
Suitable for both beginners and advanced users, Dynamic Documents 
with R and knitr, Second Edition makes writing statistical reports eas-
ier by integrating computing directly with reporting. Reports range from 
homework, projects, exams, books, blogs, and Web pages to virtually any 
documents related to statistical graphics, computing, and data analysis. 
The book covers basic applications for beginners while guiding power us-
ers in understanding the extensibility of the knitr package.

New to the Second Edition
• A new chapter that introduces R Markdown v2
• Changes that reflect improvements in the knitr package
• New sections on generating tables, defining custom printing methods 

for objects in code chunks, the C/Fortran engines, the Stan engine, 
running engines in a persistent session, and starting a local server to 
serve dynamic documents

Like its highly praised predecessor, this edition shows you how to improve 
your efficiency in writing reports. The book takes you from program output 
to publication-quality reports, helping you fine-tune every aspect of your 
report. Demos and other information about the package are available on 
the author’s website.

Yihui Xie is a software engineer at RStudio. He earned a PhD from the 
Department of Statistics at Iowa State University. His research focuses on 
interactive statistical graphics and statistical computing. He is an active 
R user and the author of several award-winning R packages. He is also 
the founder of “Capital of Statistics,” a large online statistics community 
in China.

K25425

w w w . c r c p r e s s . c o m

The R Series

Dynamic Documents 
with R and knitr
Second Edition

D
ynam

ic D
ocum

ents w
ith R

 and knitr

Yihui Xie

X
ie

Second 

Edition

Statistics

K25425_cover.indd   1 4/17/15   11:01 AM



Yihui Xie
RStudio, Inc.

Dynamic Documents 
with R and knitr

Second Edition



Chapman & Hall/CRC
The R Series

John M. Chambers
Department of Statistics

Stanford University 
Stanford, California, USA

Duncan Temple Lang
Department of Statistics

University of California, Davis
Davis, California, USA

Torsten Hothorn
Division of Biostatistics

University of Zurich
Switzerland

Hadley Wickham
RStudio

Boston, Massachusetts, USA

Aims and Scope
This book series reflects the recent rapid growth in the development and application 
of R, the programming language and software environment for statistical computing 
and graphics. R is now widely used in academic research, education, and industry. 
It is constantly growing, with new versions of the core software released regularly 
and more than 6,000 packages available. It is difficult for the documentation to 
keep pace with the expansion of the software, and this vital book series provides a 
forum for the publication of books covering many aspects of the development and 
application of R.

The scope of the series is wide, covering three main threads:
• Applications of R to specific disciplines such as biology, epidemiology, 

genetics, engineering, finance, and the social sciences.
• Using R for the study of topics of statistical methodology, such as linear and 

mixed modeling, time series, Bayesian methods, and missing data.
• The development of R, including programming, building packages, and 

graphics.

The books will appeal to programmers and developers of R software, as well as 
applied statisticians and data analysts in many fields. The books will feature 
detailed worked examples and R code fully integrated into the text, ensuring their 
usefulness to researchers, practitioners and students.

Series Editors



Published Titles

Stated Preference Methods Using R, Hideo Aizaki, Tomoaki Nakatani,  
and Kazuo Sato

Using R for Numerical Analysis in Science and Engineering, Victor A. Bloomfield

Event History Analysis with R, Göran Broström

Computational Actuarial Science with R, Arthur Charpentier

Statistical Computing in C++ and R, Randall L. Eubank and Ana Kupresanin

Reproducible Research with R and RStudio, Second Edition, Christopher Gandrud

Introduction to Scientific Programming and Simulation Using R, Second Edition, 
Owen Jones, Robert Maillardet, and Andrew Robinson 

Nonparametric Statistical Methods Using R, John Kloke and Joseph McKean

Displaying Time Series, Spatial, and Space-Time Data with R,  
Oscar Perpiñán Lamigueiro

Programming Graphical User Interfaces with R, Michael F. Lawrence  
and John Verzani

Analyzing Sensory Data with R, Sébastien Lê and Theirry Worch

Parallel Computing for Data Science: With Examples in R, C++ and CUDA, 
Norman Matloff

Analyzing Baseball Data with R, Max Marchi and Jim Albert

Growth Curve Analysis and Visualization Using R, Daniel Mirman

R Graphics, Second Edition, Paul Murrell

Data Science in R: A Case Studies Approach to Computational Reasoning and 
Problem Solving, Deborah Nolan and Duncan Temple Lang 

Multiple Factor Analysis by Example Using R, Jérôme Pagès

Customer and Business Analytics: Applied Data Mining for Business Decision  
Making Using R, Daniel S. Putler and Robert E. Krider

Implementing Reproducible Research, Victoria Stodden, Friedrich Leisch,  
and Roger D. Peng 

Graphical Data Analysis with R, Antony Unwin

Using R for Introductory Statistics, Second Edition, John Verzani 

Advanced R, Hadley Wickham

Dynamic Documents with R and knitr, Second Edition, Yihui Xie



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150519

International Standard Book Number-13: 978-1-4987-1697-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher cannot 
assume responsibility for the validity of all materials or the consequences of their use. The authors and 
publishers have attempted to trace the copyright holders of all material reproduced in this publication 
and apologize to copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we may rectify in any 
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



To my parents

Shaobai Xie and Guolan Xie





Contents

Preface xiii

Author xxi

List of Figures xxiii

List of Tables xxvii

1 Introduction 1

2 Reproducible Research 5
2.1 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Good and Bad Practices . . . . . . . . . . . . . . . . . . . 7
2.3 Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 A First Look 11
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Minimal Examples . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 An Example in LATEX . . . . . . . . . . . . . . . . . 12
3.2.2 An Example in Markdown . . . . . . . . . . . . . 15

3.3 Quick Reporting . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Extracting R Code . . . . . . . . . . . . . . . . . . . . . . 17

4 Editors 19
4.1 RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 LYX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Emacs/ESS . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Other Editors . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Document Formats 27
5.1 Input Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Chunk Options . . . . . . . . . . . . . . . . . . . . 28
5.1.2 Chunk Label . . . . . . . . . . . . . . . . . . . . . 29
5.1.3 Global Options . . . . . . . . . . . . . . . . . . . . 30
5.1.4 Chunk Syntax . . . . . . . . . . . . . . . . . . . . 30

vii



viii Contents

5.2 Document Formats . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Markdown . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.3 HTML . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.4 reStructuredText . . . . . . . . . . . . . . . . . . . 36
5.2.5 AsciiDoc . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.6 Textile . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.7 Customization . . . . . . . . . . . . . . . . . . . . 37

5.3 Output Renderers . . . . . . . . . . . . . . . . . . . . . . 39
5.4 R Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Text Output 45
6.1 Inline Output . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Chunk Output . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Chunk Evaluation . . . . . . . . . . . . . . . . . . 46
6.2.2 Code Formatting . . . . . . . . . . . . . . . . . . . 47
6.2.3 Code Decoration . . . . . . . . . . . . . . . . . . . 47
6.2.4 Show/Hide Output . . . . . . . . . . . . . . . . . 49
6.2.5 Collapse Output . . . . . . . . . . . . . . . . . . . 51
6.2.6 Trim Blank Lines . . . . . . . . . . . . . . . . . . . 52

6.3 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Automatic Printing . . . . . . . . . . . . . . . . . . . . . . 55
6.5 Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Graphics 59
7.1 Graphical Devices . . . . . . . . . . . . . . . . . . . . . . 60

