

Roy’s largest root: a test statistic in 
MANOVA. It is the eigenvalue for the 
first discriminant function variate of a 
set of observations. So, it is the same 
as the Hotelling–Lawley trace but for 

the first variate only. It represents the 
proportion of explained variance to 
unexplained variance (SSM/SSR) for 
the first discriminant function.

Sample: a smaller (but hopefully 
representative) collection of units 
from a population used to determine 
truths about that population (e.g. how 
a given population behaves in certain 
conditions).

Sampling distribution: the probability 
distribution of a statistic. We can 
think of this as follows: if we take 
a sample from a population and 
calculate some statistic (e.g. the 
mean), the value of this statistic will 
depend somewhat on the sample 
we took. As such the statistic will 
vary slightly from sample to sample. 
If, hypothetically, we took lots and 
lots of samples from the population 
and calculated the statistic of 
interest we could create a frequency 
distribution of the values we get. 
The resulting distribution is what the 
sampling distribution represents: the 
distribution of possible values of a 
given statistic that we could expect to 
get from a given population.

Sampling variation: the extent to which 
a statistic (e.g. the mean, median, t, F, 
etc.) varies in samples taken from the 
same population.

Saturated model: a model that perfectly 
fits the data and, therefore, has no error. 
It contains all possible main effects and 
interactions between variables.

Scatterplot: a graph that plots 
values of one variable against the 
corresponding value of another 
variable (and the corresponding 
value of a third variable can also be 
included on a 3-D scatterplot).

Scree plot: a graph plotting each factor 
in a factor analysis (X-axis) against 
its associated eigenvalue (Y-axis). 
It shows the relative importance of 
each factor. This graph has a very 
characteristic shape (there is a sharp 
descent in the curve followed by a 
tailing off) and the point of inflexion of 
this curve is often used as a means 
of extraction. With a sample of more 
than 200 participants, this provides 
a fairly reliable criterion for extraction 
(Stevens, 2002)

Second quartile: another name for the 
median.

Semi-partial correlation: a measure 
of the relationship between two 
variables while ‘controlling’ the effect 
that one or more additional variables 
has on one of those variables. If we 
call our variables x and y, it gives us 

a measure of the variance in y that x 
alone shares.

Shapiro–Wilk test: a test of whether a 
distribution of scores is significantly 
different from a normal distribution.  
A significant value indicates a 
deviation from normality, but this 
test is notoriously affected by large 
samples in which small deviations 
from normality yield significant results.

Shrinkage: the loss of predictive power 
of a regression model if the model 
had been derived from the population 
from which the sample was taken, 
rather than the sample itself.

Sidak correction: slightly less 
conservative variant of a Bonferroni 
correction.

Sign test: tests whether two related 
samples are different. It does the 
same thing as the Wilcoxon signed-
rank test. Differences between the 
conditions are calculated and the sign 
of this difference (positive or negative) 
is analysed because it indicates 
the direction of differences. The 
magnitude of change is completely 
ignored (unlike in Wilcoxon’s test 
where the rank tells us something 
about the relative magnitude of 
change), and for this reason it lacks 
power. However, its computational 
simplicity makes it a nice party trick 
if ever anyone drunkenly accosts you 
needing some data quickly analysed 
without the aid of a computer … 
doing a sign test in your head really 
impresses people. Actually it doesn’t, 
they just think you’re a sad gimboid.

Simple contrast: a non-orthogonal 
planned contrast that compares the 
mean in each condition to the mean 
of either the first or last condition 
depending on how the contrast is 
specified.

Simple effects analysis: this analysis 
looks at the effect of one independent 
variable (categorical predictor 
variable) at individual levels of another 
independent variable.

Simple regression: a linear model in 
which one variable or outcome is 
predicted from a single predictor 
variable. The model takes the form 
Yi = ðb0 +b1XiÞ+ εi  in which Y is the 
outcome variable, X is the predictor, 
b1 is the regression coefficient 
associated with the predictor and b0 
is the value of the outcome when the 
predictor is zero.

Singularity: a term used to describe 
variables that are perfectly correlated 
(i.e. the correlation coefficient is 1  
or −1).
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Skew: a measure of the symmetry of a 
frequency distribution. Symmetrical 
distributions have a skew of 0. When 
the frequent scores are clustered  
at the lower end of the distribution 
and the tail points towards the higher 
or more positive scores, the value of 
skew is positive. Conversely, when  
the frequent scores are clustered  
at the higher end of the distribution 
and the tail points towards the lower 
more negative scores, the value of 
skew is negative.

SmartViewer: a program that 
accompanies SPSS that enables 
output files (.spo files) to be viewed 
from pre-version 16 editions of 
SPSS.

Spearman’s correlation coefficient: a 
standardized measure of the strength 
of relationship between two variables 
that does not rely on the assumptions 
of a parametric test. It is Pearson’s 
correlation coefficient performed on 
data that have been converted into 
ranked scores.

Sphericity: a less restrictive form of 
compound symmetry which assumes 
that the variances of the differences 
between data taken from the same 
participant (or other entity being 
tested) are equal. This assumption is 
most commonly found in repeated-
measures ANOVA but applies only 
where there are more than two points 
of data from the same participant. 
(see also Greenhouse–Geisser 
correction, Huynh–Feldt correction).

Split-half reliability: a measure of 
reliability obtained by splitting items 
on a measure into two halves (in 
some random fashion) and obtaining 
a score from each half of the scale. 
The correlation between the two 
scores, corrected to take account of 
the fact the correlations are based 
on only half of the items, is used as 
a measure of reliability. There are two 
popular ways to do this. Spearman 
(1910) and Brown (1910) developed 
a formula that takes no account of the 
standard deviation of items:

 
rsh =

2r12
1+ r12 

in which r12 is the correlation between 
the two halves of the scale. Flanagan 
(1937) and Rulon (1939), however, 
proposed a measure that does 
account for item variance:

 
rsh =

4r12 × s1 × s2
s2T

  

in which s1 and s2 are the standard 
deviations of each half of the scale, 
and s 2

T is the variance of the whole 
test. See Cortina (1993) for more 
detail.

