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It has been 50 years since the publication of the seminal works by Savageau [1],
Kacser & Burns [2,3] and Heinrich & Rapoport [4], on the control of biochemical
networks. What is remarkable about these three publications (especially the
two papers by Kacser et al. and Rapoport et al.) is that they independently
developed almost the same approach and came to the same conclusions. This
approach is today called metabolic control analysis (MCA), and is a body of
work that uses mathematics to reason about the properties of biochemical path-
ways in a deductive manner. Although originally focused on metabolic
pathways, it was realized early on that it could be equally applied to genetic
and signalling networks [5,6]. In fact anything that one could associate a
stoichiometry matrix with. In recent years, others have reinvented MCA [7–9],
using different notation, highlighting the fact that there has been a good deal of
conceptual convergence in this area.

Although some aspects of MCA had been published previous to the original
primary publications [10,11], the papers by Kacser, Burns, Heinrich and
Rapoport were focused on how metabolites and fluxes in metabolic pathways
are affected by changes in enzyme activities and other external factors. The
work by Savageau [1], in contrast, emphasized the effect on species concen-
trations with no mention of fluxes but also uniquely discussed the dynamic
stability of dynamical models. The article by Kacser & Burns [2], titled ‘The con-
trol of flux’, was particularly influential because it presented its ideas in a clear,
readable and mathematically accessible way. It spoke directly to the community
of biochemists and molecular biologists, who only had a passing familiarity
with differential calculus and, at that time, were largely non-quantitative.

Even though the Kacser & Burns article was clearly written, it was ignored
for many years (as was the work by Heinrich & Rapoport [4] and Savageau [1]).
Only in the early 1980s did the work begin to be noticed particularly by indi-
viduals such as Groen, Wanders, Westerhoff and coworkers at the
Amsterdam school [12]. At this point, the paper’s impact rose rapidly and
remained highly cited for the next 15 years and continues to be cited today at
a rate of about 20 citations per year. To date (December 2023), according to
Google Scholar, the article has been cited 2622 times. Similar numbers can be
found for the work by Heinrich & Rapoport [4], Savageau [1] and their co-
workers. There have of course been criticisms, always unfounded, due to
misunderstanding the theory; either because it could not handle large changes,
had no predictive value or simply could not be true [13]. Many of the con-
clusions made by MCA went against orthodoxy and even today there is
resistance. However resistance is often for the wrong reason. MCA certainly
does make claims but these are based on a deductive approach using funda-
mental and largely accepted statements about the nature of enzymes and
chemical kinetics. Rather than dismiss the claims of MCA, the scientific
approach would be to refute the claims by experimentation. As far as I am
aware, not a single result in MCA has been refuted by experimental obser-
vation, quite the contrary. This is not to say that MCA is therefore true, that
would be a ridiculous statement to make. However, until a better explanation
and predictor of the behaviour of cellular pathways emerges, MCA is currently
the best we have.

One idea that has caused the most consternation, even today, is the
ingrained idea of the rate-limiting step. Interestingly, prior to the 1960s, there
was an active literature that spoke against the idea, of what was then called,
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the ‘master reaction’. The paper by Burton [14] is a good
example but there are others. Burton’s paper alone, published
in 1936, should convince anyone that the idea of a rate-limit-
ing step makes no logical sense. Somehow in the 1960s, and
perhaps earlier, experimentalists took the opposite view and
saw metabolism in very simple terms where one only had
to identify the single step that controlled the pathway in
order to understand it.

Interestingly, the revival in the argument against the idea
of the rate limiting step arose entirely from experimental
observations of the arginine pathway in Neurospora at Edin-
burgh in the Waddington school; but by geneticists, not
biochemists. Fig. 5 in one of the early publications by
Kacser & Burns [11], shows how various doses of enzymes
in the arginine pathway had little or no effect on growth.
As an anecdote, Kacser once told me, while I worked with
him in Edinburgh, that what inspired his interest was the
observation that Neurospora could lose 95% of a given
enzyme and appear virtually unchanged phenotypically.
This work was presented in a PhD thesis by Tateson in
1972 [15] under the guidance of Waddington, Falconer and
Kacser and is available online at the Edinburgh thesis archive.

My own experience of MCA was not based on experi-
mental science but on my first attempts to run computer
simulations. I thought at the time, that if I could run a com-
puter simulation of say glycolysis, I could understand how it
worked. Unfortunately the computer outputted reams of
numbers and graphs, which I had no idea how to interpret.
Searching the university library, I stumbled upon the work
by Kacser and Burns and realized this was the language I
needed to interpret what was happening for my simulation.
For me personally, this is what was important. MCA helps
one understand why a given biochemical pathway has cer-
tain phenotype properties based on the properties of the
component parts. In a small sense, it bridged genotype to
phenotype.

Today there are thousands of papers published on MCA
and a growing number of textbooks. There are even pages
on Wikipedia that describe MCA.
In relation to other fields, work by Ingalls [16] in 2004
showed that MCA and engineering control theory [17] were
one and the same thing. Unlike electrical and mechanical
systems, which are the mainstay of engineering control theory,
biochemical networks have unique properties such as stoichi-
ometry and mass conservation, which warrant special
treatment not found in engineering control theory. This differ-
ence is partly manifest in the various summation and
connectivity theorems that emerge from the analysis, which
give additional insight into the properties of biochemical path-
ways. There are also definite connections with both the
pioneering works of Clarke [18] and Feinberg [19] in the area
of chemical network theory but which have yet to be made clear.

To commemorate the 50 years since the publication of the
work by Kacser, Heinrich and Savageau, we have received
two papers that continue the development of MCA and a his-
torical note from Tom Rapoport [20]. The first paper is by
Liebermeister & Noor [21], who describe the use of MCA to
discover optimally principles in the distribution of protein
across metabolic networks. A second paper by Kochen et al.
[22] describes how MCA, can provide interesting and useful
insights into the dynamic properties of protein signalling
pathways. Finally, Tom Rapoport [20] gives a historical per-
spective on how field developed in Berlin. It is worth
mentioning that a special theme is also being published in
Biosystems and includes additional papers of interest.
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