7.1.1 Custom Device . . . . . . . . . . . . . . . . . . . . 60
7.1.2 Choose a Device . . . . . . . . . . . . . . . . . . . 60
7.1.3 Device Size . . . . . . . . . . . . . . . . . . . . . . 61
7.1.4 More Device Options . . . . . . . . . . . . . . . . 61
7.1.5 Encoding . . . . . . . . . . . . . . . . . . . . . . . 62
7.1.6 The Dingbats Font . . . . . . . . . . . . . . . . . . 64

7.2 Plot Recording . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Plot Rearrangement . . . . . . . . . . . . . . . . . . . . . 69

7.3.1 Animation . . . . . . . . . . . . . . . . . . . . . . 70
7.3.2 Alignment . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Plot Size in Output . . . . . . . . . . . . . . . . . . . . . . 72
7.5 Extra Output Options . . . . . . . . . . . . . . . . . . . . 73
7.6 The tikz() Device . . . . . . . . . . . . . . . . . . . . . . . 74
7.7 Figure Environment . . . . . . . . . . . . . . . . . . . . . 76
7.8 Figure Path . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Contents ix

8 Cache 81
8.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Write Cache . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.3 When to Update Cache . . . . . . . . . . . . . . . . . . . 83
8.4 Side Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5 Chunk Dependencies . . . . . . . . . . . . . . . . . . . . 86

8.5.1 Manual Dependency . . . . . . . . . . . . . . . . 86
8.5.2 Automatic Dependency . . . . . . . . . . . . . . . 87

8.6 Load Cache Manually . . . . . . . . . . . . . . . . . . . . 88
8.7 Other Options . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Cross Reference 91
9.1 Chunk Reference . . . . . . . . . . . . . . . . . . . . . . . 91

9.1.1 Embed Code Chunks . . . . . . . . . . . . . . . . 91
9.1.2 Reuse Whole Chunks . . . . . . . . . . . . . . . . 92

9.2 Code Externalization . . . . . . . . . . . . . . . . . . . . . 93
9.2.1 Labeled Chunks . . . . . . . . . . . . . . . . . . . 93
9.2.2 Line-Based Chunks . . . . . . . . . . . . . . . . . 94

9.3 Child Documents . . . . . . . . . . . . . . . . . . . . . . . 95
9.3.1 Input Child Documents . . . . . . . . . . . . . . . 95
9.3.2 Child Documents as Templates . . . . . . . . . . 96
9.3.3 Standalone Mode . . . . . . . . . . . . . . . . . . 96

10 Hooks 99
10.1 Chunk Hooks . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.1.1 Create Chunk Hooks . . . . . . . . . . . . . . . . 99
10.1.2 Trigger Chunk Hooks . . . . . . . . . . . . . . . . 100
10.1.3 Hook Arguments . . . . . . . . . . . . . . . . . . 101
10.1.4 Hooks and Chunk Options . . . . . . . . . . . . . 101
10.1.5 Write Output . . . . . . . . . . . . . . . . . . . . . 102

10.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.2.1 Crop Plots . . . . . . . . . . . . . . . . . . . . . . . 103
10.2.2 rgl Plots . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2.3 Manually Save Plots . . . . . . . . . . . . . . . . . 106
10.2.4 Optimize PNG Plots . . . . . . . . . . . . . . . . . 108
10.2.5 Close an rgl Device . . . . . . . . . . . . . . . . . 109
10.2.6 WebGL . . . . . . . . . . . . . . . . . . . . . . . . 110

11 Language Engines 111
11.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.1.1 The Engine Function . . . . . . . . . . . . . . . . 112
11.1.2 Engine Options . . . . . . . . . . . . . . . . . . . . 113

11.2 Languages and Tools . . . . . . . . . . . . . . . . . . . . . 113



x Contents

11.2.1 C++ . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.2.2 C/Fortran . . . . . . . . . . . . . . . . . . . . . . . 115
11.2.3 Interpreted Languages . . . . . . . . . . . . . . . 116
11.2.4 Stan . . . . . . . . . . . . . . . . . . . . . . . . . . 118
11.2.5 TikZ . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11.2.6 Graphviz . . . . . . . . . . . . . . . . . . . . . . . 121
11.2.7 Highlight . . . . . . . . . . . . . . . . . . . . . . . 122
11.2.8 Other Engines . . . . . . . . . . . . . . . . . . . . 123

11.3 Persistent Sessions . . . . . . . . . . . . . . . . . . . . . . 124

12 Tricks and Solutions 127
12.1 Chunk Options . . . . . . . . . . . . . . . . . . . . . . . . 127

12.1.1 Option Aliases . . . . . . . . . . . . . . . . . . . . 127
12.1.2 Option Templates . . . . . . . . . . . . . . . . . . 128
12.1.3 Program Chunk Options . . . . . . . . . . . . . . 128
12.1.4 Code in Appendix . . . . . . . . . . . . . . . . . . 130
12.1.5 Local R Options . . . . . . . . . . . . . . . . . . . 131
12.1.6 Dynamic Code . . . . . . . . . . . . . . . . . . . . 131

12.2 Package Options . . . . . . . . . . . . . . . . . . . . . . . 131
12.3 Typesetting . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12.3.1 Output Width . . . . . . . . . . . . . . . . . . . . 132
12.3.2 Message Colors . . . . . . . . . . . . . . . . . . . 133
12.3.3 Box Padding . . . . . . . . . . . . . . . . . . . . . 134
12.3.4 Beamer . . . . . . . . . . . . . . . . . . . . . . . . 135
12.3.5 Suppress Long Output . . . . . . . . . . . . . . . 137
12.3.6 Escape Special Characters . . . . . . . . . . . . . . 138
12.3.7 The Example Environment . . . . . . . . . . . . . 139
12.3.8 The Docco Style . . . . . . . . . . . . . . . . . . . 140

12.4 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.4.1 R Package Citation . . . . . . . . . . . . . . . . . . 143
12.4.2 Image URI . . . . . . . . . . . . . . . . . . . . . . 144
12.4.3 Upload Images . . . . . . . . . . . . . . . . . . . . 145
12.4.4 Compile Documents . . . . . . . . . . . . . . . . . 145
12.4.5 Construct Code Chunks . . . . . . . . . . . . . . . 146
12.4.6 Extract Source Code . . . . . . . . . . . . . . . . . 147
12.4.7 Reproducible Simulation . . . . . . . . . . . . . . 150
12.4.8 R Documentation . . . . . . . . . . . . . . . . . . 151
12.4.9 Rst2pdf . . . . . . . . . . . . . . . . . . . . . . . . 151
12.4.10 Package Demos . . . . . . . . . . . . . . . . . . . 152
12.4.11 Pretty Printing . . . . . . . . . . . . . . . . . . . . 152
12.4.12 A Macro Preprocessor . . . . . . . . . . . . . . . . 155
12.4.13 Exit Knitting Early . . . . . . . . . . . . . . . . . . 156
12.4.14 Literal knitr Source Code . . . . . . . . . . . . . . 157



Contents xi

12.4.15 Spell Checking . . . . . . . . . . . . . . . . . . . . 158
12.5 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.6 Multilingual Support . . . . . . . . . . . . . . . . . . . . . 160

13 Publishing Reports 161
13.1 RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
13.2 Pandoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
13.3 HTML5 Slides . . . . . . . . . . . . . . . . . . . . . . . . . 163
13.4 Jekyll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
13.5 WordPress . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

14 R Markdown 167
14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
14.2 Pandoc’s Markdown Extensions . . . . . . . . . . . . . . 169