Square matrix: a matrix that has an 
equal number of columns and rows.

Standard deviation: an estimate of the 
average variability (spread) of a set of 
data measured in the same units of 
measurement as the original data. It is 
the square root of the variance.

Standard error: the standard deviation 
of the sampling distribution of a 
statistic. For a given statistic (e.g. the 
mean) it tells us how much variability 
there is in this statistic across samples 
from the same population. Large 
values, therefore, indicate that a 
statistic from a given sample may 
not be an accurate reflection of the 
population from which the sample 
came.

Standard error of differences: if we 
were to take several pairs of samples 
from a population and calculate 
their means, then we could also 
calculate the difference between 
their means. If we plotted these 
differences between sample means 
as a frequency distribution, we would 
have the sampling distribution of 
differences. The standard deviation 
of this sampling distribution is the 
standard error of differences. As 
such it is a measure of the variability 
of differences between sample 
means.

Standard error of the mean (SE): the 
full name of the standard error.

Standardization: the process of 
converting a variable into a standard 
unit of measurement. The unit of 
measurement typically used is 
standard deviation units (see also 
z-scores). Standardization allows us 
to compare data when different units 
of measurement have been used (we 
could compare weight measured 
in kilograms to height measured in 
inches).

Standardized: see Standardization.
Standardized DFBeta: a standardized 

version of DFBeta. These 
standardized values are easier to 
use than DFBeta because universal 
cut-off points can be applied. Stevens 
(2002) suggests looking at cases with 
absolute values greater than 2.

Standardized DFFit: a standardized 
version of DFFit. 

Standardized residuals: the residuals 
of a model expressed in standard 

deviation units. Standardized 
residuals with an absolute value 
greater than 3.29 (actually we usually 
just use 3) are cause for concern 
because in an average sample a 
value this high is unlikely to happen 
by chance; if more than 1% of our 
observations have standardized 
residuals with an absolute value 
greater than 2.58 (we usually just 
say 2.5) there is evidence that the 
level of error within our model is 
unacceptable (the model is a fairly 
poor fit of the sample data); and 
if more than 5% of observations 
have standardized residuals with an 
absolute value greater than 1.96 (or 
2 for convenience) then there is also 
evidence that the model is a poor 
representation of the actual data. 

Stepwise regression: a method 
of multiple regression in which 
variables are entered into the model 
based on a statistical criterion 
(the semi-partial correlation with 
the outcome variable). Once a 
new variable is entered into the 
model, all variables in the model 
are assessed to see whether they 
should be removed.

String variables: variables involving 
words (i.e. letter strings). Such 
variables could include responses to 
open-ended questions such as ‘how 
much do you like writing glossary 
entries?’; the response might be 
‘about as much as I like placing my 
gonads on hot coals’.

Structure matrix: a matrix in factor 
analysis containing the correlation 
coefficients for each variable on each 
factor in the data. When orthogonal 
rotation is used this is the same as 
the pattern matrix, but when oblique 
rotation is used these matrices are 
different.

Studentized deleted residual: a 
measure of the influence of a 
particular case of data. This is a 
standardized version of the deleted 
residual. 

Studentized residuals: a variation on 
standardized residuals. Studentized 
residuals are the unstandardized 
residual divided by an estimate of its 
standard deviation that varies point 
by point. These residuals have the 
same properties as the standardized 
residuals but usually provide a more 
precise estimate of the error variance 
of a specific case.

Sum of squared errors: another name 
for the sum of squares.
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Sum of squares (SS): an estimate of 
total variability (spread) of a set of 
data. First the deviance for each score 
is calculated, and then this value is 
squared. The SS is the sum of these 
squared deviances.

Sum of squares and cross-products 
matrix (SSCP matrix): a square 
matrix in which the diagonal elements 
represent the sum of squares 
for a particular variable, and the 
off-diagonal elements represent 
the cross-products between pairs 
of variables. The SSCP matrix is 
basically the same as the variance–
covariance matrix, except the SSCP 
matrix expresses variability and 
between-variable relationships as 
total values, whereas the variance–
covariance matrix expresses them as 
average values.

Suppressor effects: when a predictor 
has a significant effect but only when 
another variable is held constant.

Syntax: predefined written commands 
that instruct SPSS what you would like 
it to do (writing ‘bugger off and leave 
me alone’ doesn’t seem to work …).

Syntax Editor: a window in SPSS for 
writing and editing syntax.

Systematic variation: variation due 
to some genuine effect (be that 
the effect of an experimenter doing 
something to all of the participants in 
one sample but not in other samples, 
or natural variation between sets of 
variables). We can think of this as 
variation that can be explained by the 
model that we’ve fitted to the data.

T-statistic: Student’s t is a test statistic 
with a known probability distribution 
(the t-distribution). In the context of 
regression it is used to test whether a 
regression coefficient b is significantly 
different from zero; in the context of 
experimental work it is used to test 
whether the differences between two 
means are significantly different from 
zero. See also Dependent t-test and 
Independent t-test. 

Tertium quid: the possibility that an 
apparent relationship between two 
variables is actually caused by the 
effect of a third variable on them 
both (often called the third-variable 
problem).

Test–retest reliability: the ability of a 
measure to produce consistent results 
when the same entities are tested at 
two different points in time.

Test statistic: a statistic for which we 
know how frequently different values 
occur. The observed value of such 

a statistic is typically used to test 
hypotheses.

Theory: although it can be defined more 
formally, a theory is a hypothesized 
general principle or set of principles 
that explain known findings about a 
topic and from which new hypotheses 
can be generated.

Tolerance: tolerance statistics measure 
multicollinearity and are simply the 
reciprocal of the variance inflation 
factor (1/VIF). Values below 0.1 
indicate serious problems, although 
Menard (1995) suggests that values 
below 0.2 are worthy of concern.