14.2.1 Basic Syntax . . . . . . . . . . . . . . . . . . . . . 169
14.2.2 YAML Metadata . . . . . . . . . . . . . . . . . . . 172

14.3 Output Formats . . . . . . . . . . . . . . . . . . . . . . . . 172
14.3.1 HTML Document . . . . . . . . . . . . . . . . . . 173
14.3.2 LATEX/PDF Document . . . . . . . . . . . . . . . . 184
14.3.3 Word Document . . . . . . . . . . . . . . . . . . . 188
14.3.4 Markdown Documents . . . . . . . . . . . . . . . 190
14.3.5 ioslides Presentation . . . . . . . . . . . . . . . . . 191
14.3.6 Slidy Presentation . . . . . . . . . . . . . . . . . . 193
14.3.7 Beamer Presentation . . . . . . . . . . . . . . . . . 194
14.3.8 Other Formats . . . . . . . . . . . . . . . . . . . . 198

14.4 Interactive Documents with Shiny . . . . . . . . . . . . . 199
14.5 Extending R Markdown v2 . . . . . . . . . . . . . . . . . 203

14.5.1 Templates . . . . . . . . . . . . . . . . . . . . . . . 204
14.5.2 New Formats . . . . . . . . . . . . . . . . . . . . . 205
14.5.3 HTML Widgets . . . . . . . . . . . . . . . . . . . . 208

14.6 Changes in R Markdown from v1 to v2 . . . . . . . . . . 209

15 Applications 213
15.1 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . 213
15.2 Serve Dynamic Documents . . . . . . . . . . . . . . . . . 217
15.3 Website and Blogging . . . . . . . . . . . . . . . . . . . . 219

15.3.1 Vistat and Rcpp Gallery . . . . . . . . . . . . . . . 219
15.3.2 UCLA R Tutorial . . . . . . . . . . . . . . . . . . . 220
15.3.3 The cda and RHadoop Wiki . . . . . . . . . . . . 220
15.3.4 The ggbio Package . . . . . . . . . . . . . . . . . . 220
15.3.5 Geospatial Data in R and Beyond . . . . . . . . . 221

15.4 Package Vignettes . . . . . . . . . . . . . . . . . . . . . . 221
15.4.1 Vignette Metadata and Engines . . . . . . . . . . 222



xii Contents

15.4.2 Vignette Examples . . . . . . . . . . . . . . . . . . 224
15.4.3 PDF Vignette . . . . . . . . . . . . . . . . . . . . . 226
15.4.4 HTML Vignette . . . . . . . . . . . . . . . . . . . 227

15.5 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.5.1 This Book . . . . . . . . . . . . . . . . . . . . . . . 227
15.5.2 The Analysis of Data . . . . . . . . . . . . . . . . 229
15.5.3 The Statistical Sleuth in R . . . . . . . . . . . . . . 229
15.5.4 Text Analysis with R for Students of Literature . 229

15.6 Literate Programming for R Packages . . . . . . . . . . . 230

16 Other Tools 233
16.1 Sweave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

16.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 235
16.1.2 Options . . . . . . . . . . . . . . . . . . . . . . . . 236
16.1.3 Problems . . . . . . . . . . . . . . . . . . . . . . . 237

16.2 Other R Packages . . . . . . . . . . . . . . . . . . . . . . . 238
16.3 Python Packages . . . . . . . . . . . . . . . . . . . . . . . 240

16.3.1 Dexy . . . . . . . . . . . . . . . . . . . . . . . . . . 241
16.3.2 PythonTEX . . . . . . . . . . . . . . . . . . . . . . 241
16.3.3 IPython . . . . . . . . . . . . . . . . . . . . . . . . 242

16.4 More Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
16.4.1 Org-mode . . . . . . . . . . . . . . . . . . . . . . . 244
16.4.2 SASweave . . . . . . . . . . . . . . . . . . . . . . . 245
16.4.3 Office . . . . . . . . . . . . . . . . . . . . . . . . . 245

Appendix 247

A Internals 247
A.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . 247
A.2 Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
A.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 250

A.3.1 Parser . . . . . . . . . . . . . . . . . . . . . . . . . 250
A.3.2 Chunk Hooks . . . . . . . . . . . . . . . . . . . . . 252
A.3.3 Option Aliases . . . . . . . . . . . . . . . . . . . . 253
A.3.4 Cache . . . . . . . . . . . . . . . . . . . . . . . . . 254
A.3.5 Compatibility with Sweave . . . . . . . . . . . . . 255
A.3.6 Concordance . . . . . . . . . . . . . . . . . . . . . 255

A.4 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Bibliography 259

Index 265



Preface

We import a dataset into a statistical software package, run a procedure
to get all results, then copy and paste selected pieces into a typesetting
program, add a few descriptions, and finish a report. This is a common
practice in writing statistical reports. There are obvious dangers and
disadvantages in this process.

1. It is error-prone due to too much manual work.

2. It requires lots of human effort to do tedious jobs such as
copying results across documents.

3. The workflow is barely recordable especially when it involves
GUI (Graphical User Interface) operations, therefore it is dif-
ficult to reproduce.

4. A tiny change of the data source in the future will require the
author(s) to go through the same procedure again, which can
take nearly the same amount of time and effort.

5. The analysis and writing are separate, so close attention has
to be paid to the synchronization of the two parts.

In fact, a report can be generated dynamically from program code. Just
like a software package has its source code, a dynamic document is the
source code of a report. It is a combination of computer code and the
corresponding narratives. When we compile the dynamic document,
the program code in it is executed and replaced with the output; we
get a final report by mixing the code output with the narratives. Be-
cause we only manage the source code, we are free of all the possible
problems above. For example, we can change a single parameter in the
source code, and get a different report on the fly.

In this book, dynamic documents refer to the kind of source docu-
ments containing both program code and narratives. Sometimes we
may just call them source documents since “dynamic” may sound con-
fusing and ambiguous to some people (it does not mean interactivity
or animations). We also use the term report frequently throughout the
book, which really means the output document that was compiled from
a dynamic document.

xiii



xiv Preface

Who Should Read This Book
This book is written for both beginners and advanced users. The main
goal is to make writing reports easier: the “report” here can range from
student homework or project reports, exams, books, blogs, and Web
pages to virtually any documents related to statistical graphics, com-
puting, and data analysis.

For beginners, Chapters 1 to 8 should be enough for basic appli-
cations (which have already covered many features); for power users,
Chapters 9 to 11 can be helpful for understanding the extensibility of
the knitr package.

Familiarity with LATEX and HTML can be helpful, but is not required
at all. Once you get the basic idea, you can write reports in simple lan-
guages such as Markdown, which should be fairly easy for beginners
to learn. Unless otherwise noted, all features apply to all document
formats, although we primarily use LATEX for examples.

We recommend that readers take a look at the website RPubs (http:
//rpubs.com), which contains a large number of user-contributed doc-
uments. Hopefully they are convincing enough to show that it is quick
and easy to write dynamic documents.

Software Information and Conventions
The main tools we introduce in this book are the R language (R Core
Team, 2015) and the knitr package (Xie, 2015b), with which this book
was written, but the language in the documents is not restricted to R;
for example, we can also integrate Python, awk, and shell scripts, etc.,
into the reports. For document formats, we mainly use LATEX, HTML,
and Markdown.