Total SSCP (T): the total sum of 
squares and cross-product matrix. 
This is a sum of squares and cross-
product matrix for an entire set of 
observations. It is the multivariate 
equivalent of the total sum of  
squares.

Total sum of squares: a measure of 
the total variability within a set of 
observations. It is the total squared 
deviance between each observation 
and the overall mean of all 
observations. 

Transformation: the process of 
applying a mathematical function 
to all observations in a data set, 
usually to correct some distributional 
abnormality such as skew or kurtosis.

Trimmed mean: a statistic used in 
many robust tests. Imagine we had 
20 scores representing the annual 
income of students (in thousands, 
rounded to the nearest thousand: 
2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 
4, 4, 4, 4, 6, 35. The mean income 
is 5 (£5000). This value is biased by 
an outlier. A trimmed mean is simply 
a mean based on the distribution 
of scores after some percentage of 
scores has been removed from each 
extreme of the distribution. So, a 10% 
trimmed mean will remove 10% of 
scores from the top and bottom of 
ordered scores before the mean is 
calculated. With 20 scores, removing 
10% of scores involves removing the 
top and bottom 2 scores. This gives 
us: 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 
4, 4, 4, the mean of which is 3.44. 
The mean depends on a symmetrical 
distribution to be accurate, but a 
trimmed mean produces accurate 
results even when the distribution 
is not symmetrical. There are 
more complex examples of robust 
methods such as the bootstrap.

Two-tailed test: a test of a non-
directional hypothesis. For example, 

the hypothesis ‘writing this glossary 
has some effect on what I want 
to do with my editor’s genitals’ 
requires a two-tailed test because it 
doesn’t suggest the direction of the 
relationship. (See also One-tailed 
test.)

Type I error: occurs when we believe 
that there is a genuine effect in  
our population, when in fact  
there isn’t.

Type II error: occurs when we believe 
that there is no effect in the population 
when, in reality, there is.

Unique variance: variance that is 
specific to a particular variable 
(i.e. is not shared with other 
variables). We tend to use the term 
‘unique variance’ to refer to variance 
that can be reliably attributed to only 
one measure, otherwise it is called 
random variance. 

Univariate: means ‘one variable’ and is 
usually used to refer to situations in 
which only one outcome variable has 
been measured (i.e. ANOVA, t-tests, 
Mann–Whitney tests, etc.).

Unstructured: a covariance structure 
used in multilevel models. This 
covariance structure is completely 
general and is, therefore, the default 
option used in random effects in 
SPSS. Covariances are assumed to 
be completely unpredictable: they  
do not conform to a systematic 
pattern. 

Unstandardized residuals: the 
residuals of a model expressed in the 
units in which the original outcome 
variable was measured. 

Unsystematic variation: this is variation 
that isn’t due to the effect in which 
we’re interested (so could be due to 
natural differences between people in 
different samples such as differences 
in intelligence or motivation). We can 
think of this as variation that can’t be 
explained by whatever model we’ve 
fitted to the data.

Upper quartile: the value that cuts off 
the highest 25% of ordered scores. 
If the scores are ordered and then 
divided into two halves at the median, 
then the upper quartile is the median 
of the top half of the scores.

Validity: evidence that a study allows 
correct inferences about the question 
it was aimed to answer or that a test 
measures what it set out to measure 
conceptually (see also Content 
validity, Criterion validity).

Variables: anything that can be 
measured and can differ across 
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entities or across time.
Variable view: there are two ways to 

view the contents of the data editor 
window. The variable view allows you 
to define properties of the variables 
for which you wish to enter data. See 
also data view.

Variance: an estimate of average 
variability (spread) of a set of data.  
It is the sum of squares divided by  
the number of values on which the 
sum of squares is based minus 1.

Variance components: a covariance 
structure used in multilevel models. 
This covariance structure is very 
simple and assumes that all random 
effects are independent and variances 
of random effects are assumed to be 
the same and sum to the variance of 
the outcome variable. In SPSS this  
is the default covariance structure for 
random effects.

Variance–covariance matrix: a square 
matrix (i.e. same number of columns 
and rows) representing the variables 
measured. The diagonals represent 
the variances within each variable, 
whereas the off-diagonals represent 
the covariances between pairs of 
variables.

Variance inflation factor (VIF): a 
measure of multicollinearity. The 
VIF indicates whether a predictor 
has a strong linear relationship with 
the other predictor(s). Myers (1990) 
suggests that a value of 10 is a good 
value at which to worry. Bowerman 
and O’Connell (1990) suggest that if 
the average VIF is greater than 1, then 
multicollinearity may be biasing the 
regression model. 

Variance ratio: see Hartley’s Fmax.
Variance sum law: states that the 

variance of a difference between two 
independent variables is equal to the 
sum of their variances.

Varimax: a method of orthogonal 
rotation. It attempts to maximize the 
dispersion of factor loadings within 
factors. Therefore, it tries to load a 
smaller number of variables highly 
onto each factor resulting in more 
interpretable clusters of factors.

Viewer: SPSS window in which output of 
any analysis is displayed.

VIF: see Variance inflation factor.
Wald statistic: a test statistic with  

a known probability distribution  
(a chi-square distribution) that 
is used to test whether the b 
coefficient for a predictor in 
a logistic regression model is 
significantly different from zero. It 
is analogous to the t-statistic in a 
regression model in that it is simply 
the b coefficient divided by its 
standard error. The Wald statistic 
is inaccurate when the regression 
coefficient (b) is large, because the 
standard error tends to become 
inflated, resulting in the Wald 
statistic being underestimated.