Both R and knitr are available on CRAN (Comprehensive R Archive
Network) as free and open-source software. You may download them
from any CRAN mirrors, such as http://cran.rstudio.com. You can
find their version information for this book in the R session information
below:

sessionInfo()

## R version 3.2.0 (2015-04-16)
## Platform: x86_64-pc-linux-gnu (64-bit)



Preface xv

## Running under: Ubuntu 14.04.2 LTS
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8
## [2] LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8
## [4] LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8
## [6] LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8
## [8] LC_NAME=C
## [9] LC_ADDRESS=C
## [10] LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8
## [12] LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets
## [6] base
##
## other attached packages:
## [1] knitr_1.10
##
## loaded via a namespace (and not attached):
## [1] formatR_1.2 tools_3.2.0 highr_0.5
## [4] stringr_0.6.2 evaluate_0.7

The knitr package is thoroughly documented on the website http:
//yihui.name/knitr/, and the most important page is perhaps http:
//yihui.name/knitr/options, where you can find the complete ref-
erence for chunk options (Section 5.1.1). The development version is
hosted on Github: https://github.com/yihui/knitr; you can always
check out the latest development version, file issues/feature requests,
or even participate in the development by forking the repository and
making changes by yourself. There are plenty of examples in the reposi-
tory https://github.com/yihui/knitr-examples, including both min-
imal and advanced examples. Karl Broman prepared a very nice mini-
mal tutorial for knitr at http://kbroman.org/knitr_knutshell, which
can be useful for beginners to learn knitr quickly. There is also a wiki
page maintained by Frank Harrell et al. from the Department of Bio-
statistics, Vanderbilt University, which introduced several tricks and
useful experience of using knitr: http://biostat.mc.vanderbilt.edu.

Unlike many other books on R, we do not add prompts to R source



xvi Preface

code in this book, and we comment out the text output by two hashes ##
by default, as you can see from the R session information before. The
reason for this convention is explained in Chapter 6. Package names
are in bold text (e.g., rpart), function names in italic (e.g., paste()), inline
code is formatted in a typewriter font (e.g., mean(1:10, trim = 0.1)),
and filenames are in sans serif fonts (e.g., figure/foo.pdf).

Structure of the Book

Chapter 1 is an overview of dynamic documents, introducing the idea
of literate programming; Chapter 2 explains why dynamic documents
are important to scientific research from the viewpoint of reproducible
research; Chapter 3 gives a first complete example that covers basic
concepts and what we can do with knitr; Chapter 4 introduces a few
common text editors that support knitr, so that it is easier to compile
reports from source documents; and Chapter 5 describes the syntax for
different document formats such as LATEX, HTML, and Markdown.

Chapters 6 to 11 explain the core functionality of the package. Chap-
ters 6 and 7 present how to control text and graphics output from knitr.
Chapter 8 talks about the caching mechanism that may significantly re-
duce the computation time. Chapter 9 shows how to reuse source code
by chunk references and organize child documents. Chapter 10 consists
of an advanced topic — chunk hooks, which make a literate program-
ming document really programmable and extensible. Chapter 11 illus-
trates how to integrate other languages, such as Python and awk, etc.,
into one report in the knitr framework.

Chapter 12 introduces some useful tricks that make it easier to write
documents with knitr. Chapter 13 shows how to publish reports in a
variety of formats including PDF, HTML, and HTML5 slides. Chapter
14 focuses on R Markdown v2, which can be converted to a large va-
riety of document formats, including those in Chapter 13. Chapter 15
covers a few significant applications. Chapter 16 introduces other tools
for dynamic report generation, such as Sweave, other R packages, and
software in other languages. Appendix A is a guide to some internal
structures of knitr, which may be helpful to other package developers.

The topics from Chapters 6 to 11 are parallel to each other. For ex-
ample, if you want to know more about graphics output, you can skip
Chapter 6 and jump to Chapter 7 directly.

In all, we will show how to improve our efficiency in writing re-



Preface xvii

ports, fine tune every aspect of a report, and go from program output
to publication-quality reports.

What’s New in the Second Edition
The major new content in the second edition of this book is Chapter
14, which is an introduction to R Markdown v2. Then there are a few
new sections: 6.3 (how to generate tables), 6.4 (how to define custom
printing methods for objects in code chunks), 11.2.2 (the C/Fortran en-
gines), 11.2.4 (the Stan engine), 11.3 (how to run engines in a persistent
session), and 15.2 (how to start a local server to serve dynamic docu-
ments). There are many minor updates here and there in the book as
well.

The second edition also introduces several changes according to the
changes in the knitr package (the first edition was based on knitr 1.3).

• The default value of the chunk option tidy was changed from TRUE
to FALSE, i.e., code chunks will not be automatically reformatted by
default (Section 6.2.2).

• Inline R expressions are evaluated without try(), i.e., if an error occurs
during the inline evaluation, R will stop immediately.

• The global R option digits is no longer modified in knitr; its default
value is 7, and you can set options(digits = 4) if you want the old
behavior.

• The plot hook function takes the plot filename as its first argument
(Section 5.3), instead of a vector of length two (basename and exten-
sion).

• The preferred way to stop knitr in case of errors is to set the chunk
option error = FALSE instead of the package option stop_on_error,
which has been deprecated (Section 6.2.4).

• Syntax highlighting is also available for other languages (Chapter 11)
such as Shell scripts, awk, and Python, etc., if the Highlight package
is installed (Section 11.2.7).

• For external code chunks (Section 9.2), the preferred chunk delimiter
is ## ---- instead of ## @knitr now.

To keep track of the changes in knitr, you can see the release notes for
each version at https://github.com/yihui/knitr/releases.



xviii Preface

Acknowledgments
First, I want to thank my wireless router, which was broken when I
started writing the core chapters of the first edition of this book (in the
boring winter of Ames). Besides, I also thank my wife for not giving
me the Ethernet cable during that period.

This book would certainly not have been possible without the pow-
erful R language, for which I thank the R core team and its contribu-
tors. The seminal work of Sweave (by Friedrich Leisch and R-core) is
the most important source of inspiration of knitr. Some additional fea-
tures were inspired by other R packages including cacheSweave (Roger
Peng), pgfSweave (Cameron Bracken and Charlie Sharpsteen), weaver
(Seth Falcon), SweaveListingUtils (Peter Ruckdeschel), highlight (Ro-
main Francois), and brew (Jeffrey Horner). The initial design was based
on Hadley Wickham’s decumar package, and the evaluator is based on
his evaluate package. Both LYX and RStudio quickly included support
to knitr after it came out, which made it a lot easier to write source
documents, and I’d like to thank their developers (especially Jean-Marc
Lasgouttes, JJ Allaire, and Joe Cheng); similarly I thank the developers
of other editors such as Emacs/ESS. I do not know how to describe John
MacFarlane’s Pandoc. It is magic. “Yes, we do support Word! Welcome
to the world of reproducible research!”

The R/knitr user community is truly amazing. There has been a
lot of feedback since the beginning of its development in late 2011.
I still remember some users shouted it from the rooftops when I re-
leased the first beta version. I appreciate this kind of excitement. Thou-
sands of questions and comments in the mailing list (https://groups.
google.com/group/knitr) and on the website StackOverflow (http://
stackoverflow.com/tags/knitr/) made this package far more power-
ful than I imagined. The development repository is on Github, where
I have received nearly 800 issues and more than 160 pull requests from
many contributors, including Ramnath Vaidyanathan, Taiyun Wei, Kir-
ill Müller, and JJ Allaire (https://github.com/yihui/knitr/pulls).

# to see a full list of contributors
packageDescription("knitr", fields = "Authors@R")

I thank my PhD advisors at Iowa State University, Di Cook and
Heike Hofmann, for their open-mindedness and consistent support for
my research in this “non-classical” area of statistics. I also thank RStu-
dio (http://www.rstudio.com) for providing me the freedom to work
on the second edition of this book.