Wald–Wolfowitz runs: another 
variant on the Mann–Whitney test. 
Scores are rank ordered as in the 
Mann–Whitney test, but rather than 
analysing the ranks, this test looks 
for ‘runs’ of scores from the same 
group within the ranked order. Now, 
if there’s no difference between 
groups then obviously ranks from 
the two groups should be randomly 
interspersed. However, if the groups 
are different then one should see 
more ranks from one group at the 
lower end, and more ranks from the 
other group at the higher end. By 
looking for clusters of scores in this 
way the test can determine if the 
groups differ.

Weights: a number by which 
something (usually a variable in 
statistics) is multiplied. The weight 
assigned to a variable determines 
the influence that variable has within 
a mathematical equation: large 
weights give the variable a lot of 
influence. 

Welch’s F: a version of the F-ratio 
designed to be accurate when 
the assumption of homogeneity of 
variance has been violated. Not to be 
confused with the squelch test which 
is where you shake your head around 
after writing statistics books to see if 
you still have a brain.

Wilcoxon’s rank-sum test: a non-
parametric test that looks for 
differences between two independent 
samples. That is, it tests whether the 
populations from which two samples 
are drawn have the same location. 
It is functionally the same as the 
Mann–Whitney test, and both tests 
are non-parametric equivalents of the 
independent t-test. 

Wilcoxon signed-rank test: a non-
parametric test that looks for 
differences between two related 
samples. It is the non-parametric 
equivalent of the related t-test.

Wilks’s lambda (Λ): a test statistic 
in MANOVA. It is the product of the 
unexplained variance on each of the 
discriminant function variates so it 
represents the ratio of error variance 
to total variance (SSR/SST) for each 
variate.

Within-subject design: another name 
for a repeated-measures design.

Writer’s block: something I suffered from 
a lot while writing this edition. It’s when 
you can’t think of any decent examples 
and so end up talking about sperm 
the whole time. Seriously, look at this 
book, it’s all sperm this, sperm that, 
quail sperm, human sperm. Frankly, 
I’m amazed donkey sperm didn’t get in 
there somewhere. Oh, it just did.

Yates’s continuity correction: an 
adjustment made to the chi-square 
test when the contingency table is 2 
rows by 2 columns (i.e. there are two 
categorical variables both of which 
consist of only two categories). In 
large samples the adjustment makes 
little difference and is slightly dubious 
anyway (see Howell, 2006).

z-score: the value of an observation 
expressed in standard deviation 
units. It is calculated by taking the 
observation, subtracting from it the 
mean of all observations, and dividing 
the result by the standard deviation 
of all observations. By converting 
a distribution of observations into 
z-scores a new distribution is created 
that has a mean of 0 and a standard 
deviation of 1.
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A.1. Table of the standard normal distribution

A p p e n d i x

(Continued)

z
Larger 
Portion

Smaller 
Portion y

.00 .50000 .50000 .3989

.01 .50399 .49601 .3989

.02 .50798 .49202 .3989

.03 .51197 .48803 .3988

.04 .51595 .48405 .3986

.05 .51994 .48006 .3984

.06 .52392 .47608 .3982

.07 .52790 .47210 .3980

.08 .53188 .46812 .3977

.09 .53586 .46414 .3973

.10 .53983 .46017 .3970

.11 .54380 .45620 .3965

z
Larger 
Portion

Smaller 
Portion y

.12 .54776 .45224 .3961

.13 .55172 .44828 .3956

.14 .55567 .44433 .3951

.15 .55962 .44038 .3945

.16 .56356 .43644 .3939

.17 .56749 .43251 .3932

.18 .57142 .42858 .3925

.19 .57535 .42465 .3918

.20 .57926 .42074 .3910

.21 .58317 .41683 .3902

.22 .58706 .41294 .3894

.23 .59095 .40905 .3885
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z
Larger 
Portion

Smaller 
Portion y

.24 .59483 .40517 .3876

.25 .59871 .40129 .3867

.26 .60257 .39743 .3857

.27 .60642 .39358 .3847

.28 .61026 .38974 .3836

.29 .61409 .38591 .3825

.30 .61791 .38209 .3814

.31 .62172 .37828 .3802

.32 .62552 .37448 .3790

.33 .62930 .37070 .3778

.34 .63307 .36693 .3765

.35 .63683 .36317 .3752

.36 .64058 .35942 .3739

.37 .64431 .35569 .3725

.38 .64803 .35197 .3712

.39 .65173 .34827 .3697

.40 .65542 .34458 .3683

.41 .65910 .34090 .3668

.42 .66276 .33724 .3653

.43 .66640 .33360 .3637

.44 .67003 .32997 .3621

.45 .67364 .32636 .3605

.46 .67724 .32276 .3589

.47 .68082 .31918 .3572

.48 .68439 .31561 .3555

.49 .68793 .31207 .3538

.50 .69146 .30854 .3521

.51 .69497 .30503 .3503

.52 .69847 .30153 .3485

.53 .70194 .29806 .3467

z
Larger 
Portion

Smaller 
Portion y

.54 .70540 .29460 .3448

.55 .70884 .29116 .3429

.56 .71226 .28774 .3410

.57 .71566 .28434 .3391

.58 .71904 .28096 .3372

.59 .72240 .27760 .3352

.60 .72575 .27425 .3332

.61 .72907 .27093 .3312

.62 .73237 .26763 .3292

.63 .73565 .26435 .3271

.64 .73891 .26109 .3251

.65 .74215 .25785 .3230

.66 .74537 .25463 .3209

.67 .74857 .25143 .3187

.68 .75175 .24825 .3166

.69 .75490 .24510 .3144

.70 .75804 .24196 .3123

.71 .76115 .23885 .3101

.72 .76424 .23576 .3079

.73 .76730 .23270 .3056

.74 .77035 .22965 .3034

.75 .77337 .22663 .3011

.76 .77637 .22363 .2989

.77 .77935 .22065 .2966

.78 .78230 .21770 .2943

.79 .78524 .21476 .2920

.80 .78814 .21186 .2897

.81 .79103 .20897 .2874

.82 .79389 .20611 .2850

.83 .79673 .20327 .2827

(Continued)
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z
Larger 
Portion

Smaller 
Portion y

 .84 .79955 .20045 .2803

 .85 .80234 .19766 .2780

 .86 .80511 .19489 .2756

 .87 .80785 .19215 .2732

 .88 .81057 .18943 .2709

 .89 .81327 .18673 .2685

 .90 .81594 .18406 .2661

 .91 .81859 .18141 .2637

 .92 .82121 .17879 .2613

 .93 .82381 .17619 .2589

 .94 .82639 .17361 .2565

 .95 .82894 .17106 .2541

 .96 .83147 .16853 .2516

 .97 .83398 .16602 .2492

 .98 .83646 .16354 .2468

 .99 .83891 .16109 .2444

1.00 .84134 .15866 .2420

1.01 .84375 .15625 .2396

1.02 .84614 .15386 .2371

1.03 .84849 .15151 .2347

1.04 .85083 .14917 .2323

1.05 .85314 .14686 .2299

1.06 .85543 .14457 .2275

1.07 .85769 .14231 .2251

1.08 .85993 .14007 .2227

1.09 .86214 .13786 .2203

1.10 .86433 .13567 .2179

1.11 .86650 .13350 .2155

1.12 .86864 .13136 .2131

1.13 .87076 .12924 .2107

z
Larger 
Portion

Smaller 
Portion y

1.14 .87286 .12714 .2083

1.15 .87493 .12507 .2059

1.16 .87698 .12302 .2036

1.17 .87900 .12100 .2012

1.18 .88100 .11900 .1989

1.19 .88298 .11702 .1965

1.20 .88493 .11507 .1942

1.21 .88686 .11314 .1919

1.22 .88877 .11123 .1895

1.23 .89065 .10935 .1872

1.24 .89251 .10749 .1849

1.25 .89435 .10565 .1826

1.26 .89617 .10383 .1804

1.27 .89796 .10204 .1781

1.28 .89973 .10027 .1758

1.29 .90147 .09853 .1736

1.30 .90320 .09680 .1714

1.31 .90490 .09510 .1691

1.32 .90658 .09342 .1669

1.33 .90824 .09176 .1647

1.34 .90988 .09012 .1626

1.35 .91149 .08851 .1604

1.36 .91309 .08691 .1582

1.37 .91466 .08534 .1561

1.38 .91621 .08379 .1539

1.39 .91774 .08226 .1518

1.40 .91924 .08076 .1497

1.41 .92073 .07927 .1476

1.42 .92220 .07780 .1456

1.43 .92364 .07636 .1435

(Continued)



800 D ISCOVER ING STAT IST ICS  US ING SPSS

z
Larger 
Portion

Smaller 
Portion y

1.44 .92507 .07493 .1415

1.45 .92647 .07353 .1394

1.46 .92785 .07215 .1374

1.47 .92922 .07078 .1354

1.48 .93056 .06944 .1334

1.49 .93189 .06811 .1315

1.50 .93319 .06681 .1295

1.51 .93448 .06552 .1276

1.52 .93574 .06426 .1257

1.53 .93699 .06301 .1238

1.54 .93822 .06178 .1219

1.55 .93943 .06057 .1200

1.56 .94062 .05938 .1182

1.57 .94179 .05821 .1163

1.58 .94295 .05705 .1145

1.59 .94408 .05592 .1127

1.60 .94520 .05480 .1109

1.61 .94630 .05370 .1092

1.62 .94738 .05262 .1074

1.63 .94845 .05155 .1057

1.64 .94950 .05050 .1040

1.65 .95053 .04947 .1023

1.66 .95154 .04846 .1006

1.67 .95254 .04746 .0989

1.68 .95352 .04648 .0973

1.69 .95449 .04551 .0957

1.70 .95543 .04457 .0940

1.71 .95637 .04363 .0925

1.72 .95728 .04272 .0909

1.73 .95818 .04182 .0893

z
Larger 
Portion

Smaller 
Portion y

1.74 .95907 .04093 .0878

1.75 .95994 .04006 .0863

1.76 .96080 .03920 .0848

1.77 .96164 .03836 .0833

1.78 .96246 .03754 .0818

1.79 .96327 .03673 .0804

1.80 .96407 .03593 .0790

1.81 .96485 .03515 .0775

1.82 .96562 .03438 .0761

1.83 .96638 .03362 .0748

1.84 .96712 .03288 .0734

1.85 .96784 .03216 .0721

1.86 .96856 .03144 .0707

1.87 .96926 .03074 .0694

1.88 .96995 .03005 .0681

1.89 .97062 .02938 .0669

1.90 .97128 .02872 .0656

1.91 .97193 .02807 .0644

1.92 .97257 .02743 .0632

1.93 .97320 .02680 .0620

1.94 .97381 .02619 .0608

1.95 .97441 .02559 .0596

1.96 .97500 .02500 .0584

1.97 .97558 .02442 .0573

1.98 .97615 .02385 .0562

1.99 .97670 .02330 .0551

2.00 .97725 .02275 .0540

2.01 .97778 .02222 .0529

2.02 .97831 .02169 .0519

2.03 .97882 .02118 .0508

(Continued)
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z
Larger 
Portion