Preface xix

Lastly, I thank the reviewers Frank Harrell, Douglas Bates, Carl Boet-
tiger, Joshua Wiley, Scott Kostyshak, and Jim Robison-Cox for their
valuable advice on improving the quality of this book (which is the first
book of my career), and I’m grateful to my editor John Kimmel, without
whom I would not have been able to publish my first book quickly.

Yihui Xie
Ames, Iowa





About the Author

Yihui Xie (http://yihui.name) is currently a software engineer at RStu-
dio (http://www.rstudio.com). He earned his PhD from the Depart-
ment of Statistics, Iowa State University. He is interested in interactive
statistical graphics and statistical computing. As an active R user, he
has authored several R packages, such as animation, knitr, formatR,
fun, mime, highr, servr, and Rd2roxygen, among which the animation
package won the 2009 John M. Chambers Statistical Software Award
(ASA), and the knitr package was awarded the “Honorable Mention”
prize in the “Applications of R in Business Contest 2012” thanks to Rev-
olution Analytics.

In 2006, he founded the “Capital of Statistics” (http://cos.name),
which has grown into a large online community on statistics in China.
He initiated the first Chinese R conference in 2008, and has been or-
ganizing R conferences in China since then. During his PhD training
at Iowa State University, he won the Vince Sposito Statistical Comput-
ing Award (2011) and the Snedecor Award (2012) in the Department of
Statistics.

xxi





List of Figures

1.1 A simulation of Brownian motion . . . . . . . . . . . . . 2

3.1 The source of a minimal Rnw document . . . . . . . . . 13
3.2 A minimal example in LATEX . . . . . . . . . . . . . . . . 14
3.3 The source of a minimal Rmd document . . . . . . . . . 15
3.4 A minimal example in Markdown . . . . . . . . . . . . . 16

4.1 Edit an Rnw document in RStudio . . . . . . . . . . . . . 20
4.2 Edit an Rmd document in RStudio . . . . . . . . . . . . . 22
4.3 Using knitr in LYX . . . . . . . . . . . . . . . . . . . . . . 24

5.1 The Sweave style in knitr . . . . . . . . . . . . . . . . . . 41
5.2 The listings style in knitr . . . . . . . . . . . . . . . . . . 42

7.1 A plot created in ggplot2 that does not need to be printed
explicitly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 A plot using the Bookman font family . . . . . . . . . . . 62
7.3 A table of the Windows-1250 code page . . . . . . . . . . 64
7.4 Three expressions produced two plots . . . . . . . . . . . 66
7.5 All high-level plots are captured . . . . . . . . . . . . . . 67
7.6 Show plots right below the code . . . . . . . . . . . . . . 68
7.7 Only the last plot was kept . . . . . . . . . . . . . . . . . 69
7.8 A clock animation . . . . . . . . . . . . . . . . . . . . . . 70
7.9 A right-aligned plot adapted from ?stars . . . . . . . . 72
7.10 Rotate two plots with different angles . . . . . . . . . . . 74
7.11 The traditional approach to writing math expressions in

plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.12 Write math in native LATEX with the tikz() device . . . . . 75
7.13 A figure environment with sub-figures . . . . . . . . . . 77

10.1 A plot with the default margin . . . . . . . . . . . . . . . 100
10.2 A plot with a smaller margin . . . . . . . . . . . . . . . . 101
10.3 The original plot with a large white margin . . . . . . . . 104
10.4 The cropped plot . . . . . . . . . . . . . . . . . . . . . . . 105
10.5 An rgl plot captured by hook_rgl() . . . . . . . . . . . . . 106

xxiii



xxiv List of Figures

10.6 A plot created by GGobi . . . . . . . . . . . . . . . . . . . 107
10.7 Adding elements to an existing rgl plot . . . . . . . . . . 109

11.1 A diagram drawn with TikZ . . . . . . . . . . . . . . . . 121
11.2 A diagram drawn with dot in Graphviz . . . . . . . . . . 122

12.1 A table created by the gridExtra package . . . . . . . . . 129
12.2 Break long lines with listings . . . . . . . . . . . . . . . . 134
12.3 A simple example of using knitr in beamer slides . . . . 135
12.4 A sample page of beamer slides . . . . . . . . . . . . . . 136
12.5 R code chunks in the R Example environments . . . . . . 141
12.6 The Docco style for HTML output . . . . . . . . . . . . . 142
12.7 The source document of the ggplot2 geom examples . . 148
12.8 A sample page of the ggplot2 documentation . . . . . . 149
12.9 The flowchart demo in the diagram package . . . . . . 152
12.10 A sample page of the flowchart demo . . . . . . . . . . . 153
12.11 A template of regression models . . . . . . . . . . . . . . 157

13.1 OpenDocument Text converted from Markdown . . . . 164
13.2 The source of an example of HTML5 slides . . . . . . . . 165

14.1 A preview of the HTML output document from R Mark-
down v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

14.2 A preview of the table, footnotes, and citations . . . . . . 179
14.3 A preview of the “readable” theme, with a table of con-

tents and numbered sections . . . . . . . . . . . . . . . . 181
14.4 A preview of the PDF output document from R Mark-

down v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
14.5 A preview of the PDF output document, with a table of

contents and numbered sections . . . . . . . . . . . . . . 186
14.6 A preview of the Microsoft Word document from R Mark-

down v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
14.7 Open the styles panel in Word . . . . . . . . . . . . . . . 190
14.8 Modify styles of elements in Word . . . . . . . . . . . . . 191
14.9 The title slide of an ioslides presentation . . . . . . . . . 192
14.10 One slide from a Slidy presentation . . . . . . . . . . . . 194
14.11 Two slides from the Beamer presentation created by R

Markdown . . . . . . . . . . . . . . . . . . . . . . . . . . 196
14.12 An example page using the Tufte handout style . . . . . 200
14.13 A simple interactive document using R Markdown and

Shiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
14.14 Create a new R Markdown document from templates . . 206
14.15 Create an E-book from R Markdown . . . . . . . . . . . . 207



List of Figures xxv

14.16 A table created by the DataTables library in R Mark-
down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

15.1 Trace of Gibbs sampling for a bivariate Normal distribu-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

15.2 5000 points from Gibbs sampling . . . . . . . . . . . . . . 215
15.3 The layout of an R Markdown document and its output

in the RStudio Viewer . . . . . . . . . . . . . . . . . . . . 218
15.4 A Makefile example for the function make() in servr . . . 219
15.5 The metadata of a knitr vignette . . . . . . . . . . . . . . 223
15.6 A sample page of the ggplot2 transition guide . . . . . . 225
15.7 The Makefile to compile PDF vignettes using knitr . . . 226
15.8 The Makefile to compile HTML vignettes . . . . . . . . . 227

16.1 A screenshot of IPython . . . . . . . . . . . . . . . . . . . 243





List of Tables

1.1 A subset of the mtcars dataset . . . . . . . . . . . . . . . 4

5.1 A syntax summary of all document formats . . . . . . . 32
5.2 Output hook functions and the object classes of results

from the evaluate package. . . . . . . . . . . . . . . . . . 40

11.1 Interpreted languages supported by knitr . . . . . . . . 117

xxvii





1
Introduction

The basic idea behind dynamic documents stems from literate program-
ming, a programming paradigm conceived by Donald Knuth (Knuth,
1984). The original idea was mainly for writing software: mix the source
code and documentation together; we can either extract the source code
out (called tangle) or execute the code to get the compiled results (called
weave). A dynamic document is not entirely different from a computer
program: for a dynamic document, we need to run software packages
to compile our ideas (often implemented as source code) into numeric
or graphical output, and insert the output into our literal writings (like
documentation).