Smaller 
Portion y

2.04 .97932 .02068 .0498

2.05 .97982 .02018 .0488

2.06 .98030 .01970 .0478

2.07 .98077 .01923 .0468

2.08 .98124 .01876 .0459

2.09 .98169 .01831 .0449

2.10 .98214 .01786 .0440

2.11 .98257 .01743 .0431

2.12 .98300 .01700 .0422

2.13 .98341 .01659 .0413

2.14 .98382 .01618 .0404

2.15 .98422 .01578 .0396

2.16 .98461 .01539 .0387

2.17 .98500 .01500 .0379

2.18 .98537 .01463 .0371

2.19 .98574 .01426 .0363

2.20 .98610 .01390 .0355

2.21 .98645 .01355 .0347

2.22 .98679 .01321 .0339

2.23 .98713 .01287 .0332

2.24 .98745 .01255  0325

2.25 .98778 .01222 .0317

2.26 .98809 .01191 .0310

2.27 .98840 .01160 .0303

2.28 .98870 .01130 .0297

2.29 .98899 .01101 .0290

2.30 .98928 .01072 .0283

2.31 .98956 .01044 .0277

2.32 .98983 .01017 .0270

2.33 .99010 .00990 .0264

z
Larger 
Portion

Smaller 
Portion y

2.34 .99036 .00964 .0258

2.35 .99061 .00939 .0252

2.36 .99086 .00914 .0246

2.37 .99111 .00889 .0241

2.38 .99134 .00866 .0235

2.39 .99158 .00842 .0229

2.40 .99180 .00820 .0224

2.41 .99202 .00798 .0219

2.42 .99224 .00776 .0213

2.43 .99245 .00755 .0208

2.44 .99266 .00734 .0203

2.45 .99286 .00714 .0198

2.46 .99305 .00695 .0194

2.47 .99324 .00676 .0189

2.48 .99343 .00657 .0184

2.49 .99361 .00639 .0180

2.50 .99379 .00621 .0175

2.51 .99396 .00604 .0171

2.52 .99413 .00587 .0167

2.53 .99430 .00570 .0163

2.54 .99446 .00554 .0158

2.55 .99461 .00539 .0154

2.56 .99477 .00523 .0151

2.57 .99492 .00508 .0147

2.58 .99506 .00494 .0143

2.59 .99520 .00480 .0139

2.60 .99534 .00466 .0136

2.61 .99547 .00453 .0132

2.62 .99560 .00440 .0129

2.63 .99573 .00427 .0126

(Continued)
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z
Larger 
Portion

Smaller 
Portion y

2.64 .99585 .00415 .0122

2.65 .99598 .00402 .0119

2.66 .99609 .00391 .0116

2.67 .99621 .00379 .0113

2.68 .99632 .00368 .0110

2.69 .99643 .00357 .0107

2.70 .99653 .00347 .0104

2.71 .99664 .00336 .0101

2.72 .99674 .00326 .0099

2.73 .99683 .00317 .0096

2.74 .99693 .00307 .0093

2.75 .99702 .00298 .0091

2.76 .99711 .00289 .0088

2.77 .99720 .00280 .0086

2.78 .99728 .00272 .0084

2.79 .99736 .00264 .0081

2.80 .99744 .00256 .0079

2.81 .99752 .00248 .0077

2.82 .99760 .00240 .0075

2.83 .99767 .00233 .0073

2.84 .99774 .00226 .0071

2.85 .99781 .00219 .0069

z
Larger 
Portion

Smaller 
Portion y

2.86 .99788 .00212 .0067

2.87 .99795 .00205 .0065

2.88 .99801 .00199 .0063

2.89 .99807 .00193 .0061

2.90 .99813 .00187 .0060

2.91 .99819 .00181 .0058

2.92 .99825 .00175 .0056

2.93 .99831 .00169 .0055

2.94 .99836 .00164 .0053

2.95 .99841 .00159 .0051

2.96 .99846 .00154 .0050

2.97 .99851 .00149 .0048

2.98 .99856 .00144 .0047

2.99 .99861 .00139 .0046

3.00 .99865 .00135 .0044

… … … …

3.25 .99942 .00058 .0020

… … … …

3.50 .99977 .00023 .0009

… … … …

4.00 .99997 .00003 .0001

All values calculated by the author using SPSS.

(Continued)
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A.2. Critical values of the t-distribution

Two-Tailed Test One-Tailed Test
df 0.05 0.01 0.05 0.01
  1 12.71 63.66 6.31 31.82

  2 4.30 9.92 2.92 6.96

  3 3.18 5.84 2.35 4.54

  4 2.78 4.60 2.13 3.75

  5 2.57 4.03 2.02 3.36

  6 2.45 3.71 1.94 3.14

  7 2.36 3.50 1.89 3.00

  8 2.31 3.36 1.86 2.90

  9 2.26 3.25 1.83 2.82

 10 2.23 3.17 1.81 2.76

 11 2.20 3.11 1.80 2.72

 12 2.18 3.05 1.78 2.68

 13 2.16 3.01 1.77 2.65

 14 2.14 2.98 1.76 2.62

 15 2.13 2.95 1.75 2.60

 16 2.12 2.92 1.75 2.58

 17 2.11 2.90 1.74 2.57

 18 2.10 2.88 1.73 2.55

 19 2.09 2.86 1.73 2.54

 20 2.09 2.85 1.72 2.53

 21 2.08 2.83 1.72 2.52

 22 2.07 2.82 1.72 2.51

 23 2.07 2.81 1.71 2.50

 24 2.06 2.80 1.71 2.49

 25 2.06 2.79 1.71 2.49

 26 2.06 2.78 1.71 2.48

 27 2.05 2.77 1.70 2.47

 28 2.05 2.76 1.70 2.47

 29 2.05 2.76 1.70 2.46

 30 2.04 2.75 1.70 2.46

 35 2.03 2.72 1.69 2.44

 40 2.02 2.70 1.68 2.42

 45 2.01 2.69 1.68 2.41

 50 2.01 2.68 1.68 2.40

 60 2.00 2.66 1.67 2.39

 70 1.99 2.65 1.67 2.38

 80 1.99 2.64 1.66 2.37

 90 1.99 2.63 1.66 2.37

100 1.98 2.63 1.66 2.36

∞ (z) 1.96 2.58 1.64 2.33

All values computed by the author using SPSS.
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A.3. Critical values of the F-distribution

df (numerator)

p 1 2 3 4 5 6 7 8 9 10

 1 .05 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88

.01 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47 6055.85

 2 .05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

.01 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40

 3 .05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23

 4 .05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55

 5 .05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05

 6 .05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87

 7 .05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62

 8 .05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81

 9 .05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

.01 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26

10 .05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85

11 .05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54

12 .05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30

13 .05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10

14 .05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94

15 .05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80

16 .05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69

17 .05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45

.01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59

18 .05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
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(Continued)

df (numerator)

p 1 2 3 4 5 6 7 8 9 10

19 .05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43

20 .05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37

22 .05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26

24 .05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17

26 .05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09

28 .05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03

30 .05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98

35 .05 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11

.01 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88

40 .05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80

45 .05 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05

.01 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74

50 .05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03

.01 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70

60 .05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99

.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63

80 .05 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95

.01 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55

100 .05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93

.01 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50

150 .05 3.90 3.06 2.66 2.43 2.27 2.16 2.07 2.00 1.94 1.89

.01 6.81 4.75 3.91 3.45 3.14 2.92 2.76 2.63 2.53 2.44

300 .05 3.87 3.03 2.63 2.40 2.24 2.13 2.04 1.97 1.91 1.86

.01 6.72 4.68 3.85 3.38 3.08 2.86 2.70 2.57 2.47 2.38

500 .05 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85

.01 6.69 4.65 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36

1000 .05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84

.01 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34
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(Continued)

df (numerator)

p 15 20 25 30 40 50 1000 8 9 10

 1 .05 245.95 248.01 249.26 250.10 251.14 251.77 254.19

.01 6157.31 6208.74 6239.83 6260.65 6286.79 6302.52 6362.70

 2 .05 19.43 19.45 19.46 19.46 19.47 19.48 19.49

.01 99.43 99.45 99.46 99.47 99.47 99.48 99.50

 3 .05 8.70 8.66 8.63 8.62 8.59 8.58 8.53

.01 26.87 26.69 26.58 26.50 26.41 26.35 26.14

 4 .05 5.86 5.80 5.77 5.75 5.72 5.70 5.63

.01 14.20 14.02 13.91 13.84 13.75 13.69 13.47

 5 05 4.62 4.56 4.52 4.50 4.46 4.44 4.37

.01 9.72 9.55 9.45 9.38 9.29 9.24 9.03

 6 .05 3.94 3.87 3.83 3.81 3.77 3.75 3.67

.01 7.56 7.40 7.30 7.23 7.14 7.09 6.89

 7 .05 3.51 3.44 3.40 3.38 3.34 3.32 3.23

.01 6.31 6.16 6.06 5.99 5.91 5.86 5.66

 8 .05 3.22 3.15 3.11 3.08 3.04 3.02 2.93

.01 5.52 5.36 5.26 5.20 5.12 5.07 4.87

 9 .05 3.01 2.94 2.89 2.86 2.83 2.80 2.71

.01 4.96 4.81 4.71 4.65 4.57 4.52 4.32

10 .05 2.85 2.77 2.73 2.70 2.66 2.64 2.54

.01 4.56 4.41 4.31 4.25 4.17 4.12 3.92

11 .05 2.72 2.65 2.60 2.57 2.53 2.51 2.41

.01 4.25 4.10 4.01 3.94 3.86 3.81 3.61

12 .05 2.62 2.54 2.50 2.47 2.43 2.40 2.30

.01 4.01 3.86 3.76 3.70 3.62 3.57 3.37

13 .05 2.53 2.46 2.41 2.38 2.34 2.31 2.21

.01 3.82 3.66 3.57 3.51 3.43 3.38 3.18

14 .05 2.46 2.39 2.34 2.31 2.27 2.24 2.14

.01 3.66 3.51 3.41 3.35 3.27 3.22 3.02

15 .05 2.40 2.33 2.28 2.25 2.20 2.18 2.07

.01 3.52 3.37 3.28 3.21 3.13 3.08 2.88

16 .05 2.35 2.28 2.23 2.19 2.15 2.12 2.02

.01 3.41 3.26 3.16 3.10 3.02 2.97 2.76

17 .05 2.31 2.23 2.18 2.15 2.10 2.08 1.97

.01 3.31 3.16 3.07 3.00 2.92 2.87 2.66

18 .05 2.27 2.19 2.14 2.11 2.06 2.04 1.92

.01 3.23 3.08 2.98 2.92 2.84 2.78 2.58
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All values computed by the author using SPSS.

df (numerator)