We explain the idea with a trivial example: suppose we need to
write the value of 2π into a report; of course, we can directly write
the number 6.2832. Now, if I change my mind and I want 6π instead,
I may have to find a calculator, erase the previous value, and write the
new answer. Since it is extremely easy for the computer to calculate 6π,
why not leave this job to the computer completely and free oneself from
this kind of manual work? What we need to do is to leave the source
code in the document instead of a hard-coded value, and tell the com-
puter how to find and execute the source code. Usually we use special
markers for computer code in the source report; e.g., we can write

The correct answer is {{ 6 * pi }}.

in which {{ and }} is a pair of markers that tell the computer 6 * pi is
the source code and should be executed. Note here pi (π) is a constant
in R.

If you know a Web scripting language such as PHP (which can em-
bed program code into HTML documents), this idea should look fa-
miliar. The above example shows the inline code output, which means
source code is mixed inline with a sentence. The other type of output
is the chunk output, which gives the results from a whole block of code.
The chunk output has much more flexibility; for example, we can pro-
duce graphics and tables from a code chunk.

Figure 1.1 was dynamically created with a chunk of R code, which
is printed below:

1



2 Dynamic Documents with R and knitr

0 20 40 60 80 100

-8

-6

-4

-2

0

2

step

x
i+

1
=
x
i
+
ε
i+

1

FIGURE 1.1: A simulation of Brownian motion for 100 steps: x1 =

ε1, xi+1 = xi + εi+1, εi
iid∼ N(0, 1), i = 1, 2, · · · , 100

set.seed(1213) # for reproducibility of random numbers
x <- cumsum(rnorm(100))
plot(x, type = "l", ylab = "$x_{i+1}=x_i+\\epsilon_{i+1}$",

xlab = "step")

If we were to do this by hand, we would have to open R, paste the
code into the R console to draw the plot, save it as a PDF file, and in-
sert it into a LATEX document with \includegraphics{}. This is both
tedious for the author and difficult to maintain — supposing we want
to change the random seed in set.seed(), increase the number of steps,
or use a scatterplot instead of a line graph, we will have to update both
the source code and the output. In practice, the computing and analy-
sis can be far more complicated than the toy example in Figure 1.1, and
more manual work will be required accordingly.

The spirit of dynamic documents may best be described by the phi-
losophy of the ESS project (Rossini et al., 2004) for the S language:

The source code is real.

Philosophy for using ESS[S]

Since the output can be produced by the source code, we can main-
tain the source code only. However, in most cases, the direct output
from the source code alone does not constitute a report that is readable



Introduction 3

for a human. That is why we need the literate programming paradigm.
In this paradigm, an author has two tasks:

1. write program code to do computing, and

2. write narratives to explain what is being done by the pro-
gram code

The traditional approach to doing the second task is to write comments
for the code, but comments are often limited in terms of expressing the
full thoughts of the authors. Normally we write our ideas in a paper or
a report instead of hundreds of lines of code comments.

Let us change our traditional attitude to the construction
of programs: Instead of imagining that our main task is to
instruct a computer what to do, let us concentrate rather
on explaining to humans what we want the computer to
do.

Donald E. Knuth
Literate Programming, 1984

Technically, literate programming involves three steps:

1. parse the source document and separate code from narratives

2. execute source code and return results

3. mix results from the source code with the original narratives

These steps can be implemented in software packages, so the authors
do not need to take care of these technical details. Instead, we only
control what the output should look like. There are many details that
we can tune for a report (especially for reports related to data analy-
sis), although the idea of literate programming seems to be simple. For
example, data reports often include tables, and Table 1.1 is a table gen-
erated from the R code below using the kable() function in knitr:

library(knitr)
kable(head(mtcars[, 1:6]))

Think how easy it is to maintain two lines of R code compared to
maintaining many lines of messy LATEX code!

Generating reports dynamically by integrating computer code with



4 Dynamic Documents with R and knitr

TABLE 1.1: A subset of the mtcars dataset: the first 6 rows and 6
columns.

mpg cyl disp hp drat wt
Mazda RX4 21.0 6 160 110 3.90 2.620
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875
Datsun 710 22.8 4 108 93 3.85 2.320
Hornet 4 Drive 21.4 6 258 110 3.08 3.215
Hornet Sportabout 18.7 8 360 175 3.15 3.440
Valiant 18.1 6 225 105 2.76 3.460

narratives is not only easier, but also closely related to reproducible re-
search, which we will discuss in the next chapter.



2
Reproducible Research

Results from scientific research have to be reproducible to be trustwor-
thy. We do not want a finding to be merely due to an isolated occur-
rence, e.g., only one specific laboratory researcher can produce the re-
sults on one specific day, and nobody else can produce the same results
under the same conditions.

Reproducible research (RR) is one possible by-product of dynamic
documents, but dynamic documents do not absolutely guarantee RR.
Because there is usually no human intervention when we generate a
report dynamically, it is likely to be reproducible since it is relatively
easy to prepare the same software and hardware environment, which
is everything we need to reproduce the results. However, the meaning
of reproducibility can be beyond reproducing one specific result or one
particular report. As a trivial example, one might have done a Monte
Carlo simulation with a certain random seed and got a good estimate of
a parameter, but the result was actually due to a “lucky” random seed.
Although we can strictly reproduce the estimate, it is not actually re-
producible in the general sense. Similar problems exist in optimization
algorithms, e.g., different starting values can lead to different roots of
the same equation.

Anyway, dynamic report generation is still an important step to-
ward RR. In this chapter, we discuss a selection of the RR literature and
practices of RR.

2.1 Literature

The term reproducible research was first proposed by Jon Claerbout at
Stanford University (Fomel and Claerbout, 2009). The idea is that the
final product of research is not only the paper itself, but also the full
computational environment used to produce the results in the paper
such as the code and data necessary for reproduction of the results and
building upon the research.

5



6 Dynamic Documents with R and knitr

Similarly, Buckheit and Donoho (1995) pointed out the essence of
the scholarship of an article as follows:

An article about computational science in a scientific pub-
lication is not the scholarship itself, it is merely advertis-
ing of the scholarship. The actual scholarship is the com-
plete software development environment and the com-
plete set of instructions which generated the figures.

D. Donoho
WaveLab and Reproducible Research

That was well said! Fortunately, journals have been moving in that
direction as well. For example, Peng (2009) provided detailed instruc-
tions to authors on the criteria of reproducibility and how to submit
materials for reproducing the paper in the Biostatistics journal.

At the technical level, RR is often related to literate programming
(Knuth, 1984), a paradigm conceived by Donald Knuth to integrate
computer code with software documentation in one document. How-
ever, early implementations like WEB (Knuth, 1983) and Noweb (Ram-
sey, 1994) were not directly suitable for data analysis and report gener-
ation. There are other tools on this path of documentation generation,
such as roxygen2 (Wickham et al., 2015), which is an R implementation
of Doxygen (van Heesch, 2008). Sweave (Leisch, 2002) was among the
first implementations for dealing with dynamic documents in R (Ihaka
and Gentleman, 1996; R Core Team, 2015). There are still a number
of challenges that were not solved by the existing tools; for example,
Sweave is closely tied to LATEX and hard to extend. The knitr package
(Xie, 2015b) was built upon the ideas of previous tools with a frame-
work redesign, enabling easy and fine control of many aspects of a re-
port. We will introduce other tools in Chapter 16.