p 15 20 25 30 40 50 1000

 19 0.05 2.23 2.16 2.11 2.07 2.03 2.00 1.88

0.01 3.15 3.00 2.91 2.84 2.76 2.71 2.50

 20 0.05 2.20 2.12 2.07 2.04 1.99 1.97 1.85

0.01 3.09 2.94 2.84 2.78 2.69 2.64 2.43

 22 0.05 2.15 2.07 2.02 1.98 1.94 1.91 1.79

0.01 2.98 2.83 2.73 2.67 2.58 2.53 2.32

 24 0.05 2.11 2.03 1.97 1.94 1.89 1.86 1.74

0.01 2.89 2.74 2.64 2.58 2.49 2.44 2.22

 26 0.05 2.07 1.99 1.94 1.90 1.85 1.82 1.70

0.01 2.81 2.66 2.57 2.50 2.42 2.36 2.14

 28 0.05 2.04 1.96 1.91 1.87 1.82 1.79 1.66

0.01 2.75 2.60 2.51 2.44 2.35 2.30 2.08

 30 0.05 2.01 1.93 1.88 1.84 1.79 1.76 1.63

0.01 2.70 2.55 2.45 2.39 2.30 2.25 2.02

 35 0.05 1.96 1.88 1.82 1.79 1.74 1.70 1.57

0.01 2.60 2.44 2.35 2.28 2.19 2.14 1.90

 40 0.05 1.92 1.84 1.78 1.74 1.69 1.66 1.52

0.01 2.52 2.37 2.27 2.20 2.11 2.06 1.82

 45 0.05 1.89 1.81 1.75 1.71 1.66 1.63 1.48

0.01 2.46 2.31 2.21 2.14 2.05 2.00 1.75

 50 0.05 1.87 1.78 1.73 1.69 1.63 1.60 1.45

0.01 2.42 2.27 2.17 2.10 2.01 1.95 1.70

 60 0.05 1.84 1.75 1.69 1.65 1.59 1.56 1.40

0.01 2.35 2.20 2.10 2.03 1.94 1.88 1.62

 80 0.05 1.79 1.70 1.64 1.60 1.54 1.51 1.34

0.01 2.27 2.12 2.01 1.94 1.85 1.79 1.51

100 0.05 1.77 1.68 1.62 1.57 1.52 1.48 1.30

0.01 2.22 2.07 1.97 1.89 1.80 1.74 1.45

150 0.05 1.73 1.64 1.58 1.54 1.48 1.44 1.24

0.01 2.16 2.00 1.90 1.83 1.73 1.66 1.35

300 0.05 1.70 1.61 1.54 1.50 1.43 1.39 1.17

.01 2.10 1.94 1.84 1.76 1.66 1.59 1.25

500 .05 1.69 1.59 1.53 1.48 1.42 1.38 1.14

.01 2.07 1.92 1.81 1.74 1.63 1.57 1.20

1000 .05 1.68 1.58 1.52 1.47 1.41 1.36 1.11

.01 2.06 1.90 1.79 1.72 1.61 1.54 1.16

df (numerator)

p 15 20 25 30 40 50 1000 8 9 10

 1 .05 245.95 248.01 249.26 250.10 251.14 251.77 254.19

.01 6157.31 6208.74 6239.83 6260.65 6286.79 6302.52 6362.70

 2 .05 19.43 19.45 19.46 19.46 19.47 19.48 19.49

.01 99.43 99.45 99.46 99.47 99.47 99.48 99.50

 3 .05 8.70 8.66 8.63 8.62 8.59 8.58 8.53

.01 26.87 26.69 26.58 26.50 26.41 26.35 26.14

 4 .05 5.86 5.80 5.77 5.75 5.72 5.70 5.63

.01 14.20 14.02 13.91 13.84 13.75 13.69 13.47

 5 05 4.62 4.56 4.52 4.50 4.46 4.44 4.37

.01 9.72 9.55 9.45 9.38 9.29 9.24 9.03

 6 .05 3.94 3.87 3.83 3.81 3.77 3.75 3.67

.01 7.56 7.40 7.30 7.23 7.14 7.09 6.89

 7 .05 3.51 3.44 3.40 3.38 3.34 3.32 3.23

.01 6.31 6.16 6.06 5.99 5.91 5.86 5.66

 8 .05 3.22 3.15 3.11 3.08 3.04 3.02 2.93

.01 5.52 5.36 5.26 5.20 5.12 5.07 4.87

 9 .05 3.01 2.94 2.89 2.86 2.83 2.80 2.71

.01 4.96 4.81 4.71 4.65 4.57 4.52 4.32

10 .05 2.85 2.77 2.73 2.70 2.66 2.64 2.54

.01 4.56 4.41 4.31 4.25 4.17 4.12 3.92

11 .05 2.72 2.65 2.60 2.57 2.53 2.51 2.41

.01 4.25 4.10 4.01 3.94 3.86 3.81 3.61

12 .05 2.62 2.54 2.50 2.47 2.43 2.40 2.30

.01 4.01 3.86 3.76 3.70 3.62 3.57 3.37

13 .05 2.53 2.46 2.41 2.38 2.34 2.31 2.21

.01 3.82 3.66 3.57 3.51 3.43 3.38 3.18

14 .05 2.46 2.39 2.34 2.31 2.27 2.24 2.14

.01 3.66 3.51 3.41 3.35 3.27 3.22 3.02

15 .05 2.40 2.33 2.28 2.25 2.20 2.18 2.07

.01 3.52 3.37 3.28 3.21 3.13 3.08 2.88

16 .05 2.35 2.28 2.23 2.19 2.15 2.12 2.02

.01 3.41 3.26 3.16 3.10 3.02 2.97 2.76

17 .05 2.31 2.23 2.18 2.15 2.10 2.08 1.97

.01 3.31 3.16 3.07 3.00 2.92 2.87 2.66

18 .05 2.27 2.19 2.14 2.11 2.06 2.04 1.92

.01 3.23 3.08 2.98 2.92 2.84 2.78 2.58
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A.4. Critical values of the chi-square distribution

p

df 0.05 0.01

 1  3.84  6.63

 2  5.99  9.21

 3  7.81 11.34

 4  9.49 13.28

 5 11.07 15.09

 6 12.59 16.81

 7 14.07 18.48

 8 15.51 20.09

 9 16.92 21.67

10 18.31 23.21

11 19.68 24.72

12 21.03 26.22

13 22.36 27.69

14 23.68 29.14

15 25.00 30.58

16 26.30 32.00

17 27.59 33.41

18 28.87 34.81

19 30.14 36.19

20 31.41 37.57

21 32.67 38.93

22 33.92 40.29

23 35.17 41.64

24 36.42 42.98

p

df 0.05 0.01

  25 37.65 44.31

  26 38.89 45.64

  27 40.11 46.96

  28 41.34 48.28

  29 42.56 49.59

  30 43.77 50.89

  35 49.80 57.34

  40 55.76 63.69

  45 61.66 69.96

  50 67.50 76.15

  60 79.08 88.38

  70 90.53 100.43

  80 101.88 112.33

  90 113.15 124.12

 100 124.34 135.81

 200 233.99 249.45

 300 341.40 359.91

 400 447.63 468.72

 500 553.13 576.49

 600 658.09 683.52

 700 762.66 789.97

 800 866.91 895.98

 900 970.90 1001.63

1000 1074.68 1106.97

All values computed by the author using SPSS.
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