An overview of literate programming applied to statistical analysis
can be found in Rossini (2002). Gentleman and Temple Lang (2004) in-
troduced general concepts of literate programming documents for sta-
tistical analysis, with a discussion of the software architecture. Gen-
tleman (2005) is a practical example based on Gentleman and Temple
Lang (2004), using an R package GolubRR to distribute reproducible
analysis. Baggerly et al. (2004) revealed several problems that may arise
with the standard practice of publishing data analysis results, which
can lead to false discoveries due to lack of details for reproducibility



Reproducible Research 7

(even with datasets supplied). Instead of separating results from com-
puting, we can put everything in one document (called a compendium in
Gentleman and Temple Lang (2004)), including the computer code and
narratives. When we compile this document, the computer code will
be executed, giving us the results directly.

2.2 Good and Bad Practices

The key to keep in mind for RR is that other people should be able to
reproduce our results, therefore we should try our best to make our
computation portable. We discuss some good practices for RR below
and explain why it can be bad not to follow them.

• Manage all source files under the same directory and use relative
paths whenever possible: absolute paths can break reproducibility,
e.g., a data file like C:/Users/john/foo.csv or /home/joe/foo.csv may
only exist in one computer, and other people may not be able to read
it since the absolute path is likely to be different in their hard disk. If
we keep everything under the same directory, we can read a data file
with read.csv(’foo.csv’) (if it is under the current working direc-
tory) or read.csv(’../data/foo.csv’) (go one level up and find the
file under the data/ directory); when we disseminate the results, we
can make an archive of the whole directory (e.g., as a zip package).

• Do not change the working directory after the computing has started:
setwd() is the function in R to set the working directory, and it is not
uncommon to see setwd(’C:/path/to/some/dir’) in user’s code,
which is bad because it is not only an absolute path, but also has a
global effect on the rest of the source document. In that case, we have
to keep in mind that all relative paths may need adjustments since the
root directory has changed, and the software may write the output in
an unexpected place (e.g., the figures are expected to be generated
in the ./figures/ directory, but are actually written to ./data/figures/
instead if we setwd(’./data/’)). If we have to set the working di-
rectory at all, do it in the very beginning of an R session; most of the
editors to be introduced in Chapter 4 follow this rule, and the working
directory is set to the directory of the source document before knitr is
called to compile documents. If it is unavoidable or makes it much
more convenient for you to write code after setting a different work-
ing directory, you should restore the directory later; e.g.,



8 Dynamic Documents with R and knitr

f <- function(...) {
# stores current dir to a variable owd
owd <- setwd("a/different/dir/")
# restore working dir when the function exits
on.exit(setwd(owd), add = TRUE)
# now you can work under a/different/dir
...

}

• Compile the documents in a clean R session: existing R objects in the
current R session may “contaminate” the results in the output. It is
fine if we write a report by accumulating code chunks one by one
and running them interactively to check the results, but in the end we
should compile a report in the batch mode with a new R session so all
the results are freshly generated from the code.

• Avoid the commands that require human interaction: human input
can be highly unpredictable; e.g., we do not know for sure which
file the user will choose if we pop up a dialog box asking the user
to choose a data file. Instead of using functions like file.choose() to in-
put a file to read.table(), we should write the filename explicitly; e.g.,
read.table(’a-specific-file.txt’).

• Avoid environment variables for data analysis: while environment
variables are often heavily used in programming for configuration
purposes, it is ill-advised to use them in data analysis because they
require additional instructions for users to set up, and humans can
simply forget to do this. If there are any options to set up, do it inside
the source document.

• Attach sessionInfo() (or devtools::session_info()) and instructions on how
to compile this document: the session information makes a reader
aware of the software environment, such as the version of R, the op-
erating system, and add-on packages used. Sometimes it is not as
simple as calling one single function to compile a document, and we
have to make it clear how to compile it if additional steps are required;
but it is better to provide the instructions in the form of a computer
script; e.g., a shell script, a Makefile, or a batch file.

These practices are not necessarily restricted to the R language, although
we used R for examples. The same rules also apply to other computing
environments.

Note that literate programming tools often require users to compile
the documents in batch mode, and it is good for reproducible research,



Reproducible Research 9

but the batch mode can be cumbersome for exploratory data analy-
sis. When we have not decided what to put in the final document, we
may need to interact with the data and code frequently, and it is not
worth compiling the whole document each time we update the code.
This problem can be solved by a capable editor such as RStudio and
Emacs/ESS, which are introduced in Chapter 4. In these editors, we can
interact with the code and explore the data freely (e.g., send or write R
code in an associated R session), and once we finish the coding work,
we can compile the whole document in the batch mode to make sure
all the code works in a clean R session.

2.3 Barriers

Despite all the advantages of RR, there are some practical barriers, and
here is a non-exhaustive list:

• the data can be huge: for example, it is common that high energy
physics and next-generation sequencing data in biology can produce
tens of terabytes of data, and it is not trivial to archive the data with
the reports and distribute them

• confidentiality of data: it may be prohibited to release the raw data
with the report, especially when it is involved with human subjects
due to the confidentiality issues

• software version and configuration: a report may be generated with
an old version of a software package that is no longer available, or
with a software package that compiles differently on different operat-
ing systems

• competition: one may choose not to release the code or data with
the report due to the fact that potential competitors can easily get ev-
erything for free, whereas the original authors have invested a large
amount of money and effort

We certainly should not expect all reports in the world to be publicly
available and strictly reproducible, but it is better to share even mediocre
or flawed code or problematic datasets than not to share anything at all.
Instead of persuading people into RR by policies, we may try to create
tools that make RR easier than cut-and-paste, and knitr is such an at-
tempt. The success of RPubs (http://rpubs.com) is evidence that an



10 Dynamic Documents with R and knitr

easy tool can quickly promote RR, because users enjoy using it. Read-
ers can find hundreds of reports contributed by users in the RPubs web-
site. It is fairly common to see student homework and exercises there,
and once the students are trained in this manner, we may expect more
reproducible scientific research in the future.



3
A First Look

The knitr package is a general-purpose literate programming engine —
it supports document formats including LATEX, HTML, and Markdown
(see Chapter 5), and programming languages such as R, Python, awk,
C++, and shell scripts (Chapter 11). Before we get started, we need to
install knitr in R. Then we will introduce the basic concepts with min-
imal examples. Finally, we will show how to generate reports quickly
from pure R scripts, which can be useful for beginners who do not know
anything about dynamic documents.

3.1 Setup
Since knitr is an R package, it can be installed from CRAN in the usual
way in R:

install.packages("knitr", dependencies = TRUE)

Note here that dependencies = TRUE is optional, and will install all
packages that are not absolutely necessary but can enhance this pack-
age with some useful features. The development version is hosted on
Github: https://github.com/yihui/knitr, and you can always check
out the latest development version, which may not be stable but con-
tains the latest bug fixes and new features. If you have any problems
with knitr, the first thing to check is its version:

packageVersion("knitr")
# if not the latest version, run
update.packages()

If you choose LATEX as the typesetting tool, you may need to install
MiKTEX (Windows, http://miktex.org/), MacTEX (Mac OS, http://
tug.org/mactex/), or TEXLive (Linux, http://tug.org/texlive/). If

11



12 Dynamic Documents with R and knitr

you are going to work with HTML or Markdown, nothing else needs
to be installed, since the output will be Web pages, which you can view
with a Web browser.

Once we have knitr installed, we can compile source documents
using the function knit(), e.g.,

library(knitr)
knit("your-file.Rnw")

A *.Rnw file is usually a LATEX document with R code embedded in
it, as we will see in the following section and Chapter 5, in which more
types of documents will be introduced.

3.2 Minimal Examples
We use two minimal examples written in LATEX and Markdown, respec-
tively, to illustrate the structure of dynamic documents. We do not dis-
cuss the syntax of LATEX or Markdown for the time being (see Chapter 5
instead). For the sake of simplicity, the cars dataset in base R is used to
build a simple linear regression model. Type ?cars in R to see detailed
documentation. Basically it has two variables, speed and distance:

str(cars)

## 'data.frame': 50 obs. of 2 variables:
## $ speed: num 4 4 7 7 8 9 10 10 10 11 ...
## $ dist : num 2 10 4 22 16 10 18 26 34 17 ...

3.2.1 An Example in LATEX

Figure 3.1 is a full example of R code embedded in LATEX; we call this
kind of documents Rnw documents hereafter because their filename ex-
tension is Rnw by convention. If we save it as a file minimal.Rnw and
run knit(’minimal.Rnw’) in R as described before, knitr will generate
a LATEX output document named minimal.tex. For those who are familiar
with LATEX, you can compile this document to PDF via pdflatex. Figure
3.2 is the PDF document compiled from the Rnw document.

What is essential here is how we embedded R code in LATEX. In an
Rnw document, <�<>�>= marks the beginning of code chunks, and @ ter-
minates a code chunk (this description is not rigorous but is often easier



A First Look 13

\documentclass{article}
\begin{document}
\title{A Minimal Example}
\author{Yihui Xie}
\maketitle

We examine the relationship between speed and stopping
distance using a linear regression model:
$Y = \beta_0 + \beta_1 x + \epsilon$.

<<model, fig.width=4, fig.height=3, fig.align='center'>>=
par(mar = c(4, 4, 1, 1), mgp = c(2, 1, 0), cex = 0.8)
plot(cars, pch = 20, col = 'darkgray')
fit <- lm(dist ~ speed, data = cars)
abline(fit, lwd = 2)
@

The slope of a simple linear regression is
\Sexpr{coef(fit)[2]}.
\end{document}

FIGURE 3.1: The source of a minimal Rnw document: see output in
Figure 3.2.

to understand); we have four lines of R code between the two mark-
ers in this example to draw a scatterplot, fit a linear model, and add
a regression line to the scatterplot. The command \Sexpr{} is used to
embed inline R code, e.g., coef(fit)[2] in this example. We can write
chunk options for a code chunk between <�< and >�>=; the chunk options
in this example specified the plot size to be 4 by 3 inches (fig.width and
fig.height), and plots should be aligned in the center (fig.align).

In this minimal example, we have most basic elements of a report:

1. title, author, and date

2. model description

3. data and computation

4. graphics

5. numeric results

All the output is generated dynamically from R. Even if the data has



14 Dynamic Documents with R and knitr

A Minimal Example

Yihui Xie

April 11, 2015

We examine the relationship between speed and stopping distance using a
linear regression model: Y = β0 + β1x + ε.

par(mar = c(4, 4, 1, 1), mgp = c(2, 1, 0), cex = 0.8)

plot(cars, pch = 20, col = "darkgray")

fit <- lm(dist ~ speed, data = cars)

abline(fit, lwd = 2)

5 10 15 20 25

0
20

40
60

80
10

0

speed

di
st

The slope of a simple linear regression is 3.9324088.

1

FIGURE 3.2: A minimal example in LATEX with an R code chunk, a plot,
and numeric output (regression coefficient).



A First Look 15

---
title: A Minimal Example
---

We examine the relationship between speed and stopping
distance using a linear regression model:
$Y = \beta_0 + \beta_1 x + \epsilon$.

```{r fig.width=4, fig.height=3, fig.align='center'}
par(mar = c(4, 4, 1, 1), mgp = c(2, 1, 0), cex = 0.8)
plot(cars, pch = 20, col = 'darkgray')
fit <- lm(dist ~ speed, data = cars)
abline(fit, lwd = 2)
```

The slope of a simple linear regression is
`r coef(fit)[2]`.

FIGURE 3.3: The source of a minimal Rmd document: see output in
Figure 3.4.

changed, we do not need to redo the report from the ground up, and the
output will be updated accordingly if we update the data and recompile
the report.

3.2.2 An Example in Markdown

LATEX may look overwhelming to beginners due to the large number
of commands. By comparison, Markdown (Gruber, 2004) is a much
simpler format. Figure 3.3 is a Markdown example doing the same
analysis with the previous example:

The ideal output from Markdown is an HTML Web page, as shown
in Figure 3.4 (in Mozilla Firefox). Similarly, we can see the syntax for
R code in a Markdown document: ```{r} opens a code chunk, ```
terminates a chunk, and inline R code can be put inside `r `, where `
is a backtick.

A slightly longer example in knitr is a demo named notebook, which
is based on Markdown. It shows not only the potential power of Mark-
down, but also the possibility of building Web applications with knitr.
To watch the demo, run the code below:



16 Dynamic Documents with R and knitr

FIGURE 3.4: A minimal example in Markdown with the same analysis
as in Figure 3.2, but the output is HTML instead of PDF now.



A First Look 17

if (!require("shiny")) install.packages("shiny")
demo("notebook", package = "knitr")

Your default Web browser will be launched to show a Web note-
book. The source code is in the left panel, and the live results are in
the right panel. You are free to experiment with the source code and
recompile the notebook.

3.3 Quick Reporting

If a user only has basic knowledge of R but knows nothing about knitr,
or one does not want to write anything other than an R script, it is also
possible to generate a quick report from this R script using the stitch()
function.

The basic idea of stitch() is that knitr provides a template of the
source document with some default settings, so that the user only needs
to feed this template with an R script (as one code chunk); then knitr
will compile the template to a report. Currently it has built-in templates
for LATEX, HTML, and Markdown. The usage is like this:

library(knitr)
stitch("your-script.R")

3.4 Extracting R Code

For a literate programming document, we can either compile it to a re-
port (run the code), or extract the program code in it. They are called
“weaving” and “tangling,” respectively. Apparently the function knit()
is for weaving, and the corresponding tangling function is purl() in
knitr. For example,

library(knitr)
purl("your-file.Rnw")
purl("your-file.Rmd")



18 Dynamic Documents with R and knitr

The result of tangling is an R script; in the above examples, the de-
fault output will be your-file.R, which consists of all code chunks in the
source document.

So far we have been introducing the command line usage of knitr,
and it is often tedious to type the commands repeatedly. In the next
chapter, we show how a decent editor can help edit and compile the
source document with one single mouse click or a keyboard shortcut.


	Cover
	Dynamic Documents with R and knitr, Second Edition
	Aims and Scope
	Published Titles
	© 2015 by Taylor & Francis Group, LLC
	ISBN 978-1-4987-1697-0 (eBook - PDF)

	Dedication
	Contents
	Preface
	Who Should Read This Book
	Software Information and Conventions
	Structure of the Book
	What’s New in the Second Edition
	Acknowledgments

	About the Author
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Reproducible Research
	2.1 Literature
	2.2 Good and Bad Practices
	2.3 Barriers

	Chapter 3 A First Look
	3.1 Setup
	3.2 Minimal Examples
	3.2.1 An Example in LATEX
	3.2.2 An Example in Markdown

	3.3 Quick Reporting
	3.4 Extracting R Code


